
DDS BASED MIL-STD-1553B DATA BUS INTERFACE SIMULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERTAN DENİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2012

Approval of the thesis

DDS BASED MIL-STD-1553B DATA BUS INTERFACE SIMULATION

submitted by ERTAN DENIZ in partial fullfillment of the requirements for the
degree of Master of Science in Computer Engineering by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Dept., METU

Dr. Umut Durak
Co-supervisor, Informatics Institute, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Asst. Prof. Dr. Ahmet Oğuz Akyüz
Computer Engineering Dept., METU

Dr. Onur Tolga Şehitoğlu
Computer Engineering Dept., METU

Dr. Umut Durak
Informatics Institute, METU

Date: 11.09.2012

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last name : Ertan Deniz

Signature :

iii

ABSTRACT

DDS BASED MIL-STD-1553B DATA BUS INTERFACE SIMULATION

Deniz, Ertan

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

Co-Supervisor: Dr. Umut Durak

September 2012, 63 pages

This thesis describes distributed simulation of MIL-STD-1553B Serial Data Bus interface

and protocol based on the Data Distribution Service (DDS) middleware standard. The

data bus connects avionics system components and transports information among them in

an aircraft. It is important for system designers to be able to evaluate and verify their

component interfaces at the design phase. The 1553 serial data bus requires specialized

hardware and wiring to operate, thus it is expensive and complex to verify component

interfaces. Therefore modeling the bus on commonly available hardware and networking

infrastructure is desirable for evaluation and verification of component interfaces. The DDS

middleware provides publish-subscribe based communications with a number of QoS (Quality

Of Service) attributes. DDS makes it easy to implement distributed systems by providing an

abstraction layer over the networking interfaces of the operating systems. This thesis takes

the advantage of the DDS middleware to implement a 1553 serial data bus simulation tool. In

addition, the tool provides XML based interfaces and scenario definition capabilities, which

enable easy and quick testing and validation of component interfaces. Verification of the tool

was performed over a case study using a scenario based on the MIL-STD-1760 standard.

Keywords: MIL-STD-1553B, MIL-STD-1760, DDS, Simulation

iv

ÖZ

DDS TABANLI MIL-STD-1553B VERİ YOLU ARAYÜZ SİMÜLASYONU

Deniz, Ertan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi: Dr. Umut Durak

Eylül 2012, 63 sayfa

Bu tez Veri Dağıtım Servisi (DDS) arakatman standardı üzerinde dağıtık bir MIL-STD-

1553B seri veri yolu arayüz simülasyonunu anlatmaktadır. Veri yolu uçaklardaki aviyonik sis-

tem bileşenlerini birbirine bağlar ve aralarında veri iletişimine olanak tanır. Arayüz geliştiri-

cileri için arayüzlerin tasarım aşamasında sınanması ve doğrulanması önemlidir. 1553 seri

veri yolu özel cihazlar ve kablolama gerektirdiğinden, arayüzleri test etmek pahalı ve zor

olmaktadır. Bu yüzden sistem arayüzlerini mevcut cihazlar ve ağ yapısı üzerinde test ede-

bilmek önem kazanmaktadır. DDS arakatmanı birçok Servis Kalitesi (QoS) özellikleriyle

birlikte yayımla-abone ol mimarisine uygun veri dağıtımı sunar. DDS sağladığı bu özellik-

leri ve işletim sisteminin ağ programlama arayüzlerini soyutlaması nedeniyle dağıtık sistem-

lerin geliştirimini kolaylaştırmaktadır. Bu tezde DDS arakatman standardının 1553 seri veri

yolu simülasyonunun geliştirilmesinde sağladığı faydalar anlatılmaktadır. Ayrıca, geliştirilen

simülasyon aracına XML tabanlı arayüz ve senaryo tanımlama kabiliyetleri eklenerek sistem

arayüzlerinin kolay ve hızlı bir şekilde test edilebilmesi amaçlanmıştır. Simülasyon aracı

MIL-STD-1760 standardına uygun bir senaryo ile doğrulanmıştır.

Anahtar Kelimeler: MIL-STD-1553B, MIL-STD-1760, DDS, Simülasyon

v

To my family...

vi

ACKNOWLEDGMENTS

I would like to express my inmost gratitude to my supervisor Assoc. Prof. Dr. Halit

Oğuztüzün for his patience, vision and understanding throughout this thesis. He was the

one believing in me more than anybody else.

I am also indebted to my co-supervisor Dr. Umut Durak for his knowledge, ideas and

motivation. I would be lost in this domain without his help.

I would also like to thank Kadriye Güçlü for her hard work and support in the verification

process of this thesis.

I would like to express my heart-felt thanks to Hayrie, my dear wife. Without her

unconditional love, joy and support, this thesis could not be completed. I also would like to

thank my parents and parents in law for their complimentary love and support.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

DEDICATON . vi

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Related Work . 2

1.2 Motivation Behind the Proposed System 4

1.3 Thesis Outline . 4

2 BACKGROUND . 6

2.1 MIL-STD-1553B . 6

2.1.1 History . 6

2.1.2 Basics . 7

2.1.3 Word Formats . 9

2.1.4 Message Formats . 11

2.1.5 Timing Requirements . 14

2.2 Data Distribution Service . 14

2.2.1 History . 14

2.2.2 Basics . 15

viii

2.2.3 Conceptual Model . 16

2.2.4 Types, Topics and Code Generation 17

2.2.5 Content Filtering . 18

2.2.6 Quality of Service Policies . 19

2.2.6.1 Reliability . 19

2.2.6.2 Ownership . 19

2.2.6.3 Destination Order . 19

2.2.6.4 Durability . 20

2.2.6.5 History . 21

2.2.6.6 Lifespan . 21

2.2.6.7 Deadline . 21

2.2.6.8 Resource Limits . 21

2.2.6.9 Time Based Filter . 22

3 DDS BASED MIL-STD-1553B SIMULATION IMPLEMENTATION 23

3.1 Development Environment . 23

3.2 Design . 23

3.2.1 BusFactory (public) . 24

3.2.1.1 Instance . 24

3.2.1.2 CreateBC . 24

3.2.1.3 CreateRT . 24

3.2.1.4 RegisterBCImplementation . 25

3.2.1.5 RegisterRTImplementation . 25

3.2.2 IBusController (public) . 25

3.2.2.1 CreateMessage . 25

3.2.2.2 AlterMessage . 25

3.2.2.3 CreateFrame . 25

3.2.2.4 StartFrame . 26

ix

3.2.2.5 Run . 26

3.2.3 IRemoteTerminal (public) . 26

3.2.3.1 AssignRxBlock . 26

3.2.3.2 AssignTxBlock . 26

3.2.3.3 Run . 26

3.2.4 SimBusController (private) . 26

3.2.5 SimRemoteTerminal (private) . 27

3.3 DDS Data Types . 27

3.4 Advantages of Using DDS in the Simulation Tool 28

3.4.1 Publish-Subscribe and Automatic Discovery 28

3.4.2 Content Filtering . 29

3.4.3 Command/Response with WaitSet 29

3.5 Deployment . 30

3.6 XML Scenario Interface . 30

4 CASE STUDY: A BASIC MIL-STD-1760 SIMULATION 34

5 PERFORMANCE ANALYSIS . 41

6 CONCLUSIONS . 45

REFERENCES . 47

APPENDICES

A EXAMPLE BUS CONTROLLER XML FILE 50

B EXAMPLE REMOTE TERMINAL XML FILE 52

C XML SCHEMA FOR BUS CONTROLLER 53

D XML SCHEMA FOR REMOTE TERMINALS 57

E CASE STUDY BUS CONTROLLER XML FILE 59

F CASE STUDY REMOTE TERMINAL 1 XML FILE 62

G CASE STUDY REMOTE TERMINAL 2 XML FILE 63

x

LIST OF FIGURES

FIGURES

Figure 2.1 Legacy Point-to-Point Architecture of Avionics Systems [1]. 6

Figure 2.2 Data Bus Architecture [1]. 7

Figure 2.3 Structure of the MIL-STD-1553B Serial Data Bus [2]. 9

Figure 2.4 MIL-STD-1553B Word Formats [3]. 10

Figure 2.5 MIL-STD-1553B Data Encoding [1]. 10

Figure 2.6 MIL-STD-1553B Information Transfer Formats [4]. 12

Figure 2.7 MIL-STD-1553B Broadcast Information Transfer Formats [4]. 13

Figure 2.8 DDS Conceptual Model [5]. 16

Figure 2.9 DDS Entities [6]. 17

Figure 2.10 Generated classes for the "Track" data type [7]. 18

Figure 2.11 DDS QoS policies [5]. 20

Figure 3.1 Class Diagram of the 1553 data bus simulation library. 24

Figure 3.2 Example Deployment of a bus controller and a single remote terminal

on different computers. 30

Figure 3.3 The XML Schema for the Bus Controller XML Files. 32

Figure 3.4 The XML Schema for the Remote Terminal XML Files. 33

Figure 4.1 Store Control message defined in MIL-STD-1760. 36

Figure 4.2 Store Monitor message defined in MIL-STD-1760. 37

Figure 4.3 Store Description message defined in MIL-STD-1760. 38

Figure 4.4 Aircraft Description message defined in MIL-STD-1760. 39

Figure 4.5 Sequence diagram of the MIL-STD-1760 scenario. 40

Figure 5.1 Performance Test of a BC2RT message on the 1553 data bus simulation

tool. 42

xi

Figure 5.2 Performance Test of a RT2BC message on the 1553 data bus simulation

tool. 42

Figure 5.3 Performance Test of a RT2RT message on the 1553 data bus simulation

tool. 43

Figure 6.1 Integration of legacy 1553 components into an AFDX based network. . 46

xii

LIST OF TABLES

TABLES

Table 2.1 Summary of MIL-STD-1553B Characteristics [1] 8

Table 5.1 Performance Test Setup . 41

Table 5.2 Performance Test Results . 43

Table 5.3 Message Latencies on 1553 data bus . 44

xiii

LIST OF ABBREVIATIONS

AEIS Aircraft/Store Electrical Intercon-
nection System

AFDX Avionics Full-Duplex Switched Eth-
ernet

API Application Programming Inter-
face

ATM Asynchronous Transfer Mode

CORBA Common Object Request Bro-
ker Architecture

DDS Data Distribution Service

DCPS Data Centric Publish Subscribe

DLRL Data Local Reconstruction Layer

IDL Interface Description Language

IEEE Institute of Electrical and Elec-
tronics Engineers

MSB Most Significant Bit

OACE Open Architecture Computing En-
vironment

OMG Object Management Group

OSCI Open SystemC Initiative

RTPS Real-Time Publish Subscribe

QoS Quality of Service

SQL Structured Query Language

XML Extensible Markup Language

AS Action Scheduling

BC Bus Controller

RT Remote Terminal

BM Bus Monitor

xiv

CHAPTER 1

INTRODUCTION

MIL-STD-1553B, referred as 1553 hereafter, is a military standard published by the United

