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ABSTRACT 

DESIGN OPTIMIZATION OF TRUSS STRUCTURES USING GENETIC 
ALGORITHMS 

 
 

Ünalmış, Dilek 

M.Sc., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Altan Kayran 

 

September 2012, 107 pages 

Design optimization of truss structures is a popular topic in aerospace, 

mechanical, civil, and structural engineering due to benefits to industry. 

Common design problem for the structures is the weight minimization. 

Especially in aerospace engineering the minimization of the weight of the total 

structure gets the highest importance in the design.   

This study focuses on the design optimization of 2D and 3D truss structures. 

The objective function is the total mass of the structure which is subjected to 

stress and nodal displacement constraints. To optimize the design, Genetic 

Algorithm (GA) is preferred due to its efficiency in dealing with problems with 

discrete design variables as in the case of truss structures. This technique 

yields more realistic results than linear programming methods. 

In the thesis, a finite element code is developed for the analysis of planar and 

space truss structures. The developed finite element solver is coupled with a 

genetic algorithm optimization code which is also developed as a part of the 

thesis study.  Different truss optimization case studies are performed to 

demonstrate the performance of the finite element solver and the genetic 

algorithm optimization code that are developed. It is shown that with the use 

of adaptive penalty function employing scaled fitnesses, the arbitrariness 

issue of the factor multiplying the error term in the augmented fitness 

function can be resolved. It is also shown that significant weight reduction can 
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be achieved by employing shape optimization together with size optimization 

compared to pure size optimization. 

Keywords: Genetic Algorithms (GAs), Structural Optimization, Shape 

Optimization, Size optimization, Truss Systems Design, Finite Element Method  
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ÖZ 

GENETİK ALGORİTMA KULLANARAK KAFES SİSTEMLERİNİN TASARIM 
OPTİMİZASYONU 

 
 

Ünalmış, Dilek 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Altan Kayran  

 

Eylül 2012, 107 sayfa  

Kafes sistemlerinin tasarım optimizasyonu, havacılık ve uzay, makine, inşaat 

ve yapısal mühendislikte, endüstriye faydalarından dolayı popüler bir konudur. 

Yapılar için ortak tasarım problemi ağırlık minimizasyonudur. Özellikle 

havacılık ve uzay mühendisliğinde toplam yapı ağırlığının azalımı tasarımda en 

önemli yeri alır. 

Bu çalışma 2 boyutlu ve 3 boyutlu kafes sistemlerinin tasarım 

optimizasyonunu kapsar. Amaç fonksiyonu, gerilme ve düğüm noktalarının 

deplasman sınırlayıcılarına tabi olan toplam yapı ağırlığıdır. Tasarımı optimize 

etmek için kafes sistemlerinde de olduğu gibi ayrık tasarım değişkenlerine 

sahip problemlerin çözümündeki etkinliğinden dolayı Genetik Algoritma (GA) 

tercih edilmektedir. Bu teknik doğrusal programlama yöntemlerinden daha 

gerçekçi sonuçlar ortaya koyar.  

Bu tezde düzlemsel ve uzay kafes yapılarının analizi için sonlu eleman kodu 

geliştirilmiştir. Geliştirilmiş olan sonlu eleman çözücüsü bu tezin bir parçası 

olarak geliştirilen bir genetik algoritma optimizasyon kodu ile birleştirilmiştir. 

Geliştirilmiş olan çözücü ve optimizasyon kodlarının performansını göstermek 

için farklı kafes yapılarının optimizasyon çalışmaları yapılmıştır. Uyarlanabilir 

ceza fonksiyonunun kullanımıyla, orantılanmış form fonksiyonunun faktör 

çarpımıyla ilgili belirsizlik konusunun çözüldüğü gösterilmektedir. Bununla 

birlikte boyut optimizasyonu ile birlikte yapılan şekil optimizasyonu, boyut 
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optimizasyonun yalnız yapıldığı durumla kıyaslandığında, önemli miktarda 

ağırlık azalımınım elde edilebildiği gösterilmiştir.  

Anahtar Kelimeler: Genetik Algoritmalar, Yapı Optimizasyonu, Boyut 

Optimizasyonu, Şekil Optimizasyonu, Kafes Sistemlerinin Tasarımı, Sonlu 

Eleman Metodu  
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CHAPTERS 

CHAPTER 1 

1. INTRODUCTION 

Structural design of trusses deals with systems comprised from a set of 

structural members. These members are bar elements, connected by pinned 

or fixed joints. Common structures include truss are bridges, frame buildings, 

race car, airplane space frames, crane arms, and power line truss towers.  

Truss elements carry only axial loads due to their pin connections at nodes 

which are only allowed translational degrees of freedom. Only a cross 

sectional area (A) is needed to define its geometry due to the limitation of 

axial load. 

Structural optimization has become important for engineers and designers in 

recent years. After the usage of high performance computing systems, 

optimization in engineering became a commonly used design tool. Structures 

are becoming lighter, stronger, and cheaper as the industry adopts higher 

forms of optimization. This type of problem solving and product improvement 

is now indispensable part of the design process in today’s engineering 

industry. 

The topic of optimization has its mathematical roots dating back to the 1670’s 

with the introduction of differential calculus. Its primary purpose is to find the 

best result to a problem given a set of circumstances. It wasn’t until the early 

1950’s that computer-based optimization launched itself into the engineering 

industry. This was due to the fact that the topic lends itself to numerical 

computation, which is the one task in which computers have superiority over 

humans. Programmers immediately began introducing new optimization 

methods such as nonlinear programming, unconstrained optimization, and 

multi-objective optimization.  
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One of the ways of numerical optimization methods is evolutionary 

computation. This category of optimization includes the genetic algorithm. 

These forms of computation have opened many possibilities never before 

achievable in optimization. The first work utilizing the genetic algorithms was 

done by evolving state machines in the 1960’s [1]. 

Genetic algorithm applies Darwin’s major principles of evolution to artificial 

systems. Main characteristics of this method are random actions, trial and 

error, survival of the fittest to evolve solutions to optimization problems and 

recombining parts of previous good solutions. It can be applied to a wide 

variety of problems which makes it very powerful tool for engineers and 

designers.  

Complex structures with high variable interactions become difficult to 

optimize. Because of these interactions, classical optimization methods can 

produce results closer to the optimal solution. Genetic algorithms are best for 

handling global optimization problems with many local optima in a non-

continuous fitness landscape.  

1.1 Objective of the Thesis 

The objective of this thesis is to determine the minimum mass of the truss 

structures by means of size and shape optimization. Typically the optimization 

problem has stress and displacement constraints. These problems deal with 

mixed continuous and discrete search spaces, which can create solution 

landscapes which are non-smooth and deceptive. To overcome this difficulty 

in finding the optimum solution of such a complex problem, as the optimizer 

genetic algorithm is chosen. Because of searching solution in a wide range of 

intervals, genetic algorithm has greater chance to reach to optimum result. 

In this thesis, a genetic algorithm optimization code is developed to make size 

and shape optimization of the 2D and 3D truss structures. The developed GA 

provides tailoring the code to the specific needs of to the problem by being 

able to interfere at each step of the algorithm. At each generation, the GA 

code gives solutions to the problem which is equal to the population size. To 

perform the analysis of the truss structures, GA code is coupled with a finite 

element solver, which is also developed in this thesis. By this way, the 
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algorithm becomes more dynamic eliminating interface problems to integrate 

a professional analysis tool to the optimizer. Both codes are developed in 

MATLAB to allow the use of ready MATLAB functions in the calculations. 

In the thesis, two example problems, 10-bar and 25-bar truss structures, 

from the literature, are studied to show the validity of the genetic algorithm 

and finite element codes developed. Also the codes developed are used to 

optimize a real engineering problem, the tailcone truss structure of the 

helicopter “Aerospatiale SA-318C (Alouette II)”. 

1.2 Scope of the Thesis 

The scope of this work is to develop a solver-optimization code to make size 

and shape optimization for 2D and 3D truss structures by using genetic 

algorithm. 

1.3 Outline of the Thesis 

In Chapter 2, the details of the developed 2D and 3D finite element code for 

truss structures are given. 

In Chapter 3, a review of Genetic Algorithm based optimization is made, and 

the developed genetic algorithm based optimization code is introduced. 

Special emphasis is given to the use of adaptive penalty function employing 

scaled fitnesses. It is shown that the arbitrariness issue of the factor 

multiplying the error term in the augmented fitness function can be resolved 

with the use of the adaptive penalty function through the scaled fitnesses. In 

addition, definition of the optimization problem for the simultaneous shape 

and size optimization is described in detail. 

In Chapter 4, applications of design optimization are given. Case studies are 

performed for verification purposes, and shape and size optimizations are 

performed for different truss structures. In this chapter, mass optimization of 

the tailcone truss structure of the helicopter “Aerospatiale SA-318C (Alouette 

II)” is also presented  

In Chapter 5, concluding remarks are given.  
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In Appendix A, B and C, the detail inputs of the developed finite element code 

and genetic algorithm are given for the studies made in in Chapter 4.  

1.4 Literature Survey 

To get comprehension on the structural optimization especially related with 

the truss structures and Genetic Algorithm (GA), a detail literature survey has 

been made. Since the literature on the genetic algorithm is vast, in the 

literature survey some sample studies are highlighted. Sandıkcı [4] published 

a paper giving information about basic definitions, the details of the operators 

used in genetic algorithm. Also the comparison of the genetic algorithm with 

the other optimization methods is made. Dianati, Song and Treiber [20] 

represented the Genetic Algorithms and Evolution Strategies in their paper. 

The history, mathematical background and theory, and applications of these 

evolutionary algorithms are examined. Charbonneau [21] gave distinction 

between local and global optimization. After introducing general idea of the 

genetic algorithm, Charbonneau compared the performance of the GA in 

finding global optimum with hill climbing in his technical note. Said [17] 

published a paper giving information about GAs and their applications. In his 

paper, the basic concepts and functionality of genetic computation has been 

described. In 2004, McCall [2] gave general structure of the GA by describing 

how to construct GA and the theoretical approaches to genetic algorithms. 

After performing literature survey on the concept of GAs, application of 

genetic algorithm on the optimization of the structures has been investigated. 

Throughout this investigation, it is observed that different concepts and 

definitions have been applied on the structural optimization with GA. Different 

ways of defining the objective function with the given structural and design 

constraints were especially examined. Rajeev and Krishnamoorthy [9] 

presented optimization of structural systems with discrete variables with a 

simple GA. They used penalty-based transformation method in their work. In 

1994, Coello [5] proposed the use of genetic algorithms for the problems with 

discrete search space in his paper. Erbatur, Hasançebi, Tütüncü and Kılıç [14] 

reported the development of the optimization of discrete design of planar and 

space structures composed of one-dimensional elements with a computer-

based systematic approach in their paper. Tong and Liu [12] presented an 
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optimization procedure for the weight optimization of the truss structures, 

with discrete design variables, subjected to constraints on stresses, natural 

frequencies and frequency responses. In 2000, Gil and Andreu [16] presented 

a method for the optimization of the shape and cross-sections of a plane truss 

structure under the stress and geometrical constraints in their paper. The 

method includes a new approach of merging these problems. Croce, Ferreira 

and Lemonge [3] proposed in their paper a genetic algorithm for weight 

optimization of industrial buildings evolving the structural configuration in 

which shape, topology and the number of the truss elements are allowed to 

change during the optimization process. Auer [1] proposed a customized 

genetic algorithm developed to aid in the structural design process for size 

and shape optimization in his thesis. Toğan, Seyhun and Daloğlu [10] 

compared their previously coded and tested algorithm based on Genetic 

Algorithms (GA) to solve the optimization problems in structural engineering 

with MATLAB Genetic Algorithm Tool. In 2006, Taşkınoğlu [18] proposed a 

design procedure incorporating GA for the structural design optimization in his 

thesis. Kutay [19] presented a genetic algorithm code optimizing the stacking 

sequence of a composite pressure vessel in his thesis. Sun, Li, Zheng, Zhang 

and Hou [13] proposed a hybrid genetic algorithm based on relative difference 

quotient method and improved genetic algorithm to deal with the shape 

optimization of the truss structure. Hultman [6] developed a genetic 

optimization algorithm for weight minimization of steel trusses under the 

constraints regarding material strength and buckling stability. 

From this examining, it is realized that the main contribution to the genetic 

algorithm is made by the adaptive approaches. By the adaptive approaches, 

one can control the algorithm progress; at the same time take the advantage 

of the non-deterministic characteristics of the GAs. Nanakorn and Meesomklin 

[11] published a paper proposing the adaptive penalty function method by 

which the penalty factor can be adjusted during the evaluation, providing the 

desired degree of penalty. In 2006, Toğan, Seyhun and Daloğlu [15] 

discussed the adaptive approach in genetic algorithms by testing the effects 

of some improvements in the penalty function, mutation and crossover on the 

performance of GAs. In this thesis, the algorithm is structured as a simple GA 

but involving adaptive penalty approach referred in reference [11]. 
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CHAPTER 2 

2. DEVELOPMENT OF A 2D&3D FINITE ELEMENT 
CODE FOR TRUSS STRUCTURES 

2.1 Truss Structures 

Truss can be called as “discrete element” structure. It consists of individual 

bar elements. So there is no need for dividing the continuum into appropriate 

elements and idealizing the behavior of each element, which are the 

important finite element processes [8].  

Each bar of a truss is assumed to be uniform, linearly elastic, pin-connected 

to nodes at its ends, and axially loaded. This also means that a truss node is 

only allowed translational degrees of freedom. 

A truss element needs only a cross sectional area to define its geometry due 

to the axial load limitation, and its length is determined by the position of its 

end nodes.  

A three-dimensional truss element has two local degrees of freedom and six 

global degrees of freedom, with three translational degrees of freedom at 

each end of the element. Figure 2.1 shows a three-dimensional truss element 

with its local and global coordinate systems, degrees of freedom, and 

allowable forces. The black capital symbols represent global objects, while 

gray lower case symbols represent local objects. It can be seen that a truss 

element has only one local coordinate axis (x) originating from one node and 

extending through the length of the element. The only forces (f1,f2) and 

displacements (u1,u2) allowed in this local system lie along the axis of the 

element, and the element has two degrees of freedom. The global coordinate 

system (X,Y,Z) that is used in the structural analysis then causes each local 
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object to be broken into three equivalent global components. It is then shown 

that the three-dimensional truss element has six global degrees of freedom, 

with one for each global coordinate at each end of the element [1]. 

