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ABSTRACT 
 

 

K–WAY PARTITIONING OF SIGNED BIPARTITE GRAPHS 

 
 

ÖMEROĞLU, Nurettin Burak 

M.S., Department of Computer Engineering 

Supervisor: Prof. Dr. İsmail Hakkı TOROSLU 
 
 

September 2012, 88 pages 
 

 

Clustering is the process in which data is differentiated, classified according to some 

criteria. As a result of partitioning process, data is grouped into clusters for specific 

purpose. In a social network, clustering of people is one of the most popular 

problems. Therefore, we mainly concentrated on finding an efficient algorithm for 

this problem. In our study, data is made up of two types of entities (e.g., people, 

groups vs. political issues, religious beliefs) and distinct from most previous works, 

signed weighted bipartite graphs are used to model relations among them. For the 

partitioning criterion, we use the strength of the opinions between the entities. Our 

main intention is to partition the data into k-clusters so that entities within clusters 

represent strong relationship. One such example from a political domain is the 

opinion of people on issues.  Using the signed weights on the edges, these bipartite 

graphs can be partitioned into two or more clusters. In political domain, a cluster 

represents strong relationship among a group of people and a group of issues. After 

partitioning, each cluster in the result set contains like-minded people and 

advocated issues. 

Our work introduces a general mechanism for k-way partitioning of signed bipartite 

graphs. One of the great advantages of our thesis is that it does not require any 

preliminary information about the structure of the input dataset. The idea has been 
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illustrated on real and randomly generated data and promising results have been 

shown.  

Keywords: Move-Based Heuristic, Graph Partitioning, Signed Weighted Bipartite 

Graphs, Generic Algorithm, Linear Programming 
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ÖZ 
 

 

İŞARETLİ AĞIRLIKLI İKİ PARÇALI GRAFLARIN K GRUBA AYRILMASI 
 
 

ÖMEROĞLU, Nurettin Burak 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmail Hakkı TOROSLU 
 
 

Eylül 2012, 88 sayfa 
 

 

Kümeleme verinin belli kriterler ışığında ayrıldığı, sınıflandırıldığı işlemdir. Gruplama 

işleminin sonucunda, veriler belli amaçlar doğrultusunda kümelere gruplandırılırlar. 

Sosyal ağlarda, insanların kümelenmesi en popüler problemlerden biridir. Bunları 

düşünerek, genel olarak bu probleme etkileyici bir yöntem geliştirebilmeye konsantre 

olduk. Bu çalışmamızda, veri iki farklı tipten oluşmaktadır (örneğin insanlar, gruplar 

ile politik meseleler, dini inanışlar) ve daha önceki birçok çalışmadan farklı olarak, 

verilerin modellenmesinde işaretli ağırlıklı iki parçalı graflar kullanıldı. Bölümleme 

kriteri olarak, varlıklar arasındaki düşüncelerin şiddetleri kullanılmaktadır. Bizim 

veriyi k bölüme ayırırkenki asıl amacımız, aynı gruba düşen nesnelerin grup 

içerisinde güçlü benzerlikler göstermesini sağlamaktır. Politika alanından bir örnek 

vermek gerekirse insanların konular hakkındaki görüşleri denebilir. Bağlantıları 

işaretli ve ağırlıklı kenarlar ile ifade ederek, ortaya çıkan iki parçalı grafları 2 veya 

daha fazla bölüme ayırabiliriz. Politika alanında, bölümleme sonrası ortaya çıkan 

gruplar, insanlar ve konular arasında güçlü ilişkiler olduğunu gösterirler. Kümeleme 

sonrasında, her bir sonuç kümesi benzer düşüncedeki insanları ve savundukları 

fikirleri içermektedirler. 

Çalışmamız, k işaretli iki parçalı graflar için, genel mekanizmalar sunmaktadır. 

Tezimizin avantajlarından bir tanesi, gelen veri kümesi ne olursa olsun ön bilgi 
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sahibi olmak gerekmeksizin çalışabilmesidir. Fikirlerimiz gerçek ve makina 

tarafından üretilmiş veriler ile denenmiş ve tatminkar sonuçlar üretilerek, sonuçlar 

kısmında gösterilmiştir. 

Anahtar Kelimeler: Hareket-Temelli Yöntem, Graf Bölümleme, İşaretli Ağırlıklı İki 

Parçalı Graflar, Genel Algoritmalar, Doğrusal Programlama 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

In this chapter, there are three sections. In the first section, we give some 

background information and then define the problem. In the second section, our 

motivation to do this work and contributions to the subject are presented. The last 

section gives us the road-map for the overall, explaining briefly what each chapter 

does. 

1.1 Problem 

A set of objects can be represented by a graph   in which edges are used to 

connect some pairs of vertices or nodes. In graph theory, there are different kinds of 

graphs, but in our problem we are concentrated on bipartite graphs. In [1], bipartite 

graph is defined as a simple graph   in which vertices      can be partitioned into 

two sets,   and   with the following properties: 

1. If       then it may only be adjacent to vertices in  . 

2. If       then it may only be adjacent to vertices in  . 

3.       

4.          
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Figure 1: Example of a bipartite graph (Wikipedia) 

 

It is clearly seen on Figure 1, bipartite graphs can be imagined as two lines of 

vertices parallel to each other, and edges can only be between those lines (i.e., two 

nodes cannot be connected if they are on the same line).  

Social networks became one of the hottest topics of computer science in recent 

years. One very common form of a social network is actually a simple bipartite graph 

where one partition   represents actors (e.g., people, organizations) and the other 

partition   represents a set of issues (e.g., political issues, beliefs). One of the 

earliest definitions of this problem is given in [2]. An edge between a person and an 

issue represents the opinion of that person on that issue. This opinion expressed 

with a sign, as positive or negative, (no edge between a person-issue pair 

expresses “no opinion”), and, a numerical value representing the strength of the 

opinion of person.  

Clustering, which is grouping of similar things, on such bipartite graphs is a non-

trivial and interesting problem. This thesis extends previously introduced idea of [3] 

to be able to partition bipartite graphs into k clusters (k-way partitioning) based on 

the opinions expressed on the edges. Notice that the clustering should produce sub-

bipartite graphs such that people in a sub-bipartite graph should have strong 

positive opinions on the issues of that sub-bipartite graph, and they should have 

strong negative opinion towards the issues in other sub-bipartite graphs. 
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Now, we will introduce the formal model for the problem. The inputs of k-way 

partitioning of signed bipartite graph problems are bipartite graph            , 

label function          and partition count  . Label of an edge can be positive or 

negative real value. In most cases the range of the mapping is either a small subset 

of integers of real values. For this modeling, we assume that a positive edge from   

to   where     and     means that   supports  , and a negative edge implies 

that   is against  . The goal of the partitioning problem is to divide the sets   and   

into (            ) and (            ) simultaneously to form disjoint max   clusters 

(                      , such that, 

1. The sum of the weights of the positive edges within clusters is maximized 

(i.e., positive edges from    to   ,      ), 

2. The sum of the weights of the positive edges between clusters is 

minimized (i.e., positive edges from    to   ,                ), 

3. The sum of the weights of the negative edges within clusters is 

minimized (i.e., negative edges from    to   ,      ), 

4. The sum of the weights of the negative edges between clusters is 

maximized (i.e., negative edges from    to    ,                ). 

 

Figure 2: Partitioning of A into A1, A2, ... Ak and B into B1, B2, ... Bk 

 

Figure 3: Nodes are distributed among blocks  
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In Figure 2, sets   and   are partitioned into   clusters from 1 to k, where clustering 

is done simultaneously. Simultaneous (i.e., vertical) partitioning is a little bit 

confusing; some may think that there are    clusters in the figure instead of   

clusters. To clarify the key point of simultaneous partitioning, we can say that    and 

   jointly forms        like shown in Figure 3. 

Each line in Figure 2 represents the sum of the weights of the edges from     to   , 

        where label N (i.e., red lines) denotes negative and label P (i.e., green 

lines) denotes positive signs. Note that some of the lines are thicker than the others. 

Thick lines represent higher values than the thin ones. 

In Figure 3, six nodes from   and four nodes from   are distributed into three 

blocks.  In this example, separators (i.e., thick vertical red lines) cut negatively 

weighted edges between blocks and divide nodes into 3 partitions. For illustration, 

all nodes are distributed ideally so that edges within blocks are all has positive and 

edges between blocks are all has negative sign. As one would predict, most of the 

time, partitioning may not be perfect, meaning that there can be negative edges 

within clusters and positive edges between clusters. 

The clustering problem is modeled in Figure 2 and Figure 3. The goal can be 

realized by maximizing the sum of [(positively weighted edges – negatively weighted 

edges within blocks) – (negatively weighted edges – positively weighted edges 

between blocks)]. Meanwhile, if we maximize the sum of positive edges within 

blocks, it gives the minimal sum of positive edges between blocks, since the total 

sum is constant. The same thing appears similarly for the negatively weighted ones. 

Therefore, the goal statement reduces to maximize the sum of [(positively weighted 

edges within blocks) – (negatively weighted edges between blocks)]. More formal 

version of the objective function that must be maximized can be found in chapter 3. 

1.2 Motivation and Contribution 

In social networks, large blocks of data collected from various domains are analyzed 

by social analysts to dig out significant information about people and groups.  We 
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thought that it would be great to have some efficient tools which can divide the data 

into meaningful subgroups. Thus, the objective of our thesis is that to create a 

generic tool which can partition the given dataset into subsets in reasonable time.  

Since computational time for finding optimal solution to k-way partitioning of signed 

bipartite graph problem is unacceptably high, we present move-based (Ch.5), 

mathematical (Ch.3) and generic approaches (Ch.4) to solve the problem described 

in previous section. We provided the implementation details as well as the 

experimental results on various datasets for these algorithms. 

To our knowledge, no efficient algorithm was presented for k-way partitioning of 

signed bipartite graph problem before our study, as stated in [3]. This study is the 

extension of the work in [3] in two folds: One of the extensions is k-way partitioning 

of bipartite graphs, and the other one is reduction of the execution time to the half. 

The second contribution is quite important, especially on big datasets.  

1.3 Organization 

This thesis is organized in seven main chapters, including this introduction chapter 

as the first chapter. In the second chapter, to let the reader understand the problem 

domain, survey is given. Background information and implementation details of 

major methods used in this work, mathematical, generic and move-based heuristic, 

are presented in the third, fourth and fifth chapters, respectively. The results 

obtained from real and randomly generated datasets are presented at the sixth 

chapter. Finally, the last chapter contains the conclusion and the future work. 
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CHAPTER 2 

 

 

RELATED WORK 
 

 

 

Due to the fact that there is vast amount of literature that highlights and studies 

clustering, classification (categorization), partitioning and grouping, we have 

addressed only to the ones that are most related to our concern. The general 

categorization of the unsigned partitioning algorithms and the survey can be found in 

[13]. As the title indicates, we have concentrated on (i) signed (i.e., the edge weights 

are both positive and negative) (ii) bipartite (i.e., people, organizations etc. at one 

side and thoughts, religious beliefs etc. at the other side) graph (iii) multi-partitioning 

(i.e., K>=2 clusters) in our survey.  Nevertheless, for inspiration, we widened the 

circle of our interest and briefly examined some of the unsigned and arbitrary graph 

partitioning algorithms.  

During the literature review, it was understood that graph partitioning algorithms that 

are relevant to our topic are categorized into different divisions based on (i) Type of 

graphs – Bipartite [7][9][14] / Arbitrary [4][5][12][13], (ii) Kind of clustering – 

Separately (one-mode) [4][5][12][13] / Simultaneously (two-mode) [7][9], (iii) Sign of 

edge weights – Signed [4][5][13] / Unsigned [7][9][12], (iv) Level of partitioning – Bi-

partitioning (2-way) [3] / Multi-partitioning (k-way) [7][9], and (v) Distribution of nodes 

– Balanced [13] / Unbalanced [7][9]. In different studies, the type of our partitioning 

mechanism was also named as simultaneous [7] and unbalanced [13] partitioning.  

In [7] and [9], two sets of entities (represented by two sets of nodes in the bipartite 

graph) were clustered. These works were related to document clustering, where one 

set of entities was set of words, and the other one was set of documents. In these 

works there was no information on the edges. In [4] and [5], signed arbitrary graphs 
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were considered, but they were not focused to bipartite graphs. In [2] and [8], similar 

problems were introduced; however, no effective algorithm has been introduced. 

Kernighan-Lin (KL - 1970) and Fiduccia-Mattheyses (FM - 1982) algorithms are two 

fundamental move-based heuristic algorithms used for graph partitioning from which 

several algorithms such as [3] have been inspired. While the first one works locally, 

the second one considers global connectivity. Due to the similarities with ours, we 

will step into details of these algorithms. 

KL algorithm is an efficient heuristic method which finds effective optimal solutions 

for arbitrary graphs in reasonable time [11]. KL algorithm was designed for unsigned 

arbitrary graphs with weights on its edges. The objective of the algorithm was to 

divide the graph into subsets of no larger than a given maximum size in order to 

minimize the sum of the weights on all edges cut. The algorithm can be applied to 

so many fields. For instance, the problem of minimizing the number of connections 

in electrical circuit boards can be solved using KL algorithm. It is fast enough to 

solve large problems. 

As stated in the paper, KL algorithm can also be adapted to paging problems in the 

paged memory organizations of computers.  In this problem, a program can be 

thought as a set of connected entities which might be sub-routines, procedure 

blocks or instructions. References between entities constitute the connections from 

one entity to another. As a result, the problem can be described as a partitioning 

problem in which the entities must be partitioned into pages with the given page size 

to minimize the references across pages. 

