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ABSTRACT 

 

 

FINITE ELEMENT ANALYSES OF DIFFERENTIAL  
SHRINKAGE-INDUCED CRACKING IN CENTRIFUGALLY CAST CONCRETE POLES  

 

 

 

Tanfener, Tuğrul 

M.Sc., Department of Civil Engineering 

Supervisor: Asst. Prof. Dr. Serdar Göktepe 

Co-Supervisor: Prof. Dr. İsmail Özgür Yaman 

 

September 2012, 68 pages 

 

 
 

Poles are used as an important constituent of transmission, distribution and communication 

structures; highway and street lighting systems and other various structural applications. 

Concrete is the main production material of the pole industry. Concrete is preferred to steel 

and wood due not only to environmental and economic reasons but also because of its high 

durability to environmental effects and relatively less frequent maintenance requirements. 

Centrifugal casting is the most preferred way of manufacturing concrete poles. However, 

misapplication of the method may lead to a significant reduction in strength and durability of 

the poles. Segregation of concrete mixture is a frequent problem of centrifugal casting. The 

segregated concrete within the pole cross-section possesses different physical properties. In 

particular, the shrinkage tendency of the inner concrete, where the cement paste is 

accumulated, becomes significantly larger. Differential shrinkage of hardened concrete 

across the pole section gives rise to the development of internal tensile stresses, which, in 

turn, results in longitudinal cracking along the poles.  

There is a vast literature on experimental studies of parameters affecting differential 

shrinkage of centrifugally cast poles. This research aims to computationally investigate the 

differential shrinkage-induced internal stress development and cracking of concrete poles. To 

this end, two and three-dimensional mathematical models of the poles are constructed and 
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finite element analyses of these models are carried out for different scenarios. The 

computationally obtained results that favorably agree with the existing experimental data 

open the possibility to improve the centrifugal manufacturing technique by using 

computational tools.  

Keywords: Concrete poles, centrifugal casting, spun-cast, differential shrinkage, finite 

element modeling 
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ÖZ 

 

 

MERKEZKAÇ DÖKÜMLÜ BETON DİREKLERDE OLUŞAN RÖTRE ÇATLAKLARININ 
SONLU ELEMANLAR YÖNTEMİ KULLANILARAK İNCELENMESİ 

 

 

 

Tanfener, Tuğrul 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi          : Yrd. Doç. Dr. Serdar Göktepe 

Ortak Tez Yöneticisi : Prof. Dr. İsmail Özgür Yaman 

 

Eylül 2012, 68 sayfa 

 

 

 
Aydınlatma, elektrik dağıtımı, iletişim ağları ve benzeri pek çok alanda direkler 

kullanılmaktadır. Günümüzde direklerin imalatında kullanılan en ekonomik ve elverişli 

malzeme olan beton, ahşap ve metale kıyasla daha ekonomik, uzun süre bakım 

gerektirmeyen dayanıklı bir malzemedir. Betonarme direklerin imalatında çoğunlukla 

merkezkaç döküm yöntemi kullanılmaktadır. Bu yöntemin kullanımı ile içi boş tüp şeklinde 

imal edilen direklerin, dolu gövdeli direklere göre pek çok yönden üstünlüğü bulunmaktadır. 

Direk içerisinde oluşan boşluk ağırlığı azaltmakla birlikte çeşitli iletim kablolarının geçişine de 

olanak vermektedir. 

Merkezkaç döküm, betonarme direklerin üretiminde oldukça iyi bir teknik olmakla birlikte 

üretim aşamasında yapılabilecek hatalar direklerin dayanım ve dayanıklılığını önemli ölçüde 

azaltabilmektedir. Bu teknikte karşılaşılan yaygın sorunlardan biri de döküm sonrası kalıbın 

döndürülmesi esnasında kesitte meydana gelen ayrışmadır. Ayrışma, direğin iç ve dış 

yüzeylerinde farklı özelliklere sahip beton karışımlarının oluşmasına sebep olmakta, farklı 

özelliklere sahip karışımların aynı zamanda farklı rötre özelliklerine sahip olması nedeniyle 

beton direk boyunca çatlaklar meydana gelebilmektedir. Betonun çatlaması, elemanın pek 

çok çevresel etkene karşı direncini, dolayısıyla kullanım ömrünü azaltmaktadır. 

Üretilen elemanların farklı rötre etkilerine maruz kalmaması için üretim aşamasında 

hazırlanan beton karışımı, katkı maddeleri, kalıbın döndürülme hızı ve süresi gibi 

parametrelere dikkat edilmelidir. Bu parametrelerin merkezkaç dökümlü elemanlar üzerindeki
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etkisini araştıran laboratuvar çalışmaları literatürde mevcuttur. Bu çalışmanın amacı, 

literatürdeki deneysel verileri kullanarak,  merkezkaç dökümlü beton direklerin farklı rötre 

etkisi altındaki davranışlarını sonlu elemanlar yöntemi kullanarak incelemektir. Yapılan 

modellemelerden elde edilen sonuca göre bu tür ayrışmalar beton direklerin iç kısımlarında 

çatlakların oluştuğunu ve bu çatlakların dışarıya doğru ilerlediğini göstermiştir. 

Anahtar Kelimeler: Merkezkaç döküm, farklı rötre, beton direk, rötre çatlakları, sonlu 

elemanlar yöntemi 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

 

1.1 Concrete Poles 

Poles are widely used as an important constituent of transmission, distribution and 

communication structures; highway and street lighting systems and other various structural 

applications where piers are needed (Figure 1). Through long ages, the conventional 

material for manufacturing poles was wood; however, environmental concerns created the 

need for a new material for the pole industry. Steel poles constitute a good alternative for 

poles in terms of having sufficient strength properties with lighter sections. But, high cost of 

steel production and the requirement of the continuous protection against corrosion make 

concrete poles more beneficial. Therefore, concrete has been substituted for wood as the 

main production material of the pole industry. Concrete is preferred to steel and wood due 

not only to environmental and economic reasons but also because of its high durability to 

environmental effects and relatively less frequent maintenance requirements. 

1.2 Motivation and Objective of the Study 

Concrete poles are needed to be designed by considering various loading conditions such as 

wind and seismic loads. Therefore, pre-stressed or regular reinforcements are usually used 

to provide sufficient flexural capacity. In that case, corrosion of steel reinforcement turns 

into a major durability problem for the concrete poles.  Since a transmission, distribution or 

lighting system contains a vast number of poles, it is crucial to avoid such durability 

problems which would bring a lot of maintenance costs.  

The most preferred production method of concrete poles is the centrifugal casting. By use of 

this method, hollow sections of concrete poles are produced. The reduced weight of hollow 

poles creates the advantage of easier transportation which demands less cost. Moreover, a 

high quality concrete can be manufactured, since the centrifugal casting method has a 

better capability of compaction. Despite these advantageous properties, severe durability 

problems can occur if the method is not applied properly and leads to the segregation of 
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concrete. The centrifugally-cast concrete poles, which have segregated cross-sections, 

undergo longitudinal cracking due to differential shrinkage and become prone to severe 

durability problems.  

This study aims to investigate the abovementioned unique problem by using computational 

techniques. In this regard, two and three-dimensional finite element analyses are performed 

based on experimental data provided by several researchers. The intention is to provide 

quantitative results that support the experimental observations in the literature, and so 

contribute to the solution of the problem. 

 

 

 

 

Figure 1: Concrete poles (AFG-EL 2012) 
 

 

 

1.3 Outline 

Since this study is based on the experimental data provided in the literature, broad 

information about these data is given in Chapter 2. In Chapter 2, details of the production 

technique and brief theoretical knowledge about the encountered problem are presented. 

Chapter 3 aims to provide fundamental principles of fracture mechanics theories. Especially 

the failure characteristics of concrete are explained in detail. Moreover, in this chapter, the 

extended finite element method for crack propagation analyses is introduced. 
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In Chapter 4, the performed computational analyses within this thesis are presented. 

Chapter 4 contains the results of two and three-dimensional finite element analyses and the 

comparison of the results with the source experimental data. Furthermore, the initiation of 

cracking, crack propagation pattern and the extent of the failure zone are shown in Chapter 

4. 

Finally, some concluding remarks and outlook are outlined in Chapter 5. 
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

 

 

The review of literature is presented in this chapter to give the fundamental background 

about the experimental studies on differential shrinkage-induced cracking of concrete poles. 

Quantitative results of these experiments are explained comprehensively, since these results 

constitute the source data for computer modeling. Moreover, literature on main components 

of the problem; such as the production method, segregation of concrete and differential 

shrinkage, is also introduced as part of the literature review. 

The literature search has shown that a considerable amount of experimental studies about 

the subject is present. However, computer modeling based computational studies; 

particularly analyzing the differential shrinkage-induced cracking, are very rare. This is the 

reason why there is no computational research mentioned throughout this chapter.  

2.1 Production of Concrete Poles with Centrifugal Casting Method 

Since the problem is originated because of misapplications made during the production 

phase; the method of manufacturing is introduced at the outset. There are two main 

methods commonly used in concrete pole production. First one is static casting and the 

other one is centrifugal casting (also known as spin casting). The static casting method is 

performed by conventional practices of concrete member production by using regular 

formwork and vibration process for compaction. The centrifugal casting, on the other hand, 

is a special technique for casting concrete poles which requires form spinning equipment for 

the compaction of concrete and is generally preferred to the static casting method due to its 

several advantages (PCI 1997).  

In brief, centrifugal casting is performed by forms having two separable halves with spinning 

ring equipment (Figure 2). A prescribed amount of concrete is pumped into the horizontally 

placed lower half of the form, following the installation of reinforcements. The lower and 

upper parts are assembled together with bolts, after that, wheels of the machine spin the 

form at a specified speed for a specified duration. Centrifugal forces provide the desired 
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compaction by compressing concrete to the form surface. In this way, well-compacted spun-

cast concrete poles are produced with a central void. The central void of spun-cast poles 

provides the benefits of reducing the weight of concrete poles, and thus the transportation 

and installation costs. It also allows a passage of cables or other required installation 

through the poles. Centrifugal casting becomes superior to static casting by eliminating the 

need of extra formwork for the central void. In addition to the advantages related with the 

central void, well produced spun-cast poles have better compaction with a dry unit weight of 

2483 to 2643 kg/m3, while that of statically-cast poles ranges from 2323 to 2403 kg/m3. 

