
1

A DYNAMIC SOFTWARE CONFIGURATION MANAGEMENT SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF MIDDLE EAST TECHNICAL UNIVERSITY

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATMA GÜLŞAH KANDEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2012

Approval of the thesis:

A DYNAMIC SOFTWARE CONFIGURATION MANAGEMENT SYSTEM

submitted by FATMA GÜLŞAH KANDEMİR in partial fulfillment of the requirements for
the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Ali Hikmet Doğru
Supervisor, Computer Engineering Dept., METU

Dr. Cengiz Erbaş
Co-supervisor, ASELSAN

Examining Committee Members:

Assoc. Prof. Ahmet Coşar
Computer Engineering Dept., METU

Assoc. Prof. Ali Hikmet Doğru
Computer Engineering Dept., METU

Dr. Cengiz Erbaş
ASELSAN

Assoc. Prof. Pınar Şenkul
Computer Engineering Dept., METU

Assoc. Prof. Halit Oğuztüzün
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: FATMA GÜLŞAH KANDEMİR

Signature :

iii

ABSTRACT

A DYNAMIC SOFTWARE CONFIGURATION MANAGEMENT SYSTEM

Kandemir, Fatma Gülşah

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Ali Hikmet Doğru

Co-Supervisor : Dr. Cengiz Erbaş

September 2012, 70 pages

Each software project requires a specialized management to handle software development

activities throughout the project life cycle successfully and efficiently. Software governance

structures provide easy and efficient ways to handle software development activities. Software

configuration management is an important software development activity, and while selecting

the right strategy in configuration management, its conformity to the software governance

should be considered as well. Software configuration management patterns are aligned with

the software governance structures to increase the success in development and management

of the projects. Companies running large and inter-dependent projects, should adapt their

governance structures to the changing characteristics and dependencies of projects. In this

thesis, we propose a method to dynamically manage software configuration management, as

a result of the changing specifications in the software governance representation.

Keywords: software configuration management, software governance structures, software

configuration management patterns, dynamic software configruation management

iv

ÖZ

DİNAMİK BİR YAZILIM KONFİGÜRASYON YÖNETİMİ

Kandemir, Fatma Gülşah

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Hikmet Doğru

Ortak Tez Yöneticisi : Dr. Cengiz Erbaş

Eylül 2012, 70 sayfa

Her yazılım projesi projenin yaşam döngüsü süresince yazılım geliştirme aktivitlerinin başarılı

ve verimli bir şekilde idare edilmesi için özelleştirilmiş bir yönetime ihtiyaç duyar. Bu amaçla

önerilen yazılım yönetimi yapıları yazılım geliştirme aktivitelerini kolaylaştıran etkili yol-

lar sağlar. Yazılım konfigürasyon yönetimi ise önemli bir yazılım geliştirme aktivitesidir ve

yazılım konfigürasyon yönetiminde doğru stratejiyi belirlerken yazılım yönetimi yapılarına

uyumu da dikkate alınmalıdır. Yazılım projelerinin geliştirme ve yönetim sürecinde-ki başarıyı

artırmak amacıyla yazılım konfigürasyon yönetimi örüntüleri yazılım yönetimi yapıları ile

eşleştirilmiştir. Büyük ve birbirine bağlı projeler geliştiren şirketlerde, projelerin degişen

karakteristiklerine ve bağımlılıklarına gore projelerin yazılım yönetimi yapılarının da za-

manla değişmesi gerekir. Bu tez ile, yazılım konfigürasyon yönetimini yazılım yönetimi

yapılarındaki değişimlere dinamik bir şekilde uyarlayan bir yöntem öneriyoruz.

Anahtar Kelimeler: yazılım konfigürasyon yönetimi, yazılım yönetimi yapıları, yazılım kon-

figürasyon yönetimi orüntüleri, dinamik yazılım konfigürasyon yönetimi

v

To my family

vi

ACKNOWLEDGMENTS

This thesis would not be possible without the guidance and the help of several individuals

who in one way or another contributed in the preparation and completion of this study.

First and foremost, I would like to express my greatest appreciations to my supervisor Assoc.

Prof. Dr. Ali Hikmet Doğru and my co-supervisor Dr. Cengiz Erbaş, for their encouragement,

guidance and valuable advices.

I would like to thank my colleague Nagehan Pala Er for her constant advice and feedback

throughout my thesis work.

I am extremely grateful to my parents Bülent and Nurdan Kandemir for their continuous

support and love throughout all those years.

I would like to thank my fiancée Cansın for being considerate, for his patience and extreme

support throughout all those years. He was always there for me when I was in need.

I would like to thank my friends and colleagues for being wonderful supporters.

In conclusion, I recognize that this thesis would not have been possible without the support

of my employer, ASELSAN.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND & RELATED WORK . 4

2.1 Software Development Governance Structures 4

2.2 Software Configuration Management 5

2.3 Software Configuration Management Patterns 8

2.3.1 Single-Line Pattern . 8

2.3.2 Main-Line Pattern . 9

2.3.3 Producer-Consumer Pattern 11

2.3.4 Alignment between Governance Structures and SCM Pat-
terns . 11

2.4 Software Configuration Management Tools and Implementation . . 12

2.5 Related Work . 14

3 IMPLEMENTATION OF SCM PATTERNS IN CLEARCASE 16

3.1 Single-Line Pattern . 16

3.2 Main-Line Pattern . 19

3.3 Producer-Consumer Pattern . 21

4 DYNAMIC SOFTWARE CONFIGURATION MANAGEMENT SYSTEM . 24

4.1 Overview of the Dynamic SCM System 25

viii

4.2 Reconfiguring from Single-Line to Main-Line Pattern 28

4.3 Reconfiguring from Single-Line to Producer-Consumer Pattern . . . 38

4.4 Reconfiguring from Main-Line to Producer-Consumer Pattern 45

5 CONCLUSION . 53

REFERENCES . 57

APPENDICES

A IBM Rational ClearCase Terminology . 60

B Summaries of SCM Pattern Reconfiguration Wizards 64

B.1 Summary of Single-Line to Main-Line Pattern Reconfiguration Wizard 64

B.2 Summary of Single-Line to Producer-Consumer Pattern Reconfigu-
ration Wizard . 68

B.3 Summary of Main-Line to Producer-Consumer Pattern Reconfigura-
tion Wizard . 70

ix

LIST OF FIGURES

FIGURES

Figure 2.1 Example life cycle processes CM supports, reprinted, with permission,

from [2] . 6

Figure 2.2 (a) A codeline (b) A trunk (the main codeline) and a branch evolved from it 7

Figure 2.3 Codeline of a Single-Line Pattern . 9

Figure 2.4 Cascading Projects(Releases) . 10

Figure 2.5 Main-Line Pattern . 10

Figure 2.6 Producer-Consumer Pattern . 11

Figure 3.1 (a)General implementation of Single-Line pattern in ClearCase and (b)

Structure of a Single-Line PVOB in ClearCase Project Explorer tool 17

Figure 3.2 (a) A file’s version tree which is in SL Comp and (b) SL Comp’s baseline

tree . 18

Figure 3.3 (a) General implementation of Main-Line pattern in ClearCase and (b)

Structure of a main-line PVOB and follow-on PVOBs in ClearCase Project Ex-

plorer tool . 20

Figure 3.4 Baseline tree of a Main-Line component (Shared Comp) 21

Figure 3.5 Baseline tree of a reuse component . 22

Figure 3.6 (a) General implementation of Producer-Consumer pattern in ClearCase

and (b) Structure of a Producer PVOB and Consumer PVOBs in ClearCase Project

Explorer tool . 23

Figure 4.1 Life cycle of a dynamic SCM system . 26

Figure 4.2 Integration of DSCM wizard with IBM Rational ClearCase Explorer . . . 27