In the introduction section (2.1) of the paper [11], the simplest partitioning problem is 

defined and the 2-way uniform partitioning solution is applied to the problem as the 

following: Let        be an arbitrary graph,   be the set of vertices and   the set of 

edges. The KL algorithm tries to find a partition of   (2n) into two disjoint sets   (n) 

and   (n) of equal size such that the sum of the edges between vertices in   and   

is minimized.    and    are defined in the paper as follows:    is the internal cost 

of    , means the sum of the weights of the edges from vertex   to the other 

vertices in   . Similarly,    stands for external cost of   , that is, the sum of the 
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weights of the edges between vertex   and vertices in . Let          be the 

difference between external and internal values of  . If   and   are interchanged, 

then the gain (that is the reduction in cost) is given by                        

                where     is the cost of the possible edge between vertices 

  and  . The 2-way partitioning version of the KL algorithm attempts to find an 

optimal series of interchange operations between elements of   and   which 

maximizes gain and then executes the operations, producing a partition of a graph   

and  . Till the cut sizes keeps decreasing, vertex pairs which give the largest 

decrease or the smallest increase in cut size are exchanged. These vertices are 

then locked and thus prohibited from participating in any further interchanges. This 

process continues until all the vertices are locked. When no improvement can be 

found in the algorithm, the partitions A and B are local minimum with respect to the 

algorithm. In the paper, it is claimed that “the resulting partitions has a fairly high 

probability of being a globally minimum partition.” As the process does not 

guarantee the globally minimum, the process can be repeated to find as many local 

minimum as desired. This solution is the basic one and has some restrictions, but it 

can be extended easily for more general problems.  

The first extension (section 2.6 of the paper) of the given KL algorithm is for unequal 

sized (unbalanced) subsets (assume       ). Let’s assume we have partitions 

| |    and | |    . Before applying Kernighan-Lin algorithm we can add dummy 

      vertices to set   such that dummy vertices have no connections to the 

original graph. At the end, we can remove all dummy vertices. 

In the section 2.7, the second extension is described as vertices of unequal sizes. 

From the beginning of the algorithm, we assumed that the vertices are sized equally. 

Now, let’s assume that the smallest vertex has unit size. Before applying KL, each 

vertex of sized   are replaced with   vertices which are fully connected with edges of 

infinite weights. In the paper authors advised that since it increases the size of the 

problem proportionally to vertex size  , it might be necessary to stop the generation 

of new vertices within acceptable bounds through tolerating the errors.  

The last extension to the algorithm can be for k-way partitioning. To do that, instead 

of 2 sets, we partition the graph into k equal-sized sets. For each pair of subsets we 
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apply Kernighan-Lin algorithm. The time complexity can be reduced by recursive bi-

partition.  

The total running time of the algorithm is        for | |    , where “repeat loop” 

terminates after R passes. Since the time complexity of the KL algorithm is high, 

better implementations of KL algorithm can be found in the literature. Since the idea 

is the same, the variations of the algorithm will not be mentioned. 

The other algorithm which we will go into the details is FM algorithm. The FM 

algorithm is more similar to ours, since just one vertex is moved to another block at 

each step.  

FM presented in paper [10] is a KL-inspired mincut heuristic algorithm which 

iteratively partitions networks. Its worst case execution time is linearly dependent on 

the size of the netlist. In FM, new features to KL are implemented algorithm. These 

features can be listed as follows:  

 It deals with various sizes of vertices. 

 Single vertex at a time is moved across the blocks. 

 Cut-size is extended to hyper-graphs. Hyper-graph is a graph in which an 

edge can connect any number of vertices. 

 Unbalanced partitions and balanced factor are introduced. 

 Efficient data structures are used to avoid unnecessary searching and 

improve running time. 

In the paper, the mincut partitioning problem is defined for a network that contains a 

set of cells (modules) connected by a set of nets (signals). The aim of the algorithm 

is that to find a clustering of the set of modules into two blocks A and B such that the 

number of nets which have cells in both blocks is minimal.  

Like KL, FM performs passes in which each cells move exactly once, returns best 

solution obtained during the pass, terminates when the pass fails to improve the 

final result. However, FM gives results much faster,  | | for undirected graphs and 

 | | implementation on hyper-graphs, where p is the number of pins in the netlist 



10 
 

defined in the paper. The key point is that to speed up the heuristic gain bucket 

structure presented in the Figure 4 is used, which allows constant time selection of 

the module with the highest gain and fast gain updates after each move. 

 

 

Figure 4: The Gain Bucket List Selection as shown in FM paper 

 

Of course, the most related work is [3]. In [3], en efficient heuristic based solution 

has been introduced for 2-way partitioning of bipartite signed graphs. Our work 

extends it to k-way partitioning with time optimizations which is detailed in the next 

chapters. 
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CHAPTER 3 
 

 

MATHEMATICAL METHODS 
 

 

 

In this chapter, firstly, background information about linear and nonlinear 

programming is given. Secondly, linear and nonlinear programming formulations of 

our problem are shown. Thirdly, the simplex method used to solve linear 

programming is described. Finally, nonlinear programming solutions to our problem 

are explained.  

3.1 Introduction 

In this section, some of the programming methods which are linear programming 

(LP) and nonlinear programming (NLP) are described and the brief information 

about integer linear programming (ILP or IP), binary integer programming (BIP) and 

mixed integer programming (MIP) are given. 

3.1.1 Linear Programming (LP) 

Linear programming is the process of taking various linear inequalities relating to 

some situation, and finding the best value obtainable under those conditions. 

Looking back from the early 1980s, in [15], linear programming is defined by Dantzig 

as a “revolutionary development giving man the ability to state general objectives to 

find optimal policy decisions for a broad class of practical problems of great 

complexity.”  

Dantzig’s discovery of linear programming was presented at the meeting of the 

Econometric Society at the University of Wisconsin in Madison in 1948. His abstract 



12 
 

from this meeting appeared in Econometrica [16] and some of his early linear 

programming papers appeared in [17][18]. 

In "real life", linear programming is part of a very important area of mathematics 

called "optimization techniques". This field of study (or at least the applied results of 

it) is used every day in the organization and allocation of resources. These "real life" 

systems can have dozens or hundreds of variables, or more. 

Linear programming can be applied to various fields of study. It is used in business 

and economics, but can also be utilized for some engineering problems. Industries 

that use linear programming models include transportation, energy, 

telecommunications, and manufacturing. It has proved useful in modeling diverse 

types of problems in planning, routing, scheduling, assignment, and design. 

The general process for solving linear-programming exercises is to graph the 

inequalities (called the "constraints") to form a walled-off area on the x, y-plane 

(called the "feasibility region"). Then figure out the coordinates of the corners of this 

feasibility region (that is, find the intersection points of the various pairs of lines), and 

test these corner points in the formula (called the "optimization equation") for which 

we are trying to find the highest or lowest value. 

As evidenced by Dantzig’s book [19], in 1947, he invented the Simplex Method, 

which solves linear programming by running along polytope edges of the 

visualization solid to find the best answer. L. Khachain (1979) found a new algorithm 

for linear programming [20], but it is O(x5) polynomial time algorithm and really slow. 

Narendra Karmarkar, in 1984, discovered a much more efficient polynomial-time 

algorithm for linear programming [21]. This method goes through the middle of the 

solid (making it a so-called interior point method), and then transforms and warps. 

Karmarkar's announcement led to these methods receiving a great deal of attention.  

3.1.1.1 Standard Form of the Linear Programming 

Every linear program can be expressed as in “standard” form where the objective 

function (3.1) is maximized, the constraints (3.2 - 3.m+1) are equalities and the 

variables (3.m+2) are all nonnegative. Linear objective function should be 

http://en.wikipedia.org/wiki/Assignment_problem
http://mathworld.wolfram.com/PolytopeEdge.html
http://mathworld.wolfram.com/PolynomialTime.html
http://mathworld.wolfram.com/Algorithm.html
http://mathworld.wolfram.com/InteriorPointMethod.html
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represented as a linear function. An optimum solution that meets constraints’ 

requirements is searched. Each constraint should be represented as a linear 

equation.  

                        (3.1) 

             

                        (3.2) 

     

                        (3.m+1) 

             (3.m+2) 

   

This is done as follows:  

 If the problem is min z, convert it to max –z. 

 If a constraint is                       , convert it to equality constraint 

by adding the nonnegative slack variable     so that the constraint 

becomes                            . 

 If a constraint is                       , convert it to equality constraint 

by subtracting the nonnegative slack variable     so that the constraint 

becomes                           . 

 If the sign of the variable     is not known, replace the    with   
    

   where 

  
    and   

     

3.1.1.2 Simplex Method 

Basic algorithm generally used for linear programming is the simplex method 

[19][22]. It was proven to solve linear formulated problems of acceptable size in a 

reasonable time. 

The simplex method works by finding a feasible solution, and then moving 

from that point to any vertex of the feasible set that improves the cost 

function. Eventually a corner is reached from which any movement does not 

improve the cost function. This is the optimal solution. [22] 
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The problem is usually formulated in matrix form, and represented as: 

       

                    

where   represents the vector of variables (to be determined),   and   are vectors of 

(known) coefficients and   is a (known) matrix of coefficients [23]. In this 

formulation, a vector   is a feasible solution of the linear programming problem if it 

satisfies the given constraints. Problems defined in this formulation have three 

different types [19]: 

1- Infeasible: None of the vectors in solution space can satisfy the given 

constraints. 

2- Unbounded: Given constraints are not enough for bounding objective 

function parameters in the solution space. So, a better solution with an 

improved objective function value can exist. 

3- Optimal: Problem formulated in linear programming has an optimum 

value for the objective function and there exists vector(s) that can create 

such optimum value with satisfying the given constraints. 

3.1.1.3 Integer Linear Programming (ILP) 

If the variables in linear programming may take only integer values instead of real 

values then it is called integer linear programming (ILP), also known as integer 

programming (IP). It is a special case of LP, but in contrast to LP finding the optimal 

solution is mostly NP-hard.  

3.1.1.4 Binary Integer Programming (BIP) 

It is a special case of ILP, in which variables can only take 0 or 1 (i.e., binary values, 

not arbitrary integers). These problems are also known as NP-hard. 

3.1.1.5 Mixed Integer Programming (MIP) 

If only some of the unknown variables are required to be integers, then the problem 

is called a mixed integer programming (MIP) problem. These are generally also NP-
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hard. There are however some important subclasses of IP and MIP problems that 

are efficiently solvable. 

We do not go into the details of how to solve these problems but some advanced 

algorithms that can solve integer unknown problems can be listed as follows: 

 cutting-plane method 

 branch and bound 

 branch and cut 

 branch and price  

3.1.2 Nonlinear Programming (NLP) 

A nonlinear programming problem is an optimization problem where the objective 

function or some of the constraints are nonlinear.  

 

 
 

Figure 5: A convex function to be optimized. (Prof. Robert Freund) 

 

Figure 5 is drawn in 3D environment to illustrate one of the optimization problems as 

a non-linear function. Since the figure has been added just to give an idea about 

NLP, we will not go into the details. 

http://en.wikipedia.org/wiki/Cutting-plane_method
http://en.wikipedia.org/wiki/Branch_and_bound
http://en.wikipedia.org/wiki/Branch_and_cut
http://en.wikipedia.org/wiki/Branch_and_price
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Nonlinear programming (NLP) involves minimizing or maximizing a nonlinear 

objective function subject to bound constraints, linear constraints, or nonlinear 

constraints, where the constraints can be inequalities or equalities. Example 

problems in engineering include analyzing design tradeoffs, selecting optimal 

designs, and incorporating optimization methods in algorithms and models. 

3.1.2.1 General Form of the Nonlinear Programming 

   
 

     

                  

The objective function can be maximized or minimized and the constraints can be 

          

Nonlinear programming is hard to solve. Most of the solvers can only find 

approximate solutions to NLPs, and local optimum values for objective functions. 

There are different types of algorithms used to solve NLPs, some of them are below: 

1. Interior-point: especially useful for large-scale problems that have sparsely 

or structure 

2. Sequential quadratic programming (SQP): solves general nonlinear 

problems and honors bounds at all iterations 

3. Active-set: solves problems with any combination of constraints 

4. Trust-region reflective: solves bound constrained problems or linear 

equalities only 

3.1.2.2 Unconstrained Nonlinear Programming  

Many NLPs do not have any constraints. They are called unconstrained NLPs. 

Unconstrained nonlinear programming is the mathematical problem of finding vector 

  that is a local minimum to the nonlinear scalar function       Unconstrained 

means that there are no restrictions placed on the range of  . 
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Unconstrained NLPs can be solved by using the following algorithms: 

1. Quasi-Newton: uses a mixed quadratic and cubic line search procedure and 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula for updating the 

approximation of the Hessian matrix 

2. Nelder-Mead: uses a direct-search algorithm that uses only function values 

(does not require derivatives) and handles no smooth objective functions 

3. Trust-region: used for unconstrained nonlinear problems and is especially 

useful for large-scale problems where sparsely or structure can be exploited 

3.1.3 GAMS (General Algebraic Modeling System) 

GAMS is a tool used for high-level modeling of mathematical formulations and 

optimization. There are various high-performance solvers available in it. Because of 

its own language for mathematical programming, it includes a compiler in itself  to 

transform mathematical representation to representations required by specific solver 

engines. GAMS is tailored for complex, large scale modeling applications, and 

allows us to build large maintainable models that can be adapted quickly to new 

situations. Detailed information can be obtained from http://www.gams.com. 

Table 1: GAMS Model Types and Descriptions 

Model Type Description 

LP Linear Programming 

MIP Mixed-Integer Programming 

NLP Non-Linear Programming 

MCP Mixed Complementarity Problems 

MPEC Mathematical Programs with Equilibrium Constraints 

CNS Constrained Nonlinear Systems 

DNLP Non-Linear Programming with Discontinuous Derivatives 

MINLP Mixed-Integer Non-Linear Programming 

QCP Quadratic Constrained Programs 

MIQCP Mixed Integer Quadratic Constrained Programs 

 

http://www.gams.com/
http://www.gams.com/modtype/modeltyp.htm#LP
http://www.gams.com/modtype/modeltyp.htm#MIP
http://www.gams.com/modtype/modeltyp.htm#NLP
http://www.gams.com/modtype/modeltyp.htm#MCP
http://www.gams.com/modtype/modeltyp.htm#MPEC
http://www.gams.com/modtype/modeltyp.htm#CNS
http://www.gams.com/modtype/modeltyp.htm#DNLP
http://www.gams.com/modtype/modeltyp.htm#MINLP
http://www.gams.com/modtype/modeltyp.htm#QCP
http://www.gams.com/modtype/modeltyp.htm#MIQCP
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In Figure 6, the solver/model type matrix for GAMS version 23.9 shows which solver 

is capable of which model type. We wish to emphasize that underlined bold solvers 

are the ones that are able to solve NLPs, which can be seen from the column 

named as “NLP”. Other columns of model type matrix are put for informational 

purposes only. Results of these solvers on various datasets are compared in 

chapter 6. 