Besides, spun-cast poles have an improved bond between steel reinforcement and concrete, 

also a smoother surface finish (PCI 1997). 

 

 

 

 

Figure 2: Centrifugal casting method (Rodgers 1984) (Kudzys and Kliukas 2008) 

 

 

 

Although centrifugal casting is the most preferred way of manufacturing concrete poles, 

improper applications of spinning process or inadequately designed concrete mixtures may 

lead to segregation of the constituents of concrete and thus serious durability problems. 

There are some precautions which should be taken in order to minimize segregation of 

constituents. One of them is having a proper design of concrete mixture and the other one is 

adjusting the spinning rate and duration appropriately.  
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Concrete mixture needs to be designed to have a consistency which holds constituents 

together, also an adequate workability when forms are spun. The duration and rate of 

spinning must be high enough to provide satisfactory compaction, and must be limited in 

order to prevent segregation as well (Dilger, Ghali and Rao 1996). 

2.2 Durability Problems Encountered on Concrete Poles 

Durability problems of poles usually arise from the existing cracks in concrete. If pole 

structures are exposed to open air conditions, then water can penetrate concrete section 

through cracks and initiate detrimental reactions inside concrete, or directly cause damage 

by freezing and thawing cycles.  

According to the site surveys conducted by utility companies on approximately a hundred 

damaged poles in Eastern Canada, one of the most encountered problems was freezing and 

thawing cycle damages in the absence of adequate frost resistance. The other frequently 

observed type of damage was the extensive vertical cracking of concrete poles (Figure 3), 

where the cracks varied from 0.05mm to 12mm in width. A comprehensive laboratory 

investigation of a damaged pole by the researchers showed that vertical cracking initiates at 

the inside surface of the pole and propagates towards the outside layers. It is clear that 

cracks leaved the concrete poles vulnerable to environmental effects when reached to the 

outside surface (Dilger, Ghali and Rao 1996). 

Earlier assumptions stated that the longitudinal cracking of concrete occurs because of 

different drying conditions or differential temperature variation inside and outside of the 

poles. Another assumption indicated that freezing of water inside the pole would cause the 

excessive tensile stresses thus cracking. Researchers investigated the reasons of longitudinal 

cracking of concrete poles by inspecting the abovementioned old damaged pole in laboratory 

and further conducting a series of experiments with long term measurements on prepared 

specimens. Their experimental studies revealed that if the concrete mixture was not 

designed properly or the production technique was inappropriately applied, then segregation 

of constituents of the concrete mixture occurred throughout the cross-section. The causes 

and effects of segregation will be discussed in detail in the following parts (Dilger, Ghali and 

Rao 1996).   
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Figure 3: (a) Vertical cracking and spalling, (b) Freeze and thaw damage 

(Dilger, Ghali and Rao 1996) 

 

 

 

2.3 Properties of Materials and Specimens Used in the Experimental Studies 

The data used in computational modeling are mainly obtained from the experimental studies 

of Dilger et al (Dilger, Ghali and Rao 1996). These experimental studies consist of two main 

parts; the first part was the examination of causes of the observed damage and the second 

part was a parametric study for developing a suitable mix. The analyses of this study are 

based on the measurements presented by researchers in the first part. Within the scope of 

the first part; subsequent to the investigation of the damaged pole, a laboratory specimen 

was produced to simulate a similar damage (Dilger, Ghali and Rao 1996).  

 

Table 1: Concrete mix proportions (Dilger, Ghali and Rao 1996) 

Cement 507 kg/m3 

Water 193 kg/m3 

Sand 611 kg/m3 

Gravel 1129 kg/m3 

Water-Cement Ratio 0.38 

Admixtures 

Water-Reducing Agent 0.430 liter/100 kg of cement 

Air-Entraining Agent 0.125 liter/100 kg of cement 

Sand-to-Gravel Ratio 0.35/0.65 

(a) (b) 
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Laboratory specimen was produced by spin-casting at a rate of 300 revolutions per minute 

for 10 minutes. The concrete mixtures were prepared by using proportions given in Table 1, 

had a 5 cm slump and 4% to 5%air entrainment. The purpose of using air-entrained 

concrete was to eliminate frost damage and focus solely on the differential shrinkage-

induced cracking. The pole was 12 m long and composed of eight segments which had 

different reinforcement arrangements (Figure 4). The longest segment (segment 4) was 

intended to be used for bending test, and the rest were assigned for shrinkage tests. After 

the casting process had been completed, concrete members have been reserved at 

approximately 60°C for 7 hours. Three of seven segments were kept in laboratory at 20°C 

temperature and 40% relative humidity, and the other four segments were kept in the open 

air. A piece was cut from the longest segment and further sliced into pieces with the 

purpose of measuring shrinkage strains of the different layers through the pole section. 

These pieces were kept in laboratory conditions and were tested periodically for 18 months 

(Dilger, Ghali and Rao 1996). 

2.4 Segregation of Concrete during Centrifugal Casting 

A typical concrete mixture contains particles of different sizes. Aggregate sizes of the 

mixtures used in the experimental studies varied between approximately 160μm to 20mm in 

diameter (Dilger and Rao 1997). The particles of various sizes also have different masses; 

accordingly, constituents are affected differently from the centrifugal forces generated by 

spinning of the forms. The coarse aggregates with bigger masses are the most affected, and 

tend to move towards the outer part of concrete section. Similarly, cement and other 

cementitious materials, the finest constituents, affected less, thus tend to accumulate in the 

inner part of cross-section (Figure 5) (Dilger, Ghali and Rao 1996).  

The provided grain-size distributions clearly show the extent of segregation across the cross-

section of concrete poles. For the investigated old damaged pole, 55% of the inner segment 

is composed of hydrated cement paste while the amount of cement decreases to 20% in the 

outer part of the cross-section (Figure 6).Similarly for the newly produced pole specimen, it 

was observed that 50% of the inner part and 15% to 20% of the outer part comprised 

cement paste (Figure 7).  Another observation was the accumulation of the entrained air in 

the inner surface, which also indicated the less effect of centrifugal forces on lighter 

constituents (Dilger, Ghali and Rao 1996). 
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Figure 4: Pole specimen dimensions and reinforcement arrangement 

(Dilger, Ghali and Rao 1996) 

 

 

 

 

Figure 5: Segregated pole section (Dilger, Ghali and Rao 1996) 
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Figure 6: Distribution profile of the damaged pole (Dilger, Ghali and Rao 1996) 

 

 

 

 

Figure 7: Distribution profile of the pole specimen (Dilger, Ghali and Rao 1996) 
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The researchers suggested that the poles with segregated sections are the ones which suffer 

from the vertical cracking problem. It was concluded that segregation of the concrete 

section leads to a phenomenon called differential shrinkage; which results in growth of the 

excessive tensile stresses, and as a result the longitudinal cracking of concrete pole sections. 

Differential shrinkage will be thoroughly explained in the following parts (Dilger, Ghali and 

Rao 1996).  

2.5 Drying Shrinkage 

The microstructure of concrete is capable of containing water inside by means of the voids. 

The water held inside relatively larger voids (>50nm) is called the free water, and removal 

of which does not cause any contraction. However, the loss of water in smaller capillaries 

(5nm to 50nm), or loss of the interlayer water held by C-S-H structure causes drying 

shrinkage of concrete. Drying shrinkage occurs when the ambient relative humidity is below 

saturation; in other words, when it is less than 100%. As the concrete microstructure dries, 

the hydrostatic pressure provided by the water is lost. Therefore, solid walls of the capillary 

pores, which are supported by the hydrostatic pressure, are subjected to compressive 

stresses leading to the contraction of the whole structure. A concrete member would dry and 

contract if it is exposed to low humidity. But, in case the member is restrained, development 

of shrinkage strains will be prevented and tensile stresses will generate instead of 

contraction. And consequently the tensile stresses cause cracking of concrete (Mehta and 

Monteiro 2006). 

2.6 Differential Shrinkage 

Concrete is not the only material which suffers from adverse effects of shrinkage, but almost 

all brittle materials are affected similarly. As an example, flutes made of bamboo can 

undergo cracking when they are subjected to drying (Figure 9). Apparently, the flutes are 

not restrained and free to contract without any tensile stresses developed. So normally no 

cracking is expected due to shrinkage; however, if the outside and inside surfaces of the 

flute lose different amounts of moisture, then these surfaces would have uneven shrinkage 

strains. Inhomogeneous distribution of strains over the cross-section generates tensile 

stresses concentrated in the more contracted surface (NavaChing 2008). The 

abovementioned type of shrinkage is called differential shrinkage.  

It was stated in the preceding section that drying shrinkage is caused by the water loss from 

hydrated cement paste. In case of the spun-cast concrete poles, cement paste accumulates 

in the inner part of pole section due to segregation. As a consequence, shrinkage strains 

become higher in the inner circumference and tensile stresses develop throughout the cross-

section because of differential shrinkage. 
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Figure 8: Drying shrinkage induced stress development (Mehta and Monteiro 2006) 

 

 

 

 

Figure 9: Differential shrinkage of bamboo flutes (NavaChing 2008) 

 

 

 

The researchers confirmed differential shrinkage behavior of the pole specimen by using two 

different methods. The first method was to form a continuous slot along of the pole cross-

section (Figure 4); closure of the slot was intended to point out the higher shrinkage of the 

inner circumference, and unchanged width of the slot to point out the uniform shrinkage. 

Three unreinforced segments of the pole specimen were produced with a 25 mm width 

longitudinal slot. Accordingly, the slots on the pole segments, which were kept in laboratory 

conditions for 9 months, closed by 2.4 mm thus indicated differential shrinkage of inner and 

outer layers. The second and more precise method of confirmation of differential shrinkage 

was the strain monitoring of concrete slices cut from different layers of the pole section. 

