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ABSTRACT

GENERALIZED BENT FUNCTIONS WITH PERFECT NONLINEAR FUNCTIONS ON
ARBITRARY GROUPS

Surname, Name
M.S., Department of Cryptography
Supervisor : Prof.Dr. Ferruh Ozbudak
Co-Supervisor : Assist.Prof.Dr. Ziilfiikar Saygi

September 2012, 25 pages

This thesis depends on the paper ‘Non-Boolean Almost Perfect Nonlinear Functions on Non-
Abelian Groups’ by Laurent Poinsot and Alexander Pott and we have no new costructions
here. We give an introduction about character theory and the paper of Poinsot and Pott,
and we also compare previous definitions of bent functions with the definition of the bent
function in the paper. As a conclusion, we give new theoretical definitions of bent, PN, APN
ana maximum nonlinearity. Moreover, we show that bent and PN functions are not always

same in the non-abelian cases.

Keywords: Bent functions, PN functions, Character Theory, Fourier transform
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KEYFI BIR GRUP UZERINDEKI BENT FONKSIYONLARI ILE PN FONKSIYONLARI

Surname, Name
Yuksek Lisans, Kriptografi Boliimii
Tez Yoneticisi : Prof.Dr. Ferruh Ozbudak
Ortak Tez Yoneticisi : Yrd.Doc.Dr. Ziilfiikkar Saygi

Eyliil 2011, 25 sayfa

Bu tez Laurent Poinsot ve Alexander Pott tarafindan yazilan ‘Non-Boolean Almost Perfect
Nonlinear Functions on Non-Abelian Groups’ adli makaleye dayanmaktadir ve yeni bir kur-
gulama yoktur. Tezde karakter teorisi ve Poinsot ve Pott’un makalesi hakkinda bilgi verdik
ve daha onceki bent fonksiyonlarin tanimi ile makaledeki Bent fonksiyonlarinin tanimini
kiyasladik. Sonug olarak, yeni bent, PN, APN ve ‘maksimum lineer olmama’ hakkinda teorik
tanimlar verdik ve ayrica bent ve PN fonksiyonlarin Abel olmayan gruplar iizerinde her zaman

ayni olmadigin1 gosterdik.

Anahtar Kelimeler: Bent fonksiyonlari, PN fonksiyonlari, Karakter Teorisi, Fourier trans-

formu
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CHAPTER 1

INTRODUCTION

Definition: [1, p.1] A group is a non-empty set G on which there is defined a binary operation

(g, h) — gh satistying the following properties:

1) forall g, h, k in G,
(ghk = g(hk);

2) there exists an element e in G such that for all g in G
eg =8e=g;

3) for all g in G, there exists an element g~! in G such that

Examples:

C,=<a:ad"=1>,

Dy, =<a,b:d"=b*=1,bab=a" >,
Os =<a,b: a=1a=mblab=a"' >,
S, = the symmetric group of order n,

A, = the alternating group of order n,

GL(n, C) = the group of invertable n X n matricies over C.
Definition: [1, p.5] Let G and H be groups, and consider

GxH={(gh:g€G,heH
Define a product operation on G X H by

(g.h) (g )= (gg hh')



for all g, ¢’ € G and all h,”’ € H. With this product operation, G X H is a group, called the
direct product of G and H.

Definition: [1, p.6] A function from one set G to another set H is a rule which assigns a

unique element in H to each element of G.

Definition: [1, p.6] If G and H are groups, then a homomorphism from G to H is a function

f : G — H which satisfies:
f(g182) = f(g1)f(g2)

for all g1,g2 € G.

Definition: [1, p.30] A representation of G over C is a homomorphism p from G to GL(n, C)

for some n. The degree of p is the integer n.

Example: [1, p.31]1Let G = Dg =< a,b : a* = b*> = 1,b"'ab = a~! >. Define the matrices A

and B:
0 -1 1 0
A= , B=
-1 0 0 -1
G - GL(2,0) )
Then A* = B> = ,,B"'AB = A~". It follows p : o o ,0<i<3,0<j<is
a'b! — A'B/

a representation over C. The degree of p is 2.