Solver/Model type availability - 23.9    July 4, 2012 

SOLVER  LP MIP NLP MCP MPEC CNS DNLP MINLP QCP MIQCP Stoch. Global 

ALPHAECP               
 

  
 

    
BARON 11.1 

   

      
    

  
 

BDMLP 
  

                    
COIN-OR 

   

      
    

  
 

CONOPT 3 
 

  
 

    
  

  
 

      
CPLEX 12.4 

  

            
  

    
DECIS 

 

                  
 

  
DICOPT               

 

  
 

    
GLOMIQO 2.0                 

  

  
 

GUROBI 5.0 
  

            
  

    
KNITRO 8.0 

 

  
 

      
    

    
LINDO 7.0 

   

      
      

LINDOGLOBAL 7.0 
   

      
    

  
 

LGO 
 

  
 

      
 

  
 

    
 

MILES       
 

                
MINOS 

 

  
 

      
 

  
 

      
MOSEK 6 

   

      
 

  
  

    
MPSGE                         
MSNLP     

 

      
 

  
 

    
 

NLPEC       
  

              
OQNLP     

 

      
    

  
 

PATH       
 

  
 

            
SBB               

 

  
 

    
SCIP   

  

      
    

    
SNOPT 

 

  
 

      
 

  
 

      
SOPLEX 

 

                      
XA 

  

                    
XPRESS 23.01 

  

            
  

    
             

Figure 6: The Solver / Model type Matrix (www.gams.com) 

 

http://www.gams.com/
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3.2 Mathematical Representation of the Problem 

In this section, we set up linear and nonlinear programming formulations of the 

problem. Problem definition can be found in the introduction part (chapter 1). 

Formulations are supported with the example throughout the section. 

 

Figure 7: Illustrative Example 

 

Let               and               be partitioning of the nodes of bipartite 

graph          .  

In Figure 7, U, V and E are illustrated as           ,              and   

{                                                                   }  In the 

example, vertices of   and   are divided into three blocks       , where     

   ,                               and       . For the sake of clarity, in the 

figure “a”, “b”, “c” and “d” are used as the members of V, however, in the remaining 

part; we refer to these elements with numbers as                    . 

Let  

                  | | 
 ,                     | | 

  

be indicator vectors for    and    respectively,     . (T   transpose) Thus,  

    {
                          

                               
,        {
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According to the figure, indicator vectors are as following: 

   [
 
 
 
]    [

 
 
 
]    [

 
 
 
]         [

 
 
 
 

]   [

 
 
 
 

]    [

 
 
 
 

] 

Clearly, 

∑ ∑    
| |
   

 
    | |  and   ∑     |  |

| |
          

, 

∑ ∑    
| |
   

 
    | |  and   ∑     |  |

| |
          

and 

∑    
 
          | |, similarly, ∑    

 
          | |.  

Let         represents the adjacency matrix for the bipartite graph          . 

The sum of all edges in the clusters is given by [6] 

∑ ∑ ∑    

        

 

 

   

∑ ∑ ∑          

| |

   

| |

   

 

 

   

∑  
     

 

   

 

The mathematical programming formulation can be written as follows: 

      ∑ ∑ ∑          

| |

   

| |

   

 ∑ ∑ ∑          

| |

   

| |

   

 

     
   

 

   

 (3.1) 

  

Subject to 

∑   

 

   

       | | (3.2) 

∑   

 

   

       | | (3.3) 
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The objective function (3.1) gives the maximized L value as the objective value, by 

the help of constraints (3.2) and (3.3).    ’s and    ’s expressed in (3.1), (3.2) and 

(3.3) are the variables of these equations. It appears that the equation (3.1) is non-

linear, since there are non-linear multipliers (i.e.,       ) in it. 

As seen in the above formulation (3.1), L value can be obtained by subtracting the 

sum of edges across clusters (let’s say “O”-out) (i.e., right part) from the sum of 

edges within clusters (let’s say “I”-in) (i.e., left part). Clearly, we can find O by 

subtracting I from the total sum of edges (let’s say T), since T = I + O. Thus, the 

above formulation (3.1) (max L= I - O) can be rewritten as follows (max L= 2I - T): 

       ∑ ∑ ∑          

| |

   

| |

   

 ∑ ∑    

| |

   

| |

   

 

   

 (3.4) 

  

As the right part of the formulation (T) is constant, to maximize L we need to 

maximize the left part of the formulation (let’s say   ); 

        ∑ ∑ ∑          

| |

   

| |

   

 

   

 (3.5) 

        ∑  
     

 

   

 (3.6) 

        ∑ ∑    

| |

   

| |

   

∑      

 

   

 (3.7) 

   

To be more understandable, the constraint (3.6) can be shown in matrix form in the 

following way 

        [         | |] [

         | |

   
 | |  | |   | || |

] [

   

   

 
  | |

] 



22 
 

   [         | |] [

         | |

   
 | |  | |   | || |

] [

   

   

 
  | |

] 

   

   [         | |] [

         | |

   
 | |  | |   | || |

] [

   

   

 
  | |

] 

  

This gives; 

         (                  | |  | |)       | |( | |        | || |  | |) 

                  (                  | |  | |)      | |( | |        | || |  | |) 

  

                 (                  | |  | |)      | |( | |        | || |  | |) 

Clearly, (3.7) can also be written as; 

                                      | |(     | |         | |) 

                                             | |(     | |         | |) 

  

        | | (  | |      | |        | |   )     | || |(  | |  | |      | |  | |) 

Using values of Figure 7 for equation (3.7), we can find    as 

                                                  

                                                          

                                                              

     . Thus                   
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3.3 LP Formulation 

As far as we know, it is not possible to convert this problem to LP as it is and solve 

with a LP solver, since there are nonlinear variables (i.e.,       ) in (3.7). Because of 

this reason, in this thesis, in order to generate LP model, the mathematical 

formulation of the problem is simplified by replacing nonlinear multipliers with linear 

multipliers.  

Let’s say              where            | |     | |. 

To clarify the replacement of variables, the values of Figure 7 are used. As a 

result,   ’s, which are | | | | matrices, are found as; 

   [
 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
]    [

 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
]    [

 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
] 

If we replace multipliers        with      in the (3.7), we will obtain the following: 

                                | |(   | |       | |)  

                            | |(   | |       | |)  

  (3.8) 

   | | (  | |    | |      | | )     | || |(  | || |      | || |)  

  

It is easy to identify the values of     ; 

     {
                             

                                       
,               

By using constraints (3.2) and (3.3), we obtain new constraints:  

∑    

 

   

 {
                       

                                            
     | |         | | (3.9) 
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(3.9) is true, because for   from   to   max one of the      can be 1 (not 

necessarily), since only one of the     and     can be   (i.e., constraints (3.2) and 

(3.3) mean that each nodes of   and   can be present in one block). If they are in 

the same block, value of      is 1, otherwise 0. 

(3.8) can be rewritten as;  

        ∑ ∑    

| |

   

| |

   

∑    

 

   

 (3.10) 

   

As seen in (3.9) ∑     
 
    can take values 0 or 1. So, to maximize    in (3.10), it is 

clear that if       , we do not add it to     by setting 0 to  ∑     
 
   . Thus,     

becomes the sum of all positively weighted edges (let’s say P).  

If we return to (3.4), in our hand, we have (max L = 2L0 – T).  Since T is the sum of 

all positively weighted edges (P) and all negatively weighted edges (let’s say N), we 

can restate (3.4) as (max L = 2P – (P+N) = P – N), meaning that the sum of 

absolute values of all edges. (P - N) can be obtained only if we put all the positively 

weighted edges into blocks and all negatively weighted ones between blocks. Of 

course, this is not always possible. 

Consequently, in the NLP version of the formulation we have |U|+|V| variables and 

constraints of b’s (3.2) and p’s (3.3), but after simplification we get |U|*|V| variables 

and constraints of x’s (3.9). It can be clearly seen that, in (3.7), coefficient a’s are 

dependent on each other by the help of variables b’s and p’s, but, unfortunately, we 

lost the dependency in (3.8) by putting extra variables x’s. Constraints (3.2) and 

(3.3) guarantee that each node   or   can only be in one block, but not the same for 

(3.9), since      may be 0 where     or     is 1 (i.e., nodes may stay in more than 

one block). As a result of all, the final value is not the optimal one. Even so, the 

result obtained from LP solution (P-N) can be used for an upper bound in 

comparisons. 
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3.4 NLP Solvers (GAMS) 

GAMS has a special syntax to be obeyed while writing project in it, therefore a tool 

is developed to transform the one on our hand to the format for GAMS to 

understand. Some part of the mathematical representation to the problem (3.7), 

number of partitions   and the adjacency matrix of nodes (   ) are used to obtain 

the desired model for GAMS.  

GAMS has an enormous number of features and options which allow it to support 

the most sophisticated mathematical programming and econometric applications. 

Fortunately, we need to know to use the language in solving our mathematical 

program is much less. Therefore, we will not go into the details of GAMS syntax; 

however, we will illustrate some basics in the following parts. 

 
  1:  free variable outer; 

  2:  positive variables 

  3:  b11, b12, b21, b22, p11, p12, p21, p22; 

 

  4:  equations 

  5:  obj, totalB1, totalB2, totalP1, totalP2; 

 

  6:  obj.. 

  7:  +(1)*(b11*p11+b21*p21) 

       +(-1)*(b11*p12+b21*p22) 

       +(1)*(b12*p11+b22*p21) =e= outer; 

  8:  totalB1.. 

  9:  b11+b21 =e= 1; 

 10:  totalB2.. 

 11:  b12+b22 =e= 1; 
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 12:  totalP1.. 

 13:  p11+p21 =e= 1; 

 14:  totalP2.. 

 15:  p12+p22 =e= 1; 

 

 16:  model myModel /all/; 

 17:  solve myModel using nlp maximizing outer; 

 

Figure 8: Sample output of the tool 

 

Table 2: GAMS Model Statistics for 10x10 Dataset 

MODEL STATISTICS - 1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 

Blocks of Equations 21 21 21 21 21 21 21 21 

Single Equations 21 21 21 21 21 21 21 21 

Blocks of Variables 41 61 81 101 121 141 161 181 

Single Variables 41 61 81 101 121 141 161 181 

Non-zero Elements 81 121 161 201 241 281 321 361 

Non-linear N-Z 40 60 80 100 120 140 160 180 

Derivative Pool 10 10 10 10 10 10 10 10 

Constant Pool 17 17 17 17 17 17 17 17 

Code Length 391 586 781 976 1171 1366 1561 1756 

 

Before proceeding, analyzing the model statistics might be helpful. Table above 

shows the GAMS model statistics for 10x10 dataset. It can be seen in the table that 

values of “Blocks of Equations”, “Single Equations”, “Derivative pool” and “Constant 

Pool” do not depend on K’s, whereas the other results systematically increase while 

K increases. Equation count can be computed as               , where  ,   and 

  corresponds to equations of totalBs, equations of totalPs (see Figure 8) and 

objective equation, respectively. The other important point in the table is that the 

number of variables. Number of variables can be computed as                    

  . As shown in Figure 8, the number of b variables is     and the number of p 

variables is      . 1 stands for the objective function variable (outer). 
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3.4.1 Defining Decision Variables 

Figure 8 shows the sample model of GAMS for    . In GAMS model, there must 

always be free variable(s) defined to represent the objective function value(s). “free 

variable outer;” (line 1) plays this role. In addition to that, the first main part of 

GAMS input file is a declaration of the decision variables by type (line 2-3). We 

define them at the top of all, since such declarations must precede any use of the 

variables. Decision variables of b’s and p’s correspond to variables of constraints 

(3.2)     and (3.3)    , respectively.   

Allowed types and corresponding GAMS keywords are as follows: 

Table 3: Types and GAMS Keywords 

Type GAMS Keyword 

unrestricted (continuous) variable(s) free variable(s) 

nonnegative (continuous) variable(s) positive variable(s) 

non-positive (continuous) variable(s) negative variable(s) 

0-1 variable(s) binary variable(s) 

nonnegative integer variable(s) integer variable(s) 

 

For the keyword, we have chosen positive variables instead of binary or integer 

variables, because nlp solvers only support continuous variables.  

3.4.2 Defining Equations (Objectives and Constraints) 

The objective function and main constraints of GAMS mathematical programs are 

entered as "equation(s)" (Figure 8 line 4). Two steps are required. First, one or 

more equation(s) statements declare names for the equations of the model (line 5).  

The second part of defining an equation is to add detail on each declared equation 

name in a separate statement beginning “equationname..” (i.e., like “obj..” for the 

objective function name) and continuing with left-hand side and right-hand side 

expressions separated by one of the following operators: “=e=”, “=l=”, “=g=”, which 
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are explained in Table 4 (line 6-15). Our model generator tool use only “=e=” 

operator in its equations. 

Table 4: Equation Types and GAMS Operators 

Equation Type Operator 

equals =e= 

less than or equal to =l= 

greater than or equal to =g= 

 

One such equation always sets the objective function equal to the “free” objective 

value variable. For this purpose, in line 6-7, “obj..” equation set the “outer” variable 

to the objective function. 

The syntax of detail statements of equations follows the pattern of languages with + 

for addition, - for subtraction, * for multiplication, / for division. Parentheses may be 

added to group quantities or aid readability. (Line 7,9,11,13,15) 

For objective function (obj..), one part of the mathematical programming formulation 

of the problem (3.7) has been used in the figure. As shown in the Figure 8, 

constraints     (3.2) and     (3.3) are named in the form of totalB  and totalP , 

respectively, and their equations are taken position right after the objective function 

equation. 

3.4.3 Model Statements 

GAMS can define many models within a single file by collecting different 

combinations of equations under different names. That is why the user is required to 

give a name to his/her model even if there is only one. 

For simple cases, this is accomplished with the statement “model modelname /all/;”. 