Figure 4.3 The 3 wizards designed to update the SCM structure 27

x

Figure 4.4 The starting page of the DSCM Pattern Reconfiguration Tool 28

Figure 4.5 Step 1: Selecting Single-Line Projects and Components 29

Figure 4.6 Step 2: Providing Main-Line PVOB and VOB information 30

Figure 4.7 Step 3: Creating a Follow-On Project . 32

Figure 4.8 List of selections . 33

Figure 4.9 The summary of performed activities by DSCM Pattern Reconfiguration Tool 34

Figure 4.10 (a) SCM structure of the single-line project(Airline Prj) before reconfigu-

ration and (b) SCM structure of main-line and follow-on projects after reconfigu-

ration . 37

Figure 4.11 Step 1: Selecting Single-Line Projects and Components 39

Figure 4.12 Step 2: Providing Producer Project’s PVOB and VOB information 40

Figure 4.13 Step 3: Creating a consumer project . 42

Figure 4.14 List of selections . 42

Figure 4.15 (a) SCM structure of the single-line project(Airline Prj) before reconfigu-

ration and (b) SCM structure of producer and consumer projects after reconfiguration 45

Figure 4.16 Step 1: Selecting Main-Line Component 46

Figure 4.17 Step 1: Checking for the projects developing the main-line component . . 47

Figure 4.18 Step 2: Creating a consumer project . 48

Figure 4.19 List of selections . 48

Figure 4.20 Checkout warning . 51

Figure 4.21 (a) SCM structure of the main-line projects before reconfiguration and (b)

SCM structure of producer and consumer projects after reconfiguration 52

xi

CHAPTER 1

INTRODUCTION

Management of all software projects in the same way is not possible due to the very nature

of different characteristics of the projects. And, each project requires a specialized manage-

ment to handle activities of development successfully and efficiently throughout the project

life cycle. Requirements and characteristics of projects are analysed at the beginning of the

projects and the analysis process depends on the amount of uncertainty involved in the project.

Uncertainty depends on the maturity level in the business area and the technology used [24].

Companies running parallel and inter-dependent projects improve their maturity level in the

areas they work and these companies develop their projects with the help of their experience

in the field. Depending on both the amount of uncertainty and maturity in projects, soft-

ware governance structures are proposed and are being used currently in the field of software

engineering.

Software governance structures provide easy and efficient ways to handle software transac-

tions in various kinds of development activities. Software configuration management (SCM)

is an important software development activity, because it is central to, and provides essential

services to, all the major processes of systems and software engineering such as requirements

management, design, implementation, integration, verification, release, project management,

operation and maintenance. At the beginning of the project, while selecting the right strategy

in configuration management, its conformity to the software governance should be considered

as well. SCM has a key role during the software development life cycle since implementing

wrong or deficient SCM may reduce the efficiency that can be get from all other software

development processes like coding, building and releasing the software.

There are 3 primary approaches in software governance structures which are:

1

• bottom-up

• top-down and

• software reuse

approaches. And there are 3 widely known SCM patterns which are:

• single-line

• main-line and

• producer-consumer

patterns. These software configuration management patterns are aligned with the software

governance structures to increase the success in development and management of the projects

[23]. The alignment between SCM patterns and governance structures are established to

manage software configuration in harmony with the governance structure, to minimize the

costs of SCM transactions and to eliminate the difficulties of managing large software.

Large companies usually develop large and inter-dependent projects in parallel. Dependencies

between projects and software modules change in time. As a result, governance structures

and accordingly implemented SCM patterns for projects should be adoptable to the changes

in characteristics and dependencies between these projects. When dependencies between

projects change, e.g. a software component is required to be developed by multiple projects,

SCM structure of the project should also change to enable shared development of components.

In this work, we propose a method to dynamically manage software configuration manage-

ment, as a result of the changing specifications in the software governance representation. We

developed an SCM pattern reconfiguration tool to adjust the SCM structure of a project to

the changing software dependencies. By the aid of this tool we showed that SCM structure of

projects should not be just static but should be dynamically adjustable to support development

of the software under changing circumstances. Although a meta model for configuration man-

agement is also developed, this work is compatible with some of the widely used tools and in

particular, we have applied our research utilizing the IBM Rational ClearCase [15] tool.

The rest of this thesis is organized as follows. Chapter 2 gives the necessary background

information about the topics discussed in this thesis. Chapter 3 explains how ClearCase tool

2

should be used to implement the SCM patterns discussed. Chapter 4 explains our approach,

method and the tool we developed in detail. Lastly, we evaluate and conclude our work in

Chapter 5.

3

CHAPTER 2

BACKGROUND & RELATED WORK

Each software project requires a specialized management for handling software development.

For this reason different approaches on software governance structures are proposed accord-

ing to the different characteristics of projects and dependencies between them. Selecting right

governance structure helps handling development activities successfully and efficiently. An

important activity in software development is the software configuration management, and

while selecting the right strategy in configuration management, its conformity to the soft-

ware governance should be considered as well. Companies running large and inter-dependent

projects, should adapt their governance structures to the changing characteristics and depen-

dencies of projects. This thesis concerns with a method for dynamically managing software

configuration management, as a result of the changing software governance structures. In

this section, the basics of software development governance structures, software configura-

tion management, software configuration management patterns and the alignment between

software configuration management and governance structures are explained briefly to give a

better understanding of our proposal.

2.1 Software Development Governance Structures

In business, a transaction is defined as an exchange of products or services between a supplier

and a client. Similarly in the context of software, a transaction is an exchange of require-

ments and software between two stakeholders. Transactions can occur in various forms of

governance structures, and the governance structure has a huge impact on transaction costs.

Transaction Cost Economics (TCE) analyzes the relationship between transactions and the

governance structures extensively [11].

4

There are three primary software development governance structures that can be proposed

after considering the TCE approach [11], which are:

• bottom-up

• top-down and

• software reuse.

Bottom-up governance is adaptive to changes in development decisions and is used when it

is not possible to determine or guess the components precisely in the design phase of the

project. If the project team do not have enough experience on how to develop some kind of

software and mostly the method of trial and error is going to be used during development

process, the components and subcomponents determined in design phase may evolve and

change throughout the project. In such cases, using the bottom-up governance will be more

efficient since it allows changing design decisions[23].

Top-down governance is used when it is possible to decompose and plan the components

of the software in the design phase. When the components are decomposed and interfaces

between these components are defined properly, the development of these components can be

done separately[23]. In other words, if the project team has the experience in developing such

software, top-down decomposition will be the most efficient governance structure regarding

the transaction costs.

On the other hand, software reuse governance is used when you have software components

ready to be used from other projects provided that preconditions/postconditions are satisfied.

It is a common practice to use previously developed components when working with multiple

projects at a time or one after another. So instead of developing the component needed from

scratch, the component is reused. As a result, the reuse governance reduces the transaction

costs significantly in projects.

2.2 Software Configuration Management

Software Configuration Management(SCM) is a specialization of Configuration Management

(discipline of controlling the evolution of complex systems) in software systems[27]. SCM

5

is one of the most important processes in software engineering since it is central to, and

provides essential services to, all the major processes of systems and software engineering

such as requirements management, design, implementation, integration, verification, release,

project management, operation and maintenance as seen on Fig. 2.1 [2].

Figure 2.1: Example life cycle processes CM supports, reprinted, with permission, from [2]

The leading activities in SCM are planning of configuration management(CM), management

of CM, configuration identification, configuration and change control, status accounting, au-

diting and release management [2, 9]. The implementation of these activities may change

from project-to-project according to the needs of the projects since there is no strictly true

implementation. In the beginning of the project how the CM will be implemented should be

planned and then throughout the whole software processes, CM should be managed. This is

not a trivial task regarding the pervasive nature of the CM in software engineering activities.

This thesis concerns itself with the adjusting and managing the usage of CM according to the

changing nature and needs of a project or the relationships between projects.

The primary users of an SCM system are developers, since they use the system daily for the

implementation of the software. From their perspective, the main concepts that they implicitly

deal with are workspaces, codelines and integration [5].

