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ABSTRACT

BUCKLING, POSTBUCKLING AND PROGRESSIVE FAILURE ANALYSES OF
COMPOSITE LAMINATED PLATES UNDER COMPRESSIVE LOADING

Namdar, Omer
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Haluk DARENDELILER

September 2012, 134 pages

The aim of this thesis is to investigate buckling, post-buckling behaviors and failure
characteristics of composite laminated plates under compressive loading with the
help of finite element method and experiments. In the finite element analyses, eigen
value extraction method is used to determine the critical buckling loads and non-
linear Riks and Newton-Raphson methods are employed to obtain post-buckling
behaviors and failure loads. The effects of geometric imperfection amplitude on
buckling and post-buckling are discussed. Buckling load, post buckling load-
displacement relations, out of plane displacements and end shortening of the plates
are determined numerically. Furthermore, the numerical results are compared with
experimental findings for two different laminates made of woven fabric and uni-
directional tapes where buckling, post-buckling behavior and structural failure of
laminated plates were determined. The comparisons show that there is a good
agreement between numerical and experimental results obtained for buckling load
and post-buckling range. However, 15 % - 22 % differences are predicted between
the experimental and numerical results for failure of laminates made of woven fabric

whereas the laminates with uni-directional tapes show good agreement.

Keywords: Buckling, Post-buckling, Progressive Failure, Composite Structures
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0z

BASMA YUKLEMESI ALTINDAKI TABAKALI KOMPOZIT PLAKALARIN
BURKULMA, BURKULMA SONRASI VE ILERYEN KIRILMA ANALIZLERI

Namdar, Omer
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Haluk DARENDELILER

Eyliil 2012, 134 sayfa

Bu tezde basma yiiklemesi altindaki tabakali kompozit plakalalarin niimerik analizler
ve deneyler yardimiyla burkulma, burkulma sonrasi davramislari ve kirilma
karakteristiklerinin incelenmesi amaclanmaktadir. Sonlu eleman analizlerinde,
0zdeger cikarma yoOntemi kritik burkulma yiiklerini belirlemek i¢in, dogrusal
olmayan Riks ve Newton-Raphson yontemleri burkulma sonrasi davranislari ve
kirilma baglangici yiiklerini elde etmek i¢in kullanilmiglardir. Geometrik kusur
genliginin burkulma ve burkulma sonrasi davranislara olan etkisi degerlendirilmistir.
Burkulma yiikii, burkulma sonrasi yiik-deplasman iliskisi, diizlem dis1 deplasmanlar,
plakalarin boyuna kisalmalar1 sayisal olarak belirlenmistir. Buna ek olarak, dokuma
kumas ve tek yonlii tabakalardan yapilmis farkli iki lamina i¢in burkulma, burkulma
sonras1t davranis ve yapisal kirilmanin tespit edildigi deneysel bulgular sayisal
sonuclarla karsilagtirnlmistir. Karsilagtirmalar burkulma yiikii ve burkulma sonrasi
alan icin elde edilen sayisal ve deneysel sonuclar arasinda iyi bir uyum oldugunu
gostermektedir. Ancak, tek yonli tabakalardan yapilmig laminalar iyi uyum
gosterirken dokuma kumastan yapilmis laminalarin kirilmasinda sayisal ve deneysel

sonuclar arasinda 15 % - 22 % farkliliklar 6ngdriilmiistiir.

Anahtar kelimeler: Burkulma, Burkulma Sonrasi, Ilerleyen Kirllma, Kompozit

Yapilar



To My Family

Vi



ACKNOWLEDGEMENTS

The author wishes to express his heartfelt gratitude to his supervisor Prof. Dr. Haluk
DARENDELILER for his excellent guidance, advices and encouragements
throughout the thesis.

The author would like to thank his family, Emine NAMDAR, Hasan NAMDAR,
Sabriye NAMDAR and Ahmet Niyazi NAMDAR for their everlasting support,

encouragement and patience throughout the research.

The author would like to offer his special thanks to Serdar OFKELI for his help in

manufacturing of composite test specimens.

The author would also like to extend his thanks to Servet SEHIRLI and Mehmet

ERILI for their supports in performing the experiments.

The author would also like to express his appreciation to METU-BILTIR CENTER

for their support during manufacturing of test fixture.

The support and cooperation of the author’s colleagues and friends is gratefully

acknowledged.

vii



TABLE OF CONTENTS

ABSTRACT ...ttt ettt e st e st e e sabee e sbeee e v
OZ oottt \%
ACKNOWLEDGEMENTS ...ttt vii
TABLE OF CONTENTS ...ttt viii
LIST OF FIGURES ...ttt sttt Xii
LIST OF SYMBOLS AND ABBREVIATIONS .....ccoooiiiiriiniieceeeeereeieee Xvii
CHAPTERS
1. INTRODUCTION ..ottt sttt ettt s e s enee s ees 1
1.1 Composite Materials...........cocueriiiieriiniiiinieeeee e 1
0 O R | - 11 4 1o O OSSOSO SRS URSUPURORPPP 2
1.1.2 ReINfOrCemMENtS ......cocueiiuiiiiiiniiiiiieiieeieee ettt 2
1.1.3 Material FOrmS .......cooiiiiiiiiiiiiieie e 3
1.2 Buckling Phenomena............ccoocieiiiiiiiniieiieie e 4
1.2.1 Stable Symmetric Buckling ..........cccoovuiviieniiiiiiiiiceieceee e 5
1.2.2  Unstable Symmetric Buckling ...........ccccooeviiviiniiiiiiiniieieeieeeeeie e 7
1.2.3  Asymmetric BUCKling .......cccoovviiiiiiiiiiiceeee e 9
1.3 Scope 0f the TRESIS......oviiriiiiiiiiieeieee e 10
1.4 Outline 0f the ThESIS ..cccueriiriiriieiirieieeeeeee e 11
2. LITERATURE SURVEY ....ooiiiiiiiiiieeee et 12
3. BUCKLING OF LAMINATES ..ottt 24
3.1  Stress and Stress Variations of a Laminate ...........ccocceeveenieiiiiiiieneenieene. 24
3.2 Lamina Stress-Strain Behavior........ccccoecieiiiiiiiiiiiiiieeceeeeeee e 26
3.3  Laminate Stresses, Forces and MOMENTS........ccccuvvvevveiiiiiiiiiieiiieeeeeeeeeeeanee 27
3.4 Buckling of a Laminated Plate ...........ccccccoevieiiiinieciieiecieceece e 31
34.1 Buckling of Specially Orthotropic Plates..........cccceeevveecieeniiiieieeeeen. 33
3.4.2  Buckling of Symmetric Angle Ply Laminates .........c..cccccecvereencnnennen. 35
4. BUCKLING AND PROGRESSIVE FAILURE ANALYSES BY FINITE
ELEMENT METHOD ..ottt 36



4.1  Finite Element ANalYSIS ...c.cccccviiiiiiiiiiie ettt 36

4.2 Instability ANALYSIS.....ccciiiiiiiiieiiieiiecie et 37
4.2.1  Eigen value Buckling Prediction (LANCZOS) ....cccccoervivvenenviennenne. 38
4.2.2  Postbuckling AnalysSiS........ccccecveeviieriieiiieniieiieeie et 38
4.2.3  Newton-Raphson Method by Viscous Damping .........c.cccccvveevveeennnnn. 41

4.3 Progressive Failure Analysis .......coccoerieriiiiiieniiieiecieeee e 43
4.3.1  Hashin’s Failure Criteria.........cceeoieriiniiiiiieeiieie e 44
4.3.2  Damage Evolution Procedure ............cccoviieiiiiniiiiieieeieeie e 45
4.3.3  Viscous Regularization Scheme.............ccccoevieriiienienciienieeieeeeeeee 49
4.3.4  Determination of the Energies Dissipated due to Failures................... 50

5. EXPERIMENTS & MATERIALS .....ooiiiieeeee et 58

5.1 TSt FIXTUIC...oouiiiieieiiietceteeees ettt ettt 58

5.2 TESt SPECIMENS ....eeeiiiieiiiieeiieeeiieeeiteeeteeeeteeeseteeesbeeensseeensseeensseeesseesnsneeas 65

5.3  Test Equipment and Procedure............cccveeiiieriiieniieecie e 66

5.4  Mechanical Properties of Materials..........ccccoeoueenieniiieninniieiecceeeeeen 66

5.5  Stackings of Laminates...........ccceeeieerieriieniieniienie ettt see e 68

5.6  Curing of Composite Laminates..........ccccueerruieeriiiieniireeniieeniee e eeiee e 70

5.7  Cure Cycle of SPECIMENS .......eevvviieeiiieeiiieeiieeeireeeiee et eesveeesveeeseaeeeeaee s 71

5.8 Cutting Of SPECIMENS .....eoveiviriiriiiiiiieeiiceete ettt ettt 72

6. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS......... 73

6.1  The Finite Element Model..........c.ccoccoviiiiiiiiiiiieeeeeeeeee e 73

6.2  Eigenvalue Buckling Results and Comparison of Elements....................... 78

6.3 Numerical Method COMPAriSON ........coveruiiiiriinieiienieneeie et 81

6.4  Effect of Initial Geometric Imperfection...........cccceeeveeriiiiieniiiiienieeee, 83

6.5 Comparison of FE Results and Experiments............cccccceeveieenieeciieneenneenne. 85

7. EFFECTS OF PLY ANGLE AND THICKNESS ON BUCKLING AND
POSTBUCKLING ...ttt ettt aesaesseeseesaessaesesssesseensens 101
7.1 Variation of Critical Buckling Load with Ply Angle.............cccccceevnrnee. 102

7.2 Effects of Thickness and Ply Angle Variation on Buckling Load and Post-
buckling Behavior for UD Laminates ............ccceeevveeriieeniieeeieeeiee e 103
7.3 Effects of Thickness and Ply Angle Variation on Buckling Load and Post-

buckling Behavior for Fabric Laminates............cccecieviieniieniiienieeieciieeieeeeee, 114

X



7.4  Comparisons of Critical Buckling Loads .........cccceeevviiiviieieiieeiie e,
8. CONCLUSIONS ... .ottt ettt et ettt et e e saee e

REFERENCES



LIST OF TABLES

TABLES

Table 1. Boundary conditions for Finite Strip ........ccccceceviriiniinininicnicenicneeene 51
Table 2. Energies Dissipated due to Failure Modes for UD and Fabric laminae....... 57
Table 3. Summary of Specimen Properties..........ocvereeeiieniieniieiieeieeee e 66
Table 4. Mechanical Properties of Prepreg Laminae...........ccoeovvevevveniieiienieecieennnnns 67
Table 5. Strength Values of Laminae...........cccccecvveeiiiieiiieeieecee e 68
Table 6. Stiffness matrix of UD [aminate ............cocoeeviieiiiiiiiinieiiieeeceeeeee 69
Table 7. Stiffness matrix of Fabric laminate...........cccceeverienieninienieniiienienceeeen 69
Table 8. Boundary Conditions of Model [39].......ccceeiieiiiriiiiecieeieeeeeee s 74
Table 9. Critical Buckling Load of Laminates............cccccceevvieeiiieeniiieeciee e 78
Table 10. Failure loads of specimens and differences between FE results................ 97
Table 11. Buckling and failure loads of angle ply [0/-8]s UD laminates................. 106
Table 12. Buckling and failure loads of angle ply [0/-0],s UD laminates ............... 109
Table 13. Buckling and failure loads of angle ply [0/-8]ss UD laminates and
SPECIIMICIS ...ttt eatee ettt eateeeateeteeeateeteeeabe e beeenbeaseeenbeessbeeaseesnseenseesnseenseesnbeeseesnseas 113
Table 14. Buckling and failure loads of angle ply [0/-0]s Fabric laminates ............ 117
Table 15. Buckling and failure loads of angle ply [6/-0/6/-6/0]s Fabric laminates and
SPECIITICIIS .uvveeetieeeeiieeeiteeeseteeesaseeesseeesseeesseeessaessssaesnssaesnsseesssseensseeensseeensseessssessnns 121
Table 16. Buckling and failure loads of angle ply [0/-8]4s Fabric laminates........... 124

xi



LIST OF FIGURES

FIGURES

Figure 1. Typical 2D weave patterns [2]......ccccveeoeerieriiienieeieeiie e 4
Figure 2. Flat plate loaded in compression [3]......ccceerieeiienieeiiienie e 5
Figure 3. Stable symmetric equilibrium paths [3].......cccooviieiiiiiiiiiiiieiee e 6
Figure 4. Unstable symmetric equilibrium paths [3] ......cccceeevieriiiiiiniieiecieceee, 8
Figure 5. Cylinder under uniaxial compression [3] ......cccceeeeeeriiieniiieeniee e 9
Figure 6. Equilibrium paths for asymmetric bifurcation [3]........ccccoeieiiiniieninnncnns 10

Figure 7. Un-deformed and deformed cross-section of a laminate under the Kirchhoff

ASSUMPLIONS [35] -eeieiiiieiiiieeiie ettt et et e st e e st ee e sebeeessaee e sbeeennseeensneeenns 24
Figure 8. In-Plane Forces on a Flat Laminate..........ccccccovveevieeeiieiciiieie e 27
Figure 9. Moments on a Flat Laminate ...........ccocceeiiiniiiiiieniieieie e 28
Figure 10. Geometry of N layered Laminate ............ccccceevueeriienieeiiienieeieeieeeeeeeen 29
Figure 11. Angle-Ply Symmetric Laminate ...........cccceeeveeriieiiienieeniieeieeieeeeeeeee e 30
Figure 12. Symmetric and Balanced Laminate...........cccceeevieeeiieeiiieeeiieciee e 31
Figure 13. Basic simply supported buckling behavior [34].......ccccoceviiiiiiiiiininnen. 32
Figure 14. Load-Deformation behavior of Buckled Plate [34].........cccoeviieiieniiennn. 32
Figure 15. Effect of Initial Imperfection in Buckling [34].......cccooeiieniiiinieniee 33
Figure 16. Simply Supported Laminated Rectangular Plate under Uniform Uni-axial
COMPIESSION [34] ..ttt ettt ettt e st e et et eenbe e seeenteesneeenee 34
Figure 17. Node ordering and Numbering of Integration Points [36] ..........cc..c........ 37
Figure 18. Unstable Static ReSponse [30]......ccceecieriieriieiiieiieeieeiee e 40
Figure 19. Newton-Raphson Method [36] .......cccveeiiieiiiieciieeceeecee e 42
Figure 20. Uni-directions of Lamina [36]........ccccceeviiiiiiniieiieniieeeceeeee e 43
Figure 21. Damage Variable versus Equivalent Displacement [36]..........c..ccceeunenne. 47
Figure 22. Equivalent Stress-Equivalent Displacement Curve [36] ........cccccveveeenenne. 48
Figure 23. Finite Element Model of Finite Strip......c.ccccccveeviieeiiiiiiiecie e 51
Figure 24. Loading and Ply directions for all Failure Modes ...........cccoeveeeieeniienen. 52
Figure 25. Assumption of Dissipated Energy due to Failure.............ccooevveiiennennn. 53

Xii



Figure 26. Equivalent Stress versus Equivalent Displacement for Fiber Tension of
UD LaAMNa.....eiiiiiiiieiieeie ettt ettt et e sieesteesate e bt esbeesabeeseesnseeseesnseens 54
Figure 27. Equivalent Stress versus Equivalent Displacement for Fiber Compression
OF UD LAMINQ ..ottt sttt sttt st ettt e naeeneea 54
Figure 28. Equivalent Stress versus Equivalent Displacement for Matrix Tension of
UD LAMNA.....eiiiiiiiiieiieeee ettt et stt e et esitesteesate e bt esbeesnbeebeesnseeseesnneans 55
Figure 29. Equivalent Stress versus Equivalent Displacement for Matrix
Compression of UD Lamina ..........ccceeeouieiieiiienieeiieiieeieeite ettt 55
Figure 30. Equivalent Stress versus Equivalent Displacement for Fiber Tension of
Fabric Lamina .........cocooiiiiiiiiieee et 56

