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Single Nucleotide Polymorphisms (SNPs) are the most common DNA sequence 

variations where only a single nucleotide (A, T, C, G) in the human genome differs 

between individuals. Besides being the main genetic reason behind individual 

phenotypic differences, SNP variations have the potential to exploit the molecular 

basis of many complex diseases. Association of SNPs subset with diseases and 

analysis of the genotyping data with clinical findings will provide practical and 

affordable methodologies for the prediction of diseases in clinical settings. So, there 

is a need to determine the SNP subsets and patients’ clinical data which is 

informative for the prediction or the diagnosis of the particular diseases. So far, there 

is no established approach for selecting the representative SNP subset and patients’ 
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clinical data, and data mining methodology that is based on finding hidden and key 

patterns over huge databases. This approach have the highest potential for extracting 

the knowledge from genomic datasets and to select the number of SNPs and most 

effective clinical features for diseases that are informative and relevant for clinical 

diagnosis. In this study we have applied one of the widely used data mining 

classification methodology: “decision tree” for associating the SNP Biomarkers and 

clinical data with the Alzheimer’s disease (AD), which is the most common form 

of “dementia”. Different tree construction parameters have been compared for the 

optimization, and the most efficient and accurate tree for predicting the AD is 

presented. 

 

Keywords: Data Mining, Single Nucleotide Polymorphism, Integrating Genotype 

and Phenotype Data, Decision Tree, Alzheimer’s Disease 
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ÖZ 

 

 

 

ALZHEIMER (AD) HASTALIĞININ VERİ MADENCİLİĞİ SINIFLANDIRMA 

YAKLAŞIMLARI KULLANARAK SNP BİYOLOJİK GÖSTERGELERİ VE 

KLİNİK VERİLERLE KARAR DESTEK SİSTEMLERİNE DAYALI TAHMİN 

EDİLMESİ 

 

 

 

Erdoğan, Onur 

Yüksek Lisans, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Yeşim Aydın Son 

 

 

 

Eylül 2012, 152 sayfa 

 

 

 

Tek Nükleotit Polimorfizmi (SNP), insan genomundaki tek nükleotitin (A, T, C, G) 

bireyler arasında değişiklik gösterdiği en yaygın DNA dizisi çeşitliliğidir. SNPler, 

bireysel fenotipik farklılıkların arkasındaki temel genetik neden olmak dışında birçok 

kompleks hastalıklarında altında yatan sebep olabilir. Tek nükleotit değişimlerinin 

hastalıkla ilişkilendirilmesi ve klinik bulgularla birlikte bireylerin genotip verilerinin 

analizi, klinik açıdan hastalığın tahmin edilmesi için ekonomik ve pratik bir 

metodoloji sağlayacaktır. Bu yüzden, belirli bir hastalığın tespiti veya tahmin 

edilebilmesi için bilgi verici bir SNP kümesinin ve klinik verilerin belirlenmesi 

gerekir. Şimdiye kadar, klinik verilerle temsilci bir SNP kümesinin seçilmesi ve çok 
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büyük veri tabanlarından gizli ve anahtar örüntülerin bulunması temeline dayanan 

veri madenciliği metodolojisi için yerleşik bir yaklaşım bulunmamaktadır. Bu 

yaklaşım genom veri setlerinde bilgi keşfi için ve ayrıca klinik teşhislerde hastalıkla 

alakalı bilgi verici SNP sayısını ve klinik özellikleri seçmek için en yüksek 

potansiyele sahiptir. Bu çalışmada, bunamanın en yaygın hali olan Alzheimer (AD) 

hastalığı ile SNP biyolojik göstergeleri ve klinik verileri ilişkilendirmek için, 

yaygınca kullanılan veri madenciliği sınıflandırma yöntemlerinden “karar ağacı” 

metodolojisi uygulanmıştır. Farklı karar ağacı oluşturma parametreleri, ağacı en 

optimal duruma getirmek üzere karşılaştırılmıştır ve Alzheimer (AD) hastalığını 

doğru tahmin eden karar ağacı sunulmuştur. 

 

Anahtar Kelimeler: Veri Madenciliği, Tek Nükleotid Polimorfizmi, Genotip ve 

Fenotip Verilerin Birleştirilmesi, Karar Ağacı, Alzheimer Hastalığı 
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PREFACE 

 

 

 

SNPs are DNA sequence variations that are distributed throughout the whole 

genome. Many SNPs are associated with susceptibility to complex diseases such as 

diabetes, heart diseases, joint illnesses, schizophrenia, or Alzheimer's disease (AD). 

Single altered genes are the molecular basis of only a small portion of diseases. Most 

chronic diseases are multifactorial, and might be explained by combined effects of 

SNPs on different genomic locations. Hence, identification of both statistically and 

biologically important SNPs associated with different conditions can provide 

decision making opportunity based on genotypic feature of an individual and aids the 

prevention, prediction and diagnosis of the condition. The main purpose of this study 

is to construct a decision tree based on the most informative and representative 

selected SNPs and clinical data records of individuals with Alzheimer's disease for 

supporting the clinical diagnosis. 
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CHAPTER 1 

CHAPTER 

 

1.  INTRODUCTION 

 

 

 

Data mining is an analytic process designed to explore patterns and relationships 

between variables, to extract hidden and unknown knowledge over large amount of 

data. The findings may then be validated by applying the discovered patterns or 

relations to the subsets of related data. In the last decades, developments of data 

mining methods have become a promising approach in bioinformatics in order to 

solve biological problems [1]. Advancements in technology and acceleration in the 

number of research in the field of genomics have resulted in accumulation of great 

amount of data. In order to analyze and obtain results from these data, artificial 

intelligent and computational analysis is an essential.  

 

Analyzing the biological data sets requires understanding the data by deducing 

structure of data fields. Statistical modeling for the prediction of a particular disease 

based on microarray data or case associated SNPs set selection can be given as 

examples of analyzing the genomic data. Such applications present the great 

potential and the necessity of the interplay between data mining and bioinformatics 

[2]. 

 

Data mining methodology is applied to data sets for two purposes. The main aim is 

the classification of the data, and clustering of the data based on the similarities or 

differences. Before using any of the data mining modeling algorithms, preprocessing 

is needed for the preparation of the data for further analysis. Preprocessing involves 

data cleaning, data integration, data transformation and data subset selection which is 

also called dimension reduction. In order to handle preprocessing steps and then 
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extracting novel, interesting and useful information by using preprocessed data, 

advanced computational and statistical methods are used. The final step is the 

visualization and representation of findings. It has been recently shown that data 

mining tools are extremely useful for the analysis of high dimensional data such as 

whole human genome data, which comprises around 3.4 billion base pairs [1]. 

 

In human DNA, where 99,9% of base pairs are the same, a small percentage less than 

0,1% varies between individuals. So, once every 100 to 300 nucleotides may differ 

from one to another in human genome. These signatures are defined as “Single 

Nucleotide Polymorphisms (SNPs)”. In other words, SNPs are single nucleotide 

alterations in genomic DNA and cause personal differences in phenotypes such as 

psychological and physical characteristics. SNPs can change the structure of a 

protein, its regulation or expression, which alters normal biological processes. SNPs 

can be used as genomic markers revealing individuals susceptibility to certain 

disease to produce new approaches for treatment applications and to take prohibitive 

precaution. SNP association studies are widely done to determine possible relations 

between genetic variations and diseases. Such studies aim to reveal individual SNPs 

that have interaction with particular diseases.  

 

Outputs of mining methods in genetic studies have revealed interesting findings 

inheritable tendency to contract specific diseases [3]. One of these heritable diseases 

under analysis due to genetic markers or clinical data is Alzheimer’s disease (AD), 

which is a complex and genetic disorder. It has been discussed that AD is appeared at 

early ages if it is mainly based on genetic factors, on the other hand it has not known 

yet whether disease is occurred due to genetic factors or not at elderly people over 60 

years of age [4]. Diagnosis of AD in this late-onset group especially presents a 

challenge as early clinical findings are often undistinguishable from dementia. 

 

In this study in order to produce rules for the diagnosis of late-onset AD patients 

based on genotype and clinical information, we have applied decision tree algorithms 

after the prioritization of the genome-wide association study results, expecting to 

increase the accuracy rate of classification.  
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CHAPTER 2 

 

 

2.  BIOLOGICAL and COMPUTATIONAL BACKGROUND 

INFORMATION 

 

 

BIOLOGICAL BACKGROUND 

 

 

 

2.1 Human Genome: Individual Identity 

 

Human genome can be denominated as one’s significant and individual identities. It 

is the complete set of DNA (deoxyribo nucleic acid) of a living being. It carries the 

information needed for biological functionalities. It is made of chemical molecules 

which is called nucleotides, structured in pairs. A nucleotide is composed of a 

nucleobase {purine bases: A, G or pyrimidine bases: C, T}, a five-carbon sugar and 

phosphate groups. Figure 2.1 shows the structure of nucleobases. 

 

 

Figure 2.1 Structures[5] of DNA Bases: A, C, G, T. 
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DNA is comprised of two long polymers of lined up nucleotides with backbone made 

of sugar and phosphate groups. Nucleotides are told as two types of nucleo-bases: 

purines (Adenine (A), Guanine (G)) and pyrimidines (Cytosine(C), Thymine (T)). 

RNA (ribonucleic acid) uses uracil instead of thymine. 

 

Since there are hydrogen bonds between each base, each base is linked to a 

companion base on the other chain. This pairing is specific; adenine pairs with 

thymine, and guanine with cytosine, which gives the “the double helix” structure to 

the DNA. Figure 2.2 visualizes the formation of double helix structure of DNA. 

 

 

Figure 2.2 Construction of Double Helix Structure [6] of DNA  

 

Approximately 3.2 billon base pairs in human genome scattered into 23 pairs of 

chromosomes. The order of the nucleotides in the DNA sequence is important as the 

biological information is carried in this manner. The information carried by DNA is 

kept in the sequence of blocks which are called genes. These genes encode specific 

proteins for maintaining the human life and conducting cellular activities. Protein 
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coding region in a human genome is only around 2% of a human genome, and rest 

are called non-coding region and has no function assigned so far. Recent studies 

collected under the ENCODE Project have assigned biological, structural or 

regulatory function to the 80% of the whole genome, and other studies are still in 

process to better understand the functional elements in the genomic sequences and 

the interactions between these elements regulating the genomic functions [7], [8]. 

 

2.2 Transcription and Translation 

 

The transcription of DNA into RNA is first described by US biologist Phillip 

Sharp and British biologist Richard Roberts in 1977. Both discovered that before the 

translation to protein, a mid-product RNA is formed, through which cells make a 

copy of both exonic and intronic sequences of genes, and then the non-coding 

intronic sections that are not translated into protein are removed. Only the exons 

make up the mRNA [9]. By splicing together, different combinations of the exons 

builds altenative transcripts of genes as shown in Figure 2.3. Exons make their DNA 

sequence in a group of words to make protein. By spicing out the introns (nonsense 

words) and combining different groups of exons (words) they may end up with 

alternative protein products. 

 

 

Figure 2.3 RNA Synthesis and Processing for Growing the Protein Chain
1
  

 

                                                 
1
 http://www.purpleopurple.com/inventions-and-inventors/gene-exons-and-introns.html 
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In this aspect, gene expression starts with transcription. Transcription is the progress 

of replication of nucleotide sequence of DNA by RNA polymerase enzyme into 

RNA sequence. The codons of a gene are copied into messenger RNA. This is the 

information transfer from DNA to RNA. Transcription initializes the transformation 

from genetic information to protein sequences. Then the mRNA is used as a template 

to synthetize proteins during the translation stage of the gene expression process. 

Based on the genetic code carried by messenger RNA, polypeptides and chain of 

amino acids are produced in ribosomes. Infrastructure for the protein synthesis is 

shown in Figure 2.4. 

 

 

Figure 2.4 Transcription and Translation Diagram: Growing the Protein Chain
2
 

 

Proteins are the informational macromolecules of a cell. Every protein is build up 

from multiple polypeptides chains formed during the translation process where each 

three nucleotides (e.g. TTT, CAG), also known as a “codon” is translated into one 

amino acid based on the genetic code. 

 

Since each codon consists of 3 letters (e.g. ACC), there are 64 possible codon 

combinations. These combinations encode 20 standard amino acids in human cells. 

There are 64 possible codons but there are only 20 amino acids.  

                                                 
2
 http://nnhsbiology.pbworks.com/f/1280666569/transcription%20translation%20diagram.png 
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The AUG codes Methionine which is one of the amino acid. AUG, also known as the 

start codon, initiates the progress of protein building. There are also three stop 

codons that end progress; these are UAG, UGA, and UAA codons (Table 2.1). They 

act as a signal to terminate the transcription of DNA into RNA. 

 

Table 2.1 mRNA Codon / Amino Acid Chart [10] 

 

 

Based on the DNA sequence changes, biological functions may change. When the 

order of sequence alters, consequently different kind of amino acids come together 

and variation occurs. As a result, serious malfunctioning of a protein may occur. So, 

mutations on DNA sequence or single nucleotide polymorphisms in coding regions 

(critical location) has the potential to make significant changes in the shape or 

functionality of produced proteins. 
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2.3 Genetic Variation 

 

Human genome approximately consists of 3,2 billion nucleotides where 99,9% of 

genome is similar for every individual [11]. Only 0,1% of the genome sequence is 

responsible for the differences between people that can be observed at every 300 to 

1000 bases [12]. These variations in genome may be the results of repetitive 

elements, mutations or single nucleotide polymorphisms, which are covered in the 

following sections. 

 

Variations in the sequence of a gene affect the protein production and directly the 

trait for the biological process. Physical traits are characteristics and physical 

makeup of someone such as hair color, eye color, skin color, height, weight as well 

as the common chronic conditions such as heart disease, diabetes, and cancer. 

Behavioral traits are characteristics of how ones personality and psychological status 

[13]. The genotype of an individual, which is defined by the variations it carries, can 

identify these phenotypic characteristics (physical or behavioral) of that individual, 

such as appearance or susceptibility to diseases.  

 

Genotyping analysis, in order to obtain genetic variation data of individuals, can be 

studied by microarray or advanced sequencing technologies. These new emerging 

technologies with lower cost and high throughput results allows clinical researcher to 

design and analyze large case-control data sets where genetic variations thousands of 

individuals can be studied. These studies aims to define genetic basis of individual’s 

risk of developing multifactorial complex hereditary disorders, such as cancer, heart 

disease, diabetes as well as determining some genetic disorders such as Alzheimer’s 

Disease, Rheumatoid Arthritis [12]. 

 

2.4 Mutations 

 

A mutation is any hereditary change in the sequence of DNA. This alteration in the 

order of nucleotides may affect the phenotype or traits of the individual. This may 

occur inherently or by outside influences with a DNA damaging agent such as X-
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rays, ultraviolet light or toxic chemicals [14]. 

 

Mutations can occur at the level of chromosome due to insertion or deletion or they 

can be detected as as point mutations. 

 

2.4.1 Point Mutations 

 

There are many types of point mutations such as transition, transvertion, silent, 

neutral, missense and nonsense. The results of mutation of base alteration in the 

region where a gene encodes a protein distinguish based on the place of gene or the 

new base that makes changes [15]. 

 

If the new base which causes the mutation does not bring a new amino acid to the 

protein sequence, it is called “silent mutation”. For example, think two codons 

contain letters of GCA and GCG. These two codons encode “arginine” in messenger 

RNA. So, alteration in the third base, G instead of A, does not affect the protein 

synthesis. But in some cases it may still have a phenotypic effect by speeding up or 

slowing down protein synthesis, or by affecting splicing. Silent mutation can be 

shown as follows. 

 

Silent Mutation: 

Individual 1 

5 T C T C A A A A A T T T A C G 3 

3 A G A G T T T T T A A A T G C 5 

  
Ser Gln Lys Phe Thr 

 

                  

                  

Individual 2 

5 T C T C A A A A G T T T A C G 3 

3 A G A G T T T T C A A A T G C 5 

  
Ser Gln Lys Phe Thr 

  

In some cases, single base alteration in the sequence may finalize with the production 

of new amino acid to the protein sequence. If the new amino acid has the similar 

chemical features with the previous one, this is identified as “neutral mutation”. 
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Neutral Mutation: 

Individual 1 

5 T C T C A A A A A T T T A G G 3 

3 A G A G T T T T T A A A T C C 5 

  
Ser Gln Lys Phe Thr 

 

                  

Individual 2 

5 T C T C A A A G A T T T A G G 3 

3 A G A G T T T C T A A A T C C 5 

  
Ser Gln Arg Phe Thr 

  

When a base alteration occurs and a different type of amino acid is linked up to the 

protein sequence which must not be linked up in fact, this brings out different protein 

with different functionality depending on whether the change is “conservative” or 

“nonconservative”. 

 

This type of mutation is called “missense mutation”. For example, CTC code in 

DNA, which refers to GAG in RNA, expresses the “glutamate” remnant in the 

structure of protein. If a change occurs in DNA such as CAC which corresponds to 

GUG in RNA, this expresses the “valine” remnant in betaglobulin protein. Finally, 

this type of mutation causes sickle cell anemia. 

 

Base alteration in the region where a gene encodes a protein sometimes makes amino 

acid codon turn into a STOP codon, resulting in premature termination of translation. 

 

In this case, with the stop codon which comes too early, a short sequence of amino 

acids forms the protein. This type of mutation is called “nonsense mutation “as 

shown in figure below. The effects of nonsense mutations change according to how 

much a protein is curtailed and how much protein is needed for the functionality. 
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Nonsense Mutation: 

Individual 1 

5 T C T C A A A A A T T T A C G 3 

3 A G A G T T T T T A A A T G C 5 

  
Ser Gln Lys Phe Thr 

 

                  

Individual 2 

5 T C T C A A T A A T T T A C G 3 

3 A G A G T T A T T A A A T G C 5 

  
Ser Gln Stop 

    

 

2.4.2 Frameshift Mutations (Insertion or Deletion Mutations) 

 

This type of mutation occurs when a new base is inserted to or removed from a gene 

that encodes a protein. This alteration influences the reading of triplet messenger 

RNA during protein synthesis. 

 

2.4.2.1 Insertion 

 

A new nucleotide is inserted in the gene and the order of the sequence may change. 

This might introduce premature STOP codons or amino acid changes, as in the an 

example sequence below, visualizing the effect of inserting a new base [15].  

 

Insertion: 

Individual 1 

3 C T G C T G C T G C T G 
 

3 

5 G A C G A C G A C G A C 
 

5 

  
Leu Leu Leu Leu 

  
                

Individual 2 

3 C T G C A T G C T G C T G 3 

5 G A C G T A C G A C G A C 5 

  
Leu His Ala Ala 

   

This mutation downstreams the sequence of amino acid and produces very different 

type of protein which is also nonfunctional. On the other hand, with the premature 

stop codon reading, a curtailed protein may occur. 
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2.4.2.2 Deletion 

 

The order of the sequence can change when a single nucleotide is deleted from the 

genomic sequence of a gene. In this case, a new combination mRNA is translated 

and the protein being produced may be useless or have premature STOP.  

 

Deletion: 

Individual 1 

5 C T G C A G A C T T T T A G T G G A 3 

3 G A C G T C T G A A A A T C A C C T 5 

  
Leu Glu Thr Phe Ser Gly 

 

                     

Individual 2 

5 C T G A G A C T T T T A G T G G A . 3 

3 G A C T C T G A A A A T C A C C T 
 

5 

  
Leu Arg Leu Leu Val   

  

 

The figure above shows an example of a frameshift deletion mutation: In the second 

codon the deletion of 'c' causes a shift in reading frame and multiple amino acid 

substitutions in the subsequent protein. 

 

2.5 Single Nucleotide Polymorphism (SNP) 

 

Genomic variations are called polymorphism if observed in a population at a rate 

more than 1%. The most common type of polymorphisms is single nucleotide 

polymorphism (SNP, as pronounced “snip”), which can be described as the 

substitution of a single nucleotide with another one at a homologous site in a 

population [16]. SNPs are abundant and highly distributed within the individual’s 

genome [11]. The nucleotide position where a SNP positions is called an allele. The 

allele whose occurrence in the population is less frequent, so which is not dominant 

is called the minor allele. The proportion of minor allele to whole is called minor 

allele frequency [17]. SNP with the minor allele frequency greater than 1% can be 

identified at every 300 to 1000 base pair in human genome. As a result, total amount 

of SNP in genome can be estimated as 30 million SNPs [18]. 
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Traditional analysis methods for determining disease-related genes and loci are not 

implementable for these multifactorial complex diseases. These common diseases 

may be caused by multiple genes and multiple nongenetic factors (environmental 

factors) at the same time [11]. In this aspect defining SNPs and mapping them is 

extremely important in terms of associating genotypes with presence of complex 

diseases and tendency to a diseases such as high blood pressure, diabetes or heart 

disease. Large amount of SNPs identified in human genome provides an opportunity 

to link genetic variations to phenotypic variations by association studies. In a such 

study, minor allele frequencies are calculated for both case and control groups, so 

results are compared [16]. By the help of this technique, genetic markers differs 

significantly among groups can be identified. So far, many SNPs are associated with 

both individual phenotypes, susceptibility to particular complex diseases and 

individual’s response to certain medicine as a result of genome wide association 

studies [11]. However, although some studies have revealed genetic associations 

between one or more SNPs and a complex disease, some of them have been found 

hard to replicate [19]. 

 

2.6 Alzheimer’s Disease (AD) 

 

Alzheimer’s disease (AD) is a slow progressing complex mental disorder and it is 

one of the heritable fatal diseases. AD causes loss of intellectual abilities such as 

memory and the mental break down, especially in elderly. It is firstly recognized by a 

German physician Dr. Alois Alzheimer. Dr. Alzheimer identified a mass of brain cell 

abnormalities as a disease during the autopsy soon after one of his patient died. 

Dense twisted bands of fibers (tangles) were observed surrounding nerve cells inside 

the brain [20].  

 

As AD progresses the two abnormal protein fragments called plaques and tangles 

accumulates, killing the brain cells which directly affects the daily life of humans. 

AD starts at the hippocampus region where memories are first formed. Over many 

years, the plaques and tangles destroy the hippocampus slowly and making forming 

new memories harder. As disease progresses the plaques and tangles accumulates at 
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the different regions of brain compromising other functions. The level of AD as 

visualized in Figure 2.5 depends on how widely tangles and plaques are spread. From 

the hippocampus, tangles and plaques spread to the region where language functions 

are managed. This causes in humans to find right words while talking. When the 

frontal lope of the brain is affected where logical thinking is controlled, the ability to 

solve problems is compromised. Next, patients may lose their emotions, causing to 

lose control and feelings at the same time. Later, AD patients’ lose their senses, 

hearing, sight and smelling function gets weak as the plaques spread to the regions 

controlling these areas. Finally, tangles and plaques move to the back side of brain, 

which is the hardest level of AD for patients and caregivers. Consequently, AD 

compromises the person’s balance and coordination and in the very last stage, it 

destroys the part of brain that regulate breathe and heart functions. 

 

AD affects 10% of the people over 65 years old and approximately 50% of those 

over the age 85 [21]. AD seen at early ages mainly has genetic basis. However it is 

still debated how much inherited genetic factors play roles for the elderly people 

(age>60) with AD [4], as distinguishing AD from dementia becomes very 

challenging as both shows similar symptoms like memory loss and there is no 

laboratory or imaging analysis that can diagnose AD at its early stages. Only after 

further mental impairments develop in later stages of the AD patients can be 

identified. 
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Figure 2.5 Levels of Alzheimer’s Disease 

 

Although there are many ongoing studies with promising results, which provides 

important information about the disease, what fully causes onset of the AD, the 

precursors and underlying etiology of the disease is still not known. Few genes and 

loci are identified that play a significant role in revelation and the development of 

AD [22]. Currently there is neither a definite method for the diagnosis of the disease 

nor treatment or cure for AD once it is developed. Association of SNP genotypes 

with AD can enlighten us about the molecular and genetic etiology of the disease and 

might offer a genomic based diagnosis technique for the differential diagnosis.  

 

2.7 The Genetics of Alzheimer’s Disease  

 

So far, there are 4 locuses found which are related to the etiology of AD. These are 

amyloid precursor protein (APP) in chromosome 21., presenilin1 (PS1) gene in 

chromosome 14., presenilin2 (PS2) gene in chromosome 1. and APOE locus in 

chromosome 19. [4]. 
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Also, scientists have studied with single-nucleotide polymorphisms (SNPs) to 

identify other genomic regions of DNA where changes have existed. Most SNPs 

don't actually have direct influences on Alzheimer’s disease. But some may cause 

significant situation in terms of AD. In this case, person's tendency of developing 

Alzheimer's disease depends on the nucleotide order variation within coding genes. 

 

Some studies have shown the associations of SNPs with Alzheimer Disease. The lists 

of SNPs related to AD and their chromosomal distribution related to AD are given in 

the Appendix A. 

 

2.8 Genome Wide Association Studies (GWAS) 

 

SNPs are common genetic variations and currently they offer a high potential to 

associate genomic information of individuals with their risks and susceptibilities to 

multifactorial chronic diseases[17]. These genetic variations may change the protein 

functionality or regulation of genes; as a result complex diseases develop. 

Determining the polymorphisms provides both prediction and diagnosing for the 

complex diseases and can reveal how individual patients will react to different drug 

therapies by comparing the case and control groups [17]. 

 

In literature, there are two types of approaches exist for identifying the disease 

responsible genetic variants. 

