


LARGE DEFORMATION ANALYSIS OF FLEXIBLE MULTIBODY SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYDIN T ÜZÜN
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Mechatronics Engineering Department, Çankaya University
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ABSTRACT

LARGE DEFORMATION ANALYSIS OF FLEXIBLE MULTIBODY SYSTEMS

Tüzün, Aydın

Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. Haluk Darendeliler

Co-Supervisor : Prof. Dr. Kemalİder

September 2012, 163 pages

Large displacement and large strain problems of mechanical systems can besolved mainly

by four methods. These are Floating Frame of Reference, Incremental Finite Element, Large

Rotation Vector and Absolute Nodal Coordinate Formulations (ANCF). Due toexact rigid

body representation, simple mass matrix structure and non-incremental formulation, ANCF is

more convenient in analyzing flexible multibody systems. However, it is limited to problems

with regular boundaries, currently.

The aim of the thesis is to improve the current ANCF in order to handle variousproblems

with irregular boundaries. For this purpose, firstly meshfree ANCF has been developed to

analyze flexible multibody systems. Verification of the developed meshfree formulation has

been performed for beam type structures and accurate results have been obtained. Then,

“ANCF with Virtual Element Mapping Method” has been proposed to overcome the boundary

problems of the current formulations. The proposed method has been implemented to plane

stress, plane strain, plate/shell and 3D solid finite elements. Verification of the proposed

method has been performed by using the patch test problems available in the literature.

Besides, it has been verified by various flexible multibody problems with largedeformations.
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Additionally, shape function polynomials for thin plate assumption have been derived.

It is observed that developed formulations and methods can be useful not only for flexible

multibody systems but also for structural mechanics problems subjected to large deformations

and/or rotations. The proposed methods and formulations are more efficient than the current

formulations in the literature due to extended shape limits of finite elements.

Keywords: virtual element mapping method, absolute nodal coordinate, flexible multibody

dynamics, meshfree methods, plates, shells
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ÖZ

ÇOKLU BÜNYE ṠISTEMLEṘINİN YÜKSEK DEFORMASYONLU ANALİZİ

Tüzün, Aydın

Doktora, Makina M̈uhendislĭgi Bölümü

Tez Yöneticisi : Prof. Dr. Haluk Darendeliler

Ortak Tez Ÿoneticisi : Prof. Dr. Kemal̇Ider

Eylül 2012, 163 sayfa

Mekanik sistemlerde ÿuksek yer dĕgiştirme ve ÿuksek gerinim problemleri temel olarak dört

yöntem ile ç̈ozülebilmektedir. Bunlar, Ÿuzen Referans Takımı, Basamaklı Sonlu Eleman,

Büyük Dönü Vektörü ve Mutlak Nodal Koordinat Form̈ulasyonlarıdır. Dŏgru katı cisim

dinamĭgi benzetimi, basit k̈utle matrisi ve basamaksız formülasyonu nedeni ile çoklu bünye

dinamĭgi analizleri için en uygun ÿontem, Mutlak Nodal Koordinat Form̈ulasyonu’dur. Fakat,

bu yöntem d̈uzg̈un sınırlara sahip problemler ile sınırlıdır.

Bu tezin amacı, mevcut Mutlak Nodal Koordinat Formülasyonu’nun d̈uzensiz sınırlara

sahip problemlerde de kullanılabilecek şekilde geliştirilmesidir. Bu amaçla, ilkönce

çoklu b̈unye dinamĭgi analizlerinde kullanılmaküzere Ăgsız Mutlak Nodal Koordinat

Formülasyonu geliştirilmiştir. Geliştirilen ăgsız ÿontemin dŏgrulaması kiriş tipi yapılar

kullanılarak gerçekleştirilmiş ve uygun sonuçlar elde edilmiştir. Daha sonra, d̈uzensiz

sınırlara sahip problemlerin çözümü için “Mutlak Nodal Koordinat Form̈ulasyonu için Sanal

Eleman Eşleştirme” Ÿontemi geliştirilmiştir.Önerilen ÿontem, d̈uzlemsel gerilme, d̈uzlemsel

gerinim, plaka/kabuk ve 3 boyutlu sonlu elemanlara uyarlanmıştır. Yöntemin dŏgrulaması

literatürde yer alan ăg dŏgrulama problemleri ile gerçekleştirilmiştir. Bunun yanında, yüksek
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yer dĕgiştirme içeren esnek bünye sistemlerinin analizleri ile de doğrulama yapılmıştır. Ek

olarak, ince plaka yaklaşımı için gerekli olan şekil fonksiyonları türetilmiştir.

Bu tezde geliştirilen veönerilen ÿontemlerin, çoklu b̈unye dinamĭgi benzetimlerinin

dışında ÿuksek d̈onü ve/veya deformasyon gerektiren yapısal mekanik problemlerinde de

yararlı olacăgı gözlenmiştir. Önerilen ÿontemler sonlu elemanların şekil sınırlamasını

genişlettĭginden dolayı, literaẗurdeki dĭger ÿontemlere g̈ore daha verimlidir.

Anahtar Kelimeler: sanal eleman eşleştirme metodu, mutlak nodal koordinat, esnek b̈unye

dinamĭgi, ağsız ÿontemler, plakalar, kabuklar
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CHAPTER 1

INTRODUCTION

Simulation of mechanical systems is an inevitable step of a design process. If the design is

limited to mechanics, problems to be solved involve statics or dynamics of the systems. The

problems can be solved separately depending on the physical conditions.If the mechanical

system consists of bulky parts then it can be assumed that deformation of bulky parts will not

influence the dynamics of the system. Therefore, the dynamics and strengthof the system can

be simulated separately within a certain accuracy. This approach is quite effective for bulky

systems due to its solution speed and easy formulation. However, it is not applicable for every

mechanical system. If the system has parts that have non-negligible flexibilityor the accuracy

is the main concern, then the approach will not satisfy the simulation requirements. The study

branch that satisfies the requirements is “flexible multibody dynamics”.

Flexible multibody dynamics studies started in the early seventies for better simulation of

many industrial and technological systems like vehicles, mechanisms, robotics, and space

structures [1]. In the past, the systems were designed bulky. Therefore, the dynamics of the

systems can be solved easily by using the rigid link assumption. When the deflections of links

due to dynamic loadings are not negligible, the rigid link assumption will divergefrom the

solution. Nowadays, the systems are getting lighter in order to have a weight effective design.

Consequently, the importance of flexible multibody dynamics is increasing.

Multibody systems have nonlinear equations of motion due to the large relative displacements

and rotations. Therefore, the system equations require certain solution procedures in order to

obtain accurate results. Linearization methods are generally applied in order to overcome

nonlinearity in statical problems. However, linearization of dynamics equations can be the

major source of error when multibody system applications are considered.As a result,
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equations of motion for flexible multibody systems are highly nonlinear and require computer

implementation based on a non-incremental procedure [2]. In order to show nonlinearity due

to dynamics, some publications [2,3] refers to the simple pendulum example. The example is

also shown in Figure 1.1.

Figure 1.1: Simple pendulum example

The nonlinear equation of motion for a simple rigid pendulum is given below.

I0θ̈ + mg
L
2

sinθ = 0 (1.1)

whereI0, θ, m, g and L are the mass moment of inertia about point O, angle of rotation, mass,

gravity and length, respectively. The constant energy integral of motioncan be obtained by

integration of equation of motion as given in the following equations.

I0θ̇
dθ̇
dθ
+ mg

L
2

sinθ = 0 (1.2a)

I0θ̇dθ̇ + mg
L
2

sinθdθ = 0 (1.2b)

1
2

I0θ̇
2 − mg

L
2

cosθ = c1 (1.2c)

If the nonlinear equation of motion is linearized with the assumption of small angular
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displacement, the equation of motion takes form given below.

I0θ̈ + mg
L
2
θ = 0 (1.3)

By substitutingθ̇(dθ̇/dθ) for θ̈ and integrating the equation of motion, one can get following

equation for the constant energy integral of motion for small displacement assumption.

1
2

I0θ̇
2 − mg

L
4
θ2 = c2 (1.4)

Equation 1.4 is an approximation for the principle of work and energy if the rotation is small.

As a result, any solution that satisfies Equation 1.3 should satisfy Equation 1.4however it

can lead to energy drift asθ increases since the solution is not required to satisfy Equation

1.2 [2,3]. This problem can arise especially in the incremental approaches.

1.1 Methods used in Flexible Multibody Dynamics

In order to obtain accurate solutions for mechanical systems with flexible parts, some

approaches were developed. In 1997, A. A. Shabana reviewed the previous studies and

developments [1]. He reported various methods for multibody system formulations in his

study [1]. However, most of the methods can be considered as derivatives of other ones.

Basically, the methods can be classified with four main formulations, which are thefloating

frame of reference (FFR) formulation, incremental finite element formulation, large rotation

vector formulation and absolute nodal coordinate frame formulation (ANCF)[4–6]. The

main difference of the formulations is the nodal coordinate definition for finite elements.

The performance and efficiency of a multibody simulation code are mainly dependent on

the selected coordinates used for the formulation of the dynamic equations [7]. Short details,

advantages and disadvantages of the formulations are described within the following sections.

1.1.1 Floating Frame of Reference Formulation

In this formulation, two coordinate sets (global and floating coordinate frames) are applied [8,

9]. Global coordinate set is used to define the locations and orientations ofbodies. However,

floating frames are used to describe the deformations of flexible bodies. The deformations

with respect to the floating frame of a body is described using nodal variables used in classical
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finite element methods. The motion of the floating frames approximates the rigid body motion

of the body. Coordinate definitions for the FFR formulation are shown in Figure 1.2.

FFR formulation is specifically efficient for small deformation and large rotation problems.

The formulation does not induce deformations under pure rigid body motion.This can be

showed by writing the global position vector of an arbitrary point on the deformable body

shown in Figure 1.3.

Figure 1.2: Coordinate frames for FFR formulation [10]

Figure 1.3: Position definition in FFR formulation [8]
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The global position vector of an arbitrary pointP′ on bodyi can be written as given below [8].

r i = Ri + Ai
(

ūi
0 + ūi

f

)

(1.5)

where Ri is the global position of the body fixed floating frame of bodyi, Ai is the

transformation matrix,̄ui
0 is the undeformed position with respect to the floating frame and

ūi
f is the deformation relative to the floating body frame.

As can be seen from the global position vector formulation, when there is nodeformation

exact rigid body dynamics can be obtained as follows.

r i = Ri + Aiūi
0 (1.6)

Dynamic equations of motion of the deformable bodies can be obtained by solving the

principle of virtual work or Lagrange’s equations. In the FFR formulation, the equations

of motion are expressed in terms of a coupled set of reference and elasticcoordinates. The

elastic coordinates can be introduced using the assumed modes method, the finite element

method or experimental identification [1,8,11]. In assumed mode method, flexible bodies are

usually represented by truncated finite modal series and time-varying mode amplitudes [11].

Additionally, assumed mode method can be used in the finite element method to reduce the

dimension of the system matrices.

In addition, there are some studies on the determination of the body coordinatelocations

(floating frames) as reported in the review of Shabana [1]. It has beenshown that there is an

optimum location for the floating frame and it requires an additional effort in the simulations.

1.1.2 Incremental Finite Element Formulations

The incremental finite element formulation has a wide range of use in many engineering

applications. The method is available for use in many commercial simulation software. Most

of the engineering problems can be simulated with this formulation. In order to handle

large deformation and rotation problems, lots of finite element procedures are available

in the literature. In most of them, large deformations and rotations of finite elements
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are described by using nodal coordinates or displacements for continuum elements, and

additionally infinitesimal nodal rotations for structural elements like beam, plate and shell

elements. Performance of these finite elements mainly depends on parametric description

of element geometry in flexible multibody problems. Finite elements can basically be

classified as isoparametric or non-isoparametric according to their parametric descriptions.

An isoparametric element is defined as an element which has a shape functionthat can be

used to interpolate both location and deformation [12]. Therefore, isoparametric elements

can describe exact rigid body dynamics. However, non-isoparametric element types (beams,

plates and shells) can not represented the rigid body dynamics, exactly [7, 13]. Additionally,

these formulations produce non-zero strain under rigid body displacements or rotations.

For a multibody system modeled by isoparametric finite elements, the procedure issimple.

The system equations are formulated with respect to a global coordinate system. Then, the

system equations can be solved by explicit direct integration methods over arequired duration.

If the same procedure is performed for a multibody system modeled with nonisoparametric

elements (beams, plates and shells), the obtained results might be erroneousdepending on the

size of rotations.

In incremental finite element formulations, system equations are linearized and solved with

small rotational increments in order to force non-isoparametric elements to behave like

isoparametric elements within small rotation increments. Therefore, the major source of

error is the incremental rotation approach. In the study of Shin [10], a simple frame of

non-isoparametric beam elements is solved for rigid body rotations without using incremental

rotation approach as shown in Figure 1.4. As seen in the figure, pure rigidbody rotation of

the frame causes large deformations in beams for high rotation values. Therefore, incremental

rotation approach is used in order to reduce errors due to unreal deformations shown in Figure

1.4. However, the use of the infinitesimal rotations as nodal coordinates leads to a linearization

of the kinematic equations of the elements [1,8]. Consequently, the linearization leads to the

loss of the accuracy especially in pure rigid body rotations.
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Figure 1.4: Beam elements under clockwise rigid body rotations of 5.73◦, 45◦ and 90◦ [10]

1.1.3 Large Rotation Vector Formulation

Large Rotation Vector Formulation has been developed in order to circumvent the

linearization problem in incremental finite element formulations [14]. In the formulation,

finite rotations are used as nodal variables instead of infinitesimal rotations.Therefore,

exact rigid body dynamics could be obtained, theoretically. However, the method has an

inconsistency problem in the finite rotation degrees of freedom of elements [1]. If a planar

beam is considered, the finite rotation consists of the orientation angle, whichdefines the

orientation of the cross-section without shear, and shear deformation. The inconsistency

problem is to distinguish the orientation and shear angles. Solving this inconsistency problem

in the large rotation vector formulation is not an easy problem but it is possible. It requires to

solve highly nonlinear equations in the finite element kinematic description [8]. Additionally,

the formulation leads to excessive shear forces due to the finite rotation description of the

element cross section [1,8].

In the formulation, the element configuration is defined with absolute coordinates and finite

rotations of the nodes. As a result, a simpler mass matrix and a more complex stiffness matrix

can be obtained compared to the incremental finite element formulations [7].

1.1.4 Absolute Nodal Coordinate Formulation

In this formulation, global coordinates and their gradients with respect to thebody frame are

used as a new set of coordinates [1, 4, 7]. The coordinate formulation makes beam, plate and

shell elements behave like isoparametric. Therefore, rigid body dynamics of beams and plates
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can exactly be modeled by proper element shape functions and element nodal coordinates

[7]. Consequently, beam, plate and shell elements show zero strain underrigid body motion.

Additionally, ANCF leads to constant mass matrix that simplifies the formulations.

There are lots of studies on beam elements with absolute nodal coordinate formulation in

the literature [16–29]. In most of the studies, nonlinear elastic isotropic material assumption

is used in formulations. However, few of them consider plasticity with isotropicmaterial

assumption in the absolute nodal coordinate frame formulation [27]. The numbers of

publications on plates and shells are less than publications on beams. Major studies on

plate and shell elements with ANC formulation are [3, 4, 30–33]. Shabana and Mikkola

[30] developed a 4-noded generalized plate element, which uses ANCF, and made a simple

comparison with the incremental approaches. They studied on a plate havinga spherical joint

at one corner and subjected to gravitational loading. They used very small elastic modulus in

order to observe both rigid body rotations and large elastic deformations. As can be seen from

Figure 1.5, incremental methods can not reach the result of an ANCF having 4 elements even

for the usage of 100 elements. Additionally, they showed that very complex displacements

can be handled with small number of elements.

Some researches were completed to improve the accuracy of the ANCF approach. In [16],

a new approach called Hybrid Coordinate Formulation had been studied experimentally

and theoretically. The hybrid formulation is based on the modal coordinates for small

deformations and absolute nodal coordinates for large deformation. Theexperimental setup

and the obtained results are shown in Figure 1.6. As shown in the figure, a flexible beam with

a point mass at the tip is vibrated and displacements of the mass are recorded by high speed

camera. The result of hybrid coordinate formulation is almost the same with the experimental

outputs.

In order to overcome the difficulties in stiffness matrix formulation, construction and

evaluation, some researches were completed. D. G. Vallejo, J. Mayo, J. L. Escalano and

J. Dominguez developed a new algorithm to simplify the volume integration during stiffness

matrix calculation in ANCF [17]. The developed algorithm is valid for isotropic and elastic

materials and very effective for shear deformable beams and plates.
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Figure 1.5: Comparison of ANCF with incremental methods (E=20 MPa) [30]
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Figure 1.6: Large displacement testing of a beam [15,16]
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A comparison chart for the available methods is shown in Table 1.1. As seen from the

comparison chart, each method has some drawbacks. For example, nonlinear elasticity can

not be included in FFRF. In IFEF and LRVF, rigid body representation could be erroneous.

However, the only disadvantage of ANCF compared to the other methods is highly nonlinear

stiffness matrix which can be handled with available solution procedures in the literature.

Table 1.1: Comparison chart for flexible multibody dynamics methods

FFRF IFEF LRVF ANCF
Application small def. large def. large def. large def.

large rot. large rot. large rot. large rot.
large disp. large disp. large disp. large disp.

Increments - small rotations - -
Mass matrix nonlinear nonlinear nonlinear constant

Stiffness matrix linear nonlinear nonlinear nonlinear
Rigid body exact approximate exact exact

representation (may be (erroneous for
erroneous) large rot.)

1.2 Research Objectives

Currently, all of the developed ANCF’s for quadrilateral plate and shellfinite elements are

based on regular discretization of flexible bodies. However, flexible bodies may have various

shapes, which cannot be modelled by using regular element shapes, in actual engineering

problems. Therefore, application region of ANCF is limited to analysis of simple flexible

multibody systems, despite high deformation capabilities of the method. Additionally,there

is no exact implementation of ANCF to 3D solid elements in literature. Therefore, some

additional effort has to be spent on joints between plate or shell elements and 3D solid

elements due to inconsistent nodal variables. Currently, there is no 3D solidfinite element,

which has gradient based absolute nodal variables.

In summary, improvement on the current ANCF is required in order to increase the

applications of the method and to make use of it for a wide range of flexible multibody

applications.
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1.3 Scope of the Thesis

In order to eliminate the current limitations of ANCF and make it applicable to various

problems, meshfree methods are introduced to ANCF, firstly. Then, finite element based

“Virtual Element Mapping Method” is introduced. The method can also be varied according

to the nodal gradient definitions introduced as “Virtual Frame”, “Edge Frame” and “Initial

Element Frame” methods. By implementing one of the introduced methods, variousfinite

element shapes can be used in flexible multibody problems.

The other objective is to extend ANCF to 3D solid elements in order to generate compatible

solid elements with the current plate and shell finite elements based on ANCF. This objective

can also be reached by using the introduced “Virtual Element Mapping Methods”.

1.4 Outline of the Thesis

The thesis mainly focused on the accurate solution methods for flexible multibodyproblems

under large deformations. Therefore, the main formulation and recent advances related to

the ANCF have been summarized in Chapter 2. In the chapter, planar non-shear deformable

beam element proposed by Escalano J. L., Hussien H. A. and Shabana A.A. [34], planar

shear deformable beam element proposed by Omar M. A. and Shabana A.A. [21] and the

generalized plate element proposed by Mikkola A. M., Shabana A. A. [30]are reviewed in

detail.

The remaining chapters include new implementations of absolute nodal coordinate

formulation. In Chapter 3, meshfree implementation of ANCF for flexible planarbeam

structures has been presented. Besides the formulations, sample problemsand comparisons

with ANCF with FEM are given. In Chapter 4, a new finite element formulation based

on ANCF has been proposed. Absolute nodal coordinate formulation with virtual element

mapping has been developed for plane stress and strain problems. Elementshape restriction

for quadrilateral elements in ANCF has been eliminated with the proposed formulation. In the

chapter, some of the patch tests proposed by Richard H. Macneal and Robert L. Haeder [35]

are solved for quasi-static and transient dynamic cases. In Chapter 5, ANCF with virtual

element mapping has been implemented to generalized plate finite elements. Additionally,
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general guideline for thin plate and shell formulation has been introduced inthe chapter. In

the next chapter, the proposed method has been extended to 8 noded hexahedral continuum

elements. The proposed element in the chapter can be used for a wide range of geometries.

Despite being a continuum element, it has all of the flexibilities and advantages of ANCF.

General summary, discussion and conclusion about the proposed methods and finite elements

are given in Chapter 7. Additionally, comments on the further improvements andfuture

studies are presented in this last chapter.
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CHAPTER 2

REVIEW OF ABSOLUTE NODAL COORDINATE

FORMULATIONS

Absolute Nodal Coordinate Formulation (ANCF) has been introduced by Ahmed Shabana

in order to improve dynamic representation of beam plate and shell elements. In a review

publication by Shabana [1], this drawback of classical finite element methods has been

explained as “beam, plate and shell elements are not considered in the classical finite element

literature as isoparametric elements because these elements cannot be used toobtain exact

modeling of the rigid body dynamics”. As compared in Table 1.1, it is the most accurate

method within the available formulations related to the flexible multibody dynamics. Besides,

mass matrix in the resulting system equations is always constant.

Since, ANCF is used in the thesis, some basic information and recent improvements will be

explained in this review chapter.

2.1 Derivation of Equations of Motion

Equations of motion for ANCF can be derived by using Lagrange Equationof an arbitrary

flexible body given below.

d
dt

(

∂T
∂ė

)T

−

(

∂T
∂e

)T

+ Ce
T
λ = Q (2.1)

whereT is the kinetic energy,e is the vector of nodal variables,Ce is the Jacobian matrix

of constraint equations,λ is the vector of Lagrange multipliers andQ is the total generalized

force vector including external and elastic forces.
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If the general definition of kinetic energy (ėT Mė/2) is substituted into the Lagrange equation,

following equation can be found.

Më+ Ce
T
λ = Q −Qv (2.2)

where quadratic velocity vector,Qv, is defined as given below.

Qv = Ṁ ė−
(

∂

∂e

(

1
2

ėT Mė
))T

(2.3)

It can be said thatQv will be zero for ANCF due to constant mass matrix. However, it should

also be considered in floating frame of reference formulations in order to take Coriolis effect

into account. Then, equations of motion can be simplified for ANCF as follows.

Më+ Ce
Tλ = Q (2.4)

However, it can not be solved without including the constraint equations,because number of

equations is less than the number of unknowns. Constraint equations (C(e, t) = 0) can be

included in equations of motion by differentiating these equations with respect to time twice.

If the constraint equations are differentiated with respect to time once, the following equation

can be obtained.

dC
dt
= Ceė+

∂C
∂t
= 0 (2.5)

After, second differentiation with respect to time, the constraint equations take the following

form.

0 =
∂

∂e
(Ceė) ė+ 2

∂Ce

∂t
ė+ Ceë+

∂2C
∂t2

(2.6)

Then, equations of motion can be written by using Equations 2.4 and 2.6 as given below.





M Ce
T

Ce 0









ë

λ




=





Q

Qd




(2.7)
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where

Qd = −
∂

∂e
(Ceė) ė− 2

∂Ce

∂t
ė−
∂2C
∂t2
= Ceë (2.8)

It can easily be said that the force vector,Qd, will be zero for simple time independent

constraint types like fixed boundary constraints or revolute joints. Generalized force vector,

Q, can be found by utilizing virtual work principle for the used nodal variables,e.

2.2 Nodal Variables

The main difference of ANCF is the definition of nodal variables. In the formulation, global

coordinates and gradients of global position vector are used as nodal variables. A basic nodal

variable representation is given below [8].

ei =



rT
i

∂rT
i

∂x

∂rT
i

∂y

∂rT
i

∂z





T

(2.9)

In the equation,ei refers to the nodal variables of theith node,r i refers to the global position

vector of theith node andx, y andz are local coordinates.

2.3 Non-Shear Deformable Planar Beam Element ANCF

Non-shear deformable planar beam element (Figure 2.1) has been proposed by Escalano J.L.,

Hussien H.A. and Shabana A. A. [34]. They also made some numerical comparisons for

flexible multibody dynamics systems in their publication.

The nodal variables defined in Equation 2.9 can be simplified for the nodes of a non-shear

deformable planar beam element as given below [34].

ei =

[

Xi Yi
∂Xi

∂x
∂Yi

∂x

]T

(2.10)
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Figure 2.1: Non-shear deformable planar beam element [34]

Then, the vector of nodal variables for an element having the length ofL can be written as

given in the following equation.

e=
[

(X)x=0 (Y)x=0

(

∂X
∂x

)

x=0

(

∂Y
∂x

)

x=0
(X)x=L (Y)x=L

(

∂X
∂x

)

x=L

(

∂Y
∂x

)

x=L

]T

(2.11)

Then, the global position of an arbitrary point on the element can be approximated by using

appropriate shape function polynomials as given below.

r =





X

Y




= Se (2.12)

In the equation,S is the shape function matrix proposed by J.L. Escalano, H.A. Hussien and

A. Shabana [34].
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S=





1− 3ξ2 + 2ξ3 0

0 1− 3ξ2 + 2ξ3

L
(

ξ − 2ξ2 + ξ3
)

0

0 L
(

ξ − 2ξ2 + ξ3
)

3ξ2 − 2ξ3 0

0 3ξ2 − 2ξ3

L
(

ξ3 − ξ2
)

0

0 L
(

ξ3 − ξ2
)





T

(2.13)

whereξ is the reduced local coordinate varying from 0 to 1 and defined asx/L.