States Department of Defense that establishes requirements for digital, command/response,

time division multiplexing (Data Bus) techniques [3]. First published in 1970s, the standard

describes mechanical, electrical, and functional characteristics of a serial data bus.

The 1553 data bus was successfully applied to many military avionics and spacecraft

subsystems since its introduction and became an industrial standard. The standard requires

specialized hardware and wiring to be able to evaluate and verify subsystem interfaces.

Nonetheless, use of real 1553 hardware within simulation and development environments

can be both very costly and unnecessarily restrictive [8].

During interface definition phases, it’s essential to concentrate on the interfaces between

components, not on the hardware and wiring details. This thesis describes a MIL-STD-

1553B interface and protocol simulation, which provides an easy way to verify the designed

component interfaces. The simulation tool provides a way to define interfaces as XML files

compliant to the MIL-STD-1553B meta-model. Moreover, a scenario meta-model is defined

so that test scenarios can be written and verified through the simulation tool.

This thesis aims to implement a maintainable and extendable 1553 data bus simulation

on commonly available hardware and networking infrastructures. The purpose is to make

the simulation tool easily accessible on existing operating systems and networking infrastruc-

tures at reduced costs. For this purpose, the DCPS (Data Centric Publish Subscribe) layer of

DDS (Data Distribution Service) is employed as the transport mechanism to implement the

1553 data bus simulation. DDS is a middleware standard published by OMG (Object Man-

agement Group) [5]. It provides real time publish-subscribe communications to distributed

applications over Ethernet networks. It has a number of QoS (Quality Of Service) settings

that enable configuring the middleware according to the specific needs of each component

in a distributed system. There are several implementations of DDS, including two mature

1

open source products.

The verification of the simulation tool is done by a case study based on a MIL-STD-

1760 scenario. MIL-STD-1760 is a standard defining electrical interfaces between a military

aircraft and its stores. MIL-STD-1760 based scenarios give a realistic approach and provide

a good testing platform for the 1553 data bus simulation. The scenarios are defined in XML

files which are generated by another tool specifically developed to design MIL-STD-1760

scenarios [9].

1.1 Related Work

MIL-STD-1553B data bus originated from the need of an infrastructure to develop systems

that have components distributed over the various parts of the aircrafts. Initially direct

point-to-point wires were used to connect components. But when the complexity of the

systems deployed in the aircrafts began to increase, the wiring became both very complex

and heavy. To overcome these difficulties, The US Department of Defense published the

1553 serial data bus standard and chose multiplexing because of the following advantages

[10]:

• Weight reduction

• Simplicity of system design

• Standardisation

• Flexibility

The introduction of the standard enabled many new sensors and subsystems to be inte-

grated into the aircrafts, which led to interfaces between components to be more and more

complex. The 1553 data bus requires special hardware and wiring which makes it both costly

and restrictive to develop component interfaces. Traditionally the approach to these kinds of

problems is to develop simulation systems so that interface designers can verify their designs

without the need of expensive hardware or complex cabling. It is not different in this case

and many simulation approaches have been proposed for the MIL-STD-1553B data bus [8]

[11] [2] [12].

N. Downing [8] proposed a virtual 1553 data bus, of which the idea is the move function-

ality from hardware to software. The 1553 cards are replaced by software simulation and

as the transport mechanism commonly available networking technology is used. TCP/IP

2

networks are standard and Ethernet network interface is available in every computer. Vir-

tual 1553 data bus essentially is a software library that provides a programming interface

compatible with the MIL-STD-1553B standard. The library simulates the behavior of a real

1553 card and transmits messages over TCP/IP networks. MIL-STD-1553B defines very

strict timing requirements which are chosen not to be implemented in this virtual 1553 data

bus. The approach is chosen so that the simulation library is portable and can be run on

any operating system, not necessarily real-time. This thesis takes this idea and improves it

by introducing the DDS middleware as the transport mechanism.

Another approach by J. Tian et al [11] is to simulate the transport layer protocol of MIL-

STD-1553B on a single computer with shared-memory as the transport mechanism between

bus controller and remote terminals. The problem is approached as a discrete event system

and is simulated with Action Scheduling (AS). Action Scheduling is a simulation method in

which actions describe the result as the system state changes. Therefore, dynamic behavior

is initiated by actions in this approach. This thesis describes a distributed simulation of MIL-

STD-1553B terminals which can provide a better representation of a real 1553 environment.

SystemC is a modeling platform consisting of C++ classes and macros that include an

event-driven simulation kernel. It is developed by OSCI (Open SystemC Initiative) and has

been approved as an IEEE standard, namely IEEE 1666-2011 [13]. S.M. Aziz [2] described

a transaction level SystemC model of the 1553 data bus that provides cycle-accurate sim-

ulation. The model uses a clock-based synchronization strategy to achieve cycle-accurate

performance estimates.

Engblom and Holm [12] discuss a fully virtual multi-node 1553 bus computer system

simulated using the Virtutech Simics [14] simulator framework. The aim is to provide an

alternative development and prototyping environment to software developers so that unmod-

ified software can be run on the simulation. The simulation environment contains multiple

nodes which are connected using a simulated 1553 bus. The 1553 data bus is simulated on

the message level.

Another interesting research is by D. Parish et al [15], which aimed at resolving the prob-

lem of higher communication requirements of future aircraft avionics systems. The paper

describes an incremental approach to replace MIL-STD-1553B data bus with a switched net-

work technology from the Telecommunications area, Asynchronous Transfer Mode (ATM).

The major step required to replace the data bus of the current avionics systems is to em-

ulate the 1553 data bus on an ATM network. It is shown that the emulation of 1553 data

bus over the ATM network allow future ATM compliant equipment to coexist within the

3

same network as 1553 elements. This thesis focuses on widely available Ethernet networks

instead of ATM networks. Moreover, unlike the idea of emulating the 1553 data bus on a real

production system, this thesis aims to develop a simulation tool to be used in development

environments. However, the idea of emulating 1553 on production environments may be

researched as a future work of this thesis.

1.2 Motivation Behind the Proposed System

Designing and testing components that interface with the MIL-STD-1553B data bus requires

expensive hardware and special cabling, which is both costly and complex at the same time.

Interface designers face the issue that they have to finalize the cabling before starting to

implement and test any of the interfaces with MIL-STD-1553B. It was this reason that

Downing proposed a virtual MIL-STD-1553B bus that will be implemented on software and

provide the bus protocol without the need for expensive cards and special cabling between

components [8]. This virtual 1553 bus is essentially a simulation of the programming interface

and the protocol of the bus.

Ethernet is a widely deployed local area networking technology. It’s available on nearly

every computer and setting up a local area network with Ethernet is very cheap and easy.

While choosing Ethernet as the transport protocol was not a hard choice at all, still there were

some questions regarding how to implement the simulation over TCP/IP. Every operating

system has its own programming interfaces to write applications that connect to each other

via TCP/IP. This makes it hard for implementing a portable simulation tool.

DDS middleware provides data-centric and publish-subscribe based data distribution

with easy to use API that is portable across operating systems and hardware architectures.

Moreover, a wide selection of QoS settings, content filtering and automatic discovery of

participants makes it easy to develop distributed systems and provides great flexibility in

the deployment. Using an already proven technology to implement the simulation tool also

contributes to the extendability of the tool and lowering the maintenance efforts in the future.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, the background information

on which this thesis is based on is provided. MIL-STD-1553B data bus and the DDS mid-

dleware standard are discussed in detail. The design of the simulation tool implementation

4

is discussed in Chapter 3. It contains information about how DDS is used and details the

design of the XML scenario definition model. Chapter 4 includes a case study based on a

MIL-STD-1760 simulation and Chapter 5 contains performance tests of the simulation tool.

Finally, Chapter 6 discusses the accomplishments and limitations of the work performed in

this thesis and points out some future directions.

5

CHAPTER 2

BACKGROUND

2.1 MIL-STD-1553B

2.1.1 History

Military aircraft before 1970s were developed by integrating various avionics subsystems

by direct point-to-point wires. Inserting new subsystems or removing existing ones posed

great problems because of this direct wiring. As more and more subsystems were added

the aircrafts became more complex and the overall weight increased [1]. The need for a

networking standard emerged from these problems. In 1968, a subcommittee established

by SAE (Society of Automotive Engineers) started working on a standard, which aimed to

define a serial data bus to meet the requirements of military avionics systems.

