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ABSTRACT 

 

 

BALLISTIC DESIGN OPTIMIZATION OF THREE-DIMENSIONAL GRAINS  
USING GENETIC ALGORITHMS 

 

 

YÜCEL, Osman 

M. S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Halûk AKSEL 

 

September 2012, 111 pages 

 

 

 

Within the scope of this thesis study, an optimization tool for the ballistic design of 

three-dimensional grains in solid propellant rocket motors is developed. The 

modeling of grain geometry and burnback analysis is performed analytically by 

using basic geometries like cylinder, cone, sphere, ellipsoid, prism and torus. For 

the internal ballistic analysis, a quasi-steady zero-dimensional flow solver is used. 

Genetic algorithms have been studied and implemented to the design process as an 

optimization algorithm. Lastly, the developed optimization tool is validated with 

the predesigned rocket motors.  

 

 

Key-words: Solid Rocket Motor, Grain Burnback Analysis, Internal Ballistics 

Design, Optimization, Genetic Algorithms 
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ÖZ 

 

 

ÜÇ-BOYUTLU YAKIT ÇEKĐRDEKLERĐNĐN GENETĐK ALGORĐTMALAR 
ĐLE BALĐSTĐK TASARIM OPTĐMĐZASYONU 

 

 

YÜCEL, Osman 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Halûk AKSEL 

 

Eylül 2012, 111 sayfa 

 

 

 

Bu tez çalışması kapsamında, katı yakıtlı roket motorlarında üç boyutlu yakıt 

çekirdeğinin balistik tasarımında kullanılmak üzere bir en iyileme aracı 

geliştirilmiştir. Yakıt çekirdeği geometrisinin modellenmesi ve geriye yanma 

analizleri; silindir, koni, küre, elipsoit, prizma ve torus gibi basit geometrik 

şekillerin kullanılması ile analitik olarak gerçekleştirilmiştir. Đç balistik analizi için 

sıfır-boyutlu yarı-kararlı akış çözücü kullanılmıştır. Genetik algoritmalar üzerinde 

çalışılmış ve en iyileme algoritması olarak tasarım sürecine uygulanmıştır. Son 

olarak, daha önce tasarlanmış roket motorları kullanılarak geliştirilen en iyileme 

aracı doğrulanmıştır. 

 

Anahtar Kelimeler: Katı Yakıtlı Roket Motoru, Geriye Yanma Analizi, Đç Balistik 

Tasarım, Optimizasyon, Genetik Algoritmalar 
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CHAPTER 1 

CHAPTERS 

1 INTRODUCTION 

INTRODUCTION 

 

 

 

 

Solid propellant rocket motor (SRM) is a class of rocket propulsion systems, which 

uses chemical energy from the combustion reaction of propellant chemicals. The 

propellant consisting of fuel and oxidizer chemicals is stored in the combustion 

chamber in solid phase and enables the rocket motor to operate in all environmental 

conditions. Solid rocket motors are widely used in military and civil applications 

since they have relatively simple design in comparison to other propulsion systems, 

are easy to integrate with a flight vehicle and require little servicing [1]. 

 

Principal components of the SRM shown in Figure 1.1 are given as follows: 

 

1. Grain: The propellant having a special geometric form in motor case is 

called propellant grain. Grain is the chemical energy source of the propulsion 

system and generates high temperature and high pressure gas by ignition. 

2. Igniter: Igniter produces the required pressure and thermal energy for the 

ignition of the grain.  

3. Motor Case: The main structural part of the combustion chamber 

withstanding the high internal pressure resulting from the propellant 

combustion.  

4. Nozzle: High pressure gas products are expanded to ambient pressure 

through nozzle. In this way, chemical energy of the propellant is converted to 

kinetic energy and thrust is obtained. 
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5. Insulation: The motor case and other structural components are protected 

from the high temperature of the combustion gases by insulation whose 

material has low thermal conductivity and high heat capacity.  

 

 

Figure 1.1 Main Parts of a Solid Propellant Rocket Motor 

 

In the design process of solid rocket motor, after the performance requirements (total 

impulse, average thrust, burning time, thrust-time history, maximum thrust, 

maximum chamber pressure) and geometrical and weight constraints are defined, the 

conceptual design phase is started. In this phase, alternative design concepts meeting 

the design requirements are developed by selecting different structural materials, 

propellant type and grain configurations. Then, alternative design concepts are 

evaluated in terms of performance, manufacturability and cost. At the end of this 

phase, the best evaluated alternative is selected and the preliminary or detailed 

design phase is started. 

 

After selecting the propellant type, material and grain configuration, detailed grain 

geometry is modeled. In this process, the grain geometry is evaluated in terms of 

ballistic and structural performance. After an iterative study between internal flow 

and structural analysis, the best geometry is chosen. 

 

While modeling the grain geometry for the ballistic performance, generally the 

designers build up initial grain geometry with their knowledge and experience, and 

then try to find the solution in design space by changing the design variables 
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manually by trial-and-error method. This ballistic design process, shown in Figure 

1.2, ends when a grain geometry meeting the design requirements is found. Then the 

geometry is analyzed structurally.  

 

 

Figure 1.2 Ballistic Design Process of a SRM 

 

In this thesis study, a grain design optimization tool is developed which offers an 

automated approach for the ballistic design process of 3-D grain configurations. 
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1.1 LITERATURE SURVEY 

 

Literature review is based on the subject of automating the design process of solid 

rocket motors and finding the optimal grain design to meet certain performance 

criteria. This has been the subject of search since the 1960’s; however, up to the 

2000’s, a limited treatment of this subject appears in the literature [2].  With the 

advances in computing technology, the subject has recently become a hot topic in 

the SRM design in the last decade. 

 

The study of Billheimer [3] in 1968 was one of the first attempts at using an 

automated procedure to design a SRM. The physical modeling used in this study 

was limited because of the computational resources available at that time; however, 

this paper really acknowledged the importance of automating the design process for 

SRMs [2]. 

  

Woltosz [4] tried to find optimal solid grain geometry by using a pattern search 

technique. Woltosz determined five critical design dimensions which maximize the 

total impulse-to-motor weight ratio while meeting a specified minimum achieved 

velocity for a specific vehicle. This same pattern search technique was also used by 

Foster and Sforzini [5] in order to find the optimum values of five primary igniter 

design parameters. The objective in this study was to minimize the differences 

between computed and desired solid rocket motor ignition characteristics.  

 

 

Figure 1.3 Design Variables of SRMDOP [6] 
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Sforzini [6] developed a computer program, called Solid Rocket Motor Design and 

Optimization Program (SRMDOP), by utilizing the same pattern search technique 

used by Woltosz for the SRM design.  He modeled the grain geometry with fifteen 

geometric variables shown in Figure 1.3 and used analytical expressions to calculate 

the grain geometry during each phase of grain regression. By several modifications 

of the simplified ballistic analysis program described in detail in Reference [7], he 

performed ballistic performance evaluation of each design and tried to find the set of 

design parameters that will give the predicted thrust-time trace that most nearly 

matches a desired thrust-time trace as given in Figure 1.4. 

 

 

Figure 1.4 Chamber Pressure versus Time from Test Data and from SRMDOP [6] 

 

Clegern [8] developed a program for the conceptual design and optimization of 

SRMs. Five main parameters; which are solid propellant, structure material, 

chamber pressure, outer motor diameter and nozzle half-angle, were studied as 

design parameters. Optimizing the design is done through an array solution 

algorithm comparing multiple designs based on the user entered data. Minimizing 

the total mass was taken as the objective of the study.   
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Anderson et al. [2] used genetic algorithms to design solid rocket motors as a 

component within an overall missile system. Totally twenty-four parameters shown 

in Appendix A were used as design variables; nine variables for SRM design, 

fourteen for external shape of the vehicle and one for launch angle verticality. In 

order to test the ability of genetic algorithms to work efficiently within a 

multidisciplinary framework; multiple goals, such as maximized range, minimized 

g-loading, minimized takeoff weight, and maximized fuel volume were used. Best 

design solution, maximizing the range and minimizing maximum g-load, is shown 

in Figure 1.5. 

 

 

Figure 1.5 Best Design After 200 Generation [2] 

 

Clay [9] developed a three stage optimization process for SRM design; 

approximation, global optimization, and high-fidelity optimization. For this 

optimization methodology; he employed with DOE, genetic algorithms and the 

BFGS first-order gradient-based algorithm. Interactive Missile Design (IMD) 

software developed by Lockheed Martin, Missiles and Fire Control was used 

geometry modeling and performance analysis. In the one of the test cases, five 

geometric parameters of a multi-cylinder grain configuration shown in Figure 1.6 

were optimized by finding a grain design whose thrust versus time data fit best on a 

desired data. 
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Figure 1.6 Multi-Cylinder Optimized Grain and Thrust versus Time Curves [9] 

 

Nisar and Guozhu presented a methodology for design optimization of wagon wheel 

grain [10] and for design optimization of SRM finocyl grain [11]. In both studies, 

they utilize a hybrid optimization technique by using genetic algorithms for global 

convergence integrated with sequential quadratic programming for further local 

convergence of the solution thus attaining the final optimal solution. In the latter 

study, they modeled the grain geometry parametrically with seventeen basic 

geometries given in Appendix B and calculated the burning surface area during each 

phase of grain regression by using analytical method given in Reference [18]. For 

the ballistic performance evaluation, lumped parameter method was used and the 

objective of optimization was determined as minimizing the propellant mass while 

meeting the design constraints. 

 

Kamran and Guozhu [12] studied on design and optimization of 3-D radial slot grain 

configuration by using genetic algorithm. They used CAD software for geometry 

modeling and surface regression. Similar to Nisar’s study, lumped parameter method 

was utilized for the ballistic performance evaluation. Details of this study is given in 

Section  . 

 

Açık [13] developed a design and optimization tool for 2-D grain configurations by 

using complex method. In her study; star, slot, tubular and slotted-tube grains were 

employed. For the ballistic performance evaluation; an internal ballistic solver that 

uses 0-D quasi-steady model for the flow in combustion chamber and steady 1-D 
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isentropic flow equations in the nozzle, were utilized. In Section 5.1.1, the test case 

in her study is used for comparison of the performance of the tool developed by this 

thesis study.  

 

Kamran and Guozhu [14] applied an integrated approach using hyper-heuristic 

method based on genetic algorithm, simulated annealing and particle swarm method 

in optimization of solid rocket motor. They aimed to devise an algorithm for solving 

a problem that is independent of problem scenario. Geometric modeling of grain, 

chamber and nozzle was done by CAD software and optimization tool tried to 

minimize the total mass of the SRM  
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1.2 SCOPE OF THE THESIS 

 

The purpose of this study is to develop a grain design optimization tool which offers 

an automated approach for 3-D grains in ballistic design process. For a given 

objective, optimization tool tries to find the optimum propellant grain geometry and 

nozzle geometry. This optimization process will aid the solid rocket motor design 

engineer in making the best initial design selections and thereby reducing the overall 

design cycle time of a project. 

 

Optimization tool developed in this study consists of 3 main modules which are 

geometric modeling and burnback analysis of the propellant grain, ballistic 

performance prediction of solid rocket motor and the optimization algorithm. 

 

3-D grains are geometrically modeled by using simple geometries like cylinder, 

cone, sphere, ellipsoid, prism and torus whose surface regression can be calculated 

easily. Then, burnback analysis is conducted analytically by enlarging or shrinking 

the volumes of these geometries and computing the burning surface area  

 

For the performance prediction of a rocket motor, the internal ballistic solver 

developed by Açık [13] is used. The solver calculates the ballistic performance 

parameters by using 0-D quasi-steady flow equations in the combustion chamber 

and 1-D isentropic flow equations in nozzle. 

 

As an optimization algorithm, genetic algorithms which are derivative-free, global 

search methods are utilized. Different genetic operators are studied in order to find 

proper optimization parameters giving the best solution for the grain design 

problem. 

 

The developed optimization tool is validated with the results of previously designed 

rocket motor data. 
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1.3 CONTENTS OF THE THESIS REPORT 

 

In Chapter 2, details of the grain burnback analysis are explained. Firstly, commonly 

used 2-D and 3-D grain configurations are introduced. Secondly, burnback analysis 

methods in literature are given in three groups; analytical, numerical and drafting 

methods. Then, 3-D analytical burnback code (BB3D) which is developed within the 

scope of this thesis study is explained. Lastly, the validation of the BB3D code is 

presented. 

 

Chapter 3 contains the detailed description of the internal ballistic solver. At first, 

the fundamental ballistic parameters of a SRM are introduced. Then, the main 

assumptions and governing equations of the solver are presented in this chapter. 

 

In Chapter 4, genetic algorithms are discussed in detail. Optimization methods in 

literature are summarized; then, the theory of genetic algorithms and developed 

genetic optimizer code (GENOP) is presented. Lastly, the optimization code is 

validated with the cases whose solutions are known. 

 

The details of the developed grain design optimization tool and its validation are 

presented in Chapter 5.  
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CHAPTER 2 

2 GRAIN BURNBACK ANALYSIS 

 

GRAIN BURNBACK ANALYSIS 

 

 

 

 

2.1 INTRODUCTION 

 

As the propellant burns, the burning surface of the grain moves in a direction normal 

to the surface. This regression is called burnback. Because of the grain burnback, 

burning surface area of the grain and control volume of the flow change during 

rocket motor operation. Since these parameters directly affect chamber pressure, 

initial geometry of the grain and its change during action time are the crucial 

properties for the performance of the rocket motor. For this reason, grain designers 

perform the grain burnback analysis in order to determine the change of the grain 

geometry as the propellant burns. 