Figure 31. Equivalent Stress versus Equivalent Displacement for Fiber Compression

OF FabIic LamiNa......cocueiiiriiiiiiieiiieseetee ettt st 56
Figure 32. Test Fixture of Thesis StudY........coveeeuieriiiiiieiiieiiesieeeeeee e 59
Figure 33. Boundary Conditions of Plate EAZes.........cccccveeviiieiieiciiieeieecee e, 60
Figure 34. Providing co-lineartity between Load Actuator and Plate with the help of
TESt FIXEUIE ..ottt sttt sttt 61
Figure 35. Knife Edges of Test FIXTUIE......cooovieiiieriieiieeieeieecieeeeee e 62
Figure 36. Panel Geometry and Boundary Conditions ...........ccccceeerveeerieeenieeenneeenne 63
Figure 37. The 10 mm gap between L-section blocks and knife edges..................... 64
Figure 38. Front view of Test Fixture with Fabric Specimen............cccccvceevivrienneenee. 65
Figure 39. Temperature versus Time graph of Cure Cycle.........ccccevvieriieiiienvrennnen. 71
Figure 40. Pressure versus Time graph of Cure Cycle........cccceevvieeiiieenieeeiiieeieen, 72
Figure 41. Finite Element Model of Laminates ............ccoccueevieniiinieniiienieeiceieeee, 73
Figure 42. Constrained node region and lines on the FE model.............ccccooerienne. 75
Figure 43. Unconstraint region in the FE model.............cccoooieviiiiiiinciiiiieeeen 76
Figure 44. Ply stacking of Fabric laminate ............ccccoeviieiiiieiiiiiiiiieeee e 77
Figure 45. Ply stacking of UD laminate...........ccoceevirieniiniiniinieniciicneesieeeeseeeane 77
Figure 46. Out-of-plane displacement shape of UD laminate for the first mode....... 79

Figure 47. Out-of-plane displacement shape of FABRIC laminate for the first mode

Figure 48. Load-deformation behavior of UD plates for fully and reduced integration

SHEIL ELEIMEIILS .. eans 80

xiii



Figure 49. Load-deformation behavior of FABRIC plates for fully and reduced
integration shell €1eMENtS..........cocuiiiiiiiiiiiii e 81

Figure 50. Load-deformation behavior of UD plates for Riks and Newton-Raphson

Stabilize MEthOdS........coueiiiiiiiiiicicic e 82
Figure 51. Load-deformation behavior of Fabric plates for Riks and Newton-
Raphson Stabilize Methods..........ccooviiiiiiiriiiiiiiiee e 83
Figure 52. Buckling of UD plates with increasing initial shape imperfections.......... 84

Figure 53. Buckling of FABRIC plates with increasing initial shape imperfections 85

Figure 54. Load versus out-of-plane displacement curves of UD specimens and FEM

RESUILS ..ot 87
Figure 55. Load versus end-shortening displacement curves of UD specimens and
FEM RESUILS ...ttt 88
Figure 56. Failure of UD-1 SPecimen..........ccceeruieiiiiiiieiieieeieesiie et seve e 89
Figure 57. Failure path of UD-1.......cc.oooiiiiiiiieieeeeeeeee e 90

Figure 58. First ply failure of UD plate in matrix compression at load step P=82.979
HIN (LAYCT 1) ceeiieieieeiie ettt ettt ettt ettt e e bt e sseeenbeesaaeenseesssesnseens 91
Figure 59. Fiber compression failure index with respect to Hashin’s criterion at load
step of first ply failure (Layer 1) .....ceeeuiieiiiieieeeeeeeeeee e 92
Figure 60. Matrix compression failure index of UD laminate at load step of first fiber
compression failure (Layer 1) ......ccoociiiieiiiienieeieeieeie et 92

Figure 61. Fiber compression failure index of UD laminate at load step P=82.932 kN

Figure 62. Damage evolution of UD laminate (Layer 1) after failure initiation (left
side: matrix compression, right side: fiber cOmpression) .........ccccvveevvevvenieerienienienne 94
Figure 63. Load versus out-of-plane displacement curves of FABRIC specimens and
FEM RESUILS ..ottt st 95
Figure 64. Load versus end-shortening displacement curves of FABRIC specimens
and FEM RESUILS ....c..oouiiiiiiiiiiicicce e 96
Figure 65. First ply failure of fabric laminate in matrix compression at load
P=90.877 KN (LAYCT 1) ettt sttt 98
Figure 66. Fiber compression failure index of fabric laminate at load P=90.877 kN

Xiv



Figure 67. Matrix compression failure index at load P=91.437 kN (Layer 1)........... 99
Figure 68. Fiber compression failure index of fabric laminate at load P=91.437 kN

Figure 69. Damage evolution of fabric laminate in Layer 1 after failure initiation (left
side: matrix compression, right side: fiber compression) ..........cceeveeeeveeerciieerneenne. 100

Figure 70. Variation of critical buckling loads of angle ply [0/-0]4s UD laminates and

[0/-0/6/-0/0]s Fabric 1aminates...........cccueeiiieeiiieeiiiieeie e e e 102
Figure 71. Variation of critical buckling loads of angle ply [6/-0]s, [6/-8]2s, [0/-0]4s
UD LaIMINALES.......eeeiuiieiieiieeieeiie et eriee e et e eteeteeeeteebeessaeesbeeesaeesseesssesnseenssessseenses 103

Figure 72. Load versus out-of-plane displacements of angle ply [6/-0]s UD laminates

Figure 73. Load versus end-shortening displacements of angle ply [0/-6]s UD
JAMINALES ...evveeiietieteeee ettt ettt ettt ettt st ae et ene e b et ene e 105
Figure 74. Load versus out-of-plane displacements of angle ply [0/-8],s UD
JAIMINALES ..eeevieeeiiieeiee et ettt e et e et e et e e e beeetaeeetaeeebaeeeaseeessaeeeesseeesneeeanes 107
Figure 75. Load versus end-shortening displacements of angle ply [0/-0],s UD
JAMINALES ...evteiieeieteee ettt ettt ettt ettt et a et e ne e bt enee e 108

Figure 76. Load versus Out-of-Plane displacements of angle ply [0/-0]ss UD

JAIMINALES ..eeeviieeiiiieeiee ettt et e e e et e e st e e e tbeeetbeeetaeeebaeeeaseeessaaeeesseeensneesanes 110
Figure 77. Out-of-plane displacement shape of [45/-45]4s UD laminate ................ 111
Figure 78. Out-of-plane displacement shape of [60/-60]4s UD Laminate................ 111

Figure 79. Load versus end-shortening displacements of angle ply [0/-6]ss UD
JAIMINALES ..oevvieeeiiiieeiie ettt e et e e st e e e tbeeeebeeeteeeebaeesasaeessaaeeesseeesseeeanes 112
Figure 80. Variation of critical buckling loads of angle ply [0/-6]s, [6/-6/6/-6/8]s, [0/-
0]as Fabric 1aminates .........c..ccueeuiiiuieiiiiecieeie ettt et ae e eaeens 114
Figure 81. Load versus out-of-plane displacements of angle ply [0/-6]s Fabric
JAIMINALES ...eeivviieeiiie ettt e et e et e e et e e s taeeebaeesbeeessbaeesssaeesnseeesseeensaean 115
Figure 82. Load versus end-shortening displacements of angle ply [0/-0]s Fabric
JAMINALES ...eneeieteeee ettt ettt ettt et e e st e sttt et b et e 116
Figure 83. Load versus out-of-plane displacements of angle ply [6/-6/6/-6/0]s Fabric

JAITHITIALES ..ottt e e e e e e e e e e e e e e eeeeeeeeeeeeea e aaeaeeeeeraeaeaaaeaaeeaenaaes 118

XV



Figure 84. Out-of-plane displacement shape of [45/-45/45/-45/45]s Fabric laminate

Figure 86. Load versus end-shortening displacements of angle ply [0/-6/6/-6/0]s
Fabric [amiNates .......coueeuieiiieiieiie ettt ettt ettt st et 120
Figure 87. Load versus out-of-plane displacements of angle ply [0/-0]ss Fabric
JAMINALES ...evveiteiieee ettt ettt sttt b et 122
Figure 88. Load versus end-shortening displacements of angle ply [0/-0]4s Fabric
JAIMINALES ...ttt ettt st 123
Figure 89. Variation of critical buckling loads of angle ply [6/-6]s UD laminates and
[0/-0]s Fabric 1aminates..........c..ccoeuiiiiiiiiiiie ettt e 125
Figure 90. Variation of critical buckling loads of angle ply [0/-0],s UD laminates and
[0/-0/6/-0/0]s Fabric 1aminates ............ccceeeieiiiiiieeiiiie e e 125
Figure 91. Variation of critical buckling loads of angle ply [0/-0]4s UD laminates and
[0/-0]4s Fabric [aminates ............cocviieiiiiiiiieeiiee et e 126

XVi



LIST OF SYMBOLS AND ABBREVIATIONS

: Reduced Stiffness Matrix

: Transformation Matrix

: Extensional Stiffnesses

: Bending-Extensional Stiffnesses
: Bending Stiffnesses

: Lateral Displacement

: Reference Load

: Critical Buckling Load

: Damaged Elasticity Matrix
: Fiber Damage Variable

: Matrix Damage Variable

: Shear Damage Variable

: Initial Equivalent Displacement
: Final Equivalent Displacement

: Viscous Damage Variable

: Longitudinal Young’s Modulus

: Transverse Young’s Modulus

: In-Plane Shear Modulus

: Poisson’s Ratio

: Longitudinal Tensile Strength

: Longitudinal Compression Strength
: Transverse Tensile Strength

: Transverse Compression Strength

: In-Plane Shear Strength

Xvii



CHAPTER 1

INTRODUCTION

1.1 Composite Materials

The use of composite structures increase gradually in aerospace, automotive and
energy industries since composite materials have many advantages like lightweight
and high strength characteristics. As a result of that, composite structures are
required to analyze to obtain optimum weight and stiffness values. The design
criteria which have been specified to attain the structural safety of composite
structures must be ensured by the manufacturers. One of these design criteria is

buckling for the composite structures.

Investigation of the post-buckling behaviors of the composite panels is an important
issue to observe strength and stiffness characteristics of composite materials. When a
certain load applied to a plate, buckling may be observed and plate becomes unstable
before the stresses on the plate reach to material allowable. Furthermore, post-
buckling behavior and material failure at the end of post-buckling should be

investigated, if buckling of plate is permissible until to a particular load level.

Composite Materials have been preferred in many parts of structural area instead of
metallic materials. The structural performance of a composite material depends on its
composition, orientation, fiber shape, matrix and fiber material properties and
quantity of bondings between fiber and matrix. There are many different composite
material and manufacturing type in the industry and all of these materials have
advantages or disadvantages. Composite materials must be chosen by taking into

consideration of these advantages or disadvantages in the design phase of structure

[1].



The laminates which are produced by combining two or more types of fiber and
matrix material for obtaining specific performance requirements are called as hybrid
systems. Single fiber-matrix combination is a well accepted configuration for hybrid
laminates and prepregs, fabrics, woven roving, chopped fibers can be used to

combine hybrid reinforcement [1].

1.1.1 Matrices

Reinforcements are binded together by using matrix material and load is transferred
between fibers. Furthermore, environmental moisture, chemical corrosion and
oxidation are prevented by matrix material. Also, matrix holds together the fibers and
keeps fibers in the proper orientation and position. Organic, metallic, carbon and
ceramic materials are used as matrix material in the industry. However, metal, carbon
and ceramic matrices have not used as much as organic matrices due to high cost of
the applications. Researches and development stages are proceeded but recently they

are not widely used in airframe structures [1].

Organic Matrices are divided in to two categories. These are thermosets such as
epoxy, polyester, phenolics, bismaleimide, polyimides and thermoplastics such as
polyethylene, polystyrene, polypropylene, polyetheretherketone, polyetherimide,
polyethersulfone, polyphenylene sulfide [1].

Epoxy resins are the major material for low temperature applications and provide
good hot/wet performance, chemical resistance and superior dimensional stability.
Matrix material of composite structure is the most widely chosen from epoxy family
in the advanced composite industry. Glass, carbon/graphite, aramid, boron and the

other reinforcements are held together by using epoxy matrices [1].

1.1.2 Reinforcements

Composite materials consist of matrix and reinforcement materials. Reinforcement

materials compose the strength and stiffness characteristics of composite structure.



Reinforcement materials, which are used in the composite industry, can be written as

fiberglass, kevlar, polyethylene, carbon/graphite, ceramic fibers [1].

Carbon fibers have high strength and stiffness properties. When carbon fibers are
combined an effective matrix material, high performance structures can be obtained.
Carbon fiber reinforced composites are stronger and stiffer than the metallic parts
which have same weight with carbon fibers. As a result of that, stiff and light-weight
structure can be designed by using carbon fiber reinforced composite materials. In
addition, carbon fiber composites are available as prepreg, molding compound and

the other product forms [1].

1.1.3 Material Forms

Dry or preimpregnated forms of fiber/matrix combinations provide many advantages
in design and manufacturing. Also, dry forms do not contain matrix, so, matrix
material must be applied to forms during the lay-up process. On the other hand,
prepreg forms include matrix material and do not require any extra matrix

application [1].

Unidirectional Tapes are preimpregnated laminae which have longitudinal fibers.
The mechanical properties of transverse direction are considerably lower than
longitudinal properties due to weakness of matrix material. Therefore, fiber
orientations of unidirectional laminate should be arranged conscientiously to respond

the entire longitudinal and transverse load [1].

Woven Fabrics are expensive pre-forms than the unidirectional tapes but the cost of
manufacturing and layup labor requirement decrease the total cost. Furthermore,
complex geometry applications and geometric positioning of the woven fabrics are
better than the unidirectional tapes. Weave types and number of yarns per area
identify the fabrics and several of them can be summarized as unidirectional fabrics,
plain weave, twill, satin weave (Figure 1). In unidirectional fabrics, the

reinforcement fibers are aligned in one direction and these reinforcement fibers are



held together with the help of tie yarns which are non-structural materials. In plain
weave fabrics, the reinforcement warp yarn woven over the one reinforcement fill
yarn and this process is repeated consistently. This fabric has considerably stable,
less flexible construction and suitable for the flat structures. In satin weave fabrics,
the reinforcement warp yarn woven over the several reinforcement fill yarns and this
process is repeated. The configuration which one warp yarn woven over four fill yarn
and under pone fill yarn is called as 5-harness satin weave. Satin Weaves have high

strength characteristics for both material directions [1].
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Figure 1. Typical 2D weave patterns [2]

1.2 Buckling Phenomena

The elastic structural stability is defined as the response of the structure under
loading and this behavior are expressed in terms of equilibrium paths. Simple
structures, under loading, may be defined by a single equilibrium curve but
occurrence of many equilibrium paths is possible for the structures which have
complex geometries or boundary conditions. For these cases, the critical buckling
level can be taken for the point which primary equilibrium path and secondary
equilibrium path intersect with each other. When the load is applied to the structure,

the primary equilibrium path is observed and it is stable until the bifurcation point is



reached. After the bifurcation point, the structure tries to find new equilibrium path
(secondary equilibrium path) since primary equilibrium path has become unstable.
Critical buckling load of simple structures ( pin-jointed or clamped elastic beam )
under compressive loading is determined by using Classical Buckling Theory.
However, buckling behavior of complex structures differs with respect to geometries
or boundary conditions. These behaviors can be summarized as follows; stable

symmetric buckling, unstable symmetric buckling and asymmetric buckling [3].

1.2.1 Stable Symmetric Buckling

In symmetric buckling, the deformation direction of structure, under compressive
loading, is unknown. Furthermore, the bifurcation point of the structure, which
intersects by secondary equilibrium path, is stable. As shown in Figure 2, simply
supported flat plates under compressive load are proper instance to stable symmetric

buckling.