1. Candidate gene based approach 

2. Non-candidate gene based approach (GWAS) 

 

In genetic epidemiology, analyzing the DNA sequences is an investigation of many 

common genetic variations in different individuals for seeing whether any of these 

nucleotide variations is associated with a disease. This examination is called genome 

wide association study (GWAS). GWAS finds correlation between SNPs and a 

disease by comparing the DNA of two groups of individuals: people with disease 

(cases) and similar people (region, nationality etc.) without disease (controls) for the 

entire genome as visualized in Figure 2.6. Millions of SNP variations can be 
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analyzed in one study with today's high throughput genotyping array or whole 

genome sequencing technologies and regions which are altered more frequently in 

case group in contrast to the controls can be associated with the condition through 

GWAS.  

 

In a GWAS, studies are implemented in 5 steps. 

1. Large number of case/control groups' genotype data is read from SNPs chips. 

2. Data is controlled for quality of analyze by terms of observed missing values. 

3. Statistical methods are applied to data comparing cases and controls. 

4. Associations based on statistical tests are identified. 

5. Mapping and biological interpretation is required. 

 

 

Figure 2.6 Implementation of Genome Wide Association Studies  

 

2.9 SNP Prioritization 

 

In genetic studies such as determining the SNPs causing to a particular disease, the 

main goal is the identification of significant nucleotide variants within the hundreds 

of thousands SNPs across control and case groups. GWAS, in this point, tests SNPs 

statistically but there can be enormous number of correlated SNPs available, where 
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some of these correlations are false associations. This means that not all the 

correlations detected at the common threshold of significant level (e.g. p=0,001) are 

biologically significant. Therefore, focusing on the statistical significance alone is 

not a valid approach as at the end of correlation analyses tens of thousands of SNP 

markers can be identified as significant. 

 

In order to pick the right subset of SNPs for validation or apply further analysis on 

the association data and to develop diagnostics based on the SNP genotyping, the 

number of associated SNPs should be reduced to a manageable number. Hence, soon 

after GWAS a SNP prioritization step is included for selecting a subset based on both 

statistical and biological importance of SNPs responsible for the disease [17]. 

 

Prioritization of SNPs is ranking of the SNPs which have the highest potential to 

effect functions of genes biologically. In addition to statistical correlation findings, 

use of biological information such as functional effects of SNPs is used to prioritize 

SNPs and to form a base for selecting a subset of SNPs. There are many software 

tools than can prioritize SNPs after GWAS using and combining statistical 

information with biological data. Best known systems are SPOT and SNPLogic. The 

Analytic Hierarchy Process (AHP) Scoring system is based on statistical significance 

of associations (p-value) and biological importance of SNPs [17] for prioritization. 

This approach is recently proposed by our group [17] and implemented in the 

METU-SNP software. In this study, we have used AHP Scoring for the prioritization 

of SNPs of the GENADA data. 

 

METU-SNP allows researchers to calculate AHP score, which is based on the 

structured prioritization of statistically significant SNPs after GWAS, following the 

hierarchy tree to reveal "functionally and biologically important SNPs associated 

with the condition". Detailed information about tree structure involving integrated 

pathways, functional effects, disease annotation data and statistical information can 

be reached in [17]. AHP scored prioritization scheme also provides SNP to gene, 

gene to disease and gene to biological pathway integration as it integrates the needed 

information from primary public databases [17].  
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COMPUTATIONAL BACKGROUND INFORMATION 

 

 

 

2.10 Data Mining 

 

In the last two decades, biomedical researches and biotechnology have been started 

to study widely because of the explosive increase of biological data [23]. On the 

other hand, fast and efficient progress in using data mining methodology has become 

a new approach to analyze high dimensional of genetic or biologic data for mining 

the novel and interesting patterns in large datasets by applying advanced 

classification or clustering methods [23].  

 

Human genetics has been studied for many years by using biochemistry, biostatistics, 

epidemiology, molecular biology, physiology and other disciplines to identify the 

relationship between DNA sequence information and measures of human health. In 

comparison to the past, it is now possible to find DNA sequence variations and 

analyze them with the help of emerging technology and techniques [24].  

 

Today, the focus of statistical analysis of high throughput data have shifted towards 

computer sciences that provides intelligent solutions or machine learning for mining 

patterns of genetic variations that are associated with susceptibility to common 

human diseases. Significant predictors of a disease sometimes identified by the 

combination of SNPs or environmental factors that causes changes in the order of 

nucleotides. Beyond these, clinical factors are also able to be considered as 

significant predictors in terms of genetic diseases. Under these conditions, the 

learning algorithm is searching a genetic needle in a genomic and clinical haystack 

[24]. 

 

 



 

20 

Models implemented in data mining can be studied under two main headings, 

predictive models and descriptive models [25]. Predictive models are used to predict 

the class of a data whose class label is unknown using a model formed by the 

historical data that have already class labels. On the other hand, clustering models 

define patterns that can be guided in decision making by exploring similarities and 

dissimilarities in dataset. 

 

A classification is data analysis method which can predict the categorical class labels 

or future data tendency. There are kinds of techniques which are used in 

classification. These can be counted as Decision Trees, Artificial Neural Networks, 

Genetic Algorithms and Naive Bayesian Classification methods. 

 

Using classification methods, a new data whose class label is unknown can be 

predicted. In this scope, alternative examples are as follows; 

 Whether a patient has the risk of cancer or not. 

 Whether a person will stay alive or not after he gets out of intensive care. 

 Whether a person or organization can be given credit or not. 

 

Classification has a wide use in applications in marketing, medical domain such as 

medical diagnosis, and fraud detection. Moreover, this methodology provides us to 

predict the performance of the model which is built up. 

 

In this chapter, one of the most popular data classification methods, decision tree 

methodology will be explained. The construction of tree, significant attribute 

selection measure, performance measure, overfitting condition and finally the 

interpretation of tree structure will be taken in hand. 

 

2.11 Decision Tree 

 

The decision tree is a commonly used and one of the strongest classification methods 

of data mining frequently used in order to generate rules from data. Rules are quite 
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straightforward and clear. Decision tree has branches and it is like as tree structure. 

Tree structure is generally used for prediction by historical data in operations 

research, especially in decision analysis to identify a strategy for attaining an aim. 

Since decision trees describe rules, they are more popular and charming among other 

supervised learning methods such as Neural Networks, Bayesian Networks etc. At 

the same time, because decision trees are cheaper to construct for solving a specific 

problem, easier to interpret by generating rules, easier to be integrated with data base 

systems and have better reliability, they are the widely used techniques among the 

classification models. There are several of algorithms for constructing decision trees 

such as C4.5, ID3 and CHAID.  

 

A decision tree starts with a root node and consists of leaf nodes, branches and 

decision nodes. At first all the data samples (real data
3
) are in root node. Decision 

nodes determine the test to be carried out on a single attribute. At the end of the 

execution of the test tree is departed into branches without losing any data. Process 

of branching in each node is executed consecutively and this operation is dependent 

to upper-level branches. Each executed branch is candidate to complete 

classification. If classification can not be made at the bottom of a branch, a decision 

node exists there. But if any class occurs, there is a leaf bottom of this branch. A leaf 

node indicates the value of the target attributes (class
4
) of examples. 

 

Decision tree classifies a new instances starting from the root node and moving it 

until a leaf node is reached, which is the label of a class.  

 

Classifying the data by using decision tree technique is a two stage operation. First 

stage is the learning stage. At this stage, a training set whose class labels are known 

before is analyzed by the classification algorithms in order to construct a model. 

Trained model is indicated as classification rules or tree structure. The second stage 

is classification. In classification step, testing data is used to define the accuracy rate 

                                                 
3
 Hundreds or thousands of training cases. 

4
 The categories that examples are assigned to. 
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of model. If the accuracy rate is acceptable, rules can be used to classify new data 

whose class label is unknown. 

 

 The accuracy rate of a model which is applied to test data is the proportion of true 

classified data’s to all classes in test data. Observed classes in each sample in test 

data are compared to expected classes which are predicted by the model. If the 

accuracy rate is enough admissible, the model can predict the unknown classes of 

new data using inputs variables (Figure 2.7).  

 

 

 

 

Figure 2.7 Data Mining Methodology General Components 

 

For instance, a model can be constructed by investigating a training data in order to 

predict the class label of a patient whether he is at risk or not with respect to a 

specific disease. A classification rule emerged in this model is; 

 

IF age> “65” AND rs7161889= “A_G” AND rs7166325= “C_G” THEN  

condition_of_patient= “CASE” 

 

In accordance with this rule, people under the research whose age is greater than 65 

and rs7161889 equals to “A_G” and rs7166325 equals to “C_G” have risk in terms 

of Alzheimer’s disease. 

 

Decision tree induction is extensively used in applied fields as diverse as medicine 

(diagnosis), computer science (data structures), botany (classification) categorizing 

various states into high, medium, low risk groups, generating rules for predicting 

future cases and identifying the relationships or associations unique to particular sub 

classes [26]. 

 

Input attributes MODEL 
 

Output (class) attribute 
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Decision trees maybe the most effective way to make decisions for the state of the 

patients in medical sector by utilizing medical observation data in addition to 

demographic features. 

 

2.11.1 ID3 

 

ID3 is a decision tree learning algorithm developed by Ross Quinlan. Using the ID3 

algorithm decision tree is constructed in top-down manner with greedy search by 

testing each attribute at every tree node. A metric called information gain is used for 

selecting the most informative attribute in a given node. Entropy and information 

gain are the important concepts for ID3 algorithm since they are widely used. The 

algorithm constructs the decision tree based on the calculated information gain ratios 

considering each attributes. The highest information gain is chosen as the best split 

criterion [27]. Splitting process is begun to be implemented by choosing the attribute 

whose information gain is the highest. 

 

The ID3 algorithm is used to build a decision tree, given a set of non-categorical 

attributes C1, C2, ..., Cn, the categorical attribute C, and a training set T of records. 

The bottleneck in using ID3 algorithm is that numerical data can not be handled with 

ID3 algorithm. Moreover, missing values must be filled in or cleaned before ID3 

algorithm runs. Considering these deficits, Quinlan extended the domain of ID3 to 

real valued output, such as numerical data, missing valued data. 

 

2.11.2 C4.5 

 

Because ID3 is restricted in dealing with discrete sets of values and missing values, 

C4.5 algorithm is developed by Quinlan. All of the features of ID3 is inherited to 

C4.5 [26], [28]. C4.5 algorithm constructs the prediction model with divide and 

conquer strategy as similar to ID3. 

 

In real world data, data type can be numerical, nominal or ordinal. As mentioned 

above, ID3 is adequate for nominal data. But numerical data brings a new approach 
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to analyze of data. Calculating the information gain can be thought as difficult at first 

sight. However, what is needed to be done is to find a threshold that can separate 

data into groups: according to threshold values. C4.5 algorithm ranks numeric data. 

Let the ranked data indicate as {v1, v2, …, vm}. Assume that the threshold is chosen 

between vi and vi+1. In this case {v1, v2, …, vi} and {vi+1, vi+2, …, vm} are obtained as 

two groups, respectively. Considering this example, someone can identify m-1 

threshold value. For the splitting criterion, threshold can be calculated using the 

given formula: 

 

          
       

 
 

 

With this method, the problem is turned out as if data is split according to a particular 

criterion (smaller than threshold, greater than threshold). Thus, information gain that 

is applied to nominal data structure can also be applied here. Algorithm considers all 

the thresholds and chooses the threshold whose information gain is the highest than 

others. Let e is a threshold with the highest information gain, in this aspect data 

points provide the condition of vi<e and vi>e are divided into two group within the 

decision tree if the attribute’s information gain is the highest. 

 

The other newness in C4.5 is related to handling of missing values. In real-world, 

data can contain missing values due to some several factors. Collection of data may 

be difficult, or while transferring the data into electronic environment mistake may 

be made. Moreover, if the study is related to medical domain, some information may 

not be obtained such as lab results or demographic data. In this case, instead of trying 

to process all the data manually (especially if the amount of missing value rate is too 

high), some new methods is better to add to algorithm. The algorithm firstly detects 

missing values. Secondly, the median or mean value is put instead of missing value. 

However, missing value handling approach is generally gives best results if the 

missing value rate is low in data attribute. Otherwise results and accuracy of the 

model can be affected negatively [26]. 
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2.11.3 CHAID 

 

CHAID is a classification algorithm used to study the relationship between a 

dependent variable and a series of predictor variables. It gets independent variables 

as inputs and determines how variables best combine to address the outcome in a 

dependent variable [29]. 

 

CHAID analysis especially deals with categorized values instead of continuous 

value. However, algorithm can run even with numerical data. For the categorized 

datasets, CHAID analysis is a perfect tool to discover the relationship between 

variables. 

 

For qualitative independent variables, a series of chi-square analyses are 

implemented between the dependent and independent variables. For quantitative 

independent variables, analysis of variance (ANOVA) methods are used. If there are 

differences between the categories of dependent variable splitting conditions are 

determined optimally for the independent variables so as to maximize the ability to 

explain a dependent measure in terms of variance components
5
. 

 

CHAID technique essentially involves automatically constructing many cross-tabs, 

and decides statistical significance of the proportions. The most significant 

relationships are used to construct tree diagram [30]. 

 

2.12 Constructing Decision Tree 

 

Instances in data set are inquired based on relevant features and the rules are 

developed. The object in here is solving the relationships between attributes which 

are assumed independent from each other. In each data set there are hidden and 

useful rules and these rules are revealed for decision making while constructing a 

decision tree. 

 

                                                 
5
 http://www.themeasurementgroup.com/definitions/chaid.htm 
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The most considerable step in setting-up a decision tree is which question will be 

asked respectively. Decision tree is constructed by being interrogated with the 

question that has the most powerful feature recursively. For splitting data, 

information gain or gain ratio of each feature is clarified by entropy calculation. 

Calculating information gain for categorical data type is partially easier than 

calculating for numeric data type. In decision trees, decisions are made in leaf nodes 

and some appropriate conditions are expected to occur attaining the leaves. When 

there are no questions to be asked, this means sub groups are almost pure. In other 

words, all the instances after splitting the data belong to the same class. 

Consequently, particular conditions are obtained and leaf is appeared there. The 

related label information is given to the leaf node. 

 

2.13 Divide and Conquer 

 

There are different types of decision tree construction methods. The most important 

criteria while building a tree is to be ensured about having enough and reliable data. 

The crucial point is the implementation of “divide and conquer” step. Divide and 

conquer is the method that Hunt used [26], [31]. Figure 2.8 expresses the basic tree 

structure construction algorithm by Hunt. Despite that Hunt used this algorithm for 

decision making purposes, some improvements have been done. 

 

The most important ones are ID3 (Iterative Dichotomiser) which is the enhancement 

of Quinlan during the late 1970s and early 1980s, C4.5 (a successor of ID3) which is 

the second development of Quinlan subsequently. Another algorithm is called CART 

which is the generation of binary decision trees (classification and regression tree) 

developed by a group of statisticians Breiman, Freidman, R. Olshen and C. Stone in 

1984 [26], [32]. 
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Figure 2.8 Decision Tree Construction Method of Hunt  

 

Input:  

D
6
 means data partition which is a set of training rows with their class labels. 

Attribute list
7
, the set of independent attributes, also called candidate attributes. 

Attribute selection method
8
 is a procedure to identify best splitting criterion data into 

individual classes. 

 

Output:  

A decision tree with final decision nodes. 

 

 

                                                 
6
 D is data partiton. It refers to complete training set tuples and their class labels.  

7
  Attribute list is a whole list that contains the the name of all independent attributes. Attributes are 

the variables that change from tuple to tuple. 
8
 Attribute selection method defines  heuristic splitting criteria. The choosen procedure discriminates 

the tuples and justifies that it builds a tree structure more accurate and better than other ones. The 

procedure employes a measure of attribute selection such as information gain, gini index or gain ratio. 
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The given chart above shows the Hunt’s method while constructing the tree in a 

recursive approach. But the most significant case here is selecting of attributes. If the 

attributes are not randomly selected, the tree will be straightforward and clear to 

interpret as well as its accuracy will be more crucial and certain. In this case, some 

enhancements and modifications provided a better tree construction. 

 

2.14 Measures for Attribute Selection 

 

In data mining applications, generally attribute selection measures appear as a 

heuristic approach for determining the splitting criterion which “best” separates a 

data whose class labels are known into individual homogenous classes [32]. 

Measures result in choosing the criterion among the list of independent attributes that 

are considered the most relevant to dependent variable [33]. As mentioned, all the 

classes, which are occurred after the splitting criterion are ideally supposed to be 

pure where tuples are distributes less randomly. This means, all the data samples 

which fall into a given partition belong to the same class. 

 

Since attribute selection measures establish how the data are to be split into pure sub 

classes, they are also called as splitting rules. These measures are calculated for each 

attribute in a test node and ranked. The attribute whose calculated score is the best is 

chosen as a splitting attribute [32]. 

 

The most popular measures for attribute selection in constructing decision tree are 

information gain, gain ratio and gini index.  

 

2.14.1 Entropy 

 

The most important step while constructing decision tree using ID3 or C4.5 is to 

choose the significant splitting attribute. The splitting attribute is determined 

calculating the entropy and information gain based on entropy. 
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Entropy makes the construction of tree easy with less effort depending on 

computational limitations. What this means is that choosing the most appropriate tree 

construction within all the possible constructed trees using all the attributes in 

learning set is not a good work. Instead of, at the beginning entropy measure and 

information gain is calculated, so the attribute whose information gain is the highest 

can be used as splitting attribute.  

 

Entropy is the measuring homogeneity of a variable in the training set due to the 

presence of more than one possible classification [34]. If the impurity or randomness 

is high, this means entropy is high. But if there is no randomness with respect to the 

target classifier, this means entropy is zero. 

 

Assume that there are K categories of dependent variable. It is possible to determine 

proportion of instances with classification i by pi for i=1 to k. pi is the proportion of 

number of occurrences of class i to the number of instances. pi changes between 0 

and 1. 

 

Let E be the denotation of entropy calculation. The formula for the calculation of 

entropy is given below. The unit of the calculation is in "bits" of information [34]. 

 

   ∑        

 

   

 

 

Consider that S is a sample of training examples. Dependent variable has two 

categories: positive and negative. Let p+ be the proportion of positive examples in S 

and p- be the proportion of negative examples in S. Entropy measures the purity of S 

using the formula given above. For the every probability of pi, the entropy curve is 

obtained as shown in Figure 2.9. The peak of the curve implies the highest entropy 

when the class probabilities are 0,5 for p+ and 0,5 for p- of the dependent variable. 

Entropy takes the minimum value if and only if all the samples in data set have the 

same class label [34]. 
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Figure 2.9 Entropy Ratio Based On Proportion of Examples In Dataset 

 

If samples belong to the same class, in this case Entropy = 0. 

If samples distributed within classes equally, in this case Entropy = 1. 

If samples distributed randomly within classes, in this case 0 < Entropy < 1.  

 

In order to find the best splitting attribute, attribute selection criterion is required 

which is a metric for how well one attribute classifies the training data.  

 

2.14.2 Information Gain 

 

ID3 and C4.5 uses the information gain which is based on pioneering work by 

Claude Shannon on information theory as attribute selection measure [32]. 

 

As the value of independent variable Xi is known, the information gain for a given 

attribute Xi with respect to the dependent attribute Y is the reduction in uncertainty 

[32]. Due to the information gain, dependent variable Y is got pured at the following 

nodes in every splitting iteration. The uncertainty of Y is measured by its entropy. 

 

Assume that Xi and Y are discrete variables getting values {y1, y2, …, yk) and {x1, x2, 

…, xn}. We explained how to calculate entropy before. In this case, entropy of Y is 

calculated with the formula below. 
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 ( )    ∑ (    )    

 

   

( (    )) 

 

When the value of Xi is known, the uncertainty of Y is the conditional entropy based 

on given xi, E(Y/X). The conditional entropy of Y given Xi is calculated with the 

formula below. 

 

 (     )    ∑  (    ) 
 
    (         ) 

 

For each Xi in training set, information gain is calculated using the formula below 

until the entropy of each of these subsets is zero (i.e. each one has instances drawn 

from only a single class). 

 

 (    )   ( )   (     ) 

 

The log function to the base 2 is used, because the information is encoded in bits 

[32]. The information gain ( (    )) determines the test variable (Xi) in each node. 

Based on the chosen attribute, tree is constructed in top-down manner. Hence, the 

process of the tree construction by consecutively division based on independent 

attributes equals to the partitioning the initial training data into smaller homogenous 

training sets repeatedly [34]. In other words, I(Y; X) tells how much would be gained 

by branching on Xi [32]. I(Y; X) can be also explained as the expected reduction in 

the information requirement by knowing the values of one of the independent 

variable Xi. So, highest information gain is chosen as the splitting attribute at node 

N. Xi is called “the best classification”. 
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2.14.3 Gain Ratio 

 

The information gain is biased when an independent attribute have many outcomes. 

This means that information gain selects attributes having a large number of distinct 

values. As an example, it is possible to make understandable this situation 

considering an attribute that acts as an identifier such as person’s identification 

number. Since each identification number is one tuple, each partition is exactly pure 

in terms of class labels. In other words, decision tree may learn the training set too 

well and biased tree is constructed as a result with overfitting problems.  

 

C4.5 decision tree algorithm uses gain ratio to determine split information and to find 

the most important attributes [35]. This overcomes the bias. Because it applies 

normalization to information gain using the split information value given below. This 

calculation tell about potential information found by splitting training dataset D into 

p partitions [32]. 

 

                   (       )   ∑
|  |

| |

 

   

    (
|  |

| |
) 

 

The gain ratio calculation is shown as below. 

 

           (           )  
                (          )   (    )

                   (       )
 

 

The attribute with maximum gain ratio is chosen as splitting attribute. 

 

2.15 Overfitting 

 

The top-down construction of a decision tree is a widely used method in 

classification problems. When a tree is constructed using training data, incorrect 

predictions may revealed in test set depending on the noise or outliers in training data 

which affects the accuracy of the model. 
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During the process of rule extraction, basic decision tree algorithm may grow each 

branch of the tree just deeply enough to sufficiently classify the training examples. 

The classifier classifies training data by partitioning the dataset recursively until all 

the data in a subset belongs to only one class or no further splitting test is available. 

It results often a complex tree with excessive rules set that overfits the training data 

[36] and very low predictive power for previously unseen data. In other words, 

decision tree is constructed depending on the irrelevant attributes of the training 

samples with the results that it performs very well on the training data but poorly on 

test data which is not used when tree learns patterns. 

 

Overfitting is realistically occurs since the training set does not contain all the 

possible samples. This means all the features of unseen data samples in test set may 

not be included in training data during learning of decision tree. In this condition, 

decision tree learns rules from training set and fits training samples effectively but 

test data is unable to be classified correctly because no patterns are obtained from 

training data that may provide matching test data attributes. Overfitting only 

becomes a problem when the classification accuracy on test data is significantly 

downgraded [37]. 

 

While dealing with decision trees for making prediction, ways to reduce overfitting 

must be sought as well as the possibility of significant overfitting must be 

considered. The leading objective is that there is always a tradeoff between 

constructing a model that fits the training data as well as possible, and a model that 

generalizes well to new sample that are not seen in learning process [38]. 

 

The figure below demonstrates the effect of overfitting tracking the performance of 

tree. X-axis holds the information of the number of nodes in the tree (a measure of its 

complexity) and y-axis is the percentage of correct classifications on the training data 

and also on test set of data that is not used for classifier learning. The figure says that 

the performance of training set goes on improving while the test set performance is 

expected to peak before the complete tree is grown. Afterwards, test set accuracy 

begins to decrease as the depth of the tree increases [38]. 
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Figure 2.10 Effects of number of nodes on accuracy rate 

 

Accuracy as a function of the number of tree nodes: on the training data it may grow 

up to 100%, but the final results may be worse than for the majority classifier. 

 

Pruning of a decision tree aims to prevent the overfitting. This stops splitting earlier, 

or dismiss the branches that have no positive contribution on the accuracy of the 

decision tree. 

 Pre-pruning (or forward pruning): Prevent the generation of non-significant 

branches. 

 Post-pruning (or backward pruning): Generate the decision tree and then 

remove non-significant branches. 

 

2.15.1 Pre-Pruning 

 

Prepruning halts splitting by deciding the goodness of a split. While implementing a 

pre-pruning strategy, the subset is first tested to determine whether a termination 

condition is applied or not. If partitioning the tuples at a node would result in a split 

that falls below a prespecified threshold (minimal information gain), then further 

partitioning is stopped. 
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Prepruning uses the results of attribute selection. The algorithm selects the attributes 

in each node that are relevant to predict the class for splitting within given a set of 

attributes whose gain ratio are greater than minimal gain that is prespecified. Thus, 

the aim of pre-pruning is to determine whether an attribute is significantly correlated 

to the class. Statistical significance tests such as the chi-squared test are applied by 

algorithm [39]. The prepruning problem is now simplified to depict the variable with 

the optimum value of the splitting criterion to split on among all variables for which 

the statistical test such as chi-square shows a significant association with the class. 

 

In addition, algorithm checks the sample size at a node. If the size of a node is 

smaller than the minimum split size, partitioning stops as well. Upon stopping, a 

node is created as a leaf node. The class label of the node is given most frequent 

class among the subset tuples. If it does not, a further term is generated as usual. If it 

does, the rule is pruned. 

 

The results obtained clearly show that pre-pruning can reduce the number of terms 

generated and in some cases can also increase the predictive accuracy. 