Definition: [1, p.32] Letp : G — GL(n,C) and 0 : G — GL(m, C) be representations of G
over C. We say than p is equivalent to o if n = m and there exists an invertible n X n matrix

T such that for all g € G,

o(g) =T 'p(g)T

Equivalence of representation is an equivalence relation.

0 -1 1 0 | 1 1
Example: [1, p.32] Let G = Dgand A = ,B= LetT = — . Then
V2. .
-1 0 0 -1 i —i
=" 7 wen
—72 . ; . € nave

T 'AT = P0 T~'BT = 01
0 —i 1 0



and so we obtain a representation o of Dg for which

[i 0] [0 1J
o(a) = ,o(b) = .
0 —i 10

Definition: [1, p.39] Let V be a vector space over F and let G be a group. Then V is an
FG-module if a multiplication vg (v € V, g € G) is defined, satisfying the following conditions
forallu,ve V,AeFandg,h € G:

(HvgeV;

(2) v(gh) = (v®)h;

B)vl =v;

@) ()g = Avg);

S)(u+v)g =ug+vg.

Definition: [1, p.50] An FG-module V is said to be irreducible if it is non-zero and it has no
FG-submodules apart from {0} and V. If V has an FG-submodule W with W not equal to {0}
or V, then V is reducible. Similarly, a representation p : G — GL(n, F) is irreducible if the

corresponding FG-module F” is irreducible; and p is reducible if F" is reducible.
Define G as the set of all equivalence classes of irreducible representation of G.

Group Algebra of G: [1, p.53]
Let G be a finite group whose elements are gy, ..., g,. We define a vector space over C with
g1, ..., 8n as a basis, and we call this vector space CG. Take as an element of CG all expressions

of the form

/l1g1 + ...+ /lngn (all A € C)

The rules for addition and scalar multiplication in CG are the natural ones; namely if
n n
u= Zaigi andv = Zbigi
i=1 i=1
are elements of CG and A € C, then
n n
u+v= Z (a; + b))g; and Au = Z (1a;)gi.
i=1 i=1

With these rules, CG is a vector space over C of dimension n, with basis gy, ..., g,. The basis

g1, ..., &n 18 called the natural basis of CG.



CG carries more structures than that of a vector space.

Define multiplication in CG as follows:

(> agg)( D ahh) = > agbulgh)
geG heG g,heG
Z Z (dhbh—lg)g
geG

heG

where all a4, b, € C.

and also define:[2, p.3]

Definition: [1, p.118] Suppose that V is an CG-module with basis 8. Then the character of V
is the function y : G — C defined by:

x(g) = tr[glg.
The character of V does not depend on the basis B, since if 5 and " are bases of V then
lgly = T7'[gleT
for some invertable matrix 7. Thus for all g € G
trlgly = trlgls.

[1, p.119] Naturally, we define the character of a representation p : G — GL(n, C) to be the

character of y of the corresponding CG-module C", namely

x(g) =tr(p(g)), g €G.

Example: [1, p.120] Let G = Dg =< a,b : a* = b*> = 1,b"'ab = a™' >andletp : G —
GL(2, C) be the representation

0 -1 1 0
p(a)=[ ],p(b)=[ ]
-1 0 0 -1

Then




Definition:[1, p.119] We say that y is a character of G if y is the character of some CG-
module. Further, y is an irreducible character of G if y is the character of an irreducible

CG-module; and y is reducible if it is the character of a reducible CG-module.

[1, p.152] The number of irreducible characters of a group is equal to the number of conjugacy

classes of the group.

Proposition:[1, p.161] Let y1, ..., xx be the irreducible characters of G, and let gy, ..., gx be
representatives of the conjugacy classes of G. Then the following relations hold for any
r,se{l, ..k}

(1) The row orthogonality relations:

rs-

Z Xr(gl))(s(gt
ICa(gi)l

(2) The column orthogonality relations:

k
> xilgxi(gs) = 6:5ICa(g).

i=1



CHAPTER 2

GENERALIZED BENT FUNCTIONS

Definition: [3, p.9] Let X and Y be two finite nonempty sets. A function f : X — Y said to

be balanced if the function

¢f 1Y — N
2.1)
y— {xeX: f(x) =yl

is constant and equals to %

Example: 1) Let X = F] and ¥ = F; and let
fi: X—Y
(.XI, cees xn) — X

is balanced for each i € {1, ..., n}.

