EFFECT OF HIGH HYDROSTATIC PRESSURE TREATMENT ON SOME QUALITY PROPERTIES, SQUEEZING PRESSURE EFFECT AND SHELF LIFE OF POMEGRANATE (*Punica granatum*) JUICE AGAINST THERMAL TREATMENT

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

NECMİYE BÜŞRA GÜLTEKİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN FOOD ENGINEERING

SEPTEMBER 2012

Approval of the thesis:

EFFECT OF HIGH HYDROSTATIC PRESSURE TREATMENT ON SOME QUALITY PROPERTIES, SQUEEZING PRESSURE EFFECT AND SHELF LIFE OF POMEGRANATE (*Punica granatum*) JUICE AGAINST THERMAL TREATMENT

submitted by **NECMİYE BÜŞRA GÜLTEKİN** in partial fulfillment of the requirements for the degree of **Master of Science in Food Engineering Department, Middle East Technical University** by,

Prof. Dr. Canan Özgen Dean, Graduate School of **Natural and Applied Sciences**

Prof. Dr. Alev Bayındırlı Head of Department, **Food Engineering**

Prof. Dr. Hami Alpas Supervisor, **Food Engineering Dept., METU**

Examining Committee Members:

Prof. Dr. Nevzat Artık Food Engineering Dept., Ankara University

Prof. Dr. Hami Alpas Food Engineering Dept., METU

Prof. Dr. Ender Sinan Poyrazoğlu Food Engineering Dept., Ankara University

Assist. Prof. Dr. Yeşim Soyer Food Engineering Dept., METU

Assist. Prof. Dr. İlkay Şensoy Food Engineering Dept., METU

Date: 14.09.2012

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

> Name, Last name: Necmiye Büşra Gültekin Signature:

ABSTRACT

EFFECT OF HIGH HYDROSTATIC PRESSURE TREATMENT ON SOME QUALITY PROPERTIES, SQUEEZING PRESSURE EFFECT AND SHELF LIFE OF POMEGRANATE (*Punica granatum*) JUICE AGAINST THERMAL TREATMENT

Gültekin, Necmiye Büşra

M.Sc., Department of Food Engineering Supervisor: Prof. Dr. Hami Alpas

September 2012, 67 pages

The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C, 25°C; 5 and 10 minutes) on some quality properties of two different squeezing pressure processed pomegranate juices against traditional thermal treatment at 85°C/10 min. Among these combinations, for 100 psi squeezed, 400 MPa 15°C 5 min and for 150 psi, 400 MPa 5°C 10 min were chosen the best. Antioxidant activity, total phenolic content, total monomeric anthocyanin concentration, ascorbic acid content, mannitol content, color values (ΔE) and other routine quality properties as °Brix, pH, titrable acidity besides microbial analyses as total meshopilic areobic bacteria count and total yeast and mould count were investigated. HHP combinations around 400 MPa at 10 min at every temperature were sufficient to decrease the microbial load around 4.0 log cycles for both squeezed juices. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations while there was a significant decrease (p < 0.05) for thermal treated. Ascorbic acid increased with 5 min HHP treatments but decreased with 10 min. ΔE values were

iv

smaller with HHP treatments for all combinations for both squeezed juices. HHP treatments gave lower mannitol content. In shelf life study during 30 days, antioxidant and ascorbic acid levels stayed more stable than control and pasteurized ones. Sensory evaluations, odor and appearance, HHP treatments gave highest results then the others as well as the smallest ΔE values. For all combinations, there was no significant difference for ^oBrix, pH and titrable acidity values between HHP and thermal treatments.

Keywords: high hydrostatic pressure, pomegranate juice, shelf life, quality, nonthermal fruit juice processing

ÖΖ

YÜKSEK HİDROSTATİK BASINCIN ISIL İŞLEME KARŞI NAR (*Punica granatum*) SUYUNUN BAZI KALİTE ÖZELLİKLERİ, SIKMA BASINCI VE RAF ÖMRÜ ÜZERİNE ETKİSİ

Gültekin, Necmiye Büşra Yüksek Lisans, Gıda Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. Hami Alpas

Eylül 2012, 67 sayfa

Bu çalışmanın amacı, yüksek hidrositatik basınc (YHB) uygulamasının (200, 300, 400 MPa ; 5°C, 15°C, 25°C; 5 ve 10 dakika), iki farklı presleme basıncında sıkılan nar suyunun bazı kalite özellikleri üzerine etkisi ve sonuçların geleneksel ısıl işlem (85° C/10) uygulanmış nar suyu ile kıyaslanmasıdır. Uygulanan tüm kombinasyonlar içerisinde, 100 psi ile sıkılmış nar suyu için, 400 MPa 15°C 5 dakika ve 150 psi ile sıkılmış için 400 MPa 5°C 10 dakikalık uygulamalar en iyi seçilmiştir. Antioksidan aktivite, toplam fenolik madde, toplam monomerik antosiyanin konsantrasyonu, askorbik asit içeriği, mannitol içeriği, renk değerleri (Δ E) ve °Brix, pH, titrasyon asitliği gibi diğer rutin kalite özellikleri yanı sıra toplam mezofilik aerobik bakteri ve toplam maya küf sayısı gibi mikrobiyal analizler incelenmiştir. Her sıcaklık derecesinde, 400 MPa/ 10 dakikalık YHB kombinasyonları her iki pres derecesinde sıkılmış nar suyunda mikrobiyal yükü 4.0 log azaltmaya yeterli olmuştur. Uygulanan hiç bir YHB uygulaması antioksidan aktivitesi, toplam fenolik matosiyanin konsantrasyonlarında önemli bir değişime yol açmazken, ısıl işlem uygulanmış nar suyundaki azalış önemli bulunmuştur (p> 0.05).

Askorbik asit içeriğinde, 5 dakikalık YHB uygulamasıyla artış, 10 dakikalık uygulamayla düşüş görülmüştür. Her iki pres derecesinde sıkılmış nar sularında, ΔE değerleri tüm YHB kombinasyonlarında, ısıl işleme tabi tutulan nar suyu ΔE değerine gore daha düşük bulunmuştur. YHB uygulamalarında daha düşük mannitol içeriğine rastlanılmıştır. 30 gün boyunca süren raf ömrü çalışmasında, antioksidan ve askorbik asit seviyeleri kontrol ve pastörize nar sularına göre daha stabil kalmıştır. Koku ve renkten oluşan duyusal değerlendirme sonuçlarına göre YHB uygulanmış nar suları, en düşük ΔE değerlerini vermesi gibi, en yüksek değerleri almıştır. YHB kombinasyonları uygulanmış ve ısıl işlem yapılmış nar sularında ^oBrix, pH, titrasyon asitliği değerlerindeki değişim önemli bulunmamıştır.

Anahtar Kelimeler: yüksek hidrostatik basınç, nar suyu, raf ömrü, kalite, ısısal olmayan meyve suyu işlemesi

Dedicated To My Beloved Family

ACKNOWLEDGEMENTS

I would like to express my deepest and sincere gratitude to my supervisor, Professor Hami Alpas. His practical logical guidance, patience, encouragement and understanding since we first met are priceless.

As a precious person and a perfect academician, I memorialize dear Professor A. Levent Bayındırlı with greatest gratitude. We started this way together but we had to complete without him. I owe my thankfulness for everything he had taught and had not.

I am heartily thankful for my dear parents Zekiye- Şahap Gültekin and brother Buğra Gültekin. Due to sacrificing much more labor and effort than me, this thesis is completely belongs them.

This thesis would not be possible without his deepest support, patience, love and friendship of Gökhan Subaşı. Saying 'thank you' is quite insufficient for everything you have been doing for me and sharing your life with me.

I offer my sincerest gratitude to my unique and real friend Başak Ünal for her endless encourage, belief and sisterhood. I can't imagine a life without her.

I would like to express my deepest indebtedness to Ceyda Yazıcı for her guidance on Statistics.

It was great to work with METU Central Laboratory in a perfect profession for some parts of my experiments and I am thankful for their benefits.

I would like to thank to METU-BAP Coordination for their financial support during my studies.

TABLE OF CONTENTS

ABSTRACT	iv
ÖZ	vi
ACKNOWLEDGEMENTS	ix
TABLE OF CONTENTS	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTERS

1. INTRODUCT	ION 1	Ĺ
1.1 A trend	y fruit: Punica granatum L., Punicaceae, Pomegranate 1	l
1.2 Process	ing and the Consumption of Pomegranate Fruit in Turkey	2
1.3 High H	ydrostatic Pressure Processing (HPP) Technology	3
1.4 Earlier	High Hydrostatic Pressure Studies in Turkey4	1
1.5 Aim of	the Study5	5
2. MATERIALS	AND METHODS	5
2.1 Materials.		5
2.1.1 Supply	ϕ ing the Samples	5
2.1.2 Sample	e Processing	5
2.1.3 Reagen	nts	7
2.2 Methods		7
2.2.1 Treatm	nents	7
2.2.1.1 Hi	gh Hydrostatic Pressure Application7	7
2.2.1.2 He	eat Treatment	3
2.2.2 Analys	ses)
2.2.2.1 M	icrobiological Analyses9)
2.2.2.2 Ph	sysical and Chemical Analyses)

2.2.2.1 pH, Titrable Acidity and ^o Brix	9
2.2.2.2 Color Measurement	10
2.2.2.3 Total Phenolic Content	10
2.2.2.4 Total Monomeric Anthocyanin Concentration	10
2.2.2.5 Antioxidant (Radical Scavenging) Activity (RSA)	11
2.2.2.6 Ascorbic acid	12
2.2.2.7 Mannitol	12
2.2.2.3 Sensory Analyses	13
2.2.2.4 Statistical Analyses	13
3. RESULTS AND DISCUSSION	14
3.1 Assessment of pressure, temperature and time combinations	14
3.1.1 Effects on microbial values of pomegranate juice	14
3.1.2 Effects on Physical and Chemical Quality Parameters	21
3.1.2.1 pH, Titrable Acidity and ^o Brix	21
3.1.2.2 Color Measurement	21
3.1.2.3 Total Phenolic Content	24
3.1.2.4 Total Monomeric Anthocyanin Concentration	26
3.1.2.5 Antioxidant (Free Radical Scavenging) Activity	28
3.1.2.6 Ascorbic Acid	30
3.1.2.7 Mannitol	32
3.1.3 Selection Criteria for the Optimum Combination	34
3.2 Shelf Life Study for Optimum Combinations	35
3.2.1 Total Mesophilic Aerobic Bacteria and Total Yeast and Mould During	
Shelf Life	35
3.2.2 pH During Shelf Life	
3.2.3 Color Measurement During Shelf Life	37
3.2.4 Antioxidant (Free Radical Scavenging) Activity and Ascorbic Acid During Shelf Life	41
3.2.5 Sensory Analyses during Shelf Life	44
4. CONCLUSION	46
5. RECOMMENDATION	48
REFERENCES	49

APPENDICES
A. STANDARD GALLIC ACID CURVE FOR
TOTAL PHENOLIC CONTENT CALCULATION
B. STANDARD DPPH CURVE FOR
ANTIOXIDANT ACTIVITY CALCULATION
C. STANDARD CURVE FOR ASCORBIC ACID CALCULATION
D. pH DURING SHELF LIFE
E. TUKEY TEST RESULTS OF DAYS FOR SHELF LIFE
F. MAIN EFFECTS, INTERACTIONS, RESIDUAL, PROBABILITY PLOTS AND EQUAL VARIANCES FOR Phenolic Compounds AS AN EXAMPLE, DECISION FOR OPTIMUM COMBINATIONS

LIST OF TABLES

TABLES

Table 1.1 Pomegranate productions in Turkey according to years (1000 Tones)(Prime Ministry Republic of Turkey, Turkish Statistical Institute)
Table 1.2 Pomegranate exportation of Turkey according to years (Quantity: Ton, Value: US \$1000) (Prime Ministry Republic of Turkey, Turkish Statistical Institute)
Table 3.1 The effect of HHP and time on ΔE value of pomegranate juice squeezed with 100 psi and 150 psi pressure by hydraulic press just after HHP treatment22
Table 3.2 The effect of HHP and time on Total Phenolic Content (gallic acidmg/mL) of pomegranate juice squeezed with 100 psi and 150 psi pressure byhydraulic press just after HHP treatment
Table 3.3 The effect of HHP and time on Total Monomeric Anthocyanin PigmentConcentration (mg/L cyanidin-3-glucoside) of pomegranate juice squeezed with 100psi and 150 psi pressure by hydraulic press just after HHP treatment
Table 3.4 The effect of HHP and time on Free Radical Scavenging Activity (RSA, %DPPH) of pomegranate juice squeezed with 100 psi and 150 psi pressure byhydraulic press just after HHP treatment
Table 3.5 The effect of HHP and time on Ascorbic Acid content (mg / L) ofpomegranate juice squeezed with 100 psi and 150 psi pressure by hydraulic press justafter HHP treatment
Table 3.6 The effect of HHP on Mannitol content (mg/mL) of pomegranate juicesqueezed with 100 psi and 150 psi pressure as HHP treatment for 5 min
Table 3.7 The effect of storage at 4°C on Total Meshopilic Aerobic Bacteria(TMAB) and Total Yeast and Mould (TYM) content (log cfu/ml) of pomegranatejuice squeezed with 100 psi and 150 psi pressure for HHP treated and pasteurizedsamples against control
Table 3.8 The effect of storage at 4°C on L*, a* and ΔE values of pomegranate juicesqueezed with 100 psi and 150 psi pressure for HHP treated and pasteurized samplesagainst control

Table 3.9 The effect of storage at 4°C on Antioxidant Activity (%) and AscorbicAcid Content (mg / L) of pomegranate juice squeezed with 100 psi and 150 psipressure for HHP treated and pasteurized samples against control
Table 3.10 The effect of storage at 4°C on Sensory Properties as Odor and Color of pomegranate juice squeezed with 100 psi and 150 psi pressure for HHP treated and pasteurized samples against control
Table E.1 Tukey test results day by day for Ascorbic Acid
Table E.2 Tukey test results day by day for Antioxidant Activity
Table E.3 Tukey test results day by day for Sensory Evaluation
Table E.4 Tukey test results day by day for Sensory Evaluation

LIST OF FIGURES

FIGURES

Figure 3.1 Mean total meshopilic aerobic bacteria reduction (log cfu/mL) of high pressure and traditional thermal treatments for 100 psi squeezed pomegranate juice. Initial microbial load is 3.85 log cfu/mL
Figure 3.2 Mean total meshopilic aerobic bacteria reduction (log cfu/mL) of high pressure and traditional thermal treatments for 150 psi squeezed pomegranate juice. Initial microbial load is 3.93 log cfu/mL
Figure 3.3 Mean total yeast and mould reduction (log cfu/mL) of high pressure and traditional thermal treatments for 100 psi squeezed pomegranate juice. Initial microbial load is 4.24 log cfu/mL
Figure 3.4 Mean total yeast and mould reduction (log cfu/mL) of high pressure and traditional thermal treatments for 150 psi squeezed pomegranate juice. Initial microbial load is 4.15 log cfu/mL
Figure A.1 The standard gallic acid curve for Singleton & Rossi Method56
Figure B.1 The standart curve for Brand-Williams Method
Figure C.1 The standard curve for Cemeroğlu Method
Figure D.1 pH During Shelf Life Period
Figure F.1 Main Effects Plot for Phenol
Figure F.2 Interaction Plot for Phenol
Figure F.3 Residual Plots for Phenol
Figure F.4 Probability Plot of SRES6
Figure F.5 Test for Equal Variances for SRES6
Figure F.6 General Linear Model: Phenol vs. Pressure; Temperature; Time67

LIST OF ABBREVIATIONS

- AIJN: European Fruit Juice Association
- ANOVA: Analysis of Variance
- C₂H₃NaO₂: sodium acetate
- CFU: Colony Forming Units
- DF: Dilution Factor
- DPPH: 2,2-diphenyl-1-picrylhydrazyl
- DPPHH: 2,2-diphenyl-1-picrylhydrazine
- FC: Folin-Ciocalteau
- HHP: High Hydrostatic Pressure
- HPLC: High Performance Liquid Chromatography
- TA: Titratable Acidity
- TMAB: Total Mesophilic Aerobic Bacteria
- TYM: Total Yeast and Mould
- PCA: Plate Count Agar
- **RSC: Radical Scavenging Capacity**
- YGCA: Yeast Extract Glucose Chloramphenicol Agar

CHAPTER 1

INTRODUCTION

1.1 A trendy fruit: Punica granatum L., Punicaceae, Pomegranate

Pomegranate (*Punica granatum* L., Punicaceae) is an ancient fruit; it has been widely consumed in various cultures for thousands of years. It is native from the area of Iran to the Himalayas in northern India, and has been cultivated and naturalized over the entire Mediterranean region since ancient times (Meerts et al., 2009). Since ancient times, the pomegranate has been regarded as a "healing food" with numerous beneficial effects in several diseases (Vidal et al., 2003). As a result, the field of pomegranate research has experienced tremendous growth (Mart' inez et. al., 2006; Jaiswal and others 2010).

Significant variations in organic acids, phenolic compounds, sugars, water-soluble vitamins, and minerals of pomegranates have been reported over years by various researchers (Aviram et al., 2000; Mirdehghan & Rahemi 2007; Davidson et al., 2009; Tezcan et al., 2009). About 50% of the total fruit weight corresponds to the peel, which is an important source of bioactive compounds such as phenolics, flavonoids, ellagitannins (ETs), and proanthocyanidin compounds (Li et al., 2006), minerals, mainly potassium, nitrogen, calcium, phosphorus, magnesium, and sodium (Mirdehghan & Rahemi 2007), and complex polysaccharides (Jahfar et al., 2003). A study by Gil et al. (2000) showed there are much higher hydrolysable tannins present in the fruit peel. This could account for primarily higher antioxidant activity of commercial juices compared to the experimental ones. In industry, pomegranate fruit

is processed into juice by hydraulic press and the pressurization value directly affects the tannin and antioxidant content of the pomegranate juice.

1.2 Processing and the Consumption of Pomegranate Fruit in Turkey

There has been a virtual explosion of interest in the pomegranate as a medicinal and nutritional product because of its multi functionality and its great benefit in the human diet as it contains several groups of substances that are useful in disease risk reduction. As a result, the field of pomegranate research has experienced tremendous growth (Mart´ınez et al., 2006; Jaiswal et al., 2010).

Pomegranate is native from the area of Iran to the Himalayas in northern India, and has been cultivated and naturalized over the entire Mediterranean region since ancient times (Meerts et al., 2009). Turkey, being located in the pomegranate fruit's homeland boundaries, has a rich variety of pomegranate cultivars. Pomegranate can be cultivated in all tropical and subtropical geographies. It is also grown in warm and temperate regions limitedly. Due to special climate necessities, pomegranate cultivation in Turkey is done according to areas as Mediterranean region (% 61.8), Aegean region (% 23.3) and South-East of Anatolia (% 9.1) (Gültekin et al., 2007). Incredible raising interest of consumers in Turkey as well as of other countries led a great pomegranate necessity at the market and gave the opportunity for wide cultivation. The numbers of both, production and income from exportation getting bigger year by year as seen in Table 1.1 and Table 1.2.

Table 1.1 Pomegranate productions in Turkey according to years (1000 Tones)(Prime Ministry Republic of Turkey, Turkish Statistical Institute)

PRODUCTS	2005	2006	2007	2008	2009	2010
Pomegranates	80	90	107	128	170	209

	2008		2009		2010	
PRODUCTS	Q	V	Q	V	Q	V
Pomegranates	28.788	27.669	40.820	39.104	63.011	59.302

Table 1.2 Pomegranate exportation of Turkey according to years (Quantity: Ton,Value: US \$1000) (Prime Ministry Republic of Turkey, Turkish Statistical Institute)

The edible parts of pomegranate fruits are consumed fresh or used for the preparation of fresh juice, canned beverages, jelly, jam, sauce and paste and also for flavoring and coloring beverage products (Fadavi et al., 2005; Mousavinejad et al., 2009). In addition, it is widely used in therapeutic formulas, cosmetics, and food seasonings.

1.3 High Hydrostatic Pressure Processing (HHP) Technology

In recent years, there is a great interest of natural food without additives. However, natural and non-treated foods have quite limited shelf life due to the risk of undesired microbial content (Buzrul et al., 2008). Traditional heat treatment causes a high vitamin C loss in orange juice (Farnworth et al., 2001), lower antioxidant retention (Polydera et al., 2004, Scalzo et al., 2004) and undesired color and anthocyanin losses (Patras et al., 2010). Because of this situation there had been a popular tendency to non-thermal food processing methods. With these methods, microbial count could be controlled under a spoilage leading levels during the shelf life period besides protecting the heat susceptible sensory and nutritional compounds. Therefore there is a need for alternate methods of processing which can increase microbiological stability and will aid in preserving nutritional characteristics. Nonthermal processing methods such as high hydrostatic pressure processing (HHP) could potentially fill this role. HHP uses water as a medium to transmit pressures from 0 to 800 MPa (Patras et al., 2009). One of the main advantages of this process is the almost instantaneous isostatic pressure transmission to the product, independent of size, shape and food composition yielding highly homogeneous products (Patterson et al., 1996). Food treated in this way has been shown to keep its original freshness, flavor, taste and color changes are minimal (Dede et al., 2007).

While the structure of high-molecular-weight molecules, such as proteins and carbohydrates, can be altered by high pressure processing, smaller molecules such as volatile compounds, pigments, vitamins, and other compounds connected with the sensory, nutritional, and health promoting are unaffected (Cheftel, 1992; Oey et al., 2008). High pressure treatment in comparison with those of traditional thermal processing results in better retention of levels of bio-active compound groups (Patras et al., 2008), increasing microbiological stability (Meyer et al., 2000) and decreasing enzyme activity (Weemaes et al., 1999). The microbiological results showed that HHP treatment at or over 350 MPa for 150 s resulted in a reduction of the microbial load around 4.0 log cycles and were sufficient to keep microbial populations investigated below the detection limit during the whole storage period in pomegranate juice (Meyer et al., 2000). Phenolic content increased significantly (p<0.05) between 3.38 and 11.99 % for treated samples with 350 and 550 MPa at day 0. The ΔE values, which are an indicator of total color difference, showed that there were significant differences (p < 0.05) in color between untreated and treated samples (Varela-Santos et al., 2011). There is no study about the HHP on vitamin C content of pomegranate juice yet. In orange juice, just after 350 MPa/30°C/2.5 min treatment, juice had the same levels of vitamin C compounds compared to untreated juices (Polydera et al., 2005). Also, these results confirm those reported by Donsi et al. (1996) and Van den Broeck et al. (2000) about the stability of ascorbic acid in orange juice when pressurized at mild temperatures.

1.4 Earlier High Hydrostatic Pressure Studies in Turkey

Fruit juice's long and qualified storage periods are effected by storage time and temperature, storage and packaging conditions, the first quality level of the product and microbial load besides environmental conditions. Using HHP technology on processing the fruit into the fruit juice is a brand new and developing phenomenon in Turkey. Alpas et al. (2000) demonstrated that the HHP treatment affected the pressure resistant and resistless food pathogens. In the same study, the effect of HHP treatment increases with increasing the process temperature and decreasing pH is determined. Due to being a low pH food, HHP process is more efficient on fruit

juices to microbial purification. The effect of thermal treatment on color and total phenolic compound content of food systems are investigated and found these two quality factor are negatively affected by thermal treatment (Alper et al., 2005). On the contrary, HHP process helped to protect the stability of color and total phenolic compounds. In their study on carrot and tomato juices, Dede et al. (2007) reported that; through the storage period, HHP- treated juices were judged to be of superior quality than the conventional, thermally processed ones in terms of microbiological stability, ascorbic acid retention and antioxidant activity.

