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ABSTRACT

LARGE DEFORMATION ANALYSIS OF FLEXIBLE MULTIBODY SYSTEMS

Tuzin, Aydin
Ph.D., Department of Mechanical Engineering
Supervisor : Prof. Dr. Haluk Darendeliler

Co-Supervisor : Prof. Dr. Kemadier

September 2012, 163 pages

Large displacement and large strain problems of mechanical systems saivég mainly
by four methods. These are Floating Frame of Reference, Incremenital Eiement, Large
Rotation Vector and Absolute Nodal Coordinate Formulations (ANCF). Duex&et rigid
body representation, simple mass matrix structure and non-incrementalddomuANCF is
more convenient in analyzing flexible multibody systems. However, it is limiteddblems

with regular boundaries, currently.

The aim of the thesis is to improve the current ANCF in order to handle vapgoasems
with irregular boundaries. For this purpose, firstly meshfree ANCF leas hieveloped to
analyze flexible multibody systems. Verification of the developed meshfreemufation has
been performed for beam type structures and accurate results haweob®ined. Then,
“ANCF with Virtual Element Mapping Method” has been proposed to overethe boundary
problems of the current formulations. The proposed method has been inmpéehte plane
stress, plane strain, plaséell and 3D solid finite elements. Verification of the proposed
method has been performed by using the patch test problems available in tatudder

Besides, it has been verified by various flexible multibody problems with @Befmmations.

iv



Additionally, shape function polynomials for thin plate assumption have bewrede

It is observed that developed formulations and methods can be useéfahlyofor flexible
multibody systems but also for structural mechanics problems subjecteddalkfaymations
andor rotations. The proposed methods and formulations are nfidceat than the current

formulations in the literature due to extended shape limits of finite elements.

Keywords: virtual element mapping method, absolute nodal coordinatihl@emultibody

dynamics, meshfree methods, plates, shells
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COKLU BUNYE SISTEMLERININ Y UKSEK DEFORMASYONLU ANALIZI

Tuzin, Aydin
Doktora, Makina Mihendislgi Bolumu
Tez Yoneticisi : Prof. Dr. Haluk Darendeliler
Ortak Tez Yoneticisi : Prof. Dr. Kemalder

Eylul 2012, 163 sayfa

Mekanik sistemlerdeijksek yer dgistirme ve yiksek gerinim problemleri temel olarakd
yontem ile @zilebilmektedir. Bunlar, Yizen Referans Takimi, Basamakli Sonlu Eleman,
Buyuk Donli Vekru ve Mutlak Nodal Koordinat Foriflasyonlaridir. D@ru kati cisim
dinamii benzetimi, basit litle matrisi ve basamaksiz fothasyonu nedeni ile ¢cokluitimye
dinamgi analizleri icin en uygun §ntem, Mutlak Nodal Koordinat Foriasyonu’dur. Fakat,

bu yontem dizgin sinirlara sahip problemler ile sinirlidir.

Bu tezin amaci, mevcut Mutlak Nodal Koordinat Fanasyonu'nun dzensiz sinirlara
sahip problemlerde de kullanilabilecek sekilde gelistiriimesidir. Bu amacla,orl&e
coklu hinye dinamji analizlerinde kullaniimakiizere Ajsiz Mutlak Nodal Koordinat
Formilasyonu gelistirilmistir.  Gelistirilen @si1z yontemin d@rulamasi kiris tipi yapilar
kullanilarak gerceklestiriimis ve uygun sonuclar elde edilmistir. Daharasodizensiz
sinirlara sahip problemlerirogdmi icin “Mutlak Nodal Koordinat Forrillasyonu icin Sanal
Eleman Eslestirme” ¥ntemi gelistiriimistir.Onerilen yontem, dizlemsel gerilme, izlemsel
gerinim, plak#abuk ve 3 boyutlu sonlu elemanlara uyarlanmistibn¥min dgrulamasi

literatiirde yer alan @ dojrulama problemleri ile gerceklestirilmistir. Bunun yanindiaksek
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yer ddjistirme iceren esnekiimye sistemlerinin analizleri ile de Jmlama yapilmistir. Ek

olarak, ince plaka yaklasimi icin gerekli olan sekil fonksiyonlaretilmistir.

Bu tezde gelistirilen veonerilen yntemlerin, ¢oklu Bnye dinamii benzetimlerinin
disinda yiksek @ni ve/veya deformasyon gerektiren yapisal mekanik problemlerinde de
yararll olacgi gozlenmistir. Onerilen yntemler sonlu elemanlarin sekil sinirflamasini

genislettginden dolayi, literatrdeki dger yontemlere gre daha verimlidir.

Anahtar Kelimeler: sanal eleman eslestirme metodu, mutlak nodal koordsregk éinye

dinamii, ajsiz yontemler, plakalar, kabuklar
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CHAPTER 1

INTRODUCTION

Simulation of mechanical systems is an inevitable step of a design process.dégign is
limited to mechanics, problems to be solved involve statics or dynamics of the sySthms
problems can be solved separately depending on the physical condifichs.mechanical
system consists of bulky parts then it can be assumed that deformatiolikpplants will not
influence the dynamics of the system. Therefore, the dynamics and stodigéisystem can
be simulated separately within a certain accuracy. This approach is igitée for bulky
systems due to its solution speed and easy formulation. However, it is rimtdge for every
mechanical system. If the system has parts that have non-negligible flexabilitg accuracy
is the main concern, then the approach will not satisfy the simulation requitenTére study

branch that satisfies the requirements is “flexible multibody dynamics”.

Flexible multibody dynamics studies started in the early seventies for better simudditio
many industrial and technological systems like vehicles, mechanisms, rokaitspace
structures [1]. In the past, the systems were designed bulky. Therdfierdynamics of the
systems can be solved easily by using the rigid link assumption. When thetidefauf links
due to dynamic loadings are not negligible, the rigid link assumption will divexa the
solution. Nowadays, the systems are getting lighter in order to have a wéiggttivee design.

Consequently, the importance of flexible multibody dynamics is increasing.

Multibody systems have nonlinear equations of motion due to the large relaplacements
and rotations. Therefore, the system equations require certain solutioedores in order to
obtain accurate results. Linearization methods are generally applied intordegercome
nonlinearity in statical problems. However, linearization of dynamics equatian be the

major source of error when multibody system applications are considefada result,



equations of motion for flexible multibody systems are highly nonlinear andreecomputer
implementation based on a non-incremental procedure [2]. In order torstinearity due
to dynamics, some publications [2, 3] refers to the simple pendulum exampexXaimple is

also shown in Figure 1.1.

Figure 1.1: Simple pendulum example
The nonlinear equation of motion for a simple rigid pendulum is given below.

.. L .
100 + mgisme =0 (1.1

wherelg, 8, m, g and L are the mass moment of inertia about point O, angle of rotation, mass
gravity and length, respectively. The constant energy integral of motarbe obtained by

integration of equation of motion as given in the following equations.

. dé L .
w% + mgzsme =0 (1.2a)
o L .
lo6do + mgismade =0 (1.2b)
1 . L
§|092 — Mgz Cosy = Cy (1.2¢)

If the nonlinear equation of motion is linearized with the assumption of small angula
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displacement, the equation of motion takes form given below.
. L
lo6 + mgze =0 (1.3)

By substitutingg(dd/d6) for § and integrating the equation of motion, one can get following

equation for the constant energy integral of motion for small displacenssahaption.

1 . L
Z1o#? - mg=6% = ¢ 1.4
506" —mg7 2 (1.4)

Equation 1.4 is an approximation for the principle of work and energy if ttediom is small.
As a result, any solution that satisfies Equation 1.3 should satisfy Equatidiowéver it
can lead to energy drift asincreases since the solution is not required to satisfy Equation

1.2 [2,3]. This problem can arise especially in the incremental appreache

1.1 Methods used in Flexible Multibody Dynamics

In order to obtain accurate solutions for mechanical systems with flexibks, pgome
approaches were developed. In 1997, A. A. Shabana reviewedrév®ys studies and
developments [1]. He reported various methods for multibody system fotiondain his
study [1]. However, most of the methods can be considered as deewaif other ones.
Basically, the methods can be classified with four main formulations, which arfé#tang
frame of reference (FFR) formulation, incremental finite element formulakémge rotation
vector formulation and absolute nodal coordinate frame formulation (ANZF§]. The
main diference of the formulations is the nodal coordinate definition for finite elements.
The performance andffeciency of a multibody simulation code are mainly dependent on
the selected coordinates used for the formulation of the dynamic equatjoishfit details,

advantages and disadvantages of the formulations are described withofidiweny sections.

1.1.1 Floating Frame of Reference Formulation

In this formulation, two coordinate sets (global and floating coordinate saare applied [8,
9]. Global coordinate set is used to define the locations and orientatiduglEfs. However,
floating frames are used to describe the deformations of flexible bodies ddformations

with respect to the floating frame of a body is described using nodal Vesiabed in classical
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finite element methods. The motion of the floating frames approximates the rigiavmicbn

of the body. Coordinate definitions for the FFR formulation are shown inrEigjL2.

FFR formulation is specificallyfgcient for small deformation and large rotation problems.
The formulation does not induce deformations under pure rigid body mofibis can be
showed by writing the global position vector of an arbitrary point on themedble body

shown in Figure 1.3.

Floating Frame

Global Inertial Frame

Figure 1.2: Coordinate frames for FFR formulation [10]

Figure 1.3: Position definition in FFR formulation [8]



The global position vector of an arbitrary polton bodyi can be written as given below [8].

r'= R+ Al (U + UY) (1.5)

where R is the global position of the body fixed floating frame of bogyA' is the
transformation matrixﬂ‘O is the undeformed position with respect to the floating frame and

U‘f is the deformation relative to the floating body frame.

As can be seen from the global position vector formulation, when there defaymation

exact rigid body dynamics can be obtained as follows.

r'=R + AU, (1.6)

Dynamic equations of motion of the deformable bodies can be obtained by gdhen
principle of virtual work or Lagrange’s equations. In the FFR formulatithe equations
of motion are expressed in terms of a coupled set of reference and elastinates. The
elastic coordinates can be introduced using the assumed modes methoditeheldiment
method or experimental identification [1,8,11]. In assumed mode methoith|éérodies are
usually represented by truncated finite modal series and time-varying muuguales [11].
Additionally, assumed mode method can be used in the finite element method te teduc

dimension of the system matrices.

In addition, there are some studies on the determination of the body coortboatmns
(floating frames) as reported in the review of Shabana [1]. It has &le@nn that there is an

optimum location for the floating frame and it requires an additioffatein the simulations.

1.1.2 Incremental Finite Element Formulations

The incremental finite element formulation has a wide range of use in manyeenigig
applications. The method is available for use in many commercial simulation seftiaist
of the engineering problems can be simulated with this formulation. In orderrdlda
large deformation and rotation problems, lots of finite element proceduess\vailable

in the literature. In most of them, large deformations and rotations of finite elsmen
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are described by using nodal coordinates or displacements for comtielements, and
additionally infinitesimal nodal rotations for structural elements like beam, pledeshell

elements. Performance of these finite elements mainly depends on paramstriptabsn

of element geometry in flexible multibody problems. Finite elements can basically be

classified as isoparametric or non-isoparametric according to their pai@hescriptions.
An isoparametric element is defined as an element which has a shape fuheti@an be
used to interpolate both location and deformation [12]. Therefore, iagpetric elements
can describe exact rigid body dynamics. However, non-isoparamégneat types (beams,
plates and shells) can not represented the rigid body dynamics, exadiB}.[Additionally,

these formulations produce non-zero strain under rigid body displad¢smerotations.

For a multibody system modeled by isoparametric finite elements, the procediimepis.

The system equations are formulated with respect to a global coordirs&srsyThen, the
system equations can be solved by explicit direct integration methods mauieed duration.
If the same procedure is performed for a multibody system modeled with mpameoetric
elements (beams, plates and shells), the obtained results might be errdepending on the

size of rotations.

In incremental finite element formulations, system equations are linearizegodved with
small rotational increments in order to force non-isoparametric elements tvééike
isoparametric elements within small rotation increments. Therefore, the majaresofi
error is the incremental rotation approach. In the study of Shin [10], alsifin@me of
non-isoparametric beam elements is solved for rigid body rotations withimgt ieremental
rotation approach as shown in Figure 1.4. As seen in the figure, purebiagig rotation of
the frame causes large deformations in beams for high rotation value&fditegincremental
rotation approach is used in order to reduce errors due to unreahtfons shown in Figure
1.4. However, the use of the infinitesimal rotations as nodal coordinattstiea linearization
of the kinematic equations of the elements [1, 8]. Consequently, the lineanizedids to the

loss of the accuracy especially in pure rigid body rotations.



Figure 1.4: Beam elements under clockwise rigid body rotations of 5483 and 90 [10]

1.1.3 Large Rotation Vector Formulation

Large Rotation Vector Formulation has been developed in order to circunthen
linearization problem in incremental finite element formulations [14]. In thentdation,
finite rotations are used as nodal variables instead of infinitesimal rotati®hsrefore,
exact rigid body dynamics could be obtained, theoretically. However, thbhatiédhas an
inconsistency problem in the finite rotation degrees of freedom of elemgntéf [a planar
beam is considered, the finite rotation consists of the orientation angle, weiofes the
orientation of the cross-section without shear, and shear deformatibe. intonsistency
problem is to distinguish the orientation and shear angles. Solving this insigroblem
in the large rotation vector formulation is not an easy problem but it is possilvezjuires to
solve highly nonlinear equations in the finite element kinematic description [Bitianally,
the formulation leads to excessive shear forces due to the finite rotatioripdies of the

element cross section [1, 8].

In the formulation, the element configuration is defined with absolute codedirzand finite
rotations of the nodes. As a result, a simpler mass matrix and a more comfilesstimatrix

can be obtained compared to the incremental finite element formulations [7].

1.1.4 Absolute Nodal Coordinate Formulation

In this formulation, global coordinates and their gradients with respect todtig frame are
used as a new set of coordinates [1, 4, 7]. The coordinate formulatikesnbeam, plate and

shell elements behave like isoparametric. Therefore, rigid body dynafrbesams and plates
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can exactly be modeled by proper element shape functions and elemeahicnoddinates
[7]. Consequently, beam, plate and shell elements show zero strainrnigiddrody motion.

Additionally, ANCF leads to constant mass matrix that simplifies the formulations.

There are lots of studies on beam elements with absolute nodal coordinagdton in
the literature [16—29]. In most of the studies, nonlinear elastic isotropic mkdéssumption
is used in formulations. However, few of them consider plasticity with isotropiterial
assumption in the absolute nodal coordinate frame formulation [27]. The ersndd
publications on plates and shells are less than publications on beams. Maii@s stn
plate and shell elements with ANC formulation are [3, 4, 30-33]. Shabadadvikkola
[30] developed a 4-noded generalized plate element, which uses ANE@Rnade a simple
comparison with the incremental approaches. They studied on a plate laasingrical joint
at one corner and subjected to gravitational loading. They used vetyedasdic modulus in
order to observe both rigid body rotations and large elastic deformatiansai\be seen from
Figure 1.5, incremental methods can not reach the result of an ANCFghvalements even
for the usage of 100 elements. Additionally, they showed that very com@pladements

can be handled with small number of elements.

Some researches were completed to improve the accuracy of the ANGoaeppin [16],
a new approach called Hybrid Coordinate Formulation had been studiedtirentally
and theoretically. The hybrid formulation is based on the modal coordinatesniall
deformations and absolute nodal coordinates for large deformationexijezimental setup
and the obtained results are shown in Figure 1.6. As shown in the figurgiddlbeam with
a point mass at the tip is vibrated and displacements of the mass are recpitighl bpeed
camera. The result of hybrid coordinate formulation is almost the same witkpleemental

outputs.

In order to overcome the fiiculties in stifness matrix formulation, construction and
evaluation, some researches were completed. D. G. Vallejo, J. Mayo,Ekchlano and
J. Dominguez developed a new algorithm to simplify the volume integration duiifigess
matrix calculation in ANCF [17]. The developed algorithm is valid for isotropid alastic

materials and veryfective for shear deformable beams and plates.
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A comparison chart for the available methods is shown in Table 1.1. As seenthe
comparison chart, each method has some drawbacks. For example, aoelasticity can
not be included in FFRF. In IFEF and LRVF, rigid body representatiaridcbe erroneous.
However, the only disadvantage of ANCF compared to the other methodsiyg hignlinear

stiffness matrix which can be handled with available solution procedures in théuitera

Table 1.1: Comparison chart for flexible multibody dynamics methods

FFRF IFEF LRVF ANCF
Application small def. large def. large def. large def.
large rot. large rot. large rot. large rot.
large disp.| large disp. large disp. | large disp.
Increments - small rotations - -
Mass matrix nonlinear nonlinear nonlinear constant
Stiffness matrix linear nonlinear nonlinear nonlinear
Rigid body exact approximate exact exact
representation (may be (erroneous for
erroneous) large rot.)

1.2 Research Objectives

Currently, all of the developed ANCF'’s for quadrilateral plate and divate elements are
based on regular discretization of flexible bodies. However, flexibléeksaday have various
shapes, which cannot be modelled by using regular element shapesuah emmgineering
problems. Therefore, application region of ANCF is limited to analysis of simplebile
multibody systems, despite high deformation capabilities of the method. Additiotiedhg

is no exact implementation of ANCF to 3D solid elements in literature. Thereforaes
additional dfort has to be spent on joints between plate or shell elements and 3D solid
elements due to inconsistent nodal variables. Currently, there is no 3Dfisdtkdelement,

which has gradient based absolute nodal variables.

In summary, improvement on the current ANCF is required in order to iserdghe
applications of the method and to make use of it for a wide range of flexible majtibo

applications.
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1.3 Scope of the Thesis

In order to eliminate the current limitations of ANCF and make it applicable to variou
problems, meshfree methods are introduced to ANCEF, firstly. Then, finiteeelebased
“Virtual Element Mapping Method” is introduced. The method can also biedaccording
to the nodal gradient definitions introduced as “Virtual Frame”, “Edganta” and “Initial
Element Frame” methods. By implementing one of the introduced methods, véindaas

element shapes can be used in flexible multibody problems.

The other objective is to extend ANCF to 3D solid elements in order to generatpatible
solid elements with the current plate and shell finite elements based on AN{Skbjactive

can also be reached by using the introduced “Virtual Element Mappingddsth

1.4 Outline of the Thesis

The thesis mainly focused on the accurate solution methods for flexible multizotlems
under large deformations. Therefore, the main formulation and receanees related to
the ANCF have been summarized in Chapter 2. In the chapter, planaheandeformable
beam element proposed by Escalano J. L., Hussien H. A. and Shabang3¥], planar
shear deformable beam element proposed by Omar M. A. and Shabangd24] and the
generalized plate element proposed by Mikkola A. M., Shabana A. A.dB89}eviewed in

detall.

The remaining chapters include new implementations of absolute nodal caterdin
formulation. In Chapter 3, meshfree implementation of ANCF for flexible pldresam
structures has been presented. Besides the formulations, sample prahtkecemparisons
with ANCF with FEM are given. In Chapter 4, a new finite element formulatioseba
on ANCF has been proposed. Absolute nodal coordinate formulation witralvelement
mapping has been developed for plane stress and strain problems. E#rapatestriction
for quadrilateral elements in ANCF has been eliminated with the proposed|&dromu In the
chapter, some of the patch tests proposed by Richard H. Macneal &edtRoHaeder [35]
are solved for quasi-static and transient dynamic cases. In ChapteMGF Avith virtual

element mapping has been implemented to generalized plate finite elements. Atditiona
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general guideline for thin plate and shell formulation has been introducte ichapter. In
the next chapter, the proposed method has been extended to 8 nodéeédrak continuum
elements. The proposed element in the chapter can be used for a wideofaggpmetries.

Despite being a continuum element, it has all of the flexibilities and advanthgesGr-.

General summary, discussion and conclusion about the proposed matitbfinite elements
are given in Chapter 7. Additionally, comments on the further improvementsance

studies are presented in this last chapter.
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CHAPTER 2

REVIEW OF ABSOLUTE NODAL COORDINATE
FORMULATIONS

Absolute Nodal Coordinate Formulation (ANCF) has been introduced by Ahghabana
in order to improve dynamic representation of beam plate and shell elemanésreliew

publication by Shabana [1], this drawback of classical finite element mgthad been
explained as “beam, plate and shell elements are not considered in theatlfsise element
literature as isoparametric elements because these elements cannot be alstathtexact
modeling of the rigid body dynamics”. As compared in Table 1.1, it is the mosirate
method within the available formulations related to the flexible multibody dynamicsd&gs

mass matrix in the resulting system equations is always constant.

Since, ANCF is used in the thesis, some basic information and recent impnotgewié be

explained in this review chapter.

2.1 Derivation of Equations of Motion

Equations of motion for ANCF can be derived by using Lagrange Equafi@m arbitrary

flexible body given below.
d(aT\" (oT\
—(=| -|=] +Ce'a= 2.1
dt(ae) (ae) tCed=Q 2.1)
whereT is the kinetic energye is the vector of nodal variable§e is the Jacobian matrix

of constraint equationg, is the vector of Lagrange multipliers afdlis the total generalized

force vector including external and elastic forces.
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If the general definition of kinetic energg'(M &/2) is substituted into the Lagrange equation,

following equation can be found.

Mé+Ce'd=0Q-Q, (2.2)

where guadratic velocity vectdRy, is defined as given below.

o = e[ 2 (erme)) (2.3)
v oe\2 '
It can be said tha, will be zero for ANCF due to constant mass matrix. However, it should

also be considered in floating frame of reference formulations in ordekéoGariolis dfect

into account. Then, equations of motion can be simplified for ANCF as follows.

Mé+Ce'1=0Q (2.4)

However, it can not be solved without including the constraint equatimetause number of
equations is less than the number of unknowns. Constraint equa@g¢ad)(= 0) can be
included in equations of motion byfirentiating these equations with respect to time twice.
If the constraint equations arefidirentiated with respect to time once, the following equation

can be obtained.

— =Cet+ 22 =0 (2.5)

After, second dterentiation with respect to time, the constraint equations take the following

form.

0 L\ 0Ce. . 0°C
0= a—e(Cee)e-f- 27e+ Ce+ W (26)

Then, equations of motion can be written by using Equations 2.4 and 2.6easlgow.

I

M Cg'
Ce O

Q} (2.7)



where

) .. _0Ce. 0%C .
Qd = —a—e(Cee)e— 27 e— W = Cee (28)

It can easily be said that the force vectQy, will be zero for simple time independent
constraint types like fixed boundary constraints or revolute joints. Géned force vector,

Q, can be found by utilizing virtual work principle for the used nodal vadeale.