 

Grain burnback analysis is a pure geometrical analysis which is the offsetting the 

burning surfaces through their normal direction, modifying the surfaces according to 

their intersection/interference and generating the new geometry. The offset distance 

is actually the burnt propellant thickness which is called “web”. After the burnback 

analysis, the obtained data like “web versus burn area, perimeter and port volume” 

are given to performance prediction analysis.  

 

In this chapter, firstly, commonly used two-dimensional (2-D) and three-

dimensional (3-D) grain configurations are introduced. Secondly, burnback analysis 

methods in literature are given as classified in three groups; analytical, numerical 

and drafting methods. Then, 3-D analytical burnback code (BB3D) which is 
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developed within the scope of this thesis study is explained. Lastly, the validation of 

the code is presented. 

 

2.2 GRAIN CONFIGURATIONS 

 

Each grain configuration gives different pressure and thrust profile such as neutral, 

progressive, regressive or boost-sustain (Figure 2.1). According to motor 

requirements, designer should choose the appropriate configuration. In this section, 

commonly used grain geometries will be introduced in two groups as 2-D and 3-D 

grains. 

 

 

Figure 2.1 Classification of Grains According To Their Pressure-Time 

Characteristics [1] 

 

2-D grain configurations are the grains that burn only longitudinally or only radially. 

On the other hand, 3-D grain configurations are commonly combination of 2-D 

grains, which combine both radial and longitudinal burning [1]. 

  

2.2.1 2-D Configurations 

 

End burning, internal burning tube, star and wagon wheel grains are given as 

commonly used 2-D grains in the following sections. 
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2.2.1.1 End Burning Grain 

 

End burning grain, given in Figure 2.2, is the simplest grain configuration which is 

defined by two variables: length L and diameter D. 

 

 

Figure 2.2 End Burning Grain 

 

The propellant can only burn from the aft end of the grain and the burning surface 

merely recedes in the longitudinal (axial) direction. Thus, the burning area is defined 

as follows: 

 

4

. 2D
Ab

π
=          (2.1) 

 

Since the burning area, calculated using Equation (2.1), is constant during the burn 

time, it provides neutral thrust-time curve. However, in larger motors (over 600 mm 

diameter) burning rate near propellant/liner interface becomes higher and the 

burning surface forms a conical shape. For this reason, these end burners in large 

motors show a progressive thrust curve [1]. 

 

The amount of propellant that can be placed in a given cylindrical motor case is the 

highest when the end burning grains are used. Therefore, the high volumetric 

loading (0.90-0.98) is the main advantage of these grains. On the other hand, the 

main drawback is low thrust level when compared to the size of the motor. Hence, 
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end burners typically are applicable to missions requiring relatively long durations 

and low thrust level [15]. 

 

2.2.1.2 Internal Burning Tube Grain  

 

The internal burning tube grain, given in Figure 2.3, is widely used grain 

configuration which is defined by a length L and two diameters Dout and Dport. 

 

 

Figure 2.3 Internal Burning Tube Grain 

 

When the head end and aft end of the grain is restricted to burn, it burns only in 

radial direction and becomes a progressive burning grain. But it is possible to get 

neutral burning with unrestricted ends. The burn area of the grain whose both ends 

are unrestricted can be calculated analytically as follows: 

 

( )( ) ( )[ ]22 2
2

22 wDDwLwDA portoutportb +−+−+=
π

π    (2.2) 

 

where Dport is the port diameter of the grain, Dout is the outer diameter of the grain, L 

is the length of the grain and w is the web. 

 

By using above equation, it can be determined that internal burning tube grain gives 

neutral burning with unrestricted ends of L/Dout ~2. But it becomes significantly 

progressive for L/Dout > 2 [15]. 
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2.2.1.3 Star Grain 

 

Star grain, given in Figure 2.5, is radially burning grain configuration which has 7 

independent geometric parameters: Dout, r1, r2, w, η, ξ and N. By changing these 

parameters, it is possible to get neutral, progressive or regressive thrust profile from 

a star grain. Because of this design flexibility, star grain is widely used in rocket 

industry. 

 

The outside round radius, r2 can be replaced by inside radius or flat tip. Star grain 

with outside radius is named convex star grain, while the one with inside radius is 

named concave star grain (Figure 2.5). There is also a special form of concave star 

grain, called slotted grain or truncated star grain [16]. In slotted grains, shown in 

Figure 2.4, the star grain angles of η and ξ are equal to π/N; therefore, slotted grains 

have 5 independent geometric parameters; Dout, Dport, Rtip, Rtipcenter and N.  

 

Rtip

Dout

Dport

  

Figure 2.4 Slotted Grain (Truncated Star Grain) 

 

The star configuration is neutral for web fractions (2w/Dout) of 0.3 to 0.4; and it is 

progressive above 0.4 [1]. However, sliver (remaining unburned propellant after 

motor operation) is an inherent characteristic of the star grain, the amount depending 

on the specific design. The effects of the geometric parameters on neutral burning 

and sliver can be found in reference [15]. 
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Convex Star Grain Concave Star Grain 

  

Geometric Variables 

  

Cross-sectional View 

  

Burnback Contours 

Figure 2.5 Convex and Concave Star Grains 
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2.2.1.4 Wagon Wheel Grain 

 

Wagon wheel grain is the extension of star grain configuration having 7 independent 

parameters of star grain and 3 additional variables (β, La, r3). Additional variables 

break the flat edges of the slot parts of star grain and increase the burning area.  

 

The wagon wheel is used when web fractions of approximately 0.15 to 0.25 are 

required. Although the wagon wheel configuration has lower volumetric loading, 

0.70, it is structurally superior to the star shape around web fraction of 0.3 and used 

for high thrust and short burn time requirements [1], [15]. 

 

 

Figure 2.6 Wagon Wheel Grain [15] 

 

2.2.2 3-D Grain Configurations 

 

Conocyl (acronym for “cone in cylinder”) and finocyl (acronym for “fin in 

cylinder”), given in Figure 2.7, are 3-D grain configurations.  
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Figure 2.7 Conocyl and Finocyl Grains [15] 

 

Conocyl grain utilizes the progressive characteristic of an internal burning cylinder 

and the regressive feature of an external-burning cone. Interaction of these two 

elements provides a ballistically acceptable grain configuration in terms of burning 

neutrally for a range value of L/Dout  with an upper limit of approximately 4 [15].  

 

Finocly grain is the combination of an internal-burning tube and a star grain. Main 

difference from conocyl grain is using axial slots rather than radial. Like cone parts 

of the conocyl, slotted portion provides regressive profile offsetting the progressive 

feature of internal-burning tube.  

 

2.3 BURNBACK ANALYSIS 

 

The methods in literature, used for burnback analysis, are explained in three groups 

as analytical, numerical and drafting methods. 

 

2.3.1 Analytical Methods 

 

The analytical approach has fallen out of favor in recent decades; however, for some 

classes of grains, the analytical methods are much more efficient than grid-based 

numerical techniques. For a grain design optimization process, in which large 

numbers of grain configurations are to be considered, generating grids for each 
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candidate design is often prohibitive. For such optimization processes, analytical 

developments of burn perimeter and port area are critically important [16]. 

 

In analytical methods, the interface of grain and internal cavity is constructed 

analytically. In 2-D grain geometries, burnback analysis is done on the radial cross-

sectional view of the grain with the interface elements; lines and arcs. At each burn 

step, lines and arcs are shifted with the offset amount of web and the perimeter of 

the burning interface is calculated. The difficulty is finding the intersection of the 

burning elements and generating new geometry by trimming or deleting the 

elements. For this reason, grain cross-section is divided into several zones as shown 

in Figure 2.8. At each zone, burning perimeters and port areas can be evaluated by 

means of the same exact formulas.  

 

 

Figure 2.8 Star Grain Samples Divided into Several Zones [17] 

 

In literature, Ricciardi’s study [17] is one of the examples in which 16 different 

configurations were defined for analytical burnback evaluation of the star grain. In 

Reference [16], the equations for the star, long spoke wagon wheel, and dendrite 

grains were summarized and the development of the burnback equations for the 

short spoke wagon wheel and slotted grain configurations were included.  

 

In the analytical methods used for the evaluation of the burnback of 3-D grain 

configurations, the geometry is divided into simple figures like cube, sphere, torus 
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or pyramid whose surface regression is calculated easily (Figure 2.9). In 1967, 

Peterson et al. [18] developed a computer program for generalized 3-D grain design. 

Burnback simulation in the program was accomplished using 4 basic figures (right 

circular cylinder, right circular cone, right triangular prism and sphere) in various 

combinations to describe the initial grain geometry.  

 

Another program called SPP (Solid Performance Program) [19], which was first 

released in 1975, uses a Grain Design Module based on reference [18]. The 

geometry calculations are based on the computation of volumes and changes in 

volumes of 5 basic shapes (right circular cone, right triangular prism, right circular 

cylinder, sphere and torus). 

 

 

Figure 2.9 Simulation of 3-D Grain Void Using Basic Figures [18] 

 

2.3.2 Numerical Methods 

 

Since analytical methods are used for limited classes of grains due to its solution 

method, numerical algorithms are developed which are geometrically versatile. 

Instead of dividing the grain geometry into several zones or figures, these algorithms 

commonly use grid-based techniques which enable to model complex grain 

geometries and flow domain. Then, in order to evaluate the propellant grain surface 
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regression, solution techniques for moving boundary problems are used. Main 

disadvantages of such methods are numerical errors involved and high computation 

time required for analysis. The details of these methods can be found in References 

[20] and [21]. 

 

Toker [20] and Yıldırım [21] applied Level-Set Method to the grain burnback 

problem. In the validation section of this chapter, the code developed by Toker [20] 

is used in order to compare the performance of analytical and numerical methods in 

3-D grain burnback analysis. Therefore, Toker’s study is summarized as follows: 

 

 

Figure 2.10 Procedure of Numerical Burnback Analysis 

 

Firstly, 3-D grain is modeled using a CAD software program and then tetrahedron 

meshes are generated in the grain model by using a commercial mesh generator as 

shown in Figure 2.10. The mesh and boundary data are given to the burnback code, 

called FMM3 which uses Fast Marching Method to calculate the time at which the 

interface arrives at the each node. Then, burning surface area is calculated by using 

Cut-Cell Methodology. 
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2.3.3 Drafting Methods 

 

In drafting techniques, before computer methods have become widespread, a 

detailed scale drawing of the grain configuration is prepared and the burning 

surfaces are shifted on the sketch by drafting tools. Perimeter and port area are 

measured and calculated by simple devices such as scales, map measurers and 

planimeters [15].  

 

  

Figure 2.11 Solid Model of Grain at Different Burnback Steps [22] 

 

Nowadays, CAD software programs are used for modeling and drafting the grain 

geometry. The geometry is modeled parametrically and the parameters which 

change during the burnback process are modified for each burn step [22].  
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2.4 3-D ANALYTICAL BURNBACK CODE (BB3D) 

 

In this thesis, 3-D analytical burnback code called BB3D is developed for the grain 

design optimization process due to the following reasons:  

 

• Since large numbers of grain alternatives are considered in the optimization 

process, computational time of burnback analysis becomes a highly critical 

parameter.  

• Grid based numerical techniques and drafting techniques need user 

intervention during geometry modeling and mesh generation, which 

intervenes the optimization process. 

• Burnback results of numerical methods involve numerical errors.  

 

When the reasons presented above are considered, analytical burnback analysis 

distinguishes itself than other methods.  

 

The solution method of the BB3D is based on the study of Peterson et al. [18]. The 

geometric modeling of the grain is accomplished using various combinations of 

some basic figures which are right cylinder, right circular cone, right rectangular 

prism, right triangular prism, sphere, ellipsoid and torus. The geometric variables 

defining these figures are given in Figure 2.12. 

 

During geometric modeling, the case is assumed to be full of propellant initially and 

it is defined by using the above figures. It is also possible to define the outer 

boundary of the grain in terms of the radius versus the axial position. Then, inner 

void of the grain is defined by locating the basic figures in any orientation anywhere 

in space. It is not important that the figures may overlap or protrude out of the case. 

When the figures forming the voids are taken out from the case which is full of 

propellant, the grain is obtained. In this way, grain is modeled by using only 

geometric variables of basic figures.  
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Right Cylinder Right Circular Cone 

  

Right Rectangular Prism Right Triangular Prism 

  

Sphere Ellipsoid 

 

Torus 

Figure 2.12 Basic Figures Used by BB3D 
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Mostly, grains are symmetric about the motor axis. Only modeling the symmetric 

section saves work and computation time required for the analysis. For example, 

instead of modeling the whole star grain with 8 star points, modeling the 1/16th of 

the grain and multiplying the results of the analysis by the symmetry factor of 16 

provides faster solution. Therefore, symmetry factor is given as an input to the code 

and symmetry plane is created by the code. 

 

BB3D calculates the burning surface area (Ab) by using the following equation: 

 

w
Ab ∆

∀∆
=          (2.3) 

 

where ∀ is the volume of the grain and w is the web. 

 

Equation (2.3) states that the change in propellant volume with respect to the burn 

distance gives burning surface area. Ab lies somewhere between w and w+∆w and 

the code assumes that Ab lies at the middle point (w+∆w/2). 