2)Let X = S3and Y = Cz and let

1 ifxeid (12)
S =1a ifxe(13),(23)

a* if x € (123),(132)

is also a balanced function.

Note That:

1X]

1) If f : X — Y is a balanced function, then 7

must be a positive integer; that is, order of Y

must divide order of X.



2) As we see in Example 2, if order of Y divides order of X, we can define a balanced function.

Definition:[3, p.9] Let K and N be two finite groups and f : K — N. The left derivative of f

in direction @ € K is defined as the map

d,"f:K—>N
(2.2)
x = flax)f(o)!
Symmetrically, the right derivative of f in direction a € K is the map
d,"f:K—>N
2.3)

x = f(0)7 flax)

[3, p.9] The left-translation actions of both K and N are each equivalent to right-translation of

K and N. So we focus only on left-translation that we simply denote as d, f.

Example: 3) Consider Example 2, let & = (12), then d(12) f has value a* at (123):

(da2f)(123) = f((12)(123))£((123))™"
= f((13))(aH™!
2.4)

=a.a

Definition: [3, p.9] Let K and N be two finite groups and f : K — N. The map f is said to

be perfect non-linear if for each @ €K*, d,, f is balanced; i.e, for each (@, 8) €K* X N,

- K|
Or(@.p) = |{x € KIf (@) ()™ = B)| = 7. 2.5)
Note that: f : K — N is a perfect nonlinear function, then % must be a positive integer;

that is, order of N must divide order of K. So we can have perfect nonlinear function only if

K] +
=7 € .
v Z

Example: 4) Let f : F3 — F3 be a mapping as x — x% and consider d,, f as addition:



Ao f(x) := fla +x) = f(x) (2.6)

Then
Arf:10,1,2] — [1,0,2]

Arf :[0,1,2] — [1,2,0].

Since |{x € F3 : Aef(x) = BY = [ =1 for each & € {1,2} and B € {0,1,2,}, f is perfect

nonlinear.

Note that: When |K| = |N]|, these functions ara also known as planar functions in finite

geometry, as we see in Example 4.

[2, p.2] Since perfect nonlinear functions do not exist in many cases, the following definition

is meaningful: we call f : K — N an almost perfect nonlinear function if and only if

> bpab) < ). bylab), Vg K - N. 2.7)

(a,b)eKxN (a,b)eKXN
For simplicity, we define G := K X N. With each function f : K — N we associate its graph

Dy :={(a. f(@)) : a € K). 2.8)

Dy can be uniquely represented in C[G] as

Dy =>"1p,(9)8 (2.9)
geG
where
1 ifge Df
Ip,(g) = (2.10)
0 ifgé¢ Df
Proposition: [2, p.3]
DDV = Y 54(a.b)a.b) € ZIG] 211
(a.b)eG



Proof: Let & = (x,y) and g = (a,b) be in G.

hhg™' €D = f(x)=y and fla'x)=b"y

& flal@a' X)) f@a ' =b

Thus

DD = (Z lDf(g)g)(Z lDf(h—l)h)

geG heG
> ( > 1D,‘(h>1D,‘(g-1h))g
g€G ‘ heG

D 6y(a,b)a,b)

(a,b)eG

Theorem: [2, p.9] Let D := },c; dgg be an element in the group algebra C[G]. Then the
following holds:

a) (Fourier Invension)

1
d, = — Y dimptr(o(D -1 2.12
= gy 2 dimptr(e(D) 0 pig™) 2.12)
peG
b) (Parseval’s Equation)
1 .
2l = = ) dimpllp(Dp)I? (2.13)
EG Gl &
8 geG

where || f]| is the trace norm of a linear endomorphism f given by || f|| := +/tf(f o f*).

