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ABSTRACT 
 

 

STRUCTURED NEURAL NETWORKS FOR MODELING AND 

IDENTIFICATION OF NONLINEAR MECHANICAL SYSTEMS 

 

 

Kılıç, Ergin 

Ph.D., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Melik Dölen 

Co-Supervisor: Asst. Prof. Dr. A. Buğra Koku 

 

September 2012, 227 pages 

 
 
 
Most engineering systems are highly nonlinear in nature and thus one could not 

develop efficient mathematical models for these systems. Artificial neural 

networks, which are used in estimation, filtering, identification and control in 

technical literature, are considered as universal modeling and functional 

approximation tools. Unfortunately, developing a well trained monolithic type 

neural network (with many free parameters/weights) is known to be a daunting 

task since the process of loading a specific pattern (functional relationship) onto a 

generic neural network is proven to be a NP-complete problem. It implies that if 

training is conducted on a deterministic computer, the time required for training 

process grows exponentially with increasing size of the free parameter space (and 

the training data in correlation). As an alternative modeling technique for 

nonlinear dynamic systems; this thesis proposed a general methodology for 

structured neural network topologies and their corresponding applications are 

realized. The main idea behind this (rather classic) divide-and-conquer approach 
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is to employ a priori information on the process to divide the problem into its 

fundamental components. Hence, a number of smaller neural networks could be 

designed to tackle with these elementary mapping problems. Then, all these 

networks are combined to yield a tailored structured neural network for the 

purpose of modeling the dynamic system under study accurately. Finally, 

implementations of the devised networks are taken into consideration and the 

efficiency of the proposed methodology is tested on four different types of 

mechanical systems.  

 

Keywords: Structured Neural Networks, Position Error Estimation, Long-term 

Pressure Prediction, Timing-Belt Drive, Cable-Drum Mechanism. 
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ÖZ 
 

 

DOĞRUSAL OLMAYAN MEKANİK SİSTEMLERİN MODELLEMESİNDE 

VE TANISINDA KULLANILAN YAPILANDIRILMIŞ YAPAY SİNİR 

AĞLARI 

 

 

Kılıç, Ergin 

      Doktora, Makina Mühendisliği Bölümü 

      Tez Yöneticisi    : Yrd. Doç. Dr. Melik Dölen 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. A. Buğra Koku 

 

Eylül 2012, 227 sayfa 

 
 
 

Mühendislik alanındaki sistemlerin çoğunun doğrusal-olmayan davranış 

göstermesi bu sistemler için güvenilir matematiksel modellerin oluşturulmasını 

zorlaştırmaktadır. Yapay sinir ağları kestirme, filtreleme, tanılama ve denetleme 

alanlarında sıklıkla kullanıldıklarından   evrensel modelleme ve fonksiyon 

yaklaşıklama araçları olarak kabul görülmektedir. Bazı tip fonksiyonların genel 

tipteki sinir ağlarına uyarlanması NP karmaşıklık sınıfına girdiğinden, iyi 

eğitilmiş yekpare bir sinir ağı elde etmek oldukça zordur. Aslında, sinir ağının 

eğitilebilmesi için gereken süre, ağın sahip olduğu serbest değişken uzay 

boyutunun artmasıyla üstel bir biçimde artmaktadır.Doğrusal olmayan dinamik 

sistemlerin alternatif bir biçimde modellenebilmesi için bu tez kapsamında 

yapılandırılmış yapay sinir ağ topolojileri için bir yöntem dizisi önerilmekte ve bu 

yöntemlerin ağ yapıları ile birlikte uygulaması gerçekleştirilmektedir. Yöntemler 

dizisinin ana fikri sistemi temel yapılarına bölmektir. İrdelenen sistemin temel 
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yapılarına ayrılmasında kullanılacak olan ‘parçala ve çöz’ yöntemi ise, aslında 

sistem hakkında sahip olunan ön bilgiye önemli ölçüde bağlı olmaktadır. 

Böylelikle, ayrıştırılan bu yapılar nispeten küçük yapay sinir ağları ile kolaylıkla 

modellenebilmektedirler. Daha sonra, bu küçük yapay ağlar birbirleriyle tekrar 

birleştirilerek ve uygun hale getirilerek dinamik sistemi tam olarak 

modelleyebilecek bir yapılandırılmış yapay sinir ağı oluşturulur. Daha sonra, 

yöntemin etkinliği dört adet mekanik sistem üzerinde test edilmiştir.  

  

Anahtar Kelimeler: Yapılandırılmış Yapay Sinir Ağları, Konum Hatası Tahmini, 

Uzun Vadeli Basınç Kestirimi, Dişli Kayış, Kablo Kasnak Mekanizması. 
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CHAPTER 1 
 

 

INTRODUCTION 
 
 
 
In engineering domain, nearly all the systems are highly nonlinear so that one 

cannot easily derive their exact mathematical models which are based on the 

physical laws about the system behavior. This modeling technique is known as 

white-box modeling since all the model variables and parameters have a physical 

meaning about the system under study and give an insight into the system behavior. 

However, such a white-box modeling technique may not be appropriate for some 

systems due to the following reasons: 

 

• The physical knowledge about a system could be insufficient to develop 

mathematical equations which will describe the system thoroughly. 

 

• The measurement (or finding the exact value) of some physical parameters or 

coefficients used in the mathematical expressions could be limited or 

impossible.    

 

• Mathematical expression of a system would most likely be an approximation of 

the investigated system since the real parameters of the process can never be 

known exactly. 

 

• Although an exact mathematical modeling of a system is derived, the 

implementation of the resulting model would be difficult and time-consuming 

in a hardware platform. 
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As an alternative to mathematical modeling, some variables distinguishing the 

behavior of the nonlinear system could be measured and used to create approximate 

models (with desired accuracy). Here, the modeling is to devise a structure in which 

its parameters are determined in a way that when the same input(s) is applied to the 

nonlinear system and model, their corresponding outputs should match as much as 

possible. Simulating (or predicting) the outputs of a system accurately, the 

developed models could then be used for control purposes, fault-detection or 

estimating the systems’ outputs directly (soft sensor). In the technical literature, it is 

seen that artificial neural networks (ANNs) are generally used for identification and 

control tasks of dynamic systems since they are highly efficient nonlinear modeling 

or decision making tools. 

 

This chapter includes the following sections. An overview about ANNs is given in 

Section 1.1. Next, the motivation of the thesis is explained in Section 1.2. Following 

that, Section 1.3 gives the thesis statement. Finally, the outline of the thesis is given 

in Section 1.4.    

 

1.1 Artificial Neural Networks 

An artificial neural network (ANN) is a parallel processor in which a number of 

neurons are used to imitate the working principle of a biological brain.  Indeed, a 

large number of neurons are connected to each other with different weight values 

and are activated by input signals to produce an intelligent behavior. They are 

mainly used for information processing while interacting with a system after a 

learning operation in which the weight values are adjusted to perform a 

computationally complex task. ANNs are especially useful in system identification 

and control (Narendra and Parthasarathy, 1990) where there is no way to write out 

the exact mathematical model of the nonlinear process under study. Robotics (King 

and Hwang, 1989) / optimization (Tagliarini et al., 1991) / decision making (Tan et 

al., 1996) / pattern recognition in radar systems (Orlando et al., 1990), face 

identification (Zhang and Fulcher, 1996), object recognition (Watanabe and 

Yoneyama, 1992) / sequence recognition such as speech recognition (Lippmann 

1989) and handwritten text recognition (LeCun et al., 1989) / data processing 
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including filtering (Weber et al., 1991), clustering (Sato, 1995), blind signal 

separation (Girolami and Gyfe, 1997) and compression (Iwata et al., 1990) / 

medical diagnosis (Moallemi, 1991) / financial forecasting (Ankenbrand and 

Tomassini, 1996) and weather forecasting (Liu and Lee, 1999) are commonly used 

implementation areas of the ANNs.  

The most critical phase of designing an ANN is absolutely the determination of the 

weight values. In fact, the weights, which are randomly initialized, should be placed 

in an appropriate location by a proper learning algorithm in the huge weight domain 

where the network will be globally stable. Optimization theory and statistical 

estimation techniques are generally used to train the ANNs in a straightforward 

fashion. Back-propagation by gradient descent (Werbos, 1974), genetic algorithms 

(Goldberg, 1989), simulated annealing (Kirkpatrick et al., 1983), Hebbian learning 

(Hebb, 1949), Boltzmann machine (Hinton et al., 1984), mean field annealing 

(Soukoulis et al., 1983), Gaussian machine, (Akiyema et al., 1991), expectation 

maximization (Dempster et al., 1977), k-means clustering algorithm (MacQueen, 

1967) and winner-take-all learning rule (Hecht-Nielsen, 1987) are the names of 

frequently used methods for training a ANN. 

 

In general, three major learning paradigms, which are the supervised, unsupervised 

and reinforcement learning, are used to become skilled at the assigned task to the 

ANN. In supervised learning, the weights of the network are changed to decrease 

the error between the output values of the system and those of the network for each 

input pattern. It is frequently used for system identification and control. 

Unsupervised learning is mostly used for clustering and pattern recognition where 

weight modifications are only realized with respect to the correlation among the 

input signals. Finally, in reinforcement learning, the weight modifications are done 

based on a numerical reward signal, which indicates how well the ANN performs. It 

is often used in systems that interact with an environment such as robots navigation, 

collision avoidance, learning autonomous agents and games. As the objective of this 

thesis is to devise ANN models for nonlinear systems, only supervised learning 

algorithms will be taken into consideration throughout the thesis study. 
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After a supervised learning operation, some criterions such as training error, 

learning speed, model generalization and interpretation are used to evaluate the 

utility of the ANN model. The training error only indicates the closeness of the 

network response to the target in the training scenario. It does not give any 

information about the stability of the network model. Therefore, the most important 

criterion is the generalization performance of the ANN. The modeling accuracy of 

the network must be tested with various input patterns which are not used in the 

training scenario. Moreover, a higher learning speed with minimum number of 

training samples is always sought due to the convenient real time implementation of 

the ANN models in a hardware platform. Lastly, the interpretation of a network 

architecture and its parameters are currently disregarded since most of the present 

networks’ architectures are in black-box type. Eventually, the lack of interpretation 

prevents the incorporation of a priori engineering knowledge about the system into 

to the devised model. 

 

1.2 Motivation of the Thesis 

In mechanical engineering domain, nearly all the systems are highly non-linear 

(housing too much non-linearity such as friction, dead-zone, saturation, backlash 

and hysteresis) but some of them are beyond the boundary that one could define 

them in mathematical equations. Although, ANNs are used for the identification 

and control of nonlinear systems, they are not accepted as a widespread modeling 

methodology since a monolithic ANN could not be trainable for very complex 

systems and they are viewed as unstructured black-box models which makes them 

difficult to acquire an insight into the system under study.  

 

On the other hand, there are numerous nonlinear mechanical systems about which a 

priori information is already exists. This knowledge of a system’s dynamics could 

be used to increase the performance and also to determine the model structure of the 

devised ANNs. Therefore, the behavior of these systems could be emulated in a 

more accurate way by ANNs. The main motivation for embedding a priori 

information into the devised ANN will be to structure a network architecture which 

is convenient with the dynamics of the nonlinear system under study. For that 
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purpose four different types of mechanical systems are selected as the application 

domain of the ANNs in this thesis work.  

 

First one is about a study where the position of a carriage in a timing-belt drive 

system is to be estimated via low-cost position sensor on the driver side. For this 

task, first the characteristics of the position error due to the transmission system will 

be explored. Next, this a priori information is to be utilized while devising a 

relevant neural network model since it will be seen that a monolithic ANN (a black-

box model) could not estimate the hysteresis behavior of the position error 

dynamics at the desired levels. Therefore, the devised ANN model could be used as 

a viable position estimation scheme in cost-sensitive machines. 

 

Next, valve controlled and a variable speed pump controlled hydraulic servo 

systems are chosen as a benchmark test platforms since it was found that there is 

not any study in the current literature about the long-term pressure prediction of 

hydraulic systems. After showing that classical black-box models were not 

sufficient for capturing the nonlinear behavior of the hydraulic systems, specific 

ANN models are to be proposed utilizing a priori information on the investigated 

systems to predict the pressure dynamics in the hydraulic cylinder chambers 

without using any pressure sensors. Consequently, an accurate pressure dynamic 

model may allow a pressure sensor to be replaced by an ANN model (intelligent 

sensor) to minimize the overall cost and the sensor-related malfunctions in the 

hydraulic systems. 

 

Finally, a cable-drum (or capstan drive) mechanism, is chosen as the last benchmark 

test platform for another challenging prediction problem. It is aimed to predict the 

slippage between the cable and the drum; therefore, this type of mechanisms could 

be used as linear motion sensor. In that study, a carriage will house a cable-drum 

mechanism and the position of the carriage will be predicted via ANN, whose input 

will be only the position signal coming from a rotary encoder attached to the drum 

itself. Again, a priori knowledge will be used while designing network models so 
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that rigorous experimental tests are performed first to understand the nonlinear 

behavior of the slippage between the cable and drum.  

 

1.3 Thesis Statement 

Most engineering systems are highly nonlinear in nature and thus one could not 

develop efficient mathematical models for these systems. ANNs, which are used in 

prediction, filtering, identification and control in technical literature, are considered 

as universal modeling and functional approximation tools. Unfortunately, a 

conventional neural network development paradigm, which exclusively includes 

black-box approaches, is known as an exhaustive process and has some problems 

such as long training phases and (most notably) inaccuracy and instability problems 

for complex physical systems. Moreover, a well-trained ANN does not give any 

insight about the system to be modeled. 

 

Currently, procedure for determining appropriate model structures for a specific 

system is still an unsolved problem in the neural network domain. Therefore, 

devising proper network structures for the system under investigation in a 

systematic fashion is extremely attractive in the related research field. As an 

alternative modeling technique for nonlinear dynamic systems; this thesis proposes 

a general methodology for the design of structured neural networks (SNNs) in a 

modular form with the sketchy guidance of a priori information on the related 

system. The applied approach adopted here is especially helpful while designing 

SNNs having an accurate prediction or estimation capability for the nonlinear 

dynamic systems whose exact physical models are not known exactly. However, the 

main problems remain that how to structure the system to be identified in modular 

neural network format and then how to combine the individual networks in order to 

form the unified one at the end. To clarify the aforementioned questions, some 

highly nonlinear mechanical systems are chosen as base platforms of application 

domain of the SNNs. Therefore, some practical implementations of SNNs will be 

realized on the chosen mechanical systems so that one can find the appropriate 

network architectures, which are to be used directly, for these types of systems later. 
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1.4 Outline of the Thesis 

A general review of the state of the art about nonlinear system modeling and 

identification using ANNs is given in Chapter 2. Structured neural network 

methodology to model nonlinear dynamic systems is presented in Chapter 3. 

Chapter 4 introduces a feasible position estimation scheme for timing-belt drives 

that could eliminate the position errors due to the highly nonlinear behavior of the 

belt-pinion gear mechanism. In Chapter 5, black-box and structured neural network 

models are developed to predict the cylinder chamber pressures of a valve 

controlled hydraulic system in the long-term. Similarly, Chapter 6 focuses on the 

design of ANNs to predict the chamber pressures in hydraulic cylinder of a 

variable-speed pump controlled hydraulic system using traditional techniques and 

utilizing the sketchy guidance of a priori information about the process at hand. 

After that, another structured neural network is designed and proposed in Chapter 7 

in order to predict the slippage in the cable-drum mechanisms, which could then be 

used as a linear motion sensor.  Finally, Chapter 8 presents the contributions of this 

dissertation.  This chapter also focuses on the future work of this research.      
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CHAPTER 2 
 

 

REVIEW OF THE STATE OF THE ART 
 
 
 
2.1 Introduction 

This chapter presents a review of the state of the art about using ANNs for the 

system identification and modeling of nonlinear systems. Section 2.2 takes a close 

look at the literature about ANN architectures within the framework of nonlinear 

system modeling and identification of various processes. Next, Section 2.3 

emphasizes the importance of developing accurate ANN models while designing 

nonlinear controllers for complex systems. Moreover, hardware implementations of 

the ANNs in parallel processors are investigated in Section 2.4. Following, Section 

2.5 is about the literature review of the generalization of ANNs. The review of the 

modularity approach in the ANNs, which is highly needed for this thesis work, is 

presented in Section 2.6. Finally, the chapter closes with the identified research 

opportunity in Section 2.7 after a detailed literature survey work.  

 

2.2 Nonlinear System Modeling and Identification 

In literature, there exist many models (and accompanying identification techniques) 

such as autoregressive (AR), autoregressive with exogeneous input (ARX), 

autoregressive moving average (ARMA), autoregressive moving average with 

exogeneous input (ARMAX), output error (OE), Box-Jenkins (BJ), finite/infinite 

impulse response (FIR/IIR) filters and orthonormal basis functions with 

Laguerre/Kautz filters. (Ljung, 1999; Van den Hof et al., 2005; Lemma et al., 

2010). Least-squares (LS), recursive least squares (RLS) with exponential 

forgetting and instrumental variables methods are generally used to find the 
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parameters of the aforementioned models. Unfortunately, these well known and 

frequently used models are insufficient for nonlinear systems. The most generic 

methodology for modeling and identification of nonlinear systems is based on 

black-box models whose main tools are ANNs, neuro-fuzzy networks (Te Braake et 

al., 1994), Volterra-series (Liu et al., 1998), Hammerstein and Weiner models 

(Aguirre et al., 2005), and wavelet networks (Zhang and Benveniste, 1992). In fact, 

ANNs could establish a model for the behavior of nonlinear system through the real 

system’s input and output data for control- and/or fault-diagnostic purposes. 

However, the determination of the architecture (or structure) of the network, 

network size, memory model, training set while satisfying all the necessary 

conditions/constraints for accurate modeling remains an overwhelming task 

(Sorjamaa et al., 2007).  

Despite the fact that the neural networks have performed well while predicting the 

response of nonlinear time series (one-step or multi-step ahead) (Mirzaee, 2009), 

the prediction of the nonlinear system’s behavior in the long run (or in sufficiently 

“long” infinite time interval) is proven to be difficult (Maria et al., 2008). Nonlinear 

predictor models have received significant attention when the conventional ARX 

and ARMAX models were modified as nonlinear model architectures such as 

nonlinear autoregressive with exogenous input (NARX) and nonlinear 

autoregressive moving average with exogenous input  (NARMAX) models (Parlos 

et al., 2000). 

Especially, if the aim is to perform a long-term prediction task, it is obvious that the 

outputs of the predictor (for a finite number of time steps) must be utilized as an 

input to the model itself. In that case, the long-term prediction becomes an 

overwhelming task (Haykin and Li, 1995) due to the accumulation of errors and the 

lack of reliable estimates. Recurrent neural network (RNN) models have feedback 

connections and play important role in such complex tasks. RNN models are able to 

store information by the help of feedback loops which are not exist in feed-forward 

neural networks (FNN). Elman-type and Jordan-type networks were the first 

designed recurrent structures which are mainly comprised from feed-forward 

architectures but having some small number of local and/or global feedbacks inside 
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the network (Kolen and Kremer, 2001). Apart from that, NARX models, which 

could be easily adapted to model dynamic systems through a tapped-delay-line 

(TDL) of input(s) and measured output(s), constitute the well-known nonlinear 

output error (NOE) models encountered in the literature (Wong and Worden, 2007; 

Witters and Swevers, 2010) by feeding back the TDL of model output(s) into the 

input vector instead of measured output(s). This aforementioned recurrent network 

is usually trained by means of real-time recurrent learning (RTRL) algorithm 

(Williams and Zipser, 1989). However, network training operations, in which the 

input-output signals are related to each other with the temporal dependencies (of a 

dynamic system), are quite difficult especially in the long term intervals using the 

gradient based learning methods (Bengio et al., 1994; Lin et al., 1998).  

Designing a very accurate model for a specific process is still a tough issue in the 

field of nonlinear dynamic system identification. Most of the designed models are 

used for only one-step ahead prediction tasks as they are highly needed in advanced 

controller topologies, which will be presented in Section 2.3. Some of them could 

be used in multi-step ahead prediction tasks but to capture the exact dynamics of a 

real complex process is doubtlessly a very challenging topic in the current literature. 

Li (1995) used RNNs to emulate the dynamic behaviors of a two-link robot arm and 

a screw compressor. The RNNs have one hidden layer, in which the neurons 

feedback themselves, and a static output layer which collects the output of hidden 

layer in a linear way. It was shown that RNNs were well adapted to emulate the 

nonlinear behavior of such dynamic systems through their own dynamics. 

Zamarreno and Vega (1998) proposed a RNN, whose structure was in the same way 

of a nonlinear state space equation, for the identification of nonlinear systems. This 

network model called state space neural network (SSNN) and used for the 

identification of a chemical reactor. Moreover, Schenker and Agarwal (1998) used a 

SSNN model in the output prediction of systems with backlash. It was shown that 

this state-feedback neural network structure could give out effective solution to the 

output prediction of simulation based systems with hysteresis or backlash. As an 

important feature, the structure of the proposed network model enables a linear 

model could be directly derived from its architecture so that linear control theorems 
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could be effectively applied to check the stability of the devised SSNNs. Next, 

Baruch et al. (2002) used the same network architecture for real time identification 

and adaptive tracking control of a DC motor after showing that the identification 

error is stable via Lyapunov function. Later, Baruch et al. (2005) proposed a fuzzy-

neural model, containing two local RNNs, for the compensation of a gear backlash 

in a simulated mechanical system. Consequently, the states of the RNNs were used 

in a fuzzy rule based adaptive control system.  

Hamrouni et al. (2011) trained a RNN to show that these models could be 

effectively used for modeling complex and nonlinear processes in the industry when 

the information about a process was not available to write out exact mathematical 

equations that accurately describe the unknown system. By using 28 variables 

related with a textile process (e.g. linear density of the yarn, strength of the fiber 

and heat setting, etc.), the color of denim fabrics are predicted in a successful 

manner. 

Witters and Swevers (2010) designed a NOE type neural network for modeling of a 

semi-active hydraulic damper in a passenger car. It was found that the devised 

model could predict the damper forces in the long-term using the position, velocity 

and acceleration of the hydraulic cylinder plus the control signal applied to the 

valve. As it was clearly indicated in the study, the most difficult aspect of black-box 

modeling was choosing the variables and determining their TDL orders in the 

regression vector in order to describe the system behavior accurately.  

Piroddi and Spinelli (2003) proposed an iterative regressor selection procedure and 

applied it for identification of a magneto-rheological damper by using a polynomial 

based NARX model. In each iteration, a new regression variable was added to the 

input vector and the model was tested after a training operation whether the 

accuracy of the model was improved or not. Lastly, an iterative algorithm was also 

applied to remove some regression elements for a model performance enhancement. 

Therefore, the optimum regression vector elements were determined after tedious 

iterations. 
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Han et al. (2011) proposed two dynamic neural networks (DNNs) with multi-time 

scales, in which the first one accepts the measured process output as an input to 

itself but the second one replaces the process output with the state variables of the 

model for the identification of nonlinear system. The developed DNNs were trained 

using a Lyapunov synthesis method and the success of the proposed identification 

method was only illustrated for some simulated systems based on the assumption 

that all the system states were completely measurable.    

Dang and Tan (2007) used radial basis function (RBF) neural networks for 

modeling the hysteresis behavior of a piezo-ceramic actuators for only a one step 

ahead prediction task in order to compensate the error of the actuator in the 

controller. Indeed, these dynamic RBFs were utilized for transformations of phase 

lag and nonlinear magnitude to approximate the real output of the piezo-ceramic 

actuator. Later, Deng and Tan (2008) proposed a diagonal recurrent neural network, 

in which modified backlash operators were used as the activation functions of the 

hidden layer, to model the dynamic behavior of piezo-electric actuators for long-

term prediction task.    

Aadaleesan et al. (2008) proposed a Weiner type models to identify highly 

nonlinear systems. The inputs were first passed from a Laguerre basis filters in 

order to capture the linear dynamic part of the system. First, some a priori 

information about the process dynamics was used to find the poles of the Laguerre 

filter for capturing the linear dynamic part of the system. Next, the output of the 

Laguerre filters’ states were used as input to the wavelet network for the mapping of 

static nonlinearities. The performance of the model was tested on a simulation 

based continuous bioreactor and a real-time process data taken from a 

pasteurization process. It was seen that the devised models could capture the output 

behavior of the processes efficiently. 

Gonzalez-Olvera and Tang (2007) proposed a new structure of recurrent neuro-

fuzzy network for black-box identification of nonlinear systems. One recurrent and 

another static fuzzy inference system were interconnected to form a state-space 

model structure. An initialization procedure was also proposed for the parameters of 

the model to get out of falling into a local minimum while using a gradient-based 
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training method. The proposed modeling scheme was successfully applied on 

identification of a simulated benchmark system, which is taken from Narendra and 

Parthasarathy (1990), and a nonlinear laboratory system (a three-tank array system). 

Later, Juang and Hsieh (2010) presented a locally recurrent fuzzy neural network 

with support vector regression (LRFNN-SVR) for modeling of nonlinear dynamic 

systems. The LRFNN-SVR was constructed by using a clustering algorithm and an 

iterative SVR learning approach which finds the feedback gains in the recurrent 

model. Model was used for the prediction of a chaotic discrete-time series and the 

identification of a simulated nonlinear dynamic system in a successful manner. 

Moreover, Yilmaz and Oysal (2010) proposed fuzzy wavelet neural network 

(FWNN) model for the prediction and the identification of nonlinear dynamic 

systems. In the proposed model, the traditional THEN parts of fuzzy rules were 

replaced by wavelet basis functions. It was seen that a model with reduced network 

size had been achieved by using the wavelets as the activation function in the 

hidden layer of the neural network. The successive performance of the proposed 

model was illustrated with using a Box-Jenkins time series data (gas furnace data), a 

Mackey Glass time series data and two simulated nonlinear plants; but, for only a 

one-step ahead prediction task. Furthermore, Treesatayapun (2010) introduces a 

multi-input fuzzy rules emulated network for system identification of an unknown 

system to be used in an adaptive control algorithm. The already gained knowledge 

about the system under study is utilized to set some initial parameters of the overall 

network model. 

Ren and Lv (2011) proposed a new self-constructing neural network, called 

dynamic self-optimizing neural network, for a class of extended Hammerstein 

systems. The hidden layer was constructed online according to the plant dynamics 

with applying an algorithm which includes growing and pruning steps. Therefore, 

the algorithm is capable of adjusting both the network structure and weights without 

any a priori knowledge about the system under study. But, the efficiency of the 

model was only demonstrated for identification of three simulated Hammerstein 

type systems.    
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Broad range of publications on ANN literature use sigmoidal neural networks 

where the structure of the used neurons is fixed but only the connection weights are 

changed to capture the assigned task. Contrary to sigmoidal networks, weight 

coefficients are constant but the continuous activation functions are searched in 

Kolomogorov neural networks (Kurkova, 1991). But, the original Kolmogorov 

network was very complicated since finding the appropriate activation functions, to 

be used in the neurons, are not easy and the numerical implementation of the overall 

training algorithm is not practical (Sprecher, 1996). This problem was solved by 

introducing linear, polynomial or integer-valued function as the internal activation 

function of the Kolmogorov neural network. Next, this modified Kolmogorov 

neural network was used for the identification of Hammerstein and Weiner type 

nonlinear systems in Michalkiewicz (2012). Moreover, B-spline neural networks 

(BSNNs), in which global sigmoid activation functions are replaced with local B-

spline activation functions, were also used for the identification of nonlinear 

systems. The information was stored locally in BSNNs as the RBFs maps the input-

output data. Lightbody et al. (1997) used BSNN for modeling of a chemical plant 

(pH neutralization plant). Recently, Coelho and Pessoa (2009) used BSNN for one-

step ahead forecasting of a gas combustion process and a ball-and-tube system. 

Moreover, a new complex-valued B-spline neural network was proposed by Hong 

and Chen (2011) for modeling of general complex-valued systems. The model was 

basis on the tensor product from the two univariate B-spline neural networks using 

the real and imaginary parts of the system input.       

Some studies in the literature about the prediction of nonlinear time series and 

dynamic systems are presented in Table 2.1. It is observed that the system 

identification is mostly realized for one step or multi-steps ahead prediction tasks. 

The prediction performances of the black-box models were found to be inadequate 

in long time intervals as the system under study was highly nonlinear and complex. 

On the other hand, there could be some nonlinear models or observes which might 

be used as a soft sensor in the industry. Therefore, it is believed that this thesis, 

which concentrates on the accurate prediction of some highly nonlinear mechanical 

system’s outputs for the possibility of eliminating costly sensors, is in line with the 

research efforts in the current state of the art. 
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Table 2.1 Prediction studies on time series and dynamic system modeling. 
 

Research Type of Model Application Domain Prediction
Maria et al., 
2008. 

NARX, Elman, 
Time Delay NN 

Chaotic  laser 
 time series 

60 steps 

Zemouri at al., 
2010. 

Recurrent RBF, 
NARX 

Mackey Glass time series 1 step 

Zemouri et al., 
2010. 

Recurrent RBF+ 
NARX 

Lorenz time series 10 steps 

Ardalani et al., 
2010. 

ELMAN + NARX Lorenz time series 1 step 

Watton and Xue, 
1997. 

Biased-ARMAX 
(BARMAX) 

Hydraulic system 
  

Long-term 

He and Sepehri, 
1999. 

NARMAX Hydraulic system 
  

15 steps 

Parlos et al., 
2000. 

NARX  U Tube steam generator 
 

 Multi-
steps 

Sorjamaa et al., 
2007. 

Support vector 
machines 

Poland Electricity Load Long-term 

Tufa et al., 2010. Generalized 
orthonormal filter 

A weakly damped linear 
system 

1 to 5 
steps 

Chan and Lin, 
2000. 

Lateral Delay Neural 
Network (LDNN) 

Time series prediction and 
dynamic modeling 

1 step 

Liberati et al., 
2004. 

Feed-forward neural 
network 

Shock Absorber 
 

1 step 

Patel et al., 2010. NARX Hydraulic Suspension 
Dampers 
  

1 step 

Aquirre et al., 
2005. 

Hammerstein and 
Weiner Model 

Electrical Heater 
 

Long-term 

Piroddi and 
Spinelli, 2003. 

polynomial NARX  Dynamics of the arch dam  
  

Long-term 

Chen et al., 2008. NARX  Direct injected Diesel 
engine 

Long-term 

Li, 1995. RNN Screw Compressor Long-term 
Barbounis and 
Theocharis, 2007. 

RNN  Wind speed forecasting Multi-
steps 

Coelho and 
Pessoa, 2009. 

B-spline neural 
network 

Ball-and-tube system / Gas 
combustion process 

1 step 

Wei et al., 2007 RBF network Magnetosphere system 1 step 
Mustafaraj et al., 
2011 

NARX Thermal behavior of an 
open office 

Multi-
steps 
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2.3 Importance of ANN Models in Advanced Controller Design 

Modeling the dynamic behavior of nonlinear systems is the most critical aspect in 

developing advanced algorithms for model predictive control (MPC) (Hunt et al., 

1992), model reference adaptive control (MRAC) (Narendra and Parthasarathy, 

1990) and adaptive inverse control (AIC) (Widrow and Walach, 1996). In MPC, the 

future responses of the actual system should be predicted in some way since these 

values are highly needed while calculating the optimum manipulation signal values 

as shown in Fig 2.1. Therefore, the control performance (e.g. command tracking, 

disturbance rejection and robustness, etc.) is often times directly related to that of 

the modeling and system identification (Atuonwu et al., 2010; Lawrynczuk, 2010). 

 

 

 
Fig 2.1 Model predictive control. 

 

 

In MRAC, a NN plant is identified first with the recorded plant measurements, and 

then, a NN controller, whose parameters are randomly initialized, is located in front 

of this plant model as illustrated in Fig. 2.2. Later, the NN controller is trained 

based on the difference between the plant output and that of the reference model. 

But, this error value could not be back-propagated through the actual plant in the 

training session of the NN controller so that one will highly need a NN plant model 

for this task. 
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In AIC, the parameters of the controller, which is also a neural network (NN), are 

adaptively updated based on the difference between the output of a reference model 

and that of the plant. As could be seen from Fig. 2.3, the difference between the 

output of the NN plant model and the measured response of the actual plant is 

passed through the inverse plant model in order to generate the noise and/or 

disturbance at the plant output. Next, this signal is subtracted from the manipulation 

signal for cancelling the sensor noise and disturbance present in the plant.   