All edges are simply supported

Figure 2. Flat plate loaded in compression [3]

When the load reaches to the critical buckling level, primary equilibrium path

becomes unstable and plate starts to deform in accordance with the shape of buckling



mode. After buckling, plate continues to support increasing load at decreased

stiffness, so, incremental loading follows secondary equilibrium path as in [3]

Load versus central deflection curve of the simply supported plate under compressive
edge loading is shown in Figure 3. Plate can buckle towards the opposite direction.
As a result of that, secondary equilibrium path develops for the opposite direction as

the symmetric one of the presented path in Figure 3.

Load (p)

Unstable pnmary path
Stable secondary path —,

A
Y

Central deflection (w)

Figure 3. Stable symmetric equilibrium paths [3]

In analytical solutions, flat plates are assumed that they have perfect geometry but in
actual case plates include some geometric imperfections originating from
manufacturing processes. As shown in Figure 3, sudden bifurcations are observed for
the perfect flat plates when the compressive edge load reaches to the critical buckling

level however in plates which have initial geometric imperfections the transition



from primary equilibrium path to secondary equilibrium path are smoother than the
perfect plates. Furthermore, this smoothness of transition between equilibrium paths
increases as the imperfection level of plates increase and initial slope of the load-
displacement curve is affected negatively. Therefore, the initial geometric
imperfections with small amplitudes as compared to the panel thicknesses are

introduced to the finite element models which are used in these analyses [3].

1.2.2 Unstable Symmetric Buckling

In unstable symmetric buckling, it is unknown that the structure, under compressive
loading, deforms to which one direction but same buckling shapes and deformation
amplitudes are exhibited for either negative or positive buckling directions which are
orthogonal to loading direction (Figure 4). For the perfect structures, primary
equilibrium path is intersected by a secondary equilibrium path which is unstable.
Furthermore, load carrying capacity decreases rapidly and after the bifurcation load
versus deflection curve has negative curvature due to instability of secondary

equilibrium path unlike stable symmetric buckling [3].
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Figure 4. Unstable symmetric equilibrium paths [3]

The effect of imperfections is remarkable for the structure. Unstable symmetric
buckling is observed for the cylindrical shells which are loaded uniaxial compressive

load [3] (Figure 5).



Figure 5. Cylinder under uniaxial compression [3]

1.2.3 Asymmetric Buckling

The structures which have asymmetry in the geometry or loading exhibit asymmetric
buckling behavior (Figure 6). That is to say, secondary equilibrium path exhibits
unstable or stable behavior in accordance with the buckling direction of structure.

Truss structures are proper instance to asymmetric buckling [3].
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Figure 6. Equilibrium paths for asymmetric bifurcation [3]

1.3 Scope of the Thesis

In this thesis study, buckling, post-buckling and failure characteristics of composite
laminated plates made by UD and woven fabric panels under compressive loading
have been investigated with numerical analyses and experiments. Finite element
analyses have been carried out by using Abaqus v6.10 FEA software. The composite
specimens were manufactured by using prepreg forms which consist of thermoset
epoxy and carbon/graphite. The specimens have angle-ply symmetric and balanced
laminate configuration. Buckling behaviors of the plates are identical with stable

symmetric buckling behavior.
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1.4 Outline of the Thesis

In Chapter 1, composite materials and buckling phenomena of various structures are

introduced.

In Chapter 2, the studies which are related with buckling, post-buckling behaviors

and progressive failure analyses of composite laminates are reviewed.

In Chapter 3, analytical solutions of buckling of composite laminated plates are
investigated. Furthermore, Classical Lamination Theory, stress-strain relations,
forces and moments, specially orthotropic and symmetric angle-ply laminates,

mechanical stiffness matrices of composite laminates are presented in this chapter.

In Chapter 4, the methodology of finite element analyses which are performed for
buckling, post-buckling and progressive failure analyses is summarized. Eigen value
extraction method, non-linear Riks and Newton-Rapson methods are investigated.
Furthermore, progressive failure approach and assumption of energies dissipated due

to failures are presented.

In Chapter 5, the design and construction of test fixture which is used in experiments
is described. Mechanical material properties, dimensions, stacking sequences and

curing cycles of test specimens are presented.
In Chapter 6, finite element model, boundary conditions, eigenvalue results, element
and method comparisons are presented. The results which are obtained from

numerical and experimental findings compared with each other.

In Chapter 7, a number of numerical analyses have been realized to evaluate the

effect of ply angle orientations and thicknesses on the composite laminates.
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CHAPTER 2

LITERATURE SURVEY

Although the critical buckling loads of the composite materials were investigated
extremely, there are a few studies related with the post-buckling behavior and

progressive failure analysis of the composite laminates in the literature;

Singh and Kumar [4] performed a study that was related with post-buckling behavior
and progressive failure of simply supported symmetric laminates under in-plane
shear load with various boundary conditions. A finite element analysis procedure,
including first order shear deformation theory and geometric non-linearity, was
carried out with the von-Karman sense. Failure of lamina was estimated using 3D
Tsai-Hill failure criterion and delamination between two adjacent layers was
identified using maximum stress failure criterion. Results showed that the direction
of applied shear load, in-plane boundary conditions, ply lay-ups, plate aspect ratios
and material properties of lamina effect directly pre-buckling and post-buckling
behavior, first-ply failure load, ultimate load and transverse displacements of

laminates under in-plane shear load .

Won Kong, Lee, Kim and Hong [5] performed an analytical and experimental study
which was related with post-buckling behavior of graphite-epoxy stiffened laminated
composite panels under uniaxial compressive load. Non linear finite element method,
including progressive failure analysis considering maximum stress criterion, was
used in the analysis of panels. Matrix, shear and fiber failures were taken into
account in the progressive failure analysis. Out of plane displacements were
monitored with the help of Moiré fringe technique and failures were detected by
using Piezo-electric film sensors during the experiments. Analytical results, which
were obtained from non-linear finite element procedure, were compared with

experiments. The results of buckling load, post-buckling behavior and ultimate post-
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buckling strength showed overall good performance with the experimental studies.
Furthermore, the effects of stacking sequences and stiffener shapes were investigated

by means of these parametric studies.

Falzon, Stevens and Davies [6] performed a numerical and experimental study that
was related with post-buckling behavior of a blade-stiffened laminated composite
panel. Composite blade-stiffened fasteners were analyzed using a new failure
mechanism. Failure initiation was observed at the free edge of the post-buckled
composite stiffener due to mid-plane delamination. Interlaminar shear stress failure,
which was calculated from strain gauge measurements using an approximate analysis
based on lamination theory, and observed failure were consistent with each other.
The critical shear stress and shear strain that was obtained from three point bending
test of the web laminate have been compared with each other. Comparisons showed
that the critical shear stress was provided with a good accuracy using approximate

analysis based on lamination theory and including edge effects.

Soh, Bian and Chakrabarty [7] developed an approach was related with elastic/plastic
buckling analysis of a simply supported anisotropic plate under uniaxial compressive
load. Critical buckling loads of carbon epoxy, glass epoxy and boron aluminum
plates, called as fiber reinforced composites, were estimated by employing developed
theoretical approach. Elastic/plastic theory of composite materials was developed
using theory of isotropic materials. Brittle fibrous composites have more complex
mechanical behaviors with respect to isotropic materials. Thus, damage in brittle

fibrous materials is not suitable for developed theory.

Bisagni [8] analysed buckling and post-buckling behaviors of CFRP cylindrical
shells under uniaxial compressive load. Various analysis methods (eigenvalue, non-
linear Riks and dynamic analysis) were compared to examine buckling phenomenon.
Geometric imperfections were measured using the test specimens and these
imperfections were implemented into finite element model. Numerical analyses and

experimental results were compared with each other and the effect of imperfect
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shape was investigated. The reliability of finite element analyses was correlated with

experimental results in the post buckling field.

Loughlan [9] investigated the influence of membrane—flexural coupling on the elastic
stability of anti-symmetric angle-ply laminates under compressive loading.
Laminates that consist of various ply angles and ply numbers were analyzed to
examine effects of the variations of membrane-flexural coupling magnitudes in the
laminated composite plates. Finite strip method was used for determination of the
coupled compressive buckling solutions. The degree of membrane—flexural coupling
decreased because of increasing the ply number in the laminate and plate exhibited
orthotropic behavior for the critical stress levels. Ply-angle variation affected
sensitively buckling behavior of anti-symmetric angle-ply laminates. Results showed
that the optimized ply-angle is less effective in the post-buckling range with respect

to post-buckled compressive stiffness.

Caputo, Esposito, Perugini and Santoro [10] performed a numerical and experimental
investigation that was related with post-buckling behavior of damaged and
undamaged laminated composite skin panels. Damaged model contains impact
damage and debonding. The test that was performed for compressive loading up to
static failure was observed using transducers and strain gauge for numerical and
experimental correlation. Two available commercial finite element softwares were
used for numerical approaches that include full transient and static analyses.
Numerical and experimental results were compared with each other. Both
of ABAQUS and ANSYS analyses showed good performance to predict pre and

post-buckling equilibrium paths except some differences on mode jumping phase.

Bisagni and Cordisco [11] performed an experimental study was related with
buckling and post buckling behavior of thin walled CFRP shells. Compression and
torsion loading were applied separately and in combination by a test equipment using
laser scanning system that measures the geometric imperfection for investigating
progressive change in deformations. The effect of laminate orientations were

idetified and results showed that there was no relation between buckling load and
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load sequence also, shells can resist to loads in post buckling field without any

damage.

Xie and Biggers [12] analyzed post-buckling behavior of composite laminated
tailored plates with progressive failure approach. Buckling and ultimate loads of flat
and curved plates that have central cutouts were increased using a simple tailoring
concept. In-plane restraints on unloaded edges, tailoring and effects of cutouts were
investigated and compared with experimental results from literature. Relative
improvements were observed on buckling and ultimate load capacities of flat plates
with respect to comparisons between tailored and uniform flat plates with the same
cutout size. In the curved panels, tailoring concept reduced the sensitivity of
imperfections and ultimate loads were greater than the buckling loads unlike the
uniform curved panels. Damage initiation locations and damage propagation paths
were different in the flat and curved panels. Results showed that tailoring concept
provided good improvements on post-buckling behavior, buckling and ultimate load

capacity on flat and curved panels.

Camanho, Davila and Moura [13] proposed a new decohesion element that was
capable of crack propagation under mixed-mode loading. The element was placed on
interface of solid elements to simulate damage initiation and delamination growth in
composite materials. A softening law was implemented into decohesion element in
conjunction with a single relative displacement-based damage parameter to pursue
the damage state of the elements and to avoid reverting undamaged state of cohesive
element during unloading. The inter-laminar fracture toughnesses and strengths were
defined using element constitutive equations. The Benzeggagh-Kenane interaction
criterion was used to estimate mixed mode delamination propagation. The
results, obtained from steady-state delamination growth analysis, were compared
with the experimental data. Comparisons between numerical analysis and
experiments showed that analysis that was carried out using decohesion element and

experimental data agreed well.
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Falzon and Hitchings [14] performed an experimental and numerical study which
was related with post-buckling behavior of blade-stiffened composite panel under
uniaxial compressive load. An unexpected secondary instability was observed during
loading afterward initial buckling stage by a dynamic mode shape change. Arc-
length-related finite element methods were carried out due to numerical difficulties
of standard path-following quasi-static finite element procedures. On the other hand,
modified explicit dynamic analysis was presented in this study since difficulties were
encountered in arc-length-related higly non-linear analysis. An imperfection,
considering 5% of maximum displacement of first eigenvector, was implemented
into finite element model. Results showed that estimation of the mode-switch
behavior was provided with a good accuracy using modified explicit dynamic

analysis.

Hilburger and Starnes Jr. [15] presented an experimental and analytical study which
was related with the effect of initial imperfections on the buckling behavior and
failure analysis of a thin walled composite cylindrical shell under compressive load.
Six different shell-wall laminates two different shell-radius-to-thickness ratios were
considered and shell-wall laminates consisted of four different orthotropic laminates
and two different quasi-isotropic laminates. Effects of traditional and nontraditional
initial imperfections were accounted into numerical analysis. Traditional
imperfection consists of geometric mid-surface imperfections and non-traditional
imperfections consist of thickness variations, delaminations, loaded edge geometric
imperfections, non-uniform applied end loads. Stable, unstable behaviors and
material failures were predicted by non linear static, non linear transient and failure
analysis. Results showed that a basic generalized imperfection effect of a composite
shell can be formulated using considered imperfections; more accurate computations

can be carried out using the non linear analysis procedure that is used in this study.

Featherston and Watson [16] performed some tests which were related with buckling
behavior of optimized flat fiber reinforced plates were subjected to shear and in plane
bending loads and their various combinations. Two side edges of plates were

constrained simply supported and other two edges were clamped. Finite element
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analyses were carried out to predict buckling behavior since there is no theoretical

solution.

Diaconu and Weaver [17] presented an approximation method to analyze post-
buckling behavior of infinitely long and un-symmetrically laminated composite
plates. Approximate solution was generated by combinations of polynomial
transverse displacements that come up with bending due to un-symmetric laminate
configurations and a functional representation that was obtained by using Galerkin
method for the buckling mode. Non-dimensional parameters were constituted for a
simple and clear formulation. The results that were achieved by this solution for
uniaxial compressive load along the longitudinal direction were compared with the
results that were obtained from non linear FEM analysis for finite length rectangular
long plates. Two different simply supported boundary conditions, giving different
results, were used in finite element model. Generally, FE analyses over predicted and
rarely under predicted the approximate solution with respect to type of considered
boundary conditions. Approximate solution that gave average results between two

FE analyses was sufficient for initial design purposes.

Falzon and Cerini [18] analyzed behavior of post-buckled composite panels under
the influence of mode-jumping using a different finite element procedure. Recent
non-linear static finite element procedures that were used in most of finite element
codes were investigated and their shortcomings were determined. A quasi-static
solution and a pseudo-transient method were combined with each other for
constituting more effective approximation. Besides, there was no need to user
intervention during the computation process since switching between quasi-static and
pseudo-transient method is automated. Arc-length method was used for quasi-static
response while a modified explicit dynamic routine was used for pseudo-transient
method. Results that were obtained from presented method were compared with
experiment and other finite element methods. Comparisons showed that capturing

mode jumps were possible using the presented method.
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Gal, Levy, Abramovich and Pavsner [19] presented a new simple triangular finite
shell element for predicting the buckling behavior of a tested composite panel under
uniaxial compressive load. Incremental geometrically non linear analyses were
carried out for buckling analysis and tangent stiffness matrices were monitored at
each increment. Results were reproduced with respect to an example from the

literature and showed good accuracy according to experimental results.

Laurin, Carrere and Maire [20] performed a study that was related with failure of
composite laminates. The strengths of quasi-isotropic composite laminates under
compressive load were over predicted with respect to current approaches. At first,
material multi-scale failure was proposed for different stacking sequences. This
model shows failure of laminates which occurs due to material aspects (ply failures
without buckling). Secondly, a structural analysis was performed for predicting
accurate results under compressive loadings. Buckling loads and post-buckling loads
were proposed by a simple method that considers highly non linear material
behavior. Results that were produced with respect to these methods showed good
agreement with experimental results. Lastly, buckling is not a phenomenon that leads
to failure with respect to an application of the present approach on a self-stiffened

panel.

Lopes, Camanho, Giirdal and Tatting [21] studied buckling, post-buckling behaviors
and progressive failure analysis of composite flat plates that were manufactured by
tow placement technology. Tow placement machines are capable to control fiber
tows particularly and to place tows onto shape of laminate through recent
developments in tow placement technology. Plates that are manufactured by tow
placement machines are called as variable stiffness composite panels because of the
variation of properties along their surface. High load-carrying capacities of tow-
steered panels were identified by the comparison between traditional straight-fiber
laminates and tow-steered panels with respect to previous experimental researches.
The motivation of paper is to investigate post-buckling, progressive failure and final
structural collapse because of fiber or matrix damages. A user-developed subroutine,

including continuum damage model, were implemented into ABAQUS FEA
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software to simulate damage initiation and stiffness degradation. Non linear static
analyses were carried out finite element model including geometric imperfections.
The residual thermal stresses, occurring in the curing process, were considered in
order to compute the buckling loads of tow-steered panels under compressive edge
load. Final failure results were calculated with a small difference between numerical
and experimental results. Tow-steered panels have higher strength and damages of

them initiates later than straight-fiber laminates.