 

In order to calculate the grain volume, firstly, geometry is divided into several 

stations along motor axis (x-axis) as given in Figure 2.13. The aim is to find the 

area, which is full of propellant, at each station (in y-z plane). For this reason, the 

station is scanned by drawing lines parallel to y axis, as shown in Figure 2.14.  
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Figure 2.13 Stations Along Motor Axis (x axis) 

 

Figure 2.14 Lines on Radial Cross-Section (y-z plane)  

 

The intersection points of each line with the basic figures located at that station are 

found by using the geometric equations of figures on y-z plane. The length of the 

each line (∆y) which is in the propellant zone is calculated. The average length of 

two successive lines is multiplied with the distance (∆z) between two lines in order 

to calculate the propellant area. The total propellant area, Ai, at that station (i) is 

found by using Equation (2.5). 
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The above procedure is applied for each station and the volume of the propellant 

grain, n∀ , at  burn step, n, is computed by Equation (2.5). 
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At the following burn step, the burning surface of figures defined as voids are offset 

with the amount of web thickness. During this operation, the figures are expanded 

by using the geometric formulas defining the basic figures. While the figures 

forming the case do not change, ones defined as propellant is shrunk. In this way, 

figures are redefined at the new burn step and the grain volume is recomputed, as 

described above. Lastly, the burning surface area is calculated according to Equation 

(2.3). 

 

With this calculation method, it is also possible to find the mass and mass center of 

the grain. Therefore, the change of mass and mass center of the grain with respect to 

web thickness is easily calculated by the code. 

 

 

Figure 2.15 Figures Forming Star Grain Module  
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As presented in Figure 2.15, four figures (two whole cylinders, one slice of cylinder 

and one rectangular prism) are used to obtain the inner void of a convex star grain. 

Instead of defining four figures every time when star grain is analyzed, a star module 

is developed, which uses the geometric variables given in Section 2.2.1.3. Thus, user 

can define the geometry only with variables given in literature by using geometric 

modules and the basic figures forming the defined grain are automatically created. 

Convex star, concave star and slotted grain modules were developed in the scope of 

this thesis.  

 

2.5 VALIDATION 

 

In this section, in order to validate the 3-D analytical burnback code, the results of 

BB3D are compared with the results of other analytical, numerical and drafting 

methods used in literature. In addition, the effect of the station and web increments 

on the solution accuracy and computation time is investigated. During the study, a 

computer with Intel Core i5 2.67 GHz CPU and 4 GB RAM is used. 

 

Two test cases are developed for the validation. For the first test case, a concave star 

grain, which is a simple and 2-D grain configuration, is analyzed. Then, a finocyl 

grain having slots at both ends, which is more complex and a 3-D grain 

configuration, is chosen as the second test case. The output data (web versus burning 

area) of different methods are compared according to the following equation:  
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where 
nrefbA  is the reference burning area at burn step n, 

n
bA  is the calculated 

burning area at area at burn step n, winc is the web increment and Nb is the total 

number of burn step 
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2.5.1 Test Case-1 

 

The geometric parameters of the concave star grain modeled for the burnback 

analysis are given in Table 2.1. Since the grain is 5 points star grain, 1/10 of the 

geometry is modeled for analysis. 

 

Table 2.1 Geometric Parameters of Star Grain 

Dout 180 mm Lgrain 400 mm w 25 mm 

ηηηη    49º r1 6 mm N 5 

ξ  33º r2 33 mm   

 

The burnback analysis is done by using 2-D analytical, 3-D analytical (BB3D), 

numerical (FMM) and CAD modeling methods. The code called STAR [13] which 

is based on Reference [17] is used for 2-D analytical burnback analysis. As a 

numerical method, FMM3 code is used, which is described in Section 2.3.2. For the 

drafting method, the solid model of the grain is modeled by CATIA software and the 

burning area is calculated by offsetting the burning surfaces. 2-D and 3-D burnback 

contours of BB3D solution are presented in Figure 2.16. 

 

    

Figure 2.16 Burnback Contours of BB3D Solution 
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In order to analyze the effect of the axial and radial station increments used for the 

volume calculation in BB3D, burnback analysis is performed with different station 

increments. Instead of using different constant station increments in the study, the 

ratio of station increment to web increment (k) is used to make the solution 

independent from the grain size. The same increments are taken for the axial and 

radial stations, and the web-burn area data is calculated for 46 burn steps with a web 

increment of 1 mm by using different ratios of station increment to web increment 

such as 0.1, 0.2 0.5, 1.0 and 2.0. The results are compared with the solution of 

STAR code since the code gives the exact solution by using analytic equations. The 

error and computation time of the burnback analyses are given in Table 2.2 and 

Figure 2.17. 

 

Table 2.2 Error and Computation Time for Different k Values 

k Error (%) Comp. Time (s) 
0.1 0.023 ~ 150 
0.2 0.027 ~ 40 
0.5 0.049 ~ 6 
1.0 0.232 ~ 2 
2.0 0.736 ~ 0.5 

 

 

Figure 2.17 Error and Computation Time for Different k Values 
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As seen from Figure 2.17, the error decreases when smaller station increments are 

used. However, computation time increases rapidly when k is smaller than 0.5. Since 

the computation time is a significant parameter for the optimization process, the 

station increment can be increased up to web increment to reduce the computation 

time. If the station increment is taken larger than web increment, the calculation of 

the grain volume is done inaccurately as the void figures are enlarged with the 

amount of web thickness. This causes pulsation effect on the burn area calculation as 

seen from Figure 2.18 and increases the error rapidly. Therefore, k value can be 

taken in the range of 0.2 - 1.0 for the burnback analysis used in the optimization of 

2-D grain geometries.  

 

 

Figure 2.18 Web versus Burn Area for Different k Values 

 

As the station increment, web increment is an important parameter affecting the 

solution accuracy and computation time of the burnback analysis. When the web 

increment is taken larger, the points where the burn area changes suddenly could not 

be captured and the error increases. Since using smaller web increments increase the 

computation time, a proper increment should be found for the burnback analysis 

used in optimization process. Therefore, burnback analysis is performed with 

different web increments. Instead of using different constant web increments in the 
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study, the ratio of web increment to maximum web (h) is used to make the solution 

independent from the grain size. The plots of web versus burn area for the h values 

of 0.005, 0.01, 0.02, 0.05 and 0.1 are shown in Figure 2.19 and their computation 

time is given in Table 2.3. 

 

 

Figure 2.19 Web versus Burn Area for Different h Values 

 

Table 2.3 Computation Time for Different h Values 

h Comp. Time (s) 
0.10 ~ 0.2 
0.05 ~ 0.5 
0.02 ~ 5 
0.01 ~ 30 

0.005 ~ 200 
 

Analyzing Figure 2.19 and Table 2.3, it is seen that when the web increments which 

are 5 % and 10 % of the maximum web are used, the points of sudden burn area 

change could not be captured. For the high accuracy, 0.5 % of maximum web can be 

used; however, computation time increases significantly in this case. Therefore, h 

value can be taken in the range of 0.01 - 0.02 for the burnback analysis used in the 

optimization process.  
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After finding proper station and web increments for BB3D, the performance of 

BB3D is compared with numerical and CAD solutions. For the burnback analysis, 

the web increment giving the solution in sufficient accuracy is selected. As stated 

above, the web increment can be taken as 1.0 - 2.0 % of the maximum web for the 

analysis of BB3D. This web increment gives also accurate solution for the analysis 

performed by CAD software. In the thesis study of Püskülcü [22], the proposed web 

increment for the detailed analysis of grain geometry by CAD software is 1 % or     

2 % of the web thickness. Therefore, the burnback analysis is performed with the 

web increment of 1 mm, which is the 1.75 % of the maximum web (h = 0.0175) for 

the comparison of solutions. 

 

In BB3D, k is taken as 0.02. For the numerical analysis (FMM), the grain geometry 

is modeled with 1386428 elements and 251254 nodes. Since the number of elements 

affects the solution accuracy, possible smaller mesh size is used. In the CAD 

solution, the burn area is calculated directly from the surfaces of solid model of the 

grain and burning surfaces are shifted manually for each burn step. To measure the 

burn area, exact calculation mode is used in CATIA. The error is calculated 

according to Equation (2.6) by taking the solution of STAR code as a reference. The 

graphs of web versus burn area data are shown in Figure 2.20.  

 

 

Figure 2.20 Web versus Burn Area 
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Table 2.4 Comparison of Results with 2-D Analytical Method (STAR) 

 Error (%) Comp. Time  

BB3D 0.027  ~ 40 s 

FMM 0.229 ~ 26 min  

CAD 1.5x10-6 - 

 

As seen from Table 2.4, BB3D finds the solution in a shorter time, 39 seconds, with 

an error less than 0.02 %. The error of the numerical solution is less than 0.3 %. 

Considering the error, the numerical method may be used for the burnback analysis; 

however, its computation is too high, about half an hour, which is not acceptable for 

an optimization process. The error of the CAD solution is so small since the surface 

area calculation is performed by the numeric solution of surface equations. The 

drawback of burnback analysis with CAD software can be user intervention during 

offsetting the surfaces. Even if this can be done automatically by the exterior 

commands of a written code, user must intervene in the software to model the grain 

configuration.  

 

2.5.2 Test Case-2 

 

Finocyl grain which is a 3-D grain configuration is chosen as the second case. 1/16 

of the geometry is modeled for analysis, since the fore end of the grain has 8 axial 

slots. Moreover, a cone and a radial slot are located at the aft end. The drawing of 

the grain is given in Appendix C. 

 

For BB3D, the case is defined by 3 basic geometries: two ellipsoids and one 

cylinder. In order to obtain the inner void, totally 8 basic geometries (4 cylinders, 3 

tori and one cone) are used. It is assumed that the void geometries are connected to 

central port; thus, the additional void geometries are not created in order to join the 

above geometries used at the slotted section with the central cylinder void. While 

scanning propellant area with lines on an x-station, the lines are trimmed with the 

outer intersection points of void figures. In this way, the number of void figures 
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required for obtaining the inner void is decreased. 2-D burnback contours on radial 

cross-section at x = 200 mm and axial cross-section are shown in Figure 2.21 and 

Figure 2.22.  

 

 

Figure 2.21 Burnback Contours on Radial Cross-Section at x=200mm 

 

 

Figure 2.22 Burnback Contours on Axial Cross-Section 

 

3-D burnback contours of the solution are presented in Figure 2.23. 

 

 

Figure 2.23 3-D Burnback Contours  
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In order to analyze the effect of the axial and radial station increments in BB3D for 

3-D grain geometries, burnback analysis is performed with different k values, which 

are 0.1, 0.2 0.5, 1.0 and 2.0. The same increments are taken for the axial and radial 

stations, and the web-burn area data is calculated for 90 burn steps with a web 

increment of 2 mm (h ≈ 0.01). The CAD solution is taken as the reference solution; 

because in the previous test case, it is seen that the results of exact solution (2-D 

analytical) and CAD solution are almost same. Therefore, results of the BB3D are 

compared with the solution of CAD modeling according to Equation (2.6). 

Computation time of the burnback analyses and differences between BB3D and 

CAD solution are given in Table 2.5 and Figure 2.24.  

 

Table 2.5 Error and Computation Time for Different k Values 

k Difference (%) Comp. Time (s) 
0.1 0.097 ~ 750 
0.2 0.120 ~ 190 
0.5 0.181 ~ 30 
1.0 0.583 ~ 8 
2.0 9.476 ~ 2 

 

 

Figure 2.24 Error and Computation Time for Different k Values 
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As seen from the results, the effect of station increments on the solution accuracy 

and computation time of the burnback analysis of 3-D grain geometries is larger 

than analysis of 2-D geometries. Computation time increases rapidly when k is 

smaller than 0.5. In addition, due to the inaccurate volume calculation for the k 

values larger than web increment, the pulsation of the burn area increases 

significantly as seen from Figure 2.25. Therefore, k value can be taken in the range 

of 0.5 - 1.0 for the burnback analysis used in the optimization of 3-D grain 

geometries.  

 

 

Figure 2.25 Web versus Burn Area for Different k Values 

 

In order to analyze the effect of web increment on the solution, the burnback 

analysis is also performed with different web increments The plots of web versus 

burn area for the h values of 0.005, 0.01, 0.02, 0.05 and 0.1 are shown in Figure 2.26 

and their computation time is given in Table 2.6. 
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Figure 2.26 Web versus Burn Area for Different h Values 

 

Table 2.6 Computation Time for Different h Values 

h Comp. Time (s) 
0.10 ~ 0.2 
0.05 ~ 0.7 
0.02 ~ 6 
0.01 ~ 30 

0.005 ~ 300 
 

Analyzing Figure 2.26 and Table 2.6, the same conclusion with the previous case is 

done. The points of sudden burn area change could not be captured when h = 0.05 

and h = 0.10. For the high accuracy, h = 0.005 can be used; however, computation 

time increases significantly in this case. Therefore, h value can be taken in the range 

of 0.01 - 0.02 for the burnback analysis used in the optimization process.  

 

After finding proper station and web increments for BB3D in the study of 3-D grain 

geometry, the differences of BB3D and FMM from CAD solution are calculated 

according to Equation (2.6). CAD solution is taken as the reference solution, since 

CAD software finds the nearly exact solution when the web increment is properly 

chosen. The burnback analysis performed by using CAD software is assumed to be 

independent from web increment when h = 0.01, that is the web increment is equal 
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to 1 % of the maximum web [22]. Therefore, burnback analysis is done with the web 

increment of 2 mm, which is about 1 % of the maximum web (h = 0.011) in this 

study.   

