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ABSTRACT

STOCHASTIC CREDIT DEFAULT SWAP PRICING

Gökgöz, İsmail Hakkı

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ömür Uğur

Co-Supervisor : Assist. Prof. Dr. Yeliz Yolcu Okur

September 2012, 58 pages

Credit risk measurement and management has great importance in credit market.

Credit derivative products are the major hedging instruments in this market and

credit default swap contracts (CDSs) are the most common type of these instruments.

As observed in credit crunch (credit crisis) that has started from the United States

and expanded all over the world, especially crisis of Iceland, CDS premiums (prices)

are better indicative of credit risk than credit ratings. Therefore, CDSs are important

indicators for credit risk of an obligor and thus these products should be understood

by market participants well enough. In this thesis, initially, advanced credit risk mod-

els firsts, the structural (firm value) models, Merton Model and Black-Cox constant

barrier model, and the intensity-based (reduced-form) models, Jarrow-Turnbull and

Cox models, are studied. For each credit risk model studied, survival probabilities are

calculated. After explaining the basic structure of a single name CDS contract, by the

help of the general pricing formula of CDS that result from the equality of in and out

cash flows of these contracts, CDS price for each structural models (Merton model and

Black-Cox constant barrier model) and CDS price for general type of intensity based

models are obtained. Before the conclusion, default intensities are approximately es-
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timated from the distribution functions of default under two basic structural models;

Merton and Black-Cox constant barrier. Finally, we conclude our work with some

inferences and proposals.

Keywords: Credit risk, credit derivatives, single name credit default swap, credit

crunch, structural model, intensity-based model, Merton model, Black-Cox constant

barrier model, Jarrow-Turnbull model, Cox model, default intensity, survival proba-

bility, probability of default.
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ÖZ

KREDİ TEMERRÜT TAKASI SÖZLEŞMELERİNİN STOKASTİK
FİYATLANMASI

Gökgöz, İsmail Hakkı

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Yeliz Yolcu Okur

Eylül 2012, 58 sayfa

Kredi piyasalarında kredi riskinin ölçülmesi ve yönetilmesi büyük önem arz etmekte-

dir. Kredi türevleri, kredi riskinin azaltılmasında kullanılan önemli enstrümanlardır.

Amerika Birleşik Devletleri’nden başlayarak tüm dünyaya yayılan kredi krizinde, özellikle

de İzlanda krizinde gözlendiği gibi kredi temerrüt takası sözleşmelerinin fiyatları yani

CDS primleri, krizi ön görmede kredi derecelerinden daha iyi birer gösterge olmuştur.

Dolayısı ile bu enstrümanların piyasa katılımcıları tarafından iyi bir şekilde anlaşılmaları,

kredi riskinin yönetilmesi ve olası risklerin önceden tahmin edilmesi noktasında değerlidir.

Bu tezde, öncelikle gelişmiş kredi riski modellerinin ilkleri olan ve firma değerine dayalı

modellerden Merton modeli ve Black-Cox sabit bariyer modeli ile yoğunluk değerine

dayalı modellerden olan Jarrow-Turnbull ve Cox modelleri calışılmıştır. Çalışılan

her model için ayrıca batmama olasılıkları hesaplanmıştır. Tek isimli CDS kontrat-

larının genel yapısı açıklandıktan sonra, koruma satın alan tarafça ödenen primler

ile batma durumunda elde edilecek koruma tutarının eşitliğine dayanan genel CDS

fiyatı formüllerinden faydalanılarak, ayrıca daha önceden hesaplanan batmama ih-

timalleri kullanılarak firma değerine dayalı modeller, Merton modeli ve Black-Cox
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sabit değer modeli için ayrı ayrı ve ayrıca yoğunluk değerine dayalı modeller için

ise genel bir CDS fiyatı hesaplanmıştır. Daha sonra firma değerine dayalı model-

lerin olasılık fonksiyonları kullanılarak yoğunluk değerlerine dayalı modellerde kul-

lanılabilecek yoğunluk değerleri ortalama olarak hesaplanmıştır. Son olarak sonuç

kısmında çeşitli çıkarsamalar ve öneriler yapılmıştır.

Anahtar Kelimeler: Kredi riski, kredi türevleri, tek isimli kredi temerrüt takası, kredi

krizi, firma değerine dayalı modeller, yoğunluk değerine dayalı modeller, Merton mod-

eli, Black-Cox sabit bariyer modeli, Jarrow-Turnbull modeli, Cox modeli, yoğunluk

değeri, batmama olasılığı, batma olasılığı.
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PREFACE

Credit risk is the most important risk of financial institutions regarding its relative

amount and contagion effects among the other risks of these institutions. Therefore,

credit risk deserves better understanding. Especially, after US credit crisis, every agent

in the financial market has understood the importance of credit risk again. Academi-

cians have started to study credit risk and related product more and more after that

crises. After credit crunch, hedging instruments of credit risk, credit derivatives were

criticized because of their complex structure and speculative use. However, we be-

lieve that, complexity of derivative products is not the reason for the credit crunch.

Political intervention and lack of understanding of supervisors about the credit risk

and its hedging products are the main causes of the credit crisis. To contribute better

understanding of credit risk and most commonly used credit derivative, Credit Default

Swap (CDS), this work is written on these subjects.
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CHAPTER 1

INTRODUCTION

According to the Basel II rules, there are three major risks. These risks that any firm

or especially banks can face are; market, credit and operational risks. Market risk is

the risk of the losses that take place in trading portfolio of a firm resulting from changes

of general market conditions. According to the Basel Amendment [2], operational risk

is the risk of loss resulting from inadequate or failed internal processes, people and

systems or from external events. Credit risk, for a specified time horizon T , is the risk

of a credit obligor or a reference entity that does not fulfil its credit obligation [11].

Credit risk is the most important risk among these market, credit and operational risk

because of its larger scale and higher complexity. According to April 2012 monthly

bulletin data of Banking Supervision and Regulation of Turkey (BRSA), credit risk

constitutes 86% of all risk of Turkish banking sector. The Basel Committee permits

to banks a choice between two broad methodologies in order to calculate their capital

requirements for credit risk. The first choice is the Standardised Approach (SA) that

is supported by external credit assessments and the alternative one is the Internal

Ratings-based Approach (IRB), which is subject to the explicit approval of the bank’s

supervisor. In other words, supervisors would allow banks to use their internal rating

systems for estimate credit risk. The IRB approach is based on the measures of

unexpected losses (UL) and expected losses (EL). For many of the asset classes, the

Committee has made two broad approaches available: a foundation and an advanced.

Typically, a bank uses the internal estimates of the default probabilities (PD) but uses

external sources for other model inputs such as loss given default (LGD). Supervisors

often provide later information. However, generally bank generates all model inputs,

exposure at default (EAD), PD and LGD, under IRB approach.
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As stated above, credit risk measurement has three main components for individual

entity, PD, LGD and EAD, whereas a portfolio has two more components: default

and credit quality correlation, risk contribution and concentration.

Banks generally keep capital for financial risks that they can face. Expected loss is the

loss that mean of the loss distribution of a firm that predictable earlier. Unexpected

loss is the dispersion of losses from expected loss. Expected loss EL and unexpected

loss UL for given probability of default PD, loss given default LGD and exposure at

default EAD are given by following formulas, respectively [30]:

EL = PD × LGD × EAD, (1.1)

UL = EAD ×
√

PD × σ2LGD + LGD × σ2PD
(1.2)

where σ2LGD is the volatility of LGD and σ2PD
is the volatility of PD.

Figure 1.1 illustrates how variation in realised losses over time leads to a distribution

of losses for a bank.

Figure 1.1: Expected and unexpected Loss[1].

As it can be realized, both EL and UL are basically functions of the same parameters,

PD, LGD and EAD, with additional second order terms, σ2PD
and σ2LGD, in the UL

expression. It can be also observed that, EL increases linearly with PD but UL is a

non-linear function of same parameter PD and uniformly larger than EL for non-zero

PD as it is displayed in Figure 1.2 [30]. Adjusted exposure (AE) is the adjusted value

of the EAD regarding the portion of credit that has been already used and portion

of credit that expected to be used by obligor in case of his/her financial distress.

2



Figure 1.2: EL and UL for LGD = 0.5.

Therefore, in order to estimate the credit quality of a firm or a bank, one should

determine these three credit risk factors. These factors are generally in the area of

interest of the IRB models.

In general, there are two main IRB credit risk models categories: structural (firm value

based) and intensity based (reduced-form) models. The structural models are based on

the article “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates”

written by Robert C. Merton [29]. These models use the information embedded in the

equity prices in order to solve the default probabilities. The intensity based models use

bond and other security prices in order to calculate the default probabilities. These

models were originally introduced by Jarrow and Turnbull (1992) [22] and they are

constructed on counting process.

Structural models are based on Black-Scoles option pricing formula, they take the

asset values of a firm as underlying asset and the value of the liabilities as strike price

then value firm equities as option premium written on firm assets. The first utilization

of Black-Scholes formula was applied by Robert C. Merton in order to value a firm

equity. After Merton’s contribution, there have been many new models which improve

Merton’s study by changing some of its assumptions.

On the other hand, intensity based models focus directly on modelling the default

probability. The basic idea lies in it is at any instant there exists a possibility of

3



default for an obligor and this possibility depends on obligor’s overall health. Default

is defined at the first jump of a counting process N = {Nt; 0 ≤ t ≤ T} with intensity

λ = {λt; 0 ≤ t ≤ T}, which thus determines the price of credit risk.

Being very crucial risk of financial and non-financial global firms, it is important

for creditors to hedge their credit risk. For that purpose, credit derivatives have

become popular instruments and they have traded on the every side of the world

after 1996. A credit derivative contract is a credit transaction that credit protection

buyer makes periodic payments to the credit protection seller in exchange for right

to have some compensation when a default event occurs on underlying asset or name

[13]. Credit derivatives generally traded on the over the counter (OTC) market.

The credit default swap (CDS), total return swap (TRS), credit linked note (CLN),

portfolio protection products, collateralized debt obligations (CDOs) are the credit

derivatives that are mainly traded on the market. Credit default swaps are more

common and relatively complex type of the credit derivatives. A CDS is similar to

a typical swap in that one party makes payments to another party. There are two

counterpart in CDS transactions, one is the protection seller and the other one is

the protection buyer. The protection buyer of the CDS seeks credit protection and

makes fixed payments, CDS premium to the seller of the CDS for the life of the

swap, or until credit event occurs [35]. Figure 1.3 shows the basic mechanism of a

single name CDS. The CDS contract must specify the underlying reference name, a

specific issuer or obligor of the underlying asset in advance, so both parties agree when

a credit event occurs. Credit event specified by International Swaps and Derivatives

Association, Inc. (ISDA) can be bankruptcy, failure to pay, restructuring, repudiation,

moratorium, obligation acceleration and obligation default.

It is the responsibility of the protection seller to compensate the protection buyer for

a credit event. Cash settlement or physical settlement are two standard settlement

methods. Under cash settlement, the protection seller makes a one time cash payment

to the protection buyer equal to par value of reference assets minus market value of

that assets. On the other hand, if contract specified physical settlement, the protec-

tion buyer delivers the underlying reference to the protection seller and receives cash

payment in amount of the par value [13].
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Figure 1.3: Single name CDS.