 

Figure 2.1. Truss element displaying local and global coordinate systems 

2.2 Development of Finite Element Code  

The developed finite element code for structural analysis can handle 2D and 

3D truss structures. Boundary conditions should be placed on the nodes, and 

external loads are applied only at nodes. In addition to the external loads, 

finite element code also allows weight and thermal loading. 

The principal steps of linear static stress analysis by the finite element method 

are listed below [8]. 

1. Input and Initialization 

2. Computation of element properties; element stiffness matrices and element 

load vectors 

3. Assembly of the structural matrices; structural stiffness matrix and 

structural load vector 

4. Calculation of nodal displacements 

5. Postprocessing; calculation of element strains and stresses 
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 Input and initialization 2.2.1

In the finite element method, the number of nodes and elements, nodal 

coordinates, structure node numbers of each element, material properties, 

temperature changes, mechanical loads, and boundary conditions are given as 

input. 

Finite element method starts with reserving storage space for structure arrays 

[K] and {R} to null arrays. [K] is the structural stiffness matrix. Following 

statement gives the physical meaning of [K]: “The jth column of [K] is the 

vector of loads that must be applied to nodal degrees of freedom (d.o.f.) in 

order to maintain the deformation state associated with unit value of d.o.f. j 

while all other nodal d.o.f. are zero” [8]. 

[K] is a nXn dimensional matrix, where n is the number of d.o.f. of the 

structure meaning that to define the deformed configuration of the structure 

uniquely, n independent quantities are needed. For example, in a plane truss, 

n is d.o.f. of each node, which is 2, times number of nodes allowed to displace 

[8]. 

To manage boundary conditions, destination array (ID array), is initialized and 

converted to a table of equation numbers. ID array is aXb matrix, where a is 

the maximum d.o.f of each node and b is the number of nodes in the 

structure. It is filled with the numbers indicating the locations in [K] to which 

element stiffness coefficients kij are to be assigned [8]. 

 Computation of the Element Properties 2.2.2

For each element, element stiffness matrix [k] and element load vector {re} 

are computed. 

2.2.2.1 Element Stiffness Matrix for 3D Space Trusses 

In the calculation of the stiffness matrix for the 3D space trusses, direction 

cosines, the cosines of the angles between the vector and the three 

coordinate axes, are used as shown in Figure 2.2. 
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Cx=Cos θx 

Cy=Cos θy 

Cz=Cos θz 

 

 

Figure 2.2. Direction Cosines 

In the calculation of the element stiffness matrix of the truss element, direct 

method is used. In the direct method, a degree of freedom is given a 

displacement while all the other degrees of freedom are kept fixed and nodal 

forces associated with such a displacement field is calculated. When the 

applied displacement is factored out, the resulting nodal force vector 

constitutes the column vector of the element stiffness matrix corresponding to 

the degree of freedom which is given a displacement.  

For instance, referring to Figure 2.3, the displacement along element IJ due to 

displacement Uix is calculated as  

 ݁ = ௜ܷ௫ cos ௫ߠ → ݁ = ௜ܷ௫ܥ௫ (2.1) 

 

Figure 2.3. The displacement at node i in the x direction; UİX 
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In Eq.(2.1), Uix is the displacement of node i in the global x direction. 

The force acting on the element IJ due to small displacement Uix is then given 

by  

ܨ  = ݇݁ = ஺ா
௅ ௜ܷ௫ܥ௫ (2.2) 

where axial stiffness of a truss element is given by AE/L with A representing 

the cross-sectional area, E is the Young’s modulus and L is the length of the 

truss element IJ. 

The components of the force F acting on node i in the X, Y and Z directions 

are calculated from Eqs.(2.3-2.5). 

 
௜ܲ௫ = ௫ܥܨ =

ܧܣ
ܮ ௜ܷ௫ܥ௫ଶ 

(2.3) 

 
௜ܲ௬ = ௬ܥܨ =

ܧܣ
ܮ ௜ܷ௫C୶C୷ 

(2.4) 

 
௜ܲ௭ = ௭ܥܨ =

ܧܣ
ܮ ௜ܷ௫C୶C୸ 

(2.5) 

 

The components of the forces acting at node J in the X, Y and Z directions are 

then calculated by requiring the equilibrium of the element IJ. Nodal forces at 

node j are given by Eqs.(2.6-2.8) 

 

 
௝ܲ௫ = − ௜ܲ௫ = ௫ܥܨ− = −

ܧܣ
ܮ ௜ܷ௫ܥ௫ଶ 

(2.6) 

 
௝ܲ௬ = − ௜ܲ௬ = ௬ܥܨ− = −

ܧܣ
ܮ ௜ܷ௫C୶C୷ 

(2.7) 

 
௝ܲ௭ = − ௜ܲ௭ = ௭ܥܨ− = −

ܧܣ
ܮ ௜ܷ௫C୶C୸ 

(2.8) 

 

Finally, the first column of the element stiffness matrix related to the 

displacement Uix is obtained. After factoring out the displacement Uix, Eq. 

(2.9) gives the column of the stiffness matrix associated with the nodal 
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displacement Uix. That is, the elements of the stiffness matrix, given by 

Eq.(2.9) are only multiplied by the nodal displacement Uix. 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ ௜ܲ௫

௜ܲ௬

௜ܲ௭

௝ܲ௫

௝ܲ௬

௝ܲ௭⎭
⎪⎪
⎬

⎪⎪
⎫

(ଵ)

=
ܧܣ
ܮ ௜ܷ௫

⎩
⎪⎪
⎨

⎪⎪
⎧ ௫ଶܥ

C୶C୷
C୶C୸
௫ଶܥ−
−C୶C୷
−C୶C୸⎭

⎪⎪
⎬

⎪⎪
⎫

 (2.9) 

In a similar manner, the second and third column of the element stiffness 

matrix is calculated by applying displacements Uiy and Uiz in the y and z 

directions, respectively. 

The second column of the element stiffness matrix related to the displacement 

Uiy, shown in Figure 2.4,is is given by Eq. (2.10). 

 

Figure 2.4. The displacement at node i in y direction; Uiy 

 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ ௜ܲ௫

௜ܲ௬

௜ܲ௭

௝ܲ௫

௝ܲ௬

௝ܲ௭⎭
⎪⎪
⎬

⎪⎪
⎫

(ଶ)

=
ܧܣ
ܮ ௜ܷ௬

⎩
⎪⎪
⎨

⎪⎪
⎧

C୶C୷
௬ଶܥ

C୷C୸
−C୶C୷
௬ଶܥ−

−C୷C୸⎭
⎪⎪
⎬

⎪⎪
⎫

 (2.10) 

 

The third column of the element stiffness matrix related to the displacement 

Uiz, shown in Figure 2.5, is given by Eq. (2.11) 
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Figure 2.5. The displacement at node i in z direction; Uiz 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ ௜ܲ௫

௜ܲ௬

௜ܲ௭

௝ܲ௫

௝ܲ௬

௝ܲ௭⎭
⎪⎪
⎬

⎪⎪
⎫

(ଷ)

=
ܧܣ
ܮ ௜ܷ௭

⎩
⎪⎪
⎨

⎪⎪
⎧

C୶C୸
C୷C୸
௭ଶܥ

−C୶C୸
−C୷C୸
௭ଶܥ− ⎭

⎪⎪
⎬

⎪⎪
⎫

 (2.11) 

 

Using the symmetry property of the stiffness matrix, the total element 

stiffness matrix is obtained as follows: 

 

ܧܣ
ܮ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
	
௫ଶܥ

C୶C୷
C୶C୸

						
C୶C୷
௬ଶܥ

C୷C୸
					
	C୶C୸
C୷C୸
௭ଶܥ

௫ଶܥ−
−C୶C୷
−C୶C୸

			
−C୶C୷
௬ଶܥ−

−C୷C୸
			
−C୶C୸
−C୷C୸
௬ଶܥ−

௫ଶܥ−
−C୶C୷
−C୶C୸

		
−C୶C୷
௬ଶܥ−

−C୷C୸
			
−C୶C୸
−C୷C୸
௬ଶܥ−

				
௫ଶܥ

C୶C୷
C୶C୸

							
C୶C୷
௬ଶܥ

C୷C୸
						

C୶C୸
C୷C୸
୸ଶܥ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2.12) 

 

It should be noted that if the same procedure of obtaining nodal forces 

corresponding to the displacements applied at node j is followed, one would 

get the elements of the 4th-6th columns of the stiffness matrix. However, by 

taking advantage of the symmetry of the stiffness matrix, element stiffness 

matrix can be determined more easily. 
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The nodal equilibrium equations can be written as:  

⎩
⎪⎪
⎨

⎪⎪
⎧ ௜ܲ௫

௜ܲ௬

௜ܲ௭

௝ܲ௫

௝ܲ௬

௝ܲ௭⎭
⎪⎪
⎬

⎪⎪
⎫

=
ܧܣ
ܮ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
	
௫ଶܥ

C୶C୷
C୶C୸

						
C୶C୷
௬ଶܥ

C୷C୸
					
	C୶C୸
C୷C୸
௭ଶܥ

௫ଶܥ−
−C୶C୷
−C୶C୸

			
−C୶C୷
௬ଶܥ−

−C୷C୸
			
−C୶C୸
−C୷C୸
௬ଶܥ−

௫ଶܥ−
−C୶C୷
−C୶C୸

		
−C୶C୷
௬ଶܥ−

−C୷C୸
			
−C୶C୸
−C୷C୸
௬ଶܥ−

				
௫ଶܥ

C୶C୷
C୶C୸

							
C୶C୷
௬ଶܥ

C୷C୸
						

C୶C୸
C୷C୸
୸ଶܥ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧ ௜ܷ௫

௜ܷ௬

௜ܷ௭

௝ܷ௫

௝ܷ௬

௝ܷ௭⎭
⎪⎪
⎬

⎪⎪
⎫

 (2.13) 

 

2.2.2.2 Element Stiffness Matrix for 2D Plane Trusses 

For plane trusses, one angle θ is enough to define relation of the element to 

the x and y axes. Denoting cosθ as C and sinθ as S, and following the direct 

method of obtaining stiffness matrix defined for the 3D truss element, one 

can obtain the element stiffness matrix of the 2D truss element. 

The displacement on element IJ due to displacement Uix is given by 

 ݁ = ௜ܷ௫ cos θ → ݁ = ௜ܷ௫(2.14) ܥ 

Eq.(2.15) gives the force acting on the element IJ due to small displacement 

Uix. 

ܨ  = ݇݁ = ஺ா
௅ ௜ܷ௫C (2.15) 

 

The forces acting on node i in reaction to the force F in X and Y directions are 

given by Eqs. (2.16-2.17) 

 
௜ܲ௫ = ௫ܥܨ =

ܧܣ
ܮ ௜ܷ௫Cଶ (2.16) 

 
௜ܲ௬ = ௬ܥܨ =

ܧܣ
ܮ ௜ܷ௫CS (2.17) 
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The forces acting on node j in reaction to the force F in X and Y directions are 

given by Eqs. (2.18-2.19) 

 
௝ܲ௫ = − ௜ܲ௫ = ௫ܥܨ− = −

ܧܣ
ܮ ௜ܷ௫Cଶ (2.18) 

 
௝ܲ௬ = − ௜ܲ௬ = ௬ܥܨ− = −

ܧܣ
ܮ ௜ܷ௫CS (2.19) 

 

The first column of the element stiffness matrix related to the displacement 

Uix is obtained by Eq. (2.20) 

 

⎩
⎨

⎧ ௜ܲ௫

௜ܲ௬

௝ܲ௫

௝ܲ௬⎭
⎬

⎫

(ଵ)

=
ܧܣ
ܮ ௜ܷ௫ ൞

ଶܥ
ܵܥ
ଶܥ−
ܵܥ−

ൢ (2.20) 

 

The second column of the element stiffness matrix related to the displacement 

Uiy, obtained in a same manner, is given by Eq. (2.21) 

 

⎩
⎨

⎧ ௜ܲ௫

௜ܲ௬

௝ܲ௫

௝ܲ௬⎭
⎬

⎫

(ଶ)

=
ܧܣ
ܮ ௜ܷ௬ ൞

ܵܥ
ܵଶ
ܵܥ−
−ܵଶ

ൢ (2.21) 

 

 

Using the symmetry property of the stiffness matrix, the total element 

stiffness matrix is obtained as follows: 

 

 
ܧܣ
ܮ ൦

ଶܥ
ܵܥ		
ଶܥ−
ܵܥ−

ܵܥ			
			ܵଶ
ܵܥ−
	−ܵଶ

ଶܥ−		
ܵܥ−
ଶܥ					
ܵܥ			

ܵܥ−	
	−ܵଶ
ܵܥ			
ܵଶ

൪ (2.22) 

 

 

 



 
15 

 

The equilibrium equations are given by Eq.(2.23) 

 

⎩
⎨

⎧ ௜ܲ௫

௜ܲ௬

௝ܲ௫

௝ܲ௬⎭
⎬

⎫
=
ܧܣ
ܮ
൦
ଶܥ
ܵܥ		
ଶܥ−
ܵܥ−

ܵܥ			
			ܵଶ
ܵܥ−
	−ܵଶ

ଶܥ−		
ܵܥ−
ଶܥ					
ܵܥ			

ܵܥ−	
	−ܵଶ
ܵܥ			
ܵଶ

൪

⎩
⎨

⎧ ௜ܷ௫

௜ܷ௬

௝ܷ௫

௝ܷ௬⎭
⎬

⎫
 

(2.23)  

 

2.2.2.3 Additional Loads 

There are two additional loads considered which are applied to the nodes from 

the sources other than element deformation. These are the thermal and the 

weight loading.  

Thermal loading is the axial force sustained by a fully restrained bar element 

which is initially stress-free and uniformly heated T degrees [8]. For 3D and 

2D trusses, element load vector for the thermal loading is defined by 

Eq.(2.24) and Eq. (2.25) respectively. In Eqs. (2.24) and (2.25), ࢻ is the 

thermal expansion coefficient. 