2.3.1 Mass Matrix for Non-Shear Deformable Planar Beam Element

Mass matrix of the beam element can be determined from the kinetic energy equation given

below.

T =
1
2

∫

V

ρ ṙT ṙ dV (2.14)

By substituting Equation 2.12 into Equation 2.14, one can obtain the following equation.

T =
1
2

∫

V

ρ ėT ST Sė dV (2.15)

or it can be written in more compact form as given below.

T =
1
2

ėT M aė (2.16)

whereM a is the mass matrix of the beam element and can be formulated using Equations

2.15 and 2.16 as given below.

M a =

∫

V

ρ ST S dV (2.17)

If the cross sectional area and the density of the beam element are constant over the length

then the mass matrix formulation can be simplified as follows.
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M a = m

1∫

0

ST Sdξ (2.18)

wherem refers to mass per unit length of the element. By introducing shape function matrix,

S, given in Equation 2.13, constant mass matrix of the beam element satisfying the kinetic

energy equation can be found as given below.

M a = m





13
35 0 11L

210 0 9
70 0 −13L

420 0

13
35 0 11L

210 0 9
70 0 −13L

420

L2

105 0 13L
420 0 − L2

140 0

L2

105 0 13L
420 0 − L2

140

13
35 0 −11L

210 0

13
35 0 −11L

210

L2

105 0

L2

105





(2.19)

As it is seen from the equation, mass matrix does not depend on global variables or time. It is

constant at any positions on the global frame and at any time.

2.3.2 Generalized Elastic Forces for Non-Shear Deformable Planar Beam Element

Generalized elastic force vector for a beam element can be derived by using the strain energy

definition. Strain energy for a two dimensional Euler-Bernoulli beam is given below [34].

U =
1
2

L∫

0



Ea

(

∂ul

∂x

)2

+ EI

(

∂2ut

∂x2

)2
 dx (2.20)

whereL, a, I, ul andut refer to length, area, inertia, longitudinal deformation and transverse

deformation, respectively. The first term within the integration representsthe portion of strain

energy due to longitudinal deformation and the second term due to transverse deformation.

In order to find the deformations (ul and ut) in terms of nodal variables,e, position of an

arbitrary point should be written in the local frame. For this purpose, localposition vector,u,

at an arbitrary time is written in the global coordinate frame (point O in Figure 2.1), firstly.
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Then, it will be transformed to the local coordinate by means of local unit vectors defined in

global coordinate frame.

Relative position vector of an arbitrary point at an arbitrary time on the element, u, can be

written as follows.

u =





uX

uY




=





(S1 − S1O) e

(S2 − S2O) e




(2.21)

In the equation,S1 andS2 refer to the first and second rows of shape function matrix at an

arbitrary point, andS1O andS2O refer to the first and second rows of shape function matrix

at point O in Figure 2.1. Then,u can be written in local (element) coordinate frame by using

unit base vectors, which are shown asi andj in Figure 2.1, as given below.

ulocal =





uT i

uT j




=





uXiX + uY iY

uXiY + uY iX




(2.22)

Unit base vectors and their components in global frame can be determined byusing the

locations of end points of the elements as given below.

i =





iX

iY




=

r A − rO

|r A − rO|
=

SAe− SOe
|SAe− SOe|

=





e5 − e1
√

(e5 − e1)2 + (e6 − e2)2

e6 − e2
√

(e5 − e1)2 + (e6 − e2)2





(2.23)

whereSA andSO are the shape function matrices evaluated at pointsA andO, respectively.

Then, longitudinal and transverse deformations can be found by substracting initial local

position, [x 0]T , from the deformed local position,ulocal, as given in the following equation.





ul

ut




= ulocal −





x

0




=





uXiX + uY iY − x

uXiY + uY iX




(2.24)

By substituting longitudinal and transverse deformations found in Equation 2.24 into

Equation 2.20, one can obtain strain energy definition in terms of nodal variables as given

below.
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U =
1
2

L∫

0



Ea

(

∂uXiX + uY iY − x
∂x

)2

+ EI

(

∂2uXiY + uY iX

∂x2

)2
 dx (2.25)

Then, the generalized elastic force vector can be determined by partial differentiation as given

below [34].

Qk =
∂U
∂e

(2.26)

Generalized elastic force vector for the beam element can be written explicitlyin terms of

nodal variables by substituting Equations 2.21, 2.23 and 2.25 into Equation 2.26, as given in

the following equation.

Qk = (A11+ B22) ei2X + (A22+ B11) ei2Y + (A12+ A21− B12− B21) eiXiY − A1iX − A2iY

+eT (A11+ B22) eiX,eiX +
1
2

eT (A12+ A21− B12− B21) eiX,eiY − AT
1 eiX,e (2.27)

+eT (A22+ B11) eiY,eiY +
1
2

eT (A12+ A21− B12− B21) eiY,eiX − AT
2 eiY,e

whereA11, A12, A21, A22, B11, B12, B21, B22, A1 andA2 are integration constants defined

by Escalano J. L., Hussien H. A. and Shabana A. A. [34]. Integration constants are given

explicitly in the following equations.

Ai j =
Ea
L

1∫

0

ST
i,ξ Sj,ξ dξ (2.28)

Bi j =
EI

L3

1∫

0

(

∂2Si

∂ξ2

)T 



∂2Sj

∂ξ2



 dξ (2.29)

Ai = Ea

1∫

0

ST
i,ξdξ (2.30)

A11, A12, A21, A22, B11, B12, B21, B22, A1, A2, ∂S/∂ξ, ∂2S/∂ξ2, ∂ix/∂e and ∂iy/∂e are

presented in simplified form in Appendix A.
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2.3.3 Generalized External Forces for Non-Shear Deformable PlanarBeam Element

If a forceF acts at an arbitrary point on the finite element, the virtual work done by the force

for a virtual displacement ofδr can be written asFδr ,wherer is the global position vector

of the point of application of the force. The virtual change in the vectorr can be expressed

in terms of the virtual changes in the nodal variable vector,e. Therefore, the generalized

external forces associated with the absolute nodal coordinates can be defined [8]. By using

the definition of global position vector given in Equation 2.12, the generalized force vector,

QF , can be found as given in the following equations.

FTδr = FT Sδe= QT
Fδe (2.31a)

QF = ST F (2.31b)

2.3.3.1 Generalized Gravitational Forces for Non-Shear Deformable Planar Beam

Element

As an example, distributed gravitational force directed toward the−Y axis is expressed as the

generalized force associated to the absolute nodal coordinates of a planar beam element as

given below.

QT
F = FT S=

∫

V

[

0 −ρg
]

SdV = mg
[

0 −
1
2

0 −
L
12

0 −
1
2

0
L
12

]T
(2.32)

2.3.3.2 Generalized Moment for Non-Shear Deformable Planar Beam Element

When a moment M is applied at a cross-section of the beam, the virtual work due to the

moment is given byMδα, whereα is the angle of rotation of the cross-section. The orientation

of a coordinate system whose origin is rigidly attached to this cross-section can be defined

using the transformation matrix given below [8,34].
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



cosα −sinα

sinα cosα




=

1
√

(

∂X
∂x

)2

+

(

∂Y
∂x

)2





∂X
∂x

−
∂Y
∂x

∂Y
∂x

∂X
∂x





(2.33)

By applying virtual change of variables forα, one can get virtual angular rotation in terms of

nodal variables as given below [34].

δα =

∂X
∂x
δ

(

∂Y
∂x

)

−
∂Y
∂x
δ

(

∂X
∂x

)

√
(

∂X
∂x

)2

+

(

∂Y
∂x

)2
(2.34)

If the moment is applied at node O of the element (Figure 2.1), virtual angularrotation can be

calculated as follows.

δα =
e3δ (e4) − e4δ (e3)

e2
3 + e2

4

=

[

0 0 −
e4

e2
3 + e2

4

e3

e2
3 + e2

4

0 0 0 0
]T

δe (2.35)

Then, the generalized external force,QF , for the applied moment, M, can be derived as given

below.

QF =
Mδα
δe
=

[

0 0 −M
e4

e2
3 + e2

4

M
e3

e2
3 + e2

4

0 0 0 0
]T

(2.36)

2.4 Absolute Nodal Coordinate Formulation for Shear Deformable Planar

Beam Element

Shear deformable planar beam formulation has been introduced by Omar M.A. and Shabana

A. A. [21]. They have added two nodal variables,∂Xi/∂y and∂Yi/∂y, for each nodes and used

different shape function with more terms in order to include shear deformation effects. Vector

of nodal variables for a shear deformable planar beam element is givenbelow.

e=
[

X1 Y1
∂X1

∂x
∂Y1

∂x
∂X1

∂y
∂Y1

∂y
X2 Y2

∂X2

∂x
∂Y2

∂x
∂X2

∂y
∂Y2

∂y

]T

(2.37)
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Global position of an arbitrary point on the element can be found by using Equation 2.12.

Shape function matrix, proposed by Omar M. A. and Shabana A. A. [21],is given below.

S=





s1 0 ls2 0 ls3 0 s4 0 ls5 0 ls6 0

0 s1 0 ls2 0 ls3 0 s4 0 ls5 0 ls6




(2.38)

where

s1 = 1− 3ξ2 + 2ξ3 (2.39a)

s2 = ξ − 2ξ2 + ξ3 (2.39b)

s3 = η − ξη (2.39c)

s4 = 3ξ2 − 2ξ3 (2.39d)

s5 = −ξ
2 + ξ3 (2.39e)

s6 = ξη (2.39f)

andξ andη are the reduced local coordinates and defined asx/l andy/l, respectively.

Mass matrix for the element can be evaluated by using kinetic energy equationgiven in

Equation 2.17 as given below.

M =
∫

V

ρ ST S dV (2.40)

Constant mass matrix can be evaluated by using Gauss-quadrature method or direct

integrations. In [21], mass matrix is published in terms of mass, length, first moment of

mass and second moment of mass.

2.4.1 Generalized Elastic Force for Shear Deformable Planar Beam Element

Strain energy equation can be used to find generalized elastic forces as ingeneral flexible

multibody formulation procedures. The strain energy equation for a beam element can be in

general form written as;
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U =
1
2

∫

V

ε
T E ε dV (2.41)

In the equation,E represents matrix of elastic coefficients andε represents the vector form

of the strain tensor,εm. Matrix of elastic coefficients can be written in terms of modulus of

elasticity,E, and Poisson’s ratio,ν, as given in the following equation [21].

E =





λ + 2µ λ 0

λ λ + 2µ 0

0 0 2µ





(2.42)

where

λ =
νE

(1+ ν)(1− 2ν)
(2.43a)

µ =
E

2(1+ ν)
(2.43b)

Nonlinear strain tensor,εm, can be formulated in terms of deformation gradient,J, as follows

[36].

εm =
1
2

(

JT J − I
)

(2.44)

In Equation 2.44,I is 2× 2 identity matrix andJ is the deformation gradient defined as;

J =
∂ r t

∂ r0
(2.45)

wherer0 and r t are the global positions of an arbitrary point on the element at initial and

arbitrary times, respectively, and defined as follows.

r t =
[

Xt Y t
]T

(2.46a)

r0 =
[

X0 Y0
]T

(2.46b)
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By substituting Equations 2.46 and 2.12 into Equation 2.45, deformation gradient, J, can be

written in terms of shape function matrix,S, and vector of nodal variables,e, as given below.

J =
∂r t

∂r0
=
∂r t

∂x
∂x
∂r0
=





S1,x e S1,y e

S2,x e S2,y e




D−1 (2.47)

If initial body coordinate frame is parallel to the global coordinate frame, then the

transformation matrix,D, reduces to identity matrix. By eliminating transformation matrix,

components of strain vector can be written as given in the following equations.

ε1 =
1
2

(eT Sa e− 1) (2.48a)

ε2 =
1
2

(eT Sb e− 1) (2.48b)

ε3 =
1
2

eT Sc e (2.48c)

where

Sa = ST
1,x S1,x + ST

2,x S2,x (2.49a)

Sb = ST
1,y S1,y + ST

2,y S2,y (2.49b)

Sc = ST
1,x S1,y + ST

2,x S2,y (2.49c)

Then, the vectorial form of strain tensor and its partial derivative can be written as functions

of nodal variables as shown below.

ε =





ε1

ε2

ε3





=
1
2





eT Sa e− 1

eT Sb e− 1

eT Sc es





(2.50a)

∂ε

∂e
=





eT Sa

eT Sb

1
2 eT

(

Sc + ST
c

)





(2.50b)
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The generalized elastic force due to elastic potential can be obtained by differentiating the

strain energy with respect to the nodal coordinates as;

QT
k =
∂U
∂e
=
∂

∂e






1
2

∫

V

ε
T E ε dV






=

∫

V

(

∂ε

∂e

)T

E ε dV (2.51)

By substituting Equations 2.50.a and 2.50.b into Equation 2.51, the generalized elastic force

vector can be simplified to the following equation.

QT
k =

∫

V

[

eT Sa eT Sb
1
2eT

(

Sc + Sc
T
)
]





λ + 2µ λ 0

λ λ + 2µ 0

0 0 2µ





1
2





eT Sae− 1

eT Sbe− 1

eT Sce





dV (2.52a)

QT
k =

1
2

∫

V

eT





((λ + 2µ) Sa + λSb)
(

eT Sae− 1
)

· · ·

+ (λSa + (λ + 2µ) Sb)
(

eT Sbe− 1
)

+ µ
(

Sc + ST
c

)

eT Sce




dV (2.52b)

Then, generalized elastic forces of deformable bodies can be assembledby using the forces

obtained for each elements in flexible multibody system.

2.4.2 Generalized External Forces for Shear Deformable Planar BeamElement

Generalized external forces for shear deformable planar beam element can be found by using

virtual work principle as given in Equation 2.31. As an example, distributed gravitational

force directed toward the−Y axis is expressed as the generalized force associated with the

absolute nodal coordinates of an arbitrary beam element as follows.

QT
F = FT S=

∫

V

[

0 −ρg
]

S d V (2.53a)

QT
F = −mg

[

0
1
2

0
l

12
0 0 0

1
2

0 −
l

12
0 0

]

(2.53b)
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Additionally, generalized external force vector due to a moment,M, applied at the first node

of the beam can be found with a similar procedure given in Section 2.3.3.2 as follows [21].

QT
F =



0 0 0 0
Me6

e2
5 + e2

6

−
Me5

e2
5 + e2

6

0 0 0 0 0 0



 (2.54)

2.5 Absolute Nodal Coordinate Formulation for four noded Generalized Plate

Element

Plate and shell structures are indispensable parts of mechanical systems.Therefore, ANCF

for generalized plates, which was proposed by Mikkola A. M. and Shabana A. A. [30], is also

included in this chapter.

The dimensions and the coordinate frames used for a four-noded plate element is shown in

Figure 2.2. As shown in the figure, there is one element coordinate frame and one global

coordinate frame (or inertial frame) as in general finite element formulations. However,

the difference is the used nodal coordinates and the shape functions. Nodal variables of an

element are global coordinates and their gradients. By application of different initial gradients,

shell structures can also be simulated with the formulation given below.

Figure 2.2: Four noded plate element [30]
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Nodal variables for an arbitrary plate element can be written by using Equation 2.9 as given

below.

e=
[

eT
1 eT

2 eT
3 eT

4

]T
(2.55)

where

ei =
[

Xi Yi Zi Xi,x Yi,x Zi,x Xi,y Yi,y Zi,y Xi,z Yi,z Zi,z

]T
(2.56)

In the equation,X, Y andZ refer to the coordinates with respect to global coordinate frame,

andx, y andz refer to the local coordinate frame. With those definitions, the vector of nodal

variables for a plate element has the size of 48.

Then, the global position vector,r , can be calculated by using appropriate shape function

matrix and Equation 2.12. Mikkola A. M. and Shabana A. A. have introducedtwo different

shape function matrices in their publication [30]. One of them is presented as;

S= [S 1I S 2I S 3I S 4I S 5I S 6I S 7I S 8I S 9I S 10I S 11I S 12I S 13I S 14I S 15I S 16I ]

(2.57)

where

S 1 = (2ξ + 1)(ξ − 1)2(2η + 1)(η − 1)2

S 2 = aξ(ξ − 1)2(2η + 1)(η − 1)2

S 3 = bη(ξ − 1)2(2ξ + 1)(η − 1)2

S 4 = tζ(ξ − 1)(η − 1)

S 5 = −ξ
2(2ξ − 3)(2η + 1)(η − 1)2

S 6 = aξ2(ξ − 1)(2η + 1)(η − 1)2

S 7 = −bηξ2(2ξ − 3)(η − 1)2

S 8 = −tξζ(η − 1)

S 9 = η
2ξ2(2ξ − 3)(2η − 3)

S 10 = −aη2ξ2(ξ − 1)(2η − 3)
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S 11 = −bη2ξ2(η − 1)(2ξ − 3)

S 12 = tξζη

S 13 = −η
2(2ξ + 1)(ξ − 1)2(2η − 3)

S 14 = −aξη2(ξ − 1)2(2η − 3)

S 15 = bη2(ξ − 1)2(2ξ + 1)(η − 1)

S 16 = −tηζ(ξ − 1)

Additionally, a, b andt are the sizes of plate element given in Figure 2.2,I is 3× 3 identity

matrix, andξ, η andζ are the reduced local coordinates of an arbitrary point in the element,

which are defined asξ = x/a, η = y/b andζ = z/t, respectively. The shape function matrix

represents exact rigid body dynamics and produces no strain under rigid body displacements

and/or rotations [1, 4, 7, 8, 30, 32]. For the other shape function matrix and their comparison

[30] could be reviewed.

2.5.1 Mass matrix for Generalized Plate Element

All of the existing finite element formulations for the large deformation and rotation analysis

of plates and shells lead to nonlinear mass matrices [8]. However, it is just a constant matrix

in ANCF. Mass matrix of a plate element can easily be formed by writing the kinetic energy

equation at an arbitrary time,t, for an element as given below.

tT =
1
2

∫

tV

tρ t ṙT t ṙ d tV (2.58)

In Equation 2.58,tρ andtV are density and volume of the plate element at an arbitrary time,t.

The velocity vector can be obtained by differentiating the position vector ast ṙ = S tė. Density

and volume at an arbitrary timet can be written in terms of initial density and volume by

using deformation gradient matrix,J, as given in the following equations [36].

tρ =
0ρ
∣
∣
∣
t
0J

∣
∣
∣

(2.59a)

d tV =
∣
∣
∣
t
0J

∣
∣
∣d 0V (2.59b)
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Then, mass matrix can be found by substituting velocity vector,ṙ , and Equations 2.59.a and

2.59.b into Equation 2.58 as follows.

tT =
1
2

∫

tV

0ρ
∣
∣
∣
t
0J

∣
∣
∣

(
tėT )

ST S
(
tė
) ∣
∣
∣
t
0J

∣
∣
∣d 0V (2.60a)

tT =
1
2

(
tėT )





∫

0V

0ρ ST S d 0V





(
tė
)

(2.60b)

tT =
1
2

(
tėT )

tM
(
tė
)

(2.60c)

tM =
∫

0V

0ρ ST S d 0V (2.60d)

As seen in Equation 2.60d , mass matrix at an arbitrary time,t, does not depend on time and

the orientation. It can be evaluated once by using the initial density and volume, then it can be

used at any time step during the solution process. However, volume integration is performed

on global coordinate frame. Therefore, it should be transformed into local coordinate frame

in order to make volume integration easier as given below.

M =
∫

ve

ρST S|D| dve (2.61)

whereve represents volume of the element in local coordinates (dve = dxdydz) andD is the

gradient tensor defined as;

DT =
∂X
∂x
=





∂X
∂x

∂X
∂y

∂X
∂z

∂Y
∂x

∂Y
∂y

∂Y
∂z

∂Z
∂x

∂Z
∂y

∂Z
∂z





(2.62)

It is obvious that if the initial local coordinate frame is parallel to the global coordinate frame,

then the transformation gradient tensor is equal to identity matrix and|D| = 1.
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2.5.2 Generalized Elastic Forces for Generalized Plate Element

In the derivation of generalized elastic forces, continuum mechanics approach has been

used. The elastic forces of an arbitrary plate element can be derived using strain energy

equation. The strain energy of an element at an arbitrary time,t, can be formulated by using

Green-Lagrange strain and 2nd Piola-Kirchhoff stress tensor definitions as given below (Total

Lagrangian Formulation) [32].

tU =
1
2

∫

0V

(
t
ε

T )

E
(
t
ε

)

d 0V (2.63)

whereE is the matrix of elastic coefficients andt
ε is the vector form of the strain tensor,t

εm.

The matrix of elastic coefficients is given below [36].

E =





λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





(2.64a)

λ =
νE

(1+ ν)(1− 2ν)
(2.64b)

µ =
E

2(1+ ν)
(2.64c)

where E andµ are elastic modulus and Poisson’s ratio of the material. Then, the generalized

elastic force vector of the plate element can be obtained by differentiating the strain energy

(Equation 2.63) with respect to the nodal variables as given in the followingequation.

tQT
k =
∂ tU
∂ te

=
∂

∂ te






1
2

∫

0V

t
ε

T E t
ε d 0V






=

∫

0V

(

∂ t
ε

∂ te

)T

E t
ε d 0V (2.65)

The nonlinear strain tensor can be defined by using 3×3 identity matrix,I , as given below [36].
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εm =
1
2

(
t
0JT t

0J − I
)

(2.66)

Deformation gradient,J, can be written in terms of nodal variables,e, as follows.

J =
∂ tr
∂ 0r

=





∂ tX

∂ 0X

∂ tX

∂ 0Y

∂ tX

∂ 0Z
∂ tY

∂ 0X

∂ tY

∂ 0Y

∂ tY

∂ 0Z
∂ tZ

∂ 0X

∂ tZ

∂ 0Y

∂ tZ

∂ 0Z





=





S1,Xe S1,Ye S1,Ze

S2,Xe S2,Ye S2,Ze

S3,Xe S3,Ye S3,Ze





(2.67)

In Equation 2.67,S1, S2 andS3 are the first, second and third row vectors of shape function

matrix,S. The deformation gradient,J, contains partial derivatives of the shape function with

respect to the initial global position vector. Therefore, these partial derivatives (Si,X, Si,Y and

Si,Z) should be related to the local coordinate frame as given below.





∂S i
∂x

∂S i
∂y

∂S i
∂z





=





∂X
∂x

∂Y
∂x

∂Z
∂x

∂X
∂y

∂Y
∂y

∂Z
∂y

∂X
∂z

∂Y
∂z

∂Z
∂z









∂S i
∂X

∂S i
∂Y

∂S i
∂Z





= D





∂S i
∂X

∂S i
∂Y

∂S i
∂Z





(2.68)

The transformation matrix, defined in Equations 2.62 and 2.68, can be written interms of

nodal variables as in the following equation.

D =





∂X
∂x

∂Y
∂x

∂Z
∂x

∂X
∂y

∂Y
∂y

∂Z
∂y

∂X
∂z

∂Y
∂z

∂Z
∂z





=





S1,x e0 S1,y e0 S1,z e0

S2,x e0 S2,y e0 S2,z e0

S3,x e0 S3,y e0 S3,z e0





T

(2.69)

Then, partial differentials with respect to the global coordinate frame can be converted into

partial differentials with respect to the local coordinate frame as given below.





∂S i
∂X

∂S i
∂Y

∂S i
∂Z





= D−1





∂S i
∂x

∂S i
∂y

∂S i
∂z





(2.70)

Strain vector and its derivative with respect to the nodal variables shouldbe written in terms

of the nodal variables. By using the deformation gradient (Equation 2.67)and nonlinear strain
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tensor definition (Equation 2.66), nonlinear strain tensor can be rewritten as follows.

εm =





ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33





=
1
2









∂ tX
∂ 0X

∂ tX
∂ 0Y

∂ tX
∂ 0Z

∂ tY
∂ 0X

∂ tY
∂ 0Y

∂ tY
∂ 0Z

∂ tZ
∂ 0X

∂ tZ
∂ 0Y

∂ tZ
∂ 0Z





T 



∂ tX
∂ 0X

∂ tX
∂ 0Y

∂ tX
∂ 0Z

∂ tY
∂ 0X

∂ tY
∂ 0Y

∂ tY
∂ 0Z

∂ tZ
∂ 0X

∂ tZ
∂ 0Y

∂ tZ
∂ 0Z





−





1 0 0

0 1 0

0 0 1









(2.71a)

εm =
1
2





(
∂r
∂ 0X

)T (
∂r
∂ 0X

)

− 1
(
∂r
∂ 0X

)T (
∂r
∂ 0Y

) (
∂r
∂ 0X

)T (
∂r
∂ 0Z

)

(
∂r
∂ 0Y

)T (
∂r
∂ 0X

) (
∂r
∂ 0Y

)T (
∂r
∂ 0Y

)

− 1
(
∂r
∂ 0Y

)T (
∂r
∂ 0Z

)

(
∂r
∂ 0Z

)T (
∂r
∂ 0X

) (
∂r
∂ 0Z

)T (
∂r
∂ 0Y

) (
∂r
∂ 0Z

)T (
∂r
∂ 0Z

)

− 1





(2.71b)

Then, strain tensor can be written in vector form as;

ε =
1
2





(
∂r
∂ 0X

)T (
∂r
∂ 0X

)

− 1
(
∂r
∂ 0Y

)T (
∂r
∂ 0Y

)

− 1
(
∂r
∂ 0Z

)T (
∂r
∂ 0Z

)

− 1

2
(
∂r
∂ 0Y

)T (
∂r
∂ 0Z

)

2
(
∂r
∂ 0X

)T (
∂r
∂ 0Z

)

2
(
∂r
∂ 0X

)T (
∂r
∂ 0Y

)





(2.72)

The partial differentials appearing in the strain vector (Equation 2.72) can be defined as;

∂r
∂ 0Xi

= Deie (2.73)

where

Dei =
(

a1iS,x + a2iS,y + a3iS,z
)

(2.74)

In the equation,a1i, a2i anda3i are theith element of the column vectors, which are defined as

a1, a2 anda3 in the following equation.