As noted, for our case, we have also only one model named “myModel” and defined 

in line 16.  
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3.4.4 Solve Statements 

GAMS does not solve any problems itself. Instead it translates the model into the 

input required by one of several "solvers", listed in Figure 6. A solve statement in the 

format 

“solve model_name using solver_type m(ax/in)imizing objective_value_variable;” 

invokes a solver where model_name is the declared name of the 

model, objective_value_variable is the free variable representing the objective 

function value, maximizing can be minimizing as well, and solver_type is one of the 

following: 

Table 5: GAMS Types and Descriptions 

Type Description 

LP exact solution of a linear program 

MIP exact solution of an integer linear program 

RMIP solution of the LP relaxation of an integer linear program 

NLP local optimization of a nonlinear program over smooth functions 

DNLP local optimization of a nonlinear program with non-smooth functions 

MIDNLP 
local optimization of an integer nonlinear program with nonlinearities all 

in the continuous variables 

RMIDNLP 
local optimization of the continuous relaxation of an integer nonlinear 

program with nonlinearities all in the continuous variables 

 

In line 17, values of model_name (myModel), solver_type (nlp), 

objective_value_variable (outer) and (maximizing) are specified. There is a default 

solver for each of these model types. For default NLP solver LINDO is chosen under 

Options on the File menu (Figure 9). 
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Figure 9: Default NLP Solver Selection 

3.4.5 Output  

Once all errors are corrected, the “SOLVE SUMMARY” part of the .lst file details the 

results of the optimization (Figure 10). In the figure, to be more understandable, we 

have grouped some parts and made important texts bold.  

 

S O L V E      S U M M A R Y 

     MODEL    myModel              OBJECTIVE  outer 

     TYPE    NLP                  DIRECTION  MAXIMIZE 

     SOLVER   LINDO                FROM LINE  22 

 

**** SOLVER STATUS       1 Normal Completion          

**** MODEL STATUS        1 Optimal                    

**** OBJECTIVE VALUE                2.0000 

 RESOURCE USAGE, LIMIT           0.312      1000.000 
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 ITERATION COUNT, LIMIT         39    2000000000 

 EVALUATION ERRORS             NA             0 

 

LINDO            Jul  4, 2012 23.9.1 WIN 33934.33953 VS8 x86/MS Windows        

   LINDO Driver 

   Lindo Systems Inc, www.lindo.com 

Lindo API version 7.0.1.421 built on Feb  9 2012 18:11:14 

 

Solution      = 1.99999999999999 

Best possible = 2 

Absolute gap  = 7.105427357601E-15 

Relative gap  = 0 

 

Table 6: Values of Equations 

                         LOWER LEVEL UPPER MARGINAL 

---- EQU obj          .  .          .         -1.000       

---- EQU totalB1        1.000      1.000  1.000  1.000       

---- EQU totalB2        1.000      1.000      1.000      1.000       

---- EQU totalP1        1.000      1.000      1.000      2.000      

 ---- EQU totalP2        1.000      1.000      1.000       EPS 

 

Table 7: Values of Decision Variables 

                         LOWER      LEVEL      UPPER     MARGINAL 

---- VAR outer           -INF       2.000      +INF        .          

---- VAR b11              .          1.000      +INF        .          

---- VAR b12              .          1.000      +INF        .          

---- VAR b21              .           .          +INF      -2.000       

---- VAR b22              .           .          +INF      -1.000       

---- VAR p11              .          1.000      +INF        .          
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---- VAR p12              .           .          +INF      -1.000       

---- VAR p21              .           .          +INF      -2.000       

---- VAR p22              .          1.000      +INF        .          

 

Figure 10: Solve Summary 

Table 6 reviews results for model equations. “LEVEL” values are given for each 

objective and constraint. According to the “LEVEL” values, we can say that all the 

constraints are satisfied. 

Table 7 lists the results for all decision variables. These reports show the 

final “LEVEL” for each variable along with any upper and lower bounds and 

a “MARGINAL” value. In the table, the final “LEVEL” for outer value is equal to 2. 

Therefore,    value is set as 2. Addition to the   , we must compute the sum of all 

edges in equation (3.4) to obtain   value.  

The “LEVEL” values of decision variables are all meaningful. b11, b12, p11, p22 are 

set to 1, meaning that 1st and 2nd element of   and 1st element of   are put into the 

1st block, and only 2nd element of   is put inside the 2nd block. When we check the 

constraints, we see that all the final values of decision variables satisfy them. 
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CHAPTER 4 
 

 

GENERIC ALGORITHMS 
 

 

 

This chapter consists of four sections. It starts with the introductory sections of 

genetic algorithm (GA) and simulated annealing (SA) methods, and continues with 

their implementations and solution details for the k-way partitioning of signed 

bipartite graph problem. 

Because of the difficulty in finding the optimal solution, two of our solution 

approaches are GA and SA for this specific problem. In general, these approaches 

are capable of finding optimal or sub-optimal solutions for optimization problems. 

While developing generic algorithms, selecting proper initial values for variables and 

providing enough randomness in operations are some of the critical issues to take 

into consideration. For instance, if on some selection points, deterministic selections 

are to be made instead of random selections, it is more possible that the solution will 

get stuck at a local maximum or minimum and will not reach to the desired optimal 

or suboptimal solutions. 

4.1 Introduction to Genetic Algorithms 

A genetic algorithm [24] is a heuristic algorithm, inspired by evolutionary processes 

of ecological systems, that finds optimal (or near-optimal) solutions to complex 

optimization problems. Genetic algorithms are particular class of evolutionary 

algorithms.  

In genetic algorithms, possible solutions to the problem are coded in chromosomes. 

A “chromosome” (or “individual”) can be designed as a string, binary digit or other 

symbols that corresponds to a solution of the problem at hand. To give a trivial 
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example, suppose our goal is to find a value of   between 0 and 255 which makes 

the result for function         maximum. In this example, our potential solutions 

are integer values from 0 to 255, meaning that our chromosome can be represented 

as 8-digit binary strings (i.e., values of chromosomes are from 00000000 to 

11111111). GAs use sets of these chromosomes, called "populations" that evolve 

through "generations", by the operators of "crossover" and "mutation", in order to 

discover optimal solution to the problem.  

The fitness function of GA analyzes “genes” in the chromosomes, makes some 

qualitative assessment and provides a meaningful and comparable fitness value for 

that solution. Basically, thanks to the fitness function, candidate solutions pass to 

the next generation of solutions by discarding solutions with a “poor” fitness and 

accepting any with a “good” fitness value. 

4.1.1 Outline of the Basic Genetic Algorithm 

 Construct a large initial population of chromosomes by generating randomly 

attempted solutions to a problem  

 Do the following till you accomplish (i.e., satisfactory fitness level has been 

reached) or run out of time 

o Evaluate each fitness of the solutions 

o Keep a subset of these solutions (take best possible solutions) 

o Use these solutions to generate a new population, the children 

chromosomes may be formed by operating the crossover operator to 

the two selected parents (selection), and diversified by applying 

mutation techniques. 

4.1.2 Representations 

Representation is a way of encoding the possible solutions in evolutionary 

computation methods. Genetic representation can encode different aspects of the 

solution as the digits in the represented strings. 
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4.1.2.1 Fixed-Length Representation 

Genetic algorithms mostly use fixed-length representations. It is easier to crossover 

chromosomes when they are fixed size. 

4.1.2.1.1 Binary Representation 

In binary representation, array of bits is used as the standard. In this representation, 

we encode solutions as binary strings: sequences of 1's and 0's. 

4.1.2.1.2 Real-Value Representation 

Another representation approach is real-value representation. It encodes solutions 

as arrays of integer or decimal numbers, where the real-values at each position of 

chromosome represent the value of some behavior of the solution.    

4.1.2.1.3 Letter Representation 

A third approach is to represent individuals in a GA as strings of letters, where each 

letter again stands for a specific aspect of the solution. 

4.1.2.2 Variable-Length Representation 

Variable length representations are inconvenient in most of the cases, because of 

the cost of the complexity of the crossover implementation. 

4.1.3 Selections 

There are many different techniques which a genetic algorithm can use to select the 

individuals to be copied over into the next generation. Some of them are as follows: 

4.1.3.1 Roulette-Wheel Selection 

Conceptually, roulette-wheel selection, a method favorite to choose parents, is 

represented as a game of roulette. Each individual in the game gets a slice of the 

wheel, but more fit ones get larger slices than less fit ones, meaning that the 

probability of a chromosome to be selected as a parent is proportional to its fitness. 
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4.1.3.2 Elitist Selection 

The fittest members of each generation are guaranteed to be selected. 

4.1.3.3 Rank Selection 

Each individual in the population is assigned a numerical rank based on fitness, and 

selection is done based on this ranking. 

4.1.4 Reproduction Techniques 

There are two basic reproduction strategies, which are crossover and mutation. 

There is a chance that the chromosomes of the two parents are copied unmodified 

(i.e., without applying crossover or mutation) as offspring. 

4.1.4.1 Crossover 

Crossover is a reproduction technique to generate two offspring from two selected 

parents. The chromosomes of the two parents are recombined according to some 

techniques to form offspring. In the following, some of the mostly used techniques 

are described: 

4.1.4.1.1 Single Point Crossover [25] 

As shown in Figure 11, randomly one point in the chromosomes is chosen. The 

binary strings of the two parents are cut at this specific point and the two substrings 

are exchanged.  

After crossover operation, offspring 1 is head of chromosome of parent 1 with tail of 

chromosome of parent 2, and similarly, offspring 2 is head of 2 with tail of 1.  
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Figure 11: Single Point Crossover (Wikipedia) 

 

4.1.4.1.2 Two-point Crossover (Multi Point Crossover) 

Randomly two points (or more) in the chromosomes as drawn with green lines in 

Figure 12 are chosen. This type of crossover provides that genes at the head and 

genes at the tail of a chromosome are always split when recombined. 

 

 

Figure 12: Two-point Crossover (Wikipedia) 

 

4.1.4.1.3 Uniform Crossover 

Each bit in the chromosomes is compared between two parents and one of two is 

chosen based on a certain proportion, like 0,5. 

 

 

Figure 13: Uniform Crossover (Wikipedia) 

http://en.wikipedia.org/wiki/File:SinglePointCrossover.png
http://en.wikipedia.org/wiki/File:TwoPointCrossover.png
http://en.wikipedia.org/wiki/File:UniformCrossover.png
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4.1.4.2 Mutation 

Mutation is a reproduction mechanism, which generates new offspring from single 

parent. Mutation operator is performed upon the children chromosomes to create 

the final chromosomes of the new generations. Each binary digit of the chromosome 

is subject to inversion (from 1 to 0 and vice versa) under a given probability (most of 

the time small). Mutation also gives opportunity new genes to be introduced in the 

population. 

4.2 Introduction to Simulated Annealing 

Simulated annealing (SA) is a generic probabilistic meta-algorithm used to find an 

approximate solution to global optimization problems, which was introduced by 

Kirkpatrick (1983) [26]. It is inspired by annealing in metallurgy which is a technique 

of controlled cooling of material to reduce defects. The material is subjected to high 

temperature and then cooled gradually. The gradual cooling process makes the 

material stronger and there exist few weak points in it. It is similar to the achieving 

global maximum by discarding the local ones. If the cooling process is rapid, then it 

does not produce strong object. Some parts may be broken easily whereas some 

areas may achieve to the local optimum strength.  

4.2.1 Outline of the Basic Simulated Annealing 

 Initialize temperature  , epsilon  , alpha    

 Generate a random initial solution as current solution    

 Do the following till     or run out of time 

o While stopping criteria not met do 

 Find the neighbor of the current solution    

 Compute               (i.e.,  : fitness function) 

 Randomly generate a real number   from 0 to 1 

 If                  then       

o Reduce T by multiplying with   
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SA starts with some solution that is totally random, and changes it to another 

solution that is similar to the previous one. Newly generated solutions are generally 

chosen randomly, though more sophisticated methods can be applied. If this 

solution is a better solution, it will replace the current solution. If it is a worse one, it 

may be chosen to replace the current solution with a probability that depends on the 

temperature (i.e., cooling process,   decreases with time) and the distance   (i.e., 

difference between new (worse) solution and the old one) parameters. As the 

algorithm progresses, the temperature parameter decreases by multiplying alpha  , 

giving worse solutions a lesser chance of replacing the current solution.  

SA uses random numbers in its execution, therefore in every run of the algorithm; 

we can come up with a different solution. It produces a sequence of solutions; each 

one is derived from the other by slightly altering it, or falls back to the original state 

by discarding the changes. 

The difficulty in search algorithms is that while they rapidly find a local maximum, it 

cannot get to the global maximum. SA allows worse solutions at the beginning so 

that it avoids converging to a local maximum rather than the global maximum. SA 

achieves to the global maximum most of the time through the introduction of two 

tricks [26]: the first trick is metropolis algorithm [29] and the second trick is to lower 

the temperature. If T is large, many worse solutions are accepted and a large part of 

the solution space is discovered. Lowering the temperature limits the size of the 

allowed worse solutions.  

4.3 Genetic Algorithm (GA) Implementation 

4.3.1 Representation Mechanism 

For representation arrays of integer-values have been used. We have had two 

arrays; which holds the block numbers of nodes   and  . Arrays are fixed size and 

the values correspond to integer values from 1 to K. 
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4.3.2 GA Details 

In this part, we present the details of the algorithm. 

We have set 500 for population size and the number of iterations was 50. From old 

to new population we transferred the best 5% of the solutions (elitist selection).  The 

90% of the solutions were selected with roulette-wheel selection mechanism. 

Certain proportion used for uniform crossover was 6/10. The remaining 5% of 

solutions were randomly generated in new generations. Mutation rate was 0.01%.  

 

 Algorithm 4.1: Genetic Algorithm

 
 Input : The signed weighted bipartite graph              and   

 Output: Maximal   value and corresponding partitions of nodes. 

  1:  Initiate population size        , and number of iterations   

  2: Generate current population (  ) with random solutions 

  3:  while      

  4:      For all solutions in    compute fitness (Algorithm 4.2) 

  5:      Sort solutions in the    

  6:      if                     then exit while 

  7:      Generate next population    (Algorithm 4.3) 

  8:           

  9:  end while 

 10:  print the solution at the top of    
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 Algorithm 4.2: Fitness Calculation

 
 Input : One of the solutions of   , adjacency matrix   (   ) 

 Output: Fitness value of the given solution 

  1:                   

  2:  for each edges in graph   (let’s say from   to  ) 

  3:      if   and   are in the same block then 

  4:                              

  5:      else 

  6:                              

  7:      end if 

  8:  end for 

  9:  return              

 

 

 Algorithm 4.3: Generate Next Population

 
Input : Current population    , elitist selection rate   , roulette-wheel                          

selection rate   , proportion rate of uniform crossover   , mutation 

rate   

 Output: Fitness value of the given solution 

  1:  best               solutions taken as is from the old to the new population 

  2:                solutions are selected by using roulette-wheel selection and  
____uniform crossover is applied onto them to generate children 

  3:          -                                solutions are generated randomly 

  4: apply mutation by randomly changing the         genes of all chromosomes 
___except those chosen by elitist selection (i.e., mutation changes the block of node 

___randomly) 
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The variables that affect the outcome of the algorithm are        ,  ,   ,    and 

  (Algorithm 4.3).  We adjust these variables and see how the outcome is 

affected.  It is also important to set the termination criteria. We change the number 

of iterations the algorithm does to see how the final result and the algorithm's speed 

are affected. Considering all of these constraints, we tried to set the best values for 

variables.  