 

2.15.2 Post-Pruning 

 

In order to remove the least important branches, postpruning (backward pruning) can 

also be used. This approach clears subtrees from a “fully grown” tree. Branches at a 

given node are removed and a leaf node is created here by labeling with the most 

frequent class among the subtree being replaced [32]. 

 

The general steps [decision tree learning] of post pruning: 

1. Construct the decision using training set samples, growing the tree until the 

training data is fit as well as possible. Overfitting may be allowed to occur. 

2. Convert the learned tree into set of rules starting from root to the end (leaf) 

node. 

3. Prune (generalize) each rule by removing any preconditions that result in 

improving its estimated performance (accuracy). 
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For making decision of whether to replace a node or not, is done by calculating the 

estimated error using the pessimistic error estimation measure of a particular node 

and comparing it with its potential replacement leaf. C4.5 uses pessimistic error rate 

calculation to evaluate performance based on training set.  

 

Error estimate for a sub-tree is weighted sum of error estimates for all its leaves. The 

error estimate (e) for a node is: 

 

  

(  
  

    
√ 
  

  

  
  

   
)

(  
  

 )
 

where; 

 f is the error on the training data, 

N is the number of instances covered by the leaf, 

z from normal distribution. 

 

Pessimistic error rate is calculated before a rule is deleted, and after a rule is deleted. 

If the removal of a node (subtree replacement) contributes to the performance of the 

model, that rule is removed from the tree and all the parent node is labeled with the 

most frequent class value. 

 

2.16 Accuracy and Error Measures 

 

After a model is constructed over training samples, the most important step is the 

determination of the model accuracy. As an example, one may use historical data of 

humans to train a classifier in order to predict the condition of a person in terms of 

specific disease susceptibility. In this case, estimating of how accurately the classifier 

predicts the disease susceptibility of a patient in the near future is considerable 

important. This means, patient data on which the classifier has not been trained is 

given a label by the classifier. Thus, the accuracy of this prediction must be 

measured. 
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For accuracy estimation, there are some measures and these measures are calculated 

by splitting the dataset into training and test sets. In order to evaluate the accuracy, 

some partition techniques such as holdout, random subsampling, k-fold cross 

validation methods are widely used [32].  

 

2.16.1 Classifier Accuracy Measures 

 

Classifier is always derived from learning data. By using the learning data, both 

training of a classifier and measuring the accuracy of the classifier result misleading 

estimates. Instead, test set consisting of class-labeled samples which are not used in 

learning samples is used in order to estimate the accuracy of the model. The accuracy 

of a classifier on a given test set is defined as the percentage of test samples which 

are correctly classified [32]. Accuracy is the indicator of how well classifier detects 

the samples of various classes. 

 

If the accuracy rate of classifier M is Acc(M), the error rate or misclassification rate 

can be defined as 1-Acc(M). In order to calculate the accuracy rate of the model, 

confusion matrix is a useful tool. Confusion matrix tells how well the model 

classifies data samples flawless. Each cells in the matrix (CMi,j) indicates the number 

of samples in class i which are classified by the classifier as the label j. A classifier 

ideally has a small error rate if most of the samples in test set are represented along 

the diagonal of the confusion matrix starting from CM1,1 to CMm,m with the rest of 

the cells converge to zero. 

 

Assume that dependent variable contains two classes. In this case, diagonal of the 

confusion matrix is given at Table 2.2. 
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Table 2.2 Confusion Matrix  

    Predicted Class 

    Class1 Class2 

Actual Class 
Class1 true positives(CM1,1)

9
 false negatives(CM1,2)

10
 

Class2 false positives(CM2,1)
11

 true negatives(CM2,2)
12

 

  

However, the accuracy rate of the model is not always acceptable in the 

circumstances of the classifier classifies only positives correctly or only negatives 

correctly. Assume that the accuracy of the model is calculated as 90%. This rate 

seems quite high but only one of the class labels may have caused this. Assume that 

3-4% of the training samples are labeled as C1 and rest of the training samples are 

labeled as C2. In this case, true classified C2 samples may increase the accuracy of 

the classifier even if all C1 samples are classified incorrectly. As a result, C1 samples 

are not classified efficiently. So, highest accuracy rate can be ignorable. Instead of 

accuracy, it is possible to calculate of how well the classifier can recognize the C1 

and C2 samples. For this purposes, sensitivity and specificity measures can be used, 

respectively [32]. Sensitivity is also called as the true recognition (positive) rate. 

Specificity is the true negative, as well. In addition, precision can be used to obtain 

the rate of labeled as C1 when the actual value is also C1. 

 

These measures can be calculated by the given formulas below; 

 

            
          

        
 

 

            
           

        
 

 

                                                 
9 True positives are the positive samples that are correctly classified by the model. 
10 False negatives are the positive samples that are classified incorrectly by the   classifier. 
11 False positives are the negative samples that are classified incorrectly by the classifier. 
12 True negatives are the negative samples that are correctly classified by the model. 
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(                     )
 

 

Where t_positive is the number of true positives, positive is the number of positive 

samples in training set, t_negative is the number of true negatives, negative is the 

number of negative samples and f_positive is the number of false positives. 

The formula of accuracy as the functions of sensitivity and specificity; 
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2.16.2 Evaluating the Accuracy of a Classifier 

 

In order to estimate the classifier accuracy some common techniques are commonly 

used in classification problems. Holdout, simple random sampling, cross-validation 

and leave-one-out methods are used for evaluating the accuracy based on randomly 

sampled partitions of the dataset [32]. Considering the overall computation time and 

produced accuracy, one of these methods is useful for model selection. 

 

 

Figure 2.11 Best Model Selection 
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2.16.2.1 Holdout Method  

 

The simplest method is to partition original dataset into two randomly selecting 

instances for training that is usually 2/3 of dataset and test that contains the rest of 

the original dataset. Model is constructed by using training data and accuracy of the 

model is estimated using test set. However, the estimation is generally poor since the 

estimation is done using only one portion of the original data. 

 

2.16.2.2 Random Sampling (Repeated Holdout Method) 

 

For increasing the reliability of holdout method, it can be applied to data set k times, 

iteratively. Original dataset is partitioned randomly for selecting the training and test 

sets each time. The accuracy rates are obtained from each iteration using selected test 

data. Finally, overall accuracy is determined averaging the accuracy rates calculated 

in each iteration. 

 

2.16.2.3 Cross Validation 

 

Cross validation is a statistical model evaluation method which is frequently 

preferred in predicting the model accuracy. In k fold cross validation, the initial 

dataset is partitioned into k exclusive subsets which are also called as “folds” 

randomly. The folds are D1, D2, …, Dn and these folds are equal to each other in 

numbers. In this method, model is tested k times. In the i
th 

iteration, Di is kept as test 

set and the rest of the data partitions (k-1) are reserved as training set in order to train 

the classifier. This procedure is illustrated in the Figure 2.12. 
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Figure 2.12 Cross Validation 

 

The overall accuracy is calculated by averaging the accuracy rates of folds. The 

variance of the overall accuracy estimation is reduced as fold number (k) is 

increased. 

 

                 
∑                        

 
 

 

The advantage of using k fold cross validation is that all the samples in dataset are 

used for both training and testing. On the other hand, the disadvantage is related to 

the computational time. Since the method runs k times, evaluating the accuracy takes 

much time. Unlike the holdout and repeated hold out methods, each sample in dataset 

is used equally for both training and testing [32]. 

 

2.16.2.4 Leave One Out Method 

 

This approach is the special form of cross validation. One data sample is left out 

during each iteration for the test set. Rest of the data is used for training the 

classifier. That is, let X1, X2, …, Xn data samples in dataset. In the i
th

 iteration, Xi is 
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the only test instance. Data points excluding Xi train the model. In this case, method 

runs n times as shown in Figure 2.13. 
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single test data 

Figure 2.13 Leave One Out 

 

The overall accuracy is calculated by averaging the accuracy rate of every iterations 

obtained from test example. 

 

The evaluation of accuracy rate of the model by leave-one-out cross validation is 

good, but it seems very expensive to compute since it calculates accuracy rate n 

times. 
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CHAPTER 3 

 

 

3.  LITERATURE REVIEWS 

 

 

 

To the best of our knowledge, currently there is not any study that combines 

genotyping and clinical information for building a decisive model for the diagnosis 

of AD.  

 

However there are some cases where limited number of SNP information is analyzed 

together with clinical and phenotypical features like in the example of pre-eclampsia 

[3], breast cancer [40], prostate cancer [41], autism spectrum disorder [42] and 

chronic fatigue syndrome (CFS) [43]. On the other hand, S. Shah and A. Kusiak [44] 

used these data in order to reduce the dimension by data mining methods and Barkur 

S. Shastry [11] and Moore and Ritchie used classification methods in order to find 

novel and hidden interactions between genetic variations to predict the complex 

disease occurrence. 

 

Linda Fiaschi et al. studied [3] a database related to pre-eclampsia of babies. They 

emphasized that there are many alternative data mining techniques that may be used 

for genotype-phenotype association studies. They stated that in genetic studies these 

mining techniques have discovered interesting findings, especially in the genetic 

predisposition related to a specific disease. The results were found from the original 

one by deleting the uninformative attributes for the population of babies. The CBC 

(corrected birth-weight centile) attribute was chosen as the predictive class which 

also means dependent to genotypic and phenotypic attributes. The features of each 

individual comprise both genetic and clinical data. Study was conducted by using 53 

SNPs attributes and 6 clinical attributes such as “fetal disease status”, “gestation at 
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birth(weeks)”, “gestation at birth(days)”, “weight of the infant”, “live at birth” and 

“CBC” of 372 babies. ID3, ADTree and C4.5 decision tree classification algorithms 

were applied to database by Linda Fiaschi et al. The goal of this research was both to 

propose a valid method for SNP analysis by benchmarking the results obtained from 

a variety of decision tree algorithms in order to identify commonality between trees 

and to discover any possible association, either genetic or phenotypic, with the 

specific disease for clinical use. Their results showed the validity of this 

methodology to find a subset of attributes associated with the predictive attribute, 

achieving a reduction in the dimension of dataset. From the clinical perspective, 

study emerged at least two important findings. The first is the significance of the 

threshold CBC of 10. CBC of 10 gave the highest proportion of agreement (Kappa) 

that classifies each data in an efficient way using genetic and phenotypic features. 

The second finding is the dependency of the CBC on the “week of delivery” 

parameter. From the results of this analysis on PE disease, an association between 

these two parameters has been found: women with pre-eclampsia who deliver before 

35 weeks of pregnancy are more likely to give birth to babies with a CBC under the 

value of 10. They highlighted that the generic framework explained and applied in 

this study will lighten the researchers analyzing such data by using classification 

methodology. 

 

Jennifer Listgarten et al. created [40] predictive models for breast cancer 

susceptibility by using Single Nucleotide Polymorphisms. They obtained 98 relevant 

SNPs distributed over 45 genes in order to identify breast cancer etiology and 

compared these with control group whose members do not have breast cancer. Their 

aim was to identify a subset of SNPs in order to distinguish between breast cancer 

and controls by using support vector machines, decision trees and naive Bayesian. 

SVMs as predictive models achieved 69% to classify data correctly. On the other 

hand, decision tree approach also performed as much similar as SVMs. Jennifer 

Listgarten et al. found 3 SNPs sites most important in the model ( Figure 3.1). The 

first one is the 4536 T/C site of the aldosterone synthase gene CYP11B2 at amino 

acid residue 386 Val/Ala (T/C) (rs4541), the second is the 4328 C/G site of the aryl 

hydrocarbon hydroxylase CYP1B1 at amino acid residue 293 Leu/Val (C/G) 
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(rs5292) and the last one is the 4449 C/T site of the transcription factor BCL6 at 

amino acid 387 Asp/Asp (rs1056932). 

 

 

Figure 3.1 Predictive Model For Breast Cancer Susceptibility 

 

According to Jennifer Listgarten et al., since technology is improved fast in terms of 

identifying more SNPs, it is possible to predict with higher accuracy and a useful 

clinical tool can be developed to predict cancer cases. They expressed in their study 

that the decision tree had more balanced errors than the other in the prediction of 

both cancer and noncancerous persons.  

 

Jill S. Barnholtz-Sloan et al. has leaded [41] a study in order to associate the risk of 

prostate cancer with inherited variability in genes. The main goal of their study was 

to reveal interactions that cause prostate cancer by using classification and regression 

tree (CART) modeling. They used not only genetic information but also interactive 

effects for the prediction of risk. They maintained the study over 1084 prostate 

cancer cases and 94 controls. They stratified all the samples in terms of race, and 

analyses were made (Figure 3.2 and Figure 3.3). Finally, they compared the 

unconditional logistic regression results with the race-stratified CART results 

calculating the area under ROC curve. In the study, however the models constructed 

for each races differed from each other, there were found some common features 

such as age, family history in respect to prediction of the disease. Another finding in 

the study was that the specific genotypes and/or haplotypes differed between races.  
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Figure 3.2 Pruned Classification Tree For Androgen Pathway in European 

Americans 

 

 

Figure 3.3 Pruned Classification Tree For Androgen Pathway in African Americans 

 

As Figure 3.2 illustrates, for European Americans, people with particular CYP3A43 

genotypes, family history of prostate cancer, age factor and history of BPH could 

have prostate risk. On the other hand, according to the study carried on by Jill S. 

Barnholtz-Sloan, if African Americans were considered (Figure 3.3), interactions 
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associated with risk would exist for those with family history of prostate cancer, 

individual European ancestry proportion, number of GGC AR repeats, and 

CYP3A4/CYP3A5 haplotypes based on constructed decision tree. They suggested 

that their findings could be used to select patients for PSA screening in the case of 

the detection of heritable risk. So, associated features might be appropriately guided 

to decision maker in terms of clinical decision support. 

 

Yun Jiao et al. goaled [42] to determine whether SNP-based predictive models can 

predict the severity of a specific disease which is called Autism Spectrum Disorder
13

 

(ASD). High heritability of phenotypes of ASD was showed by Freitag [45] and 

Geschwind [46] in family based genetic studies. Moreover, Belmonte et al. (2004) 

showed in their study significant associations between ASD and genetic markers. 

Freitag (Freitag 2007; Freitag et al. 2010) maintained SNP studies to determine 

ASD-related altering on DNA and reported that SNPs in chromosomes 2, 3, 4, 6, 7, 

10, 15, 17, X and Y were associated with ASD. Other findings from Belmonte et al. 

(2004) and Kim et al. (2008) were that many changes in genes such as GABRA4, 

GABRA2, GABRB1, GABRB2, GABRB3, TDO2, SLC25A12 were associated with 

ASD. From the literature review, Yun Jiao et al. selected nine ASD-related genes and 

29 SNPs depended on these genes (GABRA4, GABRB1, TDO2, GABRB2, 

GABRA2, GABRB3, GABRA5, SLC25A12, and BDNF) for their study. Tree-based 

modeling have been commonly used in SNP-based classification (Bureau et al. 2005; 

Huang et al. 2004; Nunkesser et al. 2007; Park and Hastie 2008), so Yun Jiao et al. 

also applied three supervised learning methods such as decision stumps (DSs), 

alternating decision trees (ADTrees), and FlexTrees to generate diagnostic models. 

They applied learning algorithms to generate diagnostic models. Yun Jiao et al. used 

118 instances of 29 SNP variables for SNP-based diagnostic model and they defined 

ASD symptom severity as class variable (Figure 3.4). Yun Jiao et al. finally 

identified important markers for overall symptom severity based on SNP-based 

diagnostic models. They reported that the SNP rs878960 in GABRB3 was selected 

by all models; this means it is the most significant SNP that has a role in prediction 

of the disease. As a latest step, they measured the performances of models and they 

                                                 
13

 Autism-spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by 

abnormal social behavior, impaired communication, and repetitive/stereotyped behavior. 
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obtained an accuracy of 67%, sensitivity of 88% and specificity of 42% when used 

DS and FlexTree. From the study of Yun Jiao et al., supervised learning methods 

such as decision trees have been suggested as an effective way of predicting a 

complex disease using genetic markers of individuals. 

 

 

Figure 3.4 Tree Model Generated by ADTree. 

 

Lung-Cheng Huang et al. studied [43] to predict chronic fatigue syndrome (CFS) 

using SNPs data and benchmarked computational tools with and without feature 

selection considering 42 SNPs by the Chronic Fatigue Syndrome Research Group. In 

order to obtain results between CFS and SNPs, they applied three different data 

mining classification algorithms such as naive Bayesian, support vector machines 

and C4.5 decision tree. In addition, they utilized feature selection methods to find the 

subset of representative SNPs. They used hybrid feature selection, information gain 

and wrapper-based approaches in dataset. Considering the correctly classified rates, 

naive Bayesian classification with wrapper-based feature selection performed best 

within predictive models. Naive Bayesian with feature selection out performed by 

0,70 in terms of area under curve(AUC). For the naive Bayes model with the 

wrapper-based approach, only 8 SNPs out of 42 was identified, including rs4646312 

(COMT), rs5993882 (COMT), rs2284217 (CRHR2), rs2918419 (NR3C1), 

rs1866388 (NR3C1), rs6188 (NR3C1), rs12473543 (POMC), and rs1386486 

(TPH2). 
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S. Shah and A. Kusiak explained [44] that one of the important area in 

bioinformatics was the identification of gene/SNP patterns not only for impacting 

cure/drug development but also for associating genotyping and phenotyping 

information for various diseases. Since genomic studies give extensive amount of 

data with the number of single nucleotide polymorphisms (SNPs) ranging from 

thousands to hundred thousands, S. Shah and A. Kusiak used data mining methods in 

order to reduce the dimension of this data for supporting clinical diagnosis and 

identifying relationships between genotypic and phenotypic information as well as 

the determination of SNPs related to a specific disease analyzing of genomic data. S. 

Shah and A. Kusiak employed a global search mechanism, weighted decision tree, 

decision tree based wrapper, a correlation-based heuristic, and the identification of 

intersecting feature sets for selecting significant genes. Their reduction aimed 

methods resulted in 85% reduction of the number of SNPs related to the disease. 

Hence, the relative increase in cross-validation accuracy and specificity for the 

significant gene/SNP set was 10% and 3.2%, respectively according to their study. 

This showed while the number of SNPs has decreased significantly, the quality of 

knowledge obtained was increased due to the decision tree modeling. They 

emphasized in their study that feature selection could be achieved by various 

supervised and unsupervised methods such as k nearest neighborhood, decision tree, 

multi, layer perceptron, self-organizing maps.  

 

Barkur S. Shastry made a research [11] to identify the patterns of SNPs in conditions 

such as diabetes, schizophrenia, and blood pressure homeostasis. By the experience 

of Barkur S. Shastry in the study, he explained that common disorders are caused by 

the combined effects of multigenes and nongenetic environmental factors 

(multifactorial). Therefore, it is likely that sequence variation alone is not sufficient 

to predict the risk of disease susceptibility. According to Barkur S. Shastry, 

determining how SNPs affect an individual’s health and transforming this knowledge 

into the development of new medicine to run decision support system, which requires 

the correlation of SNPs with specific diseases, will help the treatment revolution of 

most common diseases. Finally, this knowledge captured from SNPs and phenotype 

associations may give clinicians more insight into the disease and change the 



 

50 

definition of some disorders in the future. 

 

Moore and Ritchie [24] summarized three important points that must be considered 

for a successful genetic prediction of a disease using genome wide approach. First, a 

powerful and appropriate data mining method must be developed in order to model 

the relationship between DNA order variation and disease existing, statistically. The 

second challenge is the selection of subset among SNPs that should be included for 

analyze. The final challenge is the interpretation of results. On the other hand, Moore 

and Ritchie (2004) emphasized that making etiological inferences from intelligent 

models may be the most difficult step of all because many called this progress as a 

needle in a haystack. 

 

For all the disease studied in the literature, success rate is not above 70%. However 

as there is not any study with AD data yet we can not present any classification as 

benchmark.  
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CHAPTER 4 

 

 

4.  MATERIAL METHODS 

 

 

 

The main goal of this study is to identify DNA sequence alterations (genotype) 

which are associated with the clinical findings to predict whether someone is at risk 

in contracting Alzheimer’s disease (AD) or not. 

 

In addition to clinical features, some demographic features of individuals are 

considered to contribute in phenotype-genotype associations, as well. Such a study 

requires a well described and characterized clinical database including people's full 

blood count with LDL, HDL, WBC, cholesterol, body mass index etc. and genotype 

data obtained through blood sample, too.  

  

In order to clarify the nucleotide alterations that can trigger AD and clinical findings 

relevant to the emergence of AD, a large sample size of case-control pairs are used in 

this study.  

 

4.1 Dataset 

 

The AD genotyping and phenotyping data is obtained from GENADA study through 

the dbGAP database, which is a multi-site collaborative study involving 

GlaxoSmithKline Inc. and medical centers in Canada. The data was planned to 

collect from approximately 1000 Alzheimer's disease patients and 1000 ethnically-

matched controls in order to associate DNA sequence variations in genes with 

Alzheimer's disease phenotypes. However, with authorized access, 1718 study 

participant's individual level data is now available through this study. GENADA is 
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reported that this study is planned to begin first quarter of 2002 and end late of 

September 2003. 

 

From the five of nine medical centers in Canada, eligible individuals who have 

Alzheimer’s disease at the level of mild to moderate, a group of controls who are not 

yet considered AD and siblings who may be both affected or not affected were 

initially examined and data were obtained.  

 

4.1.1 Selection Criteria for AD Patients 

 

In the study AD patients must have satisfied the following conditions. Such patients 

were included within the study. 

 ADRDA/NINCDS14 criteria for diagnosis of possible Alzheimer's disease. 

 Positive diagnosis of Dementia of the Alzheimer's Type (DAT) on the DSM-

IV check list, with a diagnostic code based on age of onset (to be determined 

by first symptoms noted by friends and family) and predominant clinical 

features: early onset (age 65 or less) uncomplicated (290.10), with delirium as 

mode of presentation (290.11), with delusions as mode of presentation 

(290.12), with depressed mood as mode of presentation (290.13), versus late 

onset (after age 65) uncomplicated (290.0), with delirium as mode of 

presentation (290.3), with delusions as mode of presentation (290.20), with 

depressed mood as mode of presentation (290.21). 

 Global Deterioration Scale of Reisberg et al., score of 3 to 7. 

 Have clinical data available confirming Alzheimer’s diagnosis. 

 

 

                                                 
14

 The NINCDS-ADRDA Alzheimer's Criteria were proposed in 1984 by the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer's disease and Related 

Disorders Association (now known as the Alzheimer's Association) and are among the most used in 

the diagnosis of Alzheimer's disease (AD). These criteria require that the presence of cognitive 

impairment and a suspected dementia syndrome be confirmed by neuropsychological testing for a 

clinical diagnosis of possible or probable AD; while they need histopathologic confirmation 

(microscopic examination of brain tissue) for the definitive diagnosis. 
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4.1.2 Selection Criteria for AD Controls 

 

Control individuals were matched ethnically and they were eligible to the cases by 

the gender and age in order to satisfy homogeneity. In this study controls were 

included if the following conditions applied. 

 Not possess the history of memory problems. 

 Mini Mental State Examination
15

 higher than the appropriate threshold 

dementia score taking into account ages of individuals. 

 DRS -2 AEMSS
16 

(Age and education adjusted MOANS scale score) of 9 or 

higher (after adjustment for age and education). 

 Clock test (11:10) with a score equal or greater than 14. 

The Figure 4.1 shows the number of participants with the availability of their 

genotype and phenotype data. 

 

Figure 4.1 Availability of the Genotype/Phenotype Data of Participants 

 

                                                 
15

 The mini–mental state examination (MMSE) or Folstein test is a brief 30-point questionnaire test 

that is used to screen for cognitive impairment. It is commonly used in medicine to screen for 

dementia. It is also used to estimate the severity of cognitive impairment at a specific time and to 

follow the course of cognitive changes in an individual over time. 

 
16

 The DRS-2 Total Score is a composite score comprising the five DRS-2™ subscales: Attention  

(ATT), Initiation/Perseveration (I/P), Construction (CONST), Conceptualization (CONCEPT),  

and Memory (MEM).  Client obtained a DRS-2™ Total Score of 117 out of a possible 144  

points, which corresponds to an Age-Corrected MOANS Scaled Score of 3 (1 percentile range)  

and indicates a severely impaired level of performance.  This Total Score also corresponds to an  

Age- and Education-corrected MOANS Scaled Score of 3 (1 percentile range) and indicates a  

severely impaired level of performance. 
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All participants provided their genetic and clinical data voluntarily and they provided 

their consent of the use of data by self and legal representative. 

 

Using the clinical and genotype data, prediction of the disease for the future provides 

an important point of view in terms of clinical decision making. For this reason, both 

clinical data and single nucleotide polymorphisms are associated with the 

Alzheimer’s disease. 

 

In our study, clinical data obtained from the blood samples of controls and cases 

contain cholesterol (mmol/l), hemoglobin (g/l), HBA1C_PCT, HDL Cholesterol 

(mmol/l), LDL cholesterol (mmol/l), Triglycerides (mmol/l) and amount of White 

Blood Cells. We used all these variables in our study as shown at Table 4.1 since any 

of them may be relevant to Alzheimer’s disease. 

 

In addition to clinical and genotype parameters that are obtained from the 

individuals, medical records are also saved such as age of onset of first symptoms 

noted of AD cases, body mass index at the moment of first diagnose. 