A workspace can be defined as a working area on a disk where software developers edit the

source code, build the software components, and test and debug what they have implemented

and built. Changes made in a workspace, will also change the files in the file repository

6

eventually since a workspace consists of versions of these files [5, 32]. The main aim in

using workspaces is that they provide a private space for developers for their changes to the

software and isolation between developers so that they do not interfere with each other [10].

This situation brings the concept of transparent view which is a viewing mechanism enabling

only authorized access to a workspace from the main repository [10].

Codeline is a bunch of source code files and other software artifacts that when they evolve

over time they form the software components. When you change a source code file or another

software artifact, a version of them is created. And along one semantically defined process

path, a codeline includes every versions of files and artifacts [5]. Plus, at some point in time,

you may want to tag or label a snapshot of a codeline, and this is called a baseline. Some

SCM tools keep these baselines for you to use or observe in the future. And also one or more

codelines comprise a workspace, this may change according to the work you are conducting.

(a) A codeline and baselines (b) A trunk and a branch evolved from the
trunk

Figure 2.2: (a) A codeline (b) A trunk (the main codeline) and a branch evolved from it

While a software component is being developed, you may want a new feature to be developed

independently from the main codeline of the component. In other words, you may want to

have different derivatives of the component and this is possible with branching. Branches

help parallel development. Branches may be obsolete in the future, or may be merged with

the trunk (usually the main branch, the starting point of the branches are called trunk) or

some other branches [28]. The Figure 2.2(b) illustrates a branch derived from the trunk to

fix a bug. The bug fixing process and the development in the main trunk can be achieved in

7

parallel. After deciding that the bug fixing is done in the code, the branch can be merged to

the trunk with the help of various merge managers.

Usually in a software project, more than one developer work in parallel. At some points during

development, their work should be integrated and the sooner integration the better, since

frequent integrations prevent complex, hard to resolve merges. Depending on the workspace

and branching strategy of a project, number and elapsed time of integrations change, so it is

important to choose the right strategy and plan the SCM at the beginning of the project.

2.3 Software Configuration Management Patterns

The success in applying software development governance structures to the software projects

resides in proper usage of each and every computer-aided software engineering (CASE) tools.

As explained in section 2.2, SCM is central to all software engineering processes, and the two

most important functions of SCM are: Integration of codes developed by different developers

and keeping track of every change made to the developing or developed software [23]. Hence

it is important to apply right SCM strategy to be more effective in development. There have

been several research done on best practices and patterns of SCM [5, 23, 32].

The mostly discussed patterns in the past are:

• Single-Line Pattern

• Main-Line Pattern and

• Producer-Consumer Pattern

and will be discussed throughout this thesis because of the previously proposed alignment

with the governance structures discussed in section 2.1.

2.3.1 Single-Line Pattern

Single-Line pattern suggests all developers have their own development branches, which are

evolved from a single codeline of the project. This enables developers to work isolated from

8

other developers as well as to integrate to the work in the codeline easily. In agile devel-

opment, it is important to write your code independently without interfering others. Also it

is important to sync with the other developers’ work frequently. The sooner the integration,

the less the conflicts. This is achieved with single-line pattern easily, because in their pri-

vate branches the developers implement their code, and when required an integration, they

deliver their work to the codeline. The process is composed of one step at a time rebase-

implement-deliver-integrate iteration. Figure 2.3 illustrates the pattern by showing the /main

as the codeline and /Dev1 and /Dev2 as the branches of different developers.

Figure 2.3: Codeline of a Single-Line Pattern

2.3.2 Main-Line Pattern

Mainline pattern is useful when you develop shared components between projects in parallel,

in other words when you have multiple codelines developing one or more component and you

want to handle the deliver-merge-rebase operations effectively. Parallel development between

multiple projects can be handled with multiple branches and hence with merging, but this

will have a cost which can easily be minimized when a simplified branching model is used

carefully and mainline pattern helps simplifying your branching model [5].

Mainline stands for a central codeline which is the basis for sub-branches and their resultant

9

merges, says Vance, and the mainline is the one with the longest lifespan of all other codelines

[29]. This is because the mainline branch continues to exist while a shared component is being

developed by at least one project and until the last project is done with development.

Figure 2.4: Cascading Projects(Releases)

Figure 2.5: Main-Line Pattern

Figure 2.4 shows a branching model when a project starts development based on a release of

the previous project and they continue development in parallel. For each release a branch is

evolved from the previous release, this is called cascade branching. But think of an additional

feature which is wanted in all of the releases; in this case each project will implement that

additional feature or, it will be implemented in one of the release branches and then will be

merged to all of the other release branches. The first workaround has the problem of rework

of the implementation and the second brings the cost of complex merge. It would be a better

choice to use a mainline project at the beginning. Figure 2.5 shows a mainline project denoted

by /Main and 3 different projects denoted by /Release1, /Release2 and /Release3. All of the

projects merge their changes with the mainline project and whenever a new project is about to

start, instead of branching from a previously released software, they branch from the mainline,

10

which includes the latest and most stable version of the software. The mainline eliminates the

problem of costly complex merges, as merging in this case requires only one step of code

delivery.

2.3.3 Producer-Consumer Pattern

When having shared software components between projects, and only one project is responsi-

ble for the development of that component, then producer-consumer pattern should be applied.

As name suggests, there is a producer project, developing (creating versions) the component,

and consumer projects just add the component baselined by the producer project to their con-

figuration as read-only.

Figure 2.6: Producer-Consumer Pattern

Figure 2.6 shows a multi-project SCM implementation, which is composed of one Producer

and two Consumer projects. The producer project is the one producing versions of compo-

nent, and consumer projects are the ones only reading the versions created by producer project

by rebasing to the baselines (labels) of the component.

2.3.4 Alignment between Governance Structures and SCM Patterns

It is important but also difficult to determine the right structure you need in configuration

management, because if you underestimate, then the chaos happens, and if you overestimate

the tools and the environment will be useless at some point. According to Highsmith[13] this

debate is really about balancing adaptation with anticipation. Software development gover-

11

nance structures surely give the configuration managers the anticipation in deciding how their

SCM structures should be established.

In [24, 23], an alignment between software governance structures and SCM patterns is pro-

posed. Their rationale on mapping governance structures and SCM patterns depends on the

TCE approach. They considered and calculated two different types of costs (1) the setup

cost of SCM infrastructure and (2) the cost of maintenance and integration of SCM structure

during development. The calculations showed that:

• When software components cannot be identified at the beginning of the project, Bottom-

Up governance was recommended, and since components are not identified, the sharing

status of components are also not available. So, recommending one integration codeline

for development, the Single-Line pattern would be the most effective pattern among

others.

• When software components can be identified at the beginning of one project and these

components are the potential parallel development components, then Top-Down de-

composition was recommended. So, having a Mainline structure would fully support

the parallel development of identified shared components.

• When some components of the project can be taken readily from another projects con-

figuration, and these components will not be developed by the new project, then soft-

ware Reuse was recommended. Now the new project is a Consumer project and the

project doing the development is the Producer project in SCM.

2.4 Software Configuration Management Tools and Implementation

SCM, as mentioned above, deals with controlling change and the activities of other software

development processes in large and complex software systems. As the importance of SCM

is increased, the need to handle the SCM activities with the help of SCM tools had arisen.

Commercial or free, various kinds of SCM software are released since then. Early tools

had only limited functionality but the modern tools serve very advanced functionalities, so

it is now more effective to manage the configuration of software products [12]. More about

researches conducted on SCM processes both in academia and market can be found in [12].

12

A successful SCM system, according to [22], manages the changes to the software product,

keeps track of versions and component configurations, coordinates the work of team mem-

bers, and manages building and releasing the software product deliverables. And it is very

important for SCM systems to be flexible and adoptable to the changes in the projects and or-

ganization of the project management. The key functionalities of SCM tools are, as suggested

by both [1, 22]:

• support for SCM library(repository)

• version control

• change management

• status accounting

• build and release management

These functionalities are now the default requirements of SCM tools, but they may not be

enough for some companies in the market. This is due to the fact that companies developing

more than one software products simultaneously, need parallel and concurrent development

support, which also brings the diversity and merge handling between codelines. In addition

to parallel development of software projects, shared component development/usage between

projects is getting more common as software reuse is one of the most effective way of building

high-quality software in limited time [22]. The ideal SCM system for a company building

complex, reusable shared components should support all the software development activities

including accessing, versioning, controlling, building a releasing the components of software

products.