1.5 Aim of the Study

The objective of this research was divided into two main parts. At the first part, the aim is to evaluate the effects of HHP treatment on physical and chemical quality parameters such as pH, ^oBrix, titrable acidity, color values (ΔE), antioxidant activity, total phenolic compounds, total monomeric anthocyanin, mannitol, ellagic acid and vitamin C contents besides microbial load and stability as total mesophilic aerobic bacteria and total yeast and mould content of two different hydraulic pressure squeezed (100 and 150 psi) pomegranate juice with a comparison of traditional thermal treated one against untreated (raw-control) sample. As HHP parameters, different pressure, temperature and time combinations (200, 300, 400 MPa; 5, 15, 25°C; 5 and 10 minutes) was be carried out and the best combinations for two different squeezed samples was proposed.

In the second part, the best combinations was applied as 400 MPa at 15°C for 5 minutes for 100 psi squeezed juice and 400 MPa at 5°C for 10 minutes for 150 psi squeezed juice. The HHP treated, thermal treated and untreated samples were stored at 4°C in the dark during 30 days and evaluated for TMAB, TYM, pH, color, RSA, ascorbic acid and sensory property alterations.

CHAPTER 2

MATERIALS AND METHODS

2.1 Materials

2.1.1 Supplying the Samples

Fresh pomegranate fruit (Punica *granatum L*. cv. Hicaznar) is made order from a main wholesaler from Antalya. Pomegranates were harvested in the late-season of 2010. Just after the transportation of pomegranates to Ankara, fruits are immediately processed.

2.1.2 Sample Processing

Just after the transformation of 40 kg pomegranate from Antalya to Ankara, pomegranates were immediately taken under squeezing process in the pilot food processing plant of Ankara University Food Engineering Department. Primarily pomegranates were washed with compressed tap water, then cut into four pieces, processed with pilot plant press (Bucher-Guyer, Niederweningen, Switzerland) and the juice was extracted by applying a gauge pressure of 8.4 kg/cm² (\approx 100 psi) and 11.2 kg/cm² (\approx 150 psi) and juice obtained with approximately 43 % efficiency. No clarification was applied for both 100 and 150 psi squeezed pomegranate juices. Than all the juice was packed in 330 mL polyethylene flexible bottles and stored at -18°C until experiments.

2.1.3 Reagents

All chemicals used were of analytical grade. The chemicals and biologic materials not specified were purchased from Merck, Germany. All equipment used was sanitized prior to usage with 60 % ethanol (Merck, Germany), followed by sterile water rinse.

2.2 Methods

2.2.1 Treatments

2.2.1.1 High Hydrostatic Pressure Application

Deeply frozen at -18°C and stored at -35°C packed samples were taken out off freezer and placed in to 4°C conditions for controlled dissociation. Pomegranate juices were refilled into 20 mL plastic scintillation bottles (LP Italiana SPA) and placed into pressuration vessel. HHP treatment was performed with 760.01 laboratory type high pressure equipment supplied by SITEC-Sieber Engineering AG, Zurich, Switzerland. The vessel had a volume of 100 mL with ID 24 mm and length is 153 mm. Ethylene glycol was used as a cooling / heating agent that was circulated around the jacketed pressure vessel. The maximum design pressure was 700 MPa at an operating temperature of -10° to 80°C. A built-in cooling / heating system (Huber Circulation Thermostat, Offenburg, Germany) was used to maintain and control the required temperature which is measured by a thermocouple type K. It was fitted through the upper plug to measure the inner temperature of the vessel during the pressure treatment. The vessel was filled with a pressure transmitting medium consisting of distilled water. Pressure come up and release times were less than 20 seconds for each.

Pressurization time reported in this study did not include the pressure increase and release times. Temperature increases due to adiabatic heating was reduced to 4-5°C during the time period of pressurization upto 400 MPa. Reported temperature is the

actual process temperature during hold time at reported pressure levels. HHP conditions were chosen as 200, 300 and 400 MPa at 5, 15 and 25°C for 5 and 10 minutes for this study.

2.2.1.2 Heat Treatment

Thermal treatment process was conducted in water bath for 10 minutes at 85°C. These conditions were chosen according to industrial pasteurization application.

Heat stable glass tubes were filled with the same amount of (10 mL) sample and sealed with an appropriate cover. One tube also filled with 10 mL pomegranate juice was used to control the inner temperature by the help of a thermocouple. Tubes are settled down in a rack and rack was submerged in already heated up water bath. Samples were hold under these conditions during treatment time while monitoring the inner temperature of samples. At the end of the holding time, samples were taken out of the water bath and submerged into ice-cold ($\approx 0^{\circ}$ C) water immediately for cooling down. After approximately 3 minutes of holding time, inner temperature of pomegranate juice cooled down below 4°C. Freshly pasteurized samples were analyzed and excess amount of the samples were stored at -18°C until further requirement.

Both thermal and HHP treatments were carried out for 100 and 150 psi squeezed pomegranate juices. After the treatments, all microbiological, physical and chemical analyses were performed within 1 day. All experiments and measurements were replicated three times.

For shelf life analysis, thermally and HHP treated samples (400 MPa at 15°C for 5 minutes for 100 psi squeezed juice and 400 MPa at 5°C for 10 minutes for 150 psi squeezed juice) were kept at 4°C in the dark during 30 days. The samples were taken at 3-days intervals during the first 3 weeks besides a last experiment day as day 30. New tubes and bottles were opened for each experiment day. Untreated samples were used as controls.

2.2.2 Analyses

2.2.2.1 Microbiological Analyses

All samples were analyzed as colony-forming unit per mL (cfu mL⁻¹) of total mesophilic aerobic bacteria (TMAB) and total yeast and mould (TYM). For enumeration of total mesophilic aerobic bacteria, spread plate technique was used with non selective Plate Count Agar (PCA; Merck, Darmstadt, Germany). After incubation period at 37°C for 48 h, plates with 25-250 colonies were considered. In order to enumerate total yeast and mould, spread plate technique was used with selective Yeast Extract Glucose Chloramphenicol Agar (YGCA; Merck, Darmstadt, Germany). Total yeast and mould incubation lasted 5 days at 26°C and at the end of this duration plates with 25-250 colonies were considered. Microbial data were transformed into logarithms of colony-forming units (\log_{10} cfu mL⁻¹). When no colonies were detected, value of 1 \log_{10} cfu mL⁻¹ is used intending to obtain $\log_{10}1=0$.

2.2.2.2 Physical and Chemical Analyses

2.2.2.1 pH, Titrable Acidity and ^oBrix

Total soluble solids content (°Brix) of samples were determined at 20 °C using Atago hand refractometer (London, England) and pH of the samples were determined at room temperature by using pH meter, Mettler-Toledo MP220, Schwerzenbach, Switzerland. For titratable acidity determination, 1 mL of pomegranate juice is diluted with 9 mL distilled water and the dilution was titrated with 0.1 N NaOH to an endpoint of pH 8.1. Results were expressed gram citric acid per liter (g citric acid/L).

2.2.2.2.2 Color Measurement

Color values of the samples were analyzed by Avantes spectrophotometer (Avantes, Avaspec-2048, The Netherlands) with a light source set on D65. L*, a* and b* values are measured and ΔE values are calculated with the formula below (Billmeyer and Saltzman, 1981). L₀, a₀ and b₀ values in the formula indicate the control (raw) pomegranate juice's values for both 100 and 150 psi squeezed juices. Distilled water is used as reference.

$$\Delta E^2 = \{ (L - L_0)^2 + (a - a_0)^2 + (b - b_0)^2 \}$$

2.2.2.3 Total Phenolic Content

Total phenolic content was determined for the pomegranate juice by the Folin– Ciocalteau method with modifications (Singleton & Rossi, 1965; Coseteng et al., 1987; Spanos et al., 1990). From the dilution 1:5, 20 μ L pomegranate juice, 1.58 mL distilled water, 100 μ L Folin–Ciocalteau reagent and 300 μ L of Na₂CO₃ (75 g/L) solution were added and mixed well. After 2 h incubation at ambient temperature, absorbance was measured in UV-Visible Spectrophotometer (Analytic Jena SPECORD 50, Germany) at 765 nm and compared to a gallic acid equivalent (GAE) calibration curve (see Appendix A). Results were expressed as gallic acid meswg/mL.

2.2.2.4 Total Monomeric Anthocyanin Concentration

Total monomeric anthocyanin content of samples was determined by the pH differential method (Lee et al., 2005; Giusti et al., 2001; Wrolstad et al., 2004).

Potassium chloride pH 1.0 buffer (0.025 M) and sodium acetate pH 4.5 buffer (0.4M) were used as buffer solutions. 0.1 mL sample was diluted with 3.9 mL pH 1.0 and pH 4.5 buffer solutions in different couvettes and after 30 min absorbance was measured at 515 and 700 nm. According to know-how in literature and verification of some assumptions, distilled water was read as blank versus diluted samples in both wavelengths (Cemeroğlu, 2010).

Total monomeric anthocyanin content which was expressed as mg/L cyanidin-3glucoside for pomegranate juice with this equation;

$$[Total Monomeric Anthocyanins, mg/L] = \frac{(A)(MW)D_f(1000)}{s(\gamma)}$$

In this equation, **A** denotes $(A_{520} - A_{700})$ pH 1.0 – $(A_{520} - A_{700})$ pH 4.5, A_{520} is the absorbance at 520 nm and $A_{700 is}$ the absorbance at 700 nm. **MW** denotes molecular weight of cyanidin-3-glucoside which is 449.2 g/mol. **D**_f denotes dilution factor, which is 40. **z** denotes molar extinction coefficient, which is 26 900 L mol-1cm-1 for cyanidin-3-Glucoside. **y** denotes path length of couvettes in cm, which is 1 cm. 1000 is the conversion factor of g to mg.

2.2.2.5 Antioxidant (Free Radical Scavenging) Activity

The antioxidant activities of the pomegranate juices were determined by reaction with the 2,2-diphenyl-1-picrylhydrazyl (DPPH, Sigma-Aldrich, St Louis, Missouri) radical, according to the Brand-Williams method (Brand-Williams et al., 1995). After adding 0.025 g/L DPPH solution to 1:35 diluted with ethanol and distilled water pomegranate samples in a glass tube, reaction medium was mixed well with vortex (DG-800, Donglin, Beijing, China) and left in a dark place for 1 h at room temperature. The absorbance was measured at 517 nm, using UV-Visible

Spectrophotometer (Analytic Jena SPECORD 50, Germany). The spectrophotometer was equilibrated with methanol. Control sample was prepared without adding pomegranate juice into the same reaction medium. Ethanol and methanol were obtained from Merck, Darmstadt, Germany. Total antioxidant activity was expressed as the percentage inhibition of the DPPH radical using the standard DPPH curve (see Appendix B).

2.2.2.6 Ascorbic acid

Ascorbic acid content of pomegranate juice was determined using the modified version by Cemeroğlu 2010, of the spectrophotometric method advised by Anonymous 1951 and Freed 1966. Inhibition of 2,6-dichlorophenolindophenol (Merck) by ascorbic acid and extraction of inhibited color substance by xylene was read in UV-Visible Spectrophotometer (Analytic Jena SPECORD 50, Germany). Absorbance of extracted solution was measured at 500 nm, using UV-Visible Spectrophotometer (Analytic Jena SPECORD 50, Germany) against pure xylene. Control sample was prepared without adding pomegranate juice into the same reaction medium. Ascorbic acid content of pomegranate juice was calculated using standard ascorbic acid curve (Supelco) (see Appendix C) and the results expressed as mg/L ascorbic acid.

2.2.2.2.7 Mannitol

Mannitol content determination was carried out by Middle East Technical University Central Laboratory, using high performance liquid chromatography (HPLC). Samples of 1 ml of pomegranate juice were filtered through a 0.45 μ m GHP Acrodisc filter and injected directly. An aliquot then was injected into the chromatographic column. The chromatographic system (Varian ProStar, Palo Alto, CA, USA) consisted of a quaternary pump, a vacuum degasser, a Rheodyne 25 μ l injection loop, a Refractive Index Detector. A Carbohydrate Ca (300 mm X 6.5 mm) column with a flow rate of 0.5 ml/min was used. Results were calculated as mg mannitol per ml of pomegranate juice. Each sample was prepared and analyzed in triplicate.

2.2.2.3 Sensory Analyses

Sensory evaluations of the samples were conducted by 3 women and 3 men, total 6 laboratory trained panelists. Panelists used 1-9 hedonic scales consumer test to evaluate the pomegranate samples for odor and color properties (O'Mahony, 1988). At the end of the evaluations, the grades given by the panelists according to the hedonic scale are used to calculate the sensorial aspect of the samples.

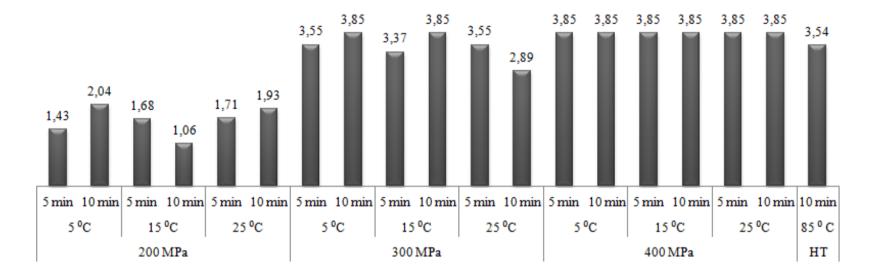
2.2.2.4 Statistical Analyses

The results of thermal and HHP treatments were evaluated statistically using SPSS 15 for Windows (SPSS Inc., Chicago, IL, USA). In the first part of the study, Univariate General Linear Model was used with pressure, temperature and time as factors; in the second part of the study, one-way analyses of variance (ANOVA) was used with storage period as a factors to determine the significant differences (p < 0.05). Tukey test was used as a post-hoc test if a factor had a significant effect and if the factor had 3 or more groups.

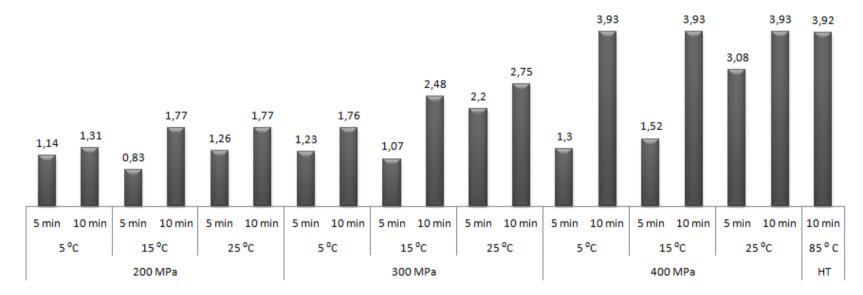
CHAPTER 3

RESULTS AND DISCUSSION

Pomegranate is one the most complex fruit among all due to its constituent variety and their excessive amounts. Not the constituent number but their amounts chance from type to type and according to the growing region or harvest time so much. The results obtained during this study were compared with other studies to make comments about HHP treatment of fruit juices like tomato, carrot, orange juice (Dede et al., 2007; Polydera et al., 2004). The effects of pressure treatment on each type of fruit are quite different, not just the other fruits but even within the varieties of pomegranate (Varela-Santos et al., 2011).


3.1 Assessment of pressure, temperature and time combinations

3.1.1 Effects on microbial values of pomegranate juice


High hydrostatic pressure (HHP) processing has been introduced as an alternative non-thermal technology that causes inactivation of microorganisms (Linton et al., 1999; Parish, 1998a; Reyns et al., 2000; Teo et al., 2001; Zook et al., 1999). HHP inactivates microorganisms by interrupting cellular functions responsible for reproduction and survival (Norton et al., 2008; Torres et al., 2008). In industry,

pomegranate fruit is processed into juice by squeezing the whole fruit. Pomegranate peel is very convenient for mould and yeast growth from the time of harvest to transportation and to final storage. Processing the whole fruit causes undesirable yeast and mould transfer into the juice. However, for academic researches pomegranate is generally separated into arils by hand or squeezed with a home type fruit juicer. Due to this situation there is no much data about freshly squeezed whole pomegranate's microbial load. Examining the studies about pomegranate peels, microbial load give some ideas. The initial microbiological analysis of pomegranate peel showed a low microbial count (65 cfu/g), before the washing and after being washed with chlorinated water and treated with antioxidant solution, mesophilic aerobic count decreased to 10 cfu/g and, on moulds and yeast, a decrease from 185 cfu/g to 5 cfu/g was observed (Sepulveda et al., 1998). In another study, pomegranate peels obtained from a commercial company were cleaned, hot air dried at 60°C for 7 h. The initial mean populations of the total plate and total fungal counts for pomegranate peel powder were found 3.2 \times 10^3 and 1.8 \times 10^3 cfu/g; respectively (Mali et al., 2011).

In Figure 3.1 and Figure 3.2, effects of HHP and thermal treatments on total mesophilic aerobic bacterial load of 100 and 150 psi squeezed pomegranate juices are given, respectively. Initial microbial loads of 100 and 150 psi squeezed pomegranate juice are 3.85 and 3.93 log cfu/mL, respectively. As seen from the bar diagram 10 minute treatments at 300 MPa, 5 and 10 minutes treatments at 400 MPa give desired log reduction as 3.85 cfu/mL for 100 psi squeezed one in Figure 3.1. In Figure 3.2, 10 minutes treatments at 400 MPa at every temperature inactivated the entire initial load of 3.93 cfu/mL for 150 psi squeezed pomegranate juice.

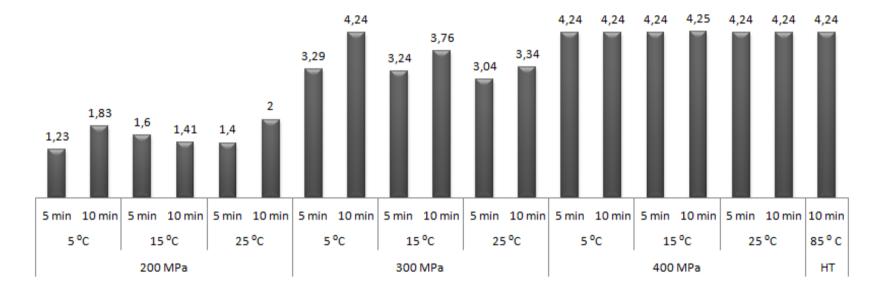


Figure 3.1 Mean total mesophilic aerobic bacteria reduction (log cfu/mL) of high pressure and traditional thermal treatments for 100 psi squeezed pomegranate juice. Initial microbial load is 3.85 log cfu/mL.

Figure 3.2 Mean total mesophilic aerobic bacteria reduction (log cfu/mL) of high pressure and traditional thermal treatments for 150 psi squeezed pomegranate juice. Initial microbial load is 3.93 log cfu/mL.

Figure 3.3 and Figure 3.4 show log reduction of total yeast and mould counts as cfu/mL for 100 and 150 psi squeezed pomegranate juices, respectively. In Figure 3.3, targeted microbial reduction was achieved (initial load 4.24 cfu/mL) for total yeast and mould content at every temperatures and time of 400 MPa for 100 psi squeezed pomegranate juice. Lastly, Figure 3.4 shows the results for 150 psi squeezed pomegranate juice and desired log reduction (4.15 cfu/mL) is obtained with only 10 minutes treatment at 400 MPa for every temperature. Consequently, 150 psi squeezed juice has much more microbial load than 100 psi squeezed but with some combinations, all the initial microbial level of both juice was inactivated.

Figure 3.3 Mean total yeast and mould reduction (log cfu/mL) of high pressure and traditional thermal treatments for 100 psi squeezed pomegranate juice. Initial microbial load is 4.24 log cfu/mL.

Figure 3.4 Mean total yeast and mould reduction (log cfu/mL) of high pressure and traditional thermal treatments for 150 psi squeezed pomegranate juice. Initial microbial load is 4.15 log cfu/mL.

3.1.2 Effects on Physical and Chemical Quality Parameters

3.1.2.1 pH, Titrable Acidity and ^oBrix

Between all three groups; P, T, t combinations of HHP treated samples, thermally treated and untreated pomegranate juice samples for both 100 and 150 psi squeezed juices, there is no significant pH, ^oBrix and titratable acidity differences (p > 0.05). pH, ^oBrix and titrable acidity values of untreated pomegranate juice are found as 3.27 \pm 0.05; 16.36 \pm 0.20; 12.51 \pm 0.88, respectively. Titratable acidity is g/L citric acid. pH, ^oBrix and titrable acidity values of samples just after HHP treatment did not show significant differences (p > 0.05) for treated juices at 350, 450 and 550 MPa for 30 s, 90 s and 150 s, respectively but after this storage time (15 days), the samples showed significant differences (p < 0.05) in pH, soluble solids and titratable acidity (Varela-Santos et al., 2011). Borochov-Neori et al. (2009) and Poyrazoglu et al. (2002) showed in their studies that pH, ^oBrix and titrable acidity did change through the pomegranate cultivars, ripening degree etc. González-Molina et al. (2009) working with pomegranate juices using high pressure treatment reported that there were no significant differences over the 70 days of storage at 4°C in the quality parameters (pH, ^oBrix and titrable acidity) in the mixtures and control pomegranate juices (pH= 3.60 ± 0.25 , Titrable acidity = 0.34 ± 0.09 and ^oBrix = 16.99 ± 0.11).

3.1.2.2 Color Measurement

 ΔE values show overall color differences containing L*, a* and b* values relative to the untreated pomegranate juice. Pérez-Vicente (2004) reported that the color of pomegranate juices became browner with the use of high temperatures. This situation can be obviously seen for 100 psi squeezed juice's ΔE value as 12.62 ± 0.11 . For 150 psi squeezed juice, ΔE value is relatively smaller than 100 psi's ΔE as 5.21 ± 0.25 , in Table 3.1.

		5 minutes ^x			10 minutes ^y	
	5°C	15°C	25°C	5°C	15°C	25°C
100						
100 psi						
200 MPa	9.25 ± 0.30^{Aa}	9.41 ± 0.19^{Ab}	9.09 ± 0.16^{Ab}	9.77 ± 0.04^{Ac}	$10.42 \pm 0.08^{\;A\;d}$	9.89 ± 0.26^{Ad}
300 MPa	9.12 ± 0.10^{Ba}	$10.20\pm0.55^{B\ b}$	9.56 ± 0.49^{Bb}	9.02 ± 0.30^{Bc}	$11.23\pm0.51^{\text{B}\text{d}}$	10.64 ± 0.31^{Bd}
400 MPa	8.25 ± 0.19^{Ba}	9.65 ± 0.36^{Bb}	9.09 ± 0.53^{Bb}	10.71 ± 0.70^{Bc}	10.29 ± 0.63^{Bd}	12.06 ± 0.30^{Bd}
150 psi						
200 MPa	5.19 ± 0.25 Ca	5.26 ± 0.43^{Cb}	6.57 ± 0.32^{Cc}	8.99 ± 0.38^{Cd}	$9.10 \pm 0.17^{\ C \ e}$	$8.15 \pm 0.18^{\mathrm{Cf}}$
300 MPa	3.46 ± 0.06^{Da}	4.99 ± 0.13^{Db}	$5.32 \pm 0.22^{\text{D}\text{c}}$	8.52 ± 0.21^{Dd}	9.01 ± 0.34^{De}	8.80 ± 0.16^{Df}
400 MPa	4.26 ± 0.23^{Ea}	5.67 ± 0.09^{Eb}	$6.92\pm0.06^{\text{E}\text{c}}$	8.12 ± 0.19^{Ed}	$8.72\pm0.10^{\text{Ee}}$	$9.04\pm0.12^{\mathrm{Ef}}$

Table 3.1 The effect of HHP and time on ΔE value of pomegranate juice squeezed at 100 psi and 150 psi pressure by hydraulic press just after HHP treatment ^{1, 2, 3}.

1 All ΔE values are the mean \pm standard deviation of three replicates (n=3).

2 For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

3 Thermally treated (85°C/10 min) samples ΔE value for 100 psi squeezed is 12.62 ± 0.11 while for 150 psi squeezed is 5.21 ± 0.25 .