Concrete slices were stored in relatively dry conditions while their shrinkage strains were 

measured. The presented measurements showed that the shrinkage strains of the inner 

layer exceeded approximately 10 times the shrinkage strains measured in the outer layer 
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(Figure 10), the researchers plotted the values of free shrinkage to indicate the nonlinear 

shrinkage variation of the cross-section (Figure 11) (Dilger, Ghali and Rao 1996).  

 

 

 

 

Figure 10: Shrinkage in separate layers of pole wall (Dilger, Ghali and Rao 1996) 

 

 

 

The researchers reported that the differential shrinkage-induced vertical cracking initiated 

from the inner surface of the pole specimen (Figure 12). Therefore, the assumptions 

regarding the concentration of tensile stresses at the inner layers, where cement paste was 

accumulated, were confirmed. It was also observed that, propagation of cracking towards 

outer layers stopped where cracks confronted by rebar or larger aggregates (Dilger, Ghali 

and Rao 1996).      
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Figure 11: Free shrinkage across wall thickness after 63 Days (Dilger, Ghali and Rao 1996). 
 

 

 

 

Figure 12: Typical crack pattern in laboratory specimens (Dilger, Ghali and Rao 1996). 

 



15 
 

 

CHAPTER III 

 

 

XFEM CRACK MODELING FOR FRACTURE OF CONCRETE 

 

 

 

 

Solid materials perform extensively varying load-displacement response when loaded until 

reaching to the failure point. In view of that, the appropriate category of material continuity 

must be considered for conducting a precise analysis of solid materials. The classical 

strength of materials theory and the plastic damage theory deal only with continuous fields 

or weak discontinuities. It became possible to model plasticity problems at large 

deformations by means of the Finite Element Method (FEM); however, with no strong 

discontinuities accounted for, FEM computations still lead to mesh dependent solutions.  

The practice of plastic damage and fracture mechanics theories enable the achievement of 

more accurate solutions to engineering problems since they are capable of handling 

problems with strong discontinuities, where both displacement and strain fields are 

discontinuous through a crack surface (Figure 13). Therefore, combining classical fracture 

mechanics theories with FEM formulations by means of appropriate methods is essential for 

the correct solution of nonlinear problems. In this chapter, fundamentals of the linear elastic 

fracture mechanics and the nonlinear fracture mechanics theories will be reviewed, then the 

basic concepts of several modeling techniques including the Extended Finite Element Method 

(XFEM) will be introduced in order to explain the essentials of computational fracture 

modeling of concrete (Mohammadi 2008).   

3.1 Fracture Mechanics for Concrete 

Concrete is an inhomogeneous material with initial defects and imperfections such as 

entrapped air voids, defected aggregates, weak mortar-aggregate bonding and micro-cracks. 

These imperfections affect the structural response of concrete members significantly. The 

most important consequences of this heterogeneous and defective structure are the tension 

softening behavior of concrete and the lower tensile strength. The tension softening takes 

place in a region near the crack tip and is a relevant property, which controls the fracture 

characteristics of concrete. It is unlikely to obtain the true response of concrete structures 

by neglecting this behavior. Tensile strength of concrete is also an important parameter that 
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affects the structural response; however, it is usually neglected in calculations for the sake 

of simplicity (Shi 2009), (Asferg 2006). 

 

 

 

Figure 13: Different categories of continuities (Mohammadi 2008) 
 

 

 

The abovementioned properties of concrete can be incorporated in analyses by use of 

fracture mechanics theories. Therefore, the practice of fracture mechanics is important for 

the structural analysis of concrete. A precise load-deformation response can be achieved by 

predicting the crack initiation and propagation in the calculations.  

The report of ACI Committee 446 describes the fracture mechanics as a failure theory, which 

is based on energy and strength based criteria. It also explains that fracture mechanics 

considers the propagation of failure through the structure. The report emphasizes that, 

although the current building codes on concrete structures were prepared by ignoring 

fracture mechanics and has been used successfully until now, still there are reasons to 

incorporate failure theories into the structural codes. These reasons are listed in five topics 

by the Committee (ACI Committee 446 1991): 
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 The fracture initiation should be based on an energy based criterion instead of relying on 

a stress based one. Surface fracture energy of solid bodies can be used to derive an 

energy based measure of crack initiation.   

 The calculations must give objective results regardless of the mesh sizes of finite 

element models or choice of coordinate systems, locations etc. (Figure 14). When the 

amount of energy dissipated per unit crack length is specified, it is possible to avoid 

such mesh dependent results. 

 

 

 

 

Figure 14: Spurious mesh sensitivity (ACI Committee 446 1991) 

 

 

 

 The lack of a yield plateau in the load-deflection curve suggests that the subject material 

exhibits brittle softening behavior. That implies the propagation of the failure zone 

through the structure; hence the spread of failure should be tracked by use of fracture 

mechanics (Figure 15).  

 The ductility and capability of absorbing energy for a material can be determined from 

the area under the load-deflection curve. For a material which exhibits softening 

behavior, the only way to calculate true ductility is to consider the post-peak response, 

in other words the nonlinearity in analyses. 

 Calculations according to the classical theories may lead to different load-deflection 

responses in structures with different sizes. This phenomenon is called the size effect, 

and it has been overcome by using empirical formulas in the present structural codes. 

However, by means of the fracture mechanics theories, the size effect can be explained 

physically and the correct ductility level of concrete structures can be achieved.  
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These reasons, listed by ACI Committee 446, indicate the significance of fracture mechanics 

theories for concrete structures in predicting the true post peak load-deflection response, 

having mesh-independent results and eliminating the size effect (ACI Committee 446 1991).  

 

 

 

Figure 15: Load-deflection diagram of ductile and brittle structures (ACI Committee 446 
1991) 

 

 

 

3.1.1 Characteristic Fracture Properties of Concrete 

Solid materials can be classified into three groups according to their fracture characteristics. 

These are brittle (glass-like materials), quasi-brittle (concrete and ceramics), and ductile 

materials (metals). Fracture characteristics are based on the type of material behavior in the 

boundary of fracture process zone (FPZ). FPZ, by definition, is the zone where the stresses 

normal to the crack surface decrease gradually by the increase of strains (Figure 16). In 

brittle materials, such as glass, fracture process takes place in a very small FPZ and the 

remaining parts possess linear-elastic behavior. Unlike brittle materials, plastic zone of quasi-

brittle and ductile materials is larger thus has a nonlinear fracture response. FPZ of quasi-

brittle materials is spread through the whole nonlinear zone, while ductile materials have a 

relatively small FPZ inside their perfectly plastic nonlinear zone (Figure 17). It is the main 

difference between quasi-brittle and ductile materials (ACI Committee 446 1991). Fracture 

characteristics of materials can be further classified in terms of the structure size, D, and the 

length of FPZ, lp, as shown in Table 2. 

 

Table 2: Appropriate Theories for Analyzing Failure (Bazant 2002) 

For D/lp ≥ 100 : Linear elastic fracture mechanics 

For 5 ≤ D/lp< 100 : Nonlinear quasi-brittle fracture mechanics 

For D/lp< 5 : Non-local damage, discrete element models, plasticity  
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In the course of fracture process of a concrete structure, aggregates together with hardened 

cement paste perform bridging function until they separate completely from each other. This 

is mainly because of the weak bonding between constituents of concrete leading to a 

separation mechanism rather than the failure of individual components. Micro-cracking due 

to the heterogeneous composition of concrete and the effect of bridging between paste and 

aggregates, together, induce a tension softening effect through the cracked surfaces. In 

Figure 16, the load-deformation curve of concrete is presented to show the softening 

behavior with corresponding points in FPZ. After the peak point is reached, crack surface 

proceed to have a descending stress transfer capacity up to a point where the crack is fully 

opened (Asferg 2006). 

Starting with a crack bridging region and followed by a micro-cracking part, FPZ of concrete 

spread through a noticeably large area. With the inelastic fracture behavior inside this 

extended FPZ, concrete belongs to the quasi-brittle materials whose fracture must be 

investigated by nonlinear fracture mechanics. 

 

 

 

 

Figure 16: (a) Typical tensile load-deformation response and (b) illustration of the fracture 

process zone of concrete (Asferg 2006) 
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The approximate length of fracture process zone, lp, for solid materials has been introduced 

by Irwin as depicted in Equation (1); where E is the modulus of elasticity, Gf is the fracture 

energy, and ft is the tensile strength. There are some other formulations which have been 

derived specifically for predicting the FPZ length of concrete. One of them was proposed by 

Bazant and Oh, which suggests correlating the effective length and width of FPZ to the 

maximum aggregate size, da, of the subject concrete mixture. According to that assumption, 

fracture of three point bending specimens occurs in a zone with 12da length and 3da width 

(ACI Committee 446 1991). 

 
   

    

  
  (1) 

 

 

 

 

Figure 17: Linear zone (L), nonlinear zone (N) and fracture process zone (F) in fracture of 

different materials (ACI Committee 446 1991) 

 

 

 

3.2 Introduction to Fracture Mechanics of Brittle Materials 

The early theories of fracture mechanics were based on the linear elasticity with the 

assumption that while the failure process takes place at the crack tip, the other parts remain 

elastic. Reasonably, linear elastic theory could result in accurate solutions for brittle 

materials, since their fracture process of occurs in an adequately small region. However, 

when the subject material of the fracture problem is not brittle, then the practice of the 

linear elastic fracture mechanics (LEFM) is not suitable because of the relatively larger FPZ 

of non-brittle materials. The investigated material in the scope of this thesis is concrete, and 

as mentioned before, concrete belongs to quasi-brittle type of materials thus is not 

compliant to linear elastic theory. However, the nonlinear fracture theories developed for 

concrete are also initiated from fundamentals of linear elastic fracture mechanics. So, basics 

of fracture mechanics will be introduced starting from the LEFM through the next topics. 
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3.2.1 Linear Elastic Fracture Mechanics (LEFM) 

3.2.1.1 Basic Elasticity Equations 

In the Cartesian coordinate system, strain components can be defined in respect to the 

displacement components as follows: 
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In Eq. (2) u, ν and ω stand for the displacement components in x, y and z directions 

respectively; and εx,εx,εx,γxy, γxy, γxy are the strain components. In conjunction with strains, 

the stress components for isotropic materials are as follows according to the Hooke’s Law:  
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λ and G are the Lame constant and the shear modulus respectively and are defined as: 
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where E is the modulus of elasticity and ν is the Poisson’s ratio. 