Camanho, Maimi and Davila [22] investigated size effects and strengths of notched
carbon-epoxy laminates using continuum damage model. Size effects and
propagation of fracture process zone were correlated with an experimental program.
Material properties and fracture energies were measured at the ply level with respect
to standard test methods due to requirements of continuum damage model. The
results that were obtained using continuum damage model were compared with the
point stress, linear elastic fracture mechanics and strength of materials approaches.
Comparisons showed that the continuum damage model predicted size effects of
composite laminates subjected to tension with good accuracy. Additionally,
continuum damage model provides degradation of the material stiffness during the
loading history and it is applicable to analyze general geometries and boundary

conditions.

Pevzner, Abramovich and Weller [23] have developed a MATLAB based software
code, has called as TEW, that calculates buckling and collapse loads of axially
compressed laminated composite stringer-stiffened curved panels. Effective width
method that is employed for analysis of isotropic planar stringer-stiffened panels has
been adapted to laminated composite stringer-stiffened circular cylindrical panels.
Bending buckling, torsional buckling and local buckling of the blade, J-form and T-
form stiffeners were investigated using proposed effective width method. Results that
were obtained from proposed method were compared with experimental results and
with finite element calculations. Proposed method showed good performance with
experiments and FE analyses. Furthermore, it can be employed for design and

optimization of laminated composite stringer-stiffened curved panels.
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Kassapoglou [24] presented a new design concept increasing compression
performance of composite plates. Rectangular composite panel that consists of two
concentric layups under compressive load has been analyzed using Rayleigh-Ritz
approximation. Buckling loads were calculated using energy minimization approach.
The results of detailed finite element models and other published finite element
solutions were compared with each other and gave good accuracy except panels
including twisting-bending coupling since these stiffnesses were not accounted for
this method. According to obtained results, much more lightweight panels can be

configurated by using presented method.

Kere and Lyly [25] studied post-buckling behaviors of CFRP shells under uniaxial
compressive load. Computations were carried out using Reissner-Mindlin-Von
Karman type shell facet model. The effects of geometric imperfections were
implemented into non-linear analyses. Numerical and experimental results were
compared with respect to buckling tests found in literature. Results showed that using
of diamond shape imperfections gave accurate results with respect to others for

CFRP cylindrical shells.

Basu, Waas and Ambur [26] developed and approach that was related with
progressive failure analysis of fiber reinforced laminates. Schapery theory was
employed to model each of the ply laminate as a non linear elastic degrading based
on plane stress assumption. Physics of kink banding that results in micro-buckling
and degradation of the axial lamina properties has been taken into account by
developed approach. A user defined subroutine that considered fiber micro-buckling
and material degradation features was developed and implemented through
ABAQUS finite element software. Elastic lamina orthotropic properties, transverse
property degradation, ultimate fiber tensile strength of the lamina were identified
with laboratory scale and coupon level test data. Flat un-stiffened and notched
panels, subjected to axial compression and in-plane shear loading individually, were
tested to verify the results that were obtained from finite element analyses. Presented
approach showed good performance with respect to comparisons between

experiments and numerical solutions.
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Bisagni and Walters [27] performed an experimental study that was related with
investigation of the damage propagation in flat composite laminates under axial and
transverse loadings. A dual actuator testing machine was used to apply axial and
transverse loads individually and in combination. Detection of the local
displacements, strain fields and damage propagation was carried out using a digital
image correlation system. Two test series, consisting two different graphite-epoxy
materials, were tested. In the half of specimens, artificial delaminations were
generated using teflon films that were inserted into laminate during lay-up for
investigating the damage propagation. Results of the experiments were close to the
theoretical elliptical curves of the loading interaction. Complex failure initiation and
propagation modes were obtained because of loading type and artificial
delaminations. Fiber breakages, fiber—matrix shear failures and inter-lamina damages

were observed in test specimens.

Liu and Zheng [28] performed progressive failure analysis of composite laminates
using continuum damage model. Progressive failure properties of aluminum and
carbon fiber/epoxy composite laminates were predicted using energy based stiffness
degradation method. Maximum shear stress was taken into consideration for failure
criterion of aluminum liner material, Tsai-Wu failure criterion was employed for
composite laminates and fiber breakage, matrix cracking, fiber/matrix interface
failure were investigated. The arc-length algorithm was developed to carry out
progressive failure process using a 3D finite element model. Load-displacement
curve and failure strength of laminate that were obtained from presented study were
compared with experiments and other existing models. Results showed that the
ascendant failure was matrix cracking for composite laminates, rapid increase was
noticed in the number of fiber breakage before collapse of structure and any shear

failure was not observed in the analysis.

Pineda, Waas, Bednarcyk, Collier and Yarrington [29] presented progressive damage
and failure model of fiber reinforced laminated composites. The thermodynamically
based Schapery Theory (ST) was employed for investigation of progressive micro

damage in matrix failure. Matrix failure was not taken into account using a matrix
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failure criterion but it was observed with the evolution of micro-damage. Tensile
failure was investigated using maximum strain criterion and compressive failure was
taken into account allowing local fiber rotations. Results that were obtained from
presented study compared with a model that used Schapery Theory at the lamina
level for calculating micro damage. Load versus displacement and local strain results
of both model were compared with experimental results of notched laminates under
uniaxial tension load. Comparisons showed that presented progressive damage model

based on Schapery Theory agreed well with the previous studies.

Meer and Sluys [30] performed progressive failure analysis using continuum damage
model and softening plasticity model in composite laminates. In continuum damage
model, elastic stiffness of material was decreased gradually after stress components
reached allowable values of material. Strains were separated into elastic and plastic
parts and plastic strains employed to reduce the strength of the material in softening
plasticity model. Mesh dependency was investigated by introducing viscosity term
for both failure models. Matrix failures were observed along a finite width that was
independent of the element size. Values of viscosities were determined hardly due to
complexity of viscosity parameter. Furthermore, continuum damage model showed

good performance under the well influence of viscous regularization.

Wagner and Balzani [31] analyzed post-buckling response of composite laminated
panels including progressive ply failure. A numerical model, including failure modes
fiber fracture, matrix cracking, and fiber—matrix debonding, was used for
investigation of post-buckling behavior of the panel. Brittle degradation model was
carried out to consider material nonlinearity when damage was detected within a ply
by applied failure criterions. Green strains and second Piola—Kirchhoff stresses were
employed to take into account geometrical nonlinearity. Numerical results were
compared with the experiments for validation of the presented model. Global
behavior, amplitudes of the radial displacement and buckling shape of the axially
compressed panel were agreed well with the experimental results. Skin-stringer

debonding was observed in the experiment differently from numerical model.
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Vescovini and Bisagni [32] studied post-buckling analysis of composite panels with
elastic restraints under uniaxial compressive load using single-mode solution. The
responses of stiffened panels under the influence of local buckling modes were
investigated using closed-form solution that takes into account rotational restraints of
skin edges due to stiffeners. Marguerre type equations and classical lamination
theory were implemented on the panels that are modeled as thin plates. The problem
that was defined with a single-mode approximation was expressed in terms of out of
plane displacements and Airy stress function. Buckling loads, out of plane
displacements and post-buckling behaviors of composite panels were achieved using
closed-form solution and compared with finite element solutions. Results that were
derived using closed-form solution showed good accuracy with respect to

comparisons between the approach and finite element analyses.

Romanowicz [33] presented a numerical approach based on the finite element model
that predicted failure of fiber reinforced composites subjected to combined transverse
compression and axial tension. Fiber breakage, fiber/matrix debonding and matrix
plastic deformation were investigated with respect to constitutive equations. Another
feature of presented study is that fracture allowables of the interface and constituent
materials influence unidirectional composite failures. Furthermore, proposed
micromechanics model determines mechanical behaviors and failures of composites
for various biaxial loadings. Results that were obtained from micromechanics
approach were compared with analytical data and experimental results that were
found in literature. Numerical calculations showed good performance with respect to

comparisons between micromechanics model and experimental results.
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CHAPTER 3

BUCKLING OF LAMINATES

Buckling analyses have been carried out using Classical Lamination Theory that

consists of stress-strain relationships. Challenging 3-D elastic problems can be

solved appropriate displacement assumptions and CLT.

3.1 Stress and Stress Variations of a Laminate

As shown in Figure 7, Kirchhoff hypothesis is used for plates on the laminate

translational displacements with respect to a specified coordinate system by use of

the laminate cross section in the x-z plane [34].

|
{ Ly s

by

Figure 7. Un-deformed and deformed cross-section of a laminate under the Kirchhoff

assumptions [35]
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The displacement formulas on x and y direction can be written as follows [34];

0
w =y — Z% 3.1)
ow,
U=uy— Z(')_xo (3.2)
w = w, (3.3)

where u, ,vy and wy are the displacements of a point on the surface. When derived
displacement equations and linear elastic strain equations have been combined with

each other, strain equations of a laminate are obtained [34].

_Ouy 0wy

= Gx T o G4
ovy  9%wy,
& =3y 2oy (3.5)
ou, 0vy 92w,
= — 3.6
Vay dy T ox 2z 0xdy (36)
or in matrix form,;
Sx SD(C) Kx
[Ey]= ey |+z Ky] (3.7)
Exy ve, Ky

The transverse strains y,, and y,,, are zero due to Kirchhoff assumption. The mid-

surface strains are [34];

du,
0 0x
g’é v,
& | = @ (38)
0
Vxy du, N dv,
| dy  Ox |
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The mid-surface curvatures are [34];

Mk
Ky | = — (3.9)

3.2 Lamina Stress-Strain Behavior

Stress-strain relations of orthotropic lamina under plane stress condition given below

[34];

01 Qi1 Q12 0 7[&
[0'2] = [le QZZ 0 ] [82 ] (310)
T12 0 0 Qgel V12

Q;;’s are called as reduced stiffnesses that have been composed using components of
compliance and stiffness matrices. Reduced stiffnesses can be written in terms of

engineering constants [34];

E1y Ey,
G = 1—v,5vy Q22 = 1—vi5vy
E £ (3.11)
Vi2L722 Va1E1q
Q12 = = Q6 = G12

1—vv 1—=vyvy

Transformed reduced stiffnesses with respect to any coordinate system are given
below [34];

Oy (211 g12 0 Ex
[Uy] =012 Q2 0 [83’ ] (3.12)
Txy 0 0 666 Yxy

26



[Q] = [T][Q]I[T]" (3.13)

[T] is the transformation matrix for a particular rotation about a transverse normal to

the lamina.

3.3 Laminate Stresses, Forces and Moments

Force and moment components acting on a flat laminate can be shown as in Figure 8

and Figure 9;

Y
>

Figure 8. In-Plane Forces on a Flat Laminate

According to CLT, stresses in the k™ layer can be determined by using stiffness

equations, middle surface strains and middle surface curvatures [34].
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[Ux] Quu Qi O I Kx]]

Oy [=1Q12 Q2 O 539 +z j (3.14)

xy 0 0 Qe Y;?y

Figure 9. Moments on a Flat Laminate

Loads and moments that are applied onto a laminate can be found by integration of

the stresses on each layer of laminate through the thickness. Load and moment

formulas of N-layered laminate [34] (Figure 10);

t/2 [ Ox Nz, [Ox
N | = [Uy]d2=2f [ay] dz (3.15)
Nyy t/2 | Tyy k=1"2k-1 [Txyl,
M, t/2 [ Ox N oz [Ox
M, =f [%]ZdeZf [Uy zdz (3.16)
_Mxy —t/2 Txy k=1"2%k-1 | Txy K
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Figure 10. Geometry of N layered Laminate

When the transformed reduced stiffness matrices are combined with load and

moment formulas, the following relations are obtained [34].

[ Ny Ay A, A 1[&] [ Bu Biz Big |[Kx
Ny [=| A1z Ay Ay 339 +| Biz By st” ] (3.17)
| Nxy A6 Az Age 1]y ] Bis Bz Bge 1 1¥xy
[ M, Bi1 By 316'_87?- [ D11 Dyz Die Kx
My | =| By, B, By 539 +| D1z Dy Dzs” ] (3.18)
| My Bis Bzs Bee _y,?y_ Di¢ Dz6 Deg
where
N
= Z(Qij)k (zx — z-1)
1 N
By =35 (0y), (2 = 72-0) (3.19)
k=1
N
1 3
D;; §Z(QU) (Zk Zje_1)
k
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A;; are extensional stiffnesses, By are bending-extension coupling stiffnesses and Dj;
are bending stiffnesses in equations given in 3.19. 4,5 and A, are related with shear-
extension coupling and D;s and D,s are related to bend-twist coupling. Bending-
extensional coupling stiffness defines the occurrence of forces and moments
simultaneously even if laminate is under uniaxial loading. Hence, when an
extensional load is applied to a laminate that has Bj; stiffnesses, not only extensional

deformations occur but also bending and twisting deformations take place [34].

Emergence of coupling stiffnesses differs with respect to composite lay-up
configurations. Symmetric laminate is the composite material where plies of laminate
are a mirror image about the geometrical mid-plane [34]. Example of symmetric

laminate stacking sequence can be shown in Figure 11;

+0

)

+6

Symmetry Axis -0
)

+0

0

+0

Figure 11. Angle-Ply Symmetric Laminate

Balanced laminate is defined when for each +6 ply in the lamina there is an equally
thick —@ ply in the laminate excluding 0 and 90 degree plies with same material
properties [34]. To obtain an in-plane orthotropic material behavior, laminate should

be balanced. A balanced laminate example is given in Figure 12;
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Figure 12. Symmetric and Balanced Laminate

Symmetric, balanced or unsymmetrical laminate configurations effect macro
mechanical behavior of laminate directly. The behavior of bending or buckling

differs with respect to a laminate that is balanced, symmetric or unsymmetrical.

3.4 Buckling of a Laminated Plate

When buckling develops on a composite laminated plate, the out of plane
deformations occur with respect to transverse direction of the laminate as shown in
Figure 13. These deformations are observed in the shape of sine waves. Furthermore,
number of sine waves increase or decrease with respect to plate length in the load

direction and plate geometry, boundary conditions, bending and coupling stiffnesses

effect substantially buckling behavior and deformations [34].
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Figure 13. Basic simply supported buckling behavior [34]

The load deformation behaviors of composite plates are different than columns. At
first, the loaded plate shortens in load direction and buckles at critical buckling level.
After critical buckling load level, plate deformation bifurcates from flat to buckled
shape [34]. However, plate continues to resist increased load but it has low stiffness

due to buckled shape as shown in Figure 14.

N /

BIFURCATION IN DEFORMATION PATH

—

A

Figure 14. Load-Deformation behavior of Buckled Plate [34]
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Initial imperfections change buckling behavior of composite laminated plates. The
transition from flat to buckled shape is too sharp in the load deformation curve for a
perfect flat plate but this sharp transition becomes smoother with increasing initial

imperfections as shown in Figure 15.