[

a1 a2 a3

]

=
(

DT
)−1

(2.75)

Finally, the strain vector and its partial derivative with respect to vector ofnodal variables can

be written in explicit forms by substituting Equation 2.73 into Equation 2.72 as given in the
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following equations.

ε =
1
2





eT De1
T De1e− 1

eT DT
e2De2e− 1

eT DT
e3De3e− 1

2eT DT
e2De3e

2eT DT
e1De3e

2eT DT
e1De2e





(2.76)

∂ε

∂e
=





eT De1
T De1

eT DT
e2De2

eT DT
e3De3

eT (DT
e2De3 + DT

e3De2)

eT
(

DT
e1De3 + DT

e3De1

)

eT
(

DT
e1De2 + DT

e2De1

)





(2.77)

Then, the generalized elastic force vector can be written in terms of nodal variables by

substituting Equations 2.76 and 2.77 into Equation 2.65 as given below.

QT
k =

1
2

∫

0V





eT De1
T De1

eT DT
e2De2

eT DT
e3De3

eT (DT
e2De3 + DT

e3De2)

eT
(

DT
e1De3 + DT

e3De1

)

eT
(

DT
e1De2 + DT

e2De1

)





E





eT De1
T De1e− 1

eT DT
e2De2e− 1

eT DT
e3De3e− 1

2eT DT
e2De3e

2eT DT
e1De3e

2eT DT
e1De2e





d 0V (2.78)

In order to perform the integration of the generalized elastic force vector, the volume

increment should also be transformed into local coordinates asd 0V = |D| d 0ve [30].

Evaluation of the elastic force vector needs to be performed by numerical methods. In most

of the finite element procedures, Gauss-Quadrature numerical integration method is applied.

By changing the integration variables to the reduced coordinates one can obtain the following

equation.
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QT
k = abt

1
2∫

− 1
2

1∫

0

1∫

0

(

∂ε(ξ, η, ζ)
∂e

)T

E ε(ξ, η, ζ) |D|dξdηdζ (2.79)

Volume integration in Equation 2.79 can be converted to simple summations by

Gauss-Quadrature method as given in the following equation.

QT
k =

abt
8

nk∑

k=1

n j∑

j=1

ni∑

i=1

wiw jwk





∂ε

(

ξi + 1
2
,
η j + 1

2
,
ζk

2

)

∂e





T

E ε
(

ξi + 1
2
,
η j + 1

2
,
ζk

2

)

|D| (2.80)

where
(

ξi, η j, ζk
)

refer to the Gauss-Quadrature points and
(

wi,w j,wk

)

refer to the

Gauss-Quadrature weight factors.

2.5.3 Generalized External Forces for Generalized Plate Element

Generalized external forces for the plate element can be found by usingvirtual work principle

as in Equation 2.31. As an example, distributed gravitational force directed toward the−Z

axis is expressed as the generalized force associated with the absolute nodal coordinates of an

arbitrary plate element as given in the following equations.

QT
F = FT S=

∫

tV

[

0 0 −tρg
]

Sd tV =
∫

tV

−tρgS3d tV = −ρg
∫

0V

S3|D|dve (2.81a)

QT
F =
−ρgabt|D|

4

[
0 0 1 0 0 1

6 0 0 b
6 0 0 t

2 0 0 1 0 0− a
6 0 0 b

6 0 0 t
2 ...

... 0 0 1 0 0− a
6 0 0 − b

6 0 0 t
2 0 0 1 0 0 a

6 0 0 − b
6 0 0 t

2

]

(2.81b)

2.6 Equation of Motion and Solution Procedure

Using the simplified mass matrix and generalized force vectors, equation of motion of an

element can be written as follows [8].
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Më+Qk = QF (2.82)

whereQk and QF are the vectors of generalized elastic and external forces, respectively.

Using the generalized force vector definition (Q = Qe − QF), equation of motion can be

written in more compact form as;

ë= M−1Q (2.83)

Mass matrix and force vectors should be assembled in order to get the equations of motion

for the whole flexible multibody system. In the literature, there are mainly two assembly

procedure. The first one is the same as the procedure used in generalfinite element problems

in which the elements of matrices for finite elements are summed up to the related elements of

the system matrices. In the second procedure, the constraint equations between the connected

nodes are introduced to the system equations. In the thesis, general finiteelement assembly

procedure is applied. In order to solve the equation of motion over a defined duration, explicit

direct integration method can be applied. In the direct integration method, instead of trying to

satisfy the equation of motion at any time, it is aimed to satisfy the equilibrium equationonly

at discrete time intervals [36].

Then, the nodal acceleration vector can be approximated with the central difference method

as given below [12].

të=
1
∆t2

(
t+∆te− 2 te+ t−∆te

)

(2.84)

By substituting Equation 2.84 into Equation 2.83, one can obtain nodal variables att + ∆t as

shown below.

1
∆t2

(
t+∆te− 2 te+ t−∆te

)

= M−1Q(te) (2.85a)

t+∆te= 2 te− t−∆te+ ∆t2M−1Q(te) (2.85b)
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As seen from Equation 2.85b, the nodal variable at the next increment,t+∆te, can be evaluated

by using the nodal variables at timest andt − ∆t. At the first time step, the equation takes the

following form.

∆te= 2 0e− −∆te+ ∆t2M−1Q(0e) (2.86)

In order to evaluate the nodal variables at the end of the first time step, the nodal variables

at time−∆t needs to be known besides0e. The unknown nodal variables vector,−∆te, can

be written in terms of the nodal velocity and the nodal acceleration vector att = 0 as given

below [12,36].

−∆te= 0e− ∆t 0ė+
∆t2

2
0ë (2.87)

Therefore, the vector of nodal variables at any time can be found easilywith the known initial

configurations.

2.7 Sample Solutions Based on the Literature using ANCF

In order to make comparisons between the current ANCF in the literature andthe proposed

methods in the following chapters, the reviewed formulations have been usedfor the solutions

of some problems presented in the literature. Obtained results are identical to the published

results. As examples, solutions for simple plate structure under time dependent loading and

flexible pendulum problem are given in the following sections.

2.7.1 Simple Plate Structure under Time Dependent Point Loading

A simple plate structure under a time dependent point load, which has been studied by

Mikkola A. M. and Shabana A. A. [30], is solved by ANCF method. The structure

is kinematically fixed, however it undergoes large deformations. The length, width and

thickness of the structure are 1.0 m, 1.0 m and 0.1 m, consecutively. Structure is fixed

from one edge, and loaded with a time dependent force (40t N) at a corner. In order to
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show performance of ANCF in large deformation problem, modulus of elasticityand material

density have been chosen as 0.1 MPa and 7800kg/m3.

Figure 2.3: Simple plate structure [30]

Mikkola A. M. and Shabana A. A. [30] published solutions for the simple platestructure given

in Figure 2.3 by using 4, 9, 25 and 49 ANCF elements. In order to verify the written codes,

the structure is modeled with 4 elements in the thesis. Finite element model of the structure

is shown in Figure 2.4. As shown in the figure, finite element model has 4 elementsand 9

nodes. Total unconstrained degrees of freedom is 108. 3 nodes on the edge (Nodes 1, 4 and

7) are constrained. Time dependent point load is applied in Z direction to Node 3. Equations

of motion have been solved with 0.01 s time increment for a total time of 1s. Global position

of Node 3 over time is shown in Figure 2.5. Additionally, deformed shape of thestructure at

t = 1 s is shown in Figure 2.6. Obtained results are identical with the results publishedby

Mikkola A. M. and Shabana A. A. [30].

Figure 2.4: Finite element model for simple plate structure
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Figure 2.5: GlobalZ coordinate of Node 3

Figure 2.6: Deformed shape of the simple plate structure att = 1 s
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2.7.2 Flexible Plate Pendulum

As a second example, flexible plate pendulum problem published by Mikkola A. M. and

Shabana A. A. [30] has been studied. Length and width of the plate are shown in Figure 2.7.

Thickness, modulus of elasticity and density of the plate are 10mm, 0.1 MPa and 7810kg/m3,

consecutively. One corner of the structure is constrained by a spherical joint. Then, it is

subjected to gravity. Finite element model for the plate is shown in Figure 2.8. Asshown

in the figure, pendulum is modeled with 3 plate elements and 8 nodes. Total unconstrained

degrees of freedom for the system is 96. Equation of motion is solved with a timeincrement

of 10−3 s for a total time of 1.4 seconds.

Figure 2.7: Flexible plate pendulum [30]

Figure 2.8: Finite element model for flexible plate pendulum
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Global position of Node 4 is plotted over time in Figure 2.9. As seen from the graph,

magnitude of the global position vector is changing in a large range. If the pendulum were

rigid, then the magnitude of position vector would be constant over time. This can give an

idea about the flexibility of the pendulum.

Figure 2.9: Global coordinate of Node 4 over time

Additionally, configurations of the pendulum at some selected instants are shown in Figure

2.10. Despite the small number of elements used in the analysis, large deformation and

rotation characteristics of plate have been captured with 4 noded ANCF plateelement as

shown in the figure. In summary, obtained results are identical to the results published by

Mikkola A. M. and Shabana A. A. [30].
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Figure 2.10: Flexible pendulum configurations over time
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CHAPTER 3

APPLICATION OF MESHFREE METHOD TO ANCF

3.1 Meshfree Methods

As described in the previous chapters, solution procedures for flexiblemultibody dynamics

problems are mainly based on the Finite Element Method (FEM). Therefore, flexible bodies

have to be discretized by predefined meshes. Then, equations of motion could be formulated

based on this discretization. It is clear that the shape and the density of the mesh have a

great importance in the solution. Therefore, they should be carefully designed to obtain

accurate solutions. Despite the flexible multibody dynamics literature has focused on FEM,

there are some other methods that could be useful. Meshfree method is a recently developed

alternative to FEM for structural mechanics problems. In meshfree method,system equations

are established without the use of a predefined mesh [37]. Additionally, it isshown that

the accuracy in structural mechanics problems can be increased by usingmeshfree methods

instead of FEM [37,38].

In this chapter, meshfree method is implemented to flexible multibody problems. Therefore,

short definitions and classifications related to the meshfree method are included in the chapter.

The most of the literature, which are related to the meshfree method, has beencollected within

two books by G. R. Liu [37] and G. R. Liu and Y. T. Gu [38]. Those meshfree related books are

completing each other. In the thesis, these books were the major references for the meshfree

related topics.

The main starting point of the meshfree method was to eliminate mesh generation process

from the design cycle, and it was partly succeeded in literature. For beam,plate and shell type

structures meshing process is not as difficult as complex solid parts. However, by introducing
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meshfree method to flexible multibody dynamics problems, more accurate results could be

obtained without the limitations of finite element method, which are listed by G. R. Liu and

Y. T. Gu [38] as follows:

1. High cost in creating an FEM mesh [38]

2. Low accuracy of stress: Many FEM packages do not accurately predict stress. The

stresses obtained in FEM are often discontinuous at the interfaces of the elements due

to the piecewise (or element-wise) continuous nature of the displacement fieldassumed

in the FEM formulation [38].

3. Difficulty in adaptive analysis: One of the current new demands on FEM analysis is to

ensure the accuracy of the solution [38].

4. Limitation in the analysis of some problems [38]:

• Under large deformations, considerable loss in accuracy in FEM results can arise

from the element distortions [38].

• It is difficult to simulate crack growth with arbitrary and complex paths which do

not coincide with the original element interfaces [38].

• It is very difficult to simulate the breakage of material with large number of

fragments; the FEM is based on continuum mechanics, in which the elements

cannot be broken; an element must either stay as a whole, or disappear completely.

This usually leads to a misrepresentation of the breakage path [38].

In this chapter, ANCF of shear deformable planar beams using meshfree interpolation

polynomials is performed. Structural meshfree formulations are generally starts with the

selection of interpolation methods. In the literature, there are various interpolation techniques

specialized to specific problems to be solved [37–39]. The most widely usedone is the

Point Interpolation Method. The method is very simple and adaptable. However, it has some

drawbacks besides its advantages. As a starting point, Polynomial Point Interpolation Method

(PPIM) was selected. In PPIM, a field variable (globalX position in this case) can be written

as follows.

e1(x, y, xQ) = X(x, y, xQ) =
3n∑

i=1

pi(x, y) ai(xQ) = pT (x, y) a(xQ) = p a (3.1)
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It was seen that PPIM is not appropriate for shear deformable nonlinear beams due to

non-invertible moment matrix. Generally, this problem arises from inline node placements.

Theoretically, this situation can be circumvented by the following methods [37].

• Moving nodes within the solution domain: If one considers straight beam along a global

X axis, it is not possible or realistic to move nodes towardY axis. Therefore, this

approach is not applicable to meshfree ANCF of beams.

• Polynomial PIM with Coordinate transformation: This method had been implemented

for planar beam problems. However, obtained moment matrix was still non-invertible.

• Matrix triangulation algorithm: The algorithm is based on the proper selection ofthe

interpolating nodes within the solution domain. However, this would not solve the

problem for ANCF of beams.

• Radial point interpolation method: The method guarantees non-singular moment

matrix. However, number of basis functions is not adequate for the solutionof nodal

variables. It results in non-square matrices.

• Radial point interpolation with polynomial reproduction: The method guarantees the

non-singular moment matrix for meshfree ANCF of planar beams.

As listed above, some methods have been performed for shear deformableplanar beam

formulation and it is seen that the most appropriate method is the radial point interpolation

with polynomial reproduction. Therefore, the following nonlinear beam formulation is based

on this method.

3.2 Construction of Shape Function for Planar Beams

In ANCF, nodes have 6 degrees of freedom for planar problems. Those are global positions,X

andY, and gradients,∂X/∂x, ∂Y/∂x, ∂X/∂y and∂Y/∂y. For theith node of the system, degrees

of freedom are defined asei
1, ei

2, ei
3, ei

4, ei
5 andei

6. In meshfree methods, support domains,

Ωs, are used to interpolate field variables instead of finite elements. Support domains are

generally represented by a point of interest (or quadrature point) at their center as shown in

Figure 3.1.
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Figure 3.1: Support domain for planar beams [38]

Then, global positions of an arbitrary point in the support domain of a point of interest atxQ

can be written as follows.

X(x, y, xQ) =
n∑

i=1

Ri(x, y) ai(xQ) +
2n∑

j=1

p j(x, y) b j(xQ)

X(x, y, xQ) = RT (x, y) a(xQ) + PT (x, y) b(xQ) = RT a+ PT b (3.2)

In Equation 3.2,P andR represent polynomial basis and multiquadratic radial basis vectors

and they are given below [38].

Ri =
(

(x − xi)
2 + (y − yi)

2 +C2
)q

(3.3)

P =
[

1 x y xy x2 x2y x3 x3y x4 x4y x5 x5y ...
]T

(3.4)

whereC andq are constants of radial basis function and can be determined depending on the

convergence of the problem.

Similarly, Y component of global position vector can be written as follows.

Y(x, y, xQ) = RT (x, y) c(xQ) + PT (x, y) d(xQ) = RT c+ PT d (3.5)

In Equations 3.2 and 3.5,ai, b j, ci andd j represent coefficients for basis functions. By using

3.2 and 3.5, global position vector can be written in terms of basis functions in matrix form
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as given below.

r (x, y, xQ) =





RT (x, y) PT (x, y) 0 0

0 0 RT (x, y) PT (x, y)









a

b

c

d





(3.6)

Then, the gradients can be determined by partial differentiation with respect to local

coordinatesx andy as given in the following equations.

∂X(x, y, xQ)

∂x
= RT

,x a+ PT
,x b (3.7a)

∂Y(x, y, xQ)

∂x
= RT

,x c+ PT
,x d (3.7b)

∂X(x, y, xQ)

∂y
= RT

,y a+ PT
,y b (3.7c)

∂Y(x, y, xQ)

∂y
= RT

,y c+ PT
,y d (3.7d)

Coefficients of basis functions (a, b, c andd) can be determined by enforcing Equations 3.2,

3.5 and 3.7 to be satisfied at the n nodes within the support domain. For theith node, degrees

of freedom can be calculated as given below.

ei =





RT
i PT

i 0 0

0 0 RT
i PT

i

RT
i,x PT

i,x 0 0

0 0 RT
i,x PT

i,x

RT
i,y PT

i,y 0 0

0 0 RT
i,y PT

i,y





6x6n





a

b

c

d





6nx1

(3.8)

If Equation 3.8 is generalized to n nodes in the support domain, the following set of algebraic

equations can be obtained.

es = PQ A (3.9)
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wherees is the vector of nodal variables for the support domain,PQ is the generalized moment

matrix evaluated at n nodes within the support domain,Ωs, andA is the vector of constants

of basis functions as shown in the following equations.

es =
[

e1
1 e1

2 e1
3 e1

4 e1
5 e1

6 . . en
1 en

2 en
3 en

4 en
5 en

6

]

(3.10a)

PQ =





RT
1 PT

1 0 0

0 0 RT
1 PT

1

RT
1,x PT

1,x 0 0

0 0 RT
1,x PT

1,x

RT
1,y PT

1,y 0 0

0 0 RT
1,y PT

1,y

. . . .

. . . .

RT
n PT

n 0 0

0 0 RT
n PT

n

RT
n,x PT

n,x 0 0

0 0 RT
n,x PT

n,x

RT
n,y PT

n,y 0 0

0 0 RT
n,y PT

n,y





6nx6n

(3.10b)

A =
[

aT bT cT dT
]T

6nx1
(3.10c)

Then, constants of basis functions,A, can be evaluated by matrix inversion as given below.

A = P−1
Q es (3.11)

By substituting Equation 3.11 into Equation 3.6, global position vector can be written in terms

of known polynomial constants and body coordinates as given in the following equation.

r (x, y, xQ) = S(x, y, xQ) es (3.12)
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where,S is the shape function matrix for the support domain,Ωs, and defined below.

S(x, y, xQ) =





RT (x, y) PT (x, y) 0 0

0 0 RT (x, y) PT (x, y)




P−1

Q (3.13)

3.3 Mass Matrix Formulation of Meshfree Planar Beam with ANCF

In meshfree solution procedures, integrations are generally performedwithin the predefined

quadrature domains,Ωq. Therefore, kinetic energy equation (Equation 2.58) will be integrated

over quadrature domains. Then, the kinetic energy of the whole deformable body can be

summed by simple assembly procedures as in general finite element methods. Kinetic energy

of the quadrature domain,Ωq, in the support domain,Ωs, of the body can be evaluated by

using shape function matrix as given below.

Tq =
1
2

∫

Vq

tρ ėT
s ST (x, y) S(x, y) ės dtVq (3.14a)

Tq =
1
2

ėT
s





∫

Vq

tρ ST (x, y) S(x, y) dtVq





ės (3.14b)

Tq =
1
2

ėT
s M sq ės (3.14c)

whereM sq is the mass matrix of the integrated part of the body (quadrature domain) and given

explicitly as follows.

M sq =

∫

Vq

tρ ST (x, y) S(x, y) dtVq (3.15)

Density and volume increment at an arbitrary time,t, can be written in terms of initial

density and volume increment [36]. Then, the volume integration can be performed at initial

configuration as given;

M sq =
0ρ

∫

Vq

ST (x, y) S(x, y) d0Vq (3.16)
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By introducing the shape function matrix defined in Equation 3.12 into Equation 3.16, one

can obtain the explicit form of the mass matrix of quadrature domain as given inthe following

equation.

M sq = ρ (P−1
q )T

∫

Vq





R 0

P 0

0 R

0 P









RT PT 0 0

0 0 RT PT




dVqP−1

q (3.17)

3.4 Generalized Elastic Forces for ANCF of Meshfree Planar Beam

Strain energy equation can be used to find generalized elastic forces as ingeneral flexible

multibody procedures. The strain energy equation for a quadrature domain,Ωq, can be written

as given below.

Uq =
1
2

∫

V

ε
T
q EεqdVq (3.18)

In Equation 3.18,E represents matrix of elastic coefficients andεq stands for the vector form

of strain tensor,εm, within the quadrature domain,Ωq. Matrix of elastic coefficients can be

written in terms of modulus of elasticity,E, and Poisson’s Ratio,ν, as follows [21].

E =





λ + 2µ λ 0

λ λ + 2µ 0

0 0 2µ





(3.19a)

λ =
νE

(1+ ν)(1− 2ν)
(3.19b)

µ =
E

2(1+ ν)
(3.19c)

Nonlinear strain tensor,εm, can be formulated in terms of deformation gradient,J, as given

below.
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εm =
1
2

(

JT J − I
)

(3.20)

whereI is identity matrix andJ is the deformation gradient defined as;

J =
∂ tr
∂ 0r

(3.21)

Then, it can be written in terms of shape function,S, and vector of nodal variables,es, as

given below.

J =
∂ tr
∂ 0r
=
∂ tr
∂ x
∂ x
∂ 0r
=





S1,x es S1,y es

S2,x es S2,y es




D−1 (3.22)

If the body coordinate frame is parallel to the global coordinate frame, thenD reduces to

identity matrix. In the meshfree formulation of planar beam, it is assumed that the coordinate

frames are parallel. By eliminating transformation matrix, components of strain vector can be

written as;

ε1 =
1
2

(eT
s Sa es − 1) (3.23a)

ε2 =
1
2

(eT
s Sb es − 1) (3.23b)

ε3 =
1
2

eT
s Sc es (3.23c)

where

Sa = ST
1,x S1,x + ST

2,x S2,x (3.24a)

Sb = ST
1,y S1,y + ST

2,y S2,y (3.24b)

Sc = ST
1,x S1,y + ST

2,x S2,y (3.24c)

Then, the vectorial form of strain tensor and its partial derivative within thequadrature domain

can be written as a function of nodal variables within the support domain as follows.
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εq =





ε1

ε2

ε3





=
1
2





eT
s Sa(q) es − 1

eT
s Sb(q) es − 1

eT
s Sc(q) es





(3.25a)

∂εq

∂es
=





eT
s Sa(q)

eT
s Sb(q)

1
2 eT

s

(

Sc(q) + ST
c(q)

)





(3.25b)

The generalized elastic forces on nodes within the support domain of a quadrature point due to

elastic potential can be obtained by differentiating the strain energy with respect to the nodal

variables as given in the following equation.

QT
k =
∂Uq

∂es
=
∂

∂es






1
2

∫

Vq

εT
q Eεq dV0

q






=

∫

Vq

(
∂εq

∂es

)T

Eεq dV0
q (3.26)

By substituting Equations 3.25a and 3.25b into Equation 3.26, the generalized elastic force

vector can be written in an explicit form given in the following equation.

QT
k =

∫

Vq

[

eT
s Sa eT

s Sb
1
2eT

s (Sc + ST
c )

]





λ + 2µ λ 0

λ λ + 2µ 0

0 0 2µ





1
2





(eT
s Saes − 1)

(eT
s Sbes − 1)

eT
s Sces





dVq (3.27a)

QT
k =

1
2

∫

Vq

eT
s





((λ + 2µ)Sa + λSb)(eT
s Saes − 1) · · ·

+(λSa + (λ + 2µ)Sb)(eT
s Sbes − 1)+ µ(Sc + ST

c )eT
s Sces




dVq (3.27b)

Then, generalized elastic forces of deformable bodies can be assembledby using the forces

obtained for quadrature domains.

3.5 Generalized Gravitational Forces for ANCF of Meshfree Planar Beam

Generalized external forces can be obtained as in the general flexible multibody procedure.

As an example, distributed gravitational force directed toward the−Y axis is expressed as the
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generalized force associated with the absolute nodal coordinates of an arbitrary quadrature

domain as follows.

QT
F = FT S=

∫

Vq

[

0− ρg
]

SdVq =

∫

Vq

−ρgS2dVq (3.28)

3.6 Equation of Motion and Solution Procedure for Meshfree Planar Beams

with ANCF

For the solution of system equations, which contain mass matrix and generalized forces, same

procedure described in Section 2.6 can be used. However, it is required to assemble quadrature

domains instead of elements in order to construct equations of motion for the whole system.

Equation of motion for an arbitrary quadrature domain can simply be written as follows;

M sqës +Qk(es) = QF (3.29)

3.7 Comparison of Meshfree and FEM based ANCFs for Planar Beams

In order to verify performance of the developed meshfree formulation, comparison study for

a flexible pendulum problem, which is the major problem for the demonstration ofnewly

developed methods in literature, has been performed. It is assumed that theflexible pendulum

has a rectangular cross-section, 1.2 m length, density of 7800kg/m3 and 1MPa of modulus

of elasticity. The pendulum, shown in Figure 3.2, is grounded at (0,0) local coordinates.