Figure 2.1: Legacy Point-to-Point Architecture of Avionics Systems [1].

MIL-STD-1553 is a military standard that defines mechanical, electrical and functional

6

characteristics of a serial data bus. The initial version of MIL-STD-1553 was released in

August of 1973. The first system using the standard was F16 - Fighting Falcon fighter

aircraft.

Figure 2.2: Data Bus Architecture [1].

After further improvements a revision named MIL-STD-1553A was released in 1975 and

it was used both in F-16 and the AH-64A Apache attack helicopter. Those real world

experiences triggered more changes in the standard, which were primarily to establish a

better standard by specifying the electrical interfaces explicitly rather than leaving them to

the users. The improvements assured electrical compatibility between designs by different

manufacturers. This new version MIL-STD-1553B was released in 1978.

The standard received some further changes as notices, but the version still remained

at the same “B” level. While it was originally designed for military avionics, the standard

also found wide usage in both military and civil systems. It has been deployed in satellites,

missiles, bombers, tanks, ships, space shuttles, power systems, control systems, passenger

cars, oil platforms, etc. Notice 2 which was published in 1986 removed all references to

aircraft and airborne, which recognized and justified the adoption of the standard in other

areas than avionics.

2.1.2 Basics

The MIL-STD-1553B bus features a time division multiplexing, half duplex command/re-

sponse protocol which runs on a single twisted shielded pair of wires. Only a single computer

7

is allowed to transmit on the bus at a given time. On the other hand, full duplex systems like

Ethernet and RS-232/422 have multiple cables to provide simultaneous transmit and receive.

The data rate on a 1553 bus is 1 Mhz. Fault tolerance is supported by dual redundancy. A

summary of MIL-STD-1553B characteristics can be found in Table 2.1.

Table 2.1: Summary of MIL-STD-1553B Characteristics [1]

Data Rate 1 MHz

Word Length 20 bits

Data Bits / Word 16 bits

Message Length Maximum of 32 data words

Transmission Technique Half-duplex

Operation Asynchronous

Encoding Manchester II bi-phase

Protocol Command/response

Bus Control Single or Multiple

Fault Tolerance Typically Dual Redundant, second bus in

“Hot Backup” status

Message Formats

Controller to terminal

Terminal to controller

Terminal to terminal

Broadcast

System control

Number of Remote Terminals Maximum of 31

Terminal Types

Remote terminal

Bus controller

Bus monitor

Transmission Media Twisted shielded pair

Coupling Transformer and direct

A 1553 bus system architecture consists of multiple computers having a master/slave

relationship. The computer that acts as the master and controls all the communication on

8

the bus is called Bus Controller (BC). The BC can control multiple slave computers which

are called Remote Terminals (RT) by sending commands to them. There may also be one

or more passive Bus Monitors (BM) deployed on the bus which are only used to monitor or

record the messages on the bus but can’t transmit any messages [16].

Figure 2.3: Structure of the MIL-STD-1553B Serial Data Bus [2].

There can be thirty-one remote terminals connected to the bus in addition to the bus con-

troller. Remote terminals receive commands from the bus controller and respond according

those the commands. Only the bus controller can initiate a transmission on the bus.

2.1.3 Word Formats

There are three different words that form the messages that are transmitted on the bus;

command word, data word and status word. Each word is formed by a three-bit time sync,

sixteen bits for the information field itself, and a parity bit at the end, which makes a total

of twenty bits. Each bit is timed as one microsecond, resulting in one megabit per second

transmission rate for the bus [8]. Figure 2.4 shows an illustration of the three word formats.

The sixteen bit information fields of words are encoded using a bi-phase Manchester II

format. The Manchester II encoding is shown on Figure 2.5. A logic "1" is represented by

a 0.5 µs high to a 0.5 µs low transition, and a logic "0" is represented by the opposite low

to high transition. As shown on Figure 2.4 each word is preceded by a three-bit sync which

is encoded as 1.5 µs low and 1.5 µs high for data words and opposite 1.5 µs high and 1.5 µs

low for command and status words.

The command word can be transmitted only by the bus controller and as its name implies

it contains a command to the remote terminals to perform. The sixteen bits of command

payload contains five bits for the remote terminal address field, single bit for the command

type field, five bits for the subaddress/mode field and five bits for the word count/mode

9

Figure 2.4: MIL-STD-1553B Word Formats [3].

Figure 2.5: MIL-STD-1553B Data Encoding [1].

code field. Each remote terminal has a unique address so the first five bits can uniquely

adress them. The address of 31 (11111) is reserved as the broadcast address, so a maximum

of thirty-one remote terminals are supported. The one-bit command type represents the

action that the remote terminal should perform; which is either a logic "1" for transmit or

a logic "0" for receive. The five bit subaddress is used to direct the command to different

functions within the subsystem [1]. Binary values 00000 and 11111 are reserved and they

indicate that the command is a Mode Code. The last five bits represent the number of words

10

to be transmitted or received. Binary value 00000 is interpreted as thirty-two words so a

maximum of thirty-two words can be transmitted and received with a single message in a

1553 data bus. In case of a Mode Code command, the last five bits represent the mode code

to be performed.

The data word contains the actual information that is transferred within a message [1].

It is transmitted by the bus controller after it sends a receive command or by the remote

terminals after they receive a transmit command. The sixteen bits of payload of the data

word is application specific and is defined by the interface designers. The standard only

requires that the most significant bit (MSB) of the data must be transmitted first [1].

The status word is used to indicate the status of the remote terminal to the bus controller.

Remote terminals must send a status word as the first word of a response to a valid message

from bus controller. The only time when a status word is suppressed is when the optional

broadcast operation is performed [3]. The sixteen bits of status word payload contains five

bits remote terminal address, message error bit, instrumentation bit, service request bit,

three reserved bits, broadcast command receive bit, busy bit, subsystem flag bit, dynamic

bus control acceptance bit and terminal flag bit [3]. The remote terminal address field

contains the unique address of the remote terminal sending the status word. Message error

bit indicates whether some data words that are received failed remote terminal’s validity

tests. Service request bit is used to indicate exceptional data transmission needs from the

remote terminals. It is used when the remote terminal or one of it’s subsystems wants to

transmit data which is not periodic. This is because the remote terminals can’t start a

transmission by their own, so they set the service request bit and the bus controller then

sends a transmit command if needed.

2.1.4 Message Formats

The MIL-STD-1553B standard strictly defines six information transfer formats and four

broadcast information transfer formats. No other message formats are allowed to be used on

the data bus. Figure 2.6 shows the six message formats and Figure 2.7 shows the remaining

four broadcast message formats defined by the standard.

The six message formats allowed between the bus controller and a remote terminal (or a

pair of terminals) can be summarised as the following (see Figure 2.6):

1. Bus controller to remote terminal transfers are triggered by a receive command

which is immediately followed by some data words without any gaps in between. The

11

Figure 2.6: MIL-STD-1553B Information Transfer Formats [4].

number of data words is specified in the command word. The remote terminal then

transmits a status word back to the controller.

2. Remote terminal to bus controller transfers are triggered by a transmit command

from the bus controller. The remote terminal then responds with a status word which

is immediately followed by some data words without any gaps between them.

3. Remote terminal to remote terminal transfers are triggered by a receive and

transmit commands which are send from the bus controller without any gaps in be-

tween. The receive command is addressed to the remote terminal which will listen

for the data, and the transmit command is addressed to the remote terminal that will

send the data. The remote terminal that receives the transmit command sends a sta-

tus word which is immediately followed by some data words without any gaps between

them. Finally, the listening remote terminal which received the data sends a status

word.

4. Mode command without data word transfers are triggered by a mode command

and finalised by a status word from the remote terminal.

5. Mode command with data word (transmit) transfers are triggered by a transmit

command that contains a mode code. The remote terminal responds with a status

word and a single data word without any gaps in between.

12

6. Mode command with data word (receive) transfers are triggered by a receive

command that contains a mode code immediately followed by a single data word with-

out any gaps in between. The remote terminal responds with a status word.

Figure 2.7: MIL-STD-1553B Broadcast Information Transfer Formats [4].

The four broadcast message formats allowed between the bus controller and remote

terminals can be summarised as the following (see Figure 2.7):

1. Bus controller to remote terminal(s) (broadcast) transfers are triggered by a

receive command addressed to 31 (11111) immediately followed by some data words

without any gaps in between. Remote terminals do not send back a status word as

this may cause conflicts on the data bus.

2. Remote terminal to remote terminal(s) (broadcast) transfers are triggered by a

receive command addressed to 31 (11111) immediately followed by a transmit command

addressed to a specific remote terminal. The remote terminal that received the transmit

command sends a status word immediately followed by data words with no gaps in

between. The other remote terminals that received the data does not send a status

word.

3. Mode command without data word (broadcast) transfers are triggered by a

transmit command addressed to 31 (11111) that contains a mode code. The receiving

remote terminals does not send a status word.

13

4. Mode command with data word (broadcast) transfers are triggered by a receive

command addressed to 31 (11111) that contains a mode code immediately followed by

a single data word without no gaps in between. The remote terminals does not send a

status word.

2.1.5 Timing Requirements

Avionics systems that are targeted by the MIL-STD-1553B require predictable and deter-

ministic data transmission between its subsystems. Therefore, the standard defines some

specific timing requirements to be able to provide predictable data transfers for the real-

time systems it’s designed for. The timing requirements specified in the standard can be

summarized as the following:

• Inter message gap time: According to the standard, the bus controller shall provide

a minimum gap time of 4.0 µs between messages [3]. This inter message gap time is

usually higher than the minimum specified in the standard.