 

In BB3D, k is taken as 0.05. For the numerical analysis (FMM), the grain geometry 

is modeled with 1256839 elements and 235300 nodes. Since the number of elements 

affects the solution accuracy, possible smaller mesh size is used. Results are given in 

Table 2.7.  The graphs of web versus burn area data are also shown in Figure 2.27. 

 

Table 2.7 Comparison of Results with CAD Solution 

 Difference (%) Comp. Time  

BB3D 0.181 ~ 30 s 

FMM 0.441  ~ 31 min 

 

 

        

(a)     (b) 

Figure 2.27 Web versus Burn Area 
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As seen from Table 2.7, BB3D finds the solution in a shorter time, about 30 

seconds, with a difference less than 0.2 %, which is applicable for the grain design 

optimization tool. The difference of the numerical solution is also small; however, 

its computation is too high, about half an hour, which is not acceptable for an 

optimization process  
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CHAPTER 3 

3 INTERNAL BALLISTICS SOLVER 

 

INTERNAL BALLISTICS SOLVER 

 

 

 

 

3.1 INTRODUCTION 

 

Internal ballistics is the branch of applied science describing the combustion 

characteristics of the propellant, its burning rate, burning surface and grain geometry 

[1]. When the parameters specifying the ballistic performance of the rocket motor 

are considered, nozzle design can also be discussed in the scope of this science. In 

this chapter, firstly, the basic ballistic parameters of solid propellant rocket motors 

are introduced. 

 

The performance characteristics of the rocket motor are obtained by the internal 

flow solution. For the ballistic performance simulation; 0-D quasi-steady, 1-D quasi-

steady, 1-D unsteady and 3-D unsteady flow models are used commonly in literature 

[19]-[24]. When the computation time of flow solvers is concerned, lumped (0-D) 

models are generally used in optimization applications in order to explore the design 

space effectively. For this reason, a 0-D quasi-steady flow solver developed by Açık 

[13] is utilized in this thesis study. The main assumptions and the governing 

equations of the solver are explained in the following sections. 
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3.2 BALLISTIC PARAMETERS 

 

3.2.1 Propellant Properties 

 

3.2.1.1 Burning Rate 

 

During the rocket motor operation, the burning surface of a propellant grain recedes 

in a direction essentially perpendicular to the surface. Burning rate is the linear 

regression rate of the flame edge, measured at a specific time and a specific distance 

on the propellant burning surface. The steady-state burning rate of a propellant 

(excluding the ignition phase and thrust tail-off) is defined by the ratio of minimum 

web to be burned (minimum distance traveled by the flame edge from the start of 

combustion to the time when the flame reaches the outside contour of the grain) 

versus steady-state burning time [15]. 

 

Burning rate of the propellant depends on [1]: 

 

1. Propellant composition 

2. Combustion chamber pressure 

3. Initial temperature of the solid propellant 

4. Combustion gas temperature 

5. Velocity of the gas flow parallel to the burning surface 

6. Motor motion (acceleration and spin) 

 

The burning rate is a function of the chamber pressure. The relation between burning 

rate and the chamber pressure is governed by the following empirical equation, also 

known as Saint Robert's or Vielle’s burn rate law: 

 

= n

b cr ap          (3.1) 

where 
n

ref

TrefT

bref
p

e
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σ

. 
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The values a (pre-exponential factor or temperature coefficient) and n (burning rate 

pressure exponent) are usually derived from strand burner tests or small subscale test 

motor firings at different operating pressures. rbref is the reference burning rate value 

at a specific pressure, pref, and at a specific temperature, Tref.  

 

The sensitivity of burning rate to propellant temperature can be expressed in the 

form of temperature coefficients: 

 

ln 1
σ

∂ ∂   = =   ∂ ∂   
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where σp is known as the temperature sensitivity of burning rate expressed as percent 

change of burning rate per degree change in propellant temperature at a particular 

value of the chamber pressure. The second one πK is known as the temperature 

sensitivity of pressure expressed as percent change of chamber pressure per degree 

change in propellant temperature at a particular value of K which is the ratio of the 

burning surface area to nozzle throat area [1]. 

 

3.2.1.2 Specific Impulse 

 

Specific impulse, Isp is a measure of the impulse or momentum change that can be 

produced per unit weight of the propellant consumed. It is an important ballistic 

parameter of the propellant affecting the performance of a rocket propulsion system, 

similar in concept to the miles per gallon parameter used with automobiles [1].  
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Specific impulse is defined as: 
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where F is the thrust force, tb is the burning time, ṁp is the propellant mass flow rate 

exhausted from the nozzle, g0 is the gravitational acceleration at sea level, It is the 

total impulse, wp is the weight of the propellant, mp is the mass of the propellant, c* 

is the characteristic exhaust velocity and CF is the thrust coefficient.  

 

3.2.1.3 Characteristic Exhaust Velocity 

 

Characteristic exhaust velocity, c*, is a function of the propellant combustion 

process. As seen in Equation (3.7) it is proportional to MTc / , where Tc is the 

propellant flame temperature and M is the average molecular weight of the gas. 

Therefore, it has a slight dependence on chamber pressure; however, it is 

independent of nozzle characteristics [15]. The c* is used in comparing the relative 

performance of different chemical rocket propulsion system designs and propellants; 

it is easily determined from measured data of propellant mass flow rate (ṁ), 

chamber pressure (pc) and nozzle throat area (At). The delivered c* can be 

formulated as:  

 

* c t
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p A
c

m
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&
         (3.5) 

 

The critical mass flow rate through chocked nozzle can be written as [25]: 
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where Vt is the gas velocity at the nozzle throat, υt is the specific volume at the 

nozzle throat, Tc is the chamber temperature, γ is the specific heat ratio and R is the 

gas constant. 

 

Substituting Equation (3.6) into Equation (3.5), theoretical c* is found as: 
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Delivered c* in the motor are less than theoretical values by a significant amount. 

The reduction in values is the results of [15]: 

 

1. fluid flow losses including two-phase flow in which particles fail to achieve 

kinetic and thermal equilibrium, 

2. heat losses to motor hardware and 

3. combustion inefficiency. 

 

Those losses occurring upstream of the nozzle throat plane affects the delivered c*. 

These losses can be indicated with c* efficiency, *cη  as follows: 

 

*

*

*

theo

del
c

c

c
=η          (3.8) 

 

3.2.2 Chamber Pressure and MEOP 

 

Chamber pressure is the static pressure measured at the head end of the internal gas 

flow; in other words, it is the pressure at the forward end of the combustion chamber 

[26]. It is the main parameter affecting the thrust of the rocket motor. By increasing 

the chamber pressure, it is possible to obtain high thrust levels; however, due to the 

structural limitations of the motor case and other components, maximum chamber 
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pressure is limited for the design activities. This constraint on chamber pressure is 

usually named as Maximum Expected Operating Pressure (MEOP). 

 

3.2.3 Thrust, Thrust Coefficient and Total Impulse 

 

The thrust of a SRM is the force produced by a rocket propulsion system acting 

upon a vehicle as pushing it forward. It is generated by ejecting combustion product 

gases from the nozzle at a very high velocity. Since thrust time history is the main 

performance requirement of a SRM for the flight mission, it is the most significant 

parameter specifying the rocker motor design.  

 

Thrust can be calculated from momentum equation applied on the overall rocket 

system as given in Equation (3.9). 

 

( )= + −&
e e amb eF mV p p A        (3.9) 

 

where Ve is the exit velocity, pe is the exit pressure and Ae is the nozzle exit area. 

 

The exit velocity is found from isentropic flow of a perfect gas through nozzles as 

follows [25]: 
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where i subscript denotes the nozzle inlet conditions. Nozzle inlet conditions can be 

taken as the chamber conditions. Since the velocity in the chamber is very small 

compared to velocities in the nozzle, 2
iV  term can be neglected. Then, Equation 

(3.10) becomes as Equation (3.11). 
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Substituting Equations (3.6) and (3.11) into Equation (3.9), thrust becomes: 
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Then, it is possible to define the thrust with thrust coefficient CF as: 

 

= F c tF C p A          (3.13) 
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Physically, CF is an expression for efficiency of the nozzle for a fixed propellant 

configuration. Because of loss mechanisms in nozzle flow like two-phase flow loss, 

divergence loss, boundary layer loss, kinetic loss, nozzle erosion and submerge 

nozzle [27], theoretical CF found in Equation (3.14) differs from the delivered one 

which can be calculated easily from the measured data by Equation (3.13). Then, CF 

efficiency is defined as: 
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The thrust force integrated over the burning time tb is named as total impulse. 

Generally, the performance requirement of a SRM for a specific flight mission is 

defined with total impulse instead of thrust-time history.  

 

∫=
bt

t FdtI
0

         (3.16) 

 

3.2.4 Nozzle Expansion Ratio 

 

Nozzle expansion ratio ε  is defined as the ratio of nozzle exit area to the nozzle 

throat area as given below. It is an important nozzle parameter used in the thrust 

calculations since it determines flow properties at the nozzle exit.  

 

t

e

A

A
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3.3 INTERNAL BALLISTICS SOLVER 

 

For the performance prediction of rocket motor, internal ballistics solver which is 

developed by Açık [13] is used in this study. The program uses 0-D quasi-steady 

model for the flow in combustion chamber. In the nozzle, steady 1-D isentropic flow 

equations are governed. The program calculates the pressure-time and thrust-time 

history of the rocket motor, with inputs of web versus burn area data, thermo 

chemical properties of the propellant, nozzle dimensions and performance 

efficiencies.  

 

3.3.1 Assumptions 

 

Main assumptions of the program are as follows: 

 

1. The combustion gases are perfect gases. 

2. The properties of the gases are spatially constant throughout the combustion 

chamber. 

3. Variations of internal ballistic parameters with time are evaluated as the 

evolution of temporal point wise steady state conditions. 

4. Burning rate of the propellant obeys Vielle’s burn rate law: = n

b cr ap  

5. Effects of transient mass addition and erosive burning can be neglected. 

6. Steady 1-D isentropic flow exists throughout the nozzle. 

 

3.3.2 Governing Equations 

 

3.3.2.1 Equations for Chamber Flow 

 

When the velocity of the flow in the rocket chamber is very low; that is Mach 

number in the chamber is nearly zero, it can be assumed that the properties of gases 

are constant along the grain length.  
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Figure 3.1 Zero-dimensional SRM Conservative Relations [20] 

 

The conservation of mass for isentropic flow can be written as 

 

ng m
dt

dM
m && +=         (3.18) 

 

where gm& is the rate of mass addition by burning propellant, dM/dt is the rate of 

change of stored mass in the combustion chamber and nm&  is the rate of mass flow 

through the nozzle.  

 

The rate of mass generation is calculated by the relation: 

 

ρ ρ= =&
n

g p b b p b cm A r A ap        (3.19) 

 

where pρ  is the propellant density and bA  is the burn area of the grain at that 

instant. 

  

The mass flow through the nozzle is calculated by the relation: 
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The throat area may change due to erosion of the nozzle insulation material. 

Calculated throat erosion rate from static firing tests can be given as an input to the 

program. 

 

The rate of change of mass stored in the chamber is given as: 
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d d d d
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t t t t
       (3.21) 

 

where ρ  is the gas density and ∀  is the gas volume. 

 

The thermal equation of state for a perfect gas is: 

 

ρ=c cp RT          (3.22) 

 

Combining these equations, Equation (3.18) can be rewritten as: 
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where 
d

d

∀
= b br A

t
. Equation (3.23) is integrated with infinitesimal time steps as the 

propellant burns in order to obtain chamber pressure at these infinitesimal time 

steps. 
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3.3.2.2 Equations for Nozzle Flow 

 

For the isentropic flow process in nozzle, the following relations hold between any 

points x and y: 
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where T is the temperature, p is the pressure and υ is the specific volume. 

 

The stagnation (total) temperature, T0 is found from energy equation as: 
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where cp is the specific heat under constant pressure and M is the mach number. 

 

The relationship of the stagnation pressure, p0 to the local pressure in the flow can 

be found from the previous two equations as 
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The nozzle inlet conditions can be taken as chamber conditions. In addition, 

chamber pressure and temperature are assumed to be equal to total pressure and total 

temperature. The nozzle throat conditions is found by using Equations (3.25) and 

(3.26) by setting M = 1 at the throat. 

 

Nozzle exit pressure is calculated by using Equation (3.27) which is derived from 

Equations (3.11), (3.24), (3.25) and (3.26) 1 as 
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Using the chamber and nozzle exit pressure, the thrust coefficient CF is calculated by 

using Equation (3.14).  

 

Lastly, the thrust is calculated by the following relation, 

 

tcFC APCtF
F

η=)(         (3.28) 
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CHAPTER 4 

4 GENETIC ALGORITHMS 

 

GENETIC ALGORITHMS 

 

 

 

 

4.1 INTRODUCTION 

 

Using the optimization philosophy, one approaches a complex decision problem, 

involving the selection of values for a number of interrelated variables, by focusing 

attention on a single objective designed to quantify performance and measure the 

quality of the decision [28]. In other words, optimization is the process of 

maximizing or minimizing a desired objective function, while satisfying the 

concerned constraints. 

 

In engineering designs, there are an abundance of examples where the optimum 

system is sought and with the passing of years, lots of optimization methods are 

developed to answer the question ‘Is this design the best one?’. To apply an 

optimization method for a practical problem, firstly, the optimization algorithms 

should be understood, since the problems require tuning algorithmic parameters, 

scaling and even modifying existing techniques to suit the specific application [29]. 