N4 /,7%
sl
./'/ /
-
.d“f/ /

NE — 'r"'é’/ N /

/’;i\

7

/ INCREASING
y IMPERFECTIONS

>
A

Figure 15. Effect of Initial Imperfection in Buckling [34]

3.4.1 Buckling of Specially Orthotropic Plates

The laminate that has single layer or lots of specially orthotropic layers that are
arranged symmetrically with respect to middle surface of laminate is called as
specially orthotropic laminate. There are no coupling stiffnesses in stiffness matrix of
this laminate. The laminate stiffnesses only include A4;;, A, Az Ass, D11, Di2, Da2
and Dgs. The differential equation that provides the buckling load for flat plate can be

written as follows [34];

0*w 04w o'w  _ 0*w
D11 W + 2(D12+2D66) a— + D22 a—:y4_ + N

X73y? v gz = 0 (320

33



Simply supported edge boundary conditions for the plate shown in Figure 16 are

given in following expressions [34];

d*w 0%w
x=0,a; w=0 Mx=—D11W—D126—yZ=O
(3.21)
d*w d%w
y=0,b, w=20 My=—D12W—D226—yZ=O

Ny R
T~
\“::;\A

"

‘!‘\_\

Figure 16. Simply Supported Laminated Rectangular Plate under Uniform Uni-axial

Compression [34]

The lateral displacement formulation can be written as follows [34];

mmx nmx
w= AmnsinT sinT (3.22)

m and n refers to number of buckle half wavelengths in the x- and y- directions. The
governing buckling load equation is provided by substitution of lateral displacement

formulation [34];
— mi2 N2 n14 rma2
Ny = 72 [1)11 2] +200u+200)[3] + D2 [3] [5] ] (3.23)

To obtain smallest buckling load of plate, n can be taken as 1.
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3.4.2 Buckling of Symmetric Angle Ply Laminates

Symmetric angle ply laminates do not include bending-extension coupling stiffnesses
but also bend-twist coupling stiffnesses Djs and Dy occur in laminate stiffness
matrix unlike specially orthotropic laminates. The differential equation of angle ply

symmetric laminate is [34];

d*w d*w d*w d*w
(3.24)
o*‘w  _ 9%*w
+D220_y4+NxxW: 0

Simply supported edge boundary conditions for the plate shown in Figure 16 are

given in following expressions [34];

d%w d%w %w
X = 0, a: SW = 0 6Mx = _D11 axz - D12 ayz - 16W -
(3.25)
d%w d%w %w
y = O,b: ow =20 6My = _D12 axz - DZZ ayz - 26W =

There is no solution of angle ply symmetric laminate’s differential equation due to
occurrence of bend-twist couplings D¢ and D,s. Therefore, the solution of the
differential equation, given in 3.24, is obtained by using various numerical methods

[34].
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CHAPTER 4

BUCKLING AND PROGRESSIVE FAILURE ANALYSES BY FINITE
ELEMENT METHOD

4.1 Finite Element Analysis

In the analysis of buckling of composite laminated plates which have 460 mm x 350
mm dimensions and various thicknesses, a commercial finite element software
Abaqus v6.10 has been used. The general methodology of the post-buckling analyses
can be summarized as follows. At first, the critical buckling load and mode shape for
the first buckling modes of laminates have been obtained by employing the Linear
Figen Value Extraction method (LANCZOS). Secondly, the initial geometric
imperfections with small amplitudes as compared to the panel thickness (0.1-5%),
which are determined using the first mode shapes obtained from LANCZOS
analyses, have been implemented into FE model for the non-linear analyses. Lastly,
the progressive failure analysis has been carried out to investigate the damages on the

laminates due to buckling by using Newton-Raphson method.

Element Selection is an important parameter for finite element analysis. Computation
time, accuracy of results, required mesh density differs with respect to element which
is chosen. Considering these factors, buckling analysis of composite laminates have

been carried out by using shell elements S4 and S4R.

S4 is a fully integrated three dimensional finite membrane strain shell element which
has four-node and four integration points and it is suitable for large-strain analysis.
On the other hand, S4R four-noded, quadrilateral, stress/displacement shell element
with reduced integration and large-strain formulation and finite membrane strains,

large rotations are taken into account by this element. Therefore, this element is also
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suitable for non-linear large displacement analysis as S4 elements. The only

difference between these elements is the number of integration points [36].

Reduced integration is computation of element stiffness by using lower order
formulation (Figure 17). When reduced integration element is used, fine mesh and
distributed loads are required to block hourglass effect. Fully integrated elements do
not require hourglass control and give more accurate results with respect to reduced
integration elements but computation time of this element is greater 4 or 5 times than

reduced integrated ones [36]. Full integration and reduced integration elements were

compared with each other and introduced in section 6.2.

4-node reduced 4-node full

integration element integration element

Figure 17. Node ordering and Numbering of Integration Points [36]

4.2 Instability Analysis

Buckling or collapse behavior can occur in geometrically non-linear problems. In
this thesis study, instability analyses have been carried out using various analysis
procedures. These are eigen value buckling prediction (linear perturbation
procedure), Riks method (arc-length) and Newton-Raphson method that is applied an

energy dissipation fraction to prevent divergence of the solution [36].
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4.2.1 Eigen value Buckling Prediction (LANCZOS)

Eigen value buckling prediction is a linear perturbation procedure which provides
critical buckling loads and imperfection sensitivity of structures. Eigen value analysis

is performed by solving following equation [36];

(K¥M + LKNMuM =0 4.1)

where, KM is the stiffness matrix of initial state of FE model, K}'™ is the initial
stress and load stiffness matrix with respect to applied reference load, 4; is the eigen
values vMis the eigenvectors or buckling mode shapes, M and N are the degree of

freedom of the FE model and i is the number of buckling mode.

To determine the eigen values, a reference load and required boundary conditions
have been applied to FE model. The magnitude of this load is insignificant since load
is scaled by the eigen values. Eventually, when eigen values obtained from Lanczos
analysis are multiplied with the reference load applied to the model, the critical

buckling load of the structure at the specified buckling mode is obtained [36].

AiPref =P, (42)

As seen in equation 4.2, critical buckling load at the i buckling mode can be found.
In this thesis study, critical buckling load of first mode has been taken into
consideration since it is the lowest one for composite laminated flat plates but a quite
number of buckling modes can be obtained using LANCZOS analysis procedure

[36].
4.2.2 Postbuckling Analysis
An eigen value analysis does not inform on post-buckled deformation of laminated

plate under increasing loading. Therefore, non-linear static analysis is required to

investigate post-buckling response of structure. Two methods have been considered
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in this study to investigate the post-buckling analysis: Riks method and Newton-

Raphson method by viscous damping.

Newton-Raphson method is prone to fail under load or displacement control for the
problems which include highly non-linear behavior like buckling or collapse. In a
classical buckling problem, when the load reaches the critical buckling point,
Newton-Raphson method fails during the transition between primary equilibrium
path and secondary equilibrium path. Therefore, Riks Method is offered for unstable
and collapse analysis. However, Riks Method is an expensive analysis procedure on
account of computation time and convergence rate. Furthermore, many convergence
problems are observed during the analysis that were carried out by using Riks
Method, when progressive failure and material stiffness degradation procedures are

taken into account for the post-buckling analyses of laminated plates [36].

4.2.2.1 Riks Method

Riks method is a non-linear procedure that is employed for instability analysis and
requires incremental solution [36]. Stable and unstable post-buckling behaviors can
be solved using Riks Method. In some of non-linear static analyses for instability
problems load/deformation path varies as seen in Figure 18. The modified Riks

method solves efficiently these types of problems.
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Figure 18. Unstable Static Response [36]

In Riks method, static equilibrium path is followed by using arc-length. The solution
starts at any time for the actual load state and displacement AP" and uMrespectively.
Solution path is defined with the equilibrium points that are shown by the vector

(@, 2) in this scaled space and the finite element formula of the structure is given
below [36];

KNMyM = pN (4.3)
where, N, M are degrees of freedom of FE model, P} is the loading pattern at i"

time, A is the load magnitude parameter, u} is the displacement at i" time, KNMis the

tangent stiffness of FE model at i time.
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Load increment of Riks Step is adjusted with respect to previous increment of the
analysis. Load proportionality factor increases or decreases in accordance with
convergence rate. Riks method starts to analyze the model by an applied initial load
P, which is determined by user. After the first step of analysis, Riks step determines
a reference load Py, that is adjusted from initial dead load and software starts to
analyze next step of analysis with modified total load. The loading of model is
proportional and current load magnitude is defined with respect to following Formula

[36];

Ptotal=PO+/1(Pref_P0) 4.4)

Newton’s numerical methods have been employed to solve the non-linear equations
by Abaqus/Standard. A %] extrapolation of strain increment is used by Riks Method.
The initial load proportionality factor has been calculated by using an initial
increment Al;,, which is defined by user [36]. The formula of initial load

proportionality factor 44;, is;

Al

Ay, = (4.5)

lperiod

Lperioa 18 total arc-length scale factor and value of 44;, ,which is calculated by using
Aliy and Lyeri0q, 1s taken into account at first iteration of Riks analysis. For next

iterations, A is calculated automatically and this automatic incrementation can be

controlled using 4l,,,, and Al,,;,, [36].

4.2.3 Newton-Raphson Method by Viscous Damping

For solving non-linear problems, generally Newton-Raphson based algorithms have
been used at most of commercial non-linear finite element software (Figure 19). The

commercial finite element software provides an analysis procedure which stabilizes

unstable quasi-static problems by introducing artificial damping into the model.
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Quasi-static problems can be solved by including automatic stabilization with

damping factor [36].

AP

| l -
Uo Ua Displacement

Figure 19. Newton-Raphson Method [36]

In the buckling problems that have been analyzed in this study, the model becomes
unstable when secondary equilibrium path occurs since applied load reaches to the
critical buckling load level. The viscous forces and viscous dissipated energy levels
are very small while the model is stable and artificial damping has no effect. On the
other hand, when the problem is unstable at the critical buckling load level, large
deformations occur on the model and strain energy increases. To prevent divergence
of the computation, to mitigate instabilities and to eliminate rigid body modes of the
problem adaptive automatic stabilization scheme has been employed for the buckling
analysis. An automatic stabilization scheme can be constituted by using several ways
and these are entering a dissipated energy fraction, directly specifying a damping
factor or specifying an initial damping factor with an adaptive automatic damping

algorithm. The default values of damping factor and accuracy tolerance are
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2x107*,0.05 but these values should be adjusted with respect to convergence rate

of the studied problem [36].

The optimal damping factor is determined manually by using trial and error
procedure; damping factor may be increased if convergence problems occurs or may
be decreased if the solution is impaired. Therefore, problem requires to be analyzed
repeatedly with larger or lower damping factors, energy dissipated by viscous
damping and total strain energy should be compared with each other to evaluate the

convergence of solution [36].

4.3 Progressive Failure Analysis

The damage analysis used in this study is based on material stiffness degradation of
model. The analysis procedure is developed for linear elastic and brittle materials.
The stress levels, which damage initiations are expected with respect to specified
allowable values of materials in fiber, matrix and shear directions, are determined by

using Hashin’s Failure Criterion [37] (Figure 20).

Figure 20. Uni-directions of Lamina [36]
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Stress, strain relation used in damage analysis is [38];

o=C,¢ (4.6)

C, is the elasticity matrix that can degrade the material stiffness in accordance with

damage algorithm of progressive failure analysis [38].

1 (1—-df)E; (1—dp)(A = dp)vairEy 0
Cq = D 1- df)(l — dm)vi2E, (1 —-dn)E; 0 4.7)
0 0 (1-ds)GD
where;
D=1-(1-dp)(1—dp)vizva (4.8)

ds indicates the current level of fiber damage, d,, indicates the current level of

matrix damage, d, indicates the current level of shear damage.

4.3.1 Hashin’s Failure Criteria

Hashin’s Criterion, which has been developed by Hashin and Rotem, is a stress-
based failure criterion and it provides different modes of failure. The formulas

correspond to failure modes of Hashin’s Criterion can be written as follows [37];

Tensile Fiber Mode, g;; > 0

(&)2 +(22) 21 (4.9)
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Compressive Fiber Mode, g,; < 0

(;—1;)2 >1 (4.10)

Tensile Matrix Mode, 5, > 0

(“YLTZ)Z +(12) 21 (@.11)

Compressive Matrix Mode, 05, > 0

(2)[E) 1|+ (@) + ()21 )

011, 022, T12 are the stress components and have been used to estimate damage

initiation on the model [38].
4.3.2 Damage Evolution Procedure

Damage initiation is a procedure that specifies the stress level, which corresponds
beginning of the material stiffness degradations. These damage initiation points are
determined by using Hashin’s Failure Criteria. In Abaqus, the damage initiation
criteria for composites are based on Hashin’s criteria which were introduced in the
previous section. For every step and sub-step of the nonlinear FE solution, the
components 1, 0,5, T, of the effective stress tensor & at every material point are
calculated and used to re-evaluate the initiation criteria. The effective stress tensor is
assumed to be stress acting over the area of a section that still remains undamaged

and it is computed from the relation [36];

6 = Mo (4.13)
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o corresponds the true stress and M is the damage operator;

(1-dy)
1
M= 0 a—ay 0 (4.14)
0 0 _t
(1—-d,)]

The damage variables for each integration points for all plies are determined with

respect to following expressions [36].

. df if 61,20
P df if 61, <0

dt, if 6,5, =0 (4.15)
Dm =1 de if 6,y < 0

m 22

ds=1-(1-df)(1—-df)Ad —ds)(1—dg)

The damage operator, M, is an identity matrix before damage initiation starts. If
damage initiation and evolution occurs for any failure mode, components of damage
operator changes with respect to failure mode. If damage initiation procedure is
employed without damage evolution procedure, it will only affect the outputs and

material stiffness degradation cannot be carried out.

The damage variable for a definite failure mode is determined by using following

expression [36];

d= S(Efq(deq - qu
Seq (5£q - qu

,Beq = 8q (4.16)

89q is the initial equivalent displacement level which corresponds to damage

initiation point with respect to Hashin’s Failure Criterion and 6efqis the displacement
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level which corresponds to completely damaged material. Damage variable versus

equivalent displacement curve is given in Figure 21;

damage
varable

0 : =

q-j f equivalent displacement
O eq

=}
g o

Figure 21. Damage Variable versus Equivalent Displacement [36]

0

The magnitude of initial equivalent displacement,b,,,

is depend on elastic stiffness
properties and material strength allowables for all failure modes. The constitutive
law of damage evolution procedure is defined with respect to stress-displacement
relation, which is shown in Figure 22, for preventing the effects of mesh size on the
solution. Constitutive law of damage evolution includes element characteristic length
parameter and the damage variables are calculated iteratively in each increment for
four failure modes. The slope of the stress-displacement curve is positive up to 6&,
and the material properties are in the linear elastic region as shown in Figure 22. The
negative slope of stress-displacement curve occurs after the damage initiation is

achieved for particular failure mode and damage variables are started to evaluate

[36];
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Figure 22. Equivalent Stress-Equivalent Displacement Curve [36]

Equivalent stress and displacement values are calculated by using formulas given

below [36];

Fiber tension (6;; = 0):

8L =1° / (€11)? + €2, (4.17)

oIt = (o11(€11) + T12812

eq = ; (4.18)
815 /Le
Fiber compression (6;; < 0):
815 = 15(—en) (4.19)
fc (—o11 X—&11)
Oeq = fe 4.20
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Matrix tension (&5, = 0):

Oeq = LC,/(Ezz)z + e (4.21)

o (o2 M€22) + T1281,
O-eTZ = mt c
Soet/L

(4.22)

Matrix compression (6,, < 0):

£C=Lcﬂ—&ﬁ2+eﬁ (4.23)

me _ (0220 —€22) + T1261,
eq (S;r(;C/Lc

(4.24)

L¢ represents the characteristic length of the element and L°is determined in
accordance with the element geometry and formulation. For instance, it is the square
root of element area for first order shell or membrane elements. Commercial FE

software provides the L¢ of the model in the output files [36].

The energy dissipated due to failure, G¢ which corresponds to area of equivalent
stress and equivalent displacement curve given in Figure 22, must be specified for all

failure modes to employ the damage evolution procedure. The value of G¢ affects the

equivalent displacement, 6£q, which corresponds to level that the material is
completely damaged. As G€ increases, final equivalent displacement, (Sefq , also

increases. In this thesis study, the value of energy dissipated due to failure is

assumed with respect to a simple FE analysis [36].

4.3.3 Viscous Regularization Scheme

Some convergence difficulties may occur for the models, which damage evolution

procedure is employed, while material stiffness degrades in nonlinear static analysis

solutions. Commercial FE software provides a scheme to prevent divergence of
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analysis called as Viscous Regularization, which regulate the tangent stiffness matrix

to be positive for small time increments [36].