 

{்ݎ} = ܶܣܧߙ

⎩
⎪
⎨

⎪
⎧
௫ܥ−
௬ܥ−
௭ܥ−
௫ܥ
௬ܥ
௭ܥ ⎭

⎪
⎬

⎪
⎫

 (2.24) 

 
{்ݎ} = ൞ܶܣܧߙ

ܥ−
−ܵ
ܥ
ܵ

ൢ (2.25) 

 

Weight loading is the force applied to the nodes due to gravity [8]. For 3D 

and 2D trusses, element load vector for the weight loading is defined by 

Eq.(2.26) and Eq. (2.27) respectively. In Eqs.(2.26) and (2.27) W is the 

element weight, and in the present formulation, weight of the element is 

assumed to be equally shared with the nodes of the element. 
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{௪ݎ} =
ܹ
2

⎩
⎪
⎨

⎪
⎧

0
0
−1
0
0
−1⎭

⎪
⎬

⎪
⎫

 (2.26) 

 
{௪ݎ} =

ܹ
2 ൞

0
−1
0
−1

ൢ (2.27) 

 

Combination of these additional element loads {re} is given by Eq. (2.28)[8]. 

Equation (2.28) gives the element load vector and in the assembly process, 

the nodal loads associated with the element load vector are superimposed on 

the external nodal loads applied. 

{݁ݎ}  = {ݓݎ} +  (2.28) {ܶݎ}

 

 Assembly of the Element Matrices 2.2.3

The element stiffness and load matrices are assembled in structural stiffness 

and load matrices. In stress analysis, assembly of the elements can be 

considered as a process in which equilibrium equations are written for each 

node of the structure under all loads applied to it [8].  

In this process, each of the element stiffness matrix [k] is added into 

structural stiffness matrix [K] and element load vector {re} and external loads 

{P} are added into structural load vector {R}. The assembled structural 

stiffness and load matrices are given by Eqs (2.29, 2.30).  

 
[ܭ] = ෍ [݇]௡

௡௨௠௘௟

௡

 (2.29)  

 
{ܴ} = {ܲ} + ෍ ௡{௘ݎ}

௡௨௠௘௟

௡

 (2.30)  
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It should be noted that in the construction of the structural stiffness matrix 

and the structural load vector, theoretically element stiffness matrices and 

element load vectors should be expanded to structure size and added up, as 

shown in Eqs. (2.29 and 2.30). However, for large systems such a summation 

is practically impossible because element stiffness matrices and element load 

vectors contain many zeros. Therefore, in the present study, ID array concept 

[8] is used to locate the position of the element stiffness matrices and 

element load vectors in the structural stiffness matrix and structural load 

vector without expanding the element stiffness matrices and element load 

vectors to structure size. 

 Strain and Stress calculation 2.2.4

By using definitions of [K] and {R}, the static equilibrium of equations for the 

structure are stated as; 

{ܦ}[ܭ] = {ܴ} (2.31)  

where {D} is structure displacement vector. 

In the Eq. (2.31), structure stiffness matrix [K] is singular since there is no 

unique solution for this equation if the structure is not supported, and rigid 

body motion of the structure is not prevented.  

At this point, boundary conditions for the structure are introduced through 

which the fixed d.o.f. of the nodes are defined. By partitioning matrices, Eq. 

(2.31) is redefined by Eq. (2.32) [8].  

 

൤[ܭଵଵ] [ଵଶܭ]
[ଶଵܭ] ൨[ଶଶܭ] ൜

௫ܦ
௖ܦ
ൠ = ൜ܴ௖ܴ௫

ൠ (2.32)  

or, in a expanded form  

{௫ܦ}[ଵଵܭ] + {௖ܦ}[ଵଶܭ] = {ܴ௖} (2.33)  

{௫ܦ}[ଶଵܭ] + {௖ܦ}[ଶଶܭ] = {ܴ௫} (2.34)  



 
18 

 

where Dc and Rc are known d.o.f. and loads respectively, and  Dx and Rx are 

unknown d.o.f. and loads respectively. 

The Eq. (2.33) is solved for Dx which represent the unknown displacements of 

the nodes. After finding Dx, by using Eq. (2.34), reaction force vector Rx is 

calculated.  

For the stress calculation of the elements, strain in each element is calculated 

by using the nodal d.o.f. {d} of each element which is extracted from {Dx}. 

The computation of elongation in for 3D and 2D truss elements and 

mechanical strains is given by Eqs. (2.35, 2.36, 2.37) respectively [8]. 

 

݁ = ൫ݑ௝ − ௫ܥ௜൯ݑ + ൫ݒ௝ − ௬ܥ௜൯ݒ + ൫ݓ௝   ௭ (2.35)ܥ௜൯ݓ−

݁ = ൫ݑ௝ − ߚݏ݋௜൯ܿݑ + ൫ݒ௝ −   (2.36) ߚ݊݅ݏ௜൯ݒ

߳ =   (2.37) ܮ/݁

Where ui, vi, wi and  uj, vj, wj are displacements in X, Y, Z directions at node i 

and node j  of the element, respectively. 

Stress calculation for each element is given by Eq. (2.38) 

ߪ =   (2.38) ߳ܧ

All of these steps are handled in the finite element code which is developed in 

MATLAB. The flow chart for the code is shown in Figure 2.6 [1]. 
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Figure 2.6. Flow chart for finite element method.  
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2.3 Verification Study for Finite Element Method 

In the verification of the finite element code, a 3-bar space truss shown in 

Figure 2.7 is used. In the analysis, the nodes 1, 2 and 3 are taken fixed. A 

load P=12 kN is applied at node 4 in X-direction. 

The modulus of elasticity for the bars is taken E=200 GPa. The area of the 

elements 1 and 3 is set to be 0.001 m2 and for the second element, it is taken 

as 0.002 m2.  

 

Figure 2.7. 3-Bar space truss 

The stress outputs of the program are compared by the results calculated by 

hand and the same results are obtained from both. The results are given by 

Table 2.1. Since the truss shown in Figure 2.7 is a typical 3D truss, the stress 

comparison given in Table 2.1 shows that the developed finite element code is 

reliable and error free.  

Table 2.1. Stress results for 3-bar space truss 

 

sEL1 sEL2 sEL3  

Hand calculation -12,806 11,662 -12,806
Finite Element Code -12,806 11,662 -12,806

Pa
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CHAPTER 3 

3. GENETIC ALGORITHM BASED STRUCTURAL 
OPTIMIZATION 

3.1 Structural Optimization Methods  

Optimization of structures can be grouped in three categories which are 

topology, size, and shape optimization. Generally, in the structural 

optimization the objective is the mass minimization subject to stress and/or 

displacement constraints. These categories can be very briefly defined as: 

Topology optimization: Element-node connectivity variation to find an optimal 

layout design.  

Size optimization: Element cross sectional properties variation to find an 

optimal sizing 

Shape optimization: Movements of nodes to change the shape of the structure 

without changing the topology.  

In this thesis, size and shape optimization is studied by changing size and 

shape variables simultaneously. 

In Figure 3.1, examples of the three types of structural optimization can be 

seen [1]. 
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Figure 3.1. Examples of structural optimization 

The optimization problem is generally defined as minimizing the mass of the 

structure under stress and displacement constraints. The objective function of 

the problem is the mass of the structure, and for the truss structure total 

mass is defined by 

 
݂(ܺ) = ෍ܣߩ௜ܮ௜

௡

௜ୀଵ

 (3.1) 

 

where n is the total number of elements in the truss structure, x is the 

objective function variables, Ai is the cross-sectional area of the ith  element, 

Li is the length of the ith element, and is the weight density of the material. 

Additionally, the truss is subject to the following set of stress and 

displacement constraints; 

௜ߪ  ≤  ௔ߪ
for i=1 to n 

(3.2) 

 ௜ܷ ≤ ௔ܷ (3.3) 

where σi is the stress in element i, σa  is the maximum allowable stress for all 

elements, Ui is the displacement of each node (horizontal and vertical 

Topology Shape Size
 (Connectivity Variation) (Nodes Movement) (Area Variation)
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displacements), and Ua  is the maximum allowable displacement for all nodes. 

These constraints can be expressed in normalized form as 

௜ߪ 
௔ߪ
− 1 ≤ 0 (3.4) 

 ௜ܷ

௔ܷ
− 1 ≤ 0 (3.5) 

 

3.2 Genetic Algorithm  

The idea of evolutionary computing was introduced by I. Rechenberg. The 

genetic algorithm, which is an area of evolutionary computation, was invented 

by John H. Holland [4]. After the contribution of the high performance 

computing systems, the deal with genetic algorithms increased and it became 

more popular as an optimization tool. 

Genetic algorithms (GAs) utilize the evaluation theory and natural selection 

for solution of the problem. It is nondeterministic stochastic search and 

optimization method, meaning that it uses some form of pseudorandom 

number generation, and as a result, this makes the solution path and results 

nondeterministic. Stochastic property gives opportunity to search complex 

landscapes filled throughout with local optima and deceptive solution paths 

[1]. 

Genetic algorithm is based on Darwin’s five main principles of evolution which 

are population, crossover (recombination), mutation (variation), selection, 

and heredity [1]. 

In a basic GA, algorithm starts with a randomly generated population of 

individuals which are named as chromosomes. Every individual has finite 

number of design variables which are called as genes. From this population, 

parents for the recombination process are chosen by fitness based selection. 

After recombination, mutation is usually applied at a small rate. The child 

chromosomes then pass into the successor population which is the new 

population. As this process is iterated, the average fitness of the 
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chromosomes tends to increase until some stopping criterion is achieved. 

Thus, genetic algorithm evolves to the best solution for a given problem [2]. 

Superior characteristics of genetic algorithm over traditional optimization 

methods are [3][9]: 

 Specific knowledge about the problem is not required for genetic 

algorithms. So it is not necessary to have continuous and/or 

differentiable objective function. The search can be performed over 

non-convex and even disjunct sets, and variables can be different 

types (e.g. continuous, discrete, boolean). 

 GAs works on a population which has set of solutions for the objective 

functions while classical methods use single-point approach. In other 

words, GAs process a number of designs at a time. 

 GAs are not deterministic opposite to the traditional methods. Instead, 

randomized operators are used which improve the search process, 

giving chance to any point to be a solution in a given range. So GAs 

are not sensitive to the starting point and less prone to entrapment in 

local optima. 

Genetic operators, being randomized, working on coded design variables and 

processing on a population, make GAs powerful. Today, many kinds of genetic 

operators are used, such as reproduction, crossover, mutation, dominance, 

segregation, migration, translocation, deletion. 

Having adaptable characteristics, GAs have been applied to a wide variety of 

problems in science, engineering, finance, etc. 

3.3 The Coding Procedure 

In this thesis, a genetic algorithm is coded for size and shape optimization of 

the planar and space trusses. The algorithm steps are very similar to the 

basic flowchart of a typical GA as shown in Figure 3.2. But in the present 

study, emphasis is given to the adaptive penalty function approach and the 

elimination of the arbitrariness issue of the factor multiplying the error term in 

the augmented fitness function to find solutions which satisfy constraints. 

Following sections explain the steps of the algorithm in more detail. 
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Figure 3.2. Genetic Algorithm Flowchart 
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 Initial Population Creation 3.3.1

The algorithm starts by creating randomized initial population. In code, this is 

a matrix with dimension mXn, where m is the size of the population and n is 

the number of variables.  

Population size gives the number of individuals in the population. It is user 

defined and can change for different problems. For GAs, population size is 

very is important in the effective implementation of the algorithm. If the 

population size is smaller than needed, the algorithm search capability 

decreases and if it is too much, convergence time and the number of run to 

find the optimum solution increase. For every specific problem, the population 

size should be determined properly. The complexity of the problem is an 

important criterion for the determination of it. In the literature, some 

recommendations are given for the population size. For instance, if binary 

coding is used in operations, the population size should be in the same order 

as the length of the string [6][19]. In Chapter 4, studies are performed to find 

the best population size range for each problem. 

 Fitness Evaluation 3.3.2

The aim of the GAs is to find best (i.e. maximum) fitness value in the 

population. So, in Gas we deal with a maximization process. In structural 

optimization problems, however, the objective is to minimize the mass. So in 

the algorithm, fitness function is used instead of objective function as shown 

in Eq. (3.1) [11]. 

(݅ܺ)ܨ =
1

݂(ܺ݅) (3.6) 

where f(Xi) is objective function which is the mass of the ith individual. By 

taking mass to the denominator, as the algorithm tries to find maximum 

fitness, the minimum mass is also found. 
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The optimization problem is then defined as: 

Maximize  

(࢞)ܨ = ,[(࢞)݂]ܨ ࢞ = ,ଶݔ,ଵݔ) … (ேݔ, ∈ 	ܴே (3.7) 

Under constraints  

݃௜(࢞) ≤ 0, ݅ = 1,2, …  ܭ,

(3.8) 
ℎ௜(࢞) = 0, ݅ = 1,2, … ,ܲ 

Problem variables are defined by x which is a N-dimensional design vector, 

and  ݃௜(࢞) and  ℎ௜(࢞) are inequality and equality constraints, respectively. 

For GAs, there should be only one equation to operate on. The presence of 

constraints makes it impossible to solve the problem directly using the fitness 

function F(x). It is compulsory to redefine the fitness function by taking the 

constraints into account. Generally to handle constraints, the concept of 

penalty functions is used. The main idea in introducing penalty function is 

penalize infeasible solutions in the population. The definition of the fitness 

function in case of infeasible solutions is given by Eq. (3.9) variables are 

defined by x which is a N-dimensional design vector, and 	݃௜(࢞) and ℎ௜(࢞) are 

inequality and equality constraints, respectively. 

(࢞)௔ܨ = ࢞	݂݅																							(࢞)ܨ ∈ ෨ܨ	 , 

(3.9) 
(࢞)௔ܨ = (࢞)ܨ −  ,݁ݏ݅ݓݎℎ݁ݐ݋								(࢞)ܲ

where 	ܨ෨ is feasible search space, P(x) is the penalty function which is greater 

than zero, and ܨ௔(࢞) is an augmented fitness function after the penalty. 