 

 

+−

+
−

 

Fig 2.2 Model reference adaptive control. 
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Fig 2.3 Adaptive inverse control. 
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Consequently, modeling is always the first step for the model-based control 

schemes. In these controller strategies, the model of the process is directly used in 

the implementation of the control structure; therefore, the quality of the control is 

highly related to the accuracy of the plant models. 

 

2.4 Hardware Implementations of ANNs in parallel processors 

It is well known that there are 100 billion neurons, which are highly connected to 

each other and work in a parallel way, in a human brain. Therefore, the greatest 

potential of ANNs remains in high-speed parallel processors. However, a 

tremendous part of the devised ANNs are utilized on software platforms in a serial 

manner. No doubt, if ANNs are implemented on hardware platforms with satisfying 

the full parallelism, their capabilities will be tested on various tasks and compared 

with biological brains. In order to implement fully parallel neural network 

architectures, all the parallelism of the ANNs such as training parallelism, layer 

parallelism and node parallelism must be taken into consideration to determine the 

most suitable hardware structure. Therefore, parallel processors such as field-

programmable gate arrays, field-programmable analog arrays and graphic 

processing units are investigated in the current state of the art. 

2.4.1 Field-programmable Gate Arrays 

Parallelism of the neurons in a network model could be achieved well by field-

programmable gate arrays (FPGAs), since there are a lot of cells, operating in 

parallel, in a generic FPGA in order to implement various digital circuits. 

Reconfigurable FPGAs provide an effective programmable resource to satisfy the 

parallelism of ANNs; but, a sigmoid type activation function could not be easily 

implemented by a digital circuit (Omondi and Rajapakse, 2006). A classical 

solution to this problem is the usage of lookup-tables (LUTs). Since a LUT is 

required for every neuron of a neural network, this method consumes much of the 

limited gate resources (Krips et al., 2002). Another solution proposed by Kwan 

(1992) is to use a second-order nonlinear function instead of the sigmoid function. 
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The other fundamental problem is the high cost of implementing a multiplication 

operation in a digital logic which consumes much of the resources in the FPGA. 

Unfortunately, ANNs needs a large number of multipliers at the same instant in 

order to satisfy the full parallelism. Bade and Hutchings (1994) proposed using a 

stochastic method to reduce the circuitry necessary for multiplication. In this 

technique, bits are serially sequenced and their values are probabilistically set (0 or 

1) according to the numerical value of a variable. Therefore, the value of weights 

and neuron states in a network model are represented by bit streams. Next, basic 

logic gates are used to implement a multiplication operation on the randomly pulsed 

and sequenced inputs.   

 

Hikawa (2003) devised and proposed a new digital circuit, called direct digital 

frequency synthesizer, for the multiplication operation in a neural network. In the 

proposed technique, the accuracy of the neuron output is improved via adding a 

voting circuit (a nonlinear adder) into the digital circuit and the performance of the 

activation function is increased by adding a pulse multiplier to the nonlinear adder. 

Moreover, Hikawa (1999) proposed an on-chip learning using a modified back-

propagation algorithm that does not need any multiplication operation. But this 

modified learning is not easy to implement and requires some additional digital 

logic circuits (e.g. linear feedback shift register) to prevent the gradient of the 

activation function being zero in the training phase. On the contrary, Maeda and 

Tada (2003) adopt a learning rule named simultaneous perturbation that requires 

only twice forward operations which is more convenient for hardware 

implementations of ANNs. In this simple method, the gradient of the cost function 

is approximated by using only the two successive error values. 

 

On the other hand, spiking neural networks are becoming an important research 

area and emerging as a new generation of neural networks due to the similarity of 

the biological neurons (Zhuang et al., 2007; Schrauwen et al., 2008; Nuno-Maganda 

et al., 2009). In this architecture, the information among neurons is transferred via 

pulses or spikes. Indeed, the information is carried out by the number and the timing 

of the pulses. Therefore, FPGAs are suitable for that architecture because the 
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generation of pipelined pulses is well suited to the digital circuits and the pulse 

transitions could be easily captured by the intrinsic high speed of FPGAs. The 

learning algorithm for spiking models is generally based on evolutionary strategies. 

On the other hand, Bohte et al. (2002) developed an error back-propagation 

algorithm to be used in spiking neural networks.  

 

In the current literature, it is possible to verify that several implementation problems 

have already been resolved in the FPGA context. Nevertheless, the solutions that 

were found do not allow the direct usage of the ANN models (which had been 

designed in software platforms) on the FPGAs. Filling this gap, between the 

software and the hardware platforms, will be an important issue in the hardware 

implementation field of the ANNs. 

 

2.4.2 Field-programmable Analog Arrays 

Field-programmable analog arrays (FPAAs) are emerged as parallel processors for 

analog version of its digital partner FPGAs. The biggest advantage of using FPAAs 

is that they don’t need any data converter while interacting with the outside. 

Therefore, delay, noise and quantization error problems are all eliminated in a real 

time application. Dong et al. (2006) managed to design a neural network model on a 

FPAA but having neurons with affine activation functions. Moreover, Maher et al. 

(2006) developed a genetic algorithm for the evolution of a network model on a 

FPAA. Later, Maeda et al. (2009) realized the analog implementations of NNs on 

FPAAs where neurons are modeled with integrate and fire type spiking. 

 

2.4.3 Graphic Processing Units 

Graphic processing units (GPUs) are getting more popular since they have a huge 

amount of processors satisfying a massive parallelism with using floating point 

arithmetic. In fact, GPUs have many core processors (i.e. hundreds of parallel 

processing elements) which could perform more than 1012 floating point operations 

per second (Che et al., 2008). Therefore, GPUs are well suited to satisfy the full 

parallelism of the ANNs. On the other hand, they are also used for problem solving 
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in different fields such as finite element analysis and fluid mechanics. GPUs could 

be programmed with a C extension software language called compute unified 

device architecture (CUDA) (Januszewski and Kostur, 2010).  

 

CUDA has been already utilized in neural networks applications. For instance, 

multiplication operations (in floating point) of a neural network are implemented by 

matrices in Jang et al. (2008). Therefore, a huge amount of time is saved by this 

matrix multiplication. Recently, Cernansky (2009) use CUDA for linear algebra 

operations of an extended Kalman filter in order to train a RNN. Experiments 

showed that this achieves a great amount of time saving while training (deep) larger 

ANNs. Moreover, Nageswaran et al. (2009) devised spiking neural networks using 

a CUDA platform in which a great conformity was satisfied with biological 

neurons. Consequently, GPUs make the hardware implementations of ANNs very 

suitable since they have extreme number of threads running concurrently and 

specialized functional units that could perform trigonometric and arithmetic 

functions at the same instant. But, the main problem of GPUs is that although one 

could perform complex operations very fast utilizing the full parallelism of the 

hardware, the data transfer between the GPU and outer world (giving the inputs and 

then retrieving the outputs) could only be realized in a serial manner which brings a 

bottleneck for the processing speed of the overall computations.   

 

2.5 Generalization of Artificial Neural Networks 

ANNs would be more efficient if any generalization (or optimization) methods are 

applied after a training operation. Therefore, a detailed literature survey is also 

conducted about generalizations of ANNs in this section. 

Using too many parameters (weight values), ANN does not capture the assigned 

task (poor generalization) and only memorizes the training scenario in the learning 

operation (over fitting). Therefore, a network model should not only learn the 

training scenario but generalize the given task well. As indicated by Baum and 

Haussler (1989), ANNs satisfy better generalization performance with minimal free 

parameters. Moreover, one can easily interpret a small network and can extract 
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simple arithmetic rules from the structure of the network (Ni and Song, 2006). 

Furthermore, less hardware resources are used for the implementation of a small 

network. On the other hand, using a small network structure at the beginning make 

the network easily trapped into a local minimum rather than a global optimum 

point.  

 

Three main approaches have been proposed to increase the generalization 

performance of a network model (Xu and Ho, 2006). The first one is the pruning 

algorithm which trims the unnecessary part of a huge amount of the network until a 

reasonable solution is found (Reed 1993). The second approach is the constructive 

algorithm in which a network having small parameters is taken first, and then, new 

parameters (it could be a neuron or a weight) are added until an acceptable 

generalization performance is satisfied (Fahlman and Lebiere, 1990; Kwok and 

Yeung, 1997; Tenorio and Lee, 1990). In the third approach which is called 

regularization, the objective function to be minimized is modified by adding a 

penalty term on it (Girosi et al., 1995; Ishikawa, 1996; Schittenkopf et al., 1997). 

The implementation of the third approach is simple. But, the inserted penalty term 

may cause a problem; for instance, creating additional local minima on the weight 

domain (Engelbrecht, 2001). Of the three well-known generalization methods given 

above, the most used one is the pruning technique since starting the training session 

with large number of parameters enables the network to learn the training scenario 

almost all. Next, excessive parameters are removed from the network in order to 

enhance the generalization performance of the network.   

 

As explained before, the main attitude of pruning is to decrease the redundant 

parameters from the network. First, an importance factor, correlated with the 

efficacy of a neuron or a weight, is generally calculated for each of the network 

parameters in a generic pruning operation. Next, sorting the importance factor of the 

parameters, the specified parameter which has the least importance factor is deleted 

from the network architecture. No doubt, a simple method is sorting the magnitude 

of weights as an importance factor (Finnoff et al., 1993). In this method, the 

smallest weight in the network is removed and then the network is retrained to 
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compensate the effect of the deleted weight until, recursively. Another very simple 

method proposed by Mozer and Smolensky (1989) is to define an importance factor 

for each neuron from the variation of the network output error when an arbitrary 

neuron is deleted. Similarly, Karnin (1990) calculated an importance factor for the 

weights of a network by performing a sensitivity analysis on the error function. 

Moreover, Sietsma and Dow (1991) proposed a smallest variance pruning (SVP) 

method in which the hidden neuron having the smallest variance in the output of its 

activation function is removed. 

 

More advanced pruning techniques are the optimal brain damage (OBD) (Cun et al., 

1990) and optimal brain surgeon (OBS) (Hassibi and Stork, 1992; Hassibi et al., 

1993) methods. In these methods, importance factor for the weights, called saliency 

term, is calculated with using the inverse of the second derivative of the error 

function with respect to the each weight (inverse Hessian information). In OBD, 

Hessian matrix is assumed to be diagonal in order to decrease the computation 

burden of taking the inverse of a matrix in the calculations. Furthermore, no 

corrections are made on the remaining weights after removal of a weight having the 

smallest saliency term. On the other hand, OBS method utilizes the full Hessian 

information in the calculations but the remaining weights are automatically updated 

to minimize the error function without a retraining operation. Although the OBS 

method could effectively eliminate the unnecessary weights one by one, the overall 

pruning process is very time-consuming and difficult especially for large networks 

as the dimension of the Hessian matrix will be equal to the number of weights used 

in the network. Therefore, the OBS method is not very efficient for large scale 

neural networks. As the efficiency can be improved by deleting a neuron rather than 

removing a weight, a unit-OBS method was developed by Stahlberger and 

Riedmiller (1996) in which redundant neurons were pruned directly. Therefore, the 

overall computation time is considerably reduced so that it is suitable for large scale 

problems. But, the performance of the neural network could decay very much due 

the removal of an entire neuron which may accommodate an important weight in it.  
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Next, the advantages of both the unit-OBS and OBS methods are combined in the 

multi weight-OBS (mw-OBS) pruning method (Han et al., 2006). The mw-OBS 

method could delete multiple weights from different neurons according to their 

contribution for the network performance. Moreover, a fast unit pruning algorithm 

is proposed solving the time and complexity problems of the OBS method (Qiao et 

al., 2008). In the proposed algorithm, Hessian matrix is correlated with each hidden 

unit instead of each hidden weights in order to reduce the dimension of the Hessian 

matrix so that the pruning time is effectively shortened. Moreover, Xu and Ho 

(2006) proposed a pruning algorithm in which the outputs of the neurons are 

investigated whether there are some highly dependent neurons to each other. Next, 

the dependent neurons (if exist) (and also their corresponding weights) are deleted 

but excluding one of them. Later, the remaining but independent neurons are 

retrained to keep up the network performance almost same.     

 

 In a recent publication (Pukrittayakameei et al., 2009), both the error and gradient 

of the error are utilized in the cost (or objective) function. When this cost function is 

optimized in a training session, the network outputs are forced to pass through the 

target data points with their exact slope values. Therefore, over fitting problems are 

avoided with this modified objective function. 

 

Moreover, many researchers have used genetic algorithms for a stochastic search of 

the weight values (Stepniewski and Keane, 1997). Following that, Siebel et al. 

(2009) developed a genetic algorithm in which excessive network’s parameters are 

deleted so that complex analytical calculations are all avoided in this pruning 

technique. It is important to note that evolutionary methods can be easily 

implemented but they are difficult to analyze theoretically. 

 

2.6 Modularity in Artificial Neural Networks 

It is well known that some training problems such as inaccuracy, divergence, 

instability and long training phases are frequently happened when a complex 

dynamic system is to be modeled via traditional NN development paradigms, which 

exclusively use black-box approaches. In traditional approach, the training data set 
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is the only information that an ANN must form its own representation while 

identifying a system in a learning operation. But, recent studies have shown that the 

modularity is a key for the solution of the above-mentioned training problems. In a 

modular neural network design, some small networks are trained individually to 

capture the characteristics of the sub-elements in the whole system. No doubt, 

simple networks could be easily designed and trained on the small domain of the 

sub-element without any stability and convergence problem. Therefore, the 

probability of getting into a local minima point, training time and computational 

cost are all decreased. Model complexity reduction, robustness, high learning 

capacity, computational efficiency and knowledge integration are the most 

attractive factors for the design of modular neural networks (Azaam, 2000). Divide 

and conquer approach is used in the concept of modularity; but, how a modular 

network structure could be obtained is not given in a systematic way, yet.  

 

Knowledge about the physical system, input/output characteristics of the system 

and the relationship between the sub-elements of the entire system could be used to 

modularize the overall system. A good decomposition for a modular design could 

be realized by input-output domain knowledge about the system as indicated by 

Tseng et al (2009). Decomposition task could be done before the learning operation 

by the help of already gained information about the system or it could be realized in 

the progress of learning (Lu and Ito, 1999). The last important part of the 

modularization is the aggregation of the smaller networks to form the main model. 

Using a weighted average of outputs produced by small networks is one of the most 

used aggregation method (Tseng et al., 1995). Furthermore, Chi et al. (1997) 

proposed an adaptive aggregation method in which the connection gains of the 

modular networks are continuously updated since the sub-elements of the process 

could be interconnected to each other in a nonlinear way. In the literature, there are 

a lot of modular neural network architectures which are diversifying with their 

decomposition and aggregation methodologies. 

In ensemble network (Tumer and Ghosh, 1996), separate networks are trained to 

learn the same task. In fact, distinct networks are individually trained with using 

randomly initialized weight values, changing the number of neurons (or layers) and 
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varying the training data (e.g. re-sampling, cross-validation and injecting 

randomness, etc.) so that the networks will converge to different local minima while 

making them uncorrelated to each other. Next, the outputs of individual networks 

are combined by some averaging techniques as could be seen from Fig. 2.4. But, for 

an effective aggregation, nonlinear combination methods such as rank based 

information (Al-Ghoneim and Kumar, 1995), Dempster-Shafer belief algorithm 

(Rogova, 1994), voting schemes (Battiti and Colla, 1994) and probability based 

combination methods (Jacobs, 1995) are used. Consequently, the main intention of 

the ensemble network is to obtain a modular model which could make a more 

accurate estimate for a given task rather than using only a one network model for 

the same task. 

 
 

 

Fig 2.4 Ensemble of neural networks. 

 

 

In decoupled modularity approach, input is first categorized into groups based on 

similarity by using an adaptive resonance theory (ART). Note that ART network 

has a special architecture which enables the network to remember the previously 

captured information while learning new things (stability-plasticity dilemma) 

(Bartfai, 1994). Later, each group is further trained with supervised modules in a 

parallel form without any interaction between them. The absolute maximum of the 
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module outputs is chosen as the final output of the overall network model as could 

be seen from Fig. 2.5.  

 

 

Fig 2.5 Decoupled modularity approach. 

 
 
The architecture of the other output modularity approach resembles very much to 

the structure of the decoupled approach. But, the individual modules have an extra 

binary output in this topology as could be seen from Fig. 2.6. These binary outputs 

are utilized in the decision strategy among the parallel modules instead of using the 

absolute maximum decision strategy (Auda and Kamel, 1998).  

 
 

 

Fig 2.6 Other output modularity approach. 
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In hierarchical networks, a supervised back-propagation module is used at the 

bottom level in order to perform a coarse partitioning of the input space, and then, a 

fine-tune learning is realized at the higher level by separate and parallel modules as 

shown in Fig. 2.7 (Corwin et al., 1994). 

 
 
 

 

Fig 2.7 Hierarchical networks. 

 

 
Mixture of experts composed of some local experts and gating networks in a 

modular and hierarchical way. Each expert is attached a probability for different 

regions of the input space and gating networks are used to determine the value of 

the connection gains of the individual modules at the junction points in order to 

produce the correct output at the end (Jordan and Jacobs, 1994). Therefore, this 

architecture seems to apply a divide and conquer approach for the input domain as 

shown in Fig. 2.8. Expectation maximization algorithm is used for the training of 

hierarchical mixture of experts.  

 

In merge and glue networks (Waibel 1989), the task is first decomposed and 

assigned to individual network models according to the knowledge available about 

the system. Next, the decomposed tasks are learned separately by these small 

networks via supervised learning algorithms. Finally, a global network is formed by 

merging the individual networks without changing their architecture and weight 

values. Furthermore, some additional network models, called glue, could be added 



 29

to correct the erroneous behavior of the global network as the overall architecture of 

this modular network model is presented in Fig. 2.9. 

 

 

Fig 2.8 Mixture of experts. 

 

Supervised 
Module

Supervised 
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Module
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Fig 2.9 Merge and glue network. 
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Hence a nonlinear dynamic system can be considered as a multi-variable surface, a 

number of modules could be used to capture the behavior of the system in different 

operating space. Johansen and Foss (1995; 1997) proposed using a combination of 

local model networks, which were identified over the different operating regimes of 

the workspace, for the modeling and control of nonlinear systems. But, it was seen 

that this type of network could model the system accurately only for the points 

where the local models had been specialized before.       

 

Surveying the recent studies in the literature, modular networks are constantly 

emerging; for example, an algorithm for incrementally growing ANNs is developed 

to control the body-plan of a robot as shown by Macleod et al. (2009). In that study, 

the network is expanded by adding new sub-networks or modules and trained by 

evolutionary algorithm. Every time a new network is added to the existed main 

network, only the latest added network (or module) is trained. Therefore, complex 

and large networks could occur with a high performance since the search space will 

be so small in each of the iterations. Lima et al. (2007) proposed a novel model, 

named as mixture of support vector machine experts (MSVME), by combining the 

complementary properties of both support vector machines (SVMs) and mixture of 

expert (ME) models for the identification of nonlinear dynamic systems. It is seen 

that hybridization of SVM and ME could accurately predict the output of some 

simulation based nonlinear dynamic systems, given in Narendra and Parthasarathy 

(1990). Moreover, Tokunaga et al. (2009) used modular networks for the prediction 

of weather dynamics. For this task, small network models (modules) are arrayed for 

the construction of a self-organizing feature map (SOM). In this study, it was shown 

that the possibility of trapping into a local minimum point had been highly 

diminished as more modules were utilized in the SOM. Furthermore, Wang et al. 

(2010) develop a new sequential Bayesian learning (SBL) which will be used for 

the aggregation of modular neural networks. Some benchmark functions such as 

Mexican hat, Friedman and Gabor were used to show the efficiency of the proposed 

unification technique.     
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Looking to the literature, one can see that modular neural networks are effectively 

used in target recognition (Wang et al., 1998), pattern classification (Lu and Ito, 

1999),   texture processing (Van Hulle and Tollenacre, 1993), image compression 

(Watanabe and Mori, 2001), language processing (Sibte and Abidi, 1996), inverse 

kinematics model learning (Oyama et al., 2001), controller design for a flexible 

manipulator (Sharma et al., 2003), complex economic time series forecasting 

(Melin et al., 2007), real-time video coding (Ramirex-Agundis et al., 2008), medical 

diagnosis (Pan and Sensen, 2005) and fault diagnosis (Kim and Park, 1993). But, it 

is found that their application on nonlinear system modeling and system 

identification is very limited especially for the long-term prediction task.  

 

Haykin and Li (1995) proposed a pipelined recurrent neural network (PRNN) as a 

nonlinear adaptive predictor for nonlinear time series. Later, this modular model, 

which consists of a number of computationally efficient RNNs, has been widely 

used for speech processing (Baltersee and Chambers, 1998; Goh and Mandic, 2005; 

Stavrakoudis and Theocharis, 2007) instead of nonlinear system identification. 

Next, Zhao and Zhang (2009) proposed another version of this modular network, 

called pipelined functional link artificial recurrent neural network (PFRNN), to 

model nonlinear dynamic systems by combining a PRNN module with an ANN in 

which the dimensionality of the input signal is increased by using a set of linearly 

independent functions such as trigonometric and Chebyshev orthogonal 

polynomials. The effectiveness of the model was tested with simulation based 

benchmark systems, given in Narendra and Parthasarathy (1990), but only for a one 

step ahead prediction task. 

 

Kiong et al. (2003) proposed a constructivism procedure for identification of 

nonlinear dynamic systems via growing multi-experts network (GMN). A redundant 

removal algorithm and a growing neural gas algorithm were used in the proposed 

methodology to find the optimal network structure. In GMN, local expert models 

were used to be skilled on the decomposed region of the problem, and then, the 

combination of the expert models determined the output of the network. The 

proposed algorithm was only applied for a set of simulation based discrete-time 
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nonlinear dynamical systems, adopted from Narendra and Parthasarathy (1990) 

again. 

 

Wong and Worden (2007) constructed an ensemble model by merging an ANN 

with the exact mathematical model of a friction process (Maxwell slip model) that 

frequently seen in mechanical contacts. It was seen that the ensemble model could 

predict the dynamical behavior accurately.   

 

Ge et al. (2008) suggested a new model called particle swarm optimization based 

Elman neural network to be used in identification and control of nonlinear systems. 

Structure developing and degenerating operations are realized via evolutionary 

computation technique. Units of the swarm change their position over time in the 

huge work space and search a possible location which could be the solution of the 

problem. It was seen that the proposed dynamic identifier could accurately 

approximate the nonlinear behavior of an ultrasonic motor.  

 

Tellez et al. (2010) presented an identification and control methodology for 

nonlinear systems using a modularity approach. In the proposed methodology, the 

overall system is seen as a group of sub-systems which are connected in any way. 

Next, a recurrent high order neural network (RHONN) is trained for each of the 

subsystems. Once a RHONN identifier is developed for one step ahead prediction 

task, a sliding mode controller is designed to guarantee the robustness of the each 

subsystem. Extended Kalman filter is used to train the RHONNs; but, assuming that 

all the states of the system are measurable. The performance of the methodology 

was tested on a two DOF planar robot where a unique identifier and controller had 

been designed for each link of a robot for an accurate trajectory tracking.  

 

Hametner and Jacubek (2011) proposed using a priori information about a process 

to reduce the black-box model complexity. The splitting of the training data into 

smaller pieces allows the local interpretation of the model in small operating 

regimes. Local model networks (LMN) were used to capture the behavior of the 

local pieces of the input-output mapping process. Parameter estimations of the 
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LMNs were realized by using a developed constrained generalized total least 

squares (CGTLS) algorithm with equality constraints. Expectation maximization 

algorithm was used for the partitioning process of the training data. Prior 

knowledge about a process such as the differential behavior of the system and the 

tapped delay order of the input signals were used to reduce the degrees of freedom 

of the parameters and the complexity of the split optimization problem. The 

efficiency of the LMN with equality-CGTLS model was demonstrated on 

identification of a supercharged natural gas engine and estimation of a tire-road 

friction.    

 

Banakar and Azeem (2012) used a combination of a tangent sigmoid and a wavelet 

function as an activation function of neurons in a recurrent neural network for 

predicting the nonlinear behavior of dynamic systems. Indeed, the product of the 

different type activation functions and a delay element, which is used to feedback 

the output of the activation functions to each other, determine the structure of the 

hidden layer neurons in the proposed network model. Therefore, the presented study 

proposes a network using a mixture of local experts not in the network architecture 

but in the neuron structure. The output of the wavelet neuron acts as gate to the 

output of sigmoidal neuron. Therefore, the localize property of a wavelet neuron 

(capturing the sharp temporal changes in system dynamics) is merged with the 

functional capability of a sigmoidal neuron (capturing low frequency response of 

the system dynamics). But the devised network model is only tested for one step 

ahead prediction task on a simulation based systems which are a linear regression 

with nonlinear input model and a Box-and-Jenkins gas furnace data.   

 

It is seen that there are lots of different RNN architectures in the literature and 

which one is the most appropriate for a system to be modeled is another challenging 

task. Although RNNs are capable of identifying a nonlinear system accurately, 

determining the number of layers and the number of neurons in the hidden layers, 

and also, the layout of the connections between the layers is unavailable in the 

current literature.  
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Seidl (1996) proposed an original idea called structured neural networks (SNNs) as 

an application-driven methodology and it has been successfully applied to process 

identification/modeling (Artmeyer et al., 1995), motion control (Seidl et al., 1993; 

Seidl et al., 1992) and power electronics (Seidl and Lorenz, 1993). In this 

methodology, the system under study is first divided into its sub-systems with the 

help of a priori knowledge on the process. Next, some small networks are 

individually trained to learn the characteristics of the sub-systems. Later, all the 

network modules are combined to construct a SNN model for capturing the exact 

dynamic behavior of the nonlinear system at hand.  

 

Dolen (2000) designed a SNN to estimate the milling forces for an ideal machining 

in CNC machine tools and Garcia et al. (2007) developed a SNN for sensorless 

control of AC machines. Furthermore, the signal flow chart of a multi stand rolling 

system is matched with the architecture of a SNN by Hintz et al. (2000). Lastly, 

Endisch et al. (2009) designed another SNN to identify a nonlinear two-mass 

system with friction and backlash. Again, the designed network is of the same 

structure as the nonlinear system since it is assumed that matching the structural 

knowledge (found by engineering approach) of the nonlinear system with the 

network architecture, the SNN will emulate the exact behavior of the plant.    

 

It is seen that the SNNs only mimic the known processes (not giving any additional 

information about the processes) and their network architectures are not generic 

(only Σ- neurons with sigmoidal activation functions and some delay elements 

should be used in a generic ANN). Nonstandard activation functions (exponential, 

logarithmic, hyperbolic, trigonometric, Boolean functions etc.) and neurons with 

multiply ability (ΣΠ-neurons) are used and amorphous networks are developed in 

the existed SNN methodology. On the other hand, a network model developed via 

SNN methodology should be generic in order to be designed for similar physical 

plants later. Therefore, Dolen and Lorenz (2002) introduced some general 

methodologies for neural network programming so that a conversion from an 

amorphous network model to a generic network model is now available.  
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2.7 Research Opportunity 

In the preceding sections, the state-of-the-art relevant to this research has been 

presented in detail. It is observed that black-box models are frequently used for 

modeling and identification of various dynamic systems. However, long-term 

prediction could not be realized efficiently with such models in the current 

literature. On the other hand, despite the apparent success of the SNN methodology, 

this is purely an application driven technique. Furthermore, it lacks the ability to 

accommodate (unknown) unaccounted system dynamics that may be present in the 

actual system under study.  Unfortunately, the  implementation of the SNN models 

in the current literature constantly need the exact mathematical descriptions of the 

processes under study so that the resulting neural network models do not provide 

any further information about the physical models at hand.  

To summarize, the aim of this thesis is to develop a design methodology for SNNs 

in which nonlinear dynamic systems will be modeled exactly via utilizing the 

sketchy guidance of a priori information on the investigated systems. Therefore, 

this research will seek to design accurate predictors or estimators for some 

nonlinear mechanical systems via using ANNs and utilizing the already existed (or 

gained) knowledge about the dynamic systems under investigation.  
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CHAPTER 3 
 

 

STRUCTURED NEURAL NETWORK 

METHODOLOGY 
 
 
 

3.1   Introduction 

In Chapter 2, it is seen that identification, modeling and control of nonlinear 

systems are generally realized with ANNs. However, it is known that training a 

black-box network models which have enormous number of weights (free 

parameters) is not an easy task. This issue is categorized as non-polynomial-time 

(NP-complete) problem (Blum and Rivest, 1992) since the time required for this 

training task exponentially increases with the size of the network parameters and the 

length of the training data in correlation. On the other hand, Baum (1991) indicated 

that using error back-propagation algorithms while training networks for large-size 

problems were not effective.  Therefore, some training problems such as instability 

and divergence frequently emerge while developing a conventional NN (black-box 

model) for the identification/modeling of complex systems in mechanical 

engineering domain. Since many mechanical systems comprised of hard 

nonlinearities such as dead-zone, backlash, friction and hysteresis, which increases 

the size and complexity of the problem to be solved. 

 

On the other hand, SNN design methodology is utilized to handle these training 

problems. In this methodology, a priori knowledge about the system under study is 

especially used for not only the selection of a proper structure but also the 

decomposition of the system into its subsystems. Furthermore, only generic neural 

network topologies such as FNN and RNN architectures (excluding Hopfield, 
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Kohonen and associated memory networks) are utilized and supervised learning 

algorithms are taken into consideration while designing NN modules for the 

investigated systems in this modeling technique. Therefore, the finalized NN 

models will be a collection of only generic network architectures. 

 

 After this brief introduction, modeling nonlinear dynamic systems using black-box 

structures is given in a detailed manner in Section 3.2. A general methodology of 

designing SNNs is proposed in Section 3.3. Following that, some standard library 

networks are developed in Section 3.4 as they frequently needed at the unification 

stage of the proposed SNN methodology. Furthermore, well-known standard 

network architectures from the current literature are given in Section 3.5 for a 

proper model selection procedure. Next, an entropy based pruning algorithm is 

developed in Section 3.6 for the parameter reduction of the trained ANNs. Finally, 

Section 3.7 summarizes the key points of this chapter. 

 

3.2   Black-box Modeling 

Black-box approach, which employs weak assumptions about the process under 

investigation, follows a systematic procedure as illustrated in Fig. 3.1. In this 

scheme, one should perform the experiments involving the choice of excitation 

signal, selection of sampling period, measurement (recording) of the input-output 

data sets and pre-processing of the data. The design of an excitation signal is very 

important for gathering the identification data. Excitation signal has to be chosen 

with extreme care in order to capture relevant (and statistically significant) data 

points that cover all the operating regimes of interest. On the other hand, to excite 

the dynamic system around its equilibrium points, the excitation signal must have 

low frequency components. Moreover, the full-range of the input signal must also 

be applied to the system in order to maximize the signal-to-noise ratio (Nelles, 

2001). 
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Fig 3.1 Flow chart of black-box modeling process. 
 

 

To that end, a pseudo-random multi-level signal (PRMS), chirp-signal, band-limited 

white noise, and all their combinations could be utilized to create an input signal for 

exciting the system at the frequencies of interest (Xue-miao et al., 2010). The 
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selection of a suitable sampling period is another important factor that affects the 

identification performance. A short sampling period should be generally preferred 

to cover more range. On the other hand, if the sampling frequency is chosen very 

high, the successive measurements in the recorded data would be nearly same (u(k) 

≈  u(k-1) ≈ u(k-2)). In that case, the order of the tapped-delay-line (TDL) should be 

increased to create an uncorrelated (or more informative) input vector space for the 

network model since the TDL of input(s) are especially utilized in the regression 

vector in order to create an external dynamic input space,  which should capture the 

variations in the related input variables. However, another problem, called curse of 

dimensionality, will occur, if one increases the dimensions of the regression space 

while trying to make the inputs uncorrelated. In machine learning, the computation 

needed for training an ANN grows exponentially as the dimensionality of the input 

space is enlarged. On the other hand, a principal component analysis could be used 

in order to create uncorrelated input elements via transforming some input elements 

into axes of another dimensionality space instead of increasing the order of the TDL 

of input(s). For instance, u(k),∇ u(k),∇ 2u(k) (where∇ is the difference operator) 

could be used instead of using u(k), u(k-1), u(k-2) in the elements of the regression 

vector. However, it is important to note that the noise effects will exaggerate as the 

order of the differentiation operation is increased.  Furthermore, one needs to pay a 

careful attention to the length of a training data since the training session (including 

computational and storage/memory costs) for RNNs grows exponentially as the 

training data length step up dramatically with a higher sampling frequency. As 

indicated by Shannon sampling theorem, it is advisable to choose the sampling 

frequency greater than (at least) twice the maximum frequency of the interested 

variables. After recording the signals at a proper sampling rate, the captured data 

should be preprocessed. That is, some pre-processing operations could be applied to 

remove the noise, outliers, delays, offsets and drifts (due to sensors or cross-talks 

between the channels of the data acquisition card) from the raw-data. Furthermore, 

normalization of the training data is highly recommended. In fact, the tangent 

sigmoid activation functions used in ANNs are centered around 0 and their outputs 

varied between -1 and 1. Scaling the input variables across the working range of the 

activation functions has an effect on the training performance since the activation 
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functions will be more sensitive to the all elements of the input data at the 

beginning of the training session.  Therefore, matching the range of input data with 

the range of the activation function makes the training of ANNs numerically faster 

convergence as this situation is well demonstrated by Sola and Sevilla (1997). 