Companies must be careful and know their needs and expectations from an SCM system,

before choosing the right product for them. Because, SCM system is just at the centre of

all software development activities, and directly affects the development environment in a

company.

Since the problem that we are trying to propose a solution in this thesis, addresses the identifi-

cation, development, sharing and re-using of software components between projects working

in parallel, we should have chosen the right product which would enable us to streamline

13

development of component-based software projects. The most suitable SCM tool for this pur-

pose was the commercial IBM Rational ClearCase [15] tool. We implemented dynamic soft-

ware configuration management using IBM Rational ClearCase with UCM (Unified Change

Management) enabled.

Implementation of the SCM patterns which are mentioned in section 2.3 is explained in next

chapter to make understanding of our Dynamic Software Configuration Management System

proposal easier. In addition, ClearCase terminology that will be used throughout this thesis

while explaining our system can be found in Appendix A.

2.5 Related Work

Software Development Governance(SDG) is a new field of research and it is evolving as an

important area of research because governance of software projects has a huge impact on the

other development processes. Bannerman[4] made a good research on SDG from different

aspects. According to his work in [4], SDG emerges as both an opportunity and a challenge

in development activities. For example, SDG should concern about aligning business with

software, controlling risk and change and providing flexibility [8]. SDG should also assist

agile software development in adaptive organizations [26]. Cheng and et al.’s [7] definition for

agile SDG is ”the accountability and responsibility of management, adopting agile software

development methods, and establishing measurement and control mechanisms in an agile

environment”. In addition, [31] evaluates SDG as both a technical creativity and technical

challenge.

The importance of alignment between SDG and other software development processes is

another field of research. The first step of achieving strategic accordance with other software

development processes is considered to be an effective team-work. By establishing chains of

roles, responsibilities and communication, SDG achieves its strategic goals [8, 20]. Lehto et

al. propose a framework for their agile SDG structures and highlight the challenges in roles

and responsibilities [20]. In addition Kofman et al. address this challenge and develop a

tool called Governer to automate the decision right issues [18]. Kofman et al. also state that

smart governance tools should guide and automate software development processes, for their

specific purpose decision making of individual through software development activities [18].

14

On the other hand, in this thesis we concern with alignment of SDG with SCM activities and

automate the adaptation of these two activities with a tool we developed.

Software Configuration Management(SCM) is an important organizing software development

activity as discussed in section 2.2, and several research has been made on the appropri-

ate usage of SCM in organizations. Configuration management’s relation to other software

fields such as software architecture is the concern of [3] and this work suggests these areas

should not be separated. Similarly, for the component-based software architectures a configu-

ration management approach is suggested in [19, 21]. Larsson has a comprehensive work on

component-based software development and especially component-based configuration man-

agement techniques. Additionally, since applying right strategy in SCM is very important,

several best-practices and patterns are developed and suggested [5, 23, 32, 30]. In this thesis,

we looked over 3 different SCM patterns as discussed in section 2.3.

Dynamism of software architectures, especially dynamic components are considered as ”chal-

lenging in terms of correctness, robustness and efficiency” [25, 6] and dynamic software ar-

chitectures are investigated by Bradbury et al. in [6] extensively. Considering the importance

of dynamism in other fields of software development, we have developed a dynamic approach

to software configuration management, which has not been an area of research before in terms

of applying dynamism in SCM patterns. While applying SCM patterns, we follow the imple-

mented SDG approach of a software project and we believe our dynamic SCM proposal will

find its place in the literature as a novel and a strong idea.

15

CHAPTER 3

IMPLEMENTATION OF SCM PATTERNS IN CLEARCASE

In Section 2.3, three SCM patterns were emphasized and these patterns and their usage with

shared component development will be the primary concern of this thesis. So, to give a better

understanding on these patterns, their implementation in IBM Rational ClearCase tool for

supporting shared component development will be explained in this section.

3.1 Single-Line Pattern

Implementation of Single-Line pattern in ClearCase is quite simple as parallel development of

components is out of concern in this pattern. As explained in section 2.3.1, a single codeline is

required for code integration when each developer has his/her own private branch to develop

the software. In ClearCase, the codeline corresponds to a project with an integration stream

and developers’ private branches correspond to the development streams. Developers deliver

their work from their development streams to the integration stream.

The ideal and the easiest implementation of Single-Line pattern would consist of one UCM

project. The components would reside in one VOB and meta-data of all UCM elements(files

elements, folder elements, streams and project) would be held by one PVOB(Project VOB).

Figure 3.1(a) illustrates the general ClearCase implementation of Single-Line pattern and

Figure 3.1(b) shows the structure of a Single-Line PVOB in ClearCase Project Explorer tool.

According to the 3.1, SL Comp is developed by only Single Line Project, thus there exists

only one integration stream. Depending on the number of developers, development streams

(each development stream is a child stream of integration stream) are created. In this case,

development streams are Developer1 Stream and Developer2 Stream. Each developer deliver

16

(a) Implementation of Single-Line pattern in ClearCase

(b) Structure of a Single-Line PVOB in ClearCase Project Explorer

Figure 3.1: (a)General implementation of Single-Line pattern in ClearCase and (b) Structure
of a Single-Line PVOB in ClearCase Project Explorer tool

17

from development to integration stream, or rebase from integration to development stream.

Merges are done in the integration stream if more than one developer changed the compo-

nent and delivered. The red solid arrows originating from development streams in 3.1(a)

correspond to the deliver activities and the other ones originating from integration stream cor-

responds to the rebase activities. The deliver and rebase operations can be understood from

Figure 3.2(a) which shows the version tree of a file which is in SL Comp. And Figure 3.2(b)

shows the baseline tree of the SL Comp. As seen on the baseline tree, baselines are only

established in integration stream of Single Line Project, because SL Comp is developed by

only that project.

(a) Version tree of a file in SL Comp

(b) Baseline tree of SL Comp

Figure 3.2: (a) A file’s version tree which is in SL Comp and (b) SL Comp’s baseline tree

18

3.2 Main-Line Pattern

As explained in Section 2.3.2, mainline stands for a central codeline which is the basis for sub-

branches and their resultant merges and in ClearCase, mainline is implemented as a ClearCase

project and integration stream which serves as a merge centre to the follow-on projects (sub-

branches). Thus, implementation of Main-Line pattern requires at least one shared component

and a main-line project associated with it. A follow-on project can be created whenever a new

project wants to develop the shared component.

Figure 3.3(a) illustrates a shared component development using Main-Line pattern. Main Line

PVOB is the project VOB of Main Line VOB, Main Line Project and Shared Comp and

holds meta-data of all of them. Main Line VOB is the VOB holding shared components and

in this case, it holds the Shared Comp (i.e. main-line component) which is the component

to be developed in parallel with other projects. Main Line Project Integration Stream corre-

sponds to the main codeline. Follow-on projects which develop the Shared Comp in parallel

are shown as Project 1 and Project 2 and the solid arrows originating from their integration

streams point to the components they are developing. It is typical for projects of a company

to develop their own components and shared components, thus an ideal SCM system should

provide the developers the easiest environment to do the development. In this case, the follow-

on projects can easily develop&integrate their unshared components, Comp 1 and Comp 2,

in their sub-branches. Comp 1 and Comp 2 reside in the VOBs of follow-on projects and

PVOBs hold the meta-data of these projects. To give a better understanding of Main-Line

pattern implementation in ClearCase, Figure 3.3(b) shows the structure of Main Line PVOB,

Project 1 PVOB and Project 2 PVOB in ClearCase Project Explorer tool.