2.2 Nodal Variables

The main diference of ANCF is the definition of nodal variables. In the formulation, gjlob
coordinates and gradients of global position vector are used as rariibies. A basic nodal

variable representation is given below [8].

corl ol orf T 0 g
=|r. .
@ ' ox oy oz (2:9)

In the equationg refers to the nodal variables of tite node,r; refers to the global position

vector of thei node andx, y andz are local coordinates.

2.3 Non-Shear Deformable Planar Beam Element ANCF

Non-shear deformable planar beam element (Figure 2.1) has beerseddpy Escalano J.L.,
Hussien H.A. and Shabana A. A. [34]. They also made some numericalac@ops for

flexible multibody dynamics systems in their publication.

The nodal variables defined in Equation 2.9 can be simplified for the nddesian-shear

deformable planar beam element as given below [34].

o - [Xi v 9% _] (2.10)
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Figure 2.1: Non-shear deformable planar beam element [34]

Then, the vector of nodal variables for an element having the lengthcaih be written as

given in the following equation.

Then, the global position of an arbitrary point on the element can be @ppated by using

appropriate shape function polynomials as given below.

- Se (2.12)

In the equationSis the shape function matrix proposed by J.L. Escalano, H.A. Hussien and

A. Shabana [34].
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[ 1321 23 0
0 1-362 4 28
L -2+ &) 0
S= ° Le-22+8) (2.13)
3% - 28 0
0 ¥ - 26
L(£-£2) 0
0 L(&-¢?)

where¢ is the reduced local coordinate varying from 0 to 1 and definedlas

2.3.1 Mass Matrix for Non-Shear Deformable Planar Beam Element

Mass matrix of the beam element can be determined from the kinetic energiagggiven

below.

1 T
T=§fprTrdv (2.14)
\%

By substituting Equation 2.12 into Equation 2.14, one can obtain the followingtiequ

1 . .
T=3 fp e's'sedv (2.15)
\%

or it can be written in more compact form as given below.

1.1 .
T=3 "M e (2.16)

whereM, is the mass matrix of the beam element and can be formulated using Equations

2.15 and 2.16 as given below.

Ma= fp s'sdv (2.17)
\%

If the cross sectional area and the density of the beam element arentangathe length

then the mass matrix formulation can be simplified as follows.
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1
M, = mfsTSdg (2.18)
0
wheremrefers to mass per unit length of the element. By introducing shape functitsixma
S, given in Equation 2.13, constant mass matrix of the beam element satisfgirkinttic

energy equation can be found as given below.

13 11L 9 13L
3 50 0 7 0 -7% O
13 11L 9 13L
5 0 73 0 % 0 -7%
L2 13L L2
s 0 20 0 -1 O
L g B g _L
M, =m 105 420 140 (2.19)
3 o L 0
35 210
13 11L
3 0 -3
L2
5 O
L2
105 |

As it is seen from the equation, mass matrix does not depend on globdllear@ time. Itis

constant at any positions on the global frame and at any time.

2.3.2 Generalized Elastic Forces for Non-Shear Deformable Planar BeaElement

Generalized elastic force vector for a beam element can be derivesirigythe strain energy

definition. Strain energy for a two dimensional Euler-Bernoulli beam isrglyelow [34].

L 2
1 auy \? A2u
0
wherel, a, I, u andu refer to length, area, inertia, longitudinal deformation and transverse

deformation, respectively. The first term within the integration repregleeatsortion of strain

energy due to longitudinal deformation and the second term due to traesigfiormation.

In order to find the deformationsy(andw) in terms of nodal variabless, position of an
arbitrary point should be written in the local frame. For this purpose, loasition vectory,

at an arbitrary time is written in the global coordinate frame (point O in Figurg frétly.
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Then, it will be transformed to the local coordinate by means of local uctve defined in

global coordinate frame.

Relative position vector of an arbitrary point at an arbitrary time on the eleragoan be

In the equationS; and S, refer to the first and second rows of shape function matrix at an

written as follows.

(2.21)

(S1 - S10) e}
(S2-S0) €

arbitrary point, ands;o and Sy refer to the first and second rows of shape function matrix
at point O in Figure 2.1. Them, can be written in local (element) coordinate frame by using

unit base vectors, which are showni@andj in Figure 2.1, as given below.

uti
Ulocal = =
u'j

Unit base vectors and their components in global frame can be determinesdiriy the

Uxix + iny (2 22)

UxiY + inx

locations of end points of the elements as given below.

€& —-€
C_ Ix _fa-To _ Spe— Spe _ Ve —e)?+ (e - )2 .
| Ly} ra—rol |Sae— So€l € — €& (2.23)

Vies - er)? + (65 — &)?

whereSp andSp are the shape function matrices evaluated at pdrasdO, respectively.
Then, longitudinal and transverse deformations can be found by aatisgr initial local

position, [x 0], from the deformed local positionoca, as given in the following equation.

U
Ut

By substituting longitudinal and transverse deformations found in Equatigd mto

X

0

Uxix + Uyly — X‘

UxiY + inx

Equation 2.20, one can obtain strain energy definition in terms of nodablesias given

below.

20



L
U :-f Ea(2UWIx Uy = X)7 ) (0T + Uvix) ) (2.25)
2 Ox ox2
0

Then, the generalized elastic force vector can be determined by pafféaediiation as given

below [34].

_w
~ de

Q« (2.26)

Generalized elastic force vector for the beam element can be written expiictiéyms of
nodal variables by substituting Equations 2.21, 2.23 and 2.25 into Equati®na®.given in

the following equation.

Qk = (A11+ B2) 6% + (A2z + B11) €2 + (A1 + Ay — Bip — Bay) €ixiy — Agix — Agiy
. 1 .. .
+€' (A11 + B2o) Bixeix + EG‘T (A12+ Ay — B1o — Boy) Eixely — Al 6ixe (2.27)

L 1 . .
+€' (A2 + B11) Eively + EGT (A12+Az1 — Bio— Bay) Eyeix — A Eive

WhereAll, A12, A21, A22, BlL BlZ, le, 522, Al andAz are integration constants defined
by Escalano J. L., Hussien H. A. and Shabana A. A. [34]. Integratimstants are given

explicitly in the following equations.

1
E
Ay = = f ST, Sie de (2.28)
0
Bl ((0%S\" 8%S,
Bii = rof %) ()« (2:29)
1

A = Ea f S .dé (2.30)

0

A11, A1z, Az, Az, Bia, Bio, Bo1, Bop, A1, Az, 0S/0&, 02S/0¢2, dix/de and diy/de are

presented in simplified form in Appendix A.
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2.3.3 Generalized External Forces for Non-Shear Deformable PlandBeam Element

If a forceF acts at an arbitrary point on the finite element, the virtual work done by tige fo
for a virtual displacement afr can be written agér,wherer is the global position vector
of the point of application of the force. The virtual change in the vectoan be expressed
in terms of the virtual changes in the nodal variable veaorTherefore, the generalized
external forces associated with the absolute nodal coordinates cagfibedd[8]. By using
the definition of global position vector given in Equation 2.12, the generhfizee vector,

Qr, can be found as given in the following equations.

FTor = FTSse = Qloe (2.31a)

Qr=S'F (2.31b)

2.3.3.1 Generalized Gravitational Forces for Non-Shear Deformable Ptar Beam

Element

As an example, distributed gravitational force directed toward-theaxis is expressed as the
generalized force associated to the absolute nodal coordinates ofaa peam element as

given below.
QszTs=ﬂo _pg]SdV:mg[O -5 0 -2 0 -2 0 = (2.32)
\%

2.3.3.2 Generalized Moment for Non-Shear Deformable Planar Beam Eleant

When a moment M is applied at a cross-section of the beam, the virtual werkodiine
moment is given bMda, wherex is the angle of rotation of the cross-section. The orientation
of a coordinate system whose origin is rigidly attached to this cross-seciobe defined

using the transformation matrix given below [8, 34].
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cose —-Sha 1 -
Sine cosw }

By applying virtual change of variables fat one can get virtual angular rotation in terms of

nodal variables as given below [34].

OX ((9Y) _ Y (0X
_6x 0X ox \ dx

(&) (5

If the moment is applied at node O of the element (Figure 2.1), virtual angptkgtion can be

(2.34)

o

calculated as follows.

_ es5(es) —eud(es) G & T
o= SLELHE o0 25 egﬂﬁoooqae (2.35)

Then, the generalized external for€¥;, for the applied moment, M, can be derived as given

below.

M es T
Qr = o M 000 (ﬂ (2.36)

o - g8 g

2.4 Absolute Nodal Coordinate Formulation for Shear Defornable Planar

Beam Element

Shear deformable planar beam formulation has been introduced by Omaravd Shabana
A. A.[21]. They have added two nodal variabléX;/dy anddY;/dy, for each nodes and used
different shape function with more terms in order to include shear deformditemise Vector

of nodal variables for a shear deformable planar beam element isloalen.

8X1 aYy 0%y Oy %o OYa OXo Yo"
e=|X1Y— — ==X Yp — —= == 2.37
118x6x6y6y226x6x6y6y ( )
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Global position of an arbitrary point on the element can be found by usiugtion 2.12.
Shape function matrix, proposed by Omar M. A. and Shabana A. A. iRfjjlven below.

s S0 1550 130 5400 Is50 I 0

= (2.38)
0 510150 150 540 Is50 Isg
where
s1=1-3¢2+283 (2.39a)
S=£-2248 (2.39b)
S8=n-¢n (2.39c)
54 = 32— 288 (2.39d)
S5 = —&%+ &3 (2.39)
Se =&n (2.39f)

andé¢ andn are the reduced local coordinates and definex/bandy/|, respectively.

Mass matrix for the element can be evaluated by using kinetic energy equgtiem in

Equation 2.17 as given below.

M = fp s'sdv (2.40)
\%

Constant mass matrix can be evaluated by using Gauss-quadrature metluictod
integrations. In [21], mass matrix is published in terms of mass, length, first mtoofie

mass and second moment of mass.

2.4.1 Generalized Elastic Force for Shear Deformable Planar Beam Elemg

Strain energy equation can be used to find generalized elastic forceggasdral flexible
multibody formulation procedures. The strain energy equation for a béameat can be in

general form written as;
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U= ng EedV (2.41)

\Y

NI

In the equationE represents matrix of elastic déieients ande represents the vector form
of the strain tensok,,. Matrix of elastic cofficients can be written in terms of modulus of

elasticity,E, and Poisson’s ratio;, as given in the following equation [21].

A+ 2u A 0
E=| 2 A+2u O (2.42)
0 0 u
where

vE

E

u (2.43b)

- 2(1+v)

Nonlinear strain tensog;,, can be formulated in terms of deformation gradidngs follows
[36].

&m = %(JTJ— 1) (2.44)

In Equation 2.44] is 2 x 2 identity matrix and] is the deformation gradient defined as;

1= (2.45)

wherer? andr! are the global positions of an arbitrary point on the element at initial and

arbitrary times, respectively, and defined as follows.

=[x v (2.46a)

0= [x° | (2.46b)
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By substituting Equations 2.46 and 2.12 into Equation 2.45, deformation gtadli@an be

written in terms of shape function matri®, and vector of nodal variables, as given below.

t t e e
ot ort ox lslx Sy } D-1 (2.47)

07 9x or0
or?  oxor Sxe Sye

If initial body coordinate frame is parallel to the global coordinate framen ttee
transformation matrixD, reduces to identity matrix. By eliminating transformation matrix,

components of strain vector can be written as given in the following equations

_ %(eT Sie—1) (2.482)
& = %(eT Se-1) (2.48b)
g3 = %eT S.e (2.48c)
where
Sa=S[, S1x+ Sy S2x (2.49a)
S =S], Siy+ S}, Soy (2.49b)
S =Si4Siy+ S« Sy (2.49c)

Then, the vectorial form of strain tensor and its partial derivative eawiitten as functions

of nodal variables as shown below.

el S,e—-1
el Se-1 (2.50a)
e’ Sces
Z—Z - eT S, (2.50b)
Jel(se+9)
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The generalized elastic force due to elastic potential can be obtainedtésendtiating the

strain energy with respect to the nodal coordinates as;

U 8|1 de\"
T——:— —_ T = —_—
Qk = 5 6e{2f8 Esdv} f(ae) EedV (2.51)

\% \%

By substituting Equations 2.50.a and 2.50.b into Equation 2.51, the generdhzéd orce

vector can be simplified to the following equation.

A+2u A 0| |e'Se-1
Qsz[eTsa 'S, %eT(sC+sJ)] A A+2u 0 %eTSbe—l dv  (2.52a)
0 0 u e'Se
(1 +2u) Sa + 1) (€7Sae— 1) - -+
+(ASa+ (1 +21) So) (€7Spe - 1)+ (Sc + ST ) €T ee

<

dv  (2.52b)

Then, generalized elastic forces of deformable bodies can be assdmhlsihg the forces

obtained for each elements in flexible multibody system.

2.4.2 Generalized External Forces for Shear Deformable Planar Beaflement

Generalized external forces for shear deformable planar beam dleamebe found by using
virtual work principle as given in Equation 2.31. As an example, distributestitional
force directed toward theY axis is expressed as the generalized force associated with the

absolute nodal coordinates of an arbitrary beam element as follows.

Qr=F's= f o —pg| sav (2.53a)
\Y
Ql =- O}OI—OOO:—LO—LOO (2.53b)
F="MM 5 0 15 > 1 '
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Additionally, generalized external force vector due to a momintapplied at the first node

of the beam can be found with a similar procedure given in Section 2.3.3c8@sd [21].

Meg Mes

T _ _
D = e

oooooc} (2.54)

2.5 Absolute Nodal Coordinate Formulation for four noded Generalized Plate

Element

Plate and shell structures are indispensable parts of mechanical sy3teensfore, ANCF
for generalized plates, which was proposed by Mikkola A. M. and SteaBaA. [30], is also

included in this chapter.

The dimensions and the coordinate frames used for a four-noded platergles shown in
Figure 2.2. As shown in the figure, there is one element coordinate fracheranglobal
coordinate frame (or inertial frame) as in general finite element formulatidt@wever,
the difference is the used nodal coordinates and the shape functions. No@ales of an
element are global coordinates and their gradients. By applicatioffefetit initial gradients,

shell structures can also be simulated with the formulation given below.

Figure 2.2: Four noded plate element [30]
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Nodal variables for an arbitrary plate element can be written by usingtlegua9 as given

below.

e= e'{ e'zr eg eI (2.55)

where

i
6 =X Yi Z Xix Yix Zix Xiy iy Ziy Xz Yiz Zig] (2.56)

In the equationX, Y andZ refer to the coordinates with respect to global coordinate frame,
andx, y andz refer to the local coordinate frame. With those definitions, the vector adinod

variables for a plate element has the size of 48.

Then, the global position vector, can be calculated by using appropriate shape function
matrix and Equation 2.12. Mikkola A. M. and Shabana A. A. have introdiweddifferent

shape function matrices in their publication [30]. One of them is presented as

S=[S1l Syl Sgl Sal Ssl Sgl S7l1 Sgl Sol Sigl Si11l Sial Sigl Sial Sisl Siel]
(2.57)

where

St = (26 + )¢ - 172+ (- 17
Sp = ag(¢ - 1(2n + 1)(n - 1
Ss = by - 12 + 1)(7 - 1Y

Sa=t(-1)r-1)

Ss = —£%(26 - 3)(21 + 1)(n - 1Y
Se = ag?(¢ — 1)(21 + 1)(n - 1
Sy = —bne?(2 - 3)(n - 1)

Sg = —t&d(n - 1)

So = %26 - 3)(27 - 3)

Si0 = —ar’¢(¢ - 1)(2 - 3)
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Su1 = -brPé*(n - 1)(2 - 3)
S12 =t
Si3 = —17(2¢ + 1) - 1)°(27 - 3)
Sia = —aér (¢ - 1)°(2n - 3)
Sis = br(¢ - 1)°(2¢ + 1)(n - 1)

S16=-tnd(£ - 1)

Additionally, a, b andt are the sizes of plate element given in Figure 2.2,3 x 3 identity
matrix, and¢, n and/ are the reduced local coordinates of an arbitrary point in the element,
which are defined a& = x/a, n = y/band/ = z/t, respectively. The shape function matrix
represents exact rigid body dynamics and produces no strain uniebeoidy displacements
andor rotations [1, 4,7, 8, 30, 32]. For the other shape function matrix agid tomparison

[30] could be reviewed.

2.5.1 Mass matrix for Generalized Plate Element

All of the existing finite element formulations for the large deformation and ratatialysis
of plates and shells lead to nonlinear mass matrices [8]. However, it is joststant matrix
in ANCF. Mass matrix of a plate element can easily be formed by writing the kinetgg

eqguation at an arbitrary timg,for an element as given below.

1 Tt
T - §ft,otr“.r dtv (2.58)
tv
In Equation 2.58'0 and'V are density and volume of the plate element at an arbitrary time,
The velocity vector can be obtained byfdrentiating the position vector &s= S'e. Density
and volume at an arbitrary timecan be written in terms of initial density and volume by

using deformation gradient matri, as given in the following equations [36].

0

t P
0 == (2.59a)
69
d'v = [(J]d °v (2.59b)
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Then, mass matrix can be found by substituting velocity ve¢tand Equations 2.59.a and

2.59.b into Equation 2.58 as follows.

1 % .. .
'T= Efﬁ(teT)STS(te) 5d]d °v (2.60a)
tv
T = %(téT) f %psTsdVv|('e) (2.60b)
oy
T 3@)m (g
™M = fop S'sd% (2.60d)
oy

As seen in Equation 2.60d , mass matrix at an arbitrary tipages not depend on time and
the orientation. It can be evaluated once by using the initial density and volhemeit can be
used at any time step during the solution process. However, volume integisaperformed
on global coordinate frame. Therefore, it should be transformed intd tmordinate frame

in order to make volume integration easier as given below.

M = fpSTS|D|dve (2.61)

Ve

whereve represents volume of the element in local coordinades € dxdydz) andD is the

gradient tensor defined as;

%

OX

o7 oX Q(
oX 0X

0z

oX

%
gg
»

ay

%
0z
oY
0z
0z
0z

(2.62)

It is obvious that if the initial local coordinate frame is parallel to the globaldmate frame,

then the transformation gradient tensor is equal to identity matrix2ne 1.
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2.5.2 Generalized Elastic Forces for Generalized Plate Element

In the derivation of generalized elastic forces, continuum mechanicoagp has been
used. The elastic forces of an arbitrary plate element can be derivegl stsain energy
equation. The strain energy of an element at an arbitrary tinean be formulated by using
Green-Lagrange strain and 2nd Piola-Kircfilatress tensor definitions as given below (Total

Lagrangian Formulation) [32].

=3 [(eE(s)ay (2.63)

oy

whereE is the matrix of elastic cdBcients ande is the vector form of the strain tensés;,.

The matrix of elastic cd@cients is given below [36].

A+2u 2 A 0 0 0
A A+« 1 000
1 A A1+24 0 0 0
E = oH (2.64a)
0 0 0 x 00
0 0 0 0u O
0 0 0 0 0y
vE
- 2.64
= Tna=2 (2.640)
E
- 2.64
K=o+ (2.64c)

where E ang: are elastic modulus and Poisson'’s ratio of the material. Then, the generalized
elastic force vector of the plate element can be obtained figrdntiating the strain energy

(Equation 2.63) with respect to the nodal variables as given in the folloagugtion.

t to\T
tQI:aa—tLé:%: %ftsTEtstV :f(g—é) E'ledOV (2.65)
oy oy

The nonlinear strain tensor can be defined by usigi@entity matrix,|, as given below [36].
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sm::%(gng—l) (2.66)

Deformation gradient], can be written in terms of nodal variablesas follows.

OX atX 9X

ot %% 9% 9% Sixe Sye Sze
r oty a4ty aty
Jzaor 130 3oy 8oz| Sxe Sye Sze (2.67)

a% a% otz
S3xe Sye $ze
00X 90y 90z

In Equation 2.675;, S, and Sz are the first, second and third row vectors of shape function
matrix, S. The deformation gradiend, contains partial derivatives of the shape function with
respect to the initial global position vector. Therefore, these partialatres S x, Sy and

S z) should be related to the local coordinate frame as given below.

s [ax oy az][os: s
X ox  Ix  ox || oX X
aSi|=|ox oy oz||losi|=p|os
ay ay dy ay||aY D oY (268)
asi| |ox oy az||os aSi
0z 0z 0z 0z 0z 0z

The transformation matrix, defined in Equations 2.62 and 2.68, can be writtenms of

nodal variables as in the following equation.

-
% % % Six€ Siy€ Si1z€
D= % % % =|Sxe Sye Sz e (2.69)

oxX a9y 9z
9z 9z oz S3x € S’3>,y90 S2 €

Then, partial diferentials with respect to the global coordinate frame can be converted into

partial diferentials with respect to the local coordinate frame as given below.

S 9Si
oX ox
S| = p1|dS
™ D 2 (2.70)
oS oS
oz 0z

Strain vector and its derivative with respect to the nodal variables sheulditten in terms

of the nodal variables. By using the deformation gradient (Equation ar&¥honlinear strain
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tensor definition (Equation 2.66), nonlinear strain tensor can be rewrgtiilews.

T
81181281313%3—;\(% 3%2;)\((2;)2 100
&m=|s12 €2 £23|= 3 % % % % 2—;\\(( %—0 1 0| (2.719)
£13 €23 £33 g—éig—éig—éé g’—&g—&ig—% 0 01
@R G- ()& @) ()
m=3| () (%) (%) (w1 (@) () | e
(6‘752) (aaorx) (aagz) (aaorv) (aaorz (aaorz -1
Then, strain tensor can be written in vector form as;
7(68°rx)T (aaorx) -1
(%) (%) -1
3 rY ; orv
2|68 () -1 o)
2| 2(%) (%)
2(#%) (%)
T
| 2(5%%) (5%)

The partial diferentials appearing in the strain vector (Equation 2.72) can be defined as;

or
aT)(i = Deie (273)
where
Dd = (ali Sx+ &Sy + ag S’Z) (2.74)

In the equationay;, ay andag are thei" element of the column vectors, which are defined as

ai, ap andag in the following equation.

o & a|=(0")" (2.75)

Finally, the strain vector and its partial derivative with respect to vectapdél variables can

be written in explicit forms by substituting Equation 2.73 into Equation 2.72 asgivéhe
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following equations.

oe
oe

€' Dot Dese - 1

e'D],Dee-1

e'D;Dege-1
2e'D],Deze
2e'D] Dese

2e'D] Dee |

NI =

€"Dey ' Dey
e'DL,De
e'D;Des

€’ (D, Des + DY;De2)

€' (D!,Des + D;De1)

e’ (Dngez + DgzDel)_

(2.76)

2.77)

Then, the generalized elastic force vector can be written in terms of nedalbles by

substituting Equations 2.76 and 2.77 into Equation 2.65 as given below.