In the literature, the usual way of expressing the penalty function is 

[1][3][14][16][18][19]: 

෍(ீߣ)௝[ܩ௝(࢞)]ఉ
௄

௝ୀଵ

+ 	෍(ߣு)௝[ܪ௝(࢞)]ఉ
௉

௝ୀଵ

, (3.10) 
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where 

(࢞)௝ܩ = maxൣ0,݃௝(࢞)൧, 

(3.11) 
(࢞)௝ܪ = absൣℎ௝(࢞)൧ 

Gj(x) and Hj(x) are degrees in violation of inequality and equality constraints, 

respectively. (λG)j, (λH)j  and β are constants. (λG)j  and (λH)j  are taken as 

same value, and the value of β is generally set to either 1 or 2.  

By determining the values of the constants (λG)j and (λH)j, the degree of 

penalty can be controlled. However, these coefficients, have no physical 

meaning, and cannot be selected judiciously. It is not easy to decide which 

values are really effective on the problem studied, because constants (λG)j  

and (λH)j have  a very wide range such 0.000001 to 10000 depending on the 

problem studied [11]. 

In this thesis, the adaptive penalty function is used [11]. The expression of 

the new penalty function is given by Eq. (3.7). 

௜௔ܨ = (௜ܠ)௔ܨ = −(௜ܠ)ܨ  (3.12) (௜ܠ)ܧ(ݐ)ߣ

where F୧ୟ is the fitness function of the ith individual after penalty and λ(t) is a 

factor multiplying the error term ܧ(ܠ௜).  It is noted that λ(t) changes in every 

iteration and t indicates the generation number. The error term 	E(x୧) is 

defined by [11] 

(௜࢞)ܧ = ෍ܩ௝(࢏࢞)
௄

௝ୀଵ

+ 	෍ܪ௝(࢏࢞)
௉

௝ୀଵ

, (3.13) 

The key point in the adaptive penalty function implementation is the proper 

selection of the factor λ(t) multiplying the error term which represents the 

infeasible solutions. It should be noted that if this factor is too small, then 

there is a chance of penalized fitnesses of some infeasible individuals may 

become higher than the fitnesses of feasible individuals. On the other hand, if 

the multiplying factor is too large, then some individuals with high fitness 

function values may be penalized heavily such that in the next generations 
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these individuals may have no chance to survive. Thus, good characteristics of 

these individuals may be lost. 

At this point, a new definition for a factor ߶(ݐ) is introduced, as shown in 

Eq.(3.14) 

(௜ܠ)௔ܨ ≤ ௔௩௚ܨ(ݐ)߶
௔,ி෨						݂ݎ݋	࢏࢞∀ ∈ ෩ܷ (3.14) 

Here, ෩ܷ is the infeasible search space and Fୟ୴୥
ୟ,୊෩  is the average fitness value of 

the feasible individuals in the population. The equation sets that the fitness of 

the infeasible individuals cannot be more than ߶(ݐ) times the average fitness 

of the feasible individuals. An appropriate value for λ(t) is determined by 

setting the penalized fitness value of the infeasible individual to 	߶(ݐ)ܨ௔௩௚
௔,ி෨. For 

each infeasible individual, λ(t) is calculated, and maximum value is selected 

as the value of λ(t) to be used as the multiplier factor in the expression for 

the augmented fitness function. Thus, λ(t) can be defined as   

(ݐ)ߣ = max൭0,
	max

࢏࢞∀ ∈ ෥࢛ ൥
(௜࢞)ܨ ௔௩௚ܨ(ݐ)߶−

௔,ி෨

(௜࢞)ܧ
൩൱ (3.15) 

It should be noted that Eq. (3.15) assures that Eq. (3.14) is satisfied. Thus, to 

determine λ(t), first, one has to obtain  ߶(ݐ) . 

 is determined through the use of a bilinear scaling function that is	(ݐ)߶

introduced to scale the fitnesses [11]. In this scaling method, there are two 

linear curves to define two different intervals of the fitnesses as illustrated in 

Figure 3.3. The horizontal axis of the Figure 3.3 gives the augmented fitness 

values Fa, i.e. fitness values after penalty. Vertical axis of the Figure 3.3 is the 

scaled fitnesses Fs. The first linear curve scales the augmented fitness interval 

of [ܨ௠௜௡௔ ௔௩௚ܨ ,
௔,ி෨) to [0, 1). In other words, if the fitness of an individual is below 

the average fitness of the feasible individuals, then scaled fitness of the 

particular individual is between zero and one depending on the linear relation 

shown in Figure 3.3. In a similar manner, the second linear curve scales 

augmented fitness interval of [ܨ௔௩௚
௔,ி෨, ܨ௠௔௫

௔,ி෨ ] to [1, C] [11]. 
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Figure 3.3. Bilinear Fitness Scaling 

By this scaling method, for best feasible individuals, the chance to be selected 

as a parent for reproduction is set to be C times that of the average feasible 

members. The worst individual after penalty, which has fitness	ܨ௠௜௡௔ , has no 

chance to be selected since the scaled fitness of the worst individual is zero. 

In the following, selection of the individuals is based on the scaled fitness 

values rather than the actual physical fitnesses.  

In the scaled fitness approach, Eqn. (3.14) is written in terms of scaled 

fitnesses as shown in Eqn. (3.16).   

 

(࢞)௦ܨ ≤ ௔௩௚ܨ߮)
௦,ி෨ = ࢏࢞∀	ݎ݋݂						(߮ ∈ ෩ܷ (3.16) 

where, ෩ܷ represents the infeasible search space, 	Fୱ(x) is the scaled fitness 

function, 	Fୟ୴୥
ୱ,୊෩  is the average scaled fitness value of the feasible individuals 

which is equal to 1. According to this definition, the maximum value of the 

best infeasible individual is set to be φ	 which is constant throughout the 

algorithm for all generations.  
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The expression for (t) in Eqn. (3.16) can be expressed in terms of φ	as shown 

in Eqn.(3.17) [11]. 

(ݐ)߶ =

⎩
⎪
⎨

⎪
௔௩௚ܨܥ⎧

௔,ி෨ + ௠௔௫ܨ
௔,ி෨ (߮ − 1) ௔௩௚ܨ߮−

௔,ி෨

ܥ) − ௔௩௚ܨ(1
௔,ி෨ ߮	ݎ݋݂										 ≥ 1

௠௜௡௔ܨ + ௔௩௚ܨ߮
௔,ி෨ − ௠௜௡௔ܨ߮

௔௩௚ܨ
௔,ி෨ ߮	ݎ݋݂																								 < 1

 (3.17) 

Having a very clear physical meaning and not having any unit, coefficient φ 

can be determined by experience. So the degree of the penalty λ(t) is 

obtained, because it is defined in terms of ߶(t) which is directly related to φ	by 

Eq. (3.17). 

It should be noted that in obtaining the expressions for (t), equation of linear 

curves shown in Figure 3.3 is utilized with Fs, being replaced by (t) and Fa, 

being replaced by	߶(ݐ)ܨ௔௩௚
௔,ி෨. 

Here, it should be stressed that coefficient φ	 has a very clear physical 

meaning, and it does not have any unit. Physical meaning of φ	is that it gives 

the chance of best infeasible individual being selected into the mating pool 

compared with the chance of the average feasible individuals.  It should be 

noted that coefficient has units and depending on the problem being solved at 

hand, its value can take on any value. However, coefficient φ does not have a 

unit and it can be determined by little experience. Once φ is selected, (t can 

be expressed in terms of φ from Eqn (3.17). Finally, the degree of the penalty 

λ(t) is obtained, because it is defined in terms of ߶(t) by Eqn. (3.15).  

When there is no feasible solution in the population, another scaled function is 

used. This time, scaled fitness values are based on the values of error terms 

denoted by E(x), which is the total constraint violation for each individual. 

As shown in Figure 3.4, scaled function is set to Z for the individuals which 

violate the constraints the least (Emin).On the other hand, scaled function is 

set to 1 for the individuals which violate constraint at the average (Eavg), and 

is set to 0 for the individuals which violate constraint most (Emax). 
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Figure 3.4. Bilinear Fitness Scaling for Totally Non-Feasible Populations 

In the algorithm, the values of φ, C and Z are initially set to 0.75, 2 and 5, 

respectively, as indicated in reference [11]. At the beginning; the algorithm 

can search the total search space by these problem inputs. Because, the 

linearly scaled fitness values change in an interval of 0 and 2 (C value), every 

individual, even infeasible ones, has a chance of being selected in the mating 

pool. To use the variety of the randomized initial population, this starting 

condition is very meaningful. Thus, algorithm can catch valuable gene 

information which leads to the better optimum points.    

However, after generating a certain number of feasible individuals in the 

population, the algorithm should reduce the size of the search space to 

feasible region. Because it is time consuming to select infeasible individuals 

with the same probability when the feasible region for the solution of the 

problem has been already defined.  

To work on feasible search space, the value of C is increased. So the 

probability of the feasible individuals being chosen as parent by the selection 

operation becomes higher. At the same time, infeasible individuals are 

automatically eliminated from the population by losing their fitnesses rapidly. 

By making this improvement in the methodology given in reference [11], 

algorithm is made more efficient by finding the optimum solution in less time.   
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 The Selection Scheme 3.3.3

The basic logic in selection methodology comes from the Darwin's evolution 

theory; the best ones should survive and create new offspring. There are 

many methods used to select the best chromosomes, such as, roulette wheel 

selection, Boltzman selection, tournament selection, rank selection, steady 

state selection and some others. A brief explanation is given for roulette 

wheel selection. 

3.3.3.1 Roulette Wheel Selection 

Roulette wheel selection method is best explained through an example.  

Consider a scaled fitness matrix for a population size of 5. 

FS= [1, 1.5, 0, 2, 0.5] 

 First cumulative sum of the scaled fitnesses is obtained. 

CSFS= [1, 2.5, 2.5, 4.5, 5] 

 Then by dividing every element by maximum value of the CSFS, the 

portions of the individuals in the total interval of [0, 1] are obtained; 

[0.2, 0.5, 0.5, 0.9, 1] 

 Normalized interval implies that the individuals 1, 2, 3, 4 and 5 belong 

to intervals [0, 0.2], (0.2, 0.5], [0.5, 0.5], (0.5, 0.9], (0.9, 1], 

respectively, as shown in Figure 3.5.  

 To select an individual as a parent, first a random number is generated 

in the interval [0-1]. Random number generated points a slice, and the 

individual belonging to that slice is chosen as the parent. In the given 

example, the 4th individual, having the highest fitness, has the highest 

chance of 40% while 3rd individual have no chance to be selected for 

reproduction.  

In the genetic algorithm developed, the roulette wheel selection is chosen as 

the selection algorithm.  
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Figure 3.5. Roulette Wheel 

 Genetic Operators 3.3.4

Genetic algorithm gets the optimum result of a given problem by exploiting 

useful information contained in the population to generate new population 

containing better fitness values. This process is done by elitism, crossover (or 

recombination) and mutation operations in the algorithm. These operations 

are the most classical genetic operations. 

In the genetic algorithm, the individuals are represented as a string which 

consists of variables of the problem. In the present study of structural 

optimization of truss structures, these variables are the areas of truss 

elements (bars) for size optimization, and the coordinates of the nodes which 

are allowed to move in an interval specified in the problem definition for the 

shape optimization. 

To explain the operators used in the algorithm, a 3-bar-planar-truss structure, 

shown in Figure 3.6, is given as an example. This structure has 3 bar 

elements and 4 nodes. Nodes 1, 2, and 3 are fixed while node 4 can move in 

x and y directions. The load is applied at node 4.  
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Figure 3.6. 3-Bar planar truss structure 

Consider the size and shape optimization of this example structure. The area 

variables are denoted as A1 and A2. The areas of the elements 1 and 3 are 

equal, and node 4 has X and Y coordinate variables which are defined as 

design variables. Other nodes have no shape variable, because they are fixed. 

Coding these variables as a string for each individual is made in the sequence 

given in Figure 3.7. 

 

A1 A2 X Y 

Figure 3.7. Sample string for an individual 

3.3.4.1 Elitism 

Elitism is a method by which a user defined number of the best individuals 

survive directly and are copied to the new population. Thus, they still have a 

chance of being selected as parent for reproduction. Elitism can very rapidly 

increase the performance of GA, because it protects best solution. 
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Population consists of the same type of the individuals. For the truss structure 

example with a population size of 5, Table 3.1gives the values of the size and 

shape design variables, associated fitness values, weight and scaled fitness 

results for a particular iteration step.  

Table 3.1. Sample iteration results for 3-bar planar truss 

 

 

In this sample iteration, first by using values of the design variables (cross 

sectional areas and nodal coordinates) the mass of the each truss element is 

calculated. Then the corresponding fitness values are obtained by using 

fitness function presented in Eq. (3.6). After computing error terms for each 

truss element and penalty constant λ(t) for the related iteration t, augmented 

fitness function Fa can be computed by the equation Eq. (3.12). As presented 

in Figure 3.3, by using bilinear fitness scaling method, scaled fitness values 

are obtained.  

If the elite individual number of is 1, only one individual having the best 

fitness selected as elite individual. In our example, the fourth individual is 

selected as an elite individual and passes to the new population because its 

scaled fitness value is the maximum. It should be noted that although there 

are individuals with less mass, since they have higher error terms, i.e., total 

constraint violation value, their scaled fitness values are less. 

3.3.4.2 Crossover 

Just selecting better individuals is not enough to improve the results of the 

algorithm. There should be new individuals produced in the population with 

ind# A1 A2 X Y Mass Fitness

Total 
Const. 

Violation 
(E(X i ) )

Penalty 
Constant 

(λ(t))

Fitness 
After 

Penalty 
(F a )

Scaled 
Fitness 

(F s )

1 0,33 1,30 -4 -7 1,86 0,54 2,49 0,09 0,32 0,80
2 0,34 1,42 -8 -2 1,92 0,52 2,80 0,09 0,28 0,43
3 0,74 0,46 9 -8 2,71 0,37 0 0 0,37 1,29
4 1,01 0,33 5 -3 2,31 0,43 0 0 0,43 2,00
5 1,23 1,22 -6 -7 4,43 0,23 0 0 0,23 0,00
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the hope of finding better solutions. Crossover is the one of the most popular 

way of creating child chromosomes from the parents. Because the selection 

method chooses parents from the better individuals, the chance of getting 

improvement in next generation increases by recombining better gene 

information.   