In order to Project 1 and Project 2 edit the Shared Comp, Shared Comp should be added to

the configuration of the projects with read&write permission. When one of the developing

projects add a feature to the main-line component that other developing projects should get

or the main-line component has been come to a maturity level by one of the projects, the

changes should be delivered to the main-line project’s integration stream. After the changes

are merged and conflicts are resolved (if exists any) in the main-line integration stream, a

baseline should be established to serve other projects as a basis to rebase.

Figure 3.4 shows the shared(main-line) component’s the ClearCase baseline tree window

19

(a) Implementation of Main-Line pattern in ClearCase

(b) Structure of a Main-Line PVOB and Follow-on PVOBs in ClearCase Project
Explorer

Figure 3.3: (a) General implementation of Main-Line pattern in ClearCase and (b) Structure
of a main-line PVOB and follow-on PVOBs in ClearCase Project Explorer tool

20

Figure 3.4: Baseline tree of a Main-Line component (Shared Comp)

and as can be seen from Figure 3.4, Project 1 and Project 2 deliver their changes to the

integration stream of Main Line Project and rebase to the baselines taken in the integra-

tion stream of Main Line Project. For example, first Project 1 delivers its changes to the

Main Line Project and a baseline named Rel 1 is established. When Project 2 wants to get

changes in Rel 1, Project 2 rebases to that baseline of Main Line Project. After Project 2

works on the Shared Comp and delivers its changes to Main Line Project, Project 1 wants

to get those changes and rebases to the version Rel 2 of Shared Comp. In Figure 3.4, re-

bases are represented as red arrows originating from Main Line Project to follow-on projects,

and delivers are again represented as red arrows but originating from follow-on projects to

Main Line Project.

3.3 Producer-Consumer Pattern

Producer-Consumer pattern, as explained in Section 2.3.3, is applied if a component is devel-

oped by only one project and reused by one or more projects. Implementation of Producer-

Consumer pattern in ClearCase is quite similar to the Main-Line pattern’s implementation

as shown in Figure 3.6(a), except shared component can only be accessed by consumer

projects as read-only. Solid lines originating from integration streams to the components

in Figure3.6(a) indicate that components can be modified by the streams and dashed lines

indicate that components can only be accessed as read-only, in other words they are reusable

21

components.

Figure 3.5: Baseline tree of a reuse component

Figure 3.6(b) shows the structure of Producer PVOB, Consumer 1 PVOB and Consumer 2

PVOB in ClearCase Project Explorer tool. Reuse Comp resides in Producer VOB and can

only be changed by Producer Project. All of the other projects which want to access and use

the Reuse Comp should add the Reuse Comp to their configuration as read-only.

Whenever a producer project wants to add a new feature and release a new version of the

reusable component, takes a baseline indicating the new release and recommends it to the con-

sumer projects. If a consumer project wants the new feature implemented, that will be enough

to rebase to the recommended baseline. Figure 3.5, shows the baseline tree of previously men-

tioned component Reuse Comp, and as can be seen from the tree, only Producer Project could

develop the component and produced baselines Rel 1, Rel 2, Rel 3 and Rel 4. Any project

can rebase to these baselines to access to the component.

22

(a) Implementation of Producer-Consumer pattern in ClearCase

(b) Structure of a Producer PVOB and Consumer PVOBs in ClearCase
Project Explorer

Figure 3.6: (a) General implementation of Producer-Consumer pattern in ClearCase and (b)
Structure of a Producer PVOB and Consumer PVOBs in ClearCase Project Explorer tool

23

CHAPTER 4

DYNAMIC SOFTWARE CONFIGURATION MANAGEMENT

SYSTEM

Identification and usage of software components, direct the way the software projects are gov-

erned as explained previously in section 2.1. Even identified at the beginning of the projects,

component structures may change throughout the development phase. And the primary rea-

son for changing component structures is the development itself. To be more specific, some

of the cases causing the governance structure to change are:

• sub-components may form new components during development

• parallel development of components between new or existing projects may be required

• components may wanted to be reused

A change in component structures on account of the previous reasons, requires a change

in governance structures naturally. Component structures change because of the amount of

uncertainty dominating the project is decreased. The amount of uncertainty change the you

way a project is governed, and as a result, from the SCM point of view, SCM implementation

should adopt to the changes in governance structures.

The first case, sub-components of a project evolving into new components during develop-

ment, will yield a project governance structure to change from bottom-up to top-down ap-

proach. The transition is same for the second case as well. In section 2.3.4, alignment be-

tween governance structures and SCM patterns were discussed and, bottom-up governance

was aligned with Single-Line pattern and top-down governance was with Main-Line pattern.

24

The third case, starting to use/read a component developed by only one producer project,

will yield a project governance structure change to software reuse. Reconfiguring to reuse

governance may originate from bottom-up governance or top-down governance. This time,

in accordance with alignments between governance structures and SCM patterns, reconfig-

uration of SCM structures will be from Single-Line to Producer-Consumer pattern, or from

Main-Line to Producer-Consumer pattern.

It is plain that, the decrease in uncertainty yields to improvement in development and it is the

natural outcome of whole software development process. From the software governance point

of view, as the uncertainty is decreased in time, i.e. level of experience is increased, bottom-up

governance is replaced by top-down governance or top-down governance is replaced by reuse

governance. The opposite direction of replacement is not possible since level of experience

never decreases in time. Thus, change in software governance structures can only originate

from bottom-up or top-down structure.

In this thesis, we propose to adopt SCM patterns to governance structures automatically. In

other words, we want to automate reconfiguration of SCM structure from one pattern to an-

other [17]. SCM structures of software projects are usually implemented using an SCM tool.

Changing the SCM structure may sound simple at first, but from the SCM administrators’

point of view, it means changing the whole infrastructure of SCM environment and requires

a big amount of time to do the reconfiguration manually. Automatically doing the recon-

figurations between patterns is the most effective way of doing this job, because it is much

less time consuming and error-prone. In addition, there exists no work in the literature about

dynamically adjusting SCM structure.

In the upcoming subsections, after a brief overview of the system, 3 modes of the DSCM

system will be explained. By 3 modes of DSCM, we mean 3 possible ways of automatically

reconfiguring SCM patterns as explained in previous paragraphs.

4.1 Overview of the Dynamic SCM System

Component structures determine the SCM pattern to be implemented, thus SCM process starts

the moment components are identified and the project starts. Dynamic software configuration

management (DSCM) process also starts when the project starts. But it is the changing com-

25

ponent structures that initiates the main functionalities of DSCM, the recommendation of new

SCM pattern and updating the current configuration to reflect the change in the SCM pattern.

Figure 4.1: Life cycle of a dynamic SCM system

Figure 4.1 summarizes the basic life cycle of a dynamic SCM system. At the beginning of the

projects, the components are determined, an SCM pattern is recommended according to the

components and then the SCM infrastructure is built. During the development, if the compo-

nent structures change, components will be updated, a new SCM pattern will be recommended

and then the recommended SCM pattern will be implemented. The tool we designed, will be

responsible for updating SCM structure automatically.

We designed the automatic pattern reconfiguration part of DSCM as a wizard integrated to

IBM Rational ClearCase[15] environment. The wizard is attached to the ClearCase Explorer,

so that the users of the system can access and start the wizard easily. Figure 4.2 is a snapshot

26

of ClearCase Explorer window integrated with DSCM wizard. DSCM wizard opens when

SCM Pattern Reconfiguration Wizard is clicked.

Figure 4.2: Integration of DSCM wizard with IBM Rational ClearCase Explorer

Figure 4.3: The 3 wizards designed to update the SCM structure

DSCM reconfiguration tool we designed is composed of three wizards which are shown in

Figure 4.3:

• Single-Line to Main-Line pattern reconfiguration wizard

27

• Single-Line to Producer-Consumer pattern reconfiguration wizard

• Main-Line to Producer-Consumer pattern reconfiguration wizard

Since the recommended pattern is known prior to adjust the SCM structure to the new SCM

pattern, the user will select the type of the pattern reconfiguring wizard. DSCM pattern re-

configuring tool has a main page composed of three wizard types to enable the users to select

the right type of wizard they will be guided. The main(starting) page of the DSCM pattern

reconfiguring tool is shown in Figure 4.4.