Within this scope, firstly, optimization methods in literature are summarized in this 

chapter. Then, the theory of genetic algorithms and developed genetic optimizer 

code (GENOP) is presented in details. Lastly, the optimization code is validated 

with the cases whose solutions are known. 
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4.2 OPTIMIZATION METHODS 

 

The optimization techniques are generally discussed in the main titles of linear and 

nonlinear programming. Nonlinear programming deals with the problem of 

optimizing an objective function in the presence of equality and inequality 

constraints. If all the functions are linear, the problem is called linear programming 

problem, otherwise it is called nonlinear programming problem [30]. Many realistic 

problems cannot be adequately represented or approximated as a linear program, 

because of the nature of the nonlinearity of the objective function or the constraints. 

Since the grain design problem is a nonlinear program, instructions in this section 

are mostly focused on it. Constrained minimization problems can be expressed in 

the following general nonlinear programming form: 

 

minimize  )(xf  

subject to  0)( ≤xig     mi ,.....,1=     (4.1) 

0)( =xjh      lj ,.....,1=   

 

where x=[x1, x2,….., xn]
T is a column vector of n real-valued design variables. f is the 

objective or cost function, g ’s are inequality constraints and h ’s are equality 

constraints. 

 

In this section, optimization methods in literature are briefly introduced in two 

groups as: gradient-based and derivative-free methods. The aim is only to give a 

general viewpoint about optimization methods and the place of genetic algorithms 

among these methods, not to classify every possible type of optimization methods. 
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4.2.1 Gradient-Based Methods 

 

Gradient-based optimization strategies iteratively search the minimum of objective 

function. At first, algorithms take a starting point 0x  and calculate the objective 

function.  

 

Then, the following loop tries to achieve a minimum: 

 

1. Check the convergence criterion of )(xf , if it is fulfilled, terminate with kx  

as the solution  

2. Compute step length kα  and direction vector kd that improves the objective 

function  

3. Evaluate the new point kkkk dxx α+=+1 , calculate )( 1+kf x , go to Step 1 

 

The Steepest Descent Algorithm is the most basic one of the gradient-based 

methods. This method simply calculates the gradient of a function at each iteration 

and uses the gradient as a search direction onto the next design point as given in 

Equation (4.2). Step length kα  is determined by one-dimensional minimization 

algorithm (line search). This type of gradient-based method is a first order method, 

because it uses solely the gradient information [31].  

 

)(1 kkkk f xxx ∇−=+ α         (4.2) 

 

Other well-known gradient method, Newton’s Method is a second order one. This 

method is similar to the Steepest Descent method, but it adds second order 

information to its calculations in the form of Hessian matrix [ )(2
kf x∇ ] as given in 

Equation (4.3). 
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Conjugate Gradient Method, Davidon-Fletcher-Powell (DFP) Method, Broyden-

Fletcher-Goldfarb-Shanno (BFGS) Method and Sequential Quadratic Programming 

are other gradient-based methods. The details of these methods can be found in 

References [28], [29] and [30]. 

 

A major difficulty with gradient-based optimizers is dealing with noisy problems or 

problems containing many local minima. Given a response surface with various 

local minima, the algorithms will generally converge to the nearest local minima 

[31]. 

 

4.2.2 Derivative-Free Methods 

 

Derivative-free optimization methods are typically developed to solve optimization 

problems whose gradient computation of objective function is unavailable. Even if it 

is possible to estimate derivatives by numerical methods such as finite differences; 

in most real problems, the objective function is expensive to evaluate, so derivative 

approximation may be prohibitively costly. In addition, when the optimization 

problem has a noisy objective function, derivative estimation will not be accurate. 

 

The simplest derivative-free method is the one referred to as Direct Search Methods. 

These methods sample the objective function at a finite number of points at each 

iteration and decide which actions to take next solely based on those function values 

and without any explicit or implicit derivative approximation or model building 

[32]. Through the years more and more sophisticated logic has been developed to 

allow these types of algorithms to intelligently search through the design space. 

Hooke and Jeeves Pattern Search Method, Rosenbrock’s Method, Powell’s Method 

of Conjugate Directions, Nelder and Mead Simplex Method, Simulated Anneling, 

Genetic Algorithms and Box Complex Method are some examples of Direct Search 

Methods [29].  
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4.3 GENETIC ALGORITHMS 

 

Genetic algorithms are derivative-free, heuristic, global search methods based on the 

principles of natural selection and genetics. In 1975, John Holland led to the 

development of genetic algorithms with his work about the investigation of the 

mechanisms of natural adaptation [33]. Since that time, they have been widely 

studied, experimented and applied in many engineering fields.  

 

The basic idea of the algorithms is to mimic the evolution of a group of individuals 

of the same species. Since the individuals who adapt better to the requirements 

imposed by their environment will survive in the population, their genes will be 

passed more frequently to subsequent generations than others. This means, the 

average fitness of the population increases with time [34]. This basic idea of can be 

implemented to design optimization problems as follows: 

 

   gene                �   encoded design variable 

   chromosome   �   set of design variables  

   individual      �   design alternative generated from specified design variables 

   population       �   group of design alternatives 

   generation     �   optimization iteration 

   fitness value    �  scaled value of objective function 

 

Once the design variables are encoded (details given in the next section) in a 

chromosomal manner and a fitness measure for discriminating good solutions from 

bad ones has been chosen, genetic algorithms start to evolve solutions by using the 

following basic scheme [35]: 

 

1. Initialization: The initial population of candidate solutions (design 

alternatives) is usually generated randomly across the search space.  
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2. Evaluation: Once the population is initialized or an offspring population 

(created from main population) is created, the fitness values of the candidate 

solutions are evaluated. 

 

3. Selection: Selection allocates more copies of those solutions with higher 

fitness values (better designs) into mating pool and thus imposes the survival 

of the fittest mechanism on the candidate solutions. The main idea of 

selection is to prefer better solutions to worse ones, and many selection 

procedures have been proposed to accomplish, including roulette-wheel 

selection, stochastic universal selection, ranking selection and tournament 

selection. 

4. Recombination (Crossover): Recombination combines parts of two or more 

parental chromosomes to create new, possibly better design alternatives (i.e. 

offspring). There are many ways of accomplishing this, and competent 

performance depends on properly designed recombination mechanism.  

5. Mutation: While recombination operates on two or more parental 

chromosomes, mutation locally but randomly modifies chromosome by 

changing genes. Mutation performs a random walk in the vicinity of a 

candidate solution. 

6. Replacement: The offspring population created by selection, recombination, 

and mutation replaces the original parental population. Many replacement 

techniques such as elitist replacement, generation-wise replacement and 

steady state replacement methods can be used. 

7. Steps 2 to 6 are repeated until a terminating condition is met. 

 

The implementation details of the genetic algorithm operators are explained in the 

next chapter. 

 

 

 

 



 60 

4.4 GENETIC OPTIMIZER (GENOP) 

 

An optimization code, called GENOP, using genetic algorithms is developed in 

FORTRAN during this thesis study. The flowchart of the code is given in Figure 

4.1. 

 

 

Figure 4.1 Flowchart of GENOP  

 

GENOP, firstly, reads the input parameters of the genetic algorithm which are the 

number of design variables, upper and lower limits of the variables, bit number, 

population size, maximum generation number, crossover probability, mutation 

probability, selection method, crossover method and replacement method. After 

creating and evaluating the first population, the iteration procedure is started. At 

each iteration, SELECT, CROSVR, MUTATE and EVAL subroutines are called 

until the iteration is equal to the maximum generation number. Finally, the best 

solution in the last generation is given as output. The details of the subroutines are 

explained in the following sections. 

 

4.4.1 INIT Subroutine 

 

In this subroutine, initial population is created randomly in encoded form. In order 

to apply genetic operators like crossover and mutation, the design variables of each 



 61 

individual are encoded as a binary number: which is a string 1
ix …. bN

ix of zeros and 

ones where Nb denotes the length of string (number of bits). The feasible interval of 

variable ix is divided into 12 −bN  intervals, and variable can be represented by any 

of the discrete representations as follows: 

 

000000, 000001, 000010, 000011, ……, 111111           when Nb = 6  (4.4) 

 

The real value of the variable is calculated as given in Equation (4.5): 
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       (4.5) 

 

where l is a vector of length n (number of variables) containing lower bounds on 

variables and u is a vector of length n containing upper bounds on variables. 

 

As can be seen in Equation (4.5), number of bits determines the precision of 

variables while searching the design space. 

 

In order to create a random variable, RNUNF function in FORTRAN library is used. 

RNUNF function creates a uniform random real number between 0 and 1 by using a 

seed number to initialize its random number generator. If the generated random 

number is greater than 0.5, the string of the variable is filled with 1, otherwise with 

0. To generate the initial population, a string of size ( bNn ⋅ ) bits is created for each 

individual of the population. The encoded variables of the individual are attached 

end to end as given in Figure 4.2. Np is the size of the population which defines the 

number of individuals in the population. 
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Figure 4.2 Creation of the Initial Population [29] 

 

4.4.2 EVAL Subroutine 

 

In this subroutine, firstly, the encoded form of the variables is decoded by using 

Equation (4.5). Then, the OBJECT function, where the objective (cost) function of 

the optimization problem is calculated, is called.  

 

4.4.3 SELECT Subroutine 

 

SELECT subroutine creates copies of individuals into mating pool for crossover 

operation by using one of the following methods. 

 

4.4.3.1 Roulette-Wheel Selection 

 

In roulette-wheel selection, each individual in the population is assigned a roulette 

wheel slot sized in proportion to its fitness value. Thus, good solutions have a larger 

slot size than the less fit solutions [35]. The method was implemented as follows:  

 

1. Evaluate the fitness, fi of each individual in the population. 

2. Compute the probability (slot size), pi, of selecting each member of the 

population as given in Equation (4.6) where Np is the population size. 



 63 

∑
=

=
pN

j

j

i

i

f

f
p

1

        (4.6) 

3. Calculate the cumulative probability, qi for each individual: ∑
=

=
i

j

ji pq
1

 

4. Generate a random number, [ ]1,0∈r  

5. If r < q1, then select the first chromosome, x1, else select the individual xi 

such that qi-1 < r ≤ qi. 

6. Repeat steps 4-5 Np times to create Np candidates in the mating pool. 

 

4.4.3.2 Tournament Selection 

 

In tournament selection, two individuals are selected randomly and entered into 

tournament against each other. The fittest individual wins the tournament and is 

selected into mating pool. 

 

4.4.4 CROSVR Subroutine 

 

In CROSVR subroutine, two individuals are selected from the mating pool and 

recombined (crossed over) with a probability Pc, called the crossover probability. 

That is, a random number, r is generated in the range 0 to 1 and if r ≤ Pc, selected 

two individuals are crossed over with one of the crossover operators; one-point or 

two-point. Otherwise, if r > Pc, the two offspring are simply copies of their parent 

individuals.  

 

4.4.4.1 One-Point Crossover 

 

If one-point crossover operator is selected by the user, the subroutine generates a 

random integer k between 1 and ( 1−⋅ bNn ) and the chromosomes of the parents are 

truncated from the k point and the truncated parts of the chromosomes are 
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exchanged between the individuals to create new offspring individuals as given in 

Figure 4.3. 

 

 

Figure 4.3 One-Point Crossover Operation  

 

4.4.4.2 Two-Point Crossover 

 

When the two-point crossover operator is selected by the user, the subroutine 

generates two random integers as given in former operator in order to determine the 

crossover site, and the truncated parts of the chromosomes are exchanged as 

illustrated in Figure 4.4.  

 

 

Figure 4.4 Two-Point Crossover Operation  

 

4.4.5 MUTATE Subroutine 

 

After the crossover operation, it is possible to get identical individuals since the 

crossed over part of the parental chromosomes can be same. Mutation is designed to 
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overcome this problem in order to add diversity to the population and ensure that it 

is possible to explore the entire search space [35].  

 

In order perform the mutation operation, MUTATE subroutine visits every bit of the 

chromosome of each individuals and changes the related bit with a probability Pm, 

called the mutation probability. That is, a random number, r is generated in the 

range 0 to 1, and if r ≤ Pm, selected bit is changed to 0 if it is 1 and 1 if it is 0 as 

given in Figure 4.5. In the example given in Figure 4.5; 1st, 4th and 6th bits are 

mutated. 

 

 

Figure 4.5 Mutation Operation  

 

4.4.6 REPLACE Subroutine 

 

Once the new offspring population is created using selection, crossover and 

mutation, it is introduced into the parental population. At this stage, the aim is 

increasing the average fitness value of the parental population. Therefore, the worse 

individuals among the parents and children are eliminated until the population size 

decreases to its initial size. The user can select one of the following methods. 

 

4.4.6.1 Best Alive 

In this method, firstly, parents and children are collected into a population and 

arranged according to their fitness values. Then, the best ones are selected in order 

to form the new parental population. 
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4.4.6.2 Elitism 

In this method, the specified number of worst individuals of the offspring population 

is replaced with the best individuals of parent population. In this study, the elitism 

number is chosen as the half of the population size, Np/2. In other words, the worst 

half of the children is changed with the best half of the parents. 

 

4.5 VALIDATION 

 

GENOP is validated with the analytical functions whose global minimum points are 

known. For the test cases; sphere, Rastrigin’s and Rosenbrock’s functions are taken 

as the objective function, which are commonly used as optimization test problems in 

literature. The search domain for each variable is taken as [-5, 5] and bit number of 

each variable is determined as 26 in order to approximate the exact solution with 6 

decimal places, since the increment range while changing the value of variable will 

be (5-(-5))/(226-1) ≈ 1.5 x 10-7 . For the random number generator, the seed value is 

used as 123457 for each case.  