4.4 Simulated Annealing (SA) Implementation 

In this section, we will explain the details of the SA algorithm. Our SA algorithm 

implementation is standard; yet, we present the implementation of the algorithm and 

give some brief information about the algorithm. 

 Algorithm 4.4: SA Algorithm

 
 Input : A signed weighted bipartite graph              and   

 Output: Maximal   value and corresponding partitions of nodes. 

  1:  Initiate temperature     and epsilon     

  2:  Generate a random solution (  ), final solution          

  3:  Compute the fitness of             (Algorithm 4.2) 

  4:  while      

  5:      randomly select a node        from   or   

  6:      change block of      to the best possible place (Algorithm 4.5) 

  7:      Iteratively compute the       from       

  8:                    

  9:      randomly generate a real number   from 0 to 1 

10:      if                  then       end if 

11:      if             then       end if 

12:            
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13:  end while 

14:  print    

 

 

 Algorithm 4.5: Find Best Place for the Selected Node

 
 Input : A signed weighted bipartite graph             ,  ,    and      

 Output: Best block for      

  1:  initiate max value               

  2:  for all possible blocks numbered          , except the current block of      

  3:      generate a solution        by putting the      into         

  4:      recalculate           (iteratively from   ) 

  5:      if                    then 

  6:                            

  7:          output Value            

  8:      end if 

  9:  end for 

10:  return        

 

 

Note that in Algorithm 4.4 line 6 and Algorithm 4.5 line 4, computations have been 

done iteratively. For each movement of the node, we can compute the new fitness 

value just by traversing all of connected edges of the selected node and adding the 

difference caused by the movement (Figure 14).  
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Figure 14: Iteratively Fitness Value Computation 

 

The variables that affect the outcome of the algorithm are the initial temperature, the 

rate at which the temperature decreases (alpha) and the stopping condition of the 

algorithm (epsilon).  We adjust these values to see how the algorithm responds. 
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CHAPTER 5 
 

 

MOVE-BASED HEURISTIC ALGORITHMS 
 

 

 

In order to solve k-way partitioning of signed or weighted bipartite graph problem, 

mathematical methods and several generic heuristic techniques have been explored 

in previous chapters. However, in our study, we have mainly concentrated on move-

based heuristics. In our experiments move-based heuristics worked very effectively, 

in obtaining good partitioning (satisfying most of the maximization and minimization 

constraints defined in the introduction section) in a very fast way. 

In this chapter we will give the details of 5 different move-based heuristic algorithms 

for our problem. In the first section, we will talk about the common characteristics of 

the algorithms. The original algorithm given in [3] with some extensions will be 

explained in the second section. Instead of 2-way partitioning, k-way partitioning is 

used and   is taken as an input to the algorithm. First one is also named as MBH1 

(move-based heuristic version.1). We will continue with the 2nd, 3rd and 4th versions 

of algorithms which have some differences from the 1st one. In each of them, we 

have tried to find better version of 1st algorithm by changing selection mechanisms, 

which will be detailed later. We have named them as MBH2, MBH3, and MBH4, 

respectively (names correspond to their versions). 5th one has the same structure 

with 1st but has some extra heuristics in it. In the last version, we have applied 

special-cut heuristic which halved the running time of the MBH1. Since it is the 

optimal one, as a name, opt-MBH (optimized-MBH) has been chosen. 
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5.1 Common Characteristics of the MBHs 

Our incremental method works for multi-partitioning as well as bi-partitioning. For the 

extension of our algorithm from 2-way to the k-way partitioning, some differences 

from the approach given in [3] can be provided as follows: 

1. At the beginning, in 2-way partitioning, the authors of [3] randomly distributed 

the nodes   and   in between 2 blocks, but in our case we randomly 

distributed the nodes among   blocks. 

2. In bi-partitioning, in paper [3], they have only one option in their hand, which 

was to move the selected node to the other block, thus, the job was easy. 

However, from our side, it can be seen that there are (   ) different 

possible blocks to move the selected node. In order to make a good move, 

we had to make some calculations among K-1 possibilities and moved the 

node to “the best block”. We can describe “the best block” as a block the 

selected node was put into that with the purpose of maximizing the result 

value   at that moment. 

In generally, move-based heuristics are applied in our work as follows:  

We place vertices randomly into blocks at the beginning. Then, through iteration, the 

node with the highest gain value is selected and moved to another block. It is 

checked if the move of each vertex to another block increases the result value   or 

not. If the value is increased, found value is set to   value. After each movement the 

related node is locked. Until all the nodes are locked, the iteration continues. 

Locking a node means that marking that node, and it is not moved again till all 

nodes are marked. After all are locked, the rise in the result value L is checked. If 

so, we restart the iteration by configuring the initial state with the best state found in 

the previous iteration. Otherwise, we end the iterations and print the best solution to 

the output. Details and variations of the algorithms will be presented in the next 

sections. Algorithm 5.2 gives this algorithm. 
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When we compare the results we use L value for maximizing the objective function. 

As a result, the higher the L value, the better the clustering.  

Our move-based algorithms have worked several times try to find the best clustering 

for the given partitioning value  . For this purpose, we repeat process   times. In 

this way, local search restarts from randomly selected R points. This helps the 

algorithm to come close to the global maximum. 

In order to measure good clustering of bipartite graphs, as in [3], we have defined a 

gain computation function (Algorithm 5.1) that changes gains of all nodes as the 

vertices placed into blocks as described in Section 1.  

 Algorithm 5.1: Gain Computation of All Nodes

 
Input : A signed weighted bipartite graph              ,    and current 

solution    

 Output: Gains of all nodes 

  1:  clear all gains 

  2:  for all edges from   to  , where         

  3:   if   and   are in the same block then          

  4:   else        end if 

  5:   for               

  6:          if the place of the node   is equal to   then         

  7:       else          end if 

  8:           [ ][ ]                      

  9:       if the place of the node   is equal to   then         

10:       else          end if 

11:           [ ][ ]                      

12:   end for     

13:  end for
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The aim of Algorithm 5.2 is to calculate the gains of all vertices. We traverse all the 

edges in the graph (Line 2) and for the vertices of each edge, the gain is calculated 

and added to the sum (Line 14). This is done for all j possible places (Line 5) that 

these nodes can be moved to.  

In gain calculation, there are 4 possibilities. Two values, namely mult1 (Line 4) and 

mult2 (Line 6) are used for that purpose as follows: 

 If both vertices are in the same block, and the edge between them is 

positively weighted, then moving either one will produce negative effect on 

gains.  

 Similarly, if the vertices are in different blocks and the edge between them is 

negatively weighted, then putting them into the same block will also reduce 

the gain. 

 If the vertices are in the same block, but the edge between them is negative 

weighted, then, moving one of them to a different block will increase the 

gain. 

 Finally, if two vertices in different blocks, but the edge between them are 

positively weighted, then moving them into the same block will increase the 

gain.   

 

Figure 15 depicts the gain computation on a simple example. As stated on the 

figure, it is clear that the movement of the selected node to the 3rd block makes the 

result value   bigger. As we always move the nodes to the best possible place 

according to the gains, in this case, it is wise to move the node to the 3rd block. 
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Figure 15: Gain Computation 
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5.2 MBH1 Implementation 

Algorithm 5.2 gives MBH1 algorithm. 

 Algorithm 5.2: Move-Based Heuristic version.1 (MBH1)

 
Input : A signed weighted bipartite graph              ,    and the 

number of random start  . 

 Output: Maximal   value and corresponding partitions of nodes. 

  1:       

  2:  while     

  3:      Initially, place each node into block 1 to   randomly 

  4:                          

  5:   do 

  6:            

  7:       Compute gains of all nodes (Algorithm 5.1) 

  8:       do 

  9:           nod1   select the unlocked node with max gain 

10:           blck1   select the best block for nod1 

11:           place the nod1 into blck1 

12:           update gains of nod1’s neighbors 

13:                 New RESULT 

14:           lock nod1 

15:       until all nodes are locked 

16:   while         

17:        

18:  end while 

19:  print   
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In Algorithm 5.2,   represents the result of the objective function detailed in chapter 

3, and   is the cluster number. The algorithm takes   value as an input. As we 

previously explained in the mathematical computation (chapter 3) and in the fitness 

calculation of generic algorithms (Algorithm 4.2), we skipped   value calculation in 

this part. 

Move-based algorithms strictly incline but it is always possible to strike at local 

maximum. In order to avoid this problem we repeat the process several times. In 

Algorithm 5.2 the   value in line 2 is used for that purpose. 

While we were moving nodes from one block to another, we updated the gain values 

of the related nodes (Algorithm 5.2 Line 14). 

5.3 MBH2, MBH3, MBH4 Implementations 

MBH1 and MBH2, MBH3, MBH4 are all the same except the node selection 

mechanisms (see Algorithm 5.2 line 9).  

In MBH1 algorithm, we select the node with the highest gain value among nodes in 

  and  . 

We changed the order of selection in MBH versions 2-4. Our intention was to 

expand the search space and not to strike at local maximums, while creating the 

variations of selection mechanism given in MBH1, but as detailed in experimental 

results, the results are far beyond the expectations. In MBH2, firstly, nodes of   and 

then nodes of   are selected in decreasing order of gain values. In MBH3, exactly 

the opposite way, we picked nodes from set   and then from set   . Finally, in 

MBH4, we mixed MBH2 and MBH3. We chose nodes in the order of one from   and 

one from  . See the figure below which clarifies it and shows the differences. 
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Figure 16: Traversing Differences of MBHs 

5.4 Opt-MBH Implementation 

Opt-MBH, as the name declares, is the optimized version of MBH1. While we were 

analyzing the outputs of MBH1, we saw that there have been some unnecessary 

moves in the process of MBH1 algorithm. We clearly observed these redundant 

moves by displaying a sample run of the algorithm on the chart. Figure 17 shows 

one of the sample run of the MBH1. In order to express some justifications of Opt-

MBH, we will give all the related and critical points and details of the graphics in this 

chapter instead of in chapter 6. 
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These figures has been obtained from questionnaire dataset experiment for K=9. 

The questionnaire dataset had been selected, since it is the biggest dataset to 

clearly show the differences. Randomly start count was 3 in this experiment to 

differentiate the lines from each other. 

 

 

Figure 17: Questionnaire Experiment (K=9), MBH1 Stats 

 

In Figure 17, we see that objective values are increasing and decreasing in a 

systematic way. Decreasing parts are not necessary for our problem, since we have 

been trying to find the global maximum. Furthermore, as the chart presents, 

calculation of the descending values is really time consuming. As a result of all, we 

have intended to remove the declining parts from the chart to improve execution 

time.  By detecting the values when they started to fall below the local maximums, 

we managed to cut the unnecessary parts as shown in Figure 18. Note that the 

elapsed time has fallen below the half of it (approximately 57000 to 20000 ms). 

To explain values of the charts in detail, it can be stated that the values are lower 

than 0 corresponds to initial solutions that are randomly generated at the beginning 

of the iterations. Random initiation count R=3 is clearly understand from the 

graphics.  
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Figure 18: Questionnaire Experiment (K=9), Opt-MBH Stats 
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of Algorithm 5.2. 
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 Algorithm 5.3: Special Cut in Opt-MBH

 
At each iteration, we set the                 

. 

. 

  1:  if                                       then  

  2:                      

  3:  else if         then  

  4:      ; // Do Nothing 

  5:  else 

  6:      if                then                 

  7:      else                

  8:  end if 

  9:  if                 then  

10:      exit loop 

11:  end if 

. 

. 
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CHAPTER 6 
 

 

EXPERIMENTAL RESULTS 
 

 

 

The results of our experiments presented in this chapter are very interesting. The 

first 4 sections give details of the development environment and auxiliary tools which 

helped us throughout the work. Fifth section mainly describes the results of the 

mathematical methods. Sixth section puts all the results together and compares 

them. In 7th and 8th sections, some sample analyses are provided. Finally, MBH1 

and Opt-MBH comparison which produced successful results using the same 

random data is shown in the last section. 

Before starting, please note that, the quality of the clusters that have been found is 

not the subject of our study. As mentioned in the first chapter, nodes are distributed 

in an unbalanced way. After clustering, examination of the result is the concern of 

the social analysts, why the data is distributed so. Aim of our algorithms is just to 

maximize the objective function value   (3.1). 

6.1 Development Environment 

The series of methods expressed in Chapter 3, 4 and 5 are all implemented in C++, 

using the Visual Studio 2005 development environment. All these algorithms run on 

a commodity computer having Windows 7 x86 OS, Intel Core 2 Duo 2.00 GHz CPU, 

and 3 GB RAM. Thus, the running times of algorithms given in the following sections 

should be assessed under these specifications. 
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6.2 Output Controller Tool (Double Checker) 

The outputs of the algorithms described in previous chapters are verified by a 

controller program not to make any mistakes in the experimental results. Controller 

program is also written in C++ with Visual Studio 2005. Inputs of the controller 

program are the consumed input and the produced output of each algorithm. The 

tool reads the adjacency matrix from the input file and the cluster positions of each 

node from the output file to recalculate the   value. It compares the resulting   value 

with the old   value in the output file, and gives “PASS” or “FAIL” as an output. 

“FAIL” means that there is a mistake in the algorithm to be corrected. This tool was 

really helpful and necessary, especially; it must be used after making changes in the 

codes. Thanks to the tool, we have easily detected whether or not there is an error 

in our implementations or in results. 

6.3 Dataset Generator Tool 

In this thesis, in addition to the real datasets, we have tested our algorithms with the 

randomly generated data. We developed an input generator tool to create 

randomized datasets with the help of VS2005 environment and C++ language. In 

our work, randomized datasets are generated to be able to experiment special 

cases. The tool generates datasets with dimensions 10x10, 20x20, 40x40 and 

80x80. And for each of them, to see the differences and obtain varied results, 

sparse vs. dense, binary (i.e., -1, 0, 1) vs. arbitrary (-10, …, 0, …, 10) versions are 

produced. For a dataset to be dense, it is conditioned such that approximately %70 

of the edges have nonzero values, other than the dense datasets (i.e., sparse ones) 

can have up to %20 nonzero values. As a result of generation, 4 x 2 x 2 = 16 

different input sets are created. Input generator does not get anything from outside; 

just works with predefined parameters and gives the intended datasets as an output. 