A viscous damage variable, d,, is determined by using the equation given below;
. 1
dy, = ﬁ(d —dy) (4.25)

7 is the viscosity coefficient of the model and d is the damage variable of the model
without viscous regularization. Damage evolution of the viscous model is found

using same equations [36];
o=C(C4¢ (4.6)

The damaged elasticity matrix,Cy;, of the model is calculated by using viscous
damage variables which are obtained from the equation given above. Viscosity
coefficients of failure modes should be small values compared to time increment of

the solution for providing convergence of the solution.
4.3.4 Determination of the Energies Dissipated due to Failures

The energies dissipated due to failures have been calculated by using FEA method in
this thesis. G¢ values have been determined individually for four failure modes of
woven fabric and uni-directional tape composite materials. A finite strip, which has
dimension 40 mm x 100 mm and one plied stacking sequence, has been modeled to
find the equivalent stress versus equivalent displacement curves for fiber and matrix
directions. Strip has been analyzed individually for all failure modes with 0 and 90
degree sequenced material directions. Finite element model of strip shown in Figure

23;
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Figure 23. Finite Element Model of Finite Strip

Boundary conditions of the finite element model are given in Table 1;

Table 1. Boundary conditions for Finite Strip

Edge Boundary Conditions
1 v, w
2 u,v, w
3 No Constraint
4 No Constraint

A non-linear static analysis has been carried out for plotting the stress-displacement
curves of failure modes and the damage initiation procedure of commercial finite
element software has been employed. When the damage initiation is observed for an
element, the analysis has been stopped and the equivalent stress versus equivalent
displacement curves have been plotted for the element by using expressions given in

the damage initiation procedure. This approach is recurred for all failure modes of
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materials and equivalent stresses versus equivalent displacement curves have been

plotted. The loading and fiber directions are shown in Figure 24 for different failure

modes.
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Figure 24. Loading and Ply directions for all Failure Modes

In literature, a number of property degradation models were developed for the
progressive failure analyses. Most of these degradation models are based on two
approaches; instantaneous unloading and gradual unloading. In instantaneous
unloading case, when damage initiation is predicted by a failure mode, the material
property associated with that failure mode is degraded instantly zero. In gradual
unloading case, the material property associated with that failure mode is degraded
gradually until the particular material property reaches to zero [39]. Both of these

approaches are shown in Figure 25.
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Figure 25. Assumption of Dissipated Energy due to Failure

In the analyses, the ply-discount theory is applied which is a common instantaneous
unloading methodology used for degradation of material properties. In this method,
one or more of the elastic material properties or constitutive components of a lamina
are set to equal zero or a small fraction of the original value once failure is detected.
However, some convergence difficulties have been occurred in the analysis due to
instantaneous unloading of element stiffnesses. To prevent convergence difficulties,
the G° values have been determined by allowing a deformation which is a small
fraction (5%) of the initial equivalent displacement due to lack of experimental
material data. By using this assumption, the energies dissipated due to failures have
determined for unidirectional and fabric laminae as shown in Figure 26-Figure 31
drawn for equivalent Stress versus equivalent displacement curves of relevant
laminae. Table 2 lists the energies dissipated due to failures of UD and fabric

laminae.
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Figure 26. Equivalent Stress versus Equivalent Displacement for Fiber Tension of

UD Lamina
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Figure 27. Equivalent Stress versus Equivalent Displacement for Fiber Compression

of UD Lamina
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Figure 28. Equivalent Stress versus Equivalent Displacement for Matrix Tension of

UD Lamina
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Compression of UD Lamina
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Figure 30. Equivalent Stress versus Equivalent Displacement for Fiber Tension of
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Figure 31. Equivalent Stress versus Equivalent Displacement for Fiber Compression
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Table 2. Energies Dissipated due to Failure Modes for UD and Fabric laminae

Energy Dissipated due to

) G’ G’ G me G me
Failure [N/mm~]
Fiber Fiber Matrix Matrix
Failure Mode ) ] _
Tension | Compression | Tension | Compression
AS4 /8552 Carbon Fibre
Reinforced Epoxy Prepreg | 49.5 12.5 1.3 9.5
UD Tape
AS4 /8552 Carbon Fibre
Reinforced Epoxy Prepreg 19.7 19.9 19.7 19.9

/SHS Fabric/280 g/m”
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CHAPTER §

EXPERIMENTS & MATERIALS

In this thesis, a number of experiments have been conducted to compare and verify
the numerical results. For this purpose, two sets of tests were carried out for
unidirectional tapes and woven fabrics. There are a lot of factors that affect the
results adversely in the experiments. These factors are the imperfections and defects
in the test specimens, geometrical eccentricities in the test fixtures, non-ideality of

the boundary conditions, load introduction problems and wrong data measurements.

5.1 Test Fixture

The design and construction of the test fixture affects the accuracy of results in the
plate buckling tests. If the composite plate is loaded eccentrically, the moments occur
on the plate due to misalignment of the plate between the load actuator. As a result of
that buckling occurs earlier than the expected load level. The design of boundary
conditions is also important for loaded and unloaded edges of plate. If the actual
boundary conditions do not provide intended condition, the data which are obtained

from the tests would not reflect the actual conditions.

The test fixture is designed and manufactured to investigate the large displacement
post-buckling behavior of composite laminated plates under compressive in-plane
loading. All edges of plates have been supported to realize the plate buckling of
composite plates at the test stage. The clamped boundary conditions have been
applied for top and bottom edges of plates and simple supported boundary conditions

have been applied for side edges of plates as shown in Figure 32 and Figure 33.
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Figure 32. Test Fixture of Thesis Study
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Figure 33. Boundary Conditions of Plate Edges

There are various applications to provide a clamped boundary condition. For
instance, plates can be fixed using a potting material like epoxy resin or plates can be
compressed between two metallic blocks. Potting method has been considered to
create clamped boundary condition for loaded edges (top and bottom) but it is found
difficult to obtain co-linearity between plate and load actuator during the curing of
potting material. A mechanism has been developed which can easily align the upper
and lower ends of the plate. The fixture of loaded edges consists of three parts per
one edge. These are an interface element between load actuator and two L-section
metallic blocks. The L-section metallic blocks compress the composite laminated
plates to provide clamped boundary conditions. If an eccentricity is observed

between plate and load actuator, the co-linearity was provided by using the relative
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motion between interface element and L-section metallic blocks along the out-of-

plane direction of composite plate as shown in Figure 34.

Load Introduction Line

. [ | ‘__
Shift ’
L-section [} L-section
Block [ Block

Plate /|
:4‘

Figure 34. Providing co-lineartity between Load Actuator and Plate with the help of

Test Fixture

The translational movements of the side edges of plates should be restricted without
developing any moments to satisfy the simple supported boundary conditions. For
this purpose, the metallic knife edges which prevent the out of plane displacement of
plate edges and allow the rotation about longitudinal axis of the knife edge have been
used. However, the sharp of knife edges can create high stress concentrations and
cause damage. Steel strips and rubber tape have been placed between knife edges and
plates in order to prevent local damage or the unloaded edges have been supported
by using metal roller bearings which allow in-plane motion in some previous studies.
However, restrictions have been observed in the rotation of side edges for large
deflections. One other method is to use rounded knife edges for preventing large
stress concentrations. In this study, the rounded knife edges have been used to
provide simple supported boundary condition on the side edges of plate as in Figure

35.
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Figure 35. Knife Edges of Test Fixture

When compressive load is applied to the top side of the fixture, the plate starts to
shorten in load direction. Therefore, a gap, which is shown in Figure 37, is provided
between L-section blocks and knife edges in order to allow buckling of the plate. The
gap, which is required to allow movement of loaded side of fixture due to shortening
of plate under the compression have also been considered in the finite element

analysis.

The overall in-plane dimensions of specimens are taken as 460 mm x 350 mm. 30
mm length of the specimens at both end are stuck in the metallic blocks of top and
bottom fixtures to provide an ideal clamped boundary condition. Furthermore, knife
edge supports are located 10 mm inward from the side edges of the specimens.
Hence, the in-plane plate dimensions under the effect of buckling are 400 mm x 330

mm as shown in Figure 36 .
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Figure 36. Panel Geometry and Boundary Conditions
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Figure 37. The 10 mm gap between L-section blocks and knife edges

All parts of fixture were manufactured using CNC milling machine due to
requirement of tight tolerances, which is necessary to provide co-linearity and ideal
boundary conditions. The material of test fixture is AISI 1040 hot-rolled steel alloy
and machined parts of fixture have been assembled to each other by using high
quality steel alloy bolts due to high load-carrying capacity of composite plates. Hot-
rolled materials are selected to prevent the deformations due to residual stresses
which occur on the machined parts as a result of the machining operation.
Furthermore, lower ends of side fixtures were welded to L-section blocks at the

bottom side of test fixture (Figure 38).
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Figure 38. Front view of Test Fixture with Fabric Specimen

5.2 Test Specimens

Stacking sequences and mechanical properties of specimens are specified in sections

5.4 and 5.5. Two fabrics and two UD laminated specimen were experimented in this
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study. Properties of specimens, which have been used in the experiments, are

summarized in Table 3.

Table 3. Summary of Specimen Properties

Specimen Thickness Height Width
Stacking Sequence
Name [mm] [mm] [mm]
UD-1 [45/-45/0/45/90/90/-45/0]s 2.944 460 350
UD-2 [45/-45/0/45/90/90/-45/0]s 2.944 460 350
FABRIC-1 [45/0/45/0/45]s 2.8 460 350
FABRIC-2 [45/0/45/0/45]s 2.8 460 350

5.3 Test Equipment and Procedure

The buckling and post-buckling tests are performed on the composite flat laminated
plates by a displacement controlled testing device which has 600 kN compressional
loading capacity. At first, the test fixture and specimen are assembled to the testing
device. Then, the LVDT transducer and testing device are calibrated with respect to
commercial data storage software. The out of plane deflection of the midpoint of
specimens is measured by using LVDT transducer and end-shortening data of
specimens is obtained by recording displacement of the hydraulic piston of testing
device. The hydraulic piston has been actuated by a velocity of 0.01 mm/sec. Axial

loads are also delivered by the hydraulic press.

5.4 Mechanical Properties of Materials

The test specimens have been manufactured by using two different prepreg laminae.
These are AS4 / 8552 Carbon Fiber Reinforced Epoxy Prepreg UD Tape and AS4 /
8552 Carbon Fiber Reinforced Epoxy Prepreg SHS Fabric. Both of prepreg laminae

consist of same fiber and matrix materials. AS4 / 8552 UD Tape is a uni-directional
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fiber reinforced composite which all fibers are aligned in a single direction. AS4 /
8552 5HS is a fabric lamina, which the textile structure is formed by interlaced fibers
that are 90° angle with each other [40]. The mechanical properties of AS4/8552 UD
Tape and Fabric laminae used in the numerical analyses are given in Table 4 and

Table 5.

Table 4. Mechanical Properties of Prepreg Laminae

AS4 / 8552 Carbon AS4 /8552 Carbon
Fibre Reinforced Fibre Reinforced
Material
Epoxy Prepreg UD Epoxy Prepreg SHS
Tape Fabric
Ply Thickness
0.184 0.28
[mm]
E1 [MPa] 130000 61000
E,; [MPa] 8500 61000
G2 [MPa] 4200 4200
Vi2 0.35 0.05
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Table 5. Strength Values of Laminae

AS4 /8552 Carbon Fibre AS4 / 8552 Carbon
Material Reinforced Epoxy Fibre Reinforced Epoxy
Prepreg UD Tape Prepreg SHS Fabric
Statistical
Method A-Basis B-Basis A-Basis B-Basis
Xt [MPa] 1800 1530 780 647
Xc [MPa] 1100 770 900 657
Yt [MPa] 75 64 780 647
Y [MPa] 250 175 900 657
S [MPa] 95 95 109 109

The strength values of the materials are given in Table 5 and these values used in the
thesis are taken from B-Basis value of material properties to be on the safe side. A-
Basis and B-Basis values are determined statistically. In [41] the corresponding

definitions given as;

“A-basis Value: A statistically-based material property; a 95% lower confidence
bound on the first percentile of a specified population of measurements. Also a 95%

lower tolerance bound for the upper 99% of a specified population.”

“B-basis Value: A statistically-based material property; a 95% lower confidence
bound on the tenth percentile of a specified population of measurements. Also a 95%

lower tolerance bound for the upper 90% of a specified population.”

5.5 Stackings of Laminates

The two different stackings have been considered for producing the laminated plates;

one of them consists of completely fabric laminae and the other consists of

completely uni-directional laminae. The ply stackings have been selected such that
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either the plates are balanced or symmetric to prevent occurrence of B matrices in the

stiffness matrix and secondary instabilities under compressive load.

The stacking sequences for UD laminate is [45/-45/0/45/90/90/-45/0]s and for fabric
laminate is [45/0/45/0/45]s. The stiffness matrix of UD is given in Table 6;

Table 6. Stiffness matrix of UD laminate

157010 49982 0 ' 0 0 0
49982 157010 0 1 0 0 0
0 0 5315 0 0 0
0 00 1109650 48639 11709
0 0 0 148639 92083 11709
0 0 0 111709 11709 51191
I
L 1 —

The stiffness matrix for woven fabric laminate is given in Table 7;

Table 7. Stiffness matrix of Fabric laminate

121460 46544 0 0 0 0
46544 121460 0 .+ 0 0 0
0 0 50304 0 0 0
0 o"""6__?_7_7_3_3?"_3242_3""6"_
0 0 0 I 32423 77337 0
0 0 0 0 0 34880
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As seen in the stiffness matrices of laminates, all components of B matrices are zero.
The D and D,s components of D matrices exist in the stiffness matrix of the UD
plate due to angle ply stacking of laminate however these components do not exist in
the fabric laminate since elastic moduli of /- and 2- material directions of fabric

lamina are equal to each other due to quasi-isotropic behavior of fabric lamina.

5.6 Curing of Composite Laminates

Curing Process is performed to change the properties of a thermosetting resin
irreversibly by a chemical reaction. This process has been carried out by using
pressure and heat. Furthermore, the thermosetting material is subjected to several
specified conditions in a schedule of time periods in order to obtain expected

property level [40].

The individual sections or layers of a composite structure are bonded with each other
by curing process. That is to say, the matrix material of prepreg lamina becomes

intact and capable to carry applied loads with carbon fibers [40].

There are many different curing processes such as pultrusion die cure and
consolidation, RTM and autoclave curing. The composite laminates, which are tested
in this study, have been cured at 175+10 °C under pressure at 6.8+0.5 bar in
autoclave which is a pressure vessel capable of applying high internal pressure and
high temperature levels. Total duration of the autoclave process is about 130-180
minutes. Furthermore, the vessel of autoclave is purged of oxygen using an inert gas

to prevent thermal combustion or charring of the materials which are cured [40].

A flat tool was used during the curing process of the composite plates which were
used in the experiments. The flatness of the tool is an important parameter to take
identical results between experiments and numerical results. The imperfection of
flatness may develop extra bending moments on the plates that may causes early
failure of specimens. A bagging film was placed on the plates being cured and

vacuum was applied between film and plates during the curing process, so, the plies
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of plate were compressed through the thickness. When the temperature of the process
is increased, the viscosity of resin changes and the gases within plies tries to escape.
The evacuation of gases was provided by using a porous bleeder layer during the
curing process and occurrence of porosities between layers is prevented by this

method [40].

5.7 Cure Cycle of Specimens

Cure cycle of composite plates, which consist of AS4/8552 UD and Fabric laminae,

are given in Figure 39 and Figure 40 for temperature and pressure respectively;
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Figure 39. Temperature versus Time graph of Cure Cycle
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Figure 40. Pressure versus Time graph of Cure Cycle

5.8 Cutting of Specimens

Several manufacturing defects (thickness variation, geometric imperfections, initial
delaminations, porosities) can occur in specimens during the curing process.
Generally, defects are observed near the edges due to vacuum bagging and autoclave
process. Furthermore, the opposite edges of specimens must be parallel to each other
and the corners must be perpendicular for obtaining identical results by numerical
methods and experiments. Satisfying these requirements is difficult, if the specimens
are cured with the exact dimensions. Therefore, the specimens were manufactured 25

mm larger than the required specimen dimension.