Three-dimensional elasticity problems can be simplified under certain assumptions regarding 

the loading conditions and geometry. The plane-stress assumption is used when thickness is 

very small compared to the other two dimensions; hence the displacement components do 

not vary and the stress component becomes zero in that dimension. The following simplified 

stress-strain relations are valid in case of plane-stress: 

      (        )       

     (        )       

     

         

                      

    
 

    
        

(5) 

The plane-strain assumption is used to simplify problems when the thickness is significantly 

large as is the case with tunnel or dam cross-sections. The body forces or applied loads 
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cannot change nor have components along the third direction. Simplified stress-strain 

relations for the plane-strain case are given below: 

      (     )       

     (     )       

     (     ) 

         

                      

     

(6) 

Most of the fundamental fracture mechanics laws were derived by using the given plane 

elasticity relations. Edge crack and central crack solutions on infinite plates are two popular 

examples to the plane elasticity solutions of fracture mechanics. The central crack problem, 

shown in the Figure 18, explores the formation of a central crack on an infinite plate. 

Solution to this problem by use of complex stress functions provides the elastic crack-tip 

stress field equations. Derivation of the crack-tip stress equations and the related complex 

stress functions will not be explained in this thesis; further information can be found in the 

referenced textbook by Zihai Shi (Shi 2009). The elastic crack-tip stress relations are 

presented in Equation (7) in case of the plate subjected to tension, and presented in 

Equation (8) for plate subjected to shear (Shi 2009). In these equations r is the crack-tip 

radius and, θ is the angle between the crack-tip direction and the horizontal axis.  
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Figure 18: An infinite plate with a central crack subjected to tension (left), and subjected to 
shear (right) (Shi 2009) 

 

 

 

3.2.1.2 Griffith Fracture Theory 

Fracture mechanism of brittle materials has been studied since the early years of 19th 

century. Research on the LEFM initiated from the fact that fracture of brittle materials 

occurred at significantly lower stresses compared to the theoretical estimations of the 

fracture strength. After it was understood that the reason of lower actual fracture strength is 

due to the presence of flaws inside a solid body, Griffith clarified this case by suggesting an 

energy-based fracture principle for brittle materials (Mohammadi 2008).  

The early theories of fracture mechanics was depended on the assumption that failure takes 

place at a single point near the crack tip. At that point the stress components approach to 

infinity as the crack tip radius decreases. This is called the stress singularity, and is the 

reason of computing infinitely large stress concentrations near crack tip, regardless of the 

scale of external loading. It was not possible to introduce a strength based failure criterion 

due to the stress singularity. The energy based fracture theory of Griffith enabled the 

derivation of crack initiation and propagation criteria for brittle materials. These criteria will 

be explained comprehensively in the upcoming parts (ACI Committee 446 1991). 

Through a balance equation similar to the first law of thermodynamics, Griffith derived a 

fracture criterion by correlating the increase of crack length with the total change of energy 

inside the body. The first law of thermodynamics states that the rate of change of internal 

energy in a body is equal to the summation of supplied heat and the rate of work done by 

the system (Eq. (9)). Since fracture mechanics problems belong to quasi-static systems, the 

internal kinetic energy Uk and the heat flux Q become zero so they are vanished from the 
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equation (Eq. (10)). For a brittle fracture process, the conservation of energy required to 

develop a half-length crack (α) can be derived as shown in Equation(11).The terms Us and 

UΓ in the Equation (11)represent internal strain energy and surface energy respectively, and 

W represents the work done by the loading(Mohammadi 2008). 
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The total potential energy, Π, of the system can be formulated as the sum of internal elastic 

strain energy and the work done by the outer loading (Eq. (13)). 
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If the W term from Equation (11) (the rearranged form is shown in Equation (13)) is 

substituted into the total potential energy equation (Eq.(12)) and differentiated with respect 

to the half crack length, then the amount of required energy dissipation for crack growth can 

be determined as shown in Equation (14). 
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Therefore, in case of an ideally brittle material, the total energy during fracture process 

becomes equal to only the surface energy of the system. Griffith has symbolized the surface 

energy by γs. Accordingly, the total energy becomes 2γs since there are two surfaces 

involved during fracture of solid bodies (Eq. (15)) (Mohammadi 2008). 
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3.2.1.3 Fracture Modes And Stress Intensity Factor 

The idea behind solving a fracture problem is to determine the amplitude of the stresses 

near the crack tip, while being in line with the corresponding load and boundary conditions. 

Since the stress field is distributed similarly for all problems, the unique fracture 

characteristics are identified by means of the amplitude of stress fields specifies. Irwin has 

introduced the stress intensity factor (SIF) concept in order to represent this unique 

quantity.  
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Type of loading is an important factor that changes the displacement pattern of cracking and 

characteristics of the fracture process. There are three possible fracture modes in terms of 

the loading conditions (Figure 19). Mode I is the opening mode where the cracking is 

governed by loads which are normal to the crack surface. In Mode II, loading makes the 

crack surfaces slide through each other. That type of loading forms in-plane shear 

throughout the plane. The last mode is Mode III, tearing or out-of-plane shear loading; and 

is not valid for the plane elasticity.  

 

 

 

 

Figure 19: Modes of deformation at the crack-tip 
 

 

 

In order to obtain accurate solutions to linear elastic fracture problems, the SIF has been 

defined separately for three modes of crack displacement. The notations for SIFs are KI, KII 

and KIII for Mode I, Mode II and Mode III respectively. Assuming that the crack-tip radius 

tends to zero; crack-tip stress field equations, presented in equations (7) and (8), could be 

rearranged by using the following equalities: 

     √          √   

                       
(16) 

 

Accordingly, the crack-tip stress field equations turn into: 
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Mode I: 
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Mode II: 
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Mode III:                 

     
    

√   
   

 

 
 

    
    

√   
      

 

 
 

(19) 

Equation (16) indicates that the stress intensity factor is related to the applied load and the 

crack length. As those parameters increase, both the value of stress intensity factor and the 

rate of stress development at the crack-tip become larger. Taking account of these relations, 

the stress intensity factors for three modes of fracture could be summarized as depicted in 

equation (20). 
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(20) 

Using the concept of stress intensity factor, the deformation mode of cracking and the 

strength of stress singularity in the vicinity of crack-tip can be calculated. Having the K value 

obtained, the stress, strain and displacement components could be acquired by the 

simplified equations. Also, if the subject material is loaded by more than one configuration, 

then the introduced modes could be linearly superposed so as to achieve the crack-tip stress 

fields. That kind of fracture is called the mixed-mode cracking. 

3.2.1.4 Crack Propagation Criteria  

As per the energy based theories of fracture, the formation of a crack is dependent on the 

amount of provided elastic energy by the applied external loads. Fracture happens when the 
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internal energy exceeds the critical fracture energy of the material. Accordingly, the Griffith 

Fracture Criterion for the growth of a sharp crack with a length of 2a is defined as depicted 

below in Equation (21). 

As it is mentioned before, the LEFM theories are only valid for perfectly brittle materials. 

Therefore the fracture criterion in Equation (21) does not fit to the real problems. Regarding 

the contribution of friction induced energy dissipation during fracture, Irwin has replaced the 

γs term by the energy release rate. Energy release rate is symbolized by the letter G, and is 

a measure for the quantity of energy dissipation required for unit length of crack 

propagation (Shi 2009). Fracture begins when G reaches its critical value which is denoted 

by Gc. This critical value is also known as the material toughness, and another fracture 

criterion can be written by substituting Gc into Equation (21) (Eq. (22)) (Asferg 2006). 
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One more fracture criterion within the context of LEFM can be derived with respect to the 

concept of stress intensity factors, which is mentioned before. The critical intensity factors 

are defined distinctly for three fracture modes, and denoted as KIc, KIIc and KIIIc. In that 

case, the condition for initiation and propagation of a Mode I type crack is KI>KIc. 

Furthermore, the critical energy release rate, Gc, and the critical SIF can be associated by 

substituting Equation (16) into Equation (22). By this way the equality in Equation (23) could 

be obtained.  
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3.2.2 Nonlinear Fracture Mechanics (NLFM) 

According to LEFM theories, energy dissipation takes place at one point during fracture. With 

this assumption, infinite stresses are calculated at crack tip which is not possible in reality. 

Therefore, LEFM solutions lead to inaccurate results as the investigated type of material 

diverges from ideal brittleness. As mentioned before, concrete belongs to quasi-brittle 
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materials with its tension softening behavior and an extended FPZ, thus fracture of which 

should not be examined by LEFM. Researchers have introduced several models in order to 

obtain more realistic results for nonlinear fracture problems. The first models which suited 

for the concrete fracture were cohesive zone models proposed by Dugdale and Barenblatt. 

3.2.2.1 Cohesive Zone Models  

Cohesive crack models are developed by incorporating plastic zones nearby the crack tips. It 

is assumed that there are closing forces acting against crack opening along these plastic 

zones. They form a traction-separation behavior in the crack tip. By this means, smooth 

crack closure is obtained, rather than the formation of sharp crack edges where stress 

singularity occurs. The closure stresses are assumed to be equal to material’s yielding stress, 

σyld, in Dugdale’s cohesive model. Alternatively, Barenblatt proposed a varying stress 

distribution along the plastic length of crack (Shi 2009) (Figure 20). 

These pioneering models for nonlinear fracture mechanics have introduced approximations 

to determine the extent of the plastic zone. To explain the approximations, the half-length of 

crack is denoted as c, then c is equal to the sum of plastic zone length (ρ) and the traction-

free crack length (α) (Eq. (24)).  

       (24) 

Afterwards, the length of the plastic zone can be determined based on the assumption that 

negative cohesive closure stresses (equal to yield stress of material) would cancel the stress 

intensity factor in the crack tip (Eq. (25)) (Asferg 2006).      
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The concept of cohesive crack modeling was successfully used for concrete fracture in 

fictitious crack model (FCM) by Hillerborg.  The development of cohesive stresses in FPZ was 

explained thoroughly in this model. Hillerborg has correlated the cohesive traction stresses 

with the crack opening displacement (COD). As seen in Figure 21, stresses are defined as a 

function of COD (Eq. (26)); where ω is used to symbolize COD and σ for traction stresses.  