After performing the experiments and preparing the training- and validation data 

sets, one needs to select an appropriate black-box model structure such as NARX, 

NARMAX, NOE, nonlinear finite impulse response (NFIR) and nonlinear Box-

Jenkins (NBJ) for the investigated dynamic system. This choice should be based on 

the dynamics and complexity of the network model which is most likely to match 

with the system under study. For instance, if one wants to model a system which 

has a hysteretic behavior; at least a RNN type model should be taken into 

consideration rather than feed-forward models as all the hysteresis systems have 

some local and global memory properties. Furthermore, if one is specifically 

interested in a longer prediction horizon (or infinite prediction), it is better to 

consider NOE type models. Choosing a suitable model structure is the most difficult 

step of the black-box modeling procedure since there is not an exact procedure 

defined in the current literature for this task. Therefore, this choice could be done 

based on some engineering ingenuity, intuition, and experience. Otherwise, several 

model structures should be tested in an iterative way, which will increase the 

duration of identification process significantly. No doubt, an inconsistent model will 

not be trained effectively to give out a satisfactory predictor or estimator regardless 

of the quality of the training data set and the chosen of the training algorithm.  

 

Nonlinear black-box models, in general, could be expressed in the form of ŷ(k) = f 

(φ(k),θ) as illustrated in Fig. 3.2 for NARX and NOE, respectively. In general, the 

regression vector,  φ(k)=[ u(k), u(k-1), u(k-2),….y(k-1), y(k-2),…, ŷ(k-1) , ŷ(k-2) ,..., 

e(k-1), e(k-2),...]T, can contain previous (and possibly current) process inputs (u), 

previous process (or model) outputs (y or ŷ) and previous prediction errors (e = y-ŷ). 

Note that the regression vectors of the various black-box models are given in Table 

3.1. On the other hand, θ represents the model parameters to be determined.  
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Fig. 3.2 NARX and NOE model structures. 

 

 
Table 3.1 Regression vectors of the well-known black-box models. 

 
Structure Regression vector 

NARX ( ) ( ) ( ) ( ) ( )1
T

k u k u k n y k y k mϕ = − − −⎡ ⎤⎣ ⎦… …  

NARMAX ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
T

k u k u k n y k y k m e k e k mϕ = − − − − −⎡ ⎤⎣ ⎦… … …  

NOE ( ) ( ) ( ) ( ) ( )ˆ ˆ1
T

k u k u k n y k y k mϕ = − − −⎡ ⎤⎣ ⎦… …  

NFIR ( ) ( ) ( ) T
k u k u k nϕ = −⎡ ⎤⎣ ⎦…  

NBJ ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1 1
T

k u k u k n y k y k m e k e k mϕ = − − − − −⎡ ⎤⎣ ⎦… … …  
 

 
 
As could be seen from Fig. 3.1, the number of neurons at each hidden layer should 

be determined after choosing a proper model structure. The choice of how many 

neurons to be used at each layer is not an easy decision to make. It is well known 

that using too little or too many neurons will result in under-fitting or over-fitting 

problems, respectively. There are some rule-of-thumbs which could be used as a 

rough starting point to determine the adequate number of neurons at hidden layers. 

For instance, this number could be 1/10 of the length of the training data set or it 

could be (Heaton, 2008): 



 42

 

• between the size of the inputs and the size of the outputs. 

• two-thirds of the size of the inputs plus the size of the outputs. 

• less than twice the size of the inputs.  

 

After choosing a proper network structure populated with adequate number of 

neurons, the problem boils down to find the parameter set, θ, for which below 

objective (cost) function, JN, is minimized for a particular training scenario:  

 

( ) ( ) 2

1

1 1ˆ
2 2

N
T

N
k

J y k y k D
N N

θ θ
=

= − +⎡ ⎤⎣ ⎦∑
 

(3.1)

 

where D is a diagonal matrix in which the main diagonal are equal to the weight 

decay and N is the number of collected samples. Levenberg-Marquardt (LM) 

method could be used for the numerical solution of this problem ( { }arg min NJ
θ

θ = ). 

It is well known that conventional (black-box) NN development paradigms 

especially for long-term prediction task of nonlinear dynamic systems using an 

error back-propagation algorithm have significant drawbacks such as divergence 

and instability. In the LM technique, if the previous model outputs are to be used in 

the regression vector, there will be feedback loop while taking the gradient of the 

cumulative error with respect to the parameter vector in the cost function. In fact, 

this feedback might lead to instability and divergence problems in the training phase 

of a RNN. For instance, Xu (1997) designed NARX and NOE type of black-box 

models to predict the control flow of a variable displacement hydraulic pump under 

various loading conditions. It was found that NARX has superior convergence rate 

and always reached a stable solution in the training scenarios. On the other hand, as 

emphasized by Narendra and Parthasarathy (1989), NOE also encounters similar 

problems.  Nørgaard (2000) demonstrated that such problems can be avoided in a 

training session when the initial conditions of the network weights are nearly 

selected from their optimum values. Consequently, the classical design procedure 

(where dynamic systems are the main focus) can be summarized in the following 

steps: i) NARX model is developed (i.e. its free parameters are adapted) 
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conveniently (without any instability or convergence problem) since the model 

outputs are not used in the regression vector of NARX models. However, this 

model will not work for extended time periods due to the lack of the information 

about the process outputs; ii) with the estimated parameter vector θ (of the NARX 

model) used as the initial condition for the parameters of the NOE type model, an 

RNN is trained without experiencing divergence / instability problems. 

 

Finally, one must perform the model validation tests of the network with using a 

scenario which should be different from the training case. Some statistical tests on 

residuals (i.e. differences between the model- and actual process outputs) could be 

performed to check the validity of the devised network model. Ideally, residuals 

(i.e. innovation sequence) should be statistically independent from the inputs and 

resemble a band-limited (zero-mean) Gaussian noise (or white noise). Additionally, 

a cross-correlation function test could be performed as (Billings and Zhu, 1994) 

 

( )
( )( ) ( )( )

( )( ) ( )( )
1

2 2

1 1

N

k
ue N N

k k

u k u e k l e
R l =

u k u e k e

=

= =

⎡ ⎤− − −⎣ ⎦

− −

∑

∑ ∑  
(3.2) 

 

where Rue(l) is the cross-correlation function for all lags (l), u  is the mean of the 

input signal and e  is the mean of prediction error. After calculating the value of the 

cross-correlation coefficients for some lag values, it should be checked that these 

coefficients are within the confidence band. For instance, the confidence band is 

1.96 N± for a 95% confidence interval. If this not the case, it means that some 

parts of the actual process have not been learned properly by the devised neural 

network.   

 

Note that some techniques such as wavelet and Fourier transforms could also be 

utilized in order to perform a model validation in different domains (other than time 

domain). Such transform techniques open different point of views to analyze the 

system in a better way. Consequently, one should consider proper transformation 
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techniques as an essential component of the model validation phase. For instance, 

accuracy frequency response functions (FRFs) could be easily used for performing 

the model validation test in the frequency domain as, 

 

( ) ( )
( )

Ŷ
A =

Y
ω

ω
ω  (3.3a)

 

In this expression, Ŷ(ω) is the discrete Fourier transform (DFT) of the neural 

network model output while Y(ω) is the DFT of the actual process output and could 

be expressed as 

 

( ) ( )ˆ ˆ
N-1

i k T

k=0
Y = y k e ωω −∑  (3.3b)

 

( ) ( )
N-1

i kT

k=0
Y = y k e ωω −∑  (3.3c)

 

where ω = (2πn) / (NT), n = 1,2,…,N/2 and i is the imaginary unit (Ljung, 1999).  

 

As could be seen from Fig. 3.1, the paths going from decision blocks and back to 

the previous stages indicate that the identification process is executed in an iterative 

manner. If the training session cannot be finished successfully, the parameter 

estimation step should be repeated with different (random) choices of initial 

conditions for the weight values. This will decrease the possibility of being caught 

in local minima of the objective function. But, the corresponding error may not 

reach a predetermined threshold value after all trials. In that case, one must consider 

playing with the number of neurons in the layers of the previously chosen NN 

architecture. The common (trial-and-error) procedure to determine a sufficient 

number of neurons is to start with a small number of neurons and then increase their 

number gradually while evaluating the error criterion. No doubt, this procedure 

increase the duration of the identification process, enormously. Furthermore, the 
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path leading back to model structure selection is generally followed in case the error 

criterion could not be satisfied in any way or the well-trained model could not pass 

the validation tests. 

 

Consequently, black-box model design for nonlinear dynamic systems is an 

exhaustive process since different network architectures and different initial 

conditions (i.e. initial weights) are iteratively tried to find out a well performed 

network model. Moreover, the network may entirely be unsuccessful to capture the 

desired functional relationship after a painful training process if the network 

architecture (or structure) is incompatible with the dynamics of the system under 

study. On the other hand, a well-trained black-box model does not give any 

information about the inner nature of the physical system under study. This makes 

the network model lack of any interpretability since the user could only interact 

with the input- and output signals of the network. Another major factor that limits 

the use of black-box type neural network model is that instability and divergence. 

The dynamic system under investigation could be very complex and it may require 

long training sessions and may not always converge to optimum network weight 

values for satisfying the guaranteed stability especially in real time or on-line 

training situations. In that case, it will be difficult to guarantee the asymptotic 

stability of the model and some techniques such as perturbation analysis, interval 

analysis, describing function analysis, harmonic analysis etc. should be used to 

check the robustness of the model. 

 

As a result, designing black-box type NNs from generic structures is a very difficult 

feat for highly nonlinear dynamic systems. On the other hand, the main nonlinear 

features common to the most engineering systems could be investigated to gain an 

intuition about the overall estimator/predictor topology. To solve the problem of 

stability and convergence of a monolithic network, a number of modular neural 

network models can be developed utilizing a priori knowledge on the system 

through divide and conquer strategy. This methodology, named as SNN 

methodology in the current literature of ANNs, is nowhere complete and has been 

currently evolving in time. 
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3.3 Structured Neural Network Methodology 

As outlined in Chapter 2, the structure neural network (SNN) appearing in the 

current literature were generally devised to “imitate” the known processes and 

hence did not give any additional knowledge about the systems at hand. Therefore, 

if some features of the nonlinear system, which could not be taken into 

consideration during the design of the SNN, exist, they will not be captured by the 

devised SNN in the further training sessions. On the other hand, the proposed SNN 

methodology in this thesis is especially based on a sketchy guidance of a priori 

knowledge on the studied systems. Unlike previous studies, the approach adopted 

here is helpful while designing SNN models for the nonlinear dynamic systems 

whose exact physical models are unknown. It is important to note that this 

methodology does not offer a new training algorithm but suggests a step-wise 

procedure in which the finalized outcome of this methodology is an optimized gray-

box model (a model between a black-box and a white-box model). The presented 

methodology determines the overall ANN architecture for a specific application in a 

systematic fashion. Another advantage of the methodology is that the devised model 

could be easily used to identify/model similar processes by simply augmenting the 

system with new networks representing the unaccounted dynamics. After a brief 

training session, compact SNNs can be designed in a modular fashion. The 

proposed SNN methodology is illustrated in Fig. 3.3.   

First, it is checked that a system model is available or not. If an exact mathematical 

model of the system under study exists, the complex dynamic system (or physical 

process) is decomposed into a series and/or parallel sub-systems in order to reveal 

the interactions among them. That is, a complex nonlinear system can be 

conveniently divided into its subsystems/components where casual-relationship 

among the inputs and outputs may be clearly identified. From the identified 

interactions, important information about the order of the inputs and the 

nonlinearity inherent to the subsystem could be generally seen. Thus, this procedure 

often times yields an efficient sub-system models for a specific application domain. 

In this step, a priori knowledge about the system could be effectively used since 

many engineering systems from electrical and mechanical domain are extensively 
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investigated in terms of physical modeling, model order, input/output properties and 

range of model parameters etc. Therefore, pertinent knowledge is generally ready 

for use to decompose the system into its sub-systems using the engineering 

intuition. A good example for this step is well applied in Chapter 5 (and Chapter 6, 

also) where the nonlinear pressure dynamics of a hydraulic system is divided into 

sub-systems based on the available mathematical models of the system. In case the 

lack of any physical model at hand, one could inspect the behavior of the complex 

system from its input-output data, and then, divide the overall training data into sets 

in order to perform some tasks. Here, one can speculate about desired tasks which 

should be realized by network models and their corresponding inputs in a 

systematic fashion. Again, a relevant example to this case could be seen from 

Chapter 4 in which only the output of a timing-belt drive system is investigated 

based on a recorded data from the experimental setup. Then, the output behavior of 

the above-mentioned system is divided into regions which are correlated with the 

operating regimes of the drive system rather than deriving a detailed mathematical 

model, and then, dividing its physical model into sub-systems. Consequently, the 

main idea behind this (rather classic) “divide” approach is to employ a priori 

knowledge on the process to separate the problem into its primary functions. 

 

Next, each subsystem is taken into consideration and then queried whether or not it 

could be represented by a standard library network (SLN). It is obvious that there 

are some unique nonlinear features common to the various complex systems. 

Individual neural network models could be devised for these unique nonlinear 

elements. Next, these task-specialized network models could be categorized as a 

SLN. They could be utilized later to model similar systems. SLNs will be explained 

in a detailed manner in Section 3.4. Therefore, if there exists a network model 

which was already designed for the desired function in the network library; it will 

be taken and directly used for the modeling of the sub-system under consideration. 

Otherwise, a black-box model should be developed for this sub-system. 

Decomposing the system into a group of sub-systems over their operating regions, 

relationships between the sub-systems gives out the input-output variables of the 

sub-models. Furthermore, the physical nature of the sub-system can be utilized 



 48

while determining the order of the TDL of input signals and the layout of the 

feedback connections between the layers of the NNi’s (Agarwal, 1997). Therefore, 

one will need some standard network architectures in order to start the training 

session of a black-box network with an appropriate model structure. For that 

purpose, some generic NN templates are also given in Section 3.5 since selecting a 

proper model structure is the most important stage of a black-box modeling 

approach. Furthermore, all the input-output signals to the sub-systems should be 

normalized while training NNi’s so that the trained network modules could then be 

used for the full scale nonlinear mapping of other similar systems by only playing 

with their normalization coefficients (or connection gains). At the end of this stage, 

each sub-system is separately modeled by unique (and small) neural network 

modules (NNi; i=1…n) which could be easily debugged, also (Tseng and 

Almogahed, 2009). 

 

 
Fig 3.3 Proposed SNN methodology. 
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Next, the NNi’s, which are trained in a piecewise fashion, are aggregated with SLNs 

(if they are utilized) to construct a unified ANN. Both the stability/convergence 

along with the accuracy of the overall network is to be maintained since all the 

NNi’s trained individually via compact training sets. Therefore, the resulting 

network at this step is expected to converge rapidly to the global optima since the 

aggregated network will not start the final training session at an arbitrary location in 

the huge weight (parameter) space but at a location in close proximity to the global 

optimum. Hence, the learning computation cost will be decreased and local minima 

problem which large monolithic neural networks frequently trapped will also be 

avoided.  

 

Furthermore, SNN is trained in a unified manner using a global scenario. This step 

is important since the entire network modules are only trained for their specific 

operating regimes in order to implement the sub-system behavior. Up to this stage, 

it is important to note that NNi’s have never been trained in a unified form to 

capture the dynamic behavior of the nonlinear system using a case scenario which is 

based on the functionality of the overall system. Therefore, this training operation 

will fine-tune all the SNN parameters and will further increase the performance of 

the SNN model. Moreover, if the devised SNN model is to be used for other similar 

systems, this step will be crucial in which the parameters of the SNN should be 

adapted to capture the dynamic behavior of the new system. At the end of this step, 

one could end up the identification process after performing model validation tests 

if the architecture of the model is acceptable. 

 

Otherwise, it would be advantageous to convert the SNN model into a generic 

(standard) type network model since the SNN model may have several successive 

feed-forward network modules with linear output units and connection gains 

between some hidden layers. As the weights of the linear layers could be easily 

merged with the next layer weights (Dolen and Lorenz, 2002) and the connection 

gains could be easily embedded into the corresponding hidden layers, an 

architecture simplification procedure could be applied at this stage of the 
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methodology in order to enhance the implementation of the network in a more 

generic way.  

 

Finally, the excessive (or irrelevant) parameters of the network could be removed to 

increase the generalization performance and to reduce the computational burden 

(processing speed) of the model. No doubt, a pruning process (model refinement) 

will ease the implementation of the network model on hardware platforms (e.g. 

FPGAs). It is important to note that a new entropy based pruning algorithm is 

proposed and explained in a detailed manner in Section 3.6. 

 

3.4 Standard Library Networks 

Some network models could be readily devised for the approximation of well-

known functional relationships such as arithmetic, logical, trigonometric and 

logarithmic operations that frequently appear when a complex system is 

decomposed into its components. These networks are categorized as SLNs since 

their functionality is always same and independent from the input or output signals 

which are connected to them.  

 

Dolen (2000) devised some SLNs for performing arithmetic (x1.x2), trigonometric 

(cos(x)), inverse trigonometric (cos-1(x)), Gaussian (exp(-x2/2)) and piecewise 

continuous operations (e.g. |x|, min{1,max{x,0}}, min{1,max{x,-1}}) and gave all 

the values of the network parameters to be used directly for similar tasks. For self 

containment, some SLNs are also developed in this thesis work in order to augment 

the SNN library. It is important to note that the network models presented are 

intuitively designed in a piecewise fashion without any prior training. 

 

3.4.1 Switching Networks 

A switching (or gating) network that essentially performs multiplexing operations 

among the network inputs is especially be needed to form a “mixture of experts” 

model. Two types of switching network, which are elaborated in the following 

sections, are designed in this thesis work. 
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3.4.1.1 Switching Network Type 1 

In the first type of the switching network, the output is equal to the first input (u1) 

when s = 1 while the second argument (u2) passes if s = -1. As illustrated in Fig. 

3.4, this network is a two layered feed-forward network that could be expressed as: 

 

( )2 1 1 1y V W u b V u= Ψ + +  (3.4a)
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[ ] [ ]1 20 0 ,V Vκ κ κ= − =  (3.4c) 

where u = [u1 u2 s]T is the input vector; y is the output of the network; Ψ(.) is an 

activation (tangent sigmoid) vector function. To transmit the signal through the 

activation function without any distortion, the value of  κ should be high enough to 

scale down input of the neuron (by κ-1) into the linear part of the tangent sigmoid. 

Then, the output of the activation function is rescaled with κ to form the original 

input signal.  
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Fig. 3.4 Switching Network Type 1. 
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3.4.1.2 Switching Network Type 2 

The switch input must be exactly 1 or -1 to canalize one of the inputs to the output 

in the above mentioned switching network (Type 1). However, one can need a 

switching network which should implement the below task 

 

1

2

, 0
, 0

u s
y

u s
≥⎧

= ⎨ <⎩
 (3.5) 

 

For that purpose, a RNN (with three neurons) architecture is devised that could be 

expressed as 

 

1 1 1q (V q W u B )+ −= Ψ + +  (3.6a)

  

2y W q+=  (3.6b)

where q– and q+ ∈ ℜ3×1 indicate the state vector of neurons before and after the 

update respectively. Correspondingly, the weight matrices and bias of (3.6) can be 

given as 

 

1 1
5

0 0 10 0 01 0 0
0 0 10 0 0 01 0
0 0 0 0 0 10

.
V , W .

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.7a) 

  

[ ] [ ]1 210 10 0 100 100 100TB , W= − = −  (3.7b)

 

3.4.2 Exclusive-OR Network 

An exclusive-OR (XOR) is frequently needed when one needs to determine a 

direction change from the position signal (x(k)) of a mechanical system. Defining 

the network input as u = [u1 u2]T, where u1 = x(k)− x(k−1) and  u2 = x(k−1)− x(k−2), 

the below function should be implemented by a XOR network. 
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( ) ( )1 21,
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 (3.8) 

 

The analytical expression of the XOR network could be written as  

 

3 2 1 2 3( ( ) )y W W W u B B= Ψ Ψ + +  (3.9a)
 

where the weight matrices and biases become 
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[ ]3 31 1 , 1W B= − =  (3.9c)
 

In (3.9b), K refers to a large gain (typically 105) in order to drive the tangent 

sigmoid functions into the saturation.  

 

3.5 Standard Network Architectures 

Although some widely known black-box model architectures are given in Section 

3.2, they may not be an appropriate model structures when devising a network 

model for a discrete-time sub-system at the second step of the proposed SNN 

methodology. Covering all the black-box models, other network architecture 

templates are given in Fig. 3.5. As could be seen, all the standard network 

architectures are comprised from the basic operations of delay elements (TDL), 

feed-forward multi-layered networks having tangent sigmoid neurons (illustrated as 

f(.) and g(.)), and summation blocks. Using the multi-layered networks in cascade 

and feedback configurations with the TDL inputs to such models, arbitrary discrete-

time nonlinear sub-systems could be modeled efficiently. Table 3.2 indicates which 

template should be used for which type of discrete-time sub-system.  
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Fig. 3.5 Standard network templates. 
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Table 3.2 Discrete-time systems and their corresponding network templates. 
 

Type Discrete-time System Model 

1 y(k+1) = f[x(k), x(k-1), x(k-2),…] 

2 y(k+1) = f[y(k), y(k-1),..,x(k), x(k-1), x(k-2),…] 

3 y(k+1) = g[y(k), y(k-1), y(k-2),…] + f[x(k), x(k-1), x(k-2),…] 

4 y(k+1) = g[y(k), y(k-1), y(k-2),…] + ( )
0

i
i

x k iβ
=

−∑  

5 y(k+1) = ( )
0

i
i

y k iα
=

−∑  +  f[x(k), x(k-1), x(k-2),…] 

6 y(k+1) = g{y(k), y(k-1), y(k-2),…, f[x(k), x(k-1), x(k-2),…]} 

7 
y(k+1) = g{ y(k), y(k-1), y(k-2),…, f[x(k), x(k-1), x(k-2),… y(k), y(k-1), 

y(k-2),…]} 

8 
y(k+1) = g{ y(k), y(k-1), y(k-2),…, f[x(k), x(k-1), x(k-2),… y(k), y(k-1), 

y(k-2),…]}  + ( )
0

i
i

x k iβ
=

−∑  

 

 

3.6 Entropy Based Pruning Algorithm 

Although there are a lot of different pruning methods as could be seen from the 

literature survey in Chapter 2, an entropy based pruning algorithm, which is mainly 

adapted from the smallest variance pruning (SVP) method, is utilized whenever a 

pruning operation will be needed for a devised neural network. In SVP, the units, 

which have approximately constant (or smallest variance) outputs across the 

training set, are deleted. The primary problem with this simple and effective 

pruning algorithm is that the inessential units must be identified manually and there 

is not a built-in mechanism which automates the procedure for large and complex 

networks (Guan and Chen, 2005). In this thesis work, this problem is solved 

through calculating the uncertainty of each hidden neuron output via entropy (H) 

approach.  

 

Entropy is defined as the uncertainty of a single random variable in statistical 

mechanics. On the other hand, information theory uses the entropy as a measure of 
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information. In fact, entropy is a function of a probability (i.e. H(p)); therefore, it 

does not rely on the apparent value of the random variables. It is obvious that if an 

event with a low probability is happened, one will get the most information (i.e. 

information is inversely related to the probability of occurrence). Therefore, entropy 

is frequently used to measure the uncertainty, or to get the information content of an 

interested variable.  

 

Now, an entropy function H(p) will be constructed based on the three properties 

about entropy and probability laws as 

 

1. H(p) ≥ 0 (entropy always increases) 

2. H(p1.p2) = H(p1) + H(p2) (independent events are additive) 

3. H(p) is a continuous function of p (0 ≤ p ≤ 1). 

 

From second property, some manipulations could be written as below 

 

( ) ( )nH p n H p=  (3.10a)

1/,n np y p y= =  (3.10b)

( ) ( )1/ nH y n H y=  (3.10c)

( ) ( )/m n mH y H y
n

=  (3.10d)

 

From the above manipulations, it is seen that an entropy function obeys the 

logarithmic function rules and could be written for some base of the log system for 

any constant k as below 

 

( ) ( )logH p k p=  (3.11)

 

From first property, k must be non-positive and could be chosen as -1. Moreover, 

considering pi as the probability of getting the information H(pi), one will get all the 

information H(p) on the average with using the third property as 
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( )
1

1logi
i i

H p p
p=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑  (3.12)

 

It does not matter which base of the log system is used. If the base is chosen as 2, 

the resulting units of information will a bit (binary digit). Furthermore, if the used 

base is e, then the unit of information is called a nat (Hamming, 1986). For the idea 

of entropy, let’s consider an example in which the output variable is either 1 or 0. It 

is obvious that if the probability of the output being 1 is p, then the probability of 

being 0 will be 1-p. Based on these assumptions, the entropy function of this event 

(in bit units) could be written as 

 

( ) ( )2 2
1 11

1
H p p log p log

p p
⎛ ⎞ ⎛ ⎞

= + −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (3.13)

 

The graph of this entropy function is given in Fig. 3.6. It is seen that H(p) gets its 

maximum value (1 bit) when p = 1/2 (uncertainty is maximum). On the other hand, 

it is 0 when p equals 0 or 1, meaning that the output variable is not random but 

constant (no uncertainty).  
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Fig 3.6 Entropy functions for two probabilities. 
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Considering that the output of a hidden layer neuron is an information source, one 

can use the entropy to evaluate the uncertainty of a neuron. The flowchart of the 

entropy based pruning algorithm is shown in Fig.3.7. In the proposed pruning 

method, entropy is defined as the weighted average of the natural logarithms of the 

reciprocals of the probability density function (pdf) of the neuron output in its 

whole working range (-1 ≤ working range ≤ +1 for tangent sigmoid neurons) and 

calculated as below 

 

( )
1 1

1log logi e i e i
ii i

H pdf pdf pdfpdf
= =

⎡ ⎤⎛ ⎞= = − ⎡ ⎤⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (3.14)

 

Consequently, neurons with a small entropy value (or uncertainty) could be 

removed from the network in an automated fashion. But, the mean output of the 

removed neurons should be added as the bias weights of the neurons in connection 

with the removed one in order to keep the network’s performance (almost) 

unchanged. Following that, the pruned network should be retrained for fine tuning 

of the remaining parameters. After the retraining operation, if the network could not 

reach the predetermined error threshold value, one should revert to the previous 

network architecture (undo last pruning operation) and terminate the pruning 

process. In the next sub-sections, two benchmark systems are utilized to show the 

efficiency of the proposed algorithm for a pruning process. The first system is taken 

from Lazar and Pastravanu (2002) and the second system is adapted from Narendra 

and Parthasarathy (1990). 
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Fig 3.7 Flowchart of the entropy based pruning algorithm. 

 

 

3.6.1 Benchmark System 1 

 

The first benchmark system is defined as below 

 

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )

2 2

2.5 1 2
1 1 2

0.3cos 0.5 1 2 1.2 1

y k y k
y k

y k y k

y k y k u k

− −
=

+ − + −

⎡ ⎤+ − + − + −⎣ ⎦

 (3.15)

where y is the output and u is the input of the discrete-time nonlinear system. The 

dynamic system in (3.15) resembles the Type2 architecture in Fig. 3.5. Note that 
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training such a recurrent model with randomly initialized parameters is known to be 

very difficult. For that reason, first a NARX type model (with ten neurons in its first 

hidden layer) is trained.  Following that, its parameters are used as the initial 

conditions of the Type2 structure (NOE type black-box model). Fig. 3.8 shows the 

applied input signal to the plant and the target response that are used in the training 

session. 

 

Consequently, a NOE model is trained by taking the initial conditions (weights) of 

the parameters from the NARX model. Table 3.3 shows the training performance of 

the network. As can be seen in Fig. 3.9, some instability and divergence problems 

are encountered while validating the NOE#1. As previously suggested, the number 

of the hidden layer neurons are not increased gradually but increased extremely 

(from 10 to 30) not to make a lot of trials.  In this way, a NARX model having 30 

neurons in the first layer is trained first and; then, again a NOE model is devised by 

taking the initial conditions of the parameters from the NARX. At the end, a well 

trained recurrent network model (NOE#2) but having an excessive number of 

neurons in its hidden layer is achieved as could be seen from Table 3.3. Although 

this model passes the model validation test successfully, one may demand to finish 

the identification process with a network model having a less number of neurons. 
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a) Input signal applied to the plant. 
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b) Target response. 

Fig 3.8 Training scenario used for benchmark system 1. 

 

 
Table 3.3 Black-box networks for benchmark system 1*. 

 
Model NARX#1 NARX#2 NOE#1 NOE#2 

Input(s) u(k-1), y(k-1), y(k-2) u(k-1) 

Output y(k) 

Training data 501 Samples 

1st layer neurons 10 30 10 30 

Training time (seconds) 57 98 57 63 

Epochs 5000 50 

Mean-square training 
error 

1.11×10-6 6.43×10-10 1.38×10-6 7.4×10-10 

Activation Function Tangent (Bipolar) Sigmoid 

[*] Linear activation functions are utilized at their output layers. 
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Fig 3.9 Validation performance of NOE#1. 
 
 
For a pruning operation, probability density functions of the hidden layer neurons in 

NOE#2 are calculated first, and then, (3.14) is used to calculate the entropy value of 

the each neuron separately. As could be seen from Fig. 3.10, neurons indexed with 

16, 28 and 30 have an entropy value closer to zero, meaning that their activation 

function outputs are not changing too much during the training process. After 

pruning these three neurons from NOE#2, another network named as NOE#3 is 

created, and then, trained for fine tuning of the network parameters. Again, the 

entropy of the neurons in NOE#3 is recalculated and given in Fig 3.11. Now, the 

neurons indexed with 11, 21 and 25 are removed and a network called NOE#4 is 

formed after this operation. 

 
One more iteration is carried out via looking to the entropy diagram of NOE#4, 

given in Fig. 3.12, in which the neurons indexed with 13 and 21 are pruned and a 

network called NOE#5 is created at last. From that point on, it is seen that no further 

neuron could be pruned and the rest network parameters could be trained in an 

effective way. Eventually, after 3 iterations, the number of the neurons is decreased 

from 30 to 22 by using this simple and effective pruning technique. Fig. 3.13 shows 

the validation performances of the NOE#2 and NOE#5.  It is seen that the NOE#2 

was easily pruned without deteriorating its modeling performance.  
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Fig 3.10 Entropy of the hidden layer neurons in NOE#2. 
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Fig 3.11 Entropy of the hidden layer neurons in NOE#3. 
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Fig 3.12 Entropy of the hidden layer neurons in NOE#4. 
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Fig 3.13 Validation performance of NOE#2 and NOE#5. 
 