Ownership, recovery rights and liquidity concerns are the issues that may arise after

a credit event. The main distinction between a CDS and a credit insurance is that

the credit protection buyer in a CDS need not to have the reference asset.

The expected recovery of on the asset is reflected in the current market price of a

security following its default. In a cash-settled CDS, the credit protection buyer

receives a payment equal to the par value of the security minus the expected recovery,

but if protection buyer owns the asset, it can try to improve on the actual recovery

relative to the expectation reflected in the security price. On the contrary, if CDS

contract is physically settled, the bond and the recovery right are given to the swap

dealer in exchange for a cash payment equal to the par value of the security. If the

protection buyer owns the asset and believes that it can improve on the recovery rate

priced into the security, the protection buyer is clearly better off using the cash settled

CDS [13].

The CDS protection can be sold on one single reference or on a portfolio containing

more than one asset or name. Portfolio protection products entitle their buyer to a

payment following one or more defaults in a reference portfolio consisting of multiple

names and/ or assets. The CDS written on basket of assets is called basket CDS.

There are different types of basket CDSs:

5



1. Nth to Default Swap,

2. Senior and Subordinated Basket CDSs,

3. Credit Indexes.

An nth default CDS pays off when the nth default occurs in the reference asset

portfolio. For example, consider a reference portfolio that consists of the public bonds

issued by 100 different companies or reference names. A first to default CDS will pay

off when the first default occurs in the reference portfolio. A second to default will pay

off when the second default occurs in the reference portfolio. This CDS does not pay

anything for the first default, and terminates the following the payout that associated

with the second default [13].

The basket CDS products are generally all about default correlation risk inside the

reference portfolio. If defaults are uncorrelated across names, for example, an nth

to default CDS with a one year tenor is unlikely to pay off for n at or above three.

In other words, especially for portfolios of investment grade credits, more than three

uncorrelated defaults in a year would be considered highly unusual. But if instead

defaults on the reference names are perfectly correlated, nth to default CDS is no

different at all from the first to default CDS [13].

The standard market model for pricing an nth-to-default CDS is one-factor Gaussian

copula model for the time to default. Copulas provide an alternative measure of the

dependence between random variables. A copula is defined as a function that joins a

multivariate distribution function to a collection of univariate marginal distribution

functions [18].

Although they are hedging instruments, credit derivatives are also vulnerable against

credit risk, and this credit risk that a corporation can faces because of its derivative

positions is called counter-party credit risk. For example, an option with default risk

is called a vulnerable option [35]. To manage the counter-party credit risk, there are

some methods; netting agreements, collateralization and also downgrade triggers.

The organization of this thesis is shortly as follows: After a general short explanatory

introduction about credit risk models, credit risk management and credit derivatives

6



in Chapter 1, details of credit risk models, structural and intensity based models,

are explained in Chapter 2. Also in Chapter 2, probability of default functions for

each model is calculated. In Chapter 3, CDS market is examined in details and then

default functions found in Chapter 2, are used for calculating CDS prices for each

model examined. In Chapter 4, hazard rate of intensity models is predicted from

density functions of structural models, Merton and Black-Cox. Finally, Chapter 5 is

a short summary of this work.
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CHAPTER 2

CREDIT RISK MODELS

As we have mentioned before, there are two main approaches are in use for mod-

elling the credit risk of a single entity: the reduced-form (intensity-based) and firm-

value based (structural)approaches. According to intensity-based models, the timing

of default depends on exogenous stochastic process, and these models assume that

the default event is not interrelated with any observable characteristics of the issuer.

However, the structural models that contracted on Black-Scohles [8] and Robert C.

Merton’s [29] option pricing methodology, and they are directly rely on the asset qual-

ity and debt servicing ability of the firm. Under absolute priority rules, stockholders

have residual claims on the asset of the firm in case of default [9]. That is, equity

shareholders, have long position of European call option which written on assets of

the firm with exercise price equal to value of liabilities of the same firm. In the same

manner, debt holders have position that can be replicated with long default-free bond

plus short position on a put option on the assets of the firm.

According to the structural models, default occurs when the asset values of the firm is

less than the liabilities of the firm. Whereas, their assumptions regarding to the time

of default differ. For example, Merton model assumes the firm have just one liability

and so it can be default only at maturity of the bond if its asset values are not sufficient

to pay face value of the debt. The models that rely on the merton assumptions are the

examples of the default-at-maturity models. In the other structural models, default

occurs when ever asset values of the firm falls below the pre-determined barrier level,

L, at some default time τ . These models are called first passage time models. Black-

Cox [7] model is the pioneer of the first-passage time models. Kim, Ramaswamy, and
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Sundaresan [25], Longstaff and Schwartz [28] and Saá-Requejo and Santa Clara [31]

are other works that concentrated on the first passage time problem.

Contrary to structural models, reduced-form models do not relate the default to the

features of the firm. The works studying these intensity-based models are generally

depend on the market data. These models basically started with Jarrow and Turnbull

(1992)[22], and subsequently studied by Jarrow and Turnbull (1995) [23], Duffie and

Singleton (1999) [14] among others [21].

Rating agencies, like Moody’s, S&P and Fitch, are the rating providers and these

ratings represent the credit quality of the corporation. Determination of rating is the

process of evaluating default probability for a specific entity. For example, the rating

with reduced-form models firstly needs the valuation of the corporate bond which is

issued by the rated firm. After this valuation we can find spread between price of

that corporate bond and risk-free asset. Then, by using recovery rate data which is

estimated from the market data, we can evaluate the default probability for the issuer.

This default probability is the basic indicator of the firm rating. The Moody’s rating

system is given in Table 2.1.

As we have mentioned, measurement of credit risk needs especially two inputs, re-

covery rate (R) and probability of default (PD). As we mentioned before, loss given

default (LGD) is just equal to 1−R.

In finance literature, there are two different types of probability used, which are his-

torical probability and risk natural probabilities. Historical probabilities are the real

world probabilities of events occur in the real world. For example, if we have 100

firms and 20 of these firms default during last year we can conclude that yearly PD

is 0.20 for last year. The risk-neutral probability is an artificial measure that used to

value derivative contracts depending on the event[10]. According to Jhon Hull [18],

risk-neutral default probabilities calculate the present value of expected future cash

flows, so they should be used when estimating the impact of default risk on the pricing

of debt instruments. On the other hand, real-world default probabilities should be

used when carrying out scenario analysis in order to calculate the potential losses from

defaults.
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Table 2.1: Moody’s Rating System.

Moody’s Rating Definitions

Aaa Highest rating. Capacity to repay principal and
interest is high.

Aa Very strong. Only slightly less secure than high-
est rating.

A Determined to be slightly more susceptible to
adverse economic conditions.

Baa Adequate capacity to repay principal and inter-
est. Slightly speculative.

Ba Speculative and significant chance that issuer
could miss an interest payment.

B Speculative and subject to high credit risk. Is-
suer has missed one or more interest or principal
payments.

Caa Poor standing and are subject to very high
credit risk. No interest is being paid.

Ca Highly speculative and are likely in, or very
near, default, with some prospect of recovery of
principal and interest.

D Issuer in default, with little prospect for recovery
of principal or interest.

In the event of default of a firm it is expected that creditors may files a claim against

firm’s assets to recover partially their receivables. The recovery rate, as a percent

of par value, for a bond is its market value immediately following default. Figure

2.2 shows the recovery rates for varying classes of bonds [18]. Historical data implies

negative correlation between recovery rates and default rates when they are compared,

which means high default rate will likely implies low recovery rate in a year. The

combination of these two effects constitute a more adverse outcome for investors [18].

Table 2.2: Moody’s recovery rates 1982-2003 [18].

Class Average Recovery Rate

Senior secured 54.44
Senior unsecured 38.39
Senior subordinated 32.85
Subordinated 31.61
Junior subordinated 24.47

As it is known, there are many credit risk models beginning from primitive expert

systems to advanced Lévy jump diffusion models. In this work, we will only study
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advanced models: intensity-based models constructed on counting processes and struc-

tural models constructed on option pricing methodology.

2.1 Intensity Based Models

Intensity based models, generally called reduced form models, answer the question

“Why firm default” with the “Because of the market”[3]. Default is defined as an

unexpected event whose likelihood is measured by a default-intensity process in these

models. The time of default is just the time of first jump of counting process. The basic

idea is that at any instant time there is a possibility that an obligor default. Default

is defined as the first jump of counting process (Poisson Process) N = {Nt; 0 ≤ t ≤ T}
with intensity λ = {λt; 0 ≤ t ≤ T} which determines the price of credit risk for a fixed

time horizon T [11]. Let us first define risk free asset, its price process evaluation and

the default inference by the help of price differences between defaultable and risk free

bonds. Afterwords, we will examine the counting process in detail.

Definition 2.1.1. The price process of a risk free bond B = {Bt; 0 ≤ t ≤ T} follows

the following dynamics

dBt = rtBtdt, (2.1)

where r = {rt, 0 ≤ t ≤ T}

Let denote the following ratio with D(t, T )

D(t, T ) = E

(

Bt

BT

)

, (2.2)

where E denote the expectation operator. When short interest rate process r =

{rt, 0 ≤ t ≤ T} is stochastic then discount factor becomes;

D(t, T ) = E

{

exp

(

−
∫ T

t
rs ds

)}

, (2.3)

but, if we assume that r is deterministic, then we can write the discount factor as

follows:

D(t, T ] = exp

(

−
∫ T

t
rs ds

)

. (2.4)

Moreover, if r is constant then we have following equation

D(t, T ) = exp (−r(T − t)) . (2.5)
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The likelihood of default by a obligor on its debt obligation can be most simply

predicted from prices of bonds in reduced form models. A corporate zero coupon

bond with face value $100 will have less price compared to the risk-free zero coupon

bond having same maturity because of credit risk enclosed by corporate bond [18].

Let us define risk notation for risk neutral probabilities and yields of risk-free and

corporate bonds as follows:

PS(t) : probability of survive for a obligor in a time interval [0, t],

PD(t) : probability of default for a obligor in a time interval [0, t],

yT : yield on corporate zero coupon bond with maturity T ,

y∗T :yield on risk-free zero coupon bond with maturity T ,

B0(T ) : present value of one dollar at maturity T discounted with yield of corporate

bond,

B∗
0(T ) : present value of one dollar at maturity T discounted with risk free rate.

The present value of corporate zero coupon and zero coupon risk free bonds respec-

tively can be defined as follows [11]. Assume both assets have $100 face value:

100× exp (−y(T )T ) = 100B0(T ),

100× exp (−y∗(T )T ) = 100B∗
0 (T ).

To calculate risk natural default probabilities from these bond prices, we assume that

present value of the cost of default equals to the excess of the price of risk free bond

over the price of corporate bond:

100B∗
0 (T )− 100B0(T ) = 100 [exp (−y∗(T )T )− exp (−y(T )T )] ;

if there is no recovery, then

100B0(T ) = B∗
0(T )[PD(T )0 + (1− PD(T ))100].