Proof:

a)

2 dimptr(p(D) o p(g™)) = " dimptr(o(Y dih o plg ™))

geG geG heG
= > dy ) dimptr(o(hg™"))
heG geé
= |Gld,



b)

(gl o

¢<G heG

PN T=n"

g€G " heG

The coefficient of identity of DD~ is ¢<G |dg|2. If we apply (a) to DD~!, then

2l = l}idmwﬁ@dﬂ)bopudln

8eG peG

=G Z dimptr(o(DD™1))

peG

Z dimptr(o(D) o p(D~ D))

peG

= > dimpllo(D P

peG

"Gl
"Gl

Theorem: [2, p.10] Let K and N be two finite groups. Let G be direct product K X N. A

function f :— N is almost perfect nonlinear if and only if

>~ dimpllp(D)II* < Y dimpllo(DI, Vg : K — N. (2.14)
peC peC

Proof: We have

DDV = " 5y, b)a,b).
(a,b)eG

Using Parseval’s equation we have

Zéwwfnmzmmmmez

(a,b)eG

el Z dimpllo(Dy) o p(Dy)"|
peCG

4
|@Z“WWWW
peG

10



Since a function f : K — N is almost perfect nonlinear if and only if forevery g: K = N

Z 0y(a, b)* < Z Og(a, b)*, Vg : K — N.
(a,b)eKXN (a,b)eKxXN

Therefore, a function f : K — N is almost perfect nonlinear if and only if for every g : K —

N,

>~ dimpllp(D)II* < " dimpllo(DI, Vg : K — N.
peé gEG
Proposition: [2, p.11] Let K and N be two finite groups with order m and n respectively, and

f :— N. For some p € K X N the values of p(Dy) :

m if p = po
p(Dy) = (2.15)
0, if p = px ® po and (pg, V) is non-principle on K

Proof: Suppose p = pg.

p(Dp)= > 1p,(a,b)pla,b)
(a,b)eG

= > Ipab)

(@.b)eG
= |Dy]
= |K]|

=m

Suppose p = px ® po and (pk, V) is non-principle on K. Then we have

p(Dp) = > 1p(a,b)px(@) @ po(b)
(a,b)eG

> px(@ ® po(f(a))

ack

> k(@

ack

=0

11



Theorem: [2, p.12] Let f : K — N. Then

m?(n — 1)

—_—. 2.16
IK|(IN| = 1) (10

maxpypdimpllo(Dp)|I* 2

Proof: By Parseval’s equation applied to D, we have

> dimplpDpIP = > 1p,(a, by

1
Gl peC (a.h)eG

=m

so we have

2 dimollp(DIF = m’n.
peG

By proposition above we have

2, dimplloDpIF = )" dimplloD)IF ~ 3 dimpllo(D I

PNFPO peCG PN=PO
_ 2 . A2 : N
= mn - dimpolloo(DpIP = > dimpllo(Dp)l
PN=P0-LPFP0
=m’n—-1m? - Z (dimp X 0)
PN=P0:P#P0
= mz(n -1

since number of principle representation on N is equal to |K|, the number of non-principle

representation is equal to |G| - |K| = |K|IN| - |K]| = |I€|(|IV| — 1). Therefore we have

2
. m?(n— 1)
maxpy £p, dimpllo(D )II* >

T IKINT -1
The proof also shows that
2
. m-(n—1)
maxpy+p d1mp||,o(Df)||2 = ="
e IKI(N] - 1)
()
m*(n—1)

Yon # po, lo(DpIF = ———— .
dimpl|K|(|N] - 1)

12



[2, p.11] Parseval’s equation and anology with Abelian case, suggest us to say that a function
f : K — N is called maximum nonlinear if and only if the value +/dimpllo(Dy)|| is as small

as possible.

Definition: Let f : K — N. f is maximum nonlinear if and only if

maxpy 4o VAMpllp(D )l < Maxpy g, Vdimpllo(Dy)ll Vg : K — N.(2.17)

Summary: [2, p.14]

Almost perfect nonlinearity: Minimize

2 dimpllo(@p*

peCG

for functions f : K — N, where G = K X N.
Maximal nonlinearity: Minimize the maximum of

Vdimpllo(D)l
forall f: K = N.

Bentness: Find function f : K — N such that

m?*(n—1)
dimp|KI(IN] - 1)

Von # po, lo(DHI? =

13



CHAPTER 3

COMPARISON WITH THE PREVIOUS DEFINITIONS OF
BENT FUNCTIONS

A function from ZJ to Z, is called a Boolean function. Take an integer g > 2, the imaginary
unit i = V-1, and a primitive complex root of unity & = ¢4 of degree g. Consider the g-ary

function f : Zj — Z,.