 

3.6.2 Benchmark System 2 

 

In the second benchmark example, the system is assumed to be of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )2 2

1 2 1 2 1
1

1 2 1
y k y k y k u k y k u k

y k
y k y k

− − − − − +⎡ ⎤⎣ ⎦+ =
+ − + −

 (3.16)

 

where y is the output and u is the input of the discrete-time nonlinear system. In the 

identification process, as used by Narendra and Parthasarathy (1990), a three-

layered NOE-type network model structure is chosen. The number of tangent 

sigmoid neurons is 20 and 10 in the first and second layers, respectively while one 

linear neuron is used in the output layer. As mentioned earlier, this network model 

is trained first in a feed-forward manner (i.e. a NARX model is created), meaning 

that the measured output values are used in the regression vector. Then, using the 

values of estimated parameter of the NARX model as the initial conditions of the 

NOE parameters, a recurrent learning is performed. A uniformly distributed random 

input signal is used in the training session as depicted in Fig. 3.14.a and the 

corresponding output of the plant is illustrated in Fig. 3.14.b.  
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a) Input signal applied to the plant. 
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b) Target response. 

 

Fig 3.14 Training signals used for benchmark system 2. 

 

Next, the entropy value of the each neuron in the hidden layers of the network is 

calculated. Fig. 3.15 presents the entropy diagrams for the first- and second hidden 

layers of the recurrent neural network (NOE-type). The entire procedure given in 

the flowchart of the entropy based pruning algorithm (see Fig. 3.7) is followed step-

by-step in 3 iterations. The neuron indexed with 2 in first hidden layer and the 

neuron indexed with 10 in the second hidden layer is purged in the first iteration. In 

the second iteration, only the neuron indexed with 1 is removed from the first layer. 
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It is seen that no further neuron could be pruned from the second layer after pruning 

one neuron from it at the first iteration. Lastly, the indexed neurons with 11, 12 and 

17 in Fig. 3.15.a are purged in the third iteration. Table 3.4 shows the training 

performances of the devised network models. 
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a) Entropy diagram of the first hidden layer. 
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b) Entropy diagram of the second hidden layer. 

 

Fig 3.15 Entropy diagrams of the hidden layer neurons in NOE. 
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After finishing the pruning operation, the original NOE and pruned NOE are 

compared via applying an input signal defined as 

( ) ( )
( ) ( )

sin 2 / 250 , 500
0.8sin 2 / 250 0.2sin 2 / 25 , 500

k k
u k

k k k
π

π π
≤⎧⎪= ⎨ + >⎪⎩

 (3.17)

 

 

Table 3.4 Black-box networks for benchmark system 2*. 
 

Model NARX NOE pruned NOE 

Input(s) y(k), y(k-1), y(k-2), u(k), 
u(k-1), 

u(k), u(k-1) 

Output y(k+1) 

Training data 1001 Samples 

1st layer neurons 20 20 15 

2nd layer neurons 10 10 9 

Training time (seconds) 64 190 184 

Epochs 1000 50 

Mean-square error 1.04×10-7 8.57×10-8 8.65×10-8 

Activation Function Tangent (Bipolar) Sigmoid 
[*] Linear activation functions are utilized at their output layers. 
 
 
 
Fig. 3.16 shows the outputs of both models for this input signal and the plant 

response. Moreover, Fig. 3.17 illustrates the prediction errors of the compared 

models throughout the validation scenario. Root-mean-square-errors are calculated 

as 0.0042 for NOE and 0.0052 for pruned NOE. It is observed that the prediction 

performance of the pruned NOE model is almost same as that of the original NOE. 

On the other hand, deleting these 6 neurons from the network considerably 

decreases the computation burden of the model (as well as memory requirements) 

as the total number of network parameters is decreased from 341 to 244 (28.4% 

reduction). It is seen that the proposed pruning method is simple and very effective 

as the redundant neurons are pruned directly rather than pruning the individual 

weights. 
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Fig 3.16 Validation performances of NOE and pruned NOE. 
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Fig 3.17 Prediction errors of NOE and pruned NOE. 

 

 

3.7 Closure 

This chapter has presented a modeling and identification procedure for nonlinear 

dynamic systems using ANNs. First, black-box modeling procedure has been 

explained. Every step of this identification process (the data preparation, model 
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structure selection, parameter estimation and model validation) was elaborated in a 

detailed manner. The procedure was known to be very time-consuming since one 

need to consider a number of issues (i.e. different model structures, different 

number of neurons in the chosen model architecture and different initial conditions 

while starting the training of the parameters). Hence, a general methodology to 

model nonlinear dynamic systems using SNNs was proposed. Several stages of the 

proposed methodology (division, unification, and pruning) were all explained in a 

step wise procedure. Furthermore, some standard library networks were developed 

and an iterative entropy based pruning algorithm was also proposed, which is one of 

the contributions of the thesis work.    
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CHAPTER 4 
 

 

POSITION ESTIMATION FOR TIMING BELT DRIVES 

OF PRECISION MACHINERY  
 
 
 
4.1 Introduction 

Precision positioning systems are used in a wide variety of applications in 

manufacturing-, automation-, semiconductor-, and biomedical industries (Kulkarni 

and El-Sharkawi, 2001).  Almost all of these systems use a rotary actuator (such as 

a brushless DC motor) where its angular motion is converted into translation by 

mechanical power transmission elements like belts, chains, rack-and-pinion, 

traction (friction) drives, and ball/lead-screws.  The drive system is usually selected 

by considering various issues including positioning accuracy/repeatability sought, 

travel span, maximum speed, load capacity, and cost.  At present, high precision 

systems (requiring repeatability less than 100 microns) frequently employ rigid (or 

stiff) elements like ball-screws owing to the fact that comparable performance 

cannot be achieved with elastic transmission elements like timing belts, cable, chain 

etc. For the systems with elastic elements, positioning accuracy is obtained through 

direct load position measurement devices (like linear encoders) at the increased 

hardware cost (Zhao and Cai, 1996). Furthermore, elastic elements in such 

arrangements is known to introduce nonlinearities (backlash, spatial variations in 

stiffness, friction, etc.) to the system which may in turn lead to limit cycles in the 

controlled system (Li and Rehani, 1996). This drawback oftentimes calls for more 

elaborate control- and estimation schemes that can compensate for such effects to 

improve system’s stability and performance by incorporating advanced system 

models (Hace et al., 2005; Zaki et al. 2008).  Consequently, the main motivation of 
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this work is to propose a feasible estimation scheme for timing-belt drives (TBDs) 

that utilize the information emanating from a low-cost sensor on the driver side 

(pulley). Hence, the position of the carriage driven through a timing belt could be 

estimated for cost-sensitive computer numerical control (CNC) applications.  

 

To predict the transmission error of TBDs, detailed dynamic (and kinematic) 

models must be taken into consideration. Surprisingly, TBDs are somewhat 

neglected in the technical literature and thus (unlike gears) their dynamic attributes 

have not been fully investigated.  In fact, the transmission error of a TBD depends 

on many different factors such as belt-pinion material pair, form errors in elements, 

eccentricity of the pinion, radial/axial vibrations of the belt, belt-tension, interface 

temperature, etc. Hence, the functional dependency between the actual position of 

the carriage and that of the pinion is quite complicated. On the other hand, NNs, 

which are capable of learning complex mappings, are the most suitable tools to 

approximate these error patterns. Unfortunately, large number of cited 

nonlinearities makes it quite difficult for a single (recurrent) NN topology to learn 

the complete task satisfactorily due to weak initial assumptions associated with the 

NN models. That is, the learning goal cannot be attained through a properly-sized 

NN topology within a reasonable time frame. As an alternative, a structured neural 

network topology is also proposed in this chapter for the solution of this challenging 

estimation problem.  

 

In the presented work, the TBD under study is divided into its components 

employing the physical models. Unlike classical SNN approach, the inputs of the 

presented neural networks are speculated via sketchy guidance of the relevant 

processes under investigation. Hence, the resulting neural networks are trained to 

explore their sub-domains via extensive training data sets. As a consequence, the 

overall network is expected to go beyond the physical model at hand so as to 

capture unaccounted system attributes. 

 

The organization of this Chapter 4 is as follows: After the introduction part, Section 

4.2 elaborates the generic TBD considered in this work. Then, Section 4.3 
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introduces the experimental setup along with a number of accompanying 

evaluations to investigate the transmission characteristics of a TBD. Based on the 

information collected, various neural network topologies are proposed in Section 

4.4 and Section 4.5. Next, Section 4.6 illustrates the estimation performance of the 

proposed model.  Finally, the key points of the work are discussed in detail in 

Section 4.7.  

       

4.2   Timing Belt Drive 

Fig. 4.1 illustrates the generic TBD considered in this work.  There exist two 

distinct modes of operations in such mechanisms:  

i. Teeth of driving pinion and the (driven) timing belt are fully engaged and thus 

the resulting dynamic system acts like (lower order) lumped system;  

ii. Teeth are disengaged due to backlash but (unlike gears) the torque is still 

transmitted through the friction coupling between these elements.  

 
 
 

 
Fig. 4.1 A generic timing (synchronous) belt drive system. 

 
 
 
Kilic (2007) offers a dynamic model that takes into account the properties of these 

regimes. The presented model reveals hysteresis-type nonlinearity. In fact, there 

exist a significant number of research efforts on systems with hysteresis. The most 

popular hysteresis model (which is a carry-over from the studies on electro-

magnetism and ferromagnetic materials) is the Preisach model (Mayergoyz, 1991). 
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This domain-independent modeling technique has well-defined features (such as its 

ability to model complex hysteresis types, identification algorithm, and 

implementation) which make it a suitable candidate for control applications. 

Unfortunately, the Preisach model is not particularly adequate to model the 

hysteretic effects of TBDs since such dynamic systems evidently incorporate both 

local- and global memory which is a condition violating the congruent minor-loop 

property of basic Preisach model.  

 

Note that devising general-purpose estimator/observer (with nonlinear properties), 

which directly embodies such complex dynamic models, is quite challenging due to 

obvious implementation difficulties such as numerical instability, divergence, high 

real-time computational cost, etc. Hence, this study proposes a feasible “gray-box” 

approach for the estimation problem at hand.    

 

4.3   Experimental Studies 

To develop a general-purpose estimator, the transmission error of a TBD (not 

subjected to any external load or any other change in its operation parameters) 

should be repeatable (i.e. deterministic).  Thus, a test setup is designed to test the 

validity of this basic assumption first.  Remaining of this section introduces the test 

setup and the experimental procedure implemented on this setup. 

 

4.3.1   Test Setup  

Figs.4. 2 and 4.3 show the experimental setup and its corresponding schematic. 

Here, the preload of TBD can be adjusted by changing the location of the free 

wheel.  Note that the belt preload is not measured but indirectly estimated by 

considering the nominal stiffness of the timing belt. A high resolution linear scale 

(LS) is integrated into this setup for modeling and verification purposes. This 

experimental setup is used to simulate several scenarios where the velocity and 

acceleration profiles of the carriage are accurately controlled to investigate the slip 

dynamics of the mechanism.  
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To detect the error of primary encoder (PE) measuring the displacement of 

transmission system, the position measurements of the PE are to be compared to 

those of the high-resolution LS that is directly coupled to the carriage. Due to the 

limitations of physical layout of the stage, the measurement axes of the LS and that 

of the PE do not coincide as illustrated in Fig. 4.3.  In order to come up with an 

accurate kinematic model, the Abbe offset errors have to be considered:  

 

( ) ( ) ( )ˆ LS PE x PE z y PE y z PEe x x x A x A xδ ε ε= − = + −  (4.1)

 

where xLS and xPE refer to the position measurements of the LS and PE, 

respectively. Ay, Az are the Abbe offsets (positive); εy, εz are the small angular 

rotations (a few arc-seconds) about principal axes; δx denote the displacement error 

introduced by the transmission system. Thus, e in (4.1) includes the 

geometric/kinematic errors associated with the support elements (anti-friction 

bearings, rails) as well.  

 
 
 

 
 

Fig. 4.2 General view of the setup. 
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Fig. 4.3 Schematic of experimental setup. 

 
 
 

4.3.2    Experiments 

In this work, several tests are conducted to show the repeatability of the motion 

which is a prerequisite to devise reliable reference models. In all tests, the motor’s 

velocity is accurately controlled along a trapezoidal path as shown in Figure 4.4. 

This velocity pattern corresponds to a carriage round-trip along a 300mm path. 

Thereafter, the carriage is driven with constant velocity (assumed to be in steady-

state, i.e., the acceleration / deceleration of the system is negligible) along its full 

span, the positioning error patterns (e) for twelve different (overlaid) trajectories are 

plotted in Fig. 4.5.a. Fig. 4.5.b shows the zoom window in Fig. 4.5.a. Note that the 

waveform (with low-frequency content) in Fig. 4.5.a (shown as dashed red line) is 

the (low-pass filtered) positioning error and is employed as a reference for the 

major hysteresis band. As can be seen from Fig. 4.5.b, the positioning errors are 

quite repeatable (systematic) which in turn encourages the development of 

advanced estimator models. Despite its high repeatability, the tooth-passing 

frequency component is deliberately neglected in this work owing to the fact that 
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this component is mainly a function of form errors associated with the timing belt 

and pinion. Hence, it highly depends on starting position (i.e. initial conditions) of 

the mechanism.  

 

 

0 2 4 6 8 10 12

-60

-40

-20

0

20

40

60

Time [sec]

Ve
lo

ci
ty

 [m
m

/s
]

 

 

linear scale
rotary encoder

 

 

Fig. 4.4 Velocity profile of the carriage measured from the LS and the PE. 
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b) Exploded view. 

Fig. 4.5 Position error trajectories of 12 different cases. 

 

 
Close examination of the error patterns in Fig. 4.5 reveals critical points about the 

attributes of the system under investigation:   

 

• Hysteresis band, which is roughly 0.3 mm for the test cases, is apparently a 

consequence of the backlash between the timing belt and the driving pinion 

(pulley). It is obvious that an increase or decrease in the belt tension will create 

contraction or expansion in the length of the timing belt which in turn modifies 

dead-zone characteristic of meshing teeth pairs (Kulkarni, El-Sharkawi, 2001). 

Note that in all the experiments the operating conditions (carriage mass, 

ambient temperature) along with belt preload are kept constant.  

• As mentioned earlier, unless Ay and Az are zero [see (4.1)], the Abbe offset 

errors manifest themselves as the waveforms on the upper and lower 

boundaries. Hence, mechanical manipulations on the bearing elements usually 

impress a different texture on these bounds. That is, the use of different linear 

bearing elements (with different geometric form errors, running parallelism and 

straightness errors) and/or corresponding assembly errors creating geometric 
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congruence between interfacing elements might alter the spatial attributes of 

the major hysteresis band.  

• A fundamental harmonic component (with a magnitude of 15 microns) 

superimposed onto the band is at the tooth-passing (meshing) frequency (i.e. 

carriage velocity ÷ pitch) of the timing belt and thus the observed variations 

could be mainly attributed to the effect of belt-climbing as well as the form 

errors of the belt (Kagotani et al., 2001).  

 

Harmonics injected by the two-stage gearbox of the motor appear to be quite 

negligible while the transition in the backlash zone (of which has bandwidth of 0.12 

mm) is extremely fast (< 1 ms) when a change in the direction of motion is 

observed. 

 

The next set of experiments focuses on the effect of velocity and inertial forces on 

the transmission error. As can be seen from Fig. 4.6, the dramatic changes at the 

steady-state velocity have some influences on the nature of the nonlinear 

relationship. Moreover, the effect of inertial forces is investigated by modifying the 

acceleration and deceleration profile of the controlled motor such that the sliding 

motion inside the hysteresis band is induced under the action of these inertial forces.  

The inertial forces do not have a considerable effect on the closing distances as 

illustrated in Fig. 4.6. To identify the reversal path inside the hysteresis band, the 

TBD mechanism is programmed to reverse its course at every 25 mm and go back 

to its starting point. This procedure is repeated in both directions (forward and 

backward). Similarly, the collected (and low-pass filtered) data shown in Fig. 4.7 

reveal the closing distances when the direction of motion is reversed at the above 

mentioned intervals. It is obvious that when the direction of travel is reversed, the 

power transmitting teeth disengage and micro-slip under external excitation comes 

into play. As a consequence, the belt slowly slides until the different set of teeth 

pairs engage into transmission. Unfortunately, developing dynamic models that 

explain the observed phenomena satisfactorily is known to be quite challenging and 

is an active research field in tribology (Astrom and Canudas-De-Wit, 2008). 



 

79 
 

-50 0 50 100 150 200 250 300 350-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Position of the Carriage [mm]

P
os

iti
on

 E
rro

r [
m

m
]

108mm/s2
54mm/s2

27mm/s2
326mm/s2
216mm/s2

60mm/s
80mm/s

40mm/s
25mm/s

 

Fig. 4.6 Effect of velocity and inertial forces on the transmission error. 

 
 
 
These preliminary experimental studies show that the response of an unloaded 

system is quite repeatable. Thus, the changes due to velocity and acceleration can 

be stored and may be recalled (and interpolated) later for corrective actions 

(“compensation”). This suggests the development of an estimator so that the 

position of the carriage, )(ˆ kx , can be calculated using the indirect measurements of 

the PE as  

 

ˆ( ) ( ) ( )PEx k x k e k= +  (4.2)

where k is the time index.  

 

4.4   Conventional Neural Network Designs 

Functional relationship between the transmission error of the mechanism and the PE 

readings is dominated by hysteretic effects as can be seen in Fig. 4.7. To develop a 

conventional NN to capture the desired functional dependency, one needs to 

identify the relevant inputs and outputs of the network.  Kilic et al. (2007) propose a 

number of interpolation algorithms to approximate the above-mentioned function. 

All of the presented algorithms can be generically expressed as   
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( ) ( ( ), ( 1), ( 2), ( ), ( ))PE PE PE PEe k f x k x k x k x k d e k d= − − − −  (4.3) 

 

where xPE(k), xPE(k-1), xPE(k-2) refer to the history of the PE readings while d (a 

time-variant positive integer) denotes the time index when the direction change 

takes place. Here, f:ℜ5→ℜ represents a Borel measurable function. A RNN can 

theoretically capture the desired mapping when all necessary states are presented to 

the network at a particular instant (Seidl and Lorenz, 1991). 

 
 
 

 

Fig. 4.7 Position errors on motion reversals at various locations. 

 
 
 
In fact, there exists an extensive literature on modeling/identification of hysteretic 

systems using ANNs. Previous studies deal with the hysteresis-type problems using 

the outputs of the elementary hysteresis operators of the Preisach model as inputs to 

the designed FNNs (Zhang and Tan, 2010). For example, Zhao and Tan (2008) 

propose a hysteretic operator that was based on the classical Preisach model to 

construct an expanded input space of the hysteresis. Moreover, there are some 

recent studies which design hysteresis-type ANN models by changing the activation 
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function of the neurons whose characteristic is hysteretic (Lien et al., 2010; Deng 

and Tan, 2008).      

 

Within the framework of transmission error estimation, several (supervised) RNN 

topologies such as Elman-type RNNs, NOE and fully-recurrent neural network 

(FRNN) are considered to approximate the nonlinear relationship. It is well known 

that the Elman-type networks are based on FNNs except that they have feedback 

connections from hidden layer units to the context units. In NOE, the output of the 

second layer is directly connected to the first hidden layer as input. Moreover, all 

the layers have feedback connections to the other layers (including self-feedback) in 

FRNN. The major assumption here is that the output feedback and the internal 

feedback connections of these ANNs are sufficient to form a relevant memory 

model (i.e. long-term) implicitly to capture the relationship in (4.3).    

 

The training results of the various RNN models using the input signals in (4.3) are 

shown in Table 4.1. As could be seen, the Elman-type RNN (with 50 neurons in its 

hidden layer), whose training performance is presented in Fig.4.8, has the smallest 

training error. Unfortunately, this network’s generalization performances on some 

arbitrary motion scenarios (which will be elaborated in Section 4.7) are 

unsatisfactory as could be seen from Fig. 4.9. When the number of hidden-layer 

neurons of the network is increased, the training error reaches to an acceptable level 

(about 15 μm) after a long training session on a high-end PC (with Intel Core i5 

processor and a SDRAM of 4GB). However, the Elman-type networks fail in the 

validation scenarios due to various reasons including well-known bias/variance 

dilemma (German et al., 1992).   Furthermore, when gradient-descent based training 

methods are utilized, the developed NNs are not guaranteed to converge to a global 

minimum (in a vast parameter space) within a reasonable training period. Within 

this context of this study, the Elman-network was clearly not able to form a long-

term memory that allows the recall of the nominal position as well as the error 

estimate [namely, xPE(k-d) and e(k-d)] when the direction had changed. Therefore, 

independent of the network architecture, the obtained results are unacceptable for 

estimation and modeling purposes (i.e. modeling error >> 15 μm).  
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Fig. 4.8 Training performance of the Elman-type RNN. 
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Fig. 4.9 Generalization performance of the Elman-type RNN on Scenario 2. 
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Table 4.1 Training results of the Elman-type RNN, NOE, and FRNN * 
 

Inputs x(k), x(k-1), x(k-2)
Output Position Error 
Training Data 1067 Samples 
Act. Func. Tangent Sigmoid 
Training 
Method Levenberg-Marquardt 

Architecture Elman-type RNN NNOE FRNN 
1st Layer 
Neurons 10 25 50 10 25 50 10 25 50 

Training error 
in (μm)   23 19 15 34 33 28 27 22 17 

Epochs 125 
Training time 
in (min) 7.5 15.5 55 4 5 6 13 26 85 

[*] Linear activation functions are utilized at their output layers. 

 

 

 

4.5   Structured Neural Network Architecture  

Estimation problem at hand can be decomposed into a number of well-defined sub-

problems that are known to be associated with different operating regimes of the 

mechanism.  Once a NN is devised to capture the characteristics of each regime, the 

corresponding networks can be transformed into a single network to represent the 

overall dynamics of the system accurately.  

 

Looking at Fig. 4.7, one can directly identify four different operating regimes for 

the given mechanism: 

 

1. Mechanism moves in the forward direction (left to right) while the power/torque 

transmitting teeth are fully engaged. The carriage follows the lower bound of the 

hysteresis band.   

 

2. Mechanism moves in the reverse (backward) direction (right to left) while the 

power transmitting teeth are fully engaged. The carriage follows the upper bound 

of the hysteresis band.  
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3. Mechanism changes its course towards the forward direction and thus the power 

transmitting teeth become disengaged. In this transient regime, the driving torque 

is transmitted through the friction coupling between the pinion and the belt. 

Depending on the reversal position, a path inside the hysteresis band (indicated 

by solid lines) is followed.  

 

4. Mechanism changes its course towards the reverse direction and thus the power 

transmitting teeth become disengaged. The driving torque is again transmitted 

through the friction coupling between the pinion and the belt. Depending on the 

reversal position, a path inside the hysteresis band (indicated by dashed lines) is 

followed.  

 

Hence, four different ANNs can be designed to capture/model the mechanism’s 

behavior in each region: ANNe
+, ANNe

-, ANNd
+, ANNd

- where the superscripts + and 

– denote the forward- and reverse directions while the subscripts “e” and “d” 

indicate the engagement / disengagement status of the power transmitting teeth in 

the mechanism. Fig. 4.10 illustrates the SNN incorporating these units. It is critical 

to note that the physical parameters of the timing belt (e.g. pitch of the timing belt, 

width, length, mass, number of pinion teeth etc.) are not directly utilized in the 

overall network.  Since each ANN is trained separately, the weights of the overall 

SNN is to implicitly encode the relevant physical parameters.  

 

In this configuration, ANNe
+and ANNe

- represent the lower- and upper boundaries of 

the hysteresis band in Fig. 4.7. Since there is a one-to-one correspondence between 

x(k) (carriage position) and e(k) (estimated error), these networks employ x(k) as 

input. Similarly, ANNd
+and ANNd

- are trained to approximate a family of 

trajectories (curves) lying inside the hysteresis band between the upper and lower 

boundaries. In other words, these networks are expected to model the “creep” 

behavior of the timing-belt beginning from the disengagement of teeth until the 

engagement on the other side of the dead-band. Notice that these two networks have 

two inputs: i) reversal (starting) point on the boundaries of hysteresis band; ii) 

relative (incremental) position with respect to the starting point on the boundary. If 
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direction reversal takes place inside the hysteresis band (i.e. when the torque/force 

is transmitted through friction coupling), the correct course of return needs to be 

determined. Hence, two different networks (ANNsp
+ and ANNsp

-) are specifically 

designed to determine “starting point” (of reversal) on the target boundary using the 

information available at the turnaround point inside the band. 
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Fig. 4.10 SNN topology for estimating the position error of the carriage. 
 
 
 
 
Notice that when the direction is reversed (in Fig. 4.7), a considerable jump is 

observed at the starting point of a traversed path owing to the fact that the built-in 

gearbox of the motor used in this study does have a significant gear backlash. 

Hence, two ANNs (namely, ANNb
+, ANNb

- ) are included to the SNN to calculate 
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the play introduced by this gearbox. Note that ANNd
+ and ANNd

- could be trained to 

learn this hard-nonlinearity as well. However, when included, the corresponding 

approximation error does increase drastically despite the addition of neurons. 

Hence, predicting this (easy-to-model) nonlinearity through the use of separate 

networks provides a more effective solution. 

 

As a result, eight separate ANNs are connected together to form a “mixture of 

experts” via switching (or gating) networks that essentially perform multiplexing 

operations among the network outputs. Design of such NNs is discussed in Section 

3.5.1. Here, switching networks Type 2 are used for the implementation of the 

below task 

 

1

2

, 0
, 0

u s
y

u s
≥⎧

= ⎨ <⎩
 (4.4) 

 

The resulting SNN can be viewed as a finite state machine with five states (Φ1 … 

Φ5).  In this topology, the Switching Network 1 selects the outputs of the relevant 

networks depending on the current direction of the carriage (i.e. sgn{x(k) – x(k-

1)}). Moreover, the direction change is detected via the FNN (with 2 hidden layers) 

performing logical exclusive-OR (XOR) operation.  

 

Note that if a change in direction is detected, the Switching Network 3 immediately 

latches the last position onto the Φ4 state. Similarly, the Switching Network 4 

updates the Φ5 state that essentially holds the last error value including the backlash 

calculated by ANNb
+or ANNb

-.   

 

When the direction is changed inside the hysteresis band (i.e. teeth are disengaged), 

the error could be calculated by first adding the backlash value. Then, the resulting 

value is used to find the starting point on the hysteresis boundaries using ANNsp
+or 

ANNsp
-. It is critical to note that in the presented SNN architecture, the states must 

continuously monitored to switch to the output of “correct” network (i.e. choose the 

proper alternative). For instance, the transition from dead-band to its boundary is 
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determined by comparing the outputs of ANNd and ANNe:  if the output of ANNd
+ is 

less than that of ANNe
+, the output of ANNe

+ becomes effective. When the output of 

ANNd
- is greater than that of ANNe

-, the output of ANNe
-should be selected. 

 

For the ANNs in the proposed architecture, a number of standard neural networks 

available in the literature can be utilized. Among these alternatives, FNN, RBF and 

RNN are considered. Table 4.2 summarizes these networks and their corresponding 

properties. The next section evaluates the performance of the proposed SNN 

employing these networks as its components. 

 

Table 4.2 Architectures of the FNN, RBF and RNN networks* 

  ANNe
+ ANNe

– ANNd
+ ANNd

– 
Input(s): Position Incremental Position and 

Starting Position 
Output(s): Position Error Incremental Position 

Error 
Training Data: 601 Samples 2×1961 Samples   
Training (rms) 
error: < 10 μm 

Epochs: 50 225 

FN
N

 

1st Layer 
Neurons: 8 60 

Activation 
Function: 

Tangent Sigmoid 

Training Method: Error Back-propagation / Gradient Descent 

R
B

F 

1st Layer 
Neurons: 24 26 233 237 

Activation 
Function: 

Gaussian  

Training Method: K-means clustering & Recursive Least 
Squares 

R
N

N
 

1st Layer 
Neurons: 12 90 

Activation 
Function: Tangent (Bipolar) Sigmoid 

Training Method: Levenberg-Marquardt 
       [*] Linear activation functions are utilized at their output layers. 
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4.6   Results and Discussions 

The estimation capabilities of the proposed SNN are investigated by considering 

four arbitrary motion scenarios for the carriage. In each case, the user controls the 

velocity and the direction of the carriage manually (at will). The attributes of these 

cases are summarized as follows:  

 

• Scenario 1. During its forward motion course, the carriage loops (i.e. 

oscillates) around 75, 150, 245 and 295 mms respectively. Similarly, while in 

the reverse course the carriage performs these loops at 80, 150 and 230 mms 

respectively. Fig. 4.11 shows the trajectory (position and velocity) of the 

carriage for this case. The carriage maintains an average velocity of 32 mm/s 

on the overall course (when meshing teeth fully engage). While looping, the 

pinion- and timing belt teeth disengage at the beginning and then re-engage 

when reaching the starting point at the end of the reversal course. 

 

• Scenario 2. This case is similar to the first scenario except that this case 

contains longer loops which commence at different points on the course as 

could be seen from Fig. 4.12. Note that this case, in which the corresponding 

average velocity is 28 mm/s, is selected such that the loop starting points are 

distributed out quite evenly throughout the whole travel span.  

 
 

• Scenario 3. This case, which is illustrated in Fig. 4.13, constitutes five loops 

on the forward course and five loops on the backward one. Some of the loops 

are cascaded such that the direction is reversed before the meshing teeth fully 

engage. For this case, the carriage maintains an average velocity of 24 mm/s 

when meshing teeth are fully engaged. 

 

• Scenario 4. This case, which is shown in Fig. 4.14, resembles its predecessor 

except the loop starting points. The average velocity maintained on the loops 

(i.e. in the region where meshing teeth disengage) is slightly higher than its 

counterpart. 
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Fig. 4.11 Position- and velocity-states of the carriage in Scenario 1. 
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Fig. 4.12 Position- and velocity-states of the carriage in Scenario 2. 
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Fig. 4.13 Position- and velocity-states of the carriage in Scenario 3. 
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Fig. 4.14 Position- and velocity-states of the carriage in Scenario 4. 

 

Figs. 4.15 to 4.26 demonstrate the estimation performances of the SNN topology on 

each case.  As for quantitative analysis, the key results [in terms of “estimation 

error” characteristics along the traversed trajectory for a SNN incorporating three 

different NN types (FNN, RBF, RNN)] are summarized in Table 4.3. Moreover, 

Table 4.4 gives the estimation errors on major – and minor hysteresis loops 

separately. Note that the major loop is associated with the motion where belt teeth 

essentially mesh with pinion teeth. That is, it corresponds to the motion on the 

upper- and lower bounds of the hysteresis band. On the other hand, the minor loop 

refers to the motion inside the band where the meshing teeth of the mechanism are 

fully disengaged and the motion is transmitted by friction coupling.   Figs. 4.15, 

4.16, and 4.17 show the results of the considered networks for Scenario 1.  

 

Table 4.3 Estimation errors (in μm) for each NN employed in the SNN. 

 Scenario: 1 2 3 4 

FN
N

 Max 145.2 116.1 92.5 132.6 
Min -133.6 -92.2 -149.3 -127.2 
RMS  24.1 25.4 30.1 26.8 

R
B

F Max 101.1 113.4 102.3 129.5 
Min -169.2 -85 -192.8 -136.7 
RMS 25.9 25.5 33.8 27.3 

R
N

N
 Max 76.7 109 92.5 127.8 

Min -142.7 -100.7 -176.9 -91.1 
RMS 24.9 26.1 34.2 25.9 
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Table 4.4 Estimation errors (in μm) on major- and minor hysteresis loops. 

Scenario 1 2 3 4 
Major  Minor Major Minor Major Minor Major Minor 

FNN 12.7 30.6  16.6 27.9  21.8  33  18.4  28.8  
RBF 12.8  32.9  16.4  28.2  21.6  37.6  19.7  30.2  
RNN 14.8  31  19.9  28  22.7  37.9  20.3  29.7  
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Fig. 4.15 Response of the SNN comprising FNNs for Scenario 1. 
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Fig. 4.16 Response of the SNN comprising RBFs for Scenario 1. 
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Fig. 4.17 Response of the SNN comprising RNNs for Scenario 1. 
 

 

As could be seen, the positioning errors generally vary between 10 and 15 μm on 

the main (upper and lower) hysteresis bands whereas the positioning errors are 

about 30 μm on the minor loops. Similarly, the performance of the tested networks 

for Scenario 2 could be seen from Figs. 4.18, 4.19, and 4.20 for SNN with FNNs, 

RBFs, and RNNs respectively.  