The fictitious part of crack terminates where COD reaches a critical value (ωc); the crack 

surface becomes traction-free and linear elastic beyond this critical point. The critical crack 

opening displacement, ωc, has been obtained as approximately 160 μm after numerous 

experimental studies had performed in order to explore concrete fracture parameters (Shi 

2009). 

        (26) 
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Figure 20: (a) Dugdale cohesive model, (b) Barenblatt cohesive model (Shi 2009) 

 

 

 

 

Figure 21: Illustration of the fictitious crack model (Asferg 2006) 

 

 

 

For crack formation, it is assumed that fracture happens when the maximum principle stress 

exceeds the tensile strength of material, and a crack opening (Mode I) initiates in the 

direction normal to that maximum principle stress. After initiation of cracking, traction 

stresses undergo redistribution, concentrating at the crack tip. The redistribution phases 

through the crack surface are illustrated in Figure 22; also the corresponding load-

displacement and softening curves are shown in Figure 23. In the course of fracture process, 

the tension softening, due to micro-cracking and crack bridging, leads to energy dissipation 

which is called the fracture energy, Gf. Theoretically Gf defines the amount of work done by 

external loads to create a crack with unit area.  
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There are several assumptions for calculating the concrete fracture energy based on 

experimental studies in the literature. However, the most direct approach is to equalize the 

area under the softening curve to the fracture energy (Eq. (27)) (Bazant 2002).  

 
   ∫     
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Figure 22: Development phases of FPZ (Shi 2009) 

 

 

 

 

Figure 23: Load-deformation curve and tension softening curve (Shi 2009) 

 

 

 

The crack band model (CBM) is an alternative model to FCM which takes the softening 

behavior into account in a different manner. CBM, introduced by Bazant and Cedolin, 

assumes a micro-cracking zone, which is spread in a band with certain thickness, hc. The 

effect of cracking is modeled by a stress-strain curve (Figure 24) (Asferg 2006).  
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Therefore, COD is obtained as the product of fracture strain and crack band width. Similar to 

the FCM, fracture energy of concrete becomes equal to the area enclosed by this curve 

multiplied by hc (Asferg 2006).   

 

 

 

 

Figure 24: CBM stress-strain curve for crack propagation (Asferg 2006) 

 

 

 

3.3 Crack Modeling Techniques for Concrete Fracture 

Until this point, it is emphasized that cracking of concrete must be treated as a nonlinear 

fracture mechanics problem. Two basic modeling approaches are introduced for 

implementing nonlinear response of concrete; however, methods have not been mentioned 

yet. This part will provide fundamental information about some of the modeling techniques 

for fracture problems. In this manner, the progress of crack modeling beginning with simple 

but problematic models, continuing to development of superior techniques such as XFEM 

could be better understood. 

3.3.1 Local and Non-Local Models for Crack Propagation Analysis 

The earliest attempts to solve a crack problem through the finite element method were 

based on assigning strength criteria to integration points of the elements. Cracks were 

formed when stresses calculated at an integration point exceed the corresponding strength 

of that point. However, it was revealed that local models have led to mesh dependent 

results. Researchers tried to overcome this problem by developing non-local models. 

Surrounding points were also involved in non-local models for determination of strength 

criteria rather than relying on a single point (Mohammadi 2008).   
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3.3.2 Smeared Crack Model 

Smeared crack modeling is another approach for fracture mechanics problems. This 

approach is based on modeling the influence of cracking, rather than modeling cracks 

physically (Figure 25). In this case, smeared models are not capable of estimating crack 

geometry or crack width individually. The overall amount of strain which is induced by 

cracking, εcr, is added to the elastic strain, εe, to calculate the total strain. Then surface 

normal traction stresses are correlated to the cracking strains as depicted in Equation (28). 

                     (28) 

In some crack modeling techniques, remeshing of the domain is required as the crack 

propagates. Since remeshing is a complicated and time consuming process, the smeared 

crack models are advantageous in terms of not needing remeshing. Although smeared 

models constitute a better alternative for crack modeling than local and non-local models, 

they have some difficulties as well. Besides the lack of crack geometry prediction, smeared 

models could lead to mesh dependent solutions due to the relation between the width of 

crack band and the chosen element size. One more serious problem is the possible false 

estimation of softening behavior (Asferg 2006). 

 

 

 

 

Figure 25: Illustration of a smeared crack (Mohammadi 2008) 

 

 

3.3.3 Discrete Interface Crack Model 

Unlike the smeared modeling approach, discrete crack models are able to physically simulate 

the crack geometry. In a discrete element model, cracks are located between elements, and 

cannot propagate through elements. Therefore, this kind of modeling is only useful with 
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predefined crack-paths. Modeling a crack-propagation problem with discrete interface crack 

model is not practical, since it requires changing the mesh geometry at every stage of the 

analysis. In addition, it is quite likely to have mesh-dependent results (Mohammadi 2008). 

3.3.4 Discrete Cracked-Element Model 

Discrete cracked-element models were developed by enabling the crack propagation through 

elements. To this end, remeshing procedures have been used to further discretize the 

cracked element ensuring the compatibility conditions. This technique provided a successful 

way to analyze crack propagation; however, again, it requires much effort and time for 

accomplishing the remeshing processes (Mohammadi 2008). 

3.3.5 Enriched Elements and Other Techniques 

As it is seen from the preceding parts, the most challenging problem in crack modeling is to 

avoid unreliable mesh-dependent solutions. Some of the abovementioned techniques give 

reasonable results, but they usually need remeshing process and demand a huge effort. 

There are also other methods for crack analyses such as the Element-Free Galerkin Method 

(EFGM) and the use of singular elements. Both methods have some disadvantages though. 

The formulation of EFGM does not need the discretization of the problem domain; hence, 

the mesh-related problems disappear. However, use of this method within the classical FEM 

formulation is not likely, therefore, computer based modeling is difficult to be used. On the 

other hand, the use of singular elements in FEM formulation is achievable and this method 

has enabled the crack modeling by only moving element nodes as to the crack formation. 

Singular elements removed the necessity of remeshing and resulted in objective results; 

nevertheless, it is not capable of modeling discontinuities. Therefore, to model the crack 

geometry, one should use the singular elements together with a discrete model formulation. 

In this case, the same problems, such as the impracticability of remeshing appear 

(Mohammadi 2008). 

Embedded crack models have also been used in crack modeling analyses. Being a discrete 

approach, these models enable the crack propagation independently through an existing 

mesh. But, the obtained results are usually influenced by coupled strain fields through crack 

surface, which lead to a spurious estimation of softening response (Asferg 2006). 

The aforementioned difficulties in modeling fracture mechanics problems created the need 

for a more convenient method that can be used to model crack propagation. In late 1990s 

modeling techniques based on enriched elements were introduced. These techniques have 

facilitated the solution to crack propagation analyses, especially for the nonlinear fracture 

mechanics problems. 
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The enriched elements are formed by using special shape functions within the classical finite 

element formulation. Discontinuities are modeled by means of these enriched shape 

functions; therefore, cracks are formed inside elements. So, the mesh geometry does not 

have to fit to the crack geometry. As a result, the same mesh geometry can be used for 

different set of problems, and no remeshing process is demanded (Mohammadi 2008). The 

most popular method with enriched elements is the Extended Finite Element Method 

(XFEM), which is the subject of the next part. 

3.4 The Extended Finite Element Method (XFEM) 

The Extended Finite Element Method (XFEM) was developed by incorporation of the 

enrichment functions into the classical FEM formulations. This was achieved by use of 

partition of unity property of finite elements. Discontinuous fields due to fracture can be 

modeled regardless of the mesh geometry, thus cracks can propagate independently without 

need of remeshing (Moës and Belytschko 2002). 

 

 

 

 

Figure 26: (a) Discrete cracked element (b) Enriched element: crack can propagate through 

the elements regardless of the mesh geometry (Mohammadi 2008) 

 

 

 

Belytschko and Black are amongst the pioneering researchers in the development of XFEM, 

and they have listed three unique advantages of the method as follows: 

 Since XFEM is a finite element method, technology and software that have been 

developed for finite element method can be used for XFEM analyses. 

 XFEM is applicable to nonlinear problems. 
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 Need for remeshing is usually eliminated, also mesh does not have to match the 

geometry of discontinuity (Belytschko and Black 1999, Turkish Standards Institution 

2000). 

In XFEM formulation, discontinuities are defined inside the finite elements. This is realized by 

decomposing the displacement field into continuous and discontinuous parts. Consequently, 

crack propagation, independent of meshing, can be successfully modeled with fully 

uncoupled crack surfaces. 

3.4.1 XFEM Formulation 

The XFEM formulation consists of two enrichment parts added to the main shape functions 

to model the discontinuity; the first part is for the enrichment of nodes corresponding to the 

crack interior, and the second part is for the crack tip enrichment (Figure 27). The general 

XFEM formulation appears to be as depicted in Equation (29) (Dolbow , Moës and Belytschko 

2000). 

 

      ∑    

 

 ∑        

 

 ∑   ∑  
 

 

   

  

   

     (29) 

In Equation (29), “I” represents the set of nodes that belong to the continuous domain, 

where cracking does not occur. The second part, “J”, is the set of nodes intersected by 

cracking, and finally “K” contains the nodes which surround the crack tips. The nodal 

degrees of freedom are included by the terms u
I
, b

J
 and c

K
 in terms of displacements. H(x) 

and F(x) are the enrichment functions for modeling the discontinuity. Definition of the jump 

function across the crack surface, H(x), is as follows: 

      {
                

            
 (30) 

The closest point to x on crack is denoted as   , and the unit outward normal as n. This 

equation basically means that H(x) is equal to 1 above the crack; and -1 below the crack, 

implying the discontinuity (Figure 28). The function F(x) is for the enrichment of crack tip 

fields, and defined with respect to the local polar coordinates (r,θ). F(x) is as follows for a 

plane elasticity problem: 
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The first term of the crack tip function provides the discontinuous solution across the crack 

surface, while the remaining three terms provide the continuous asymptotic crack tip 

solution (Dolbow , Moës and Belytschko 2000), (Stolarska, et al. 2001), (ABAQUS 6.10 

2010). 
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Figure 27: Regions of a crack for enrichment (Dolbow , Moës and Belytschko 2000) 

 

 

 

 

Figure 28: Illustration of normal and tangential coordinates for a smooth crack (ABAQUS 

6.10 2010). 