Figure 4.4: The starting page of the DSCM Pattern Reconfiguration Tool

Upon selecting the action to be performed as shown in Figure 4.4, one of the wizards will be

started. The users will be guided by these wizards and the new SCM structure will be ready

to used when the wizards are completed. In next three subsections, the three reconfiguration

wizards will be explained by first showing the user interface elements, then explaining the

process carried out in the background and finally showing the resulting SCM structure.

4.2 Reconfiguring from Single-Line to Main-Line Pattern

As can be understood from Figure 4.1, the inputs of reconfiguring from Single-Line to Main-

Line pattern wizard are the updated software components. The former single-line developed

28

components or the sub-components of components are going to be transformed into main-

line components at the end of the SCM structure update process. Once the to-be main-line

components are identified, the SCM structure of these components based on the Single-Line

pattern is ready to be transformed to an SCM structure based on Main-Line pattern.

Figure 4.5: Step 1: Selecting Single-Line Projects and Components

First step of Single-Line to Main-Line pattern reconfiguration wizard is selecting the single-

line components and a screen capture of the page is shown in Figure 4.5. In order to select

the components to be transformed, the project that is developing the component should be se-

lected. Projects in ClearCase resides in project VOBs (PVOBs) like all other Unified Change

Management(UCM) objects [A]. Thus, to access a component developed by a specific project

in ClearCase, first the PVOB holding them should be accessed. First page of the wizard is

designed to enable users to access the components they are going to select easily.

In ClearCase, components are developed by developers using UCM views, because views

provide a work area for users to develop the software components. Each view is configured to

fetch one version of the elements from the element’s version tree, and thus the contents of the

component seen by a view is unique to that specific view. For this reason, users should select

the view context in the project to list the inner structure(folder structure) of the components.

On the first page, the box on the left contains the list of components developed by selected

29

single-line project in the form of a tree. The first level nodes on the tree correspond to the com-

ponents and each node below the first level correspond to the folders under the components.

Depending on the update decided on component structures, a component itself or folder(s)

under it(sub-components) can be a candidate to be a main-line component, and the candidate

main-line components should be moved to the right box with the help of buttons in the middle.

Once a folder(sub-component) is selected to be a main-line component, selection of the parent

or child folder is restricted. Apart from that, there is no restriction on how many components

are selected or remained, because some components can still be developed with Single-Line

pattern while others are developed with Main-Line pattern. Each first level node in right box

corresponds to a component that will be developed by a main-line project. According to the

Figure 4.5, components that are going to be transformed into main-line components are:

• Simulators of the component Test under Airliner VOB

• SystemManagement of the component Software under Airliner VOB

When all of the fields on the page are filled and components are selected, Next button should

be selected to proceed with the second step. Cancel and Back buttons can also be used to

cancel the wizard or go back in the wizard at this step.

Figure 4.6: Step 2: Providing Main-Line PVOB and VOB information

30

Second step of Single-Line to Main-Line pattern reconfiguration wizard is deciding on the

PVOB and VOBs that are going to be used for main-line project and components and a screen

capture of the page is shown in Figure 4.6. It is a choice to determine the PVOBs and VOBs

because, user may select to create new PVOBs and/or VOBs, or select to use existing PVOBs

or VOBs for the main-line project and components.

Main-Line PVOB will hold the information of to-be created new project (main-line project)

and previously selected(in the first step) to-be main-line components. It is optional for the

user to create a new main-line PVOB or use an existing main-line PVOB. The aim at the end

is to create a new main-line project and if the user finds using an existing PVOB is appropriate

and useful considering their project team and structure, selecting the PVOB from the drop-

down list will be the best for their choice. Besides, if the user thinks creating a new PVOB for

their new main-line project is right for them, the user should enter the name of the new PVOB

to the text field labelled Create a PVOB. And also, the user should select the administrative

PVOB(refer to the Appendix A for administrative PVOB concept) of the new PVOB from

drop-down list.

Main-Line VOB will hold the software components since VOBs keep all versions of file

elements, directory elements and meta-data associated with them. Assuming a VOB as a

folder, components correspond to sub-folders of a VOB from the first level. Like in PVOB

case, it is optional for the user to create a new main-line VOB or use an existing VOB to hold

the components. If the user wants to place new main-line components under an existing VOB,

then the VOB should be selected from the drop-down list labelled Select and existing VOB, or

name of the VOB should be entered to the text field labelled Create a VOB if the user selects

to create a new VOB.

At the end of the reconfiguration, for each main-line component selected in first step of the

wizard, a new project will be created. In other words, each main-line component will be

developed in separate main-line projects. We require users to determine a suffix for their

project names, if they have any naming conventions for their project names. To illustrate, if a

main-line component’s name is Sample Comp and Prj is decided for the project name suffix,

then the main-line project’s name will be Sample Comp Main Prj. The identifier Main gives

the users of this project the idea of this project is a main-line project. More about the resulting

structure will be explained at the end of this section.

31

According to Figure 4.6,

• A PVOB named AirlineShared PVOB will be created as main-line PVOB.

• A VOB named AirlineShared VOB will be created to store main-line components.

• Admin PVOB will be the administrator VOB of both PVOB and VOB.

• Prj will be the suffix for main-line project names. (i.e. Simulator Main Prj will be one

of the project names)

When all of the fields on the page are filled or selected, Nextbutton should be selected to

proceed with the third step. Cancel and Back buttons can also be used to cancel the wizard or

go back in the wizard at this step.

Figure 4.7: Step 3: Creating a Follow-On Project

Third step of Single-Line to Main-Line pattern reconfiguration wizard is asking the users

whether they are going to develop a new project using new main-line components and a screen

capture of the page is shown in Figure 4.7. Main-Line components can be developed by more

than one project but, all projects developing the components should deliver&merge their work

to the main-line project. If the new components will also be developed by a new follow-on

project, then the users should select the first radio button labelled Yes, I want to create a new

32

project and fill in the fields required. Firstly, name of the PVOB that will hold the project

data should be entered and the administrative PVOB of new PVOB should be selected from

the drop-down list. Next, name of the project should be given and lastly a comment for the

project can be provided by the user. According to Figure 4.7, a new follow-on project named

AutoPilot Prj will be created under AutoPilot PVOB.

User can also prefer not to create a new follow-on project, because components may not be

developed with multiple projects right now or user may want to create the new follow-on

project later. So, selecting the second radio button will be the right choice.

Figure 4.8: List of selections

After completing first, second and third steps of the wizard, a list of user’s selections are

shown to the user. This is the last step of Single-Line to Main-Line pattern reconfiguration

wizard and a screen-shot of the page is shown in Figure 4.8.

Last step lists all the selections made by the user in previous steps, giving user the chance of

reviewing the selections that he/she has made. If user detects a mistake in selections done in

the previous steps, he/she can easily go back to that step and fix it.

After the selections are made and reviewed, the user should click on the Finish button to let

DSCM Single-Line to Main-Line pattern reconfiguration wizard update the SCM structure.

Updating the SCM structure may take a while because the following actions are performed

33

Figure 4.9: The summary of performed activities by DSCM Pattern Reconfiguration Tool

by the wizard in listed order:

• Creation of the VOBs:

– If new PVOB creation was required by the user, Main-Line PVOB is created with

the name entered in Step 2.

– A hyper-link of type AdminVOB is created between PVOB and the selected ad-

ministrator PVOB.

– If new VOB creation was required by the user, Main-Line VOB which will hold

the components contents is created with the name entered in Step 2.

– A hyper-link of type AdminVOB is created between VOB and the selected admin-

istrator PVOB.

• Creation of the Main-Line components

– For each component/sub-component that is selected in first step of the wizard,

create a component whose contents will be stored in the Main-Line VOB. These

components will be managed by the Main-Line PVOB. To indicate these com-

ponents are Main-Line components, Main suffix is added to the name of the

components, i.e. a component(or sub-component) formerly named Tools is now

named as Tools Main.