• Response time: The remote terminals shall respond to valid command word within

time period of 4.0 to 12.0 µs [3].

• Minimum no-response timeout: This timeout is defined to be 14.0 µs. It indicates the

time to wait before considering that a response has not occurred either because the

remote terminal did not receive the previous command or it is unable to respond.

2.2 Data Distribution Service

2.2.1 History

Data Distribution Service for Real-Time Systems (DDS) standard is a relatively new stan-

dard, which was established by the Object Management Group (OMG) in 2003. The stan-

dard was a joint effort by two major proprietary DDS vendors, Real-Time Innovations from

America and Thales Group from France. Thales Group later handed over their OpenSplice

DDS product development to PrismTech.

Shortly after the standard was published, The US Navy has released their Open Architec-

ture Computing Environment (OACE) [17] specification in 2004. OACE design documents

mandated the use of CORBA and DDS standards for the implementation of ship command

and control systems. This greatly increased the acceptance of the standard in the defense

14

software industry. This led to other companies implementing their own DDS products. The

first DDS compliant middleware implemented by third party other than the publishers of

the standard was a company called MilSOFT from Turkey [18].

The standard later received some minor modifications, mostly corrections of typing errors.

The most current version is 1.2 which was published in 2007. When the standard was first

released it defined only the behavior of the middleware and the standard API it provides to

the applications. OMG continued working on improving the interoperability and extending

the standard. Those extensions were published as separate specifications. A major milestone

was achieved in 2006, when the Real-time Publish-Subscribe Wire Protocol Specification

(RTPS) [19] was published. RTPS defines the low level wire protocol which enables different

DDS products from multiple vendors to be able to interoperate on the same network.

2.2.2 Basics

DDS standard defines a middleware with a data centric and publish-subscribe architecture for

real-time systems [5]. The data centricity of the middleware distinguishes it from message

centric or service based middleware standards. It is responsible to transport data from

publishers to subscribers and maintain a coherent state of data among nodes. The publish-

subscribe architecture enables flexibility and scalability in distributed systems development.

In such systems, data producers and consumers are decoupled, which enables easy integration

of new modules without the need to reconstruct the rest of the system.

Real-time distributed systems expect predictable distribution of data with minimal over-

head. Since the resources are limited and each data may have different resource requirements,

it’s essential for a middleware to have configuration parameters [5]. DDS defines these con-

figuration parameters as QoS (Quality of Service). The wide range of QoS parameters allows

DDS middleware to be configured according to the specific requirements of each component

in the system.

The DDS specification describes two layers of programming interfaces:

• Data Centric Publish-Subscribe (DCPS) layer is the core of DDS and is targeted to-

wards the efficient delivery of the proper information to the proper recipients.

• Data Local Reconstruction Layer (DLRL) is an optional layer that may be built on

top of DCPS and allows for a simple integration of DDS into the application layer by

reconstructing data items into object oriented interfaces.

15

In this thesis, only the DCPS layer of DDS is utilized and the following sections which

contain information about the standard, refer to the DCPS layer of DDS.

2.2.3 Conceptual Model

DDS standard provides an API (Application Programming Interface) which is object ori-

ented. The most important objects are DomainParticipant, Topic, Publisher, Subscriber,

DataWriter and DataReader. See Figure 2.8 for a representation of the DDS conceptual

model.

Figure 2.8: DDS Conceptual Model [5].

DDS defines a Domain as a virtual network of applications communicating with each

other. Only applications which are members of the same Domain can communicate with

16

each other. The Domains are specified by an integer and applications participate to the

desired domains by creating a DomainParticipant object. The data types that are published

are defined by TypeSupport objects. Topic entities are basically named data types with

specific QoS properties attached. Each Topic can have only one associated data type, but

multiple Topics can have the same data type, in which case the Topics are distinguished

by their name and QoS parameters. Topics are the entities that are being published and

subscribed to by the applications.

Applications create Publisher objects through the DomainParticipant interface to be able

to publish data to the system. Publisher objects group and manage a set of DataWriters.

DataWriters are created through the interface of Publisher objects. Each DataWriter is

associated with only one Topic object and it can publish data only for that Topic. Likewise,

applications create Subscriber objects using the interface of DomainParticipant. Subscriber

objects group and manage a set o DataReaders. DataReaders are created through the

interface of Subscriber. Each DataReader is associated with only one Topic object and it

can receive data only for that Topic. See Figure 2.9 for an illustration of DDS Entities.

Figure 2.9: DDS Entities [6].

2.2.4 Types, Topics and Code Generation

Data types defined by DDS users may contain special members that are used to distinguish

between successive updates of the data. Those special members are called the "Key" of the

data. Different data values that have the same Key value are called "Instance". Successive

updates of a data that has the same Key value are members of the same Instance and each

17

of those updates are called "Sample". If no key is provided for the data type, then the data

set associated with the Topic is restricted to a single Instance [5].

DDS standard defines a code generation stage so that type specific interfaces are gener-

ated for interfacing with the middleware. Software developers are supposed to define their

data types with a subset of the OMG IDL (Interface Definition Language) [20]. The code

generators then generate type specific TypeSupport, DataWriter and DataReader classes

derived from their base classes. Figure 2.10 shows generated classes for the "Track" data

type. The Track data type that’s defined in IDL has its trackId field set as the Key of the

data.

Figure 2.10: Generated classes for the "Track" data type [7].

2.2.5 Content Filtering

DDS middleware is fully aware of the data content that’s being transmitted between ap-

plications. This is a characteristic feature of data centric architecture that distinguishes it

from message centric or service based architectures. Applications can specify only the data

they are willing to receive and the middleware filters unnecessary data. This content based

filtering is achieved by a subset of SQL [5]. A DataReader associated with a ContentFil-

teredTopic receives only the desired data specified in the ContentFilteredTopic creation. On

the other hand, a DataReader associated with a normal Topic will receive all data published

18

to that Topic, but applications can later query the DataReader cache with SQL.

2.2.6 Quality of Service Policies

Being able to specify different QoS policies for each individual Topic, DataReader and

DataWriter is the essence of data centricity within DDS [6]. DDS provides twenty-two

different QoS policies. Distributed systems contain many different components whose com-

munication requirements differ from each other. The combination of QoS parameters enable

system architects to adapt the middleware to the desired needs of each component in the

distributed system. Figure 2.11 shows all of the supported QoS policies and their parameters

by DDS.

2.2.6.1 Reliability

RELIABILITY QoS policy indicates the level of reliability requested by a DataReader or of-

fered by a DataWriter [5]. This policy can take two values; BEST_EFFORT or RELIABLE.

BEST_EFFORT indicates that the middleware should do its best to transmit the data to

the DataReader, but it’s not required to guarantee the delivery. RELIABLE indicates that

the middleware will guarantee the delivery to the DataReader, meaning that the data will

be retransmitted if it’s lost on the network.

2.2.6.2 Ownership

OWNERSHIP controls whether multiple DataWriter entities can update the same instance of

data. When SHARED ownership kind is used multiple DataWriters are enabled to update a

data instance. EXCLUSIVE ownership kind allows only the strongest DataWriter to update

data instances. The strength of DataWriters is specified by the OWNERSHIP_STRENGTH

parameter.

2.2.6.3 Destination Order

DESTINATION_ORDER can be used to specify an ordering at the receiving side. Since in

a distributed environment, data instances published by multiple publishers may arrive in a

different order then they are published this QoS policy enables the choice of ordering either

by the source timestamp or by the receiving timestamp.

19

Figure 2.11: DDS QoS policies [5].

2.2.6.4 Durability

DURABILITY QoS policy provides the ability of data to be decoupled from the time it was

published, by making it available to DataReaders that join the network after the data was

published. The policy can take four values; VOLATILE, TRANSIENT_LOCAL, TRAN-

SIENT and PERSISTENT. VOLATILE indicates that once the data is published, late join-

ing DataReaders will not be able to receive the data, regardless of the availability of the

DataReader at that time. TRANSIENT_LOCAL enables previously published data to be

available to late joining DataReaders, but that data is bound to the lifecycle of DataWriter.

When the DataWriter is destroyed TRANSIENT_LOCAL data is also no longer available.

20

TRANSIENT data is available to late joining DataReader even if the DataWriter is de-

stroyed. The data is simply stored in the memory by the middleware services. TRANSIENT

data disappears when the systems are shut down. PERSISTENT data is stored on disk and

is available even after a system restart.

2.2.6.5 History

HISTORY specifies how many data samples will be stored for later delivery by the DDS

infrastructure [6]. The applications can decide to keep the last N samples of each instance

by using the KEEP_LAST history kind. KEEP_ALL history kind can be used to keep

all of the previously published samples for each instance. This QoS policy can be used as a

buffering mechanism for the RELIABILITY QoS. It can also be used with the combination of

the DURABILITY QoS to configure the amount of historical data stored in the middleware

for providing it to late joining DataReaders.

2.2.6.6 Lifespan

LIFESPAN QoS policy enables to set a time for validity of data samples. When the specified

time expires the data samples are discarded and they can not be accessed any more.

2.2.6.7 Deadline

DEADLINE can be used in cases where a Topic is expected to have each instance updated

periodically [5]. DataWriters simply specify the offered minimum rate at which the data will

be updated. DataReaders specify the requested minimum rate at which they expect data to

be updated by publishers. If any of the DEADLINE periods are not met, the applications

are notified by the Listeners attached to the DataWriter or DataReader objects.