Ferrari et al. (2010) working with pomegranate juice reported that levels of pressure higher than 500 MPa caused important variations in color (brown color) but till this value, there is an increase on ΔE values. Pressure causes hydro soluble color pigments transmission into the juice. Also higher squeezing values lead the pigment transmission, too. At the first glimpse, it could be seen that ΔE values of 150 psi squeezed juices are smaller than 100 psi one. This could be due to the presence of already transmitted pigments during the squeezing pressure. There is a positive correlation between anthocyanin and color values examined in this study.

For 100 psi squeezed pomegranate, all P-T and t combinations show statistically important smaller ΔE values than thermally treated one (p < 0.05). At constant P and T; ΔE value increases with increasing time. At constant P and t, there is no significant ΔE value difference between 15 and 25°C treatments while 5°C treatment gives the smallest ΔE value. At constant T and t, smaller P gives the smaller ΔE value (p > 0.05). For 150 psi squeezed pomegranate juice, all P, T and t combinations show statistically important smaller ΔE values than thermally treated one. At constant P and T, ΔE value increases with increasing time. At constant P and t, there are significant differences between all T values and at constant T and t, there is significant difference between all P values. For smaller ΔE values relatively smaller P, T, t combinations could be chosen.

3.1.2.3 Total Phenolic Content

Primarily, there is an obvious total phenolic content difference between the 100 and 150 psi squeezed pomegranate juices. Higher squeezing pressure leads higher phenolic content (p < 0.05). Polyphenols are the major class of pomegranate fruit phytochemicals, including flavonoids (anthocyanins), condensed tannins proanthocyanidins and hydrolysable tannins (ellagitannins and gallotannins) (Gil et al., 2000). They are extracted into the juice upon commercial processing of the whole fruits from the husk (Fischer et al., 2011). Polyphenols are important constituents regarding the organoleptic properties of pomegranate arils and juices as they impart the appealing red color and provide mild astringency that is characteristic of pomegranate flavor (Fischer et al., 2011). The phenolic constituents of pomegranates give color, astringency and bitterness to the juice (Rouseff 1990; de Simon et al. 1992). These compounds are also responsible for the formation of cloudy appearance of fruit juices during concentration and storage (Macheix et al., 1990; Spanos et al., 1992). These situations shows higher phenolic content is not a deserved factor despite enhancing organoleptic values until a limit. From Table 3.2, heat treated 100 psi pomegranate juice have higher phenolic content than both untreated and HHP treated samples. However, HHP treated samples show similar phenolic values with untreated one (p > 0.05). Among the HHP treatment, while T and t constant, phenolic content shows differences with different pressures according to means and standard deviations and the phenolic content is the highest at 300 MPa. At constant P and t, 15°C gives the lowest phenolic value at 5 min and 25°C at 10 min. For 150 psi pomegranate juice, there is no significant difference among t and P but at constant t and P, treatment at 25°C has the lowest phenolic content for both 5 and 10 min. No significant effect was found between treatment time at constant P and T according to independent samples t-test with p > 0.05.

		5 minutes ^x			10 minutes ^x	
_	5°C	15°C	25°C	5°C	15°C	25°C
-						
100 ps	și					
200 M	Pa 504.16 ± 2.51^{Aa}	$476.30 \pm 29.60 \ ^{Ab}$	537.73 ± 14.71^{Ac}	$514.26\pm9.78~^{Ad}$	$521.31 \pm 17.12 \ ^{Ad}$	$489.87 \pm 15.72 \ ^{Ad}$
300 M	IPa 540.10 ± 18.50 ^{Ba}	$507.80 \pm 10.80 \ ^{Bb}$	537.50 ± 34.80^{Bc}	$550.11 \pm 15.36 \ ^{Bd}$	$499.6 \pm 23.70 \ ^{Bd}$	$512.73 \pm 9.29 \; ^{Bd}$
400 M	IPa 507.50 ± 9.61^{Ca}	$398.93 \pm 6.55 \ ^{Cb}$	536.54 ± 7.86 ^{Cc}	$462.97 \pm 8.03 \ ^{Cd}$	$525.6 \pm 26.50 \ ^{Cd}$	$436.50 \pm 20.20 \ ^{Cd}$
150 ps	i					
200 M	IPa $682.50 \pm 33.60^{\text{Da}}$	$707.00 \pm 83.40 \ ^{\rm Db}$	$623.50 \pm 19.60 \ ^{Dc}$	$645.83 \pm 8.37 \ ^{Dd}$	$702.30 \pm 38.70 \ ^{Dd}$	$636.07 \pm 4.69 \ ^{Dd}$
300 M	IPa 668.20 ± 29.10^{Ea}	$673.45 \pm 7.23 \ ^{Eb}$	674.16 ± 10.34 ^{Ec}	$668.20 \pm 29.00 \ ^{Ed}$	$659.10 \pm 78.20 \ ^{Ed}$	$638.00 \pm 36.90 \ ^{Ed}$
400 M	IPa 681.24 ± 12.59 Fa	$683.90 \pm 67.10 \ ^{Fb}$	605.83 ± 11.98 Fc	$670.12 \pm 10.93 \ ^{Fd}$	$638.20 \pm 30.70 \ ^{Fd}$	614.20 ± 19.30 ^{Fd}

Table 3.2 The effect of HHP and time on Total Phenolic Content (gallic acid mdg/mL) of pomegranate juice squeezed at 100 psi and 150 psi pressure by hydraulic press just after HHP treatment $^{1, 2, 3}$.

1 All phenolic content values are the mean \pm standard deviation of three replicates (n=3).

2 For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05

³ Untreated (raw) and thermally treated ($85^{\circ}C/10$ min) samples phenolic content values for 100 psi squeezed are 509.40 ± 6.07 and 543.90 ± 30.40 respectively while for 150 psi squeezed are 705.60 ± 36.60 and 699.4 ± 40.10 respectively.

3.1.2.4 Total Monomeric Anthocyanin Concentration

The presence of anthocyanins is responsible for the appealing bright red color of juice and other products of pomegranate fruit. Anthocyanin concentrations of pomegranate juice generally vary between 10 and 700 mg/L depending on the pomegranate cultivar. Nutritionists recommend to preserving these compounds during fruit juice processing, because they exert health protective effects for human (Vardin et al., 2003). It was observed that all heat treatment processes decreased the color parameters (L, a, and b values) of pomegranate juice significantly and the products turned reddish brown (Maskan, 2006). The extent of color degradation increased with soluble solids content. Sugar and sugar degradation products have been found to be effective on accelerating anthocyanin (pomegranate pigment) breakdown and enhance non-enzymatic browning during thermal processing (Cemeroğlu et al., 1994; Suh et al., 2003). In Table 3.3, anthocyanin concentration is drastically decreased with thermal treatment compared with the untreated pomegranate juice from 332.31 ± 5.21 to 263.84 ± 6.84 (p < 0.05). On the other hand, results of HHP treatments are closer to raw pomegranate juice values. Even if the raw anthocyanin concentrations of 100 and 150 psi show similarities, 150 psi showed better anthocyanin retention than 100 psi after HHP treatment (p < 0.05). At constant t and T, there is no significant effect of P values on anthocyanin concentrations for both 100 and 150 psi. Temperature and time have a significant effect on anthocyanin concentrations while pressure is ineffective for 100 psi squeezed juice. In addition, there is a significant difference only between 5 and 25°C treated samples at constant P and t for 150 psi juice while all T values differences are important for 100 psi squeezed juice (p < 0.05). Treatments for 5 minutes enhance better retention than 10 minutes and treatments at 15°C give the highest anthocyanin concentration rather than other T values for both 100 and 150 psi squeezed juices (p < 0.05).

		5 minutes ^x			10 minutes ^y	
	5°C	15⁰C	25°C	5°C	15⁰C	25°C
100 psi						
200 MPa	292.73 ± 7.53^{Aa}	337.65 ± 13.00^{Bb}	$285.05 \pm 3.98^{\ Cc}$	$273.69\pm3.69^{\text{ Dd}}$	$264.01\pm7.41^{\ \text{Ee}}$	$280.21 \pm 11.27 {}^{\rm Ff}$
300 MPa	298.57 ± 7.41^{Aa}	322.62 ± 2.30^{Bb}	280.87 ± 3.62^{Cc}	$280.37 \pm 4.94 {}^{Dd}$	$266.85 \pm 8.24^{\mbox{Ee}}$	$260.17 \pm 5.81 {}^{\rm Ff}$
400 MPa	$304.59 \pm 6.09^{\text{Aa}}$	327.97 ± 11.82 ^{Bb}	$280.71 \pm 3.22^{\text{Cc}}$	$275.53 \pm 7.28^{\text{ Dd}}$	$265.34 \pm 11.82^{\text{Ee}}$	$267.35 \pm 5.98 \ ^{Ff}$
150 psi						
200 MPa	$311.43 \pm 7.99^{\text{Aa}}$	$320.4\pm17.5^{\text{ Bb}}$	304.59 ± 10.71 Ac	$337.32 \pm 13.29^{\ Cd}$	$308.26 \pm 1.61^{\ \text{Dd}}$	$305.10 \pm 18.1^{\ Ce}$
300 MPa	310.26 ± 2.52^{Aa}	$310.10\pm4.10^{\ Bb}$	298.58 ± 12.31^{Ac}	$308.43 \pm 12.78^{\ Cd}$	$323.46 \pm 3.69^{\text{Dd}}$	$312.10 \pm 5.21^{\ Ce}$
400 MPa	318.61 ± 3.91 ^{Aa}	$317.78 \pm 3.41^{\ Bb}$	$306.42 \pm 3.52^{\mbox{Ac}}$	$314.27 \pm 12.09^{\text{Cd}}$	$291.90 \pm 21.10^{\text{Dd}}$	$300.25 \pm 7.54^{\ Ce}$

Table 3.3 The effect of HHP and time on Total Monomeric Anthocyanin Pigment Concentration (mg/L cyanidin-3-glucoside) of pomegranate juice squeezed at 100 psi and 150 psi pressure by hydraulic press just after HHP treatment ^{1, 2, 3}.

1 All anthocyanin pigment concentration values are the mean \pm standard deviation of three replicates (n=3).

2 For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

3 Untreated (raw) and thermally treated ($85^{\circ}C/10$ min) samples anthocyanin concentration values for 100 psi squeezed are 332.31 ± 5.21 and 263.84 ± 6.84 respectively while for 150 psi squeezed are 323.50 ± 19.10 and 246.98 ± 2.18 respectively.

In a few experiments and studies, negative effect of HHP on enzymes is reported (Hendrickx et al., 1998; San-martin et al., 2002; Lopez-Malo et al., 1998; Park et al., 2006). One of those enzymes, polyphenol oxidase enzyme activity has a negative effect on anthocyanin stability of pomegranate juice (Jaiswal et al., 2009). Polyphenol oxidase enzyme denaturation due to HHP treatment may also protect anthocyanin concentration stability. Further investigations are needed to prove this situation.

3.1.2.5 Antioxidant (Radical Scavenging) Activity (RSA)

At constant P and T, there is a significant difference (p < 0.05) between HHP treatment times; 10 minutes treatment show a slight decrease on % RSA compared with 5 minutes treatment and at constant T and t, there is no statistical difference between treatment pressures for both 100 and 150 psi squeezed juices. Results are shown in Table 3.4. 5 minutes treatments give higher RSA than 10 minutes treatment but importance of time is higher for 100 psi than 150 psi. At constant P and t, there is a significant RSA decrease with rising T (p < 0.05). The highest RSA could be obtained with the lowest temperature for both 100 and 150 psi squeezed juices. At the end of these evaluations, for 100 psi squeezed pomegranate, at any pressure value, 5 minutes with 5°C and for 150 psi squeezed pomegranate, at any pressure value, 10 minutes and 5°C treatments could be the best proposal for RSA.

The increase in antioxidant activity value detected during pomegranate juice processing could be due to the extraction of some of the hydrolysable tannins, present in the fruit rind, and/or related to the increase in ellagic acid, ellagic structures polymerized into ellagitannins, and/or anthocyanin polymers formed during the storage period (Pérez-Vicente et al., 2004). In another study, HHP treated samples at 450 and 550 MPa exhibited higher antioxidant capacity (IC50 is 11–13 mg/mL), than the control sample (IC50 is 14 mg/mL) (The smaller IC50 value the higher antioxidant activity) (Santos et al., 2011).

		5 minutes ^x			10 minutes ^y	
	5°C	15°C	25°C	5°C	15⁰C	25°C
-	123.04 ± 3.83 Aa	121.77 ± 3.92^{Bb}	$127.35 \pm 15.18^{\text{Cc}}$	$126.57 \pm 3.69^{\text{ Dd}}$	116.08 ± 7.55 ^{E e}	92.64 ± 1.39^{Ff}
300 MPa	$126.37 \pm 2.98^{\mbox{Aa}}$	118.33 ± 1.77 ^{Bb}	$116.47 \pm 5.27^{\text{Cc}}$	$114.80 \pm 4.12^{\mbox{Dd}}$	$117.94\pm4.60^{\text{Ee}}$	$115.00 \pm 5.57 \ ^{Ff}$
400 MPa	125.88 ± 3.35^{Aa}	116.67 ± 1.77 ^{Bb}	$125.20 \pm 5.69^{\ Cc}$	$117.94 \pm 9.18^{\text{Dd}}$	$118.73\pm5.05^{\text{ Ee}}$	$123.34 \pm 6.50^{ Ff}$
150 psi						
200 MPa	$168.14 \pm 3.79^{\ Aa}$	$169.91 \pm 6.58^{\ Bb}$	$165.89 \pm 0.45^{\ Cc}$	180.99 ± 0.88 ^{Dd}	$160.89\pm7.02^{\text{Ee}}$	165.01 ± 1.11 ^{Ff}
300 MPa	162.16 ± 4.33^{Aa}	$163.83\pm1.19^{\text{Bb}}$	166.67 ± 2.09 ^{Cc}	$172.26\pm2.50^{\text{Dd}}$	$165.89 \pm 5.34^{\text{Ee}}$	$168.73 \pm 3.97 {}^{\rm Ff}$
400 MPa	165.50 ± 4.06^{Aa}	$163.44 \pm 1.62^{\ Bb}$	$165.89 \pm 3.48^{\ Cc}$	162.36 ± 5.75^{Dd}	$166.58 \pm 2.33^{\mathrm{Ee}}$	$170.89\pm5.30^{\rm Ff}$

Table 3.4 The effect of HHP and time on Free Radical Scavenging Activity (RSA, % DPPH) of pomegranate juice squeezed with 100 psi and 150 psi pressure by hydraulic press just after HHP treatment ^{1,2,3}.

1 All RSA values are the mean \pm standard deviation of three replicates (n=3).

2 For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

3 RSA values for untreated (raw) 100 and 150 psi squeezed pomegranate juices accepted 100 %. Thermally treated ($85^{\circ}C/10 \text{ min}$) samples % RSA value for 100 psi squeezed is 73.53 ± 9.42 % and for 150 psi squeezed is 82.93 ± 2.37 %.

3.1.2.6 Ascorbic Acid

There is no study in literature about the HHP treatment effect on ascorbic acid content of pomegranate juice yet. In orange juice, just after 350 MPa/30 °C/2.5 min HHP treatments, juice had the same levels of ascorbic acid compared to untreated juices (Polydera et al., 2005). Also, the previously mentioned results confirm those reported by Donsi et al. (1996) and Van den Broeck et al. (2000) about the stability of ascorbic acid in orange juice when pressurized at mild temperatures. Beside these, in another study, HHP treatment increased the ascorbic acid content in a more complex food structure, egg yolk (Sancho et al., 1999). In our study, vitamin C content is protected as in untreated juice with every temperature and pressure value studied but only 5 minute application. Around 10 minute application there is a sharp decrease in vitamin C level in pomegranate juice approximately 40-50 % of the initial value. The exact effect of time on ascorbic acid level should be investigated to find the best HHP application time.

In Table 3.5, it could be seen that thermally treated samples show a lower ascorbic acid content than untreated juice (p < 0.05). At constant P and T, there is significant difference (p < 0.05) between HHP treatment time; 5 minutes treatment leads to a higher ascorbic acid content than untreated pomegranate juice but as a result of 10 minutes treatment, ascorbic acid content shows a sharp decrease for both 100 and 150 psi squeezed juices. Treatment time is the only effective parameter on ascorbic acid content than 5 and 25°C treatments for 100 psi squeezed juices. There is no statistical difference among treatment pressures for both 100 and 150 psi squeezed juices (p > 0.05). According to these results, for better ascorbic acid retention, precisely 5 minutes treatment with 5 or 25°C at any pressure for 100 psi and for 150 psi squeezed juice, precisely 5 minutes treatment at any pressure and temperature could be proposed.

		5 minutes ^x			10 minutes ^y	
	5°C	15°C	25°C	5°C	15⁰C	25°C
100 psi						
200 MPa	98.41 ± 5.21 ^{Aa}	92.73 ± 0.19^{Bb}	106.57 ± 3.09 ^{Ca}	$66.21 \pm 2.21^{\text{Dc}}$	$65.18\pm1.60^{\ Ed}$	$65.07 \pm 3.14^{\;Fc}$
300 MPa	$107.48 \pm 2.12^{\ Aa}$	$94.09\pm0.70^{\ Bb}$	$101.36 \pm 3.28^{\ Ca}$	58.84 ± 0.68^{Dc}	$57.14\pm7.66^{\ Ed}$	66.09 ± 2.89 ^{Fc}
400 MPa	$102.26 \pm 4.82 {}^{Aa}$	$95.34 \pm 1.93 \ ^{Bb}$	$102.60 \pm 6.29^{\ Ca}$	61.67 ± 2.08^{Dc}	$59.86\pm9.94^{\ Ed}$	$62.92\pm1.70^{\ Fc}$
150 psi						
200 MPa	$108.50 \pm 4.45 \ ^{\text{Aa}}$	$102.49 \pm 5.17^{\;Ba}$	$114.05 \pm 0.39 \ ^{Ca}$	$57.93\pm2.51^{\ Db}$	$59.18\pm5.28^{\ Eb}$	57.25 ± 0.39^{Fb}
300 MPa	106.23 ± 2.26^{Aa}	$109.75 \pm 2.57^{\;Ba}$	$113.49 \pm 1.37^{\ Ca}$	$56.69\pm4.28^{\text{Db}}$	$50.67\pm3.87^{\ \text{Eb}}$	$53.85\pm2.05^{\text{ Fb}}$
400 MPa	$101.70 \pm 5.48^{\;Aa}$	117.23 ± 3.98 ^{Ba}	106.91 ± 3.42^{Ca}	60.31 ± 2.83^{Db}	53.97 ± 2.26^{Eb}	$49.43\pm3.75^{\ Fb}$

Table 3.5 The effect of HHP and time on Ascorbic Acid content (mg / L) of pomegranate juice squeezed with 100 psi and 150 psi pressure by hydraulic press just after HHP treatment 1,2,3 .

1. All ascorbic acid values are the mean \pm standard deviation of three replicates (n=3).

2. For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

3. Untreated (raw) and thermally treated ($85^{\circ}C/10$ min) samples ascorbic acid values for 100 psi squeezed are 97.14 ± 0.71 and 86.61 ± 1.19 respectively while for 150 psi squeezed are 110.61 ± 2.12 and 97.49 ± 1.53 respectively.

3.1.2.7 Mannitol

One of the basic criteria used for the definition of fruit juices is certainly Brix degree. According to European Fruit Juice Association (AIJN) proposal, the minimum Brix degree of pomegranate juice should be 14.0 (Anonymous, 2008). At a total sugar concentration of 16 °Brix, pomegranate juice contains characteristic sugars including mannitol at > 0.3 g/100 mL. Ratios of glucose to mannitol of 4–15 and of glucose to fructose of 0.8–1.0 are also characteristic of pomegranate juice (Zhang et al., 2009).

Any mannitol criterion for pomegranate juice is not determined by AIJN or other authority yet. But due to being the highest sugar alcohol in pomegranate juice, mannitol content must be considered on determining the authenticity. Mannitol level could be more specific on this determination for pomegranate juice.

To adjust the astringent taste of poor-quality juice or peel extract, addition of nonpomegranate sugars is a commonly detected adulteration method (Zhang et al., 2009). Due to the fact that, determining the sugar alcohol ratios/levels, mainly mannitol, are quite important to determine any authenticity. Moreover, many researches and studies on the changes that occur in pomegranate juice during processing and storage have been published (Alper et al., 2005, Bayındırlı et al., 1994, Maskan, 2006 and Tabur et al., 1987). However, it was expressed that sorbitol/xylitol is not unique to pomegranate but it can also be formed by the microbial reduction of fructose in pomegranate juice (Jones and Silveira, 2004). In addition, it is also speculated that processes or changes, such as heating, enzyme addition and fermentation may cause an increase in the mannitol/sorbitol/xylitol content of pomegranate juice.

Mannitol content of pomegranate juice is also so important due to the anaphylaxis caused by mannitol in pomegranate. As little as 0.25 mL of pomegranate juice (derived from ~0.4 g pomegranate fruit), containing mannitol at a concentration of 0.22 mM, caused subjective and objective symptoms of immunoglobulin E (IgE)-mediated allergy in *double-blind placebo-controlled food challenge (DBPCFC)* (Hedge et al., 2002). Excessive amounts of mannitol in pomegranate juice, occurred due to so many factors, are crucial especially for hypersensitive people.

In this study; mannitol content of raw, thermally treated and HHP treated samples squeezed with two different presses were investigated. Only 5 minutes HHP treated samples are examined as time option. As seen in the Table 3.6, mannitol content totally depends on the pressure and temperature for HHP treatment for both squeezing pressures. At 100 psi squeezed juice, only the difference between 300 MPa at 25°C and the raw pomegranate juice is insignificant. For 150 psi, only the difference between raw sample and 400 MPa at 5°C is insignificant (p > 0.05). Except these, mannitol content increases with squeezing pressure and thermal treatment. Some of the other HHP combinations give lower and some of them give higher mannitol contents. As a best option, the combination gives the lower results could be proposal for both squeezed pomegranates.

	5°C	15°C	25°C
100 psi			
200 MPa	$2.92\pm0.03~^{Aa}$	$3.27\pm0.01~^{Ab}$	$3.29\pm0.01~^{Ac}$
300 MPa	$3.35\pm0.02^{\;Ba}$	$3.14\pm0.008\ ^{Bb}$	$3.06\pm0.01^{\text{Bc}}$
400 MPa	$2.94\pm0.01^{\ Ca}$	$3.29\pm0.02^{\ Cb}$	$3.13\pm0.01^{\ Cc}$
150 psi			
200 MPa	$3.88\pm0.03^{\;Aa}$	$3.94\pm0.01~^{Ab}$	$3.46\pm0.01~^{\rm Ac}$
300 MPa	$3.55\pm0.01^{\;Ba}$	$3.68\pm0.002^{\;Bb}$	$3.56\pm0.02^{\rm\ Bc}$
400 MPa	$3.36\pm0.05^{\ Ca}$	$3.77\pm0.001^{\ Cb}$	$3.43 \pm 0.003^{\ Cc}$

Table 3.6 The effect of HHP on Mannitol content (mg/mL) of pomegranate juice squeezed with 100 psi and 150 psi pressure as HHP treatment for $5 \min^{1,2,3}$.

1. All mannitol content values are the mean \pm standard deviation of three replicates (n=3).

2. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

3. Untreated (raw) and thermally treated (85° C/10 min) samples mannitol content for 100 psi squeezed are 3.05 ± 0.05 and 3.13 ± 0.01 respectively while for 150 psi squeezed are 3.34 ± 0.02 and 3.59 ± 0.01 respectively.