 

 

 

During crack propagation in an XFEM model, when the crack path passes through an edge, 

the nodes on the cut edge are enriched by two degrees of freedom in addition to the 

existing two classical degrees of freedom (Mohammadi 2008).   

 

3.4.2 Cohesive Crack Growth with XFEM 

As it was discussed before, the use of cohesive crack models is the most convenient method 

of modeling fracture problems of concrete and the other quasi-brittle materials. With the 

purpose of using XFEM for cohesive crack growth, the formulations, which are explained 

above, can be derived with regard to a modified domain (Figure 29) so as to include the 

cohesive traction stresses in the crack-tip zone. 
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For a cohesive crack growth, only displacement degrees of freedom are involved for 

accounting the smooth crack closure. Accordingly the jump functions, which define the 

deformation through the crack surface, are connected to the traction stresses of the fracture 

process zone in order to simulate the cohesive behavior. In the XFEM formulation, the effect 

of cohesive forces is accounted for together with the work done by external forces 

(Mohammadi 2008).  A more detailed explanation of cohesive crack growth application can 

be found in referenced papers by Zi (Zi and Belytschko 2003) and Moës (Moës and 

Belytschko 2002). 

 

 

 

 

Figure 29: Domain with a crack involving cohesive zone (Moës and Belytschko 2002) 

 

 

 

3.4.3 The Level Set Method 

Since the crack propagation analyses are performed independently of the mesh geometry in 

XFEM, the formation of crack path and geometry is achieved by use of an additional 

numerical method which is called the level set method. 

The level set function divides the domain into two non-overlapping subdomains whose 

interface represents the discontinuity (Figure 30). The interface is located at the zero level 

set of the function. Consequently, the level set function has opposite signed values at the 

two sides of this interface. The general definition of the level set function is as follows: 

 
     {

          

         
          

 (32) 

where Ω1 and Ω2 are the opposite signed subdomains, and Γ is the interface. The level set 

function, ϕ(x), can also be defined as a signed distance function as shown in Equation (33) 

where d stands for the normal distance of x to the interface (Mohammadi 2008). 
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      {
                

       
 (33) 

Beyond the two-dimensional domains, a single level set function is not sufficient to track 

discontinuities. For tracking the crack propagation, the crack surface is defined as the zero 

level set of a function ψ(x). Next, an orthogonal function ϕ(x) is defined and the 

intersection of level sets of these functions constitutes the crack geometry (Figure 31)(M. 

Stolarska, D. Chopp, et al. 2001)(ABAQUS 6.10 2010). 

 

 

 

 

Figure 30: Definition of the level set function (Mohammadi 2008) 

 

 

 

 

Figure 31: Representation of a non-planar crack in three-dimensions by two level set 

functions (ABAQUS 6.10 2010) 
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The calculated values of level set functions for representing the crack propagation is stored 

in the nodes of finite elements. Therefore, the level set algorithm can be easily used 

together with the finite element formulation. Furthermore, the level set algorithm does not 

cause a great computational effort since the functions are only required to be updated near 

the crack-tips. The remaining parts of the crack surface do not move or change as the crack 

propagation continues (M. Stolarska, D. Chopp, et al. 2001). 

 

3.4.4 Crack Propagation Analysis Example with XFEM in ABAQUS 

In this part, results of two crack propagation analyses are presented. The purpose of these 

analyses is to show that the XFEM tool of ABAQUS can be successfully used to achieve 

acceptable cohesive crack propagation results. To this end, two-dimensional benchmark 

problems from the referenced textbook (Mohammadi 2008) is modeled via ABAQUS.  

BEAM BENDING PROBLEM WITH ASYMMETRIC LOADING 

The first XFEM model, which represents an asymmetric loading case of a beam, is 

constructed based on geometry, loading conditions and boundary conditions shown in Figure 

32. The same material properties which defined in the textbook are used in the model. 

Assignment of the material properties and fracture mechanics parameters to prepare an 

XFEM model in ABAQUS will be explained comprehensively in the next chapter. The 

expected crack propagation pattern is shown in Figure 33. 

 

 

 

 

Figure 32: Geometry of the benchmark problem (Mohammadi 2008) 
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The mesh geometry and the boundary conditions of the XFEM model are shown in Figure 

34. The XFEM analysis has been performed and the crack propagation pattern is depicted in 

Figure 35. When the results of the crack propagation analysis (Figure 35) and the expected 

crack propagation (Figure 33) are compared, it is seen that an accurate prediction of crack 

path has been achieved by the ABAQUS model. 

 

 

 

 

Figure 33: The expected crack propagation pattern (Mohammadi 2008) 

 

 

 

 

Figure 34: Loading / boundary conditions and mesh geometry of the XFEM model 
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Figure 35: Crack propagation pattern of the XFEM analysis with level set contours 

 

 

 

 

Figure 36: Loading / boundary conditions and mesh geometry of the XFEM model 
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FOUR-POINT BEAM BENDING PROBLEM 

The solution of another example problem from the same textbook (Mohammadi 2008) is 

presented in this part. ABAQUS analysis model of the problem is constructed by using the 

boundary and loading conditions which are shown in Figure 36. The acquired deformed and 

cracked shape of the beam is depicted in Figure 37. 

In this example solution, it is aimed to provide not only the crack path, but also the load-

displacement curve of the fracture process. In that way, the softening behavior of the 

material can be seen from the provided load-displacement curve (Figure 38). It is possible to 

compare the obtained curve with the load-displacement curve presented in the referenced 

textbook (Figure 39). The comparison of these two curves indicates that the cohesive crack 

model can be effectively applied by using XFEM within ABAQUS software.       

 

 

Figure 37: Crack propagation pattern of the four-point bending beam example 

 

 

   

Figure 38: Load-displacement curve of four-point bending beam example 
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Figure 39: Load-displacement curve of four-point bending beam example from textbook by 

Mohammadi (Mohammadi 2008)  
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CHAPTER IV 

 

 

NUMERICAL MODELING AND ANALYSES 

 

 

 

 

The objective of this thesis study is to provide computational analyses of the differential 

shrinkage problem encountered on centrifugally-cast concrete members. Details of the 

problem are explained in Chapter 2; and theoretical background of modeling assumptions is 

given in Chapter 3.  

This chapter consists of the comprehensive description of finite element analyses which are 

performed with the purpose of revealing the development of stresses induced by the 

differential shrinkage problem. Following the FEM analyses, the application of the extended 

finite element method for crack propagation simulations will be explained in this chapter as 

well. Two and three-dimensional mathematical models are constructed by using ABAQUS 

(version 6.10). ABAQUS is a powerful commercial finite element analysis tool; which is also 

capable of solving fracture problems by means of several techniques including the XFEM.  

In Chapter 3, it was emphasized that the use of cohesive crack modeling is the proper 

method of solving concrete fracture problems. Cohesive cracking can be applied through the 

XFEM formulation by assigning the corresponding material properties in ABAQUS. The details 

of fracture modeling will be described thoroughly.    

4.1 Two-Dimensional Analyses 

As it was stated before, this study is based on the findings of the experimental studies on 

damaged concrete poles. The details of experimental studies are presented in Chapter 2, 

along with the information about centrifugal-casting technique, and the differential shrinkage 

problem due to segregation. Two-dimensional analyses are implemented so as to represent 

the problem by using the same material properties and conditions in the experiments. 
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4.1.1 Plane-Strain Assumption 

The first stage of the study is the construction of two-dimensional models. To this end, the 

subject case is simplified to a plane elasticity problem by the plane-strain assumption. As 

mentioned before, the plane-strain assumption is valid for the members whose third 

dimension is much larger than the other two dimensions; and also for the loads that do not 

have components in that dimension. Under that circumstance, the displacement component 

in the larger dimension becomes so small that it can be neglected in the calculations. The 

corresponding stress-strain relations are given in Equation (5). Two-dimensional solution of 

pole structures can be achieved by using the plane-strain assumption and neglecting the 

displacements and strains through the pole length (Figure 40). 

In conjunction with the plane-strain assumption, the CPE4R (4-node bilinear plane strain 

quadrilateral) element type of ABAQUS is assigned to the member for the finite element 

analysis (Figure 41). 

4.1.2 Model Geometry 

The finite element models are prepared in accordance with the geometry and dimensions of 

specimens presented in the experimental studies (Dilger, Ghali and Rao 1996). It this way, 

the results of analyses can be compared with the experimental data. The overall dimensions 

of the pole specimens are shown in Figure 4of Chapter 2. In compliance with these 

dimensions, a cross-section with 350 mm outer diameter and 60 mm wall thickness is 

specified for the two-dimensional analyses as shown in Figure 42a. The member is 

discretized into approximately 28000 quadrilateral elements. The edge length of the 

elements is determined as 2 mm, so the cross-section thickness is divided into 30 layers 

(Figure 42). 

 

 

 

 

Figure 40: Plane-strain assumption for two-dimensional pole models 
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Figure 41: Selection of the element type in ABAQUS 

 

 

 

Figure 42: Discretization of the member 

 

 

 

4.1.3 Designation of the Boundary Conditions 

Analyses are performed with the purpose of revealing the stress growth induced by 

differential shrinkage. Therefore, the primary consideration while setting the displacement 

boundary conditions is to avoid development of additional stress concentrations due to 

improper restraining. To that end, the displacement restraints are arranged in a way that 

only the rotation of the member is prevented, while its radial expansion in two directions are 

allowed (Figure 43). In this case, no stress would generate when the member is subjected 

to uniform shrinkage strains instead of differential shrinkage strains. 

30 Elements 
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Figure 43: (a) 2D model dimensions, (b) Boundary conditions 

 

 

 

4.1.4 Material Properties 

4.1.4.1 Implementation of Differential Shrinkage 

As mentioned in the second chapter, non-uniform circumferential strains may be generated 

in inner and outer layers of the spun-cast concrete pole section, when the production 

method has not been applied properly and cause segregation. In order to investigate this 

specific problem, the differential amount of shrinkage needs to be assigned throughout the 

cross-section of the member.  