Therefore,

100B0(T ) = 100B∗
0 (T ) [1− PD(T )] ,

PD(T ) =
B∗

0(T )−B0(T )

B∗
0(T )

= 1− exp (−[y(T )− y∗(T )]T ). (2.6)

If there is a recovery and 0 ≤ R ≤ 1 is the recovery rate, then

100B0(T ) = B∗
0(T )[PD(T )R+ (1− PD(T ))100],

12



PD(T ) =
B∗

0(T )−B0(T )

(1−R)B∗
0(T )

=
1− exp (−[y(T )− y∗(T )]T )

(1−R)
. (2.7)

Simply we can say that probability of default can be calculated form the following

formula:

PD(t) =
CS

1−R
,

where CS is the credit spread of corporate bond yield over the yield of risk-free bond,

that is CS = y − y∗ and R is recovery rate.

Example 2.1.2. If a corporate bond has 150 bp yield more than risk free yield, and

in the event of default have recovery rate 30% then it has default probability per year

given no earlier default PD = 0.015
1−0.3 = 2.14%. This conditional default per year is also

called intensity or hazard rate [18].

As we mentioned before, under reduced form credit risk models, the default probability

and the default time defined by counting processes and the process λ = {λt; 0 ≤ t ≤ T}
shows default possibility in a small time interval.

Let us first start with the definition of Poisson process. Poisson process is the most

simple pure jump Lévy process. In order to construct Poisson process, we should

define exponential distribution.

Definition 2.1.3. The random variable τ is called exponentially distributed or it has

exponential distribution if it has following be density

f(t) =







λ exp(−λt), if t ≥ 0,

0, if t < 0,
(2.8)

where λ is a positive constant.

The expectation and variance of τ can be found by using partial integration as follows:

E(τ) =

∫ ∞

0
tf(t)dt =

1

λ
,
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V ar(τ) = E(τ2)− [E(τ)]2

=

∫ ∞

0
t2f(t)dt−

(

1

λ

)2

=

∫ ∞

0
λ exp(λt)t2dt−

(

1

λ

)2

= −t2 exp(−λt)|∞0 +

∫ ∞

0
2t exp(λt)dt−

(

1

λ

)2

= 0 +
2

λ
E(τ)−

(

1

λ

)2

=
2

λ2
−
(

1

λ

)2

=
1

λ2
.

To compute cumulative distribution function of τ we have to compute P(τ ≤ t) and

P(τ ≤ t) =

∫ t

0
λ exp(−λs)ds = 1− exp(−λt), t ≥ 0,

and since P(τ > t) = 1− P(τ ≥ t), therefore

P(τ > t) = exp(−λt), t ≥ 0. (2.9)

The most interesting feature of exponential distribution is its memoryless property.

Definition 2.1.4. The random variable τ has the memoryless property, if for positive

s, t ∈ [0, T ] its distribution satisfies the following equality:

P(τ > t+ s|τ > s) = P(τ > t). (2.10)

The Equation (2.10) implies that, if we are at time s and wait additional t unit time,

it is not different from starting at time zero and waiting until time t. In other words,

probability of survive is just related to how much time is passed, not the starting point

or history.

Proposition 2.1.5. If random variable τ has exponential distribution, then it has

memoryless property.

Proof. Let t and s be two positive real numbers, then

P(τ > t+ s|τ > s) =
P(τ > t+ s, τ > s)

P(τ > s)

=
P(τ > t+ s)

P(τ > s)
=

exp(−λ(t+ s))

exp(−λs)
= exp(−λt) = P(τ > t).
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Definition 2.1.6. A stochastic process N = {Nt; t ≥ 0} with positive intensity pa-

rameter λ is called a Poisson process, if it satisfies the following conditions:

• N0 = 0.

• The process has independent and stationary increments.

• The density function of process has form of P(Nt = n) = (λt)n

n! exp(−λt).

• If 0 < s < t, then the random increment Nt−Ns has a Poisson distribution with

parameter λ(t− s) and

P(Nt −Ns) =
λn(t− s)n

n!
exp(−λ(t− s)).

The Poisson process has constant intensity, but we can also define default intensity as

a process.

Definition 2.1.7. Let τ be default time, then the intensity of default λ = {λt, 0 ≤
t ≤ T} is defined as

λt = lim
h→0

P(t < τ < t+ h)|τ > t)

h
. (2.11)

This equation tells us that, roughly for a small time interval ∆t > 0

P[τ ≤ t+∆t|τ > t] ≈ λt∆t (2.12)

Definition 2.1.8. The τ be a default time is a arbitrary positive random variable on

the probability space (Ω,F ,P) with cumulative distribution function F , where

F (t) =

∫ t

0
f(s)ds

for a probability density function f of τ

From the above definition of default time, we can define a cumulative probability

distribution of survive Γ as Γ (t) = P(τ > t) = 1−P(τ ≤ t). Then we have Γ (t+∆t) =

P(τ > t + ∆t) = 1 − P(τ ≤ t + ∆t). We can calculate the probability of small time

interval by the difference of cumulative distribution functions:

Γ (t)− Γ (t+∆t) = P(τ ≤ t+∆t)− P(τ ≤ t),
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and from equation (2.11) we know that

λt∆t ≈ P (t < τ ≤ t+∆t/τ > t) =
P(t < τ ≤ t+∆t)

P(τ > τ)
).

Therefore,

λt∆t ≈
Γ (t)− Γ (t+∆t)

Γ (t)
;

then, we have

Γ (t+∆t)− Γ (t)

Γ (t)
≈ −λt∆t.

This implies that

dΓ (t)

Γ (t)
= −λtdt.

Finally, we get the following result for probability of survive:

Γ (t) = PS(t) = exp

(

−
∫ t

0
λsds

)

. (2.13)

Taking λ̄t as the average hazard rate between time 0 and t we can write

PS(t) = exp(−tλ̄t).

We have already showed that P(τ > t) = exp(−λt) for constant λ. Therefore, Ps(t) =

P(τ > t) = exp(−λt) for constant λ. Since PD = 1 − PS then, PD = 1− exp(λt). As

we mention in next topic, this result known as homogeneous case of Jarrow-Turnbull

Model.

2.1.1 Jarrow-Turnbull Model

Jarrow-Turnbull model has two case: the homogeneous and the inhomogeneous.

Homogeneous Case: Poisson process with constant intensity λ that we have mentioned

before is the one of the standard example of homogeneous case. Probability of survive

under this model is defined as

PS(t) = exp(−λt), (2.14)

whose corresponding expected time of default is τ = 1
λ [11]. As we explained before,

the survival probability is the probability that the counting process Nt is equal to 0.
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Figure 2.1: Constant intensity.

Figure 2.1 shows that PD increases when ever the time to maturity increases for

λ = 0.1.

Inhomogeneous: In this case, Jarrow and Turnbull modelled λ as a process of deter-

ministic function of time λ = {λt : 0 ≤ t ≤ T}. Since λ is deterministic function of

time, as we stated before, the probability of default is equal to equation (2.13) here.

We can define λt as a stepwise function [11]:

λt = Ki, Ti−1 ≤ t ≤ Ti, i = 1, 2, 3, 4. (2.15)

In this case we can model survival probability as follows:

PS(t) =































exp(−K1t), if 0 ≤ t < T1,

exp(−K1T1 −K2(t− T2)), if T1 ≤ t < T2,

exp(−K1T1 −K2(T2 − T1)−K3(t− T2)), if T2 ≤ t < T3,

exp(−K1T1 −K2(T2 − T1)−K3(T3 − T2)−K4(t− T3)), if T3 ≤ t < T4.

Figure 2.2 shows evaluation of probability of default taking following T and K values:

T1 = 1; year K1 = 0.02,

T2 = 3 years K2 = 0.05,

T3 = 5 years K3 = 0.07,

T4 = 4 years K4 = 0.1.
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Figure 2.2: Probability of default with stepwise intensity[11].

2.1.2 Cox Model

Deterministic intensity implies that default risk related to information that arrives

over time is the only fact of survival date. However, different information about credit

worthiness of the reference entity constitutes different states which will accessible

as time passes. That is, the intensity would change randomly as new additional

information arrive. For example, credit ratings, distance to default and equity price

related new information will change default intensity randomly [15].

Given all current information, in general, this model approaches arrival intensity

as a random process. That is, the approach is conditional on current information.

Therefore, to model different state of information with time-varying intensity λ =

{λt; 0 ≤ t ≤ T}, the survival probability

PS(t) = E {P(τ > t)|λs : 0 ≤ s ≤ t} (2.16)

which can also be written as

PS(t) = E

{

exp

(

−
∫ t

0
λsds

)}

. (2.17)

Given all current available information, the conditional probability of survive at time

t, of survival to a future time v, is given by

PS(t, v) = E

{

exp

(

−
∫ v

t
λudu

)}

. (2.18)
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There are various models that are used to model default intensity and one of the

fundamental is Cox, Ingersoll, Ross (CIR) short-interest-rate model [12]:

dλt = κ(θ − λt)dt+ σλ
√

λtdWt (2.19)

where W is a standard Brownian motion and κ is the mean rate of reversion to the

long run mean, σλ is a volatility coefficient and θ is the long run mean of λ.

By taking λ as CIR process, the conditional survival probability is given by

PS(t) = exp(α(v − t)− β(v − t)λt), (2.20)

where α and β are time-dependent coefficients. For details of the proof and later

information see [15].

2.2 Structural Models (Firm Value Based Models)

Structural models are models based on Black-Scholes-Merton option pricing theory

build up by Merton with his article [29]. Merton modelled firm equities as European

call option written on asset values with strike price equal to the value of only single

zero coupon bond which is the liability of a levered firm and can be paid at some

certain maturity T. Other structural models are just extensions of Merton model.

The aim of these models is to improve this elegant but naive idea to answer the real

economy problems. The article of Black and Cox [7] is one of the earliest extensions

of Merton model, just adding early default possibility to the model. They modelled

the default time as first passage time, that is the default time was modelled as the

first time that value of asset V break down barrier L.

After the nineties, as globalization accelerated, the interaction of financial system

has also increased. Therefore, especially, world wide investment banks such as J.P.

Morgan Chase build up new credit risk models, CreditMatrics in 1997, to deal with

complicated credit risk. KMV model is an another structural model developed by

rating agency Moody’s and it is also based on Merton model. It includes new idea

of liquidity that a firm can have more than one liabilities with different maturities,

classified as short term and long term. KMV model is built on Merton model and

adjusts this model considering some of its shortcomings, most notably (1) that all
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debt matures at the same maturity and (2) that the value of firm follows a log-normal

diffusion process [33].

Figure 2.3: Distance to default.

For the Merton model as we will mention later, distance to default (D) as in Figure

2.3 is a crucial concept. Later we will formulate it as d2. As it will be explained later,

Merton modelled the probability of default of a firm as Φ(−D), KMV modelled the

expected default frequencies just assign the real defaults to Φ(−D). In other words,

Merton compute PD by computing normal cumulative distribution of −D, but KMV

firstly compute D just as in Merton Model and assign it to the value of the real default

frequencies.

Since Merton model and Black-Cox model are the mathematical base of firm value

models, we will just explain these two models in details.

2.2.1 Merton Model

The Merton model suggests that a company’s equity value can be estimated by mod-

elling a European call option on the asset of the company [18]. In order to use

Black-Scholes option pricing methodology to price firm equity, Merton assumes the

following assumptions [29].
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1. There are no transaction costs, taxes and assets traded on market can be infinity

divisible.

2. There is a sufficient number of investors with a comparable level of wealth par-

ticipate in market, and there is not any restriction on quantity of asset which

can be bought or sold at the market price by investors.

3. There exists an exchange market for borrowing and lending at the same rate of

interest.