 

4.5.1 Test Case-1 

 

For the first test case; sphere function is selected in order to work with a simple, 

convex function. The optimization problem is given as follows: 

 

minimize  2

2

2

1)( xxf +=x  

subject to  55 ≤≤− x     2Rx∈      (4.7) 

 

The objective function is plotted in Figure 4.6 for the specified search domain. As 

seen in the figure, the function has no local minimum points and the global 

minimum point is ( )0,0* =x  where the function value is 0)( * =xf .  
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Figure 4.6 Sphere Function  

 

The parameters of the genetic algorithm used for the problem solution are given in 

Table 4.1.  

Table 4.1 Parameters of Genetic Algorithm of Test Case-1 

Nb 26 Selection Method Roulette-Wheel 

Np 100 Crossover Method One-Point 

Ngen 40 Replacement Method Best-Alive 

Pc 0.8   

Pm 0.03   

 

The global minimum point is found after 37 generations. The best and average 

fitness values at each generation are plotted at the left in Figure 4.7. In the figure, the 

location of the best individual found at each generation can also be seen at the right 

side. The results are also given in tabulated form with the range of 5 generations in 

Table 4.2. When the results are analyzed, it is easily seen that the genetic algorithm 

finds the approximate place of the solution after few generations; however, it takes 

time to find the exact solution. 
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Figure 4.7 Best Fitness Values (left) and Best Individual (right) at Each Generation  

 

Table 4.2 Results of Test Case-1 Solution 

Best Individual Generation 

Number x(1) x(2) f(x) 
Average Fitness 

1 0.152480 -0.460208 0.235041 6.351674 

5 -0.065109 -0.014900 0.004461 0.274413 

10 -0.006211 -0.000836 0.000039 0.005981 

15 -0.000021 -0.000261 0.000000 0.000091 

20 -0.000021 -0.000260 0.000000 0.000005 

25 -0.000020 -0.000059 0.000000 0.000000 

30 -0.000007 -0.000001 0.000000 0.000000 

35 -0.000001 -0.000001 0.000000 0.000000 

40 0.000000 0.000000 0.000000 0.000000 

 

4.5.2 Test Case-2 

 

Rastrigin's function is selected for the second test case. The function is based on 

sphere function; however, with the addition of cosine modulation, regularly 

distributed many local minima are produced. The optimization problem is given as 

follows: 

 

minimize  ( ))2cos()2cos(1020)( 21

2

2

2

1 xxxxf ππ +−++=x  

subject to  55 ≤≤− x     2Rx∈      (4.8) 
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The objective function is plotted in Figure 4.8 for the specified search domain. As 

seen in the figure, the function has several local minimum points and the global 

minimum point is ( )0,0* =x  where the function value is 0)( * =xf .  

 

 

Figure 4.8 Rastrigin’s Function  

 

The parameters of the genetic algorithm used for the problem solution are given in 

Table 4.3.  

  

Table 4.3 Parameters of Genetic Algorithm of Test Case-2 

Nb 26 Selection Method Tournament 

Np 100 Crossover Method Two-Point 

Ngen 40 Replacement Method Elitism 

Pc 0.8   

Pm 0.02   

 

The global minimum point is found after 38 generations. The best and average 

fitness values at each generation are plotted at the left in Figure 4.9. In the figure, the 

location of the best individual found at each generation can also be seen at the right 

side. The results are also given in tabulated form with the range of 5 generations in 

Table 4.4. When the results are examined, it is seen that the genetic algorithm firstly 
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captures a local minimum point (0,1) and after 10 generations, it jumps the 

approximate place of the solution.  

 

   

Figure 4.9 Best Fitness Values (left) and Best Individual (right) at Each Generation  

 

Table 4.4 Results of Test Case-2 Solution 

Best Individual Generation 

Number x(1) x(2) f(x) 
Average Fitness 

1 0.061736 0.986431 1.756130 20.785984 

5 0.022674 0.986431 1.111191 1.915870 

10 0.020026 0.009869 0.098778 1.035250 

15 0.000312 0.000098 0.000021 0.081605 

20 0.000009 0.000097 0.000002 0.000024 

25 0.000006 0.000020 0.000000 0.000002 

30 0.000006 0.000003 0.000000 0.000000 

35 0.000002 0.000001 0.000000 0.000000 

40 0.000000 0.000000 0.000000 0.000000 

 

4.5.3 Test Case-3 

 

For the third test case, Rosenbrock's function is selected. The global minimum point 

of the function is inside a long, narrow, parabolic shaped flat valley. Since 

convergence to the global minimum point is difficult, this problem has been 

repeatedly used for the performance of optimization algorithms. The optimization 

problem is given as follows: 
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minimize  ( ) ( )2

1

2

2

2

1 1100)( −+−⋅= xxxf x  

subject to  55 ≤≤− x     2Rx∈      (4.9) 

 

The objective function is plotted in Figure 4.10 for the specified search domain. At 

right side, the fitness value is plotted in logarithmic scale in order to show clearly 

the valley where the global optimum is located. As seen in the figure, the function 

has several local minimum points and the global minimum point is ( )1,1* =x  where 

the function value is 0)( * =xf .  

 

   

Figure 4.10 Rosenbrock’s Function  

 

The parameters of the genetic algorithm used for the problem solution are given in 

Table 4.5. The population and maximum generation number are increased in order 

to find the global optimum. 

  

Table 4.5 Parameters of Genetic Algorithm of Test Case-3 

Nb 26 Selection Method Roulette-Wheel 

Np 1000 Crossover Method Two-Point 

Ngen 100 Replacement Method Elitism 

Pc 0.8   

Pm 0.02   
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The global minimum point is found after 94 generations. The best and average 

fitness values at each generation are plotted at the left in Figure 4.11.  

 

In the figure, the locations of the best individual found at each generation are given 

at the right side. The results are also given in tabulated form with the range of 10 

generations in Table 4.6. When the results are analyzed, after 50 generations, the 

algorithm gets closer to optimum point; however, until 94th generation, it travels in 

the vicinity of the exact solution. 

 

   

Figure 4.11 Best Fitness Values (left) and Best Individual (right) at Each Generation  

 

Table 4.6 Results of Test Case-3 Solution 

Best Individual Generation 
Number x(1) x(2) f(x) 

Average Fitness 

1 1.770535 3.151014 0.620034 1044.455227 

10 1.069104 1.145117 0.005231 0.687646 

20 1.005628 1.007566 0.001416 0.006257 

30 0.999543 0.998962 0.000002 0.002764 

40 0.999512 0.998963 0.000001 0.000166 

50 1.000033 1.000067 0.000000 0.000015 

60 0.999997 0.999994 0.000000 0.000009 

70 0.999997 0.999994 0.000000 0.000000 

80 0.999999 0.999999 0.000000 0.000000 

90 1.000000 1.000001 0.000000 0.000000 

100 1.000000 1.000000 0.000000 0.000000 
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CHAPTER 5 

5 VALIDATION OF GRAIN DESIGN OPTIMIZATION 

TOOL 

VALIDATION OF GRAIN DESIGN OPTIMIZATION TOOL 

 

 

 

 

The main aim of this thesis study is to develop a ballistic design optimization tool 

for 3-D grain configuration. For this purpose, a grain design optimization tool, 

called GDOT, is developed which consists of three main modules which are grain 

geometry modeling and burnback, internal ballistic solver and genetic optimizer. 

GDOT is actually the integration of BB3D and SOLVER codes into GENOP code 

which are presented in previous chapters. The flowchart of GDOT is given in 

following figure. 

 

 

Figure 5.1 Flowchart of GDOT 
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GDOT uses genetic algorithm for finding the best solution in design space. Within 

the geometric constraints, firstly the design variables are selected randomly and 

grain designs are developed in the amount of population number.  

 

Then, for the each grain design, the given steps are followed successively:  

 

• “Burning surface area versus web increment” data is calculated with 

burnback analysis (BB3D).  

• Ballistic performance parameters are found with internal ballistic solver by 

using the burnback data.  

• Objective function (fitness value) is calculated by using the ballistic 

results.  

 

After the initial design population is generated, the optimization iteration starts. At 

each iteration (generation), a new design population is developed in order to find the 

best design by using genetic operators (selection, crossover, mutation and 

replacement). The iteration continues until the stopping criterion is satisfied.  

 

In order to run optimization tool, user should prepare the following inputs: 

 

• Inputs of BB3D defining the grain configuration by using basic figures or 

grain modules 

• Inputs of SOLVER consisting of propellant and nozzle properties 

• Inputs of GENOP consisting of design constraints and optimization 

parameters 

• Objective function in OBJECT subroutine 
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5.1 TEST CASES 

 

In this section, three test cases are studied in order to validate the grain design 

optimization tool. For the first test case, an actual, predesigned Star Motor having a 

convex star grain configuration is used. For the second case, again a real rocket 

motor having a finocyl grain with slots at head and aft ends is examined. Lastly, a 

radial slot grain studied in literature is selected as a design optimization problem. 

During the study, a computer with Intel Core i5 2.67 GHz CPU and 4 GB RAM is 

used. 

 

5.1.1 Test-Case 1 

 

A simple 2-D grain configuration having less design variables than 3-D complex 

ones is selected as a starting case. For this purpose, the grain of a real solid rocket 

motor, called Star Motor (SM), which has a 2-D star convex grain configuration 

with 6 star points and was previously designed without the aid of any optimization 

tool by trial and error method, is studied. The off-scale solid model of the grain is 

presented in Figure 5.2 . 

 

 

Figure 5.2 Solid Model of the Grain of SM 
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The aim of this study is to compare the result of developed optimization tool with an 

actual, predesigned grain using its objectives and constraints. In addition, this grain 

configuration was studied by Açık in her thesis study [13] with a 2-D grain design 

optimization tool using complex optimization algorithm. Therefore, it will be 

possible to evaluate the performance of the developed optimization tool by 

comparing with the one developed by Açık. In order to make an accurate 

comparison and avoid the differences between optimization tools while calculating 

the ballistic performance, 2-D burnback code of Açık’s tool is replaced with BB3D. 

Since the ballistics solver code is same in the optimization tools, actually, the 

performance of the genetic and complex algorithm is compared by this study. 

 

5.1.1.1 Design Variables 

 

8 design variables and their dimensionless values for Star Motor are given in Table 

5.1. Design variables other than grain length and nozzle throat diameter are the ones 

defining the cross-section geometry as seen in Figure 5.3. 

 

Table 5.1 Nondimesional Geometric Parameters of Star Motor 

Grain length, L/Dt 18.8 

Outer diameter, Dout/Dt 3.55 

Web thickness, w/w 1.00 

Fillet radius, r1/w 0.27 

Cusp radius, r2/w 0.18 

Star point semi angle, η/w 3.27 

Star angle, ξ/w 2.27 

Nozzle throat diameter, Dt/Dt 1.00 
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Figure 5.3 Geometric Parameters of Convex Star Grain 

 

In this study, the problem is solved repeatedly with different genetic operators and 

parameters to find proper optimization parameter set for the grain design problems. 

Therefore, in order to reduce the computation time, h (web increment / maximum 

web) is taken as about 0.03 and k is used as 1.0 for the burnback analysis.  
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5.1.1.2 Design Constraints 

 

Design constraints are taken as given in Reference [13]. The geometric bounds on 

the variables are defined as shown in Table 5.2. Values in Table 5.2 are 

nondimensionalized with the SM grain parameters. Grain length and outer diameter 

bounds come from the SM design process. However, the bounds of the other 

parameters were chosen arbitrarily considering manufacturability.  

 

Table 5.2 Nondimensional Geometric Bounds of Star Grain Optimization 

Parameter 
Lower 

Bound 

Upper 

Bound 

Grain length, L / LSM 0.96 1.05 

Outer diameter, Dout / Dout,SM 0.96 1.02 

Web thickness, w / wSM 0.73 1.27 

Fillet radius, r1 / r1,SM 0.50 1.50 

Cusp radius, r2 / r2,SM 0.75 2.25 

Star point semi angle, η / ηSM 0.83 1.11 

Star angle, ξ / ξSM 0.80 1.20 

Nozzle throat diameter, Dt / Dt,SM 0.77 1.54 

 

Maximum chamber pressure is constrained to be 3000 psi and propellant mass is 

constrained to be 4 kg. The propellant and nozzle properties of the actual motor are 

used as the input of the ballistic solver.  

 

5.1.1.3 Objective Function 

 

Considering the mission requirements of a missile or rocket system, the grain design 

requirements can be simplified to the thrust-time history of the rocket motor. In this 

case study, the design requirements of SM like total impulse, burning time and 

average thrust level are defined as an objective thrust-time curve.  
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Figure 5.4 Nondimensional Objective and SM Thrust-Time Curves 

 

The objective function and objective thrust-time curve are taken as given in 

Reference [13]. While specifying the objective thrust-time curve, the total impulse 

of SM up to 1.0 time value is taken into consideration since, after that point, thrust 

starts to decrease. This part of the curve, called sliver region, is almost useless due to 

the inefficient burning of the propellant. Any design having relatively small sliver 

region is more acceptable. Therefore, average thrust of SM is calculated up to time 

1.0 and the remaining part of the curve is discarded.  

 

Implementing this average thrust, the objective thrust-time curve of this test case is 

defined as in Figure 5.4. In the figure, thrust is normalized with respect to maximum 

thrust of the objective thrust-time curve and time is normalized with respect to total 

burning time of the objective thrust-time curve.  