Comparison study is performed for three different thicknesses (40mm, 10mm and 2mm).

3.7.1 Results of FEM based ANCF of Shear Deformable Planar Beams

In order to see advantages of meshfree formulation, a convergence study had been performed

with finite element based ANCF of shear deformable planar beams. Number ofelements is

increased up to certain level of convergence. Flexible pendulum problem shown in Figure

3.2 is solved for a duration of 1s with 10−5 s time intervals using 3, 6, 9 and 12 elements.

54



Figure 3.2: Flexible pendulum for comparison study

Obtained results for different thicknesses are presented in Figure 3.3 through Figure 3.11.

As seen from the figures, number of elements required for convergence is increasing with

decreasing beam thickness. Convergence seems to be satisfied with 12 elements for the beam

having thickness of 2mm. However, 9 elements for 10mm thickness and 6 elements for

40 mm thickness are adequate.
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Figure 3.3: Tip coordinate,X, versus time for FEM based ANCF (t= 2 mm)
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Figure 3.4: Tip coordinate,Y, versus time for FEM based ANCF (t= 2 mm)
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Figure 3.5: Route of the tip for FEM based ANCF (t= 2 mm)
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Figure 3.6: Tip coordinate,X, versus time for FEM based ANCF (t= 10 mm)
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Figure 3.7: Tip coordinate,Y, versus time for FEM based ANCF (t= 10 mm)
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Figure 3.8: Route of the tip for FEM based ANCF (t= 10 mm)
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Figure 3.9: Tip coordinate,X, versus time for FEM based ANCF (t= 40 mm)
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Figure 3.10: Tip coordinate,Y, versus time for FEM based ANCF (t= 40 mm)
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Figure 3.11: Route of the tip for FEM based ANCF (t= 40 mm)
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3.7.2 Results Obtained by Meshfree ANCF of Flexible Pendulum

In the meshfree solution of flexible pendulum shown in Figure 3.2, the problem is modeled by

using 7 nodes. Volume integrations appearing in the system equations are performed with 6

quadrature domains using 6 support domains as shown in Figure 3.12. In the solution, shape

function matrix is not constructed for each quadrature points within the relevant quadrature

domain. Instead of this, single shape function matrix is constructed for eachquadrature

domains using related support domain. Then, they are used for each quadrature points within

owning quadrature domains. Obtained results are compared with the results of FEM based

ANCF of shear deformable beams for 2mm, 10 mm and 40mm thick flexible pendulums

in Figure 3.13 through Figure 3.21. Despite fewer number of nodes in meshfree solutions,

accurate results are obtained.

Figure 3.12: Domains used in the solution of flexible pendulum
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Figure 3.13: Tip coordinate,X, versus time for meshfree ANCF (b= 2 mm)
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Figure 3.14: Tip coordinate,Y, versus time for meshfree ANCF (b= 2 mm)
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Figure 3.15: Route of the tip for meshfree ANCF (b= 2 mm)
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Figure 3.16: Tip coordinate,X, versus time for meshfree ANCF (b= 10 mm)
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Figure 3.17: Tip coordinate,Y, versus time for meshfree ANCF (b= 10 mm)
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Figure 3.18: Route of the tip for meshfree ANCF (b= 10 mm)
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Figure 3.19: Tip coordinate,X, versus time for meshfree ANCF (b= 40 mm)
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Figure 3.20: Tip coordinate,Y, versus time for meshfree ANCF (b= 40 mm)
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Figure 3.21: Route of the tip for meshfree ANCF (b= 40 mm)

3.8 Discussion

In the chapter, meshfree implementation of ANCF for planar beams has been performed.

As can be seen from the comparisons, accurate results can be obtained despite fewer nodes

are used. However, cost of computation is relatively high. Required time for the proposed

meshfree formulation is at least twice of the time required for finite element based formulation

with the same number of nodes. General advantages of the proposed meshfree formulation

can be summarized as follows.

• Accuracy is high.

• Extreme nonlinear deformations can be handled due to the higher order of the shape

functions.

Additionally, disadvantages of the proposed formulation can be summarized as given below.

• Computational cost is high.
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• Formulation still requires background mesh (quadrature domains)

3.8.1 Application of Meshfree ANCF to the Plate/Shell Structure

Due to advantages listed above, meshfree formulation has been tried to be implemented

to the ANCF of generalized plates. However, appropriate shape functionpolynomials,

which should work for any kind of node locations and domain selections, could not be

found. For particularly selected node locations and quadrature domains,flexible pendulum

problem, introduced in Figure 2.7, has been solved accurately with respect to the edge

displacements. However, continuity of displacements could not be satisfied over quadrature

domain interfaces. Therefore, meshfree generalized plate formulation is not presented in the

thesis and left as a future study. Node locations and selected quadraturedomains for flexible

plate pendulum are presented in Figure 3.22. Comparison of displacements at point H (Figure

2.7) can be found in Figure 3.23. Displacement results are almost identical upto 0.5 s of

the simulation, where the kinetic energy is maximum. Then, a negligible difference in the

results arises. It can be evaluated that generalized plate formulation is completed with respect

to the displacement comparison. However, continuity requirement is not satisfied over the

quadrature domains as shown in Figure 3.24.

Figure 3.22: Selected node locations and quadrature domains of flexible pendulum for
meshfree generalized plate formulation
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Figure 3.23: Comparison of displacements at point H for FEM and meshfreebased ANCF’s

Figure 3.24: Flexible pendulum configurations obtained by using meshfreeANCF
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CHAPTER 4

ANCF FOR QUADRILATERAL PLANE STRESS AND PLANE

STRAIN ELEMENTS HAVING IRREGULAR SHAPES

Currently, ANCF is used for structural finite elements (beam, plate and shellelements)

having regular shapes. However, this method can be extended to irregularly shaped structural

elements and also to planar and three dimensional continuum finite elements by using properly

selected mapping frames and interpolation polynomials. Main advantages of extending ANCF

to continuum finite elements can be summarized as given below:

1. Generalized mass matrix is always constant and independent of the time and the

deformation.

2. Hourglass modes, which cause energy loss in finite element simulations, can be

eliminated or reduced.

3. Exact representation of rigid body dynamics is possible.

4. Accuracy is high.

Beside these advantages, it has only two drawbacks which are highly nonlinear generalized

elastic forces and increased total degrees of freedom. However, these disadvantages could be

handled by using available solution procedures, like Newton-Raphson method, in literature.

In this chapter, a new formulation, called “ANCF with Virtual Element Mapping”, has been

developed in order to eliminate element shape restrictions, to make ANCF be applicable to 3D

continuum elements and to make use of the ANCF in general flexible multibody problems.

Additionally, three approaches for virtual element mapping are proposed. Developed
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formulation and the proposed methods are implemented to four noded plane stress or plane

strain quadrilateral finite elements, firstly. Additionally, the performance of thedeveloped

ANCF is verified by well known patch test problems proposed by Richard H. Macneal and

Robert L. Harder [35]. Implementation of the developed formulation and theproposed

methods to plate/shell and 3D hexahedral finite elements are presented in the following

chapters.

4.1 Irregular Shaped Quadrilateral Finite Element Representation and Shape

Function Creation for Planar Continuum Problems

In general ANCF, nodal degrees of freedom consist of nodal coordinates in global frame and

partial derivatives (or gradients) with respect to a local frame or bodyframe. The mapped

coordinate frame given in Figure 4.1 can be chosen in order to define nodal gradients of the

finite element.

Figure 4.1: The mapped coordinate frame (a) and the global coordinate frame (b)

Then, the nodal degrees of freedom of an arbitrary element atith node should be written as

given below.

ers
i =

[

Xi Yi
∂Xi

∂r
∂Yi

∂r
∂Xi

∂s
∂Yi

∂s

]T

(4.1)
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Afterwards, various geometrical finite element shapes could be created by imposing proper

polynomial shape functions for global coordinates. The shape functionpolynomial selected

for planar continuum problems is given in the following equation.

X =
12∑

i=1

piai = pT a (4.2a)

Y =
12∑

i=1

pibi = pT b (4.2b)

pT =
[

1 r s rs r2 s2 r2s rs2 r3 s3 r3s rs3
]

(4.2c)

In the equation,a andb are vectors of polynomial constants, andp is the vector of monomials

of the shape function. Polynomial constant vectors could be formulated in terms of nodal

degrees of freedom of the element as given below.

ers
i = Q(ri, si)A (4.3)

whereQ(r, s) andA are defined in the following equations.

Q(r, s) =





pT (r, s) 0

0 pT (r, s)

pT
,r(r, s) 0

0 pT
,r(r, s)

pT
,s(r, s) 0

0 pT
,s(r, s)





(4.4a)

A =
[

aT bT
]T

(4.4b)

Here,ri andsi represent the mapped coordinates of theith node on the element as given below.

[r1 r2 r3 r4] = [−1 + 1 + 1 − 1] (4.5a)

[s1 s2 s3 s4] = [−1 − 1 + 1 + 1] (4.5b)
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Linear set of algebraic equations to be solved forA can be derived by using Equation 4.3 for

all four nodes of the element as given in the following equation.

ers =

[
(

ers
1

)T (

ers
2

)T (

ers
3

)T (

ers
4

)T
]T
= P A (4.6)

where

P =
[

QT (r1, s1) QT (r2, s2) QT (r3, s3) QT (r4, s4)
]T

(4.7)

Then, polynomial constants vector,A, can be found by using Equation 4.6 as follows.

A = P−1ers (4.8)

Additionally, P−1 always exists and be constant as given below.

P−1 =





0.25 0 0.125 0 0.125 0 0.25 0 −0.125 0 0.125 0 ...
−0.375 0 −0.125 0 −0.125 0 0.375 0 −0.125 0 0.125 0 ...
−0.375 0 −0.125 0 −0.125 0 −0.375 0 0.125 0 −0.125 0 ...

0.5 0 0.125 0 0.125 0 −0.5 0 0.125 0 −0.125 0 ...
0 0 −0.125 0 0 0 0 0 0.125 0 0 0 ...
0 0 0 0 −0.125 0 0 0 0 0 −0.125 0 ...
0 0 0.125 0 0 0 0 0 −0.125 0 0 0 ...
0 0 0 0 0.125 0 0 0 0 0 −0.125 0 ...

0.125 0 0.125 0 0 0 −0.125 0 0.125 0 0 0 ...
0.125 0 0 0 0.125 0 0.125 0 0 0 0.125 0 ...
−0.125 0 −0.125 0 0 0 0.125 0 −0.125 0 0 0 ...
−0.125 0 0 0 −0.125 0 0.125 0 0 0 0.125 0 ...

0 0.25 0 0.125 0 0.125 0 0.25 0 −0.125 0 0.125 ...
0 −0.375 0 −0.125 0 −0.125 0 0.375 0 −0.125 0 0.125 ...
0 −0.375 0 −0.125 0 −0.125 0 −0.375 0 0.125 0 −0.125 ...
0 0.5 0 0.125 0 0.125 0 −0.5 0 0.125 0 −0.125 ...
0 0 0 −0.125 0 0 0 0 0 0.125 0 0 ...
0 0 0 0 0 −0.125 0 0 0 0 0 −0.125 ...
0 0 0 0.125 0 0 0 0 0 −0.125 0 0 ...
0 0 0 0 0 0.125 0 0 0 0 0 −0.125 ...
0 0.125 0 0.125 0 0 0 −0.125 0 0.125 0 0 ...
0 0.125 0 0 0 0.125 0 0.125 0 0 0 0.125 ...
0 −0.125 0 −0.125 0 0 0 0.125 0 −0.125 0 0 ...
0 −0.125 0 0 0 −0.125 0 0.125 0 0 0 0.125 ...
0.25 0 −0.125 0 −0.125 0 0.25 0 0.125 0 −0.125 0
0.375 0 −0.125 0 −0.125 0 −0.375 0 −0.125 0 0.125 0
0.375 0 −0.125 0 −0.125 0 0.375 0 0.125 0 −0.125 0
0.5 0 −0.125 0 −0.125 0 −0.5 0 −0.125 0 0.125 0
0 0 0.125 0 0 0 0 0 −0.125 0 0 0
0 0 0 0 0.125 0 0 0 0 0 0.125 0
0 0 0.125 0 0 0 0 0 −0.125 0 0 0
0 0 0 0 0.125 0 0 0 0 0 −0.125 0

−0.125 0 0.125 0 0 0 0.125 0 0.125 0 0 0
−0.125 0 0 0 0.125 0 −0.125 0 0 0 0.125 0
−0.125 0 0.125 0 0 0 0.125 0 0.125 0 0 0
−0.125 0 0 0 0.125 0 0.125 0 0 0 −0.125 0

0 0.25 0 −0.125 0 −0.125 0 0.25 0 0.125 0 −0.125
0 0.375 0 −0.125 0 −0.125 0 −0.375 0 −0.125 0 0.125
0 0.375 0 −0.125 0 −0.125 0 0.375 0 0.125 0 −0.125
0 0.5 0 −0.125 0 −0.125 0 −0.5 0 −0.125 0 0.125
0 0 0 0.125 0 0 0 0 0 −0.125 0 0
0 0 0 0 0 0.125 0 0 0 0 0 0.125
0 0 0 0.125 0 0 0 0 0 −0.125 0 0
0 0 0 0 0 0.125 0 0 0 0 0 −0.125
0 −0.125 0 0.125 0 0 0 0.125 0 0.125 0 0
0 −0.125 0 0 0 0.125 0 −0.125 0 0 0 0.125
0 −0.125 0 0.125 0 0 0 0.125 0 0.125 0 0
0 −0.125 0 0 0 0.125 0 0.125 0 0 0 −0.125





(4.9)
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It is observed that various planar element shapes (samples are shown inFigure 4.2) could

be obtained by using the derived shape function constants, given in Equation 4.8, for

appropriate nodal degrees of freedom. This feature of the developedformulation allows

accurate discretization of irregular shapes of flexible bodies. However, the shape function

polynomials for neighboring elements would cause discontinuities on the common element

edges. The desired common edge shape might require different nodal gradients for each of

the neighboring elements. This problem can be overcome by employing additional constraint

equations for each common nodes. However, this method increases the totalnumber of

degrees of freedom in the problem to be solved to six times the total node number for planar

problems. In addition, added constraint equations should be handled carefully. It is clear that

adding constraint equations for assembly of the system equations is not aneconomical way

to use. Therefore, nodal gradients (∂X/∂r, ∂Y/∂r, ∂X/∂s and∂Y/∂s) should be changed or

forced to generate the same edge shapes for neighboring elements. Then, system equations

can be formed by using general finite element assembly procedures.

As discussed above, using mappedr − s coordinates for nodal gradient definitions is not

appropriate. However, shape function polynomials can be generated easily by using the

mapped coordinates. Therefore, additional virtual finite elements, which uses the same

mappedr− s coordinates with different shape (or mapping) functions, are created on a virtual

Xv − Yv coordinate frame, which is constant and parallel to the globalX − Y frame, in order

to overcome incompatibility problem in gradients. Then, nodal gradients can be redefined

with respect to the virtual coordinate frame. Consequently, shape function matrix, which can

generate global coordinates and gradients at an arbitrary point on an element by using nodal

degrees of freedom, can be formulated. Various shape function matricescould be formulated

depending on the choices made for virtual element’s geometrical shape andvirtual shape

functions. Additionally, using different shape function polynomials for original elements than

Equation 4.2 would result alternative shape function matrices, also. Some ofthe methods,

that can be used for shape function matrix generation, are given in the following subsections.
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Figure 4.2: Various planar flexible solid element shapes

4.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal degrees of freedom for theith node of an arbitrary element is described

as given below.

ei =

[

Xi Yi
∂Xi

∂Xv

∂Yi

∂Xv

∂Xi

∂Yv

∂Yi

∂Yv

]T

(4.10)
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Figure 4.3: Coordinate frames for Parallel Virtual Frame and First OrderVirtual Element
Mapping Method

In Equation 4.10, nodal gradients are defined with respect to the virtual coordinate frame

shown in Figure 4.3. The virtual element is bounded by straight lines connecting initial node

coordinates as shown in the figure. Virtual coordinates at an arbitrary point on the element

can be found by general first order interpolation functions given below [36].

Xv(r, s) = Hv(r, s) 0X (4.11a)

Yv(r, s) = Hv(r, s) 0Y (4.11b)
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whereHv(r, s) is the first order shape function vector,0X is the vector of initialX coordinates

of nodes and0Y is the vector of initialY coordinates of the nodes as shown in the following

equations.

Hv(r, s) =
1
4

[

(1− r)(1− s) (1+ r)(1− s) (1+ r)(1+ s) (1− r)(1+ s)
]

(4.12a)

0X =
[

0X1
0X2

0X3
0X4

]T
(4.12b)

0Y =
[

0Y1
0Y2

0Y3
0Y4

]T
(4.12c)

Then, gradients with respect to the mappedr − s frame can be written in terms of nodal

gradients, which are defined in Equation 4.10, in compact form as given below.

ers(r, s) = Tm1(r, s) e(r, s) (4.13a)

e(r, s) = Tm1(r, s)−1 ers(r, s) (4.13b)

where

Tm1(r, s) =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 Xv,r(s) 0 Yv,r(s) 0

0 0 0 Xv,r(s) 0 Yv,r(s)

0 0 Xv,s(r) 0 Yv,s(r) 0

0 0 0 Xv,s(r) 0 Yv,s(r)





(4.14)

Additionally, ers(r, s) ande(r, s) are vector functions used to evaluate global positions and

gradients at arbitrary points on the element as described below.

ers(r, s) =
[

X(r, s) Y(r, s) X,r(r, s) Y,r(r, s) X,s(r, s) Y,s(r, s)
]T

(4.15a)

e(r, s) =
[

X(r, s) Y(r, s) X,Xv(r, s) Y,Xv(r, s) X,Yv(r, s) Y,Yv(r, s)
]T

(4.15b)

Consequently, vector of nodal variables,e, can be converted into the form given in Equation

4.6,ers, as given below.
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ers = Tmap1 e (4.16)

where the transformation matrix,Tmap1, can be evaluated by using Equation 4.14 as given

below.

Tmap1 =





Tm1(r1, s1) 0 0 0

0 Tm1(r2, s2) 0 0

0 0 Tm1(r3, s3) 0

0 0 0 Tm1(r4, s4)





(4.17)

Finally, global coordinates and gradients with respect to the virtual frame at an arbitrary point

can be written in terms of nodal variables by following the procedure givenbelow;

1. Substitute Equation 4.16 into Equation 4.8 to obtain polynomial constants as;

A = P−1Tmap1 e

2. Substitute polynomial constants into Equation 4.3 in order to obtain vector function

used to evaluate global positions and gradients with respect to the mappedrs frame as

given below.

ers(r, s) = Q(r, s)P−1Tmap1 e

3. Then, substitute the equation above into Equation 4.13b as:

e(r, s) = Tm1(r, s)−1 Q(r, s)P−1Tmap1 e (4.18)

Then, it can be written in a simple form given below.

e(r, s) = S(r, s) e (4.19)

where the shape function matrix is defined as;

S(r, s) = Tm1(r, s)−1Q(r, s)P−1 Tmap1 (4.20)

In Equation 4.20,P−1 andTmap is independent of local coordinates and time. The derived

shape function ensures continuity of nodal parameter at the neighboringnode location. Global

coordinates are continuous over neighboring element edges, but continuity of gradients is
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only guaranteed on node locations. Therefore, stresses or strains willnot be continuous over

element edges but be continuous over node locations. Continuous stress/strain distributions

can be created by linear interpolation over nodal stresses or strains in post-processing stage.

While using Method 1 (Parallel Virtual Frame and First Order Virtual ElementMapping

Method), the most difficult part is to define initial nodal gradients (∂X/∂Xv, ∂Y/∂Xv, ∂X/∂Yv

and ∂Y/∂Yv) of the elements. It could be very hard to realize their geometrical meaning

for elements having curved edges, initially. In order to overcome this difficulty, alternative

nodal representation, Virtual Element Edge Frame and First Order Virtual Element Mapping,

have been developed. However, while the method makes definitions of nodal gradients easier,

it brings a new restriction for node numbering. Details of the method is given inthe next

subsection.

4.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element

Mapping

In this method, nodal gradients are redefined with respect to the edge frame of virtual finite

element in order to make geometrical meaning of nodal gradients more understandable. As

shown in Figure 4.4, first and second nodes, and third and fourth nodes are connected with

straight lines, whereS v is constant. Similarly, second and third nodes, and fourth and first

nodes are connected with straight lines, whereRv is constant. These four straight lines

connecting the nodes form the boundaries of the virtual element inXv-Yv frame. In fact,

Rv-S v is not a new coordinate frame, but they are products of virtualXv-Yv frame. If a point,

which has the mapped coordinates of (ra, sa) on the element, is considered in order to clarify

Rv andS v definitions, then,Rv is defined as the magnitude of the vector from the virtual point

at (−1, sa) to the point at (r, sa). Similarly, S v is defined as the magnitude of the vector from

the virtual point at (ra, −1) to the point at (ra,s). Therefore, they can be defined with respect

to the virtual frameXv-Yv, defined in Equation 4.11, as given in the following equations.

Rv(r) =
√

(

Hvr (r)X0)2 +
(

Hvr (r)Y0)2 (4.21a)

S v(s) =
√

(

Hvs(s)X0)2 +
(

Hvs(s)Y0)2 (4.21b)
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where

Hvr (r) = Hv(r, sa) − Hv(−1, sa) =
(1+ r)

4

[

−1+ sa 1− sa 1+ sa −1− sa

]

(4.22a)

Hvs(s) = Hv(ra, s) − Hv(ra,−1) =
(1+ s)

4

[

−1+ ra −1− ra 1+ ra 1− ra

]

(4.22b)

As can be seen from Equation 4.21,Rv is a function ofr andS v is a function ofs, only.

Figure 4.4: Coordinate frames for Virtual Element Edge Frame and First Order Virtual
Element Mapping Method

Gradients of virtualRv-S v frame with respect to the mappedr − s frame at an arbitrary point
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on the element can be written explicitly as given below.

∂Rv

∂r
=

1
4

√

(CX1 +CX2 s)2 + (CY1 +CY2 s)2 (4.23a)

∂S v

∂s
=

1
4

√

(CX3 +CX2 r)2 + (CY3 +CY2 r)2 (4.23b)

∂Rv

∂s
=
∂S v

∂r
= 0 (4.23c)

where

CX1 = −
0X1 +

0X2 +
0X3 −

0X4 (4.24a)

CX2 = +
0X1 −

0X2 +
0X3 −

0X4 (4.24b)

CX3 = −
0X1 −

0X2 +
0X3 +

0X4 (4.24c)

CY1 = −
0Y1 +

0Y2 +
0Y3 −

0Y4 (4.24d)

CY2 = +
0Y1 −

0Y2 +
0Y3 −

0Y4 (4.24e)

CY3 = −
0Y1 −

0Y2 +
0Y3 +

0Y4 (4.24f)

Then, nodal variables,e, for theith node of an arbitrary element can be written as follows.

ei =

[

Xi Yi
∂Xi

∂Rv

∂Yi

∂Rv

∂Xi

∂S v

∂Yi

∂S v

]T

(4.25)

In Equation 4.25,Xi andYi are coordinates of theith node in global frame. In order to make

the definitions of nodal variables more clear, the finite element given in Figure 4.4 is redrawn

with nodal gradient vectors in Figure 4.5. The gradient vectors are always tangent to the

element edges as shown. Additionally, it is advised to use unit vectors for undeformed finite

elements despite non-unit gradient vectors are mathematically possible.
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Figure 4.5: Nodal gradient vector representation for Virtual Element Edge Frame and First
Order Virtual Element Mapping Method

The gradients with respect to the mappedr − s frame can be written in terms of the nodal

gradients (∂X/∂Rv, ∂Y/∂Rv, ∂X/∂S v and∂Y/∂S v) as given in the following equation.

ers(r, s) = Tm2(r, s) e(r, s) (4.26a)

e(r, s) = Tm2(r, s)−1 ers(r, s) (4.26b)

where

Tm2(r, s) =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 Rv,r(s) 0 0 0

0 0 0 Rv,r(s) 0 0

0 0 0 0 S v,s(r) 0

0 0 0 0 0 S v,s(r)





(4.27)
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Additionally, e(r, s) is a vector function used to evaluate global positions and gradients at

arbitrary points on the element as described below.

e(r, s) =
[

X(r, s) Y(r, s) X,Rv(r, s) Y,Rv(r, s) X,S v(r, s) Y,S v(r, s)
]T

(4.28)

Consequently, vector of nodal variables,e, can be converted into the form given in Equation

4.6,ers, as given below.

ers = Tmap2 e (4.29)

where the transformation matrix,Tmap2, can be evaluated by using Equation 4.27 as given

below.

Tmap2 =





Tm2(r1, s1) 0 0 0

0 Tm2(r2, s2) 0 0

0 0 Tm2(r3, s3) 0

0 0 0 Tm2(r4, s4)





(4.30)

Finally, global coordinates and gradients with respect to the virtual frame at an arbitrary

point can be written in terms of nodal variables by following similar proceduredescribed

for Method 1 as given below.

e(r, s) = Tm2(r, s)−1 Q(r, s)P−1Tmap2 e (4.31)

Then, it can be written in a simple form given below;

e(r, s) = S(r, s) e (4.32)

where the shape function matrix for Method 2 is defined as;

S(r, s) = Tm2(r, s)−1Q(r, s)P−1 Tmap2 (4.33)
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Transformation matrix for Method 2,Tmap2, is a diagonal matrix and can be written in explicit

form as given below.