In order to perform the

e’ (Dngez + D;Del)_

€' Der' Det
e'DL,De
e'D;Des

e’ (DL, Des + DL;De2)

e' (D{,Des + D;Des )

€ Der ' Dese - 1|

e'D,Dege-1

e'D;Dge- 1
2e'D],Deze
2e" D] Dese

2e'D] Dgre |

d v (2.78)

integration of the generalized elastic force vethter volume

increment should also be transformed into local coordinated % = |D|d %ve [30].

Evaluation of the elastic force vector needs to be performed by numeri¢hbdse In most

of the finite element procedures, Gauss-Quadrature numerical integnagithod is applied.

By changing the integration variables to the reduced coordinates ondtzan the following

equation.
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1

= abt f f f (‘98(5 T éf)) E (¢, 1, ¢) ID|dédnds (2.79)

_1 0
2

Volume integration in Equation 2.79 can be converted to simple summations by

Gauss-Quadrature method as given in the following equation.

; as(fi” nj+1 Q)T
abt 4 2 7 2 72 §+1n+1§
T_ i | k
Q=2 ZZZ v - eo(55 1575 )ior @s0

i=1

where (§i,77j,§k) refer to the Gauss-Quadrature points a('M,Wj,Wk) refer to the

Gauss-Quadrature weight factors.

2.5.3 Generalized External Forces for Generalized Plate Element

Generalized external forces for the plate element can be found byvisimgl work principle
as in Equation 2.31. As an example, distributed gravitational force directetddhe—Z
axis is expressed as the generalized force associated with the absdlaitesardinates of an

arbitrary plate element as given in the following equations.

=F'S= f [o 0 —tpg]SdtV: f ~1pgSsd tV = —pg f Ss|D|dVe (2.81a)
lV tV 0
T _ —PgathDI[oowo% 00200500100-2002 0 05...]

F= 4 ..00100-200-200f00100200-2001% (2.81b)

2.6 Equation of Motion and Solution Procedure

Using the simplified mass matrix and generalized force vectors, equation ofrmudtian

element can be written as follows [8].
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Mé+ Qy = Qf (2.82)

where Qx and Qr are the vectors of generalized elastic and external forces, resgectiv
Using the generalized force vector definitid@ & Qe — Qf), equation of motion can be

written in more compact form as;

&= M1Q (2.83)

Mass matrix and force vectors should be assembled in order to get thiéoeguaf motion
for the whole flexible multibody system. In the literature, there are mainly twonasge
procedure. The first one is the same as the procedure used in dganigralement problems
in which the elements of matrices for finite elements are summed up to the relatedtslefmen
the system matrices. In the second procedure, the constraint equatioreeb the connected
nodes are introduced to the system equations. In the thesis, generatinitent assembly
procedure is applied. In order to solve the equation of motion over a defination, explicit
direct integration method can be applied. In the direct integration methodadhstérying to
satisfy the equation of motion at any time, it is aimed to satisfy the equilibrium equatign

at discrete time intervals [36].

Then, the nodal acceleration vector can be approximated with the ceiffesedce method

as given below [12].

1
ty t+At t t—-At
e=—5 (*Me-2'e+ ") (2.84)

By substituting Equation 2.84 into Equation 2.83, one can obtain nodal veziatile At as

shown below.

1
e (*Me-2'e+ e) = M7'Q('e) (2.85a)

Hite = 2te— e L APMTIQ(te) (2.85b)
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As seen from Equation 2.85b, the nodal variable at the next increfihet,can be evaluated
by using the nodal variables at timeandt — At. At the first time step, the equation takes the

following form.

Me=2% - et AtPM1Q(%) (2.86)

In order to evaluate the nodal variables at the end of the first time stepotied variables
at time —At needs to be known besidea The unknown nodal variables vectofle, can
be written in terms of the nodal velocity and the nodal acceleration vectot 4 as given

below [12, 36].

2

At
e= % - Atle+ - Og (2.87)

—At

Therefore, the vector of nodal variables at any time can be found edgilyhe known initial

configurations.

2.7 Sample Solutions Based on the Literature using ANCF

In order to make comparisons between the current ANCF in the literaturéharatoposed
methods in the following chapters, the reviewed formulations have beeriarged solutions
of some problems presented in the literature. Obtained results are identicalgalilished
results. As examples, solutions for simple plate structure under time depédoaeing and

flexible pendulum problem are given in the following sections.

2.7.1 Simple Plate Structure under Time Dependent Point Loading

A simple plate structure under a time dependent point load, which has bediadsty
Mikkola A. M. and Shabana A. A. [30], is solved by ANCF method. The dtite
is kinematically fixed, however it undergoes large deformations. The lengtth and
thickness of the structure are0Olm, 1.0 m and Q1 m, consecutively. Structure is fixed

from one edge, and loaded with a time dependent forcé K§0at a corner. In order to
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show performance of ANCF in large deformation problem, modulus of elaséiodymaterial

density have been chosen a$ B1Pa and 7800kg/nr.

1.0m

Figure 2.3: Simple plate structure [30]

Mikkola A. M. and Shabana A. A. [30] published solutions for the simple @atecture given

in Figure 2.3 by using 4, 9, 25 and 49 ANCF elements. In order to verify tiitéew codes,
the structure is modeled with 4 elements in the thesis. Finite element model of thergtruc
is shown in Figure 2.4. As shown in the figure, finite element model has 4 eleuethid
nodes. Total unconstrained degrees of freedom is 108. 3 nodes edgle (Nodes 1, 4 and
7) are constrained. Time dependent point load is applied in Z direction te BoHquations
of motion have been solved with(l stime increment for a total time of & Global position

of Node 3 over time is shown in Figure 2.5. Additionally, deformed shape dfttineture at

t = 1 sis shown in Figure 2.6. Obtained results are identical with the results published

Mikkola A. M. and Shabana A. A. [30].

W | @

Figure 2.4: Finite element model for simple plate structure
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Figure 2.5: Globak coordinate of Node 3

0 1o00

Figure 2.6: Deformed shape of the simple plate structute-at s
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2.7.2 Flexible Plate Pendulum

As a second example, flexible plate pendulum problem published by Mikkolsl.Aand
Shabana A. A. [30] has been studied. Length and width of the plate annsh Figure 2.7.
Thickness, modulus of elasticity and density of the plate arerh00.1 MPaand 781(g/n?,

consecutively. One corner of the structure is constrained by a sphgiot. Then, it is
subjected to gravity. Finite element model for the plate is shown in Figure 2.&hésn
in the figure, pendulum is modeled with 3 plate elements and 8 nodes. Totalstrained
degrees of freedom for the system is 96. Equation of motion is solved with artareament

of 1073 sfor a total time of 14 seconds.

0.6 m

Line / H

Figure 2.7: Flexible plate pendulum [30]

n
(=]
=~
o=l

ORNORNO,

Figure 2.8: Finite element model for flexible plate pendulum
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Global position of Node 4 is plotted over time in Figure 2.9. As seen from thphgra
magnitude of the global position vector is changing in a large range. If théybem were
rigid, then the magnitude of position vector would be constant over time. Thigjiga an

idea about the flexibility of the pendulum.
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Z - Coordinate

R - Magnitude

Figure 2.9: Global coordinate of Node 4 over time

Additionally, configurations of the pendulum at some selected instants annsh Figure
2.10. Despite the small number of elements used in the analysis, large deformatio
rotation characteristics of plate have been captured with 4 noded ANCF giatent as
shown in the figure. In summary, obtained results are identical to the resiilished by

Mikkola A. M. and Shabana A. A. [30].
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Figure 2.10: Flexible pendulum configurations over time
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CHAPTER 3

APPLICATION OF MESHFREE METHOD TO ANCF

3.1 Meshfree Methods

As described in the previous chapters, solution procedures for flaxiblbody dynamics
problems are mainly based on the Finite Element Method (FEM). Therefexélé bodies
have to be discretized by predefined meshes. Then, equations of motldrbedormulated
based on this discretization. It is clear that the shape and the density of #iehaee a
great importance in the solution. Therefore, they should be carefulligrissd to obtain
accurate solutions. Despite the flexible multibody dynamics literature haseidauimsFEM,
there are some other methods that could be useful. Meshfree method istyrdegeloped
alternative to FEM for structural mechanics problems. In meshfree metfisiim equations
are established without the use of a predefined mesh [37]. Additionally,sitag/n that
the accuracy in structural mechanics problems can be increased bynsahngree methods

instead of FEM [37, 38].

In this chapter, meshfree method is implemented to flexible multibody problemseforesr
short definitions and classifications related to the meshfree method aresidafuthe chapter.
The most of the literature, which are related to the meshfree method, hasdileeted within
two books by G. R. Liu[37]and G. R. Liuand Y. T. Gu [38]. Those mesafelated books are
completing each other. In the thesis, these books were the major refefentiee meshfree

related topics.

The main starting point of the meshfree method was to eliminate mesh generat@sgpro
from the design cycle, and it was partly succeeded in literature. For hetai®mand shell type

structures meshing process is not d@fclilt as complex solid parts. However, by introducing
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meshfree method to flexible multibody dynamics problems, more accurate resuiltisbe
obtained without the limitations of finite element method, which are listed by G. R.ndu a

Y. T. Gu [38] as follows:

1. High cost in creating an FEM mesh [38]

2. Low accuracy of stress:. Many FEM packages do not accurately predict stress. The
stresses obtained in FEM are often discontinuous at the interfaces déthergs due
to the piecewise (or element-wise) continuous nature of the displacemeradsithed

in the FEM formulation [38].

3. Difficulty in adaptive analysis. One of the current new demands on FEM analysis is to

ensure the accuracy of the solution [38].
4. Limitation in the analysis of some problems[38]:

e Under large deformations, considerable loss in accuracy in FEM resultarise

from the element distortions [38].

e [tis difficult to simulate crack growth with arbitrary and complex paths which do

not coincide with the original element interfaces [38].

e It is very difficult to simulate the breakage of material with large number of
fragments; the FEM is based on continuum mechanics, in which the elements
cannot be broken; an element must either stay as a whole, or disappgaetely.

This usually leads to a misrepresentation of the breakage path [38].

In this chapter, ANCF of shear deformable planar beams using meshfi@g@diation
polynomials is performed. Structural meshfree formulations are genetaltis svith the
selection of interpolation methods. In the literature, there are various itdéguotechniques
specialized to specific problems to be solved [37-39]. The most widely aiseds the
Point Interpolation Method. The method is very simple and adaptable. Howelvas some
drawbacks besides its advantages. As a starting point, Polynomial Poipolatéon Method
(PPIM) was selected. In PPIM, a field variable (glogbosition in this case) can be written

as follows.

3n
el Y, XQ) = X(X ¥ xg) = ) p(x Y ailxg) =p'(xy)axg) =pa  (3.1)

i=1
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It was seen that PPIM is not appropriate for shear deformable nonllmesms due to
non-invertible moment matrix. Generally, this problem arises from inline néagements.

Theoretically, this situation can be circumvented by the following methods [37].

e Moving nodes within the solution domain: If one considers straight beang algiobal
X axis, it is not possible or realistic to move nodes towar@xis. Therefore, this

approach is not applicable to meshfree ANCF of beams.

e Polynomial PIM with Coordinate transformation: This method had been implemented

for planar beam problems. However, obtained moment matrix was still n@ntiiole.

e Matrix triangulation algorithm: The algorithm is based on the proper selectidmeof
interpolating nodes within the solution domain. However, this would not solve the

problem for ANCF of beams.

e Radial point interpolation method: The method guarantees non-singular rhomen
matrix. However, number of basis functions is not adequate for the solotinodal

variables. It results in non-square matrices.

¢ Radial point interpolation with polynomial reproduction: The method guaesntiee

non-singular moment matrix for meshfree ANCF of planar beams.

As listed above, some methods have been performed for shear deforpiabte beam
formulation and it is seen that the most appropriate method is the radial poirgdlztgon
with polynomial reproduction. Therefore, the following nonlinear bearmfdation is based

on this method.

3.2 Construction of Shape Function for Planar Beams

In ANCF, nodes have 6 degrees of freedom for planar problemsseléie global positionX
andyY, and gradients}X/0x, dY/0x, dX/dy anddY/dy. For thei® node of the system, degrees
of freedom are defined &, €, €, €,, €, ande.. In meshfree methods, support domains,
Qs, are used to interpolate field variables instead of finite elements. Suppudite are
generally represented by a point of interest (or quadrature pointgatddnter as shown in

Figure 3.1.
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Neutral axis of a beam

X Nodes

Figure 3.1: Support domain for planar beams [38]

Then, global positions of an arbitrary point in the support domain of at pdiimterest atxg

can be written as follows.

n 2n
X(xY. Xq) = > R(xY) ai(xq) + Y pi(%Y) bj(xq)
i=1 j=1

X(%,Y, Xq) = RT(X,y) a(xq) + PT(x,y) b(xg) = R" a+P'b (3.2)

In Equation 3.2P andR represent polynomial basis and multiquadratic radial basis vectors

and they are given below [38].
R = ((x=%)2+(y—w)? +C?)’ (33)

P= [1 Xy xy X Xy 2 3y x* xy x° %y ]T (3.4)

whereC andq are constants of radial basis function and can be determined depemding o

convergence of the problem.

Similarly, Y component of global position vector can be written as follows.

Y(% Y, Xq) = RT(X,Y) c(Xo) + PT(x,y) d(xq) = R" ¢+ P'd (3.5)

In Equations 3.2 and 3.%;, bj, ¢; andd; represent cdécients for basis functions. By using

3.2 and 3.5, global position vector can be written in terms of basis functionsthixrf@am
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as given below.

A
RT X, pT , 0] 0 b
r(x% Y, XqQ) = bey) PEO) (3.6)
Q
0 0 RT(x,y) PT(x,y)||c
d

Then, the gradients can be determined by partifliedéntiation with respect to local

coordinates< andy as given in the following equations.

IX(X, Y, XQ)

Fam Rla+Plb (3.7a)
AY(X, Y, XQ)
— = RI(C+ PI(d (3.7b)
OX(X, Y, Xo)
a—yQ =RLa+Plb (3.7¢)
Y (XY, Xq) T T
— - Ry c+Pld (3.7d)

Codficients of basis functiong( b, c andd) can be determined by enforcing Equations 3.2,
3.5 and 3.7 to be satisfied at the n nodes within the support domain. Ft tloele, degrees

of freedom can be calculated as given below.

[RT PT 0 O]

o o R P| Ja

g - R, P, 0 0O b 3.8)
0 o0 R, P |c
R, P, 0 0 d], .

1} T
. 0 0 Ri’y Pi »Y16x6n

If Equation 3.8 is generalized to n nodes in the support domain, the followiraf algebraic

equations can be obtained.

es=Po A (3.9)
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wherees is the vector of nodal variables for the support domBtgis the generalized moment
matrix evaluated at n nodes within the support dom&ig,andA is the vector of constants

of basis functions as shown in the following equations.

=l eleeie. . e e el e (3.10a)
(RT Pl 0 O]
o o R P!
R, Pl, 0 0O
0 0 R, P
R, PI, 0 ©

0 0 Rly Ply

Po=| ' ' ‘ (3.10b)

Rl P 0 O
o 0o R P

0 o0
0 0 R, Pl
Riy Phy 0 O
o 0 R P

/- Bnxen

T

A=la" bT ' dT6 . (3.10c)
nx

Then, constants of basis functiords,can be evaluated by matrix inversion as given below.

A =Pgles (3.11)

By substituting Equation 3.11 into Equation 3.6, global position vector canittemin terms

of known polynomial constants and body coordinates as given in the folljpgguation.

(%Y, XQ) = S(X,¥, Xq) €s (3.12)
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where,Sis the shape function matrix for the support domalg, and defined below.

RT(xy) PT(xy) 0O 0 )
S(X. Y, Xq) = Po (3.13)
0 0 R(xy) PT(xy)

3.3 Mass Matrix Formulation of Meshfree Planar Beam with ANCF

In meshfree solution procedures, integrations are generally perfowitleid the predefined
quadrature domain§)q. Therefore, kinetic energy equation (Equation 2.58) will be integrated
over quadrature domains. Then, the kinetic energy of the whole defterbaldy can be
summed by simple assembly procedures as in general finite element methaet& &mergy

of the quadrature domaif)q, in the support domairQs, of the body can be evaluated by

using shape function matrix as given below.

Tq = % f Yo el ST(xy) S(x.y) &sd'Vq (3.14a)
Vq
Tq= % el f o ST(x,y) S(x,y) d'Vq| &s (3.14b)
Vq
1.1
Tq= > esMsq €s (3.14c¢)

whereM ¢q is the mass matrix of the integrated part of the body (quadrature domainhamd g
explicitly as follows.

Maq= [ 19 ST00y) S(xy) AV (3.15)

Va

Density and volume increment at an arbitrary tinbgecan be written in terms of initial
density and volume increment [36]. Then, the volume integration can berpexd at initial

configuration as given;

Msq=C [ §7x) Stxy) oy (3.16)
Vq
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By introducing the shape function matrix defined in Equation 3.12 into Equatid$ 8ne
can obtain the explicit form of the mass matrix of quadrature domain as gitea following

equation.

Msq=p (Pgh)" f dVgP;t (3.17)

Va

U U o o

©c o v =1

3.4 Generalized Elastic Forces for ANCF of Meshfree Planar Beam

Strain energy equation can be used to find generalized elastic forceggardral flexible
multibody procedures. The strain energy equation for a quadratureidiacan be written

as given below.

1
Ug=5 f &q EgqdVy (3.18)
\%

In Equation 3.18E represents matrix of elastic dfieients andeq stands for the vector form
of strain tensorgm, within the quadrature domaif),. Matrix of elastic coéficients can be

written in terms of modulus of elasticiti, and Poisson’s Ratia, as follows [21].

A+ 2u A 0

E=| 2 A+2u O (3.19a)
0 0
vE
E
u= 20+ ) (3.19¢)

Nonlinear strain tensog,, can be formulated in terms of deformation gradigntas given

below.
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- %(JTJ— 1) (3.20)

wherel is identity matrix andl is the deformation gradient defined as;

J=—— (3.21)

Then, it can be written in terms of shape functi@,and vector of nodal variables;, as

given below.

D! (3.22)

3 atr  atr ax Six€ Spy€s
= o0 = T a0r =
0% 0x0%% Sixes Soyes

If the body coordinate frame is parallel to the global coordinate frame, Eheeduces to
identity matrix. In the meshfree formulation of planar beam, it is assumed thabtindicate

frames are parallel. By eliminating transformation matrix, components of strefanean be

written as;
1 1
&1 = E(eS Sses—-1) (3.23a)
g = }(eT Syes—1) (3.23b)
;eT S es (3.23c)
where

Sa Sl S1x S-ZI—XS2X (3.24&)
S =S, Siy+ S5, Sy (3.24b)
S = Sl Sty + S Sey (3.24¢)

Then, the vectorial form of strain tensor and its partial derivative withimtierature domain

can be written as a function of nodal variables within the support domawlla/é.
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&1 . el Saq€s—1
84 = 82| = 5 el Sog) €s—1 (3.25a)
€3

€l S & |
5 el Sa(q)
€q

sel (Sc(q) + SI(q))_

The generalized elastic forces on nodes within the support domain oflaaquize point due to
elastic potential can be obtained byfdrentiating the strain energy with respect to the nodal

variables as given in the following equation.

AU o |1 deq\"
Vq Vq

By substituting Equations 3.25a and 3.25b into Equation 3.26, the generdketid &rce

vector can be written in an explicit form given in the following equation.

A+2u 2 0| |[(elSses—1)
1
= [las ds tdeeD|| 1 ava of;|Ese-1|dv G273

Va 0 0 elSees
2 1Ses—1)---
o= fel (4 +24)Sa + ASo) (€L Saes — 1) N, (3270)
20 [+H1Sa+ (1+ 20So)(]Soes — 1) + (S + STElSees

Then, generalized elastic forces of deformable bodies can be assdmhlsthg the forces

obtained for quadrature domains.

3.5 Generalized Gravitational Forces for ANCF of Meshfree PAnar Beam

Generalized external forces can be obtained as in the general flexililbady procedure.

As an example, distributed gravitational force directed toward-thexis is expressed as the
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generalized force associated with the absolute nodal coordinates obitrarg quadrature

domain as follows.

Ql =F's= f [0- pg] SAVq = f —pgS2dVy (3.28)

Vq Vg

3.6 Equation of Motion and Solution Procedure for Meshfree Plaar Beams
with ANCF

For the solution of system equations, which contain mass matrix and genéfalices, same
procedure described in Section 2.6 can be used. However, itis régoimesemble quadrature
domains instead of elements in order to construct equations of motion for thle gystem.

Equation of motion for an arbitrary quadrature domain can simply be writteollasvs;

Msq€s + Qk(es) = Qf (3.29)

3.7 Comparison of Meshfree and FEM based ANCFs for Planar Beams

In order to verify performance of the developed meshfree formulatmmparison study for
a flexible pendulum problem, which is the major problem for the demonstratiowewlfy

developed methods in literature, has been performed. It is assumed tfexitle pendulum
has a rectangular cross-sectior®, th length, density of 7808g/m® and 1MPa of modulus
of elasticity. The pendulum, shown in Figure 3.2, is grounded Ab)(bcal coordinates.

Comparison study is performed for thredfeient thicknesses (48m, 10 mmand 2mm).