3.1.3 Selection Criteria for the Optimum Combination

According to the aforementioned results, for 100 psi squeezed juice, as a common pressure-temperature-time combination could be proposed for both TMAB and TYM as 400 MPa at 15°C for 5 minutes. This combination is primarily chosen for microbial stability and secondly the best retention of other factors as ascorbic acid and antioxidant activity. For 150 psi squeezed juice, primary microbial stabilization is possible for only 400 MPa for 10 minutes. Temperature could be chosen as 5°C. These values could be not proper for especially ascorbic acid content but microbial validity limits do not let another option. Microbial stability is the number one prerequisite for foods. Addition to aforementioned, HHP treatment has an important effect on ΔE values of pomegranate juice samples. Smaller treatment time has an

enormous positive effect on ascorbic acid content while this does not affect antioxidant activity. Relative to heat treatment, HHP treatments give better results in the aspects of total phenolic content and anthocyanin pigment concentration. Referring the results, this study must be maintained with the shelf life examination in order to give a more reliable expression about the effects of HHP on pomegranate juice quality factors against the thermal treatment over time.

3.2 Shelf Life Study for Optimum Combinations

3.2.1 Total Mesophilic Aerobic Bacteria and Total Yeast and Mould During Shelf Life

All group samples are evaluated to determine the total mesophilic aerobic bacteria (TMAB) levels as log colony forming unit/mL during the shelf life period (30 days). The TMAB levels of the control samples started from 3.46 and 4.09 log cfu/mL and reached 4.41 and 5.48 log cfu/mL for 100 and 150 psi squeezed juices respectively. For thermally treated and HHP treated samples, no detectable colony (above the detection level, 25 cfu/mL) was observed during the shelf life. This means both thermal and HHP treatment are provided the microbial stability for TMAB during 30 days. Results can be followed from Table 3.7.

All group samples are also evaluated to determine the total yeast and mould (TYM) levels as log colony forming unit/mL during the shelf life period (30 days). As seen at the table 3.7, the TYM levels of the control samples started from 4.05 and 4.36 log cfu/mL and reached 5.12 and 5.77 log cfu/mL for 100 and 150 psi squeezed juices respectively. For thermally treated and HHP treated samples, no detectable colony (above the detection level, 25 cfu/mL) was observed during the shelf life. This means both thermal and HHP treatments are provided the microbial stability for TYM during 30 days.

	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 21	Day 30
ТМАВ									
100 psi									
Raw (Control)	3.46	3.51	3.86	3.87	3.91	3.99	4.07	4.21	4.41
Pasteurized*	ND***	ND	ND	ND	ND	ND	ND	ND	ND
HHP Treated**	ND	ND	ND	ND	ND	ND	ND	ND	ND
150 psi									
Raw (Control)	3.97	4.05	4.07	4.09	4.10	4.28	4.43	4.91	5.12
Pasteurized*	ND	ND	ND	ND	ND	ND	ND	ND	ND
HHP Treated**	ND	ND	ND	ND	ND	ND	ND	ND	ND
ТҮМ									
100 psi									
Raw (Control)	4.09	4.16	4.22	4.65	4.73	5.22	5.34	5.59	5.48
Pasteurized*	ND	ND	ND	ND	ND	ND	ND	ND	ND
HHP Treated**	ND	ND	ND	ND	ND	ND	ND	ND	ND
150 psi									
Raw (Control)	4.35	4.36	4.44	4.49	5.11	5.52	5.59	5.70	5.77
Pasteurized*	ND	ND	ND	ND	ND	ND	ND	ND	ND
HHP Treated**	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 3.7 The effect of storage at 4°C on Total Mesophilic Aerobic Bacteria (TMAB) and Total Yeast and Mould (TYM) content (log cfu/ml) of pomegranate juice squeezed with 100 psi and 150 psi pressure for HHP treated and pasteurized samples against control.

*Pasteurization condition is 85°C for 10 minutes.

**HHP treatment conditions are 400 MPa at 15°C during 5 min for 100 psi squeezed and 400 MPa at 5°C during 10 min for 150 psi squeezed pomegranate juice.

*** ND: Not Detected

3.2.2 pH During Shelf Life

It is determined that the pH of all the group samples was not affected by the treatment type during the storage period. pH differences were not found statistically significant (p > 0.05) and accepted stable during the shelf life (See Appendix D).

3.2.3 Color Measurement During Shelf Life

L*, a* and ΔE values were evaluated during shelf life (Table 3.8). 150 psi squeezed juice have lower L* and a* values since day 0 to day 30 than 100 psi squeezed juice for all groups. This means 100 psi squeezed ones are brighter and redder than the others. HHP treated samples are brighter and more red, higher L* and a* values, than the other groups, even the control at the day 0.

It is a fact that the color of the pomegranate juice becomes browner with the use of high temperatures (Perez-Vicente et al., 2004). Furthermore, thermally treated samples showed the highest ΔE values during the storage for every group of 100 psi squeezed juices and the first 12 days for 150 psi squeezed juices. The highest ΔE value for 150 psi squeezed one belongs to the control group. The final product at the end of storage of HHP treatment is the brightest and the reddest one among all for both squeezing groups. It demonstrates the HHP provides better color value retention than thermal treatment.

For 150 psi squeezed pomegranate juice, control sample turned into an unpleasant appearance more than the pasteurized one. For 100 psi squeezed one, control sample results are closer to HHP treated one and the thermally treated has the lowest values.

During the storage period, some days has better or the same color values with the previous one. The color differences of juices are another way of correcting the antioxidant activity change. Color is affected by ascorbic acid and other antioxidant compounds oxidation (Dede et al., 2007). It can be seen that there is also a direct proportion with the color values and the antioxidant and vitamin C content. Fluctuations around day 12 and day 15 of L* and a* values for all groups can be caused by the fluctuations of ascorbic acid and antioxidant values at those days. Also

higher ascorbic acid and antioxidant amounts of HHP treated samples could be caused higher color stability.

Color properties of each group during the storage period also showed a correlation with the sensory analyses. The highest color evaluation grades were given to the HHP treated samples even at the day 30 by the panelists.

	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 21	Day 30
L*									
100 psi									
Raw (Control)	$25.00\pm0.08^{\ Aa}$	$23.93\pm0.02~^{Ab}$	$21.00\pm0.06~^{Ac}$	22.75 ± 0.04^{Ad}	$21.76\pm0.14^{\;Ad}$	$20.76\pm0.10^{\rm Af}$	$20.05 \pm 0.48 {}^{\rm Af}$	$19.12 \pm 0.16^{\mathrm{A}\mathrm{h}}$	$18.70 \pm 0.70^{\mathrm{A}}$
Pasteurized*	24.06 ± 0.11 $^{B~a}$	$23.45\pm0.03^{\ Bb}$	20.39 ± 0.04^{Bc}	19.53 ± 0.02^{Bd}	$22.53\pm0.01^{\text{ B d}}$	20.16 ± 0.40^{Bf}	20.47 ± 0.09^{Bf}	$19.11 \pm 0.08^{\;B\;h}$	$18.09 \pm 0.07^{\;B}$
HHP Treated**	26.10 ± 0.12^{Ca}	24.90 ± 0.41^{Cb}	22.78 ± 0.10^{Cc}	22.91 ± 0.23^{Cd}	21.41 ± 0.00^{Cd}	$20.73\pm0.07~^{\mathrm{Cf}}$	20.70 ± 0.03^{Cf}	19.22 ± 0.09^{Ch}	18.89 ± 0.03 ^C
150 psi									
Raw (Control)	$22.36 \pm 0.25^{\;Aa}$	20.01 ± 0.06^{Ab}	$17.26 \pm 0.09^{\ A c}$	$15.70 \pm 0.22^{\;Ad}$	$15.82 \pm 0.07^{\;Ad}$	$14.21 \pm 0.07^{\rm Af}$	$14.68 \pm 0.01^{\;Ag}$	$13.47 \pm 0.07^{\;Ah}$	$11.60 \pm 0.13^{\mathrm{A}}$
Pasteurized*	$22.54\pm0.20^{B~a}$	20.15 ± 0.03 $^{B\ b}$	18.95 ± 0.05^{Bc}	18.21 ± 0.05 $^{B\mbox{ d}}$	$18.22\pm0.07^{\text{ B}\text{ d}}$	17.74 ± 0.02^{Bf}	$18.31 \pm 0.11^{\ B \ g}$	16.85 ± 0.03^{Bh}	14.62 ± 0.62^{B}
HHP Treated**	$23.43\pm0.09^{\ Ca}$	21.17 ± 0.09^{Cb}	19.94 ± 0.15^{Cc}	18.30 ± 0.05^{Cd}	17.81 ± 0.06^{Cd}	16.63 ± 0.37 ^{C f}	16.83 ± 0.06^{Cg}	15.70 ± 0.04^{Ch}	14.77 ± 0.06 ^C
a*									
100 psi									
Raw (Control)	$49.17 \pm 0.04^{\;Aa}$	48.66 ± 0.18^{Ab}	$45.61 \pm 0.12^{{\rm A}{\rm c}}$	47.04 ± 0.03^{Ac}	45.29 ± 0.27^{Ad}	44.28 ± 0.12^{Ae}	$42.82 \pm 0.07^{\rm Af}$	41.56 ± 0.30^{Ag}	40.43 ± 0.47
Pasteurized*	44.74 ± 0.12 B a	43.57 ± 0.07^{Bb}	41.95 ± 0.15^{Bc}	40.09 ± 0.05 $^{B\ c}$	43.03 ± 0.02^{Bd}	41.32 ± 0.12^{Be}	41.24 ± 0.36^{Bf}	38.86 ± 0.10^{Bg}	36.57 ± 0.15
HHP Treated**	$50.01 \pm 0.11^{\ Ca}$	49.05 ± 0.10^{Cb}	47.67 ± 0.07^{Cc}	47.51 ± 0.33 ^{C c}	44.85 ± 0.32^{Cd}	44.18 ± 0.14^{Ce}	$43.65\pm 0.09^{\mathrm{Cf}}$	41.35 ± 0.17^{Cg}	40.28 ± 0.24
150 psi									
Raw (Control)	47.28 ± 0.32^{Aa}	45.73 ± 0.07^{Ab}	41.64 ± 0.08^{Ac}	38.73 ± 0.57^{Ad}	38.42 ± 0.14^{Ad}	$36.02\pm 0.05^{\;Ae}$	36.15 ± 0.19^{Ae}	$34.77 \pm 0.15^{\rm Af}$	32.54 ± 0.48
Pasteurized*	43.51 ± 0.28 ^{B a}	$41.89\pm0.08^{\ B\ b}$	$40.76 \pm 0.12^{\text{B}\text{c}}$	39.77 ± 0.12^{Bd}	39.80 ± 0.12^{Bd}	38.90 ± 0.04^{Be}	40.00 ± 0.19^{Be}	37.63 ± 0.08^{Bf}	35.90 ± 0.03
HHP Treated**	46.90 ± 0.18^{Ca}	45.60 ± 0.73^{Cb}	45.62 ± 0.20^{Cc}	$42.49\pm0.41^{\ C\ d}$	42.72 ± 0.08^{Cd}	40.02 ± 0.30^{Ce}	$39.30 \pm 0.19^{\ Ce}$	38.65 ± 0.04^{Cf}	37.51 ± 0.03

Table 3.8 The effect of storage at 4°C on L*, a* and ΔE values of pomegranate juice squeezed with 100 psi and 150 psi pressure for HHP treated and pasteurized samples against control. ^{1,2}

1. All values are the mean \pm standard deviation of three replicates (n=3).

2. For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05. 0.05.

*Pasteurization condition is 85°C for 10 minutes.

**HHP treatment conditions are 400 MPa at 15°C during 5 min for 100 psi squeezed and 400 MPa at 5°C during 10 min for 150 psi squeezed pomegranate juice.

Day 21	Day 30

Table 3.8 Cont'd

	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18
$\Delta \mathbf{E}$							
100 psi							
Raw (Control)		1.56 ± 0.11 Aa	$8.01\pm0.23~^{Ab}$	4.96 ± 0.16^{Ac}	6.76 ± 0.56^{Abc}	8.05 ± 0.17^{Ad}	$10.63 \pm 0.16^{\mathrm{A}\mathrm{e}}$
Pasteurized*		9.50 ± 0.21 $^{B\mbox{ a}}$	$13.88 \pm 0.26^{\text{B}\text{b}}$	$16.19 \pm 0.12^{\text{B c}}$	$10.99\pm0.05^{\text{ B bc}}$	13.24 ± 0.23^{Bd}	$13.62 \pm 0.46^{\ B\ e}$
HHP Treated**		0.23 ± 0.07 Ca	4.53 ± 0.27^{Cb}	3.75 ± 0.34^{Cc}	7.46 ± 0.23^{Cbc}	$8.29\pm0.28~^{C~d}$	9.27 ± 0.17^{Ce}
150 psi							
Raw (Control)		$3.61 \pm 0.12^{\mbox{ A a}}$	$8.96\pm0.09^{\rm \ Ab}$	13.51 ± 0.84^{Ac}	13.00 ± 0.27^{Ac}	$16.19 \pm 0.05^{\;Ad}$	15.80 ± 0.33^{Ad}
Pasteurized*		$8.79\pm0.48^{\ B\ a}$	9.53 ± 0.20^{Bb}	$11.75 \pm 0.20^{\mathrm{B}\mathrm{c}}$	11.76 ± 0.18^{Bc}	$12.22\pm0.05^{\ B\ d}$	10.92 ± 0.23 $^{B\mbox{ d}}$
HHP Treated**		2.64 ± 1.01 Ca	2.94 ± 0.25 Cb	7.24 ± 0.20^{Cc}	7.61 ± 0.09^{Cc}	$10.07\pm0.49~^{C~d}$	10.88 ± 0.29^{Cd}

1. All antioxidant and ascorbic acid values are the mean \pm standard deviation of three replicates (n=3).

2. For treatment time, similar letters demonstrate no statistical difference at p < 0.05. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05.

*Pasteurization condition is 85°C for 10 minutes.

**HHP treatment conditions are 400 MPa at 15°C during 5 min for 100 psi squeezed and 400 MPa at 5°C during 10 min for 150 psi squeezed pomegranate juice.

Day	21
-----	----

$12.34 \pm 0.60^{\mathrm{Af}}$	14.08 ± 0.43^{Ag}
16.79 ± 0.17^{Bf}	$19.78 \pm 0.11^{\ B\ g}$
12.63 ± 0.30^{Cf}	13.63 ± 0.20^{Cg}
17.38 ± 0.20^{Ae}	$21.07 \pm 0.26^{A f}$
$14.08 \pm 0.14^{\ B\ e}$	$17.10 \pm 0.01^{B f}$
$14.08 \pm 0.14^{\ B\ e}$ $12.18 \pm 0.06^{\ C\ e}$	

3.2.4 Antioxidant (Free Radical Scavenging) Activity and Ascorbic Acid During Shelf Life

At the first glimpse, HHP treated samples showed similar % radical scavenging activity (RSA) with control (raw) samples whereas thermal treatment causes nearly 10 % loss of RSA at the day 0 (Table 3.9). At the end of the shelf life period, % RSA retention and stability is the highest one relative to untreated control and thermally treated samples. During the shelf life period there is an increase of % RSA values for all treatment groups around day 15. This situation can be supported by the increase of the ascorbic acid content between day 15 and day 18. There could be so many reasons of this increase like the inactivation of some inhibitor compounds or formation of some promoter compounds for antioxidant or/and ascorbic acid. An antioxidant activity could happen during the storage period for pomegranate juice due to anthocyanin polymers formation (Pérez-Vicente et al 2004).

Santos et al (2011) also reported similar results for antioxidant capacity of pomegranate juice during shelf life period of 350, 450 and 550 MPa with 30, 90, 150 s treatments. An increasement was observed after a day-by-day decrease of antioxidant capacity between day 15 and day 20.

Antioxidant capacity differences were found to be statistically significant (p < 0.05) among treatment groups for the same days during storage period. Within a group, there is a significant alteration for RSA during storage. This alteration is generally a small decrease for the first 10 days followed by an increase around day 15 and then again a decrease till the end of the shelf life period for HHP treated 100 psi squeezed pomegranate juice. The decrease for thermally treated one is quite sharp relative to HHP treated ones while control samples show an alteration as better than the thermally treated, worse than the HHP treated. The overall % RSA changes are 69.11, 59.33 and 86.44 for the control, pasteurized and HHP treated samples, respectively.

For 150 psi squeezed juice the increasement are seen in the day 3, day 12 for all groups and day 30 except for thermally treated one. The overall % RSA changes are 95.27, 75.07 and 108.01 for the control, pasteurized and HHP treated samples,

respectively. As a result, it can been said that, 150 psi squeezed pomegranate juice has higher RSA than 100 psi squeezed one, for each group, during shelf life period (p < 0.05).

Prior to shelf life study, while examining the effects of 10 minutes treatments with all pressure and temperature combinations for HHP treatment, showed a statistically significant decrease of ascorbic acid content relative to untreated sample. Even this decrease was found sometimes a half, for some combinations. Here, for shelf life study, this aforementioned decrease can be seen again for HHP treatment relative to control sample for 150 psi squeezed juice. But during the storage, stability of ascorbic acid is much better than for both thermally treated and control samples. 100 psi squeezed juice has nearly the same amount of ascorbic acid content with the control sample but thermal treated has a much lower level. For 100 psi squeezed juice, the ascorbic acid content changes, decrease during the storage period (p < p0.05) but between day 15 and day 18 an increasement can be seen. For 150 psi squeezed juice, the ascorbic acid content changes, decrease during the storage period (p < 0.05) but around day 9 and day 12, a sharp increasement can be seen. To explain this situation, the same case for the antioxidant capacity could be said as the formation or/and inhibition of some compounds. At the end of the storage period HHP treated samples shows a higher ascorbic acid level than the other groups, even higher than the value of day 0 of the control sample for 150 psi squeezed juice. Thermally treated sample's values are always the lowest.

In literature, no study is done about the HHP treatment effect on ascorbic acid content of pomegranate juice yet. But in the study of Kulkarni et al (2005) decreases and increasement of ascorbic acid content were seen during the shelf life period for pomegranate arils concomitant with the same alterations of antioxidant activities and the reason for this situation was expressed with buildup of anthocyanins.

	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 21	Day 30
Antioxidant									
100 psi									
Raw (Control)	$100\pm0.00~^{Aa}$	$87.11 \pm 2.04^{\ Ab}$	$87.72\pm0.31~^{Ac}$	$88.05 \pm 11.05 \ ^{Ad}$	$80.01\pm1.74^{\ Ae}$	$88.19\pm2.47~^{\rm Af}$	$79.70 \pm 1.23^{\mbox{Ag}}$	$78.81\pm3.54~^{Ah}$	$69.11 \pm 1.22^{\text{Ai}}$
Pasteurized*	$92.59 \pm 1.11^{\ Ba}$	$76.39 \pm 2.60 \ ^{Bb}$	$79.09\pm3.03^{\rm \ Bc}$	$76.39\pm2.03^{\ Bd}$	$67.89\pm2.94^{\ Be}$	$76.39 \pm 1.11^{\rm \ Bf}$	$72.68\pm3.87^{\ Bg}$	64.18 ± 0.73^{Bh}	$59.33 \pm 2.43^{\ Bi}$
HHP Treated**	$101.3 \pm 3.70^{\ Ca}$	$92.37\pm2.44^{\ Cb}$	$92.24 \pm 7.15^{\ Cc}$	$91.30\pm1.82^{\ Cd}$	$82.66\pm1.41^{\ Ce}$	$93.45 \pm 2.80^{\ C \ f}$	$92.64 \pm 3.14^{\ Cg}$	$88.12\pm2.69^{\ Ch}$	$86.44 \pm 3.40^{\text{Ci}}$
150 psi									
Raw (Control)	$100\pm0.00~^{Aa}$	$102.39 \pm 1.28 {}^{Ab}$	100.62 ± 3.88 Ac	$107.94 \pm 1.13 \ ^{Ad}$	$120.63 \pm 2.18 \ ^{\text{Ae}}$	$106.18 \pm 2.11 {}^{\rm Af}$	$103.77 \pm 3.11^{\ Ag}$	$93.11\pm2.87~^{Ah}$	$95.27\pm1.31^{\ Ai}$
Pasteurized*	$88.20 \pm 1.34^{\ Ba}$	$95.32\pm1.32^{\text{ Bb}}$	$85.04 \pm 2.68^{\ Bc}$	$94.88\pm6.03^{\text{Bd}}$	$102.20 \pm 2.75^{\ Be}$	$96.71 \pm 3.50^{\rm \ Bf}$	$91.92 \pm 2.25^{\ Bg}$	79.42 ± 1.90^{Bh}	75.07 ± 0.89^{Bi}
HHP Treated**	$101.06 \pm 2.09^{\ Ca}$	$107.88 \pm 0.76^{ Cb}$	$107.88 \pm 1.07^{\ Cc}$	$112.55 \pm 1.39^{\ Cd}$	$123.02 \pm 6.71^{\ Ce}$	$114.31\pm2.07~^{\rm Cf}$	107.25 ± 6.29^{Cg}	$99.30\pm1.53^{\ Ch}$	$108.01 \pm 1.53^{\text{Ci}}$
Ascorbic Acid									
100 psi									
Raw (Control)	$121.90\pm0.84~^{Aa}$	$107.34 \pm 4.70 \ ^{Ab}$	$100.94 \pm 6.73 \ ^{Ac}$	$97.95 \pm 10.22 \ ^{Ad}$	$88.83\pm5.65~^{Ae}$	$82.31 \pm 1.65 {}^{\rm Af}$	$84.62\pm5.54^{\ Ag}$	$80.40\pm4.70~^{Ah}$	$74.68\pm3.23^{\ Ai}$
Pasteurized*	$105.76 \pm 7.17^{\;Ba}$	84.07 ± 1.63^{Bb}	$79.31 \pm 3.56^{\ Bc}$	$87.75\pm1.46^{\ Bd}$	$77.41\pm3.79^{\text{Be}}$	71.29 ± 1.24^{Bf}	$79.04\pm2.89^{\text{Bg}}$	$75.91\pm1.78^{\rm \ Bh}$	$69.92 \pm 2.72^{\text{Bi}}$
HHP Treated**	$121.22 \pm 6.74^{\ Ca}$	97.68 ± 3.32^{Cb}	$99.58 \pm 5.61^{\ Cc}$	$108.29 \pm 2.09^{\ Cd}$	$103.39 \pm 3.67^{\ Ce}$	$99.58 \pm 3.24^{\ Cf}$	$101.62 \pm 1.47^{\ Cg}$	$97.81\pm1.02^{\ Ch}$	$93.33\pm0.84^{\rm Ci}$
150 psi									
Raw (Control)	111.24 ± 4.45 ^{Aa}	$109.79\pm1.77^{\ Ab}$	$105.02 \pm 2.46^{\;Ac}$	$132.78 \pm 3.47 {}^{Ad}$	$128.70 \pm 1.70^{\;\text{Ae}}$	$93.46\pm0.81^{\rm Af}$	$92.78\pm5.77^{\;Ag}$	$89.24\pm2.71~^{Ah}$	$93.87\pm2.85{}^{\rm Ai}$
Pasteurized*	$83.67 \pm 1.86^{\ Ba}$	$95.50\pm3.89^{\ Bb}$	$94.01\pm2.86^{\text{Bc}}$	$105.16 \pm 3.87 ^{Bd}$	$107.88 \pm 3.12^{\text{Be}}$	83.12 ± 1.69^{Bf}	$73.19 \pm 14.62^{\ Bg}$	$64.48\pm1.47^{\ Bh}$	$68.16 \pm 11.04^{\rm \ Bi}$
HHP Treated**	94.69 ± 0.82^{Ca}	$100.81 \pm 1.77^{\text{ Cb}}$	$98.36 \pm 1.63^{\ Cc}$	$116.05 \pm 4.39^{\ Cd}$	$120.13 \pm 2.71^{\ Ce}$	112.78 ± 3.47^{Cf}	113.87 ± 1.47^{Cg}	114.68 ± 5.20^{Ch}	118.90 ± 3.46^{Ci}

Table 3.9 The effect of storage at 4°C on Antioxidant Activity (%) and Ascorbic Acid Content (mg / L) of pomegranate juice squeezed with 100 psi and 150 psi pressure for HHP treated and pasteurized samples against control. ^{1,2}

1 All antioxidant and ascorbic acid values are the mean \pm standard deviation of three replicates (n=3).

2 For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05. To examine the effect of days, see Table E.1 and E.2 *Pasteurization condition is 85°C for 10 minutes.