Tmap2 =





1 1 L1
2

L1
2

L4
2

L4
2 · · ·

1 1 L1
2

L1
2

L2
2

L2
2 · · ·

1 1 L3
2

L3
2

L2
2

L2
2 · · ·

1 1 L3
2

L3
2

L4
2

L4
2 · · ·





I24×24 (4.34)

whereL1, L2, L3 andL4 represent the virtual edge lengths between nodes 1 and 2, nodes 2

and 3, nodes 3 and 4, and nodes 4 and 1, respectively. Additionally,I24×24 is a 24×24 identity

matrix.

While virtual element edge frame,Rv − S v, making geometrical definitions of nodal gradients

easier, it brings two major restrictions. First restriction is related to the node numbering.

Neighboring elements should be numbered such that, their common virtual element edges

should refer to the same virtual coordinate. Indeed, if a common virtual element edge refers

to a constantRv curve of one of the neighboring elements then it should refer to the constant Rv

curve for the other element. Therefore, the same nodal gradients will be applicable for both of

the elements. The second restriction is about the geometrical descriptions ofthe neighboring

elements. Due to nodal gradient definitions, discontinuous element edge transitions can not

be modeled. Actually, this is the outcome of the nodal gradient definitions.

4.1.3 Method 3: Initial Element Frame Mapping Method

In this method, initial shape function polynomials formulated using Method 1 are applied

instead of virtual frame having first order mapping as shown in Figure 4.6.Nodal gradients

are defined with respect to the initial element configuration. Therefore, initial nodal gradients

are always 1 or 0. Curvatures of element edges are created by auxiliary gradients defined with

respect to the virtualXvYv frame.
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Figure 4.6: Coordinate frames for Initial Element Frame Mapping Method

Then, nodal variables,e, for theith node of an arbitrary element can be written as follows. As

seen from the equation, nodal gradients replaced with the actual deformation gradients.

ei =

[

Xi Yi
∂Xi

∂ 0X

∂Yi

∂ 0X

∂Xi

∂ 0Y

∂Yi

∂ 0Y

]T

(4.35)

In order to find shape function matrix for the method, the global position vector, which

contains gradients with respect to the mappedr− s frame, of an arbitrary point on the element

are rewritten in the following two equations for an arbitrary time (ers(r, s)) and for the initial

configuration (0e
rs

(r, s)).

ers(r, s) = Srs(r, s)ers (4.36)

0e
rs

(r, s) = Srs(r, s) 0ers (4.37)
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where the shape function matrix for the mapped frame is defined as;

Srs(r, s) = Q(r, s)P−1 (4.38)

By using Equations 4.36 and 4.37, one can derive global position vector,including

deformation gradients, at an arbitrary point in terms of nodal variables for the mappedr − s

frame,ers, as given below.

e(r, s) =





X(r, s)

Y(r, s)

∂X/∂ 0X(r, s)

∂Y/∂ 0X(r, s)

∂X/∂ 0Y(r, s)

∂Y/∂ 0Y(r, s)





= Tm3(r, s)ers (4.39)

where

Tm3(r, s) =





Srs
1

Srs
2

(0ers)T
((

Srs
6

)T
Srs

3 −
(

Srs
4

)T
Srs

5

)

/det

(0ers)T
((

Srs
6

)T
Srs

4 −
(

Srs
4

)T
Srs

6

)

/det

(0ers)T
((

Srs
3

)T
Srs

5 −
(

Srs
5

)T
Srs

3

)

/det

(0ers)T
((

Srs
3

)T
Srs

6 −
(

Srs
5

)T
Srs

4

)

/det





(4.40)

and

det = (0ers)T
((

Srs
3

)T
Srs

6 −
(

Srs
5

)T
Srs

4

)

0ers (4.41)

In Equations 4.40 and 4.41,Srs
i represents theith row vector ofSrs.

Finally, nodal variable vector with respect tor − s frame can be written in terms of nodal

variable vector of the element as described below.

e= Tmap3 ers (4.42a)

ers =
(

Tmap3

)−1
e (4.42b)
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where

Tmap3 =





Tm3(r1, s1)

Tm3(r2, s2)

Tm3(r3, s3)

Tm3(r4, s4)





(4.43)

Then, global position and gradients with respect to the initial configuration of an arbitrary

point on the element can be found by substituting Equation 4.42 into Equation 4.39 as given

below.

e(r, s) = Tm3(r, s)T−1
map3e (4.44)

In addition, the shape function matrix for Method 3 can be defined as;

S(r, s) = Tm3(r, s)T−1
map3 (4.45)

The most important advantage of Method 3 is simple generalized elastic force derivation.

Elastic force vector can be found directly by using nodal gradients. Although, virtual element

shape functions do not appear in the formulation, they are still needed fordetermination of

initial nodal variables,0ers, containing gradients with respect to the mappedr − s frame. If

the shape function polynomials for the real finite element and the virtual finite elements are

identical for all three methods, then the results to be obtained will be identical. Therefore,

selection of appropriate method should be based on the preferred geometrical representations

and complexity of the formulations.

4.1.4 Other Applicable Methods for Shape Function Matrix Formulation

Basically, irregular shaped quadrilateral finite elements require two shapefunction

polynomials for shape function matrix generation. Depending on the selectedshape functions,

various alternative solution methods can be generated using one of the three methods

described above.
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4.2 Mass Matrix Formulation

All of the existing classical finite element formulations for the large deformationand rotation

analysis lead to nonlinear mass matrices [8]. However, it is just a constant matrix in ANCF.

This feature of the formulation is valid for the newly developed planar elements, also. Mass

matrix can easily be formulated by writing the kinetic energy equation at an arbitrary time,t,

for an element as given in Equation 2.58. In the equation,tρ and tV are density and volume

of the element at an arbitrary time, t. The velocity vector,ṙ , at an arbitrary point on the

element can be obtained by differentiating the nodal position vector ast ṙ = S12(r, s)
(tė

)

,

where,S12(r, s) is the reduced shape function matrix, which contains only the first and the

second rows of shape function matrix given in Equations 4.20 or 4.33 or 4.45. Density and

volume at an arbitrary time,t, can be written in terms of initial density and volume by using

deformation gradient matrix,J [36]. Then, the mass matrix can be found by substituting

velocity vector,̇r , and Equation 2.59 into Equation 2.58 as given below.

tT =
1
2

∫

tV

0ρ
∣
∣
∣
t
0J

∣
∣
∣

(
tėT )

S12
T S12

(
tė
) ∣
∣
∣
t
0J

∣
∣
∣d 0V (4.46a)

tT =
1
2

(
tėT )





∫

0V

0ρ S12
T S12 d 0V





(
tė
)

(4.46b)

tT =
1
2

(
tėT )

tM
(
tė
)

(4.46c)

tM =
∫

0V

0ρ S12
T S12 d 0V (4.46d)

As seen in Equation 4.46d , mass matrix at an arbitrary time,t, does not depend on time. It

can be evaluated once by using the initial density and volume, then it can be used at any time

step during the solution process. However, it is very difficult to integrate mass matrix over

initial complex volume on global coordinate frame,0V. Therefore, it should be transformed

into the mappedr − s frame in order to make volume integration easier as given below.
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M =
∫

Vrs

ρ S12
T S12 |D| drds (4.47a)

D =
∂X0

∂r
=





∂X0

∂r
∂X0

∂s
∂Y0

∂r
∂Y0

∂s





(4.47b)

4.3 Generalized Elastic Forces

In the derivation of generalized elastic forces, continuum mechanics approach has been used.

The generalized elastic forces of an arbitrary element can be derived using strain energy

equation. The strain energy of an element at an arbitrary time, t, can be formulated by

using Green-Lagrange strain and 2nd Piola-Kirchhoff stress tensor definitions as given in the

following equation (Total Lagrangian Formulation) [32].

tU =
1
2

∫

0V

(
t
ε

T )

E
(
t
ε

)

d 0V (4.48)

whereE is the matrix of elastic coefficients andt
ε is the vector form of the strain tensor,

t
εm. The matrices of elastic coefficients for plane-stress and plane-strain problems are given

below [36].

E =
E

(1− ν2)





1 ν 0

ν 1 0

0 0 1− ν





(plane − stress) (4.49a)

E =
E(1− ν)

(1+ ν)(1− 2ν)





1
ν

1− ν
0

ν

1− ν
1 0

0 0
2(1− 2ν)
(1− ν)





(plane − strain) (4.49b)

where E andν are modulus of elasticity and Poisson’s ratio of material. The generalized

elastic forces of the element can be obtained by differentiating the strain energy (Equation

4.48) with respect to the nodal variables as given in the following equation.

87



tQk =
∂ tU
∂ te

=
∂

∂ te






1
2

∫

0V

t
ε

T E t
ε d 0V






=

∫

0V

(

∂ t
ε

∂ te

)T

E t
ε d 0V (4.50)

In order to find nonlinear strain tensor, deformation gradient should be written in terms

of nodal variables. Due to different nodal variable definitions, formulation of deformation

gradients for Method 1, Method 2 and Method 3 will be different as given below.

J =
∂Xt

∂X0
=





∂X
∂X0

∂X
∂Y0

∂Y
∂X0

∂Y
∂Y0





︸       ︷︷       ︸

Method 3

=





∂X
∂Xv

∂X
∂Yv

∂Y
∂Xv

∂Y
∂Yv









∂X0
∂Xv

∂X0
∂Yv

∂Y0
∂Xv

∂Y0
∂Yv





−1

︸                         ︷︷                         ︸

Method 1

=





∂X
∂Rv

∂X
∂S v

∂Y
∂Rv

∂Y
∂S v









∂X0
∂Rv

∂X0
∂S v

∂Y0
∂Rv

∂Y0
∂S v





−1

︸                         ︷︷                         ︸

Method 2

(4.51)

In general form, deformation gradient tensor can be written as given below.

J =





S3e S5e

S4e S6e









d11 d12

d21 d22




=





(d11S3 + d21S5) e (d12S3 + d22S5) e

(d11S4 + d21S6) e (d12S4 + d22S6) e




(4.52)

In the equation,d11, d12, d21 andd22 are the elements of inverse of initial nodal gradient tensor

and defined in the equation given below for the three shape function matrix methods.





d11 d12

d21 d22




=





∂X0
∂Xv

∂X0
∂Yv

∂Y0
∂Xv

∂Y0
∂Yv





−1

=





S3
0e S5

0e

S4
0e S6

0e





−1

· · ·Method 1 (4.53a)





d11 d12

d21 d22




=





∂X0
∂Rv

∂X0
∂S v

∂Y0
∂Rv

∂Y0
∂S v





−1

=





S3
0e S5

0e

S4
0e S6

0e





−1

· · ·Method 2 (4.53b)





d11 d12

d21 d22




=





1 0

0 1




· · ·Method 3 (4.53c)

Then, general definition of nonlinear Lagrangian strain tensor can be written as;

εm =
1
2

(
t
0JT t

0J − I
)

(4.54a)

εm =
1
2





eT N11e− 1 eT N12e

eT N12e eT N22e− 1




(4.54b)
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where

N11 = (d11S3 + d21S5)T (d11S3 + d21S5) + (d11S4 + d21S6)T (d11S4 + d21S6) (4.55a)

N12 = (d11S3 + d21S5)T (d12S3 + d22S5) + (d11S4 + d21S6)T (d12S4 + d22S6) (4.55b)

N22 = (d12S3 + d22S5)T (d12S3 + d22S5) + (d12S4 + d22S6)T (d12S4 + d22S6) (4.55c)

Then, the strain vector and its partial derivative with respect to the nodalvariables can be

written in terms of the nodal variables by using Equation 4.54b as given below.

ε =





ε11

ε22

ε12





=
1
2





eT N11e− 1

eT N22e− 1

eT N12e





(4.56)

∂ε

∂e
=





eT N11

eT N22

1
2

eT
(

N12+ N12
T
)





(4.57)

Finally, the generalized elastic force equation can be written in terms of nodalvariables by

substituting Equations 4.56 and 4.57 into Equation 4.50 as given below.

Qk =
1
2

∫

Vrs





eT N11

eT N22

eT
(

N12+ N12
T
)





T

E





eT N11e− 1

eT N22e− 1

2eT N12e





|D| drds (4.58)

Evaluation of the generalized elastic force vector can be performed by numerical integration

methods like Gauss-Quadrature method. Additionally, tangent stiffness matrix can be used for

nonlinear static analysis. It can be formulated by partial differentiation of generalized elastic

force vector with respect to the nodal variables as given below.

K t =
∂Qk

∂e
(4.59)
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4.4 Generalized External Forces

If a forceF acts at an arbitrary point on the finite element, the virtual work done by the force

for a virtual displacement ofδr can be written asFδr , wherer is the global position vector of

the point of application of the force. The virtual change in the vectorr can be expressed in

terms of the virtual changes in the nodal variable,e. Therefore, the generalized external forces

associated with the absolute nodal coordinates can be defined [8]. By using the definitions of

global position vector given in Equations 4.19 or 4.32 or 4.44, the generalized force vector,

QF , can be found for the point loads as given below.

FTδr = FT S12δe= QT
Fδe (4.60a)

QF = ST
12F (4.60b)

whereS12 is a matrix formed by first two rows of the shape function matrix. Other loading

types can be derived by using the virtual work principle.

4.5 Equation of Motion for ANCF with Virtual Element Mapping

Using the mass matrix (Equation 4.47a) and generalized force vector (Equation 4.58),

equation of motion of the flexible multibody system can be constructed as givenbelow [8].

Më+Qk = QF (4.61)

Using the generalized force vector definition (Q = QF − Qk) and including constraint

equations, equation of motion can be written in more compact form as given below. Here,

λ is the vector of Lagrange Multipliers.





ë

λ




=





M CT

C 0





−1 



Q

0




(4.62)
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If the inertial effects are ignorable, then the problem can be reduced to static case by ignoring

kinetic energy terms in the equations. In order to solve nonlinear static problems, iterative

Newton-Raphson algorithm can be applied by using tangent stiffness matrix.

4.6 Patch Tests

In order to verify the developed ANCF and the proposed finite element forplanar problems,

some of the patch tests proposed by Richard H. Macneal and Robert L. Harder [35]

have been performed for both static and dynamic solution procedures. Innonlinear static

solutions, Optimization Toolbox in MATLABR© has been used. However, simple explicit

direct integration algorithm presented in Chapter 2 has been utilized in orderto solve transient

dynamics problems. In dynamic solutions, loadings are converted to time dependent functions

which are zero, initially. It is observed that steady state response obtained by transient

solutions are almost identical to solutions obtained for static cases.

4.6.1 Membrane Plate Patch Test

The first patch test problem given in Figure 4.7 is used to verify the constant strain property

of finite elements. Height, length, thickness, modulus of elasticity and Poisson’s ratio of the

plate area = 0.12,b = 0.24, t = 0.001,E = 1.0x106 andν = 0.25, respectively. Initial nodal

variables with respect to Method 1 are given in Table 4.1.

Figure 4.7: Membrane plate patch test [35]
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Table 4.1: Initial nodal variables for membrane plate patch test

X Y ∂X/∂Xv ∂Y/∂Xv ∂X/∂Yv ∂Y/∂Yv

Initial Configuration
Node 1 0.04 0.02 1 0 0 1
Node 2 0.18 0.03 1 0 0 1
Node 3 0.16 0.08 1 0 0 1
Node 4 0.08 0.08 1 0 0 1
Node 5 0 0 1 0 0 1
Node 6 0.24 0 1 0 0 1
Node 7 0.24 0.12 1 0 0 1
Node 8 0 0.12 1 0 0 1

Final configurations of external nodes have been determined using the boundary conditions,

u = 10−3(x+ y/2) andv = 10−3(y+ x/2), given in [35]. Nodal boundary conditions have been

converted to functions of time for transient dynamic simulation as given below.

ei(t) =
0ei + ∆ei f (t) (4.63)

whereei is the ith nodal variable,0ei is the initial value ofith nodal variable and∆ei is the

steady state change ofith nodal variable of the system. Additionally, time dependent function

is given below [40].

f (t) =






0.5(1− cos(π t/tr)) i f t < tr

1 i f t ≥ tr






(4.64)

wheretr is the rise time for boundary conditions. In the simulation, 0.08 s rise time has been

used. Selected density and time step size are 0.8 and 1× 10−5, respectively.

Steady state response of the system has been obtained at 0.08 s of the simulation. Obtained

stresses are shown in Figures 4.8, 4.9 and 4.10. As seen from figures,stress distributions are

almost constant over elements. Comparison of the results with theoretical values are listed in

Table 4.2.
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Figure 4.8: Membrane plate patch testσxx distribution

Figure 4.9: Membrane plate patch testσ22 distribution

Figure 4.10: Membrane plate patch testτ12 distribution
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Table 4.2: Results for membrane plate patch test

Theoretical Solution [35] Average of the result Error
ǫx 10−3 1.0006× 10−3 0.057%
ǫy 10−3 1.0006× 10−3 0.057%
γ 10−3 1.0007× 10−3 0.069%
σx 1333 1333.755 0.057%
σy 1333 1333.755 0.057%
τxy 400 400.277 0.069%

4.6.2 Straight Cantilever Beam Patch Test

Patch test problems proposed by Richard H. Macneal and Robert L. Harder [35] are given in

Figure 4.11. Effects of skew angle and taperness of the element on the results can be verified

by these tests. The first patch test contains regular rectangular elements having the aspect

ratio of 5. In the second test, 45◦ taper angle is implemented to the elements. At the last case,

elements are exposed to 45◦ skew angle. The beam to be solved has the length of 6.0, the

width of 0.2, the depth of 0.1, modulus elasticity of 1.0x107 and Poisson’s ratio of 0.3. Patch

test problems are solved for in-plane shear and extension cases with a unit force at the free

end.

Figure 4.11: Straight cantilever beam patch test [35]
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Finite element discretization of the beam is shown in Figure 4.12 and nodal connectivities of

elements are described in Table 4.3. Initial nodal gradients are determined according to the

virtual Xv − Yv frame, which is described in Section 5.1.1 as Method 1, and listed for regular,

trapezoidal and parallelogram shape elements in Table 4.4. Fixed boundary conditions are

applied forX, Y and∂X/∂Yv degrees of freedom of Node 1 and Node 8.

Figure 4.12: Discretized beam for patch test problem

Table 4.3: Connectivity of the elements

1st Node 2nd Node 3rd Node 4th Node
Element 1 1 2 9 8
Element 2 2 3 10 9
Element 3 3 4 11 10
Element 4 4 5 12 11
Element 5 5 6 13 12
Element 6 6 7 14 13

Theoretically, regular element shapes will result continuous distributions for all stress

components. However, discontinuous distributions forσYY andσXY will occur at the element

transitions for the trapezoidal and parallelogram shaped elements given inFigure 4.11.

Despite some discontinuities on two stress components, discontinuity on von Misses stress

distributions for trapezoidal and parallelogram elements are negligible. Theobtained von

Misses stress distributions for regular, trapezoidal and parallelogram elements are given in

Figures 4.13, 4.14 and 4.15. As can be seen from the figures, discontinuities on trapezoidal

and parallelogram elements are negligible. In fact, just a single element is enough for the

beam problem as given in Figure 4.16 due to third order shape function polynomials used.

Displacements on the load directions and their errors are listed in Table 4.5. Asseen on the

table, all of the results are in the acceptable ranges defined in the publicationof Richard H.
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Table 4.4: Initial nodal variables of straight cantilever beam for Method 1

X Y ∂X/∂Xv ∂Y/∂Xv ∂X/∂Yv ∂Y/∂Yv

R
eg

ul
ar

T
ra

pe
zo

id
al

P
ar

al
le

lo
gr

am

Node 1 0 0 0 0 1 0 0 1
Node 2 1 1.1 0.9 0 1 0 0 1
Node 3 2 1.9 1.9 0 1 0 0 1
Node 4 3 3.1 2.9 0 1 0 0 1
Node 5 4 3.9 3.9 0 1 0 0 1
Node 6 5 5.1 4.9 0 1 0 0 1
Node 7 6 6 6 0 1 0 0 1
Node 8 0 0 0 0.2 1 0 0 1
Node 9 1 0.9 1.1 0.2 1 0 0 1
Node 10 2 2.1 2.1 0.2 1 0 0 1
Node 11 3 2.9 3.1 0.2 1 0 0 1
Node 12 4 4.1 4.1 0.2 1 0 0 1
Node 13 5 4.9 5.1 0.2 1 0 0 1
Node 14 6 6 6 0.2 1 0 0 1

Macneal and Robert L. Harder [35]. As stated before, single regular element, which has the

aspect ratio of 30, results almost exact displacement solutions. The maximumerror has been

obtained at the trapezoidal element solutions. Actually, this is not due to the taperness of the

elements but due to differences in the edge lengths of neighboring elements. It is expected

that the error will be reduced if the number of elements is increased even for the trapezoidal

element shapes.

Figure 4.13: Von Misses stress distribution for straight cantilever beam withregular elements
(In-plane shear)
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Figure 4.14: Von Misses stress distribution for straight cantilever beam withtrapezoidal
elements (In-plane shear)

Figure 4.15: Von Misses stress distribution for straight cantilever beam withparallelogram
elements (In-plane shear)

Figure 4.16: Von Misses stress distribution for straight cantilever beam witha single
rectangular element (In-plane shear)

Table 4.5: Patch test results for straight beam

Maximum tip displacement on the loading direction
In-plane shear Extension (×10−5)

Exact Calculated Error Exact Calculated Error
Regular 0.1081 0.1081 0.00% 3.0 3.0126 0.42%

Trapezoidal 0.1081 0.0998 −7.68% 3.0 3.0205 0.68%
Parallelogram 0.1081 0.1077 −0.37% 3.0 3.0150 0.50%
One Element 0.1081 0.1077 −0.37% 3.0 2.9847 −0.51%
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4.6.3 Curved Beam Patch Test

Curved beam patch test problem, proposed by Richard H. Macneal andRobert L. Harder [35],

is discretized as given in Figure 4.17. Element connectivity matrix given in Table 4.3 has

been used with the nodal variables defined according to Method 2 and listedin Table 4.6. The

problem has been solved using the following parameters.

Inner/Outer Radius = 4.12/4.32

Arc Angle = 90◦

thickness = 0.1

E = 1.0x107

ν = 0.25

Figure 4.17: Discretized curved beam for the patch test problem
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Table 4.6: Initial nodal variables of the curved beam for Method 2

Node X Y ∂X/∂Rv ∂Y/∂Rv ∂X/∂S v ∂Y/∂S v

1 0.2 0 0 1 -1 0
2 0.3403856 1.066334 0.2588190 0.9659258 -0.9659258 0.2588190
3 0.7519753 2.06 0.5 0.8660254 -0.8660254 0.5
4 1.406720 2.913280 0.7071068 0.7071068 -0.7071068 0.7071068
5 2.26 3.568025 0.8660254 0.5 -0.5 0.8660254
6 3.2537 3.979614 0.9659258 0.2588190 -0.2588190 0.9659258
7 4.32 4.12 1 0 0 1
8 0 0 0 1 -1 0
9 0.1472004 1.118098 0.2588190 0.9659258 -0.9659258 0.2588190
10 0.5787703 2.16 0.5 0.8660254 -0.8660254 0.5
11 1.265299 3.054701 0.7071068 0.7071068 -0.7071068 0.7071068
12 2.16 3.741230 0.8660254 0.5 -0.5 0.8660254
13 3.201902 4.172800 0.9659258 0.2588190 -0.2588190 0.9659258
14 4.32 4.32 1 0 0 1

The main objective of the test is to verify accuracy of finite elements under combined loading

conditions. The curved beam is subjected to both normal and shear stresses with an in-plane

shear force at the tip.

The original patch test problem contains 6 elements. However, the total number of elements

can be reduced to 3 in the proposed formulation without losing accuracy in stresses and

displacements. As the number of elements decreases discretized geometry starts to differ

from the original geometry. Using single element for the finite element modeling results

geometrical discrepancies and unacceptable stress distributions. However, single element can

be used if the only concern is the accuracy in the tip displacement. For the simulation with

3 elements, Nodes 1, 3, 5, 7, 8, 10, 12 and 14 have been used without changing their nodal

descriptions defined in Table 4.6. Similarly, Nodes 1, 4, 7, 8, 11 and 14 have been used for 2

elements, and Nodes 1, 7, 8 and 14 are used for single element simulations.

The von Misses stress distributions for 6 and 3 total element solutions are given in Figures

4.18 and 4.19. As seen from the figures, stresses are continuous overthe element edges.

Continuity is also valid for all stress components due to identical element shapes used in the

discretization of the geometry. Tip displacements obtained by using 1, 2, 3 and6 total number

of elements in the loading direction are listed in Table 4.7. As the total number of elements

decreases, the error encountered increases. However, errors inthe tip displacement are in the

99



acceptable range even for a single element.

Figure 4.18: Von Misses stress distribution for curved beam with 6 elements (In-plane shear)

Figure 4.19: Von Misses stress distribution for curved beam with 3 elements (In-plane shear)
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Table 4.7: Patch test results for the curved beam

Maximum Tip Displacement
Theoretical Calculated Error

6 curved elements 0.08734 0.087122 −0.25%
3 curved elements 0.08734 0.086365 −1.12%
2 curved elements 0.08734 0.084826 −2.88%
1 curved element 0.08734 0.083818 −4.03%

4.7 Discussion

In this chapter, a completely new ANCF has been developed by using “virtual elements”.