The Walsh-Hadamard transform of a function f is a complex-valued function from Zj to

C defined as follows:
Wf()’) - Z é_-<x,y>+f(x) (3.1)

X€Zy,
where the inner product and addition are taken modulo g.

Denote the absolute value of a complex number z by [z].

Definition:[4, p.2] (Kumar, Schlotz and Welch,1985) Given a positive integer ¢, a function

f 1 Zy — Zg is called a g-ary bent function if [Wr(y)| = q"? forevery y € Z,.
Example: Let f(x) = X3 + 3x2 from Zy4 to Z4. Then

Wi0) = 3, i W = 5 i =2
Wi(l) = X ez, joI>Hf) = Y ez, @ 9
Wr(2) = X ez, jR2>Hf() = Y ez, 200 — o
Wi(3) = Sy, 9940 = B, #0 = 22

Since [Wr(y)l =2 = 412 forall y € Z4 , f is a 4 — ary bent function. On the other hand, f is

not a ‘generalized bent function’:

14



Cpnsiderin the graph of f defined by (2.8),
Dy =1{(0,0),(1,0),(2,0),(3,2)}

Let p = p; ® pp where character of p; is (1, i, —1, —i) and character of p; is (1, -1, 1,—1). Then

tr(p(Dy)) = tr[p((0,0), (1,0),(2,0), (3,2))]
= tr(p(0,0)) + tr(o(1, 0)) + tr(p(2, 0)) + tr(p(3, 2))
=1.1+i1+(-1).1+(=i).1
=1+i-1-i

=0

Thus, [lo(D Il = [o(Ds)| = 0 # 4172 Hence f is not a ‘generalized bent function’.

Now we consider g-ary functions over the finite field F”, where ¢ = p' with prime p, positive
integer I. Again take the primitive complex root of unity & = ¢2™/? of degree p. Consider the
g-ary function f : Fj — F,.

Define

Wre(y) = ) 5070 (3.2)

T
xEIF'q

withy e F, z € Fj

Definition: [4, p.5|(Ambrosimov, 1994) Take g = p' with prime p, positive integer I. A

function Fj — F,. is called a bent function if for all z € FF; and y € Fy,

W) = ¢"*

Theorem: [4, p.6] A function f : IFZ — [, is a bent function if and only if the function

S(x+y) — f(x) is uniformly distributed over Fy, with y € F .

15



Proof: [5, p.3]
(W 0P = Wr(0)Wy.(y)

_ ( Z §;<<a,y>+f(a),z>)(z €:<<b,y>+f(b),z>)

aeFZ beFZ
— Z §<f(a),z> Z §—<f(b),z>+<<a—b,y>,z>
ae]F; be]FZ
_ Z §<f(a),z> Z §—<f(a—c),z>+<<c,y>,z>
aeF; ceFZ
_ Z geser>e> Z §<f(a)—f(u—C),z>
CEFZ aeIFZ

Now suppose f(x +y) — f(x) is uniformly distributed over F,, with y € F,,.
If ¢ # 0, then

Z §<f(a)—f(a—c),z> — qn—l Z§<1,z> -0

acFy teF,
since z # 0. Thus

IWf,z(y)|2 — Z §<<c,y>,z>(qnéc,0) _ n

~ n
cqu

|
S

Hence Wy (y)| = q"* forall z € F, and y € Fy.

Now suppose f is bent. Define

Afye)i= ) geforo-/@e

n
xelF! 4

Then
qn — |Wf,z(y)|2 — Z é_-<<C,y>,Z> Z év_-<f(a)—f(a—c),z>

ul n
ceF! / aE]Fq

— Z §—<<c,y>,z> Z §<f(a)—f(a+c),z>

1 n
ceIFq ae]Fq

— Z ég<<c,y>,z>m

ceFy
for all ¢ € Fj. We need to show A (f,¢) = 0 forall ¢ € ]FZ,,. We have ¢" equations with ¢"

unknowns. Ordering the elements of FZ by ay, ..., g1 with a9 = 0, we have

1 1 “ e 1 Az(f7 0) qn
1 §—<<a1,a1>,z> ... §_<<aq"_l 122> Az(fa (1’1) _ qn
1 §—<<a|,aqn-1 >z> §—<<aqn—1 W yn—1>,2> W qn