3.7.1 Results of FEM based ANCF of Shear Deformable Planar Beams

In order to see advantages of meshfree formulation, a convergenlyehstd been performed
with finite element based ANCF of shear deformable planar beams. Numb&moénts is
increased up to certain level of convergence. Flexible pendulum pnostewn in Figure

3.2 is solved for a duration of 4 with 10™° stime intervals using 3, 6, 9 and 12 elements.
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L=1200 mm o

A

Figure 3.2: Flexible pendulum for comparison study

Obtained results for dlierent thicknesses are presented in Figure 3.3 through Figure 3.11.
As seen from the figures, number of elements required for convezgerincreasing with
decreasing beam thickness. Convergence seems to be satisfied witm&8tsléor the beam
having thickness of 2nm. However, 9 elements for 1@m thickness and 6 elements for

40 mmthickness are adequate.
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Figure 3.3: Tip coordinateX, versus time for FEM based ANCF£t2 mm)
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Figure 3.8: Route of the tip for FEM based ANCF=(tLO mm)
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Figure 3.9: Tip coordinateX, versus time for FEM based ANCF+£t40 mm)
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Figure 3.10: Tip coordinatey,, versus time for FEM based ANCF+£t40 mm)
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3.7.2 Results Obtained by Meshfree ANCF of Flexible Pendulum

In the meshfree solution of flexible pendulum shown in Figure 3.2, the proisienodeled by
using 7 nodes. Volume integrations appearing in the system equationsrmengel with 6

guadrature domains using 6 support domains as shown in Figure 3.12 dolthion, shape
function matrix is not constructed for each quadrature points within thearelewadrature
domain. Instead of this, single shape function matrix is constructed for gqaatirature
domains using related support domain. Then, they are used for eadtatyura points within
owning quadrature domains. Obtained results are compared with the rdstEdlobased
ANCF of shear deformable beams fomin, 10 mm and 40mm thick flexible pendulums
in Figure 3.13 through Figure 3.21. Despite fewer number of nodes in neeskblutions,

accurate results are obtained.

Quadrature Domains

|
* 24 i = i i
1 4

ENE

9 6

Support Domains

Figure 3.12: Domains used in the solution of flexible pendulum
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Figure 3.13: Tip coordinateX, versus time for meshfree ANCF &2 mm)
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Figure 3.14: Tip coordinatey,, versus time for meshfree ANCF 62 mm)
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Figure 3.16: Tip coordinatex, versus time for meshfree ANCF &10 mm)
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Figure 3.17: Tip coordinatey,, versus time for meshfree ANCF 10 mm)
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Figure 3.19: Tip coordinatex, versus time for meshfree ANCF &40 mm)
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Figure 3.20: Tip coordinatey,, versus time for meshfree ANCF &40 mm)
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Figure 3.21: Route of the tip for meshfree ANCF=£0 mm)

3.8 Discussion

In the chapter, meshfree implementation of ANCF for planar beams has leefemnped.
As can be seen from the comparisons, accurate results can be obtegpéie dewer nodes
are used. However, cost of computation is relatively high. Required timénéoproposed
meshfree formulation is at least twice of the time required for finite elemendlifagaulation
with the same number of nodes. General advantages of the proposeflemdésimulation

can be summarized as follows.

e Accuracy is high.

e Extreme nonlinear deformations can be handled due to the higher order shdpe

functions.

Additionally, disadvantages of the proposed formulation can be summaszgidesn below.

e Computational cost is high.
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e Formulation still requires background mesh (quadrature domains)

3.8.1 Application of Meshfree ANCF to the Plat¢Shell Structure

Due to advantages listed above, meshfree formulation has been tried to benented
to the ANCF of generalized plates. However, appropriate shape funpbbmomials,
which should work for any kind of node locations and domain selectionsldcoot be
found. For particularly selected node locations and quadrature donfiaxible pendulum
problem, introduced in Figure 2.7, has been solved accurately with tespeice edge
displacements. However, continuity of displacements could not be satisiedjoadrature
domain interfaces. Therefore, meshfree generalized plate formulation jgesented in the
thesis and left as a future study. Node locations and selected quadiatoains for flexible
plate pendulum are presented in Figure 3.22. Comparison of displacernpaitstad (Figure
2.7) can be found in Figure 3.23. Displacement results are almost identital0% s of
the simulation, where the kinetic energy is maximum. Then, a negligilfilerdince in the
results arises. It can be evaluated that generalized plate formulation isstedwith respect
to the displacement comparison. However, continuity requirement is notiestisver the

quadrature domains as shown in Figure 3.24.

350

250

150

100

0 100 200 300 400 500 600

Figure 3.22: Selected node locations and quadrature domains of flexibteilpen for
meshfree generalized plate formulation
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CHAPTER 4

ANCF FOR QUADRILATERAL PLANE STRESS AND PLANE
STRAIN ELEMENTS HAVING IRREGULAR SHAPES

Currently, ANCF is used for structural finite elements (beam, plate and slegtients)
having regular shapes. However, this method can be extended to irlgghlaped structural
elements and also to planar and three dimensional continuum finite elemeniisdhyraperly
selected mapping frames and interpolation polynomials. Main advantagdeoéizg ANCF

to continuum finite elements can be summarized as given below:

1. Generalized mass matrix is always constant and independent of the tdnthen

deformation.

2. Hourglass modes, which cause energy loss in finite element simulatiomsheca

eliminated or reduced.
3. Exact representation of rigid body dynamics is possible.

4. Accuracy is high.

Beside these advantages, it has only two drawbacks which are highly eangieneralized
elastic forces and increased total degrees of freedom. Howeves,diseslvantages could be

handled by using available solution procedures, like Newton-Raphsomd)éthiterature.

In this chapter, a new formulation, called "ANCF with Virtual Element Mappirtgs been
developed in order to eliminate element shape restrictions, to make ANCF lo=ajgoto 3D
continuum elements and to make use of the ANCF in general flexible multibodyepns.

Additionally, three approaches for virtual element mapping are proposBeveloped
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formulation and the proposed methods are implemented to four noded plase@ti@ane
strain quadrilateral finite elements, firstly. Additionally, the performance ofdthesloped
ANCEF is verified by well known patch test problems proposed by RicharM&tneal and
Robert L. Harder [35]. Implementation of the developed formulation andptioposed

methods to plagshell and 3D hexahedral finite elements are presented in the following
chapters.

4.1 Irregular Shaped Quadrilateral Finite Element Represenation and Shape
Function Creation for Planar Continuum Problems

In general ANCF, nodal degrees of freedom consist of nodaidboates in global frame and
partial derivatives (or gradients) with respect to a local frame or boatye. The mapped

coordinate frame given in Figure 4.1 can be chosen in order to defired gaatlients of the

finite element.

-
Lot
w

4(-1,+1) 3 (+1,+1)

\

1
1(-1,-1) 2 (+1,-1) X

(a) (b)

Figure 4.1: The mapped coordinate frame (a) and the global coordiaate {ib)

Then, the nodal degrees of freedom of an arbitrary elemeifit abde should be written as

given below.

X aY, 8% aY;|"

S=IXY, — — — —— 4.1
e "Uor or s as (4.1)
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Afterwards, various geometrical finite element shapes could be cregtigaplosing proper
polynomial shape functions for global coordinates. The shape fungttymomial selected

for planar continuum problems is given in the following equation.

12
X=) pa=p'a (4.22)
=
12
Y=>pb=p'b (4.2b)
=)
pr=[1rsrsr? @ r’srs 13 & r¥srd] (4.2¢)

In the equationa andb are vectors of polynomial constants, gnis$ the vector of monomials
of the shape function. Polynomial constant vectors could be formulatedns tef nodal

degrees of freedom of the element as given below.

e = Q(ri, $)A (4.3)

whereQ(r, s) andA are defined in the following equations.

P’y 0
0 pT(r,s)
.
Q(r,s) = Pi(9) 0 (4.4a)
0 pi(r,s)
pL(r. s 0
0 ps(r, )]
T
A:[aT bT] (4.4b)

Here,r; ands represent the mapped coordinates ofitheode on the element as given below.

[rirarzrg]=[-1 +1 +1 -1] (4.5a)

[s1 & 3 s]=[-1 -1 +1 +1] (4.5b)
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Linear set of algebraic equations to be solvedXaran be derived by using Equation 4.3 for

all four nodes of the element as given in the following equation.

T

-le @ @ @] -ra 9
where

.
P=]Qs) QT2%) QT(s%) QT(ra ) (4.7)

Then, polynomial constants vecté, can be found by using Equation 4.6 as follows.

A=plegs (4.8)

Additionally, P~ always exists and be constant as given below.

r 025 0 Q125 0 0125 0 025 0 -0125 0 0125 0 .
-0375 0 -0125 O -0125 O 0375 0 -0125 O 0125 0 .
-0375 0 -0125 0 -0125 O -0375 O 0125 0 -0125 0 .

0.5 0 0125 0 0125 0 -05 0 0125 0 -0125 0 .
0 0 -0125 O 0 0 0 0 a2s 0 0 0 ..
0 0 0 0 -0125 O 0 0 0 0 -0125 0 .
0 0 0125 0 0 0 0 0 -0125 O 0 0 ..
0 0 0 0 0125 0 0 0 0 0 -0125 0 ..
0.125 0 0125 0 0 0 -0125 O 0125 0 0 0 .
0.125 0 0 0 0125 0 0125 0 0 0 0125 0 .
-0125 0 -0125 O 0 0 0125 0 -0125 O 0 0 ..
P—l —|-0125 O 0 0 -0125 O 0125 0 0 0 0125 0 .
- 0 0.25 0 Q125 0 Q0125 0 025 0 -0125 O 0125 ..
0 -0375 0 -0125 0 -0125 O 0375 0 -0125 0 0125 ..
0 -037%5 0 -0125 0 -0125 O -0375 O 0125 0 -0125..
0 05 0 0125 0 0125 0 -0.5 0 Q125 0 -0125..
0 0 0 -0125 O 0 0 0 0 a25 0 0 ..
0 0 0 0 0 -0125 0 0 0 0 0 -0125..
0 0 0 Q125 0 0 0 0 0 -0125 O 0 ..
0 0 0 0 0 0125 0 0 0 0 0 -0125..
0 0125 0 0125 0 0 0 -0125 O 0125 0 0 ..
0 0.125 0 0 0 0125 0 0125 0 0 0 0125 ..
0 -0125 0 -0125 O 0 0 0125 0 -0125 O 0 .
0 -0125 O 0 0 -0125 O 0125 0 0 0 0125 ..
0.25 0 -0125 0 -0125 O 025 0 Q125 0 -0125 0
0.375 0 -0125 0 -0125 0 -0375 0 -0125 O 0125 0
0.375 0 -0125 0 -0125 O Q0375 0 Q125 0 -0125 0
0.5 0 -0125 0 -0125 O -0.5 0 -0125 O 0125 0
0 0 0125 0 0 0 0 0 -0125 O 0 0
0 0 0 0 0125 0 0 0 0 0 25 0
0 0 0125 0 0 0 0 0 -0125 O 0 0
0 0 0 0 0125 0 0 0 0 0 -0125 O
-0125 O 0125 0 0 0 0125 0 0125 0 0 0
-0125 O 0 0 0125 0 -0125 O 0 0 0125 0
-0125 0 0125 0 0 0 0125 0 0125 0 0 0
-0125 O 0 0 0125 0 0125 0 0 0 -0125 O (4 9)
0 0.25 0 -0125 0 -0125 O 025 0 Q125 0 -0.125 :
0 0375 0 -0125 0 -0125 0 -0375 0 -0125 O 0125
0 0.375 0 -0125 0 -0125 O 037 0 0125 0 -0.125
0 05 0 -0125 0 -0125 O -0.5 0 -0125 O 0125
0 0 0 Q125 0 0 0 0 0 -0125 O 0
0 0 0 0 0 0125 0 0 0 0 0 a2s
0 0 0 Q125 0 0 0 0 0 -0125 O 0
0 0 0 0 0 0125 0 0 0 0 0 -0.125
0 -0125 O 0125 0 0 0 0125 0 0125 0 0
0 -0125 O 0 0 0125 0 -0125 O 0 0 0125
0 -0125 O 0125 0 0 0 0125 0 0125 0 0
0 -0125 O 0 0 0125 0 0125 0 0 0 -0.125-



It is observed that various planar element shapes (samples are shéuwguia 4.2) could
be obtained by using the derived shape function constants, given iatiggu4.8, for
appropriate nodal degrees of freedom. This feature of the develmpedlation allows
accurate discretization of irregular shapes of flexible bodies. How#wershape function
polynomials for neighboring elements would cause discontinuities on the comieroerd
edges. The desired common edge shape might requfezatit nodal gradients for each of
the neighboring elements. This problem can be overcome by employing adttamrstraint
equations for each common nodes. However, this method increases thauwtiaér of
degrees of freedom in the problem to be solved to six times the total node nfonp&anar
problems. In addition, added constraint equations should be handkfdlbarit is clear that
adding constraint equations for assembly of the system equations is Bobaomical way
to use. Therefore, nodal gradientX(adr, dY/or, 0X/ds anddY/ds) should be changed or
forced to generate the same edge shapes for neighboring elements.syi$tem equations

can be formed by using general finite element assembly procedures.

As discussed above, using mapped s coordinates for nodal gradient definitions is not
appropriate. However, shape function polynomials can be generasdg bg using the
mapped coordinates. Therefore, additional virtual finite elements, wriek the same
mapped — scoordinates with dierent shape (or mapping) functions, are created on a virtual
Xv — Yy coordinate frame, which is constant and parallel to the glabalY frame, in order

to overcome incompatibility problem in gradients. Then, nodal gradients eandefined
with respect to the virtual coordinate frame. Consequently, shape famogdrix, which can
generate global coordinates and gradients at an arbitrary point deragré by using nodal
degrees of freedom, can be formulated. Various shape function matdoksbe formulated
depending on the choices made for virtual element’'s geometrical shaperaral shape
functions. Additionally, using dierent shape function polynomials for original elements than
Equation 4.2 would result alternative shape function matrices, also. Sothe afiethods,

that can be used for shape function matrix generation, are given inltbeifay subsections.
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Figure 4.2: Various planar flexible solid element shapes

4.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal degrees of freedom for ifi@ode of an arbitrary element is described

as given below.

0% oY, o% avi|'
=[xy = =2 4.10
ST X aXe oYy oYy (4.10)
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Real Finite Element Virtual Finite Element

Shap_e _function for Shape function for
real finite element s virtual finite element
A
4 (-1,+1) 3 (+1,+1)
> I

1(-1,-1) 2 (+1,-1)

Mapped Finite Element

Figure 4.3: Coordinate frames for Parallel Virtual Frame and First Ovittual Element
Mapping Method

In Equation 4.10, nodal gradients are defined with respect to the virbeatlimate frame
shown in Figure 4.3. The virtual element is bounded by straight lines ctingenitial node
coordinates as shown in the figure. Virtual coordinates at an arbit@n pn the element

can be found by general first order interpolation functions givervb36].

Xu(r, s) = Hy(r, s) °X (4.11a)
Yy(r. s) = Hy(r,9) °Y (4.11b)
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whereH,(r, s) is the first order shape function vectdX is the vector of initialX coordinates
of nodes andY is the vector of initialY coordinates of the nodes as shown in the following

equations.

Hy(r, s) = % 1-nN2-9 @+rnN@A-9 @A+nN@A+s @A-rA+y (4.12a)

.

OX:[oxl 0, Oq 0X4] (4.12b)
T

Oy — [OY1 OY2 0Y3 Oy4] (4.12¢)

Then, gradients with respect to the mapped s frame can be written in terms of nodal

gradients, which are defined in Equation 4.10, in compact form as gislewb

€5(r,9) = Tma(r. 9) €(r. 5) (4.13a)
&9 =Tm(r. 9 €%, 9 (4.13b)
where ) _
10 O 0 0 0
01 O 0 0 0
0 0 X 0 Yuu( O
Tml(r, S) _ v,r( ) V,I’( ) (414)
00 0 Xu(9 0 Y9
0 0 Xus(f) 0 Yys(r) O
00 0 XsN 0 Yy

Additionally, €5(r, s) and e(r, s) are vector functions used to evaluate global positions and

gradients at arbitrary points on the element as described below.

-
ers(r,s):[x(r,s) Y9 X:(9 Vi X9 \(S(r,s)] (4.15a)
T
&, S)=[X(r, 9 Y9 Xx (9 Yx(r.9 Xw(r.s) Yy s)] (4.15b)
Consequently, vector of nodal variablescan be converted into the form given in Equation

4.6,€®, as given below.
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ers = Tmap]_ e (416)

where the transformation matri¥,nap1, can be evaluated by using Equation 4.14 as given

below. )
Tme(re, S1) 0 0 0
0 Tmu(ro, 0 0
Toaot = m(r2, $) (4.17)
0 0 Tra(rs, S3) 0
0 0 0 Tra(ra, Sa) |

Finally, global coordinates and gradients with respect to the virtual fraiee abitrary point

can be written in terms of nodal variables by following the procedure dietow;

1. Substitute Equation 4.16 into Equation 4.8 to obtain polynomial constants as;

A=P Tap e

2. Substitute polynomial constants into Equation 4.3 in order to obtain vectotidan
used to evaluate global positions and gradients with respect to the mepfrathe as
given below.

&5, 9 = Q(r, P Trrap1 €
3. Then, substitute the equation above into Equation 4.13b as:

&r, 9 = Tmi(r, 9 Qr, P Trrap1 € (4.18)

Then, it can be written in a simple form given below.
er,s) =39 e (4.19)
where the shape function matrix is defined as;

S(r,9) = T (r, 9 Q. P Trrapt (4.20)

In Equation 4.20P~! and Tpyp is independent of local coordinates and time. The derived
shape function ensures continuity of nodal parameter at the neighlmaritegjocation. Global

coordinates are continuous over neighboring element edges, butwtntin gradients is
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only guaranteed on node locations. Therefore, stresses or straimoiié continuous over
element edges but be continuous over node locations. Continuougsttegsgistributions

can be created by linear interpolation over nodal stresses or strainstipqocessing stage.

While using Method 1 (Parallel Virtual Frame and First Order Virtual Elemdapping
Method), the most diicult part is to define initial nodal gradient@X/dX,, dY/0Xy, 0X/0Yy

and dY/dY,) of the elements. It could be very hard to realize their geometrical meaning
for elements having curved edges, initially. In order to overcome tliicudlity, alternative
nodal representation, Virtual Element Edge Frame and First Order Miteiment Mapping,
have been developed. However, while the method makes definitions dfgrad&nts easier,

it brings a new restriction for node numbering. Details of the method is giveheimext

subsection.

4.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element
Mapping

In this method, nodal gradients are redefined with respect to the edge &hvirtual finite
element in order to make geometrical meaning of nodal gradients more tamtisle. As
shown in Figure 4.4, first and second nodes, and third and fourthsremdeconnected with
straight lines, wheré&, is constant. Similarly, second and third nodes, and fourth and first
nodes are connected with straight lines, whBgeis constant. These four straight lines
connecting the nodes form the boundaries of the virtual elemeXy-vi, frame. In fact,
R/-Sy is not a new coordinate frame, but they are products of vityaY, frame. If a point,
which has the mapped coordinatesgf &,) on the element, is considered in order to clarify
R, andS, definitions, thenR, is defined as the magnitude of the vector from the virtual point
at (-1, sy) to the point ati, sy). Similarly, S, is defined as the magnitude of the vector from
the virtual point ati(;, —1) to the point ati(,s). Therefore, they can be defined with respect

to the virtual framex,-Y,, defined in Equation 4.11, as given in the following equations.

RAT) = (Hur (NXO)2 + (Hur ()YO)? (4.21a)

SU9 = V(Hu(9XO? + (Hus(9Y0)? (4.21b)
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where

1+r)
4

+ S
2 )[—1+ra —1-1a l+r1a 1—raJ (4.22b)

Hur(r) = Hy(r, sa) — Hu(-1, sa) = [—1 +S 1-s5 1+s3 -1- Sa] (4.22a)

1

Hys(S) = Hu(ra, s) = Hy(ra, —=1) =

As can be seen from Equation 4.2,,is a function ofr andS,, is a function ofs, only.

Real Finite Element Virtual Finite Element
Shap_e .function for Shape function for
real finite element virtual finite element

S
A
4 (-1,+1) 3 (+1,+1)
> I

1(-1,-1) 2 (+1,-1)
Mapped Finite Element

Figure 4.4: Coordinate frames for Virtual Element Edge Frame and FidérOvirtual
Element Mapping Method

Gradients of virtuaR,-S, frame with respect to the mapped sframe at an arbitrary point
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on the element can be written explicitly as given below.

R, 1
a_l‘v = Z- \/(CX1 + sz S)2 + (CYl + Cyz 8)2 (4.23&)
4S, 1
6_sv = Z \/(ng + Cx2 I')2 + (Cy3 + CYZ I’)2 (423b)
OR, Sy
Y _=V_0 4.23c
Js or ( )
where
Cx1=- X1+ X+ %3 - OX, (4.24a)
Cxz = + %% — %%, + O%3— OX, (4.24b)
Cx3 = — Oxl - OXZ + OX3 + OX4 (424C)
Cyi=-"Y1+ % + O3 - Oy, (4.24d)
Cy2 =+ - O + Ov5— Oy, (4.24€)
Cyg = - OY]_ - OYZ + OY3 + OY4 (4.24f)

Then, nodal variableg, for theit" node of an arbitrary element can be written as follows.

X, oY, oxi ovi |
—|IX Y - 4.25
N "R, AR, 89S, A4S, ( )

In Equation 4.25X; andY; are coordinates of thé node in global frame. In order to make
the definitions of nodal variables more clear, the finite element given in &@dris redrawn
with nodal gradient vectors in Figure 4.5. The gradient vectors arayaliangent to the
element edges as shown. Additionally, it is advised to use unit vectoraiftaformed finite

elements despite non-unit gradient vectors are mathematically possible.
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Figure 4.5: Nodal gradient vector representation for Virtual ElemegeHBtetame and First
Order Virtual Element Mapping Method

The gradients with respect to the mapped s frame can be written in terms of the nodal

gradients §X/0R,, dY/IR,, 0X/0S, anddY/dS,) as given in the following equation.

€3(r, ) = Tma(r, 9) €(r, 9) (4.26a)
e, s) = Tma(r. 8 €°(r, 9) (4.26b)
where »
1 0 0 0 0 0
0 1 0 0 0 0
0 0 Ry(s 0 0 0
Tma(r, 9) = v.r(S) (4.27)
00 0 RS O 0
00 O 0 Sw() O
00 o 0 0 Sus(n)]
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Additionally, e(r, s) is a vector function used to evaluate global positions and gradients at

arbitrary points on the element as described below.

&r,s) = [X(r,s) Y(r,9) Xgr(r,9 Ygr(r,s) Xs,(r,9 Y,Sv(r,s)T (4.28)

Consequently, vector of nodal variablescan be converted into the form given in Equation

4.6,€%, as given below.

where the transformation matrif,map2, can be evaluated by using Equation 4.27 as given

below.