Then, it is implemented to planar engineering problems. Accuracies of the developed methods

and the proposed finite element formulation have been verified by some of thestandard patch

test problems proposed by Richard H. Macneal and Robert L. Harder[35].

Average of the grades for the proposed finite elements isA. The lowest grade, which is

B, has been encountered in the test of in-plane loading of straight beam withtrapezoidal

elements. However, it is still in the acceptable range. The patch test results show that the

proposed formulation works well for planar problems. However, these tests do not cover all

of the geometrical shapes, which could be created with ANCF with Virtual Element Mapping.

Therefore, the proposed method still needs to be verified for other geometrical shapes. These

additional verification tests are left as future studies.
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CHAPTER 5

ANCF FOR PLATE AND SHELL ELEMENTS HAVING

IRREGULAR SHAPES

Currently, available ANCF’s for quadrilateral plate and shell elements in theliterature can

only handle regular shapes like square or rectangle. However, the proposed methods in

Chapter 4 can be adapted to plate and shell elements in order to handle irregular shapes of

plate and shell elements, also. In this chapter, ANCF with Virtual Element Mapping has been

implemented to four noded plate and shell finite elements. Presented formulation isbased on

the generalized plate assumption. In addition, shape functions for thin shellassumptions are

also derived in the chapter. Therefore, thin plate and shell problems caneasily be solved by

using the derived shape functions and following the steps of generalizedplate formulation.

5.1 Irregular Shaped Quadrilateral Finite Element Representation and Shape

Function Creation for Generalized Plate Problems

In the generalized plate formulation the mappedt coordinate is added to the formulation

presented in Chapter 4. One can chose the mapped coordinate frame given in Figure 5.1 as a

local frame of the finite element. Then, the nodal degrees of freedom of an arbitrary element

at theith node should be written as given below.

erst
i =

[

Xi Yi Zi
∂Xi

∂r
∂Yi

∂r
∂Zi

∂r
∂Xi

∂s
∂Yi

∂s
∂Zi

∂s
∂Xi

∂t
∂Yi

∂t
∂Zi

∂t

]T

(5.1)
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Figure 5.1: Mappedrst coordinate frame for the generalized plate/shell elements

Then, various geometrical finite element shapes could be created by imposing proper

polynomial shape functions for global coordinates. The shape functionselected for the

generalized plate problems is given in the following equations.

X =
12∑

i=1

piai = pT a (5.2a)

Y =
12∑

i=1

pibi = pT b (5.2b)

Z =
12∑

i=1

pici = pT c (5.2c)

pT =
[

1 r s t rs rt st rst r2 s2 r2s rs2 r3 s3 r3s rs3
]

(5.2d)

In the equation,a, b and c are vectors of polynomial constants, andp is the vector of

monomials of the shape function. Vector of polynomial constants could be formulated in

terms of nodal degrees of freedom of the element as given below.

erst
i = Q(ri, si, ti)A (5.3)
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where

Q(r, s, t) =





pT (r, s, t) 0 0

0 pT (r, s, t) 0

0 0 pT (r, s, t)

pT
,r(r, s, t) 0 0

0 pT
,r(r, s, t) 0

0 0 pT
,r(r, s, t)

pT
,s(r, s, t) 0 0

0 pT
,s(r, s, t) 0

0 0 pT
,s(r, s, t)

pT
,t (r, s, t) 0 0

0 pT
,t (r, s, t) 0

0 0 pT
,t (r, s, t)





(5.4a)

A =
[

aT bT cT
]T

(5.4b)

and, ri, si and ti represent the mapped coordinates of theith node on the element and are

defined as given below.

[r1 r2 r3 r4] = [−1 + 1 + 1 − 1] (5.5a)

[s1 s2 s3 s4] = [−1 − 1 + 1 + 1] (5.5b)

[t1 t2 t3 t4] = [0 0 0 0] (5.5c)

While the ranges ofr ands are between−1 and+1, the range oft is between−0t/2 and+0t/2,

where0t is the thickness of the flexible structure.

Linear set of algebraic equations to be solved forA can be derived by using Equation 5.3 for

all four nodes of the element as given in the following equation.

erst = PA (5.6a)

A = P−1erst (5.6b)
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where

P =





Q(r1, s1, t1)

Q(r2, s2, t2)

Q(r3, s3, t3)

Q(r4, s4, t4)





(5.7a)

Then, vector of polynomial constants,A, can be found by using Equation 5.6.b. Additionally,

P−1 always exists and is constant as given in the previous formulations.

Various 3D plate/shell element shapes (samples are shown in Figure 5.2) could be generated

by using the derived shape function polynomials, given in Equation 5.6, for appropriate nodal

degrees of freedom. This feature of the developed formulation allows accurate discretization

of irregular geometries. However, the shape function polynomials for neighboring elements

would cause discontinuities on the common element edges as in the planar elementspresented

in Chapter 4. The desired common edge shape might require different nodal gradients for

neighboring elements. This problem can be overcome by changing or forcing nodal gradients

(∂X/∂r, ∂Y/∂r, ∂Z/∂r, ∂X/∂s, ∂Y/∂s, ∂Z/∂s, ∂X/∂t, ∂Y/∂t, ∂Z/∂t) to generate the same edge

shapes for neighboring elements. Then, system equations can be formedby using general

finite element assembly procedures.

As discussed above, using mappedrst coordinates for nodal gradient definitions is not

appropriate. However, shape function polynomials can be generated easily by using the

mapped coordinates. Therefore, additional virtual finite elements, which uses the same

mappedrst coordinates with different shape (or mapping) functions, are created on a virtual

XvYvZv coordinate frame, which is constant and parallel to the globalXYZ frame, in order

to overcome incompatibility problem in gradients. Then, nodal gradients can be redefined

with respect to the virtual coordinate frame. Consequently, shape function matrix, which can

generate global coordinates and gradients at an arbitrary point on an element by using nodal

degrees of freedom, can be formulated. Various shape function matricescould be formulated

depending on the choices made for virtual element’s geometrical shape andvirtual shape

functions. Additionally, using different shape function polynomials for original elements than

Equation 5.2 would result alternative shape function matrices, also. Some ofthe methods,
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that can be used for shape function matrix generation, are given in the following subsections.

Figure 5.2: Various 3D plate/shell element shapes

5.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal degrees of freedom for theith node of an arbitrary element is described

as given below.

ei =

[

Xi Yi Zi
∂Xi

∂Xv

∂Yi

∂Xv

∂Zi

∂Xv

∂Xi

∂Yv

∂Yi

∂Yv

∂Zi

∂Yv

∂Xi

∂Zv

∂Yi

∂Zv

∂Zi

∂Zv

]T

(5.8)

In the equation, nodal gradients are defined with respect to the virtual coordinate frame shown

in Figure 5.3. Mapping functions for virtual coordinates at an arbitrary point on the element

can be constructed by using interpolation polynomial of a general first order interpolation

functions for 3D isoparametric hexahedral elements [36] as given in the following equation.

Xv(r, s, t) = Hv(r, s)
(

0X + t 0X ,t
)

(5.9a)

Yv(r, s, t) = Hv(r, s)
(

0Y + t 0Y ,t
)

(5.9b)

Zv(r, s, t) = Hv(r, s)
(

0Z + t 0Z ,t
)

(5.9c)
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Figure 5.3: Coordinate frames for Parallel Virtual Frame and First OrderVirtual Element
Mapping Method

where

Hv =
1
4

[

(1− r)(1− s) (1+ r)(1− s) (1+ r)(1+ s) (1− r)(1+ s)
]

(5.10a)

0X =
[

0X1
0X2

0X3
0X4

]T
(5.10b)

0Y =
[

0Y1
0Y2

0Y3
0Y4

]T
(5.10c)

0Z =
[

0Z1
0Z2

0Z3
0Z4

]T
(5.10d)

0X ,t =
[

0X1,t
0X2,t

0X3,t
0X4,t

]T
(5.10e)

0Y ,t =
[

0Y1,t
0Y2,t

0Y3,t
0Y4,t

]T
(5.10f)

0Z ,t =
[

0Z1,t
0Z2,t

0Z3,t
0Z4,t

]T
(5.10g)

As seen from Equation 5.9, the virtual 3D element is constructed by using not only initial node
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locations but also the initial gradients in the thickness directions. Therefore, these gradient

terms should be defined, initially. Then, three of the nodal gradients appearing in Equation 5.8

are redundant and do not have to be defined, initially. In the thesis, starting nodal gradients

are selected as∂Xi/∂Xv, ∂Xi/∂Yv and∂Xi/∂t. However, Equation 5.8 is still valid, therefore,

initial ∂Xi/∂Zv has to be calculated by using predefined nodal gradients.

Then, gradients with respect to the mappedrst frame can be written in terms of nodal

gradients in compact form as given below.

erst(r, s, t) = Tm1(r, s, t)e(r, s, t) (5.11a)

e(r, s, t) = (Tm1(r, s, t))−1 erst(r, s, t) (5.11b)

where

Tm1(r, s, t) =





1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 Xv,r 0 0 Yv,r 0 0 Zv,r 0 0
0 0 0 0 Xv,r 0 0 Yv,r 0 0 Zv,r 0
0 0 0 0 0 Xv,r 0 0 Yv,r 0 0 Zv,r
0 0 0 Xv,s 0 0 Yv,s 0 0 Zv,s 0 0
0 0 0 0 Xv,s 0 0 Yv,s 0 0 Zv,s 0
0 0 0 0 0 Xv,s 0 0 Yv,s 0 0 Zv,s
0 0 0 Xv,t 0 0 Yv,t 0 0 Zv,t 0 0
0 0 0 0 Xv,t 0 0 Yv,t 0 0 Zv,t 0
0 0 0 0 0 Xv,t 0 0 Yv,t 0 0 Zv,t





(5.12)

Consequently, degrees of freedom vector,e, can be converted into the form given in Equation

5.6,erst , as formulated in the following equation.

erst = Tmap1e (5.13)

where the transformation matrix,Tmap1, can be evaluated by using Equation 5.11 for all four

nodes of the element as given below.

Tmap1 =





Tm1(r1, s1, t1) 0 0 0

0 Tm1(r2, s2, t2) 0 0

0 0 Tm1(r3, s3, t3) 0

0 0 0 Tm1(r4, s4, t4)





(5.14)
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Finally, global coordinates and gradients with respect to the virtual frame at an arbitrary point

can be written in terms of nodal variables by following the procedure givenbelow;

1. Substitute Equation 5.13 into Equation 5.6b to obtain polynomial constants as;

A = P−1Tmap1 e

2. Substitute polynomial constants into Equation 5.3 in order to obtain vector function

used to evaluate global positions and gradients with respect to the mappedrst frame as

given below;

erst(r, s, t) = Q(r, s, t)P−1Tmap1 e

3. Then, substitute the equation above into Equation 5.11b as;

e(r, s, t) = Tm1(r, s, t)−1 Q(r, s, t)P−1Tmap1 e (5.15)

Then, it can be written in a simple form given below;

e(r, s, t) = S(r, s, t) e (5.16)

where the shape function matrix is defined as;

S(r, s, t) = Tm1(r, s, t)−1Q(r, s, t)P−1 Tmap1 (5.17)

In the equation,P−1 andTmap are independent of local coordinates and time. The derived

shape function ensures continuity of nodal parameter at the neighboringnode location. Global

coordinates are continuous over neighboring element edges. However, continuity of gradients

is only guaranteed on node locations. Therefore, stresses or strains will not be continuous over

element edges but be continuous over node locations. Continuous stress/strain distributions

can be created by linear interpolation over nodal stresses or strains in post-processing stage.

Similar to the planar formulation in Chapter 4, it is hard to define initial nodal gradients

(∂X/∂Xv, ∂Y/∂Xv, ∂Z/∂Xv, ∂X/∂Yv, ∂Y/∂Yv and ∂Z/∂Yv) of the elements. In order to
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overcome this difficulty, alternative nodal representation, Virtual Element Edge Frame and

First Order Virtual Element Mapping, has been implemented in following section.

5.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element

Mapping

In this method, nodal gradients are redefined with respect to the linear edges andTv vector,

which is created according to the gradients in the thickness direction of virtual finite element,

in order to make geometrical meaning of nodal gradients more understandable. As shown

in Figure 5.3, first and second nodes, and third and fourth nodes are connected with straight

lines, whereS v andTv are constant. Similarly, second and third nodes, and fourth and first

nodes are connected with straight lines, whereRv andTv are constant. These four straight

lines connecting the nodes form the boundaries of the virtual element inXvYvZv frame. In

fact, RvS vTv is not a new coordinate frame, but they are products of virtualXvYvZv frame.

Let’s consider a point, which has the mapped coordinates of (ra, sa, ta) on the element, in

order to clarifyRv, S v andTv definitions. Then,Rv is defined as the magnitude of the vector

from the virtual point at (−1, sa, ta) to the point at (r, sa, ta). Similarly, S v is defined as the

magnitude of the vector from the virtual point at (ra, −1, ta) to the point at (ra, s, ta). Finally,

Tv is defined as the magnitude of the vector from the virtual point at (ra, ta, −0t/2) to the

point at (ra, sa, t). Therefore, they can be defined with respect to the virtual coordinateframe,

XvYvZv, defined in Equation 5.9, as given in the following equations. As can be seen from the

equations,Rv is a function ofr, S v is a function ofs andTv is a function oft, only.

Rv(r) =

√

(

Hvr (r)
(

X0 + taX0
,t

))2
+

(

Hvr (r)
(

Y0 + taY0
,t

))2
+

(

Hvr (r)
(

Z0 + taZ0
,t

))2
(5.18a)

S v(s) =

√

(

Hvs(s)
(

X0 + taX0
,t

))2
+

(

Hvs(s)
(

Y0 + taY0
,t

))2
+

(

Hvs(s)
(

Z0 + taZ0
,t

))2
(5.18b)

Tv(t) =

(

t +
0t
2

) √

(

Hv(ra, sa)X0
,t

)2
+

(

Hv(ra, sa)Y0
,t

)2
+

(

Hv(ra, sa)Z0
,t

)2
(5.18c)

110



where

Hvr (r) = Hv(r, sa) − Hv(−1, sa) =
(1+ r)

4

[

−1+ sa 1− sa 1+ sa −1− sa

]

(5.19a)

Hvs(s) = Hv(ra, s) − Hv(ra,−1) =
(1+ s)

4

[

−1+ ra −1− ra 1+ ra 1− ra

]

(5.19b)

Gradients of virtualRvS vTv frame with respect to the mappedrst frame at an arbitrary point

on the element can be written explicitly as given below.

∂Rv

∂r
=

1
4

√√√√√√(CX1 +CX2 s + t (DX1 + DX2 s))2 + (CY1 +CY2 s + t (DY1 + DY2 s))2

· · · + (CZ1 +CZ2 s + t (DZ1 + DZ2 s))2
(5.20a)

∂S v

∂s
=

1
4

√√√√√√(CX3 +CX2 r + t (DX3 + DX2 r))2 + (CY3 +CY2 r + t (DY3 + DY2 r))2

· · · + (CZ3 +CZ2 r + t (DZ3 + DZ2 r))2
(5.20b)

∂Tv

∂t
=

√

(

Hv(r, s)X0
,t

)2
+

(

Hv(r, s)Y0
,t

)2
+

(

Hv(r, s)Z0
,t

)2
(5.20c)

∂Rv

∂s
=
∂Rv

∂t
=
∂S v

∂r
=
∂S v

∂t
=
∂Tv

∂r
=
∂Tv

∂s
= 0 (5.20d)

where





CX1 CY1 CZ1
CX2 CY2 CZ2
CX3 CY3 CZ3
DX1 DY1 DZ1
DX2 DY2 DZ2
DX3 DY3 DZ3





=





(−X0
1+X0

2+X0
3−X0

4) (−Y0
1+Y0

2+Y0
3−Y0

4) (−Z0
1+Z0

2+Z0
3−Z0

4)

(+X0
1−X0

2+X0
3−X0

4) (+Y0
1−Y0

2+Y0
3−Y0

4) (+Z0
1−Z0

2+Z0
3−Z0

4)

(−X0
1−X0

2+X0
3+X0

4) (−Y0
1−Y0

2+Y0
3+Y0

4) (−Y0
1−Y0

2+Y0
3+Y0

4)

(−X0
1,t+X0

2,t+X0
3,t−X0

4,t) (−Y0
1,t+Y0

2,t+Y0
3,t−Y0

4,t) (−Z0
1,t+Z0

2,t+Z0
3,t−Z0

4,t)

(+X0
1,t−X0

2,t+X0
3,t−X0

4,t) (+Y0
1,t−Y0

2,t+Y0
3,t−Y0

4,t) (+Z0
1,t−Z0

2,t+Z0
3,t−Z0

4,t)

(−X0
1,t−X0

2,t+X0
3,t+X0

4,t) (−Y0
1,t−Y0

2,t+Y0
3,t+Y0

4,t) (−Y0
1,t−Y0

2,t+Y0
3,t+Y0

4,t)





(5.21)

Then, nodal variables,e, for theith node of an arbitrary element can be written as follows.

ei =

[

Xi Yi Zi
∂Xi

∂Rv

∂Yi

∂Rv

∂Zi

∂Rv

∂Xi

∂S v

∂Yi

∂S v

∂Zi

∂S v

∂Xi

∂Tv

∂Yi

∂Tv

∂Zi

∂Tv

]T

(5.22)

In the equation,Xi, Yi andZi are coordinates of theith node in global frame. As stated in the

previous chapter, the gradient vectors at nodes are always tangentto the element edges.

The gradients with respect to the mappedrst frame can be written in terms of the nodal

gradients (∂X/∂Rv, ∂Y/∂Rv, ∂Z/∂Rv, ∂X/∂S v, ∂Y/∂S v, ∂Z/∂S v, ∂X/∂Tv, ∂Y/∂Tv and∂Z/∂Tv)

as given in the following equation.
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erst(r, s, t) = Tm2(r, s, t) e(r, s, t) (5.23a)

e(r, s, t) = (Tm2(r, s, t))−1 erst(r, s, t) (5.23b)

where

Tm2(r, s, t) = I12x12
[

1 1 1 Rv,r Rv,r Rv,r S v,s S v,s S v,s Tv,t Tv,t Tv,t
]

(5.24)

Consequently, degrees of freedom vector,e, can be converted into the form given in Equation

5.6,erst , as formulated in the following equation.

erst = Tmap2e (5.25)

where the transformation matrix,Tmap2, can be evaluated by using Equation 5.23 as given

below.

Tmap2 =





Tm2(r1, s1, t1) 0 0 0

0 Tm2(r2, s2, t2) 0 0

0 0 Tm2(r3, s3, t3) 0

0 0 0 Tm2(r4, s4, t4)





(5.26)

Similar to the planar formulation presented in the previous chapter,Tmap2 matrix can be

written in terms of the virtual edge lengths of the element similar.

Finally, global coordinates and gradients with respect to the virtual frame at an arbitrary point

can be written in terms of nodal variables by following the similar procedure described for

Method 1 as given below.

e(r, s, t) = Tm2(r, s, t)−1 Q(r, s, t)P−1Tmap2 e (5.27)

Then, it can be written in the following simple form.

e(r, s, t) = S(r, s, t) e (5.28)
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where the shape function matrix for Method 2 is defined as

S(r, s, t) = Tm2(r, s, t)−1Q(r, s, t)P−1 Tmap2 (5.29)

Similar to the planar formulation for virtualRvS v frame, while RvS vTv frame making

geometrical definitions of nodal gradients easier, it brings following restrictions:

• Neighboring elements should be numbered such that their common virtual element

edges should refer to the same virtual coordinate.

• Due to nodal gradient definitions, discontinuous element edge transitions (Figure 5.4)

can not be modeled.

Figure 5.4: Not applicable element transitions for Method 2

5.1.3 Other Applicable Methods for Shape Function Matrix Formulation

Basically, quadrilateral plate and shell finite elements require two shape function polynomials

for shape function matrix generation. Depending on the selected shape functions, various

alternative solution methods can be generated. In the previous chapter, another alternative

method called “Method 3: Initial Element Frame Mapping Method” was proposed. The same

method can also be used for plate and shell element formulations. In the method,initial

shape function polynomials are used instead of virtualXvYvZv or RvS vTv frames. Then, nodal

variables,ei, for theith node of an arbitrary element can be written as follows.
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ei =

[

Xi Yi Zi
∂Xi

∂0X

∂Yi

∂0X

∂Zi

∂0X

∂Xi

∂0Y

∂Yi

∂0Y

∂Zi

∂0Y

∂Xi

∂0Z

∂Yi

∂0Z

∂Zi

∂0Z

]T

(5.30)

Derivation of the shape function matrix can easily be performed by followingthe procedure

given in Chapter 4. Finally, simpler generalized elastic force formulation canbe obtained.

5.2 Mass Matrix Formulation

The constant mass matrix of the proposed plate/shell element can be derived using the general

kinetic energy equation similar to the derivation performed in Chapter 4. The mass matrix at

an arbitrary time,t, is independent of time and can be evaluated once by using the initial

density and volume. Then, it can be used at any time step during the solution process. The

derived mass matrix equation is given below.

M =
∫

Vrst

ρ ST
123S123 |D| drdsdt (5.31)

where the gradient tensor between initial global coordinates and the mapped frame is defined

below.

D =
∂X0

∂r
=





∂X0

∂r
∂X0

∂s
∂X0

∂t
∂Y0

∂r
∂Y0

∂s
∂Y0

∂t
∂Z0

∂r
∂Z0

∂s
∂Z0

∂t





(5.32)

In Equation 5.31,S123 is the shape function matrix of global coordinates, which contains first

three rows of the shape function matrices given in Equations 5.17 or 5.29. Additionally, it is

important to remember thatt varies from−0t/2 to+0t/2.

5.3 Generalized Elastic Forces

The generalized elastic forces of an arbitrary element can be derived using strain energy

equation. The strain energy of an element at an arbitrary time,t, can be formulated by using
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Green-Lagrange strain and 2nd Piola-Kirchhoff stress tensor definitions. Recall the derived

generalized elastic force equations given below.

tQk =
∂ tU
∂ te

=
∂

∂ te






1
2

∫

0V

t
ε

T E t
ε d 0V






=

∫

0V

(

∂ t
ε

∂ te

)T

E t
ε d 0V (5.33)

In order to find nonlinear strain tensor, deformation gradient should be written in terms of

nodal variables given in Equation 5.8 for Method 1 or Equation 5.22 for Method 2. Due to

different nodal variable definitions used, formulations of deformation gradients for Method 1

and Method 2 will be different.

Deformation gradient for Method 1;

J =





∂X
∂Xv

∂X
∂Yv

∂X
∂Zv

∂Y
∂Xv

∂Y
∂Yv

∂Y
∂Zv

∂Z
∂Xv

∂Z
∂Yv

∂Z
∂Zv









∂X0
∂Xv

∂X0
∂Yv

∂X0
∂Zv

∂Y0
∂Xv

∂Y0
∂Yv

∂Y0
∂Zv

∂Z0
∂Xv

∂Z0
∂Yv

∂Z0
∂Zv





−1

(5.34)

Deformation gradient for Method 2;

J =





∂X
∂Rv

∂X
∂S v

∂X
∂Tv

∂Y
∂Rv

∂Y
∂S v

∂Y
∂Tv

∂Z
∂Rv

∂Z
∂S v

∂Z
∂Tv









∂X0
∂Rv

∂X0
∂S v

∂X0
∂Tv

∂Y0
∂Rv

∂Y0
∂S v

∂Y0
∂Tv

∂Z0
∂Rv

∂Z0
∂S v

∂Z0
∂Tv





−1

(5.35)

In general form, deformation gradient tensor can be written as given below.

J =





S4e S7e S10e

S5e S8e S11e

S6e S9e S12e









d11 d12 d13

d21 d22 d23

d31 d32 d33





=





V11e V12e V13e

V21e V22e V23e

V31e V32e V33e





(5.36)

where the row vectors,V ij , defined as given below.
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



V11(r, s, t)

V12(r, s, t)

V13(r, s, t)

V21(r, s, t)

V22(r, s, t)

V23(r, s, t)

V31(r, s, t)

V32(r, s, t)

V33(r, s, t)





=





d11S4 + d21S7 + d31S10

d12S4 + d22S7 + d32S10

d13S4 + d23S7 + d33S10

d11S5 + d21S8 + d31S11

d12S5 + d22S8 + d32S11

d13S5 + d23S8 + d33S11

d11S6 + d21S9 + d31S12

d12S6 + d22S9 + d32S12

d13S6 + d23S9 + d33S12





(5.37)

In the deformation gradient tensor equation,d11, d12, d13, d21, d22, d23, d31, d32 andd33 are

the elements of inverse of initial nodal gradient tensor and defined for thetwo shape function

matrix methods as given in the following equations.





d11 d12 d13

d21 d22 d23

d31 d32 d33





=





∂X0
∂Xv

∂X0
∂Yv

∂X0
∂Zv

∂Y0
∂Xv

∂Y0
∂Yv

∂Y0
∂Zv

∂Z0
∂Xv

∂Z0
∂Yv

∂Z0
∂Zv





−1

=





S4
0e S7

0e S10
0e

S5
0e S8

0e S11
0e

S6
0e S9

0e S12
0e





−1

· · ·Method 1 (5.38a)





d11 d12 d13

d21 d22 d23

d31 d32 d33





=





∂X0
∂Rv

∂X0
∂S v

∂X0
∂Tv

∂Y0
∂Rv

∂Y0
∂S v

∂Y0
∂Tv

∂Z0
∂Rv

∂Z0
∂S v

∂Z0
∂Tv





−1

=





S4
0e S7

0e S10
0e

S5
0e S8

0e S11
0e

S6
0e S9

0e S12
0e





−1

· · ·Method 2 (5.38b)

General definition of nonlinear Lagrangian strain tensor is given in Equation 5.39a [36], where

I is 3 by 3 identity matrix. Then, strain tensor,εm, can be written in terms of nodal variables,

e, by using Equation 5.36 as given below.