2.2.6.8 Resource Limits

RESOURCE_LIMITS enables applications to control their memory consumption. This QoS

policy also serves as a hint to the middleware implementation so that necessary memory can

be pre-allocated. Pre-allocated memory is generally a good practice in real-time systems

when used correctly. It is more efficient and it prevents memory fragmentation which is a

general problem of dynamic memory allocation.

21

2.2.6.9 Time Based Filter

TIME_BASED_FILTER can be used to limit the number of samples received for period-

ically published data. This is a good example of the decoupling between publishers and

subscribers offered by DDS middleware. Regardless of the publisher’s transmission rate the

subscribers can limit the rate by specifying an inter-message time limit. The middleware

then guarantees that samples are not delivered faster than the limit by discarding samples.

22

CHAPTER 3

DDS BASED MIL-STD-1553B

SIMULATION IMPLEMENTATION

This chapter discusses the design and the implementation details of the DDS based 1553

data bus interface simulation.

3.1 Development Environment

The simulation tool is developed in C++. For portability and maintenance reasons, all of the

dependencies are selected to be portable across operating systems. The main development

environment is the Ubuntu 11.10 64bit operating system. An open source DDS implementa-

tion is used as the middleware, namely OpenSplice DDS. In addition "boost" C++ libraries

are used as an adaptation layer for threading and other operating system dependent system

calls. Finally, for XML parsing purposes the widely available Xerces-C library is used.

3.2 Design

MIL-STD-1553B does not define a standard programming interface, so every vendor provides

its own API for programming the 1553 cards. This causes problems when trying to port

existing software components on a different vendor’s card. The simulation tool implemented

in this thesis also has its own API, but it was designed with object oriented design patterns

so that the users can easily switch between simulation and real hardware cards without

substantial changes in their source codes. This was achieved with a combination of Factory

and Strategy design patterns [21].

Figure 3.1 shows the public API and some of the key private classes that are important for

the implementation of the simulation library. The following sections discusses those classes

and their methods.

23

Figure 3.1: Class Diagram of the 1553 data bus simulation library.

3.2.1 BusFactory (public)

BusFactory is a singleton class implemented as the entry point of the simulation library. It

acts as the factory of BusController and RemoteTerminal objects, with its createBC and

createRT methods. Using this pattern, it is possible to implement a single programming

interface which can abstract both the simulation library and the real hardware programming

interface.

3.2.1.1 Instance

This method creates or returns the single instance of the BusFactory class using the Singleton

pattern.

3.2.1.2 CreateBC

This method creates a new BusController object. By default an instance of SimBusController

is returned. The users of the library may choose to implement their own BusController

implementations and register to the factory with RegisterBCImplementation method.

3.2.1.3 CreateRT

This method creates a new RemoteTerminal object. By default an instance of SimRe-

moteTerminal is returned. The users of the library may choose to implement their own

24

RemoteTerminal implementations and register to the factory with the RegisterRTImple-

mentation method.

3.2.1.4 RegisterBCImplementation

This method is used to register new BusController implementations to the library. The

purpose of providing this method is to enable users to wrap their vendor specific 1553 card

API under the BusController abstract interface. By using this design, the users are able to

choose between the simulation library or real card without the need to modify their code or

the simulation library code.

3.2.1.5 RegisterRTImplementation

This method is used to register new RemoteController implementations to the library. The

purpose of this method is the same as the one described for the RegisterBCImplementation,

but this time with focus on RemoteTerminal.

3.2.2 IBusController (public)

IBusController is an abstract class used to encapsulate the interface of a 1553 bus controller.

It has all the necessary methods to be able to define commands, messages and frames.

3.2.2.1 CreateMessage

This method is used to create a 1553 message. An integer id is returned for the created

message which can be later used to insert the message into a frame.

3.2.2.2 AlterMessage

This method is used to change the data of an already existing message. The type of the

message remains unchanged and only the data is replaced. This is used generally used for

periodic data that changes over time.

3.2.2.3 CreateFrame

This method is used to create a minor frame. The major frame consists of all the minor

frames in the order of their creation time.

25

3.2.2.4 StartFrame

This method is used to set the starting minor frame for the major frame. By default the

first created minor frame is transmitted first, but the users are able to change it with this

method by providing a minor frame id.

3.2.2.5 Run

This method is used to start the BusController operation which starts transmitting the

messages that were defined in the major and minor frames.

3.2.3 IRemoteTerminal (public)

IRemoteTerminal is an abstract class used to encapsulate the interface of a 1553 remote

terminal. It has all the necessary methods to be able to define receive and transmit blocks

in the 32 subaddresses it manages.

3.2.3.1 AssignRxBlock

This method is used to assign a receive block that is related with a subaddress. The messages

that have been sent to the specified subaddress are received at this assigned block.

3.2.3.2 AssignTxBlock

This method is used to assign a transmit block that is related with a subaddress. A data

is assigned to this block for transmission. The data is transmitted when a command for

transmission is received targeted at the specified subaddress.

3.2.3.3 Run

This method is used to star the RemoteTerminal operation. The RemoteTerminal starts

listening to commands and messages and responds accordingly.

3.2.4 SimBusController (private)

SimBusController class is an implementation of the IBusController interface, which actually

contains the simulation logic of a 1553 card that is programmed as the bus controller. This

class is not available in the public interface of the simulation library. The users create an

IBusController object from the BusFactory which creates an instance of this class and returns

it. The users use the IBusController interface. This class uses DDS to send commands to

26

remote terminals and also asynchronously waits for responses from remote terminals again

over DDS.

3.2.5 SimRemoteTerminal (private)

SimRemoteTerminal class is an implementation of the IRemoteTerminal interface, which

actually contains the simulation logic of a 1553 card thats programmed as a remote terminal.

This class is not available in the public interface of the simulation library. The users create

an IRemoteTerminal object from the BusFactory which creates and instance of this class

and returns it. The users use the IRemoteTerminal interface. This class uses DDS to

asynchronously wait for commands from the bus controller and immediately responds to the

commands with DDS.

3.3 DDS Data Types

According to the DDS specification, IDL is used to define the data types. Listing 3.1 shows

the DDS types defined for the implementation of the simulation library. All types have a

corresponding DDS Topic with the same name.

Listing 3.1: The definitions of DDS Types used in the simulation library.

module DataTypes

{

s t ru c t MessageFromBC {

shor t rtAddr ;

shor t subAddr ;

shor t type ;

sequence<short , 32> data ;

} ;

#pragma k e y l i s t MessageFromBC

s t ru c t RT2RTCommand {

shor t rece iverRtAddr ;

shor t rece iverSubAddr ;

shor t transmitterRtAddr ;

shor t transmitterSubAddr ;

27

} ;

#pragma k e y l i s t RT2RTCommand

s t ru c t MessageFromRT {

shor t sourceRtAddr ;

shor t subAddr ;

sequence<short , 32> data ;

} ;

#pragma k e y l i s t MessageFromRT

} ;

MessageFromBC is used to send messages from bus controller to remote terminals. It

contains the remote terminal address and the subaddress within the target terminal. Addi-

tionally this Topic can carry a maximum of thirty-two data words as described in MIL-STD-

1553B.

RT2RTCommand is defined to handle the initiation of a remote terminal to remote

terminal (RT2RT) transaction. This Topic is published by the bus controller whenever such

an RT2RT transaction is needed. Remote terminals will listen to this Topic and either

transmit data or start listening for data from the other remote terminal.

MessageFromRT Topic is published by the remote terminals as a response to commands

from bus controllers. This is actually implementing the status word described in MIL-STD-

1553B with omissions for simplicity of the implementation. This Topic can also contain a

maximum of thirty-two data words to be sent in response to transmit commands.

3.4 Advantages of Using DDS in the Simulation Tool

This section describes some features of DDS middleware that are used in the implementation

of the simulation tool. The advantages of using these features are also discussed.

3.4.1 Publish-Subscribe and Automatic Discovery

DDS middleware provides automatic discovery of publishers and subscribers without the need

to specify any direct addressing. The users just define their Topics and create DataWriters

for publishing and DataReaders for subscribing. All the negotiations to discover and connect

those reader and writers is handled by the DDS middleware transparently to the user. This

28

provides a great flexibility of deploying the simulation tool. Without the need for configura-

tion, the simulated bus controller and remote terminals can be deployed to run on multiple

computers and if desired all of them can run on a single computer.

3.4.2 Content Filtering

The 1553 data bus hardware and software components perform filtering according to the

addresses specified in the commands. Only the remote terminal that is targeted with a

command receives and processes the message and all other remote terminals filter and discard

the message. The same behaviour is emulated in the simulation library with the content

filtering features provided by DDS middleware.

Each SimRemoteTerminal object creates a ContentFilteredTopic for both MessageFromBC

and RT2RTCommands to receive only the messages that are addressed to itself. DDS mid-

dleware handles the filtering and discards messages that are not addressed to the specified

remote terminal. Content filtering capabilities of DDS simplify the simulation tool imple-

mentation since there’s no need for conditional checks on the application layer. Moreover,

DDS middleware preserves bandwidth by applying the filters on the publisher side.

3.4.3 Command/Response with WaitSet

DDS is, by definition, an asynchronous middleware. The publishers do not block and wait

for response after a data is sent and the subscribers are not required to block and wait

on data arrival. Subscribers are asynchronously notified when a data is published and is

available for consumption. But DDS also provides a mechanism to implement synchronous

operations. The WaitSet class with the help of Condition classes can be used to implement

this behaviour.

The 1553 data bus protocol has a synchronous command/response nature when the bus

controller sends a command and waits the status messages back from the remote terminals.