**HHP treatment conditions are 400 MPa at 15°C during 5 min for 100 psi squeezed and 400 MPa at 5°C during 10 min for 150 psi squeezed pomegranate juice.

3.2.5 Sensory Analyses during Shelf Life

All groups of samples were evaluated for odor and color properties during the storage period. According to the results of the panelist's grading, especially color evaluation has corroboration with the color measurement of the samples with the colorimetric equipment during the storage.

As a results of the sensory evaluations (Table 3.10), HHP treated samples were preferred very much during the first 15 days for both in the aspects of color and odor. Pressurized samples did not loose their bright color and fresh-fruit-like odor during the first three weeks of storage. This freshness and brightness were higher than the untreated samples at the day 0. The color and odor stability are higher in 150 psi squeezed juice than 100 psi squeezed one for all groups. It is probably because of higher antioxidant, ascorbic acid and phenolic compound content of 150 psi squeezed juice.

Untreated control samples odor and color properties were strong and stable just only for 6 days. Then, color started to turn to brown as the pasteurized juice and odor started to turn into a rotten smell. This is due to the increasing microbial load during the storage.

Thermally treated samples color was quite dark and the smell was bitter-astringent since the day 0. These properties did not change over time so much. At the day 30, astringent smell was a bit stronger and color was darker than the first day. The pasteurized samples were referred as the most unpleasant group among all from the beginning by the panelists.

$7.41 \pm 0.37^{\text{Aa}}$ $5.50 \pm 0.44^{\text{Ba}}$ $8.75 \pm 0.27^{\text{Ca}}$ $8.41 \pm 0.49^{\text{A}}$ $6.41 \pm 0.37^{\text{B}}$ $0.00 \pm 0.00^{\text{Ca}}$	7.25 ± 0.41^{Aa} 4.75 ± 0.61^{Bb} 8.58 ± 0.37^{Ca} 8.25 ± 0.27^{A} 6.16 ± 0.25^{B}	$\begin{split} & 6.50 \pm 0.44 \ ^{Ab} \\ & 4.00 \pm 0.54 \ ^{Bc} \\ & 7.58 \pm 0.49 \ ^{Ca} \\ & 8.00 \pm 0.31 \ ^{A} \\ & 5.25 \pm 0.27 \ ^{B} \end{split}$	$5.83 \pm 0.25^{\text{Ac}}$ $3.91 \pm 0.20^{\text{Bc}}$ $7.08 \pm 0.37^{\text{Ca}}$ $7.33 \pm 0.40^{\text{A}}$ $5.08 \pm 0.37^{\text{B}}$	$\begin{array}{l} 4.66 \pm 0.40 \ ^{\rm Ad} \\ 3.50 \pm 0.44 \ ^{\rm Bd} \\ 6.91 \pm 0.37 \ ^{\rm Ca} \\ 5.08 \pm 0.49 \ ^{\rm A} \end{array}$	$3.75 \pm 0.41^{\text{Ae}}$ $2.50 \pm 0.54^{\text{Be}}$ $6.83 \pm 0.25^{\text{Cb}}$ $4.00 \pm 0.63^{\text{A}}$	$\begin{array}{l} 2.75 \pm 0.61 {}^{\rm Af} \\ 2.50 \pm 0.54 {}^{\rm Be} \\ 6.75 \pm 0.27 {}^{\rm Cb} \\ \end{array}$ $3.00 \pm 0.31 {}^{\rm A} \end{array}$	2.75 ± 0.61^{Af} 2.50 ± 0.54^{Be} 6.75 ± 0.27^{Cb} 1.83 ± 0.51^{A}
5.50 ± 0.44 ^{Ba} 8.75 ± 0.27 ^{Ca} 8.41 ± 0.49 ^A 6.41 ± 0.37 ^B	$\begin{array}{l} 4.75 \pm 0.61 \\ ^{Bb} \\ 8.58 \pm 0.37 \\ ^{Ca} \\ 8.25 \pm 0.27 \\ ^{A} \\ 6.16 \pm 0.25 \\ ^{B} \end{array}$	$\begin{array}{l} 4.00 \pm 0.54 ^{Bc} \\ 7.58 \pm 0.49 ^{Ca} \\ 8.00 \pm 0.31 ^{A} \end{array}$	$3.91 \pm 0.20^{\text{Bc}}$ $7.08 \pm 0.37^{\text{Ca}}$ $7.33 \pm 0.40^{\text{A}}$	$\begin{array}{l} 3.50 \pm 0.44 ^{Bd} \\ 6.91 \pm 0.37 ^{Ca} \\ 5.08 \pm 0.49 ^{A} \end{array}$	$2.50 \pm 0.54^{\text{Be}}$ $6.83 \pm 0.25^{\text{Cb}}$	$2.50 \pm 0.54^{\text{Be}}$ $6.75 \pm 0.27^{\text{Cb}}$	$2.50 \pm 0.54^{\text{Be}}$ $6.75 \pm 0.27^{\text{Cb}}$
5.50 ± 0.44 ^{Ba} 8.75 ± 0.27 ^{Ca} 8.41 ± 0.49 ^A 6.41 ± 0.37 ^B	$\begin{array}{l} 4.75 \pm 0.61 \\ ^{Bb} \\ 8.58 \pm 0.37 \\ ^{Ca} \\ 8.25 \pm 0.27 \\ ^{A} \\ 6.16 \pm 0.25 \\ ^{B} \end{array}$	$\begin{array}{l} 4.00 \pm 0.54 ^{Bc} \\ 7.58 \pm 0.49 ^{Ca} \\ 8.00 \pm 0.31 ^{A} \end{array}$	$3.91 \pm 0.20^{\text{Bc}}$ $7.08 \pm 0.37^{\text{Ca}}$ $7.33 \pm 0.40^{\text{A}}$	$\begin{array}{l} 3.50 \pm 0.44 ^{Bd} \\ 6.91 \pm 0.37 ^{Ca} \\ 5.08 \pm 0.49 ^{A} \end{array}$	$2.50 \pm 0.54^{\text{Be}}$ $6.83 \pm 0.25^{\text{Cb}}$	$2.50 \pm 0.54^{\text{Be}}$ $6.75 \pm 0.27^{\text{Cb}}$	$2.50 \pm 0.54^{\text{Be}}$ $6.75 \pm 0.27^{\text{Cb}}$
$8.75 \pm 0.27^{\ Ca}$ $8.41 \pm 0.49^{\ A}$ $6.41 \pm 0.37^{\ B}$	$8.58 \pm 0.37^{\text{ Ca}}$ $8.25 \pm 0.27^{\text{ A}}$ $6.16 \pm 0.25^{\text{ B}}$	$7.58 \pm 0.49^{\ Ca} \\ 8.00 \pm 0.31^{\ A}$	$7.08 \pm 0.37^{\ Ca}$ $7.33 \pm 0.40^{\ A}$	6.91 ± 0.37 ^{Ca} 5.08 ± 0.49 ^A	6.83 ± 0.25 ^{Cb}	$6.75\pm0.27^{\text{ Cb}}$	6.75 ± 0.27 ^{Cb}
8.41 ± 0.49 ^A 6.41 ± 0.37 ^B	8.25 ± 0.27 ^A 6.16 ± 0.25 ^B	$8.00\pm0.31~^{\rm A}$	$7.33 \pm 0.40^{\text{ A}}$	$5.08\pm0.49^{\rm \ A}$			
$6.41\pm0.37~^{B}$	$6.16\pm0.25^{\text{ B}}$				$4.00\pm0.63^{\rm A}$	$3.00\pm0.31^{\rm A}$	1.83 ± 0.51 ^A
$6.41\pm0.37~^{B}$	$6.16\pm0.25^{\text{ B}}$				$4.00\pm0.63^{\rm \ A}$	$3.00\pm0.31~^{\rm A}$	1.83 ± 0.51 ^A
		$5.25\pm0.27^{\rm \ B}$	$5.08\pm0.37^{\text{ B}}$	Р			
0.00×0.00 Ca	G			$4.33 \pm 0.25^{\text{ B}}$	$4.08\pm0.37^{\rm \ B}$	$3.66\pm0.40^{\ B}$	$2.75\pm0.61^{\ B}$
9.00 ± 0.00^{Ca}	$8.91 \pm 0.20^{\ Ca}$	$8.83\pm0.25^{\ Ca}$	$8.66\pm0.40^{\ Ca}$	8.41 ± 0.37 ^{Ca}	$7.91\pm0.37^{\ Cb}$	$7.91\pm0.37^{\ Cb}$	$7.66\pm0.25^{\ Cb}$
$7.58\pm0.37^{\rm \;Aa}$	$7.16\pm0.40^{\rm\ Aa}$	$6.00\pm0.63~^{\rm Ab}$	$4.40\pm0.37^{\rm\ Ac}$	$4.33\pm0.25^{\rm \ Ac}$	$4.16\pm0.25~^{\rm Ac}$	$3.66\pm0.40~^{Ad}$	$3.14\pm0.23~^{Ad}$
4.50 ± 0.63^{Ba}	$4.41\pm0.49^{\;Ba}$	$4.08\pm0.37^{\;Bb}$	$4.08\pm0.37^{\;Bb}$	$3.50\pm0.31^{\ Bc}$	$3.33\pm0.40^{\rm \ Bc}$	$3.21\pm0.78^{\ Bc}$	$2.87{\pm}0.72^{\text{Bd}}$
$9.00\pm0.00^{\ Ca}$	$8.66\pm0.40^{\ Ca}$	$7.91\pm0.37^{\ Cb}$	$7.25\pm0.27^{\text{ Cb}}$	$7.25\pm0.27^{\text{ Cb}}$	$7.16\pm0.25^{\mathrm{Cb}}$	$7.16\pm0.25^{\ Cb}$	$6.91\pm0.20~^{\text{Cb}}$
^a $8.33 \pm 0.40^{\text{Aa}}$	$8.33\pm0.40^{\;Aa}$	$7.91\pm0.20^{\;Ab}$	$7.08{\pm}0.37^{\rm\;Ac}$	$4.33\pm0.25~^{\rm Ad}$	$5.75\pm0.41^{\ Ae}$	$3.50\pm0.44^{\rm \ Af}$	$3.25\pm0.27^{\;Ag}$
^a $5.58 \pm 0.49^{\text{Ba}}$	$5.25\pm0.41^{\ Ba}$	5.08 ± 0.20^{Ba}	$4.75\pm0.27^{\;Bb}$	4.41 ± 0.37^{Bb}	$3.66\pm0.51^{\text{Bc}}$	$3.66\pm0.51^{\ Bc}$	$2.83\pm0.68^{\text{ Bd}}$
~	$9.00\pm0.00^{\ Ca}$	8.91 ± 0.20^{Ca}	$8.75\pm0.27^{\ Ca}$	8.16 ± 0.40^{Ca}	$7.25\pm0.27^{\text{ Cb}}$	$7.16\pm0.25^{\ Cb}$	7.00 ± 0.00^{Cb}
	9.00 \pm 0.00 ^{Ca} 8.33 \pm 0.40 ^{Aa}	a $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ aa $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ aa $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$	a $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ $7.91 \pm 0.37^{\text{Cb}}$ aa $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ $7.91 \pm 0.20^{\text{Ab}}$ aa $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$ $5.08 \pm 0.20^{\text{Ba}}$	a $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ $7.91 \pm 0.37^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ aa $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ $7.91 \pm 0.20^{\text{Ab}}$ $7.08 \pm 0.37^{\text{Ac}}$ aa $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$ $5.08 \pm 0.20^{\text{Ba}}$ $4.75 \pm 0.27^{\text{Bb}}$	a $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ $7.91 \pm 0.37^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ aa $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ $7.91 \pm 0.20^{\text{Ab}}$ $7.08 \pm 0.37^{\text{Ac}}$ $4.33 \pm 0.25^{\text{Ad}}$ aa $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$ $5.08 \pm 0.20^{\text{Ba}}$ $4.75 \pm 0.27^{\text{Bb}}$ $4.41 \pm 0.37^{\text{Bb}}$	a $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ $7.91 \pm 0.37^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ $7.16 \pm 0.25^{\text{Cb}}$ aa $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ $7.91 \pm 0.20^{\text{Ab}}$ $7.08 \pm 0.37^{\text{Ac}}$ $4.33 \pm 0.25^{\text{Ad}}$ $5.75 \pm 0.41^{\text{Ae}}$ aa $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$ $5.08 \pm 0.20^{\text{Ba}}$ $4.75 \pm 0.27^{\text{Bb}}$ $4.41 \pm 0.37^{\text{Bb}}$ $3.66 \pm 0.51^{\text{Bc}}$	A $9.00 \pm 0.00^{\text{Ca}}$ $8.66 \pm 0.40^{\text{Ca}}$ $7.91 \pm 0.37^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ $7.25 \pm 0.27^{\text{Cb}}$ $7.16 \pm 0.25^{\text{Cb}}$ $7.16 \pm 0.25^{\text{Cb}}$ a $8.33 \pm 0.40^{\text{Aa}}$ $8.33 \pm 0.40^{\text{Aa}}$ $7.91 \pm 0.20^{\text{Ab}}$ $7.08 \pm 0.37^{\text{Ac}}$ $4.33 \pm 0.25^{\text{Ad}}$ $5.75 \pm 0.41^{\text{Ae}}$ $3.50 \pm 0.44^{\text{Af}}$ a $5.58 \pm 0.49^{\text{Ba}}$ $5.25 \pm 0.41^{\text{Ba}}$ $5.08 \pm 0.20^{\text{Ba}}$ $4.75 \pm 0.27^{\text{Bb}}$ $4.41 \pm 0.37^{\text{Bb}}$ $3.66 \pm 0.51^{\text{Bc}}$ $3.66 \pm 0.51^{\text{Bc}}$

Table 3.10 The effect of storage at 4	^o C on Sensory Pro	operties as Odor and Color	of pomegranate ju	lice squeezed with 100	psi and 150 psi	pressure for HHP treated an

1. All values are the mean \pm standard deviation of six replicates (n=6). Values ranged between 1-9, 1: completely disliked, 9: liked very much.

2. For each column, similar capital letters demonstrate no statistical difference at p < 0.05. For each row similar small letters demonstrate no statistical difference at p < 0.05. To examine the effect of days, see Table E.3 and E.4.

*Pasteurization condition is 85°C for 10 minutes.

**HHP treatment conditions are 400 MPa at 15°C during 5 min for 100 psi squeezed and 400 MPa at 5°C during 10 min for 150 psi squeezed pomegranate juice.

and pasteurized samples against control. ^{1,2}

CHAPTER 4

CONCLUSION

Non thermal processing techniques are a rising trend all around the world against traditional thermal treatment methods. In this study, evaluating the effect of high hydrostatic pressure treatment on two different pressure squeezed pomegranate juice quality factors relative to traditional thermal treatment with untreated sample as control and investigating the shelf life period was aimed. The main goal was to prove superiority of HHP treatment to thermal treatment. Using two different hydraulic pressure squeezed pomegranate juice was the bonus for this study as to show the squeezing pressure effect for pomegranate juice and analyze the HHP effect on this situation. In the first part of this study, chosen HHP combinations 200, 300, 400 MPa; 5°C, 15°C, 25°C; 5 and 10 minutes were applied. Most of these combinations gave better results than thermal treatment: % RSA of 200 MPa/15°C/5 min treatment was 121.77 versus of thermal treatment was % 73.53 for 100 psi; Ascorbic Acid content (mg / L) of 300 MPa/25°C/5 min treatment was % 113.49 versus of thermal treatment 97.49 for 150 psi. According to the measurements and experiments for specified quality factors, 400 MPa at 15°C during 5 minutes for 100 psi squeezed, 400 MPa at 5°C during 10 minutes for 150 psi squeezed pomegranate juice are chosen as the best combinations. In the second part, shelf life analyses were performed to samples which were treated with specified conditions. Both sensory and chemical analyses gave the best results for HHP among all three: control, thermal treated and HHP treated. For instance ΔE values of HHP treated sample was 13.63 while thermal treated was 19.78 at the end of day 30 for 100 psi; %RSA of HHP treated was % 108.8 while thermal treated was 75.07 for 150 psi. Furthermore,

increasing the squeezing pressure increases the shelf life stability due to higher amounts of antioxidant compounds. The situation is the same for sensory evaluation as well.

In brief, with HHP treatment-a cold pasteurization technique, pomegranate juice can be processed and stored at 4°C with protecting its quality constituents much more than thermal treatment. Higher squeezing pressure leads higher amounts of quality factors besides extended the shelf life stability than the juice squeezed at lower pressures.

CHAPTER 5

RECOMMENDATION

This study's issue was chosen to create a general idea about the HHP treatment effects on chosen quality parameters of pomegranate juice. These quality elements have been referred as the most important ones in literature. The exact mechanisms of the effect of HHP combinations on chosen quality parameters require further and more extensive studies. For example, while 5 min HHP treatment causes better ascorbic acid content, 10 min treatment make it quite worse. In the industry, sometimes filtration or clarification is applied to pomegranate juice prior to bottling. The effects of these kinds of physical treatments to pomegranate juice could give different quality results after HHP treatment. To propose a more reliable judgment about the processed pomegranate juice for the market, further investigation could be done in terms of different pre-processing steps and/or other pressure-temperaturetime combinations. Despite all positive effects and results of HHP treatment, economical aspects of the technique and processing equipments are also extremely important. Managing the economical extent, further academic studies for other food structures and sharing all results with manufacturers will increase the use and extent of non-thermal food treatments among the community. Consequently, HHP treatment seem to be a much better option for food processing and can be used as a perfect alternative of thermal pasteurization.

REFERENCES

Alpas H., Kalchayanand N., Bozoglu F. and Ray B. (2000). Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. *International Journal of Food Microbiology* 60, 33-42.

Alper H., Bahceci K., Acar J. (2005). Influence of processing and pasteurisation on colour values and total phenolic compounds of pomegranatejuice. *Journal of Processing and Preservation*, 29, pp. 357–368.

Anonymous. (1951). Methods of Vitamin Assay. Association of Vitamin Chemists, Interscience Publisher, New York, NY, USA.

Anonymous. (2008). Provisional reference guideline for pomegranatejuice, AIJN, Brussels.

Aviram M., Dornfeld L., Rosenblat M., Volkova N., Kaplan M., Coleman R., Hayek T., Presser D., Fuhrman B. (2000). Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clinl Nutr 71:1062–76.

Bayındırlı L., Şahin S., Artık N. (1994). The effect of clarification methods of pomegranatejuice quality. *Fruit Processing*, 9, pp. 264–270.

Billmeyer Jr. F.W., Saltzman M. (1981). Principles of Color Technology. (2nd ed.)Wiley-Interscience, New York (1981), p. 50.

Borochov-Neori H., Judeinstein S., Tripler E., Harari M., Greenberg A., Shomer I., Holland D. (2009). Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punica granatum L.) fruit. *Journal of Food Composition and Analysis*, 22, 189–195.

Brand-Williams W., Cuvelier M.E., Berset C. (1995). Use of a free radical method to evaluate antioxidant activity. *Lebensmittel-Wissenschaft und - Technologie/Food Science and Technology*, 28, 25-30.

Buzrul S., Hami A., Largeteau A., Demazeau G. (2008). Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. *International Journal of Food Microbiology*, *124*, 275–278.

Cemeroğlu B., Velioğlu S., Işık S. (1994). Degradation kinetics of anthocyanins in sour cherry juice and concentrate. *Journal of Food Science*, 59, 1216–1218.

Cemeroğlu, B. (Ed.). (2010). Gıda Analizleri. Ankara: Gıda Teknolojisi Derneği Yayınları.

Cheftel J.C. (1992). Effect of high hydrostatic pressure on food constituents: An overview, High-Pressure and Biotechnology, vol. 224, John Libbey Eurotext Ltd, UK, London, pp. 195–209.

Coseteng M.Y., Lee C.Y. (1987). Journal of the Science, 52, 985.

Davidson M. H., Maki K. C., Dicklin M. R., Feinstein S. B., Witchger M. S., Bell M., McGuire D. K., Provos J. C., Liker H., Aviram M. (2009). Effects of consumption of pomegranate juice on carotid intima-media thickness in men and women at moderate risk for coronary heart disease. Ame J Cardiol 104(7):936–42.

De Simon B.F., Perez-Ilzarbe J., Hernandez T., Gomezcordovez C., Esrtella I. (1992). Importance of phenolic compounds for the characterization of fruit juices. J. Agric. Food Chem. *38*, 1565–1571.

Dede S., Alpas H., Bayindirli A. (2007). High hydrostatic pressure treatment and storage of carrots and juices: Antioxidant activity and microbial safety. *Journal of the Science of Food and Agriculture*, 87, 773–872.

Donsi G., Ferrari G., Di Matteo M. (1996). High pressure stabilization of orange juice: Evaluation of the effects of process conditions *Italian Journal of Food Sciences*, 8 (2), pp. 99–106.

Fadavi A, Barzegar M, Azizi MH, Bayat M. (2005). Physicochemical composition of ten pomegranate cultivars (*Punica granatum* L.) grown in Iran. Food Sci Technol Int 11:113–9.

Farnworth E.R., Lagace M., Couture R. (2001). Thermal processing, storage conditions, and the composition and physical properties of orange juice. *Food Research International*, 34 (1) pp. 25–30.

Ferrari G., Maresca P., Ciccarone R. (2010). The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. *Journal of Food Engineering*, *100*, 245–253.

Fischer U. A., Carle R, Kammerer D.R. (2011). Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp,

aril and differently produced juices by HPLC-DAD-ESI/MSn. *Food Chemistry*, 127, 807-821.

Freed M. (1966). Methods of Vitamin Assay. 3rd ed., *Interscience Publishers*, New York, NY, USA.

Gil M. I., Tomas-Barberan F. A., Hess-Pierce B., Holcroft D. M., Kader A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. *Journal of Agricultural and Food Chemistry*, 48(10), 4581–4589.

Giusti M.M., Wrolstad R.E. (2001). Unit F1.2. Anthocyanins. Characterization and measurement with UV-visible spectroscopy. R.E. Wrolstad, S.J. Schwartz (Eds.), *Current protocols in food analytical chemistry*, Wiley, New York, pp. 1–13.

González-Molina E., Moreno D. A., García-Viguera C. (2009). A new drink rich in healthy bioactives combining lemon and pomegranate juices. *Food Chemistry*, 115, 1364–1372.

Gültekin M, Özçoban D, Karaali A. (2007). Antioksidan kaynağı bir içecek: Nar suyu. Dünya *GIDA*, Temmuz, 85- 87.

Hegde V.L.V, Mahesh P.A., Venkatesh Y.P. (2002). Anaphylaxis Caused by Mannitol in Pomegranate (*Punica granatum*). Allergy & Clinical Immunology International - Journal of the World Allergy Organization, Vol 14, No. 1.

Hendrickx M., Ludikhuyze L., Van den Broeck I., Weemaes C. (1998). Effects of high pressure on enzymes related to food quality. *Trends in Food Science & Technology*, pp 197–203.

Jahfar M., Vijayan K. K., Azadi P. (2003). Studies on a polysaccharide from the fruit rind of *Punica granatum. Res J Chem Environ*, 7:43–50.

Jaiswal V, DerMarderosian A, Porter JR. (2010). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (*Punica granatum* L.). Food Chem 118:11–6.

Jones R., Silveira M.M. (2004). Sorbitol canbo produced not only ennemiedily but also biotechnologically. *Applied Biochemistry and Biotechnology*, 118, pp. 321–336.

Lee J., Durst R.W, Wrolstad R.E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. *Journal Association of Official Analytical Chemists International*, 88 (5), pp. 1269–1278.