»Tmz(rl, S1) 0 0 0
0 Tp(ro, 0 0
0 0 Tro(rs, S3) 0
0 0 0 Tolias)]

Finally, global coordinates and gradients with respect to the virtual franaa arbitrary
point can be written in terms of nodal variables by following similar procedi@scribed

for Method 1 as given below.

e(r’ S) = Tm2(r’ S)_l Q(r’ S)P_leapZ e (431)

Then, it can be written in a simple form given below;

er,s) =9S(r,9) e (4.32)

where the shape function matrix for Method 2 is defined as;

S(r,9) = Tra(r, 971Qr, P Trrap2 (4.33)
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Transformation matrix for Method 4,map2, is a diagonal matrix and can be written in explicit

form as given below.

Tmap2 = | 24x24 (4.34)

T

T

NS i N LNy

NG NG ST T
Ny

N NS NG ST

wherel,, L, L3 andL4 represent the virtual edge lengths between nodes 1 and 2, nodes 2
and 3, nodes 3 and 4, and nodes 4 and 1, respectively. Additionally, is a 24x 24 identity

matrix.

While virtual element edge framB, — Sy, making geometrical definitions of nodal gradients
easier, it brings two major restrictions. First restriction is related to the nadering.
Neighboring elements should be numbered such that, their common virtual ¢ledgas
should refer to the same virtual coordinate. Indeed, if a common virtual elszdge refers
to a constaniR, curve of one of the neighboring elements then it should refer to the cafgtan
curve for the other element. Therefore, the same nodal gradients wiitlieable for both of
the elements. The second restriction is about the geometrical descriptithesregighboring
elements. Due to nodal gradient definitions, discontinuous element edgéitnas can not

be modeled. Actually, this is the outcome of the nodal gradient definitions.

4.1.3 Method 3: Initial Element Frame Mapping Method

In this method, initial shape function polynomials formulated using Method 1 @péed

instead of virtual frame having first order mapping as shown in FigureMoglal gradients
are defined with respect to the initial element configuration. Therefdtig| inodal gradients
are always 1 or 0. Curvatures of element edges are created by augitatients defined with

respect to the virtuaX, Y, frame.
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".@ ...........
1
Real Finite Element Initial Finite Element Virtual Finite Element
Shape function for
real finite element Shape function for
virtual finite element
S
A
4(-1,+1) 3 (+1,+1)
> r
1(-1,-1) 2(+1,-1)

Mapped Finite Element

Figure 4.6: Coordinate frames for Initial Element Frame Mapping Method

Then, nodal variables, for theith node of an arbitrary element can be written as follows. As

seen from the equation, nodal gradients replaced with the actual dei@nrgeadients.

X aY, X oY, |
90X 90X a0y §oY

8 =|XY (4.35)

In order to find shape function matrix for the method, the global position yewatoich
contains gradients with respect to the mapped frame, of an arbitrary point on the element
are rewritten in the following two equations for an arbitrary tireé(¢, s)) and for the initial

configuration € °(r, s)).

€3(r,s) = S5(r, 9)€’® (4.36)

0 %(r, ) = S5(r, 9 %¢'S (4.37)
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where the shape function matrix for the mapped frame is defined as;

SS(r,s) = Q(r, s)Pt (4.38)

By using Equations 4.36 and 4.37, one can derive global position vertoiyding
deformation gradients, at an arbitrary point in terms of nodal variablethéomapped - s

frame,€'S, as given below.

X(r,s)

Y(r,s)
AX/0 OX(r,
e, s) = [O7X(r.9) = Tma(r,9)€'® (4.39)
aY/d °X(r, s)
X/ 9Y(r, 9)

10Y/0°Y(r,9)|

where

Tma(r,s) = (4.40)

and
0 T s\T ars s\" ars\oys
det = (¢ ((s5)" 5 - (s)' 5¢7) %€ (4.41)
In Equations 4.40 and 4.48S represents thi" row vector ofS's.

Finally, nodal variable vector with respect te- s frame can be written in terms of nodal

variable vector of the element as described below.

&%= (Trap) € (4.42b)
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where

Tma(rs, s1)
Tma(ra2, s2)
Trmaps = (4.43)
Tra(rs, S3)

| Trma(ra, Sa))|

Then, global position and gradients with respect to the initial configurati@n @arbitrary
point on the element can be found by substituting Equation 4.42 into Equati9rag @ven

below.

&1, S) = Tra(r, )T rapae (4.4)

In addition, the shape function matrix for Method 3 can be defined as;

S(r,9) = Tra(r, T s (4.45)

The most important advantage of Method 3 is simple generalized elastic fersatibn.
Elastic force vector can be found directly by using nodal gradients. A¢thpvirtual element
shape functions do not appear in the formulation, they are still needetéfermination of
initial nodal variables%¢'s, containing gradients with respect to the mappeds frame. If
the shape function polynomials for the real finite element and the virtual filgiteents are
identical for all three methods, then the results to be obtained will be identitarefore,
selection of appropriate method should be based on the preferred geahrepresentations

and complexity of the formulations.

4.1.4 Other Applicable Methods for Shape Function Matrix Formulation

Basically, irregular shaped quadrilateral finite elements require two slHiapetion
polynomials for shape function matrix generation. Depending on the selwpe functions,
various alternative solution methods can be generated using one of tlee riathods

described above.
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4.2 Mass Matrix Formulation

All of the existing classical finite element formulations for the large deformatiahrotation
analysis lead to nonlinear mass matrices [8]. However, it is just a constarix maANCF.
This feature of the formulation is valid for the newly developed planar elemalsis. Mass
matrix can easily be formulated by writing the kinetic energy equation at anamgbttme,t,

for an element as given in Equation 2.58. In the equatjpand'V are density and volume
of the element at an arbitrary time, t. The velocity vectgrat an arbitrary point on the
element can be obtained byffdirentiating the nodal position vector &s= S;,(r, ) (‘e),
where,S;5(r, S) is the reduced shape function matrix, which contains only the first and the
second rows of shape function matrix given in Equations 4.20 or 4.33 br £dnsity and
volume at an arbitrary time, can be written in terms of initial density and volume by using
deformation gradient matrix] [36]. Then, the mass matrix can be found by substituting

velocity vectory, and Equation 2.59 into Equation 2.58 as given below.

1 % 4. .
T=3 f ﬁ (‘") S12"S12('e) [59]d OV (4.46a)
tv
. %(téT) f % S12"S12d V| ('8) (4.46D)
ov

T = %(téT)tM (‘e) (4.46¢)
™M = f % S157S1,d OV (4.46d)

ov

As seen in Equation 4.46d , mass matrix at an arbitrary tith@ges not depend on time. It
can be evaluated once by using the initial density and volume, then it cart@@uany time

step during the solution process. However, it is verfidilt to integrate mass matrix over
initial complex volume on global coordinate fran®¥/. Therefore, it should be transformed

into the mapped - sframe in order to make volume integration easier as given below.
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M = fp S12"S12|D|drds (4.47a)

VrS
Xo 0Xo
_9%o _|"ar  as
D‘W‘ & & (4.47D0)
or Js

4.3 Generalized Elastic Forces

In the derivation of generalized elastic forces, continuum mechanicoagphas been used.
The generalized elastic forces of an arbitrary element can be dersind strain energy
equation. The strain energy of an element at an arbitrary time, t, can beiltded by
using Green-Lagrange strain an Piola-Kirchhdf stress tensor definitions as given in the

following equation (Total Lagrangian Formulation) [32].

1 T
) — t t 0
U=3 [ (")E(e)a (4.48)
oy
whereE is the matrix of elastic cdcients ande is the vector form of the strain tensor,
tem. The matrices of elastic cficients for plane-stress and plane-strain problems are given
below [36].

1 v O
= ﬁ y 1 0 (plane — stress) (4.49a)
0 0 1-v
1 g ! 0
-V
EQL-v) v .
= —~ 1 0 (plane — strain) (4.49Db)
QL+v)(1-2v) 10v . 2(1-2)
(1-v)

where E andy are modulus of elasticity and Poisson’s ratio of material. The generalized
elastic forces of the element can be obtained Ilffedintiating the strain energy (Equation

4.48) with respect to the nodal variables as given in the following equation.

87



atu o |1 ate\"
tQk = — = —{ — ftETEtSdOV = f(@_t(;) Etsd OV (450)
oy oy
In order to find nonlinear strain tensor, deformation gradient should figew in terms
of nodal variables. Due to fiierent nodal variable definitions, formulation of deformation

gradients for Method 1, Method 2 and Method 3 will b&elient as given below.

axt 2 x| [ax x| X% X x|[oX 9%

J= — 0Xo Yo — Xy Yy IXy Yy _ IR, Sy IR, oSy (4 51)
oxX0 lar oy N Ay || Yo Y Ay || Yo '
Xo Yo Xy Yyl LoXy oYy oR, Syl oR, oSy

Method 3 Method 1 Method 2

In general form, deformation gradient tensor can be written as giviewbe

- lsﬁe %e‘ (4.52)

Sie Se

diy diz| [(diiSz+dnSs)e (dioSs+d0Ss)e
(1154 + d21Sg) € (d12S4 + d22Sg) €

do1 d22

In the equationg 1, d12, d»1 andd,; are the elements of inverse of initial nodal gradient tensor

and defined in the equation given below for the three shape function mattirodse

-1

4y dpp| 2o 2] S0 S0
e P L e S Vethod 1 (4.532)
do1 2| |5 W _S4°e S;OeA
i - -1 -1
diy d 9% 9% % SO%
el I =€ € Method 2 (4.53b)
o1 2| |G »S4oe SGOeA
dyy d 10
aali ... Method 3 (4.53c)

Then, general definition of nonlinear Lagrangian strain tensor carrittewas;

1
om =5 (59T -1) (4.54a)

1 eTNlle— 1 eTlee

2

Em =

(4.54b)

e'Nie  €Npe-1
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where

N11 = (d11Ss + do1Ss) " (d11Ss + 021Ss) + (d11Ss + 021Ss)" (d11Ss + do1S6) (4.55a)
N1z = (d11Ss + do1Ss) " (d12Ss + 022Ss) + (Ch1Ss + 021S6) " (d12Ss + d22Ss) (4.55Db)
N2z = (012Ss + 0p2Ss) " (0h12Ss + 0p2Ss) + (d12Ss + 022Ss) " (1254 + G22Ss) (4.55c¢)

Then, the strain vector and its partial derivative with respect to the nad&bles can be

written in terms of the nodal variables by using Equation 4.54b as given below

£11 eTN]_]_e— 1
1

€ = |exp| = E eTsze— 1 (456)

£12 eTlee

eTNll

oe

_ T
— = e'N 4.57
o 22 (4.57)

E eT (le + leT)

Finally, the generalized elastic force equation can be written in terms of nadables by

substituting Equations 4.56 and 4.57 into Equation 4.50 as given below.

T
eTN]_]_ eTNlle— 1
1
Qk = Ef e'Nj» E|e"Nye—1|ID| drds (4.58)
Ve eT (N]_z + leT) 2eTN12e

Evaluation of the generalized elastic force vector can be performedrhgnizal integration
methods like Gauss-Quadrature method. Additionally, tangefriess matrix can be used for
nonlinear static analysis. It can be formulated by partifiedéntiation of generalized elastic

force vector with respect to the nodal variables as given below.

_ 0Qk
Ke= 22 (4.59)
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4.4 Generalized External Forces

If a forceF acts at an arbitrary point on the finite element, the virtual work done by tice fo
for a virtual displacement @ir can be written aér, wherer is the global position vector of
the point of application of the force. The virtual change in the vectoan be expressed in
terms of the virtual changes in the nodal variaklelherefore, the generalized external forces
associated with the absolute nodal coordinates can be defined [8]iBythe definitions of
global position vector given in Equations 4.19 or 4.32 or 4.44, the geneddiarce vector,

QE, can be found for the point loads as given below.

FTor = FTSpp0e = Qfde (4.60a)

Qr = S[,F (4.60D)

whereS;, is a matrix formed by first two rows of the shape function matrix. Other loading

types can be derived by using the virtual work principle.

4.5 Equation of Motion for ANCF with Virtual Element Mapping

Using the mass matrix (Equation 4.47a) and generalized force vector t{&@guh58),

equation of motion of the flexible multibody system can be constructed as lgglew [8].

Mé+ Qy = Qf (4.61)

Using the generalized force vector definitio (= QrF — Q) and including constraint
equations, equation of motion can be written in more compact form as givew.bklere,

Ais the vector of Lagrange Multipliers.

M (:T_1

cC 0

&

A

Q] (4.62)
0
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If the inertial éfects are ignorable, then the problem can be reduced to static case bgggnor
kinetic energy terms in the equations. In order to solve nonlinear static prspleerative

Newton-Raphson algorithm can be applied by using tangdfresis matrix.

4.6 Patch Tests

In order to verify the developed ANCF and the proposed finite elememiémar problems,
some of the patch tests proposed by Richard H. Macneal and RoberaiddeH [35]
have been performed for both static and dynamic solution proceduresonlimear static
solutions, Optimization Toolbox in MATLAB has been used. However, simple explicit
direct integration algorithm presented in Chapter 2 has been utilized intorgelve transient
dynamics problems. In dynamic solutions, loadings are converted to timedkgdanctions
which are zero, initially. It is observed that steady state response ofbthindransient

solutions are almost identical to solutions obtained for static cases.

4.6.1 Membrane Plate Patch Test

The first patch test problem given in Figure 4.7 is used to verify the constain property
of finite elements. Height, length, thickness, modulus of elasticity and Posssaiio of the
plate area = 0.12,b = 0.24,t = 0.001,E = 1.0x10° andv = 0.25, respectively. Initial nodal

variables with respect to Method 1 are given in Table 4.1.

Y

Figure 4.7: Membrane plate patch test [35]

91



Table 4.1: Initial nodal variables for membrane plate patch test

X | Y [oX/oXy | aY[OX, | 0X[dYy | 0Y/0Yy
Initial Configuration

Node 1| 0.04 | 0.02 1 0
Node 2| 0.18 | 0.03
Node 3| 0.16 | 0.08
Node 4| 0.08 | 0.08
Node5| O 0

Node 6| 0.24| O

Node 7| 0.24 | 0.12
Node8| 0 | 0.12

R R R R R PR
OO0 000 oo

OO0 000 o oo
RRRRP R R R e

Final configurations of external nodes have been determined usingtimeléry conditions,
u = 10"3(x+y/2) andv = 10~3(y + x/2), given in [35]. Nodal boundary conditions have been

converted to functions of time for transient dynamic simulation as given below.

a(t) = % +Ae f(t) (4.63)

whereeg is thei nodal variable%g is the initial value ofi™ nodal variable ande is the
steady state change i§f nodal variable of the system. Additionally, time dependent function

is given below [40].

05(1- t/t, if t<t
H) = (1-cos(mt/t)) i < (4.64)
1if t>t

wheret; is the rise time for boundary conditions. In the simulatio®8Gs rise time has been

used. Selected density and time step size &@0d 1x 10°°, respectively.

Steady state response of the system has been obtaindiBa d the simulation. Obtained
stresses are shown in Figures 4.8, 4.9 and 4.10. As seen from figuess, distributions are
almost constant over elements. Comparison of the results with theoretica$\atkilisted in

Table 4.2.
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Figure 4.8: Membrane plate patch tesk distribution

014

012z

01

0.os

0.08

0.04

0.0z

-0.0z

1333766

1333.75655

1333.765

13337545

1333.784

1333.7535

1333.763

0.05 01 015 02

Figure 4.9: Membrane plate patch tesb distribution

Figure 4.10: Membrane plate patch tesgt distribution
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Table 4.2: Results for membrane plate patch test

Theoretical Solution [35] | Average of the result| Error
€x 1073 1.0006x 1073 0.057%
& 1073 1.0006x 1073 0.057%
y 1073 1.0007x 1073 0.069%
Ox 1333 1333755 0.057%
oy 1333 1333755 0.057%
Txy 400 400277 0.069%

4.6.2 Straight Cantilever Beam Patch Test

Patch test problems proposed by Richard H. Macneal and RobertrdeH&5] are given in
Figure 4.11. Hects of skew angle and taperness of the element on the results can leelverifi
by these tests. The first patch test contains regular rectangular eleragintg the aspect
ratio of 5. In the second test, 4&per angle is implemented to the elements. At the last case,
elements are exposed to°48kew angle. The beam to be solved has the length of 6.0, the
width of 0.2, the depth of 0.1, modulus elasticity 0d210” and Poisson’s ratio of 0.3. Patch

test problems are solved for in-plane shear and extension cases withferce at the free

end.

N

h

\ | | | 1 | |
a

bq 450 ?\ A “sb

N N d M i ™~ ]

\ b

N /{\w

N P P yd i z |

)

N c

Figure 4.11: Straight cantilever beam patch test [35]
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Finite element discretization of the beam is shown in Figure 4.12 and nodatcivities of
elements are described in Table 4.3. Initial nodal gradients are deterntoedliag to the
virtual X, — Y, frame, which is described in Section 5.1.1 as Method 1, and listed for regular
trapezoidal and parallelogram shape elements in Table 4.4. Fixed bguwuiatitions are

applied forX, Y anddX/dY, degrees of freedom of Node 1 and Node 8.

Y

PR ) JN N - R A N A C) NN A M N

Figure 4.12: Discretized beam for patch test problem

Table 4.3: Connectivity of the elements

1% Node | 2"9 Node | 3'9 Node | 4™ Node
Element 1 1 2 9 8
Element 2 2 3 10 9
Element 3 3 4 11 10
Element 4 4 5 12 11
Element 5 5 6 13 12
Element 6 6 7 14 13

Theoretically, regular element shapes will result continuous distributionsalf stress
components. However, discontinuous distributionssfey andoxy will occur at the element
transitions for the trapezoidal and parallelogram shaped elements givEmgune 4.11.

Despite some discontinuities on two stress components, discontinuity on voas\isess
distributions for trapezoidal and parallelogram elements are negligible. obtegned von
Misses stress distributions for regular, trapezoidal and parallelogiemmeats are given in
Figures 4.13, 4.14 and 4.15. As can be seen from the figures, disdtasrn trapezoidal
and parallelogram elements are negligible. In fact, just a single elementug/eror the

beam problem as given in Figure 4.16 due to third order shape functipngmials used.

Displacements on the load directions and their errors are listed in Table 44$eeAson the

table, all of the results are in the acceptable ranges defined in the publiohtachard H.
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Table 4.4: Initial nodal variables of straight cantilever beam for Method 1

X = Y | OX/OX, | OY[OXy | 0X/0Yy | OY/OYy

= ©

g2

£1§ e

S

x| - | o
Nodel | O | O | O 0 1 0 0 1
Node2 | 1 [1.1/09| O 1 0 0 1
Node3 | 2 {1919 O 1 0 0 1
Node4 | 3 [3.1/29] O 1 0 0 1
Node5| 4 {3939 O 1 0 0 1
Node6 | 5 | 51|49 O 1 0 0 1
Node7 | 6 | 6 | 6 0 1 0 0 1
Node8 | O | O | O || 0.2 1 0 0 1
Node9 | 1 (09| 1.1 0.2 1 0 0 1
Node 10| 2 | 21| 2.1/ 0.2 1 0 0 1
Node1l| 3 | 29| 3.1| 0.2 1 0 0 1
Node12| 4 | 4.1|4.1| 0.2 1 0 0 1
Node 13| 5 | 49| 5.1 0.2 1 0 0 1
Nodel14| 6 | 6 | 6 || 0.2 1 0 0 1

Macneal and Robert L. Harder [35]. As stated before, single reglgment, which has the
aspect ratio of 30, results almost exact displacement solutions. The maxmainhnas been
obtained at the trapezoidal element solutions. Actually, this is not due to tbegs of the
elements but due to filerences in the edge lengths of neighboring elements. It is expected
that the error will be reduced if the number of elements is increased ewémeftrapezoidal

element shapes.

Figure 4.13: Von Misses stress distribution for straight cantilever beanregtiar elements
(In-plane shear)
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Figure 4.14: Von Misses stress distribution for straight cantilever beam tvétiezoidal

elements (In-plane shear)

Figure 4.15: Von Misses stress distribution for straight cantilever beampaithllelogram

elements (In-plane shear)

Figure 4.16: Von Misses stress distribution for straight cantilever
rectangular element (In-plane shear)

Table 4.5: Patch test results for straight beam

beam avidingle

Maximum tip displacement on the loading direction

In-plane shear

Extension €107°)

Exact | Calculated| Error Exact | Calculated| Error

Regular 0.1081| 0.1081 0.00% 3.0 3.0126 0.42%
Trapezoidal | 0.1081| 0.0998 | -7.68% || 3.0 3.0205 0.68%
Parallelogram| 0.1081| 0.1077 | -0.37% || 3.0 3.0150 0.50%
One Element| 0.1081| 0.1077 | -0.37% | 3.0 29847 | -051%
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4.6.3 Curved Beam Patch Test

Curved beam patch test problem, proposed by Richard H. Macne&aett L. Harder [35],
is discretized as given in Figure 4.17. Element connectivity matrix given lmeT& 3 has
been used with the nodal variables defined according to Method 2 andifistedle 4.6. The

problem has been solved using the following parameters.

Inner /Outer Radius = 4.12/4.32
Arc Angle = 90°
thickness = 0.1

E = 1.0x10’

v =025

Figure 4.17: Discretized curved beam for the patch test problem
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Table 4.6: Initial nodal variables of the curved beam for Method 2

Node X Y 0X/0Ry oY/0R, 0X/0Sy aY/aSy
1 0.2 0 0 1 -1 0

2 0.3403856| 1.066334| 0.2588190|| 0.9659258| -0.9659258| 0.2588190
3 0.7519753, 2.06 0.5 0.8660254| -0.8660254 0.5

4 1.406720 | 2.913280| 0.7071068|| 0.7071068| -0.7071068| 0.7071068
5 2.26 3.568025| 0.8660254 0.5 -0.5 0.8660254
6 3.2537 | 3.979614| 0.9659258|| 0.2588190| -0.2588190| 0.9659258
7 4.32 412 1 0 0 1

8 0 0 0 1 -1 0

9 0.1472004| 1.118098| 0.2588190|| 0.9659258| -0.9659258| 0.2588190
10 | 0.5787703| 2.16 0.5 0.8660254| -0.8660254 0.5

11 1.265299 | 3.054701| 0.7071068|| 0.7071068| -0.7071068| 0.7071068
12 2.16 3.741230| 0.8660254 0.5 -0.5 0.8660254
13 3.201902 | 4.172800| 0.9659258|| 0.2588190| -0.2588190| 0.9659258
14 4.32 4.32 1 0 0 1

The main objective of the test is to verify accuracy of finite elements unaebiced loading
conditions. The curved beam is subjected to both normal and sheaestrétis an in-plane

shear force at the tip.