 

 



58 
 

6.4 Dataset Analyzer Tool 

We have written a small but useful tool with language C++ and IDE VS2005 to 

analyze datasets. In Table 8, we can see the output of the tool for the datasets 

which have been mentioned previously. At first glance, with the help of the output of 

the tool, we might obtain a general idea and overall vision about datasets. Using the 

tool, 18 datasets are analyzed as can be seen on the 1st column. U, V and U*V 

values are presented on the 2nd, 3rd and 4th columns. By traversing all of the edges, 

the numbers of positively weighted and negative weighted edges, the sums of all 

positively weighted and all negatively weighted edges are computed (column 5-10). 

At the end of columns, densities of the datasets can be found. 

In the table, first 16 rows correspond to randomly generated datasets. 17th and 18th 

rows show the results of the real world data sets. In the following sections, we will 

use 1st, 2nd … 18th to refer to the datasets expressed in the table below. 

Table 8: Characteristics of Datasets 

 U V U*V #ofP #ofN #ofT SumOfP SumOfN SumOfT Denst 

1 10 10 100 31 34 65 31 -34 65 65% 

2 10 10 100 30 27 57 158 -137 295 57% 

3 10 10 100 9 7 16 9 -7 16 16% 

4 10 10 100 9 10 19 60 -62 122 19% 

5 20 20 400 121 109 230 121 -109 230 58% 

6 20 20 400 122 122 244 698 -643 1341 61% 

7 20 20 400 38 37 75 38 -37 75 19% 

8 20 20 400 39 33 72 193 -170 363 18% 

9 40 40 1600 484 448 932 484 -448 932 58% 

10 40 40 1600 454 484 938 2414 -2748 5162 59% 

11 40 40 1600 135 148 283 135 -148 283 18% 

12 40 40 1600 137 153 290 733 -837 1570 18% 

13 80 80 6400 1964 1862 3826 1964 -1862 3826 60% 

14 80 80 6400 1894 1912 3806 10459 -10789 21248 59% 

15 80 80 6400 580 579 1159 580 -579 1159 18% 

16 80 80 6400 595 561 1156 3211 -3155 6366 18% 

17 7572 48 363456 138894 132811 271705 494380 -632641 1127021 75% 

18 108 696 75168 40609 25807 66416 40609 -25807 66416 88% 
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17th dataset contains questionnaire with 48 questions, which are applied to 7572 

people. The questions were ranked between -5 and +5. The data size and the 

density is the biggest compared to all others. 

18th dataset corresponds to US Congress (SENATE) dataset which is published 

publicly in www.govrack.us. From this site, we have used the roll call votes for the 

111th US Congress Senate that covers the years 2009-2010. 

The 111th Senate data contains information about 108 senators and their votes on 

696 bills. We have constructed a signed bipartite graph as in [3] based on the votes 

of the senators on the bills. 

6.5 Comparisons of NLP Solvers 

Some of the NLP solvers have not worked because of license error. We have put 

results of only those that we have been able to test. We have also added the result 

of the Opt-MBH to compare results. For each execution, we have given at most 5 

minutes to the solvers, because some of them took quite long time. After 5 minutes, 

execution was interrupted and objective value at that time has been taken. In order 

to get an idea about all of NLP solvers in GAMS, all of them are tried with the 

smallest, 1st, dataset. 

Table 9: Results of NLP Solvers for 1st Dataset 

1st OptMBH COUENNE SCIP BARON CONOPT LINDO LINDO2 MINOS SNOPT 

K=2 35 35 35 35 33 33 33 33 29 

K=3 43 43 43 43 37 37 37 35 28 

K=4 43 43 43 43 43 37 37 35 27 

K=5 43 43 43 43 37 31 31 35 25,5 

K=6 43 43* 39* 37* 37 37 37 35 25 

K=7 43 43* 39* 37* 37 37 37 35 37 

K=8 43 43* 41* 39* 39 37,3 37,3 35 24,5 

K=9 43 43* 43* 39* 39 37,2 37,2 35 24,25 

http://www.govrack.us/
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Solvers IPOPT, KNITRO and PATHNLP found irrational results (like 0, 1, and 1.5), 

so those results are not put on the table. We sorted the solvers according to their 

success. Opt-MBH proved itself as an upper bound to the mathematical solutions. 

Solvers COUENNE, SCIP and BARON found better results but their execution time 

were considerably high. Results with asterisk (*) correspond to those takes more 

than 5 minutes and are interrupted. Solvers CONOPT, LINDO, LINDOGLOBAL 

(LINDO2), MINOS and SNOPT gave solutions in a very short period of time; 

however, results were not so reliable. 

We tried COUENNE, SCIP and BARON for bigger datasets, but we could not get 

any result in reasonable time. For 17th they even did not start execution, because of 

“Time-limit exceeded for parsing phase” error. Since we needed solutions in 

reasonable time, we left the rest for future work.  

Each NLP solver uses various methods to obtain the desired value. One of the NLP 

solvers, BARON, prints the used methods in its output as in Figure 19. Figure shows 

the result of BARON which uses the model of 1st dataset and K=5. As it is 

understood from the output, LPs are used in preprocessing phase. It is also clear 

that before starting iterations some feasible solutions are obtained in that phase. We 

can see the list of iterations, elapsed time and boundaries. LP sub-solver consumed 

all the time with cut generations. It is presented that 227338 multi-linear cut 

generations totally takes 28.05 sec. It is obvious that in the time distribution, most of 

the time is used on probing and then on relaxation. At the end of the output, we see 

the best solution and the error tolerance. It may be confusing that the best solution 

is not the same as in Table 9 (i.e.      ).  The table is not faulty; simply the result 

of the solver corresponds to    value (3.5). We put the result into the equation (3.4) 

and get the   value manually.  
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Figure 19: Sample Output of NLP Solver (BARON) 
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6.6 Comparisons among Algorithms 

In our second experiment, we have run each algorithm (GA, SA, MBH1-4, and Opt-

MBH) 10 times on 18 datasets. In these executions, the variables used in algorithms 

and their values are as follows: 

GA: 

Iteration Count: 50 

Population Size: 500 

Elitist Selection: 5%  

Roulette-Wheel Selection: 90%  

Random Generation: 5%  

Uniform Crossover Rate: 0,6  

Mutation Rate for Each Chromosome: 0,0001  

SA: 

Alpha: 0,99999 

Temperature: 400,0 

Epsilon: 0,001 

MBHs: 

R (Randomly Restart Number): 25 

Total time of executions was longer than 5 days. Average results have been shown 

on 8(K=2..9) x 3(Results, Time To Find Best Result, Total Time) = 24 different 

tables. Rows of the tables correspond to datasets from 1st to 18th. Since just to show 

the results would be incomplete, how long it took to get the results and the total time 

of executions have been presented as well.  
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LP results have been displayed in the 1st columns of the tables. The result obtained 

from LP solution (P-N) is used for an upper bound in comparisons. Generally, as 

expected, all results are lower than LP values. Apart from that, when the value of K 

was 2 to 9 and dataset was 3rd or 4th, it is clear to see that the results of other 

algorithms have reached to LP’s.  

6.6.1 Comparison between Generic Algorithms 

As the complexity of the GA is related with the input size, “total execution time” and 

“time to find the best solution” increase when the input size increases. From AxA 

sized datasets to 2*Ax2*A sized datasets running times doubled. Although input 

sizes are the same, GA run slower when the graph is dense and the values are 

arbitrary. On the other hand, for SA, input size and the running time are not entirely 

related. In general, SA acts independently of K, input size, density or the edge 

weights. When the input size is so large, like in the 17 th dataset, we could detect the 

differences between time values. 

For small datasets and for 17th datasets after     , it is obvious that GA is better 

than SA. However, when the input size is large enough, SA performs better. 

Additionally, on 18th dataset, SA is better than or the same as GA. Values of the 

below figures collected from tables to depict the mentioned issues in this section. 

   

Figure 20: GA Timelines (K=2, Dense-Sparse Datasets) 
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Figure 21: SA Timelines (K=2, Dense-Sparse Datasets) 

 

 

Figure 22: GA vs. SA (Datasets from 1 to 16, K=4) 

 

   

Figure 23: GA vs. SA (17th Dataset)  Figure 24: GA vs. SA (18th Dataset) 
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6.6.2 Comparison between SA and MBH1 

Generally, MBH1 performed better than SA. Tables show that for 80x80 sized 

datasets and K>=3, all the SA results are better. However, important point here is 

that the elapsed time to find the result is almost ten times more in SA solution. It is 

not included within experiments for 80x80 sized datasets, but as it can be clearly 

seen from the results of 10x10, 20x20 and 40x40 sized datasets, if we increase the 

total running time of the MBH1 algorithm, MBH1 is expected to give better or at least 

the same results with SA. Figure 25 shows the time differences clearly. 

 

 

Figure 25: Execution Time Comparison of MBH1 and SA (Datasets 1 to 16, K=9) 
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randomness factor might be the reason. To show the difference among MBHs, 

results of the biggest dataset is used in the chart below. 

 

Figure 26: MBH1-4 Comparison (17th Dataset) 
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Figure 27: Total Time Comparisons in terms of Percentages (Datasets 8 to 16) 

 

     

Figure 28: Total Time Comparisons on Real World Datasets (K = 2 to 9) 
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Table 10: Comparison of All Results (K=2) 

K=2 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 35 35 35 35 35 35 35 

2 295 177 171 177 177 177 177 177 

3 16 14 14 14 14 14 14 14 

4 122 120 114 120 120 120 120 120 

5 230 96 96 96 95 95 96 96 

6 1341 591 578 591 591 591 591 591 

7 75 49 49 49 49 49 49 49 

8 363 261 253 261 255 259 261 261 

9 932 273 275 276 268 262 276 275 

10 5162 1652 1678 1683 1628 1657 1684 1684 

11 283 143 146 147 139 138 145 147 

12 1570 940 932 944 933 927 944 944 

13 3826 798 809 815 779 778 814 815 

14 21248 4993 5092 5108 4849 4802 5109 5106 

15 1159 438 440 444 418 421 444 444 

16 6366 2647 2680 2697 2546 2557 2692 2692 

17 1127021 642282 642291 642291 642291 642291 640416 642291 

18 66416 46066 46066 46066 46066 46066 46066 46066 

 

Table 11: Time to Find the Best Solutions (K=2) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 212 863 0 0 2 0 0 

2 231 587 0 2 2 0 2 

3 187 860 0 0 0 0 3 

4 229 662 0 0 0 0 0 

5 502 752 0 3 0 0 0 

6 643 591 0 6 6 2 0 

7 372 1019 0 2 2 2 0 

8 440 728 2 2 0 0 0 

9 2573 850 2 24 11 11 2 

10 2883 611 5 35 27 9 2 

11 1470 1073 6 5 17 8 3 

12 1623 774 6 12 11 13 6 

13 8707 1056 36 78 94 56 14 

14 11179 755 50 91 83 48 14 

15 4672 1089 20 64 58 34 13 

16 5001 1017 48 118 105 51 5 

17 923707 7454 746 2643 4276 69743 437 

18 33924 1406 14 51 45 123 11 
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Table 12: Execution Time of Algorithms (K=2) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1281 962 2 3 2 5 0 

2 1403 713 3 6 2 3 3 

3 1262 961 0 2 3 2 5 

4 1150 805 3 3 2 5 0 

5 2320 858 6 11 11 6 5 

6 2846 749 6 11 6 6 3 

7 1526 1134 8 6 8 3 2 

8 1657 881 6 9 6 5 3 

9 6289 984 17 32 33 20 8 

10 7020 842 22 42 42 28 8 

11 3268 1206 20 25 28 19 8 

12 4523 975 25 34 31 27 10 

13 20458 1301 98 195 221 145 39 

14 20892 1103 119 212 207 126 41 

15 8802 1306 97 142 142 98 25 

16 9201 1315 106 150 153 118 20 

17 1115816 12321 41116 85184 102133 111279 11023 

18 271807 2136 878 1479 1502 3391 289 

 

 

Table 13: Comparison of All Results (K=3) 

K=3 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 43 43 43 39 40 43 43 

2 295 205 199 205 199 205 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 120 122 122 122 122 122 

5 230 107 108 108 97 97 108 108 

6 1341 712 706 719 637 670 719 719 

7 75 57 58 59 53 54 59 59 

8 363 302 295 307 293 303 302 307 

9 932 307 315 316 262 270 314 316 

10 5162 2044 2108 2115 1829 1827 2115 2111 

11 283 174 179 178 156 152 178 179 

12 1570 1105 1116 1119 986 960 1120 1131 

13 3826 895 945 936 754 759 941 939 

14 21248 5817 6073 6041 4992 5040 6055 6026 

15 1159 514 535 531 430 428 527 530 

16 6366 3068 3235 3202 2613 2624 3215 3223 

17 1127021 685281 678842 686261 686261 659163 657050 686261 

18 66416 46066 46422 46422 46356 46421 46422 46422 
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Table 14: Time to Find the Best Solutions (K=3) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 379 1114 0 2 3 0 0 

2 309 710 0 2 0 0 0 

3 239 1025 0 0 2 0 2 

4 231 780 2 0 2 0 2 

5 1006 934 2 2 5 2 9 

6 1386 788 6 5 3 0 0 

7 668 1309 2 2 0 0 2 

8 699 977 2 2 2 5 2 

9 2977 1260 3 9 9 16 13 

10 3728 869 9 3 6 8 10 

11 1966 1481 6 9 6 11 8 

12 2336 1027 14 5 9 17 6 

13 14140 1557 55 30 47 75 31 

14 16875 1178 64 42 34 62 32 

15 6254 1685 39 28 24 58 33 

16 6134 1482 80 22 24 105 40 

17 1071273 10518 4855 24991 38005 137484 1407 

18 33924 2321 16 661 415 146 15 

 

 

Table 15: Execution Time of Algorithms (K=3) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1249 1229 2 5 3 3 6 