 

Using the objective thrust-time curve, the optimization problem becomes finding the 

grain design whose ballistic performance fits the objective curve best within the 

given design constraints. Therefore, the objective function can be defined as follows: 
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The objective function is typically summation of differences between the desired 

(Fobj) and computed (Fdes) thrust values at specified times during motor operation 

divided by average desired thrust (
aveobjF ) and total number of time data (Ntb).  

 

Some constraints like maximum chamber pressure, propellant mass and burning 

time can be defined in order to discourage unrealistic designs. These constraints are 

enforced to the objective function by the penalty function method.  Main idea of the 

penalty function method is adding a term to the objective function that gives a high 

cost when the constraints are violated. Therefore, the following term is added to 

objective function when the constraints are not satisfied. 
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where g(x) is the constraint parameter found with related design variables and gconst 

is the upper value of the specified constraint. 

 

Finally, the optimization problem can be defined as: 

 

minimize  )(xf  

subject to  iii uxl ≤≤     8,...,1=i     (5.3) 
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where l is a vector containing the lower bounds and u is a vector containing the 

upper bounds on design variables. 
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5.1.1.4 Optimization Parameters 

 

After defining the design constraint and objective function, the following studies are 

done in order to find genetic algorithm parameters of the optimization tool giving 

the best solution. Considering the number of function evaluations and computation 

time, the maximum number of generation is taken as 50. Different population 

numbers as 20, 30 and 40 are used. The bit number is set to 8, which is sufficient for 

the precision of variables.  

 

5.1.1.4.1 Study-1 

 

In order to find the genetic operators giving the best solution for the studied case; 

cross-over probability and mutation probability is taken as 0.8 and 0.03, respectively 

and the test case is studied with all possible selection, cross-over and replacement 

operators. The used optimization parameters are given in Table 5.3.  

 

Table 5.3 Optimization Parameters of Study-1 

Nb 8 Selection Method Roulette-Wheel / Tournament 

Np 20, 30, 40 Crossover Method One-Point / Two-Point 

Ngen 50 Replacement Method Best Alive / Elitism 

Pc 0.8   

Pm 0.03   

 

The results are presented in Table 5.4. The last column given in the table is the value 

of objective function of found solution and shows the difference between objective 

thrust-time curve and thrust-time curve of present solution.  

 

When the table is analyzed, it is seen that larger population number increases the 

probability of finding best solution and the solutions get closer to each other. 

However, all solutions with different population numbers are dispersed into a 

narrow interval about 1 % error band. Therefore, it is reasonable to work with small 

population number for the cases whose computation time is high.  
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Table 5.4 Results of Study-1 

No Np Selection Cross-Over Replacement Obj. Func. (%) 

1 40 Roulette Two-Point Elitism 7.35 

2 40 Tournament One-Point Best Alive 7.39 

3 30 Tournament Two-Point Elitism 7.41 

4 20 Roulette Two-Point Elitism 7.43 

5 20 Roulette Two-Point Best Alive 7.44 

6 40 Tournament Two-Point Best Alive 7.54 

7 40 Roulette Two-Point Best Alive 7.56 

8 40 Roulette One-Point Best Alive 7.58 

9 40 Tournament Two-Point Elitism 7.61 

10 40 Roulette One-Point Elitism 7.64 

11 20 Roulette One-Point Best Alive 7.64 

12 20 Roulette One-Point Elitism 7.68 

13 40 Tournament One-Point Elitism 7.72 

14 30 Roulette One-Point Best Alive 7.73 

15 30 Roulette One-Point Elitism 7.77 

16 30 Roulette Two-Point Best Alive 8.14 

17 20 Tournament Two-Point Best Alive 8.29 

18 30 Roulette Two-Point Elitism 8.30 

19 20 Tournament Two-Point Elitism 8.37 

20 20 Tournament One-Point Elitism 8.40 

21 30 Tournament One-Point Elitism 8.42 

22 30 Tournament One-Point Best Alive 8.42 

23 30 Tournament Two-Point Best Alive 8.43 

24 20 Tournament One-Point Best Alive 8.43 

 

Examining the table, it is hard to say that a specific genetic operator gives better 

solution. For a specified population number, the best working operator triad is 

changing. However, roulette-wheel/two-point/elitism operator triad gives the best 

solution in the population number of 20 and 40.   
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5.1.1.4.2 Study-2 

 

After finding the best working operators for the studied case with Study-1, the effect 

of the cross-over probability and mutation probability are investigated with this 

study. For this purpose, roulette-wheel/two-point/elitism operator triad is selected 

and the population number of 20 is used to decrease the computation time. The 

crossover probability is changed with 0.1 increments between 0.1 and 1.0. On the 

other hand, the mutation probability is changed with 0.01 increments between 0.01 

and 0.10. The optimization parameters used in this study are given in Table 5.5. 

 

Table 5.5 Optimization Parameters of Study-2 

Nb 8 Selection Method Roulette-Wheel 

Np 20 Crossover Method Two-Point 

Ngen 50 Replacement Method Elitism 

Pc 0.1-1.0   

Pm 0.01-0.10   

 

 

Figure 5.5 Results of Study-2 

 

The contour plot of the objective function value for different cross-over and 

mutation probabilities is presented in Figure 5.6. As seen from the figure, when Pc is 
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increased, Pm should decrease in order to find better solutions. On the other hand 

when Pc is decreased, Pm should increase for better performance. Because using 

high cross-over and mutation probabilities increases the diversity of the population 

so much that converging to an optimal solution can be impossible. Therefore, there 

should be a balance between cross-over and mutation. 

 

The best solution is found as 7.37 % with Pc = 0.5 and Pm = 0.03 and the worst 

solution is get as 10.91 % with Pc = 0.2 and Pm = 0.01. The study shows that the 

value of the objective function can change about 3.5 % with the change of cross-

over and mutation probabilities. However, working in the region of 0.5 ≤ Pc ≤ 0.9 

and 0.01 ≤ Pm ≤0.05 decreases the change of the objective function value to the level 

of 1 %. Therefore, the solution found by using the optimization parameters as 

roulette-wheel/two-point/elitism operator triad with Pc = 0.8 and Pm = 0.03 is reliable 

for this engineering application.   

 

After examining the results of Study-1 and Study-2, the optimization parameters for 

this test case are used, as shown in the following table.  

 

Table 5.6 Optimization Parameters of Test Case-1 

Nb 8 Selection Method Roulette-Wheel 

Np 40 Crossover Method Two-Point 

Ngen 50 Replacement Method Elitism 

Pc 0.8   

Pm 0.03   

 

5.1.1.5 Results 

 

In this section, the best solution found with the developed optimization tool using 

genetic algorithm is compared with the actual SM geometry and found solution with 

Açık’s tool using complex algorithm. After the implementation of BB3D into Açık’s 

tool, optimization algorithms are the only difference between Açık’s tool and 

GDOT. Therefore, performance of the genetic algorithm is compared with complex 
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algorithm in the given results. To make an accurate comparison, the maximum 

number of function evaluations is taken as 2040 for the both algorithms. 

Optimization process with the specified number of function evaluations takes about 

one hour for the both algorithms. 

 

In the genetic algorithm, objective function is evaluated in the number of population 

size at each generation; therefore, in this study, objective function is calculated 40 

times at each generation. Average and best objective function value (fitness value) 

of the population at each generation of genetic algorithm is given in Figure 5.6. The 

objective function value of the found geometry after 50 generation is 7.4 %.  

 

 

Figure 5.6 Best and Average Fitness Values at Each Generation of Genetic 

Algorithm 

 

Fitness value evolution with respect to number of function evaluations for genetic 

and complex algorithms is given in Figure 5.7. Objective function of the found 

geometry by using complex algorithm is 8.4 %. As seen from the figure, complex 

algorithm converges to the found solution after 500 number of function evaluations. 

On the other hand, genetic algorithm improves the solution up to the value of 7.4 % 

until 1320 number of function evaluations.  
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Figure 5.7 Fitness Value Evolution of Genetic and Complex Algorithms 

 

Table 5.7 Nondimensional Results for Star Grain 

Parameters SM 
Complex 

Algorithm 
Genetic 

Algorithm 
Grain length, L / LSM 1.00 1.03 1.00 

Outer diameter, Dout / Dout,SM 1.00 1.00 0.97 

Web thickness, w / wSM 1.00 0.93 1.10 

Fillet radius, r1 / r1,SM 1.00 0.85 1.13 

Cusp radius, r2 / r2,SM 1.00 1.50 0.76 

Star point semi angle, η / ηSM 1.00 0.93 0.97 

Star angle, ξ / ξSM 1.00 0.80 0.80 

Throat diameter, Dt / Dt,SM 1.00 1.05 0.85 

Objective Function (%) 11.2 8.4 7.4 

Propellant mass, mp / mp,SM  1.00 0.90 0.86 

Max. chamber pressure, pmax / pmax,SM  1.00 0.88 1.30 

Total impulse, It / It,SM 1.00 0.97 0.99 
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The nondimensional results are presented in Table 5.7. Objective function of the 

actual SM geometry is calculated as 11.2 % for the given objective thrust-time 

curve. Therefore, with the genetic algorithm, a star grain geometry, having a better 

curve fit with the objective thrust-time curve than actual SM geometry and found 

geometry by using complex algorithm, is found. In addition, the maximum chamber 

pressure is increased in the solution found by genetic algorithm, since the throat 

diameter is decreased. However, this change make available to achieve nearly same 

total impulse with the actual motor design by a grain design with 14 % less 

propellant mass.  

 

The cross-sectional views of the found grain geometries are presented in Figure 5.8. 

The geometry with blue color is the actual SM geometry. The red one is the 

geometry found by genetic algorithm and the green one is the geometry found by 

complex algorithm. The light blue area is the design space on the cross-section 

geometry bounded with the given constraints. 

 

 

Figure 5.8 Cross-Sectional View of Grain Geometries 
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Nondimensional thrust-time curve of the present solution is given in the following 

figure. As seen from the figure, after 1.0 time value, the solution found by genetic 

algorithm has smaller sliver region than other grains.   

 

 

Figure 5.9 Nondimensional Thrust-Time Curve of the Present Solution 

 

Since the complex algorithm takes an initial design point to start the optimization 

process, this affects the found solution of the algorithm. When the initial point is 

given nearer to the found solution by the genetic algorithm, complex algorithm finds 

the similar results with the genetic one. In this study, initial point for the complex 

algorithm is taken as given in Reference [13].  

 

The results show that complex algorithm converged to a local optimum point in the 

search space of this grain design problem with the selected initial point. On the other 

hand, it is not possible to say that genetic algorithm is superior to the complex one 

by comparing the results of only this test case. Since coming such a conclusion is 

not the aim of this study, complex algorithm is not studied for the other test cases.  
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5.1.2 Test-Case 2 

 

In this case study, the grain of a real solid rocket motor, called Boost-Sustain Motor 

(BSM), which has a 3-D finocyl grain configuration with 8 fins at the fore and aft 

ends, is studied. BSM was previously designed without the aid of any optimization 

tool like Star Motor given in Test-Case 1. The off-scale solid model of the grain is 

presented in Figure 5.10. In the burnback analysis, h is taken as about 0.01 and k is 

used as 0.5 and 1.0 for the radial and axial station increments respectively.  

 

 

Figure 5.10 Solid Model of the Grain of BSM 

 

5.1.2.1 Design Variables 

 

19 geometric parameters, which are the grain length, port diameter, 8 variables of 

each slots and nozzle throat diameter, are selected as the design variables. The 

design variables are presented in Figure 5.11. The outer diameter, ellipsoid ratios of 

the dome parts, fore and aft openings of the grain are not changed, since they are the 

design constraints of BSM.  
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Figure 5.11. Design Variables of Finocyl Grain 

 

5.1.2.2 Design Constraints 

 

The nondimensional geometric bounds on the variables are defined, as shown in 

Table 5.8. A larger design space is created with the given geometric bounds. In this 

way, the performance of the optimization tool is experienced with large number of 

design variables and large design space. 

  

Maximum chamber pressure is constrained to be 1300 psi. Maximum propellant 

mass is not taken as a design constraint. The propellant and nozzle properties of the 

actual motor are used as the input of the ballistic solver.  
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Table 5.8 Nondimensional Geometric Bounds of Finocyl Grain Optimization 

No Parameter 
Lower 

Bound 

Upper 

Bound 

1 Grain length, L / LSM 0.96 1.02 

2 Port diameter, Dport / Dport,BSM 0.80 1.22 

3 Distance of front slot, Xf / Xf,BSM, 0.71 1.43 

4 Length of front slot, Lf / Lf,BSM 0.54 1.61 

5 Depth of front slot, Df / Df,BSM 0.85 1.19 

6 Width of front slot, Wf / Wf,BSM 0.57 1.13 

7 Radius-1 of front slot, R1f / R1f,BSM 0.33 1.67 

8 Radius-2 of front slot, R2f / R2f,BSM 0.33 1.67 

9 Radius-3 of front slot, R3f / R3f,BSM 0.42 1.67 

10 Transition angle of front slot, αf / αf,BSM 0.30 1.21 

11 Distance of rear slot, Xr / Xr,BSM, 0.59 1.47 

12 Length of rear slot, Lr / Lr,BSM 0.41 1.64 

13 Depth of rear slot, Dr / Dr,BSM 0.85 1.19 

14 Width of rear slot, Wr / Wr,BSM 0.57 1.13 

15 Radius-1 of rear slot, R1r / R1r,BSM 0.33 1.67 

16 Radius-2 of rear slot, R2r / R2r,BSM 0.33 1.67 

17 Radius-3 of rear slot, R3r / R3r,BSM 0.42 1.67 

18 Transition angle of rear slot, αr / αr,BSM 0.30 1.21 

19 Nozzle throat diameter, Dt / Dt,SM 0.88 1.09 
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5.1.2.3 Objective Function 

 

The design requirements of BSM are defined as an objective thrust-time curve given 

in Figure 5.12 in nondimensional format. Thrust is normalized with respect to 

maximum thrust of the objective thrust-time curve and time is normalized with 

respect to total burning time of the objective thrust-time curve. While specifying the 

objective thrust-time curve, average thrust of boost and sustain levels, total impulse 

and total burning time of BSM are taken into consideration. 