4. There is no restriction on short sale, with full use of proceeds.

5. Assets are continuously traded in time.

6. The value of the firm is invariant to its capital structure obtains as stated in the

Modigliani-Miller Theorem.

7. The Term-Structure is flat and known with certainty. That is, the price of risk-

free discount bond which pays one dollar at time t in future isD(0, t) = exp(−rt),
where r is the risk-free rate of interest, the same for all time.

8. Firm asset values, V, follow a diffusion type stochastic process with stochastic

differential equation

dVt = µVtdt+ σVtdWt, (2.21)

for t ∈ [0, T ] and V0 = v ∈ R.

Let us assign the following notation to value of company’s assets, debt and equity

respectively:

Vt: Firm value at time t for t ∈ [0, T ]

ZT
t : Value of a single zero coupon bond at time t with maturity T and face value L.

ET : Value of equity at time T .

The asset values of the firm behaves as a geometric Brownian motion, as shown in

Figure 2.4. Furthermore, since in Merton model the firm has just one liability with
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Figure 2.4: Asset values under Merton model.

maturity T , we can decide whether there is default or not just by observing these

asset values at maturity T . For maturity T = 1 year, we can say if asset values follow

green path there is no default, but if asset values evolve as blue path there is default

since asset values become less than L at maturity.

According to general accounting principles, the total value of the assets of the firm

equals to the sum of its debt and equity

Vt = ZT
t +Et. (2.22)

On the other hand, the payoff of the European call option at maturity T is equal to

the maximum of the zero and absolute difference of asset value and strike price. Thus,

the equity value ET of the firm as an option price can be given by following equation:

ET = max[VT − L, 0] = (VT − L)+ =







(VT − L), if VT ≥ L,

0, if VT < L.

In this chapter, we assume that the value of the firm follows a geometric Brownian

motion model. Hence, the value of the firm can be found by applying Ito Lemma to

logarithm function f(x) = log(x):

f(Vt) = log(Vt) = log(V0) +

∫ t

0

1

Vs
dVs −

1

2

∫ t

0

1

V 2
s

σ2 ds

= log(V0) +

∫ t

0
(µ− 1

2
σ2) ds+

∫ t

0
σ dWs

= log(V0) + (µ− 1

2
σ2)t+ σWt,
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which implies that for V0 > 0; we have

Vt = V0 exp{(µ − 1

2
σ2) + σWt}; (2.23)

therefore,

log(
Vt
V0

) ∼ Φ{(µ− 1

2
σ2)t, σ2t}. (2.24)

Asset values under Merton model follow geometric Brownian motion as it can be seen

from Figure 2.4, we can conclude that from Equation 2.24 logarithm of asset values is

distributed normally with mean µ− 1
2σ

2 and variance σ2t.

The value of the equity can be calculated just by taking equities as contingent claim

ET = h of stockholder. Therefore, under the assumption of risk-natural world, the

value of equity at a time in [0, T ] is the expectation of discounted value of that con-

tingent claim:

Et = E
∗ [exp (−r(T − t)) h|Gt]

= E
∗ [exp (−r(T − t)) f(VT )|Gt]

= E
∗
[

exp (−r(T − t)) f

(

Vt exp

(

(r − 1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t )

))

|Gt

]

.

Since Vt is Gt measurable and W ∗
T −W ∗

t is independent of the filtration Gt we can

write ET = F (t, Vt) by Proposition given in Appendix A.1.1. Therefore,

F (t, x) = E
∗
[

exp (−r(T − t)) f

(

x exp

(

(r − 1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t )

))]

=

∫ ∞

−∞
exp (−rm) f

(

x exp

(

(r − 1

2
σ2)m+ σy

√
m

))

exp(−y2

2 )√
2π

dy

= exp (−rm)

∫ ∞

−∞

(

x exp

(

(r − 1

2
σ2)m+ σy

√
m

)

− L

)+ exp(−y2

2 )√
2π

dy

for T − t = m.

Now, we have to find region where f(VT ) is positive:

x exp

(

(r − 1

2
σ2)m+ σy

√
m

)

− L ≥ 0

⇒ log(x) + (r − 1

2
σ2)m+ σy

√
m ≥ log(L)

⇒ σy
√
m ≥ log(L/x) −

(

(r − 1

2
σ2)m

)

⇒ −y ≤ log(x/L) + (r − 1
2σ

2)m

σ
√
m
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If we set

d2 =
log(x/L) + (r − 1

2σ
2)m

σ
√
m

and taking y = −y then, we can write F (t, x) as follows:

F (t, x) = exp
(

− rm
)

∫ d2

−∞

(

x exp

(

(r − 1

2
σ2)m+ σy

√
m

)

− L

)

exp(−y2

2 )√
2π

dy

= exp
(

− rm
)

∫ d2

−∞

(

x exp

(

(r − 1

2
σ2)m+ σy

√
m

)

exp(−y2

2 )√
2π

dy

− L exp
(

− rm
)

∫ d2

−∞

exp(−y2

2 )√
2π

dy

= exp
(

− rm
)

∫ d2

−∞

(

x exp

(

(r − 1

2
σ2)m+ σy

√
m

)

exp(−y2

2 )√
2π

dy − L exp
(

− rm
)

Φ(d2)

=
1√
2π

∫ d2

−∞

(

x exp

(

−1

2
σ2m+ σy

√
m− −y2

2

)

dy − L exp
(

− rm
)

Φ(d2).

We can write −1
2σ

2m+ σy
√
m− −y2

2 as the square of sum:

−1

2
σ2m+ σy

√
m− −y2

2
= −1

2

[

σ2m+ 2σy
√
m+ y2

]

= −1

2

[

σ
√
m+ y

]2

then,

F (t, x) =

∫ d2

−∞

1√
2π
x exp

(

− 1

2
(y + σ

√
m)2

)

dy − L exp
(

− rm
)

Φ(d2).

By taking y = y + σ
√
m we can simplify F (t, x),

F (t, x) =

∫ d2+σ
√
m

−∞

1√
2π
x exp

(

− 1

2
y2
)

dy − L exp
(

− rm
)

Φ(d2)

=

∫ d1

−∞

1√
2π
x exp

(

− 1

2
y2
)

dy − L exp
(

− rm
)

Φ(d2)

=
1√
2π
x

∫ d1

−∞
exp

(

− 1

2
y2
)

dy − L exp
(

− rm
)

Φ(d2)

= xΦ(d1)− exp
(

− rm
)

LΦ (d2).

That is, the value of equity under Merton model assumption can be written:

Et = V0 Φ(d1)− exp (−rm) LΦ (d2), (2.25)
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where

d2 =
log(x/L) + (r − 1

2σ
2)m

σ
√
m

,

d1 =
log(x/L) + (r + 1

2σ
2)m

σ
√
m

,

d2 = d1 − σ
√
m.

In terms of the lender, if (s)he knew certainly that; (s)he would get the principal at

the maturity for the zero coupon bond, (s)he will get the face value L and value of

debt is equal to VT − ET . However, if the creditors expect that (s)he would not get

par value, that is, if VT < L she will get VT . Therefore, the value of debt at maturity

T is:

DT = L−max(L− VT , 0).

As it can be understood, the claim of the bondholder can be seen as a long risky bond

and a short European put option written on firm’s assets with strike price L [35].

Under Merton model, the survival probability for a firm can be calculated by evaluat-

ing the asset values of firm and comparing the sum of these values by the value of liabil-

ities at maturity T . If V > L, then there is no default. Therefore, we should evaluate

P[VT ≥ L]. Since Vt evolves as a geometric Brownian motion, and under risk natural

probability P
∗, firm value at maturity T is VT = Vt exp

(

(r − 1
2σ

2)(T−t)+σ(W ∗
T−W ∗

t )
)

as we already shown. Therefore,

PS(T |Gt) = P[VT ≥ L]

= P

(

Vt exp
(

(r − 1

2
σ2)(T − t) + σ(W ∗

T −W ∗
t )
)

≥ L|Gt

)

= P

(

x exp
(

(r − 1

2
σ2)(T − t) + σW ∗

T−t

)

≥ L
)

= P

(

x exp
(

(r − 1

2
σ2)m+ σy

√
m
)

≥ L
)

= P

(

log(x) + (r − 1

2
σ2)m+ σy

√
m ≥ log(L)

)

= P

(

y ≥ log(Lx )− (r − 1
2 )m

σ
√
m

)

= P

(

− y <
log( xL) + (r − 1

2)m

σ
√
m

)

.
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For Vt = x and y =
W ∗

T−t√
m

, when we take z = −y, we get following equation:

= P

(

z <
log( xL) + (r − 1

2)m

σ
√
m

)

Immediately we get the following formula for the probability of survive according to

Merton model

PS(T |Gt) = P[VT ≥ L] = Φ(d2), (2.26)

where

d2 =
log(x/L) + (r − 1

2σ
2)m

σ
√
m

.

Since PD = 1− PS then probability of default under Merton model given by

PD = Φ(−d2), (2.27)

where Φ is the cumulative distribution function of standard normal distribution.

To calculate Φ(−d2), we should know the value of the firm at time t, Vt, and the

standard deviation of assets denoted by σ. However, neither of them are directly

observable in market. But if the company is publicly traded, Et can be observable.

We should use two equations since we have two unknowns. Equation (2.25) can be

used as the first equation. For the second equation, we will benefit from the Ito

lemma. When we apply Ito formula, we can write the dynamics of equity by the

following equation [29]:

dEt = µeEtdt+ σeEtdW
e
t (2.28)

From Ito lemma, if we take E = f(V, t), then we can write following stochastic equa-

tion:

dEt =

[

µVt
∂f

∂V
+

1

2
σ2V 2

t

∂2f

∂V 2
+
∂f

∂t

]

dt+ σVt
∂f

∂V
dWt (2.29)

When we solve both Equations, (2.28) and (2.29) we get following equation that can

be used to find values σ and Vt:

σeEt = σVt
∂f

∂V
. (2.30)

We can find ∂f
∂V just by differentiating Equation (2.25) and this differential is equal

to Φ(d1). Just by inserting Φ(d1) instead of ∂f
∂V , the second equation becomes the

following form:

σeEt = σVtΦ(d1) (2.31)
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The above result shows that if a firm stocks are publicly traded, then by observing

equity values and volatility of equity, by using equity values as proxy of asset values

and equity volatility as proxy of the asset volatility, Merton model can be used on

historical data to predict the probability of default for that firm [18].

2.2.2 Black-Cox Constant Barrier Model

As we mentioned before, the first-passage models have been introduced in order to

include the possibility of an early default for the reference entity. As opposed to

Merton model, first-passage models assume there can be default before T , taking into

account that there are more than one liability of a firm with different maturities. The

default occurs whenever the value of firm V = {Vt, 0 ≤ t ≤ T} goes below barrier level

L. In [7], Black and Cox model L as a time dependent process, but for the sake of

simplicity we take it as constant.
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Figure 2.5: Asset values under Black-Cox model.

Figure 2.5 shows the possible firm values. The firm has initial value 1 and maturity

one year. If we take barrier L = 0.6, then, as it can be observed, if firm value follows

red or blue paths then default will occur before maturity. However, if firm value

follows green path the firm will survive up to maturity.