There are different cross-over operators; the most popular ones are one point 

crossover, two point crossover and uniform crossover. In this algorithm, one-

point crossover is used. The main idea is that selected two parents exchange 

some portion of their strings to create one child [6]. 

Crossover operation is done with a probability. It is called crossover rate and 

taken as 0.8 in the algorithm developed. Before crossover operation, a 

random number is generated between 0 and 1, and if this number is smaller 

than the crossover rate, the crossover occurs. If not, new random number 

between 0 and 1 is generated. If the random number is less than 0.5, the first 

parent is selected as the crossover child. Otherwise, second parent is 

accepted as the crossover child. The procedure is continued until achieving 

the population size. 

In the algorithm, the genes are redefined by binary coding. In other words, 

every gene is represented by a number of bits defined by gene length. In 

example truss, each truss element has 4 variables i.e. 4 genes. This means 

that, the chromosome length holding the total design information of the 

element, has length of 4X4=16 bit. After working on binary strings for genetic 

operators, algorithm is to transform these strings to real values which are 

used in calculation of the mass and constraints. 

Depending on the variable types, discrete or continuous, different 

transformations are to be made. In the present work, both of the variable 

types are used. For example, in the size optimization of the benchmark study 

of 10-bar truss structure, discrete size variables, from standard areas, are 

used. On the other hand, for the shape optimization studies, continuous 

variables are used. 

The transformation from binary strings to real valued variables is described 

below in detail. 

 First the decimal equivalents of the binary strings are found. 
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 If the variable type is discrete, these decimal numbers are matched 

with the values of the standard areas given as input for the size 

optimization. To be able to make appropriate matching, the number of 

the areas in the standard area list should be less than or equal to the 

maximum number that each gene can get.  

 For example, if the standard area list contains 10 areas, the minimum 

number of bit of each gene must be higher than or equal to 4. If the 

gene length is 4, then the maximum number that can be defined with 

a four digit binary number is 15 ((1111)bin=(15)dec). Thus, 10 areas 

can be assigned to any of the 15 decimal numbers. If the binary string 

length is 3, then maximum number that can be defined is 7, and 7 

different numbers is not enough to define 10 areas in standard list.   

The real value equivalent of the 15 different decimal numbers to the 

10 standard area values is given in Table 3.2.  

Table 3.2. Indices of the standard area list for discrete variables 

 

 

These values are found by the simple calculation,  

N=D*10/15 and I=floor(N), 

where D is the one of the possible 15 different numbers coming from 

the transformation of the binary string to decimal number, and I 

denotes the Ith area in the standard area list. I is found by rounding N 

down to the next integer. It should be noted that since the number of 

the standard areas is less than the maximum integer number that can 

be obtained with four digit binary number, some areas are selected 

more than once. This may be a drawback of using binary strings to 

represent design variables. A possible remedy could be to use the 

discrete variables as is without resorting to binary strings to represent 

genes.   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 2 3 4 4 5 6 6 7 8 8 9 10
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 If the variable type is continuous, the transformed numbers are 

assigned to the interval given as input. These intervals can be for 

areas in both size and shape optimization and for coordinates of the 

nodes which are free to move in shape optimization.  

As an example, the area alternatives for a gene length of 4 and area 

interval of [0.2, 2], and for a step size of (2-0.2)/(15-1)=0.129, are 

given in Table 3.3. For example, for the assigned value of 9, the 

program uses 1.229 as the area value.   

Table 3.3. Area alternatives for continuous variables 

 

 

As an illustrative example for the crossover operation, again the 3-bar-planar 

truss can be used. The parent chromosomes before crossover are represented 

as shown in Figure 3.8. 

 

 

Figure 3.8. Parents before crossover 

Consider that randomly generated crossover point is 5, in this example. The 

child chromosome is obtained by getting the values 1 to 5 from first parent 

and the values from 6 to 16 from second parent. Figure 3.9 shows the one 

point crossover operation. 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0,2 0,329 0,457 0,586 0,714 0,843 0,971 1,1 1,229 1,357 1,486 1,614 1,743 1,871 2

15 7 3 8
1111 0111 0011 1000

6 8 3 11
0110 1000 0011 1011parent_2

parent_1
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Figure 3.9. One Point Crossover Operation 

With the crossover operation, the search space is explored more effectively 

making it possible to try alternative generation of individuals. With high 

crossover rate, the probability to gain new individuals increases. But if it is too 

large, the good genetic characteristics may be destroyed and good individuals 

are demolished. But if the rate is chosen too small, the search process 

becomes slower and depending on the maximum generation number, the 

algorithm converges before finding optimal solution. So choosing appropriate 

crossover rate is very important and should be determined problem specific 

[13]. 

3.3.4.3 Mutation 

After crossover, mutation operation is applied to each child, obtained by 

crossover operation, individually. It randomly alters each bit in the 

chromosome with a smaller probability compared with the crossover rate.  

In the mutation operation, first a random number, between 0 and 1, is 

generated. If the random number of the gene is smaller than the mutation 

rate, mutation operation is performed. To make mutation on chromosome, 

mutation point is selected randomly, and the value of the bit at the mutation 

point is changed from 1 to 0, or vice versa. 

Application of mutation operation can be examined by the child chromosome 

obtained for the sample truss structure. In this example, the mutation rate is 

taken as 0.05. If the random number is 0.04, then the chromosome is 

mutated. To perform the mutation operation, the value of the bit at the 

randomly chosen mutation point (take 3) is changed from 1 to 0, or vice 

versa, as shown in Figure 3.10.   

 

Figure 3.10. Mutation operation 

1111011100111000
0110100000111011

1111000000111011

1111000000111011 1101000000111011
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After mutation operation, child chromosome is transformed from binary string 

to decimal number. The Table 3.4 gives the results of this transformation.  

Table 3.4. Child chromosome 

 

 

Mutation provides a small amount of random search so that it helps ensure 

that every point in the search space has a chance of being examined [3]. 

Mutation maintains the diversity in the population and prevents getting stuck 

in a local minimum [6]. 

It should be noted that mutation rate should not be too high, especially at the 

beginning of the iterations. Because, randomly initiated population cannot 

converge by the diversity property of mutation. However, after a stage that 

population starts to converge in a feasible region, higher mutation rate is 

needed to increase the search capability in the algorithm, because crossover 

itself cannot provide different gene information from the parents which are 

almost same [21].  

 Stopping Criteria 3.3.5

After a new population is created, algorithm turns to fitness evaluation step. 

And this routine continues up to a point at which at least one of the stopping 

criteria is satisfied. Two stopping criteria used in algorithm are listed below 

[6][7]; 

 Maximum generation number: When algorithm comes to maximum 

generation number, it stops the iteration. This value should be large 

enough for the algorithm to search the solution space properly. 

 Stall generation: This is the maximum number of generations through 

which optimum solution does not improve. Usually, this condition stops 

the algorithm when the maximum generation number is too much for 

the given problem or the crossover and/or mutation rate is too small. 

1101 0000 0011 1011
14 1 3 11

child
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 The Detail Steps of the Developed GA 3.3.6

The basic flow chart of the developed genetic algorithm given in Figure 3.2 is 

explained in detail by the following steps:  

1. The algorithm starts with the randomly created initial population. The 

number of individuals, which is called as population size and initially given 

as input to the program, is constant through the iterations. 

2. Then fitness values of the individuals are calculated by Eq.(3.6) 

3. By using bilinear scaling method the fitness values are scaled.   

3.1. The number of best individuals identified by elite number passes 

directly to the new population which has still having chance to be 

selected as parent. 

3.2. The rest of the individuals are determined by processing the GA 

operators, crossovers and mutation.  

3.2.1. First crossover operation is applied at a probability of crossover 

rate on two parents selected by roulette wheel selection method. 

Until achieving the number of the individuals which is population 

size minus elite number, this procedure is repeated. 

3.2.2. Then the individual reproduced by crossover is mutated at a 

rate of mutation. 

3.2.3. Until achieving the number of the individuals which is population 

size minus elite number, the steps 3.2.1 and 3.2.2 are repeated. 

3.3. New population is created by the combination of the elite individuals 

and the new individuals obtained by crossover and mutation. 

4. The step 2 and 3 are repeated until one of the stopping criteria is reached 

and algorithm stops by providing the solution for the optimization problem  
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3.4 Genetic Algorithms in MATLAB 

The result obtained for the studies in Chapter 4 are compared with the 

references and also with the solutions obtained by the “Genetic Algorithm 

Toolbox” in MATLAB which enables the use of GA on a wide range of 

problems.  

General view of the Genetic Algorithm Toolbox is presented in Figure 3.11. 

The left side of the tool is used to define inputs of problem to be optimized. 

These are the fitness function, number of variables, the nonlinear constraint 

function and upper and lower bounds for the variables. An example problem 

definition can be seen in Figure 3.12. 

The right size of the toolbox is allocated to the options for the genetic 

algorithm shown in Figure 3.13. The toolbox includes many different options, 

e.g. different selection, crossover and mutation operators, and has a built in 

graphical interface. Due to fact that it is written in open MATLAB language, 

the user is free to inspect and modify the algorithms, or create own, custom 

functions [7]. 

To apply the GA toolbox on an optimization problem, the MATLAB functions 

has to be implemented with a problem specific representation, 

genotype/phenotype mapping, fitness evaluation and penalty function.  

In this thesis, for the Genetic Algorithm Toolbox, the selected options are 

same with those options used in the developed algorithm. These options are 

roulette wheel selection, one point crossover and mutation. In the genetic 

algorithm, for the constraint problems there is a special mutation option, 

adaptive feasible mutation. In the developed GA, there is no operation 

matching with this mutation operator, but the other operators selected are 

the same. So that the results with the usage of the same operators can be 

seen and the performance of the developed GA can be compared with the 

Genetic Algorithm Toolbox. 
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Figure 3.11. Genetic Algorithm Toolbox 
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Figure 3.12. Problem inputs 
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Figure 3.13. Genetic Algorithm Toolbox Options. 
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CHAPTER 4 

4. APPLICATIONS OF TRUSS DESIGN 
OPTIMIZATION 

The genetic algorithm code that is developed is tested with 2 benchmark 

studies, a 10-bar planar truss and a classic 25-bar space truss problems. 

These truss structures are commonly used to verify new structural 

optimization algorithms developed by researchers. 

Both size and shape optimization is performed and optimized design 

configurations are compared with the references which had already studied 

these structures [1][5][9][11][12] and “Genetic Algorithm and Direct Search 

Toolbox” in MATLAB.  

As final case study, size optimization of the tailcone truss structure of the 

helicopter “Aerospatiale SA-318C (Alouette II)” is also performed. Results of 

the present study are checked with the results obtained by the “Genetic 

Algorithm Toolbox” in MATLAB.  

In the optimization procedure, following steps are taken; 

 First algorithm is run twenty times for three different population size, 

chosen in the order of chromosome length. 

 The population size which gives the best optimum and average mass 

results is accepted and used in the rest of the calculations. The low 

average mass implies that results obtained from any run can give a 

result which is close to the optimum mass. In a way, having low 

fluctuation of the results of the individual runs with respect to the 

average mass shows the stability of the algorithm at this population 
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size. Thus, independent from the initial randomly created population, 

the algorithm converges to the optimum result. 

 By analyzing each problem, maximum generation number, crossover 

rate, mutation rate and elite number are modified.  

After the determination of the inputs for the operators, algorithm is run 

twenty times and the best result is chosen as the optimum solution for the 

problem. 

4.1 10-Bar Truss 

The 10-bar truss benchmark is a well-defined structure with few variables and 

constraints. This structure is optimized in size and in size & shape for 

minimization of mass with stress and displacement constraints applied to 

every member and node respectively. Displacement constraints are not 

considered for the shape optimization. Also the weight of the truss itself is not 

taken into consideration in the calculation of the stress in both optimizations. 

The dimensions, node numbers, element numbers, and loaded nodes are 

shown in Figure 4.1. The load values are presented in Table 4.1 and the 

material properties for the entire structure are given in Table 4.2.  

 

Figure 4.1. 10- Bar truss 
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Table 4.1. 10-Bar Truss Loads 

 

Table 4.2. 10-Bar Truss Material 

 

 

The inputs for the developed finite element code and genetic algorithm are 

given in Appendix A.  

 Size Optimization 4.1.1

In the size optimization, design variables are the cross sectional areas of 10 

bars. The compressive and tensile stress limit for the truss members are 

specified as 25000 psi (172.37 MPa) and the maximum displacement limit for 

the nodes in the X and Y directions is taken as 2 in (50.8 mm). 

Optimization is made by the use of discrete variables. The possible areas are 

taken from the American Institute of Steel Construction Manual, which are 

given in the following list [5]; 

S = (1.62, 1.80, 199, 2.13, 2.38, 2.62, 2.63, 2.88,2.93, 3.09, 3.13, 3.38, 

3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49,4.59, 4.80, 4.97, 5.12, 

5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0,16.9, 18.8, 19.9, 22.0, 

22.9, 26.5, 30.0, 33.5) (in2). 

The advantage of using discrete area variables is that the result obtained from 

the GA gives more realistic and meaningful solutions to the problem having 

standard bars which can be available for the manufacturing.  

x y z
2 0 100000 0
4 0 100000 0

Load Case (lb)Node
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In this list, there are 42 different areas. To be able to define these areas, the 

length of the gene must be at least 6. Because, is we use gene length of 5, 

for example, algorithm gives maximum 31 different possible values for each 

variable ((11111)binary=(31)decimal).  

So, with 10 design variables (cross sectional areas) and the binary string 

length of 6 for each variable (gene), the chromosome length becomes 60. 

Three population size values are selected are 40, 60 and 80 from which the 

most appropriate population size is selected to be used in further analyses. 

Determination of the population size 

For every population size, minimum mass values and the average of the 

optimum mass results from all runs are shown in Table 4.3. 

Table 4.3. 10 Bar size optimization results for 3 population size 

 

 

Figures 4.2-4.4 show the comparison of the optimum mass result with the 

average mass obtained for each population size for 20 different runs 

performed. 