 

 

Figure 5.12 Nondimensional Objective and BSM Thrust-Time Curves 

 

An objective function similar to the one in Test Case-1 is defined. In order to 

calculate the difference between objective and optimized curve accurately in dual 

thrust case, Equation (5.1) is changed as given in Equation (5.4). Penalty term for 

the constraint of maximum pressure is added to objective function as given in 

Equation (5.2). 
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The optimization problem becomes: 

minimize  )(xf  

subject to  iii uxl ≤≤     19,...,1=i     (5.5) 

(psi)  1300)( ≤xcp  

where l is a vector containing the lower bounds and u is a vector containing the 

upper bounds on design variables. 

 

5.1.2.4 Optimization Parameters 

 

Optimization parameters are taken as shown in Table 5.9. Small population number 

is used to decrease the number of function evaluations since the computation time of 

each design is about 1 minute. Considering the total number of function evaluations 

is 1020 for Np = 20 and Ngen = 50, optimization process takes about 15 hours.  

 

Table 5.9 Optimization Parameters of Test Case-2 

Nb 8 Selection Method Roulette-Wheel 

Np 20 Crossover Method Two-Point 

Ngen 50 Replacement Method Elitism 

Pc 0.8   

Pm 0.03   
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5.1.2.5 Results 

 

Average and best objective function value (fitness value) of the population at each 

generation is given in Figure 5.13. The objective function value of the found 

geometry after 50 generation is 3.66 %. 

 

  

Figure 5.13 Best and Average Fitness Values at Each Generation 

 

The best solution found with the developed optimization tool is shown in Table 

5.10. Objective function of the actual BSM geometry is calculated as 7.9 % for this 

objective thrust-time curve. With the developed optimization tool, a finocyl grain 

geometry having about 4 % better curve fit with the objective thrust-time curve than 

actual motor is found.  
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Table 5.10 Nondimensional Results for Star Grain 

Parameter 
Present 
Solution 

Grain length, L / LSM 1.01 

Port diameter, Dport / Dport,BSM 0.99 

Distance of front slot, Xf / Xf,BSM, 3.00 

Length of front slot, Lf / Lf,BSM 0.86 

Depth of front slot, Df / Df,BSM 1.00 

Width of front slot, Wf / Wf,BSM 1.02 

Radius-1 of front slot, R1f / R1f,BSM 0.34 

Radius-2 of front slot, R2f / R2f,BSM 1.10 

Radius-3 of front slot, R3f / R3f,BSM 0.60 

Transition angle of front slot, αf / αf,BSM 0.31 

Distance of rear slot, Xr / Xr,BSM, 1.31 

Length of rear slot, Lr / Lr,BSM 0.68 

Depth of rear slot, Dr / Dr,BSM 0.95 

Width of rear slot, Wr / Wr,BSM 1.06 

Radius-1 of rear slot, R1r / R1r,BSM 0.61 

Radius-2 of rear slot, R2r / R2r,BSM 1.58 

Radius-3 of rear slot, R3r / R3r,BSM 0.48 

Transition angle of rear slot, αr / αr,BSM 0.31 

Nozzle throat diameter, Dt / Dt,SM 0.99 

Propellant mass, mp / mp,BSM  1.01 

Maximum chamber pressure, pmax / pmax,BSM  1.02 

Total impulse, It / It,BSM 1.02 

 

In the present solution, the radius-1, radius-3 and transition angles of both slots are 

decreased; the distances of the slots are increased. In addition, the length of the rear 

slot is decreased, as shown in Figure 5.14 and Figure 5.15.  
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Figure 5.14 Cross-Sectional View of Present Solution at the Head End 

 

 

Figure 5.15 Cross-Sectional View of Present Solution at the Aft End 

 

Thrust-time curve of the present solution is given in Figure 5.16. As seen from the 

figure, the solution has neutral burning in the sustain part as desired with objective 

thrust-time curve, while the actual motor has progressive burning. This is the main 

reason why the present solution fits better to the objective curve. 
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Figure 5.16 Nondimensional Thrust-Time Curve of the Present Solution 

 

5.1.3 Test-Case 3 

 

In Reference [12], 3-D radial slot grain presented in Figure 5.17 is designed using a 

genetic algorithm. The geometric modeling and burnback analysis of the grain are 

done with CAD software through dynamic variables which define the complex 

configuration. Equilibrium pressure method is applied to calculate the internal 

ballistics. The study in Reference [12] is used in this test case. In the burnback 

analysis, h is taken as about 0.01 and k is used as 0.5 and 1.0 for the axial and radial 

station increments respectively. 

 

 

Figure 5.17 Solid Model of Radial Slot Grain 
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Design variables, constraints, objective function are taken as given in the reference 

and the results are compared. In order to make a correct comparison, the internal 

ballistics solver is simplified, as given in reference. Steady-state chamber pressure is 

calculated by equating the mass generated in chamber to the mass ejected through 

nozzle throat as follows: 

 

n

t

b
pc

A

A
acp

−





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


=

1

1

*ρ           (5.6) 

 

Thrust is determined by Equation (3.28) where 
FCη is assumed as 0.93 and vacuum 

conditions are used. Propellant and nozzle parameters used in the study are given in 

Table 5.11.  

 

Table 5.11 Propellant and Nozzle Parameters 

Parameter Unit Value 

Dt mm 160 

ε - 16 

c* m/s 1550 

ρp kg/m3 1750 

n - 0.34 

a mm/(s.Pa) 0.0311 

γ - 1.2 
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5.1.3.1 Design Variables 

 

The geometric parameters of front/rear radial slot grain are shown in Figure 5.18.  

 

 

Figure 5.18 Geometric Variables of Radial Slot Grain 

 

Ellipsoid ratio at domes is 2:1. L1 and F2 are taken as 2395 mm and 700 mm 

respectively. While modeling the grain boundary, F2 is assumed as equal to F4 and 

F3 is equal to F6. Other 13 parameters are determined as design variables.  

 

5.1.3.2 Design Constraints 

 

The geometric bounds on the variables are defined as shown in Table 5.12. In 

addition, maximum chamber pressure is constrained to be 65 bar. Maximum 

propellant mass is taken as 5100 kg. The burning duration is set as 71 s ≤ tb ≤ 77 s. 
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Table 5.12 Geometric Bounds of Design Variables 

No Parameter 
Lower Bound 

(mm) 

Upper Bound 

(mm) 

1 F4 80 120 

2 F5 220 280 

3 F6 330 400 

4 ST1 25 50 

5 ST2 25 50 

6 SD1 100 200 

7 SD2 80 200 

8 SW1 150 280 

9 SW2 150 250 

10 L2 70 130 

11 L3 80 120 

12 L4 80 120 

13 L5 150 250 

 

5.1.3.3 Objective Function 

 

The aim in this study is to find the grain geometry that generates maximum average 

thrust by meeting the design constraints. Therefore, the objective function is defined 

as given Equation (5.7), which is the average thrust. 

tb
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x           (5.7) 

Then, the optimization problem can be stated: 

maximize  )(xf  

subject to  iii uxl ≤≤     13,...,1=i     (5.8) 

(s)  77)(71

(kg)  5100)(
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where l is a vector containing the lower bounds and u is a vector containing the 

upper bounds on design variables. 
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5.1.3.4 Optimization Parameters 

 

Optimization parameters are determined as given in Table 5.13. The population 

number and generation number are taken as 20 and 30 respectively to use the same 

number of function evaluations given in the reference as 600.  

 

Table 5.13 Optimization Parameters of Test Case-3 

Nb 8 Selection Method Roulette-Wheel 

Np 20 Crossover Method Two-Point 

Ngen 30 Replacement Method Elitism 

Pc 0.8   

Pm 0.03   

 

5.1.3.5 Results 

 

Average and best objective function value (fitness value) of the population at each 

generation is given in the following figure. Optimization process takes about 7 hours 

and the average thrust value of the found geometry after 30 generations is 181.2 kN. 

 

 

Figure 5.19 Best and Average Values of Objective Function at Each Generation 
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The solutions found with the developed optimization tool and given in the reference 

are presented in Table 5.14. The present grain has similar ballistic performance with 

the reference geometry. The average thrust is increased 4.6 kN and the maximum 

chamber pressure gets closer to upper bound.  

 

Table 5.14 Results for Radial Slot Grain 

Parameter Unit Reference 
Solution 

Present  
Solution 

F4 mm 96.5 108.1 

F5 mm 266.4 267.5 

F6 mm 352.0 331.9 

ST1 mm 28.6 25.4 

ST2 mm 36.6 26.8 

SD1 mm 160.8 100.4 

SD2 mm 122.5 86.1 

SW1 mm 268.5 274.4 

SW2 mm 196 216.3 

L2 mm 83.7 90.0 

L3 mm 98.3 80.0 

L4 mm 96.0 98.5 

L5 mm 188.0 161.4 

Fav kN 176.6 181.2 

mp kg 4937 4969 

tb s 74.5 71.5 

pc_max bar 61.6 65.0 

 

The cross-sectional view of the present grain is presented in Figure 5.20. As seen 

from the figure, the inner cylindrical void is almost the same with the reference 

solution. Mainly, the location of the radial slots is changed by the present study. 
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Figure 5.20 Cross-Sectional View of the Present Solution  

 

Thrust-time curves of the present and reference grains are shown in Figure 5.21.  

 

 

Figure 5.21 Thrust-Time Curve of the Present Solution 

 

This study shows that the developed optimization tool gives similar results with the 

reference study. To make a certain comparison between two studies is not possible, 

since the method of burnback analysis used in the studies is different, so each 

solution has different numerical errors.  
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CHAPTER 6 

6 CONCLUSION AND FUTURE WORK 

 

CONCLUSION AND FUTURE WORK  

 

 

 

 

6.1 CONCLUSION 

 

In this thesis study, an optimization tool that can be used for 2-D and 3-D grain 

design problems is developed. The optimization tool enables to model the grain 

geometry parametrically and to predict the ballistic performance of the modeled 

geometry. By using genetic algorithms, the geometry is optimized for a specified 

ballistic objective and design constraints.  

 

For the geometric modeling and burnback analysis of the propellant grain, a 

FORTRAN code, named BB3D is developed. Grain geometry can be modeled 

parametrically by using simple geometries; like cylinder, cone, sphere, ellipsoid, 

prism and torus, defined in BB3D. The code calculates the burning surface area of 

the grain for each burnback steps by evaluating the volume change with respect to 

web thickness. The code is validated with 2-D and 3-D grain samples and the results 

are compared with analytical, numerical and CAD solutions. Taking the analytical 

and CAD solutions as a reference, BB3D calculates the change of burning surface 

area with an error less than 0.2 %.  The number of axial and radial stations used for 

volume calculation specifies the error level. Therefore, the calculation step size is an 

important parameter for the burnback analysis.      

 

To predict the ballistic performance of the solid rocket motor, the internal ballistics 

solver developed by Açık [13] is used. The solver calculates the ballistic 
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performance parameters by using 0-D quasi-steady flow equations in the combustion 

chamber and 1-D isentropic flow equations in the nozzle. 

 

As an optimization algorithm, genetic algorithms which are derivative-free, global 

search methods are utilized. Different genetic operators (roulette wheel and 

tournament selection methods, one-point and two-point crossover methods, best 

alive and elitism replacement methods) are studied in order to find proper 

optimization parameters giving the best solution for the grain design problem. 

Additionally, the effect of the crossover and mutation probabilities on the solution is 

investigated. Although the effect of the optimization parameters on the problem 

solution can change according to problem type and design space; with the given test 

case study, it is seen that the selection of genetic operators can alter the solution 

about 1 % when the proper probabilities are used.  

 

Lastly, the studied test cases show that the developed grain design optimization tool 

is robust enough for such an engineering application. Grain designer kicks off the 

preliminary design phase with a good solution satisfying the geometric and ballistic 

requirements by using the optimization tool.  

 

6.2 FUTURE WORK 

 

For this study; 

1. implementation of adaptive step size method for burnback analysis that 

can decrease the computation time of BB3D code, 

2. implementation of 1-D flow solvers handling the performance 

prediction more detail such as erosive burning effects,  

3. improving the performance and effectiveness of genetic algorithms by 

hybridization or parallelization, 

4. implementation of structural design parameters into optimization 

process, 

would be the future areas of interest for further research. 
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APPENDICES 

A DESIGN VARIABLES OF REFERENCE [2] 

DESIGN VARIABLES OF REFERENCE [2] 

 

 

 

 

 



 110 

 

APPENDIX B 

B DESIGN VARIABLES OF REFERENCE [11] 
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APPENDIX C 

C TECHNICAL DRAWING OF FINOCYL GRAIN 
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