The nonlinear distribution of shrinkage over the section was introduced in Figure 11. 

Therefore, a parabolic shrinkage distribution is used in the analyses. According to the 

experimental data (Dilger and Rao 1997), the amount of shrinkage measured in the 

outermost layer of pole specimens is ten times less than the innermost layer (Figure 44). 

To assign the described distribution to the member, an “analytical field” is defined in 

ABAQUS. Analytical fields are used to assign varying properties to members with respect to a 

selected coordinate system. A cylindrical coordinate system, origin of which is located in the 

center of member, is created. Next, the varying distribution of shrinkage is defined by 

means of an analytical field connected to this coordinate system. After defining the 

distribution profile, shrinkage strain of the outermost layer, -250e-6, is assigned to the 

material as the coefficient of expansion to the material. This value increases by ten times in 

the innermost layer of the cross-section by means of the analytical field definition.    
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4.1.4.2 Elastic Properties 

The elastic material properties are specified assuming that the concrete mixture have an 

average characteristic compressive strength of 30 MPa. The corresponding values are 

depicted in Table 3. 

 

Table 3: Elastic material properties 

E (Young's Modulus) 26480 MPa 

ν (Poisson Ratio) 0.2 

 

 

 

 

Figure 44: (a) Nonlinear distribution of experimental shrinkage measurements (Dilger and 

Rao 1997), (b) Parabolic shrinkage distribution curve  
 

 

 

4.1.4.3 Other Material Properties 

The density and the specific heat properties, which are necessary for the fulfillment of the 

analysis, are also assigned to the material. The values of 2400kg/m3 and 1e-6 joule/kg·C° 

are used for these parameters respectively; they have no significance to the results though. 

The fracture parameters will be explained in the subsequent parts. 

4.1.5 Loading Conditions 

Shrinkage of concrete is defined as the coefficient of expansion which is a function of 

temperature change. In this problem, the change of temperature stands for the change of 

(a) (b) 
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time; therefore a unit temperature change is introduced to the member to represent the 

required amount of time to reach the maximum shrinkage strain. 

The relation between time and shrinkage is depicted in Equation (34); where εr is the 

shrinkage strain, αs is the shrinkage coefficient and Δt is the change in time. Time is defined 

by means of “predefined fields” of ABAQUS. Two predefined fields are created; first one is 

for the initial condition and equals to zero, the second one equals to the unit time change. 

The abovementioned analytical field is used with the second predefined field to realize the 

differential shrinkage. 

            (34) 

4.2 Two-Dimensional Stress Analyses Results 

The obtained results of two-dimensional plane elasticity models will be introduced in this 

part. It is aimed to show the relation between differential shrinkage and tensile stress 

development. 

4.2.1 Development of Stresses 

Development of tensile stresses is observed by gradually increasing the intensity of 

differential shrinkage distribution. In that way, the significance of segregation and its effect 

could be better seen. 

 

 

 

 

Figure 45: Analyses cases with increasing shrinkage gradient 
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In the first case, the inner and outer shrinkage strains are kept equal to each other. The 

maximum shrinkage strain, -2500e-6, is assigned to the whole section. The amount of 

shrinkage remains the same in the inner layer in the following cases; however, it is 

decreased linearly through the outer layer. The stages of increasing shrinkage distribution 

are illustrated in Figure 45. The outermost layer’s shrinkage value is decreased by three-

tenths of the maximum shrinkage at the each case; and so, in the fourth case, the maximum 

shrinkage gradient is obtained. The results of these analyses cases are given in the 

subsequent parts. 

4.2.1.1 Results of the First Case 

The maximum principal stress diagrams of the first case are given in Figure 46. The results 

indicate that a uniform shrinkage distribution does not cause any in-plane principal stress 

concentration, even with the maximum shrinkage strain assigned to the whole section. 

Therefore no cracking is expected, if the spun-cast concrete has not segregated during 

production. 

 

 

 

 

Figure 46: Maximum in-plane principal stress diagrams – Case 1 
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4.2.1.2 Results of the Second Case 

The influence of the differential shrinkage can be seen in the maximum in-plane principal 

diagrams of the second case (Figure 47). The generated stresses are depicted at four 

distinct stages of the total analysis duration. The gray colored contour is used to indicate the 

stresses which exceed the tensile strength of concrete (calculation of concrete tensile 

strength is given in Section 4.3.1), thus the initiation of cracking can be traced. According to 

the diagrams, the initiation of cracking is expected to occur at one-fourth (0.25Δt) of the 

total duration, Δt. 

 

 

 

 

Figure 47: Maximum in-plane principal stress diagrams – Case 2 

 

 

 

4.2.1.3 Results of the Third Case 

With the further increased shrinkage gradient, effect of the tensile stresses become more 

significant, and reach to the cracking level earlier (cracking start at 0.11Δt) than the second 

case (Figure 48). Furthermore, it can be seen that the extent of the expected cracking zone 

is larger at the end of analysis. Cracking zone spreads beyond the half of cross-section 

thickness. 
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Figure 48: Maximum in-Plane principal stress diagrams – Case 3 

 

 

 

4.2.1.4 Results of the Fourth Case 

The last case of analyses is performed based on the shrinkage measurements of 

experimental studies; and represents the steepest shrinkage difference throughout the 

cross-section. It can be observed from Figure 49 that the cracking initiates at 0.08 Δt; and 

the cracking zone spreads almost over the whole member. 

 

4.2.2 Interpretation of the Analyses Results 

The reason of longitudinal cracking problem observed in spun-cast concrete poles has 

revealed by experimental studies in literature. Based on the data provided by these studies, 

two-dimensional analyses of the pole cross-section are performed within this study. The 

analyses have pointed out the distribution and development of stresses induced by 

differential shrinkage, throughout the cross-section of poles.  The higher shrinkage tendency 

leads to concentration of tensile stresses in inner layers of poles, which is accordant with the 

results presented by studies in the literature.   
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Figure 49: Maximum in-plane principal stress diagrams – Case 4 

 

 

 

With the intention of providing a comparative view of stress development, analyses are 

performed in four cases by changing the intensity of shrinkage difference between the layers 

of pole cross-section. The analyses results are summarized in Table 4. 

 

Table 4: Summary of the results 

Analysis Case 
Shrinkage 

Gradient (tanθ) 

Maximum 

Shrinkage (-εr) 

Initiation of 

Cracking 

Extent of 

Cracking Zone 

1 0 -2500e-6 No Cracking No Cracking 

2 1/3 θ -2500e-6 0.25Δt ≈1/2 Thickness 

3 2/3 θ -2500e-6 0.11Δt ≈3/4 Thickness 

4 θ experiment -2500e-6 0.08Δt ≈ Whole Section 

 

 

 

Table 4 shows that the last case, which is performed based on the experimental 

measurements, exceeds a critical level of shrinkage gradient; and the excessive tensile 



 
 

54 
 

stresses develop over the whole section. In this case, it is expected that crack propagation 

will reach to the outer surface of the pole and lead to durability problems.  

4.3 Two-Dimensional Crack Propagation Analysis 

The extended finite element method (XFEM) for crack propagation analysis is introduced in 

Chapter 3. Briefly, XFEM can be used to model discontinuities by means of enriched shape 

functions and it removes the necessity of remeshing techniques for crack propagation. XFEM 

is available in ABAQUS; and it can be used by setting parameters in the interaction module.  

4.3.1 Crack Initiation Criterion 

Crack initiation can be considered on the instant where the material reaches to the peak 

point of the load-deformation response. After that point, material begins to undergo a 

softening behavior and lose its stiffness gradually. The initiation criteria can be defined by 

several ways such as the maximum principal stress (or strain), maximum nominal stress (or 

strain) and the quadratic traction (or separation) interaction. In this study, the maximum 

principal stress criterion is used. It assumes that the cracking initiates when maximum 

principal stress becomes equal to the specified value; however, a pure compressive state of 

stress does not cause cracking (ABAQUS 6.10 2010). 

The cracking strength is assumed to be equal to the tensile strength of concrete. It is 

calculated with Equation (35) (Turkish Standards Institution 2000). According to this 

equation, for a concrete class that have 30 MPa of characteristic compressive strength will 

have a 1.92 MPa characteristic strength. 

           √    (35) 

In ABAQUS, the damage initiation criterion can be defined by using the material editor in the 

property module. From the mechanical properties the “damage for traction separation laws” 

is set to “Maxps Damage” as shown in  Figure 50. 

4.3.2 Crack Propagation Criterion 

In Chapter 3, the concept of cohesive crack modeling is introduced. It is an established 

approach to represent the fracture characteristics of concrete. It is also mentioned that 

cohesive crack models can be successfully achieved by using XFEM. In ABAQUS models, the 

tension softening behavior of concrete can be implemented by specifying the maximum 

crack opening displacement or the fracture energy. In this study, the fracture energy is 

specified for crack propagation. 
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Figure 50: Setting the damage initiation criterion 

 

 

 

4.3.2.1 Calculation of the Fracture Energy 

The method of calculating fracture energy is described in the Section 3.1.2.2, Equation (27). 

Simply, the area enclosed with the softening curve is equal to the fracture energy (Figure 

51). To calculate the area, there are two required unknowns; first one is the tensile strength 

of the material; and the second one is the critical crack opening displacement. As it is 

explained in Section 3.1.2.2, the critical crack opening displacement means that material 

loses its capability to transfer loads across the crack surface when it reaches to that 

displacement. This displacement value can be taken as 0.16 mm according to experimental 

studies in the literature (Shi, Crack Analysis in Structural Concrete 2009). The tensile 

strength is taken to be 1.92 MPa. Accordingly, the fracture energy is calculated as (for 

concrete having 30 MPa of characteristic compressive strength): 

                             (36) 

ABAQUS enables the definition of both linear and nonlinear softening curves. In this study, 

the softening curve is taken as linear. The properties of crack propagation are defined by 

using the “damage evolution” option inside the material editor as shown in Figure 52. 
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Figure 51: The softening curve of concrete 
 

 

 

 

Figure 52: Setting the crack propagation criterion 

 

 

 

4.3.2.2 Location of the Crack Initiation 

Without any imperfections cracking can start concurrently from more than one point where 

the stresses reach the specified value. However, in real life there are defects within a 

material. The tensile strength of these points is lower than the average; therefore, it is 
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statistically expected that cracking will start from one of these points.  Especially, in 

concrete-like materials, which have an inhomogeneous structure, imperfect points become 

significant for a crack initiation. Thus, a distinct material, which has the half of the specified 

tensile strength and half of the fracture energy, is assigned to a small region to ensure that 

cracking initiates from a single point (Figure 53). 