εm =
1
2

(
t
0JT t

0J − I
)

(5.39a)

εm =
1
2





eT N11e− 1 eT N12e eT N13e

eT N12e eT N22e− 1 eT N23e

eT N13e eT N23e eT N33e− 1





(5.39b)
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where the square matrices,Ni j, are defined as follows.

N11 = V11
T V11+ V21

T V21+ V31
T V31 (5.40a)

N12 = V11
T V12+ V21

T V22+ V31
T V32 (5.40b)

N13 = V11
T V13+ V21

T V23+ V31
T V33 (5.40c)

N22 = V12
T V12+ V22

T V22+ V32
T V32 (5.40d)

N23 = V12
T V13+ V22

T V23+ V32
T V33 (5.40e)

N33 = V13
T V13+ V23

T V23+ V33
T V33 (5.40f)

Then, the strain vector and its partial derivative with respect to the nodalvariables can be

written in terms of the nodal variables as given below.

ε =





ε11

ε22

ε33

ε23

ε13

ε12





=
1
2





eT N11e− 1

eT N22e− 1

eT N33e− 1

eT N23e

eT N13e

eT N12e





∂ε

∂e
=





eT N11

eT N22

eT N33

1
2 eT

(

N23+ N23
T
)

1
2 eT

(

N13+ N13
T
)

1
2 eT

(

N12+ N12
T
)





(5.41)

Finally, the generalized elastic force equation can be written in terms of nodalvariables by

substituting Equation 5.41 into Equation 5.33 as given in the following equation. Evaluation

of the generalized elastic force vector can be performed by numerical integration methods

like Gauss-Quadrature.

Qk =
1
2

∫

Vrst





eT N11

eT N22

eT N33

1
2 eT

(

N23+ N23
T
)

1
2 eT

(

N13+ N13
T
)

1
2 eT

(

N12+ N12
T
)





T

E





eT N11e− 1

eT N22e− 1

eT N33e− 1

eT N23e

eT N13e

eT N12e





|D| drdsdt (5.42)
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5.4 Generalized External Forces

It is known that the generalized external force vectors can be found by virtual work principle.

If a point force,F, acts on a point having global coordinates ofr , than the external force

vector,QF , can be found by virtual work principle as follows.

FTδr = FT S123δe= QT
Fδe (5.43a)

QF = ST
123F (5.43b)

5.5 Straight Cantilever Beam Patch Test for the Proposed Plate/Shell Finite

Element

In order to verify the developed finite element for problems containing plate and shell

structures, straight cantilever beam patch tests proposed by Richard H.Macneal and Robert

L. Harder [35], have been performed for three types of element geometries. The patch test

problems are defined in Figure 4.11 of Section 4.6.2. In planar tests, finite elements were

tested against in-plane shear and extension loadings. Out-of-plane shear loading is also

included in the patch tests of the proposed plate and shell elements.

Finite element discretization and nodal connectivities of the elements are the same as

ones used in planar problem and given in Figure 4.12 and Table 4.3, respectively. Initial

nodal gradients are determined according to the virtualXvYvZv frame and listed for regular,

trapezoidal and parallelogram shape elements in Tables 4.4 and 5.1. Fixed boundary

conditions are applied forX, Y, Z, ∂Z/∂Xv and∂X/∂Yv degrees of freedom of Node 1 and

Node 8.

Table 5.1: Added nodal variables for Method 1

Z ∂X/∂Zv ∂Y/∂Zv ∂X/∂Zv ∂Y/∂Zv ∂Z/∂Zv

All Nodes 0 0 0 0 0 1
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Similar to the planar formulation, discontinuities on some of the stress components have been

evaluated after solving the problem for trapezoidal and parallelogram elements. However,

von Misses stress distributions are almost continuous. Obtained stress distributions and

displacements for in-plane shear loadings are almost identical to planar element results

given in Figures 4.13, 4.14 and 4.15. Stress distributions for in-plane loading obtained

by the generalized plate formulation are given in Figures 5.5, 5.6 and 5.7. Deformed

configurations of the cantilever beam under out-of-plane shear loading for regular, trapezoidal

and parallelogram elements are given in Figures 5.8, 5.9 and 5.10. Obtaineddisplacement

results are in the acceptable range as shown in Table 5.2 despite relatively high error levels in

out-of-plane loading solutions. It is expected that the error would be reduced if the number of

elements is increased.

Figure 5.5: Von Misses stress distribution for straight cantilever beam with regular elements
(in-plane shear)

Figure 5.6: Von Misses stress distribution for straight cantilever beam with trapezoidal
elements (in-plane shear)

Figure 5.7: Von Misses stress distribution for straight cantilever beam with parallelogram
elements (in-plane shear)
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Figure 5.8: Von Misses stress distribution for straight cantilever beam with regular elements
(out-of-plane shear)

Figure 5.9: Von Misses stress distribution for straight cantilever beam with trapezoidal
elements (out-of-plane shear)

Figure 5.10: Von Misses stress distribution for straight cantilever beam withparallelogram
elements (out-of-plane shear)
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Table 5.2: Straight cantilever beam patch test results for the generalized plate/shell
formulation

Maximum tip displacement on the loading direction
Theoretical Calculated Error Grade

In-plane shear loading
Regular 0.1081 0.1081 0.00% A

Trapezoidal 0.1081 0.1000 −7.47% B
Parallelogram 0.1081 0.1078 −0.23% A

Extension loading
Regular 3.0× 10−5 3.0537× 10−5 1.79% A

Trapezoidal 3.0× 10−5 3.0632× 10−5 2.11% B
Parallelogram 3.0× 10−5 3.0540× 10−5 1.80% A

Out-of-plane shear loading
Regular 0.4321 0.4052 −6.23% B

Trapezoidal 0.4321 0.3912 −9.47% B
Parallelogram 0.4321 0.4033 −6.66% B

5.6 Discussion on the Proposed Generalized Plate/Shell Formulation

In this chapter, implementation of ANCF using virtual element mapping to the generalized

plate element has been performed. Despite acceptable results have been obtained in the patch

tests, out-of-plane bending results are not as accurate as expected. In fact, it is evaluated

that relatively higher errors in out-of-plane loadings are due to the thickness terms in shape

function polynomial and the nature of generalized plate assumption. Accuracy of the results

could be increased by using different interpolation functions or using thin plate or shell

assumption for the formulation. Shape function matrix derivation for thin plate and shell

elements is given in the following section for future use.

5.7 Irregular Shaped Quadrilateral Finite Element Representation and Shape

Function Creation for Thin Plates and Shells

In the thin plate/shell formulation, nodal gradients along the thickness direction are removed

from the nodal degrees of freedom as shown in the following equation because of thin plate

assumption.
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ers
i =

[

Xi Yi Zi
∂Xi

∂r
∂Yi

∂r
∂Zi

∂r
∂Xi

∂s
∂Yi

∂s
∂Zi

∂s

]T

(5.44)

Gradients along the thickness direction (∂X/∂t, ∂Y/∂t and∂Z/∂t) can be evaluated by using

orthogonality ofrst frame if they are needed. The shape function selected for the thin

plate/shell problems is given below.

X(r, s, t) = pT (r, s) a+ t
∂X
∂t

(5.45a)

Y(r, s, t) = pT (r, s) b + t
∂Y
∂t

(5.45b)

Z(r, s, t) = pT (r, s) c+ t
∂Z
∂t

(5.45c)

pT =
[

1 r s rs r2 s2 r2s rs2 r3 s3 r3s rs3
]

(5.45d)

Then, polynomial constants (A = [aT bT cT ]T ) can be formulated in terms of nodal degrees

of freedom of the element as given in the following equation.

ers
i = Q(ri, si)A (5.46)

where

Q(r, s) =





pT (r, s) 0 0

0 pT (r, s) 0

0 0 pT (r, s)

pT
,r(r, s) 0 0

0 pT
,r(r, s) 0

0 0 pT
,r(r, s)

pT
,s(r, s) 0 0

0 pT
,s(r, s) 0

0 0 pT
,s(r, s)





(5.47)

Here,ri andsi represent the mapped coordinates of theith node on the element as given below.
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[r1 r2 r3 r4] = [−1 + 1 + 1 − 1] (5.48a)

[s1 s2 s3 s4] = [−1 − 1 + 1 + 1] (5.48b)

Then, linear set of algebraic equations to be solved forA can be derived by using Equation

5.46 for all four nodes of the element as given in the following equation.

ers = P A (5.49)

where

P =
[

QT (r1, s1) QT (r2, s2) QT (r3, s3) QT (r4, s4)
]T

(5.50)

Then, polynomial constants vector,A, can be found by using Equation 5.49 as follows.

A = P−1ers (5.51)

In order to overcome discontinuity problem at the element transitions, nodalgradients are

rewritten with respect to theRvS v virtual frame as given below.

ei =

[

Xi Yi Zi
∂Xi

∂Rv

∂Yi

∂Rv

∂Zi

∂Rv

∂Xi

∂S v

∂Yi

∂S v

∂Zi

∂S v

]T

(5.52)

Relationship betweenrs andRvS v frames are rewritten below for the midplane (t = 0) of the

element.

Rv(r) =
√

(

Hvr (r)X0)2 +
(

Hvr (r)Y0)2 +
(

Hvr (r)Z0)2 (5.53a)

S v(s) =
√

(

Hvs(s)X0)2 +
(

Hvs(s)Y0)2 +
(

Hvs(s)Z0)2 (5.53b)

(5.53c)
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where

Hvr (r) = Hv(r, sa) − Hv(−1, sa) =
(1+ r)

4

[

−1+ sa 1− sa 1+ sa −1− sa

]

(5.54a)

Hvs(s) = Hv(ra, s) − Hv(ra,−1) =
(1+ s)

4

[

−1+ ra −1− ra 1+ ra 1− ra

]

(5.54b)

Then, the gradients ofRvS v frame with respect to the mappedrs frame at an arbitrary point

on the element can be written explicitly as given in the following equations.

∂Rv

∂r
=

1
4

√

(CX1 +CX2 s)2 + (CY1 +CY2 s)2 + (CZ1 +CZ2 s)2 (5.55a)

∂S v

∂s
=

1
4

√

(CX3 +CX2 r)2 + (CY3 +CY2 r)2 + (CZ3 +CZ2 r)2 (5.55b)

∂Rv

∂s
=
∂S v

∂r
= 0 (5.55c)

whereCXi, CYi andCZi are defined in Equation 5.20.

The gradients with respect to the mappedrs frame can be written in terms of the nodal

gradients (∂X/∂Rv, ∂Y/∂Rv, ∂Z/∂Rv, ∂X/∂S v, ∂Y/∂S v and∂Z/∂S v) as given in the following

equation.

ers(r, s,0) = Tm2(r, s) e(r, s,0) (5.56)

where

Tm2(r, s) =
[

1 1 1 Rv,r Rv,r Rv,r S v,s S v,s S v,s
]

I12x12 (5.57)

Then, global position and gradients with respect to the mapped frame can beevaluated by

using the equation given below.

ers(r, s,0) = Srs(r, s)e (5.58)

where

Srs(r, s) = Q(r, s) P−1 Tmap2 (5.59)

Finally, global position and gradients with respect to the virtualRvS v frame can be evaluated

by using the equation given below.
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e(r, s,0) = S(r, s)e (5.60)

where

S(r, s) = Tm2(r, s)−1Srs(r, s) (5.61)

In the formulation of equations of motion,Srs(r, s) will be used in order to make derivations

and calculations simpler. Then, gradients with respect to the thickness direction can be

evaluated by using orthogonality condition as given below.

∂X
∂t
=

∂X
∂r ×

∂X
∂s

∣
∣
∣
∂X
∂r ×

∂X
∂s

∣
∣
∣

(5.62a)





∂X/∂t

∂Y/∂t

∂Z/∂t





=
1

√
(

eT St1e
)2
+

(

eT St2e
)2
+

(

eT St3e
)2





eT St1e

eT St2e

eT St3e





(5.62b)

where

St1 = Srs
5

T Srs
9 − Srs

6
T Srs

8 (5.63a)

St2 = Srs
6

T Srs
7 − Srs

4
T Srs

9 (5.63b)

St3 = Srs
4

T Srs
8 − Srs

5
T Srs

7 (5.63c)

Finally, global position vector of an arbitrary point can be written as follows.





X(r, s, t)

Y(r, s, t)

Z(r, s, t)





= Srs
123e+

t
√

(

eT St1e
)2
+

(

eT St2e
)2
+

(

eT St3e
)2





eT St1e

eT St2e

eT St3e





(5.64)

Then, mass matrix and generalized elastic force vector can be derived byfollowing the similar

procedure described for the generalized plate formulation.
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CHAPTER 6

ANCF FOR SOLID ELEMENTS HAVING IRREGULAR

SHAPES

In Chapter 4, ANCF extended to plane stress and strain problems for fournoded quadrilateral

elements having irregular shapes. In Chapter 5, the proposed continuum formulation applied

to plate and shell problems, successfully. Developed formulations show that a wide range of

element shapes can be generated and solved. The next step for the formulation is extending to

eight noded hexahedral elements, which can various shapes. Actually,there is an attempt to

generate absolute nodal coordinate formulation for 3D brick elements by Lars Kübler, Peter

Eberhard and Johannes Geisler [41]. However, their proposed finiteelement [41] does not

have exact representation of ANCF. The element only use global positions as nodal variables

instead of displacements without including nodal gradients, which are the most powerful

feature of the formulation making the difference. In summary, they have proposed a new

8 noded brick element, which can be assembled with the ANCF beams, plates andshells,

having the same deformation capabilities as in classical finite element methods. However,

better implementation could be performed by including nodal gradients as degrees of freedom

of nodes.

Currently, ANCF is used for regular shaped structural finite elements (beam , plate and shell

elements). In Chapters 4 and 5, regular shape limitation has been solved with the proposed

formulation, which uses virtual elements. In this chapter, the developed formulations and

approaches are directly applied to the 8 noded 3D solid elements in order to take advantages

of ANCF for 3D continuum problems. Additionally, success of the developed element has

been verified by some of the patch tests proposed by Richard H. MACNEALand Robert L.

HARDER [35] and a flexible pendulum problem available in the literature.
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6.1 Finite Element Representation and Shape Function Creation for 3D Solid

Elements with Virtual Element Methods

Finite element representation and virtual element shape functions of 3D solidelements are

very similar to the planar elements developed in Chapter 4. The only difference is the addition

of the mappedt coordinate which has a range of [−1,+1].

One can select the mapped coordinate frame given in Figure 6.1 in order to define nodal

gradients for the element. Then, the nodal degrees of freedom at theith node of an arbitrary

element should be written as given below.

ei =

[

Xi Yi Zi
∂Xi

∂r
∂Yi

∂r
∂Zi

∂r
∂Xi

∂s
∂Yi

∂s
∂Zi

∂s
∂Xi

∂t
∂Yi

∂t
∂Zi

∂t

]T

(6.1)

Figure 6.1:rst coordinate frame mapping for 3D solid elements

A third order polynomial given below is selected as the shape function polynomial of the eight

noded hexahedral solid element.
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



X(r, s, t)

Y(r, s, t)

Z(r, s, t)





=





pT (r, s, t) 0 0

0 pT (r, s, t) 0

0 0 pT (r, s, t)





A (6.2a)

pT (r, s, t) =





1 r s t rs rt st rst · · ·

r2 s2 t2 r2s r2t rs2 ts2 rt2 · · ·

st2 r3 s3 t3 r3s r3t rs3 ts3 · · ·

rt3 st3 r2st rs2t rst2 r3st rs3t rst3





(6.2b)

whereA is the vector of polynomial constants, which contain constants forX(r, s, t), Y(r, s, t)

andZ(r, s, t).

Then, polynomial constants (A) could be formulated in terms of nodal degrees of freedom of

the element as given in the following equations.

ei = Q(ri, si, ti)A (6.3)

whereQ(r, s, t) is a matrix of functions defined in Equation 5.4a andri, si andti represent the

mapped coordinates of theith node on the element as given below.

[r1 r2 r3 r4 r5 r6 r7 r8] = [−1 + 1 + 1 − 1 − 1 + 1 + 1 − 1] (6.4a)

[s1 s2 s3 s4 s5 s6 s7 s8] = [−1 − 1 + 1 + 1 − 1 − 1 + 1 + 1] (6.4b)

[t1 t2 t3 t4 t5 t6 t7 t8] = [+1 + 1 + 1 + 1 − 1 − 1 − 1 − 1] (6.4c)

Then, the vector of polynomial constants,A, can be found by solving the linear algebraic

equation given below. Similar to the previous finite element applications,P−1 is always exist

and constant for the selected shape function polynomials.

e= PA (6.5a)

A = P−1e (6.5b)
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where

P =





Q(r1, s1, t1)

Q(r2, s2, t2)

Q(r3, s3, t3)

Q(r4, s4, t4)

Q(r5, s5, t5)

Q(r6, s6, t6)

Q(r7, s7, t7)

Q(r8, s8, t8)





(6.6)

Various 3D solid element shapes given in Figure 6.2 could be generated byusing the derived

shape function polynomials, given in Equation 6.5, and appropriate nodaldegrees of freedom.

However, discontinuity problem discussed in Chapters 4 and 5 is also valid for 3D solid

elements. Similarly, this problem can be overcome by changing or forcing nodal gradients

(∂X/∂r, ∂Y/∂r, ∂Z/∂r, ∂X/∂s, ∂Y/∂s, ∂Z/∂s, ∂X/∂t, ∂Y/∂t, ∂Z/∂t) to generate the same

edge shapes for neighbouring elements. Then, system equations can beformed by using

general finite element assembly procedures. Two alternative mapping methods are discussed

in the following sections for 3D solid elements.

Figure 6.2: Various 3D solid element shapes
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6.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal gradients are defined with respect to the virtual coordinate frame of

virtual element shown in Figure 6.3. Then, nodal degrees of freedom for the ith node of an

arbitrary element is described as given in the following equation.

ei =

[

Xi Yi Zi
∂Xi

∂Xv

∂Yi

∂Xv

∂Zi

∂Xv

∂Xi

∂Yv

∂Yi

∂Yv

∂Zi

∂Yv

∂Xi

∂Zv

∂Yi

∂Zv

∂Zi

∂Zv

]T

(6.7)

Figure 6.3: Virtual finite element frame in 3D continuum element for Method 1

Mapping functions for virtual finite element shown in Figure 6.3 can be constructed by using

general first order interpolation functions for 3D isoparametric hexahedral element [36] as

given in the following equation.
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Xv(r, s, t) = Hv3d(r, s, t) 0X (6.8a)

Yv(r, s, t) = Hv3d(r, s, t) 0Y (6.8b)

Zv(r, s, t) = Hv3d(r, s, t) 0Z (6.8c)

where

Hv3d(r, s, t) =
1
2

[

Hv(r, s)(1+ t) Hv(r, s)(1− t)
]

(6.9)

andHv(r, s) is the first order shape function matrix used for virtual planar elements presented

in Chapter 4.

Then, gradients with respect to the mappedrst frame can be written in terms of nodal

gradients in compact form by using Equation 5.11 and 5.12 in the previous chapter.

Consequently, gradient terms in vector of nodal variables can be converted into the gradients

with respect to the mappedrst frame as given below.

erst = Tmap1e (6.10)

whereTmap1 is defined in Equation 5.14.

Finally, global coordinates and gradients with respect to the virtual frame can be found by

using polynomial constants derived in Equation 6.5 as given below.

e(r, s, t) = S(r, s, t)e (6.11)

where

S(r, s, t) = Tm1(r, s, t)−1Q(r, s, t) P−1 Tmap1 (6.12)

While P−1 is the same for all finite elements,Tmap1 depends on the initial element geometry.

The derived shape function matrix ensures continuity of nodal parameterat the neighboring

node location. Global coordinates are continuous over neighboring element faces. However,

continuity of gradients is only guaranteed on node locations. Therefore,stresses or strains
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will not be continuous over element edges but be identical for neighboring elements at the

same node locations. Continuous stress and strain distributions can be created by linear

interpolation over nodal stresses or strains in post-processing stage.

6.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element

Mapping

In this method, nodal gradients are redefined with respect to the linear edges of virtual finite

element shown in Figure 6.3. Straight lines from nodes 1 to 2, 4 to 3, 5 to 6 and8 to 7

represent the virtual coordinate, whereS v andTv are constant. Similarly, lines from nodes 1

to 4, 2 to 3, 5 to 8 and 6 to 7 represent the virtual coordinate, whereRv andTv are constant.

Finally, lines from nodes 5 to 1, 6 to 2, 8 to 4 and 7 to 3 represent the virtual coordinate, where

Rv andS v are constant. These 12 straight lines connecting the nodes form the boundaries of

the virtual element inXvYvZv frame. Similar to the 2D planar formulation,RvS vTv is not a

new coordinate frame, but they are products of virtualXvYvZv frame.

If a point, which has the mapped coordinates of (ra, sa, ta) on the element, is consider in order

to clarify Rv, S v andTv definitions, then,Rv is defined as the magnitude of the vector from the

virtual point at (−1, sa, ta) to the point at (r, sa, ta). Similarly, S v is defined as the magnitude

of the vector from the virtual point at (ra,−1, ta) to the point at (ra, s, ta). Finally,Tv is defined

as the magnitude of the vector from the virtual point at (ra, sa, −1) to the point at (ra, sa, t).

Therefore, they can be defined with respect to the virtual frame (XvYvZv) defined in Equation

6.8 as given in the following equations. As can be seen from the equations,Rv is a function

of r, S v is a function ofs andTv is a function oft, only.

Rv(r) =
√

(

Hv3dr(r) 0X
)2
+

(

Hv3dr(r) 0Y
)2
+

(

Hv3dr(r) 0Z
)2 (6.13a)

S v(s) =
√

(

Hv3ds(s) 0X
)2
+

(

Hv3ds(s) 0Y
)2
+

(

Hv3ds(s) 0Z
)2 (6.13b)

Tv(t) =
√

(

Hv3dt(t) 0X
)2
+

(

Hv3dt(t) 0Y
)2
+

(

Hv3dt(t) 0Z
)2 (6.13c)
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where

Hv3dr(r) = Hv3d(r, sa, ta) − Hv3d(−1, sa, ta) =
1
2

[(1+ ta)Hvr (r) (1− ta)Hvr (r)] (6.14a)

Hv3ds(s) = Hv3d(ra, s, ta) − Hv3d(ra,−1, ta) =
1
2

[(1+ ta)Hvs(s) (1− ta)Hvs(s)] (6.14b)

Hv3dt(t) = Hv3d(ra, sa, t) − Hv3d(ra, sa,−1) =
(1+ t)

2
[Hv(ra, sa) − Hv(ra, sa)] (6.14c)

Then, gradients of virtualRvS vTv frame with respect to the mappedrst frame at an arbitrary

point on the element can be written in explicit forms as given below.

∂Rv

∂r
=

1
8

√√√√√√(CX1 +CX2 s +CX3t +CX4 st)2 + (CY1 +CY2 s +CY3t +CY4 st)2

· · · + (CZ1 +CZ2 s +CZ3t +CZ4 st)2
(6.15a)

∂S v

∂s
=

1
8

√√√√√√(CX5 +CX2 r +CX6t +CX4 rt)2 + (CY5 +CY2 r +CY6t +CY4 rt)2

· · · + (CZ5 +CZ2 r +CZ6t +CZ4 rt)2
(6.15b)

∂Tv

∂t
=

1
8

√√√√√√(CX7 +CX3 r +CX6s +CX4 rs)2 + (CY7 +CY3 r +CY6s +CY4 rs)2

· · · + (CZ7 +CZ3 r +CZ6s +CZ4 rs)2
(6.15c)

∂Rv

∂s
=
∂Rv

∂t
=
∂S v

∂r
=
∂S v

∂t
=
∂Tv

∂r
=
∂Tv

∂s
= 0 (6.15d)

where the constants of virtual element are given in the following equations.