2 1316 853 0 2 0 3 5 

3 1094 1131 0 3 2 5 2 

4 1069 1022 3 3 3 0 24 

5 2225 1048 8 2 5 8 14 

6 2814 989 8 5 3 13 2 

7 1546 1449 5 5 3 8 3 

8 1724 1142 6 5 5 8 5 

9 6185 1452 28 19 17 28 14 

10 6922 1203 30 16 16 34 14 

11 3295 1647 27 17 16 30 13 

12 4116 1317 30 15 16 30 14 

13 20132 1863 133 76 80 175 58 

14 20171 1691 148 69 62 168 58 

15 8574 1972 129 62 60 129 59 

16 8917 1952 128 61 64 144 55 

17 1105766 14602 57415 71857 58461 249778 19580 

18 271807 3451 1033 1025 959 3412 401 
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Table 16: Comparison of All Results (K=4) 

K=4 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 43 43 43 43 43 43 43 

2 295 205 200 205 201 199 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 121 122 122 122 122 122 

5 230 108 110 110 98 98 110 110 

6 1341 704 712 723 681 646 722 723 

7 75 60 61 61 55 54 61 61 

8 363 320 315 325 305 311 321 322 

9 932 310 327 327 277 269 326 327 

10 5162 2158 2249 2265 1898 1936 2270 2264 

11 283 181 187 187 163 162 187 186 

12 1570 1146 1157 1163 1041 1036 1165 1162 

13 3826 915 977 965 774 781 966 963 

14 21248 6005 6373 6305 5273 5298 6321 6326 

15 1159 520 557 552 456 449 549 551 

16 6366 3100 3315 3276 2734 2779 3271 3277 

17 1127021 691752 673602 693867 685959 668109 672162 693867 

18 66416 46422 46422 46422 46396 46401 46422 46422 

 

 

Table 17: Time to Find the Best Solutions (K=4) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 493 1058 0 2 2 2 0 

2 410 833 0 3 8 0 2 

3 279 1019 2 0 2 3 2 

4 264 824 0 3 0 0 0 

5 1253 1047 2 6 0 3 2 

6 1176 924 3 6 5 5 2 

7 902 1407 5 5 2 0 0 

8 927 1059 0 5 3 6 2 

9 3640 1438 15 8 9 14 6 

10 4933 1022 14 11 9 28 9 

11 2164 1619 9 3 5 11 3 

12 2499 1184 17 5 11 20 5 

13 13210 1803 87 42 55 105 41 

14 16823 1388 102 28 31 116 36 

15 7072 1981 72 33 37 83 42 

16 8145 1758 65 25 44 80 36 

17 1091079 12056 12513 27648 30336 304839 5828 

18 76771 2926 20 732 582 181 19 
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Table 18: Execution Time of Algorithms (K=4) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1240 1145 3 3 3 6 3 

2 1285 999 3 5 9 2 3 

3 1080 1157 5 2 5 5 2 

4 1082 1112 0 6 2 8 3 

5 2186 1173 11 9 3 9 5 

6 2657 1111 8 9 12 15 8 

7 1549 1546 8 8 5 8 5 

8 1669 1268 8 5 5 8 5 

9 6061 1656 33 17 25 36 19 

10 6476 1381 33 22 20 44 15 

11 3193 1816 30 17 17 33 17 

12 3961 1504 36 19 19 36 13 

13 19481 2150 161 87 87 220 74 

14 20024 1995 181 75 75 198 77 

15 8555 2293 148 69 68 151 56 

16 8803 2295 150 70 69 173 61 

17 1099614 16558 72328 60705 71178 479881 26027 

18 270077 4084 1181 1222 1109 3273 496 

 

 

Table 19: Comparison of All Results (K=5) 

K=5 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 42 43 43 39 41 43 43 

2 295 205 201 205 200 201 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 121 122 122 122 122 122 

5 230 107 111 112 100 97 112 112 

6 1341 707 712 723 660 658 723 723 

7 75 61 62 63 56 55 63 63 

8 363 321 315 325 311 309 325 325 

9 932 311 326 325 271 275 325 326 

10 5162 2178 2283 2274 1988 1940 2275 2268 

11 283 182 190 190 164 164 189 190 

12 1570 1155 1173 1172 1042 1027 1168 1172 

13 3826 915 982 967 789 773 968 967 

14 21248 5991 6437 6373 5288 5315 6369 6374 

15 1159 521 562 555 453 454 554 553 

16 6366 3135 3354 3284 2768 2775 3281 3274 

17 1127021 692469 672649 694499 686524 663357 679852 694419 

18 66416 46422 46422 46422 46398 46402 46422 46422 
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Table 20: Time to Find the Best Solutions (K=5) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 602 1114 0 2 0 0 0 

2 499 852 0 2 2 2 0 

3 275 1119 0 2 0 0 2 

4 271 838 2 0 0 0 0 

5 1296 1103 11 6 5 2 2 

6 1359 949 6 0 0 0 0 

7 917 1484 6 6 2 2 2 

8 880 1059 5 2 3 5 0 

9 4143 1560 27 10 3 31 12 

10 5664 1201 22 13 15 31 11 

11 2426 1757 17 11 6 11 8 

12 2499 1415 22 11 10 12 6 

13 16900 2037 86 45 45 141 56 

14 18152 1571 134 39 45 100 42 

15 6808 2265 92 22 23 88 47 

16 7926 1964 100 45 30 120 51 

17 1076501 13502 30397 42452 28036 856056 12237 

18 87671 3276 23 599 546 165 18 

 

 

Table 21: Execution Time of Algorithms (K=5) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1269 1223 5 3 2 3 3 

2 1312 1031 0 5 2 5 2 

3 1039 1272 0 5 0 2 5 

4 1095 1137 3 3 0 0 0 

5 2167 1254 11 13 9 9 8 

6 2618 1167 11 6 6 14 9 

7 1532 1636 8 8 5 6 5 

8 1702 1268 8 6 8 10 8 

9 5998 1791 42 21 20 44 25 

10 6539 1577 44 25 22 48 17 

11 3240 2012 31 19 20 38 17 

12 3864 1752 34 17 20 41 22 

13 19146 2417 184 91 107 247 87 

14 19867 2259 209 83 83 225 87 

15 8398 2554 172 70 76 178 91 

16 8847 2491 167 80 72 183 72 

17 1102302 18130 79756 67558 83761 1321474 30342 

18 269723 4832 1313 1398 1253 3092 568 
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Table 22: Comparison of All Results (K=6) 

K=6 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 43 43 43 43 41 43 43 

2 295 205 200 205 199 201 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 120 122 122 122 122 122 

5 230 108 111 112 100 103 112 112 

6 1341 703 710 723 643 665 723 723 

7 75 61 62 63 56 58 63 63 

8 363 317 317 325 311 308 325 325 

9 932 302 326 325 265 269 326 326 

10 5162 2199 2282 2271 1990 2014 2275 2263 

11 283 182 190 191 169 170 189 190 

12 1570 1158 1181 1179 1044 1047 1177 1176 

13 3826 912 982 970 770 774 962 966 

14 21248 5950 6460 6386 5318 5307 6362 6338 

15 1159 519 559 555 454 455 553 552 

16 6366 3144 3348 3287 2756 2739 3290 3264 

17 1127021 692849 658789 694609 688229 660508 686128 694507 

18 66416 46422 46422 46422 46387 46421 46422 46422 

 

 

Table 23: Time to Find the Best Solutions (K=6) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 633 1083 2 2 0 2 6 

2 454 885 3 0 2 0 3 

3 298 1106 2 0 3 2 2 

4 298 914 0 0 0 3 2 

5 1323 1195 2 8 5 0 0 

6 1493 967 3 5 3 2 2 

7 986 1415 2 0 2 0 0 

8 981 1148 0 3 5 3 5 

9 4473 1763 22 9 6 26 6 

10 5485 1318 23 13 19 33 13 

11 2265 1866 23 3 14 16 6 

12 2933 1513 24 8 5 16 9 

13 16558 2321 98 36 72 139 49 

14 18739 1779 117 56 61 128 59 

15 7356 2490 120 48 50 98 33 

16 8067 2192 100 55 34 139 34 

17 1083564 14901 37280 58204 65923 1683597 15514 

18 96079 3427 22 676 651 130 27 
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Table 24: Execution Time of Algorithms (K=6) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1226 1215 5 2 3 2 8 

2 1248 1075 5 6 2 2 5 

3 1048 1231 5 2 3 3 3 

4 1097 1175 3 2 3 8 3 

5 2147 1354 9 9 11 14 11 

6 2554 1253 11 8 6 14 5 

7 1532 1637 5 6 5 5 6 

8 1710 1415 6 5 5 11 6 

9 6040 2019 48 26 24 47 25 

10 6594 1715 45 22 23 50 23 

11 3140 2085 41 22 22 39 27 

12 3855 1844 38 20 22 45 27 

13 19290 2775 214 111 124 295 106 

14 19637 2527 257 104 102 272 117 

15 8571 2872 209 89 92 222 94 

16 8950 2779 200 90 90 222 69 

17 1106928 19804 101092 82610 107366 2609329 40564 

18 269928 5291 1523 1568 1485 3473 701 

 

 

Table 25: Comparison of All Results (K=7) 

K=7 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 42 43 43 41 41 43 43 

2 295 203 202 205 200 201 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 120 122 122 122 122 122 

5 230 107 112 112 97 102 112 112 

6 1341 708 717 723 658 645 723 723 

7 75 61 62 63 56 56 63 63 

8 363 319 318 325 300 294 325 325 

9 932 307 325 326 269 266 324 326 

10 5162 2204 2286 2272 1992 1954 2266 2271 

11 283 181 190 189 163 165 190 190 

12 1570 1148 1191 1175 1068 1042 1165 1182 

13 3826 905 981 969 755 757 968 969 

14 21248 5929 6447 6384 5237 5221 6376 6367 

15 1159 513 559 556 452 448 553 553 

16 6366 3108 3339 3294 2777 2742 3280 3239 

17 1127021 692093 678232 694770 683541 666606 689780 694814 

18 66416 46418 46422 46422 46389 46401 46422 46422 
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Table 26: Time to Find the Best Solutions (K=7) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 655 1144 2 3 0 0 0 

2 546 911 0 3 0 9 3 

3 310 1101 3 5 0 0 0 

4 315 948 0 3 3 0 0 

5 1320 1243 2 6 5 3 3 

6 1524 1030 3 8 5 0 3 

7 927 1679 2 6 5 2 0 

8 839 1170 2 6 5 2 2 

9 5248 1799 36 14 19 33 17 

10 5529 1482 45 14 2 22 8 

11 2435 1983 17 2 9 11 8 

12 2736 1671 20 14 11 30 6 

13 16653 2599 153 44 59 122 47 

14 19541 1955 150 52 41 137 67 

15 7313 2855 94 50 34 114 59 

16 8164 2370 109 53 55 147 70 

17 1080305 15692 41396 38439 48663 2972624 30076 

18 182518 3966 37 866 755 181 30 

 

 

Table 27: Execution Time of Algorithms (K=7) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1223 1278 5 3 2 2 2 

2 1259 1104 2 5 3 13 8 

3 1047 1243 6 5 2 0 3 

4 1083 1248 5 3 3 0 2 

5 2175 1409 16 13 11 14 11 

6 2540 1307 11 9 11 14 6 

7 1541 1880 6 6 10 8 5 

8 1666 1479 11 9 8 9 6 

9 5959 2092 53 26 31 54 29 

10 6447 1872 67 23 28 59 23 

11 3162 2257 39 20 28 44 25 

12 3928 2065 44 29 24 45 27 

13 19369 3030 254 119 131 334 111 

14 19920 2788 291 109 112 300 126 

15 8366 3231 237 95 100 253 120 

16 8992 3097 221 100 97 239 92 

17 1090965 21519 118233 92036 121606 5864530 46114 

18 269874 5876 1692 1753 1660 3764 789 
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Table 28: Comparison of All Results (K=8) 

K=8 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 42 43 43 41 41 43 43 

2 295 203 201 204 200 201 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 121 122 122 122 122 122 

5 230 106 110 112 103 96 112 112 

6 1341 698 715 723 663 639 723 723 

7 75 60 61 63 56 59 62 63 

8 363 319 318 325 300 309 325 325 

9 932 303 326 325 265 266 324 325 

10 5162 2159 2280 2274 1975 1989 2268 2273 

11 283 180 189 190 167 163 190 190 

12 1570 1144 1187 1175 1081 1043 1173 1180 

13 3826 897 981 966 748 743 965 966 

14 21248 5931 6452 6351 5199 5195 6339 6342 

15 1159 510 559 553 448 450 549 553 

16 6366 3104 3351 3284 2722 2745 3275 3255 

17 1127021 686809 678076 694906 683431 665756 691455 694767 

18 66416 46398 46422 46422 46393 46420 46422 46422 

 

 

Table 29: Time to Find the Best Solutions (K=8) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 767 1346 2 3 5 2 2 

2 640 980 0 2 6 0 0 

3 292 1206 2 0 2 3 0 

4 334 939 0 0 0 0 3 

5 1424 1323 3 3 8 2 5 

6 1566 1089 5 8 6 8 3 

7 930 1780 0 8 5 3 6 

8 1033 1268 2 3 6 5 3 

9 4370 1860 25 5 14 27 20 

10 5772 1605 42 22 17 50 19 

11 2432 2156 13 6 11 12 16 

12 3053 1799 14 14 19 17 17 

13 18380 2688 133 45 66 209 67 

14 18402 2168 173 67 62 117 86 

15 8053 3094 86 67 58 93 80 

16 8387 2676 165 59 59 147 61 

17 1080644 17241 58430 57571 55168 3812741 24239 

18 160207 4317 35 1133 584 131 33 
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Table 30: Execution Time of Algorithms (K=8) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1270 1488 6 3 5 6 3 

2 1261 1200 5 6 6 2 0 

3 1027 1336 5 3 5 5 2 

4 1044 1267 3 5 2 3 5 

5 2178 1484 15 9 14 17 11 

6 2540 1390 14 14 10 17 8 

7 1499 1958 9 9 8 9 9 

8 1665 1560 11 6 13 11 6 

9 6037 2148 58 27 27 58 31 

10 6516 2005 59 31 30 66 34 

11 3189 2446 47 20 29 45 31 

12 3955 2243 45 29 26 52 28 

13 19416 3268 271 124 148 367 137 

14 19672 3040 307 115 120 339 137 

15 8512 3504 253 106 105 246 112 

16 9128 3466 239 106 105 256 105 

17 1091275 23096 130676 99924 133186 6623392 49945 

18 269564 6588 1811 1889 1806 3772 864 

 