After the curing process, the specimens have been cut to the required dimension with
the help of a CNC milling machine. Cutting of the specimens is one of the important
steps during the composites manufacturing since cutting tool or vibrations on the
specimens may inflict damages on the edges of laminates. UD and fabric specimens
were cut by using special cutting tool to prevent initial delaminations and fiber
breakouts. Furthermore, to prevent mechanical vibrations which have been observed
on the laminates during the cutting operations due to small thickness of specimens,

soft chipboard is located under the specimens.
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CHAPTER 6

COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

6.1 The Finite Element Model

The finite element mesh is given in Figure 41. The boundary conditions, which are

used in the experiments, have been simulated in the FE model as shown in Table 8.

Edge-1

Edge-4

Edge-2

Figure 41. Finite Element Model of Laminates
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Table 8. Boundary Conditions of Model [39]

Edge Restricted Boundary Conditions
1 v, w, 0y, 0, 0.
2 u, v, w, 0, 0,, 0.
3 w, 0, 0.
4 w, 0, 0.

The built-in condition is applied by restraining all degrees of freedom on the lower
edge of FE model. On the top edge, the only vertical displacement is allowed and an
incremental vertical compressive load is applied. Both of side edges are only
constrained in the out of plane deflection and horizontal rotations to simulate the

effects of the knife edges.

Firstly, to compare with the experiments two different panels 460 mm x 350 mm
were modeled. There are UD plate [45/-45/0/45/90/90/-45/0]s and in Fabric plate
[45/0/45/0/45]s. The nodes which are in the region clamped by the metallic blocks of
fixture in the experiments have been constrained to satisfy the clamped conditions
For sides, the nodes which are in contact with the knife edges in the experiments
have been constrained in the out-of-plane direction and horizontal rotation are also

prevented (Figure 42).

74



Clamped Region

Line
Simply
Supported Node
Line

Simply
Supported Node

1 Clamped Region

Figure 42. Constrained node region and lines on the FE model

The FE mesh consists of 6510 four-node shell elements, which are approximately 5
mm X 5 mm in size, and 6674 nodes. The gap between knife edges and metallic
blocks has been modeled finer than other regions. The approximate element size is 3
mm x 5 mm for this particular unconstrained region. Two different four-noded shell
elements have been used for the analyses. The unconstraint region of the FE model is

shown in Figure 43;
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Figure 43. Unconstraint region in the FE model

The stacking sequences of the laminates are given in Figure 44 and Figure 45. The

red colored lines represent the fiber directions of the plies.
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Figure 44. Ply stacking of Fabric laminate

3
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Figure 45. Ply stacking of UD laminate
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6.2 Eigenvalue Buckling Results and Comparison of Elements

The critical buckling loads and mode shapes for the first buckling mode of laminates
have been obtained by employing the Linear Eigenvalue Extraction method. Table 9

lists the results of the linearized buckling analyses of the laminates which are used in

the experiments.

Table 9. Critical Buckling Load of Laminates

First Eigenvalue Buckling Load (kN)

Element Type Full Integration | Reduced Integration
UD Laminate 22.243 22.245
FABRIC Laminate 16.300 16.298

As shown in Table 9, the critical buckling loads which are obtained from full
integration and reduced integration shell elements are almost identical with each

other. Out-of-plane deformation shapes of first modes are shown in Figure 46 and

Figure 47.
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Figure 46. Out-of-plane displacement shape of UD laminate for the first mode
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Figure 47. Out-of-plane displacement shape of FABRIC laminate for the first mode

79




In this section, post-buckling performances of fully integrated finite membrane strain
and reduced integration finite membrane strain shell elements are compared by using
load-deformation curves of UD and Fabric laminates which are obtained from FE

analyses. Comparisons of elements are shown in Figure 48 and Figure 49.
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Figure 48. Load-deformation behavior of UD plates for fully and reduced integration

shell elements
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Figure 49. Load-deformation behavior of FABRIC plates for fully and reduced

integration shell elements

As shown in Figure 48 and Figure 49, load-deformation curves which are obtained
from FE models that consist of fully integrated and reduced integration shell
elements are almost identical with each other. Computation time of fully integrated
shell element is greater than the reduced integration shell element. Reduced
integration elements require hourglass control and fine mesh for an accurate large

displacement analysis.

6.3 Numerical Method Comparison

Newton-Raphson and Riks Method were employed for the non-linear static analyses

by the used commercial finite element software. Progressive failure option was
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implemented into non-linear analyses which are performed by using Newton-
Raphson method because of long computation time and convergence difficulties of
Riks Method with progressive failure. As shown in Figure 50 and Figure 51, the
post-buckling analyses which are performed by using Riks and Newton-Raphson
method with Progressive Failure Analysis are plotted and compared with each other.
Comparisons showed that the numerical methods which were used in the non-linear

analyses agreed well with each other.
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Figure 50. Load-deformation behavior of UD plates for Riks and Newton-Raphson
Stabilize Methods
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Figure 51. Load-deformation behavior of Fabric plates for Riks and Newton-

Raphson Stabilize Methods

6.4 Effect of Initial Geometric Imperfection

Linear Eigen Value Analysis is often used in the design level of structures and results
which are obtained from this method are valid for the perfect geometrical dimensions
and material properties of structure. Nevertheless, it is difficult to attain a perfect
geometry and material properties by using current manufacturing methods for the
structure. Furthermore, it may not be possible to provide perfect loading and
boundary condition by the test approach. Therefore, non linear static analyses were
carried out by introducing initial geometric imperfections, which were determined
using the mode shapes obtained from Linear Eigenvalue Analyses, into finite

element models.
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The same geometrical shapes of the first linear buckling modes of the plates were
used in finite element analyses. The amplitudes of mode shapes were chosen to be
0.1-5% of the plates’ thicknesses. Buckling and post-buckling behaviors of FE
models which have different initial geometric imperfection amplitudes are shown in
Figure 52 and Figure 53. The results in post-buckling range are not affected due to
use of different initial imperfection amplitude. Bifurcation from primary equilibrium
path to secondary equilibrium path is sharp for a perfect geometry and this sharpness
becomes smoother with increasing initial geometric imperfections as shown in the
figures. The buckling behaviors of plates which were tested in this thesis study are

found similar with the FE results which have 5 % initial geometric imperfection.
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Figure 52. Buckling of UD plates with increasing initial shape imperfections
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Figure 53. Buckling of FABRIC plates with increasing initial shape imperfections

6.5 Comparison of FE Results and Experiments

At first, linear eigen value analyses were conducted for the UD and FABRIC
specimens and first mode shapes were scaled using an imperfection with an
amplitude corresponding to 5% of plates’ thicknesses. Then, two different numerical
methods were carried out for the non linear analyses. These are Riks arc-length
scheme and Newton-Raphson by viscous damping (adaptive automatic stabilization
scheme) with the value of the energy dissipation fraction of 2x10®. Progressive

failure option was introduced into non linear analyses.
In testing of specimens, the upper die was actuated with a speed of 0.0lmm/sec and
axial compressive reaction load which corresponded to the applied displacement was

taken and plotted. Figure 54 and Figure 55 compares the experimental results with
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the finite element solutions for out-of-plane displacement and end-shortening
considering two unidirectional laminates UD-1 and UD-2. The first buckling mode
of UD laminates has one longitudinal half-wave and maximum out-of-plane
deflection is observed at center of plates. Finite element analyses have been carried
out by using 5 % imperfection. The critical buckling load, which is obtained from
linear Eigen value analysis, is about 22.2 kN for UD plate and agreed well with the
experimental results of UD-1. Buckling of UD-2 was observed earlier in experiments
than results of the linear eigen value and non linear analyses as seen in Table 9 and
Figure 54. Post-buckling behavior of UD-1, obtained in the experiment, is similar
with the finite element results. However, after a load level of 45 kN the out-of-plane
deflection obtained by the experiment is found greater than the finite element result.
On the other hand, post-buckling characteristics of UD-2 is similar with the analysis
but load carrying capacity and critical buckling load are lower than the finite element

result and experimental result obtained for UD-1.
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As seen in Figure 54, finite element model, which includes progressive failure
scheme, exhibits the structural failure of UD plate at load level of 82.981 kN. On the
other hand, UD-1 failed catastrophically at a load of 84.4 kN and UD-2 failed at a
load of 78 kN in the experiments. Damage initiation load of UD-1 in the experiments
and finite element model is almost same with each other but failure location of UD-1
is closer to the gap between knife edges and metallic blocks. This result may be
attributed to stress concentrations which occur on the corners of knife edges. Failure

of UD-2 was observed earlier than expected load level.
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Figure 54. Load versus out-of-plane displacement curves of UD specimens and FEM

Results
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As seen in Figure 55, the load versus end-shortening curves of experiments shifted at
the beginning of the loading. The unexpected condition in test fixture, geometry of
plates or assembly tolerances can cause shifting of experimental data. Load versus

end-shortening displacement curves of UD-1 and UD-2 are similar with the finite

element results if shifting is neglected.
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Figure 55. Load versus end-shortening displacement curves of UD specimens and
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Failure of UD-1 specimen was observed at upper end of knife edges. All of the layers
in the UD-1 specimen were collapsed due to stress concentrations on the knife edges

(Figure 56).

Figure 56. Failure of UD-1 Specimen
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The damage initiation is first observed at the upper end of the knife edges and th en
propagated towards to center of specimens. The tests were stopped after observation

of damage evolution (Figure 57).

Figure 57. Failure path of UD-1

90



In the numerical analyses, the first ply failure was observed for the layer-1 of UD
laminate since compressive stress in the matrix exceeded the allowable limit as
shown in Figure 58. Next matrix failure was observed at layer-16 due to tension in
the same region. Figure 59 shows the compression failure indices for fibers at the
load level of first matrix failure. Figure 60 shows the matrix failure progress when
the first fiber failure is observed due to compression. The first fiber failure was
predicted in layer-1 and layer-16 together because of compression after the matrix
failures. Figure 62 shows damage evolutions of UD specimens for matrix and fiber

compression.
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Figure 58. First ply failure of UD plate in matrix compression at load step P=82.979
kN (Layer 1)
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Figure 59. Fiber compression failure index with respect to Hashin’s criterion at load

step of first ply failure (Layer 1)
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Figure 60. Matrix compression failure index of UD laminate at load step of first fiber

compression failure (Layer 1)
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Figure 61. Fiber compression failure index of UD laminate at load step P=82.932 kN
(Layer 1)
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Figure 62. Damage evolution of UD laminate (Layer 1) after failure initiation (left

side: matrix compression, right side: fiber compression)

The experimental and numerical load versus out-of-plane and end-shortening
relations obtained for two fabric specimens FABRIC-1 and FABRIC-2 are given in
Figure 63 and Figure 64 respectively. The first buckling mode of FABRIC laminates
has one longitudinal half-wave and maximum out-of-plane deflection is observed at
center of plates in experiments. The critical buckling load, which is obtained from
linear eigen value analysis, is about 16.3 kN for FABRIC plate and agreed well with
the experimental results of FABRIC-1 and FABRIC-2 specimens. However, critical
buckling load of FABRIC-2 is observed earlier than results of the linear eigen value
analysis, non linear analysis and FABRIC-1 as seen in Table 9 and Figure 63. Post-
buckling behavior of FABRIC-1 which is obtained from experiments is similar with
the finite element results. However, after a load level of 50 kN the out-of-plane

deflection determined by experiments is found greater than the finite element result.
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On the other hand, post-buckling characteristics of FABRIC-2 is similar with the
analysis but load carrying capacity and critical buckling load are lower than the finite

element analysis and experimental result of FABRIC-1.

As seen in Figure 63, finite element model, which includes progressive failure
scheme, exhibits the structural failure of FABRIC plate at load level of 91.8 kN. On
the other hand, FABRIC-1 failed catastrophically at a load of 77.8 kN and FABRIC-
2 failed at a load of 71 kN in the experiments. In conclusion, the fabric specimens

failed earlier than expected load level in the experiments.
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Figure 63. Load versus out-of-plane displacement curves of FABRIC specimens and

FEM Results
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As Figure 64 shows, load versus end-shortening displacement results of FABRIC-1
and FABRIC-2 agreed well with the experimental results. Shifting of test
environment is at a negligible level. Table 10 lists the failure loads which are

obtained from experiments and numerical analyses.
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Figure 64. Load versus end-shortening displacement curves of FABRIC specimens

and FEM Results
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Table 10. Failure loads of specimens and differences between FE results

Failure Load Failure Load Difference
Specimen
(Experiment) [kN] (Numerical) [kN] (%)
UD-1 84.4 82.9 1.8
UD-2 78 82.9 -5.9
FABRIC-1 77.8 91.8 -15.3
FABRIC-2 71 91.8 -22.7

In the numerical analyses, the first ply failure was observed for the layer-1 of fabric
laminate since compressive stress in the matrix exceeded the allowable limit (Figure
65). Figure 66 shows the compression failure indices for fibers at the load level of
first matrix failure. The first fiber failure was predicted in layer-1 because of
compression after the matrix failure. Figure 67 shows the matrix failure progress
when the first fiber failure is observed due to compression. The first fiber failure was

predicted in layer-1 because of compression after the matrix failures. Figure 69

shows damage evolutions of Fabric specimens for matrix and fiber compression.
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Figure 65. First ply failure of fabric laminate in matrix compression at load

P=90.877 kN (Layer 1)
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Figure 66. Fiber compression failure index of fabric laminate at load P=90.877 kN
(Layer 1)
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Figure 67. Matrix compression failure index at load P=91.437 kN (Layer 1)
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Figure 68. Fiber compression failure index of fabric laminate at load P=91.437 kN
(Layer 1)
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Figure 69. Damage evolution of fabric laminate in Layer 1 after failure initiation (left

side: matrix compression, right side: fiber compression)
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CHAPTER 7

EFFECTS OF PLY ANGLE AND THICKNESS ON BUCKLING AND
POSTBUCKLING

After comparing the experimental results with the numerical ones and verifying the
finite element results. A number of numerical analyses have been realized to evaluate
the effect of ply angle orientations and thicknesses on the composite laminates.
Results are presented to investigate critical buckling loads, post-buckling behaviors
and failure characteristics of different laminates. The finite element models of UD
and Fabric plates, which were used for validation of experiments, were modified for
various ply angles and stacking sequences. Boundary conditions, loading type,

material properties and element types were kept as is on the finite element models.

At first, linear eigen value analyses were performed and critical buckling loads,
geometrical shape of the first buckling modes were obtained. Secondly, non-linear
analyses with progressive failure scheme were carried out by using finite element
models including initial geometric imperfections which were determined using the
first mode shapes obtained from linear eigen value analyses. The amplitude of initial
geometric imperfections were assumed 1% of the panel thicknesses for these
numerical examples. At the end of the analyses, the changes on the critical buckling
loads, mode shapes, post-buckling behaviors and failure characteristics of laminates

by ply angle variation and thickness were investigated and plotted.

The material of first model is AS4/8552 Carbon Fiber Reinforced UD Tape and the
stacking sequences are [0/-0]s, [0/-0]2s, [0/-0]4s, With the 0.184 mm ply thickness.
The material of second model is AS4/8552 Carbon Fiber Reinforced SHS Fabric and
the stacking sequences are [0/-0]s, [6/-0/6/-0/8]s, [0/-0]ss with the 0.28 mm ply
thickness.
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7.1 Variation of Critical Buckling Load with Ply Angle

The variations of critical buckling loads with ply angle have been determined for the

laminates which have the same thicknesses that were used in the experiments.

As shown in Figure 70, angle variation does not affect excessively the critical
buckling loads of Fabric laminates due to quasi-isotropic material properties of
AS4/8552 SHS Fabric prepreg. However, the critical buckling loads of UD laminates
decrease with increasing ply angle since longitudinal stiffness of AS4/8552 UD tape

is greater than transverse stiffness.
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Figure 70. Variation of critical buckling loads of angle ply [0/-0]4s UD laminates and
[6/-6/6/-06/0]s Fabric laminates
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Furthermore, first buckling modes of UD and Fabric laminates have one longitudinal
half wave patterns except [60/-60]ss, [75/-75]as, [90/-90]ss UD laminates. These

laminates have two longitudinal half wave pattern for first buckling mode.