In order to implement this behaviour the WaitSet and QueryCondition classes of DDS were

used. QueryCondition is a specialised Condition class that can be constructed with an SQL

like query. The QueryCondition object is attached to the WaitSet and the "wait" operation is

called which blocks the calling thread until a data arrives which satisfies the query condition.

A timeout can also be specified for the blocking wait. This timeout mechanism is used to

implement the "Response Time" timing requirement defined in MIL-STD-1553B.

The same synchronous behavior can be implemented by using the native conditional

29

variables of the operating system. However, using the DDS provided WaitSet mechanism

makes the implementation both portable and maintainable. In addition, the implementation

of simulation tool is simplified since there’s no need for doing conditional checks.

3.5 Deployment

The simulation tool consists of a library and two executable files, namely busController

and remoteTerminal. The library can be used to implement bus controller and remote

terminal interfaces with C++. The executables are provided for the purpose of loading

and running scenarios defined with XML files. Figure 3.2 shows an example deployment

of a simulated 1553 environment. The simulation can run on Ethernet networks with the

help of DDS library. Since DDS is capable of handling multiple computers transparently by

automatically discovering publishers and subscribers each remote terminal can be run on a

different computer on the network. It is also possible to run bus controller and each remote

terminal on the same computer. In that case depending on the DDS implementation either

shared memory or the loopback network interfaces are used for the data transfers.

Figure 3.2: Example Deployment of a bus controller and a single remote terminal on different

computers.

3.6 XML Scenario Interface

In addition to the C++ programming interfaces, the simulation library also supports an

easier scenario definition interface with XML files. The XML schemas are designed to mimic

the C++ interface so the system designers can be familiar with both interfaces.

30

There are mainly two XML schemas, one for the bus controller and one for the remote

terminal scenario definitions. Each remote terminal shall define its own scenario in a separate

XML file. The simulation tool provides executables to load and run the scenarios defined by

those XML files.

The bus controller XML schema can be seen in Figure 3.3. According to this schema, a

root "bus_controller" element contains two child elements, "messages" and "stages". The

"messages" element is where all the message formats used in the bus controller are defined.

The "stages" element contains different major frames to be run in stages, for example ini-

tialization stage and operational stages. The bus controller simply runs the major frames

according to the order they are defined in the XML file. See Appendix C for the actual XML

schema and Appendix A for an example XML file compliant with the schema.

The remote terminal XML schema can be seen in Figure 3.4. This schema is simpler

because all of the message formats, major and minor frames are defined in bus controller.

The remote terminal contains a root "remote_terminal" element which has an "id" attribute.

This "id" corresponds to the remote terminal address which can be at most 31. There are

two child elements to assign data for transmission from a specific subaddress or to assign a

subaddress for data reception. See Appendix D for the actual XML schema and Appendix

B for an example XML file compliant with the schema.

31

Figure 3.3: The XML Schema for the Bus Controller XML Files.

32

Figure 3.4: The XML Schema for the Remote Terminal XML Files.

33

CHAPTER 4

CASE STUDY: A BASIC MIL-STD-1760

SIMULATION

MIL-STD-1760, Aircraft/Store Electrical Interconnection System (AEIS), standard pub-

lished by the USA Department of Defense defines electrical interfaces between military

aircraft and its stores. Stores include, but are not limited to, weapons, fuel tanks, pods

and buoys. The purpose of the standard is to enhance the interoperability between stores

and aircraft by defining specific electrical/optical, logical, and physical requirements for the

AEIS [22]. The standard requires data communications between the aircraft and its stores

to be carried over the MIL-STD-1553B data bus.

In this thesis, a case study of a basic MIL-STD-1760 simulation was performed. This

gives the best overview of how the simulation tool performs on the realistic scenarios that

conform to the MIL-STD-1760 standard. For the purpose of easy generation of XML scenario

definition files a modeling tool was developed [9]. The tool provides a spreadsheet based

graphical interface to fill data for the MIL-STD-1760 specific messages and then generate

the XML files defined for the 1553 data bus simulation.

The tool generates the following 1760 messages:

• Store Control: This standard message is used to control the state of stores. It is

sent from the aircraft (bus controller) and contains a receive command and thirty data

words that is sent to the subaddress 11 (00111) of the store (remote terminal). See

Figure 4.1.

• Store Monitor: This message is a status message transmitted from the store (remote

terminal). It contains thirty data words sent from the subaddress 11 (00111). See

Figure 4.2.

• Store Description: This message contains the identity of the store. It contains

34

thirty data words sent from the store to the aircraft from the subaddress 1 (00001).

See Figure 4.3.

• Aircraft Description: This message contains the identity of the aircraft. It contains

thirty data words sent from the aircraft to the store to the subaddress 1 (00001). See

Figure 4.4.

In this case study, a simulation of a power up sequence of two imaginary missiles and an

aircraft is performed. MIL-STD-1760 is utilized to design this fictitious power up sequence.

One can refer to the standard for the details of the mentioned messages.

The scenario is illustrated in Figure 4.5. The scenario is triggered when the aircraft

applies 28V DC1 to the missile interfaces. Than say that missiles start to provide valid

responses to the aircraft within 50 ms. For the first 200 ms missiles provide a valid status

word with a busy condition to Store Description requests. After 200 ms, missiles send initial

Store Description message with a valid data word. As soon as initial valid Store Description

is received, aircraft sends Store Control messages for controlling the state of stores and

initiates a built-in test. Missiles start transmitting Store Monitor messages with a period of

25 Hz. Store Monitor messages reflect the condition of the missiles. Each missile is expected

to complete the built-in test within 4 seconds of receiving Store Control message. After the

built-in test is completed, aircraft sends Aircraft Description message to each missile. The

XML file for the bus controller (aircraft), remote terminal 1 (missile 1) and remote terminal

2 (missile 2) can be found in Appendix E, Appendix F and Appendix G respectively.

35

Figure 4.1: Store Control message defined in MIL-STD-1760.

36

Figure 4.2: Store Monitor message defined in MIL-STD-1760.

37

Figure 4.3: Store Description message defined in MIL-STD-1760.

38

Figure 4.4: Aircraft Description message defined in MIL-STD-1760.

39

Figure 4.5: Sequence diagram of the MIL-STD-1760 scenario.

40

CHAPTER 5

PERFORMANCE ANALYSIS

MIL-STD-1553B has some strict timing requirements that were discussed at subsection 2.1.5.

This thesis does not have a purpose of satisfying those requirements since for implementing

them we would need to run the simulation on a real-time operating system. This contradicts

with the purpose of this thesis which is to make the simulation tool easily accessible on widely

available operating systems and networking infrastructures with minimum costs. However,

some performance tests were performed to see what kind of timing limitations we have with

the simulation tool. The performance test results of the middleware are also useful for some

time related parameters that were used in the simulation.

The aim of the performance analysis was to see what kind of latency does the simulation

tool have on a general purpose personal computer. The performance tests were performed

on a single computer. See Table Table 5.1 for the actual test setup information.

Table 5.1: Performance Test Setup

Processor Intel Core2 Quad Core Q9500 2.83 Ghz

Memory 6GB RAM

Operating System Ubuntu 11.10 64bit

DDS Implementation OpenSplice v5.4.1 OSS

With this setup basically three tests were performed:

• BC2RT Latency: This is the latency of a bus controller to remote terminal message

with thirty-two data words. The latency is measured from the start of sending the

command with data until the status message is received by the bus controller. See

Figure 5.1.

41

• RT2BC Latency: This is the latency of a remote terminal to bus controller message

with thirty-two data words. The latency is measured from the start of sending the

transmit command to remote terminal until the status and data words are received on

the bus controller. See Figure 5.2.

• RT2RT Latency: This is the latency of a remote terminal to remote terminal mes-

sage with thirty-two data words. The latency is measured from the start of sending

the receive and transmit command words to both remote terminals, until the status

message from the receiving terminal arrives on the bus controller. See Figure 5.3.

Figure 5.1: Performance Test of a BC2RT message on the 1553 data bus simulation tool.

Figure 5.2: Performance Test of a RT2BC message on the 1553 data bus simulation tool.

Each performance test was performed for 100 times and the average latency was calcu-

lated. For a better comparison with the latencies of a real 1553 data bus the tests were also

42

Figure 5.3: Performance Test of a RT2RT message on the 1553 data bus simulation tool.

run with messages containing only one data word. The results showed that the simulation

tool can consistently provide latencies in microseconds range. See Table 5.2 for the results.

Table 5.2: Performance Test Results

Message Format Mean Latency Variance Standard Deviation

BC2RT (32 Data Words) 193 µs 3852 µs 62 µs

RT2BC (32 Data Words) 173 µs 3264 µs 57 µs

RT2RT (32 Data Words) 273 µs 7112 µs 84 µs

BC2RT (1 Data Word) 168 µs 1712 µs 41 µs

RT2BC (1 Data Word) 172 µs 523 µs 22 µs

RT2RT (1 Data Word) 240 µs 1570 µs 39 µs

The latencies on a real 1553 data bus can be calculated as shown on Table 5.3 since each of

the command, status and data words have 20 bits and require 20 µs time to be transmitted

on the bus. The inter-message gap time and response times are ignored for simplicity.

Even without adding those times it can be seen that the DDS based 1553 simulation tool

43

consistently provides lower latencies when thirty-two data words are transmitted. However,

when only one data word is transmitted the simulation tool has higher latencies. Most of

the MIL-STD-1553B scenarios use messages with multiple data words to be able to utilize

the limited bandwidth of the bus. With these results it can be said that the simulation

tool is suitable for simulating MIL-STD-1553B scenarios, especially scenarios with messages

containing multiple data words, but system designers shall not expect the simulation to run

within the strict timing requirements of the MIL-STD-1553B standard.