To model Black-Cox model, firstly we should find the joint distribution of the maxi-

mum of Brownian motion and itself[16]. Let define the maximum of Brownian motion

with drift zero and arbitrary σ asMt = sup {Xs, 0 ≤ s ≤ t} and the maximum of stan-
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dard Brownian motion asmt = sup {Ws, 0 ≤ s ≤ t} whereXt = σWt andWt ∼ N(0, t)

is a standard Brownian motion. Let us define joint distribution function as

Ft(x, y) = P {Xt ≤ x,Mt ≤ y}

Here, Xt is a Brownian motion with drift zero, so we just need to calculate Ft(x, y)

for x ≤ y since Xt ≤Mt, ∀t ∈ [0, T ]

Ft(x, y) = P {Xt ≤ x,Mt ≤ y}

= P {Xt ≤ x} − P {Xt ≤ x,Mt > y} .

We get this result because

P {Xt ≤ x} = P {Xt ≤ x,Mt ≤ y}+ P {Xt ≤ x,Mt > y}

= P {σWt ≤ x, σmt ≤ y}+ P {σWt ≤ x, σmt > y}

= P

{

Wt ≤
x

σ
,mt ≤

y

σ

}

+ P

{

Wt ≤
x

σ
,mt >

y

σ

}

.

Therefore,

Ft(x, y) = Φ(
x

σ
√
t
)− P

{

Wt ≤
x

σ
,mt >

y

σ

}

.

In order to solve P {Wt ≤ v,mt > u} for positive real numbers u and v, we can use

reflection principle or reflection property of Brownian motion. In order to find this

probability, let us take v = x
σ and u = y

σ . For every sample path of W that hits the

level u before time t but finishes below level of v at time t, there is a another equally

probable path (shadow path Figure 2.6) that hits level u before time t and then travel

upward at least u-v unit to finish level u+ (u− v) = 2u− v at time t. This is because

normal distribution has a symmetrical shape around the mean [16].

Thus,

P {Wt ≤ v,mt > u} = P {Wt ≥ 2u− v}

= P {Wt < v − 2u}

= Φ

{

v − 2u√
t

}

= Φ

{

x− 2y

σ
√
t

}

.

28



Figure 2.6: Hitting time.

This argument become definite after using the Strong Markov Property. Let T be the

first time t that at which Wt = u and define W ∗
t =Wt+T −WT . It follows that

P {Wt ≤ v,mt > u} = P
{

T ≤ t,W ∗
t−T ≤ v − u

}

= P
{

T ≤ t,W ∗
t−T ≥ v − u

}

.

(The strong Markov property is needed to justify of these equalities.) By definition,

W ∗
t − T =Wt − u and thus

P {Wt ≤ v,mt > u} = Φ

{

v − 2u√
t

}

,

P

{

Wt ≤
x

σ
,mt >

y

σ

}

= Φ

{

x− 2y

σ
√
t

}

;

therefore

Ft(x, y) = Φ

{

x

σ
√
t

}

− Φ

{

x− 2y

σ
√
t

}

, (2.32)

where Φ is the cumulative distribution function of the standard normal distribution.

Proposition 2.2.1. Let W be a standard Brownian motion, Xt = σWt and Mt =

sup {Xs, 0 ≤ s ≤ t}. Then we have

P {Xt ≤ x,Mt ≤ y} = Φ

{

x

σ
√
t

}

− Φ

{

x− 2y

σ
√
t

}

. (2.33)
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Proof. The proof is similar to solution of Ft(x, y) given in Equation (2.32).

Corollary 2.2.2.

P {Xt ∈ dx,Mt ≤ y} = gt(x, y)dx,

where

gt(x, y) =

[

φ(
x

σ
√
t
)− φ{x− 2y

σ
√
t
}
]

1

σ
√
t
, (2.34)

where

φ(z) =
1√
2π

exp(−z
2

2
).

Proof. The function gt(x, y) is just derivative of F with respect to x, therefore;

dFt(x, y)

dx
=

[

φ(
x

σ
√
t
)− φ{x− 2y

σ
√
t
}
]

1

σ
√
t
.

Proposition 2.2.3. Let ft(x, y) = P
∗ {Xt ∈ dx,Mt ≤ y} and let Xt ∼ N

{

µt, σ2t
}

then ft(x, y) = ξtgt(x, y)dx, where ξ =
dP∗

dP = exp
{

µ
σWt − 1

2
µ2

σ2

}

.

Proof. By Girsanov TheoremW ∗
t =Wt+

∫ t
0

µ
σ dt is a standard Brownian Motion under

P
∗, where θ, the market price of risk is equal to µ−r

σ = µ
σ for r = 0. SinceXt = µt+σWt

under P, then we have Wt = Xt−µt
σ and therefore, W ∗

t = Xt−µt
σ + µt

σ = Xt

σ . Since

ξ = exp
{

µ
σWt − 1

2
µ2

σ2

}

= exp
{

µ
σ2Xt − 1

2
µ2

σ2

}

, then we have

P
∗[Xt ≤ x,Mt ≤ y] = E

∗[1{Xt≤x,Mt≤y}]

= E[ξt 1{Xt≤x,Mt≤y}]

= E[exp(
µ

σ2
Xt −

1

2

µ2

σ2
t)1{Xt≤x,Mt≤y}]

=

∫ x

−∞
exp(

µ

σ2
Xt −

1

2

µ2

σ2
t)P{Xt ∈ dz,Mt ≤ y}

=

∫ x

−∞
exp(

µ

σ2
Xt −

1

2

µ2

σ2
t) gt(z, y)dz.

Differentiating the last equation with respect to x, we get ft(x, y) = exp
{

µx
σ2 − µ2t

2σ2

}

gt(x, y).

Corollary 2.2.4. Let Ft(x, y) = P{Xt ≤ x,Mt ≤ y} where Xt ∼ N(µt, σ2t) and,

Mt = sup{Xs, 0 ≤ s ≤ t} then we have

Ft(x, y) = Φ

(

x− µt

σ
√
t

)

− exp(
2µy

σ2
)Φ

(

x− 2y − µt

σ
√
t

)

(2.35)
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Proof.

Ft(x, y) =

∫ x

−∞
ft(z, y)dz

=

∫ x

−∞
exp

{

µz

σ2
− µ2t

2σ2

}

1

σ
√
t

[

φ
( z

σ
√
t

)

− φ
(z − 2y

σ
√
t

)]

dz

= exp

{

−µ2t

2σ2

}
∫ x

−∞
exp

{µz

σ2

} 1

σ
√
t

[

φ
( z

σ
√
t

)

− φ
(z − 2y

σ
√
t

)]

dz;

we take z′ = z − x, so that

Ft(x, y) = exp

{

−µ2t

2σ2

}
∫ 0

−∞
exp

{

µ(z + x)

σ2

}

1

σ
√
t

[

φ
(z + x

σ
√
t

)

− φ
(z + x− 2y

σ
√
t

)]

dz

= exp

{

−µ2t

2σ2
+
µx

σ2

}
∫ 0

−∞
exp

{µz

σ2

} 1

σ
√
t

[

φ
(z + x

σ
√
t

)

− φ
(z + x− 2y

σ
√
t

)]

dz.

Then, we have

Ft(x, y) = exp

{

−µ2t

2σ2
+
µx

σ2

}

{

Ψ(x)−Ψ(x− 2y)

}

(2.36)

for

Ψ(x) =

∫ 0

−∞
exp

{µz

σ2

} 1

σ
√
t
φ
(z + x

σ
√
t

)

dz

Let h(x, t) = x−µt
σ
√
t
and writhing out φ(·) we have

Ψ(x) =

∫ 0

−∞

1

σ
√
t
exp

{µz

σ2

} 1√
2π

exp

{

−(z + x)2

2σ2t

}

dz

=

∫ 0

−∞

1

σ
√
2πt

exp

{

µz

σ2
− (z + x)2

2σ2t

}

dz

=

∫ 0

−∞

1

σ
√
2πt

exp

{

1

σ2

[

µz − z2 + 2xz + x2

2t

]

}

dz

=

∫ 0

−∞

1

σ
√
2πt

exp

{

1

σ2

{

[

− z2 + 2(x− µt)z + (x− µt)2

2t

]

+
(µ2t

2
− µx

)

}}

dz

= exp

{

µ2t

2σ2
− µx

σ2

}
∫ 0

−∞

1

σ
√
2πt

exp

{

−1

2

[ 1

σ
√
t
(z + x− µt)

]2
}

dz

= exp

{

µ2t

2σ2
− µx

σ2

}
∫ 0

−∞

1

σ
√
t
φ
(

z + x− µt
)

dz

= exp

{

µ2t

2σ2
− µx

σ2

}
∫ h(x,t)

−∞
φ(u)dz,

where u = z+x−µt

σ
√
t

and for z = 0, u = x−µt

σ
√
t
. Therefore

Ψ(x) = exp

{

µ2t

2σ2
− µx

σ2

}

Φ(
x− µt

σ
√
t
). (2.37)
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Inserting equation (2.37) into equation (2.36), we get the following result:

Ft(x, y) = exp

{

−µ2t

2σ2
+
µx

σ2

}

[

exp

{

µ2t

2σ2
− µx

σ2

}

Φ(h(t, x))

]

= exp

{

−µ2t

2σ2
+
µx

σ2

}

[

exp

{

µ2t

2σ2
− µx

σ2

}

Φ(
x− µt

σ
√
t
)−

exp

{

µ2t

2σ2
− µ(x− 2y)

σ2t

}

Φ(
x− 2y − µt

σ
√
t

)

]

= Φ(
x− µt

σ
√
t
)− exp

{

2µy

σ2

}

Φ(
x− 2y − µt

σ
√
t

).

Let Ty be the first time t at which Xt = y. That is Ty = inf {t : Xt = y} then

Ty > y ⇒Mt < y letting xր y then we have

P(Ty > t) = P(Mt < y) = Ft(y, y) ⇒

Ft(y, y) = Φ(
y − µt

σ
√
t
)− exp

{

2µy

σ2

}

Φ(
−y − µt

σ
√
t

) (2.38)

In Black-Cox constant model, our aim is to find probability that asset values of a firm

breach a lower barrier. That is, we have to find P {infs≤t(Xs) > y}. Since infs≤t(Xs) =

− sups≤t(−Xs) and Brownian motion has symmetric property, that isWt ∼ −Wt, then

we have following result:

P

{

inf
s≤t

(Xs) > y

}

= P

{

− sup
s≤t

(−Xs) > y

}

= P

{

sup
s≤t

(−Xs) < −y
}

= P

{

sup
s≤t

(−µs− σWs) < −y
}

= P

{

sup
s≤t

(−µs+ σWs) < −y
}

.

To compute P
{

sups≤t(−µs+ σWs) < −y
}

, let us define both Yt = −µt + σWt and

its supremum Nt = sups≤t Ys; then we can define the joint distribution function of Yt

and Nt as

Gt(x, y) = P {Yt ≤ −x,Nt ≤ −y}

for y < x < 0 or 0 < −x < −y and in Corollary 2.2.4 inserting −x, −y and −µt
instead of x, y and µt, we have prove the following results:
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Proposition 2.2.5. The joint distribution of Yt and its supremum is given by the

following equation:

Gt(x, y) = P {Yt ≤ −x,Nt ≤ −y} = Φ

(−x+ µt

σ
√
t

)

−exp
{

2µσ−2y
}

Φ

(−x+ 2y + µt

σ
√
t

)

,

(2.39)

and letting xր y we have

Gt(y, y) = P

{

inf
s≤t

(Xs) > y

}

= Φ

(−y + µt

σ
√
t

)

− exp
{

2µσ−2y
}

Φ

(

y + µt

σ
√
t

)

. (2.40)

Figure 2.7: Reflection principle of Brownian motion with negative drift.