 

 

0 50 100 150 200 250 300
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Position [mm]

E
rro

r [
m

m
]

 

 

upper hysteresis band
lower hysteresis band
Scenario 2
FNN

 
Fig. 4.18 Response of the SNN comprising FNNs for Scenario 2. 
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Fig. 4.19 Response of the SNN comprising RBFs for Scenario 2. 
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Fig. 4.20 Response of the SNN comprising RNNs for Scenario 2. 
 
 
 
As illustrated, the position estimation errors are again about 30 μm and 16-20 μm 

on the minor loops and major loops respectively. Note that the estimation errors on 

the major loop are slightly elevated in this case owing to the fact that the average 

velocity on major loops (28 mm/s) deviates from the velocity in the training case 

(40 mm/s). Similarly, Figs. 4.21, 4.22, and 4.23 demonstrate the NNs performances 

on the Scenario 3.  
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Fig. 4.21 Response of the SNN comprising FNNs for Scenario 3. 
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Fig. 4.22 Response of the SNN comprising RBFs for Scenario 3. 
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Fig. 4.23 Response of the SNN comprising RNNs for Scenario 3. 
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As expected, the position estimation errors on major- and minor hysteresis loops are 

getting bigger in Scenario 3 since the calculated average velocity on major loop (24 

mm/s) significantly differs from that of the training scenario. Furthermore, this case 

constitutes cascaded minor loops which deteriorate the performance of the NNs due 

to the error contributions of ANNsp networks which predict the starting point of the 

new trajectory. Finally, the Figs. 4.24, 4.25, and 4.26 present the overall 

performances of the NNs for Scenario 4. The major loop performances of the NNs 

for this scenario are worst than those for Scenario 1 and Scenario 2 since the 

conditions in this case (e.g. the average velocity of 25.5 mm/s) are significantly 

different from the ones in the training session.  
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Fig. 4.24 Response of the SNN comprising FNNs for Scenario 4. 
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 Fig. 4.25 Response of the SNN comprising RBFs for Scenario 4. 
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Fig. 4.26 Response of the SNN comprising RNNs for Scenario 4. 
 

 

The type of NNs used in the SNN does not have a major influence on the results 

owing to the fact that the training errors associated with them are comparable in 

magnitude. Consequently, for a TBD that constitutes a large hysteresis band of 300 

microns (plus a gearbox backlash of 120 microns), the presented network can 

estimate the carriage’s position with an overall root-mean-square error of 25-35 

microns utilizing the position measurements at the actuator (driver) side.   

 

Note that the estimation performance of the SNN utilizing the FNN is slightly better 

the others.  That is, all RMS error values for FNN on major- and minor loops are 

less than 30 μm.  This network is presumed sufficient for error compensation in 

precision applications (Kulkarni and El-Sharkawi, 2001). 

It is evident from Table 4.4 that the main error comes from the transient regimes 

(minor loops) where the motion could only be transmitted by friction forces.  

Unfortunately, modeling the friction characteristics in such regimes is quite 

challenging as it involves a large number of variables including the radial- and axial 

vibrations of the belt (Abrate, 1992). For that reason, the developed NN models, 

which lack the relevant inputs, could not fully capture the complex micro-slip 

phenomenon which is quite dominant in this operating regime. Furthermore, other 
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physical variables (such as belt tension, interface temperature, form errors of the 

pinion and belt teeth, etc.) could be incorporated to the developed NN models to 

increase the performance. However, such attempts would clearly defy the 

practicality (and the goal) of the presented method. 

 

4.7   Closure 

In this chapter, a TBD, which is not subjected to any external load, was considered. 

It has been shown that the transmission error patterns of such (elastic) mechanisms 

are repeatable to a certain extent. Hence, this feature motivates the design of an 

estimator that makes good use of indirect measurement techniques.  

 

As suggested by the previous studies, various interpolation paradigms could be used 

to compute these (quasi-static) error patterns (possibly in real-time). However, huge 

numbers of data points are required to represent the corresponding patterns 

accurately. Furthermore, complex decisions are still necessary to switch among 

various interpolation schemes. A natural choice is to capture the “essence” of error 

patterns via NNs.  

 

As briefly shown in this work, a generic RNN topology could not be developed to 

establish the desired relationship effectively within a reasonable time frame. On the 

other hand, the study has illustrated the performance of the presented SNN via a 

number of practical test cases. Using the sketchy guidance of the model at hand, a 

number of smaller NNs (with different architectures like FNN, RBF, RNN) were 

designed to tackle with these elementary “mapping” problems. Finally, seven NNs 

performing glue logic were designed to combine these individual networks. Hence, 

a SNN topology was tailored to estimate the transmission error efficiently.  

 

Despite the fact that the mechanical system under study was far from ideal, the 

presented network yielded a satisfactory estimation performance provided that no 

external forces were acting on the carriage of the mechanism. Even though this (“no 

load”) condition seems to be seriously restricting the application of the presented 

paradigm; it is crucial to recall that most mechanisms encountered in practice (e.g. 



 

98 
 

printer/plotters, scanners, plasma/laser beam cutters, rapid prototyping machines, 

etc.) do not operate under the presence of external loads. Thus, the presented 

approach (which conveniently embodies an actuator with a crude position sensor) 

can be easily incorporated to the advanced motion controllers for such applications.  
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CHAPTER 5 
 

 

PRESSURE PREDICTION OF A SERVO-VALVE 

CONTROLLED HYDRAULIC SYSTEM  
 
 
 
5.1 Introduction 

Hydraulic systems are widely used in many applications such as manufacturing 

equipment, construction machinery, rolling and paper mills, aircrafts, etc. If 

compared to their electrical counterparts, they could provide large forces at higher 

speeds with a high power-to-weight ratio. In hydraulic control systems, the relevant 

physical quantities such as position, velocity, acceleration, pressure, flow-rate and 

actuator force are measured via precision sensors to carry out a specific control task. 

Among these quantities, the pressures in cylinder chambers of the electro-hydraulic 

servo systems (EHSSs) play a key role in both the implementation of closed-loop 

force and/or position control and estimation of disturbances on the hydraulic 

actuator. Generally, accurate trajectory tracking control of hydraulic actuators is 

realized by the application of advanced control techniques such as adaptive robust 

control (Yao et al., 2000; Kaddissi et al., 2011; Mohanty and Yao, 2011), cascade 

control (Guo et al., 2008) and sliding-mode control (Guan and Pan, 2008; Pi and 

Wang, 2011). Despite the fact that position sensors, accelerometers, and force 

sensors are frequently utilized for tracking control of hydraulic systems, the above-

mentioned control applications exclusively require the measurement of hydraulic 

(actuator chamber) pressures. Note that the introduction of pressure sensors 

increases the cost and complexity of the overall control system while reducing its 

reliability due to extra sensors and interface circuitry incorporated to the system.  

Likewise, in many industrial applications, the number of dedicated pressure sensors 
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(or any other sensors like PZT or strain-gage based load cells for that matter) is 

sought to be minimized for the purpose of reducing both the overall cost and the 

sensor-related malfunctions. Hence, an accurate pressure dynamic model, which 

could also be used for maintenance and fault-detection purposes, may allow a 

pressure sensor to be replaced by a relevant model (a soft-sensor or observer).  

 

Note that accurate models for the dominant dynamics of the system must be also 

incorporated to the controller design so as to obtain a high bandwidth response 

(Jelali, 2003). A dramatic increase in control system performance can be 

accomplished via the use of predictive control schemes that employ stable models 

to forecast the behavior of the plant in foreseeable future (Lawrynczuk, 2010). On 

the other hand, the dynamic behavior of an EHSS is known to be highly nonlinear 

due to the compressibility of the hydraulic fluid, the complex characteristics of the 

flow-control device (i.e. servo-valve), the friction- and the leakage in the hydraulic 

actuators which in turn create problems in the model development efforts / control 

for such systems. Yet, nonlinear control system development for EHSSs remains a 

challenging task and is an active area in fluid power research (Karpenko and 

Sepehri, 2010).  

 

There is not a single study that could predict accurately the long-term pressure 

dynamics of a valve-controlled EHSS in the current literature.  For instance, Zhang 

(1997) and Watton et al. (1997) reveal the problem of creating reliable ANN models 

for hydraulic systems. Furthermore, He and Sepehri (1999) deal with the prediction 

problem and they were able to predict (15 step ahead) chamber pressures of an 

electro hydraulic test setup using a NARMAX-type network with prediction 

accuracy about ±5-10 bar (using a pressure sensor with a measurement accuracy of 

1% within the range of 0-138 bar). Hence, the objective of this study is to predict 

the long-term pressure dynamics of an EHSS without the use of any extra sensors. 

The signals, which are exclusively used for the long-term pressure prediction task, 

are the control voltage to the servo valve driver and the measured position of the 

hydraulic actuator.  No doubt, the pressure sensors would be used in the training 

operation and then they would have to be removed in the validation phases. This 
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study considers only the problem of design of an ANN model to predict the 

chamber pressure variables in a hydraulic cylinder actuator. The long-term 

prediction performances of the proposed network are demonstrated through a 

number of simulation studies.  Therefore, the objective of this study is not only to 

elaborate the performance within the framework of realistic case scenarios but also 

to study the adaptation of a network model to a new hydraulic system with different 

physical parameters. 

 

The rest of the Chapter 5 is organized as follows: Section 5.2 describes the 

simulation based hydraulic system employed in this study. Section 5.3 focuses on 

the design of RNN architectures to predict the hydraulic pressures using traditional 

techniques and utilizing the sketchy guidance of a priori knowledge at hand. 

Section 5.4 shows the practical usage of the devised neural network models for a 

hydraulic experimental test set up. Finally, concluding remarks are presented in 

Section 5.5. 

 

5.2 Hydraulic System Model 

The hydraulic actuation system considered in this study is composed of a fixed-

displacement pump, a pressure relief valve, an accumulator, a critical-centered (or 

zero lapped) servo-valve and a double-action cylinder that is coupled to a load 

operating in a high-friction environment as shown in Fig. 5.1. For the sake of 

keeping the study in focus (and succinct), the mathematical models of the pump, the 

pressure relief valve, the accumulator and the pipe lines (along with the interactions 

among themselves) are not given below. However, the models of these systems are 

given in appendix A in a detailed manner. 

Consequently, the models of the key hydraulic circuit elements (i.e. servo-valve and 

a double-action cylinder) that would allow the development of reduced-order 

pressure estimators are to be discussed here. Referring to Fig. 5.1, the nonlinear 

(differential) equations describing the relationships among the servo-valve control 

flows (QA and QB) and the actuator position (x) can be written as 
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( )fric ext A B pMx Bx Kx F F P P A+ + + + = −�� �   (5.1)

  

( ) ( )
.

A A p
A

P Q A x
V x
β

= − �  (5.2a) 

  

( ) ( )
.

B B p
B

P Q A x
V x
β

= − + �  (5.2b)

where Μ is the mass of the piston/load; Β is the effective viscous damping; K is the 

stiffness of the equivalent spring, Αp is the piston annulus area and β refers to the 

bulk modulus of the hydraulic fluid. PA and PB denote the hydraulic pressures in 

each actuator chamber. Note that the volumes of hydraulic oil on each side of the 

piston are expressed by VA(x)= VA0+ Apx and VB(x)=VB0− Apx where VA0 and VB0 are 

the initial chamber volumes when the piston is located at the center of the cylinder. 

Please note that the internal leakage between the chambers of a hydraulic actuator is 

generally characterized as a laminar flow (where the associated Reynolds number is 

smaller than 2000) and could be given as  

 

( )leakage L A B LQ C P P C P= − = Δ  (5.3)

 

where CL (leakage coefficient) generally ranges in between 10-12m3/(Pa⋅s) (Kaddissi 

et al, 2007) and 10-15m3/(Pa⋅s) (Guan and Pan, 2008) for hydraulic actuators. 

Despite the fact that CL depends on many different physical parameters, this 

important coefficient can be approximately expressed as 

 
3

L
DcC

Lμ
∝  

(5.4)

 

where D is the piston diameter; c is the clearance between the piston and the 

cylinder; μ is the dynamic viscosity coefficient; L is the length of the piston 

(Merritt, 1967). As can be seen from (5.4), the clearance has the biggest impact on 
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the leakage flow. In practice, the internal leakage could be omitted if the seal 

between the chambers is considered intact. That is, the clearance between the piston 

and cylinder is extremely low. Otherwise, the resulting flow will affect the pressure 

dynamics and one must incorporate (5.3) to (5.2).  In that case, a cross-coupled 

pressure model must be utilized. Note that, in this experimental (and simulation) 

study, the leakage in the hydraulic actuator is neglected since a brand-new actuator 

(with virtually no wear whatsoever) is employed.  

 

The valve flow rates (which depend on the valve displacement from neutral) are 

also nonlinear in nature and could be given as 

 

, 0

, 0
v v S A v

A
v v A T v

K u P P u
Q

K u P P u

⎧ − >⎪= ⎨
− <⎪⎩

 (5.5a) 

, 0

, 0
v v B T v

B
v v S B v

K u P P u
Q

K u P P u

⎧ − >⎪= ⎨
− <⎪⎩

 (5.5b)

2 /v dK C w ρ=  (5.6)

 

where PS refers to the hydraulic supply pressure and PT  denotes the tank (reservoir) 

pressure; Kv is the servo-valve flow gain;  w is the orifice area gradient of the servo-

valve. The servo-valve orifice coefficient of discharge is given by Cd while ρ 

denotes the density of the hydraulic oil. Here, uv refers to the displacement of the 

valve spool. 

 

 Moreover, the friction force in (5.1) can be characterized by a dynamic friction 

process model like the LuGre model (Mihajlov et al., 2002) as 

 

0 1 2fricF z z vσ σ σ= + +�  (5.7)

  

( ) ( ) ( ) ( )( )2/

0

1, sv v
c s c

vdz v z g v F F F e
dt g v σ

−= − = + −  (5.8)
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where v is the velocity of the piston; z is an internal state representing the average 

bristle deflection; vs is the Stribeck velocity; Fs is the static friction, Fc is Coloumb 

friction; σ0 is the bristle-spring constant; σ1 is the bristle-damping coefficient and σ2 

is viscous friction coefficient. 
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Fig. 5.1 Valve controlled hydraulic system. 

 

 

A servo-valve is a complicated electro-mechanical device that includes a torque 

motor, a flapper-nozzle, and a valve spool. The manufacturers of such devices often 

times provide (linearized) models that characterize accurately the dynamics of their 

devices within the frequency response band of interest. For the servo-valve 

considered in this study, the current drive along with the valve-spool dynamics can 

be described in Laplace (s) domain as 

 

( )
( )

1

c C C

I s
V s L s R

=
+

 (5.9) 

  

( )
( )

2

2 22
v h n

n n

u s K
I s s s

ω
ζω ω

=
+ +

 (5.10)
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In these equations, LC is the valve-coil (solenoid) inductance; RC is the coil 

resistance; Vc is the control voltage; I is the current in the coil; Kh is the first stage 

servo valve gain. Moreover, ζ and ωn is the damping ratio and natural frequency of 

the servo-valve. Manufacturers’ catalogues provides the relevant parameters of 

these linear models.  

 

In the simulation study, a fixed-step integration (0.1 ms) was performed via 

MATLAB® Simulink using Dormand-Prince solver. The parameters of the afore-

mentioned models are presented in Table 5.1.  Note that the advanced simulation 

model is primarily used to provide the data needed for not only designing the 

structured NNs but also assessing their (preliminary) prediction performance. 
 
 
 

Table 5.1 Some of the key model parameters used in the simulation study. 
 

Par. Value Par. Value Par. Value 

M 9 kg VA0 0.00005 m3 Kh 0.0401  m/A 

B 2000 N⋅s/m VB0 0.00005 m3 ωn 1256 rad/s 

K 10 N⋅m β 1.4×109 Pa ζ 0.7 

AP 645×10-6 m2 σ0 12×105 N/m LC 0.59 H 

Ps 2×107 Pa σ1 300 Ns/m RC 100 Ω 

Kv 3.2×10-5 m5/2/kg1/2 σ2 60 Ns/m Qmax 6×10-5 m3/s 

Cd 0.625 Fc 100 N uv_max 0.6×10-3 m 

w 1.08 mm Fs 130 N xmax 0.05 m 

ρ 890 kg/m3 vs 0.1 m/s Imax 15 mA 
 

 

5.3 Prediction Models and Parameter Estimation 

The problem of creating accurate ANN models for the long-term pressure 

prediction in the cylinder chambers of a valve-controlled hydraulic system is to be 

solved by using black-box- and gray-box (SNN) modeling approaches in Sections 



106 
 

5.3.1 and 5.3.2, respectively. Next, prediction performances of the designed 

network models are evaluated in Section 5.3.3. 

 

5.3.1. Black-box Approach 

Now, black-box regression models are to be designed to predict the chamber 

pressures (PA and PB) in extended time periods without any feedback (at any rate) 

from the (simulated) pressure sensors.  Hence, only the position sensor output x(k) 

along with the control voltage for the servo-valve Vc(k) are to be utilized in the 

designed predictor. 

 

Before developing any black-box model, its regression vector, which could be 

generically expressed in the form of (5.11), must be determined:  

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ , , , , , ,

1 , , , 1 , , ]
c c

T
A A B B

k x k x k m V k V k n

P k P k p P k P k p

ϕ = − −

− − − −

… …

… …
 (5.11)

 

The selection for the model orders (m, n, p) [i.e. the size of TDL for various signals 

of interest] used in the regression vector closely governs the prediction 

performance. In literature, there exist well-known techniques like the Lipschitz 

quotients method (He and Asada, 1993) to determine the model orders. However, 

the pragmatic approach is to select these orders via trial-and-error or to use the prior 

knowledge about the process when applicable.  

 

When the (simplified) equations governing the pressure dynamics [i.e. (5.2) and 

(5.5)] are examined closely, one can infer that the pressure states of the hydraulic 

system are decoupled and that two multiple-input single-output (MISO) predictors 

can be developed if the spool position (uv) is accurately estimated using (5.9) and 

(5.10). That is, a discrete-time model (i.e. a constant coefficient difference equation) 

to estimate the spool position can be conveniently devised as 

( ) ( ) ( )
3

1
v n v n c

n
u k a u k n b V k n

=

= − + −∑  
(5.12)
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where an and bn are the constants of the difference equation.  

 

Note that the selection of sampling period (T) plays a key role in discrete-time 

modeling of dynamic systems. Reuter (1995) studies the system identification of 

hydraulic servo-systems and shows that a sampling period in between 0.86 ms and 

1.3 ms is sufficient for modeling purposes of such systems. Therefore, in this study, 

1 ms, which is a common choice in the current state of the art (Yousefi et al., 2008), 

is selected as the sampling period. Note that when (5.2) and (5.5) are discretized via 

backward difference method (i.e. Euler method), the prediction models simply boil 

down to 

 

( ) ( )( ),x x x xP k f kϕ θ=  (5.13a)

 

( ) ( ) ( ) ( )( ) [ , , , 1 ]T
x v xk u k x k v k P kϕ = −  (5.13b)

where θx is the weight vector; the subscript x denotes a placeholder for letters A and 

B.  

 

Before the training session, one should select a proper excitation signal in order to 

create input-output data set. Looking to the literature, it is seen that PRMS is the 

most suitable choice of input signal form for identification of hydraulic systems 

(Jelali and Kroll, 2003; He and Sepehri, 1999; Xue-miao et al., 2010; Barbosa et al., 

2011). Therefore, the servo-valve manipulation signal, shown in Fig. 5.2.a, is 

applied for gathering the training data. Fig. 5.2.b represents the position and 

velocity profile of the hydraulic actuator. Furthermore, Figs. 5.2.c and 5.2.d show 

the pressure dynamics for this training scenario in chamber A and B, respectively. It 

is seen that the pressure dynamics is getting more vibratory when the piston 

approaches to its stroke limits (0.05 m) at about 7.8 seconds.  
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a) Servo-valve manipulation signal.
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b) Cylinder position and velocity.
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c) Pressure dynamics in chamber A.
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d) Pressure dynamics in chamber B.

Fig. 5.2 Training data used for the modeling of servo-valve controlled hydraulic 

system. 

 

 

First of all, a NARX model is devised to model the pressure dynamics as can be 

seen from Fig. 5.3. The network is trained via MATLAB® (2008a) NN toolbox that 

runs on a PC with Intel Core i5 processor and a SDRAM of 4GB. Due to poor 

training performance, the regression vector in (5.13.b) is modified as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ , 1 , , 1 , , 1 , 1 , 2 ]T
x v v x xk u k u k x k x k v k v k P k P kϕ = − − − − −  (5.14)

 

Table 5.2 summarizes the properties of this network. Even though this model 

exhibits excellent training performance, the resulting network alone is of little 

practical use owing to the fact that the model requires the history of the pressure 

state. It is important to note that a fully recurrent neural network, which produces 

self-sustaining predictions, cannot be trained to the desired accuracy when the 

weights of the network are initialized randomly. As for the next step, the output of 

this network is directly fed back as could be seen from Fig. 5.3. The resulting 

network, which is commonly referred to as NOE model, is further trained via RTRL 

algorithm. The summary of the training session is also given in Table 5.2. Hence, 
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the final RNN is able to predict the pressure states without the need for pressure 

sensors. 
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Fig. 5.3 Connections of the NARX and NOE models to the system. 

 

 
Table 5. 2 Architecture and performance of the black-box networks*. 

 
Architecture NARX NOE 
Inputs ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, 1 , , 1

, 1 , 1 , 2
v v

x x

u k u k x k x k

v k v k P k P k

− −

− − −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1 , , 1
ˆ ˆ, 1 , 1 , 2

v v

x x

u k u k x k x k

v k v k P k P k

− −

− − −

Training Data 10001 Sample 
Training error 
in RMS 

for PA 0.011 bar 0.506 bar 
for  PB 0.017 bar 0.777 bar 

Epochs 1000 50 
Training time (min) 1.5 40 
1st Layer Neurons 10 10 
Activation Function Tangent (Bipolar) Sigmoid 
Training Method Levenberg-Marquardt LM / RTRL 

[*] Linear activation functions are utilized at their output layers. 
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5.3.2 Gray-box (SNN) Approach 

A close examination of the (simplified) model presented in Section 5.2 reveals that 

it can be conveniently divided into two parts: flow-rate model and pressure model. 

Hence, the pressure states may be predicted accurately when the flow-rates for each 

chamber (rather than uv(k) input) is provided. Fig. 5.4 illustrates the schematic of 

the proposed structured recurrent neural network where 1 _ max max/v v SG K u P Q=   

and ( ) ( )2 max 0x SG Q T V Pβ=  refers to two gains with lumped parameters. The 

following sections elaborate the NN designs in the topology. 
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Fig. 5.4 Schematic of the structured recurrent neural network. 

 

 

5.3.2.1 Flow-rate Model 

Flow-rate can be estimated by a NN model using a priori information about the 

process. If the pressure states in (5.5) are normalized by the maximum pump supply 

pressure (PS) while the spool displacement is scaled by the maximum allowable 

valve-spool displacement (uv_max), the nonlinear flow characteristic [as expressed by 

(5.5) in its simplified form] can be learned by a FNN. That is, training data set (i.e. 

normalized flow rate) could be generated for all the ranges of normalized pressure 
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and spool position. Presuming that the normalized pressure is available, a FNN can 

be trained to learn this nonlinear mapping.  

 

Table 5.3 summarizes some of the FNN architectures considered in this study. As 

can be seen, the fourth architecture, which yields the minimum root-mean-square 

(RMS) training error, is utilized to estimate the corresponding flow rates (see the 

networks labeled Network Qa and Network Qb in Fig. 5.4).  

 

It is critical to notice that to estimate the flow rate at time instant kT, the network 

requires not only the valve-spool displacement (uv) but also the pressure estimate at 

t = kT. Since such an estimate is usually not available for that instant, the previous 

value of that state must be employed for all intensive purposes. Hence, this practical 

implementation necessity implies that the pressure does not change significantly 

within one sampling interval and that Px(k) ≅ Px(k-1).    
 

 

Table 5.3 Characteristics of various networks designed for QA*. 
 

Architecture # 1 # 2 # 3 # 4 
1st  layer neurons 10 30 5 10 
2nd  layer neurons - - 5 10 
Output layer neurons 1 1 1 1 
Number of epoch 1000 1000 1000 2500 
Training time in (min) < 1 < 3 < 1 < 7  
RMS training error in (m3/s) 4.37 ×10-7 5.22 ×10-8 2.31 ×10-7 8.52 ×10-9

Training data 9801 Sample 
Training method Levenberg-Marquardt 
Activation function Tangent (Bipolar) Sigmoid 

[*] Linear activation functions are utilized at their output layers. 
 

 

5.3.2.2 Pressure Model 

Once the flow rates are estimated to the desired accuracy, the chamber pressure 

(rates) can be approximately computed via (5.2) in a straightforward fashion. 

Considering the discrete-time equivalent of (5.2) [as computed via a Euler 

integration method], a RNN should implement the below pressure dynamics as 
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( ) ( )
( )

A p
A A

A0 p

Q k A v k
P (k)=P (k-1)+T

V A x k
β
⎡ ⎤−
⎢ ⎥

+⎢ ⎥⎣ ⎦
 (5.15a)

 

( ) ( )
( )

B p
B B

B0 p

Q k A v k
P (k)=P (k-1)+T

V A x k
β
⎡ ⎤− +
⎢ ⎥

−⎢ ⎥⎣ ⎦
 (5.15b)

 

One needs to design a specific FNN to implement the division operation in (5.15) 

since it is tested and seen that a generic RNN could not learn the pressure dynamics 

directly using a regression vector whose elements constitute from Qx(k), ,x(k), v(k) 

and Px(k-1).For that purpose a FNN, called divider network, is trained with 

normalized inputs in such a way that Ω is between [-1 +1] and Γ is between [-0.9 

+0.9]. This network model will be used as the main part of the pressure model as 

shown in Fig. 5.5. 
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Fig. 5.5 Schematic of the pressure model. 
 

 

The overall pressure model could be represented with a 2 layered RNN model as 

given below 

( ) ( ){ } ( )2 2 1 1x xP k G W W k b P kψ ϕ= + + −⎡ ⎤⎣ ⎦  (5.16a)

( ) ( ) ( ) ( ), ,
T

xk Q k v k x kϕ ⎡ ⎤= ⎣ ⎦  (5.16b)



114 
 

where Ψ(⋅) is the activation vector function (bipolar sigmoid); the weight matrices 

are W1 ∈ ℜ20x3, W2 ∈ ℜ1x20, and bias vector  is b ∈ ℜ20x1. As described before, G2 is 

a constant in (5.16a) and comes into existence due to the normalization procedure. 

Two pressure models, named as Network Pa and Network Pb, are created based on 

this architecture and 20 tangent sigmoid neurons are used in the 1st layer of these 

network models. After training a number of modular NN models using the “divide-

and-conquer” approach, these subsystems are combined to construct a unified 

SRNN. Therefore, a specific network architecture for that system is established. The 

SRNN network could be further trained in the unified form for fine tuning of its 

weight parameters. It is seen that the training error of the SRNN for PA decreases 

from 0.396 bar level to 0.190 bar level within 5 epochs while training session lasts 

about 85 minutes. Table 5.4 summarizes the training properties of the SRNN 

network. The performance of the resulting network is evaluated in the next section. 

 

 

Table 5.4 Properties of the structured recurrent neural network. 

Input(s) ( ) ( ) ( ),vu k x k v k  
Output(s) ( ) ( ),A BP k P k

Layer 1a 10 Tangent Sigmoid 
Layer 2a 10 Tangent Sigmoid 
Layer 3a 1 Linear 
Layer 1b 10 Tangent Sigmoid 
Layer 2b 10 Tangent Sigmoid 
Layer 3b 1 Linear 
Layer 4a 20 Tangent Sigmoid 
Layer 5a 1 Linear 
Layer 4b 20 Tangent  Sigmoid 
Layer 5b 1 Linear 
Error of the 
SRNN after 
unification 

for PA 0.396 bar 

for PB 0.773 bar 
number of training 
data 10001 Sample 

training method LM / RTRL
number of epoch 5 
training time 85 minute 
Error of the 
SRNN after training 

for PA 0.190 bar 
for PB 0.598 bar 
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5.3.3 Prediction Results 

To assess the prediction performances of the developed RNNs, a validation study 

(called v1) is conducted via generating a servo-valve manipulation signal that 

constitutes another PRMS as depicted in Fig. 5.6. With this input applied to the 

detailed model in Fig. 5.1, the hydraulic system is simulated and a 5000 step-ahead 

prediction test is realized with the SRNN and NOE models. 
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Fig 5.6 Servo-valve manipulation signal used in model validation. 
 

 

Note that in the simulation study, the sensor- and data conversion dynamics are also 

taken into consideration. The networks are only provided with the relevant digital 

information: x(k) and Vc(k). In this scenario, the position of the piston x(k) is 

assumed to be measured by a linear scale with a resolution of 5 microns. Similarly, 

the velocity v(k) (as required by the networks) is to be estimated via a first-order 

backward difference: ( ) [ ( ) ( 1)]v k x k x k T= − − . Furthermore, the servo-valve 

manipulation voltage Vc(k), which is to be generated by a digital control system, is 

sampled and converted to the digital representation via a 12-bit analog-to-digital 

converter (ADC). Therefore, the inputs to the networks do constitute quantization 

noise to some extent. 
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Model validation results are presented in Fig. 5.7 for the NOE and SRNN models. 

Fig. 5.7.a represents the temporal pressure changes of chamber A as calculated from 

the simulated system’s response (i.e. exact pressure change) for SRNN and NOE 

model. Fig. 5.7.b illustrates the accuracy frequency response function (FRF) that is 

spectrally averaged to reduce the noise content.  

 

Similarly, Figs. 5.7.c and 5.7.d show the (temporal) pressure changes of chamber B 

as well as the corresponding accuracy FRFs. From accuracy FRFs, it has been 

observed that the SRNN model outputs are very close to actual states (since the 

ratio is about 1). Furthermore, the RMS errors of the SRNN model are 0.552 and 

0.43 bars for prediction of PA and PB respectively while the corresponding RMS 

errors of the NOE model are 5.592 (for PA) and 2.946 bars (for PB) respectively. 
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a) Pressure change in chamber A. 
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b) Accuracy frequency response functions when predicting PA. 
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c) Pressure change in chamber B. 
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d) Accuracy frequency response functions when predicting PB. 

 

Fig. 5.7 Validation test (v1) results. 
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It is critical to note that all conditions in the validation test v1 (including the 

friction) are exactly the same as those of the training case. Consequently, another 

verification test (called v2) is carried out for a different set of mechanical system 

parameters. That is, the LuGre model parameters in the simulation are changed to 

increase the friction force four times if compared to the previous case. Furthermore, 

a load (external) force (in the form of a chirp signal with amplitude of 3000 N and a 

frequency range from 0.1 Hz to 5 Hz in 5 seconds) is applied to load in order to 

fluctuate the chamber pressures in a broader range (70-130 bar) around PS/2 level 

(100 bar). The results of this validation scenario are presented in Fig. 5.8. Again, 

the pressure changes in both chambers are shown in Figs. 5.8.a and 5.8.b. Not 

surprisingly, the SRNN, which apparently captures the essential features of the 

hydraulic system, yields excellent long-term prediction performance (where the 

RMS error is 0.758 bar and 0.540 bar for the prediction of PA and PB, respectively) 

while the NOE model fails to predict the pressure states accurately. It could be 

inferred that the estimation accuracy at the frequency band of interest (including 

extrapolation capability) of the SRNN models are quite exceptional as indicated by 

the accuracy FRFs of the SRNNs in Fig. 5.8.c. 
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a) Pressure change in chamber A. 
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b) Pressure change in chamber B. 
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c) Accuracy frequency response functions of the SRNN. 

Fig.5.8 Validation test (v2) results. 

 

 

Moreover, the robustness of the SRNN is tested via applying an external force. Fig. 

5.9.a shows the applied external force in time domain while the magnitude of the 

(time-varying) prediction errors in chambers A and B are presented in Figs. 5.9.b 

and 5.9.c, respectively. A (sampled) cross-correlation coefficient between external 

force and prediction error is also calculated as 
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where extF is the mean of applied external force and e  is the mean of prediction 

error. It is found that the cross-correlation coefficient is 0.076 (7.6%) for prediction 

error in chamber A and -0.116 (11.6%) for prediction error in chamber B, 

respectively. Furthermore, Fig. 10 shows the prediction error (in bars) of the SRNN 

while applying sinusoidal type external forces with different amplitudes and 

frequencies. It has been observed that as the magnitude and frequency of the 

external force are increased, the prediction performance of the SRNN slightly 

deteriorates. However, there exist a significant potential to improve the training 

performance of the resulting network via an enhanced training data set (at the 

expense of increased training time). 
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a) Applied external force. 
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b) Prediction error in chamber A. 
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c) Prediction error in chamber B. 