16



Let H denote the ¢" X ¢" matrix in above. The using the orthogonality relation of characters,
we have
HH=d,
. . . A
Multiplying both side with H , we have

q'-1

m = Z é:<<(lj,[yl->’z>

i=0

for j€{0,1,...,4" — 1}. For a; # 0, since z # 0, we have

q'-1
Z §<<aj,ai>,z> -0
i=0

Thus A (f, ;) = 0 for all z € F, is uniformly distributed over F,, with y € F.

Now let f : Fj — F,. Then
Dy =A{(a, f(@) : a € F}
we have ¢" Xq irreducible representation over Fy XF,. We can propose an equivalent definition

to W (y):
W,f,z(y) _ Z fTr(<x,y>+zf(x))

n
xe]Fq

Then we have
W'f,z(y) _ Z fTr(<x,y>+zf(x))

n
xE]Fq

- Z trl(py ® p2)(x, f(x))]

n
xelF! /

= tr(py ®pz)( Z(x> f(x)))

xeFy
= trl(oy ® p:)(Dy)]
where p, and p; are corresponding representations to y and z. Hence a function f : Fj — F,
is a such g-ary bent function if and only if f is ‘generalized bent function’.
For integer ¢ > 2, take primitive complex root of unity & = ¢*™/? of degree q. A function
f o Z) = Zg is called generalized Boolean function. The Walsh-Hadamard transform of
function f is complex valued function from Z7 to C as follows:
Wi) = D (=Dl
xeFy
Definition:[4, p.7] (Schmidt,2006) For positive integer g, a function f : ZJ — Z, is called a
. . . _ 7 2
generalized (Boolean) bent function if |[Wy(y)| = 22 for every y € Z;.
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2 ifx=(1,1)
Example: Let n = 2 and ¢ = 4 and f((x1, x2)) = . Then
0 otherwise

W£((0,0)) = Xy, ,xz)ezg(—1)<(0’0)’(x1’x2)>iﬂx1’x2) = Z(XIM)GZ% ifx) — o

W((0,1)) = Z(xl,xz)ezg(—1)<(O’1)’(x]’x2)>if(x]’x2) - Z(xl,xz)ezg(—l)xziﬂxl’xZ) -9

We((1,0)) = Z(x]7x2)€Z§(_1)<(1,0),(X1,x2)>l'f(X1,Xz) = Z(xl,xz)EZ%(_l)XI i) Z 9

We((1,1)) = Z(xl,xz)ezg(_1)<(1’1)’(x1’x2)>if(xl’x2) = Z(xl,xQ)ezg(_1)x1+x2if(xl’x2) -

Thus f is generalized (Boolean) bent function. On the otherhand; f is not a ‘generalized bent

function’, because:
Dy =1{((0,0),0), ((0, 1),0),((1,0),0), ((1, 1), 2)}

Let p = p; ® pp where character of p; is (1,—1,1,—1) and character of p; is (1,—1,1,-1).
Then

tr(p(Dy)) = 0
Thus [|o(Dy)l| = |o(Dg)l = 0 # 42 Hence f is not a ‘generalized bent function’.

Take a finite group (K, +) of order n, the maximal order of whose elements equal to g. Denote

the group of degree g roots of unity by
Uy =17 k=0,1,..,q-1)

and the group homomorphism y : K — Uy, by K, which is the character group of K.

The Fourier transform of a complex valued function f : K — C as

o= Fx@)
xeK
where y, is the corresponding character of y.
Definition: [4, p.8] (Logachev,Sal’nikov, and Yashchenko, 1997 ) Take a finite abelian group
K of order n. A function as f : K — S(C) is called a bent function if | f(y)l2 = n for every

yeK.