Population 
size

Minimum mass 
(lb)

Average mass 
(lb)

40 5556,60 5677,32
60 5526,60 5641,23
80 5553,60 5610,48
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Figure 4.2. 10 Bar Planar Truss for population the size 40 

 

Figure 4.3. 10 Bar Planar Truss for the population size 60 
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Figure 4.4. 10 Bar Planar Truss for the population size 80 

Among these three populations, population size of 60 is chosen, because this 

population size gives the best optimum mass and considerably low average 

mass.  

Optimization results 

After the selection of the population size, by making a number of trials, the 

optimization parameters in algorithm for the size optimization of the 10 bar 

planar truss are determined. These parameters are given in Table 4.4. 

Table 4.4. Optimization parameters for 10-bar-truss size optimization 
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Gene Length 6
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Crossover Rate 0,8
Mutation Rate 0,01
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Figures 4.5 and 4.6 show the results of the 20 runs.  

 

 

Figure 4.5. 10-bar-truss size optimization results for 20 runs 

The optimum mass is found as 5491.70 lb (2490.99 kg). For the optimum 

mass solution, the mass change through iterations is shown in Figure 4.6. The 

mass of the structure decreases from the initial value of 7884 lb. 

 

Figure 4.6. 10-Bar-truss size optimization, change in mass through 

generations 
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Table 4.5 compares the optimum cross-sectional areas obtained by the 

present analysis with the results of other studies. 

Table 4.5. Comparison of the results with references 

 

 

From Table 4.5, it is seen that the developed genetic algorithm gives one of 

the best results compared to the other references. 

 Size and Shape Optimization 4.1.2

In the second study, the 10–bar-truss structure is optimized both in size and 

shape simultaneously. To be able to perform shape optimization, some of the 

nodes are set free to move in a given design boundary. In this study, the 

nodes 1 and 3 are let free to move in both X and Y directions, and node 5 is 

allowed to move in Y direction. So there are 5 shape variables defined in the 

optimization problem. The design boundaries given for these nodal 

movements are given in Appendix A.  

So in addition to the 10 size variables (cross sectional areas), 5 shape 

variables (the coordinates of the nodes which are allowed to move in the x 

and y directions) are added to the design variables. 

In order to be able to compare the results of the present analysis with the 

independent study in the literature [1], design variables are taken as 

continuous variables instead of discrete. In the usage of the continuous 

design variables, there are intervals given as input for each variable from 

which solution for the related variable is chosen. So any number in the 

interval can be set to be value of the variable. This makes it possible to obtain 

better optimum results compared to the optimization made by discrete 

variables which constrains the variables to be assigned only to the given list 

Mass A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
(lb)

Present 5491,71 33,50 1,62 22,90 15,50 1,62 1,62 7,97 22,00 22,00 1,62
MATLAB GATOOL 5543,00 33,50 1,80 26,50 14,20 1,80 1,80 7,97 19,90 18,80 1,80
Ref [5] 5563,00
Ref [9] 5613,84 33,50 1,62 22,00 15,50 1,62 1,62 14,20 19,90 19,90 2,62
Ref[11] 5499,30 33,50 1,62 22,90 15,50 1,62 1,62 7,22 22,90 22,00 1,62
Ref[12] 5491,71 33,50 1,62 22,90 15,50 1,62 1,62 7,97 22,00 22,00 1,62

(in2)
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of standard areas. However, the optimum solutions obtained by continuous 

variables are not always possible to manufacture, i.e., practically infeasible. 

It should be noted that in this study, displacement constraints are not taken 

into consideration, and only stress constraints are applied to each bar. 

Determination of population size 

In total, the optimization problem has 15 variables. The binary string length 

of each gene is 6 by providing maximum 63 different values to be assigned 

for each variable, which gives to chance of searching considerably large 

solution space. Thus, the chromosome length for each design becomes 90. 

Taking the value of the chromosome length as reference, in the selection of 

the population size, population sizes of 60, 90 and 120 are tried. 

For every population size, minimum mass values and the average of the 

optimum mass results from all runs are presented in Table 4.6. 

Table 4.6. 10 Bar size& shape optimization results for the 3 population 
sizes 

 

 

Figures 4.7-4.9 show the comparison of the optimum mass result with 

average mass for the population sizes 60, 90 and 120, respectively.  

Population 
size

Minimum mass 
(lb)

Average mass 
(lb)

60 1341,40 1483,81
90 1323,40 1429,70

120 1307,70 1442,27
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Figure 4.7. 10 Bar truss size& shape optimization for the pop. size 60 

 

Figure 4.8. 10 Bar truss size& shape optimization for the pop. size 90 
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Figure 4.9. 10 Bar truss size& shape optimization for the pop. size 120 

From Figs. 4.7-4.9 it is seen that the performance of the population size 90 

gives the best optimum mass with the least average mass and with least 

fluctuation of the individual results with respect to the average mass. So this 

population size is chosen for the rest of the analysis. 

Optimization results 

The optimization parameters used in algorithm for the size & shape 

optimization of the 10 bar planar truss is given in Table 4.7. 

Table 4.7. Optimization parameters for 10 bar size& shape optimization 
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A separate 20 different optimization runs are performed with a population size 

of 75, and the results obtained from these 20 runs are shown in Figure 4.10. 

The optimum mass for the structure is found as 1308.30 lb (593.43 kg).  

 

 

Figure 4.10. 10-bar-truss size& shape optimization results for 20 runs 

For the optimum mass configuration obtained as a result of 20 different runs, 

change in the mass from 2463 lb to final value of 1308.30 lb  is given in 

Figure 4.11.  

 

 

Figure 4.11. The mass change through generations 
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Table 4.8. Comparison of the area and mass results with references 

 

 

Optimum mass determined by the developed code is very close to the 

optimum mass determined by the genetic algorithm toolbox of Matlab but 

there is some discrepancy with the optimum mass obtained in Reference [1] 

as shown in Table 4.9. It can be improved by increasing the gene length and 

population size. By increasing gene length, the maximum number value of 

each gene is increased, and this gives the chance of searching solution space 

in more detail. In the same manner, if the population size increases, search 

space becomes larger, but this will cause spending more computation time. 

The results for the new coordinates of the nodes are presented in Table 4.9.  

Table 4.9. The new nodal coordinates after size& shape optimization 

 

 

 

 

 

 

 

Mass A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
(lb)

Present 1308,43 5,60 0,73 4,50 1,99 0,18 0,41 4,81 3,56 4,19 0,12
MATLAB GATOOL 1320,41 3,88 0,65 5,81 1,94 4,52 0,65 8,39 0,65 3,88 0,65
Ref [1] 1236,46 4,88 0,10 4,17 2,12 0,10 0,10 4,48 2,52 4,43 0,10

(in2)

X Y X Y X Y
1 508,95 261,59 716,16 228,92 642,43 143,56
2 720,00 0 720,00 0 720,00 0
3 569,05 307,94 593,22 359,58 523,36 371,96
4 360,00 0 360,00 0 360,00 0
5 0 568,57 0 704,89 0 694,25
6 0 0,00 0 0 0 0

Present MATLAB GATOOL Ref [1]
Node
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4.2 25-Bar Space Truss 

The 25-bar truss benchmark is a simple, space truss structure with many 

variables, constraints, and loading conditions. This structure is optimized for 

minimization of mass subject to loads given in Table 4.10, with stress 

constraints applied to every member and displacement constraints of 2.0 

inches applied at each node in all three coordinate directions [1]. The weight 

of the truss structure is neglected.  

Table 4.10. 25-Bar Space Truss Loads 

 

 

The material for the entire structure is aluminum, properties of which are 

given in Table 4.11. 

Table 4.11. 25-Bar Truss Material 

 

 

The dimensions, node numbers, element numbers, and constraints for this 

structure are shown in Figure 4.12. The design variables consist of element 

cross sectional areas for size and nodal positions for shape optimization.  

Continuous design variables are used for both size and size & shape 

optimization of the 25 bar space truss as in the case of reference [1]. 

Inputs for the finite element analysis and the optimization algorithm for 25-

bar truss structure are given in Appendix B.  

x y z
1 0 20000 -5000
2 0 20000 -5000

Node Load Case (lb)
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Figure 4.12. 25-Bar Space Truss[1] 
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 Size Optimization 4.2.1

The structure is composed of 25 bars. But to reduce the computation time, 

the symmetry of the structure is used. The cross sectional areas are grouped 

according to Table 4.12. By using the symmetry of the structure, the number 

of the size variables decreases from 25 to 8, meaning that every element in 

each group has the same cross sectional area, but the cross sectional areas of 

elements in each group are allowed to vary independently. 

Table 4.12. Size Symmetry Variables 

 

Determination of population size 

The binary length of each variable is taken 6 setting maximum number of 

possible area values to 63. So chromosome length is calculated as 48, with 8 

design variables. The population sizes are selected as 30, 50 and 70 

considering the chromosome length, and 20 different runs are executed for 

each population size to decide on an appropriate population size to perform 

the size optimization. 

For each population size, minimum mass values and the average of the 

optimum mass results from 20 different runs are shown in Table 4.13. 

 

 

 

Variable Element
1 1
2 2-5
3 6-9
4 10-11
5 12-13
6 14-17
7 18-21
8 22-25
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Table 4.13. 25 Bar size optimization results for 3 population sizes 

 

 

The least minimum and average mass are obtained by the population size 70. 

But to overcome the high computation time, the population 50 with very close 

values to the results of the population size 70, is chosen as the population 

size in the further optimization analyses. 

Figures 4.14-4.16 show the comparison of the optimum mass result obtained 

in each run with average mass determined for each population size. 

 

 

Figure 4.13. 25 Bar truss size optimization for the population size 30 
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Figure 4.14. 25 Bar truss size optimization for the population size 50 

 

Figure 4.15. 25 Bar truss size optimization for the population size 70 

Optimization results 

The optimization parameters used in the genetic algorithm for the further size 

optimization of the 25 bar space truss is summarized in Table 4.14. 
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Table 4.14. Optimization parameters for size optimization of 25-bar-truss 

 

 

For the population size of 50, the optimum mass is determined to be 164.85 

lb (74.77 kg) as seen in Table 4.13. The mass variation of the optimum 

configuration is shown in Figure 4.16. The optimization starts from 473.7 lb. 

 

 

Figure 4.16. The mass change through generations 

The optimum mass is compared with the findings of the other studies in the 

literature in Table 4.15. Table 4.14 shows that in the present study, the 

genetic algorithm developed gives very reasonable result which is very close 

to the value calculated by the MATLAB Genetic Algorithm Tool and the 

optimum mass determined in Reference [1]. 
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Gene Length 6
Maximum Generation Number 200
Crossover Rate 0,8
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Table 4.15. Comparison of the optimum mass and cross-sectional area 
results 

 

 

 Size and Shape Optimization 4.2.2

In In this study, in addition to the size optimization, the developed genetic 

algorithm also performs shape optimization at the same time.  

In shape optimization, the symmetry of nodes is also used. Shape symmetry 

is made as described in Table 4.16. Nodes 1 and 2 remain as fixed nodes. 

Nodes 3 through 6 are permitted to move in any direction parallel to the xy-

plane at the fixed elevation of 100 inches. Nodes 7 through 10 are permitted 

to move in any direction along the xy-plane. There are two shape variables for 

each node, which are the x and y displacements of the nodes. Thus, the 

shape symmetry reduces the number of variables from 16 to 4. So the 

problem can be defined with 4 independent shape variables and 12 dependent 

shape variables [1]. 

Table 4.16. Shape Symmetry Rules 

 

 

Mass A1 A2 A3 A4 A5 A6 A7 A8
(lb)

Present 164,84 0,07 0,07 1,30 0,06 0,57 0,29 0,06 1,30
MATLAB GATOOL 162,26 0,43 0,43 0,55 0,51 0,82 0,49 0,47 0,43
Ref [1] 162,28 0,01 0,03 1,30 0,01 0.71 0,36 0,01 1,27

(in2)

Node
Symmetric 

with
About 
Plane

3 4 yz
5 4 xz
6 3 xz
7 8 yz
9 8 xz
10 7 xz
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Determination of the population size 

From the combination of the independent size and shape variables, 8 and 4 

respectively, the total number of the variables is set to be 12. With a gene 

length of 6, the chromosome becomes 72. For this problem, in the initial 

phase population sizes of 40, 70 and 100 are selected to carry out runs to 

decide on a proper population size.  

Optimized mass results obtained for the three different population sizes are 

given in Table 4.17.  

Table 4.17. 25 Bar size& shape optimization results for 3 population sizes 

 

 

Minimum mass and average masses obtained using population sizes of 50, 70 

and 90 are presented in Figs. 4.18-4.20. 

 

 

Figure 4.17. 25 Bar truss size& shape optimization for the pop. size 50 
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Figure 4.18. 25 Bar truss size& shape optimization for the pop. size 70 

 

Figure 4.19. 25 Bar truss size& shape optimization for the pop. size 90 

Looking at the Table 4.17 and in Figs. 4.18-4.20, the population size 100 

gives the best minimum and average mass values. On the hand, the 

population size of 70 gives a very close minimum mass and average mass 

value with the corresponding values obtained with a population size of 100. 
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Leading to less computation time, the population size of 70 is selected to be 

used in the further optimization analyses. 

Optimization results 

The optimization parameters used in algorithm for the size and shape 

optimization of the 25 bar space truss is given in Table 4.18. 

Table 4.18. Optimization parameters for size& shape optimization of the 
25-bar-truss 

 

 

The optimum mass is determined as 66.97 lb (30.38 kg) as shown in Figure 

4.20. The mass variation of the optimized configuration with the generations 

is shown in Figure 4.21. The mass of the total structure starts to decrease 

from 328.4 lb. 

 

 

Figure 4.20. 25-bar-truss size & shape optimization results for 20 runs 

Population Size 70
Gene Length 6
Maximum Generation Number 400
Crossover Rate 0,8
Mutation Rate 0,01
Elite Number 1
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Figure 4.21. The mass change through generations 

The optimum mass and cross-sectional areas determined by the genetic 

algorithm developed in the present study are compared with the results 

obtained by the genetic algorithm toolbox of Matlab, and results of Reference 

[1] in Table 4.18. From Fig. 4.18, it can be seen that present study gives 

better result than the genetic algorithm toolbox of Matlab. But the result is a 

bit higher from the result given by reference [1]. 