Corollary 2.2.6. We have that, for any t ≥ u and u ∈ (0, T ], on the event t < τ :

P (τ > u|Ft) = Φ

(

Zt + µ(u− t)

σ
√
u− t

)

− exp(−2µσ−2Zt)Φ

(−Zt + µ(u− t)

σ
√
u− t

)

. (2.41)

Proof. It is just a consequence of Proposition 2.2.5.

Theorem 2.2.7. Let the firm value follows a log normal diffusion process as follows:

dVt = Vt (rdt+ σdWt) , (2.42)

where r is the constant short interest rate and σ is the volatility of the firm value.

Then,

P (τ > u|Ft) = P (τ > u|τ > t) .
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and

P (τ > u|τ > t) = Φ (d3)−
(

L

Vt

)
2r

σ2−1

Φ (d4) , (2.43)

Proof. The result can be found by taking Zt = log (Vt/L), µ =
(

r − 1
2σ

2
)

and using

Corollary 2.2.6.
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CHAPTER 3

CREDIT DEFAULT SWAP PRICING

As a financial instrument, a credit derivative payoffs is contingent on credit risk real-

izations. These payoff depends on the occurrence of a “credit event” for a reference

entity. In general, a credit event can be one of the following stations [35]:

1. Failure to make a required payment,

2. Restructuring that makes any creditor worse off,

3. Invocation of cross-default clause, and

4. Bankruptcy.

Credit derivatives are the financial instruments designed for hedging the credit risk.

For example, as a financial institution, a bank has credit exposure to many obligor. In

general, before the use of the credit derivative and the loan sales, financial institutions

manage their credit risk through diversification. That approach is not efficient because

it enforces a bank to turn down the customers with which it has valuable relationships.

A bank can hedge all or a part of its loan exposure to the obligor by using credit

derivative. Generally credit derivatives are not traded on exchanges. They are over-

the-counter hedging financial products [35].

Swap contracts are the most popular credit derivatives. One of the most popular type

is called a credit default swap [35]. Credit Default Swaps (CDSs) are the bilateral

agreements that include at least two counter parties; the protection buyer and the

protection seller. The aim of the protection buyer is deliver credit risk of the reference

entity to the protection seller in exchange of CDS price called CDS premium. These
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premiums are paid yearly up to default of reference entity, occurrence of credit event or

maturity of CDS contract [13]. If credit event takes place, the protection seller makes

default payment that equal to the notional value of the reference entity. Usually, a

credit event requires a final accrual payment by the buyer of CDS [20].

As stated in Chapter 1, there are different types of CDSs. But in this section we will

price “Single Name CDS”, that is, the contracts written on single reference entity.

The following items have to be explained in order to clarify the mechanism of CDS:

◦ Reference entity. The reference entity is the company upon default of which

protection is bought and sold.

◦ Credit event. A credit event is defined event in CDS agreement that would

trigger default payment.

◦ Reference obligation. Underlying bond or asset on which protection bought or

sold with CDS contract.

◦ CDS notional principal. The face value of the reference obligation sold with a

CDS.

◦ CDS spread. The price of CDS yearly paid to protection seller by protection

buyer.

◦ Default Payment. Payment that would be paid by protection seller if credit

event occurs.

The general mechanism of a single name CDS is given in Figure 3.1.

CDS can be settled by either physical delivery or in cash. If the agreement requires

physical delivery, the protection buyer delivers underlying assets in exchange of their

par value. In case of cash settlement, after the occurrence of the credit event or default,

calculation agent gathers dealers to determine the mid-market price or recovery rate,

R. The cash settlement is then equal to (100 −R)% of the notional principal [20].

In this thesis, we price single name CDS contract. The valuation of a credit default

swap necessitates the assess of the risk-neutral probability of default for underling
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Figure 3.1: Single name CDS mechanism.

reference entity [20]. We have already estimated the risk natural survival probabilities

under structural and intensity based models in Chapter 2.

In order to price CDS contract, let us introduce theoretical pricing methodology. Let

denote the price (spread) of a single name CDS by c and let denote the notional amount

by N . We assume CDS premium paid by the CDS buyer to CDS seller annually and

spread payments and default payments are made at discrete times ti (i = 1, 2, 3, ..., n)

with tn = T and t0 = 0.

For simplicity assume payments made at the and of each period. Let us denote the

discount factor for time interval [0, ti] by D(0, ti) and define ∆ti = ti − ti−1. We can

calculate the present value of the CDS premium by the following equation

PVF = cN

n
∑

i=1

D(0, ti)PS(ti)∆ti +Ad, (3.1)

where Ad is the accrual payment. Since we assume default can occurs at payment

dates or in the middle of the payment dates, average Ad is equal to the following

equation:

Ad = 0.5cN
n
∑

i=1

D(0, ti)[PS(ti−1)− PS(ti)]∆ti (3.2)

The present value of the default payment is given by the following formula under the

assumption of the recovery rate R:

PVL = (1−R)N
n
∑

i=1

D(0, ti)[PS(ti−1)− PS(ti)]. (3.3)
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Equation (3.3) comes from the fact that default between the two consequent time ti−1

and ti is equal to PS(ti−1)− PS(ti), as it can be seen from the following derivation:

P{ti−1 < τ < ti} = P{ti−1 < τ}+ P{τ < ti}

= P{ti−1 < τ} − P{ti < τ}

= PS(ti−1)− PS(ti).

In arbitrage free market, the price of CDS is the price that equate PVF to PVL.

Therefore, by equating the two Equations (3.1) and (3.3) we have the following result

at time t = 0:

c0 =
(1−R)

∑n
i=1D(0, ti)[PS(ti−1)− PS(ti)]

∑n
i=1D(0, ti)PS(ti)∆ti + (Ad/cN ]

. (3.4)

By inserting Equation (3.2) in to Equation (3.4), we get the following general formula

for the CDS premium under discrete time:

c0 =
(1−R)

∑n
i=1D(0, ti)[PS(ti−1)− PS(ti)]∆ti

∑n
i=1D(0, ti)PS(ti)∆ti + 0.5

∑n
i=1 D(0, ti)[PS(ti−1)− PS(ti)]

. (3.5)

The Equation (3.5) in continuous time resembles the following equation:

c0 =
(1−R)[−

∫ T
0 D(0, s) dPS(s)]

∫ T
0 D(0, s)PS(s) ds− 0.5

∫ T
0 D(0, s) dPS(s)]

. (3.6)

Before going into CDS price under Merton and other models that we have explained

in Chapter 2, the following example taken from Jhon Hull [18] will clarify the pricing

process of a single name CDS contract.

Example 3.0.8. For a reference entity, let us assume the probability of default on a

year conditional no early default,P(τ = ti|τ > ti−1), for the first year, is equal to 0.02

as given in Table 3.1. This table shows the unconditional default probabilities and the

survival probabilities for each year of the five year maturity of CDS. If PD is 0.02 for

the first year, then PS = 0.98. The value of PD during the second year is 0.02×0.98 =

0.0196 and the survival probability during the same year, PS = 0.98 × 0.98 = 0.9604,

and other probabilities in Table 3.1 are calculated by the same manner.

We assume risk-free rate is equal to 5% with continuously compounding and a recovery

rate is R = 0.4. Also we assume that defaults occur in the middle of a year, and CDS

premiums are paid once a year. We should calculate the present value of total CDS

premium (expected payment), total amount of expected payoff (default payment) and

the expected present value of accrual payment to find CDS price.
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Table 3.1: Unconditional default probabilities and survival probabilities.

Time(years) Default probability Survival probability

1 0.0200 0.9800
2 0.0196 0.9604
3 0.0192 0.9412
4 0.0188 0.9224
5 0.0184 0.9039

Table 3.2 shows the result of the calculation of present value of the expected CDS

premium payment c on notional principal $1. For instance, the possibility of second

payment of c is 96.04% for the second year. Therefore, the expected payment is

0.9604c, and its present value is equal to 0.9604c×exp(−0.05×2) = 0.96.04c×0.9048 =

0.8690c. The total present value of CDS price is 4.0704 c.

Table 3.2: Expected payment.

Time Survival probability Expected payment Discount factor PVF
(years)

1 0.9800 0.9800 c 0.9512 0.9322 c
2 0.9604 0.9604 c 0.9048 0.8690 c
3 0.9412 0.9412 c 0.8607 0.8101 c
4 0.9224 0.9224 c 0.8187 0.7552 c
5 0.9039 0.9039 c 0.7787 0.7040 c

Total 4.0704 c

The total present value of default payments calculated in Table 3.3 with the assump-

tion of a notional principal of 1$. Since we assume that default happens in the

middle of the year, there is 1.96% possibility for the second year. Default payment

for the second year is equal to 0.0196 × 0.6 × 1 = 0.0115 and its present value is

0.0115× exp(−0.05× 1.5) = 0.0109. Totally, we have $0.0511 as a total present value

of expected payoff or default payments.

Finally, Table 3.4 shows the calculations of the accrual payment that would take place

conditional on default occurrence. There is a 0.0196 chance of default through the

second year. Because of our assumption that default can take place in the middle of

a year, the accrual payment is 0.5c. Thus expected accrual payment for this year is

0.0196 × 0.5c and its present value is equal to 0.0098 × exp(−0.05 × 1.5) = 0.0091c.

39



Table 3.3: Expected payoff.

Time(years) Default prob. R Expected payoff Discount factor PVL
0.5 0.0200 0.4 0.0120 0.9753 0.0117
1.5 0.0196 0.4 0.0118 0.9277 0.0109
2.5 0.0192 0.4 0.0115 0.8825 0.0102
3.5 0.0188 0.4 0.0113 0.8395 0.0095
4.5 0.0184 0.4 0.0111 0.7985 0.0088

Total 0.0511

Total present value of accrual payments is 0.0426c.

Table 3.4: Expected accrual payment.

Time Default prob. Expected accrual pay. Discount factor PV of
(years) E(accrual pay.)

0.5 0.0200 0.0100 c 0.9753 0.0097 c
1.5 0.0196 0.0098 c 0.9277 0.0091 c
2.5 0.0192 0.0096 c 0.8825 0.0085 c
3.5 0.0188 0.0094 c 0.8395 0.0079 c
4.5 0.0184 0.0092 c 0.7985 0.0074 c

Total 0.0426 c

From Table 3.2 and Table 3.4 present value of CDS buyer will be 4.0704c+0.0426c =

4.1130 and this should be equal to total present value of default payments which is

equal to 0.0511. Therefore, CDS price c should be 0.0511
4.1130 = 0.0124, that is 124 basis

points(bp). Intuitively this means that a five year CDS contract written on reference

entity will has price equal to 0.0124 times the notional amount of underlying reference

entity per year.