 

Since the initial goal of the study is to reveal if Alzheimer’s disease susceptibility is 

changed by polymorphic variation in specific genes, hundreds of thousands of probes 

are arrayed on a chip. This chip determines many SNPs interrogating simultaneously 

[47]. In this study 410907 SNPs are captured for each individual and by interrogating 

the DNA sequences of people SNP alleles are gained where the allele frequency is 

greater than 1% in the population. 

 Data access provided by: dbGaP Authorized Access 

 Data Access Committee (DAC): JAAMHDAC@mail.nih.gov 

 Release Date: January 21, 2010 

 Embargo Release Date: July 21, 2010 

 

http://view.ncbi.nlm.nih.gov/dbgap-controlled
mailto:JAAMHDAC@mail.nih.gov%20?subject=Question%20about%20downloading%20dbgap%20study%20phs000219.v1.p1
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Table 4.1 Clinical Data Attributes of Individuals 

 

Variable Name Description 

age Diagnosis age 

age_on Onset age of AD 

gender Sex of the individuals. 

case/control Information about affection status 

Body Mass Index (BMI)
17

 Body fatness for individuals. 

CHOL (mmol/l)
18

 

Amount of fat lipid carried in the blood by molecules called 

lipoproteins. 

HB (g/l)
19

 Amount of proteins that are found in red blood cells. 

HBA1C_PCT
20

 

Percentage of hemoglobin in red blood cells (erythrocytes) that 

are tied up to glucose. 

HDLCH (mmol/l)
21

 Amount of high density lipoprotein. 

LDLCH (mmol/l)
22

 Amount of low density lipoprotein. 

TRIG (mmol/l)
23

 Amount of triglycerides in blood plasma. 

WBC (giga/l)
24

 The number of leukocytes in the blood. 

                                                 
17 Body mass index is defined as the individual's body mass divided by the square of his or her height. It is used 

to screen for weight categories that may lead to health problems. 
 
18 Cholesterol is a fat (lipid) which is produced by the liver and is crucial for normal body functioning. It is 
essential for determining which molecules can pass into the cell and which cannot. It is essential for the 
production of hormones released by the adrenal glands (cortisol, corticosterone, aldosterone, and others) 
 
19 Hemoglobin is responsible for carrying oxygen from the lungs to all other tissues of the body. Hemoglobin 
also refers to a blood test that indicates the amount of hemoglobin in the blood. In this case, how well the red 
blood cells are able to carry oxygen can be inferred. 
 
20 HLA1C is an important analyze for the follow-up of diabetes. It tells the average glucose amount of last 2-3 
months of an individual. Normal values are between 4-6%. 
 
21 HDLCH is also referred as bad cholesterol. LDL carries cholesterol from the liver to cells. If too much is carried, 
too much for the cells to use, there can be a harmful buildup of LDL. This lipoprotein can increase the risk of 
arterial disease if levels rise too high. Most human blood contains approximately 70% LDL. 
 
22 LDLCH is also referred as good cholesterol. HDL prevents arterial disease. HDL does the opposite of LDL - HDL 
takes the cholesterol away from the cells and back to the liver.  It is either broken down or expelled from the 
body as waste in the liver. 
 
23 Triglycerides are the chemical constructions in which most fat exists in the body, as well as in food.  Too much 
of this type of fat can cause hardening and narrowing of arteries. High triglycerides often occur along with high 
levels of Cholesterol. 

 
24 WBC gives information about a wide range of disease and conditions. WBC helps diagnose an infection or 
inflammatory process since some diseases trigger a response by the immune system and cause an increase in 
the number of WBCs. 
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4.2 Preprocessing of Dataset 

 

Data preprocessing is the most important step in knowledge extraction methods. 

Cabena et al. [48] say that preparation of data takes 60% of efforts of whole 

knowledge extraction process. 

 

In order to get good results, high quality of data is needed. Thus, incomplete, noisy, 

inconsistent data must be cleaned from the database. In this aspect, data cleaning, 

data integration, data transformation and data reduction can be counted as the 

components of data preprocessing as shown in Figure 4.2. 

 

The data preparation step in knowledge discovery covers all the activities for 

constructing the final data from the raw data. Data preparation tasks may be applied 

repeatedly but there is no need to apply all the tasks in any designated order [49]. 

 

 

Figure 4.2 Data Mining Preprocessing Phases 
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4.2.1 Data Cleaning 

 

This step is related to handling missing values, identify outliers and smooth out noisy 

data as well as correcting inconsistent data. Incomplete, inconsistent or noisy data are 

commonly seen in large, real world databases.  

 

In our study, some lab findings for individuals are missing in the dataset. This may 

be because test is unable for person or data is not entered by laboratory. We 

eliminated the tuples whose attribute values are unknown because the size of dataset 

is quite enough. Even if we remove tuples with missing values, the accuracy of the 

model will not be affected much. Furthermore, inconsistent data is corrected. For 

example, if age onset is entered for a person who does not have AD symptom, this is 

not correct and inconsistency occurs here. Such data problems were handled as one 

of the step of preprocessing phase. 

 

The Table 4.2 shows the missing value counts of clinical attributes in the dataset. 

 

Table 4.2 Missing Value Counts of Clinical Data 

  

CHOL HB HBA1C_ HDLCH LDLCH TRIG Age_on for 

“Case” group (MMOL_L) (G_L) PCT (MMOL_L) (MMOL_L) (MMOL_L) 

Missing 22 36 35 27 61 22 14 

 

All the genotype data is fully filled in, so SNP alleles for each individual is both 

defined and no need to imputation. When we clear the missing value data, there are 

1480 data tuples left for the construction of the prediction model. In addition, onset 

ages of 14 people in the case group are not kept in the dataset. In this case, we fill the 

missing values of age-onset attribute with the mean of age of cases. 

 

4.2.2 Data Integration 

 

In today’s relational databases or object oriented programming approaches, data is 

segmented since keeping the all types of data in one table is theoretically 
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unacceptable. Correspondingly, GENADA contains different repositories in terms of 

genotype data or laboratory results. Combining the research results from different 

sources becomes significant. 

 

In this step, data from different sources are combined. But there may be entity 

identification problems and data value conflicts may be occurred. 

 

In GENADA, genotype data is stored in a table with individual IDs (subject ID) 

which may also be considered as primary key. In this way, it is possible to match 

people’s SNPs data with other features specified in other data tables through using 

structured query language (SQL). 

 

Laboratory results corresponding to each subject ID are also kept in another data 

table. There may be more than one tuple for a specific subject ID. In this condition 

the first visit values are taken into account since the diagnosis is made and 

determined in the first visit. Other visits are just for the monitoring and tracking the 

condition of people.  

 

Database management systems help combining high dimensional data with 

structured query language. We used MS Access to transfer data tables and to create 

relationships between keys. 

 

4.2.3 Data Transformation 

 

Normalization of data may be required during analyze if parametric statistical 

methods are used such as nearest neighbors or neural networks to obtain better and 

more accurate results. There are many data normalization methods such as max-min 

normalization, standardization etc. We do not deal with normalization techniques 

during data analyze. 
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4.2.4 Data Reduction 

 

Data analysis problems are more prevalent in bioinformatics. Since biological data 

contains so many features, in such large datasets, dimension reduction is generally 

beneficial for not only computational efficiency but also improvement of accuracy of 

the analysis. In such a case, reducing the dimension of data is an effective way to 

prepare data for the further analyze. This means to describe current information in 

less attributes. There are two major techniques of dimension reduction. One of the 

methods is called feature selection and the other is called feature extraction. Feature 

selection is a process of choosing the optimal subset of features based on an 

objective function or method. This directly affects the mining performance, speed of 

learning, reliability of the analyze and simplicity and comprehensibility of results 

found. On the other hand, feature reduction refers to the mapping of the original data 

to a lower-dimensional data by using some statistical methods such as principal 

component analysis, regression attribute selection criteria such as forward selection, 

backward elimination, stepwise or defining the correlations between each attributes 

and dependent variable are the most widely known and valid reduction methods. 

 

The other face of data reduction is about the deletion of data tuples. In this aspect, 

data with missing values that can not be predicted may be deleted if there is enough 

data to analyze. In addition, statistical sampling methods such as stratified sampling 

or simple random sampling can be used to reduce data, but the rest of samples must 

represent the data well. 

 

In our study, from the high dimension of data attributes, the subset which contains 

the highest significant data attributes is chosen. This gives an opportunity that with a 

small set of data attributes faster and robust inductions can be done instead of using 

all the attributes. On the other hand, the accuracy rate of classification does not 

significantly decrease. 
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4.2.4.1 GWAS 

 

The first implementation is determination of statistically significant SNPs associated 

with the Alzheimer’s disease. In order to reveal most important SNPs, we first used 

PLINK software. PLINK is an open source and free software, developed by Shaun 

Purcell at the Center for Human Genetic Research (CHGR), Massachusetts General 

Hospital (MGH), and the Broad Institute of Harvard & MIT. The aim of this free tool 

is to analyze genotype-phenotype data associations of case/control groups in a 

computationally efficient manner.  

 

PLINK runs in the command prompt environment and it is sustained by 3 parameters 

[50]. We used default parameters in order to obtain results. For more interests in use 

of PLINK, official documents [50] are available. 

 

As a result, a range of features such as data management, summary statistics, 

population stratification and basic association analysis are given. Furthermore, we 

obtained statistical significant SNPs by their p-values. For each SNP within 410969 

SNP biomarkers, asymptotic p value is calculated by PLINK and an output file 

whose extension is “.assoc” is created at the end of this transaction. P value identifies 

the statistically most significant disease associated SNPs. So, PLINK associates 

SNPs statistically; this means PLINK does not consider the biological significance in 

association studies. So each calculated P-values are unadjusted p values. Not only 

statistically but also biological significance must be taken into account during 

defining the most relevant SNP attributes in dimension reduction since the significant 

SNPs will determine Alzheimer disease in a more accurate and effective way. 

 

4.2.4.2 SNP Prioritization 

 

Reducing the number of SNPs by taking biological and statistical importance into 

consideration for selecting the representative SNPs from hundreds of thousands 

SNPs is one of the current challenges. In our study, after we have applied GWAS, we 

have obtained p-values of SNPs that are statistically significant. Then, the major 
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problem was reducing the dimention by selecting the most important SNPs related to 

disease. AHP based scoring algorithm was used. METU-SNP [17] ranked the SNP 

scores according to importance and SNPs with a score above 0,40 are selected. There 

were 958 biologically and statistically significant SNPs defined with an AHP Score 

ranking between 0.409511-0.717559. RsID’s of selected SNPs are provided in the 

Appendix B. 

 

4.3 Data Analyze Using Rapid Miner Tool 

 

Rapid Miner is an open source tool for data mining. Rapid Miner is generally 

preferred in data mining applications since it has a powerful graphical interface for 

both design of analysis process and interpretation of the results. It presents efficient 

data handling such as data loading, data transformation, data modeling using 

operators and data visualization. Java infrastructure allows integrating other data 

mining tools such as Weka, R, as well. Moreover, Rapid Miner supports error 

recognition and quick fixes, hence the error can be found easily during analyze [51]. 

 

In this study, we used Rapid Miner tool to construct a probabilistic decision support 

model by C4.5 decision tree algorithm using clinical and genetic features of 744 case 

and 746 control subjects. Decision support model will assist deciding about the 

condition of the patient. As mentioned before, C4.5 has some advantages such as 

handling missing values or using both numerical and categorical data. 

 

4.3.1 Constructing the Model 

 

In the present study, we have preprocessed the raw data and constructed two 

different decision trees in order to see how much genotyping and clinical information 

of patients contributes to the prediction of Alzheimer’s disease and if increases the 

accuracy rate of the model. 

 

The first decision tree inputs only representative SNPs and the second construction 

contains both SNPs and clinical information as inputs. 
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The C4.5 algorithm constructs decision trees in top-down manner by using the best 

single feature test as mentioned before. The criterion of the best single feature test is 

gain ratio for C4.5 to split data into subsets. The test selects the highest value of gain. 

This process is such a ranking of features implementation considering each features 

is independent and there are no interactions between them. 

 

Prediction of the susceptibility to AD applying data mining classification algorithm 

is the goal of this study. Hence, any attribute which included in the model must 

contribute to the accuracy of the prediction. Considering this, we chose the 

representative SNPs subset within hundreds of thousands SNPs. In addition to 

genetic markers, laboratory test results were used in the analysis. 

 

To investigate the accuracy of C4.5 prediction model k-fold cross validation was 

used. For k-fold cross validation method, data set randomly divided into distinct 

parts. k-1 folds were used for training the data and 1 fold was used to estimate the 

predictive performance of the model. This procedure was repeated k times. Finally, 

the average estimate of overall iterative runs was calculated as the accuracy of the 

model. The process of data classification that models our implementation is given in 

Figure 4.3. 

 

 

Figure 4.3 Data Classification Process 
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Since the construction of a decision tree depends on entropy reduction, the splitting 

approach may overfit the training set and may lead to poor accuracy in the test set. In 

response to the overfitting problem, pruning strategy is used during the construction 

of decision tree. Rapid Miner allows us using both prepruning and postpruning. The 

prepruning checks the goodness measure (gain ratio, information gain etc.) if it falls 

below a threshold or not. In addition, the minimal size in a node for splitting can be 

identified. If the node has samples with the number smaller than the minimal split 

size, construction stops there. On the other hand, at each node, beholding the number 

of instances that are misclassified on a test set is possible by propagating errors 

upwards from leaf nodes. This can be benchmarked to the error rate if the node was 

replaced by the most common class. If the difference is a reduction in error, then the 

subtree at the node can be considered for pruning. This calculation is performed for 

all nodes in the tree. This strategy is called postpruning and this may result more 

accurate rule extraction. 

 

4.3.1.1 C4.5 with Genetic Markers (Representative SNPs) 

 

Only statistically and biologically significant SNPs subset was chosen as input data. 

We obtained the subset using AHP scoring as mentioned before. We applied C4.5 

algorithm to dataset with its 958 independent variables considering the given selected 

genotype data in order to predict whether a person is case or control. 

 

We used gain ratio to select best single feature which divide dataset into partitions. 

The minimal gain ratio is identified as 0,01 since gain ratio greater than 0,01 does not 

have a role to divide data into subsets. The 11-fold cross validation has been 

choosenas it should satisfy the requirements for the volume of our dataset for making 

unbiased error prediction over test set. 

 

Extracting Rules from Decision Tree 

 

Based on Figure 4.3, we firstly identified a validation method to be used in modeling 

phase. The next step is to apply learning algorithm to training data and to generate 
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rules. Decision trees are preferred since they are easy to understand. Decision trees 

have visual impressions over humans. But as the depth of tree increases, they become 

large and difficult to interpret. In this condition, IF_THEN rules are extracted from 

decision trees. IF_THEN rules make interpretation of decision tree easier [32]. 

 

To extract rules, every rule is created for each path from the root node to leaf node 

using logical operator “AND” within IF parts. THEN part holds the information of 

class prediction. 

 

We used Rapid Miner to generate rules. The summary of the decision tree model is 

given in Table 4.3. 

 

Table 4.3 Decision Tree Construction Summary for Representative SNPs 

Learning Algorithm: C4.5 

Attribute Selection Criterion: Specifies the used it for selecting attributes. 

We chose the gain ratio for the criterion term.  

Inputs: 958 SNPs chosen based on AHP Scoring. 

Output: If a person is AD or not AD. 

Minimal Gain: Which must be achieved in order to produce a partition = 0,01.  

Maximal Depth: The maximum tree depth = 12. 

Validation Method: 11-fold Cross Validation. 

Minimal Size for Split: The minimal size of a node in order to allow a partition = 5.  

Minimal Leaf Size: The minimal size of all leaves = 2.  

Confidence: Used for the pessimistic error calculation of pruning = 0,25.  

Number of Pre-pruning Alternatives: The number of alternative nodes tried when 

pre pruning would prevent a split = 3.  

 

The tree structure for the prediction of Alzheimer’s disease is given in the electronic 

format in Appendix C in a CD for the further interests since the depth of tree is 12. 

Constructed tree structure using only SNPs is attached to Appendix D in top-down 

tree manner. 
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The predictive decision nodes for “Cases” are given in the table in Appendix E in IF-

THEN format with their probabilities. 

 

4.3.1.2 C4.5 with Genetic Markers (Representative SNPs) and Clinical Data 

 

Not only statistically and biologically significant SNPs subset but also clinical and 

demographic data of individuals were used as input data. The SNPs subset was 

identified as mentioned before using AHP scoring. In addition to SNPs which 

constructed the tree in the previous analyze, we targeted to add some clinical features 

identified in Table 4.1. Under this condition, we can easily benchmark whether 

clinical data contribute to the prediction of Alzheimer’s disease or not. We applied 

C4.5 algorithm to dataset with its 958 independent variables considering the selected 

genotype data, 8 clinical and 2 demographic features in order to predict whether a 

person is case or control. 

 

Gain ratio was used to select best single feature that divide dataset into partitions. 

The minimal gain ratio is identified as 0,01 since gain ratio greater than 0,01 does not 

have a role to divide data into subsets. For the efficient and confidential 

benchmarking, we tried 11 fold cross validation to dataset. Next, we compared 

results whether addition of clinical attributes contribute to the prediction of the 

complex disease or not. 

 

Extracting Rules from Decision Tree 

 

We firstly determined validation method which we use in modeling phase. The next 

step is to apply learning algorithm to training data for generating rules. As the depth 

of tree increases, they become large and difficult to interpret. In this condition, we 

gave IF_THEN rules from decision tree. IF_THEN rules make interpretation of 

decision tree easier [32]. 
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To extract rules, every rule is created for each path from the root node to leaf node 

using logical operator “AND” within ‘IF’ parts. ‘THEN’ part holds the information 

of class prediction. 

 

We used Rapid Miner for generating rules. The summary of the decision tree model 

is given Table 4.4. 

 

Table 4.4 Decision Tree Construction Summary for Representative SNPs and 

Clinical Data 

Learning Algorithm: C4.5 

Attribute Selection Criterion: Specifies the used it for selecting attributes. 

We chose the gain ratio for the criterion term.  

Inputs: 958 SNPs chosen based on AHP Scoring + 8 clinical information + 2 

demographic information of individuals in the study. 

Output: If a person is AD or not AD. 

Minimal Gain: Which must be achieved in order to produce a partition = 0,01.  

Maximal Depth: The maximum tree depth = 12. 

Validation Method:11-fold Cross Validation. 

Minimal Size for Split: The minimal size of a node in order to allow a partition = 5.  

Minimal Leaf Size: The minimal size of all leaves = 2.  

Confidence: Used for the pessimistic error calculation of pruning = 0,25.  

Number of Pre-pruning Alternatives: The number of alternative nodes tried when pre 

pruning would prevent a split = 3.  

 

The tree structure for the prediction of Alzheimer’s disease is given in the electronic 

format in Appendix C in a CD for the further interests since the depth of tree is 12. 

Constructed tree structure using SNPs and clinical data attributes is attached to 

Appendix F in top-down tree manner. 

 

The predictive decision nodes for “Cases” are given in the table in Appendix G in IF-

THEN format with their probabilities. 
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CHAPTER 5 

 

 

5.  RESULTS 

 

 

 

Even though combinations of a variety of genetic and other factors are suspected to 

complex diseases, the exact cause of AD is still not clear. Hence the ongoing studies 

to unveil the genetic and molecular basis of AD is very important to understand the 

risk factors, develop prevention methods, diagnosis tools and new therapies.  

 

In this study we have attempted to construct a decision tree for the diagnosis of late-

onset AD based on patients genotyping and clinical data. We have carried out 

analysis using two different input dataset: the first data set contains only SNPs 

identified as associated to Alzheimer’s disease (AD) after GWAS of GENADA data 

and the second data set that contains both SNPs and clinical and demographic 

information of individuals as inputs for the predictive model. 

 

Accuracy rates of the C4.5 models based on the prepruning and postpruning 

parameters with the use of 11 fold cross validation method are as follows. Table 5.1 

and Table 5.2 denote accuracy rates of pruned trees. In order to avoid overfitting, 

parameters that give the best result in terms of performance of the model is chosen 

considering the test set accuracy. As mentioned before, training set accuracy 

increases as the depth of the tree is expanded. In parallel with this expansion, the 

accuracy of test set also increases until a particular depth; then it starts to decrease 

due to overfitting of training set. In this point construction should stop. 

 

The Table 5.1 and Figure 5.1 below show the accuracy rates of each tree with 

different pruning parameters using only representative SNPs data. In each decision 
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tree, performance evaluation was made over test set that is not seen by learning 

algorithm for rule (knowledge) extraction. Referring the Table 5.1, we decided to 

construct a tree with the depth 12 and we tried 3 alternative nodes when prepruning 

would prevent a split for increasing the performance.  

 

Table 5.1 Accuracy Rates For Pruning Parameters by 11 Fold Cross Validation: 

Representative SNPs 

  

Prepruning Alternatives 
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2 
52.64% 52.64% 52.64% 52.64% 52.64% 52.64% 52.64% 

± 3.33% ± 3.33%  ± 3.33% ± 3.33% ± 3.33% ± 3.33% ± 3.33% 

3 
51.83% 51.83% 51.76% 51.76% 51.76% 51.76% 51.76% 

± 3.14% ± 3.14%  ± 3.22% ± 3.22% ± 3.22% ± 3.22% ± 3.22% 

4 
51.96% 51.96% 51.90% 51.90% 51.90% 51.90% 51.90% 

± 2.86% ± 2.86% ± 2.92% ± 2.92% ± 2.92% ± 2.92% ± 2.92% 

5 
53.25% 53.32% 53.25% 53.25% 53.25% 53.25% 53.25% 

± 3.14% ± 3.16% ± 3.24% ± 3.24% ± 3.24% ± 3.24% ± 3.24% 

6 
52.84% 52.91% 52.98% 52.98% 52.98% 52.98% 52.98% 

± 4.01% ± 3.98% ± 4.10% ± 4.10%  ± 4.10% ± 4.10% ± 4.10% 

7 
53.59% 53.59% 53.38% 53.38% 53.38% 53.38% 53.38% 

± 4.11% ± 4.08% ± 4.22% ± 4.22% ± 4.22% ± 4.22% ± 4.22% 

8 
54.26% 54.39% 54.19% 54.19% 54.19% 54.19% 54.19% 

± 2.37% ± 2.39% ± 2.78% ± 2.78% ± 2.78%  ± 2.78%  ± 2.78%  

9 
54.73% 54.86% 54.80% 54.73% 54.73% 54.73% 54.73% 

± 2.28% ± 2.30% ± 2.64% ± 2.71% ± 2.71% ± 2.71%  ± 2.71% 

10 
55.74% 55.94% 55.88% 55.88% 55.88% 55.88% 55.88% 

± 1.97% ± 2.02% ± 2.18% ± 2.18% ± 2.18%  ± 2.18%  ± 2.18%  

11 
55.54% 54.87% 54.87% 55.07% 55.00% 55.00% 55.00% 

± 1.72% ± 2.12% ± 2.39% ± 2.25% ± 2.26% ± 2.26% ± 2.26% 

12 
56.08% 55.88% 55.74% 55.88% 55.81% 55.81% 55.81% 

± 1.96% ± 1.91% ± 2.23% ± 2.05% ± 2.02% ± 2.02% ± 2.02% 

13 
55.81% 55.54% 55.41% 55.54% 55.47% 55.47% 55.47% 

± 2.18% ± 2.11% ± 2.26% ± 2.31% ± 2.28% ± 2.28% ± 2.28% 
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Figure 5.1 Graphical Presentation of Accuracy Rates obtained from Representative 

SNPs 

 

The Table 5.2 and Figure 5.2 give information about the accuracy rates of each tree 

with different pruning parameters using representative SNPs data and clinical 

information of individuals. Referring the Table 5.2 we decided to construct a tree 

with the depth 12 and we tried 3 alternative nodes when prepruning would prevent a 

split for increasing the performance.  
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Table 5.2 Accuracy Rates For Pruning Parameters by 11 Fold Cross Validation: 

Representative SNPs and Clinical Data 

 
 Prepruning Alternatives 

 
 3 5 10 15 20 25 30 

D
ep

th
 o

f 
D

ec
is

io
n

 T
re

e
 

2 
52.64% 
± 3.33% 

52.64% 
± 3.33% 

52.64% 
± 3.33% 

52.64% 
± 3.33% 

52.64% 
± 3.33% 

52.64% 
± 3.33% 

52.64% 
± 3.33% 

3 
52.24% 
± 3.06% 

52.24% 
± 3.06% 

52.24% 
± 3.06% 

52.17% 
± 3.16% 

52.17% 
± 3.16% 

52.17% 
± 3.16% 

52.17% 
± 3.16% 

4 
52.30% 
± 3.05% 

52.30% 
± 3.05% 

52.30% 
± 3.05% 

52.24% 
± 3.11% 

52.24% 
± 3.11% 

52.24% 
± 3.11% 

52.17% 
± 3.10 

5 
53.65% 
± 3.08% 

53.59% 
± 3.11% 

53.65% 
± 3.12% 

53.59% 
± 3.21% 

53.59% 
± 3.21% 

53.59% 
± 3.21% 

53.52% 
± 3.25%  

6 
52.98%  
± 3.63% 

52.91% 
± 3.64% 

53.04% 
± 3.55% 

53.04% 
± 3.70% 

53.04% 
± 3.70% 

53.04% 
± 3.70% 

52.98% 
± 3.72% 

7 
53.25% 
± 3.93% 

53.18% 
± 3.94% 

53.18% 
± 3.90% 

53.11% 
± 4.06% 

53.11% 
± 4.06% 

53.11% 
± 4.06% 

53.04% 
± 4.09% 

8 
54.06% 
± 2.98% 

53.85% 
± 3.00% 

53.78% 
± 3.13% 

53.72% 
± 3.34% 

53.72% 
± 3.34%  

53.72% 
± 3.34% 

 53.65% 
± 3.39% 

9 
54.39% 
± 3.08% 

54.19% 
± 3.06% 

54.06% 
± 3.27% 

53.85% 
± 3.55% 

53.85% 
± 3.55 

53.85% 
± 3.55 

53.78% 
± 3.58% 

10 
54.87% 
± 2.51% 

54.59% 
± 2.48% 

54.46% 
± 2.78% 

 54.32% 
± 3.07% 

54.32% 
± 3.07% 

54.32% 
± 3.07% 

54.25% 
± 3.12% 

11 
54.93% 
± 2.52% 

53.92% 
± 2.45% 

54.06% 
± 2.85% 

53.99% 
± 3.09% 

53.99% 
± 3.09% 

53.99% 
± 3.09 

53.92% 
± 3.14% 

12 
55.07% 
± 2.49% 

54.26% 
± 2.22% 

54.32% 
± 2.85% 

54.12% 
± 3.04% 

54.12% 
± 3.04%  

54.12% 
± 3.04% 

54.05% 
± 3.11% 

13 
54.53% 
± 2.25% 

53.99% 
± 1.66% 

54.12% 
± 2.35% 

53.85% 
± 2.75% 

53.85% 
± 2.75% 

53.85% 
± 2.75% 

53.78% 
± 2.80% 
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Figure 5.2 Graphical Presentation of Accuracy Rates obtained from Representative 

SNPs and Clinical Data 

 

As far as tables represents, clinical information does not have a serious effect on the 

prediction of Alzheimer’s disease when we compare test set accuracy results. 