The original patch test problem contains 6 elements. However, the totalanwhblements
can be reduced to 3 in the proposed formulation without losing accuracyessss and
displacements. As the number of elements decreases discretized geonmétryostiter
from the original geometry. Using single element for the finite element modetisglts
geometrical discrepancies and unacceptable stress distributions. étpgaiagle element can
be used if the only concern is the accuracy in the tip displacement. For the Simuwidth

3 elements, Nodes 1, 3, 5, 7, 8, 10, 12 and 14 have been used withagirdh¢heir nodal
descriptions defined in Table 4.6. Similarly, Nodes 1, 4, 7, 8, 11 and lellbeen used for 2

elements, and Nodes 1, 7, 8 and 14 are used for single element simulations.

The von Misses stress distributions for 6 and 3 total element solutions\ee igi Figures
4.18 and 4.19. As seen from the figures, stresses are continuouthevelement edges.
Continuity is also valid for all stress components due to identical elementshapd in the
discretization of the geometry. Tip displacements obtained by using 1, 2,@tatal number
of elements in the loading direction are listed in Table 4.7. As the total numberroéete

decreases, the error encountered increases. However, ertioestip displacement are in the
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acceptable range even for a single element.
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Figure 4.18: Von Misses stress distribution for curved beam with 6 elemlenpdane shear)
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Figure 4.19: Von Misses stress distribution for curved beam with 3 elemlenpdane shear)
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Table 4.7: Patch test results for the curved beam

Maximum Tip Displacement

Theoretical| Calculated| Error
6 curved elements 0.08734 0.087122 | —0.25%
3 curved elements 0.08734 0.086365 | —1.12%
2 curved elements 0.08734 0.084826 | —2.88%
1 curved element] 0.08734 0.083818 | —4.03%

4.7 Discussion

In this chapter, a completely new ANCF has been developed by using ‘iveteiments”.
Then, itis implemented to planar engineering problems. Accuracies of teéoged methods

and the proposed finite element formulation have been verified by somesiftiaard patch

test problems proposed by Richard H. Macneal and Robert L. HEB8Er

Average of the grades for the proposed finite elements.iFhe lowest grade, which is
B, has been encountered in the test of in-plane loading of straight beantrapizoidal
elements. However, it is still in the acceptable range. The patch test relsoltstisat the
proposed formulation works well for planar problems. However, thests t® not cover all
of the geometrical shapes, which could be created with ANCF with Virtual EleMapping.

Therefore, the proposed method still needs to be verified for other gecahshapes. These

additional verification tests are left as future studies.
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CHAPTER 5

ANCF FOR PLATE AND SHELL ELEMENTS HAVING
IRREGULAR SHAPES

Currently, available ANCF's for quadrilateral plate and shell elements iditdrature can

only handle regular shapes like square or rectangle. However, tipoged methods in
Chapter 4 can be adapted to plate and shell elements in order to handléirsdtapes of
plate and shell elements, also. In this chapter, ANCF with Virtual Element Mgpyas been
implemented to four noded plate and shell finite elements. Presented formuldiese on

the generalized plate assumption. In addition, shape functions for thinesiselnptions are
also derived in the chapter. Therefore, thin plate and shell problemsasdly be solved by

using the derived shape functions and following the steps of generaliatdformulation.

5.1 Irregular Shaped Quadrilateral Finite Element Represenation and Shape

Function Creation for Generalized Plate Problems

In the generalized plate formulation the mappecbordinate is added to the formulation
presented in Chapter 4. One can chose the mapped coordinate framédgrigure 5.1 as a
local frame of the finite element. Then, the nodal degrees of freedom arftétrary element

at thei® node should be written as given below.

S _|xy z 2t 22AA 7 1A ZA 5.1
o " 9r o or ds s ds ot ot ot (5.1)
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Figure 5.1: Mappedst coordinate frame for the generalized pfateell elements

Then, various geometrical finite element shapes could be created by imposiper
polynomial shape functions for global coordinates. The shape funsttected for the

generalized plate problems is given in the following equations.

12
X=) pa=p'a (5.2a)
i-1
12
Y=> pbi=p'b (5.2b)
=
12
Z= Z pc=p'c (5.2¢)
=
pr=[1rstrsrtstrstr® & r’srs 13 & r¥srs] (5.2d)

In the equation,a, b andc are vectors of polynomial constants, apds the vector of
monomials of the shape function. Vector of polynomial constants could meufated in

terms of nodal degrees of freedom of the element as given below.

d¥ = Q(r, s, A (5.3)
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where

Q(r,st) =

pT(rst) O
0 pT(r.st)

0 0

pr(r.st) 0
0 pi(r.s.t)

0 0

pi(r.st) 0
0 p(r. s )

0 0

pi(r.st) 0
0 pL(r.s.t)

0 0
A= [aT

0
0
p'(r,st)
0
0

pr(r. s t)

pi(r, s 1))

bT CT]T

(5.4a)

(5.4b)

and,r;, s andt; represent the mapped coordinates of ifAienode on the element and are

defined as given below.

[rerorgrg=[-1 +1 +1 —-1]

[t & 3 4]=[-1 -1 +1 +1]

1tttz =[000(

(5.5a)
(5.5b)

(5.5¢)

While the ranges af ands are between-1 and+1, the range ofis between-°t/2 and+°t/2,

where® is the thickness of the flexible structure.

Linear set of algebraic equations to be solved&aran be derived by using Equation 5.3 for

all four nodes of the element as given in the following equation.

g9 =PA

A =p e
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where

7Q(r1, St, tl)i
b_ Q(r2, 2, 1) (5.7a)
Q(rs, 3, t3)

|Q(ra, S, 1a))

Then, vector of polynomial constants, can be found by using Equation 5.6.b. Additionally,

P~1 always exists and is constant as given in the previous formulations.

Various 3D plat¢gshell element shapes (samples are shown in Figure 5.2) could be gdnerate
by using the derived shape function polynomials, given in Equation 5.@pjoropriate nodal
degrees of freedom. This feature of the developed formulation allowsatecdiscretization

of irregular geometries. However, the shape function polynomials fohbeigng elements
would cause discontinuities on the common element edges as in the planar eleresensed

in Chapter 4. The desired common edge shape might requfegatit nodal gradients for
neighboring elements. This problem can be overcome by changing argoradal gradients
(0X/or,0Y[ar,dZ]or, 0X/ds, Y ]S, 0Z]ds, dX/dt, dY[dt, dZ/at) to generate the same edge
shapes for neighboring elements. Then, system equations can be foynuesihg general

finite element assembly procedures.

As discussed above, using mapped coordinates for nodal gradient definitions is not
appropriate. However, shape function polynomials can be generasdg bg using the
mapped coordinates. Therefore, additional virtual finite elements, wtdek the same
mapped st coordinates with dierent shape (or mapping) functions, are created on a virtual
XvYvZ, coordinate frame, which is constant and parallel to the globé&l frame, in order

to overcome incompatibility problem in gradients. Then, nodal gradients eardefined
with respect to the virtual coordinate frame. Consequently, shape famogdrix, which can
generate global coordinates and gradients at an arbitrary point deraerg by using nodal
degrees of freedom, can be formulated. Various shape function mataokkbe formulated
depending on the choices made for virtual element’s geometrical shaperaral shape
functions. Additionally, using dierent shape function polynomials for original elements than

Equation 5.2 would result alternative shape function matrices, also. Sothe afiethods,
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that can be used for shape function matrix generation, are given inltbwifay subsections.

Figure 5.2: Various 3D platshell element shapes

5.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal degrees of freedom for itR@ode of an arbitrary element is described

as given below.

e=|xvz ot 2028 00 90 98 O 20 2 (5.8)

In the equation, nodal gradients are defined with respect to the virtaadioate frame shown
in Figure 5.3. Mapping functions for virtual coordinates at an arbitraipton the element
can be constructed by using interpolation polynomial of a general fidgranterpolation

functions for 3D isoparametric hexahedral elements [36] as given irotloeving equation.

Xy(r,s.1) = Hy(r, 9) ( OX +1°X) (5.9a)
Yo(r. s 1) = Hy(r, 9) (O + 10 ) (5.9b)
Z,(r.s.t) = Hy(r.9) (°Z +1°Z,) (5.9¢c)
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Real Finite Element

Shape function for
real finite element

Virtual Finite Element

Shape function for

s virtual finite element
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4 (-1,+1,0) 3 (+1,+1,0)

1(-1,-1,0)

2 (+1,-1,0)

Mapped Finite Element

Figure 5.3: Coordinate frames for Parallel Virtual Frame and First Oviiléwal Element

Mapping Method

where

HV:% 1-r1-9 @A+nN1-9 @A+nN@+s (A-nN@A+9

Oy — [oxl
oy — [OYl
07 _ [021
0X ¢ = [OXM
Oy, = [OYl,t

OZ,t — [Ozl,t

T
0X2 Ox3 Ox4]
T
OY2 0Y3 OY4]
T
022 OZ3 024]
T
%o OXay Ox4,t]
T
o OYay 0Y4,t]

.
0Zp¢  9Z3; OZ4,t]

(5.10a)
(5.10b)
(5.10c)
(5.10d)
(5.10€)
(5.10f)

(5.10g)

As seen from Equation 5.9, the virtual 3D element is constructed by ustraphyanitial node
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locations but also the initial gradients in the thickness directions. Therdfmse gradient

terms should be defined, initially. Then, three of the nodal gradients apgéaEquation 5.8

are redundant and do not have to be defined, initially. In the thesis, gtacdiutl gradients

are selected a#X;/0X,, 0X;i/dYy anddX;/ot. However, Equation 5.8 is still valid, therefore,

initial 0X;/dZ, has to be calculated by using predefined nodal gradients.

Then, gradients with respect to the mappetl frame can be written in terms of nodal

gradients in compact form as given below.

where

&3(r,st) = Tou(r, s e(r, s 1)

e, s ) = (Tma(r, s 1)1, s 1)

Tml(r> Sa t) =

X
O O0Os 0OO0Os 000

P
z
[

O O«

12
o§>,<ool<><ool<>< Cooo

[eNolololeoNoloNeoNelale] )

[ejolooloooNololo] Jo]

[ejolooooloNolo] Jole]
X

= [elele)

»

XooXooXoo

ooo

) =

ooo

O;OO{OOéO

v<-<OO<<-<OO,<-<OO

ooo

»

N

= ooo

»

-

[ele]le)
o

NoolMooloo
ooo

_,

%)

-

olNoolMNoolNo

(5.11a)

(5.11b)

(5.12)

Consequently, degrees of freedom veatpcan be converted into the form given in Equation

5.6,€™t, as formulated in the following equation.

(5.13)

where the transformation matriXyap1, can be evaluated by using Equation 5.11 for all four

nodes of the element as given below.

Tmapl =

[T (e, s, ta)
0
0
0

0

T (12, S2, t2)
0
0

0
0

T (ra, s, t3)
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Finally, global coordinates and gradients with respect to the virtual frausue abitrary point

can be written in terms of nodal variables by following the procedure dietow;

1. Substitute Equation 5.13 into Equation 5.6b to obtain polynomial constants as;

A=P ' Tmp e

2. Substitute polynomial constants into Equation 5.3 in order to obtain vectotidan
used to evaluate global positions and gradients with respect to the misgfieaine as

given below;

el'St(r’ S, t) = Q(r’ S,t)P_leapl e

3. Then, substitute the equation above into Equation 5.11b as;

er, s ) = Tm(r, s ) Q(r S )P Trps € (5.15)

Then, it can be written in a simple form given below;

er,st)=3(r,st)e (5.16)

where the shape function matrix is defined as;

S(r9 S, t) = Tml(r, S, t)_lQ(r7 S, t)P_l Tmapl (517)

In the equationP~! and Typ are independent of local coordinates and time. The derived
shape function ensures continuity of nodal parameter at the neighlmaritegjocation. Global
coordinates are continuous over neighboring element edges. Howerménuity of gradients
is only guaranteed on node locations. Therefore, stresses or stithimstle continuous over
element edges but be continuous over node locations. Continuougstiegsgistributions

can be created by linear interpolation over nodal stresses or strainstipqoeessing stage.

Similar to the planar formulation in Chapter 4, it is hard to define initial nodal gnéslie

(OX/0Xy, OY[OXy, OZ]OX,, dX/dYy, OY /Y, and dZ/dY,) of the elements. In order to
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overcome this dficulty, alternative nodal representation, Virtual Element Edge Frame and

First Order Virtual Element Mapping, has been implemented in following section

5.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element
Mapping

In this method, nodal gradients are redefined with respect to the lineas addé, vector,
which is created according to the gradients in the thickness direction of Mirtita element,

in order to make geometrical meaning of nodal gradients more understandsd shown

in Figure 5.3, first and second nodes, and third and fourth node®anected with straight
lines, whereS, andT, are constant. Similarly, second and third nodes, and fourth and first
nodes are connected with straight lines, whigfeand T, are constant. These four straight
lines connecting the nodes form the boundaries of the virtual elemeXtviyz, frame. In
fact, R,S,Ty is not a new coordinate frame, but they are products of vitkyal Z, frame.
Let's consider a point, which has the mapped coordinates,pfs{, t;) on the element, in
order to clarifyR,, Sy andT, definitions. ThenR, is defined as the magnitude of the vector
from the virtual point at€1, s, t3) to the point ati, s, ta). Similarly, S is defined as the
magnitude of the vector from the virtual point af,(—1, ty) to the point at, s, ty). Finally,

Ty is defined as the magnitude of the vector from the virtual pointatt§, —°t/2) to the
point at a, Sa, t). Therefore, they can be defined with respect to the virtual coordiraate,
XvYvZy, defined in Equation 5.9, as given in the following equations. As can lrefsma the

equationsRy is a function ofr, S, is a function ofsandT, is a function oft, only.

R(r) = \/(Hvr(r) (X0 + taX0))° + (Fur(r) (YO + taY9))* + (Hur () (20 + t:20))°  (5.18a)

Su(s) = \/ (Hus(9) (X0 + taXQ))” + (Hus(9) (YO + taY )’ + (Hus(9) (20 + t20))” (5.18b)

0
To(t) = (t ¥ Et) \/(Hv(ra, s9X9)’ + (Hy(ra )Y9)” + (Hu(ra 2)29)° (5.18¢)
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where

Ha() = () -l = 0 L1 g 1o 105 -1-s] 5199
Hus(9) = Hy(a, §) = Hu(ra, -1) = (12 J -14ra 1ot 14ra 1-rd| (519b)

Gradients of virtuaR,S, Ty frame with respect to the mappest frame at an arbitrary point

on the element can be written explicitly as given below.

OR, 1 |(Cx1+Cxzs+1t(Dx1+Dx2 )% + (Cy1 + Cy2 S+ t(Dy1 + Dyz 9))? (5.20a)
or 4\ -+ +(Cz1+Cz2 s+ 1(Dz1 + D72 9))?
Sy 1 |(Cxz3+Cxar+1t(Dxs+ Dxz )2+ (Cyz + Cya I +t(Dyz + Dy21))? (5.20b)
0s 4\ +++(Cz3+Cz2 1 +1(Dzz + Dz21))?
aTy 0\2 0\2 0\2
5t = (Hu(r. 9XQ)" + (Hu(r. 9YS)” + (Hu(r. 929) (5.20c)
oR, OR, 9S, 95, JT, JITy
V¥ _ = _VN_ZV_ZV_p 5.20d
0s ot or ot or 0s ( )
where
(=XO4X0+X9-X0)  (-YO+YQ+Y9-YY)  (-Z0+Z0+23-Z0)
Cx1 Cv1 Cn1 (#XO=X0+X3-X0)  (+YO-Y2+Y9-Y))  (+Z20-Z0+23-Z0)
SLE2E2| | 6008 (MR (YY) 5.21)
BXl BYl BZl B (_xgt+x(2).t+xg,t_x2,t) (—Y2t+Ygt+Ygt—Y2t) (_Zg’,t+zg,t+zg,t_zg,t) '
Dig ng Dg (+X?,t_xg,t+xg,t_xg,t) (+Yf,t—Y2r+Y§,rY2t) (+Z?,t—23,t+2§,t—zir)

0 _y0 L0 0 0 _\0 .\0 \0 0 _\0 .\0 \0
(XXt X+ Xa ) (YL = Yo Y3+ Ya) (Y1 Yo Y5+ Yay)

Then, nodal variables, for thei® node of an arbitrary element can be written as follows.

6=|XVYZ = = o e o T T (5.22)

In the equationX;, Y; andZz; are coordinates of th& node in global frame. As stated in the

previous chapter, the gradient vectors at nodes are always tanghatelement edges.

The gradients with respect to the mappeti frame can be written in terms of the nodal
gradients §X/dRy, dY/0R, 0Z/0R,, dX/dSy, dY/0Sy, 0Z/ISy, 0X/dTy, dY/dT, anddZ/dT,)

as given in the following equation.
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¥, s, 1) = Tma(r, S 1) €1, S 1) (5.23a)

e st) = (Tma(r, s )t €3, s t) (5.23b)

where

Tma(r, s t) = l12x12[1 1 1 Ryr Ry Rur Sus Sus Sus Tutr Tt Tyl (5.24)

Consequently, degrees of freedom veatpcan be converted into the form given in Equation

5.6,€"t, as formulated in the following equation.

&% = Trapee (5.25)

where the transformation matrif,map2, can be evaluated by using Equation 5.23 as given

below.
>Tmz(r1, S1. 1) 0 0 0
0 Tho(r2, S, 2) 0 0
Trap2 = (5.26)
0 0 Tr(r3, Ss. ta) 0
0 0 0 Tro(r4, 4, t4) |

Similar to the planar formulation presented in the previous chaptgsp, matrix can be

written in terms of the virtual edge lengths of the element similar.

Finally, global coordinates and gradients with respect to the virtual frauae arbitrary point
can be written in terms of nodal variables by following the similar proceduserdeed for

Method 1 as given below.

er.st) = Tma(r. s ) Q. s P ' Trmp € (5.27)

Then, it can be written in the following simple form.

er,st)=3(r,st)e (5.28)
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where the shape function matrix for Method 2 is defined as

S(r,st) = Tra(r, s 9)72Q(, S )P Trape (5.29)

Similar to the planar formulation for virtuaR,S, frame, while R,S,T, frame making

geometrical definitions of nodal gradients easier, it brings followingictistns:

e Neighboring elements should be numbered such that their common virtual ¢lemen

edges should refer to the same virtual coordinate.

e Due to nodal gradient definitions, discontinuous element edge transikans€ 5.4)

can not be modeled.

Figure 5.4: Not applicable element transitions for Method 2

5.1.3 Other Applicable Methods for Shape Function Matrix Formulation

Basically, quadrilateral plate and shell finite elements require two shapgdampolynomials
for shape function matrix generation. Depending on the selected shagiiohs, various
alternative solution methods can be generated. In the previous chapidrernalternative
method called “Method 3: Initial Element Frame Mapping Method” was praghoBke same
method can also be used for plate and shell element formulations. In the matiadl,

shape function polynomials are used instead of virkyal, Z, or R,S, T, frames. Then, nodal

variablesg, for thei" node of an arbitrary element can be written as follows.
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g=|XYz o oL 28 A T A 20 T S (5.30)

Derivation of the shape function matrix can easily be performed by followiegprocedure

given in Chapter 4. Finally, simpler generalized elastic force formulatiorbeasbtained.

5.2 Mass Matrix Formulation

The constant mass matrix of the proposed péutell element can be derived using the general
kinetic energy equation similar to the derivation performed in Chapter 4. The maisix at

an arbitrary timet, is independent of time and can be evaluated once by using the initial
density and volume. Then, it can be used at any time step during the solubioespr The

derived mass matrix equation is given below.

M = fp S155S123|D| drdsdt (5.31)
VrSt
where the gradient tensor between initial global coordinates and the thippee is defined

below.

Mo o P
ar S t
D:%:a—to & % (5.32)
S
Wy 85 i
or Js ot
In Equation 5.315;,3is the shape function matrix of global coordinates, which contains first
three rows of the shape function matrices given in Equations 5.17 or 5&8tidnally, it is

important to remember thawvaries from-°t/2 to +%t/2.

5.3 Generalized Elastic Forces

The generalized elastic forces of an arbitrary element can be dersind strain energy

equation. The strain energy of an element at an arbitrary tinean be formulated by using
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Green-Lagrange strain an@%Piola-Kirchhdt stress tensor definitions. Recall the derived

generalized elastic force equations given below.

t 1 to\T
tka%zaite EfthEHedOv =f(‘;—t2) E'led®v (5.33)

0
oy oV

In order to find nonlinear strain tensor, deformation gradient shouldriitein terms of
nodal variables given in Equation 5.8 for Method 1 or Equation 5.22 fathbte2. Due to

different nodal variable definitions used, formulations of deformation gntdfier Method 1

and Method 2 will be dferent.

Deformation gradient for Method 1;

IX X X || 0o 0%
X, oYy 0Z,||ox, Yy 9Z,
=|9Y 9y 9Y||do dIYo Yo
J X, oYy 0Z,||ax, Yy a9z, (5.34)
9z 9z  JZ |94 9Ly 92y
X, oYy oz llax, &, dz,
Deformation gradient for Method 2;
-1
IX X OX [|0%a  OXo  0%o
9R, 0S, OoT,||orR, @S, Ty
=9y o9y Y [|Io Yo IYo
I=|R & m||lmR & ™ (5.35)
0Z 92 9z |04 04y 0Ly
R, 0S, on,Jlor, @S, a1,
In general form, deformation gradient tensor can be written as giveswbe
Sie Se Seef|din dip dizf |Viie Ve Vige
J=|Se Se Sue||do dop o[ =|Voe Vore Voze (5.36)
See Se Spe||dsr d32 d3z| |[Vzie Ve Vase

where the row vectory/j;, defined as given below.
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Vi, s )] [diaSs + dorSy + darSo|
Vio(r, s, t)| | d12Ss + d22S7 + d32S10
Vag(r, s, t)| | di3Ss + d2sSy + d3szSio
Voa(r,st)|  |du1Ss + d21Sg + d31S11
Vaoo(r, s,t) | = |d12Ss + d22Sg + d32S11 (5.37)
Vas(r,s,t)| | di3Ss + dasSe + d33Sia
Va(r, s t)|  |d11Ss + d21So + d31Sy2
Vao(r,s,t)| | d12Ss + 02250 + d32S12
[Vaa(r, s t)| | disSe + d23Se + d33S12

In the deformation gradient tensor equatidiy, di2, di3, d21, do2, d23, d31, d32 anddss are
the elements of inverse of initial nodal gradient tensor and defined fawthehape function

matrix methods as given in the following equations.