3.1 CDS Pricing by Using Merton Model

As we stated before, pricing of a CDS requires the estimates of the risk-natural sur-

vival probability of an underlying reference entity. The price of the bonds issued by

the underlying firm provides the main source of the data for the estimation [20]. How-

ever, the bond issuance in the emerging markets like Turkish bond market are not

sufficiently developed. For this reason, in this work, we try to fill these bond prices

data gap by constructing CDS pricing methodology that relied on the data of the
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equity prices. In order to carry out this aim, we estimate the CDS price by using the

survival probabilities of the structural models. Since, so far, we have studied Merton

model and Black-Cox constant barrier model as structural model. First, we will use

Merton model to price a single name CDS contract.

Theorem 3.1.1. Given Equation (3.6), for t ≤ s ≤ T the price of a single name CDS

at time t under Merton Model can be calculated by the following formula:

ct =

(1−R)[−
∫ T
t D(t, s)φ(d2)

log(L/Vt)+(r− 1

2
σ2)(s−t)

2σ(s−t)
3
2

ds]

∫ T
0

∫ d2
−∞D(t, s)φ(v) dvds − 0.5

∫ T
0 D(t, s)φ(d2)

log(L/Vt)+(r− 1

2
σ2)(s−t)

2σ(s−t)
3
2

ds
(3.7)

where D(t, s) is the discount factor that equal to present value of one unit of money

with maturity s − t, R is the recovery rate and φ is the density function of standard

normal distribution, that is φ(v) = (1/
√
2π) exp(−v2/2).

Proof. By inserting Equation (2.26) in to the Equation (3.6) and taking the derivative

with respect to s, we will get the following equation:

ct =
(1−R)[−

∫ T
t D(t, s) dΦ(d2)]

∫ T
t D(t, s)Φ(d2) ds

. (3.8)

Since Φ(d2) =
∫ d2
−∞ φ(v)dv, by Fundamental Theorem of Calculus we have dΦ(d2) =

φ(d2)dd2. Therefore, we can rewrite Equation (3.8) as follow:

ct =
(1−R)[−

∫ T
t D(t, s)φ(d2)dd2]

∫ T
t

∫ d2
−∞D(t, s)φ(v) dvds

, (3.9)

where φ(v) = 1√
2π

exp(−1
2v

2). Note that dd2 6= ds.

To make it clear we have to compute dd2
ds . As it was stated before,

d2 =
A+B(s− t)

σ
√
s− t
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for A = log(Vt/L) and B = r − (1/2)σ2

dd2
ds

=
B
√
s− t− σ[A+B(s−t)]

2
√
s−t

σ2(s− t)

=
2Bσ(s− t)− σ[A+B(s− t)]

2σ2(s− t)
3

2

=
2Bσ(s− t)− σA− σB(s− t)

2σ2(s − t)
3

2

=
−σA+ σB(s− t)

2σ2(s− t)
3

2

=
−A+B(s− t)

2σ(s − t)
3

2

=
log( L

Vt
) + (r − 1

2σ
2)(s− t)

2σ(s − t)
3

2

.

By inserting the last result in Equation (3.9), we get the complete proof.

One can price single name CDS just by applying Equation (3.7) to the data of firm

asset values, liability values, over night (O/N) LIBOR rate, the asset value volatility

of the firm and average maturity of firm’s liabilities. In Chapter 2, we have explained

how one can estimate asset volatility from equity volatility if the return of equity

observable or firm stocks are traded at exchanges. These models supply the most

naive results considering the firm value models.

3.2 CDS Pricing by Using Black-Cox Model

In order to price CDS under Black-Cox model, we can use same methodology that we

have already use for Merton model. The only difference between these two models

is the difference of the survival probabilities under each model. Under Black-Cox

constant barrier model the survival probability is given by Equation (2.43).

Theorem 3.2.1. Let denote recovery rate with R, the discount factor with D(t, s),

the value of the firm at time t with Vt and magnitude of constant barrier (value of

liability) with L, then under Black-Cox constant barrier model price of single name

CDS price or premium at time t can be estimated by following equation:

ct =

(1−R)

[

−
∫ T
t D(t, s)φ(d3)dd3 +

∫ T
t D(t, s)

(

L
Vt

)
2r

σ2−1
φ(d4)dd4

]

∫ T
t

∫ d3
−∞ D(t, s)φ(v)dvds −

∫ T
t

∫ d4
−∞ D(t, s))

(

L
Vt

)
2r

σ2−1
φ(v)dvds+X

, (3.10)
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where

X = −0.5

[

∫ T

t
D(t, s)φ(d3)dd3 +

∫ T

t
D(0, s)

(

L

Vt

)
2r

σ2−1

φ(d4)dd4

]

OR X = Ad/cN for accrual payment Ad and

dd3 =
log(L/Vt) + (r − 1

2σ
2)(s − t)

2σ(s− t)
3

2

ds

and

dd4 =
log(Vt/L) + (r − 1

2σ
2)(s − t)

2σ(s− t)
3

2

ds

Proof. The proof is similar to the proof of Theorem 3.1.1. We just need to calculate

dd3 and dd4. As it can be realized d3 is equal to d2 used in Merton model. Therefore

we can write dd3 immediately as

dd3 =
log(L/Vt) + (r − 1

2σ
2)(s − t)

2σ(s − t)
3

2

ds.

Since

d4 =
ln(L/Vt) + (r − 1

2σ
2)(s− t)

σ
√
s− t

we can get dd4 by just taking A = log(L/Vt) instead log(Vt/L) as we took in proof of

Theorem 3.1.1. Thus, we get

dd4 =
log(Vt/L) + (r − 1

2σ
2)(s − t)

2σ(s − t)
3

2

ds.

As we have explained for the Merton model, one can price single name CDS just by

applying Equation (3.10) to data of inputs. CDS price with this model probably would

give better results than the Merton model because of its more realistic assumptions

about the market. But the accurateness of the results obviously needs calibration.

3.3 CDS Pricing by Using Intensity Based Models

One can price CDS contract under intensity based models just by inserting probability

survive PS calculated under these reduced form models into the Equation (3.6). Under

different behaviour of λ that leads to different survival probabilities, we get a different

CDS premium or price.
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Theorem 3.3.1. Let us denote discount factor with D(t, s) which is equal to exp (−r(s− t))

given, then under reduced-form models, the CDS premium can be estimated by using

the following formula, for general form of default intensity λt:

ct =

(1−R)

[

−
T
∫

t
D(t, s) dPS

]

∫ T
t D(t, s)E

(

exp(
∫ s
t λudu)

)

ds−
T
∫

t
D(t, s) dPS

, (3.11)

where

PS(t) = E

{

exp

(

−
∫ t

s
λsds

)}

as it is given in Equation (2.17).

Proof. The proof of the theorem can be done by just inserting Equation (2.18) into

Equation (3.6).

Following example from J. Cariboni and W. Schoutens [11], shows how we can estimate

survival probability for a firm from price of traded CDS contract by using Jarrow-

Turnbull model, which is one of the fundamental reduced form model.

Example 3.3.2. Let assume the default time τ is exponentially distributed with

parameter λ. Then given survival probability PS(t) = e−λt, we get the following

equation:

c0 =
(1−R)[λ

∫ T
0 D(0, s)e−λs ds]

∫ T
0 D(0, s)e−λs ds

= λ(1−R)

by substituting the survival probability into Equation (3.11).

If we have traded CDS on market with price 90 bps (0.0090) and underlying reference

entity has recovery rate R = 50, we can estimate probability of default Pd of entity

for next five year λ = (c/1 −R) = (0.00090/0.5) = 0.18 and PS(5) = e−λt ≈ 1− λt =

1 − 0.18 × 10 = 0.91. Since PD(5) = 1 − PS(5), we have PD(5) = 1 − 0, 91 = 0.09 or

9%.

If we have data about intensity λ and recovery rate R, then we can price a CDS

contract by using reduced form models as indicated in Equation (3.11). This means

two inputs are enough to price a single name CDS contact under these models. This

property as we assume, makes these models more applicable.
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CHAPTER 4

INTENSITY ESTIMATION THROUGH THE

STRUCTURAL MODELS

So far, we have studied the firm-value models (structural models) which model default

by utilizing the process of the issuer asset value process. Default is triggered when

assets, or some function thereof, fall below (or hit ) some boundary level. And also we

have explained intensity-based models which leave aside the question of what exactly

triggers the default event, instead we deal with model factors influencing the default

event [27].

Intensity-based models are important for two main reasons to be incorporated into

study of credit risk. Initially, these models are the most suitable ways of connection

between credit scoring models and the models for pricing default risk. In order to

incorporate firm’s asset values with other relevant indicator of default, we could use

default prediction models and ask which variables are relevant for predicting the price.

Therefore, we need to understand the variable evaluation of these covariates and we

should explain how they influence the default probabilities, and intensity-based models

are the natural framework for doing this. Secondly, the entire machinery of default-free

term-structure modelling comes into play by the help of the mathematical machinery

of intensity models which means that econometric specifications from term-structure

modelling and tricks for pricing derivatives can be transferred to defaultable claims.

Additionally, some claims, such as basket CDSs, whose equivalent is not readily found

in ordinary term-structure modelling, are also conveniently handled in this setting

[27].

We have already explained in Chapter 2 what intensity-based models generally are.
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Here, we get over the hazard rates (default intensities) once again and we estimate the

default intensity approximately from structural models, namely, Merton and Black-

Cox models. Let a positive random variable τ have a distribution that can be described

in terms of a hazard function h, that is,

P(τ > t) = exp

(

−
∫ t

0
h(s)ds

)

.

Then as we mentioned in Chapter 2:

lim
δt↓0

P(τ ≤ t+ δt|τ > t) = h(t);

therefore conditional probability of default in a small time interval containing t is

approximately equal to h(t)δt [27].

In general model setting literature, there are factors other than time passing that have

effects on default probability of a firm which has survived up to time t. As we assume,

the firm does not default between time interval [0, t], we have all information available

at time t, which can be defined as a filtration (Gt)t∈R+ , which is a sigma algebra that

satisfies property Gs ⊆ Gt for time s and t such that s < t. Therefore, we can write

the conditional default probability in reduced form models as:

P(τ > t|Gt) ≈ I{τ>t}λ(t)∆t.

As it can be calculated from Table 4.1, the probability of a bond rated Baa bond

for the first year is 0.0181 % and it is equal to 1.434 − 0.930 = 0.504% during the

fourth year. The survival probability for the firm until the end of fourth year is equal

to 100 − 1.434 = 98.566%. The probability that it will default during fourth year

conditional on no earlier default is equal to 0.00504/0.98566 = 0.0051%. That is,

P(τ = 4|τ > 3) = 0.0051% or λ4 = 0.0051%.

Table 4.1: Average cumulative default rates (%), 1970-2006 [18].

Time/Rates 1 2 3 4 5 7 10 15 20
Aaa 0.000 0.000 0.000 0.026 0.099 0.251 0.521 0.992 1.191
Aa 0.008 0.019 0.042 0.106 0.177 0.343 0.522 1.111 1.929
A 0.021 0.095 0.220 0.344 0.472 0.759 1.287 2.364 4.238
Baa 0.181 0.506 0.930 1.434 1.938 2.959 4.637 8.244 11.362
Ba 1.205 3.219 5.568 7.958 10.215 14.005 19.118 28.380 35.093
B 5.236 11.296 17.043 22.054 26.794 34.771 43.343 52.175 54.421
Caa-C 19.476 30.494 39.717 46.904 52.622 59.938 69.178 70.870 70.870
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Definition 4.0.3. Let define hazard function of τ as Γ : R+ → R
+, for every t ∈ R

+,

Γ (t) = − log(1− F (t)),

where F is cumulative distribution function that defined in Definition 2.1.8.