 
Fig. 5.9 Test for sampled cross-correlation between external force and prediction 
error. 
 

 

Fig. 5.10 Prediction error (in bars) of the SRNN to the applied external force. 
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The above-mentioned claim  merely states the fact that if the neural network based 

predictor/estimator/observer was “tuned” (or trained) ideally, its estimation error 

would approach to zero (within its bandwidth) even if its inputs (uv, x, v) were 

highly correlated with the disturbance (or applied external force).  Unfortunately, 

the theoretical treatment of the above-mentioned aspect using well-known 

techniques such as perturbation analysis, interval analysis, describing function 

analysis, harmonic analysis etc. is known to be quite challenging for highly 

nonlinear systems (i.e. systems with a number of discontinuities). For instance, 

devising even an operating-point model for the (simplified) hydraulic system 

considered in this study is not straightforward. To be specific, one cannot develop a 

linear time-invariant (LTI) (operating point) model when the servo-valve is 

operated at its neutral point (uv = 0) while the piston is to be centered around a 

specific location (x = x0). Consequently, one needs to employ further assumptions in 

order to perform a manageable analysis. To that end, let us assume the followings:   

 

1)   Piston is operated at the middle section of the hydraulic cylinder. The 

volume changes (in both chambers) as a function of piston position are 

presumed negligible. 

2)   Friction force and linear elastic force component (i.e. spring force) are 

embedded to the external force. 

3)   Piston is assumed to be extending with uv>0. 

 

After defining the perturbation variables as uv = uv0 + δuv (uv>0), v = v0 + δv, PA = 

PA0 + δPA, Fext = Fext0 + δFext …; one can “linearize” (5.2) and (5.5) via Taylor 

series expansion to get  

( ) _

_ _

1 2

3 3

uA ext p
A v

A A
PA ext PA ext

A A
v
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K A
P j u vV Vj K j K
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where the excitation frequency is ω = 2πf (rad/s) (0 < f < fbandwidth). The terms 

KuA_ext and KPA_ext are referred to as the valve spool position gain and the valve 

pressure gain of the orifice respectively. In practice, the valve spool position (i.e. 

control input voltage) along with actuator velocity is correlated to the external force 

provided that a motion-control loop is realized. That is, δuv ∼ δFext and δv ∼ δFext. 

Assuming that the neural network based predictor closely mimics the actual 

pressure dynamics, the pressure prediction error in chamber A could be defined as 

 

1 1 2 2

3 33 3

ˆ ˆ
ˆ

ˆ ˆ
A A A A

A A A v
A AA A

k k k ke P P u v
j k j kj k j k

δ δ δ δ δ
ω ωω ω

⎛ ⎞ ⎛ ⎞
− = − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ +⎝ ⎠ ⎝ ⎠

�  (5.20)

 

Here, the quantities with ^ denote the ones associated with the SNN model. It is 

clear from the equation above that δeA → 0 as model coefficients converge to the 

actual system parameters ( )1 1 2 2 3 3
ˆ ˆ ˆ, ,A A A A A Ak k k k k k→ → → . In that case, the 

prediction error would be independent from the external force (i.e. its amplitude and 

excitation frequency). As mentioned previously, the SRNN in this study were not 

trained perfectly since the training session had to be terminated when the 

corresponding error reached a predetermined threshold value. For the sake of 

creating a practical training scenario, the data set included only a limited number of 

operation regimes where the application of the external force and wideband 

excitation of the system via this force was also excluded. As explained before, the 

duration of the training session grows exponentially as the network size (i.e. free 

parameters) along with the size of the training data set step up dramatically. Under 

the given circumstances, one might expect some correlation (or functional 

dependence) between the external force and the prediction errors of the developed 

network.  
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5.4. Long-term Pressure Prediction of an Experimental Hydraulic Test Setup 

The black-box- and gray-box (SNN) modeling approaches devised in Section 5.3 

are to be evaluated experimentally and thus this section focuses on the practical 

usage of the devised SRNN using an experimental hydraulic test set up. 

 

5.4.1. Experimental Test Setup 

The experimental test set up used in this study is illustrated in Fig. 5.11.  This set up 

was assembled for the evaluation of state feedback control techniques on two 

different operating modes (valve controlled and variable-speed pump controlled 

mode) of a hydraulic system (Caliskan, 2009). These two circuit schemes can be 

selected at will. The components of this setup are listed in Table 5.5. 

 

 

   

Fig. 5.11 Experimental test setup (Caliskan, 2009). 

 

 

Since the presented study concentrates on the pressure estimation of the valve 

controlled hydraulic circuit, the experimental set up shown in Fig. 5.12 is operated 

in that mode.  Note that in this test set up, a double acting asymmetric cylinder is 

used as the hydraulic actuator where it is rigidly connected to a steel plate being 
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supported by two sliders at each end to restrict its rotation. The masses of the steel 

plate and cylinder rod and the friction acting on the seals of the actuator and the 

bearings of the supports constitute the load. The pumps are driven in one direction 

with constant speed and their outlet pressure (i.e. the supply pressure of the valve) is 

limited by the pressure relief valve. Similarly, a servo solenoid valve regulates the 

flow rate through the double acting asymmetric cylinder. The valve driver has a 

spool position controller accepting spool position feedback from the LVDT on the 

valve and receives its reference spool position command (±10 V). The position of 

the actuator, the chamber pressures of the hydraulic cylinder and the valve supply 

pressure are measured in the set up. In fact, the spool position of the solenoid valve 

can be read from the valve driver via a data acquisition (DAQ) card. 

 

 

Table 5.5 Components of the hydraulic test setup. 
 
Components Remarks 
Hydraulic pumps Effective displacement: 15.6 cm3/rev 

Max. operating pressure: 250 bar 
Hydraulic actuator Cap side area: 1963.5 mm2 

Rod side area: 1001.4 mm2 
Stroke: 100 mm 
Cap side chamber volume: 154387 mm3 
Rod side chamber volume: 82455 mm3 

Load  Steel plate: 11.6 kg 
Actuator rod: 0.7 kg 

Transmission line elements Steel tubes with diameter 12 mm 
Hydraulic oil Bulk modulus: 1300 MPa 

Kinematic viscosity at 20ºC is 100 mm2/s 
Servo proportional valve  &  driver BOSCH 4WRPH 

Nominal flow rate: 24 l/min 
Valve gain: 2.138×10-8 m7/2 (kg1/2.V) 

Servo motors and motor drivers Nominal power 1 kW 
DAQ card National Instruments 

16 Analog Input 
2 Analog Output 

Sensors Pressure sensors 0-400 bar, 4-20 mA 
output 
LVDT with ±10 V output 
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Fig. 5.12 Schematic diagram of the experimental test setup. 

 

 

5.4.2. Adaptation of Black-box Model 

To identify the nonlinear black-box models for the given experimental setup, the 

measured servo-valve spool position (control signal) shown in Fig. 5.13.a, is 

applied to the valve driver for gathering the regression (i.e. training) data. Fig. 

5.13.b shows the measured position of the actuator position. As could be seen, the 

noise on the position transducer aggravates the noise on the calculated velocity 

significantly. Therefore, the position signal must be filtered before the velocity 

calculation operation. For this purpose, a discrete-time low-pass filter with a cut-off 

frequency of 20 Hz is used to smooth the position signal. Fig. 5.13.c presents the 

calculated actuator velocity (which is an element in the regression vector) from the 

filtered actuator position signal using first order difference method (FODM). 

Furthermore, the pressure changes in each chamber are presented in Fig. 5.13.d. As 
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can be seen, some noise is also observed in the measured pressure as well as valve 

spool position signals due to the (pump) motor drivers. Thus, these signals are 

filtered with a discrete-time low-pass filter with a cut off frequency of 100 Hz. 

Architecture and training performances of the black-box models are presented in 

Table 5.6 for this training case. 

 

 

Table 5.6 Architecture and performance of the black box networks*. 
 

Architecture NARX NOE 
 
Input(s) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1 , , 1

, 1 , 1 , 2
v v

x x

u k u k x k x k

v k v k P k P k

− −

− − −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1 , , 1
ˆ ˆ, 1 , 1 , 2

v v

x x

u k u k x k x k

v k v k P k P k

− −

− − −
 

Output(s) Px(k) Px(k) 
Training data 50001 Sample 
Training 
error (bar) 

for PA 0.021 2.243 
for PB 0.024 2.891 

Epochs 500 10 
Training time (min) 6 225 
1st layer neurons 10 10 
Activation function Tangent (Bipolar) Sigmoid 
Training method Levenberg-Marquardt LM / RTRL 

[*] Linear activation functions are utilized at their output layers. 
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a) Valve spool position. 
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b) Actuator position. 
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c) Calculated actuator velocity from filtered position signal. 
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d) Cylinder chamber pressures. 

Fig. 5.13 Measured and filtered signals that will be used for training. 
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5.4.3 Adaptation of Gray-box (SNN) Model 

Due to similarity in the hydraulic system architecture (including zero-lapped servo 

valve), the SRNN devised in Section 5.3.2 can be directly adapted for the long term 

pressure prediction of the hydraulic cylinder chambers. However, if the servo-valve 

in the experimental setup were of a different type (i.e. an overlapped or under 

lapped type), the FNNs estimating the flow rates (i.e. Network Qa and Network Qb) 

would have to be modified (or redesigned to be exact) to accommodate the unique 

nonlinearities associated with these valves. Furthermore, G1 and G2  weights (see 

Fig. 5.4) can be calculated provided that the valve gain constant, maximum spool 

displacement, pump supply pressure, maximum flow rate of the valve, bulk 

modulus of the hydraulic oil, sampling time of the predictor model and initial 

chamber volumes are known. All these values, which could be found in Table 5.5, 

are used to form the specific SRNN model for this experimental setup. 

 

Again, the filtered signals presented in Fig. 5.13 are used in the training session of 

SRNN. The training results are given in Table 5.7. In fact, the SRNN commences 

training in close proximity to an acceptable solution in (huge) multi-dimensional 

weight space. Hence, the overall network will quickly converge to the best global 

solution within a few epochs. The weights of the SRNN layers from 1a to 5a 

(shown in Fig. 5.4) are investigated for the purpose of determining the changes in 

free weights after the training. Figs. 5.14, 5.15 and 5.16 show the percentage change 

of the bias, input and layer weights of the SRNN with respect to the ones before the 

training operation. Note that, in these figures, every square indicates the percentage 

change of the (bias/input/layer) weight value associated with a unique neuron in the 

specified layer shown along the ordinate.  It is observed that overall network could 

learn the dynamics of the experimental hydraulic system quite easily by making 

only a minor weight changes. It is interesting to note that when this SRNN 

architecture is initialized with arbitrary weights, the network totally fail to learn the 

dynamic behavior of the system. Therefore, the determination of the right 

architecture along with the optimal size of the network is not a sufficient condition 

to capture the desired functional relationship. 
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Fig. 5.14 Percentage change of the bias weights with respect to the initial model 
weights. 

 

( )vu k
( )x k
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 Fig. 5.15 Percentage change of the input weights with respect to the initial model 
weights. 
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Fig. 5.16 Percentage change of the layer weights with respect to the initial model 
weights. 
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Table 5.7 Training results of the structured recurrent neural network. 
 

Input(s) ( ) ( ) ( ),vu k x k v k  
 Output(s) ( ) ( ),A BP k P k

Layer 1a 10 Tangent Sigmoid 
Layer 2a 10 Tangent Sigmoid 
Layer 3a 1 Linear 
Layer 1b 10 Tangent Sigmoid 
Layer 2b 10 Tangent Sigmoid 
Layer 3b 1 Linear 
Layer 4a 20 Tangent Sigmoid 
Layer 5a 1 Linear 
Layer 4b 20 Tangent  Sigmoid 
Layer 5b 1 Linear 
Training 
error 

for PA 18.980 bar 
for PB 22.064 bar 

Training data 50001 Sample 
Training method LM / RTRL
Epochs 10 
Training time (min) 835 
Error after 
training 

for PA 1.232 bar 
for PB 1.720 bar 

 
 
 

5.4.4 Prediction Results 

To assess the prediction performances of the RNNs developed in Sections 5.4.2 and 

5.4.3, a validation study (called v3) is conducted via generating a servo-valve 

manipulation signal (u) for a duration of 2.5 seconds which correspond to a 2500 

step-ahead prediction test as depicted in Fig. 5.17.a. With this input, the velocity 

profile of the hydraulic actuator is presented in Fig. 5.17.b. Using these two signals, 

model validation results are presented in Fig. 5.17.c for the NOE and SRNN 

models. Not surprisingly, the SRNN captures the essential features of the hydraulic 

system while the NOE model fails to predict the pressure states accurately. On the 

other hand, an exact mathematical model of this experimental setup was tried to be 

constructed by Caliskan (2009) and the performance of that white-box modeling for 

the pressure estimations in actuator chambers are presented in Fig. 5.18. It is 

obvious that such modeling efforts yield poor performance on the long-term 

pressure predictions of hydraulic system considered. 
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a) Valve spool position. 

0 0.5 1 1.5 2 2.5
-40

-30

-20

-10

0

10

20

30

40

ve
lo

ci
ty

 [m
m

/s
]

Time [sec]  
b) Calculated actuator velocity from filtered position signal. 
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c) Cylinder chamber pressures. 

Fig. 5.17 Validation study (v3) results. 
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Fig. 5.18 Pressure prediction via white-box modeling approach. 
 

 

Three more validation tests are realized to check the stability and convergence of 

the SRNN model when realizing some closed-loop position control tests on the 

hydraulic system. In validation test v4, a 10000 step-ahead prediction test is realized 

with the servo-valve signal applied to the servo-valve driver as shown in Fig. 

5.19.a. The other necessary signal (the actuator velocity) for the predictor model is 

shown in Fig. 5.19.b. Furthermore, Fig. 5.19.c represents the temporal pressure 

changes measured by pressure sensors and the predicted ones using the SRNN 

model. It is found that the RMS error value of the SRNN model is 1.76 bars for the 

prediction of PA and 3.61 bars for the prediction of PB. Moreover, it can be easily 

seen that the accuracy FRF of the SRNN model outputs, which are shown in Fig. 

5.19.d, are close to actual state for a very broad bandwidth since the ratio is about 1.  
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a) Valve spool position. 
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b) Calculated actuator velocity from filtered position signal. 
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c) Cylinder chamber pressures. 
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d) Accuracy frequency response functions. 

 

Fig. 5.19 Validation study (v4) results. 

 
 
 
In the next validation test (called v5), the signals that will be used for the validation 

of SRNN were shown in Fig. 5.20.a and Fig. 5.20.b, again for a 10000 step ahead 

prediction task. The measured and predicted pressures are presented in Fig. 5.20.c 

and it is found that the RMS error values of the SRNN are 1.66 bars and 5.48 bars 

when predicting PA and PB, respectively. Again, the model accuracy is very high 

(prediction error is about 2%) up to frequency of 400 Hz (except at the frequencies 

of 35 Hz and 210 Hz) as indicated by the accuracy FRF of the SRNN model 

presented in Fig. 5.20.d. It could be said that there is no stability and convergence 

problem in the long-term pressure prediction (10000 steps) of the servo-valve 

controlled hydraulic system and the validation performance of the SRNN is quite 

acceptable. 
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a) Valve spool position. 
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b) Calculated actuator velocity from filtered position signal. 
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c) Cylinder chamber pressures. 
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d) Accuracy frequency response functions. 

Fig. 5.20 Validation study (v5) results. 

 

 

In the last validation test scenario (called v6), the reference- (command) and the 

measured position of the actuator are illustrated in Fig. 5.21.a while the other input 

signals (e.g. the valve position and the velocity of the actuator) for the SRNN are 

shown in Figs. 5.21.b and 5.21.c. Similarly, Fig. 5.21.d represents the measured 

pressure changes and the predicted ones using the SRNN model during a very long-

prediction period (50000 steps). It is found that the SRNN outputs are in good 

agreement with the actual pressure states as the corresponding RMS error values 

simply become 2.646 bars and 3.496 bars in the cylinder chamber A and B, 

respectively. Finally, Fig. 5.21.e illustrates the accuracy FRF of the SRNN for the 

frequency band of interest. Consequently, the prediction performance of SRNN for 

this experimental case is quite acceptable for all practical purposes. Hence, the 

SRNN demonstrates its potential in predicting the chamber pressures for a servo-

valve controlled hydraulic system in extended time periods.  
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a) Reference and measured actuator position signal. 
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b) Valve spool position. 

0 5 10 15 20 25 30 35 40 45 50
-80

-60

-40

-20

0

20

40

60

80

Time [sec]

V
el

oc
ity

 [m
m

/s
]

 

c) Calculated actuator velocity from filtered actuator position signal 
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d) Cylinder chamber pressures predicted by SRNN. 
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e) Accuracy frequency response functions. 

Fig. 5.21 Validation study (v6) results. 

 

 

5.5 Closure 

This study presented a NN-based modeling/identification procedure to predict the 

long-term pressure dynamics of a valve controlled EHSS. Apart from well-known 

black-box approaches (NARX and NOE), the study includes a gray-box approach in 

which a SRNN is employed. The developed black-box models consists of a NN 

with one hidden layer of sigmoidal neurons and a linear output neuron for the 

purpose of mapping the regression vector to the predicted chamber pressures.  Even 

though the black-box models yielded acceptable training performance, they have 
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failed to predict the chamber pressures in the validation scenarios. Therefore, black-

box model development paradigms to capture the essence of the pressure dynamics 

have significant drawbacks. 

As an alternative, a gray-box model, which makes good use of a priori information 

on the process, is developed. In this approach, a specialized network is devised with 

the sketchy guidance of the mathematical models available. Hence, the pressure 

dynamics of the EHSS was divided into its sub-systems based on the available 

mathematical model. Later, a number of smaller neural networks (i.e. flow-rate 

models and pressure models) were designed in order to capture the assigned task on 

them. Then, all these networks were combined to yield a tailored SNN (namely 

SRNN) for the solution of challenging long-term pressure prediction task problem. 

The prediction performances of the SRNN were evaluated through a number of 

(simulation & experimental) case studies. These investigations demonstrated that 

the SRNN, which has been developed via strong assumptions on the system, 

exhibited much better (long-term) prediction performance if compared to its 

counterparts employing weak assumptions. The key points (and contributions) of 

the study can be summarized as follows: 

 
• Using advanced modeling/filtering/system identification techniques, the long-

term prediction of the chamber pressures of an EHSS is not fully explored in 

the current technical literature. Therefore, the devised SRNN is the first 

observer system that can be tailored to capture the long-term pressure 

dynamics of such nonlinear systems accurately.  

 
• All the advanced controllers in the current state of the art exclusively require 

the measurement of hydraulic (actuator chamber) pressures which in turn 

increases the overall cost due to pressure sensors and interface circuitry 

incorporated to the system. Therefore, this study, which concentrates on the 

accurate estimation of these chamber pressures using ANN models (for the 

possibility of eliminating costly sensors), complements these research efforts 

in the literature.  
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• Study illustrates the adaptation of the SRNN whose free parameters (i.e. 

synaptic weights) are adjusted via a detailed simulation study on a generic 

valve-controlled EHSS. The same network (with initial weights intact) was 

directly applied to model the pressure dynamics of an actual EHSS. After a 

brief training session, this network was able to predict the chamber pressures 

of this new experimental system quite accurately (error values of the SRNN 

are about ±5 bars) in the long run (50000 steps). Training of the presented 

network is efficient since the SRNN quickly converges to the global optimum 

point (yielding accurate prediction results) as it does not need to start the 

training session in any arbitrary point in the huge weight space. Additionally, 

the study also investigated the changes in the free parameters as the 

adaptation to the new system (elaborated as experimental test setup) 

completed. The study shows that no noticeable changes in the hidden layer 

weights are observed. Similarly, the output weights change slightly but have a 

considerable influence on the prediction performance of the network. 

 
• The experimental studies revealed that the SRNN could predict the chamber 

pressures quite accurately (± 5 bars) in relatively long intervals. Apart from 

advanced control applications, designed structured neural networks could be 

of special importance in some special applications (like military-, and 

aerospace systems) where sensor failures could have detrimental effects. 

Therefore, the presented network could reliably serve as a sensor backup 

system for degraded mode of operation where some of the pressure sensors in 

the hydraulic system malfunction.  
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CHAPTER 6 
 

 

PRESSURE PREDICTION OF A VARIABLE-SPEED 

PUMP CONTROLLED HYDRAULIC SYSTEM  
 
 
 
6.1 Introduction 

In electro-hydraulic servo-systems, the hydraulic power is either controlled by 

throttling principle (using servo-valves) or by volumetric control principle (via 

adjusting the rotational speed of a constant-displacement pump by a servo motor or 

via adjusting the pump displacement by a swash plate).  

 

The former principle offers good dynamic behavior at the expense of substantial 

energy losses at the flow control device. On the other hand, the latter principle 

yields increased efficiency with a poor dynamic response. When the emphasis is 

placed on the high power transmission with low energy losses (i.e. cost-

effectiveness), variable-speed pump-controlled hydraulic systems are generally 

preferred in the drive systems of the contemporary machine systems (Helbig, 2002; 

Helduser, 2003; Lovrec and Ulaga, 2007; Lovrec et al., 2008).  

 

As similar to the Chapter 5, the objective of this work is to predict the long-term 

pressure dynamics of a variable speed pump controlled hydraulic system as the 

pressures in cylinder chambers of a hydraulic actuator are needed in various control 

tasks. Again, a structured recurrent neural network is proposed as the solution of 

long-term pressure prediction problem after seeing that black-box models could not 

deal with such a challenging task at hand.  
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The rest of the chapter is organized as follows: After this brief introduction part in 

Section 6.1, a variable speed pump controlled hydraulic system and its model is 

given in Section 6.2. Following that, some RNN models are trained in order to 

predict the cylinder chamber pressures using black-box- and gray-box modeling 

approaches in  Section 6.3. Next, Section 6.4 illustrates the practical usage of the 

structured RNN (as devised in Section 6.3) on the hydraulic experimental test set 

up. Finally, concluding remarks are presented in Section 6.5. 

 

6.2 Pump Controlled Hydraulic System 

The hydraulic experimental test setup was explained in Section 5.4.1 in a detailed 

manner. In addition, hydraulic circuit of the variable-speed pump controlled mode 

of the experimental setup and its position controller topology is now illustrated in 

Fig. 6.1.  
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Fig. 6.1 Schematic diagram of the experimental test setup (Caliskan, 2009). 
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6.2.1 Mathematical Model 

First of all, the model describing the pump controlled mode of the system must be 

devised in order to apply the structured neural network (SNN) methodology (Dolen, 

2000). All the relevant equations, which are related to the pressure dynamics of the 

hydraulic setup, are elaborated here to reveal the interactions among the sub-

systems.  

 

The flow rates of the pumps are adjusted via manipulating the drive speeds of the 

servo-motors in order to control the position of the hydraulic actuator. Pumps rotate 

in either direction according to the flow needed by the system. As could be seen 

from the controller topology, there are two control loops which regulate the piston 

pressure and the position, separately. Therefore, the reference inputs of the 

independent controllers are the reference position (xref) and the desired value for the 

sum of chamber pressures at steady state (psum) as presented below.  

 

_ _sum A steady state B steady statep P P= +  (6.1)

 

The pressure control-loop is used both to pressurize the cylinder chambers to a 

predetermined value and to compensate the pump leakages so as to maintain the 

stability of the hydraulic cylinder. Similarly, the offset speeds of pump 1 (n1o) and 

pump 2 (n2o) are related to each other as 

 

1 2o on nλ=  (6.2)

 

where λ has a negative value. Furthermore, Ψ is another constant used in the 

pressure controller in order to determine the ratio between psum and n2o. The steady 

state dynamics of the hydraulic system is utilized to find the value of these 

constants. 
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Furthermore, the task of the position control loop is to create a manipulated input 

signal n2. The cylinder used in the system is a single rod differential cylinder with 

an area ratio defined as 

 

A

B

A
A

γ =  
(6.3)

 

where ΑA and ΑB are the piston annulus areas in the actuator chambers A and B, 

respectively. In this controller topology, the hydraulic cylinder is actually moved by 

pump 2. On the other hand, pump 1is only used for the compensation of the 

asymmetric flow rate due to this differential cylinder. In order to perform this task, 

the ratio between the dynamic pump speeds is defined as  

 

( )1 21n nγ= −  (6.4)

 

As shown in Fig. 6.1, when the pumps rotate in the counter clockwise direction, the 

flow continuity equations of this hydraulic system could be written from Fig. 6.1 as 

follow 

 

( )2 2p A P t i A B ea Aq D n C P P C P= − − −  (6.5)

 

( )2 2p B P t i A B eb Bq D n C P P C P= − − +  (6.6)

 

1 1p A P t i A ea Aq D n C P C P= − −  (6.7)

 

2 1A p A p Aq q q= +  (6.8)

 

2B p Bq q=  (6.9)

 

where the terms PA and PB represent the hydraulic cylinder cap end side and rod end 

side chamber pressures, DP is the pump displacement, Ci is the internal leakage, Cea 
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and Ceb are the external leakage coefficients of the pump 1 and pump 2, 

respectively. Moreover, n1t and n2t represent the rotational speed of pump 1 and 

pump 2 in terms of revolution per second (rps).  

 

Similar to the servo-valve controlled mode of the hydraulic system, the flow 

continuity equations for the cylinder chambers are as below   

 

( )A A
A A

V x dPq A x
dtβ

= +�  
(6.10)

  

( )B B
B B

V x dPq A x
dtβ

= −�  
(6.11)

 

where β is the bulk modulus of the oil. In (6.10) and (6.11), the hydraulic cylinder 

chamber volumes are not constant but do change with the hydraulic cylinder 

position as VA(x) = AA x + VA0 and VB(x) = −AB x + VB0 where VA0 and VB0 are initial 

chamber volumes when the piston is at the midpoint of the hydraulic cylinder.  

 

Defining the load pressure as shown below 

 

L A BP P Pγ= −  (6.12)

 

The force transmitted to the load becomes 

 

L L Bf P A=  (6.13)

 

Next, the Newton’s 2nd law could be applied to the load as 

 

= + + +�� �L fricf mx bx mg f  (6.14)
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In Eq. (6.14), friction force is defined by again a LuGre model as it is given in (5.7) 

and (5.8). The numerical values of the physical parameters used in the simulation 

study are presented in Table 6.1. 

 
 
 

Table 6.1 Model parameters used in the simulation study. 
 

Parameter Value Parameter Value 
m 12.3 kg σ0 12x102 N/mm 
AA 1.9635 mm2 σ1 2.6 Ns/mm 
AB 1.0014 mm2 σ2 2.6 Ns/mm 
VAo 1.4258 x105 mm3 Fc 330 N 
VBo 7.6821 x104 mm3 Fs 360 N 
Dp 15.6 x103 mm3/rev vs 100 mm/s 
Ci 1027 mm3/(s⋅MPa) λ -1.2294 
Cea 120 mm3/(s⋅MPa) Ψ -0.0265 
Ceb 120 mm3/(s⋅MPa) β 1300 MPa 

  
 
 

6.3 Prediction Models and Parameter Estimation 

In this section, the problem of creating accurate ANN models for the long-term 

pressure prediction in the cylinder chambers for a (variable-speed)  pump-controlled 

hydraulic system is to be handled by  black-box- and gray-box (i.e SNN) modeling 

approaches. These predictive models are initially developed via simulation data 

rather than experimental data due to two main reasons:  

 

First of all, black-box- and gray-box models devised in Sections 6.3.1 and 6.3.2 via 

a simulated hydraulic system, whose physical system parameters are close to those 

of the actual system, will yield reliable initial conditions (i.e. start-off weights) for 

further training of the network via experimental data. Note that, despite the devised 

SNN is shown to have optimal architecture (i.e. reduced-order nonlinear state 

observer), the resultant network totally fails to yield expectable performance in the 

training session if its weights are initialized randomly. That is, the training 
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operation with arbitrary initial weights will increase the possibility of catching by a 

local minimum in the huge weight (search) space.  

 

Secondly, the design (and also the training) of the gray-box (namely, SNN) 

modeling approach will need (normally) the unmeasured states such as the flow 

rates (qA and qB) when the long-term pressure prediction problem is divided into its 

fundamental components as will be shown in Section 6.3.2. It is seen that capturing 

the exact pressure dynamics of the simulated hydraulic system without the 

measurements of the control flow rates is extremely difficult. Since there are no 

flow meters on the experimental set-up, the gray-box model is developed first for a 

simulation based study and then applied (e.g. trained / fine-tuned and tested) on the 

experimental setup. 

 

6.3.1 Black-box Approach 

First, some neural networks, using the black-box modeling approach, are to be 

devised for the long-term pressure prediction of the cylinder chambers in the 

simulated system.  It is important to note that only the position of the hydraulic 

actuator (x(k)) and the rotational speed of the pumps (n1t and n2t) are used as inputs 

to the devised models.  

 

A  PRMS type signal, given in Fig. 6.2.a, is applied to system and then, the n1t and 

n2t signals are formed based on this n2 signal as shown in Fig. 6.1. Note that psum is 

set to 12 MPa in the simulated study. Furthermore, Fig. 6.2.b represents the position 

and velocity profile of the hydraulic actuator and Fig. 6.2.c shows chamber 

pressures for this training scenario. 
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a) Controller signal. 
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b) Cylinder position and velocity. 
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c) Pressures in the cylinder chambers. 

 

Fig. 6.2 Training scenario for the variable speed pump controlled hydraulic system. 
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Next, the elements of the input vector of the black-box models should be 

determined as in the form given below.  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2[ , , , , , , , , ,

, , , 1 , , , 1 , , ]
t t t t

T
A A B B

k n k n k l n k n k l x k x k m

v k v k n P k P k p P k P k p

ϕ = − − −

− − − − −

… … …

… … …
 (6.15)

 

For that purpose, various NARX models, which utilize different order of TDL input 

signals, are trained in a feed-forward fashion. That is, the old pressure values 

coming from the “simulated” pressure sensors are directly fed to the network as 

could be seen from (6.15).  

 

The training performance of these black-box models are summarized in Table 6.2. 

Architecture #8 is chosen as the topology for the black-box model since it has the 

minimum RMS error value. Note that the training performances all of the NARX 

models are very satisfactory since they are utilizing measured pressure states 

directly in the regression vector. However, the models must be arranged in recurrent 

(feedback) form meaning that the previous pressure values must come from the 

network’s output itself in the validation case of which is expected to differ 

significantly from the training scenario.  

 

Following that, the outputs of the architecture #8 are delayed as necessary and 

connected to its 1st layer. As the architecture of the network is now changed due this 

feedback, the resulting network will be named as NOE from that point on. The NOE 

could train itself without any problem in a recurrent form provided that the initial 

weight values are taken from the NARX model. After a training process (10 epoch) 

in which the training duration is 70 minute, it is found that the training error of the 

NOE was about 0.2 MPa. Hence, the final NOE network is able to predict the 

pressure states without utilizing any pressure sensors. The model validation 

performance of the resulting network will be evaluated in Section 6.3.3.  
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Table 6.2 Trained NARX models in black-box approach *. 

Architecture #1 #2 #3 #4 #5 #6 #7 #8 #9 
Inputs n1t(k) 

 n2t(k) 
x(k) 
 v(k) 

PA(k-1) 
PB(k-1) 

n1t(k), n1t(k-1) 
n2t(k), n2t(k-1) 

x(k), x(k-1) 
v(k), v(k-1) 

PA(k-1), PA(k-2) 
PB(k-1), PB(k-2) 

n1t(k), n1t(k-1), n1t(k-2) 
n2t(k), n2t(k-1), n2t(k-2) 

x(k), x(k-1), x(k-2) 
v(k), v(k-1), v(k-2) 

PA(k-1), PA(k-2), PA(k-3)
PB(k-1), PB(k-2), PB(k-3)

Outputs PA(k) and PB(k) 
Training error 
in (MPa) 0.09 0.07 0.07 0.02 0.01 8x10-3 0.01 5x10-3 6x10-3 

Training data 10001 Sample for each variable 
Epochs 1000 2000 
Training 
time (min) 1.5 3 5 2 5 9 6 15 25 

1st layer 
neurons 5 10 15 5 10 15 5 10 15 

Act. function Tangent sigmoid 
Training 
method Levenberg-Marquardt 

* Linear activation function is utilized at the output layers. 