Concisely, same pruning parameters and same validation strategy are used for both 

tree constructions. While the highest accuracy rate for decision tree constructed using 

only representative SNPs is 56,08%, the highest accuracy for the tree constructed 

using SNPs and clinical data is calculated as 55,07% from test set. 

 

According to decision tree using only SNPs data, the Figure 5.3 shows the 

distribution of SNPs among chromosomes chosen based on the attribute selection 

criteria within biologically related top 958 SNPs. We can say that genetic variations 

that cause Alzheimer’s disease are accumulated on chromosomes 1., 2., 6. and 9. in 

general. 
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Figure 5.3 Chromosomal Distribution of Decision Tree SNPs 

 

In addition to SNPs data, use of clinical information while constructing the tree, the 

Figure 5.4 shows the distribution of SNPs among chromosomes chosen based on the 

attribute selection criteria within biologically and statistically significant top 958 

SNPs. We can say that genetic variations that are associated withAlzheimer’s disease 

are accumulated in chromosomes 1., 6. and 9. in general. 

 

 

Figure 5.4 Chromosomal Distribution of Decision Tree SNPs 

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 12 13 14 18 20 22

N
u

m
b

e
r 

o
f 

SN
P

s 

Chromosome 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 12 13 20

N
u

m
b

e
r 

o
f 

SN
P

s 

Chromosome 



 

73 

In the first decision tree (Figure 5.5), we used top 958 SNPs related to AD selected 

based on AHP scoring. Based on attribute selection criterion, 38 SNPs were chosen 

for the prediction of AD. The information such as reference SNP alleles, minor allele 

frequency, minor allele count, chromosomal position related to SNPs chosen as 

splitting attributes in decision tree is listed in Appendix H. Based on these 38 SNPs, 

decision tree generated 26 rules to predict the disease in humans. The tree paths show 

SNP combinations and interactions which give information in disease prediction. The 

location of each SNP was given in the Appendix E. According to findings, genetic 

variations located on genes such as ABCC4, ANGPT2, ANGPT2, ARHGAP26, ATG5, 

C9orf3, DBT, DDO, DISC1, ENPP6, FGD4, FMNL2, FOXO3, GABBR2, GSN, 

KCNN3, KIF26B, LIPH, MAML3, NBN, PDZD8, PLCB1, PTPRM, SEMA3C, 

SEMA3C, SEMA5A, SLC35A3, SNW1, SYN3, TLL2, TPO, TRHDE, C9orf3, 

CAMKK2, DOK1, HMGA1, PIKFYVE, STK39. Furthermore, rules generated from 

decision tree algorithm points out which of SNPs subsets is more predominant in the 

etiology of the disease. In other words, variations in some candidate genes together 

can help to determine patients’ risk to have AD. 



 

 

7
4 

 

Figure 5.5 Visualization of Decision tree for Representative SNPs 
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Decision tree obtained using only representative SNPs is presented in Figure 5.5. 

According to the results, the most significant genetic variations are SNP_A4213932, 

SNP_A2146889, SNP_A2258450, SNP_A1849082 when we consider the top levels 

of the tree. For more detailed information, the electronic format of decision tree can 

be viewed through any web browsers (e.g. Internet Explorer) or flash player. 

 

When we include the relevant clinical data in addition to SNP data, attribute 

selection criterion chose 27 SNPs out of 958 SNPs and clinical features such as 

HBA1C_PCT, Body Mass İndex, Hemoglobin, WBC, Trig, Chol and HDL. These 

clinical features decreased the number of predictive SNPs included in the decision 

tree (Figure 5.6). Hence, in the presence of the clinical features of individuals, less 

SNPs were identified in the decision tree for the prediction of disease. 27 SNPs in 

candidate genes were determined and based on splitting criterion, there are 29 rules 

generated from the decision tree for the prediction of disease. The information such 

as reference SNP alleles, minor allele frequency, minor allele count, chromosomal 

position related to SNPs chosen as splitting attributes in decision tree is given in 

Appendix J. Genetic variations in genes which are also given in Appendix G are 

including ABCC4, ANGPT2, ATG5, C9orf3, DBT, DDO, DISC1, ENPP6, FMNL2, 

FOXO3, GABBR2, GSN, HMGA1, KCNN3, KIF26B, LIPH, LUM, NBN, PDZD8, 

PLCB1, SEMA3C, SEMA3C, SEMA5A, STK39, TLL2, TPO, TRHDE. 

 



 

 

7
6 

 

 

 Figure 5.6 Visualization of Decision tree for Representative SNPs and Clinical Information 
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Decision tree obtained using representative SNPs and clinical information of 

individuals is given in Figure 5.6. According to tree, the most significant genetic and 

clinical variations are SNP_A4213932, SNP_A2146889, age and cholesterol (mmol) 

when we have a look at the first two level of the tree. For more detailed information, 

the electronic format of decision tree can be viewed through any web browsers (eg 

Internet Explorer) or flash player. 

 

The performance of classifiers for both decision trees is calculated from the 

confusion matrix. The first decision tree that inputs only representative SNPs 

classifies test samples accurately at 56,08% using 11 fold cross validation strategy. 

According to Table 5.3, classifier classifies 428 cases and 402 controls correctly out 

of 1480 people. 

 

Table 5.3 Confusion Matrix For Only Representative SNPs 

  True CASE True CNTL class precision 

Prediction. CASE 428 334 56,17% 

Prediction. CNTL 316 402 55,99% 

class recall 57,53% 54,62%   
 

On the other hand, decision tree that inputs representative SNPs and clinical 

information classifies test samples at 55,07% using 11 fold cross validation strategy. 

According to Table 5.4, classifier classifies 461 cases and 354 controls correctly out 

of 1480 people. 

 

Table 5.4 Confusion Matrix for Representative SNPs and Clinical Data 

  True CASE True CNTL class precision 

Prediction. CASE 461 382 55,69% 

Prediction. CNTL 283 354 55,57% 

class recall 61,96% 48,10%   
 

As a result, integration of clinical information didn’t improve the accuracy rate of the 

model. Hence, only using genotype data, Alzheimer’s disease can be predicted for 

the new data samples. 
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CHAPTER 6 

 

 

6.  CONCLUSIONS and FUTURE WORK 

 

 

 

6.1 Discussion 

 

Here, we have revealed the AD associated SNPs with decision tree approach and also 

investigated whether use of clinical information increases the prediction accuracy or 

not for the late-onset AD for GENADA Study. 

 

The link between AD and genes on four chromosomes, 1, 14, 19, and 21 have been 

described in previous studies so far. Best known association among these genes is the 

APOE gene on chromosome 19 that has a role in the molecular etiology of late-onset 

AD. The SNP variations rs10524523, rs429358, rs7412, rs4420638 located on APOE 

that are show to be associated with late onset AD patients in three different studies 

[52], [53]. As the Affymetrix 500K Set comprises Mapping250K_Nsp and 

Mapping250K_Sty Arrays platform, which used for the genotyping of subjects in the 

GENADA study does not include these specific SNPs we cannot validate these 

results in our study. 

 

Even though APOE’s relation to AD is well established, it is also known that it can 

only account for a very minor percent of the genetic of AD. Supporting this 

observation when we have reviewed the SNPs mapping to the APOE gene 

considering their overall p-value association the APOE gene was ranked at 2291 with 

a combined p=0.2 among 9731 that we can collect information in this study. As the 

overall statistical analysis of APOE gene and SNPs located in that region didn’t show 

strong association it was not included in the further analysis. There are many other 
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factors for developing AD, and the additional genes that may play a role in the 

etiology of AD is still under investigation. 

 

On the other hand, some cases of early-onset Alzheimer disease are caused by 

genetic variation recently identified on chromosomes 1 and 14. Researchers have 

emphasized that this form of the disorder can result from genetic variations in one of 

three genes: APP (Amyloid Precursor Protein) on chromosome 21, PSEN1 

(Presenilin-1) on chromosome 14, or PSEN2 (Presenilin-2) on chromosome 1. This 

is because when any of these gene structures is changed, extensive amounts of a 

toxic protein fragment called amyloid beta peptide are produced in the brain. This 

peptide can build up in the brain to create clumps that are called amyloid plaques, 

which are the indicators of Alzheimer disease. A buildup of toxic amyloid beta 

peptide and amyloid plaques conduce to the death of nerve cells in the brain and lead 

to the progressive symptoms of Alzheimer’s disease [54]. Just a few researchers 

consider that the investigation for Alzheimer's genes must be ended. Almost all 

researchers claims that there are more genes involved in Alzheimer's disease. 

Moreover they are convinced that other conditions must also be taken into account 

for the disease to develop. The linked genes and SNPs that found so far related to 

Alzheimer’s disease are given in the Appendix G. 

 

From the previous studies, some risky genes and SNPs located on these genes were 

identified. While expanding the list of associated SNPs our study furthermore 

revealed linkages between SNPs and their allele variants linked to AD risk. 

Consequently, based on decision tree rule inductions, we can show the SNPs 

pathway that lead to AD diagnosis. 

 

Up to date, many studies on the genetics of AD have been represented in Alzgene 

website
25

. The site summarizes the each result from meta-analysis studies. Apart 

from APOE that is highly correlated and accepted, the previously published GWA 

studies do not provide consistency in the candidate genes or location of the genetic 

variations being associated with the disease [54]. 

                                                 
25

 http://www.alzgene.org/largescale.asp 
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In clinical settings, current diagnosis methods for Alzheimer Disease have a high 

cost with low accuracy. On the other hand, the tecniques available for the diagnosis 

of the AD is not easy for the patient or the specialists. Considering the difficulties of 

diagnostic methods, implementation of decision tree using genotypic information of 

individuals can support distinguishing the AD patients from dementia in clinic since 

the accuracy rate of classification is quite acceptable with 56,08%. 

 

This study is the debut of a fresh approach in classification of AD patients. With the 

guidance of the study, other data mining methods can be implemented to higher 

dimensional genome databases in order to extract novel and important patterns for 

predicting any complex diseases. 

 

In this study, we have constructed two prediction models. The first one inputs only 

significant SNPs and the second one inputs clinical information in addition to 

significant SNPs information. The aim of the use of clinical information is to show 

whether clinical information contributes to the prediction of Alzheimer’s disease. In 

contrast to the expectations, clinical information was not a good predictor; hence the 

accuracy rate of model did not improve. Still with the guidance of the results, we can 

still infer that some significant clinical parameters, that can be selected by gain ratio 

calculation, regulates clinical indicators such as cholesterol, and HLA. In other 

words, some SNPs that were found to be associated with AD, which are already used 

to build the genotyping based decision tree, have a role in the lipid metabolism and 

effects levels of cholesterol, LDL or HDL. So, the information based on SNP 

genotyping already reflects the relation of the clinical parameters with the AD, thus 

clinical information can not add any further gain on the decision. 

 

6.2 Conclusion 

 

Medical diagnosis does not begin until the patient has visited doctor with various 

symptoms for many complex diseases. By this time it may be late in the natural 

history of the diseases. The most common diagnosis of Alzheimer’s disease is a 

through examination that includes complete medical and psychiatric history, a 
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neurological exam, laboratory tests to rule out anemia, vitamin deficiencies, and 

other conditions, a mental status exam to evaluate the person's thinking and memory 

and talking with family members or caregivers [55]. The alternative disease 

recognition method is the use of genetic variations, which is becoming easier and 

cheaper way to predict the diseases. 

  

Information obtained from the human genome alterations (SNPs) changes the 

progress of clinical practice. It provides us to understand of disease mechanisms. Use 

of genetic information will allow early and more accurate prediction of disease 

progression. 

  

The disease prediction model will contribute to enhanced clinical practice for many 

complex diseases. Converting this knowledge into daily applied diagnostics will be a 

challenge in health domain. Thus, constructing a model creates a new approach to 

clinical practice with many benefits or patients. 

 

This thesis presents a disease computational study of Alzheimer’s disease based on 

DNA molecule information provided by SNPs. We applied decision tree 

methodology to predict AD in a specific medical domain. In order to obtain more 

informative data, the disease associated genetic variations were used as input data. 

Firstly, we found statistically significant SNPs and calculated correlations of each 

SNPs. Secondly, using p values and biological information such as functional effects 

of SNPs were used to prioritize SNPs and form a base for selecting a subset of SNPs. 

For this purpose, scoring and prioritizing of SNPs Analytic Hierarchy Process (AHP) 

was used for the dimension reduction as a preprocessing step. In modeling phase, 

attribute selection criterion identified the predictors. We constructed two decision 

trees. The first one was constructed using 958 SNPs and the second one was 

constructed using not only 958 SNPs but also clinical information of individuals. In 

the first tree, 38 SNPs was chosen by attribute selection criterion. On the other hand, 

clinical information of individuals are important in decision making in the second 

tree, so apart from clinical features 27 SNPs was chosen by the selection criterion. 
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The results show that clinical information does not play much role in determining the 

disease when we benchmark the accuracy rates of each tree. What we mean is that, 

decision tree build with only SNPs information has an accuracy rate of 56,08%. On 

the other hand, decision tree constructed with clinical data and SNPs data has an 

accuracy rate of 55,07%. In this study we have shown that diagnosis of AD can be 

done only based on genotyping information. This also supports a strong genetic basis 

for the development of late onset AD.  

 

6.3  Future Work 

 

Decision tree algorithm is one of the widely used classification method in data 

mining. We have applied the C4.5 algorithm for 744 cases and 746 controls. 

However, this study has some limitations: First, our study needs more data 

containing different populations to obtain more reliable results. Hence, more 

financial support is necessary to obtain SNP data of individuals. As the information 

of more genetic variation becomes accessible, the method probably improves 

prediction performance. Second, Naïve Bayesian Classification and Artificial Neural 

Network approaches can be applied for the same purpose and the performance 

indicators can be benchmarked in order to select the most accurate prediction model. 

 

In the context of determining the complex diseases, we are planning to enhance the 

classification algorithm to accommodate candidate factors other than SNPs, such as 

race or other environmental variables that may affect susceptibility to disease, as 

such required data become available. 

 

Additionally after a decision support algorithm is developed based on the genotyping 

and clinical information hopefully with much higher prediction power, the system 

should be tested in a pilot study on patients whom need differential diagnosis 

between AD and dementia. Doctors and patients will benefit from the outcomes of 

such research only if the prediction models suggested are validated and implemented 

as decision support systems for clinical use. 
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GLOSSARY 

 

 

Allele—A form of a gene. Each person receives two alleles of a gene, one from each 

biological parent. This combination is one factor among many that influence a 

variety of processes in the body. On chromosome 19, the apolipoprotein E (APOE) 

gene has three common forms or alleles: e2, e3 and e4. 

 

Apolipoprotein E (APOE) gene—A gene on chromosome 19 involved in making a 

protein that helps carry cholesterol and other types of fat in the bloodstream. The 

APOE e4 allele is considered a risk-factor gene for Alzheimer’s disease and appears 

to influence the age at which the disease begins. 

 

Chromosome—A compact structure containing DNA and proteins present in nearly 

all cells of the body. Chromosomes carry genes, which direct the cell to make 

proteins and direct a cell’s construction, operation, and repair. Normally, each cell 

has 46 chromosomes in 23 pairs. Each biological parent contributes one of each pair 

of chromosomes. 

 

DNA (deoxyribonucleic acid)—The hereditary material in humans and almost all 

other organisms. Almost all cells in a person’s body have the same DNA. Most DNA 

is located in the cell nucleus. 

 

Gene—A basic unit of heredity. Genes direct cells to make proteins and guide 

almost every aspect of cells’ construction, operation, and repair. 

 

Genetic mutation—A permanent change in a gene that can be passed on to children. 

The rare, early-onset familial form of Alzheimer’s disease is associated with 

mutations in genes on chromosomes 1, 14, or 21. 
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Genetic risk factor—A change in a gene that increases a person’s risk of developing 

a disease. 

 

Genetic variant—A change in a gene that may increase or decrease a person’s risk 

of developing a disease or condition. 

 

Genome-wide association study (GWAS)—A study approach that involves rapidly 

scanning complete sets of DNA, or genomes, of many individuals to find genetic 

variations associated with a particular disease. 

 

Hippocampus—Hippocampus is a major component of the brain of human or other 

mammals. It belongs to the limbic system and plays a significant role in long-term 

memory. In AD, it is one of the first regions of brain to suffer damage, memory 

problems appear. 

 

Protein—A substance that determines the physical and chemical characteristics of a 

cell and therefore of an organism. Proteins are essential to all cell functions and are 

created using genetic information. 
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APPENDICES 

 

 

APPENDIX A - SNPs Related to Alzheimer’s Disease 

 

The tables present SNPs related to the AD obtained from previous association 

studies
26

. 

RS ID/Chromosome Related Gene 

rs1415985 at chr1 in AGBL4 

rs11205641 at chr1 in AGBL4 

rs4926831 at chr1 in AGBL4 

rs9659092 at chr1 in AGBL4 

rs11583200 at chr1 n ELAVL4 

rs12725861 at chr1   

rs6428503 at chr1 in GBP2 

rs10922573 at chr1 in GBP2 

rs7537752 at chr1 in CSF1 

rs12044355 at chr1 in DISC1 

rs11683103 at chr2   

rs2119067 at chr2 in SCN2A, SCN2A2 

rs10184275 at chr2 in SCN2A, SCN2A2 

rs2681411 at chr3 in CD86 

rs3846421 at chr4 in SORCS2 

rs12639920 at chr4 in ATP8A1 

rs1425967 at chr4   

rs4416533 at chr4   

rs12514426 at chr5 in WWC1 

rs179943 at chr6 in ATXN1 

rs3807031 at chr6 in NCRNA00171, PPP1R11, ZNRD1, ZNRD1AS 

rs929156 at chr6 in TRIM15 

rs13213247 at chr6   

rs11754661 at chr6 in MTHFD1L 

rs9455973 at chr6   

rs6942930 at chr7 in INTS1 

rs2039461 at chr9   

                                                 
26

  http://www.pharmgkb.org/disease/PA443319?tabType=tabGenetics#tabview=tab0&subtab= 
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RS ID/Chromosome Related Gene 

rs7893928 at chr10   

rs16934131 at chr10 in KCNMA1 

rs3740057 at chr10 in DNMBP 

rs10883421 at chr10 in DNMBP 

rs2986017 at chr10 in CALHM1, CALHM2 

rs10786828 at chr10 in SORCS3 

rs7894737 at chr10 in SORCS3 

rs11244841 at chr10 in ADAM12 

rs7946599 at chr11 in SORL1 

rs2298814 at chr11 in SORL1 

rs6589885 at chr11 in SORL1 

rs720099 at chr11 in SORL1 

rs11218342 at chr11 in SORL1 

rs11218343 at chr11 in SORL1 

rs1784919 at chr11 in SORL1 

rs1792124 at chr11 in SORL1 

rs3781835 at chr11 in SORL1 

rs3781838 at chr11 in SORL1 

rs11610206 at chr12   

rs2387100 at chr13   

rs6313 at chr13 in HTR2A 

rs9544105 at chr13   

rs659628 at chr13 in KCTD12 

rs12146962 at chr14   

rs11159647 at chr14   

rs4555132 at chr15   

rs1480090 at chr15   

rs1383139 at chr15   

rs5882 at chr16 in CETP, NLRC5 

rs11653716 at chr17 in NOS2 

rs4343 at chr17 in ACE 

rs4351 at chr17 in ACE 
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RS ID/Chromosome Related Gene 

rs1402627 at chr18 in DLGAP1 

rs4459653 at chr19 in ZNF224 

rs4802207 at chr19 in ZNF224 

rs3746319 at chr19 in ZNF224, ZNF225 

rs2061332 at chr19 in ZNF224, ZNF225 

rs2061333 at chr19 in ZNF224, ZNF225 

rs10524523 at chr19 in APOE, TOMM40 

rs429358 at chr19 in APOC1, APOE 

rs7412 at chr19 in APOC1, APOE 

rs4420638 at chr19 in APOC1, APOC1P1 

rs3826656 at chr19 in CD33 

rs2180566 at chr20 in DEFB122, DEFB123 
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The tables present SNPs related to the AD obtained from previous association 

studies
27

. 