34

– When new components are created, the contents of them were empty. To fill in

the contents of Main-Line components, their original contents(file and directory

elements) which were developed by the Single-Line project are copied to a tem-

porary location. They are moved under the new components after their Main-Line

projects are created.

• Creation of the Main-Line projects

– For each component created in previous step, a project which will be the Main-

Line project of the components as all Follow-on projects will deliver&merge their

works to this project. The name of each project consists of the name of compo-

nent, the Main and the suffix entered in second step of the wizard, i.e., with a

suffix Prj the name of project will be Tools Main Prj.

– An integration stream is created for each Main-Line project.

– A view is created for each integration stream of the Main-Line project.

– An activity is created to add the contents of components to source control.

– Contents of components in the temporary location as mentioned in previous step

(Creation of the Main-Line components), are moved under the Main-Line com-

ponents and all of the elements are added to source control by using the activity

which has just been created.

– A baseline is made and recommended in the integration stream of each Main-Line

project as it will form the basis to the follow-on projects to rebase.

• Creation of the Follow-on project (If required)

– A PVOB for holding the follow-on project is created with the name entered in

Step 3.

– A hyper-link of type AdminVOB is created between PVOB and the selected ad-

ministrator PVOB.

– Follow-on project which has the Main-Line components in its modifiable compo-

nent list is created.

– An integration stream is created for the Follow-on project to enable developers to

join the development easily.

35

– Rebased to the latest baselines of Main-Line components and baselines are rec-

ommended in the integration stream.

• Changing the configuration of first(Single-Line) project to adjust new SCM structure

– Integration stream of the project is rebased to the latest baseline of new Main-Line

components.

– New components are added to the project’s modifiable components list.

– Latest baselines of new components are recommended in the integration stream

to the child streams.

When all of the actions above are performed successfully by the wizard, the result of each

performed action is shown to the user as shown in Figure 4.9. This informative summary

page enables user to review what has been done by the wizard. An example summary page

output is given in Appendix B.

To give a better understanding of the resultant SCM structure, SCM structure before and after

the reconfiguration process is given in Figure 4.10. SCM structure before reconfiguration can

be explained as follows:

• Airliner PVOB was the project VOB of the components Test, Drivers and Software and

Airline Prj.

• Simulators, Scripts and Results were folders(sub-component) in Test component.

• Navigation, SystemManagement, UI and Communication were folders(sub-component)

in Software component.

• AIK, BSP were folders(sub-component) in Drivers component.

• Airline Prj was developing Test, Drivers and Software components.

After deciding that Simulators sub-component of Test component and SystemManagement

sub-component of Software component are eligible to be separate components and these com-

ponents should be managed by a main-line project to serve other contributing projects as a

central codeline, reconfiguring from Single-Line to Main-Line pattern was performed and the

36

(a) SCM Structure before reconfiguration

(b) SCM Structure after reconfiguration

Figure 4.10: (a) SCM structure of the single-line project(Airline Prj) before reconfiguration
and (b) SCM structure of main-line and follow-on projects after reconfiguration

37

resultant SCM structure is shown in Figure 4.10(b). The resultant structure can be explained

as follows:

• AirlineShared PVOB is the project VOB of the main-line components Simulators Main

and SystemManagement Main and their projects.

• Simulators Main Prj is the main-line project of Simulators Main component.

• SystemManagement Main Prj is the main-line project of SystemManagement Main

component.

• AutoPilot PVOB is the project VOB of the AutoPilot Prj project.

• AutoPilot Prj and Airline Prj are follow-on projects for contributing development of

main-line components.

4.3 Reconfiguring from Single-Line to Producer-Consumer Pattern

As explained in Section 4.2, trigger to pattern transitions is the updated component structures.

If components in a VOB and/or sub-components of components which are being developed

by one project are decided to be developed by only one project and used by other projects,

then a SCM structure reconfiguration from Single-Line pattern to Producer-Consumer pattern

should be performed. Reconfiguring from Single-Line pattern to Producer-Consumer pat-

tern is performed by a wizard which can be started by selecting second radio button which

is labelled ”Want to switch from Single-Line to Producer-Consumer Pattern” in Figure 4.4.

Single-Line to Producer-Consumer pattern reconfiguration wizard’s user interface elements

is very similar to the Single-Line to Main-Line pattern reconfiguration wizard, because the

initial state of the SCM structure is the same.

First step of Single-Line to Producer-Consumer pattern reconfiguration wizard is selecting

the single-line components and a screen capture of the page is shown in Figure 4.11. In order

to select the components to be reused, the project that is developing the component and the

PVOB of the project should be selected. A view should also be selected to list the contents of

components.

After the selection of view, the contents of all components developed by selected project are

38

Figure 4.11: Step 1: Selecting Single-Line Projects and Components

listed as a tree structure on the left list box. The first level nodes on the tree correspond

to the components and each node below the first level correspond to the folders under the

components. Depending on the decided update on component structures, a component itself

or folder(s) under it(sub-components) can be a candidate to be a reusable component, and the

candidate reusable components should be moved to the right box with the help of buttons in

the middle. Once a folder(sub-component) is selected to be a reusable component, selection

of the parent or child folder is restricted. Apart from that, there is no restriction on how many

components are selected or remained, because some components can still be developed with

single-line project while others are developed with a producer project. Each first level node in

right box corresponds to a component that will be developed by a producer project. According

to the Figure 4.11, only Drivers component under Airliner VOB will be transformed into a

reusable component.

When all of the fields on the page are filled and components are selected, Nextbutton should

be selected to proceed with the second step. Cancel and Back buttons can also be used to

cancel the wizard or go back in the wizard at this step.

Second step of Single-Line to Producer-Consumer pattern reconfiguration wizard is deciding

on the PVOB and VOBs that are going to be used for Producer project and components, a

39

Figure 4.12: Step 2: Providing Producer Project’s PVOB and VOB information

screen capture of the page is shown in Figure 4.12. The user has two choices while deciding

on producer PVOB and VOB. First one of the choices is to create new PVOB and/or VOB, the

other choice is to use existing PVOB and/or VOB for the producer project and components.

Producer PVOB will hold the information of producer project and previously selected(in the

first step) to-be reusable component(s). It is optional to the user to create an new producer

PVOB or use an existing PVOB. The aim at the end is to create a new producer project and

if the user finds using an existing PVOB is appropriate and useful considering their project

team and structure, an existing PVOB should be selected form the drop-down list if PVOBs.

Besides, if the user wants to create a new PVOB for the producer project(s), the user should

enter the name of the new PVOB to the text field labelled Create a PVOB. And also, the

user should select the administrative PVOB(refer to the Appendix A for administrative PVOB

concept) of the new PVOB from drop-down list.

Producer VOB will hold the reusable components. Like in PVOB case, it is optional to the

user to create a new producer VOB or use an existing VOB to hold the components. If the

user wants to place new reusable components under an existing VOB, then the VOB should

be selected from the drop-down list labelled Select and existing VOB, or name of the VOB

should be entered to the text field labelled Create a VOB if the user selects to create a new

40

VOB.

At the end of the reconfiguration, for each new component selected in first step of the wizard,

a new project will be created. In other words, each reusable component will be developed in

separate producer projects. We require users to determine a suffix for their project names as

in previous wizard, if they have any naming conventions for their project names. To illustrate,

if a reusable component’s name is Reuse Comp and Prj is decided for the project name suffix,

then the producer project’s name will be Reuse Comp Producer Prj. The identifier Producer

gives the users of this project the idea of Producer-Consumer pattern. More about the resulting

structure will be explained at the end of this section.

To sum up the selections made in Figure 4.12:

• An existing PVOB named AirlineShared PVOB will be used as producer PVOB.

• A VOB named DriversVOB will be created to store reusable component.

• Admin PVOB will be the administrator VOB DriversVOB.

• Prj will be the suffix for producer project names. (i.e. Drivers Producer Prj will be the

project name of reusable component’s producer project)

When all of the fields on the page are filled or selected, Nextbutton should be selected to

proceed with the third step. Cancel and Back buttons can also be used to cancel the wizard or

go back in the wizard at this step.