Table 5.3: Message Latencies on 1553 data bus

Message Format Message Content Latency on 1553

BC2RT (32 Data Words) Command + 32 * Data + Status 680 µs

RT2BC (32 Data Words) Command + Status + 32 * Data 680 µs

RT2RT (32 Data Words) Command + Command + Status + 32 *

Data + Status

720 µs

BC2RT (1 Data Word) Command + Data + Status 60 µs

RT2BC (1 Data Word) Command + Status + Data 60 µs

RT2RT (1 Data Word) Command + Command + Status + Data

+ Status

100 µs

44

CHAPTER 6

CONCLUSIONS

This thesis describes a MIL-STD-1553B serial data bus interface and protocol simulation

tool which uses the DDS middleware standard as the communication technology. The sim-

ulation tool enables easy and quick verification of component interfaces in the development

environments. There’s no need for expensive hardware and special wiring to be able to

test the designed MIL-STD-1553B interfaces. Moreover, an XML based scenario definition

model is designed so that interfaces can be easily defined and simulated without the need

to program the with the API of the simulation library. The simulation tool is verified using

the XML scenario model with a case study of a MIL-STD-1760 interface simulation. It is

shown that the tool is able to simulate MIL-STD-1760 interfaces succesfully.

In this thesis, using the DDS middleware enabled a flexible distributed simulation of the

1553 data bus by providing automatic discovery of terminals without the need of configu-

ration. The publish-subscribe communications between bus controller and remote terminals

and the filtering capabilities of the DDS middleware simplifies the simulation logic and pre-

serve network bandwidth. In addition, the DDS middleware provides an abstraction layer

over the networking API of the operating system which enables a portable and maintainable

implementation.

The simulation tool is developed as a proof of concept implementation, so for simplic-

ity some of the messages defined in MIL-STD-1553B are excluded. Specifically the mode

commands and the details of the status words are not implemented. The status words are

only used as an indication that the command is received and processed by the remote ter-

minal. Also, the simulation tool does not guarantee all the strict timing requirements of the

MIL-STD-1553B standard, but it is shown with performance tests that it can consistently

perform with microsecond latencies.

For future work, it may be possible to transform the simulation tool into an adaptation

layer for the legacy MIL-STD-1553B system components into the next generation of com-

45

munication systems. The DDS standard is highly capable of real-time and safety-critical

communications. Instead of using DDS just for the simulation, it can be used as an ab-

straction layer of the next generation avionics network infrastructures. D. Parish et al [15]

defined an emulation of the 1553 data bus on ATM networks so that they can port legacy

components into a new ATM based communication system. A similar approach may be

applied to the DDS based simulation tool on the AFDX (Avionics Full-Duplex Switched

Ethernet) standard. AFDX is an emerging standard that defines a safety-critical high per-

formance Ethernet based network infrastructure [23]. The new system components may use

DDS based interfaces over the AFDX and the legacy components can be migrated to the

new networking infrastructure using the simulation tool. Figure 6.1 illustrates this idea and

shows the integration of legacy MIL-STD-1553B components into a next generation AFDX

network. This approach would eliminate the wiring required for MIL-STD-1553B and reduce

the weight on the aircraft.

Legacy
Component A

Simulation
Library

DDS
middleware

DDS
middleware

Simulation
Library

Legacy
Component B

New
Component C

DDS
middleware

DDS
middleware

New
Component D

AFDX network

Figure 6.1: Integration of legacy 1553 components into an AFDX based network.

46

REFERENCES

[1] Condor Engineering, Inc., MIL-STD-1553 Tutorial , June 2000.

[2] Aziz, S. M., “A cycle-accurate transaction level SystemC model for a serial communica-

tion bus,” Comput. Electr. Eng., Vol. 35, No. 5, Sept. 2009, pp. 790–802.

[3] US Department Of Defense, Aircraft Internal Time Division Command/Response Mul-

tiplex Data Bus, 1978.

[4] MIL-STD-1553 Designer’s Guide, ILC Data Device Corporation, 6th ed., 2003.

[5] Object Management Group (OMG), Data Distribution Services for Real-time Systems

Version 1.2 , 2007.

[6] Pardo-Castellote, G., Farabaugh, B., and Warren, R., “An Introduction to DDS and

Data-Centric Communications,” http://www.omg.org/news/whitepapers/Intro_To_

DDS.pdf, August 2005, [Accessed: 20 August, 2012].

[7] Kutluca, H., Cetin, İ. E., Deniz, E., and Bal, B., “MilSOFT DDS Arakatmanı ve DDS’in

Savaş Yönetim Sistemlerinde Simülasyon Amaçlı Kullanımı,” USMOS , Ankara, Turkey,

2007.

[8] Downing, N., “Virtual MIL-STD-1553,” 25th Digital Avionics Systems Conference, 2006

IEEE/AIAA, oct. 2006, pp. 1 –8.

[9] Güçlü, K., “Testing a MIL-STD-1553 Bus Simulator with MIL-STD-1760 Based Test

Scenarios,” Term project report, Department of Computer Engineering, METU, 2012.

[10] “Electronic Warfare and Radar Systems Engineering Handbook,” Tech. Rep. TP-8347,

Avionics Department of the Naval Air Warfare Center Weapons Division, Washington,

DC 20361, April 1999.

[11] Tian, J., Hu, K., Zhang, H., Niu, J., and Jiang, H., “Design of MIL-STD-1553B protocol

simulation system,” Advanced Computer Theory and Engineering (ICACTE), 2010 3rd

International Conference on, Vol. 6, aug. 2010, pp. V6–389 –V6–392.

47

[12] Engblom, J. and Holm, C. M., “A Fully Virtual Multi-Node 1553 Bus Computer Sys-

tem,” Data Systems in Aerospace, DASIA, May 2006.

[13] IEEE, “IEEE Standard for Standard SystemC Language Reference Manual,” IEEE Std

1666-2011 (Revision of IEEE Std 1666-2005), 9 2012, pp. 1 –638.

[14] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg,

J., Larsson, F., Moestedt, A., and Werner, B., “Simics: A Full System Simulation

Platform,” Computer , Vol. 35, No. 2, Feb. 2002, pp. 50–58.

[15] Parish, D., Briggs, R., Chambers, D., Hunter, C., and Kelsall, N., “1553 emulation over

ATM (asynchronous transfer mode) - A hybrid avionics communications architecture,”

Aerospace and Electronic Systems Magazine, IEEE , Vol. 13, No. 3, march 1998, pp. 34

–39.

[16] Alta Data Technologies, MIL-STD-1553 Tutorial and Reference, 2007.

[17] Naval Surface Warfare Center Dahlgren Division, Open Architecture (OA) Computing

Environment Design Guidance, August 2004.

[18] Kutluca, H., Cetin, İ. E., Deniz, E., Bal, B., Kılıç, M., and Çakır, U., “Developing Mil-

SOFT DDS Middleware,” OMG Real-time and Embedded Systems Workshop, Arlington-

VA USA, July 2007.

[19] Object Management Group (OMG), The Real-time Publish-Subscribe Wire Protocol

DDS Interoperability Wire Protocol Specification, Version 2.1 , November 2010.

[20] Object Management Group (OMG), Interface Definition Language (IDL) Specification,

Version 3.5 , 2011.

[21] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. M., “Design Patterns: Ab-

straction and Reuse of Object-Oriented Design,” Proceedings of the 7th European Con-

ference on Object-Oriented Programming , ECOOP ’93, Springer-Verlag, London, UK,

UK, 1993, pp. 406–431.

[22] US Department of Defense, MIL-STD-1760E Aircraft/Store Electrical Interconnection

System, October 2007.

[23] TechSAT, “AFDX / ARINC 664 Tutorial,” http://www.techsat.com/fileadmin/

media/pdf/infokiosk/TechSAT_TUT-AFDX-EN.pdf, 2008, [Accessed: 30 August, 2012].

48

[24] Pardo-Castellote, G., “OMG Data-Distribution Service: Architectural Overview,” Pro-

ceedings of the 23rd International Conference on Distributed Computing Systems, ICD-

CSW ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 200–.

[25] Corsaro, A., Querzoni, L., Scipioni, S., Piergiovanni, S. T., and Virgillito, A., “Quality

of Service in Publish/Subscribe,” Global Data Management , IOS Press, 2006.

[26] MilesTek, “Mil-STD-1553B Concepts and Considirations,” http://www.milestek1553.

com/tech/PDF/MTI-1553B-40.pdf, 2012, [Accessed: 30 August, 2012].