SNPs on TRPC4AP gene on chromosome 20q11.22 seem to be associated with late-

onset of Alzheimer disease 

Multiple genetic variations in SORL1 are associated with Alzheimer disease 

rs5984894 is linked and associated with increased risk in females 

SNPs in the CLU, CR1 and PICALM genes, rs11136000, rs3818361, 

and rs3851179, which have been replicated in independent (European-descent) 

populations 

rs10519262, an intergenic SNP on chromosome 15 

rs908832 a SNP in ABCA2, associated with early-onset AD 

rs1050283 in the OLR1 gene may increase risk for both early-onset and late-onset 

Alzheimer disease 

rs2227564 a SNP in PAU gene 

rs2333227 in the MPO gene, and rs669 in the A2M gene, and possible synergistic 

interaction between them 

rs2373115 is one of several SNPs in the GAB2 gene that are associated with higher 

risk of Alzheimer disease 

rs2986017 a SNP in the CALHM1 gene 

rs3025786 which can decrease risk slightly among ApoE4 carriers 

rs5963409 in the OTC gene promoter region 

 rs10868366, rs7019241, rs9886784 are associated with Alzheimer disease in a study 

of ~1100 Canadian and UK patients 

A SNP in the PON1 gene 

A SNP in intron 9 of the CHAT gene 

rs4878104 and rs4877365 in the DAPK1 gene 

SNPs in the DNMBP gene 

SNPs in the MME gene, most notably, rs1836915 

A SNP in the TLR4 gene, rs4986790, with many disease associations 

A SNP in the BACE1 gene 

Numerous SNPs such as rs4293(risk allele appears to be A), rs1799752 in 

the ACE gene are associated with susceptibility to Alzheimer's disease 

rs1868402 in the PPP3R1 gene is associated with progression of dementia 

 

 

 

  

                                                 
27

 http://snpedia.com/index.php/Alzheimer's_disease 

 



 

94 

 

APPENDIX B - RS IDs of Selected SNPs Based on AHP Scoring 

 

Number RS_ID AHP SCORE 

1 rs7161889 0,717559 

2 rs2437357 0,692803 

3 rs6494031 0,677721 

4 rs2124459 0,677721 

5 rs16951252 0,677721 

6 rs1619631 0,654962 

7 rs839511 0,654374 

8 rs8029805 0,654374 

9 rs4673644 0,654374 

10 rs16969899 0,654374 

11 rs7166325 0,654374 

12 rs16940651 0,654374 

13 rs6494030 0,654374 

14 rs9526245 0,654374 

15 rs4254542 0,654374 

16 rs9651118 0,654374 

17 rs7866199 0,631615 

18 rs870695 0,631615 

19 rs1806760 0,631615 

20 rs811925 0,552691 

21 rs7736650 0,551519 

22 rs1060743 0,550694 

23 rs2230721 0,550694 

24 rs6937193 0,537417 

25 rs7213894 0,529932 

26 rs1653586 0,529863 

27 rs8041254 0,529546 

28 rs6426282 0,529546 

29 rs982804 0,529546 

30 rs17828120 0,529546 

31 rs3793511 0,529546 

32 rs7652762 0,529546 

33 rs3802428 0,52876 
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34 rs12029094 0,52876 

35 rs11100790 0,527935 

36 rs914358 0,522721 

37 rs5764698 0,507959 

38 rs12327141 0,507104 

39 rs4310078 0,506787 

40 rs52911 0,506787 

41 rs12191369 0,506787 

42 rs16896641 0,506787 

43 rs1572898 0,506787 

44 rs7760666 0,506787 

45 rs2747008 0,506787 

46 rs6475236 0,506787 

47 rs2225193 0,506787 

48 rs672901 0,506787 

49 rs1053495 0,506787 

50 rs3798887 0,506787 

51 rs13273088 0,506787 

52 rs5764825 0,506787 

53 rs6540910 0,506787 

54 rs11055616 0,506787 

55 rs10832613 0,506787 

56 rs17109366 0,506787 

57 rs4767550 0,506787 

58 rs1662332 0,506787 

59 rs17174714 0,506787 

60 rs10951201 0,506787 

61 rs2225176 0,506787 

62 rs2052852 0,506787 

63 rs2610201 0,506787 

64 rs10790332 0,506194 

65 rs7928477 0,506194 

66 rs16966703 0,505962 

67 rs1126828 0,505962 

68 rs17114803 0,505962 

69 rs2278812 0,505962 

70 rs2820718 0,505962 

71 rs796283 0,492561 
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72 rs2567982 0,492022 

73 rs1050045 0,492022 

74 rs3732923 0,491705 

75 rs2121866 0,491705 

76 rs2121867 0,491705 

77 rs7950059 0,491705 

78 rs2905967 0,491705 

79 rs10911111 0,491705 

80 rs10503404 0,491705 

81 rs1638196 0,491705 

82 rs2450130 0,491705 

83 rs17154454 0,491705 

84 rs1467051 0,491705 

85 rs10882332 0,491705 

86 rs12485273 0,491705 

87 rs1867982 0,491705 

88 rs10255956 0,491705 

89 rs7141909 0,491705 

90 rs10793302 0,491705 

91 rs10732447 0,491705 

92 rs9329334 0,491705 

93 rs12901591 0,491705 

94 rs612759 0,491705 

95 rs11087626 0,491705 

96 rs6596384 0,491705 

97 rs3846133 0,491705 

98 rs10892434 0,491705 

99 rs10238586 0,491705 

100 rs7089353 0,491705 

101 rs16869739 0,491705 

102 rs375241 0,491705 

103 rs3776586 0,491705 

104 rs341795 0,491705 

105 rs4639844 0,491705 

106 rs10084692 0,491705 

107 rs10235838 0,491705 

108 rs7431408 0,491705 

109 rs3739390 0,491705 
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110 rs6793943 0,491705 

111 rs8024206 0,491705 

112 rs901104 0,491705 

113 rs2773502 0,491705 

114 rs4685765 0,491705 

115 rs934854 0,491705 

116 rs4316429 0,491705 

117 rs12594561 0,491705 

118 rs12592002 0,491705 

119 rs2619911 0,491705 

120 rs10797791 0,491705 

121 rs17067931 0,491705 

122 rs584828 0,49088 

123 rs1385600 0,49088 

124 rs2152183 0,48344 

125 rs17114641 0,48344 

126 rs882114 0,476229 

127 rs4789786 0,476229 

128 rs3786507 0,476229 

129 rs12202209 0,476229 

130 rs460262 0,476229 

131 rs6464211 0,475404 

132 rs1150782 0,470739 

133 rs1381335 0,470588 

134 rs4870723 0,470118 

135 rs6540547 0,469597 

136 rs10024098 0,469263 

137 rs10491131 0,469009 

138 rs6503633 0,469009 

139 rs2252304 0,469009 

140 rs10402361 0,469009 

141 rs4687319 0,468946 

142 rs602668 0,468946 

143 rs2742424 0,468946 

144 rs7602727 0,468946 

145 rs606114 0,468946 

146 rs2057116 0,468946 

147 rs11742602 0,468946 
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148 rs17813652 0,468946 

149 rs6803572 0,468946 

150 rs6687672 0,468946 

151 rs7842055 0,468946 

152 rs6007009 0,468946 

153 rs2038252 0,468946 

154 rs2278844 0,468946 

155 rs12881652 0,468946 

156 rs7029570 0,468946 

157 rs17817919 0,468946 

158 rs6926560 0,468946 

159 rs17214144 0,468946 

160 rs17475367 0,468946 

161 rs12090877 0,468946 

162 rs1587607 0,468946 

163 rs4706990 0,468946 

164 rs7152571 0,468946 

165 rs2172876 0,468946 

166 rs2071272 0,468946 

167 rs1551762 0,468946 

168 rs10873172 0,468946 

169 rs2278295 0,468946 

170 rs17402830 0,468946 

171 rs2034478 0,468946 

172 rs788796 0,468946 

173 rs12424516 0,468946 

174 rs2277326 0,468946 

175 rs934750 0,468946 

176 rs705770 0,468946 

177 rs2306207 0,468946 

178 rs9368288 0,468946 

179 rs831287 0,468946 

180 rs2236345 0,468946 

181 rs9513000 0,468946 

182 rs7750443 0,468946 

183 rs2915765 0,468946 

184 rs7569357 0,468946 

185 rs3776403 0,468946 
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186 rs1010788 0,468946 

187 rs4513434 0,468946 

188 rs2290324 0,468946 

189 rs306783 0,468946 

190 rs2180090 0,468946 

191 rs12368653 0,468946 

192 rs757428 0,468946 

193 rs10519763 0,468946 

194 rs2030533 0,468946 

195 rs17408919 0,468946 

196 rs7969488 0,468946 

197 rs3817627 0,468946 

198 rs363301 0,468946 

199 rs3171980 0,468946 

200 rs3829930 0,468946 

201 rs17023934 0,468946 

202 rs10150311 0,468946 

203 rs10059683 0,468946 

204 rs10489965 0,468946 

205 rs11102040 0,468946 

206 rs6086969 0,468946 

207 rs16945692 0,468946 

208 rs10495020 0,468946 

209 rs136585 0,468946 

210 rs4909259 0,468946 

211 rs4608591 0,468946 

212 rs41480152 0,468946 

213 rs1149158 0,468946 

214 rs13299632 0,468946 

215 rs230966 0,468946 

216 rs10489964 0,468946 

217 rs9824931 0,468946 

218 rs11134233 0,468946 

219 rs462907 0,468946 

220 rs12241747 0,468946 

221 rs1556408 0,468946 

222 rs10424282 0,468946 

223 rs3793032 0,468946 
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224 rs962459 0,468946 

225 rs7665654 0,468946 

226 rs16914041 0,468946 

227 rs10775471 0,468946 

228 rs9839410 0,468946 

229 rs2239764 0,468946 

230 rs10931347 0,468946 

231 rs468308 0,468946 

232 rs217873 0,468946 

233 rs12356533 0,468946 

234 rs3783215 0,468946 

235 rs6725519 0,468946 

236 rs12353519 0,468946 

237 rs2280391 0,468946 

238 rs4380535 0,468946 

239 rs1065035 0,468675 

240 rs980989 0,468675 

241 rs17709552 0,468675 

242 rs1010169 0,468675 

243 rs17804446 0,468358 

244 rs6991221 0,468358 

245 rs7004238 0,468358 

246 rs9314604 0,468358 

247 rs17624022 0,468358 

248 rs17377379 0,468358 

249 rs687766 0,468358 

250 rs633297 0,468358 

251 rs3020233 0,468358 

252 rs150088 0,468358 

253 rs8100239 0,468358 

254 rs11061149 0,468358 

255 rs3739392 0,468358 

256 rs10924471 0,468358 

257 rs3797443 0,468358 

258 rs9456538 0,468358 

259 rs2922894 0,468358 

260 rs2922893 0,468358 

261 rs7793197 0,468358 
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262 rs2181624 0,468358 

263 rs646228 0,468358 

264 rs10911125 0,468358 

265 rs2238973 0,468358 

266 rs980653 0,468358 

267 rs1038919 0,468358 

268 rs10050568 0,468358 

269 rs1273349 0,468358 

270 rs2306021 0,468358 

271 rs4529465 0,468358 

272 rs17203328 0,468358 

273 rs10489298 0,468358 

274 rs2784176 0,468358 

275 rs1416086 0,468358 

276 rs679449 0,468358 

277 rs2241780 0,468358 

278 rs13026243 0,468358 

279 rs7648530 0,468358 

280 rs13261597 0,468358 

281 rs7012244 0,468358 

282 rs1273369 0,468358 

283 rs2325788 0,468358 

284 rs3807306 0,468358 

285 rs4497180 0,468358 

286 rs448281 0,468358 

287 rs9388981 0,468358 

288 rs7204799 0,468358 

289 rs9557765 0,468358 

290 rs11810899 0,468358 

291 rs754107 0,468358 

292 rs11127582 0,468358 

293 rs7990870 0,468358 

294 rs17642119 0,468358 

295 rs2421987 0,468358 

296 rs10519864 0,468358 

297 rs4683990 0,468358 

298 rs1570355 0,468358 

299 rs11562973 0,468358 
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300 rs12406164 0,468358 

301 rs1441951 0,468358 

302 rs6882032 0,468358 

303 rs7241781 0,468358 

304 rs706120 0,468358 

305 rs4695256 0,468358 

306 rs2288693 0,468358 

307 rs7839119 0,468358 

308 rs4143055 0,468358 

309 rs8004481 0,468358 

310 rs6001585 0,468358 

311 rs10142154 0,468358 

312 rs7526860 0,468358 

313 rs4238137 0,468358 

314 rs2985340 0,468358 

315 rs2227607 0,468358 

316 rs552191 0,468358 

317 rs17101017 0,468358 

318 rs17522183 0,468358 

319 rs703261 0,468358 

320 rs1108923 0,468358 

321 rs11211654 0,468358 

322 rs10797719 0,468358 

323 rs1003873 0,468358 

324 rs3791624 0,468358 

325 rs1533469 0,468358 

326 rs10910966 0,468358 

327 rs1007837 0,468358 

328 rs1535505 0,468358 

329 rs10749832 0,468358 

330 rs7179228 0,468358 

331 rs1573045 0,468358 

332 rs1544622 0,468358 

333 rs373759 0,468358 

334 rs17581311 0,468358 

335 rs7945395 0,468358 

336 rs7115850 0,468358 

337 rs2833423 0,468358 
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338 rs11729081 0,468358 

339 rs4742006 0,468358 

340 rs2887202 0,468358 

341 rs12902857 0,468358 

342 rs10515489 0,468358 

343 rs4742008 0,468358 

344 rs2510038 0,468358 

345 rs4589663 0,468358 

346 rs1476359 0,468358 

347 rs712839 0,468358 

348 rs2759251 0,468358 

349 rs761222 0,468358 

350 rs9827237 0,468358 

351 rs2378991 0,468358 

352 rs638859 0,468358 

353 rs11188342 0,468358 

354 rs12592370 0,468358 

355 rs2511170 0,468358 

356 rs319751 0,468358 

357 rs2373115 0,468358 

358 rs9474576 0,468358 

359 rs662999 0,468358 

360 rs16917171 0,468358 

361 rs6474387 0,468358 

362 rs1466998 0,468358 

363 rs9906088 0,468358 

364 rs10860787 0,468358 

365 rs17776503 0,468358 

366 rs7988271 0,468358 

367 rs2833426 0,468358 

368 rs16951777 0,468358 

369 rs8131958 0,468358 

370 rs41498044 0,468358 

371 rs16980706 0,468358 

372 rs10491731 0,468358 

373 rs1295741 0,468358 

374 rs6850108 0,468358 

375 rs12462609 0,468358 



 

104 

376 rs7280029 0,468358 

377 rs9457252 0,468358 

378 rs6981002 0,468358 

379 rs8105903 0,468358 

380 rs10487888 0,468358 

381 rs9886720 0,468358 

382 rs10974624 0,468358 

383 rs1508411 0,468358 

384 rs4901047 0,468358 

385 rs535112 0,468358 

386 rs12012995 0,468358 

387 rs319760 0,468358 

388 rs11602622 0,468358 

389 rs2304717 0,468358 

390 rs6592775 0,468358 

391 rs2176283 0,468358 

392 rs9295385 0,468358 

393 rs6081611 0,468358 

394 rs6920829 0,468358 

395 rs2661810 0,468358 

396 rs11624601 0,468358 

397 rs1528972 0,468358 

398 rs11762469 0,468358 

399 rs4291702 0,468358 

400 rs12035887 0,468358 

401 rs1755609 0,468358 

402 rs12623816 0,468358 

403 rs4244192 0,468358 

404 rs571701 0,468358 

405 rs6548485 0,468358 

406 rs1315130 0,468358 

407 rs13143866 0,468358 

408 rs10435360 0,468358 

409 rs9867093 0,468358 

410 rs2510054 0,468358 

411 rs7629708 0,468358 

412 rs16893166 0,468358 

413 rs7945424 0,468358 
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414 rs6474388 0,468358 

415 rs7543453 0,468358 

416 rs11071548 0,468358 

417 rs7084706 0,468358 

418 rs7901883 0,468358 

419 rs10494080 0,468358 

420 rs10905930 0,468358 

421 rs10162627 0,468358 

422 rs849538 0,468358 

423 rs3774862 0,468358 

424 rs11206955 0,468358 

425 rs1346944 0,468358 

426 rs3135715 0,468358 

427 rs672203 0,468358 

428 rs2578269 0,468358 

429 rs6822971 0,468358 

430 rs17018731 0,468358 

431 rs17685233 0,468358 

432 rs3767364 0,468358 

433 rs3904857 0,468358 

434 rs3807918 0,468358 

435 rs9309766 0,468358 

436 rs7749278 0,468358 

437 rs11022254 0,468358 

438 rs1441952 0,468358 

439 rs2253211 0,468358 

440 rs6798616 0,468358 

441 rs2444043 0,468358 

442 rs4945261 0,468358 

443 rs8187945 0,468358 

444 rs12186105 0,468358 

445 rs17154432 0,468358 

446 rs2243283 0,468358 

447 rs4636424 0,468358 

448 rs17015201 0,468358 

449 rs2788019 0,468358 

450 rs376027 0,468358 

451 rs1880084 0,468358 
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452 rs9383882 0,468358 

453 rs16860440 0,468358 

454 rs12201030 0,468358 

455 rs2240492 0,468358 

456 rs1894603 0,468358 

457 rs816868 0,468358 

458 rs6673646 0,468358 

459 rs4732416 0,468358 

460 rs4742009 0,468358 

461 rs7872937 0,468358 

462 rs1661444 0,468358 

463 rs706119 0,468358 

464 rs9544544 0,468358 

465 rs16954106 0,468358 

466 rs7032871 0,468358 

467 rs9332471 0,468358 

468 rs487865 0,468358 

469 rs7679010 0,468358 

470 rs2295050 0,468358 

471 rs16906549 0,468358 

472 rs232262 0,468121 

473 rs572846 0,468121 

474 rs2310312 0,467533 

475 rs11830378 0,447686 

476 rs4123837 0,447241 

477 rs752662 0,447075 

478 rs8192100 0,447075 

479 rs4683139 0,44625 

480 rs41381550 0,44625 

481 rs6945447 0,44625 

482 rs2883456 0,44625 

483 rs2251021 0,44625 

484 rs1919969 0,44625 

485 rs3210458 0,44621 

486 rs4930265 0,445916 

487 rs17114808 0,445916 

488 rs2537828 0,445599 

489 rs41433548 0,445599 
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490 rs17793957 0,445599 

491 rs654631 0,445599 

492 rs7107498 0,445599 

493 rs17381596 0,445599 

494 rs17071628 0,445599 

495 rs17752628 0,445599 

496 rs10208185 0,445599 

497 rs7730403 0,445599 

498 rs10493173 0,445599 

499 rs17752640 0,445599 

500 rs10487780 0,445599 

501 rs509556 0,445599 

502 rs17494418 0,445599 

503 rs1808529 0,445599 

504 rs3807874 0,445599 

505 rs17470122 0,445599 

506 rs6039135 0,445599 

507 rs10509709 0,445599 

508 rs11682005 0,445599 

509 rs6761956 0,445599 

510 rs12507552 0,445599 

511 rs7023041 0,445599 

512 rs10197159 0,445599 

513 rs5022059 0,445599 

514 rs12125867 0,445599 

515 rs647130 0,445599 

516 rs17221034 0,445599 

517 rs6006733 0,445599 

518 rs9911460 0,445599 

519 rs4944551 0,445599 

520 rs6830624 0,445599 

521 rs10137468 0,445599 

522 rs17129159 0,445599 

523 rs7802083 0,445599 

524 rs12453085 0,445599 

525 rs1527369 0,445599 

526 rs776023 0,445599 

527 rs2216386 0,445599 



 

108 

528 rs7516312 0,445599 

529 rs2694643 0,445599 

530 rs9303590 0,445599 

531 rs1793284 0,445599 

532 rs234914 0,445599 

533 rs7245009 0,445599 

534 rs4789189 0,445599 

535 rs7387373 0,445599 

536 rs11715222 0,445599 

537 rs17817690 0,445599 

538 rs12212067 0,445599 

539 rs10851257 0,445599 

540 rs10791894 0,445599 

541 rs17107695 0,445599 

542 rs746018 0,445599 

543 rs10501603 0,445599 

544 rs4430517 0,445599 

545 rs5753336 0,445599 

546 rs1569437 0,445599 

547 rs12197213 0,445599 

548 rs7518943 0,445599 

549 rs7211994 0,445599 

550 rs6006743 0,445599 

551 rs1507357 0,445599 

552 rs2277304 0,445599 

553 rs746019 0,445599 

554 rs2065922 0,445599 

555 rs17293003 0,445599 

556 rs2116390 0,445599 

557 rs778143 0,445599 

558 rs16951395 0,445599 

559 rs12765825 0,445599 

560 rs4571967 0,445599 

561 rs2304195 0,445599 

562 rs234915 0,445599 

563 rs11162341 0,445599 

564 rs17105095 0,445599 

565 rs10924173 0,445599 
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566 rs6742774 0,445599 

567 rs11651891 0,445599 

568 rs1889522 0,445599 

569 rs17744938 0,445599 

570 rs936160 0,445599 

571 rs6501786 0,445599 

572 rs17310529 0,445599 

573 rs17099883 0,445599 

574 rs2513077 0,445599 

575 rs41503946 0,445599 

576 rs12974182 0,445599 

577 rs2038915 0,445599 

578 rs2600672 0,445599 

579 rs1912401 0,445599 

580 rs2934683 0,445599 

581 rs10926756 0,445599 

582 rs6988293 0,445599 

583 rs12248642 0,445599 

584 rs12622458 0,445599 

585 rs10875286 0,445599 

586 rs2889490 0,445599 

587 rs4790406 0,445599 

588 rs3807219 0,445599 

589 rs4789782 0,445599 

590 rs13217051 0,445599 

591 rs17227580 0,445599 

592 rs1546914 0,445599 

593 rs2058469 0,445599 

594 rs10416445 0,445599 

595 rs17537634 0,445599 

596 rs7418577 0,445599 

597 rs10000185 0,445599 

598 rs9840074 0,445599 

599 rs1334600 0,445599 

600 rs4789788 0,445599 

601 rs12713431 0,445599 

602 rs1145908 0,445599 

603 rs773853 0,445599 
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604 rs4789188 0,445599 

605 rs12196205 0,445599 

606 rs6466819 0,445599 

607 rs12155080 0,445599 

608 rs6700589 0,445599 

609 rs31505 0,445599 

610 rs12153735 0,445599 

611 rs12160956 0,445599 

612 rs2166440 0,445599 

613 rs17746778 0,445599 

614 rs10494374 0,445599 

615 rs9512986 0,445599 

616 rs923711 0,445599 

617 rs1073246 0,445599 

618 rs6953295 0,445599 

619 rs7160534 0,445599 

620 rs7548780 0,445599 

621 rs3781560 0,445599 

622 rs6503275 0,445599 

623 rs3801410 0,445599 

624 rs12719718 0,445599 

625 rs2407548 0,445599 

626 rs4238390 0,445599 

627 rs1339226 0,445599 

628 rs716333 0,445599 

629 rs11201804 0,445599 

630 rs586284 0,445599 

631 rs11963528 0,445599 

632 rs2837970 0,445599 

633 rs17009672 0,445599 

634 rs6917851 0,445599 

635 rs1005092 0,445599 

636 rs17105164 0,445599 

637 rs12600845 0,445599 

638 rs2030080 0,445599 

639 rs7334078 0,445599 

640 rs10485147 0,445599 

641 rs12406713 0,445599 
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642 rs9319410 0,445599 

643 rs5986510 0,445599 

644 rs6937379 0,445599 

645 rs6677116 0,445599 

646 rs889730 0,445599 

647 rs17105914 0,445599 

648 rs17107578 0,445599 

649 rs17105907 0,445599 

650 rs12783090 0,445599 

651 rs2153612 0,445599 

652 rs10205160 0,445599 

653 rs788799 0,445599 

654 rs10266006 0,445599 

655 rs16851949 0,445599 

656 rs6738344 0,445599 

657 rs2074614 0,445599 

658 rs2284293 0,445599 

659 rs747996 0,445599 

660 rs11615548 0,445599 

661 rs514643 0,445599 

662 rs2305206 0,445599 

663 rs17096257 0,445599 

664 rs10495022 0,445599 

665 rs6115381 0,445599 

666 rs6793635 0,445599 

667 rs1591636 0,445599 

668 rs492563 0,445599 

669 rs2290519 0,445599 

670 rs542600 0,445599 

671 rs544398 0,445599 

672 rs1173850 0,445599 

673 rs6536392 0,445599 

674 rs706133 0,445599 

675 rs7130004 0,445599 

676 rs16857272 0,445599 

677 rs4919008 0,445599 

678 rs38808 0,445599 

679 rs17712300 0,445599 
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680 rs10038062 0,445599 

681 rs4970722 0,445599 

682 rs11070765 0,445599 

683 rs6500288 0,445599 

684 rs11671309 0,445599 

685 rs142 0,445599 

686 rs507326 0,445599 

687 rs7656697 0,445599 

688 rs17057475 0,445599 

689 rs4771207 0,445599 

690 rs7206735 0,445599 

691 rs1437337 0,445599 

692 rs1539439 0,445599 

693 rs7672834 0,445599 

694 rs17217647 0,445599 

695 rs12080760 0,445599 

696 rs3798889 0,445599 

697 rs2273151 0,445599 

698 rs2273152 0,445599 

699 rs1911594 0,445599 

700 rs10060763 0,445599 

701 rs12568559 0,445599 

702 rs2098781 0,445599 

703 rs2473138 0,445599 

704 rs136575 0,445599 

705 rs7985565 0,445599 

706 rs10462535 0,445599 

707 rs2493766 0,445599 

708 rs1323430 0,445599 

709 rs2144317 0,445599 

710 rs17792105 0,445599 

711 rs2347946 0,445599 

712 rs491730 0,445599 

713 rs10937121 0,445599 

714 rs10906451 0,445599 

715 rs7578592 0,445599 

716 rs17469935 0,445599 

717 rs10894801 0,445599 
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718 rs10906224 0,445599 

719 rs1621293 0,445599 

720 rs10486950 0,445599 

721 rs17101464 0,445599 

722 rs4791287 0,445599 

723 rs17686720 0,445599 

724 rs9614462 0,445599 

725 rs9583334 0,445599 

726 rs9316153 0,445599 

727 rs203050 0,445599 

728 rs13353636 0,445599 

729 rs16946506 0,445599 

730 rs17250107 0,445599 

731 rs7339274 0,445599 

732 rs17804923 0,445599 

733 rs17026635 0,445599 

734 rs745639 0,445599 

735 rs13298370 0,445599 

736 rs6540614 0,445599 

737 rs252545 0,445599 

738 rs11466511 0,445599 

739 rs491928 0,445599 

740 rs7228240 0,445599 

741 rs536054 0,445599 

742 rs12529407 0,445599 

743 rs2152066 0,445599 

744 rs2191316 0,445599 

745 rs3765098 0,445599 

746 rs16952975 0,445599 

747 rs10889155 0,445599 

748 rs9316514 0,445599 

749 rs2423464 0,445599 

750 rs4254878 0,445599 

751 rs12614102 0,445599 

752 rs3793181 0,445599 

753 rs2153000 0,445599 

754 rs7934652 0,445599 

755 rs4669573 0,445599 
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756 rs4491964 0,445599 

757 rs10196146 0,445599 

758 rs1994312 0,445599 

759 rs1177234 0,445599 

760 rs1483449 0,445599 

761 rs7201414 0,445599 

762 rs155387 0,445599 

763 rs6935296 0,445599 

764 rs11045970 0,445599 

765 rs7731153 0,445599 

766 rs12956638 0,445599 

767 rs1082214 0,445599 

768 rs3735487 0,445599 

769 rs2498500 0,445599 

770 rs10224793 0,445599 

771 rs2753614 0,445599 

772 rs2219250 0,445599 

773 rs16939880 0,445599 

774 rs10943930 0,445599 

775 rs2990877 0,445599 

776 rs12464067 0,445599 

777 rs996379 0,445599 

778 rs7315682 0,445599 

779 rs13198062 0,445599 

780 rs4362705 0,445599 

781 rs6672561 0,445599 

782 rs1431486 0,445599 

783 rs978290 0,445599 

784 rs7589790 0,445599 

785 rs12625776 0,445599 

786 rs500243 0,445599 

787 rs1149160 0,445599 

788 rs7946133 0,445599 

789 rs2448246 0,445599 

790 rs2498434 0,445599 

791 rs3782837 0,445599 

792 rs1629507 0,445599 

793 rs1663584 0,445599 
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794 rs1690918 0,445599 