(011 dip O _% % %- s% S% S0

d oo ha|= |50 5 | =|S% S Sy ---Methodl  (5.38a)
d31 d3z  dag ,2—?@ % z—%‘ Ss% S%  S20%]

(011 dip O _% g—éﬁ %- N S% 5% %] -

Ay Opo Cha|= |50 92 | =|S% S S| ---Method2  (5.38b)
d31 d3z  dag »% 2—@3 2—%3_ Ss% S%  S20%]

General definition of nonlinear Lagrangian strain tensor is given in timu8.39a [36], where
I is 3 by 3 identity matrix. Then, strain tensef,, can be written in terms of nodal variables,

e, by using Equation 5.36 as given below.

Em= %(E,JTBJ ~1) (5.39a)
e'Njje—1  e'Npe e Nize
&m= 3 e'Nie  €Nxpe—1 eNyge (5.39b)
e"Njze €Nyze € Naze-1
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where the square matricds;;, are defined as follows.

N1z = Vi11'Vi1+ Va1 Var + Va1 Vs

N1z =V11"Vip+ Va1 Vap + Va1 Vs

N1z =V11"Viz+ Va1 Va3 + Va1 Va3

N2z = V12" V1o + V2o Voo + V3o V3

N3 = V12" Viz+ Voo Vog + V3o Va3

N33 = V13'Viz + Va3 Va3 + V33" Va3

(5.40a)
(5.40b)
(5.40c)
(5.40d)
(5.40¢e)
(5.40f)

Then, the strain vector and its partial derivative with respect to the nad&bles can be

written in terms of the nodal variables as given below.

£11 eTNlle -1

£22 eTsze -1

e33| 1|€"Nage—1
8 = = E

£23 eTN23e

€13 eTnge

| €12 eTlee ]

oe
oe

NI NI NI

eTNll
eTsz
eTN33
T N N T
€ \N23 + Naz3

eT (N13 + N13T)

e (le + N]_ZT)_

(5.41)

Finally, the generalized elastic force equation can be written in terms of nadables by

substituting Equation 5.41 into Equation 5.33 as given in the following equaticadu&tion

of the generalized elastic force vector can be performed by numericgratien methods

like Gauss-Quadrature.

Qk:%f

Vg

e"Nig
e N>
e'Ns;3

e’ (N23+Nazs')

eT (N13 + N13T)

r
NI NI NI
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[eTNjse - 1

e'Nye—1

e'N3ze—1
e"Nygze

el Nq3e

e (N]_z + leT)_

eTnge |

|D| drdsdt

(5.42)



5.4 Generalized External Forces

It is known that the generalized external force vectors can be foywndtoal work principle.
If a point force,F, acts on a point having global coordinatesrofthan the external force

vector,Qg, can be found by virtual work principle as follows.

FTor = FTSpp0e = Qloe (5.43a)

QF = S-]I_-23F (5.43b)

5.5 Straight Cantilever Beam Patch Test for the Proposed PlatShell Finite

Element

In order to verify the developed finite element for problems containing plate shell

structures, straight cantilever beam patch tests proposed by RichaddAeal and Robert
L. Harder [35], have been performed for three types of element gei@sie The patch test
problems are defined in Figure 4.11 of Section 4.6.2. In planar tests, finiteeels were
tested against in-plane shear and extension loadings. Out-of-plaae Ishding is also

included in the patch tests of the proposed plate and shell elements.

Finite element discretization and nodal connectivities of the elements are iihe as
ones used in planar problem and given in Figure 4.12 and Table 4.%&ctegby. Initial
nodal gradients are determined according to the virkyal Z, frame and listed for regular,
trapezoidal and parallelogram shape elements in Tables 4.4 and 5.1. FKixedaby
conditions are applied foX, Y, Z, 0Z/0X, anddX/dY, degrees of freedom of Node 1 and
Node 8.

Table 5.1: Added nodal variables for Method 1

N

0X/0Z, | OY/[0Zy | OX/0Z, | OY]0Zy | OZ]0Zy
All Nodes | 0 0 0 0 0 1
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Similar to the planar formulation, discontinuities on some of the stress comporertbden
evaluated after solving the problem for trapezoidal and parallelogrameeks. However,
von Misses stress distributions are almost continuous. Obtained stresisudistis and
displacements for in-plane shear loadings are almost identical to planarntleasalts
given in Figures 4.13, 4.14 and 4.15. Stress distributions for in-planenipabtained
by the generalized plate formulation are given in Figures 5.5, 5.6 and 5.7ornded

configurations of the cantilever beam under out-of-plane shear loaalimgdular, trapezoidal
and parallelogram elements are given in Figures 5.8, 5.9 and 5.10. Obthgpdatement
results are in the acceptable range as shown in Table 5.2 despite relaiiyedrtor levels in
out-of-plane loading solutions. Itis expected that the error would beceatlif the number of

elements is increased.

Figure 5.5: Von Misses stress distribution for straight cantilever beam egfhlar elements
(in-plane shear)

Figure 5.6: Von Misses stress distribution for straight cantilever beam wageznoidal
elements (in-plane shear)

5000
6000
14000
2000

Figure 5.7: Von Misses stress distribution for straight cantilever beam \waithllplogram
elements (in-plane shear)
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15000

10000

5000

Figure 5.8: Von Misses stress distribution for straight cantilever beam eghlar elements
(out-of-plane shear)
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Figure 5.9: Von Misses stress distribution for straight cantilever beam wageznoidal
elements (out-of-plane shear)
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Figure 5.10: Von Misses stress distribution for straight cantilever beampaithllelogram
elements (out-of-plane shear)
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Table 5.2: Straight cantilever beam patch test results for the generaliagsisipell
formulation

Maximum tip displacement on the loading direction
Theoretical| Calculated | Error | Grade
In-plane shear loading
Regular 0.1081 0.1081 0.00% A
Trapezoidal 0.1081 0.1000 -747% B
Parallelogram| 0.1081 0.1078 -0.23% A
Extension loading
Regular 30x10° | 30537x10° | 1.79% A
Trapezoidal | 3.0x 107 | 3.0632x 107> | 2.11% B
Parallelogram 3.0x 10 | 3.0540x 10 | 1.80% A
Out-of-plane shear loading

Regular 0.4321 0.4052 -6.23% B
Trapezoidal 0.4321 0.3912 -9.47% B
Parallelogram| 0.4321 0.4033 -6.66% B

5.6 Discussion on the Proposed Generalized Pla&hell Formulation

In this chapter, implementation of ANCF using virtual element mapping to the glerest
plate element has been performed. Despite acceptable results havétaeeadin the patch
tests, out-of-plane bending results are not as accurate as expewtéatt, lit is evaluated
that relatively higher errors in out-of-plane loadings are due to the thgkterms in shape
function polynomial and the nature of generalized plate assumption. Amcafdhe results
could be increased by usingfiirent interpolation functions or using thin plate or shell
assumption for the formulation. Shape function matrix derivation for thin plateshell

elements is given in the following section for future use.

5.7 Irregular Shaped Quadrilateral Finite Element Represenation and Shape

Function Creation for Thin Plates and Shells

In the thin platgshell formulation, nodal gradients along the thickness direction are remove
from the nodal degrees of freedom as shown in the following equaticause of thin plate

assumption.
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S _ VA - - __
g =Xz ar or o ds s Os (5.44)
Gradients along the thickness directi@X(ot, dY/ot anddZ/dt) can be evaluated by using
orthogonality ofrst frame if they are needed. The shape function selected for the thin

platgshell problems is given below.

X(r,st)=p'(r,9) a+t %—f (5.45a)
Y(r,st)=p'(r,9) b+t (29_1( (5.45b)
. 9z
Z(r,st)y=p ' (r,9)c+t i (5.45c¢)
p' = [l rsrsr? & risrs? r® s ris rs3] (5.45d)

Then, polynomial constant&\(= [a" b" ¢"]T) can be formulated in terms of nodal degrees

of freedom of the element as given in the following equation.

°=Q(ri, s)A (5.46)
where
_pT (r,s) 0 0
0 pT(r,s) 0
0 0 p'(r,s)
pr(r, s 0 0
Qr.9=| 0 pl(r,s) 0 (5.47)
0 0 pr(r,9)
pi(r,9) 0 0
0 pi(r, 9) 0
0 0 pL(r. 9))

Here,r; ands represent the mapped coordinates ofitheode on the element as given below.
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[rl o I's r4] = [—l +1 +1 —1] (5.48&)

[t & 83 1] =[-1 -1 +1 +1] (5.48b)

Then, linear set of algebraic equations to be solved®f@an be derived by using Equation

5.46 for all four nodes of the element as given in the following equation.

d5=PA (5.49)

where

.
P=[QT(r.s1) QT(rz,s2) QT(r3,ss) QT(ra, sa) (5.50)

Then, polynomial constants vecté, can be found by using Equation 5.49 as follows.

A =Pplds (5.51)

In order to overcome discontinuity problem at the element transitions, mpddients are

rewritten with respect to thiR,S, virtual frame as given below.

€=\ XYL = = = 7= 7= = (5.52)

Relationship betweers andR,S, frames are rewritten below for the midplarie=(0) of the

element.

R/(r) = \/(Hvr(r)xo)z + (Hyr (N)Y®)? + (Hyr (r)Z0)? (5.53a)
SU9) = (H(9XY + (Hs(9YO)? + (Hs(929) (5.53D)
(5.53c)
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where

Hur (1) = Hy(r, Sa) — Hy(-1, s9) = (11 ") [—1 +8 1-s55 1+s —-1- Sa] (5.54a)

1+9
4

HVS(S) = Hv(ra, S) - HV(ra’ _1) = [_1 + ra —1 - ra 1 + ra 1 - ra:| (554b)

Then, the gradients d®,S, frame with respect to the mappedframe at an arbitrary point

on the element can be written explicitly as given in the following equations.

R 1
% =12 \/ (Cx1 + Cx2 9 + (Cy1 + Cy2 9)? + (Cz1 + Cz2 9)? (5.55a)
aa_SS\, = % \/(Cx3 +Cx21)? + (Cyz + Cy21)? + (Czz + Cz2 1)? (5.55b)
OR,  8S,
55 = o =0 (5.55¢)

whereCy;, Cy; andCy; are defined in Equation 5.20.

The gradients with respect to the mappedframe can be written in terms of the nodal
gradients §X/0R,, 0Y/0R,, 0Z/0R,, dX/0Sy, dY/dS, anddZ/dS,) as given in the following

equation.

e3(r,s,0) = Tma(r, 9) &, s,0) (5.56)

where

Tm2(r.9) =[1 1 1 R Ry Ryr Sys Sus Sus]li2xi2 (5.57)

Then, global position and gradients with respect to the mapped frame cavahmted by
using the equation given below.
€3(r,s,0) = S°(r, 9)e (5.58)

where

S%(r,9) =Q(r,9 P Trrap2 (5.59)

Finally, global position and gradients with respect to the virR&, frame can be evaluated

by using the equation given below.
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e, s,0) = S(r, s)e (5.60)

where
S(r, 9) = Tuo(r, 9)71S5(r, 5) (5.61)

In the formulation of equations of motio8>(r, s) will be used in order to make derivations

and calculations simpler. Then, gradients with respect to the thicknesdiatirean be

evaluated by using orthogonality condition as given below.

X , X

% —% i az (5.62a)
IX/at e'Sqe
avjor| = . &7 Sae (5.62b)
szjor|  N(€Su0 + (€150 + (€00 | g

where
Sy = SBSTS{)S _ S%sTSr; (5.63a)
S = SgSTSr7$ _ SZSTS{)S (5_63b)
Sz = SLSTS%s _ SrssTSr75 (5.630)
Finally, global position vector of an arbitrary point can be written as follows
X(r, s 1) TSue
t
Y(rst)| = Spe+ - - 2 & Spe (5.64)
T T T
Z(r,st) \/(e Su1e)” + (e'Spe)” + (eTSze) TSe

Then, mass matrix and generalized elastic force vector can be derivelidwing the similar

procedure described for the generalized plate formulation.
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CHAPTER 6

ANCF FOR SOLID ELEMENTS HAVING IRREGULAR
SHAPES

In Chapter 4, ANCF extended to plane stress and strain problems fandded quadrilateral
elements having irregular shapes. In Chapter 5, the proposed contioumuldtion applied
to plate and shell problems, successfully. Developed formulations showa thide range of
element shapes can be generated and solved. The next step fonté&atan is extending to
eight noded hexahedral elements, which can various shapes. Acthatly,is an attempt to
generate absolute nodal coordinate formulation for 3D brick elementsiisyKidbler, Peter
Eberhard and Johannes Geisler [41]. However, their proposed dileiteent [41] does not
have exact representation of ANCF. The element only use global pas#énodal variables
instead of displacements without including nodal gradients, which are the poagrful
feature of the formulation making theftérence. In summary, they have proposed a new
8 noded brick element, which can be assembled with the ANCF beams, platsbell
having the same deformation capabilities as in classical finite element methodsvetp
better implementation could be performed by including nodal gradients asetegfrfreedom

of nodes.

Currently, ANCF is used for regular shaped structural finite elemengsr(helate and shell
elements). In Chapters 4 and 5, regular shape limitation has been solved evjitofiosed
formulation, which uses virtual elements. In this chapter, the developeuufations and
approaches are directly applied to the 8 noded 3D solid elements in ordeetade&ntages
of ANCF for 3D continuum problems. Additionally, success of the devaloglement has
been verified by some of the patch tests proposed by Richard H. MACNEWLRobert L.

HARDER [35] and a flexible pendulum problem available in the literature.
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6.1 Finite Element Representation and Shape Function Creain for 3D Solid

Elements with Virtual Element Methods

Finite element representation and virtual element shape functions of 3Dedeiitents are
very similar to the planar elements developed in Chapter 4. The offiégyelice is the addition

of the mapped coordinate which has a range of], +1].

One can select the mapped coordinate frame given in Figure 6.1 in ordefit@ chodal
gradients for the element. Then, the nodal degrees of freedom &t trae of an arbitrary

element should be written as given below.

[ o 0% OY: 07, 0% 9 9Z 0% 9Y; 9Zi|"
& =X NNZ 5T B ar 3s ds s ot ot ot (6.1)

T8 (1.+1-1) 7 (+1,#1,-1)
4 (_1‘5_'_17”) 3 (+1]+1,+1)
R B
“5(-1,-1,-1) 6 (+1,-1,-1)
1.(-1,-1,+1) S 2 (+1,-1,+1)

Figure 6.1:r st coordinate frame mapping for 3D solid elements

A third order polynomial given below is selected as the shape function palial of the eight

noded hexahedral solid element.
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Xr,st)| |p'(r,st) 0 0

Y(r,st)| = 0 p(r.st) 0o |A (6.2a)

Z(r, s, 1) 0 0 p'(r, s t)
(1 r s ot rs it s rs
r’ £ t2 r’s it rg ts? rt?
g 2 S 8 ¥ %t oSt
rt3 st r2st rs?t orst? r3st o rs’torst?

pT(rst) = (6.2b)

whereA is the vector of polynomial constants, which contain constantXfars, t), Y(r, s, t)
andZ(r, s, t).

Then, polynomial constanta\j could be formulated in terms of nodal degrees of freedom of

the element as given in the following equations.

e = Q(rj, s, t)A (6.3)

whereQ(r, s, t) is a matrix of functions defined in Equation 5.4a ands andt; represent the

mapped coordinates of i€ node on the element as given below.

[frrrorgrgrsrgryrgl=[-1 +1 +1 -1 -1 +1 +1 -1] (6.4a)
s s SsSS7T]=[-1 -1 +1 +1 -1 -1 +1 +1] (6.4b)
f1totztatstgty tg] =[+1 +1 +1 +1 -1 -1 -1 -1] (6.4¢)

Then, the vector of polynomial constanss, can be found by solving the linear algebraic
equation given below. Similar to the previous finite element applicat®risis always exist

and constant for the selected shape function polynomials.

e=PA (6.5a)

A=pPle (6.5b)
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where
Q(r1, s1,1)
Q(r2, s, 12)
Q(rs, Ss. ta)
b Q(ra, s4,1a) 6.6)
Q(rs, ss, ts)
Q(re, 6. te)
Q(r7, s7,t7)
|Q(rg, ss. tg),

Various 3D solid element shapes given in Figure 6.2 could be generatgsiriyythe derived
shape function polynomials, given in Equation 6.5, and appropriate dedates of freedom.
However, discontinuity problem discussed in Chapters 4 and 5 is also ali8Cf solid
elements. Similarly, this problem can be overcome by changing or forcingl oddients
(0X/or, dY/or, dZ/dr, X/ds, Y /s, Z/ds, 0X/ot, Y /ot, 0Z/0t) to generate the same
edge shapes for neighbouring elements. Then, system equations ¢ammiee by using
general finite element assembly procedures. Two alternative mappingdsetiediscussed

in the following sections for 3D solid elements.

Figure 6.2: Various 3D solid element shapes
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6.1.1 Method 1: Parallel Virtual Frame and First Order Virtual Element Mapping

In this method, nodal gradients are defined with respect to the virtuatlicede frame of
virtual element shown in Figure 6.3. Then, nodal degrees of freedorhéi" node of an

arbitrary element is described as given in the following equation.

_[x vz 6 2% 070X 0% 0z 9% oY oz 6.7)
a=|AN 4 Xy OX, OX, Yy Yy 8Yy 0Z, dZ, Z, '

2 2
Real Finite Element Virtual Finite Element

Shape functions for real
finite element

Shape functions for virtual
finite element

7 (+1,41,-1)

4(-17+1,41) 3(+1H1H) s

[ t ,Lr
75 (-1,-1,-1) 6 (+1,-1,-1)

1(-1,-1,+1) 2(+1,-1,+1)

Figure 6.3: Virtual finite element frame in 3D continuum element for Method 1

Mapping functions for virtual finite element shown in Figure 6.3 can betcocied by using
general first order interpolation functions for 3D isoparametric hecathelement [36] as

given in the following equation.
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Xu(r, s 1) = Hyaa(r, s,1) OX (6.8a)

Yo(r, s t) = Hyaa(r, s 1) OY (6.8b)
Z(r,s,t) = Hyaa(r, s t) °Z (6.8c)

where
Hyaq(r, S 1) = % Ho(r, )1 +1t) Hy(r, s)(1-1) (6.9)

andH,(r, ) is the first order shape function matrix used for virtual planar elemeetepted

in Chapter 4.

Then, gradients with respect to the mappet! frame can be written in terms of nodal
gradients in compact form by using Equation 5.11 and 5.12 in the previoapgtesh
Consequently, gradient terms in vector of nodal variables can be rtedveto the gradients

with respect to the mappedt frame as given below.

€% = Trap1€ (6.10)

whereT map1 is defined in Equation 5.14.

Finally, global coordinates and gradients with respect to the virtual fraanebe found by

using polynomial constants derived in Equation 6.5 as given below.

er,st) = §(r, s t)e (6.11)

where

S(rst) = Toa(r, Y Q(L S ) P Traps (6.12)

While P71 is the same for all finite elementByap: depends on the initial element geometry.
The derived shape function matrix ensures continuity of nodal parametee neighboring
node location. Global coordinates are continuous over neighboring eldaces. However,

continuity of gradients is only guaranteed on node locations. Thereftesses or strains
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will not be continuous over element edges but be identical for neighdp@lements at the
same node locations. Continuous stress and strain distributions can beddogalinear

interpolation over nodal stresses or strains in post-processing stage.

6.1.2 Method 2: Virtual Element Edge Frame and First Order Virtual Element
Mapping

In this method, nodal gradients are redefined with respect to the lineas efigitual finite
element shown in Figure 6.3. Straight lines from nodes 1 to 2, 4 to 3, 5 to @ dad/
represent the virtual coordinate, whé&gandT, are constant. Similarly, lines from nodes 1
to 4, 2to 3, 5to 8 and 6 to 7 represent the virtual coordinate, WRgend T, are constant.
Finally, lines from nodes 5to 1, 6 to 2, 8to 4 and 7 to 3 represent the vioatimate, where
R, andS, are constant. These 12 straight lines connecting the nodes form thdarmsof
the virtual element irX,Y,Z, frame. Similar to the 2D planar formulatioR,S, Ty is not a

new coordinate frame, but they are products of viriiaf, Z, frame.

If a point, which has the mapped coordinatesrgf &, ty) on the element, is consider in order
to clarify R,, Sy andT, definitions, thenR, is defined as the magnitude of the vector from the
virtual point at £1, s, ty) to the point ati(, sy, ty). Similarly, Sy is defined as the magnitude
of the vector from the virtual point at4, —1, ty) to the point atK, s, ty). Finally, T, is defined

as the magnitude of the vector from the virtual pointrat §;, —1) to the point atr, S, t).
Therefore, they can be defined with respect to the virtual fraxp¥,Z,) defined in Equation
6.8 as given in the following equations. As can be seen from the equaRprsa function

of r, Sy is a function ofsandT, is a function oft, only.

RAr) = (Hyagr () OX)2 + (Huaar (1) OY)° + (Hyaar (1) ©2)° (6.13a)
SuU9) = y(Huaas®) OX)° + (Hyaae(8) OY)% + (Huaod() 97)° (6.13b)
Tu(®) = (Fusar(®) X2 + (Hyaar(®) OY)° + (Hyaae(t) °2)° (6.13¢)
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where

Hyadr(r) = Hyad(r, Sa, ta) — Hyzd(—1, Sa ta) = % [(L+ta))Hu (r) (1-ta)Hy (r)] (6.144a)

HV3dS(S) = Hv3d(ra, S,ta) - Hv3d(ra, -1, ta) = % [(1 + ta)Hvs(S) (1 - ta)Hvs(S)] (6-14b)
(1+1)
2

Hyadt(t) = Hyad(ra, Sa, t) — Hyzd(ra, Sa, —1) = [Hy(ra, Sa) —Hu(ra,sa)]  (6.14c)

Then, gradients of virtudR,S, T, frame with respect to the mappest frame at an arbitrary

point on the element can be written in explicit forms as given below.