CX1 = −
0X1 +

0X2 +
0X3 −

0X4 −
0X5 +

0X6 +
0X7 −

0X8

CX2 = +
0X1 −

0X2 +
0X3 −

0X4 +
0X5 −

0X6 +
0X7 −

0X8

CX3 = −
0X1 +

0X2 +
0X3 −

0X4 +
0X5 −

0X6 −
0X7 +

0X8

CX4 = +
0X1 −

0X2 +
0X3 −

0X4 −
0X5 +

0X6 −
0X7 +

0X8

CX5 = −
0X1 −

0X2 +
0X3 +

0X4 −
0X5 −

0X6 +
0X7 +

0X8

CX6 = −
0X1 −

0X2 +
0X3 +

0X4 +
0X5 +

0X6 −
0X7 −

0X8

CX7 = +
0X1 +

0X2 +
0X3 +

0X4 −
0X5 −

0X6 −
0X7 −

0X8

CY1 = −
0Y1 +

0Y2 +
0Y3 −

0Y4 −
0Y5 +

0Y6 +
0Y7 −

0Y8
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CY2 = +
0Y1 −

0Y2 +
0Y3 −

0Y4 +
0Y5 −

0Y6 +
0Y7 −

0Y8

CY3 = −
0Y1 +

0Y2 +
0Y3 −

0Y4 +
0Y5 −

0Y6 −
0Y7 +

0Y8

CY4 = +
0Y1 −

0Y2 +
0Y3 −

0Y4 −
0Y5 +

0Y6 −
0Y7 +

0Y8

CY5 = −
0Y1 −

0Y2 +
0Y3 +

0Y4 −
0Y5 −

0Y6 +
0Y7 +

0Y8

CY6 = −
0Y1 −

0Y2 +
0Y3 +

0Y4 +
0Y5 +

0Y6 −
0Y7 −

0Y8

CY7 = +
0Y1 +

0Y2 +
0Y3 +

0Y4 −
0Y5 −

0Y6 −
0Y7 −

0Y8

CZ1 = −
0Z1 +

0Z2 +
0Z3 −

0Z4 −
0Z5 +

0Z6 +
0Z7 −

0Z8

CZ2 = +
0Z1 −

0Z2 +
0Z3 −

0Z4 +
0Z5 −

0Z6 +
0Z7 −

0Z8

CZ3 = −
0Z1 +

0Z2 +
0Z3 −

0Z4 +
0Z5 −

0Z6 −
0Z7 +

0Z8

CZ4 = +
0Z1 −

0Z2 +
0Z3 −

0Z4 −
0Z5 +

0Z6 −
0Z7 +

0Z8

CZ5 = −
0Z1 −

0Z2 +
0Z3 +

0Z4 −
0Z5 −

0Z6 +
0Z7 +

0Z8

CZ6 = −
0Z1 −

0Z2 +
0Z3 +

0Z4 +
0Z5 +

0Z6 −
0Z7 −

0Z8

CZ7 = +
0Z1 +

0Z2 +
0Z3 +

0Z4 −
0Z5 −

0Z6 −
0Z7 −

0Z8

Then, vector of nodal variables,e, for the ith node of an arbitrary element can be written as

follows.

ei =

[

Xi Yi Zi
∂Xi

∂Rv

∂Yi

∂Rv

∂Zi

∂Rv

∂Xi

∂S v

∂Yi

∂S v

∂Zi

∂S v

∂Xi

∂Tv

∂Yi

∂Tv

∂Zi

∂Tv

]T

(6.16)

In the equation,Xi, Yi andZi are coordinates of theith node in global frame. As stated in

Chapter 4, the gradient vectors are always tangent to the element edges.

The nodal gradients with respect to the mappedrst frame can be written in terms of the

nodal gradients with respect to the virtualRvS vTv frame (∂X/∂Rv, ∂Y/∂Rv, ∂Z/∂Rv, ∂X/∂S v,

∂Y/∂S v, ∂Z/∂S v, ∂X/∂Tv, ∂Y/∂Tv and∂Z/∂Tv) as given in the following equation.

erst = Tmap2e (6.17)
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where

Tmap2 =





Tm2(r1, s1, t1)

Tm2(r2, s2, t2)

Tm2(r3, s3, t3)

Tm2(r4, s4, t4)

Tm2(r5, s5, t5)

Tm2(r6, s6, t6)

Tm2(r7, s7, t7)

Tm2(r8, s8, t8)





(6.18)

Tm2 matrix for 3D hexahedral element is defined in the following equation.

Tm2(r, s, t) = I12x12
[

1 1 1 Rv,r Rv,r Rv,r S v,s S v,s S v,s Tv,t Tv,t Tv,t
]

(6.19)

whereI12x12 is 12x12 identity matrix.

Finally, global coordinates and gradients with respect to the virtual frame at an arbitrary point

can be written in terms of nodal variables as given below.

e(r, s, t) = Tm2(r, s, t)−1Q(r, s, t) P−1 Tmap2e (6.20)

Then, it can be written in a simple form given below.

e(r, s, t) = S(r, s, t)e (6.21)

where

S(r, s, t) = Tm2(r, s, t)−1Q(r, s, t) P−1 Tmap2 (6.22)

Similar to the previous planar formulations,Tmap2 matrix in the shape function definition can

be written in terms of the virtual edge lengths of the element.

6.2 Generalized System Parameters for 3D Hexahedral FiniteElements

The mass matrix and the generalized elastic and external force vectors canbe derived using

the same procedure described in Chapter 5. Despite the formulation is exactlythe same,
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integration boundaries of the mappedt coordinate are different. Integration limits of the

mappedt coordinate should be changed from [−0t/2, +0t/2] to [−1, +1]. Then, Equations

5.31, 5.42 and 5.43 can be used to calculate the mass matrix, the generalized elastic forces

and the generalized external forces, respectively.

6.3 Straight Cantilever Beam Patch Test for the Proposed Solid Element

In order to verify performance of the proposed hexahedral finite element under quasi-static

loading conditions, straight cantilever beam patch test problems proposedby Richard H.

Macneal and Robert L. Harder [35], have been solved. Geometries of the problems are defined

in Figure 4.11 of Section 4.6.2. Analyses are performed for in-plane shear and extension

loading cases. Finite element model has been generated using 28 nodes and 6 elements as

shown in Figure 6.4 with the connectivity matrix given in Table 6.1. Initial nodalgradients

are determined according to the virtualXvYvZv frame similar to the planar patch test analyses

in Section 4.6.2. Fixed boundary conditions are applied forX, Y, Z, ∂X/∂Yv, ∂Z/∂Yv, ∂X/∂Zv

and∂Y/∂Zv degrees of freedom of nodes 1, 8, 15 and 22.

Figure 6.4: Discretized beam for patch test problem

Table 6.1: Connectivity of the elements

Node Numbers
Element 1 1 2 9 8 15 16 23 22
Element 2 2 3 10 9 16 17 24 23
Element 3 3 4 11 10 17 18 25 24
Element 4 4 5 12 11 18 19 26 25
Element 5 5 6 13 12 19 20 27 26
Element 6 6 7 14 13 20 21 28 27
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Similar to the planar formulation, discontinuities on some of the stress components have been

observed after solving the problem for trapezoidal and parallelogram elements. However, von

Misses stress distributions are almost continuous and almost identical to 2D planar element

results as shown in Figures 6.5, 6.6 and 6.7. Displacements on the load directions and their

errors are listed in Table 6.2. As seen on the table, all of the results are in theacceptable ranges

defined in the publication of Richard H. Macneal and Robert L. Harder [35]. In addition, the

patch test problem has been solved by using single regular element, which has the aspect

ratio of 30, with a high accuracy as shown in the table. Similar to the results of planar finite

element formulations, the maximum error is obtained for the trapezoidal elementsolutions

due to differences in the edge lengths of neighboring elements.

Figure 6.5: Von Misses stress distribution for straight cantilever beam with 3D regular
elements (in-plane shear)

Figure 6.6: Von Misses stress distribution for straight cantilever beam with 3D trapezoidal
elements (in-plane shear)

Figure 6.7: Von Misses stress distribution for straight cantilever beam with 3D parallelogram
elements (in-plane shear)
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Table 6.2: Patch test results for straight beam

Maximum tip displacement on the loading direction
Theoretical Calculated Error Grade

In-plane shear loading
Regular 0.1081 0.1077 −0.40% A

Trapezoidal 0.1081 0.0992 −8.20% B
Parallelogram 0.1081 0.1072 −0.81% A
One Element 0.1081 0.1080 −0.08% A

Extension loading
Regular 3.0× 10−5 3.0284× 10−5 0.95% A

Trapezoidal 3.0× 10−5 3.0278× 10−5 0.93% A
Parallelogram 3.0× 10−5 3.0345× 10−5 1.15% A
One Element 3.0× 10−5 2.9515× 10−5 −1.62% A

6.4 Flexible Pendulum Solutions using the Proposed Hexahedral Finite

Element

In order to verify the proposed finite element formulation in flexible multibody dynamics,

flexible pendulum problem, which was published by K. Dufva and A. A. Shabana [32],

has been studied. K. Dufva and A. A. Shabana have solved the problemusing thin plate

assumption. Therefore, they applied all loads and boundary conditions tothe mid-plane of

the structure. However, it is not possible to apply fixed boundary conditions to the midplane

of 8 noded hexahedral solid elements. Therefore, all translational degrees of freedom of the

node at [0, 0, 0] are fixed. The geometry of the pendulum is shown in Figure 6.8. Thickness,

modulus of elasticity, Poisson’s ratio and density of the plate are 0.01 m, 1.0 × 105 Pa, 0.3

and 7810kg/m3, respectively.

Firstly, flexible pendulum under gravitational load has been solved by using 1×1, 2×2, 3×3

and 4× 4 elements in order to observe convergence characteristic of the finite element. Then,

the 2× 2 finite element model has been studied with element shape irregularities in order to

observe error contributions of irregular shapes.
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Figure 6.8: Geometry of the flexible pendulum

Deformed shapes of flexible pendulum obtained by using 1× 1, 2× 2, 3× 3 and 4× 4 finite

elements are shown in Figure 6.9. Change of global positions of points A andB (Figure 6.8)

with time are shown in Figures 6.10 and 6.11. Due to symmetric locations of points A and C,

results are posted for point A, only. As can be seen from the graphs, relative error is decreasing

with the increasing total number of elements. However, it can be stated that, theproblem can

be solved by using 4 hexahedral elements (2× 2 mesh configuration) with a certain accuracy,

by examining the deformed shapes in Figure 6.9 and change of global positions with time in

Figures 6.10 and 6.11. Additionally, deformed shapes obtained by using single element prove

the capabilities of the proposed finite element formulation under large rigid body rotation and

extreme deformation cases.

Relative percent errors between consecutive total element numbers are plotted over time

in Figures 6.12 and 6.13. Relative percent errors have been calculatednot on the absolute

positions but on the absolute displacements of points A and B. Therefore, error percentages

are high, although relatively close absolute coordinates have been obtained for various total

number of elements as shown in Figures 6.10 and 6.11. Effect of total number of elements

can clearly be identified from relative percent absolute displacement error curves in Figures

6.12 and 6.13. Magnitude of the maximum error is decreasing with increasing total number

of elements as shown in the figures. In addition, it can be observed that, thetotal number

of fluctuations in error versus time plots are increasing with the increasing total number of

elements due to introduced degrees of freedom and added natural frequencies to the system.
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Figure 6.9: Deformed pendulum shapes at 0.075 s, 0.15 s, 0.225 s and 0.3s with 1x1, 2x2,
3x3 and 4x4 finite element mesh
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Figure 6.10: Flexible pendulum - global positions of Point A
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Figure 6.11: Flexible pendulum - global positions of Point B
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Figure 6.12: Flexible pendulum - relative error in the absolute displacementsof Point A
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Figure 6.13: Flexible pendulum - relative error in the absolute displacementsof Point B
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In fact, flexible pendulum problem is not physically possible, despite lots ofstudies have

been performed on it in the literature [30,32]. However, it is very effective method in testing

new finite element formulations under large rigid body rotations and extreme deformations.

It has been seen that comparable results with the results of K. Dufva and A. A. Shabana

[32] are obtained using 2× 2 elements. A detailed comparison of the results has not been

performed due to differences in boundary conditions and element topologies. Therefore, no

further mesh refinement has been performed. Major advantages of the proposed finite element

over the available formulations are sensitivity in the deformations along thickness direction

and irregular element shape capability.

6.4.1 Effects of Irregular Element Shapes on Flexible Pendulum Solutions

The previous patch tests show that the major error sources are not high aspect ratio, skew

angle or taperness of the finite elements. In the previous chapters, cantilever beam patch

test problems are successfully solved by using single element having a highaspect ratio of

30. Negligible effect of skew angle has been proven by patch tests using trapezoidal finite

elements in Chapters 4 and 5. Additionally, the curved beam problem has been solved

with tapered elements, accurately. The major error source for ANCF with Virtual Element

Mapping is dissimilar neighboring virtual element shapes. Similarity of the neighboring

elements is defined by the ratio of edge lengths of neighboring virtual elements. It is expected

to obtain the best results for the similarity ratio of 1. Similarity ratio for the flexible pendulum

problem is defined as the ratio of lengths (a/b) shown in Figure 6.14. Then, 2× 2 elements

analyses are repeated for the similarity ratio of 0.03/0.27 to 0.27/0.03. Deformed pendulum

shapes for various similarity ratios are shown in Figures 6.15 and 6.16. It isvery difficult to

distinguish the difference between obtained results from the figures. Therefore, the results

obtained by similarity ratio of 1 are selected as reference and displacement errors at points

A, B and C are determined, relatively. Obtained error distributions for points A, B and C are

shown in Figures 6.17, 6.18 and 6.19, respectively. Displacement errors vary from−7.86% to

7.13% for Point A,−9.39% to 14.24% for Point B, and−8.13% to 5.44% for Point C. Despite

reasonable error levels, it is suggested that the similarity ratio should not exceed the range

of (0.5, 2). In addition, significance of similarity ratio would be reduced with the increasing

total number of elements.
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Figure 6.14: Definition similarity ratio for the flexible pendulum problem,a/b

6.5 Discussion on the Proposed Hexahedral Finite Element

In this chapter, implementation of ANCF with Virtual Element Mapping to eight noded

hexahedral element has been performed. Performance of the proposed element has been tested

with well known cantilever beam patch test problems in finite element literature and flexible

pendulum problem, which is the most common test case in flexible multibody dynamics

literature. In cantilever patch test solutions, the main aim was to verify nonlinear static

solution procedure for the proposed finite element. Performed test resultsshow that the

proposed finite element generate accurate results for regular, parallelogram and trapezoidal

element shapes. The lowest grade has been obtained for trapezoidal element shape as in the

planar finite element formulation.

In flexible pendulum solutions, the main aim was to show accuracy of the proposed element

under large rotation and deformation cases. Firstly, convergence studyhas been performed for

different number of elements. It has been shown that accurate results can be obtained similar

to the results published for different element formulations and topologies in literature. Then,

effect of irregular element geometries has been investigated in flexible pendulum problem. In

order to define irregularity level, a new definition called “similarity ratio” has been made. It is

shown that up to 14.24% error can be obtained with the similarity ratio between 1/9 and 9/1.

However, error level can be decreased to accurate levels by increasing number of elements or

using similarity ratio between 1/2 and 2/1.
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Figure 6.15: Deformed flexible pendulum shapes at 0.075 s, 0.15 s, 0.225s and 0.3 s (a.
a/b=0.03/0.27, b. a/b=0.05/0.25, c. a/b=0.07/0.23, d. a/b=0.09/0.21, e. a/b=0.11/0.19, f.
a/b=0.13/0.17)
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Figure 6.16: Deformed flexible pendulums at 0.075 s, 0.15 s, 0.225 s and 0.3s (a.
a/b=0.17/0.13, b. a/b=0.19/0.11, c. a/b=0.21/0.09, d. a/b=0.23/0.07, e. a/b=0.25/0.05, f.
a/b=0.27/0.03)
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Figure 6.17: Flexible pendulum - relative displacement error distribution atPoint A over time
for various similarity ratios
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Figure 6.18: Flexible pendulum - relative displacement error distribution atPoint B over time
for various similarity ratios
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Figure 6.19: Flexible pendulum - relative displacement error distribution atPoint C over time
for various similarity ratios
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion of the Thesis

The main goal of the thesis is to improve current plate/shell finite element formulations for

flexible multibody dynamics problems or develop a new approach. In the thesis, both of

the aims have been completed not only for plates and shell elements but also for beams,

plane stress/plane strain elements and 3D hexahedral solid elements. Firstly, available

flexible multibody formulations have been investigated and compared, and as aresult of the

comparison study, Absolute Nodal Coordinate Formulation has been selected as the basis of

the thesis.

The first attempt in the thesis is to introduce meshfree methods to Absolute NodalCoordinate

Formulation. For this purpose, the meshfree ANCF for planar shear deformable beams

has been proposed. The proposed formulation has been verified by solving the flexible

beam pendulum problem, which is well known in the flexible multibody dynamics literature.

Obtained solutions show that accurate results can be obtained with a less number of nodes

compared to finite element method based ANCF.

After verifying planar beam formulation, meshfree ANCF of plates and shells have been

studied. However, it is observed that it is not possible to satisfy the displacement continuity

between quadrature domains by using the developed formulation. Therefore, only the results

and their comparisons have been presented without detailed derivations for plates and shells

instead of working on this formulation further. Despite the discontinuity problem, it is

observed that the most appropriate polynomial based shape function method is the radial

point interpolation with polynomial reproduction.
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The second attempt in the thesis is to eliminate regular element shape limitation of available

ANCF. This attempt is successfully completed and verified. Firstly, “ANCF withVirtual

Element Mapping” has been proposed with three alternative nodal coordinate definitions.

Then, 4 noded planar quadrilateral finite element formulation has been performed. Nonlinear

static and time dependent dynamic finite element analyses have been solved accurately with

the proposed method for some of the available patch test problems. Additionally, it is

seen that steady state responses in transient dynamics analyses are almost identical to the

results obtained by nonlinear static analyses. In fact, this also shows that transient dynamic

simulations with finite elements, which use the proposed methods, would not needadditional

control and solution algorithms for hourglass effect, which is the major error source in explicit

finite element solution methods.

It can be thought that the proposed methods are not cost effective due to high number of

nodal degrees of freedom and highly nonlinear stiffness matrix or generalized elastic force

vector. However, these are actually the advantages of the proposed formulations for transients

dynamics flexible multibody simulations, since;

1. the mass matrix is always constant and independent of time,

2. deformable bodies can be discretized with less number of elements relativeto the

classical finite element methods due to higher order of shape function polynomials and

3. accurate stress and strain results could be obtained due to the use of nonlinear strain

tensor in formulation without approximation or linearization.

After verification of the proposed methods for planar finite elements, it has been extended to

the generalized plate and shell problems. The detailed formulations of 4 nodedgeneralized

plate element have been presented with verification tests. However, performance of the

developed finite element under out-of-plane shear loading conditions is not as satisfactory as

the performance under in-plane shear or extension loading conditions for thin plates. Actually,

this is the general feature of all generalized plate/shell finite elements. In order to increase

accuracy in out-of-plane shear loading, thin plate/shell shape functions have been proposed,

but, detailed derivation and verification of thin plate/shell formulation have not been presented

in the thesis.
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ANCF with Virtual Element Mapping method has been applied to 3D hexahedralfinite

elements. Besides verification with cantilever beam patch tests, flexible pendulum problem

has also been studied in detail. Firstly, convergence characteristic of the proposed finite

element formulation has been observed. Then effect of irregular shaped elements on

displacement results has been examined. It is seen that the major element shape factor

contributing the results is the similarity ratio, which is defined as the ratio of the edge lengths

of neighboring virtual elements. In fact, this ratio is not related with the single element shape

but it is related to the finite element mesh of the flexible body. As a result, it is shown that a

wide range of similarity ratio can be used without losing accuracy, significantly.

7.2 Conclusions

It is observed that the developed finite element based methods in this thesis are efficient for

the solution of flexible multibody problems. The major contributions of the current study can

be listed as follows;

1. Meshfree Absolute Nodal Coordinate Formulation for planar shear deformable beams

has been developed. It is observed that accuracy is high in the solution and extreme

deformations can be handled, easily.

2. Absolute Nodal Coordinate Formulation with Virtual Element Mapping Methodis

introduced and it is seen that various finite element geometries can be modeledand

advantages of ANCF can know be used in 3D continuum problems.

3. ANCF with Virtual Element Mapping has been developed for the solution ofplane

stress/plane strain problems. Four noded quadrilateral plane stress/plane strain finite

elements have been developed for the solution of irregular problems.

4. ANCF with Virtual Element Mapping has been developed for the solution ofplate and

shell problems. Four noded plate and shell finite elements have been developed for the

solution of irregular problems.

5. Derivation of thin plate and shell shape functions for ANCF with Virtual Element

Mapping has been made.
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6. ANCF with Virtual Element Mapping has been developed for the solution of3D

problems. Eight noded hexahedral finite element has been developed for the solution

of irregular problems.

7.3 Further Improvements and Future Studies

The proposed methods and implementations in this thesis study can be improved in the

following subjects:

1. Meshfree plate/shell ANCF can be improved by implementing different interpolation

functions available in the literature. It is obvious that the accuracy can be increased

with the improved shape function polynomials.

2. The proposed Virtual Element Mapping method and related finite elements in the thesis

have been tested for a limited range of element geometries, which can be generated by

the proposed shape functions. Therefore, additional patch tests should be performed in

order to determine geometric limits of the elements.

3. The accuracy of the solutions can be changed by using different shape function

polynomials. Therefore, this could be studied in order to increase accuracy.

4. Finite element formulation for “Virtual Element Mapping using Initial Shape Function

Polynomials” has been proposed. In most of the regular element shapes this method

produce the same shape functions as in Method 1 or 2. However, accuracy of the

method for elements having curved edges could be different. Therefore, the method

can be studied in detail in order to improve accuracy.

5. For the proposed thin plate/shell shape functions, detailed formulation and verification

of the thin plate/shell elements could be performed.

6. ANCF is not very effective for quasi-static simulations. Therefore, an improvement can

be made by studying on the solution algorithms or linearization of stiffness matrix.

7. It is also thought that extending the proposed methods to nonlinear elasticity problems

would be useful. Especially, accurate results would be expected for hyperelastic and

viscoelastic materials.
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8. In addition to the improvement requirements, the proposed finite element methods

can also be extended to plasticity problems, such as metal forming simulations or

crashworthiness applications. These applications also require contact algorithms.

Therefore, plasticity and contact algorithms should be considered together.
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APPENDIX A

INTEGRATION CONSTANTS FOR NON-SHEAR

DEFORMABLE PLANAR BEAM ANCF

By using the shape function matrix given in Equation 2.13,∂S/∂ξ and ∂2S/∂ξ2 can be

calculated as given in Equations A.1 and A.2.

∂S
∂ξ
=





−6ξ + 6ξ2 0

0 −6ξ + 6ξ2

L
(

1− 4ξ + 3ξ2
)

0

0 L
(

1− 4ξ + 3ξ2
)

6ξ − 6ξ2 0

0 6ξ − 6ξ2

L
(

3ξ2 − 2ξ
)

0

0 L
(

3ξ2 − 2ξ
)





T

(A.1)

∂2S
∂ξ2
=





−6+ 12ξ 0

0 −6+ 12ξ

L (−4+ 6ξ) 0

0 L (−4+ 6ξ)

6− 12ξ 0

0 6− 12ξ

L (6ξ − 2) 0

0 L (6ξ − 2)





T

(A.2)

Then, integration constants appearing in Equation 2.28 can be calculated asgiven in Equations

A.3 - A.12.
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A11 =
Ea
L

1∫

0

ST
1,ξS1,ξdξ =

Ea
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∂ξ2

)T (

∂2S1

∂ξ2

)

dξ =
EI

L3





0 0 0 0 0 0 0 0

12 0 6L 0 −12 0 6L 0

0 0 0 0 0 0 0 0

6L 0 4L2 0 −6L 0 2L2 0

0 0 0 0 0 0 0 0

−12 0 −6L 0 12 0 −6L 0

0 0 0 0 0 0 0 0

6L 0 2L2 0 −6L 0 4L2 0





(A.8)
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B12 =
EI

L3

1∫

0

(

∂2S1

∂ξ2

)T (

∂2S2

∂ξ2

)

dξ =
EI

L3





0 0 0 0 0 0 0 0

12 0 6L 0 −12 0 6L 0

0 0 0 0 0 0 0 0

6L 0 4L2 0 −6L 0 2L2 0

0 0 0 0 0 0 0 0

−12 0 −6L 0 12 0 −6L 0

0 0 0 0 0 0 0 0

6L 0 2L2 0 −6L 0 4L2 0





T

(A.9)

B22 =
EI

L3

1∫

0

(

∂2S2

∂ξ2

)T (

∂2S2

∂ξ2

)

dξ =
EI

L3





0 0 0 0 0 0 0 0

0 12 0 6L 0 −12 0 6L

0 0 0 0 0 0 0 0

0 6L 0 4L2 0 −6L 0 2L2

0 0 0 0 0 0 0 0

0 −12 0 −6L 0 12 0 −6L

0 0 0 0 0 0 0 0

0 6L 0 2L2 0 −6L 0 4L2





(A.10)

A1 = Ea

1∫

0

ST
1,ξdξ = Ea

[

−1 0 0 0 1 0 0 0
]T

(A.11)

A2 = Ea

1∫

0

ST
2,ξdξ = Ea

[

0 −1 0 0 0 1 0 0
]T

(A.12)

Additionally, ∂ix/∂eand∂iy/∂ecan be simplified as given in the following equations.
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∂ix

∂e
=

1
(

(e5 − e1)2 + (e6 − e2)2
)3/2





− (e6 − e2)2

(e5 − e1) (e6 − e2)

0

0

(e6 − e2)2

− (e5 − e1) (e6 − e2)

0

0





(A.13)

∂iy
∂e
=

1
(

(e5 − e1)2 + (e6 − e2)2
)3/2





(e5 − e1) (e6 − e2)

− (e5 − e1)2

0

0

− (e5 − e1) (e6 − e2)

(e5 − e1)2

0

0





(A.14)
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