49

Appendix A

EXAMPLE BUS CONTROLLER XML

FILE

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>

<bus_cont ro l l e r xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−

i n s tance "

xsi :noNamespaceSchemaLocation="bc_schema . xsd">

<messages>

<message id="1" type="BC2RT">

<commands>

<command rtAddr="1" subAddr="1" type=" r e c e i v e " />

</commands>

<data f i leName=" track1 . xml" />

</message>

<message id="2" type="RT2RT">

<commands>

<command rtAddr="1" subAddr="1" type=" r e c e i v e " />

<command rtAddr="2" subAddr="2" type=" transmit " />

</commands>

</message>

<message id="3" type="RT2BC">

<commands>

<command rtAddr="2" subAddr="1" type=" transmit " />

</commands>

</message>

<message id="5" type="BC2RT">

50

<commands>

<command rtAddr="2" subAddr="1" type=" r e c e i v e " />

</commands>

<data f i leName=" track2 . xml" />

</message>

</messages>

<s tag e s>

<major_frame loop="1">

<frame>

<frameEntry msg="1" gap="1000000" />

</frame>

</major_frame>

<major_frame loop="0">

<frame>

<frameEntry msg="2" gap="1000000" />

<frameEntry msg="4" gap="1000000" />

</frame>

<frame>

<frameEntry msg="3" gap="1000000" />

<frameEntry msg="4" gap="1000000" />

<frameEntry msg="5" gap="1000000" />

</frame>

</major_frame>

</ s t ag e s>

</ bus_cont ro l l e r>

51

Appendix B

EXAMPLE REMOTE TERMINAL XML

FILE

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>

<remote_terminal xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−

i n s tance "

xsi :noNamespaceSchemaLocation="rt_schema . xsd" id="1">

<transmit subAddr="1">

<data f i leName=" rtdata1 . xml" />

</ transmit>

<r e c e i v e subAddr="2" />

</remote_terminal>

52

Appendix C

XML SCHEMA FOR BUS CONTROLLER

<?xml version=" 1 .0 " encoding="UTF−8"?>

<xs:schema xmlns :xs=" h t tp : //www.w3 . org /2001/XMLSchema"

elementFormDefault=" q u a l i f i e d "

xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s tance ">

<!−− <xs : import namespace=" ht tp : //www.w3 . org /2001/XMLSchema−

i n s tance " schemaLocation=" x s i . xsd"/> −−>

<xs : e l ement name=" bus_cont ro l l e r ">

<xs:complexType>

<xs : s equence>

<xs : e l ement r e f="messages "/>

<xs : e l ement r e f=" s t ag e s "/>

</ xs : s equence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="message">

<xs:complexType>

<xs : s equence>

<xs : e l ement minOccurs="0" r e f="commands"/>

<xs : e l ement minOccurs="0" r e f="data "/>

</ xs : s equence>

<x s : a t t r i b u t e name=" id " use=" requ i r ed " type=" x s : i n t e g e r "/>

<x s : a t t r i b u t e name=" type" use=" requ i r ed " type="messageType "/

>

</xs:complexType>

</ xs : e l ement>

53

<xs : e l ement name="major_frame">

<xs:complexType>

<xs : s equence>

<xs : e l ement maxOccurs="unbounded" r e f=" frame"/>

</ xs : s equence>

<x s : a t t r i b u t e name=" loop " use=" requ i r ed " type=" x s : i n t e g e r "/>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="messages ">

<xs:complexType>

<xs : s equence>

<xs : e l ement maxOccurs="unbounded" r e f="message"/>

</ xs : s equence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="commands">

<xs:complexType>

<xs : s equence>

<xs : e l ement maxOccurs="unbounded" r e f="command"/>

</ xs : s equence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="command">

<xs:complexType>

<x s : a t t r i b u t e name="rtAddr " use=" requ i r ed " type=" x s : i n t e g e r "

/>

<x s : a t t r i b u t e name="subAddr" use=" requ i r ed " type=" x s : i n t e g e r

"/>

<x s : a t t r i b u t e name=" type" use=" requ i r ed " type="commandType"/

>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="data ">

54

<xs:complexType>

<x s : a t t r i b u t e name=" f i leName" use=" requ i r ed " type="xs:NCName

"/>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" s t ag e s ">

<xs:complexType>

<xs : s equence>

<xs : e l ement maxOccurs="unbounded" r e f="major_frame"/>

</ xs : s equence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" frame">

<xs:complexType>

<xs : s equence>

<xs : e l ement maxOccurs="unbounded" r e f=" frameEntry "/>

</ xs : s equence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" frameEntry ">

<xs:complexType>

<x s : a t t r i b u t e name="gap" use=" requ i r ed " type=" x s : i n t e g e r "/>

<x s : a t t r i b u t e name="msg" use=" requ i r ed " type=" x s : i n t e g e r "/>

</xs:complexType>

</ xs : e l ement>

<xs:s impleType name="commandType">

<x s : r e s t r i c t i o n base=" x s : s t r i n g ">

<xs :enumerat ion value=" r e c e i v e "/>

<xs :enumerat ion value=" transmit "/>

</ x s : r e s t r i c t i o n>

</xs :s impleType>

<xs:s impleType name="messageType ">

<x s : r e s t r i c t i o n base=" x s : s t r i n g ">

55

<xs :enumerat ion value="BC2RT"/>

<xs :enumerat ion value="RT2BC"/>

<xs :enumerat ion value="RT2RT"/>

</ x s : r e s t r i c t i o n>

</xs :s impleType>

</xs:schema>

56

Appendix D

XML SCHEMA FOR REMOTE

TERMINALS

<?xml version=" 1 .0 " encoding="UTF−8"?>

<xs:schema xmlns :xs=" h t tp : //www.w3 . org /2001/XMLSchema"

elementFormDefault=" q u a l i f i e d ">

<xs : e l ement name="remote_terminal ">

<xs:complexType>

<xs : s equence>

<xs : e l ement r e f=" transmit "/>

<xs : e l ement r e f=" r e c e i v e "/>

</ xs : s equence>

<x s : a t t r i b u t e name=" id " use=" requ i r ed " type=" x s : i n t e g e r "/>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" transmit ">

<xs:complexType>

<xs : s equence>

<xs : e l ement r e f="data "/>

</ xs : s equence>

<x s : a t t r i b u t e name="subAddr" use=" requ i r ed " type=" x s : i n t e g e r

"/>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="data ">

<xs:complexType>

57

<x s : a t t r i b u t e name=" f i leName" use=" requ i r ed " type="xs:NCName

"/>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" r e c e i v e ">

<xs:complexType>

<x s : a t t r i b u t e name="subAddr" use=" requ i r ed " type=" x s : i n t e g e r

"/>

</xs:complexType>

</ xs : e l ement>

</xs:schema>

58

Appendix E

CASE STUDY BUS CONTROLLER XML

FILE

<?xml version=" 1 .0 " encoding="UTF−8"?>

<bus_cont ro l l e r xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−

i n s tance "

xsi :noNamespaceSchemaLocation="bc_schema . xsd">

<messages>

<!−− messages f o r RT 1 −−>

<message id="1" type="RT2BC">

<commands>

<command rtAddr="1" subAddr="1" type=" transmit " />

</commands>

</message>

<message id="2" type="BC2RT">

<commands>

<command rtAddr="1" subAddr="3" type=" r e c e i v e " />

</commands>

<data f i leName=" s c e n a r i o s /1760powerup/ s to r eCont ro l . xml

" />

</message>

<message id="3" type="BC2RT">

<commands>

<command rtAddr="1" subAddr="4" type=" r e c e i v e " />

</commands>

<data f i leName=" s c e n a r i o s /1760powerup/ a i r c r a f tD e s c . xml

59

" />

</message>

<message id="4" type="RT2BC">

<commands>

<command rtAddr="1" subAddr="4" type=" transmit " />

</commands>

</message>

<!−− messages f o r RT 2 −−>

<message id="5" type="RT2BC">

<commands>

<command rtAddr="2" subAddr="1" type=" transmit " />

</commands>

</message>

<message id="6" type="BC2RT">

<commands>

<command rtAddr="2" subAddr="3" type=" r e c e i v e " />

</commands>

<data f i leName=" s c e n a r i o s /1760powerup/ s to r eCont ro l . xml

" />

</message>

<message id="7" type="BC2RT">

<commands>

<command rtAddr="2" subAddr="4" type=" r e c e i v e " />

</commands>

<data f i leName=" s c e n a r i o s /1760powerup/ a i r c r a f tD e s c . xml

" />

</message>

<message id="8" type="RT2BC">

<commands>

<command rtAddr="2" subAddr="4" type=" transmit " />

</commands>

</message>

</messages>

60

<s tag e s>

<major_frame loop="5">

<frame>

<frameEntry msg="1" gap="25000" />

<frameEntry msg="5" gap="25000" />

</frame>

</major_frame>

<major_frame loop="1">

<frame>

<frameEntry msg="2" gap="10000" />

<frameEntry msg="6" gap="10000" />

</frame>

</major_frame>

<major_frame loop="25">

<frame>

<frameEntry msg="4" gap="20000" />

<frameEntry msg="8" gap="20000" />

</frame>

</major_frame>

<major_frame loop="1">

<frame>

<frameEntry msg="3" gap="10000" />

<frameEntry msg="7" gap="10000" />

</frame>

</major_frame>

</ s t ag e s>

</ bus_cont ro l l e r>

61

Appendix F

CASE STUDY REMOTE TERMINAL 1

XML FILE

<?xml version=" 1 .0 " encoding="UTF−8"?>

<remote_terminal xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−

i n s tance "

xsi :noNamespaceSchemaLocation="rt_schema . xsd" id="1">

<transmit subAddr="1">

<data f i leName=" s c e n a r i o s /1760powerup/ s t o r eDe s c r i p t i on . xml

" />

</ transmit>

<transmit subAddr="2">

<data f i leName=" s c e n a r i o s /1760powerup/ storeMonitor . xml" />

</ transmit>

<r e c e i v e subAddr="3" />

<r e c e i v e subAddr="4" />

</remote_terminal>

62

Appendix G

CASE STUDY REMOTE TERMINAL 2

XML FILE

<?xml version=" 1 .0 " encoding="UTF−8"?>

<remote_terminal xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−

i n s tance "

xsi :noNamespaceSchemaLocation="rt_schema . xsd" id="2">

<transmit subAddr="1">

<data f i leName=" s c e n a r i o s /1760powerup/ s t o r eDe s c r i p t i on . xml

" />

</ transmit>

<transmit subAddr="2">

<data f i leName=" s c e n a r i o s /1760powerup/ storeMonitor . xml" />

</ transmit>

<r e c e i v e subAddr="3" />

<r e c e i v e subAddr="4" />

</remote_terminal>

63