Theorem: [4, p.9] A function f : K — §1(C) is a bent function if and only if f(x)f(x +y) is

balanced for every y € K\{0}.
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Proof: Suppose f(x)f(x + y) is balanced for every y € K\{0}.

forr=> f(a»M(Z f(b)M)

ack beK

= > f@ ) Fbw, (b - a)

ack beK
= ) fl@ ) Fle+ax (o
aekK ceK
= > 0@ F@f(c+a)
cek cek
= x,(0) F@f(@
ackK
= Z 1
ackK
=n

Now suppose f is bent.

n=1fOF = ) 00 f@f(c+a)

ceK ceK
= > (@A)
cek

for all y € K where Ag(c) = 3 .k f(a)f(c + a). Ordering elements of K as ko, ..., k,—1 with

ko = 0, we have

| T 1 A0) n
Lotk - xalke) || Aglh) | [
I xeo k) xe (k) )\Ap(kp-1)) 0

Let H denote the n X n matrix in above. The using the orthogonality relation of characters, we
have

—T n

H H=q4"I,.
Multiplying both side with ET, we have

q'-1

Ak = > xi k)

i=0

for j€{0,..,n—1}. Fork; # 0

qn_l

q'-1
D ) = > xag (k) =0
i=0 i=0
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Thus As(k;) = O for all k; # 0. Hence Y x f(x)f(x +y) = O for all y € K\{0}; that is,
mf(x + y) is balanced for every y € K\{0}.

Take another group N, and take a function f : K — N. The Fourier transform of the characters

of f for z € N to function

£0) =) nFNa()

xeK

y € K where 7, is corresponding character of z € N.

Definition: (Solodovnikov,2002) [4, p.10]A function f : K — N is called bent function if
|fz(y)|2 =nforevery z € N\{O}and y € K.

Theorem: [4, p.10]A function f : K — N is bent function if and only if f(x +y) — f(x) is

uniformly distributed.

Proof:

O (Z m(f(a))%)(z m(f(b»m)

ack beK

= > n:(f@) ) nFBxyb - @)

ack bek

= > n:(f@) Y n(fla+ opyle)
ack cek

= > 0(©) ) nfl@ - fla+ o))
ceK ack

Suppose f(x + y) — f(x) is uniformly distributed on N for all y € K\{0}
O = x,0) Y e f(@) - f(@) = n
acek

Thus f is bent.

Now suppose f is bent. Say

Af,0) = Y nfla+c) - fa)

ack

Then

n=1£0P = ) x(OAL(f0)

cek

for c € K. We need to show A,(f,c) = O for all ¢ € K\{0}. We have n equations with n
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unknows. Ordering elements of K as ky, ..., k,—1 with kg = 0, we have

| TS 1 A0 | (n
Lotk - xalke) || Adfk) | e
I X (k1) o X (k1) JANA(S knm1) n

Let H denote the n X n matrix in above. The using the orthogonality relation of characters, we
have

H H =4,
Multiplying both side with ET, we have

q'-1

ARk = D X =0
i=0

for all y € K\{0}. Hence f(x + y) — f(x) = 0 is balanced for every y € K\{0}.

In this case, let f : K — N be a map with K and N abelian groups. Then
Dy = {(a, f(a)) : a € K}

We have |K|.|N| irreducible representation over K X N. Now

£0) =) n @@

ackK

= > Xy @n:f(@)
ack

- Z(Xy_l ®n.)(a, f(a))
ack

= (Xy’l ® Uz)(Dj)

for every z € N\{0} and y € K.Thus this type bent function is also ‘generalized bent function’.
Futhermore, prev,ous theorem shos us:
Theorem: A function f : K — N is a ‘generalized bent function’ if and only if f is perfect

nonlinear.
Example: [2, p.15] Let K = S3and N = C3 and

f:lid, (12),(13),(23),(123),(132)] — [0,0,0,0,1,1]
is a ‘generalized bent function’, but not perfect nonlinear.
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In abelian case we showed that a function is a ‘generalized bent function’ if and only if it is
perfect nonlinear. Now we will show the connection of bent and perfect nonlinear in some
non-abelian cases:

Proposition: [1, p.168] Assume that N < G and ¥ be a character of G/N. Definey : G —» C
by

x(8) = x(Ng) (g€G)

Then y is a character of G and y and y has the same degree.
Proof: Let p : G/N — GL(n,C) be a representation of G/N with character . The function
p : G — GL(n, C) which is given by the composition

g~ Ng — p(Ng)

g € G, is a homomorphism G to GL(n, C). Thus p is a representation of G. The character y(g)

if p satisfies
x(g) = tr(p(g)) = tr(p(Ng)) = ¥(Ng)
for all g € G. Moreover, y(1) = ¥(N), so y and ¥ have the same degree.