Li Y., Guo C., Yang J., Wei J., Xu J., Cheng S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. *Food Chemistry*, 96(2):254–60.

Linton M., McClements J.M.J., Patterson M.F. (1999). Inactivation of *Escherichia coli* O157:H7 in orange juice using a combination of high pressure and mild heat *Journal of Food Protection*, 62 (3) pp. 277–279.

López-Malo A., Palou E., Barbosa-Cánovas G.V., Welti-Chanes J., and Swanson B.G. (1998). Polyphenoloxidase activity and color changes during storage in high hydrostatic pressure treated avocado puree. *Food Res. Int. Submitted for publication.*

Macheix J.J., Fleuriet A., Billiot J. (1990). Fruit Phenolics, pp. 24–31, 295–342, CRC Press, Boca Raton, FL.

O' Mahony. (1988). Sensory difference and preference testing: The use of signal detection measures. *Applied Sensory Analyses of Food* (H.R. Moskowitz, ed) pp. 145-175. CRC Press, Boca Raton, FL.

Mali A.B., Khedkar K., Lele S.S. (2011). Effect of Gamma Irradiation on Total Phenolic Content and *in Vitro* Antioxidant Activity of Pomegranate (*Punica Granatum* L.) Peels. *Food and Nutrition Sciences*, 2, 428-433.

Mart'inez JJ, Melgarejo P, Hern'andez F, Salazar DM, Mart'inez R. (2006). Seed characterisation of five new pomegranate (*Punica granatum* L.) varieties. Sci Hortic 110:241–6.

Maskan M. (2006). Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: colour degradation and kinetics. *Journal of Food Engineering*, 72 218–224.

Meerts IATM, Verspeek-Rip CM, Buskens CAF, Keizer HG, Bassaganya-Riera J, Jouni ZE, van Huygevoort AHBM, van Otterdijk FM, van de Waart EJ. (2009). Toxicological evaluation of pomegranate seed oil. Food Chem Toxicol 47(6):1085–92.

Meyer R.S., Cooper K.L., Knorr D., Lelieveld H.L.M. (2000). High pressure sterilization of foods *Food Technology*, 54, pp. 67–72.

Mirdehghan S. H., Rahemi M. (2007). Seasonal changes of mineral nutrients and phenolics in pomegranate (*Punica granatum* L.) fruit. Sci Hort 111(2):120–7.

Mousavinejad G, Emam-Djomeh Z, Rezaei K, Khodaparast MHH. (2009). Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem 115:1274–8.

Norton T., Sun D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. *Food Bioprocess Technology*, 1(1), 2–34.

Oey I., Van der Plancken I., Van Loey A., Hendrickx, M. (2008). Does high pressure processing influence nutritional aspects of plant based food systems? *Trends in Food Science and Technology*, 19, 300–308.

O'Mahony M. (1988). Sensory difference and preference testing: The use of signal detection measures. *Applied Sensory Analyses of Food* (H.R. Moskowitz, ed) pp. 145-175.

Parish M.E. (1998). High pressure inactivation of *Saccharomyces cerevisiae*, endogenous microflora and pectinmethylesterase in orange juice *Journal of Food Safety*, *18* (1), pp. 57–65.

Park S.-J., Lee J.-I., Park J. (2006). Effects of a Combined Process of High-Pressure Carbon Dioxide and High Hydrostatic Pressure on the Quality of Carrot Juice. *Journal of Food Science*, pp. 1827–1834.

Patras A., Brunton N. P., Da Pieve S., Butler F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. *Innovative Food Science and Emerging Technologies*, 10, 308–313.

Patras A., Brunton N. P., O'Donnell C., Tiwari B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; Mechanisms and kinetics of degradation. *Trends in Food Science and Technology*, 21, 3–11.

Patras A., Brunton N., Butler F., Gerard D. (2008). Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. *Innovative food science and emerging technologies*.

Patterson M.F., Quinn M., Simpson R., Gilmour A. (1996). High pressure inactivation in foods of animal origin. *High Pressure Bioscience and Biotechnology*, 13 pp. 267–272.

Pérez-Vicente A., Serrano P., Abellán P., García-Viguera C. (2004). Influence of packaging material on pomegranate juice colour and bioactive compounds, during storage. *Journal of the Science of Food and Agriculture*, 84, pp. 639–644.

Polydera A. C., Stoforos N. G., Taoukis P. S. (2005). Quality degradation kinetics of pasteurized and high pressure processed fresh Navel orange juice: nutritional parameters and shelf life. *Innovative Food Science and Emerging Technologies*, 6, 1e9.

Polydera A.C., Stoforos N.G., Taoukis P.S. (2004). Effect of high hydrostatic pressure treatment on post processing antioxidant activity of fresh Navel orange juice. *Food Chemistry (in press).*

Poyrazoğlu, E., Gökmen, V., Artık, N. (2002). Organic acid and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. *Journal of Food Composition and Analysis*, 15(5), 567-575.

Reyns K.M.F.A., Soontjens C.C.F., Cornelis K, Weemaes C.A., Hendrickx M.E., Michiels C.W. (2000). Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast *Zygosaccharomyces bailii*. *International Journal of Food Microbiology*, 56 (2–3), pp. 199–210.

Rouseff R.L. (1990). Bitterness in foods and beverage. *In Developments in Food Science*, Vol 25 (R.L.Rouseff, ed.) pp. 1–12.

Sancho F., Lambert Y., Demazeau G., Largeteau A., Bouvier J.M, Narbonne J.F. (1999). Effect of ultrahigh hydrostatic pressure on hydrosoluble vitamins *Journal of Food Engineering*, *39*, pp. 247–253.

SanMartín M.F., Barbosa-Cánovas V., Swanson B.G. (2002). Food processing by high hydrostatic pressure. *Critical Reviews in Food Science and Nutrition*, 42 (1) pp. 627–645.

Scalzo R.L., Iannoccari T., Summa C., Morelli R., Rapisarda P. (2004). Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. *Food Chemistry*, 85: 41–47.

Sepulveda E., Galletti L., Saenz C., Tapia M. (1998). Minimal processing of pomegranate var. Wonderful. *CIHEAM – Options Mediterraneennes*, 42: 237–242.

Singleton V. B., Rossi J. A. (1965). Colorimetry of total phenolics with phoshomolybdic-phosphotungustic acid reagents. *American Journal of Enology* and Viticulture, 16, 144-158.

Spanos G.A., Wrolstad R.E. (1992). Phenolics of apple, pear and white grape juices and their changes with processing and storage – a review. *Journal of Agricultural and Food Chemistry*, 40, 1478–1487.

Spanos G.A., Wrolstad R.E. (1990). *Journal of Agricultural and Food Chemistry*, 38,1565.

Suh H. J., Noh D. O., Kang C. S., Kim J. M., Lee S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. *Nahrung*, 47, 132–135.

Tabur D., Bakkal G., Yurdagel Ü. (1987). Nar suyunun durultma işlemi ve depolama süresince meydana gelen değişmeleri üzerine araştırmalar. *Gıda*, 12 (5), pp. 305–311.

Teo A.Y.L., Ravishankar S., Sizer C.E. (2001). Effect of low-temperature, highpressure treatment on the survival of *Escherichia coli*O157:H7 and *Salmonella* in unpasteurized fruit juices *Journal of Food Protection*, *64* (8), pp. 1122–1127. Tezcan F., Gültekin-Özgüven M., Diken T., Özçelik B., Erim F. B. (2009). Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. *Food Chemistry*, 115(3):873–7.

The Summary of Agricultural Statistics. (2010). TÜİK.

Torres, J. A., Velazquez, G. (2008). Hydrostatic pressure processing of foods. In S. Jun & J. Irudayaraj (Eds.), *Food processing operations modeling: design and analysis*. Boca Ratón, FL: CRC Press Inc. pp. 173–212.

Van den Broeck I., Ludikhuyze L.R, Van Loey A.M., Hendrickx M.E. (2000). Inactivation of orange pectinesterase by combined high pressure and temperature treatments: A kinetic study *Journal of Agricultural and Food Chemistry*, 48 (5), pp. 1960–1970.

Vardin H, Fenercioğlu H. (2003). Study on the development of pomegranate juice processing technology: Clarification of pomegranate juice. *Nahrung*, *47*, 300-303.

Varela-Santos E., Ochoa-Martinez A., Tabilo-Munizaga G., Reyes J. E., Pérez-Won M., Briones-Labarca V., Morales-Castro J. (2011). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. *Innovative Food Science and Emerging Technologies*, oi:10.1016/j.ifset.2011.10.009.

Vidal A., Fallarero A., Pena B. R., Medina M. E., Gra B., Rivera F., Gutierrez Y., Vuorela P. M. (2003). Studies on the toxicity of *Punica granatum* L. (Punicaceae) whole fruit extracts. J Ethnopharmacol 89:295–300.

Weemaes C., Ludikhuyze L., Van den Broeck I., Hendrickx M. (1999). Kinetic study of antibrowning agents and pressure inactivation of avocado polyphenoloxidase *Journal of Food Science*, 64 (5) pp. 823–827.

Wrolstad R.E. (2004). Anthocyanin pigments – bioactivity and coloring properties. *Journal of Food Science*, 69 (5), pp. 419–421.

Zhang Y., Krueger D., Durst R., Lee R., Wang D., Seeram N., Heber D. (2009). International Multidimensional Authenticity Specification (IMAS) Algorithm for Detection of Commercial Pomegranate Juice Adulteration. *Journal of Agricultural Food Chemistry*, *57* (6), pp 2550–2557.

Zook C.D., Parish M.E., Braddock R.J., Balaban M.O. (1999). High pressure inactivation kinetics of *Saccharomyces cerevisiae* ascospores in orange and apple juices. *Journal of Food Science*, 64 (3), pp. 533–535.

APPENDIX A

STANDARD GALLIC ACID CURVE FOR TOTAL PHENOLIC CONTENT CALCULATION

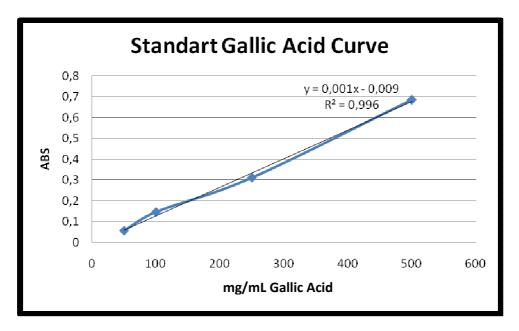


Figure A.1 The standard gallic acid curve for Singleton & Rossi Method

APPENDIX B

STANDARD DPPH CURVE FOR ANTIOXIDANT ACTIVITY CALCULATION

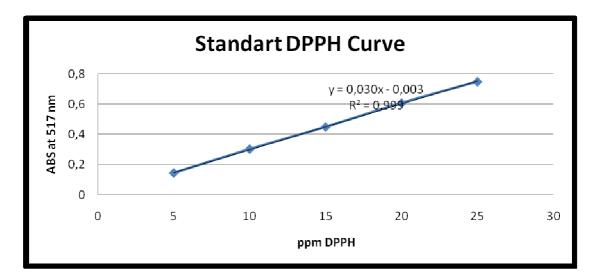


Figure B.1 The standart curve for Brand-Williams Method

APPENDIX C

STANDARD CURVE FOR ASCORBIC ACID CALCULATION

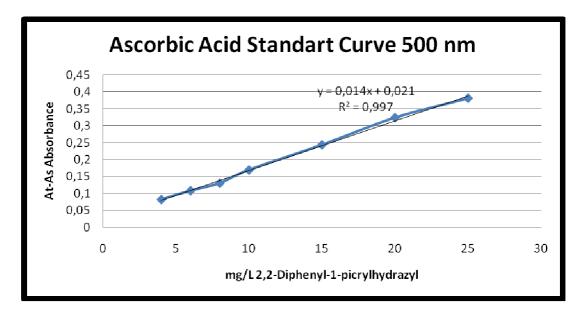
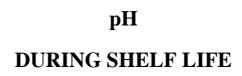



Figure C.1 The standard curve for Cemeroğlu Method

APPENDIX D

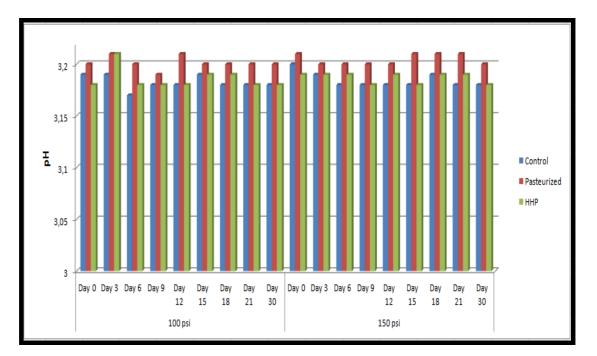


Figure D.1 pH During Shelf Life Period

APPENDIX E

TUKEY TEST RESULTS OF DAYS FOR SHELF LIFE

Table E.1 Tukey test results day by day for Ascorbic Acid

ukey H	ent Variable:	Asc100					Tukey H	ent Variable:	ASC150				
икеу па	50							50					
	()) Devis	Mean Difference	Otal France	0.5	95% Confide		(1) David		Mean Difference	Otal Error	0:-	95% Confide	
) Days)0	(J) Days 3,00	(I-J) 19,9291*	Std. Error 2,01890	Sig. ,000	Lower Bound 13,4066	Upper Bound 26,4517	(I) Days .00	(J) Days 3,00	(I-J) -5,5011	Std. Error 2,17110	Sig. ,239	Lower Bound -12,5154	Upper Bou 1,51
	6,00	23,0147*	2,01890	,000	16,4921	29,5372	,00	6,00	-2,5978	2,17110	,200	-9,6121	4,4
	9,00	18,2958*	2,01890	,000	11,7732	24,8183		9,00	-21,4633*	2,17110	,000	-28,4776	-14,4
	12,00	26,4158*	2,01890	,000	19,8932	32,9383		12,00	-22,3711*	2,17110	,000	-29,3854	-15,3
	15,00	31,9002*	2,01890	,000	25,3777	38,4228		15,00	,0789	2,17110	1,000	-6,9354	7,0
	18,00	27,8658*	2,01890	,000	21,3432	34,3883		18,00	3,2520	2,17110	,852	-3,7623	10,2
	21,00	31,5836*	2,01890	,000	25,0610	38,1061		21,00	7,0633*	2,17110	,047	,0491	14,0
	30,00	36,9813*	2,01890	,000	30,4588	43,5039		30,00	2,8889	2,17110	,917	-4,1254	9,9
,00	,00	-19,9291*	2,01890	,000	-26,4517	-13,4066	3,00	,00	5,5011	2,17110	,239	-1,5132	12,5
	6,00	3,0856	2,01890	,837	-3,4370	9,6081		6,00	2,9033	2,17110	,915	-4,1109	9,9
	9,00	-1,6333	2,01890	,996	-8,1559	4,8892		9,00	-15,9622*	2,17110	,000	-22,9765	-8,9
	12,00	6,4867	2,01890	,052	-,0359	13,0092		12,00	-16,8700*	2,17110	,000	-23,8843	-9,8
	15,00	11,9711*	2,01890	,000	5,4486	18,4937		15,00	5,5800	2,17110	,223	-1,4343	12,5
	18,00	7,9367*	2,01890	,007	1,4141	14,4592		18,00	8,7531*	2,17110	,005	1,7388	15,7
	21,00	11,6544*	2,01890	,000	5,1319	18,1770		21,00	12,5644*	2,17110	,000	5,5502	19,5
	30,00	17,0522*	2,01890	,000	10,5297	23,5748		30,00	8,3900*	2,17110	,008	1,3757	15,4
,00	,00	-23,0147*	2,01890	,000	-29,5372	-16,4921	6,00	,00	2,5978	2,17110	,954	-4,4165	9,6
	3,00	-3,0856	2,01890	,837	-9,6081	3,4370		3,00	-2,9033	2,17110	,915	-9,9176	4,1
	9,00	-4,7189	2,01890	,339	-11,2414	1,8037		9,00	-18,8656*	2,17110	,000	-25,8798	-11,8
	12,00	3,4011	2,01890	,753	-3,1214	9,9237		12,00	-19,7733*	2,17110	,000	-26,7876	-12,7
	15,00	8,8856*	2,01890	,002	2,3630	15,4081	1	15,00	2,6767	2,17110	,945	-4,3376	9,6
	18,00	4,8511	2,01890	,303	-1,6714	11,3737		18,00	5,8498	2,17110	,174	-1,1645	12,8
	21,00	8,5689*	2,01890	,003	2,0463	15,0914		21,00	9,6611*	2,17110	,001	2,6468	16,6
	30,00	13,9667*	2,01890	,000	7,4441	20,4892		30,00	5,4867	2,17110	,242	-1,5276	12,5
,00	,00	-18,2958*	2,01890	,000	-24,8183	-11,7732	9,00	,00	21,4633*	2,17110	,000,	14,4491	28,4
	3,00	1,6333	2,01890	,996	-4,8892	8,1559		3,00	15,9622*	2,17110	,000,	8,9479	22,9
	6,00	4,7189	2,01890	,339	-1,8037	11,2414		6,00	18,8656*	2,17110	,000,	11,8513	25,8
	12,00	8,1200*	2,01890	,005	1,5975	14,6425		12,00	-,9078	2,17110	1,000	-7,9221	6,1
	15,00 18,00	13,6044*	2,01890	,000,	7,0819	20,1270		15,00	21,5422*	2,17110	,000,	14,5279	28,5
	21,00	9,5700* 13,2878*	2,01890 2,01890	,001 ,000	3,0475 6,7652	16,0925 19,8103		18,00 21,00	24,7153* 28,5267*	2,17110 2,17110	,000 000,	17,7011 21,5124	31,7 35,5
	30,00	18,6856*	2,01890	,000, 000,	12,1630	25,2081		30,00	26,3207 24,3522*	2,17110	,000,	17,3379	35,5
2,00	,00	-26,4158*	2,01890	,000,000,	-32,9383	-19,8932	12,00	,00	24,3522	2,17110	,000	15,3568	29,3
2,00	3,00	-20,4158	2,01890	,000	-32,9383	,0359	12,00	3,00	16,8700*	2,17110	,000,	9,8557	29,3
	6,00	-3,4011	2,01890	,052	-9,9237	3,1214		6,00	19,7733*	2,17110	,000,	12,7591	26,7
	9,00	-8,1200*	2,01890	,005	-14,6425	-1,5975		9,00	,9078	2,17110	1,000	-6,1065	7,9
	15,00	5,4844	2,01890	,166	-1,0381	12,0070		15,00	22,4500*	2,17110	,000	15,4357	29,4
	18,00	1,4500	2,01890	,998	-5,0725	7,9725		18,00	25.6231*	2,17110	,000,	18,6088	32,6
	21,00	5,1678	2,01890	,228	-1,3548	11,6903		21,00	29,4344*	2,17110	,000	22,4202	36,4
	30,00	10,5656*	2,01890	,000	4,0430	17,0881		30,00	25,2600*	2,17110	,000	18,2457	32,2
5,00	,00	-31,9002*	2,01890	,000	-38,4228	-25,3777	15,00	,00	-,0789	2,17110	1,000	-7,0932	6,9
	3,00	-11,9711*	2,01890	,000	-18,4937	-5,4486		3,00	-5,5800	2,17110	,223	-12,5943	1,4
	6,00	-8,8856*	2,01890	,002	-15,4081	-2,3630		6,00	-2,6767	2,17110	,945	-9,6909	4,3
	9,00	-13,6044*	2,01890	,000	-20,1270	-7,0819		9,00	-21,5422*	2,17110	,000	-28,5565	-14,5
	12,00	-5,4844	2,01890	,166	-12,0070	1,0381		12,00	-22,4500*	2,17110	,000	-29,4643	-15,4
	18,00	-4,0344	2,01890	,551	-10,5570	2,4881		18,00	3,1731	2,17110	,868	-3,8412	10,1
	21,00	-,3167	2,01890	1,000	-6,8392	6,2059		21,00	6,9844	2,17110	,052	-,0298	13,9
	30,00	5,0811	2,01890	,247	-1,4414	11,6037		30,00	2,8100	2,17110	,929	-4,2043	9,8
8,00	,00	-27,8658*	2,01890	,000	-34,3883	-21,3432	18,00	,00,	-3,2520	2,17110	,852	-10,2663	3,7
	3,00	-7,9367*	2,01890	,007	-14,4592	-1,4141		3,00	-8,7531*	2,17110	,005	-15,7674	-1,7
	6,00	-4,8511	2,01890	,303	-11,3737	1,6714		6,00	-5,8498	2,17110	,174	-12,8641	1,1
	9,00	-9,5700*	2,01890	,001	-16,0925	-3,0475		9,00	-24,7153*	2,17110	,000,	-31,7296	-17,7
	12,00	-1,4500	2,01890	,998	-7,9725	5,0725		12,00	-25,6231*	2,17110	,000,	-32,6374	-18,6
	15,00	4,0344	2,01890	,551	-2,4881	10,5570	1	15,00	-3,1731	2,17110	,868	-10,1874	3,8
	21,00	3,7178	2,01890	,655	-2,8048	10,2403		21,00	3,8113	2,17110	,710	-3,2029	10,8
	30,00	9,1156*	2,01890	,001	2,5930	15,6381		30,00	-,3631	2,17110	1,000	-7,3774	6,6
1,00	,00	-31,5836*	2,01890	,000	-38,1061	-25,0610	21,00	,00	-7,0633*	2,17110	,047	-14,0776	-,0
	3,00	-11,6544*	2,01890	,000	-18,1770	-5,1319		3,00	-12,5644*	2,17110	,000,	-19,5787	-5,5
	6,00	-8,5689*	2,01890	,003	-15,0914	-2,0463		6,00	-9,6611*	2,17110	,001	-16,6754	-2,6
	9,00	-13,2878*	2,01890	,000	-19,8103	-6,7652		9,00	-28,5267*	2,17110	,000,	-35,5409	-21,5
	12,00	-5,1678	2,01890	,228	-11,6903	1,3548		12,00	-29,4344*	2,17110	,000	-36,4487	-22,4
	15,00	,3167	2,01890	1,000	-6,2059	6,8392		15,00	-6,9844	2,17110	,052	-13,9987	,0, 2
	18,00	-3,7178	2,01890	,655	-10,2403	2,8048	1	18,00	-3,8113	2,17110	,710	-10,8256	3,2
0.00	30,00	5,3978	2,01890	,182	-1,1248	11,9203	20.00	30,00	-4,1744	2,17110	,602	-11,1887	2,8
0,00	,00, 3.00	-36,9813*	2,01890	,000	-43,5039	-30,4588	30,00	,00 3.00	-2,8889	2,17110	,917	-9,9032	4,1
	3,00 6,00	-17,0522*	2,01890	,000	-23,5748	-10,5297		3,00	-8,3900*	2,17110	,008	-15,4043	-1,3
	6,00	-13,9667*	2,01890	,000	-20,4892	-7,4441		6,00	-5,4867	2,17110	,242	-12,5009	1,5
	9,00	-18,6856*	2,01890	,000	-25,2081	-12,1630		9,00	-24,3522*	2,17110	,000,	-31,3665	-17,3
	12,00	-10,5656*	2,01890	,000,	-17,0881	-4,0430		12,00	-25,2600*	2,17110	,000	-32,2743	-18,2
	15,00 18,00	-5,0811 -9,1156*	2,01890 2,01890	,247 ,001	-11,6037 -15,6381	1,4414 -2,5930		15,00 18,00	-2,8100 ,3631	2,17110 2,17110	,929, 1,000	-9,8243 -6,6512	4,2 7,3

Based on observed means.

Based on observed means. * The mean difference is significant at the ,05 level.

 $^{\star}\cdot$ The mean difference is significant at the ,05 level.