7.2 Effects of Thickness and Ply Angle Variation on Buckling Load and Post-

buckling Behavior for UD Laminates

The critical buckling load levels of UD laminates increase with increasing laminate
thickness (Figure 71). First buckling modes of UD laminates for each laminate
thickness have one longitudinal half wave patterns except 60, 75 and 90 degree
oriented UD laminates. These laminates have two longitudinal half wave patterns in

first buckling mode for each laminate thickness.
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Figure 71. Variation of critical buckling loads of angle ply [0/-0]s, [0/-08]2s, [6/-0]4s

UD laminates
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As shown in Figure 72, [0/-0]s UD laminate have higher buckling load than [15/-15]s
UD laminate but failure strength of [15/-15]s is greater than [0/-O]s. The first
buckling mode shapes of laminates which are [60/-60]s, [75/-75]s and [90/-90]s have
two longitudinal half waves and the other laminates have one. On the other hand,
[45/-45]s laminate was observed to buckle in one half wave at the loading 0.22 kN

and a mode-jump to two half-waves occurred at the loading 2.9 kN.
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Figure 72. Load versus out-of-plane displacements of angle ply [6/-6]s UD laminates
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Mechanical stiffness of [0/-0]s, [15/-15]s, [30/-30]s are similar with each other. Load-
carrying capacities of the other laminates decrease gradually (Figure 73). The lowest
load-carrying capacity is observed for [90/-90]s UD laminate in longitudinal
direction. Table 11 lists the critical buckling loads and failure loads of [6/-0]s UD

laminates.

Teta=0

Teta 15
Teta=30
Teta=45
Teta=60
Teta=75
Teta=90

Load (kN)

End-Shortening (mm)

Figure 73. Load versus end-shortening displacements of angle ply [6/-6]s UD

laminates
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Table 11. Buckling and failure loads of angle ply [0/-0]s UD laminates

Laminate Buckling Load [kN] | Failure Load [kN]
[0/-0]s 0.41 53
[15/-15]s 0.36 6.2
[30/-30]s 0.26 5.6
[45/-45]s 0.22 5.0
[60/-60] 0.21 4.3
[75/-75]s 0.14 3.5
[90/-90]s 0.12 29
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As shown in Figure 74, [0/-0],s UD laminate have higher buckling load than [15/-
15]2s UD laminate but failure strength of [15/-15],s1s greater than [0/-0],s. The first
buckling mode shapes of laminates which are [60/-60],s, [75/-75]2s and [90/-90],s
have two longitudinal half wave and the other laminates have one. On the other hand,
[75/-75]5s laminate was observed to buckle in one half wave at the loading 1.3 kN

and a mode-jump to two half-waves occurred at the loading 11 kN.
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Figure 74. Load versus out-of-plane displacements of angle ply [0/-6],s UD

laminates
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Mechanical stiffness of [0/-0]zs, [15/-15],s, [30/-30],s are similar with each other
(Figure 75). Load-carrying capacities of the other laminates decrease gradually. The
lowest load-carrying capacity is observed for [90/-90],s UD laminate in longitudinal
direction. Table 12 lists the critical buckling loads and failure loads of [6/-0],s UD

laminates.
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Figure 75. Load versus end-shortening displacements of angle ply [6/-0],s UD

laminates
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Table 12. Buckling and failure loads of angle ply [6/-0],s UD laminates

Laminate Buckling Load [kN] | Failure Load [kN]
[0/-0]2s 3.3 18.7
[15/-15],s 3.1 26.0
[30/-30],s 24 232
[45/-45],s 2.2 18.5
[60/-60],s 2.1 14.6
[75/-75]2s 1.3 12.4
[90/-90],s 0.9 9.6
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Figure 76 shows that critical buckling loads of UD laminates decrease with
increasing ply angle but this situation is not valid for the post-buckling behaviors and
failure characteristics. For instance, [15/-15]4s UD laminate have higher buckling
load than [30/-30]4s UD laminate but failure strength of [30/-30]ss is greater than
[15/-15]4s. Furthermore, the first buckling mode shapes of laminates which are [60/-
60]4s, [75/-75]as and [90/-90]4s have two longitudinal half wave the other laminates
have one. The differences between mode shapes which have one longitudinal half

wave and two longitudinal half waves are shown in Figure 77 and Figure 78.
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Figure 76. Load versus Out-of-Plane displacements of angle ply [6/-0]4s UD

laminates
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Figure 77. Out-of-plane displacement shape of [45/-45]ss UD laminate
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Figure 78. Out-of-plane displacement shape of [60/-60]4s UD Laminate
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As shown in Figure 79, mechanical stiffness of [0/-0]ss, [15/-15]4s, [30/-30]4s are
greater than the other laminates in longitudinal direction of plates. The lowest load-
carrying capacity is observed for [90/-90]4s UD laminate in longitudinal direction.
Table 13 lists the critical buckling loads and failure loads of [6/-0]45s UD laminates.
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Figure 79. Load versus end-shortening displacements of angle ply [6/-0]4s UD

laminates
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Table 13. Buckling and failure loads of angle ply [0/-0]4s UD laminates and

specimens

Laminate / Specimen Buckling Load [kN] Failure Load [kN]
[0/-0]4s 26.0 73.0
[15/-15]4s 24.7 78.9
[30/-30]4s 19.7 83.0
[45/-45]4s 18.0 68.0
[60/-60]4s 17.1 54.0
[75/-75]4s 10.4 43.0
[90/-90] 45 7.4 35.6
UD-1(FE Result) 22.2 82.9
UD-1(Experiment) 222 84.4
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7.3 Effects of Thickness and Ply Angle Variation on Buckling Load and Post-

buckling Behavior for Fabric Laminates

Figure 80 shows that angle variation does not affect significantly the critical buckling
loads of Fabric laminates and buckling loads increase with increasing laminate
thickness. Buckling mode shapes have one longitudinal half wave for each

thicknesses and stacking sequences.
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Figure 80. Variation of critical buckling loads of angle ply [0/-0]s, [6/-6/0/-0/6]s, [6/-

0]4s Fabric laminates
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As shown in Figure 81, angle variation on the stacking sequences does not affect
significantly the critical buckling loads of Fabric laminates. Post-buckling behavior
and failure load of [45/-45]s laminate is lower than the other laminates. On the other
hand, the [0/-0]s laminate was observed to buckle in one half wave at the loading

0.95 kN and a mode-jump to two half-waves occurred at the loading 4.7 kN.
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Figure 81. Load versus out-of-plane displacements of angle ply [6/-0]s Fabric

laminates
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Mechanical stiffness of [45/-45]s laminate is lower than the other laminates in
longitudinal direction of plates (Figure 82). Mode-jump from one to two half-waves
in [0/-0]s laminate is observed. Table 14 lists the critical buckling loads and failure

loads of [0/-6]s Fabric laminates.
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Figure 82. Load versus end-shortening displacements of angle ply [6/-0]s Fabric

laminates
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Table 14. Buckling and failure loads of angle ply [0/-8]s Fabric laminates

Laminate Buckling Load [kN] | Failure Load [kN]
[0/-0]s 0.95 18.6
[15/-15]s 1.00 18.5
[30/-30]s 1.02 16.4
[45/-45]s 0.92 14.3
[60/-60] 1.02 16.4
[75/-75]s 1.00 18.5
[90/-90]s 0.95 18.6
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Angle variation on the stacking sequences does not affect significantly the critical
buckling loads of Fabric laminates (Figure 83). Post-buckling behavior and failure
load of [45/-45/45/-45/45]s laminate is lower than the other laminates. As shown in
Figure 84 and Figure 85, the first buckling mode shapes of all Fabric laminates have
one longitudinal half wave pattern. On the other hand, the [0/-0/0/-0/0]s laminate was
observed to buckle in one half wave at the loading 15 kN and a mode-jump to two

half-waves occurred at the loading 65 kN.
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Figure 83. Load versus out-of-plane displacements of angle ply [6/-6/6/-6/0]s Fabric

laminates
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Figure 84. Out-of-plane displacement shape of [45/-45/45/-45/45]s Fabric laminate
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Figure 85. Out-of-plane displacement shape of [60/-60/60/-60/60]s Fabric laminate
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As shown in Figure 86, mechanical stiffness of [45/-45/45/-45/45]s laminate is lower
than the other laminates in longitudinal direction of plates. Mode-jump from one to
two half-waves in [0/-0/0/-0/0]s laminate is observed. Table 15 lists the critical
buckling loads and failure loads of [0/-0/6 /-6/0]s Fabric laminates.
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Figure 86. Load versus end-shortening displacements of angle ply [6/-6/6/-0/6]s

Fabric laminates
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Table 15. Buckling and failure loads of angle ply [0/-6/6/-6/8]s Fabric laminates and

specimens

Laminate / Specimen | Buckling Load [kN] Failure Load [kN]
[0/-0/0/-0/0]s 14.9 101.6
[15/-15/15/-15/15]s 15.6 100.8
[30/-30/30/-30/30]s 15.9 87.1
[45/-45/45/-45/45]s 14.2 75.9
[60/-60/60/-60/60]s 15.9 87.1
[75/-75/75/-75/75]s 15.6 99.3
[90/-90/90/-90/90]s 14.9 99.5
FABRIC-1(FE Result) 16.3 91.8
FABRIC-1(Experiment) 16.3 77.8
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Figure 87 shows that angle variation on the stacking sequences does not affect
significantly the critical buckling loads of Fabric laminates. Post-buckling behavior
and failure load of [45/-45]4s laminate is lower than the other laminates. First
buckling mode shapes of all Fabric laminates have one longitudinal half wave

pattern. Mode jump is not observed in any stacking sequence of 16 plied fabric

laminates.
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Figure 87. Load versus out-of-plane displacements of angle ply [6/-0]4s Fabric

laminates
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Mechanical stiffness of [45/-45]4s laminate is lower than the other laminates in
longitudinal direction of plates (Figure 88). Table 16 lists the critical buckling loads

and failure loads of [0/-0]4s Fabric laminates.
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Figure 88. Load versus end-shortening displacements of angle ply [6/-0]4s Fabric

laminates
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Table 16. Buckling and failure loads of angle ply [6/-0]4s Fabric laminates

Laminate Buckling Load [kN] | Failure Load [kN]
[0/-0]4s 60.7 245.1
[15/-15]4s 63.6 238.2
[30/-30]4s 64.8 205.7
[45/-45]4s 57.6 182.6
[60/-60]4s 64.8 205.7
[75/-75]4s 63.6 238.2
[90/-90]4s 60.7 245.1

7.4 Comparisons of Critical Buckling Loads

In this section, the critical buckling loads of laminate examples which have similar
stacking sequences are compared with each other. As shown in Figure 89-Figure 91,
the critical buckling loads of Fabric laminates are exceedingly greater than the UD
laminates. The critical buckling loads of UD laminates decrease with increasing ply
angle. However, angle variation does not affect the critical buckling loads of Fabric

laminates.
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Figure 89. Variation of critical buckling loads of angle ply [6/-0]s UD laminates and
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[6/-0]s Fabric laminates
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Figure 90. Variation of critical buckling loads of angle ply [6/-0],s UD laminates and

[6/-6/6/-06/6]s Fabric laminates
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Figure 91. Variation of critical buckling loads of angle ply [0/-0]4s UD laminates and

[0/-0]4s Fabric laminates
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CHAPTER 8

CONCLUSIONS

This study presents numerical analyses of buckling, post-buckling and damage of
composite laminated plates built with different carbon-epoxy laminates and stacking
sequences. Three types of methods; eigen value extraction, non-linear Riks, Newton-
Raphson are used in the finite element analyses. The numerical analyses are
validated by experimental results. The following conclusions have been acquired by

the current study:

1. Analyses showed that the buckling loads obtained eigenvalue extraction, non-

linear Riks, Newton-Raphson methods are in good agreement with each other.

2. Results show that increasing imperfection amplitude does not affect the post-
buckling behavior of the plates. However, imperfection amplitude varies the

location of bifurcation point.

3. The buckling behavior of plates which were determined experimentally are
similar with the FE results that were obtained by using %S5 initial geometric
imperfection amplitude. This can be attributed to assembly tolerance, quality of
test mechanism, geometric perfectness of fixture and specimens, co-linearity
between load actuator and specimens, manufacturing defects on the specimens

(initial delaminations, curing problems, etc.).

4. The critical buckling loads obtained from numerical analyses are similar with the
experimental results. However, UD-2 buckled earlier than the load level which
was obtained from finite element analysis. On the other hand, first specimens of
each UD and Fabric plate buckled at loads which were greater than the FE

analyses but critical buckling load of second specimens were lower. This can be

127



attributed to disruptions on the test fixture due to high loading in the first

experiments.

Experimental results obtained for UD and Fabric specimens were compared with
the ones obtained numerically. Comparisons showed that there are good
agreements between out-of-plane displacements. Post-buckling behaviors of
specimens were identical with the numerical analyses except UD-2. However,
out-of-plane displacements of specimens were greater than the analyses after a

particular load level.

The end shortening of UD specimens have less accuracy as compared to out-of-
plane deflections due to shifting of test mechanism. On the other hand, load
versus end-shortening displacement results of fabric specimens agreed well with

the experimental data.

The first damage initiation was observed at the outer layers of specimens in the
analyses since buckling created higher bending strains and stresses on the outer
layers as compared to inner ones. In the numerical analyses of UD and fabric
plates, matrix compression failure was observed firstly. Then matrix tension and

fiber compression occurred in the models.

In the experiments, the damage initiation is first observed at the upper end of the
knife edges and then propagated towards to center of specimens. In the analyses,
failure started at the region close to the upper end of the knife and propagated
towards center of plate and upper end of the knife edges. However, failure
locations of experiments and FE analyses are found close to each other. In the
experiments, after the damage initiation, a sudden decrease was observed on the

stiffness of specimens.
Failure load levels of UD specimens showed good agreement with the numerical

analyses but Fabric specimens failed at load levels which were 15%-22% lower

than analyses. As seen in the out of plane deflections, the displacement
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10.

11.

12.

13.

14.

15.

increasing rate is more than the analyses. This means that the test fixture started
to deform together with specimens after a particular load level. Therefore, stress
concentrations occurred on the corner of knife edges and specimens failed at a
lower load level. On the other hand, the mechanical strengths of fabrics may be
lower than values which are used in the numerical analyses due to

manufacturing defects.

Damage initiation occurred at a load which is 3.8 times higher than critical
buckling load for UD-1 specimen and 4.8 times higher than critical buckling
load of FABRIC-1 specimen. Although UD has higher buckling load fabrics

have higher ratios.

Numerical results showed that angle variation did not affect the critical buckling
load values of Fabric laminates significantly for all thicknesses; however the

critical buckling loads of UD laminates decreased considerably with increasing

ply angle.

Different buckling mode shapes were obtained from 60, 75 and 90 degree

oriented UD laminates in the linear Eigen value analyses.

Maximum post buckling stiffness of UD laminates is observed for [15/-15]4s
plates. The stiffness decreased with increasing ply angle giving then minimum
stiffness for 90 degree oriented laminates. Mode-jumps are observed in the load-

deformation behaviors of [45/-45]s and [75/-75],s laminates.

Post buckling stiffness of fabric laminates decreased with increasing ply angle.
Furthermore, mode-jumps are observed in the load-deformation behavior of 0
degree oriented laminates with four and eight plies. On the other hand, critical

buckling loads of fabric specimens are greater than the numerical examples.

Failure loads of fabric specimens are lower than the several of numerical

examples of fabric laminates. On the other hand, buckling and failure loads of
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16.

17.

UD specimens which were validated with the experiments are greater than the
buckling and failure loads of numerical examples of UD laminates except

buckling loads of [0/-0]4s and [15/-15]4s laminates.

Stiffness of UD and Fabric laminates increase exponentially with increasing

laminate thickness.

Mode-jump is observed for the laminates which have small thicknesses as

compared to laminates with 16 plies for both of UD and Fabric.
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