OR, 1 |(Cx1+Cxz S+ Cxat+Cxa st)?+ (Cy1 + Cyz S+ Cyat + Cys st)°

o _ 1 (6.15a)
or 8 ++++(Cz1+Cz2 8+ Cz3t + Cz4 S)2
8Sy 1 |(Cxs+Cxar +Cxet+Cxart)”+ (Cys+ Cyar + Cyet + Cya rt)? (6.15b)
as 8 SRR o (Cz5 +Czor + Czet + Cza rt)2 .
T, 1 |(Cx7+Cxar+CxpS+Cxar9?+(Cy7+Cyar + Cyss+ Cysrs)? (6.15¢)
gv__= .15¢c
ot~ 8 -4 (Cz7+Cz3 1 +CgzeS+ Cza 19?2
Ry R _ 05 _9S _ITv _INv_ (g 15q)

9s ot o at o s

where the constants of virtual element are given in the following equations.

Cxi=— X1+ ™o+ %3 — Oy — O%s + OXg + O%X7 — OXg
Cxo =+ %1 — o+ %3 — OX4 + 05— OXg + OX7— OXg
Cxa=— X1+ Mo+ %3 — O+ O%s5 — OXg — X7 + OXg
Cxa = + %1 — o+ %3 — Oy — OXs5+ OXg - OX7 + OXg
Cxs = — X1 — o+ X3+ Xy — O%s5 — OXg + OX7 + OXg
Cxs = — OX1 — o+ %3+ X4+ X5+ OXg— OX7— OXg
Cx7 =+ X1+ o+ %3+ Xy — O%s5 — OXg — O%X7 — OXg
Cyi=-1+ % + %Yz — Ov; - OV + OYg + Ov; - Oyg
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Cva =+ — O+ Ov3— Oy, + Ovg— Ovg+ Oy, — Ovyg
Cva=—-Y1+ O+ Ov3— 0¥, + Ovs— Ovg— Ov; 4 Oy
Cva=+2Y1— %+ O3 — OY, — Oy + Ovg— Ov; 4 Oy
Cvs= -1 — O+ Ov3+ 0¥, — Ovs— Ovg+ Ov; 4 Oy
Cve=—Y1— O+ v+ 0¥, + O¥s + Ovg — Ov; — Oy
Cyv7 =+ + O+ Ov3+ 0¥, — Ovs— Ovg— Ov; — Oy
Cz1=-921+ %2y + %23 - %24 - 975+ 9z + 02, - Oz
Czo=+921- %2y + 923 - %24 + 975 - Oz + 92, - Oz
Czz=-921+ %2y + 923 - %24 + 975 - Oz - 97, + Oz
Cza=+921- %2y + 923 - %24 - 975+ Oz - 977 + Oz
Czs=-921- %2y + %23+ %24 - 975 - %z + 977 + Oz
Cze=-921- %Zo+ %23+ %24 + 975+ Oz - 07, - Oz
Cz7=+%Z1+ %2y + %23+ %24 - 975 - Oz - 07, - Oz

Then, vector of nodal variables, for theith node of an arbitrary element can be written as

follows.

€=\ XYL = = = 7= 7= e = o (6.16)
In the equationX;, Y; andZ; are coordinates of th#' node in global frame. As stated in
Chapter 4, the gradient vectors are always tangent to the element edges

The nodal gradients with respect to the mappsadframe can be written in terms of the
nodal gradients with respect to the virtl&IS, T, frame @X/dR,, dY/IR,, 0Z/0R,, 0X/ISy,
dY/dSy, 0Z/9Sy, 0X/dT, dY/dT, anddZ/aT,) as given in the following equation.

€' = Trap2€ (6.17)
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where

Tio(rs, s1,t)]
Tre(r2, S, 12)
Tme(rs, ss, t3)
Traos = Tre(ra, S4,1a) (6.18)
Tre(rs, S5, ts)
Tme(re, Ss, t6)
Tme(r7, s7,t7)

| Tmo("'s, Ss, ts)|

Tm2 matrix for 3D hexahedral element is defined in the following equation.

Tma(r,st) =l12xa2[1 1 1 Ryr Rur Rur Sus Sus Sus Tur Tvt Tutl (6.19)

wherel 12x121s 1212 identity matrix.

Finally, global coordinates and gradients with respect to the virtual frauae arbitrary point

can be written in terms of nodal variables as given below.

o, s ) = Tro(r, S )7'Q(r S, t) Pt Trpoe (6.20)

Then, it can be written in a simple form given below.

er,st)=3(r, s t)e (6.21)

where

S8 1) = Tre(r, $9)7'Q(r, ) P Trape (6.22)

Similar to the previous planar formulationyap2 matrix in the shape function definition can

be written in terms of the virtual edge lengths of the element.

6.2 Generalized System Parameters for 3D Hexahedral FinitElements

The mass matrix and the generalized elastic and external force vectdoe ckemived using

the same procedure described in Chapter 5. Despite the formulation is ettecthame,
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integration boundaries of the mappedoordinate are dlierent. Integration limits of the
mapped coordinate should be changed frorf{/2, +°t/2] to [-1, +1]. Then, Equations
5.31, 5.42 and 5.43 can be used to calculate the mass matrix, the generaktied@ees

and the generalized external forces, respectively.

6.3 Straight Cantilever Beam Patch Test for the Proposed SaliElement

In order to verify performance of the proposed hexahedral finite eleoneder quasi-static
loading conditions, straight cantilever beam patch test problems projgys&ichard H.
Macneal and Robert L. Harder [35], have been solved. Geometfties problems are defined
in Figure 4.11 of Section 4.6.2. Analyses are performed for in-planer sitehextension
loading cases. Finite element model has been generated using 28 ndd@elaments as
shown in Figure 6.4 with the connectivity matrix given in Table 6.1. Initial nagadients
are determined according to the virtdgqlY,Z, frame similar to the planar patch test analyses
in Section 4.6.2. Fixed boundary conditions are applieX{ox, Z, dX/dYy, 0Z/dYy, 0X/dZ,
andoY/o0Z, degrees of freedom of nodes 1, 8, 15 and 22.

22 23 24 25 26 27 28
Lo ] @ [ e | @& |’ ] ® | (=0
15 16 17 18 19 20 21

8 9 10 11 12 13 14
Lo @ e @ ] ® [ ® | (z0

1 2 3 4 5 6 7

Figure 6.4: Discretized beam for patch test problem

Table 6.1: Connectivity of the elements

Node Numbers
Elementl/ 1| 2| 9| 8 | 15| 16| 23| 22
Element2/ 2| 3|10 9 | 16| 17| 24 | 23
Element3| 3|4 | 11| 10| 17| 18| 25| 24
Element4| 4 | 5|12 | 11| 18| 19| 26| 25
Element5/ 5|6 | 13| 12| 19| 20| 27 | 26
Element6| 6 | 7 | 14| 13| 20| 21 | 28 | 27

136



Similar to the planar formulation, discontinuities on some of the stress comporertbden
observed after solving the problem for trapezoidal and parallelogiemeats. However, von
Misses stress distributions are almost continuous and almost identical to 2&r plament
results as shown in Figures 6.5, 6.6 and 6.7. Displacements on the load dseantio their
errors are listed in Table 6.2. As seen on the table, all of the results aredodéptable ranges
defined in the publication of Richard H. Macneal and Robert L. Har@g}. In addition, the
patch test problem has been solved by using single regular element, wasdhé aspect
ratio of 30, with a high accuracy as shown in the table. Similar to the results rdupliaite
element formulations, the maximum error is obtained for the trapezoidal elesnkerions
due to diterences in the edge lengths of neighboring elements.

U“I‘ ; : |
M#“ 00

-
] e R PR e ........................ ..................... 4000
r i i i i ]l I 2000

Figure 6.5: Von Misses stress distribution for straight cantilever beam vithregjular
elements (in-plane shear)

10000
G000
6000
4000
2000

Figure 6.6: Von Misses stress distribution for straight cantilever beam \ilittr&pezoidal
elements (in-plane shear)

5000
B000
4000
2000

Figure 6.7: Von Misses stress distribution for straight cantilever beam mitha3allelogram
elements (in-plane shear)
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Table 6.2: Patch test results for straight beam

Maximum tip displacement on the loading directipn

Theoretical| Calculated | Error | Grade
In-plane shear loading
Regular 0.1081 0.1077 -0.40% A
Trapezoidal 0.1081 0.0992 -8.20% B
Parallelogram| 0.1081 0.1072 -0.81% A
One Element| 0.1081 0.1080 —-0.08% A

Extension loading
Regular | 30x 1075 | 3.0284x 10° | 0.95%
Trapezoidal | 3.0x 107 | 3.0278x107° | 0.93%
Parallelogram 3.0x 10> | 3.0345x 10° | 1.15%
One Element| 3.0x107° | 29515x 10° | -1.62%

> > > >

6.4 Flexible Pendulum Solutions using the Proposed Hexahead Finite

Element

In order to verify the proposed finite element formulation in flexible multibodgpesgics,
flexible pendulum problem, which was published by K. Dufva and A. A.t@ha [32],
has been studied. K. Dufva and A. A. Shabana have solved the praldem thin plate
assumption. Therefore, they applied all loads and boundary conditiche tmid-plane of
the structure. However, it is not possible to apply fixed boundary conditio the midplane
of 8 noded hexahedral solid elements. Therefore, all translatione¢elegf freedom of the
node at [0, 0, 0] are fixed. The geometry of the pendulum is shown in&@8. Thickness,
modulus of elasticity, Poisson’s ratio and density of the plate @&, 1.0 x 10° Pa, 0.3
and 781Ckg/n?, respectively.

Firstly, flexible pendulum under gravitational load has been solved bgdsiri, 2x 2, 3x 3
and 4x 4 elements in order to observe convergence characteristic of the finiter¢lerhen,
the 2x 2 finite element model has been studied with element shape irregularities imt@rde

observe error contributions of irregular shapes.
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Figure 6.8: Geometry of the flexible pendulum

Deformed shapes of flexible pendulum obtained by usingl12x 2, 3x 3 and 4x 4 finite
elements are shown in Figure 6.9. Change of global positions of points B &Ridjure 6.8)
with time are shown in Figures 6.10 and 6.11. Due to symmetric locations of pointd £ a
results are posted for point A, only. As can be seen from the graglasive error is decreasing
with the increasing total number of elements. However, it can be stated thptotilem can
be solved by using 4 hexahedral elements mesh configuration) with a certain accuracy,
by examining the deformed shapes in Figure 6.9 and change of global pssitithntime in
Figures 6.10 and 6.11. Additionally, deformed shapes obtained by usijlg slement prove
the capabilities of the proposed finite element formulation under large rigig todation and

extreme deformation cases.

Relative percent errors between consecutive total element numteerdcared over time
in Figures 6.12 and 6.13. Relative percent errors have been calculaitesh the absolute
positions but on the absolute displacements of points A and B. Therefooe percentages
are high, although relatively close absolute coordinates have beenaabfaimvarious total
number of elements as shown in Figures 6.10 and 6.IfecEof total number of elements
can clearly be identified from relative percent absolute displacemeant@irves in Figures
6.12 and 6.13. Magnitude of the maximum error is decreasing with increasaigitonber
of elements as shown in the figures. In addition, it can be observed thagtaheumber
of fluctuations in error versus time plots are increasing with the increasingntataber of

elements due to introduced degrees of freedom and added natutedricees to the system.
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Figure 6.9: Deformed pendulum shapes at 0.075 s, 0.15 s, 0.225 s asnavlltB1x1, 2x2,

3x3 and 4x4 finite element mesh

140



Global Position (m)

0.4

Global X coordinate

0.3

0.2

0.1

Global Y coordinate

Global Z coordinate

0 0.05 0.1

0.15
time(s)

0.

2 0.25 0.3

1x1 element — — — 2x2 elements

— - — - 3x3 elements

4x4 elements|

Global Position (m)

Figure 6.10: Flexible pendulum - global positions of Point A
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Figure 6.11: Flexible pendulum - global positions of Point B
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Figure 6.13: Flexible pendulum - relative error in the absolute displaceroERint B
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In fact, flexible pendulum problem is not physically possible, despite lotstuafies have
been performed on it in the literature [30, 32]. However, it is vefgaive method in testing
new finite element formulations under large rigid body rotations and extrefoentztions.

It has been seen that comparable results with the results of K. Dufva aAd 8habana

[32] are obtained using 2 elements. A detailed comparison of the results has not been
performed due to dlierences in boundary conditions and element topologies. Therefore, no
further mesh refinement has been performed. Major advantages obihespd finite element
over the available formulations are sensitivity in the deformations along tréskatieection

and irregular element shape capability.

6.4.1 Hfects of Irregular Element Shapes on Flexible Pendulum Solutions

The previous patch tests show that the major error sources are notdught aatio, skew
angle or taperness of the finite elements. In the previous chapters, cambkam patch
test problems are successfully solved by using single element having adpglt ratio of
30. Negligible €ect of skew angle has been proven by patch tests using trapezoidal finite
elements in Chapters 4 and 5. Additionally, the curved beam problem hassbéed
with tapered elements, accurately. The major error source for ANCF withaliElement
Mapping is dissimilar neighboring virtual element shapes. Similarity of the nenip
elements is defined by the ratio of edge lengths of neighboring virtual elenieistexpected
to obtain the best results for the similarity ratio of 1. Similarity ratio for the flexibledpgum
problem is defined as the ratio of lengtlaglf) shown in Figure 6.14. Then,22 elements
analyses are repeated for the similarity ratio @3p0.27 to Q27/0.03. Deformed pendulum
shapes for various similarity ratios are shown in Figures 6.15 and 6.16vdtydifficult to
distinguish the dterence between obtained results from the figures. Therefore, thiésres
obtained by similarity ratio of 1 are selected as reference and displacemenst & points
A, B and C are determined, relatively. Obtained error distributions fortpdinB and C are
shown in Figures 6.17, 6.18 and 6.19, respectively. Displacemens eany from—-7.86% to
7.13% for Point A,—9.39% to 1424% for Point B, and-8.13% to 544% for Point C. Despite
reasonable error levels, it is suggested that the similarity ratio should nee@xhe range
of (0.5, 2). In addition, significance of similarity ratio would be reduced withititreasing

total number of elements.
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Figure 6.14: Definition similarity ratio for the flexible pendulum problexr

6.5 Discussion on the Proposed Hexahedral Finite Element

In this chapter, implementation of ANCF with Virtual Element Mapping to eight dode
hexahedral element has been performed. Performance of the pdoglesent has been tested
with well known cantilever beam patch test problems in finite element literatut élexible
pendulum problem, which is the most common test case in flexible multibody dynamics
literature. In cantilever patch test solutions, the main aim was to verify nonlstatic
solution procedure for the proposed finite element. Performed test rasos that the
proposed finite element generate accurate results for regular, payedl@l@nd trapezoidal
element shapes. The lowest grade has been obtained for trapezeidaheshape as in the

planar finite element formulation.

In flexible pendulum solutions, the main aim was to show accuracy of thepedpelement
under large rotation and deformation cases. Firstly, convergencelsisdyeen performed for
different number of elements. It has been shown that accurate results ohtaimed similar

to the results published forfilerent element formulations and topologies in literature. Then,
effect of irregular element geometries has been investigated in flexible pemgubllem. In
order to define irregularity level, a new definition called “similarity ratio” hasrbmade. Itis
shown that up to 124% error can be obtained with the similarity ratio betweghdnd 91.
However, error level can be decreased to accurate levels by iimgeasnber of elements or

using similarity ratio between/2 and 21.
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion of the Thesis

The main goal of the thesis is to improve current pktiell finite element formulations for
flexible multibody dynamics problems or develop a new approach. In the thesis of

the aims have been completed not only for plates and shell elements but alseafos,
plane stregplane strain elements and 3D hexahedral solid elements. Firstly, available
flexible multibody formulations have been investigated and compared, anceasltof the
comparison study, Absolute Nodal Coordinate Formulation has been setectee basis of

the thesis.

The first attempt in the thesis is to introduce meshfree methods to Absolute Clodiainate
Formulation. For this purpose, the meshfree ANCF for planar shearndalfde beams
has been proposed. The proposed formulation has been verifiediMiggsthe flexible
beam pendulum problem, which is well known in the flexible multibody dynamicstites.
Obtained solutions show that accurate results can be obtained with a lesermfmmodes

compared to finite element method based ANCF.

After verifying planar beam formulation, meshfree ANCF of plates andishave been
studied. However, it is observed that it is not possible to satisfy the desplet continuity
between quadrature domains by using the developed formulation. Tresrefdy the results
and their comparisons have been presented without detailed derivairgplaties and shells
instead of working on this formulation further. Despite the discontinuity prablé is
observed that the most appropriate polynomial based shape functiondriethize radial

point interpolation with polynomial reproduction.
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The second attempt in the thesis is to eliminate regular element shape limitation dblavaila
ANCF. This attempt is successfully completed and verified. Firstly, “ANCF wittual
Element Mapping” has been proposed with three alternative nodal inateddefinitions.
Then, 4 noded planar quadrilateral finite element formulation has betarped. Nonlinear
static and time dependent dynamic finite element analyses have been savestelyg with

the proposed method for some of the available patch test problems. Additjoiaby
seen that steady state responses in transient dynamics analyses atedanasl to the
results obtained by nonlinear static analyses. In fact, this also showsahsietnt dynamic
simulations with finite elements, which use the proposed methods, would noadditidnal
control and solution algorithms for hourglagkeet, which is the major error source in explicit

finite element solution methods.

It can be thought that the proposed methods are not dtesttiee due to high number of
nodal degrees of freedom and highly nonlineaffrstiss matrix or generalized elastic force
vector. However, these are actually the advantages of the proposaddtions for transients

dynamics flexible multibody simulations, since;

1. the mass matrix is always constant and independent of time,

2. deformable bodies can be discretized with less number of elements ratatikie

classical finite element methods due to higher order of shape functionguoigts and

3. accurate stress and strain results could be obtained due to the usdinéaostrain

tensor in formulation without approximation or linearization.

After verification of the proposed methods for planar finite elements, it éas bxtended to
the generalized plate and shell problems. The detailed formulations of 4 gededalized
plate element have been presented with verification tests. Howeverymarice of the
developed finite element under out-of-plane shear loading conditions &srsatisfactory as
the performance under in-plane shear or extension loading conditiothérfglates. Actually,
this is the general feature of all generalized pktiell finite elements. In order to increase
accuracy in out-of-plane shear loading, thin pisitell shape functions have been proposed,
but, detailed derivation and verification of thin pleteell formulation have not been presented

in the thesis.
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ANCF with Virtual Element Mapping method has been applied to 3D hexahédditd
elements. Besides verification with cantilever beam patch tests, flexible Ipemguoblem
has also been studied in detail. Firstly, convergence characteristic offdpesed finite
element formulation has been observed. Théiect of irregular shaped elements on
displacement results has been examined. It is seen that the major elemeatiatiar
contributing the results is the similarity ratio, which is defined as the ratio of the ledgths
of neighboring virtual elements. In fact, this ratio is not related with the singlaent shape
but it is related to the finite element mesh of the flexible body. As a result, it isrshitat a

wide range of similarity ratio can be used without losing accuracy, signtfican

7.2 Conclusions

It is observed that the developed finite element based methods in this thesiBcent for
the solution of flexible multibody problems. The major contributions of the custerly can

be listed as follows;

1. Meshfree Absolute Nodal Coordinate Formulation for planar shdarrdable beams
has been developed. It is observed that accuracy is high in the solutibex&reme

deformations can be handled, easily.

2. Absolute Nodal Coordinate Formulation with Virtual Element Mapping Metlsod
introduced and it is seen that various finite element geometries can be maaeled

advantages of ANCF can know be used in 3D continuum problems.

3. ANCF with Virtual Element Mapping has been developed for the solutioplarie
stresgplane strain problems. Four noded quadrilateral plane ghtese strain finite

elements have been developed for the solution of irregular problems.

4. ANCF with Virtual Element Mapping has been developed for the solutigriadé and
shell problems. Four noded plate and shell finite elements have beenmiVébo the

solution of irregular problems.

5. Derivation of thin plate and shell shape functions for ANCF with Virtubdnient

Mapping has been made.
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6. ANCF with Virtual Element Mapping has been developed for the solutiodbf
problems. Eight noded hexahedral finite element has been develapix feolution

of irregular problems.

7.3 Further Improvements and Future Studies

The proposed methods and implementations in this thesis study can be improved in th

following subjects:

1. Meshfree platishell ANCF can be improved by implementingfdrent interpolation
functions available in the literature. It is obvious that the accuracy candreased

with the improved shape function polynomials.

2. The proposed Virtual Element Mapping method and related finite elementstimetbis
have been tested for a limited range of element geometries, which can batgdrizy
the proposed shape functions. Therefore, additional patch testsl sieoperformed in

order to determine geometric limits of the elements.

3. The accuracy of the solutions can be changed by usifigreint shape function

polynomials. Therefore, this could be studied in order to increase agcura

4. Finite element formulation for “Virtual Element Mapping using Initial Shapadtion
Polynomials” has been proposed. In most of the regular element shapeseitnod
produce the same shape functions as in Method 1 or 2. However, egairahe
method for elements having curved edges could lfferdint. Therefore, the method

can be studied in detail in order to improve accuracy.

5. For the proposed thin plashell shape functions, detailed formulation and verification

of the thin platgshell elements could be performed.

6. ANCEF is not very fective for quasi-static simulations. Therefore, an improvement can

be made by studying on the solution algorithms or linearization fihss matrix.

7. Itis also thought that extending the proposed methods to nonlinear igjgstablems
would be useful. Especially, accurate results would be expected fardigstic and

viscoelastic materials.
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8. In addition to the improvement requirements, the proposed finite element dsetho
can also be extended to plasticity problems, such as metal forming simulations or

crashworthiness applications. These applications also require cordacitrans.

Therefore, plasticity and contact algorithms should be considered togethe
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APPENDIX A

INTEGRATION CONSTANTS FOR NON-SHEAR
DEFORMABLE PLANAR BEAM ANCF

By using the shape function matrix given in Equation 2.88/d¢ and §°S/0¢% can be

calculated as given in Equations A.1 and A.2.

—6¢ + 667 0
0 —6¢ + 62
L(1-4¢+3¢2) 0
3S _ 0 L(1-4¢+3¢2) A1)
o€ 6¢ — 662 0
0 6 — 6£°
L(3¢2 - 2) 0
0 L(%2-2) |
- 4T
-6+ 12¢ 0
0 —6+12¢
L (-4 + 6¢) 0
s _ 0 L (-4 + 6¢) "2
082 | g 12¢ 0
0 6 12¢
L (6 - 2) 0
0 L(E-2|

Then, integration constants appearing in Equation 2.28 can be calculafigdas Equations

A3-A12.
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Additionally, dix/de anddiy/de can be simplified as given in the following equations.
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