Table 4.19. Comparison of the area and mass results with references 

 

 

Final coordinates obtained by size & shape optimization is given by Table 4.20 

The final shape can be seen in Figure 4.22. 
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Present 66,97 0,058 0,058 0,541 0,058 0,058 0,058 0,058 0,540
MATLAB GATOOL 83,23 0,310 0,310 0,320 0,310 0,310 0,310 0,340 0,340
Ref [1] 62,85 0,043 0,020 0,600 0,010 0,010 0,040 0,027 0,595
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Table 4.20. Comparison of the new nodal coordinates with references 

 

 

 

 

Before optimization  Optimized shape 

Figure 4.22. Final shape for size& shape optimization of 25 bar truss 

Results of the size only optimization and size & shape optimization for the 25-

bar truss structure show that as long as the design boundaries give allowance 

to the nodal movements, there is a significant mass reduction in the 

structure. Under the same loading condition, size & shape optimization gives 

considerably low mass values. 

X Y X Y X Y
1 -37,5 0 -37,5 0 -37,5 0
2 37,5 0 37,5 0 37,5 0
3 -40,97 72,58 -14,50 37,66 -46,59 65,20
4 40,97 72,58 14,50 37,66 46,59 65,20
5 40,97 -72,58 14,50 -37,66 46,59 -65,20
6 -40,97 -72,58 -14,50 -37,66 -46,59 -65,20
7 -52,42 129,84 -26,66 56,58 -56,62 120,77
8 52,42 129,84 26,66 56,58 56,62 120,77
9 52,42 -129,84 26,66 -56,58 56,62 -120,77

10 -52,42 -129,84 -26,66 -56,58 -56,62 -120,77

Node
Present MATLAB GATOOL Ref [1]
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4.3 Case Study 

After trials on benchmark structures, the developed genetic algorithm code is 

used to optimize the size of the tail cone truss structure of the helicopter 

“Aerospatiale SA-318C (Alouette II)”with the objective of minimization of 

mass.  

Tailcone structure has 62 bar elements and 24 nodes, as shown in Figure 

4.23. The dimensions of the elements of truss structure are obtained by 

taking measurements on the helicopter which is in the METU Aerospace 

Engineering’s Hangar building. The basic dimensions of the helicopter are 

available in Reference [23]. The measured data for the structure and the 

inputs for the developed algorithms are given in Appendix C. 

 

 

Figure 4.23. Elements and nodes of the tailcone structure 
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Figure 4.24. Elements and nodes of the tailcone structure (detail view) 
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The truss structure mainly has 7 sub-partitions which have the similar 

configuration for the elements and nodes, presented in Figure 4.25.    

Based on the actual the measurement of the diameters of the bar elements of 

the truss structure, it is assumed that there are 6 groups of the bars in truss 

structure which have the same cross sectional area. The groups are listed for 

the total truss assembly in Table 4.21. 

 

 

 

Figure 4.25. Tailcone sub-partition 

Table 4.21. Group of elements for size variables 

 

 

Variable Element
1 1
2 4,6
3 5
4 9
5 7,8
6 2,3

Variable Element
1 1,10,19,28,37,46,55
2 4,6,13,15,22,24,31,33,40,42,49,51,58,60
3 5,14,23,32,41,50,59
4 9,18,27,36,45,54
5 7,8,16,17,25,26,34,35,43,44,52,53,61,62
6 2,3,11,12,20,21,29,30,38,39,47,48,56,57
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In this study, it is assumed that only external load is the force, coming from 

the tail rotor, acting on the tip of the tail cone. The force created by the tail 

rotor is calculated by the formula given in [22].  

݈ ∗ ௒ܶ =  ோ (4.1)ܥ

where, CR is the reaction torque of the main rotor, TY is the thrust of the tail 

rotor and ݈ is the lever arm as illustrated Figure 4.26. CR is specified in 

reference [24] as 488.9 Nm. Since no dimension could be found for lever arm 

from the references listed for the helicopter, lever arm length is determined 

by making proportion calculations from the drawings shown in Figure 4.27 

(dimensions are in mm), and it is determined to be approximately 6 meters. 

Thrust of the tail rotor is taken 81.5 N, and half of this force is assumed to be 

acting on nodes 23 and 24, shown in Figure 4.23.  

For this structure, two analyses are made; one is the case when truss weight 

is neglected and the other case is that the element weight is considered in the 

stress calculations. By this analysis, the effect of the weight of the structure, 

which is generally is not taken into consideration, is analyzed on the mass 

optimization of the structure. 

There is a part of the tail rotor mounted at the nodes 23 and 24. This part is 

assumed to be an element of truss with a cross sectional area much higher 

than the truss elements. Therefore, the distance between these nodes is 

assumed to be fixed. 

 

Figure 4.26. Force diagram for the tail rotor thrust [22] 
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Figure 4.27. Side, top and front views of AerospatialeSA-318C [23] 
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The tailcone structure is assumed to be fixed at nodes 1, 2 and 3 to the 

helicopter fuselage. The size optimization of the structure is performed with 

the objective of minimizing mass under the stress constraints applied to each 

member and displacement constraints applied to each node of the truss 

structure. The maximum displacement constraint is taken as 5 mm. 

The material of the elements is assumed to be Aluminum. Properties of the 

Aluminum is given in Table 4.22 where a is maximum allowable stress for 

aluminum.  

Table 4.22. Material properties of the tailcone truss structure 

 

 

 Size optimization 4.3.1

The tailcone truss structure has 6 independent, 56 dependent size variables 

(cross sectional areas) as indicated in Table 4.21. The gene length is taken 6. 

Thus, total chromosome length becomes 36. From the trials made in 

benchmark studies, the results of which verified that population size should be 

in the order of chromosome length, population size is determined as 40. Other 

optimization parameters used are listed in Table 4.23. 

In the optimization, continuous variables are used not to be restricted with 

the standard area variables. If desired, the final result for variables for the 

optimum mass configuration can be assigned to the nearest standard area. By 

this way, advantage of continuous variables making use of maximum number 

of different values defined by the length of the gene is preserved. 

 

 

 

 

Material E σa γ
Aluminum 70 GPa 172.37 MPa 2768 kg/m3
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Table 4.23. Optimization parameters for the size optimization of the 
tailcone truss structure 

 

Case 1: Optimization without element weight loading 

The optimum mass of the tailcone, without considering the element weight 

loading, is determined as 3.196 kg after 20 separate runs. The results of the 

20 runs are shown in Figure 4.28. 

 

 

Figure 4.28. Tailcone truss structure size optimization results for 20 runs 

The variation of the mass of the tailcone with the generations for the run 

which yielded minimum mass is given in Figure 4.29. As can be seen from the 

figure, the optimization starts from 5.286 kg. 

 

Population Size 40
Gene Length 6
Maximum Generation Number 100
Crossover Rate 0,8
Mutation Rate 0,02
Elite Number 1
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Figure 4.29. The mass change through generations 

The results obtained by the genetic algorithm optimization code developed in 

the present study are compared with the results of obtained by the MATLAB 

Genetic Algorithm Tool in Table 4.24.  

Table 4.24. Comparison of the optimized mass and cross sectional areas 

 

 

From Table 4.24, it is seen that optimized mass and cross-sectional areas 

obtained in present study and by Matlab results are almost same. 

Case 2: Optimization with element weight loading 

In this case, by the addition of the element weight, the tailcone truss 

structure size optimization is repeated.   

The optimum mass result is 3.23 kg as shown in Figure 4.30 and Figure 4.31 

shows the change in the mass from 4.815 kg to final optimum value.  

3
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Present 3,196 16,05 81,05 17,10 16,05 16,05 15,05
MATLAB GATOOL 3,198 15,65 79,68 19,36 15,65 15,65 15,65

(mm2)
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Figure 4.30. Tailcone truss structure size optimization results for 20 runs 

 

Figure 4.31. The mass change through generations 

The results obtained from this analysis is compared with the the MATLAB 

Genetic Algorithm Tool in Table 4.24.  
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Table 4.25. Comparison of the optimized mass and cross sectional areas 

 

 

The results obtained are very close values to the optimum mass obtained by 

reference. 

Other result that can be concluded is that the addition of element weight 

values to the loading does not make much difference in the stress analysis 

supporting the general approach taken in the literature in neglecting the 

weight of the truss members in the calculations. 

 Buckling Analysis of the Tailcone Truss Structure 4.3.2

The developed finite element code is also used for the buckling analysis of the 

tailcone truss structure. In order to show that buckling constraint 

implemented in the genetic algorithm code works fine, the load applied at 

nodes 23 and 24 is increased to a value of 750 N.  

In the buckling formulation, the Euler beam buckling formula for the pinned 

end beams is used. Eqn.(4.2) gives the critical buckling load for the pinned 

end beams under compression. 

ܲ =
ܧ ∗ ܫ ∗ ଶߨ

ଶܮ  (4.2) 

The critical buckling stress is determined by dividing the critical buckling load 

by the cross-sectional area of the annular truss members.  

In addition, to get feasible solutions from the size optimization, maximum 

displacement constraint is set to be 70 mm. 

Mass A1 A2 A3 A4 A5 A6
(kg)

Present 3,229 16,05 78,95 21,29 15,43 16,05 16,05
MATLAB GATOOL 3,203 15,07 79,95 18,57 22,66 15,20 15,14

(mm2)
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The optimum result after 20 runs is found as 4.757 kg. Figure 4.32 shows the 

variation of the tailcone mass with the different runs performed.  

 

 

Figure 4.32. Tailcone truss structure size optimization results for 20 runs 

The mass change through generations for the optimum solution is given by 

Figure 4.33. 

 

Figure 4.33. The mass change through generations 

In this study, the comparison of the stress values for the elements, which 

have stress values above the critical buckling stress in the optimum solution 

are made to demonstrate the proper working of the buckling constraints 

4.700

4.900

5.100

5.300

5.500

5.700

1 3 5 7 9 11 13 15 17 19

M
as

s (
kg

)

Number of run

Minimum mass (kg)

Average mass (kg)

4
5
6
7
8
9

10
11

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

M
as

s (
kg

)

Number of generation



 
83 

 

applied. Table 4.26 shows the result from an arbitrary run which gives the 

stresses in the elements which violate the buckling stress constraints in the 

initial population and the stresses in the same elements in the final optimum 

population. As it can be seen from Table 4.26, elements 13 and 22, which 

violate the buckling stress constraints in the initial population, have lower 

stress values than the critical stress values when the feasible optimum 

solution is found in the final population. This example demonstrates that 

buckling constraints implemented in the genetic algorithm code works fine. 

Table 4.26. Comparison of the stress values 

 

 

4.4 Adaptive penalty function results 

After all these studies, the developed algorithm is verified by the results 

obtained which are very close to the results of other reference studies. The 

algorithm generally finds the optimum mass in a small interval and the 

average mass results from different runs are very close to the optimum 

solution. This property of the algorithm makes it possible that independent 

from the initial population, algorithm can converge to a point which is very 

close to the real optimum solution. 

This also proves the methodology of the adaptive penalty function. Penalty 

factor,which is calculated for each generation, adapts to the current stuation 

of the population. Thus, the method can tailor the degree of the penalty for 

the constraints.As an example, one of the runs is taken, and the penalty 

factor variation through the generations is demonstrated in Figure 4.34 

 

sel scr sel scr

(Pa) (Pa) (Pa) (Pa)
13 0.0576 -79,459,000 75,130,000 -0.0036 -73,544,000 73,810,000
22 0.0004 -75,160,000 75,130,000 -0.0575 -69,566,000 73,810,000

abs(sel/scr)-1 abs(sel/scr)-1# El

Initial Population Final Population
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Figure 4.34. The penalty factor variation through the generations 

 

Figure 4.35. The number of feasible individuals in the population through 

the generations 

The Figure 4.34 and Figure 4.35 give the change in the value of the penalty 

factor depending on the number of the feasible individuals in the population 
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through the generations. In this example, the population size is 40. From the 

starting point, as the number of the feasible individuals increases, the penalty 

factor gets smaller and as expected, when all the population becomes feasible 

the factor is set zero. And depending on the small changes in feasible portion, 

the penalty factor responds with small values.  

This result shows that setting the penalty factor from the beginning of the 

algorithm, as in the case of the other penalty methods, is not a logical way to 

follow. 
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CHAPTER 5 

5. CONCLUSIONS 

In this thesis study, a genetic algorithm optimization code is developed for the 

size and shape optimization of the two dimensional and space truss 

structures. Structural solver part of the optimization code is a truss finite 

element solver which is also developed in the thesis study for general truss 

structures. Loading applied on the truss members is allowed to be nodal 

forces, weights of the members and thermal loading. The hearth of the thesis 

is devoted to the development of the genetic algorithm based optimization 

code for truss structures. Coming from the randomness characteristics of the 

genetic algorithm, every run gives unique solution to the problem bypassing 

the local optima, which is the superiority of the genetic algorithm over the 

gradient based optimization techniques.  

In the developed genetic algorithm code, the simple basic genetic algorithm 

steps and operators are used. However, special emphasis is given to the 

penalty approach. It is shown that with the use of adaptive penalty function, 

without using complex genetic algorithm operators, very reasonable results 

can be obtained. In the adaptive penalty approach, the penalty constant by 

adapting to the current state in the population fitness is calculated at each 

iteration. In the calculation, an important constant φ is given as input. This 

constant is the most deterministic parameter of the adaptive penalty method. 

It identifies the chance of best infeasible individuals to be selected into the 

mating pool. This is very clear meaning for the penalty issue, and can be 

determined by using experience. This is the point in which this method is 

separated from the other penalty methods in which the constants are selected 

arbitrarily which can cause too weak or too strong penalty result during 

algorithm.  
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The optimization parameters get very important role in finding the optimum 

result. To determine the best population size, for every problem, results of 3 

population sizes are compared. Working with the population size which is 

more suitable for the problem, provides effective use of search space 

preventing unnecessary computation time. 

Best individuals always directly pass to the new population by the elitism 

method. They also have a chance of being parents. Elite number specifies how 

many individuals pass to the new population. To protect the best gene 

information in the population, this number is very important especially at the 

beginning of the algorithm. It is set to one in the algorithm 

Crossover is an indispensable operator for the GAs. In the developed code, 

the rate of the crossover is set to a high probability of 0.8. Crossover 

operation carries the randomly initiated population to feasible region by 

recombining the parents chosen from the fitter individuals. 