795 rs492823 0,445599 

796 rs593479 0,445599 

797 rs9392325 0,445599 

798 rs7527246 0,445599 

799 rs10066756 0,445599 

800 rs2660228 0,445599 

801 rs10492629 0,445599 

802 rs17355265 0,445599 

803 rs3801712 0,445599 

804 rs12415467 0,445599 

805 rs1149155 0,445599 

806 rs6086964 0,445599 

807 rs17096091 0,445599 

808 rs17066720 0,445599 

809 rs4103380 0,445599 

810 rs2466089 0,445599 

811 rs6881888 0,445599 

812 rs4611855 0,445599 

813 rs10137465 0,445599 

814 rs1149156 0,445599 

815 rs1501253 0,445599 

816 rs479640 0,445599 

817 rs31669 0,445599 

818 rs12995333 0,445599 

819 rs11629324 0,445599 

820 rs4466137 0,445599 

821 rs7896883 0,445599 

822 rs10487998 0,445599 

823 rs6971925 0,445599 

824 rs17133543 0,445599 

825 rs1030110 0,445599 

826 rs3770375 0,445599 

827 rs149667 0,445599 

828 rs11223351 0,445599 

829 rs17234886 0,445599 

830 rs1997865 0,445599 

831 rs10926758 0,445599 



 

116 

832 rs1864744 0,445599 

833 rs10949739 0,445599 

834 rs12113120 0,445599 

835 rs11854890 0,445599 

836 rs17159833 0,445599 

837 rs9442956 0,445599 

838 rs13207114 0,445599 

839 rs4707570 0,445599 

840 rs3796632 0,445599 

841 rs848086 0,445599 

842 rs17714306 0,445599 

843 rs567348 0,445599 

844 rs11847417 0,445599 

845 rs7044045 0,445599 

846 rs4835774 0,445599 

847 rs1277215 0,445599 

848 rs177374 0,445599 

849 rs4372296 0,445599 

850 rs2399858 0,445599 

851 rs2143988 0,445599 

852 rs17105916 0,445599 

853 rs9589986 0,445599 

854 rs7573820 0,445599 

855 rs13201188 0,445599 

856 rs10141687 0,445599 

857 rs154942 0,445599 

858 rs7621841 0,445599 

859 rs4433764 0,445599 

860 rs2729682 0,445599 

861 rs2439222 0,445599 

862 rs13157965 0,445599 

863 rs1784178 0,445599 

864 rs6476078 0,445599 

865 rs569376 0,445599 

866 rs11688935 0,445599 

867 rs11246340 0,445599 

868 rs16910520 0,445599 

869 rs6698474 0,445599 
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870 rs7118874 0,445599 

871 rs17023936 0,445599 

872 rs3807222 0,445599 

873 rs10753688 0,445599 

874 rs4652742 0,445599 

875 rs746064 0,445599 

876 rs4379706 0,445599 

877 rs6694158 0,445599 

878 rs17797801 0,445599 

879 rs10747489 0,445599 

880 rs6504077 0,445599 

881 rs154631 0,445599 

882 rs4486743 0,445599 

883 rs11143589 0,445599 

884 rs1587608 0,445599 

885 rs10138002 0,445599 

886 rs17135053 0,445599 

887 rs11147040 0,445599 

888 rs123241 0,445599 

889 rs16887057 0,445599 

890 rs192795 0,445599 

891 rs2184723 0,445599 

892 rs994424 0,445599 

893 rs4904262 0,445599 

894 rs12709653 0,445599 

895 rs5986480 0,445599 

896 rs10904831 0,445599 

897 rs4655414 0,445599 

898 rs6105115 0,445599 

899 rs6759186 0,445599 

900 rs7904146 0,445599 

901 rs36133 0,445599 

902 rs37332 0,445599 

903 rs2813728 0,445599 

904 rs10519344 0,445599 

905 rs7621973 0,445599 

906 rs7437956 0,445599 

907 rs2768941 0,445599 
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908 rs7064104 0,445599 

909 rs893179 0,445599 

910 rs6042365 0,445599 

911 rs9511941 0,445599 

912 rs12719719 0,445599 

913 rs152060 0,445599 

914 rs735756 0,445599 

915 rs7685063 0,445599 

916 rs6546119 0,445599 

917 rs3108630 0,445599 

918 rs10510170 0,445599 

919 rs13009588 0,445599 

920 rs468821 0,445599 

921 rs6134890 0,445599 

922 rs9507991 0,445599 

923 rs11639569 0,445599 

924 rs17115411 0,445599 

925 rs2165888 0,445599 

926 rs4986122 0,445599 

927 rs11773627 0,445599 

928 rs16855155 0,445599 

929 rs7548768 0,445599 

930 rs2288270 0,445599 

931 rs17455458 0,445599 

932 rs3767910 0,445599 

933 rs6994888 0,445599 

934 rs17124895 0,445599 

935 rs12455083 0,445599 

936 rs6666724 0,445599 

937 rs8131547 0,445599 

938 rs177407 0,445599 

939 rs4787040 0,445599 

940 rs27139 0,445599 

941 rs586037 0,445599 

942 rs5762546 0,445599 

943 rs7338172 0,445599 

944 rs7872482 0,445599 

945 rs1024681 0,445599 
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946 rs9863706 0,445599 

947 rs7756062 0,445599 

948 rs4796640 0,444774 

949 rs12001326 0,444774 

950 rs6565624 0,444774 

951 rs604411 0,444774 

952 rs12512157 0,444774 

953 rs10503065 0,425062 

954 rs3743473 0,424786 

955 rs2286720 0,424237 

956 rs999147 0,40998 

957 rs8052055 0,40998 

958 rs8468 0,409511 
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APPENDIX C - Electronic Format of Decision Trees 

 

 

Attached CD below contains decision trees constructed using; 

 Representative SNPs(only genotype data) 

 Representative SNPs and Clinical data in .swf format. 

Flash Player or any web browser with plugged in flash player may run the files. 
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APPENDIX D - Decision Tree Generated by Representative SNPs  

 

 

SNP_A-4213932 = [C_C] 

|   SNP_A-2146889 = [G_G] 

|   |   SNP_A-1896372 = [G_G]: CASE {CASE=7, CNTL=1} 

|   |   SNP_A-1896372 = [T_G] / [G_T]: CNTL {CASE=0, CNTL=2} 

|   SNP_A-2146889 = [T_G] / [G_T] 

|   |   SNP_A-1849082 = [A_G] / [G_A]: CASE {CASE=17, CNTL=0} 

|   |   SNP_A-1849082 = [G_G] 

|   |   |   SNP_A-2118885 = [T_C] / [C_T]: CNTL {CASE=1, CNTL=9} 

|   |   |   SNP_A-2118885 = [T_T] 

|   |   |   |   SNP_A-2125015 = [A_G] / [G_A]: CASE {CASE=12, CNTL=0} 

|   |   |   |   SNP_A-2125015 = [G_G] 

|   |   |   |   |   SNP_A-2034790 = [A_C] / [C_A]: CASE {CASE=8, CNTL=0} 

|   |   |   |   |   SNP_A-2034790 = [C_C] 

|   |   |   |   |   |   SNP_A-1865279 = [A_G] / [G_A]: CASE {CASE=8, CNTL=0} 

|   |   |   |   |   |   SNP_A-1865279 = [G_G] 

|   |   |   |   |   |   |   SNP_A-1812298 = [G_G] 

|   |   |   |   |   |   |   |   SNP_A-2083550 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=4} 

|   |   |   |   |   |   |   |   SNP_A-2083550 = [T_T]: CASE {CASE=97, CNTL=54} 

|   |   |   |   |   |   |   SNP_A-1812298 = [T_G] / [G_T]: CNTL {CASE=0, CNTL=4} 

|   SNP_A-2146889 = [T_T] 

|   |   SNP_A-2114080 = [A_A] 

|   |   |   SNP_A-1838931 = [C_C] 

|   |   |   |   SNP_A-2272567 = [C_C] 

|   |   |   |   |   SNP_A-1892259 = [G_G]: CASE {CASE=3, CNTL=0} 

|   |   |   |   |   SNP_A-1892259 = [T_G] / [G_T] 

|   |   |   |   |   |   SNP_A-2034790 = [A_C] / [C_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   SNP_A-2034790 = [C_C] 

|   |   |   |   |   |   |   SNP_A-2272456 = [G_G] 

|   |   |   |   |   |   |   |   SNP_A-4261255 = [T_G] / [G_T]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   SNP_A-4261255 = [T_T] 

|   |   |   |   |   |   |   |   |   SNP_A-1987132 = [C_G] / [G_C]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   |   SNP_A-1987132 = [G_G]: CNTL {CASE=15, CNTL=39} 

|   |   |   |   |   |   |   SNP_A-2272456 = [T_G] / [G_T]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   SNP_A-1892259 = [T_T] 

|   |   |   |   |   |   SNP_A-2296526 = [A_A]: CNTL {CASE=0, CNTL=4} 

|   |   |   |   |   |   SNP_A-2296526 = [A_G] / [G_A] 

|   |   |   |   |   |   |   SNP_A-2125015 = [A_G] / [G_A]: CASE {CASE=4, CNTL=0} 

|   |   |   |   |   |   |   SNP_A-2125015 = [G_G]: CNTL {CASE=17, CNTL=31} 

|   |   |   |   |   |   SNP_A-2296526 = [G_G] 

|   |   |   |   |   |   |   SNP_A-1980601 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=5} 
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|   |   |   |   |   |   |   SNP_A-1980601 = [T_T] 

|   |   |   |   |   |   |   |   SNP_A-1902372 = [T_C] / [C_T] 

|   |   |   |   |   |   |   |   |   SNP_A-1965422 = [T_C] / [C_T]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   |   SNP_A-1965422 = [T_T]: CNTL {CASE=0, CNTL=10} 

|   |   |   |   |   |   |   |   SNP_A-1902372 = [T_T] 

|   |   |   |   |   |   |   |   |   SNP_A-2113638 = [C_C] 

|   |   |   |   |   |   |   |   |   |   SNP_A-2030266 = [A_G] / [G_A]: CNTL {CASE=5, CNTL=12} 

|   |   |   |   |   |   |   |   |   |   SNP_A-2030266 = [G_G]: CASE {CASE=283, CNTL=176} 

|   |   |   |   |   |   |   |   |   SNP_A-2113638 = [T_C] / [C_T] 

|   |   |   |   |   |   |   |   |   |   SNP_A-1872465 = [A_A]: CNTL {CASE=16, CNTL=31} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1872465 = [A_G] / [G_A]: CASE {CASE=3, CNTL=0} 

|   |   |   |   |   |   |   |   |   SNP_A-2113638 = [T_T]: CASE {CASE=1, CNTL=1} 

|   |   |   |   SNP_A-2272567 = [T_C] / [C_T]: CASE {CASE=9, CNTL=0} 

|   |   |   SNP_A-1838931 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=9} 

|   |   SNP_A-2114080 = [A_G] / [G_A] 

|   |   |   SNP_A-1987132 = [C_G] / [G_C]: CASE {CASE=7, CNTL=0} 

|   |   |   SNP_A-1987132 = [G_G] 

|   |   |   |   SNP_A-1809622 = [A_G] / [G_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   SNP_A-1809622 = [G_G] 

|   |   |   |   |   SNP_A-1997332 = [A_A] 

|   |   |   |   |   |   SNP_A-4273581 = [T_C] / [C_T]: CASE {CASE=8, CNTL=2} 

|   |   |   |   |   |   SNP_A-4273581 = [T_T]: CNTL {CASE=32, CNTL=92} 

|   |   |   |   |   SNP_A-1997332 = [A_G] / [G_A]: CASE {CASE=2, CNTL=0} 

|   |   SNP_A-2114080 = [G_G]: CNTL {CASE=1, CNTL=8} 

SNP_A-4213932 = [T_C] / [C_T] 

|   SNP_A-2258450 = [A_A] 

|   |   SNP_A-1901559 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=6} 

|   |   SNP_A-1901559 = [G_G] 

|   |   |   SNP_A-1930045 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=5} 

|   |   |   SNP_A-1930045 = [G_G] 

|   |   |   |   SNP_A-4198010 = [A_A] 

|   |   |   |   |   SNP_A-2164852 = [C_C] 

|   |   |   |   |   |   SNP_A-2118885 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=10} 

|   |   |   |   |   |   SNP_A-2118885 = [T_T] 

|   |   |   |   |   |   |   SNP_A-2268610 = [A_A] 

|   |   |   |   |   |   |   |   SNP_A-1865279 = [A_G] / [G_A]: CASE {CASE=8, CNTL=1} 

|   |   |   |   |   |   |   |   SNP_A-1865279 = [G_G] 

|   |   |   |   |   |   |   |   |   SNP_A-2021678 = [C_C] 

|   |   |   |   |   |   |   |   |   |   SNP_A-1929138 = [C_C]: CNTL {CASE=131, CNTL=162} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1929138 = [C_G] / [G_C]: CASE {CASE=5, CNTL=0} 

|   |   |   |   |   |   |   |   |   SNP_A-2021678 = [T_C] / [C_T] 

|   |   |   |   |   |   |   |   |   |   SNP_A-2304918 = [A_A]: CNTL {CASE=0, CNTL=18} 

|   |   |   |   |   |   |   |   |   |   SNP_A-2304918 = [A_G] / [G_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   SNP_A-2268610 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=7} 
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|   |   |   |   |   SNP_A-2164852 = [C_G] / [G_C] 

|   |   |   |   |   |   SNP_A-2075360 = [A_C] / [C_A]: CNTL {CASE=0, CNTL=2} 

|   |   |   |   |   |   SNP_A-2075360 = [C_C]: CASE {CASE=9, CNTL=0} 

|   |   |   |   SNP_A-4198010 = [A_G] / [G_A]: CNTL {CASE=1, CNTL=11} 

|   SNP_A-2258450 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=8} 

SNP_A-4213932 = [T_T] 

|   SNP_A-1849082 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=2} 

|   SNP_A-1849082 = [G_G] 

|   |   SNP_A-1893931 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=2} 

|   |   SNP_A-1893931 = [G_G]: CASE {CASE=20, CNTL=8} 
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APPENDIX E - Decision Rules to Predict Disease Status in Terms of AD 

Using Representative SNPs 

 

No Decision Rules for CASES Gene Chr. P. 

1 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

87,50% 
SNP_A-2146889 = [G_G]  FOXO3  forkhead box O3 6 

SNP_A-1896372 = [G_G] 
 DISC1  disrupted in 
schizophrenia 1 

1 

2 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 
SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

SNP_A-1849082 = [A_G] / [G_A]  NBN  nibrin 8 

3 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 
SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2125015 = [A_G] / [G_A] 
 PDZD8  PDZ domain 
containing 8 

10 

4 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2125015 = [G_G] 
 PDZD8  PDZ domain 
containing 8 

10 

SNP_A-2034790 = [A_C] / [C_A] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

5 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2125015 = [G_G]  PDZD8  PDZ domain 10 
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containing 8 

SNP_A-2034790 = [C_C] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

SNP_A-1865279 = [A_G] / [G_A] 
 C9orf3  chromosome 9 open 
reading frame 3 

9 

6 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

64,24% 

SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2125015 = [G_G] 
 PDZD8  PDZ domain 
containing 8 

10 

SNP_A-2034790 = [C_C] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

SNP_A-1865279 = [G_G] 
 C9orf3  chromosome 9 open 
reading frame 3 

9 

SNP_A-1812298 = [G_G] 
 ARHGAP26  Rho GTPase 
activating protein 26 

5 

SNP_A-2083550 = [T_T]  ANGPT2  angiopoietin 2 8 

7 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [G_G]  LIPH  lipase, member H 3 

8 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 
SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 
 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 

7 
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short basic domain, secreted, 
(semaphorin) 3C 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

SNP_A-2034790 = [A_C] / [C_A] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

9 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

SNP_A-2034790 = [C_C] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

SNP_A-2272456 = [G_G] 

 SLC35A3  solute carrier 
family 35 (UDP-N-
acetylglucosamine (UDP-
GlcNAc) transporter), 
member A3 

1 

SNP_A-4261255 = [T_G] / [G_T] 
 PTPRM  protein tyrosine 
phosphatase, receptor type, 
M 

18 

10 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 
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SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

SNP_A-2034790 = [C_C] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

SNP_A-2272456 = [G_G] 

 SLC35A3  solute carrier 
family 35 (UDP-N-
acetylglucosamine (UDP-
GlcNAc) transporter), 
member A3 

1 

SNP_A-4261255 = [T_T] 
 PTPRM  protein tyrosine 
phosphatase, receptor type, 
M 

18 

SNP_A-1987132 = [C_G] / [G_C] 
 ATG5  ATG5 autophagy 
related 5 homolog (S. 
cerevisiae) 

6 

11 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

SNP_A-2034790 = [C_C] 
 ENPP6  ectonucleotide 
pyrophosphatase/phosphodie
sterase 6 

4 

SNP_A-2272456 = [T_G] / [G_T] 

 SLC35A3  solute carrier 
family 35 (UDP-N-
acetylglucosamine (UDP-
GlcNAc) transporter), 
member A3 

1 

12 
SNP_A-4213932 = [C_C] 

 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 
100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 



 

128 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 
intermediate/small 
conductance calcium-
activated channel, subfamily 
N, member 3 

1 

SNP_A-2125015 = [A_G] / [G_A] 
 PDZD8  PDZ domain 
containing 8 

10 

13 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 
intermediate/small 
conductance calcium-
activated channel, subfamily 
N, member 3 

1 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, 
seven thrombospondin 
repeats (type 1 and type 1-
like), transmembrane domain 
(TM) and short cytoplasmic 
domain, (semaphorin) 5A 

5 

SNP_A-1902372 = [T_C] / [C_T]  GSN  gelsolin 9 

SNP_A-1965422 = [T_C] / [C_T]  FMNL2  formin-like 2 2 
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14 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

61,66% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 
intermediate/small 
conductance calcium-
activated channel, subfamily 
N, member 3 

1 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, 
seven thrombospondin 
repeats (type 1 and type 1-
like), transmembrane domain 
(TM) and short cytoplasmic 
domain, (semaphorin) 5A 

5 

SNP_A-1902372 = [T_T]  GSN  gelsolin 9 

SNP_A-2113638 = [C_C]  TPO  thyroid peroxidase 2 

SNP_A-2030266 = [G_G]  SYN3  synapsin III 22 

15 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 
 KCNN3  potassium 
intermediate/small 

1 
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conductance calcium-
activated channel, subfamily 
N, member 3 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, 
seven thrombospondin 
repeats (type 1 and type 1-
like), transmembrane domain 
(TM) and short cytoplasmic 
domain, (semaphorin) 5A 

5 

SNP_A-1902372 = [T_T]  GSN  gelsolin 9 

SNP_A-2113638 = [T_C] / [C_T]  TPO  thyroid peroxidase 2 

SNP_A-1872465 = [A_G] / [G_A] 
C9orf3  chromosome 9 open 
reading frame 3 

9 

16 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

50,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 
intermediate/small 
conductance calcium-
activated channel, subfamily 
N, member 3 

1 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, 
seven thrombospondin 
repeats (type 1 and type 1-
like), transmembrane domain 
(TM) and short cytoplasmic 
domain, (semaphorin) 5A 

5 

SNP_A-1902372 = [T_T]  GSN  gelsolin 9 

SNP_A-2113638 = [T_T]  TPO  thyroid peroxidase 2 

17 
SNP_A-4213932 = [C_C] 

 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 
100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 
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SNP_A-2114080 = [A_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-2272567 = [T_C] / [C_T] 
 ABCC4  ATP-binding cassette, 
sub-family C (CFTR/MRP), 
member 4 

13 

18 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1987132 = [C_G] / [G_C] 
 ATG5  ATG5 autophagy 
related 5 homolog (S. 
cerevisiae) 

6 

19 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy 
related 5 homolog (S. 
cerevisiae) 

6 

SNP_A-1809622 = [A_G] / [G_A] 
HMGA1  high mobility group 
AT-hook 1 

6 

20 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

80,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy 
related 5 homolog (S. 
cerevisiae) 

6 

SNP_A-1809622 = [G_G] 
HMGA1  high mobility group 
AT-hook 1 

6 

SNP_A-1997332 = [A_A] 
 GABBR2  gamma-
aminobutyric acid (GABA) B 
receptor, 2 

9 

SNP_A-4273581 = [T_C] / [C_T]  MAML3  mastermind-like 3 4 
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(Drosophila) 

21 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A] 
 KIF26B  kinesin family 
member 26B 

1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy 
related 5 homolog (S. 
cerevisiae) 

6 

SNP_A-1809622 = [G_G] 
HMGA1  high mobility group 
AT-hook 1 

6 

SNP_A-1997332 = [A_G] / [G_A] 
 GABBR2  gamma-
aminobutyric acid (GABA) B 
receptor, 2 

9 

22 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

88,89% 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] 
STK39  serine threonine 
kinase 39 

2 

SNP_A-1930045 = [G_G] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-4198010 = [A_A] 
 FGD4  FYVE, RhoGEF and PH 
domain containing 4 

4 

SNP_A-2164852 = [C_C]  TLL2  tolloid-like 2 10 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2268610 = [A_A] 
PIKFYVE  phosphoinositide 
kinase, FYVE finger containing 

2 

SNP_A-1865279 = [A_G] / [G_A] 
 C9orf3  chromosome 9 open 
reading frame 3 

9 

23 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] 
STK39  serine threonine 
kinase 39 

2 

SNP_A-1930045 = [G_G] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-4198010 = [A_A]  FGD4  FYVE, RhoGEF and PH 4 
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domain containing 4 

SNP_A-2164852 = [C_C]  TLL2  tolloid-like 2 10 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2268610 = [A_A] 
PIKFYVE  phosphoinositide 
kinase, FYVE finger containing 

2 

SNP_A-1865279 = [G_G] 
 C9orf3  chromosome 9 open 
reading frame 3 

9 

SNP_A-2021678 = [C_C] 
DOK1  docking protein 1, 
62kDa (downstream of 
tyrosine kinase 1) 

2 

SNP_A-1929138 = [C_G] / [G_C] 
 TRHDE  thyrotropin-releasing 
hormone degrading enzyme 

12 

24 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] 
STK39  serine threonine 
kinase 39 

2 

SNP_A-1930045 = [G_G] 

 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

7 

SNP_A-4198010 = [A_A] 
 FGD4  FYVE, RhoGEF and PH 
domain containing 4 

4 

SNP_A-2164852 = [C_C]  TLL2  tolloid-like 2 10 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

SNP_A-2268610 = [A_A] 
PIKFYVE  phosphoinositide 
kinase, FYVE finger containing 

2 

SNP_A-1865279 = [G_G] 
 C9orf3  chromosome 9 open 
reading frame 3 

9 

SNP_A-2021678 = [T_C] / [C_T] 
DOK1  docking protein 1, 
62kDa (downstream of 
tyrosine kinase 1) 

2 

SNP_A-2304918 = [A_G] / [G_A] 
 SNW1  SNW domain 
containing 1 

14 

25 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

100,00% 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] 
STK39  serine threonine 
kinase 39 

2 

SNP_A-1930045 = [G_G] 
 SEMA3C  sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 

7 
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(semaphorin) 3C 

SNP_A-4198010 = [A_A] 
 FGD4  FYVE, RhoGEF and PH 
domain containing 4 

4 

SNP_A-2164852 = [C_G] / [G_C]  TLL2  tolloid-like 2 10 

SNP_A-2075360 = [C_C] 
CAMKK2  calcium/calmodulin-
dependent protein kinase 
kinase 2, beta 

12 

26 

SNP_A-4213932 = [T_T] 
 DBT  dihydrolipoamide 
branched chain transacylase 
E2 

1 

71,43% 
SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-1893931 = [G_G] 
 PLCB1  phospholipase C, beta 
1 (phosphoinositide-specific) 

20 
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APPENDIX F - Decision Tree Generated by Representative SNPs and 

Clinical Data 

 

 