 
 
 
6.3.2 Gray-box (SNN) Approach 

If the mathematical model of this hydraulic system is examined from Section 6.2.1, 

it is seen that the model could be easily separated into two parts: flow-rate model 

and pressure model. Fig. 6.3 illustrates the topology of the devised structured 

recurrent neural network where ( ) ( )max 0 maxxG q T V Pβ=  is a connection gain due 

to the normalization operation and the subscript x denotes a placeholder for letters A 

and B. Moreover, T denotes the sampling period, again. The modules of the devised 

SRNN are explained in the following sections. 
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Fig. 6.3 Schematic of the structured recurrent neural network.  

 
 
 

6.3.2.1 Flow-rate Model 

Normalized flow-rates could be estimated by a simple linear model using a priori 

information about the process using (6.5) to (6.9) as below  

 

( ) ( )T
x x xq k kθ ϕ=  (6.16)

 

( ) ( ) ( ) ( )1 2( ) [ , , , ]T
A t t A Bk n k n k P k P kϕ =  (6.17a)

 

( ) ( ) ( )2( ) [ , , ]T
B t A Bk n k P k P kϕ =  (6.17b)

 

Hence, (6.5-6.9) are linear equations; they are modeled using a network with only a 

one neuron having a linear activation function so that this network model simply 

boils down to an ARX  model. Again, the training input signal in Fig. 6.2.a is 

applied and then the normalized forms of the related input and output signals, which 

will be required in the training operation of the flow-rate models, are captured from 

the simulated system. Table 6.3 shows the training performances of the linear 
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models (labeled as Network qA and Network qB) that are used to predict the flow 

rates in each chamber. It is critical to notice that this flow-rate model requires the 

pressure estimates at time instant kT. But, such an estimate will not be available at 

the desired time while the SRNN is running for a prediction task. Therefore, 

pressure estimates at t = (k-1)T will be utilized as the inputs of the flow rate models 

assuming that the pressure values are almost same within one sampling interval.  

 
 
 

Table 6.3 Trained flow rate models in gray-box approach. 
 

Architecture Network qA Network qB 
 
Inputs 

( ) ( ) ( ) ( )1 2, , ,t t A Bn k n k P k P k ( ) ( ) ( )2 , ,t A Bn k P k P k

Output ( )Aq k  ( )Bq k  
Training data 10001 Sample 
Training error  in 
(mm3/s) 2.151x10-6  1.4034x10-6 

Epochs 1 
1st layer neurons 1 
Activation function Linear 
Training method Least mean square 

 
 
 
6.3.2.2 Pressure Model 

It is obvious that the chamber pressures could be computed via (6.10) and (6.11) in 

a similar way as done in Section 5.3.2.2. Therefore, the same pressure models, 

named as Network PA and Network PB, are utilized to solve the pressure dynamics in 

the cylinder chambers. It is critical to note that the pressure states are directly taken 

from the simulated system and utilized in the regression vector of these models 

during the training session in order to increase their training performance. But, all 

the related models are then reconfigured in a recurrent arrangement as presented in 

Fig. 6.3.   

 

Next, all the modules are connected to each other to form the unified network, 

called SRNN. Furthermore, this SRNN model could be trained in the unified form 
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for fine tuning of its weight parameters based on the training scenario. It is seen that 

the training RMS error of the SRNN decreases from 0.4 MPa level to 0.2 MPa level 

within 5 epochs while training session lasts about 35 minutes. The model validation 

performance of the SRNN network is evaluated in the next section. 

 

6.3.3 Prediction Results 

A validation study is conducted on the simulated system via the rotational speed of 

the pumps, realistic input signals which are collected from the experimental setup as 

shown in Fig. 6.4.a, are used in the simulated system to create a 50000 step-ahead 

prediction task. The hydraulic system presented in Fig. 6.1 is simulated with these 

chirp signals (0.1 Hz to 10 Hz in 50 seconds) with increasing amplitude. Fig. 6.4.b 

represents the validation performance of the NOE network and it is seen that the 

validation performance of this network model is unacceptable for all practical 

purposes. On the other hand, Fig. 6.4.c represents the pressure values in the cylinder 

chambers calculated from the simulated system model and the SRNN model. It is 

found that the RMS errors of the SRNN model are 0.0547 MPa  and 0.0911 MPa 

for the prediction of PA and PB respectively. Therefore, it could be inferred that the 

pressure dynamics of the simulated system is accurately captured by the SRNN 

model. 
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a) Rotational speed of pumps. 
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b) Prediction via NOE. 
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c) Prediction via SRNN. 

Fig. 6.4 Model validation test results. 

 

 
6.4 Experimental Pressure Prediction Results and Discussion 

In this section, the versatility of the SRNN (as elaborated in Section 6.3.2) is to be 

tested on the experimental setup. Therefore, the network, which was developed in a 

simulation environment, is to be trained via the data collected on the experimental 

setup. Unfortunately, training the SRNN as a whole is a very difficult feat for a test 

duration of 50 seconds (meaning that 50,000 step ahead prediction is required) 

where the workstation (with Intel Core i5 processor and a SDRAM of 4GB) used in 



156 
 

the study will be stretched to its limits. For that reason, the SRNN shown in Fig. 6.3 

is divided into two (titled as RNN PA and RNN PB) parts and are trained (separately) 

to predict the pressure change in each chamber assuming that the opposite chamber 

pressure is known in the training session. Figs. 6.5 and 6.6 illustrate the networks in 

such a configuration. 
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Fig. 6.5 RNN PA for the pressure prediction in chamber A. 
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Fig. 6.6 RNN PB for the pressure prediction in chamber B. 

 
 
 
Next, the formed RNNs are trained using the measured signals that are presented in 

Fig. 6.7. That is, the rotational speeds of the pumps are given in Fig. 6.7.a. On the 

other hand, Fig. 6.7.b shows the measured position of the cylinder in this training 
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scenario.  As could be seen, the noise on the position transducer will aggravate the 

noise on the calculated velocity significantly unless any filtering operation is 

applied on position signal. Therefore, the position signal is filtered before the 

velocity calculation. For that purpose, a discrete-time low-pass filter with a cut off 

frequency of 30 Hz is used. Fig. 6.7.c presents the calculated cylinder velocity (as 

required in the regression vector) from the filtered actuator position signal using the 

first-order difference method. Similarly, the target pressure values and the RNN 

outputs after the training operation is given in Fig. 6.7.d while Table 6.4 represents 

the training performances of the RNNs. To assess the generalization performance, a 

validation scenario, which is illustrated in Fig. 6.8, is considered. As can be seen, 

the performances of the RNNs are very satisfactory (since RMS prediction error in 

PA is 0.112 MPa and in PB is 0.195 MPa) when the assumption on opposite chamber 

pressure is satisfied. 
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b) Measured cylinder position. 
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c) Calculated cylinder velocity from the filtered position signal. 
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d) Target pressures and model outputs after the training session. 

 

Fig. 6.7 Training signals for the experimental study. 
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Table 6.4 Training properties of the RNNs. 

Architecture RNN PA RNN PB 
Inputs ( ) ( ) ( ) ( ) ( )1 2, , 1 , ,t t Bn k n k P k v k x k− ( ) ( ) ( ) ( )2 , 1 , ,t An k P k v k x k−  
Output ( )AP k  ( )BP k  
Training data 50001 Sample 

  Training error 0.092 MPa 0.116 MPa 
Epochs 10 
Training time 365 minute 
1st layer neurons 1Linear 
2nd layer neurons 20 Tangent Sigmoid 
3rd layer neurons 1Linear 

 

 

 

Finally, the RNN PA and RNN PB are coupled to each other to form the SRNN. 

Therefore, the inputs to the designed model without any feedback (at any rate) from 

the pressure sensors will only be the rotational speed of pump 1 and pump 2, the 

position and the velocity of the hydraulic cylinder.  However, the SRNN outputs 

deviate significantly from the chamber pressures measured on the experimental 

setup at long intervals as could be seen from the validation performance of this 

network given in Fig. 6.9.  Since the two outputs of the SRNN are highly cross 

coupled to each other, the presented model could not satisfactorily predict the 

pressure states in the cylinder chambers. At least, one of the chamber pressure 

should be known beforehand to predict the opposite chamber pressure accurately. In 

any way, the presented model could be used to predict the pressure in one chamber 

quite accurately with an RMS error of 0.2 MPa (where the pressure varies in 

between 0 and 10 MPa) when the pressure value of the opposite chamber is 

available. Therefore, one of the advantages of the developed SRNN for the 

hydraulic system at hand is to reduce the total number of pressure sensors in such 

hydraulic systems from two to one or the model could be used as a (software) 

sensor backup system when a fault is occurred in one of the pressure sensors. 
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a) Rotational speed of pumps. 
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b) Cylinder position. 
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c) Cylinder velocity. 
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d) Measured pressures and RNNs outputs. 

 
Fig. 6.8 Validation test of the RNNs. 
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Fig. 6.9 Validation test of the SRNN. 

 
 
 

Another interesting point worth mentioning is that when this SRNN architecture is 

to be trained by starting off with an arbitrary set of initial weights, the network 

could not capture the dynamic behavior of the system. Therefore, determining the 

optimal architecture (size, correct regression vector, etc.) does not guarantee the 

solution of the estimation problem at hand.  In fact, the SRNN network, which was 

trained initially via the data on simulated plant, can be easily adapted to any 
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experimental case since the resulting network will not start training in any arbitrary 

location in the huge weight domain but nearly about the global optimum point.  

  

6.5 Closure 

This study presented an SRNN based modeling/identification procedure for the 

pressure dynamics of a variable-speed pump controlled electro-hydraulic system. 

The signals, used for the long-term pressure prediction task, were the rotational 

speed of the pumps, the position and the average velocity of the hydraulic actuator. 

A gray-box approach (SRNN) beside the well known black-box approaches (NARX 

and NOE) were utilized in the identification process. The study elaborated the 

performance of these models through a detailed simulation and experimental cases 

where black-box modeling approaches failed to yield acceptable performance even 

in the simulation studies. On the other hand, it was seen that the SRNN has showed 

excellent performance in the simulation study and has been able predicted the 

pressures in both chambers of the cylinder quite accurately in relatively long 

intervals (i.e. 50s). Unfortunately, the experimental studies revealed that the outputs 

of the SRNN diverged in the extended time periods due to the fact the outputs of the 

predictor model were highly coupled to each other and the errors introduced by a 

number of sources (e.g. noise in the position sensor, the time delay in the velocity 

computation, etc.). However, if a pressure sensor were utilized to provide a 

feedback to the network, it was able to estimate the other pressure component quite 

accurately without any divergence. Hence, the presented network model could 

reliably serve as a sensor backup in certain applications where sensor failures could 

have catastrophic consequences.  
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CHAPTER 7 
 

 

POSITION ERROR PREDICTION FOR CABLE-DRUM 

SYSTEMS  
 
 
 
7.1 Introduction 

Cable-drum mechanisms, which are considered to be a subclass of 

friction/traction/capstan drive systems, are commonly used to convert the rotary 

motion of a drum into a translational one with the utilization of the friction force 

induced at the interface of contacting material pair. Apart from their use in 

conventional machines such as printing presses, textile machinery, cranes etc; 

cable-drum systems are also employed as motion transmission elements in many 

precision engineering devices including photocopiers, printers, plotters, rapid 

prototyping machines, haptic devices and more. Despite their primary role as power 

transmission elements; the cable-drum systems could serve as integral components 

of linear position sensors as well. In fact, the mechanisms accommodating an 

angular position sensor on the drum shaft do find their commercial uses as 

inexpensive sensors for certain industrial applications that do not require high 

positioning accuracy such as presses, punching / injection machines, wood- and 

sheet-metal working machinery etc. In commercial sensors such as “wire draw 

encoders” and “cable encoders”, the cable is often times attached onto a spring-

loaded capstan to create a kinematically-coupled motion.  However, the resulting 

mechanical system becomes quite complicated (Kautz, 1993; Steinich, 2007) to be 

suitable for precision products. Judging by the earlier applications; a cable directly 

wound on the capstan does have certain advantages over the “wire drawn” devices 
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including its simplicity, ease-of-manufacture, (almost) unlimited travel spans 

(range), linearity, wider bandwidth (better frequency response), etc. 

 

Emphasizing power transmission efficiency, dynamic stiffness, and vibrations; 

numerous investigations in the literature have directly focused on the capstan drives 

that possess some of the characteristics of the cable-drum mechanisms. In fact, 

many studies concentrate on the attributes of traction drives as power transmission 

elements rather than their measurement characteristics. The earliest known work is 

attributed to Euler (1762) who investigated the balance of a string wrapped around a 

fixed drum while Grashoff (1883) revised the friction on belt-pulley mechanisms at 

steady-state and laid the ground work on the creep theory.  In this classical (and 

widely adopted) approach, the pulley/drum is divided into two regions.  In the first 

region (called slip zone), the cable/belt is to creep against the drum which in turn 

enables the power transmission via the friction forces produced at the interface in 

accordance with the Coulomb friction law. In the second region (commonly referred 

to as adhesion zone), the cable/belt is assumed to adhere to the drum and thus no 

friction force is developed to transmit the mechanical power between two media. 

Fawcett (1981), Johnson (1985) and Gerbert (1999) review and elaborate the 

classical creep theory.  In fact, the evolution of the theory has continued in time. For 

instance, Bechtel et al.  (2000) considered the unaccounted inertial effects in the slip 

zone. Moreover, Leamy and Wasfy (2002) conducted a detailed analysis on the 

belt-drives using a modified Coulomb friction law. On the other hand, shear model 

is the second theory, which was first proposed by Firbank (1970). Next, Gerbert 

(1996) studied the shear model by considering the extension of the belt. Later, Kong 

and Parker (2005) were the first who compared the two theories applied on a two-

pulley system and they proposed an iterative method for calculating the steady state 

behavior of the mechanism. Furthermore, Kong and Parker (2006) have 

incorporated the compliances of various (like pulley grooves) on belt-drive 

dynamics. Lastly, Tu and Fort (2004) considered the effects of lubricants on the 

friction between fiber and capstan while Smith (1998) investigated micro-

tribological interactions among various interfaces in a belt-driven data-tape. 
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Comprehensive review of the relevant literature reveals that the evaluation of the 

cable-drum mechanism within the context of precision motion/sensing are not fully 

stuied. Only, Werkmeister and Slocum (2007) looked into the (dynamic) stiffness of 

a wire capstan drive through a rigorous analytical and experimental study. Based on 

this study, Baser and Konukseven (2010) developed an analytical method in order 

to calculate the slippage between the cable and drum. It was seen that the analytical 

method, whose parameters were determined in an accurate way, could only predict 

the slippage within 10% difference from the experimental results. As a result, the 

resulting analytical method could not be used for position error estimation for cable-

drum systems since some parameters (such as eccentricity of the drum and friction 

coefficient between the cable and drum) and variables ( such as external load and 

preload on the cable) must be measured in order to manipulate the calculations. 

Furthermore, external load on the cable and also the reference velocity profile of the 

output drum were constant in the above-mentioned study; therefore, it eliminates all 

the inertia effects and velocity dependent slip dynamics of the device. However, 

Kilic et al. (2011) show that the slippage between the cable and drum is highly 

dependent on the velocity of the output drum and the external load on the cable 

which are continuously changing during the operating conditions of the mechanism. 

Therefore, it is seen that the applicability of the analytical method to predict the 

transmission error due to slippage is not feasible. Eventually, the main objective of 

this study is to devise a practical position error prediction scheme for cable-drum 

mechanisms that accept only a position signal from a rotary encoder coupled to the 

drum itself. 

 

After this detailed introduction, Section 7.2 introduces a cable drum mechanism as a 

linear motion sensor. Following that, the Section 7.3 introduces a test set-up and 

investigates the actual dynamic behavior of the device through an experimental 

study. In Section 7.4, ANNs are designed to predict the slippage between the cable 

and drum. It is shown that black-box modeling approaches are not sufficient for the 

estimation of the slip error of the device and hence a structured recurrent neural 

network model is devised and (proposed also) to predict the slippage. Finally, the 



166 
 

merit of the proposed network is assessed based on a random input test scenario and 

thus the crucial points of the study are discussed in Section 7.5. 

 

7.2 Cable-drum Mechanism as Motion Sensor 

A generic mechanism serving as a part of a linear motion sensor is illustrated in Fig. 

7.1. In this arrangement, a digital rotary position sensor is directly coupled to the 

drum (pulley / capstan). The engagement angle of this drum, which plays a critical 

role in the induction of traction force between the cable and the drum, is controlled 

by the adjustment wheels shown in the figure. Similarly, the preload adjustment 

mechanism, which is usually composed of a helical spring and a screw, can be 

utilized to set the cable tension to the desired level. Note that the cable is subjected 

to an alternating load as the direction of the mechanism changes. Considering that 

the cable does not carry any compressive loads, the preload on the cable must be 

selected higher than the magnitude of the alternating load itself. 

 

It is critical to note that the mechanism in Fig. 7.1 can be regarded as a simple belt-

drive where the “creep” of the cable against the drum intrinsically induces the 

traction (torque) that creates the rotation of the drum. However, unlike conventional 

belt drives, the system under investigation has major differences: 

 
• The center of the drum moves along an axis while the cable velocities at entry 

and exit points on the drum are essentially zero. 

• Effective friction torque acting on the drum’s shaft due to the sensor + bearings 

is quite low. 

• Cable’s mass along with the inertia of the drum are insignificant. 

• Typical cable engagement (winding) angle is relatively large (>π). 

• If compared to the circumferential speeds of belt drives, the average velocity of 

mechanism (i.e. carriage) is low. 

Consequently, this system is expected to work reasonably well (without significant 

slip) under ideal circumstances. The next section investigates the actual dynamic 

behavior of a generic cable/drum system through an experimental study. 
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Fig. 7.1 A generic cable-drum mechanism used as linear motion sensor. 

 

 

7.3 Test Setup and Experimental Results 

As for experimental setup, a carriage system housing a drum assembly has been 

designed as illustrated in Fig. 7.2. In this setup, a DC motor under the guidance of a 

custom-built motion controller card drives this carriage system via a preloaded ball-

screw mechanism. Hence, the resulting system is capable of generating accurately 

the desired acceleration / deceleration profiles for the cable-drum mechanism. 

   

A schematic of this setup is given in Fig. 7.2.a. As can be seen in Fig. 7.2, a high-

resolution optical position encoder, which has been directly coupled to the main 

drum, provides secondary information on the position of the carriage while a linear 

scale (LS) is directly coupled to the carriage for verification purposes. In this 

arrangement, the cable winding (engagement) angle could be easily adjusted by 

changing the locations of the wheels on the carriage assembly (Fig. 7.2.b). 

Likewise, the tension on the cable can be set by either calibrated weights on the side 

(Fig. 7.2.c) or helical coil connected to screw (Fig. 7.2.b). In fact, the test setup 

enables the investigation of various conditions that affect the measurement accuracy 

as well as precision of the device: 

 

• Drum material and its diameter 

• Cable material and its diameter 
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• Cable tension and cable engagement angle 

• Steady-state velocity of the carriage 

 

All these factors to the slip dynamics are well studied and presented in (Kilic et al., 

2011).  

 

 

 

  

(a) Schematic  (b) General view  

  

(c) Tension system employing weights (d) Single-turn drum arrangement   

Fig. 7.2 Test setup. 

 

As an experiment, a (thin) plastic-coated steel cable with a diameter of 0.4 mm, 

which is specifically devised for precision instruments, is wrapped around the drum 

once as can be seen from Fig. 7.2.d (i.e. the cable engagement angle is 3600) while 

one of its ends is fixed to the post. Likewise, the other end has been directly 

connected to a screw mechanism so as to improve the overall stiffness of the 

preloading system. Since the rigidity values (AE) of the cable materials are known 
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beforehand, the cable tensions can be adjusted to the desired levels by turning the 

screw accurately.  

 

After setting the tension to approximately 40 N, the carriage housing the drum plus 

the sensor is programmed to travel back and forth sixteen times to a distance of 0.6 

m at uniform speeds of 50, 100, and 140 mm/s respectively The slip errors versus 

total travel distance for these tests are presented in Fig. 7.3.a. Moreover, Fig. 7.3.b 

shows the average of errors in both directions. The sinusoidal waveforms on the 

position error signal take place due to the eccentricity of the drum. It turns out that 

the position error induced by micro-slip is highly dependent upon the direction of 

motion as well as the speed of the carriage assembly and eccentricity of the drum. 

Note that “error” (or slippage) in these figures are defined as 

 

.LS PEe x Rθ= −  (7.1)

 

where ; 

xLS: Linear scale measurement, 

θPE: Measurement of optical position encoder on the drum shaft,  

R: Radius of the drum 
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Fig. 7.3 Experimental results. 
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7.4 Position Error Prediction Using Artificial Neural Networks 

Despite the apparent drift being observed when using the cable-drum system as a 

linear motion sensor in the preceding section; the standard deviations calculated 

using the data for 16 round-trips indicate that the dynamics of the slip error is 

repetable or systematic. The detailed experimental studies show that the slip error is 

a function of many parameters such as the position, velocity and eccentricity of the 

drum, and the preload and external load on the cable. Provided that the test 

conditions are about the same (preload on the cable / diameter, material and 

eccentricity of the drum / material and diameter of the cable are all fixed); it is now 

tried to predict the slip error of the device by using artificial neural networks.  

 

7.4.1 Black-box Approach 

First, a training scenario is highly needed in order to capture the dynamics of the 

slippage by ANN models. Only the rotary encoder output signal is to be used in the 

elements of the input vector (or regression vector). Therefore, regression vector 

could be formed from the position and velocity of the drum as represented in Fig. 

7.4.a. All the position error data corresponding to this training scenario is presented 

in Fig. 7.4.b. Before training any type of black-box models, the regression vector 

size along with the model orders must be determined. That is, the regression vector 

could be given as: 

 
( ) ( ) ( ) ( ) ( )[ , , , , , ]T

PE PE PE PEk x k x k n v k v k mϕ = − −… …  (7.2)

 
where k refers to  the discrete-time index and vPE is the calculated velocity of the 

drum from the position of the drum, xPE, in linear coordinates using the first-order 

difference (Euler)  method. The orders (n and m) of tapped-delayed signals are to be 

determined via trial and error since slippage also depends on the external load on 

the cable. Unfortunately, this force could not measured during the experiments. But, 

it is expected that inertial forces could be captured by the network models using the 

tapped-delayed position and velocity signals.  
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a) Position and velocity profile of the drum. 
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b) Position error of the cable-drum system. 

Fig. 7.4 Training scenario. 

 

First of all, FNNs are used to capture the slip dynamics from the position and 

velocity signal of the drum since a FNN with tapped delay position and velocity of 

the drum is theoretically capable of capturing the desired relationship as shown in 

Fig. 7.5. For this purpose, FNNs with different architectures are tried as presented 
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in Table 7.1. But, it is observed that all these networks fail to learn the presented 

pattern successfully. 

 

( )e k

( )PEx k

( )PEv k

 
Fig. 7.5. Architecture of the FNN. 

 

 

Table 7.1 Trained FNN models*. 
 

Architecture #1 #2 #3 #4 #5 #6 #7 #8 #9 
Inputs xPE (k), vPE (k) xPE (k), xPE (k-1), 

vPE (k), vPE (k-1) 
xPE (k), xPE (k-1), xPE (k-2),
vPE (k), vPE (k-1), vPE (k-2)

Output e(k) 
Training 
error [mm] 0.6 0.572 0.654 0.576 0.520 0.506 0.592 0.569 0.495 

Training data 9776 Sample 
Epochs 100 
Training 
time (sec) 7 13 20 8 15 25 10 19 31 

1st layer 
neurons 10 20 30 10 20 30 10 20 30 

Activation 
function Tangent sigmoid 

Training 
method Levenberg-Marquardt 

* Linear activation function is utilized at the output layers. 

 

Following that, a NARX architecture as presented in Fig. 7.6 is to be designed to 

predict the slip dynamics. Again, using different number of neurons in the first layer 

of the NARX and changing the order of tapped delay input signals, the best 
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combination is to be determined via experimentation (trial). Training results of the 

various NARX models are given in Table 7.2. 
 

 

( )e k

( )e k 1−

( )PEv k

( )PEx k

 

Fig. 7.6 Architecture of the NARX. 
 

 

 

Table 7.2 Trained NARX models*. 
 

Architecture #1 #2 #3 #4 #5 #6 #7 #8 #9 
Inputs xPE (k), vPE (k), 

 e(k-1) 
xPE (k), xPE (k-1), 

 vPE (k), vPE (k-1), 
 e(k-1)

xPE (k), xPE (k-1), xPE (k-2)
 vPE (k), vPE (k-1), vPE (k-2)

 e(k-1) 
Outputs e(k) 
Training error 
[μm] 10.5 10.5 10.6 10.7 10.7 10.6 10.6 10.5 9.5 

Training data 9776 Sample 
Epochs 100 
Training time 
(sec) 7 13 20 8 15 24 10 20 29 

1st layer neurons 10 20 30 10 20 30 10 20 30 
Activation 
function Tangent sigmoid 

Training method Levenberg-Marquardt 
* Linear activation function is utilized at the output layers. 

 

Hence, all of the NARX networks are trained in a feed-forward manner; their 

training performances are quite acceptable (near 10 μm). However, those models 

must be used in a recurrent form (meaning that the previous error value at time 
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index k-1must come from the network model itself). Therefore, the next step is to 

feed back the output of the NARX network, which is delayed one sampling period, 

to its first layer as could be seen from Fig. 7.7.  

 
Following that, these recurrent networks, which are referred to as NOE models, are 

additionally trained via RTRL algorithm. As could be seen from Table 7.3, the 

networks could be trained without any problem in a recurrent form provided that the 

initial weight values are taken from the NARX model. It is seen that NOE #9 has 

the smallest training error (31.1 μm). Note that this particular network could not 

track the sinusoidal waveform superimposed onto the error signal due to the 

eccentricity of the drum as this situation can be easily seen from Fig. 7.8. For that 

reason, the regression vector should be updated as shown below in order to capture 

the drum eccentricity effects on the position error: 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )
[ , 1 ,, 2 , , 1 , 2 ,

cos , ]
PE PE PE PE PE PE

T
PE PE

k x k x k x k v k v k v k

k sin k

ϕ

θ θ

= − − − −
 

(7.3) 

 

 

Table 7.3 Trained NOE  models*. 
 

Architecture #1 #2 #3 #4 #5 #6 #7 #8 #9 
Inputs xPE (k), vPE 

(k) 
xPE (k), xPE (k-1), 
 vPE (k), vPE (k-1) 

xPE (k), xPE (k-1), xPE (k-2), 
 vPE (k), vPE (k-1), vPE (k-2) 

Outputs e(k) 
Training error  
in (μm) 47 42.2 38.2 50.6 39.4 39.2 53.1 38.6 31.1 

Training data 9776 Sample 
Epochs 10 
Training time (sec) 390 403 410 392 411 413 399 414 428 
1st layer neurons 10 20 30 10 20 30 10 20 30 
Activation function Tangent sigmoid 
Training method RTRL 
* Linear activation function is utilized at the output layers. 
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Fig. 7.7 Architecture of the NOE. 
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Fig. 7.8 Training performance of the NOE #9. 

 

 

Maintaining the train operation of the network NOE#9 with using this new 

regression vector, a new network, called NOE #10, is obtained as shown in Fig.7.9. 

The training error now decreases to 16.6 μm where the training performance of this 

new network in time domain is given in Fig. 7.10. As can be seen from the first 

inset in Fig. 7.10, NOE #10 is now able to capture the slippage dynamics due to 

eccentricity of the drum. However, there is an important drift problem if one looks 

into the second inset in Fig. 7.10. Although the drum velocity is exactly zero 
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(meaning that the position error must be constant at these time intervals), the 

outputs of the NOE models are not constant but do drift in time. Therefore, the 

black-box modeling approaches are not sufficient to predict the position error of the 

cable-drum mechanism accurately. In any way, one needs to apply structured neural 

network topology for this specific prediction task problem. 
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Fig. 7.9 Architecture of the NOE#10. 
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Fig. 7.10 Training performance of the NOE #9 and NOE #10. 
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7.4.2 Structured Neural Network Design 

Since the prediction problem of NOE#10 is an output drift problem at zero-velocity, 

one needs some auxiliary networks beside that network to make its output constant 

when the drum velocity is exactly zero. For that purpose, first a specific network, 

called zero region detector (ZRD), is designed to capture the velocity of the drum 

near zero velocity region. The architecture of this network is given in Fig.7.11 and 

the implemented mathematical functional could be given below: 

 

1 , 0.001 0.001
1,

x
y

otherwise
+ − ≤ ≤ +⎧

= ⎨−⎩
 

(7.4)

 

 

 

Fig. 7.11 Architecture of the ZRD network. 

 

 

As could be seen from Fig. 7.11, ZRD is a two layered feed-forward network with 

two hard-limit (type) neurons in the first layer and one linear neuron at the output 

layer. The zero velocity range is adjusted by the bias weight values of the first layer. 

Consequently, a switching network is also utilized while constructing the SNN 

model. Eventually, the velocity signal is to be connected to the input of the ZRD 

network to detect the low velocities. Finally, the output of the ZRD network is 
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connected to the “switch” port of the switching network in order to direct the output 

of this network. The overall SNN is presented in Fig. 7.12. Note that in this 

topology, it is guaranteed that when the speed of the drum is below 0.001 mm/s, the 

predicted position error does not drift in time as zero input is fed to the integrator 

(present at the output layer of the SNN) for this particular case.    

 
 

Δ
( )PEx k
( )PEv k

( )( )cos PE kθ

( )( )PEsin kθ

 

Fig. 7.12 Structured neural network. 

 

 

7.5 Results and Discussions 

Up to now, the trained networks are not validated through a scenario different than 

the training case. For that purpose, a validation test is performed based on a 

scenario presented in Fig. 7.13. The position and velocity profile of the drum are 

shown in Fig. 7.13.a for this validation scenario. On the other hand, Fig. 7.13.b 

presents the measured position error for this experiment and the position error 

predicted by the devised SNN. The unpredicted part of the position error, which 

gradually increases in time, is shown in Fig. 7.13.c. It is found that the root-mean-

square (RMS) of the unpredicted position error (residual) is about 77 μm for this 

random motion profile which lasts about 250 seconds.  
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a) Position and velocity profile of the drum.  
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b) Position error of the cable-drum system. 
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c) Unpredicted position error. 

Fig. 7.13 Validation test. 



181 
 

It is evident that to predict the slip dynamics without any error is not an easy task as 

this friction based phenomenon depends on a large number of parameters. For that 

reason, the developed SNN model could not capture the dynamics of the slip with 

only using the position information of the drum. Furthermore, other physical 

parameters (like external load on the cable) could be utilized as an input to the 

network models to enhance the accuracy of the predictions. However, such 

requirements would clearly hinder the practical value of the estimator and would 

limit its applicability. As a practical and inexpensive solution, a beacon (or a limit 

switch) could be placed at home position (HP) of the carriage to reset the overall 

position error when carriage returns to this HP. With this new arrangement, Fig. 

7.14.a shows the performance of the SNN using HP solution to the same validation 

scenario, given in Fig. 7.14.a. Again, the unpredicted part of the position error is 

presented, given in Fig. 7.14.b. The RMS of the unpredicted error is now calculated 

as 29 μm. Moreover, it isobserved that the minimum- and the maximum error of the 

SNN model are in the 100 μm bandwidth, which is a critical level for precision 

systems, for this arbitrary validation scenario.   
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a) Position error of the cable-drum system. 
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b) Unpredicted position error. 

Fig. 7.14 Validation scenario using HP approach.  

 
 
 

7.6 Closure 

This chapter has evaluated the cable-drum mechanisms as linear motion sensor for 

certain machine systems. Literature survey of such systems showed that the 

slippage between the cable and drum depended on many physical factors such as 

eccentricity of the drum, kinematic friction coefficient between the cable and drum, 

external and preload force on the cable. Furthermore, the complementary 

experimental study indicated that the small fluctuations in mechanism’s speed 

yielded a considerable (micro) slip at the interface. Therefore, it has been seen that 

the calculation of this slippage by an analytical method was obviously unpractical. 