Remember that the Γ function is also defined in Chapter 2.

Lemma 4.0.4. If the cumulative distribution function F defined in Definition 2.1.8 is

absolutely continuous with respect to the Lebesgue measure, then the hazard function

Γ is also absolutely continuous. Specifically,

λt =
f(t)

1− F (t)
. (4.1)

Proof. The proof is just a consequence of Equation (2.13).

As we mentioned before, λt is called hazard rate or intensity of default time τ . By

interpretation of λt in Lemma 4.0.4, and definition of hazard function as we have

already show in Chapter 2 we can write:

P(τ > t) = 1− F (t) = exp(−Γ (t)) = exp

(

−
∫ t

0
λudu

)

.

The hazard rate λt can be interpreted by using survival probability functions that we

calculated under structural credit risk models, Merton model and Black-Cox constant

barrier model.

Theorem 4.0.5. Default intensity λt can be approximated by using cumulative distri-

bution function and probability density function of default probabilities under Merton

model for s, t ∈ [0, T ] and t < s as follows:

λt ≈
dΦ(−d2)
Φ(d2)

≈
φ(−d2) log(Vt/L)−(r− 1

2
σ2)(s−t)

2σ(s−t)
3
2

Φ(d2)
, (4.2)

where

d2 =
log(Vt/L) + (r − 1

2σ
2)(s− t)

σ
√
s− t

.

Proof. As we have already shown, the cumulative distribution function of default

under Merton model is equal to Φ(−d2) and 1 − Φ(−d2) = Φ(d2). The result will

follow after applying Lemma 4.0.4.
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Because of the filtration differences between filtrations generated by λt and firm value

process Vt, Theorem 4.0.5 is just gives a computational approximation. Also, this

is true for the our next Theorem 4. Therefore, in a similar manner, we can write

the following theorem to estimate approximately the default intensity by using the

distribution function of Black-Cox model.

Theorem 4.0.6. Under Black-Cox constant barrier model, we can estimate default

intensity by the following equation:

λt ≈
φ(−d3) log(

Vt

L
)−(r− 1

2
σ2)(s−t)

2σ(s−t)
3
2

+
(

L
Vt

)
2r

σ2−1
φ(d4)

log(
Vt

L
)+(r− 1

2
σ2)(s−t)

2σ(s−t)
3
2

Φ (d3)−
(

L
Vt

)
2r

σ2
−1

Φ (d4)

, (4.3)

where Φ is the cumulative distribution function of a standard normal random variable,

φ is the density function of same random variable, r short interest rate, Vt is the initial

value of firm assets and L is the value of the predetermined constant barrier.

Proof. We have estimated the survival and the default probability functions of Black-

Cox model in Chapter 2. That is, the survival probability under this model is:

PS = Φ(d3)−
(

L

Vt

)
2r

σ2−1

Φ (d4) ,

where

d3 =
ln(Vt

L ) + (r − 1
2σ

2)(u− t)

σ
√
u− t

,

and

d4 =
ln( L

Vt
) + (r − 1

2σ
2)(u− t)

σ
√
u− t

.

By substituting the probability of survive PS into Equation 4.1 that we have defined

in Lemma 4.0.4, we get the result.

Because of having more realistic assumptions, we can claim that the intensity esti-

mated from the Black-Cox model discloses real market intensity more than Merton

model. However, these intensities estimated by both Merton and Black-Cox model

should be calibrated with real data from the market to ensure about the prediction

ability of each model. In this thesis, we try to show a way that how default intensi-

ties can be estimated from the equity based models, namely, structural models. This

is important for the market which is not developed enough regarding the corporate
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bond issuance. For example, although most of the emerging markets have sufficiently

well improved stock market, their bond markets are generally shallow. Therefore, by

estimating the default intensities from structural models and using equity prices data,

we can calculate cumulative default for a risky corporation or a firm. That is, by this

contraction we can rate the firms of the market that have not enough bond prices

data.
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CHAPTER 5

CONCLUSION

In this thesis, we have examined the need of the credit risk management and the

foundation of the advanced credit risk models. After a general introduction, we have

started from intensity-based models, that was firstly established by Jarraw and Turn-

bull [22] and we have shown how to the default intensity can be found from the bond

and the similar security prices. We have clarified how to compute the survival prob-

abilities under these reduced-form models. Next, we have explained the firm value

or the structural model starting from the Merton model that examined in [29]. In

this model, to value the equity of the firm, Black-Scholes option pricing methodology

is used. In other words, we have explained the structural models based on Merton

model or Black-Scholes option pricing formula and intensity based models (reduced-

form) based on counting processes like Poisson process. We have proved the Merton

model formula which is used to estimate the equity price of a firm by using expectation

under risk natural probability measure. Moreover, we have provided an explanation

about how to evaluate volatility of a firm assets that can not be observed in the mar-

ket by using observed stock return volatility under Merton model. We try to estimate

the survival probability for a firm in each model (structural and reduced form). We

have given detailed proofs for survival probability formulations under each model.

Especially in Black-Cox constant barrier model, we have used the reflection principle

of Brownian motion and prove the joint probability of drifted Brownian motion and

its maximum and minimum to evaluate default and survival probabilities of a firm

for a given maturity which makes basic difference between this model and Merton

model. After these issues, we have explained the basic structure of a single name CDS

contract and we have shown the basic relation between credit risk of a company and
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its CDS price. By using general pricing concept that is given in J. Cariboni and W.

Schoutens[11], and substituting the survival probabilities into the general CDS pric-

ing formula for each model that we have examined before we have estimated the CDS

price for each of these models. Furthermore, we have proposed a CDS pricing formula

under the general intensity-based models framework. Finally, we have utilized the haz-

ard function, which is defined by T. Bielecki, M. Jeanblanck, and M. Rutkowski[5],

to estimate the default intensities. Because of the filtration differences, we have just

approximated the default intensities by means of the survival probabilities that we

have estimated for each structural credit risk models, Merton and Black-Cox constant

barrier.

We can conclude that intensity models and structural models that we have used to

price CDS contracts are the fundamental IRB credit risk models. Although they are

used by national and international banking and market regulators, other models that

based on more realistic assumptions may give better results. However sometimes,

naive models can give better result than complex models in relation with market

structure. The strength of these models are their simplicity and their intuitive nature.

On the other hand, some of unrealistic and insufficient assumptions that these models

relaid on, can be considered as the weaknesses of these models.

In short, considering riskiness of the credit market and its destructive effects, as we

have already observed in USA credit crisis, understanding credit risk sources and grasp

how to manage this risk, is really important. We hope that we could have explained

the building blocks of credit risk models and credit risk management in these work.
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[36] O. Uğur, An Introduction to Computational Finance, Imperial College, London
WC2H 9HE, 1 edition, 2009.

[37] Z. Wei, Valuation of loan cds under intensity based model, Stanford University,
2007.

54



APPENDIX A

Preliminaries

A.1 Computations of Conditional Expectations

Proposition A.1.1. Let B −measurable random variable X taking values in (E, ν)

and Y, a random variable independent of B with values in (F,F). For any Borel

function Ψ non-negative (or bounded)on (E × F, ν ⊗ F) the function ψ defined by

∀x ∈ E ψ(x) = E (Ψ(x, Y ))

is a Borel function on (E, ν) and we have

E (Ψ(x, Y )|B) = ψ(x) a.s.

.

In other words we can compute E (Ψ(x, Y )|B) as if X was a constant. For the proof

see [26].

A.2 Hitting Time Distribution

We define the first passage time (hitting time) at which Brownian motion hit the

barrier b as:

τb = inf{t ≥ 0,Wt(w) = b}

τb. Cumulative distribution of hitting time can be written as follows:

P
0[τb < t] = P

0[τ < t,Wt ≥ b] + P
0[τb < t,Wt < b]

= P
0[Wt ≥ b] + P

0[τb < t,Wt < b].
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Since by definition of τb, we have τb < t implies thatWt ≥ b and by reflection property

of Brownian motion we can write the following equation:

P
0[τb < t,Wt < b] = P

0[τb < t,Wt ≥ b]

= P
0[Wt ≥ b].

Therefore, we finally get the following result:

P
0[τb < t] = 2P0[Wt ≥ b]

. Since Wt ∼ N(0, t), that is, it is normally distributed with mean zero and variance

t we can write P
0[τb < t] as follow:

P
0[τb < t] = 2P0[Wt ≥ b] = 2P[z >

b− 0√
t
] = 2P[z >

b√
t
]

=
2√
2π

∫ ∞

b√
t

exp(−z
2

2
)dz.

Thus, τb has following cumulative distribution function:

F (t) =

√

2

π

∫ ∞

b√
t

exp(−z
2

2
)dz (A.1)

∂F (t)

∂t
=

√

2

π

[

0−
(

− e
b
2

2t
b

2
t−

3

2

)

]

=

√

2

π

|b|
2
t−

3

2 e−
b
2

2t

=
|b|√
2πt t

exp(−b
2

2t
),

which means hitting time τb has following probability density function:

f(t) =
|b|√
2πt3

exp(−b
2

2t
). (A.2)

A.3 Mean Value Theorem for Integral

If f is a continuous on interval [a, b] then there exists number c ∈ [a, b] such that

following formula holds:
1

b− a

∫ b

a
f(x) dx = f(c). (A.3)
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A.4 Girsanov Theorem and Risk Natural Pricing

Theorem A.4.1. Girsanov Theorem: Let (Ω,F,P) be a probability space and Wt

be a standard Brownian Motion under probability P and let θt , 0 ≤ t ≤ T be an Ft

measurable process satisfying
∫ T
0 θ2 ds <∞ a.s. and such that the process

Lt = e−
∫
t

0
θs dWs− 1

2

∫
t

0
θ2s ds

is a martingale with E[Lt] = 1. Then under new probability measure P
∗ with density

LT relative to P,the process (W ∗
t )0≤t≤T defined by

W ∗
t =Wt +

∫ t

0
θs ds,

is a standard Brownian Motion.

Following example is important for understanding of Girsanov Theorem.

Example A.4.2. Let define the market price of risk as θt =
µ−r
σ then by Girsanov

Theorem, we can obtain the standard Brownian motion under the risk-natural prob-

ability as follows:

W ∗
t =Wt +

∫ t

0

µ− r

σ
ds

=Wt +
µ− r

σ
t =⇒ dW ∗

t

= dWt +
µ− r

σ
t.

Therefore, the stochastic differential equation of asset price can be written under the

risk natural probability P
∗ as follows:

µdt+ σdWt = r dt+ σdW ∗
t

⇒ dVt = Vt{µdt+ σdWt}

= Vt{rdt+ σdW ∗
t }.

And by Ito integral, we get asset price under P∗

Vt = V0 exp

(

(r − 1

2
σ2)t+ σW ∗

t

)

, (A.4)

and if there is a continuous dividend payment q then we have

Vt = V0 exp

(

(r − q − 1

2
σ2)t+ σW ∗

t

)

. (A.5)
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A.5 Modigliani-Miller Theorem

Theorem A.5.1. Let VU denotes the value of un-levered firm and and VL denote

value levered firm, then VU = VL. That is,there is no any affects of leverage on the

value of the firm. In other words, the value of the firm is invariant to its capital

structure.
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