Mutation gives the algorithm a chance to search the design space in more 

detail. Mutation operation is not needed too much especially in the beginning 

of the algorithm. Because of fact that the population already is a mix of 

feasible and infeasible individuals, at the beginning the rate of mutation is 

taken as a very small, such as 0.01.  

However, after approaching the feasible region, crossover operations do not 

make much work in getting different gene probabilities. At this stage, by 

decreasing the crossover rate and increasing mutation rate, it is seen that 

rapid convergence to a point which is local optimum, not global optimum, is 

avoided. Because by the increased mutation probability, the diversity of the 

population increased, giving chance of searching solution space in detail.  

It is observed that, to make assurance that the results obtained from the code 

are correct solutions for the problem or not, making reasonable amount of 

runs is necessary. By these trials, the most effective parameters are 

determined.  

The importance of the population size which gives low deviations from the 

average optimum mass, controlling the stability of the algorithm in getting 

optima is presented. 
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To verify the developed code, 2 benchmark studies are made for the size and 

shape optimization. By the given design boundaries, it is shown that with 

same loading condition, size& shape optimization of the 25-bar space truss 

structure achieves significant mass reduction when compared with the size-

only optimization. So, with an appropriate study on design boundaries on the 

problem, it is concluded that the structures with great mass reduction are 

possible to design with the aid of size& shape optimization methodology. 

In the developed code, optimization can be made by both discrete and 

continuous design variables. By the usage of discrete design variables, 

practically feasible solutions are created. On the other hand, their usage 

resulted with values which are initially set as input, restricting the algorithm 

from searching any point in the solution space. 

Thus, in the size optimization of the tailcone structure, continuous variables 

are preferred to be sure that every point in the search has a chance of being 

the solution to the problem. If preferred, the results of the optimum solution 

can be used as a reference for the standard areas, by taking the standard 

area with the nearest higher value to these optimum values. 

The performance of the genetic algorithm depends on the determination of 

many optimization parameters which are generally problem specific. It needs 

time to gather information about best values of these parameters by making 

sufficient number of trials. This is one of the disadvantages of the genetic 

algorithm.  

Another disadvantage of the GA observed is that the result obtained by the 

genetic algorithm generally is not the real optimum value. It gives acceptably 

good results in an acceptably less time. It takes time to get considerably 

better optimum values, and more runs are needed to get better results. So 

the solutions obtained from the code, regarding the GA’s nondeterministic 

characteristics, should be taken as a design guide not an exact solution. GA 

should be used when there is no specific solution methodology for the 

problem or the problem is in the complexity of NP-complete and NP-hard 

where NP stands for nondeterministic polynomial time [4]. 
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5.1 Future Work 

In this thesis study, every structure is optimized considering only one loading 

case. But these optimum solutions are not always valid for another load case. 

So to get practically feasible solutions, different loading conditions are to be 

studied and the final decision for the optimum solution should be given by 

gathering the results from these analyses.  

In this thesis study, binary strings are used in the formation of the 

chromosomes to get more effective usage of the genetic operators with longer 

chromosome length. But some drawbacks of using binary strings are 

observed.  

When discrete design variable are used, if the maximum number, the binary 

string of the gene can take, is more than the number of the values in the 

standard area list, resulting from the matching procedure, some of the 

standard areas have more chance to be selected than the others have. This 

disturbs the randomness of the genetic algorithm.   

In the case of the continuous variables, the length of the binary string 

constraining the maximum number of the values to be set as variables limits 

the effective search in the solution space. 

So if the number of the variables is enough to make meaningful crossover and 

mutation operations, the variables can be directly used in the chromosome. 

For example, in the size and shape optimization of the 10-bar truss structure, 

the number of the variables is 15. So the variables can be used in the 

chromosome without making binary transformation. This also eliminates the 

process of coding and decoding between binary and decimal numbers, 

providing less computation time.   

In the genetic algorithm, the most important issue is the determination of the 

parameters, crossover rate, mutations rate and the penalty factor, which are 

generally constant given as inputs to the algorithm. In this study, by using 

adaptive penalty function, the penalty factor is determined by adjusting to get 

the desired degree of the penalty at each iteration. 

In a same way, the developed GA can be improved by introducing adaptive 

functions for the crossover and mutation rates. This leads to control the 



 
90 

 

progress in the algorithm and by the GA parameters adjusted to the current 

situation of the population. The most important gain by this improvement is 

the elimination of the decision process to set the proper GA parameters 

derived by a great number of trials for every specific problem.  
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APPENDICES 

APPENDIX A 

A. TEN BAR TRUSS STRUCTURE DESIGN DATA 

A.1. Inputs for Finite Element Code 

Table A.1. Element nodes 

 

Table A.2. Coordinates of the nodes 

 

Table A.3. Material properties 

 

element node1 node2
1 3 5
2 1 3
3 4 6
4 2 4
5 3 4
6 1 2
7 4 5
8 3 6
9 2 3

10 1 4

node X Y
1 720 360
2 720 0
3 360 360
4 360 0
5 0 360
6 0 0

Material E (psi) ѵ σa (psi) γ  (lb/in 3 )
Aluminum 10000000 0.334 25000 0.1
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Table A.4. Nodal displacement constraints 

 

Table A.5. Identification array (ID Array) 

 

Table A.6. Load matrix 

 

A.2. Inputs for Genetic Algorithm 

Table A.7. Standard area list for size optimization 

 

Table A.8. Area intervals for size& shape optimization 

 

node 1 2 3 4 5 6
X (in ) 2 2 2 2 0 0
Y(in ) 2 2 2 2 0 0

node 1 2 3 4 5 6
X 0 0 0 0 1 1
Y 0 0 0 0 1 1

node 1 2 3 4 5 6
X 0 0 0 0 0 0
Y 0 -100000 0 -100000 0 0

   [1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63,
    2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 
    3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 
    4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 
    11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 
    18.8, 19.9, 22.0, 22.9, 26.5, 30.0, 33.5]

Element
Lower 
bound

Upper 
bound

1 0,1 10
2 0,1 10
3 0,1 10
4 0,1 10
5 0,1 10
6 0,1 10
7 0,1 10
8 0,1 10
9 0,1 10

10 0,1 10
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Table A.9. Shape optimization boundaries for nodal coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

1 501 720 50 360
2 0 0 0 0
3 300 600 200 400
4 0 0 0 0
5 0 0 360 720
6 0 0 0 0

X Y
node
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APPENDIX B 

B. 25-BAR TRUSS STRUCTURE DESIGN DATA  

B.1. Inputs for Finite Element method 

Table B.1. Coordinates of the nodes 

 

Table B.2. Material properties 

 

Table B.3. Nodal displacement constraints 

 

 

 

node X Y Z
1 -37,5 0 200
2 37,5 0 200
3 -37,5 37,5 100
4 37,5 37,5 100
5 37,5 -37,5 100
6 -37,5 -37,5 100
7 -100 100 0
8 100 100 0
9 100 -100 0

10 -100 -100 0

Material E (psi) ѵ σa (psi) γ  (lb/in 3 )
Aluminum 10000000 0.334 35294 0.1

node 1 2 3 4 5 6
X (in ) 2 2 2 2 0 0
Y(in ) 2 2 2 2 0 0
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Table B.4. Identification array (ID Array) 

 

Table B.5. Load matrix 

 

B.2. Inputs for Genetic Algorithm 

Table B.6. Area intervals for size and size& shape optimization 

 

node 1 2 3 4 5 6 7 8 9 10
X 0 0 0 0 0 0 1 1 1 1
Y 0 0 0 0 0 0 1 1 1 1
Z 0 0 0 0 0 0 1 1 1 1

node 1 2 3 4 5 6 7 8 9 10
X 0 0 0 0
Y 20000 20000 0 0
Z -5000 -5000 0 0

Element
Lower 
bound

Upper 
bound

1 0,01 3
2 0,01 3
3 0,01 3
4 0,01 3
5 0,01 3
6 0,01 3
7 0,01 3
8 0,01 3
9 0,01 3

10 0,01 3
11 0,01 3
12 0,01 3
13 0,01 3
14 0,01 3
15 0,01 3
16 0,01 3
17 0,01 3
18 0,01 3
19 0,01 3
20 0,01 3
21 0,01 3
22 0,01 3
23 0,01 3
24 0,01 3
25 0,01 3
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Table B.7. Shape optimization boundaries for nodal coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

Lower 
bound

Upper 
bound

1 0 0 0 0 0 0
2 0 0 0 0 0 0
4 37,5 100 37,5 100 0 0
8 50 200 50 200 0 0

node
X Y Z



 
100 

 

APPENDIX C 

C. TAILCONE TRUSS STRUCTURE DESIGN DATA 

C.1. Inputs for Finite Element Code 

 

The design data of the helicopter “Aerospatiale SA-318C (Alouette II)” is 

obtained by taking measurements on the helicopter which is in the METU 

Aerospace Engineering’s Hangar building as presented in Figure C.1. After 

getting diameter and length of the each bar element, the truss structure is 

modeled. From the model, the node coordinates are found.  

To decide upper and lower limits of the design variables, two thickness values 

for the bar elements are assumed, which are 2 mm and 0.4 mm. and the 

minimum and maximum values are taken as reference for the area interval 

for the bars. Table C.1 presents the measured data and calculated area values 

according to these two thickness values. 

Table C.1. The measured diameters of the bar elements 

 

 

Area Area
(mm2) (mm2)

(mm) t=2 mm t=0.4 mm
1 25,4 147,0 31,4
2 22,2 126,9 27,4
3 16,3 73,9 20,0
4 14,5 64,8 17,7
5 14,4 64,3 17,6
6 16,2 73,4 19,9

Variable
Diameter
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Table C.2. Element nodes 

 

 

1 1 4 33 12 15

2 2 4 34 13 14

3 3 4 35 13 15

4 2 5 36 14 15

5 3 5 37 13 16

6 3 6 38 14 16

7 4 5 39 15 16

8 4 6 40 14 17

9 5 6 41 15 17

10 4 7 42 15 18

11 5 7 43 16 17

12 6 7 44 16 18

13 5 8 45 17 18

14 6 8 46 16 19

15 6 9 47 17 19

16 7 8 48 18 19

17 7 9 49 17 20

18 8 9 50 18 20

19 7 10 51 18 21

20 8 10 52 19 20

21 9 10 53 19 21

22 8 11 54 20 21

23 9 11 55 19 22

24 9 12 56 20 22

25 10 11 57 21 22

26 10 12 58 20 23

27 11 12 59 21 23

28 10 13 60 21 24

29 11 13 61 22 23

30 12 13 62 22 24

31 11 14 63 23 24

32 12 14

NODE_1 NODE_2
ELEMENT 

NO
NODE_1 NODE_2

ELEMENT 
NO



 
102 

 

Table C.3. Coordinates of the nodes 

 

Table C.4. Material properties 

 

 

X (mm) Y (mm) Z (mm)

1 0 0 0

2 0 -285 750

3 0 285 750

4 620 0 114.3

5 620 -253.6 782.9

6 620 253.6 782.9

7 1300 0 239.6

8 1300 -219.1 818.9

9 1300 219.1 818.9

10 1980 0 365

11 1980 -184.6 854.9

12 1980 184.6 854.9

13 2600 0 479.3

14 2600 -153.2 888.9

15 2600 153.2 887.8

16 3220 0 593.5

17 3220 -121.8 920.6

18 3220 121.8 920.6

19 3840 0 707.8

20 3840 -90.3 953.5

21 3840 90.3 953.5

22 4340 0 800

23 4340 -65 980

24 4340 65 980

COORDINATE
NODE

Material E σa γ
Aluminum 70 GPa 172.37 MPa 2768 kg/m3
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Table C.5. Nodal displacement constraints 

 

 

 

 

X (mm) Y (mm) Z (mm)

1 0 0 0

2 0 0 0

3 0 0 0

4 5 5 5

5 5 5 5

6 5 5 5

7 5 5 5

8 5 5 5

9 5 5 5

10 5 5 5

11 5 5 5

12 5 5 5

13 5 5 5

14 5 5 5

15 5 5 5

16 5 5 5

17 5 5 5

18 5 5 5

19 5 5 5

20 5 5 5

21 5 5 5

22 5 5 5

23 5 5 5

24 5 5 5

NODE
COORDINATE
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Table C.6. Identification array (ID Array) 

 

 

 

 

 

 

 

X Y Z

1 1 1 1

2 1 1 1

3 1 1 1

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0

19 0 0 0

20 0 0 0

21 0 0 0

22 0 0 0

23 0 0 0

24 0 0 0

NODE
COORDINATE
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Table C.7.  Load matrix 

 

 

 

 

 

X Y Z

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0

19 0 0 0

20 0 0 0

21 0 0 0

22 0 0 0

23 0 -40,5 0

24 0 -40,5 0

NODE
COORDINATE
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C.2. Inputs for Genetic Algorithm 

Table C.8. Area intervals for size& shape optimization 

 

 

 

Element
Lower 
bound

Upper 
bound Element

Lower 
bound

Upper 
bound

# (mm2) (mm2) # (mm2) (mm2)
1 15 150 32 15 150
2 15 150 33 15 150
3 15 150 34 15 150
4 15 150 35 15 150
5 15 150 36 15 150
6 15 150 37 15 150
7 15 150 38 15 150
8 15 150 39 15 150
9 15 150 40 15 150

10 15 150 41 15 150
11 15 150 42 15 150
12 15 150 43 15 150
13 15 150 44 15 150
14 15 150 45 15 150
15 15 150 46 15 150
16 15 150 47 15 150
17 15 150 48 15 150
18 15 150 49 15 150
19 15 150 50 15 150
20 15 150 51 15 150
21 15 150 52 15 150
22 15 150 53 15 150
23 15 150 54 15 150
24 15 150 55 15 150
25 15 150 56 15 150
26 15 150 57 15 150
27 15 150 58 15 150
28 15 150 59 15 150
29 15 150 60 15 150
30 15 150 61 15 150
31 15 150 62 15 150
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Figure C.1. Aerospatiale SA-318C (Alouette II) photographs 

 