Therefore, it is aimed to calculate this slippage via a SNN model. The work 

illustrated that if the accumulated position error (drift) of the drum was reset 

periodically via an absolute reference (beacon), the devised model could estimate 

the position of a carriage, housing a cable-drum mechanism, with in an acceptable 

error band (<100 μm).  
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CHAPTER 8 
 

 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

8.1 Significance of this Research 

This work seeks the solution of rather difficult problem: system modeling and 

identification of some nonlinear systems from mechanical engineering domain 

using ANNs. It has been seen that using conventional neural network structures 

(black-box models) was not sufficient to handle the complex dynamic behavior of 

these mechanical systems. Chapter 2 has highlighted the accurate modeling and 

identification capability of structured neural networks in the current state of the art. 

But, it was seen that the design strategies for SNNs were either incomplete when 

viewed from a general perspective. For that purpose, a general methodology 

(proposed in Chapter 3) deals with how to design SNNs using the a priori 

information available from the engineering knowledge. In this approach, the task is 

first decomposed into subtasks and then some networks are trained (or directly 

taken from the standard library) considering these subtasks. Therefore, SNNs 

consist of some independent neural networks cooperating with each other in order 

to model the behavior of system within the framework of prediction/estimation. It is 

important to note that each independent network operates as a single module and 

works in its own domain to full its assigned task. In the corresponding chapters, a 

unique SNN was designed for each of the nonlinear mechanical systems under 

study (i.e. timing-belt drive, cable-drum mechanism and hydraulic systems). The 

experimental results provided the accurate verification of the devised SNNs under 

challenging conditions. It was observed that that the modular design of neural 

network has enhanced the training and generalization performances of these ANNs, 
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resulting in a more robust and reliable network models. Consequently, this 

dissertation has demonstrated the great potential of using SNNs to estimate or 

predict successfully the (unavailable) states of the mechanical systems with their 

complex nonlinearities such as dead-zone, backlash, hysteresis and friction 

elements. Therefore, the contributions of this thesis work could be summarized as 

follows: 

 

1.   A design methodology of SNNs for modeling and identification of nonlinear 

systems is almost completed. The proposed modeling technique will be of 

primary importance since the SNNs, which are developed especially using a 

sketchy guidance of a priori knowledge on the investigated process, will have a 

great capability of capturing the unaccounted system dynamics which is not 

taken into consideration during the mathematical modeling of the process. 

Furthermore, these a priori information-based neural networks have another 

significant characteristic of modularization in which some parts of the models 

could be added, deleted or changed in order to identify similar systems 

accurately. 

 

2.  A new entropy based pruning algorithm is proposed to delete the redundant 

neurons in a network and explained in Chapter 3 in a detailed manner. Through 

some benchmark systems (taken from the literature), it has been demonstrated 

that the technique effectively prunes the redundant units (neurons) of a 

complex network. 

 

3. Chapter 4 concentrates on devising a feasible SNN model for the position 

estimation of a carriage system which is driven by a timing-belt mechanism. 

Only the indirect measurements of the carriage system, recorded via low-cost 

rotary encoder, is utilized in the designed estimator. Model validation tests 

show that the devised SNN could estimate all the transmission errors of the 

drive system, which are the backlash in the gear-box of the motor, friction and 

hysteresis phenomenon between the teeth of the motor pinion and belt pinion, 

in an acceptable error band (about 30 μm). Therefore, this model could be 
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effectively used as an open-loop controller for compensating the position error 

of timing-belt driven mechanical systems. 

 

4. In Chapter 5, an SRNN is proposed to predict the pressure dynamics for servo-

valve controlled hydraulic systems quite acceptable (±5 bars) in relatively long-

term periods (50000 steps). The major contribution of this study is the 

design/development of a SNN topology which is tailored to capture the long-

term pressure dynamics of electro-hydraulic servo-systems which is inherently 

nonlinear in nature. Searching the current literature comprehensively, there is 

not any ANN models (whether generic or structured) that can predict the long-

term chamber pressures of such systems. It is shown that utilizing an 

experimental data, one can easily adjust the weights of this particular SRNN to 

characterize pressure dynamics of a servo-controlled hydraulic system. 

 

5. Chapter 6 illustrates the design of another SRNN to predict the chamber 

pressures of a speed variable pump controlled hydraulic system in extended 

time periods. It is observed that the devised model could be used in a successful 

manner to predict the pressure in one chamber with a RMS error about 1-2 

(bars) when the pressure value of the opposite chamber is available. Therefore, 

the main contribution of this study is to reduce the number of pressure sensors 

in such hydraulic systems since the use of pressure sensors adds to the cost, 

size, weight and complexity of the overall system. Especially, if the studies of 

Guo et al. (2008) and Pi and Wang (2011), in which they are using 12 pressure 

sensors for controlling a 6-DOF parallel mechanism based robotic 

manipulators, are taken into consideration, the contribution of the study will be 

seen more clearly.   

 

6. A particular SNN is devised as a feasible position estimation scheme for cable-

drum mechanisms in Chapter 7. The experimental results of the work indicate 

that the proposed model (SNN) could compensate the position error of the 

mechanism within the 100 μm error band. Therefore, such a simple mechanism 
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with the devised SNN model could be used as a linear motion sensor for low-

end (and cost sensitive) machine systems. 

 

8.2 Recommendations 

Although this research has proposed a general methodology for devising SNNs in a 

systematic fashion, all stages were not completely applied while designing neural 

network models for the investigated mechanical systems. That is, the devised SNNs 

were left in a modular form and no further attempt was made to optimize the SNNs 

(which happens to be the most essential step for hardware implementation of such 

networks). The SNNs were not converted into a generic (standard) type network 

models since it is desired to preserve the physical structure of the network. 

Otherwise, the modularity feature of the SNNs will disappear. Hence, it will also 

reduce the utilization of these models for the modeling of other similar systems. For 

instance, despite the fact that the presented study in Chapter 5 concentrates on an 

EHSS with zero-lapped servo-valve, other hydraulic system topologies employing 

different types of servo-valves (e.g. under lapped or over lapped) can also be easily 

accommodated by the presented SRNN due to its modular structure. Provided that 

specialized flow-rate NN models are designed to mimic the dynamics of the above 

mentioned servo-valves (via the presented approach in this work), one can devise a 

specialized SRNN conveniently by simply replacing the existing flow-rate networks 

with the new ones in a modular fashion without altering the other parts of the 

network. In any way, there exists an opportunity to blend and prune the network 

modules to create a generic recurrent network topology. Research efforts on this 

issue will be go on. The other recommendations and future work of the thesis work 

could be stated as follows: 

 

1.   All the stages of the proposed SNN methodology are now applied manually. 

However, an automation of the whole design process by some expert systems 

will have a great impression in the research field of nonlinear system 

identification and modeling.     
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2.   The proposed (entropy based) pruning algorithm deletes only the redundant 

neurons in a network. Although pruning a neuron rather than its weight is more 

effective from the reduction of computation burden point on the hardware 

platform, remaining excessive weight values should also be removed. 

Therefore, other well-known pruning methods such as saliency- (OBD, OBS, 

unit-OBS, mw-OBS), perturbation- or evolutionary based algorithms could be 

further utilized as a part of the proposed method. 

 

3.   It is known that model predictive controllers require the future values of the 

predicted plant outputs while reducing the difference (error) between the 

command tracking signal and the predicted values of the process. Hence, the 

networks, which are especially devised for the long-term prediction tasks in this 

thesis work, could be used to realize more effective predictive controllers as a 

future work. 

 

4.   In Chapter 5, the leakage effects in the hydraulic actuator was neglected to 

avoid the design of a cross-coupled model (i.e. the outputs of the model must 

feed each other) when applying the SNN methodology. No doubt, this cross-

coupled model will yield a more complex SRNN model. Considering the other 

factors beside the leakage such as temperature and viscosity, much more 

complex SRNN models could be devised in the future.  

 

5.   This thesis has not dealt with the hardware implementation of the devised 

SNNs. As a future study, the well-performed networks could be implemented 

on cost effective platforms such as FPGAs, FPAAs and GPUs in order to 

produce customized network models for application specific systems (a 

network system on a chip).    
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APPENDIX A 
 

 

DETAILED MODELING OF THE HYDRAULIC SERVO 

SYSTEM 
 
 
 
The mathematical model of the simulated servo-valve controlled hydraulic system, 

utilized in Chapter 5, is now explained in a detailed manner. As remembered, the 

model of the hydraulic servo-system was used to generate input-output data sets for 

designing ANNs. Therefore, the simulated hydraulic model should accurately 

represent the nonlinear dynamic behavior of a real hydraulic system. In other words, 

it should be possible to identify ANN models from an input-output data taken from 

the constructed theoretical model as if it was experimental results of a real system. 

In fact, it is required that the model should be of the same order as the relevant 

dynamics of a real system. For that purpose, the model must house pump, pressure 

relief valve and accumulator dynamics and also the pipe line. 

 

As could be seen from Fig. 5.1, a fixed displacement pump feeds the system with 

hydraulic fluid from a reservoir (tank). This pump is essentially a constant flow 

device. The pump simply moves an amount of fluid, and it does not determine the 

output or supply pressure. The pressure is determined primarily by the load to which 

the pump is connected. Pump output pressure increase rapidly as the integral of 

flow. To avoid rupture due to the very high pressure at the pump casing or pipe 

lines, a pressure relief valve is used as a safety device. This relief valve is installed 

on the discharge side of the pump to limit the maximum operating pressure. 

Moreover, an accumulator is located on the pump exit side satisfying an energy 

source in case of additional power need on the hydraulic power supply. Therefore, it 

is wanted a constant supply pressure at the pump discharge by means of the 
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accumulator and the relief valve. Moreover, servo-valve directs the oil flow through 

the appropriate position of its spool to determine the direction of motion and speed 

of the hydraulic actuator. Eventually, the aim of this section is to derive the 

mathematical models of the all used hydraulic elements and to give the value of the 

parameters which are used in the detailed simulation study. A problem with 

modeling of these subsystems is to choose the value of the large number of physical 

parameters in order to give out a valid simulation results. Although the theoretical 

model does not give the same response as the real system output, it will be useful for 

analyzing the dynamic behavior of the hydraulic servo system. Therefore, simulation 

results will provide the necessary insight to decide which nonlinearities of the 

hydraulic system should be taken into consideration while designing ANNs. 

 

A.1 Servo Valve 

Electro hydraulic servo-valve is a complicated device composed from mainly a 

spool valve, flapper-nozzle and torque motor as can be seen in Fig. A.1. Therefore, it 

has many dynamic and non-linear effects such as backlash, saturation, hysteresis, 

square-root function for the flows, friction forces, lateral and axial flow forces (or 

known as Bernoulli force, also). 

 

Fig. A.1 A servo-valve controlling a hydraulic actuator (Courtesy of Moog 

Corporation). 
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Although there are a lot of nonlinearities in servo valves, it is often convenient in 

servo analysis to represent an electro-hydraulic servo-valve by simplified functions. 

All the assumptions (and approximations) made in the simulation study are 

frequently utilized in the relevant technical literature and can be presumed 

reasonable for all practical purposes. For instance, Thayer (1965) shows that a 

servo-valve can be represented as a linear time-invariant system at frequencies up to 

100 Hz provided that the servo-valve’s response is much faster than the rest of the 

hydraulic system itself. Appropriate transfer functions are generally derived by the 

valve firms especially for the relationship between the control input and the main 

spool valve displacement such as given in (5.9) and (5.10) in this thesis work. 

 

After, knowing the spool position with respect to the control input, relationship 

between the flow rates to the actuator cylinder chambers and main spool position 

must be derived. It is well known from the fluid mechanics that the flow through an 

orifice mainly depends on the port distance, pressure drop across the orifice and the 

direction of the pressure drop, also. Before writing the flow equations through the 

valve, the center type of the valve must be determined. If the overall length of the 

valve port is greater than the length of the spool (when the spool is at the neutral 

position), valve is known as open centre (or under lapped). On the contrary, if the 

length of the spool is greater than the length the valve port, valve is called as closed 

centre (or over lapped). Critical centre (or zero lapped) valves have a port length 

which is equal to its spool length. Therefore, the backlash characteristics of the valve 

is minimized. But, they are much more expensive than the other type of valves due 

to the high accuracy machining tolerances.      

    

Considering a generic 4 way servo-valve as shown in Fig. A.2, the flow equations 

for a zero lapped valve could be written as below. 

( ) ( ) ( ) ( )
1 2A

v v S A S A v v A T A T

Q Q Q

K f u sign P P P P K f u sign P P P P

= −

= − − − − − −
 

(A.1)

( ) ( ) ( ) ( )
3 4B

v v S B S B v v B T B T

Q Q Q

K f u sign P P P P K f u sign P P P P

= −

= − − − − − −
 

(A.2)
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where Kv is the servo-valve flow gain and uv refers to the displacement of the valve 

spool. Moreover, the function f(x) is defined by; 

( )
, 0

0, 0
x x

f x
x
≥⎧

= ⎨ <⎩
 

(A.3)

The corresponding flow equations for under lapped valves could be modified and  

written as; 

( ) ( )
( ) ( )

1

2

A v u v S A S A

v u v A T A T

Q K f u u sign P P P P

K f u u sign P P P P

= + − −

− − − −
 (A.4)

( ) ( )
( ) ( )

3

4

B v u v S B S B

v u v B T B T

Q K f u u sign P P P P

K f u u sign P P P P

= − − −

− + − −
 (A.5)

where uui > 0, i=1,..4 are the underlaps of the valve orifices. Moreover, flow 

equations for the over lapped valves could be written as; 

( ) ( )
( ) ( )

1

2

A v o v S A S A

v o v A T A T

Q K f u u sign P P P P

K f u u sign P P P P

= − + − −

− − − − −
 (A.6)

( ) ( )
( ) ( )

3

4

B v o v S B S B

v o v B T B T

Q K f u u sign P P P P

K f u u sign P P P P

= − − − −

− − + − −
 (A.7)

where the overlaps are uoi > 0, i=1,..4 

 

TP
SPSP

AP
BP

AQ
BQ

1Q 2Q 4Q
3Q vu

 
Fig. A.2 A schematic of a generic four way valve. 

 

It is important to note that a zero lapped valve is used in the simulation study, whose 

mathematical model and used parameters are given in Section 5.2 in a detailed 

manner.  
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A.2 Pressure Relief Valve 

Pressure relief valve is an auxiliary hydraulic device which is normally closed to 

create a high pressure value at its inlet port. But, it is opened whenever the pressure 

value in its control chamber exceeds the predetermined threshold pressure value 

(which is adjusted by the help of a spring) and bypasses the flow from pump to the 

tank (reservoir) in order to decrease the supply pressure value to the servo-valve 

inlet as shown in Fig. A.3. Mathematical model of this valve is given below and 

Table A.1 gives the parameter values used in the simulation study.  

 

M

Accumulator

Pump

pumpQ

accQ

supQ
S tP V

reQ TQ x

TP

TP

cp

saA

reA

spring
 

 

Fig. A.3 Pressure Relief Valve. 

 

Spool motion of the relief valve could be written as; 

( )
.. .

0,e e e ax S sa cm x b x k x F x P A p F+ + + = −  (A.8)

( ) ( ), 0.43ax S S TF x P w x P P= −  (A.9)

where me is the spool mass, be is the viscous force coefficient, x is the relief valve 

spool displacement, ke is the spring stiffness, Fax is the axial flow force, w is the 

width of the spool, PS is the supply pressure, PT is the tank pressure, Asa is the spool 

area, pc is the control pressure and F0 is the spring pre-load force.  
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Moreover, the control pressure dynamics could be written as below by applying the 

flow continuity equations to the control chamber; 

( ) ( ) ( ) 2
c re sa d re c S c S sa

c co sa

p Q A x A sign p P p P A x
V x V A x
β β α

ρ
⎡ ⎤

= − = − − −⎢ ⎥
+ ⎣ ⎦

 
(A.10)

where Vc is the volume of the control chamber, Vco is the initial control chamber 

volume when the relief valve spool is completely closed, αd is the discharge 

coefficient, Qre is the flow  through the restrictor and Are is the area of the fixed 

restrictor.  

 

Applying the continuity equation to the chamber of the supply pressure leads to 

( )
.

supS pump re T acc
t

P Q Q Q Q Q
V
β

= − − − −  (A.11)

( ) 2
T d S T S TQ w x sign P P P Pα

ρ
= − −

 
(A.12)

where Vt is the total volume of the chamber where pressure is controlled, Qpump is the 

pump flow, Qsup is the supply flow to the servo-valve inlet port, QT is the flow 

through the main orifice of the relief valve and Qacc is be the flow to the 

accumulator. The parameter values used in the simulation model are given in Table 

A.1. 

 

Table A.1 Parameters used in the relief valve model. 
 

Parameter Value Parameter Value 
me 0.1 kg be 300 Ns/m 
ke 10000 N/m Asa 1×10-4 m2 
F0 2000 N w 0.022 m 
Vco 1×10-5 m3 αd 0.7 
Β 1.4×109 Pa Vt 2×10-3 m3 
Are 5×10-8  m2 xmax 0.01 m 
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A.3 Accumulator 

Accumulators are primarily used to filter pressure pulsations from the pump and to 

provide additional fluid flow in the necessary direction as shown in Fig. A.4. 

 

accP

SP
accQ

gasiV

 
Fig. A.4 Accumulator dynamics. 

 

The relationship between Qacc and Pacc could be written as follow (Kang et al., 

2008); 

( )k
k

acc acci gasi gasi accP P V V Q dt= − ∫  (A.13)

( )acc acc leak s accQ K P P−= − (A.14)

where Pacci is the initial pressure, Vgasi is the initial volume of gas, k is the polytropic 

exponent of gas and Kacc-leak is the leakage coefficient of the accumulator. The 

parameter values used in the simulation study are given in Table A.2. 

 

Table A.2 Parameters used in the accumulator model. 
 

Parameter Value Parameter Value 
Pacci 2×107 Pa Vgasi 150 ml 

k 1.4 Kacc-leak 2×10-10  m3/(Pa⋅s) 

 

A.4 Pump and Motor 

In this section, mathematical models of the pump and motor are derived. First, a 

gear-box headed DC motor is utilized as the motor of the pump device and then, a 

fixed displacement pump is used for flow supply to the hydraulic circuit from the 



215 
 

pump exit. It is assumed that a motor having a maximum speed of 12000 rev/min is 

used in the simulation study. Moreover, the nominal voltage and power of the motor 

are assumed 240 V and 10 kW, respectively. The mathematical equations of the DC 

motor and the pump flow (Qpump) are given as below; 

diU E L Ri
dt

= + +  (A.15)

c gE K K ω=  (A.16)

e t gT K K i=  (A.17)

e fric LT J k Tω ω= + +  (A.18)

L mechT D p η=  (A.19)

pump ilp SQ D K Pω= −  (A.20)

where U is the nominal voltage, L is the inductance, R is the resistance, E is the back 

electromotive force voltage, Kc is the back emf constant, Kg is the gearbox ratio, Te is 

the electromagnetism torque, Kt is the torque constant, J is the total inertia (motor 

plus pump system), kfric is the viscous coefficient, ω is the rotational speed of gear-

box output, TL is the load torque, D is the pump displacement, p is the pressure 

differential across the pump (if one assumes that tank pressure PT is exactly zero 

then p equals to PS) and ηmech is the pump mechanical efficiency. The parameter 

values used in the simulation study are given in Table A.3. 

 

Table A.3 Parameters used in the motor and pump model. 
 

Parameter Value Par. Value 
U 240 V L 2.5×10-3 H 
R 1 ohm Kc 0.2 V/(rad/s) 
Kt 0.2 Nm/A Kg 7:1 
J 1.2×10-3 kg⋅m2 kfric 4×10-4 N⋅m/(rad/s) 
D 16 cm3/rev ηmech 0.80 

Kilp 1×10-13 m3/(s⋅Pa)   

 

A.5 Pipelines 

Pipelines are used to connect the hydraulic elements to each other. Pipeline 

dynamics can be neglected assuming the pipe lengths are small. In that case, their 
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volume should be added to the corresponding chamber volumes while solving the 

related pressure dynamics there. In the simulation study, only the pipeline dynamics 

between the pump and the supply port of the servo-valve is taken into consideration 

while assuming the other pipeline lengths are small.   

 

Taking the supply line (going from the pump to the servo-valve inlet) as an example, 

p1 and q1 will indicate the pump side pressure and the flow rate at the head of the 

pipeline and p2 and q2 will indicate the supply pressure value and supply flow rate at 

the inlet of the servo-valve as could be seen from Fig. A.5. The pipeline effects 

could be modeled by a four-pole equation (Ayalew and Kulakowski, 2005). 

  

2 2,p q1 1,p q
 

 
Fig. A.5 A fluid transmission line. 

 

The four-pole equations in the Laplace domain could be arranged to give the p2(s) 

and q1(s) as outputs while the inputs are p1(s) and q2(s) as shown below:  
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(A.21) 

The propagation operator Γ(s) and the line characteristic impedance Zc(s) are 

defined by 

( )
2

2
2

32
4n
sds D

v sd
α χυαΓ = +  

(A.22)

( ) 2
0 2

32
cZ s Z

sd
α χυα= +  

(A.23)

where α is the natural frequency modification factor and χ is the damping 

modification factor, which could be determined from Yang and Tobler (1991). 



217 
 

Moreover, υ  is the kinematic viscosity. Dn is the dissipation number and Z0 is the 

line impedance as given below 

2

4
n

lD
c d
υ

=  
(A.24)

0 2

4 cZ
d
ρ

π
=  

(A.25)

c β
ρ

=  
(A.26)

where l and d is the length and diameter of the pipeline, respectively. Moreover, c is 

the speed of sound which is expressed in terms of bulk modulus and density of the 

hydraulic oil.  

 

Table A.4 shows the value of the parameters used in the pipeline model and a least-

squares curve fit algorithm (Wongputorn et al., 2005) named ‘invfreqs’ in the 

MATLAB Signal Processing Toolbox is used to approximate the three casual 

functions as below 
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Table A.4 Parameters used in the pipeline model. 
 

Parameter Value Parameter Value 
d 0.005 m l 1 m 
v 100 mm2/s ρ 890 kg/m3 
β 1.4×109 Pa α 1 
χ 1   

 

 

A.6 Hydraulic Cylinder Dynamic and Friction Model 

Here, the model of the hydraulic cylinder is developed by taking the effects of 

position dependent actuator chamber volumes and friction forces. The internal and 

external leakages are also taken into consideration as shown in Fig. A.6. 

 

Hydraulic cylinder

x

Load Mass M

B

K

Friction

AQ QB

P A PB

Piston displacement

,A AP V ,B BP V

int_ leakQ
_ext leakQ

_ext leakQ
pA

Fig. A.6 Hydraulic cylinder. 

 

Applying the continuity equations to each cylinder chamber will give the chamber 

pressure dynamics as below. 

0
int_ _

A p A
A leak ext leak p

V A x dPQ Q Q A x
dtβ

+⎛ ⎞
− − − = ⎜ ⎟

⎝ ⎠
 (A.30)

int_ _
B p B

B leak ext leak p

V A x dPQ Q Q A x
dtβ

−⎛ ⎞
− + − + = ⎜ ⎟

⎝ ⎠
 (A.31)

Moreover, the nonlinear equation describing the relationship among the chamber 

pressures and the actuator position (x) can be written as 

( )A B p fricP P A M x B x Kx F− = + + +  (A.32)

where Μ is the mass of the piston/load; Β is the the effective viscous damping; K is 

the stiffness of the equivalent spring, Αp is the piston annulus area and β refers to the 

bulk modulus of the hydraulic fluid. PA and PB denote the hydraulic pressures in 
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each of the actuator chambers. Note that the volumes of hydraulic oil on each side of 

the piston are given by variables VA=Apx+VA0 and VB=-Apx+VB0 where VA0 and VB0 

are the initial chamber volumes. The internal and external leakages (Qint_leak and 

Qext_leak) can be calculated as Cint (PA-PB) and Cext PA (or Cext PB ), respectively, where 

Cint and Cext will be the leakage coefficients. On the other hand, friction process in 

(A.33) can be characterized by the LuGre model as its mathematical model is given 

in (5.7) and (5.8). The parameter values used in the simulation study are also given 

in Table 5.1.  
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APPENDIX B 
 

 

MATLAB FILES 
 

 
 
The below M-Files are used to create and to train network objects which are 

presented in Chapter 5. In Appendix B.1, Network_Qa (in Fig. 5.4) is devised. In a 

similar way, Network_Qb could also be created. Next, Appendix B.2 represents the 

M-File for the creation of the divider network as illustrated in Fig. 5.5. Furthermore, 

the construction of the SRNN from its modules (Network_Qa, Network_Qb and 

divider network) is realized by the M-File given in Appendix B.3. 

 
B.1 M-File for the Network_Qa 

u = linspace(-1,1,99)'; 
p = linspace(0,1,99)'; 
q = zeros(99,99); 
output=zeros(1,9801); 
input=zeros(2,9801); 
 
k=1;  
for i = 1:99 
  for j = 1:99 
    if(u(j)>0) 
      q(i,j) = u(j)*sqrt(1-p(i)); 
    else 
      q(i,j) = u(j)*sqrt(p(i)); 
    end 
  output(k)=q(i,j); 
  input(1,k) = u(j); 
  input(2,k) = p(i); 
  k=k+1; 
  end 
end 
 
net = network; 
net.numInputs = 2; 
net.numLayers = 3; 
net.biasConnect = [1; 1; 1]; 
net.inputConnect(1,1) = 1; 
net.inputConnect(1,2) = 1; 
net.layerConnect = [0 0 0;1 0 0;0 1 0]; 
net.outputConnect = [0 0 1]; 
net.inputs{1}.size = 1; 
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net.inputs{1}.range = [-1 1]; 
net.inputs{2}.size = 1; 
net.inputs{2}.range = [0 1]; 
net.layers{1}.size = 10; 
net.layers{1}.transferFcn = 'tansig'; 
net.layers{1}.initFcn = 'initnw'; 
net.layers{2}.size = 10; 
net.layers{2}.transferFcn = 'tansig'; 
net.layers{2}.initFcn = 'initnw'; 
net.layers{3}.initFcn = 'initnw'; 
net.initFcn = 'initlay'; 
net.performFcn = 'mse'; 
net.trainFcn = 'trainlm'; 
net = init(net); 
net.trainParam.goal = 1e-10; 
net.trainParam.epochs=2500; 
net = train(net,input,output); 
Network_Qa=net; 
 

 

B.2 M-File for the divider network 

u = linspace(-1,1,100)'; 
p = linspace(-0.9,0.9,100)'; 
q = zeros(100,100); 
output=zeros(1,10000); 
input=zeros(2,10000); 
 
k=1;  
for i = 1:100 
  for j = 1:100 
      q(i,j) = u(j)/(p(i)+1); 
  output(k)=q(i,j); 
  input(1,k) = u(j); 
  input(2,k) = p(i); 
  k=k+1; 
  end 
end 
  
net = network; 
net.numInputs = 2; 
net.numLayers = 2; 
net.biasConnect = [1; 1]; 
net.inputConnect(1,1) = 1; 
net.inputConnect(1,2) = 1; 
net.layerConnect = [0 0;1 0]; 
net.outputConnect = [0 1]; 
net.inputs{1}.size = 1; 
net.inputs{1}.range = [-1 1]; 
net.inputs{2}.size = 1; 
net.inputs{2}.range = [-0.9 0.9]; 
net.layers{1}.size = 20; 
net.layers{1}.transferFcn = 'tansig'; 
net.layers{1}.initFcn = 'initnw' 
net.layers{2}.initFcn = 'initnw'; 
net.initFcn = 'initlay'; 
net.performFcn = 'mse'; 
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net.trainFcn = 'trainlm'; 
net = init(net); 
net.trainParam.goal = 1e-20; 
net.trainParam.epochs=1000; 
net = train(net,input,output); 
divider=net; 
  

B.3 M-File for the SRNN 
net = network; 
net.numInputs = 4; 
net.numLayers = 10; 
net.biasConnect = [1; 1; 1; 1; 1; 1; 1; 0; 1; 0]; 
net.inputConnect(1,1) = 1; 
net.inputConnect(4,1) = 1; 
net.inputConnect(7,2) = 1; 
net.inputConnect(9,4) = 1; 
net.inputConnect(7,3) = 1; 
net.inputConnect(9,3) = 1; 
net.layerConnect = [0 0 0 0 0 0 0 1 0 0; 
                    1 0 0 0 0 0 0 0 0 0; 
                    0 1 0 0 0 0 0 0 0 0; 
                    0 0 0 0 0 0 0 0 0 1; 
                    0 0 0 1 0 0 0 0 0 0; 
                    0 0 0 0 1 0 0 0 0 0; 
                    0 0 1 0 0 0 0 0 0 0; 
                    0 0 0 0 0 0 1 1 0 0; 
                    0 0 0 0 0 1 0 0 0 0; 
                    0 0 0 0 0 0 0 0 1 1]; 
net.outputConnect = [0 0 0 0 0 0 0 1 0 1]; 
net.layerWeights{1,8}.delays = [1]; 
net.layerWeights{4,10}.delays = [1]; 
net.layerWeights{8,8}.delays = [1]; 
net.layerWeights{10,10}.delays = [1]; 
net.layers{1}.size = 10; 
net.layers{1}.transferFcn = 'tansig'; 
net.layers{1}.initFcn = 'initnw'; 
net.layers{2}.size = 10; 
net.layers{2}.transferFcn = 'tansig'; 
net.layers{2}.initFcn = 'initnw'; 
net.layers{3}.initFcn = 'initnw'; 
net.layers{7}.size = 20; 
net.layers{7}.transferFcn = 'tansig'; 
net.layers{7}.initFcn = 'initnw'; 
net.layers{8}.initFcn = 'initnw'; 
net.layers{4}.size = 10; 
net.layers{4}.transferFcn = 'tansig'; 
net.layers{4}.initFcn = 'initnw'; 
net.layers{5}.size = 10; 
net.layers{5}.transferFcn = 'tansig'; 
net.layers{5}.initFcn = 'initnw'; 
net.layers{6}.initFcn = 'initnw'; 
net.layers{9}.size = 20; 
net.layers{9}.transferFcn = 'tansig'; 
net.layers{9}.initFcn = 'initnw'; 
net.layers{10}.initFcn = 'initnw'; 
net.performFcn = 'mse'; 
net.trainFcn = 'trainlm'; 
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net.initFcn = 'initlay'; 
net = init(net); 
  
net.IW{1,1}=Network_Qa.IW{1,1}; 
net.IW{4,1}=Network_Qb.IW{1,1}; 
net.LW{1,8}=Network_Qa.IW{1,2}; 
net.LW{4,10}=Network_Qb.IW{1,2}; 
net.LW{2,1}=Network_Qa.LW{2,1}; 
net.LW{5,4}=Network_Qb.LW{2,1}; 
net.LW{3,2}=Network_Qa.LW{3,2}*Kv*sqrt(Ps)*Uv_max/q_max; 
net.LW{6,5}=Network_Qb.LW{3,2}*Kv*sqrt(Ps)*Uv_max/q_max; 
net.IW{7,2}=divider.IW{1,2}; 
net.IW{9,4}=divider.IW{1,2}; 
net.IW{7,3}=-divider.IW{1,1}; 
net.IW{9,3}=divider.IW{1,1};  
net.LW{7,3}=divider.IW{1,1};  
net.LW{9,6}=-divider.IW{1,1};   
net.LW{8,7}=divider.LW{2,1}*q_max*Bulk/v_A*Ts/Ps; 
net.LW{10,9}=divider.LW{2,1}*q_max*Bulk/v_B*Ts/Ps; 
net.LW{8,8}=1; 
net.LW{10,10}=1; 
net.b{1,1}=Network_Qa.b{1,1}; 
net.b{2,1}=Network_Qa.b{2,1}; 
net.b{3,1}=Network_Qa.b{3,1}*Kv*sqrt(Ps)*Uv_max/q_max; 
net.b{4,1}=Network_Qb.b{1,1}; 
net.b{5,1}=Network_Qb.b{2,1}; 
net.b{6,1}=Network_Qb.b{3,1}*Kv*sqrt(Ps)*Uv_max/q_max; 
net.b{7,1}=divider.b{1,1}; 
net.b{9,1}=divider.b{1,1}; 
SRNN=net; 
View(SRNN) 
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