Definition: [1, p.173] For a group G, let G’ be the subgroup of G which is generated by all

elements of the form (g, € G)

g 'h™'gh
Then G’ is called the derived subgroup of G. Define [g, h] := g~'h~'gh. Then

G' ={[g.h]:g.h €G)

Proposition: [1, p.174]
DG <G

2)G/G’ is abelian.
Proof:

1) Since ¢ € G’, G’ is nonempty. For all a, b, x € G we have
x! (ab_1 )x = (x_1 ax)(x_1 b~! X)

By using this equality, G’ consists of products of the elements of the form [g, 4] and their
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inverses. Since we have also

x g, hx=x"'g ' h ghx
= (g0 T ) T (g (T

=[x ! gx, X! hx]

for all a, b, x € G. Therefore G’ < G .
2)Let g,h € G. ghg™'h™! € G’ implies gh € Nhg, which implies Ngh = Nhg. Since G’ < G,
(G’'g)(G'h) = G’'gh = G'hg = (G’h)(G’g). Hence G/G’ is abelian.

Proposition: [1, p.173] If y is a linear character of G, then G’ < Kery.

Proof: Let y be a linear character of G. Then y is a homomorphism from G to the multiplica-

tive group of non-zero complex numbers. Therefore, for all g, h € G,

x(g ' h 7 gh) = x () (W) (g (h) = 1
Hence G’ < Kery.

Proposition: [1, p.173] The linear characters of G are precisely the lifts to G of the irreducible
characters of G/G’. In particular, the number of distinct linear characters of G is equal to

|G/G’|, and so divides |G].

Proof: Let m = |G/G’|. Since G/G’ is abelian, it has exactly m irreducible characters, all
of degree 1. So their lifts are also have degree 1. By using ‘Irreducible characters of G/N
(N-normal) correspond to irreducible characters of G which have N in their kernel’, [1, p.169]

these are the all irreducible linear characters of G.

Proposition: [2, p.13] Let f : K — N be a perfect nonlinear function. Then ||p(Df)||2 =
mdimp.
Proof: Let f : K — N be a perfect nonlinear function. Then

DD} = 3" 6(a,b)a,b)
(a,b)eG

= mid, id) + %( > (a.b)- Zb)

(a,b)eG beN

= m(id, id) + %(o ~0)

= m(id, id)
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Then we have
lo(DpII* = trlp(Dy) © p(Dy)*]
= trlp(D;D; )]

= mdimp

Theorem: [2, p.13] Let f : K — N be a function. Assume at least one of K and N is non-
abelian and not equal to its derived subgroup. Then f cannot be both perfect nonlinear and

bent.

Proof: Assume f : K — N be a perfect nonlinear function, then ||,o(Df)||2 = mdimp. Assume

also f is bent, then ||P(Df)||2 e

= TR Thus in order to be f both perfect nonlinear and

bent, we must have

m(n = 1) = (dimp)*|RI(N| - 1)

This equality holds if and only if dimp is the same for every p € G such than PN # Po-
Case I: Suppose that N is non-abelian and not equal to its derived subgroup. Since N is non-
abelian, it has at least one representation of dimension d’ > 1, call it px). Since number of

irreducible linear representation is [N/N’| and since N # N’, there is also at least one non-

(2

principle irreducible linear character of N, call it p”. Take any representation px of K of

degree d. Then we have
: My _ — 1; 2
dim(px ® py,’) =d'd > d = dim(pg ® py’)

Case II: Suppose that K is non-abelian and not equal to its derived subgroup and N is abelian.
K has at least one representation of dimension d > 1, call it p(Ig) .Since number of irreducible
linear representation is |K/K’| and since K # K’, there is also at least one non-principle irre-
ducible linear character of K, call it pg). Since N #id, take any non-principle representation

pn of N. Then we have

dim(©)) ® py) = d > 1 = dim(p'd ® py).
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