SNP_A-4213932 = [C_C] 

|   SNP_A-2146889 = [G_G] 

|   |   SNP_A-1896372 = [G_G]: CASE {CASE=7, CNTL=1} 

|   |   SNP_A-1896372 = [T_G] / [G_T]: CNTL {CASE=0, CNTL=2} 

|   SNP_A-2146889 = [T_G] / [G_T] 

|   |   Body_Mass_Indx > 36.250: CNTL {CASE=0, CNTL=3} 

|   |   Body_Mass_Indx ≤ 36.250 

|   |   |   TRIG_MMOL_L > 0.700 

|   |   |   |   age > 90.200: CNTL {CASE=0, CNTL=2} 

|   |   |   |   age ≤ 90.200 

|   |   |   |   |   SNP_A-2118885 = [T_C] / [C_T] 

|   |   |   |   |   |   age > 64.550: CNTL {CASE=1, CNTL=9} 

|   |   |   |   |   |   age ≤ 64.550: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   SNP_A-2118885 = [T_T]: CASE {CASE=140, CNTL=54} 

|   |   |   TRIG_MMOL_L ≤ 0.700: CNTL {CASE=0, CNTL=3} 

|   SNP_A-2146889 = [T_T] 

|   |   SNP_A-2114080 = [A_A] 

|   |   |   SNP_A-1838931 = [C_C] 

|   |   |   |   SNP_A-2272567 = [C_C] 

|   |   |   |   |   SNP_A-1892259 = [G_G]: CASE {CASE=3, CNTL=0} 

|   |   |   |   |   SNP_A-1892259 = [T_G] / [G_T] 

|   |   |   |   |   |   HBA1C_PCT > 0.062: CASE {CASE=5, CNTL=0} 

|   |   |   |   |   |   HBA1C_PCT ≤ 0.062 

|   |   |   |   |   |   |   Body_Mass_Indx > 18.900 

|   |   |   |   |   |   |   |   CHOL_MMOL_L > 3.505 

|   |   |   |   |   |   |   |   |   SNP_A-2034790 = [A_C] / [C_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   |   SNP_A-2034790 = [C_C] 

|   |   |   |   |   |   |   |   |   |   SNP_A-2164852 = [C_C]: CNTL {CASE=10, CNTL=39} 

|   |   |   |   |   |   |   |   |   |   SNP_A-2164852 = [C_G] / [G_C]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   CHOL_MMOL_L ≤ 3.505: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   Body_Mass_Indx ≤ 18.900: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   SNP_A-1892259 = [T_T] 

|   |   |   |   |   |   SNP_A-2296526 = [A_A]: CNTL {CASE=0, CNTL=4} 

|   |   |   |   |   |   SNP_A-2296526 = [A_G] / [G_A] 

|   |   |   |   |   |   |   SNP_A-2125015 = [A_G] / [G_A]: CASE {CASE=4, CNTL=0} 

|   |   |   |   |   |   |   SNP_A-2125015 = [G_G] 

|   |   |   |   |   |   |   |   HB_G_L > 112 
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|   |   |   |   |   |   |   |   |   HDLCH_MMOL_L > 0.825 

|   |   |   |   |   |   |   |   |   |   SNP_A-1948390 = [A_A]: CNTL {CASE=4, CNTL=28} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1948390 = [A_G] / [G_A]: CASE {CASE=7, CNTL=3} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1948390 = [G_G]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   |   HDLCH_MMOL_L ≤ 0.825: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   HB_G_L ≤ 112: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   SNP_A-2296526 = [G_G] 

|   |   |   |   |   |   |   WBC_GIGA_L > 11.800: CNTL {CASE=0, CNTL=5} 

|   |   |   |   |   |   |   WBC_GIGA_L ≤ 11.800 

|   |   |   |   |   |   |   |   SNP_A-1980601 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=5} 

|   |   |   |   |   |   |   |   SNP_A-1980601 = [T_T] 

|   |   |   |   |   |   |   |   |   SNP_A-1902372 = [T_C] / [C_T] 

|   |   |   |   |   |   |   |   |   |   SNP_A-1965422 = [T_C] / [C_T]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1965422 = [T_T]: CNTL {CASE=0, CNTL=9} 

|   |   |   |   |   |   |   |   |   SNP_A-1902372 = [T_T] 

|   |   |   |   |   |   |   |   |   |   SNP_A-2113638 = [C_C]: CASE {CASE=288, CNTL=184} 

|   |   |   |   |   |   |   |   |   |   SNP_A-2113638 = [T_C] / [C_T]: CNTL {CASE=19, CNTL=31} 

|   |   |   |   |   |   |   |   |   |   SNP_A-2113638 = [T_T]: CASE {CASE=1, CNTL=1} 

|   |   |   |   SNP_A-2272567 = [T_C] / [C_T]: CASE {CASE=9, CNTL=0} 

|   |   |   SNP_A-1838931 = [T_C] / [C_T]: CNTL {CASE=0, CNTL=9} 

|   |   SNP_A-2114080 = [A_G] / [G_A] 

|   |   |   SNP_A-1987132 = [C_G] / [G_C]: CASE {CASE=7, CNTL=0} 

|   |   |   SNP_A-1987132 = [G_G] 

|   |   |   |   TRIG_MMOL_L > 0.695 

|   |   |   |   |   SNP_A-1809622 = [A_G] / [G_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   |   SNP_A-1809622 = [G_G] 

|   |   |   |   |   |   SNP_A-1997332 = [A_A]: CNTL {CASE=38, CNTL=94} 

|   |   |   |   |   |   SNP_A-1997332 = [A_G] / [G_A]: CASE {CASE=2, CNTL=0} 

|   |   |   |   TRIG_MMOL_L ≤ 0.695: CASE {CASE=2, CNTL=0} 

|   |   SNP_A-2114080 = [G_G]: CNTL {CASE=1, CNTL=8} 

SNP_A-4213932 = [T_C] / [C_T] 

|   age > 53.050 

|   |   Body_Mass_Indx > 17.150 

|   |   |   HBA1C_PCT > 0.091: CASE {CASE=3, CNTL=0} 

|   |   |   HBA1C_PCT ≤ 0.091 

|   |   |   |   LDLCH_MMOL_L > 5.135: CASE {CASE=3, CNTL=0} 

|   |   |   |   LDLCH_MMOL_L ≤ 5.135 

|   |   |   |   |   SNP_A-2258450 = [A_A] 

|   |   |   |   |   |   SNP_A-1901559 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=6} 

|   |   |   |   |   |   SNP_A-1901559 = [G_G] 

|   |   |   |   |   |   |   WBC_GIGA_L > 3.650 

|   |   |   |   |   |   |   |   SNP_A-1930045 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=5} 

|   |   |   |   |   |   |   |   SNP_A-1930045 = [G_G] 

|   |   |   |   |   |   |   |   |   SNP_A-1929138 = [C_C] 
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|   |   |   |   |   |   |   |   |   |   SNP_A-1865279 = [A_G] / [G_A]: CASE {CASE=7, CNTL=2} 

|   |   |   |   |   |   |   |   |   |   SNP_A-1865279 = [G_G]: CNTL {CASE=129, CNTL=203} 

|   |   |   |   |   |   |   |   |   SNP_A-1929138 = [C_G] / [G_C]: CASE {CASE=5, CNTL=1} 

|   |   |   |   |   |   |   WBC_GIGA_L ≤ 3.650: CNTL {CASE=0, CNTL=5} 

|   |   |   |   |   SNP_A-2258450 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=8} 

|   |   Body_Mass_Indx ≤ 17.150: CASE {CASE=3, CNTL=0} 

|   age ≤ 53.050: CASE {CASE=6, CNTL=0} 

SNP_A-4213932 = [T_T] 

|   CHOL_MMOL_L > 7.285: CNTL {CASE=0, CNTL=2} 

|   CHOL_MMOL_L ≤ 7.285 

|   |   SNP_A-1849082 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=2} 

|   |   SNP_A-1849082 = [G_G] 

|   |   |   SNP_A-1893931 = [A_G] / [G_A]: CNTL {CASE=0, CNTL=2} 

|   |   |   SNP_A-1893931 = [G_G]: CASE {CASE=20, CNTL=6} 
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APPENDIX G - Decision Rules to Predict Disease Status in Terms of AD 

Using Representative SNPs and Clinical Data 

 

No Decision Rules for CASES Gene Chr. P. 

1 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

87,50% 
SNP_A-2146889 = [G_G]  FOXO3  forkhead box O3 6 

SNP_A-1896372 = [G_G]  DISC1  disrupted in schizophrenia 1 1 

2 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

Body_Mass_Indx ≤ 36.250 #N/A #N/A 

TRIG_MMOL_L > 0.700 #N/A #N/A 

age ≤ 90.200 #N/A #N/A 

SNP_A-2118885 = [T_C] / [C_T]  DDO  D-aspartate oxidase 6 

age ≤ 64.550 #N/A #N/A 

3 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

72,16% 

SNP_A-2146889 = [T_G] / [G_T]  FOXO3  forkhead box O3 6 

Body_Mass_Indx ≤ 36.250 #N/A #N/A 

TRIG_MMOL_L > 0.700 #N/A #N/A 

age ≤ 90.200 #N/A #N/A 

SNP_A-2118885 = [T_T]  DDO  D-aspartate oxidase 6 

4 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [G_G]  LIPH  lipase, member H 3 

5 SNP_A-4213932 = [C_C]  DBT  dihydrolipoamide branched 1 100,00% 
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chain transacylase E2 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

HBA1C_PCT > 0.062 #N/A #N/A 

6 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

HBA1C_PCT ≤ 0.062 #N/A #N/A 

Body_Mass_Indx > 18.900 #N/A #N/A 

CHOL_MMOL_L > 3.505 #N/A #N/A 

SNP_A-2034790 = [A_C] / [C_A] 

 ENPP6  ectonucleotide 

pyrophosphatase/phosphodiesterase 

6 

4 

7 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C]  ABCC4  ATP-binding cassette, sub- 13 
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family C (CFTR/MRP), member 4 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

HBA1C_PCT ≤ 0.062 #N/A #N/A 

Body_Mass_Indx > 18.900 #N/A #N/A 

CHOL_MMOL_L > 3.505 #N/A #N/A 

SNP_A-2034790 = [C_C] 

 ENPP6  ectonucleotide 

pyrophosphatase/phosphodiesterase 

6 

4 

SNP_A-2164852 = [C_G] / [G_C]  TLL2  tolloid-like 2 10 

8 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

HBA1C_PCT ≤ 0.062 #N/A #N/A 

Body_Mass_Indx > 18.900 #N/A #N/A 

CHOL_MMOL_L ≤ 3.505 #N/A #N/A 

9 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_G] / [G_T]  LIPH  lipase, member H 3 

HBA1C_PCT ≤ 0.062 #N/A #N/A 

Body_Mass_Indx ≤ 18.900 #N/A #N/A 

10 SNP_A-4213932 = [C_C]  DBT  dihydrolipoamide branched 1 100,00% 
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chain transacylase E2 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

SNP_A-2125015 = [A_G] / [G_A]  PDZD8  PDZ domain containing 8 10 

11 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

70,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

SNP_A-2125015 = [G_G]  PDZD8  PDZ domain containing 8 10 

HB_G_L > 112 #N/A #N/A 

HDLCH_MMOL_L > 0.825 #N/A #N/A 

SNP_A-1948390 = [A_G] / [G_A]  LUM  lumican 12 

12 
SNP_A-4213932 = [C_C] 

 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 
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SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

SNP_A-2125015 = [G_G]  PDZD8  PDZ domain containing 8 10 

HB_G_L > 112 #N/A #N/A 

HDLCH_MMOL_L > 0.825 #N/A #N/A 

SNP_A-1948390 = [G_G]  LUM  lumican 12 

13 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

SNP_A-2125015 = [G_G]  PDZD8  PDZ domain containing 8 10 

HB_G_L > 112 #N/A #N/A 

HDLCH_MMOL_L ≤ 0.825 #N/A #N/A 

14 
SNP_A-4213932 = [C_C] 

 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 
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SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [A_G] / [G_A] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

SNP_A-2125015 = [G_G]  PDZD8  PDZ domain containing 8 10 

HB_G_L ≤ 112 #N/A #N/A 

15 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

WBC_GIGA_L ≤ 11.800 #N/A #N/A 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, seven 

thrombospondin repeats (type 1 and 

type 1-like), transmembrane domain 

(TM) and short cytoplasmic domain, 

(semaphorin) 5A 

5 

SNP_A-1902372 = [T_C] / [C_T]  GSN  gelsolin 9 

SNP_A-1965422 = [T_C] / [C_T]  FMNL2  formin-like 2 2 
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16 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

61,02% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

N, member 3 

1 

WBC_GIGA_L ≤ 11.800 #N/A #N/A 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, seven 

thrombospondin repeats (type 1 and 

type 1-like), transmembrane domain 

(TM) and short cytoplasmic domain, 

(semaphorin) 5A 

5 

SNP_A-1902372 = [T_T]  GSN  gelsolin 9 

SNP_A-2113638 = [C_C]  TPO  thyroid peroxidase 2 

17 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

50,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [C_C] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

SNP_A-1892259 = [T_T]  LIPH  lipase, member H 3 

SNP_A-2296526 = [G_G] 

 KCNN3  potassium 

intermediate/small conductance 

calcium-activated channel, subfamily 

1 
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N, member 3 

WBC_GIGA_L ≤ 11.800 #N/A #N/A 

SNP_A-1980601 = [T_T] 

 SEMA5A  sema domain, seven 

thrombospondin repeats (type 1 and 

type 1-like), transmembrane domain 

(TM) and short cytoplasmic domain, 

(semaphorin) 5A 

5 

SNP_A-1902372 = [T_T]  GSN  gelsolin 9 

SNP_A-2113638 = [T_T]  TPO  thyroid peroxidase 2 

18 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1838931 = [C_C] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-2272567 = [T_C] / [C_T] 
 ABCC4  ATP-binding cassette, sub-

family C (CFTR/MRP), member 4 
13 

19 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 
SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1987132 = [C_G] / [G_C] 
 ATG5  ATG5 autophagy related 5 

homolog (S. cerevisiae) 
6 

20 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy related 5 

homolog (S. cerevisiae) 
6 

TRIG_MMOL_L > 0.695 #N/A #N/A 

SNP_A-1809622 = [A_G] / [G_A] 
HMGA1  high mobility group AT-hook 

1 
6 

21 SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 100,00% 
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SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy related 5 

homolog (S. cerevisiae) 
6 

TRIG_MMOL_L > 0.695 #N/A #N/A 

SNP_A-1809622 = [G_G] 
HMGA1  high mobility group AT-hook 

1 
6 

SNP_A-1997332 = [A_G] / [G_A] 
 GABBR2  gamma-aminobutyric acid 

(GABA) B receptor, 2 
9 

22 

SNP_A-4213932 = [C_C] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

SNP_A-2146889 = [T_T]  FOXO3  forkhead box O3 6 

SNP_A-2114080 = [A_G] / [G_A]  KIF26B  kinesin family member 26B 1 

SNP_A-1987132 = [G_G] 
 ATG5  ATG5 autophagy related 5 

homolog (S. cerevisiae) 
6 

TRIG_MMOL_L ≤ 0.695 #N/A #N/A 

23 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% age > 53.050 #N/A #N/A 

Body_Mass_Indx > 17.150 #N/A #N/A 

HBA1C_PCT > 0.091 #N/A #N/A 

24 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 
age > 53.050 #N/A #N/A 

Body_Mass_Indx > 17.150 #N/A #N/A 

HBA1C_PCT ≤ 0.091 #N/A #N/A 

LDLCH_MMOL_L > 5.135 #N/A #N/A 

25 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

77,78% 

age > 53.050 #N/A #N/A 

Body_Mass_Indx > 17.150 #N/A #N/A 

HBA1C_PCT ≤ 0.091 #N/A #N/A 

LDLCH_MMOL_L ≤ 5.135 #N/A #N/A 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] STK39  serine threonine kinase 39 2 

WBC_GIGA_L > 3.650 #N/A #N/A 
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SNP_A-1930045 = [G_G] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-1929138 = [C_C] 
 TRHDE  thyrotropin-releasing 

hormone degrading enzyme 
12 

SNP_A-1865279 = [A_G] / [G_A] 
 C9orf3  chromosome 9 open reading 

frame 3 
9 

26 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

83,33% 

age > 53.050 #N/A #N/A 

Body_Mass_Indx > 17.150 #N/A #N/A 

HBA1C_PCT ≤ 0.091 #N/A #N/A 

LDLCH_MMOL_L ≤ 5.135 #N/A #N/A 

SNP_A-2258450 = [A_A]  ANGPT2  angiopoietin 2 8 

SNP_A-1901559 = [G_G] STK39  serine threonine kinase 39 2 

WBC_GIGA_L > 3.650 #N/A #N/A 

SNP_A-1930045 = [G_G] 

 SEMA3C  sema domain, 

immunoglobulin domain (Ig), short 

basic domain, secreted, 

(semaphorin) 3C 

7 

SNP_A-1929138 = [C_G] / [G_C] 
 TRHDE  thyrotropin-releasing 

hormone degrading enzyme 
12 

27 

SNP_A-4213932 = [T_C] / [C_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 
age > 53.050 #N/A #N/A 

Body_Mass_Indx ≤ 17.150 #N/A #N/A 

28 
SNP_A-4213932 = [T_C] / [C_T] 

 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

100,00% 

age ≤ 53.050 #N/A #N/A 

29 

SNP_A-4213932 = [T_T] 
 DBT  dihydrolipoamide branched 

chain transacylase E2 
1 

76,92% 
CHOL_MMOL_L ≤ 7.285 #N/A #N/A 

SNP_A-1849082 = [G_G]  NBN  nibrin 8 

SNP_A-1893931 = [G_G] 
 PLCB1  phospholipase C, beta 1 

(phosphoinositide-specific) 
20 
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APPENDIX H - Relevant SNPs Information in the Tree Constructed Using 

Genotype Data (Representative SNPs) 

 

 

 

SNP No 
RefSNP 
Alleles 

MAF/Minor 

Allele Count 
Gene Chr Chr position 

SNP_A-4213932 C/T T=0.218/476 
DBT  dihydrolipoam
ide branched chain 
transacylase E2 

1 100690122 

SNP_A-2146889 G/T G=0.133/291 
FOXO3  forkhead 
box O3 

6 108981196 

SNP_A-1896372 G/T T=0.148/324 
DISC1  disrupted in 
schizophrenia 1 

1 232176195 

SNP_A-1849082 A/G A=0.078/170 NBN  nibrin 8 90952245 

SNP_A-2118885 A/G G=0.040/87 
DDO  D-aspartate 
oxidase 

6 110733646 

SNP_A-2125015 C/T T=0.032/69 
PDZD8  PDZ 
domain containing 
8 

1
0 

119048752 

SNP_A-2034790 A/C A=0.096/209 

ENPP6  ectonucleot
ide 
pyrophosphatase/ 
phosphodiesterase 
6 

4 185012101 

SNP_A-1865279 A/G T=0.046/100 
C9orf3  chromoso
me 9 open reading 
frame 3 

9 97766209 

SNP_A-1812298 A/C T=0.141/309 
ARHGAP26  Rho 
GTPase activating 
protein 26 

5 142305388 

SNP_A-2083550 C/T C=0.110/240 
ANGPT2   
angiopoietin 2 

8 6411683 

SNP_A-2114080 C/T C=0.196/427 
KIF26B  kinesin 
family member 26B 

1 245816347 

SNP_A-1838931 A/G A=0.034/74 

SEMA3C  sema 
domain, 
immunoglobulin 
domain (Ig), short 
basic domain, 
secreted, 
(semaphorin) 3C 

7 80407703 

SNP_A-2272567 C/T T=0.037/82 
ABCC4  ATP-
binding cassette, 

1
3 

95809057 
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sub-family C 
(CFTR/MRP), 
member 4 

SNP_A-1892259 A/C C=0.068/149 
LIPH  lipase, 
member H 

3 185246257 

SNP_A-2272456 A/C A=0.198/432 

SLC35A3  solute 
carrier family 35 
(UDP-N-
acetylglucosamine 
(UDP-GlcNAc) 
transporter), 
member A3 

1 100463422 

SNP_A-4261255 A/C C=0.037/80 

PTPRM  protein 
tyrosine 
phosphatase, 
receptor type, M 

1
8 

8165568 

SNP_A-1987132 C/G C=0.028/60 

ATG5  ATG5 
autophagy related 
5 homolog (S. 
cerevisiae) 

6 106750202 

SNP_A-2296526 C/T T=0.042/92 

KCNN3  potassium 
intermediate/small 
conductance 
calcium-activated 
channel, subfamily 
N, member 3 

1 154717781 

SNP_A-1980601 C/T G=0.058/127 

SEMA5A  sema 
domain, seven 
thrombospondin 
repeats (type 1 and 
type 1-like), 
transmembrane 
domain (TM) and 
short cytoplasmic 
domain, 
(semaphorin) 5A 

5 9130347 

SNP_A-1902372 A/G G=0.077/169 GSN  gelsolin 9 124088240 

SNP_A-1965422 C/T C=0.136/296 
FMNL2  formin-like 
2 

2 153497910 

SNP_A-2113638 A/G A=0.105/230 
TPO  thyroid 
peroxidase 

2 1474131 

SNP_A-2030266 C/T T=0.052/113 SYN3  synapsin III 
2
2 

32934139 

SNP_A-1872465 A/G G=0.122/267 
C9orf3  chromoso
me 9 open reading 
frame 3 

9 97682788 

SNP_A-1809622 C/T A=0.015/33 
HMGA1  high 
mobility group AT-
hook 1 

6 34213868 
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SNP_A-1997332 C/T C=0.082/178 

GABBR2  gamma-
aminobutyric acid 
(GABA) B receptor, 
2 

9 101327048 

SNP_A-4273581 A/G C=0.147/322 
MAML3   
mastermind-like 3 
(Drosophila) 

4 140677870 

SNP_A-2258450 C/T C=0.074/161 
ANGPT2  
angiopoietin 2 

8 6409944 

SNP_A-1901559 A/G A=0.161/351 
STK39  serine 
threonine kinase 
39 

2 169087232 

SNP_A-1930045 A/G A=0.061/134 

SEMA3C  sema 
domain, 
immunoglobulin 
domain (Ig), short 
basic domain, 
secreted, 
(semaphorin) 3C 

7 80418123 

SNP_A-4198010 A/G G=0.022/48 

FGD4  FYVE, 
RhoGEF and PH 
domain containing 
4 

4 32687352 

SNP_A-2164852 C/G C=0.063/137 TLL2  tolloid-like 2 
1
0 

98148557 

SNP_A-2268610 C/T C=0.063/137 

PIKFYVE   
phosphoinositide 
kinase, FYVE finger 
containing 

2 209160659 

SNP_A-2021678 C/T T=0.073/159 

DOK1  docking 
protein 1, 62kDa 
(downstream of 
tyrosine kinase 1) 

2 74778644 

SNP_A-1929138 C/G C=0.063/137 
TRHDE  thyrotropin
-releasing hormone 
degrading enzyme 

1
2 

72678994 

SNP_A-2304918 C/T C=0.057/125 
SNW1  SNW 
domain containing 
1 

1
4 

78198786 

SNP_A-2075360 G/T T=0.077/169 

CAMKK2  calcium/c
almodulin-
dependent protein 
kinase kinase 2, 
beta 

1
2 

121675575 

SNP_A-1893931 A/G A=0.049/107 

PLCB1  phospholipa
se C, beta 1 
(phosphoinositide-
specific) 

2
0 

8292683 
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APPENDIX I - Relevant SNPs Information in the Tree Constructed Using 

Genotype (Representative SNPs) and Clinical Data 

 

 

 

SNP No 
RefSNP 
Alleles 

MAF/Minor 
Allele Count 

Gene Chr 
Chr 
position 

SNP_A-4213932 C/T T=0.218/476 
DBT  dihydrolipoamide 
branched chain 
transacylase E2 

1 100690122 

SNP_A-2146889 G/T G=0.133/291 
FOXO3  forkhead box 
O3 

6 108981196 

SNP_A-1896372 G/T T=0.148/324 
DISC1  disrupted in 
schizophrenia 1 

1 232176195 

SNP_A-2118885 A/G G=0.040/87 
DDO  D-aspartate 
oxidase 

6 110733646 

SNP_A-2114080 C/T C=0.196/427 
KIF26B  kinesin family 
member 26B 

1 245816347 

SNP_A-1838931 A/G A=0.034/74 

SEMA3C  sema 
domain, 
immunoglobulin 
domain (Ig), short 
basic domain, 
secreted, 
(semaphorin) 3C 

7 80407703 

SNP_A-2272567 C/T T=0.037/82 

ABCC4  ATP-binding 
cassette, sub-family C 
(CFTR/MRP), member 
4 

13 95809057 

SNP_A-1892259 A/C C=0.068/149 
LIPH  lipase, member 
H 

3 185246257 

SNP_A-2034790 A/C A=0.096/209 
ENPP6  ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 6 

4 185012101 

SNP_A-2164852 C/G C=0.063/137 TLL2  tolloid-like 2 10 98148557 

SNP_A-2296526 C/T T=0.042/92 

KCNN3  potassium 
intermediate/small 
conductance calcium-
activated channel, 
subfamily N, member 
3 

1 154717781 

SNP_A-2125015 C/T T=0.032/69 
PDZD8  PDZ domain 
containing 8 

10 119048752 

SNP_A-1948390 C/T C=0.127/277 LUM  lumican 12 91499367 
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SNP_A-1980601 C/T G=0.058/127 

SEMA5A  sema 
domain, seven 
thrombospondin 
repeats (type 1 and 
type 1-like), 
transmembrane 
domain (TM) and 
short cytoplasmic 
domain, (semaphorin) 
5A 

5 9130347 

SNP_A-1902372 A/G G=0.077/169 GSN  gelsolin 9 124088240 

SNP_A-1965422 C/T C=0.136/296 FMNL2  formin-like 2 2 153497910 

SNP_A-2113638 A/G A=0.105/230 
TPO  thyroid 
peroxidase 

2 1474131 

SNP_A-1987132 C/G C=0.028/60 

ATG5  ATG5 
autophagy related 5 
homolog (S. 
cerevisiae) 

6 106750202 

SNP_A-1809622 C/T A=0.015/33 
HMGA1  high mobility 
group AT-hook 1 

6 34213868 

SNP_A-1997332 C/T C=0.082/178 
GABBR2  gamma-
aminobutyric acid 
(GABA) B receptor, 2 

9 101327048 

SNP_A-2258450 C/T C=0.074/161 
ANGPT2  angiopoietin 
2 

8 6409944 

SNP_A-1901559 A/G A=0.161/351 
STK39  serine 
threonine kinase 39 

2 169087232 

SNP_A-1930045 A/G A=0.061/134 

SEMA3C  sema 
domain, 
immunoglobulin 
domain (Ig), short 
basic domain, 
secreted, 
(semaphorin) 3C 

7 80418123 

SNP_A-1929138 C/G C=0.063/137 
TRHDE  thyrotropin-
releasing hormone 
degrading enzyme 

12 72678994 

SNP_A-1865279 A/G T=0.046/100 
C9orf3  chromosome 9 
open reading frame 3 

9 97766209 

SNP_A-1849082 A/G A=0.078/170 NBN  nibrin 8 90952245 

SNP_A-1893931 A/G A=0.049/107 

PLCB1  phospholipase 
C, beta 1 
(phosphoinositide-
specific) 

20 8292683 
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