4.4 Results of the Two-Dimensional Crack Propagation Analysis 

The same two-dimensional analysis which is described in the preceding section (Step 4: 

based on the experimental data) is performed for crack propagation. The same model with 

the same material properties and boundary conditions is used; but this time, the calculated 

crack initiation and propagation criteria are incorporated. By using the interaction module of 

ABAQUS, an interaction is defined to enable the XFEM crack growth within the analysis. 

 

 

 

 

Figure 53: Imperfection for the crack initiation 

 

 

 

The result diagrams of the crack propagation stages are shown in Figure 54. As intended, a 

single crack initiates from the point, where less strength and fracture energy values are 

assigned for representing an imperfection. The initiation of cracking was estimated to 

happen at 0.08 of the total duration in the stress analysis. The diagrams show that cracking 

begins earlier than this estimation (0.004 Δt). The reason of earlier cracking is the lower 

strength of defected point. 

As it can be seen from the diagrams, the crack has propagated through the whole cross-

section, and almost reached to the outer surface. In that case, the cracked pole surface 

becomes prone to environmental effects. Therefore, this result confirms that the longitudinal 

cracking, which initiates from the inner surface of poles, can lead to serious durability 

problems. 
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Figure 54 Stages of the crack propagation 
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4.5 Multiple Crack Formation 

In Figure 12, it is seen that multiple cracks have initiated in the inner surface of the 

laboratory specimen. Thus, simultaneous formation of cracking due to differential shrinkage 

is possible, so it should be considered. To that end, the same two-dimensional analysis is 

performed by removing the imperfect zone. The obtained crack pattern and stress 

distribution is shown in Figure 55.  

 

 

 

 

Figure 55: Simultaneous multiple crack formation 

 

 

 

The results have shown that cracking can start without an imperfect zone is described. In 

that case, all cracks initiate simultaneously when the in-plane principal stress exceeds the 

tensile strength of the concrete. The crack spacing of the obtained pattern is significantly 

smaller than the actual case. The assigned fracture energy is examined parametrically with 

the intent of having more realistic crack spacing; however it has been understood that 

fracture energy parameter is not effective on crack spacing. Consequently, this solution only 

indicates the prospect of multiple crack formation.  
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4.6 Effect of Reinforcement 

In the experimental studies, it is reported for the reinforced specimens that the crack 

propagation is usually terminated by a longitudinal rebar which is located near the crack 

path. In order to investigate this case, the two-dimensional model is modified by 

incorporating a reinforced zone near the crack initiation point (Figure 56a). For accounting 

the weak zone between reinforcement and concrete, a smaller modulus of elasticity 

(103MPa) is assigned to the reinforced zone. 

 

 

 

 

Figure 56: Crack propagation in reinforced cross-section 

 

 

 

Four steps of the crack propagation in reinforced cross-section are presented in Figure 51b. 

In the third step, direction of the crack path steers towards the rebar as the crack-tip 

approaches to the reinforced zone. Eventually in the fourth step, crack-tip reaches the rebar 

and the crack propagation stops. This result is in line with the experimental observations, 

and it confirms that crack propagation terminates if there is a rebar in the vicinity of the 

crack path.    
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4.7 Three-Dimensional Analyses 

After the problem has been investigated with two-dimensional finite element analyses, 

three-dimensional finite element models are also constructed. The purpose is to compare 

two and three-dimensional solutions in order to check the consistency of the obtained 

results.  

4.7.1 Model Geometry and Properties 

The three-dimensional analysis model is constructed by extruding the two-dimensional 

cross-section by 500 mm in the third dimension. Even though the actual lengths of the poles 

are much longer, modeling the full length will be computationally impractical. Therefore, a 

500 mm thick section of a concrete pole is modeled. It can be observed in Figure 4 that the 

investigated poles have a narrowing profile through their length. That means the poles’ 

cross-section diameter is larger at the bottom. However, this geometrical property of poles is 

neglected in the three-dimensional analyses, and the model is constructed with a constant 

diameter.  

Boundary conditions, material properties, fracture parameters and the loading conditions 

remain the same with the two-dimensional models. Besides the three-dimensional geometry, 

the only difference between the two models is the element type used. C3D4 (4-node linear 

tetrahedron) element type of ABAQUS is used for the analysis, and the domain is discretized 

into 557804 elements (Figure 57). 

 

 

 

 

Figure 57: Three-dimensional analysis model 
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4.8 Results of the Three-Dimensional Stress Analysis 

Two cases of three–dimensional stress analyses are performed by implementing the uniform 

shrinkage in the first case and the most severe differential shrinkage in the second case. The 

first case is performed to show that a uniform shrinkage distribution does not lead to any 

stress development through the pole section. The results are depicted in Figure 58, and 

verify that the shrinkage deformations take place without any stresses generated.   

The most severe differential shrinkage is assigned to the section in the second case; 

therefore, the obtained results are comparable to the fourth case of the two-dimensional 

analyses. The analysis results of the second case are shown in Figure 59. Similar to the two-

dimensional analyses results, the grey colored contour is used to spot the cracking zone. 

The cracking is expected to start at 0.09Δt, which is very similar to the results obtained in 

the fourth case of the two-dimensional analyses. Furthermore, the extent of cracking zone is 

also similar; and, it is spread over the whole section. Under that circumstance, crack 

propagation is expected to reach to the outer surface.  

 

 

 

 

Figure 58: Maximum principal stress diagrams – Case 1 

 

 

 

4.9 Results of the Three-Dimensional Crack Propagation Analysis 

A crack propagation analysis is performed for the three-dimensional problem. In parallel with 

the two-dimensional case, three-dimensional model is also constructed by incorporating the 

fracture parameters of concrete into the stress analysis model. An imperfect region, which is 

a cubic part located at mid-height of the member, is formed on the inner surface by 

assigning lower strength and fracture energy criteria in order to obtain a single crack 

initiation.   
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Figure 59: Maximum principal stress diagrams – Case 2 
 

 

 

The obtained results are presented in Figure 60 in terms of the level set contours. It can be 

seen that the crack initiates from the defected point on the inner surface of the pole. The 

initiation of cracking occurs at 0.02Δt. Cracking begins earlier than the estimation of stress 

analysis due to the lower strength of imperfect zone. The initiated crack propagates in two 

directions; the first direction is towards the outer surface and the second is along the 

longitudinal dimension of pole. The three-dimensional crack surface is formed with 

combination of propagation in these two directions; therefore, the complete longitudinal 

crack geometry is obtained.  

4.10 Discussion on Limitations of the Study 

In this study, a time-dependent behavior of concrete and its effects on structural elements is 

investigated. However, in the computational analyses the elastic properties of concrete, 

which are also dependent on time, are considered to be constant for sake of simplicity. In 

this case, the early-age tensile strength and modulus of elasticity of concrete are 

overestimated. If these parameters were regarded as time-dependent parameters, then an 

earlier crack initiation would be obtained in fracture analyses.  

Another modeling assumption is the absence of lateral reinforcement. The plain concrete 

material properties are assigned to the pole sections. As a matter of fact, usually spiral or 

hoop steel is incorporated as lateral reinforcement against longitudinal cracking. This study 

does not account for any lateral reinforcement, so considers the insufficiently reinforced 

members.    
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Figure 60: Level set contours of three-dimensional crack propagation
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CHAPTER V 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

 

 

Experimental studies of several researchers have revealed the cause of longitudinal cracking 

problem encountered on spun-cast concrete poles. As per these studies, uneven shrinkage 

of the segregated layers in a concrete pole cross-section results in severe durability 

problems by means of cracking. 

Based on the measurements presented in the experimental studies, two and three- 

dimensional finite element models of segregated concrete pole have been constructed. The 

obtained results of analyses have verified that the tensile strength of concrete is exceeded in 

the inner layer of cross-section. It has been observed that the cracking zone extends from 

the inner layer towards the outer layer as the gradient of the shrinkage increases over the 

cross-section. A similar stress development is obtained by the three-dimensional analyses as 

well.  

The expected concrete fracture has been also modeled by use of XFEM, and a cracking 

pattern, complying with experimental findings, is simulated. The analysis has shown that a 

crack can propagate until it reaches the outer surface of the pole. In addition, effect of 

reinforcements on crack propagation has been studied by a distinct model. The reinforced 

model has revealed that crack propagation tends to go toward and terminate at a nearby 

reinforced zone. This result is also concurrent with the findings of experimental studies.    

Consequently, it can be concluded that the use of such computational tools may aid the 

production process and the durability problems can be avoided by conducting a well-

designed production phase, thus eliminating segregation of the concrete. The computational 

analyses have shown that a uniformly casted concrete pole will not suffer from excessive 

tensile stress formation by uneven shrinkage. 
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For the future research, it would be interesting to include the diffusion-deformation 

interaction into the problem to see its effect on the stress development and cracking. Also, 

the reinforcement arrangement and the concrete cover thickness could be investigated to 

reveal how they affect the crack initiation. 

In this thesis study, the material properties are assigned as if concrete is homogeneous. A 

more realistic and comprehensive study can be carried out by examining the mesostructure 

of concrete through the pole section. By this means, it will become possible to assign 

mechanical properties of constituents individually. Thus, more accurate crack propagation 

analyses can be conducted.    

The XFEM technique in ABAQUS version 6.10 has been used in this thesis study to 

investigate a fracture problem. The obtained results have shown that XFEM is a reasonable 

method to model fracture of concrete. Therefore, this method can be used to study the 

nonlinear behavior of various structural concrete members.  
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