Table E.2 Tukey test results day by day for Antioxidant Activity

		N	Iultiple Com	parisons					N	Aultiple Com	parisons		
•	nt Variable:	Antiox100					Depende	nt Variable:					
Tukey HS	0						Tukey HS	SD					
		Mean							Mean				
(I) Days	(J) Days	Difference (I-J)	Std. Error	Sig.	95% Confide Lower Bound	ence Interval Upper Bound			Difference			95% Confide	ence Interval
,00	(J) Days 3,00	12,6701*	1,61508	,000	7,4522	17,8880	(I) Days .00	(J) Days 3,00	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
	6,00	11,6151*	1,61508	,000	6,3972	16,8330	,00	3,00 6,00	-5,4444* -1,4278	1,37197 1,37197	,006 ,980	-9,8769 -5,8603	-1,0119 3,0047
	9,00	12,7167*	1,61508	,000	7,4987	17,9346		9,00	-8,7044*	1,37197	,000,	-13,1369	-4,2719
	12,00 15,00	21,1089*	1,61508	,000,	15,8910	26,3268		12,00	-18,8644*	1,37197	,000	-23,2969	-14,4319
	15,00 18,00	11,9533* 16,2911*	1,61508 1,61508	,000, 000,	6,7354 11,0732	17,1713 21,5090		15,00	-9,3144*	1,37197	,000	-13,7469	-4,8819
	21,00	20,9222*	1,61508	,000,	15,7043	26,1402		18,00 21,00	-4,5600*	1,37197	,039	-8,9925	-,1275
	30,00	26,3389*	1,61508	,000	21,1210	31,5568		30,00	5,8078* 3,6378	1,37197 1,37197	,003 ,190	1,3753 -,7947	10,2403 8,0703
3,00	,00	-12,6701*	1,61508	,000	-17,8880	-7,4522	3,00	,00	5,4444*	1,37197	,100	1,0119	9,8769
	6,00	-1,0550	1,61508	,999	-6,2729	4,1629		6,00	4,0167	1,37197	,105	-,4158	8,4492
	9,00 12,00	,0466 8,4388*	1,61508 1,61508	1,000 ,000	-5,1714 3,2208	5,2645 13,6567		9,00	-3,2600	1,37197	,318	-7,6925	1,1725
	15,00	-,7168	1,61508	1,000	-5,9347	4,5012		12,00 15,00	-13,4200* -3,8700	1,37197 1,37197	,000	-17,8525 -8,3025	-8,9875 ,5625
	18,00	3,6210	1,61508	,395	-1,5969	8,8389		18,00	-3,8700 ,8844	1,37197	,133 ,999	-8,3025 -3,5481	,5625 5,3169
	21,00	8,2521*	1,61508	,000	3,0342	13,4700		21,00	11,2522*	1,37197	,000,	6,8197	15,6847
	30,00	13,6688*	1,61508	,000	8,4508	18,8867		30,00	9,0822*	1,37197	,000	4,6497	13,5147
6,00	,00 2.00	-11,6151*	1,61508	,000,	-16,8330	-6,3972	6,00	,00	1,4278	1,37197	,980	-3,0047	5,8603
	3,00 9,00	1,0550 1,1016	1,61508 1.61508	,999 ,999	-4,1629 -4,1164	6,2729 6,3195	1	3,00 9,00	-4,0167	1,37197	,105	-8,4492	,4158
	12,00	9,4938*	1,61508	,999,	4,2758	14,7117		9,00 12,00	-7,2767* -17,4367*	1,37197 1,37197	,000, 000,	-11,7092 -21,8692	-2,8442 -13,0042
	15,00	,3382	1,61508	1,000	-4,8797	5,5562	1	15,00	-7,8867*	1,37197	,000	-12,3192	-3,4542
	18,00	4,6760	1,61508	,113	-,5419	9,8939		18,00	-3,1322	1,37197	,370	-7,5647	1,3003
	21,00	9,3071*	1,61508	,000,	4,0892	14,5250		21,00	7,2356*	1,37197	,000	2,8031	11,6681
9,00	30,00 ,00	14,7238* -12,7167*	1,61508 1,61508	,000 ,000	9,5058 -17,9346	19,9417 -7,4987	0.00	30,00	5,0656*	1,37197	,014	,6331	9,4981
9,00	,00 3,00	-12,7107	1,61508	1,000	-17,9340	5,1714	9,00	,00 3,00	8,7044* 3,2600	1,37197 1,37197	,000 ,318	4,2719 -1,1725	13,1369 7,6925
	6,00	-1,1016	1,61508	,999	-6,3195	4,1164		6,00	7,2767*	1,37197	,000	2,8442	11,7092
	12,00	8,3922*	1,61508	,000	3,1743	13,6102		12,00	-10,1600*	1,37197	,000	-14,5925	-5,7275
	15,00	-,7633	1,61508	1,000	-5,9813	4,4546		15,00	-,6100	1,37197	1,000	-5,0425	3,8225
	18,00	3,5744	1,61508	,412	-1,6435	8,7924		18,00	4,1444	1,37197	,084	-,2881	8,5769
	21,00 30,00	8,2056* 13,6222*	1,61508 1,61508	,000, 000,	2,9876 8,4043	13,4235 18,8402		21,00 30,00	14,5122* 12,3422*	1,37197 1,37197	,000, 000,	10,0797 7,9097	18,9447 16,7747
12,00	,00	-21,1089*	1,61508	,000	-26,3268	-15,8910	12,00	,00	12,3422	1,37197	,000	14,4319	23,2969
,	3,00	-8,4388*	1,61508	,000,	-13,6567	-3,2208	,	3,00	13,4200*	1,37197	,000,	8,9875	17,8525
	6,00	-9,4938*	1,61508	,000	-14,7117	-4,2758		6,00	17,4367*	1,37197	,000	13,0042	21,8692
	9,00	-8,3922*	1,61508	,000	-13,6102	-3,1743		9,00	10,1600*	1,37197	,000	5,7275	14,5925
	15,00	-9,1556*	1,61508	,000,	-14,3735	-3,9376		15,00 18,00	9,5500*	1,37197	,000	5,1175	13,9825
	18,00 21,00	-4,8178 -,1867	1,61508 1,61508	,092, 1,000	-10,0357 -5,4046	,4002 5,0313		21,00	14,3044* 24,6722*	1,37197 1,37197	,000, 000,	9,8719 20,2397	18,7369 29,1047
	30,00	5,2300*	1,61508	,049	,0121	10,4479		30,00	22,5022*	1,37197	,000	18,0697	26,9347
15,00	,00	-11,9533*	1,61508	,000	-17,1713	-6,7354	15,00	,00,	9,3144*	1,37197	,000	4,8819	13,7469
	3,00	,7168	1,61508	1,000	-4,5012	5,9347		3,00	3,8700	1,37197	,133	-,5625	8,3025
	6,00	-,3382	1,61508	1,000	-5,5562	4,8797		6,00	7,8867*	1,37197	,000	3,4542	12,3192
	9,00	,7633	1,61508 1,61508	1,000	-4,4546	5,9813		9,00 12,00	,6100, -9,5500*	1,37197 1,37197	1,000 ,000	-3,8225 -13,9825	5,0425 -5,1175
	12,00 18,00	9,1556* 4,3378	1,61508	,000 ,177	3,9376 -,8802	14,3735 9,5557		18,00	4,7544*	1,37197	,000	,3219	9,1869
	21,00	8,9689*	1,61508	,000	3,7510	14,1868		21,00	15,1222*	1,37197	,000	10,6897	19,5547
	30,00	14,3856*	1,61508	,000	9,1676	19,6035		30,00	12,9522*	1,37197	,000	8,5197	17,3847
18,00	,00	-16,2911*	1,61508	,000	-21,5090	-11,0732	18,00	,00	4,5600*	1,37197	,039	,1275	8,9925
	3,00	-3,6210	1,61508	,395	-8,8389	1,5969		3,00 6,00	-,8844 3,1322	1,37197 1,37197	,999 ,370	-5,3169 -1,3003	3,5481 7,5647
	6,00 9,00	-4,6760 -3,5744	1,61508 1,61508	,113 /12	-9,8939 -8 7924	,5419 1 6435		9,00 9,00	-4,1444	1,37197	,370	-1,3003	,2881
	9,00 12,00	-3,5744 4,8178	1,61508 1,61508	,412 ,092	-8,7924 -,4002	1,6435 10,0357	1	12,00	-14,3044*	1,37197	,000,	-18,7369	-9,8719
	15,00	-4,3378	1,61508	,032	-9,5557	,8802		15,00	-4,7544*	1,37197	,027	-9,1869	-,3219
	21,00	4,6311	1,61508	,120	-,5868	9,8490		21,00	10,3678*	1,37197	,000	5,9353	14,8003
	30,00	10,0478*	1,61508	,000	4,8298	15,2657	21,00	30,00	8,1978*	1,37197	,000	3,7653	12,6303
21,00	,00	-20,9222*	1,61508	,000,	-26,1402	-15,7043	21,00	,00 3,00	-5,8078* -11,2522*	1,37197 1,37197	,003 ,000	-10,2403 -15,6847	-6,8197
	3,00 6,00	-8,2521* -9,3071*	1,61508 1,61508	,000, ,000	-13,4700 -14,5250	-3,0342 -4,0892	1	6,00	-7,2356*	1,37197	,000,	-11,6681	-2,8031
	9,00 9,00	-9,3071 -8,2056*	1,61508	,000,	-14,5250	-2,9876		9,00	-14,5122*	1,37197	,000	-18,9447	-10,0797
	12,00	,1867	1,61508	1,000	-5,0313	5,4046		12,00	-24,6722*	1,37197	,000	-29,1047	-20,2397
	15,00	-8,9689*	1,61508	,000	-14,1868	-3,7510		15,00	-15,1222*	1,37197	,000	-19,5547	-10,6897
	18,00	-4,6311	1,61508	,120	-9,8490	,5868	1	18,00 30,00	-10,3678* -2,1700	1,37197 1,37197	,000, ,810	-14,8003 -6,6025	-5,9353 2,2625
00.00	30,00	5,4167*	1,61508	,036	,1987	10,6346	30,00	,00	-2,1700	1,37197	,810	-6,6025	,7947
30,00	,00 3,00	-26,3389*	1,61508	,000,	-31,5568	-21,1210		3,00	-9,0822*	1,37197	,000	-13,5147	-4,6497
,	3,00 6,00	-13,6688* -14,7238*	1,61508 1,61508	,000, ,000	-18,8867 -19,9417	-8,4508 -9,5058		6,00	-5,0656*	1,37197	,014	-9,4981	-,6331
	0,00						1	9,00	-12,3422*	1,37197	,000	-16,7747	-7,9097
	9,00	-13,6222*	1,61508	,000	-18,8402	-8,4043							
	9,00 12,00	-13,6222* -5,2300*	1,61508 1,61508	,000 ,049	-18,8402 -10,4479	-8,4043 -,0121		12,00	-22,5022*	1,37197	,000	-26,9347	-18,0697
									-22,5022* -12,9522* -8,1978*	1,37197 1,37197 1,37197	,000, ,000, ,000	-26,9347 -17,3847 -12,6303	-18,0697 -8,5197 -3,7653

Based on observed means.

 $^{\star}\cdot$ The mean difference is significant at the ,05 level.

* The mean difference is significant at the ,05 level.

61

Based on observed means.

Table E.3 Tukey test results day by day for Sensory Evaluation

			Iultiple Com	parisons						Iultiple Com	parisons		
Depende Tukey HS	nt Variable: SD	Odor100					Depende Tukey H	ent Variable: SD	Color100		-		
		Mean Difference			95% Confide	ence Interval			Mean Difference			95% Confide	ence Interval
I) Days	(J) Days	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	(I) Days	(J) Days	(I-J)	Std. Error	Sig.	Lower Bound	Upper Boun
00	3,00	,3889	,15383	,228	-,0961	,8739	,00	3,00	,1111	,12801	,994	-,2925	,514
	6,00	,7500*	,15383	,000	,2650	1,2350		6,00	,3889	,12801	,068	-,0147	,792
	9,00	1,5833*	,15383	,000	1,0984	2,0683		9,00	1,1389*	,12801	,000	,7353	1,542
	12,00	2,0000*	,15383	,000	1,5150	2,4850		12,00	1,8944*	,12801	,000	1,4909	2,298
	15,00	2,5833*	,15383	,000	2,0984	3,0683		15,00	2,1111*	,12801	,000	1,7075	2,514
	18,00	3,2500*	,15383	,000	2,7650	3,7350		18,00	2,2500*	,12801	,000	1,8464	2,653
	21,00	3,6111*	,15383	,000,	3,1261	4,0961		21,00	2,4167*	,12801	,000	2,0131	2,820
	30,00	3,6111*	,15383	,000	3,1261	4,0961		30,00	2,5000*	,12801	,000	2,0964	2,903
,00	,00	-,3889	,15383	,228	-,8739	,0961	3,00	,00	-,1111	,12801	,994	-,5147	,292
	6,00 9,00	,3611	,15383	,322	-,1239	,8461		6,00	,2778	,12801	,431	-,1258	,681
	9,00 12,00	1,1944*	,15383	,000 000,	,7095	1,6794		9,00	1,0278*	,12801	,000	,6242	1,431
	12,00	1,6111* 2,1944*	,15383 ,15383	,000,000	1,1261 1,7095	2,0961 2,6794		12,00	1,7833*	,12801	,000	1,3798	2,186
	18,00	2,1944 2,8611*	,15383	,000,	2,3761	3,3461		15,00	2,0000*	,12801	,000	1,5964	2,403
	21,00	3,2222*	,15383	,000,	2,3701	3,7072		18,00 21,00	2,1389*	,12801	,000	1,7353	2,542
	30,00	3,2222*	,15383	,000,	2,7372	3,7072		30,00	2,3056* 2,3889*	,12801 ,12801	,000, 000,	1,9020 1,9853	2,709 2,792
,00	,00	-,7500*	,15383	,000	-1,2350	-,2650	6,00	,00	-,3889	,12801	,000	-,7925	.014
,00	3,00	-,3611	,15383	,000	-,8461	,1239	0,00	,00 3,00	-,3009	,12801	,008	-,7925	,014
	9,00	,8333*	,15383	,322	,3484	1,3183		9,00 9,00	-,2778 ,7500*	,12801	,431	,3464	1,153
	12,00	,0333 1,2500*	,15383	,000,	,7650	1,7350		9,00 12,00	,7500 1,5056*	,12801	,000	,3464	1,153
	15,00	1,8333*	,15383	,000,	1,3484	2,3183		15,00	1,5050	,12801	,000	1,1020	2,125
	18,00	2,5000*	,15383	,000,	2,0150	2,9850		18,00	1,7222	,12801	,000	1,3187	2,123
	21,00	2,3000	,15383	,000,	2,0150	3,3461		21,00	2,0278*	,12801	,000	1,4575	2,20
	30,00	2,8611*	,15383	,000	2,3761	3,3461		30,00	2,0270	,12801	,000	1,7075	2,514
,00	,00	-1,5833*	,15383	,000	-2,0683	-1,0984	9,00	,00	-1,1389*	,12801	,000	-1,5425	-,73
	3,00	-1,1944*	,15383	,000	-1,6794	-,7095	,	3,00	-1,0278*	,12801	,000	-1,4313	-,624
	6,00	-,8333*	,15383	,000	-1,3183	-,3484		6,00	-,7500*	,12801	,000	-1,1536	-,346
	12,00	,4167	,15383	,155	-,0683	,9016		12,00	,7556*	,12801	,000	,3520	1,159
	15,00	1,0000*	,15383	,000	,5150	1,4850		15,00	,9722*	,12801	,000	,5687	1,375
	18,00	1,6667*	,15383	,000	1,1817	2,1516		18,00	1,1111*	,12801	,000	,7075	1,514
	21,00	2,0278*	,15383	,000	1,5428	2,5128		21,00	1,2778*	,12801	.000	,8742	1,681
	30,00	2,0278*	,15383	,000	1,5428	2,5128		30,00	1,3611*	,12801	,000	,9575	1,764
2,00	,00	-2,0000*	,15383	,000	-2,4850	-1,5150	12,00	,00	-1,8944*	,12801	,000	-2,2980	-1,490
	3,00	-1,6111*	,15383	,000	-2,0961	-1,1261		3,00	-1,7833*	,12801	,000	-2,1869	-1,379
	6,00	-1,2500*	,15383	,000	-1,7350	-,7650		6,00	-1,5056*	,12801	,000	-1,9091	-1,102
	9,00	-,4167	,15383	,155	-,9016	,0683		9,00	-,7556*	,12801	,000	-1,1591	-,352
	15,00	,5833*	,15383	,007	,0984	1,0683		15,00	,2167	,12801	,750	-,1869	,620
	18,00	1,2500*	,15383	,000	,7650	1,7350		18,00	,3556	,12801	,132	-,0480	,759
	21,00	1,6111*	,15383	,000	1,1261	2,0961		21,00	,5222*	,12801	,002	,1187	,925
	30,00	1,6111*	,15383	,000	1,1261	2,0961		30,00	,6056*	,12801	,000	,2020	1,009
5,00	,00	-2,5833*	,15383	,000	-3,0683	-2,0984	15,00	,00	-2,1111*	,12801	,000	-2,5147	-1,707
	3,00	-2,1944*	,15383	,000	-2,6794	-1,7095		3,00	-2,0000*	,12801	,000	-2,4036	-1,596
	6,00	-1,8333*	,15383	,000	-2,3183	-1,3484		6,00	-1,7222*	,12801	,000	-2,1258	-1,318
	9,00	-1,0000*	,15383	,000	-1,4850	-,5150		9,00	-,9722*	,12801	,000	-1,3758	-,568
	12,00	-,5833*	,15383	,007	-1,0683	-,0984		12,00	-,2167	,12801	,750	-,6202	,186
	18,00	,6667*	,15383	,001	,1817	1,1516		18,00	,1389	,12801	,975	-,2647	,542
	21,00	1,0278*	,15383	,000,	,5428	1,5128		21,00	,3056	,12801	,300	-,0980	,709
0.00	30,00	1,0278*	,15383	,000	,5428	1,5128	40.05	30,00	,3889	,12801	,068	-,0147	,792
8,00	,00	-3,2500*	,15383	,000,	-3,7350	-2,7650	18,00	,00	-2,2500*	,12801	,000	-2,6536	-1,840
	3,00	-2,8611*	,15383	,000,	-3,3461	-2,3761		3,00	-2,1389*	,12801	,000	-2,5425	-1,73
	6,00	-2,5000*	,15383	,000,	-2,9850	-2,0150		6,00	-1,8611*	,12801	,000	-2,2647	-1,457
	9,00	-1,6667*	,15383	,000,	-2,1516	-1,1817		9,00	-1,1111*	,12801	,000	-1,5147	-,707
	12,00	-1,2500*	,15383	,000	-1,7350	-,7650		12,00	-,3556	,12801	,132	-,7591	,048
	15,00	-,6667*	,15383	,001	-1,1516	-,1817		15,00	-,1389	,12801	,975	-,5425	,264
	21,00	,3611 3611	,15383 15383	,322	-,1239	,8461 8461		21,00	,1667	,12801	,929	-,2369	,570
1,00	30,00	,3611	,15383	,322	-,1239	,8461	21.00	30,00	,2500	,12801	,579	-,1536	,65
,00	,00 3,00	-3,6111* -3,2222*	,15383 ,15383	,000 ,000	-4,0961 -3,7072	-3,1261 -2,7372	21,00	,00, 3.00	-2,4167*	,12801	,000	-2,8202	-2,01
	3,00 6,00	-3,2222 -2,8611*	,15383 ,15383	,000,	-3,7072	-2,7372 -2,3761		3,00 6,00	-2,3056*	,12801 12801	,000,	-2,7091	-1,90
	9,00 9,00	-2,0011	,15383	,000,	-3,3461 -2,5128	-2,3761 -1,5428		9,00 9,00	-2,0278*	,12801 12801	,000,	-2,4313	-1,62
	9,00 12,00	-2,0278* -1,6111*	,15383 ,15383	,000, ,000,	-2,5128	-1,5428 -1,1261		9,00 12,00	-1,2778* -,5222*	,12801 12801	,000	-1,6813	-,87
	12,00	-1,0111	,15383	,000,	-2,0961 -1,5128	-1,1261 -,5428		12,00 15,00		,12801 12801	,002	-,9258	-,118
	18,00		,15383 ,15383	,000 ,322					-,3056 - 1667	,12801 12801	,300	-,7091	,098
	30,00	-,3611 ,0000	,15383 ,15383	,322, 1,000	-,8461 -,4850	,1239 ,4850		18,00 30,00	-,1667	,12801 12801	,929	-,5702	,230
0,00	,00	-3,6111*	,15383	,000	-,4850	-3,1261	30,00	,00	,0833	,12801	,999	-,3202	,48
.,00	,00 3,00	-3,0111	,15383	,000,	-4,0961 -3,7072	-3,1261 -2,7372	30,00	,00 3,00	-2,5000* -2,3889*	,12801 12801	,000,	-2,9036 -2,7925	-2,09 -1,98
	3,00 6,00	-3,2222 -2,8611*	,15383	,000,	-3,7072	-2,7372 -2,3761		3,00 6,00	-2,3889" -2,1111*	,12801 12801	,000, ,000	-2,7925 -2,5147	-1,98
	9,00 9,00	-2,0011	,15383	,000,	-3,3461 -2,5128	-2,3761 -1,5428		9,00 9,00	-2,1111*	,12801 12801			-1,70
	9,00 12,00	-2,0278* -1,6111*	,15383 ,15383	,000, ,000,	-2,5128	-1,5428 -1,1261		9,00 12,00		,12801 12801	,000,	-1,7647	
	12,00	-1,0111	,15383	,000,	-2,0961	-1,1261 -,5428		12,00 15,00	-,6056* - 3889	,12801 12801	,000	-1,0091	-,202 ,014
	18,00	-1,0278 -,3611	,15383	,000	-1,5128	,1239		18,00	-,3889 -,2500	,12801 ,12801	,068 ,579	-,7925 -,6536	,014
	21,00	,0000	,15383	,322 1,000	-,8461 -,4850	,1239 ,4850		21,00	-,2500	,12801 ,12801	,579 ,999	-,6536 -,4869	,15,

Based on observed means.

 $^{\ast}\cdot$ The mean difference is significant at the ,05 level.

Based on observed means.

* The mean difference is significant at the ,05 level.