 

Table 31: Comparison of All Results (K=9) 

K=9 LP GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 65 42 43 43 41 41 43 43 

2 295 204 200 205 201 201 205 205 

3 16 16 16 16 16 16 16 16 

4 122 122 121 122 122 122 122 122 

5 230 105 111 112 101 99 112 112 

6 1341 691 718 723 653 648 723 723 

7 75 61 62 63 57 56 63 63 

8 363 320 315 325 301 308 325 325 

9 932 300 326 326 269 265 325 324 

10 5162 2178 2275 2274 1962 1958 2264 2274 

11 283 182 190 188 168 166 190 188 

12 1570 1134 1184 1178 1070 1048 1174 1177 

13 3826 896 983 973 740 740 969 967 

14 21248 5898 6463 6382 5200 5147 6369 6356 

15 1159 507 561 551 444 450 551 555 

16 6366 3085 3360 3276 2701 2706 3259 3259 

17 1127021 682912 682900 695053 681454 659780 693530 694831 

18 66416 46376 46422 46422 46385 46377 46422 46422 
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Table 32: Time to Find the Best Solutions (K=9) 

First(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 796 1402 0 3 2 2 3 

2 608 941 0 5 2 0 3 

3 337 1215 0 3 0 3 2 

4 367 932 0 0 0 0 0 

5 1479 1357 10 2 9 2 3 

6 1797 1201 5 9 6 12 3 

7 1021 1821 5 0 5 6 0 

8 1017 1342 0 3 5 6 2 

9 4582 2075 22 13 11 16 17 

10 5438 1643 41 19 20 45 19 

11 2427 2390 22 9 11 33 6 

12 3287 1811 33 14 14 28 17 

13 17056 2944 147 92 67 217 87 

14 18411 2298 152 86 70 234 58 

15 7850 3235 128 50 55 139 81 

16 8777 2847 136 80 47 169 84 

17 1079663 17068 61346 45858 71190 3985041 32776 

18 191094 4607 39 814 1204 155 34 

 

 

Table 33: Execution Time of Algorithms (K=9) 

Total(ms) GA SA MBH1 MBH2 MBH3 MBH4 OptMBH 

1 1264 1524 5 3 2 2 5 

2 1243 1198 2 5 2 6 6 

3 1042 1366 3 5 0 6 3 

4 1090 1295 8 2 2 0 0 

5 2198 1552 19 11 12 20 13 

6 2587 1535 17 12 9 19 8 

7 1520 2042 11 9 5 14 5 

8 1686 1668 11 9 9 14 6 

9 5956 2315 69 31 33 66 30 

10 6401 2133 66 31 31 75 38 

11 3159 2702 47 28 31 53 28 

12 3849 2288 50 48 33 56 24 

13 19453 3537 289 138 159 398 155 

14 20263 3309 348 123 125 374 148 

15 8590 3697 265 112 116 282 126 

16 9343 3906 259 116 115 278 114 

17 1090272 23489 143526 106408 142605 8982386 54711 

18 269835 7193 2002 2033 1977 4097 948 
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6.7 Senator Experiment (18th Dataset) 

Our Opt-MBH algorithm had clustered 108 senators and 696 bills into 3 clusters. 

That is, the gain has increased when the cluster size is increased from 2 to 3. After 

that, there were no increase in the gain, and therefore, the best clustering result has 

been found as 3. Figure 29 shows the 2-way, and Figure 30 shows the 3-way 

partitioning of the bipartite graphs, which are plotted in MATLAB. In these figures 

columns correspond to the bills and the rows correspond to the senators. The colors 

(green and red) correspond to the votes of senators on the bills (favor or against). 

Notice that blue lines have been inserted into these figures in order to make clusters 

more visible. 

The US Senate has 2-party system (with 2 independents, mostly inclined to 

Democrats), with 100 members. During the 2 years of 111 th Senate, the numbers of 

the members of both parties have changed due to different circumstances. 

Therefore, the total number of senators has also increased to 108. In two clustering, 

the clusters were roughly representing the party lines. During 111 th Senate, the 

number of Republicans was 39 in its minimum level, and one of the clusters our 

system has obtained exactly had that many senators. Of course, there are several 

Senators voting quite independently from their respective parties. However, even in 

3-cluster structure, it has been observed that senators were not clustered forming 

the 3rd group. Only, a small number of bills have been discovered, which are mostly 

been rejected by the senators of both parties. The structures of 2 and 3 clusters are 

as follows:  

 in 2-way, 39 senators and 257 bills formed one cluster and 69 senators and 

439 bills formed the other one, 

 in 3-way, again the number of senators were the same, for the first two 

clusters and the third cluster had 0 senators, however, 7 bills from the first 

cluster, and 4 bills from the second cluster had been moved into the third 

one making it with 0 senators and 11 bills. 
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Figure 29: Partitioning of Senators and Bills (K = 2) 

 

Figure 30: Partitioning of Senators and Bills (K = 3) 

6.8 Questionnaire Experiment (17th Dataset) 

 Table 34: Clusters for Questionnaire Experiment (P: # of persons, Q: # of questions in a cluster) 

Clusters K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 

 
P Q P Q P Q P Q P Q P Q P Q P Q 

1 7458 33 6320 34 5864 33 6083 34 5941 33 6088 34 6080 34 6074 34 

2 114 15 1252 0 981 3 637 1 883 3 611 1 572 1 531 1 

3 NA NA 0 14 727 0 447 0 463 0 417 1 423 1 498 1 

4 NA NA NA NA 0 12 405 1 203 1 287 0 162 0 198 0 

5 NA NA NA NA NA NA 0 12 82 2 130 1 126 1 114 1 

6 NA NA NA NA NA NA NA NA 0 9 39 0 123 0 64 0 

7 NA NA NA NA NA NA NA NA NA NA 0 11 86 1 52 0 

8 NA NA NA NA NA NA NA NA NA NA NA NA 0 10 41 2 

9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 9 

10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

RESULT 642291 ^ 686261 ^ 693867 ^ 694499 ^ 694551 ^ 694759 ^ 694843 ^ 694851 

 

In our fourth experiment, we have used the 17th dataset. Since the data size was 

very large and dimensions were disproportional, we could not print its results in a 

figure similar to the one that we have done for the Senate experiment.  Opt-MBH 

algorithm had partitioned this weighted bipartite graph into 9 clusters, as the best 

clustering structure. Our system tries to partition starting with 2 clusters first, and 

then increases the number of clusters by one. We tried all the cluster sizes from 2 to 
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9. We have discovered that the objective value increased for each cluster size as it 

can be seen from Table 34. At each step, we have observed that difference between 

results was dwindling, like it was converging to some value (Figure 31). Again, as in 

the Senate experiment, some clusters had only vertices from one of the partitions of 

the bipartite graphs. The whole experiment took around 4,5 minutes with our test 

computer of which specifications expressed in section 6.1. 

 

 

Figure 31: Results of Questionnaire Experiment with Moving Average Trendline 

6.9 MBH1 and Opt-MBH on the Same Randomness 

In the final experiment, again, MBH1 and Opt-MBH have been compared. However, 

this time the algorithms have been designed to work with inputs of not only the 

datasets but also the randomly generated initial solutions. Before the experiment, 

several random initial solutions had been created by a tool for the given U, V and K 

values and had been saved on a file. MBH1 and Opt-MBH methods read their initial 

solutions from the same file instead of generating randomly at that moment of 

iteration. Therefore, the lines of the below graphs which corresponds to the results 

of the algorithms exactly follow the same path. “17th dataset with K=9” and “18th 

dataset with K=8” results are displayed in the figures below. As can be understood 
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from the minimum values, R=3 has been used in this experiment. Figure 32 contains 

two graphs which emphasize total execution time of the algorithms and cut points 

(i.e., vertical lines) in Opt-MBH. Different from Figure 32, in Figure 33 senator 

dataset has been used with K=8 and approximate saved time is shown. Note that 

the ratio of total execution time values of MBH1 and Opt-MBH is almost the same as 

the ratio of pixel values displayed on the chart. 

 

Figure 32: Comparison of Results Using the Same Randomness 

 

 

 

Figure 33: Results on Senator Dataset with K=8 
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CHAPTER 7 
 

 

CONCLUSION AND FUTURE WORK 
 

 

7.1 Conclusions 

This work extends previous work on 2-way clustering of signed bipartite graphs to k-

way clustering of signed or weighted bipartite graphs. This problem appears in 

social networks in many different forms.  

In this study, for k-way partitioning of the signed bipartite graphs problem, 

mathematical methods, generic algorithms and various move-based heuristics have 

been developed. We have shown that our approaches are quite effective through 

experiments on not only randomly generated data, but also real world data. Size, 

density and values of the datasets used in experiments were varied in order to 

generate various conditions. 

We can conclude that, optimized move-based heuristic algorithm is at the top 

among all algorithms both for the best result and execution time. As presented in 

experimental results, it is quite impressive that bipartite graph data in 7572x48 sized 

dataset is partitioned into two distinct blocks only in 437 ms after the start of 

execution. As a product of the study we can say that, as far as we know, the most 

efficient algorithm to the given problem is produced. 

7.2 Future Work 

Some future works may be adapting methods used for unsigned partitioning 

problems for our problem and analyzing the parts emerged after the partitioning 

process is done. 
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It would be great to study with some real datasets that have more than 2 natural 

clusters and work together with social analysts to check the quality of the clusters 

that have been found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

REFERENCES 
 

 

 

[1] Salvatore, J. Bipartite Graphs and Problem Solving. University of Chicago, 2007. 

[2] Andrej, M., and Doreian, P. Partitioning signed two-mode networks. Journal of         

Mathematical Sociology 33, pages 196–221, 2009. 

[3] Banerjee, S., Sarkar, K., Gokalp, S., Sen, A., and Davulcu, H. Partitioning 

Signed Bipartite Graphs for Classification of Individuals and Organizations. 

[4] Bansal, N., Blum, A., and Chawla, S. Correlation clustering. In MACHINE 

LEARNING, pp. 238–247, 2002. 

[5] Charikar, M., Guruswami, V., and Wirth, A. Clustering with qualitative 

information. In Proceedings of the 44th Annual, 2003. IEEE FOCS. 

[6] Sen, A., Deng, H., and Guha, S. On a graph partition problem with application to 

VLSI layout. Inf. Process. Lett. 43(2), 87–94, 1992. 

[7] Dhillon, I.S. Co-clustering documents and word using bipartite spectral graph 

partitioning. In Proceedings of the KDD, 2001. IEEE. 

[8] Zaslavsky, T. Frustration vs. clusterability in two-mode signed networks (signed 

bipartite graphs), 2010. 

[9] Zha, H., He, X., Ding, C., Simon, H., and Gu, M. Bipartite graph partitioning and 

data clustering. In Proceedings of the 10th International Conference on 

Information and Knowledge Management, pp. 25–32, 2001. ACM. 

[10] Fiduccia, C.M., and Mattheyses, R.M. A Linear-Time Heuristic for Improving 

Network Partitions. In Design Automation, pp. 175-181, 1982. 

[11] Kernighan, B.W., and Lin, S. An Efficient Heuristic Procedure for Partitioning 

Graphs. In Bell System Technical, vol.49, pp. 291-307, 1970. 

[12] Bui, T.N., and Moon, B.R. Genetic Algorithm and Graph Partitioning. In 

Computers, vol.45, no.7, pp. 841-855, 1996. IEEE. 

[13] Yang, B., Cheung, W.K., and Liu, J. Community Mining from Signed Social 

Networks. In Knowledge and Data Engineering, vol.19, no.10, pp.1333-1348, 

2007. IEEE. 



87 
 

[14] Doreian, P., Batagelj, V., and Ferligoj, A. Generalized Blockmodeling of Two-

Mode Network Data. In Social Networks, vol.26, pp.29-53, 2004. 

[15] Danzig, G.B. Reminiscences about the origins of linear programming, in: A. 

Bachem et al. (eds.) Mathematical Programming—The State of the Art, Bonn 

1982, Springer-Verlag, Berlin, 78–86, 1983. 

[16] Dantzig, G.B. Programming in a linear structure, Econometrica 17 73–74, 

1949. 

[17] Wood, M.K. and Dantzig, G.B. Programming of interdependent activities, I, 

General Discussion, Econometrica 17 193–199, 1949. 

[18] Dantzig, G.B. Programming of interdependent activities, II, Mathematical 

model, Econometrica 17 200–211, 1949. 

[19] Dantzig, G.B. Linear Programming and Extensions, Princeton University 

Press, Princeton, New Jersey, 1963. 

[20] Khachiyan, L.G. A polynomial Algorithm in Linear Programming, Doklady 

Akademiia Nauk SSSR 244:S, p. 1093-1096, translated in Soviet Mathematics 

Doklady 20:1 (1979), p. 191-194, 1979. 

[21] Karmarkar, N. A new polynomial-time algorithm for linear programming, 

Combinatorica, 4(4): 373-395, 1984. 

[22] Maros, I. Computational Techniques of the Simplex Method. Kluwer 

Academic Publishers, Norwell, MA, USA, 2002. 

[23] Meggido, N. Pathways to the optimal set in linear programming, Progress in 

Mathematical Programming Interior-point and related methods, pp. 131–158, 

1988. 

[24] Holland, J. H. Adaption in Natural and Artificial Systems. University of 

Michigan Press, 1975. 

[25] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine 

Learning. Addison - Wesley, Reading MA, 1989. 

[26] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated 

annealing. Science 220, 671-680, 1983. 

[27] Dueck, G., and Scheuer, T. Threshold Accepting: A General Purpose 

Optimization Algorithm Appearing Superior to Simulated Annealing. J. Comp. 

Phys.90, 161-175, 1990. 



88 
 

[28] Ingber, L. Simulated Annealing: Practice versus Theory. Math. Comput. 

Modeling 18, 29-57, 1993. 

[29] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M., Teller, A. H., and Teller, 

E. Equation of State Calculations by Fast Computing Machines. J. Chem. 

Phys. 21, 1087-1092, 1953. 

[30] Otten, R. H. J. M. and Van Ginneken, L. P. P. P. the Annealing 

Algorithm. Boston, MA: Kluwer, 1989. 

http://www.amazon.com/exec/obidos/ASIN/0792390229/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0792390229/ref=nosim/weisstein-20