Table E.4 Tukey test results day by day for Sensory Evaluation

60 0.00 1.077 1.978 .928 233 .0688 1.0128 0.01 1.230 1.230 .2333 .2178 .000 .3484 1.1520 0.00 .4467 1.2330 .1230 .000 .1647 .1230 .1230 .000 .1647 .1230 .100 .25554 .1230 .1230 .1234 .000 .1647 .1230 .1230 .1234 .000 .1234 .1230 .1234 .1230 .1234 .1230 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 .1234 <th>Depende Tukey HS</th> <th>nt Variable: SD</th> <th>Odor150</th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>nt Variable:</th> <th></th> <th>Aultiple Com</th> <th>parisons</th> <th></th> <th></th>	Depende Tukey HS	nt Variable: SD	Odor150					•	nt Variable:		Aultiple Com	parisons		
10.00 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.00 <th0.00< th=""> 0.00 0.00</th0.00<>						95% Confide	ence Interval						95% Confide	ance Interval
matrix matrix<	I) Days		<u>``</u>					(I) Days	(J) Davs		Std. Error	Sig.		Upper Boun
9.00 7.900 1.970 0.00 3.480 1.130 8.00 1.1344 1.230 0.00 0.01 1.130 10.00 2.1667 1.276 0.00 1.747 2.268 1.00 2.1667 1.236 0.00 1.643 10.00 2.1777 1.276 0.00 2.868 3.2637 1.236 0.00 1.243 0.00 1.2437 10.00 1.167 1.1270 3.26 2.2664 2.100 2.9444 1.230 0.00 2.2674 10.00 1.167 1.1270 0.00 3.141 1.358 2.100 2.9444 1.230 0.00 3.6811 1.230 1.331 1.230 0.00 3.681 1.230 1.331 1.230 0.00 3.687 1.230 0.00 3.687 1.230 0.00 3.687 1.230 1.230 0.00 3.687 1.230 0.00 3.687 1.230 0.00 1.247 1.230 0.00 1.2477 1.230 0	00			· ·								0		,472
1.003 1.003 1.077 1.000 8.814 1.483 1.487 1.234 0.033 0.073 15.00 2.7778 1.770 0.00 2.3788 3.777 18.00 2.407 1.724 0.00 2.408 1.234 0.00 1.778 0.00 1.778 0.00 1.778 0.00 1.778 0.00 1.778 0.00 2.2484 3.00 0 3.01 1.234 0.00 2.2721 0.00 0.03 1.197 1.197 0.00 1.544 1.318 6.00 3.111 1.243 0.00 2.2721 1.00 0.00 5.837 1.779 0.00 1.544 3.083 1.243 0.00 1.141 </td <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,816</td> <td></td> <td>,583</td>			·									,816		,583
Head 2 1372 1372 1373 2.568 14.00 2.8171 1.248 0.00 4.671 16.00 3.2507 1.779 0.00 2.4440 3.652 21.00 2.9444 1.236 0.00 2.577 0.00 4.0 1.977 0.077 1.779 0.00 2.585 4.207 1.000 3.311 1.246 0.00 2.577 0.00 1.987 1.779 0.00 5.947 1.338 1.000 3.311 1.246 0.00 1.277 0.00 1.987 1.279 0.00 5.947 1.338 1.000 1.331 1.724 0.00 1.949 15.00 2.011 1.779 0.00 3.447 1.338 1.700 1.224 0.00 1.943 2.000 1.681 1.779 0.00 3.447 4.436 2.100 1.711 1.240 0.00 1.943 2.000 1.681 1.779 0.00 3.461 4.23			·											,805
19.00 2.7778 1.779 0.00 2.4783 3.707 15.00 2.4987 1.799 0.00 1.7778 0.00 0.0 1.967 1.729 0.00 2.4984 2.333 3.00 3.301 1.3240 0.00 2.2724 0.00 5.533 1.7279 0.00 1.844 3.833 1.7234 0.00 2.2724 1.00 5.533 1.7279 0.00 1.844 3.853 1.7234 0.00 1.6424 1.00 2.0000 1.7776 0.00 1.849 2.4020 1.500 2.0000 1.2340 0.00 1.6491 1.00 2.0000 1.7776 0.00 3.469 2.4021 1.500 2.0000 1.2340 0.00 1.6491 1.00 0.00 1.4677 1.7776 0.00 3.469 1.500 2.000 1.2420 0.00 1.6492 1.00 0.00 1.4677 1.7779 0.00 3.469 1.500 2.7644 <td< td=""><td></td><td></td><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,250</td></td<>				· ·										1,250
100 0.40278 1.770 0.00 0.2448 0.2469 2.4441 1.230 0.00 2.974 100 0.00 1.700 0.00 2.972 0.00 2.972 100 0.00 9.057 1.770 0.00 1.614 4.989 1.00 3.338 12.240 9.90 1.071 1.001 3.338 12.240 9.90 1.071 1.011 1.012 9.90 1.011 1.012 9.90 1.0111 1.0111 1.0111		18,00		,12750	,000									2,472
		21,00	3,2500*	,12750	,000	2,8480	3,6520							2,555
0.00 0.00 -1.010 -1.010 -2.020														3,750
9.00	3,00							3,00	,00					,30
14.00 .9.67 .1250 .000 .5.47 1.318 .1.318 .1.338 .1.324 .1.357 15.00 2.611 .1.256 .0.00 2.201 .3.013 15.00 2.203 .1.324 .0.00 .1.314 .0.00 .1.314 .0.00 .2.611 .3.013 15.00 2.2057 .1.324 .0.00 .2.4271 0.00 .3.633 .1.7270 .0.00 .3.461 .4.333 .1.614 .2.2371 .3.00 .2.727 .2.424 0.00 .1.6337 .1.7270 .0.00 .4.614 .2.2353 .0.00 .1.111 .2.246 .9.653 .1.666 .0.0 .1.711 .2.246 .9.653 .1.666 .1.667 .2.244 .9.653 .1.666 .1.667 .2.244 .1.666 .1.667 .2.244 .1.666 .2.647 .3.186 .1.666 .2.647 .2.444 .1.666 .2.776 .2.776 .2.776 .2.776 .2.776 .2.776 .2.776 .2.776 .2.776									6,00	,1111	,12340	,993	-,2779	,50
15.00 2.000 1.2750 0.00 1.2860 2.4020 1.776 1.2340 0.000 1.890 2.4011 21.00 3.0833 1.7750 0.00 2.8444 3.4831 21.00 2.8441 3.405 2.4721 3.00 2.4721 30.00 7333 1.1750 0.00 2.8444 3.4831 21.00 2.8451 4.3240 3.00 2.4721 30.00 1687 1.1750 0.00 3.4481 4.8433 5.00 3.2272 1.1340 0.00 4.4721 1.00 1.1570 .1779 0.00 3.4481 1.1520 1.00 1.0272 1.1430 0.00 1.489 1.00 1.7507 1.779 0.00 2.2451 1.500 1.8897 1.2340 0.00 1.489 1.00 0.00 4467 1.750 0.00 1.4561 1.200 0.00 1.489 1.499 1.00 0.00 4467 1.3240 0.00 2.861												,157	-,0557	,72
16.00 2.111 1.1270 0.00 2.2014 3.0133 3.013 3.013 <														1,16
1.00 3.053 1.2759 0.00 2.8444 3.4851 1.00 0.00 3.00														2,38
30.00 3.861 1.763 3.00 3.277e 1.2340 0.00 2.2887 0.00 0607 1.7750 .060 .7763 .060 .000 .1111 .12340 .060 .600 1.00 .1177 .036 .0147 .1773 .066 .000 .1111 .12340 .000 .600 1.00 .21357 .10736 .000 .24847 .1280 .000 .1499 1.00 .21357 .1000 .21577 .000 .21576 .12840 .000 .1499 1.00 .26947 .17770 .000 .11820 .4984 .12400 .002 .21340 .000 .21867 1.00														2,47 3,25
0.00 3333 .12780 .186		30,00	3,8611*	,12750	,000	3,4591	4,2631							3,25
3.0.0	6,00		-,3333	,12750	,190	-,7353	,0686	6.00						,19
1:2.00 7:2700 7:270 <								-,						,10
									9,00					,61
				· ·					12,00	,6667*	,12340	,000	,2776	1,05
21.00 2.9167 1.2750 0.00 2.3247 3.3186 1.00.0 1.2750 1.00.0 2.2760* 1.2240 0.00 2.2760* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.2776* 1.2240 0.00 2.7776* 12.00 2.3333 1.2776 0.00 1.0147 1.818 -01147 6.00 2222 1.2340 0.00 1.2776 12.00 2.5000 1.2776 0.00 1.6285 2.4927 1.8.00 1.6667* 1.2340 0.00 1.2376 2.00 0.00 9776 0.00 17868 6814 1.200 0.00 2527* 1.2340 0.00 1281 3.00 9776* 1.2766 0.00 1285 .3840 6.00 3840 0.00 1281 1.2340				· ·										2,27
30.00 3.6844* 1.2750 .000 1.1240 1.000 2.2776 0.00														2,36
0.00										,				3,13
3.00 4833" 1.2750 0.00 9853 1814 3.00 3333 1.2340 6.03 7224 12.00 .3333 1.2750 0.00 1.0466 .7353 12.00 4.444 1.2340 0.03 0.0554 15.00 0.20278' 1.2750 0.00 1.6258 2.4297 1.600 1.7500 1.2340 0.00 1.2776 21.00 2.5000' 1.2750 0.00 2.8758 3.6797 1.2340 0.00 2.1387 3.00 91673' 1.2750 0.00 -1.4853 6814 1.4853 6811 1.2340 0.00 1.2561 9.00 9167' 1.2750 0.00 -1.4853 6867 1.2340 0.00 1261 9.00 1.6847 1.2750 0.00 1.2851 6867 1.2340 0.00 1683 9.00 1.6847 1.2760 0.00 1.2842 3.6464 1.500 1.3066'1.2340 0.00 24724	9,00					,		0.00						3,55
6.00 4167 1.2750 .036 6186 0147 12.00		3,00	-,5833*	,12750	,000	-,9853	-,1814	9,00						-,02 ,05
12.00 1.333 1.2750 1.90 0686 7.353 12.00 4.444 12.240 0.01 0.654 15.00 1.2776 1.2750 0.000 1.6258 2.4297 1.800 1.7650 1.280 0.000 1.2776 0.000 2.6980 2.900 2.2878 1.2700 2.2974 1.2340 0.000 2.2554 2.00 -0.033 1.2750 0.000 -1.3186 -6147 1.2340 0.000 -1.3563 9.00 7667 1.2750 0.00 -1.3186 -6147 1.2340 0.000 -1.6833 15.00 1.6833 1.2750 0.00 7353 0.6864 1.0803 1.2222 1.2340 0.000 4.1683 16.00 1.6847 1.2750 0.00 2.4647 1.2430 0.00 2.4647 1.2430 0.00 2.4647 1.2430 0.00 2.4724 5.00 2.6467 1.2750 0.00 2.2586 1.7847 2.5886 1.0413<		6,00	-,4167*	,12750	,036	-,8186	-,0147							,00
														,83
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									15,00	1,6667*		,000		2,05
				· ·	,				18,00	1,7500*	,12340	,000	1,3610	2,13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														2,91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12.00													3,33
	12,00							12,00						-,47
9,00 333 (1,275) (1,00) 7333 (0,06) (1,234) (1,234) (0,01) 6333 16,00 1.0833 12750 0.00 (1,212) (1,234) (0,00) .8332 18,00 1.6444 12750 0.00 1.222 (2,064) 1.3056 12240 (0,00) .8332 21,00 2.21667 1.2750 0.00 1.2825 2.2064 1.00 2.26033 1.2340 0.00 1.6443 5.00 0.0 2.21667 1.2750 0.00 -2.6425 3.3464 30.00 2.2000* 1.2340 0.00 2.2333 9.00 -1.4167 1.2750 0.00 -2.2353 -1.4314 6.00 -1.2324 0.00 -2.2379 12.00 1.0833* 1.2750 0.00 2.2431 1.44853 1.00 0.122340 0.00 -2.2477 12.00 1.818* 1.2750 0.00 -2.4273 1.4863 0.00 -2.2221 3.00 -														-,388 -,277
		9,00			,190					,				-,05
		15,00	1,0833*	,12750	,000	,6814	1,4853							,00 1,61
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1,6944*	,12750	,000	1,2925			18,00					1,69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									21,00	2,0833*	,12340	,000	1,6943	2,47
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15.00	,							30,00	2,5000*	,12340	,000	2,1110	2,88
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15,00							15,00		,				-1,69
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,				-1,61
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,49
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,27 -,83
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,47
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		21,00	1,0833*	,12750	,000	,6814	1,4853							1,25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1,8611*	,12750										1,66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18,00							18,00						-1,77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,58
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														-,91
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,30 1,16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														1,10
3,00 -3,0833* ,12750 ,000 -3,4853 -2,6814 3,00 -2,8611* ,12340 ,000 -3,2501 6,00 -2,9167* ,12750 ,000 -3,3186 -2,5147 6,00 -2,7500* ,12340 ,000 -3,1390 9,00 -2,5000* ,12750 ,000 -2,9020 -2,0980 9,00 -2,5278* ,12340 ,000 -2,9168 12,00 -2,1667* ,12750 ,000 -2,5686 -1,7647 12,00 -2,0833* ,12340 ,000 -2,9168 15,00 -1,0833* ,12750 ,000 -1,4853 -,6814 15,00 -,8611* ,12340 ,000 -1,2501 18,00 -,4722* ,12750 ,000 -,8742 -,0703 18,00 -,7778* ,12340 ,000 -1,1668 30,00 ,0778* ,12750 ,000 -4,4297 -3,6258 30,00 ,4167* ,12340 ,000 -3,5668 6,00 -3,641* ,12750 ,000 -4,2631 -3,4591 3,00 -3,2611* ,12340	21,00	,00	-3,2500*	,12750	,000	-3,6520		21,00						-2,55
9,00 -2,5000* ,12750 ,000 -2,9020 -2,0980 9,00 -2,5278* ,12340 ,000 -2,9168 12,00 -2,1667* ,12750 ,000 -2,5686 -1,7647 12,00 -2,0833* ,12340 ,000 -2,9168 15,00 -1,0833* ,12750 ,000 -1,4853 -,6814 15,00 -,8611* ,12340 ,000 -2,29168 18,00 -,4722* ,12750 ,000 -,8742 -,0703 18,00 -,7778* ,12340 ,000 -1,1668 30,00 ,7778* ,12750 ,000 -,8742 -,0703 18,00 -,7778* ,12340 ,000 -1,1668 30,00 ,00 -4,0278* ,12750 ,000 -4,4297 -3,6258 30,00 ,00 -3,3611* ,12340 ,000 -3,7501 3,00 -3,6944* ,12750 ,000 -4,2937 -3,2925 6,00 -3,1667* ,12340 ,000 -3,5557 9,00 <td></td> <td>3,00</td> <td>-3,0833*</td> <td>,12750</td> <td>,000</td> <td>-3,4853</td> <td>-2,6814</td> <td></td> <td>3,00</td> <td></td> <td></td> <td></td> <td></td> <td>-2,47</td>		3,00	-3,0833*	,12750	,000	-3,4853	-2,6814		3,00					-2,47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-2,7500*	,12340	,000	-3,1390	-2,36
15,00 -1,0833* ,12750 ,000 -1,4853 -,6814 15,00 -,8611* ,12340 ,000 -1,2501 18,00 -,4722* ,12750 ,009 -,8742 -,0703 18,00 -,7778* ,12340 ,000 -1,1668 30,00 ,7778* ,12750 ,000 ,3758 1,1797 30,00 ,4167* ,12340 ,000 -1,1668 30,00 ,00 -4,0278* ,12750 ,000 -4,4297 -3,6258 30,00 ,00 -3,3611* ,12340 ,000 -3,7501 3,00 -3,6611* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,6568 6,00 -3,2778* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,5557 9,00 -3,2778* ,12750 ,000 -3,3644 -2,5425 12,00 -2,9404* ,12340 ,000 -3,3835 12,00														-2,13
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-1,69
30,00 ,7778* ,12750 ,000 ,3758 1,1797 30,00 ,4167* ,12340 ,026 ,0276 30,00 ,00 -4,0278* ,12750 ,000 -4,4297 -3,6258 30,00 ,00 -3,3611* ,12340 ,000 -3,7501 3,00 -3,8611* ,12750 ,000 -4,2631 -3,4591 3,00 -3,2778* ,12340 ,000 -3,6668 6,00 -3,6944* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,5557 9,00 -3,2778* ,12750 ,000 -3,36797 -2,8758 9,00 -2,9444* ,12340 ,000 -3,3335 12,00 -2,9444* ,12750 ,000 -3,3464 -2,5425 12,00 -2,5000* ,12340 ,000 -2,8890 15,00 -1,8611* ,12750 ,000 -2,2631 -1,4591 15,00 -1,2778* ,12340 ,000 -1,6668														-,47
30,00 .00 -4.0278* .12750 .000 -4.4297 -3.6258 30,00 .00 -3.3611* .12340 .000 -3.7501 3,00 -3,8611* .12750 .000 -4.4297 -3.6258 30,00 .00 -3.3611* .12340 .000 -3.7501 6,00 -3,6944* .12750 .000 -4.0964 -3.2925 6.00 -3.1667* .12340 .000 -3.5557 9,00 -3,2778* .12750 .000 -3.6797 -2.8758 9.00 -2.9444* .12340 .000 -3.3335 12,00 -2.9444* .12750 .000 -3.3464 -2.5425 12.00 -2.5000* .12340 .000 -3.8890 15,00 -1.8611* .12750 .000 -2.2631 -1.4591 15.00 -1.2778* .12340 .000 -2.8890														-,38
3,00 -3,8611* ,12750 ,000 -4,2631 -3,4591 3,00 -3,2778* ,12340 ,000 -3,6668 6,00 -3,6944* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,6668 9,00 -3,2778* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,5557 9,00 -3,2778* ,12750 ,000 -3,6797 -2,8758 9,00 -2,9444* ,12340 ,000 -3,3335 12,00 -2,9444* ,12750 ,000 -3,3464 -2,5425 12,00 -2,5000* ,12340 ,000 -2,8890 15,00 -1,8611* ,12750 ,000 -2,2631 -1,4591 15,00 -1,2778* ,12340 ,000 -1,6668	30.00							30.00						,80
6,00 -3,6944* ,12750 ,000 -4,0964 -3,2925 6,00 -3,1667* ,12340 ,000 -3,5557 9,00 -3,2778* ,12750 ,000 -3,6797 -2,8758 9,00 -2,9444* ,12340 ,000 -3,3335 12,00 -2,9444* ,12750 ,000 -3,3464 -2,5425 12,00 -2,5000* ,12340 ,000 -2,8890 15,00 -1,8611* ,12750 ,000 -2,2631 -1,4591 15,00 -1,2778* ,12340 ,000 -1,6668	3,30							30,00						-2,97
9,00 -3,2778* ,12750 ,000 -3,6797 -2,8758 9,00 -2,9444* ,12340 ,000 -3,3335 12,00 -2,9444* ,12750 ,000 -3,3464 -2,5425 12,00 -2,5000* ,12340 ,000 -2,8890 15,00 -1,8611* ,12750 ,000 -2,2631 -1,4591 15,00 -1,2778* ,12340 ,000 -1,6668														-2,00
12,00 -2,9444* ,12750 ,000 -3,3464 -2,5425 12,00 -2,5000* ,12340 ,000 -2,8890 15,00 -1,8611* ,12750 ,000 -2,2631 -1,4591 15,00 -1,2778* ,12340 ,000 -1,6668														-2,55
					,000		-2,5425							-2,11
18,00 -1,2500* ,12750 ,000 -1,6520 -,8480 1 18,00 -1,1944* ,12340 ,000 -1,5835										-1,2778*		,000	-1,6668	-,88
21,00 -,7778* ,12750 ,000 -1,1797 -,3758 21,00 -4167* ,12340 ,026 -,8057										-1,1944*	,12340	,000	-1,5835	-,80 -,02

Based on observed means. * The mean difference is significant at the ,05 level.

Based on observed means. *. The mean difference is significant at the ,05 level.

APPENDIX F

MAIN EFFECTS, INTERACTIONS, RESIDUAL, PROBABILITY PLOTS AND EQUAL VARIANCES FOR Phenolic Compounds AS AN EXAMPLE, DECISION FOR OPTIMUM COMBINATIONS

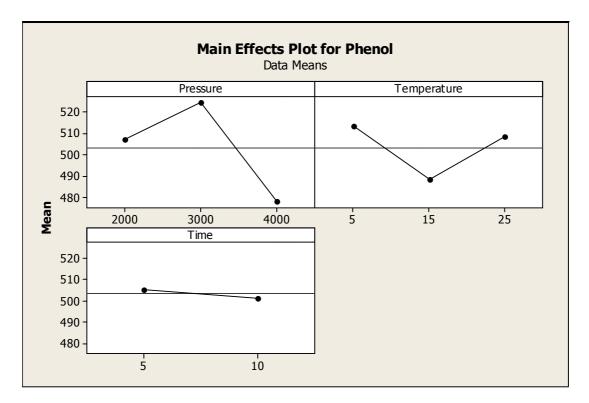


Figure F.1 Main Effects Plot for Phenol

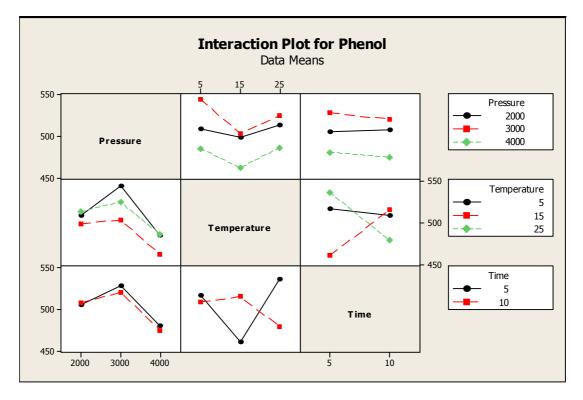


Figure F.2 Interaction Plot for Phenol

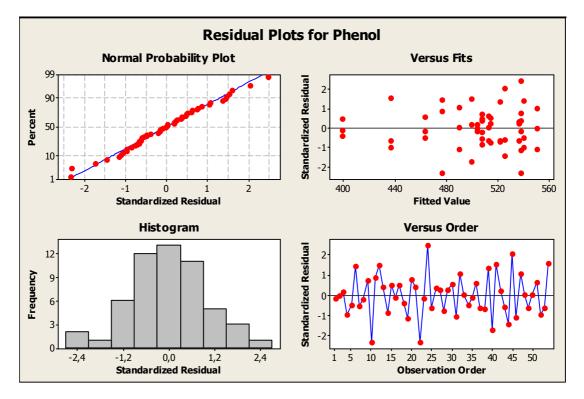


Figure F.3 Residual Plots for Phenol

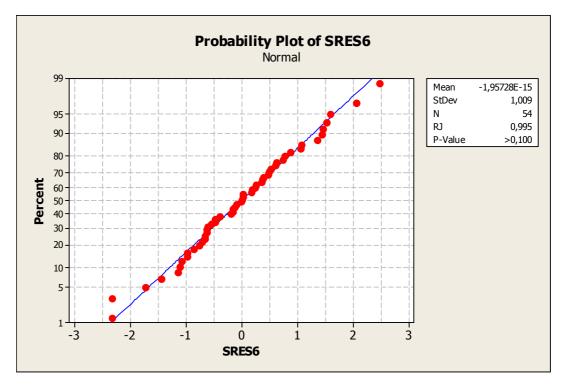
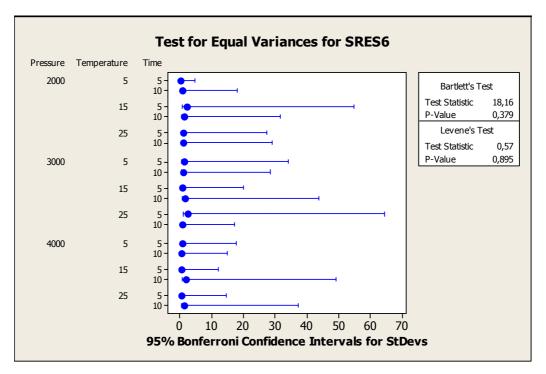



Figure F.4 Probability Plot of SRES6

H0: The errors are normally distributed.

Figure F.5 Test for Equal Variances for SRES6

H0: Population of each treatment level have the same variance.

General Line	General Linear Model: Phenol versus Pressure; Temperature; Time											
Temperature	Type Leve fixed fixed fixed	3 20 3 5)00; 3000; ; 15; 25	4000								
Analysis of	Variance for	Pheno	ol, using	Adjusted	SS for Te	sts						
Source		DF	Seq SS	Adj SS	Adj MS	F	P					
Pressure		2	20004,2	20004,2	10002,1	31,84	0,000					
Temperature		2	6316,4	6316,4	3158,2	10,05	0,000					
Time		1	187,9	187,9	187,9	0,60	0,444					
Pressure*Tem	perature	4	1774,2	1774,2	443,5	1,41	0,250					
Pressure*Tim	ie	2	261,5	261,5	130,7	0,42	0,663					
Temperature*	Time	2	28383,8	28383,8	14191,9	45,18	0,000					
Pressure*Tem	perature*Tim	e 4	21003,9	21003,9	5251,0	16,72	0,000					
Error		36	11308,1	11308,1	314,1							
Total		53	89240,0									
S = 17,7233	R-Sq = 87,	33%	R-Sq(adj)	= 81,34%	ŝ							

Figure F.6 General Linear Model: Phenol versus Pressure; Temperature; Time