Third step of Single-Line to Producer-Consumer pattern reconfiguration wizard is asking the

users whether the reusable components will be reused by an additional consumer project or

will not and a screen capture of the page is shown in Figure 4.13. Since reusable components

can be developed by only one project (producer project), any other project that wants to use the

component should access the component as read-only. During reconfiguring, if it is decided

to reuse the component by a new consumer project, then the user should select the first radio

button labelled Yes, I want to create a new project and fill in the fields required. Firstly, name

of the PVOB that will hold the project data should be entered and the administrative PVOB of

new PVOB should be selected from the drop-down list. Next, name of the project should be

given and lastly a comment for the project can be provided by the user. According to Figure

4.13, a new consumer project named HLDesign Prj will be created under HL Design PVOB.

41

Figure 4.13: Step 3: Creating a consumer project

User can also prefer not creating a new consumer project, because components may not be

reused by additional projects right now, or user may want to create the new consumer project

later. So, the second radio button should be selected for this choice.

Figure 4.14: List of selections

42

After completing first, second and third steps a list of user’s selections are shown to the user as

in the previous pattern reconfiguration wizard. This is the last step of Single-Line to Producer-

Consumer pattern reconfiguration wizard and a screen-shot of the page is shown in Figure

4.14. Last step lists all the selections made by the user in previous steps, giving user the chance

of reviewing the selections that he/she has made. If user detects a mistake in selections done

in the previous steps, he/she can easily go back to that step and fix it. Giving this opportunity

to the user is important because a single mistake may cause the new SCM structure to be built

from scratch. After the selections are made and reviewed, the user should click on the Finish

button to let DSCM Single-Line to Producer-Consumer pattern reconfiguration wizard update

the SCM structure. Updating the SCM structure may take a while because the following

actions are performed by the wizard in listed order:

• Creation of the VOBs

– If new PVOB creation was required by the user, Producer PVOB is created with

the name entered in Step 2.

– A hyper-link of type AdminVOB is created between PVOB and the selected ad-

ministrator PVOB.

– If new VOB creation was required by the user, VOB which will hold the reusable

components is created with the name entered in Step 2.

– A hyper-link of type AdminVOB is created between VOB and the selected admin-

istrator PVOB.

• Creation of the reusable components

– For each component/sub-component that is selected in first step of the wizard,

component whose contents will be stored in the producer VOB is created. These

components will be managed by the producer PVOB. To indicate these compo-

nents are developed by producer projects, Producer suffix is added to the names

of the components, i.e. a component(or sub-component) formerly named Tools is

now named as Tools Producer.

– When new components are created, the contents of them were empty. To fill in

the contents of Main-Line components, their original contents(file and directory

43

elements) which were developed by the Single-Line project are copied to a tem-

porary location. They are moved under the new components after their producer

projects are created.

• Creation of the Producer projects

– For each component created in previous step, a project which will develop the

projects is created. The name of each project consists of the name of component,

the Producer and the suffix entered in second step of the wizard, i.e., with a suffix

Prj the name of project will be Tools Producer Prj.

– An integration stream is created for each producer project.

– A view is created for each integration stream of the producer project.

– An activity is created to add the contents of components to source control.

– Contents of components in the temporary location as mentioned in previous step

(Creation of the reusable components), are moved under the reusable components,

and all of the elements are added to source control by using the activity which has

just been created.

– A baseline is made and recommended in the integration stream of each producer

project as it will form the basis to the consumer projects to rebase.

• Creation of the consumer project (If required)

– A PVOB for holding the consumer project is created with the name entered in

Step 3.

– A hyper-link of type AdminVOB is created between PVOB and the selected ad-

ministrator PVOB.

– Consumer project is created.

– Reusable components are added to the configuration of consumer project as read-

only.

– An integration stream is created for the consumer project to enable developers to

join the development easily.

– Rebased to the latest baselines of reusable components and baselines are recom-

mended in the integration stream.

44

• Changing the configuration of first(Single-Line) project to adjust new SCM structure

– Integration stream of the project is rebased to the latest baseline of new reusable

components.

– Latest baselines of new components are recommended in the integration stream

to the child streams.

(a) SCM Structure before reconfiguration

(b) SCM Structure after reconfiguration

Figure 4.15: (a) SCM structure of the single-line project(Airline Prj) before reconfiguration
and (b) SCM structure of producer and consumer projects after reconfiguration

4.4 Reconfiguring from Main-Line to Producer-Consumer Pattern

When developing a component in a main-line structure, after some amount of time, the com-

ponent may come to a level of maturity, by maturity we mean a stable release of the compo-

45

nent. That kind of components require changes and/or fixes very rarely and it would be more

easy to do the changes in a single codeline and make other projects only rebase to the new

releases of the component. So it is essential to transform main-line components to reusable

components and the Dynamic SCM system we propose makes this adjustment easily.

Reconfiguration from Main-Line pattern to Producer-Consumer pattern is done with a wizard

as in previous transitions. The wizard is opened with selecting the third radio button which is

labelled ”Want to switch from Single-Line to Producer-Consumer Pattern” in Figure 4.4.

Figure 4.16: Step 1: Selecting Main-Line Component

From the user interface point of view, first step of Main-Line to Producer-Consumer pattern

reconfiguration wizard is selecting the main-line components and a screen capture of the page

is shown in Figure 4.16. In order to select the components to be reused, the project that is

developing the component and the PVOB of the project should be selected. Unlike previous

reconfiguration wizards, this wizard handles the reconfiguration for one main-line component

at a time. When the main-line component which is going to be a reusable component is

selected, the Next button is not enabled immediately. The user should first click on the Check

for the consistency button to see which projects are currently working on the development

of the component. Those project teams should be notified prior to the reconfiguring process

because when the reconfiguration completes they will not be able to do any changes to the

46

component any more.

Figure 4.17: Step 1: Checking for the projects developing the main-line component

Figure 4.17 shows the alert window when Check for the consistency button is clicked. The

list of projects which are currently working on the main-line component is given in the alert

window. The user is warned with this alert to make the user notify other users of this main-

line component. If they have any undelivered work, they should deliver their changes to the

main-line project for the last time. According to the Figure 4.16, Simulators Main component

is selected to be a reusable component and consistency check showed that this component is

developed by the following follow-on projects:

• AutoPilot Prj

• Airliner Prj

After reconfiguring is completed, these projects will be consumer projects of Simulators Main

component.When user says Yes in the warning window, Nextbutton gets enabled and should

be selected to proceed with the second step. Cancel and Back buttons can also be used to

cancel the wizard or go back in the wizard at this step.

Second step of the wizard corresponds to the third step of previous wizards. Figure 4.18

shows the page of second step which asks the user whether the reusable component will be

reused by an additional consumer project or not. If user selects to create a new project, then

user should provide the information required. If user selects not to create a new project then

all of the above fields are disabled and user can navigate to the next step. According to the

Figure 4.18, a new consumer project will not be created.

After completing first and second steps a list of user’s selections are shown to the user as in

the previous pattern reconfiguration wizards. This is the last step of Main-Line to Producer-

Consumer pattern reconfiguration wizard and the page is shown in Figure 4.19. Last step lists

47

Figure 4.18: Step 2: Creating a consumer project

Figure 4.19: List of selections

48

all the selections made by the user in previous steps, giving user the chance of reviewing the

selections that he/she has made. If user detects a mistake in selections done in the previous

steps, he/she can easily go back to that step and fix it. Giving this opportunity to the user is

important because a single mistake may cause the new SCM structure to be built from scratch.

In this step besides listing the selections of previous steps, the user is required to select a

view context where the reconfiguring process will take place. After selections are reviewed

and a view context is selected from the list, the user should click on the Finish button to

let DSCM Main-Line to Producer-Consumer pattern reconfiguration wizard update the SCM

structure. Updating the SCM structure may take a while depending on the size(number of file

and directory elements) in the reusable components, because of the trigger that is going to be

attached to all elements of component.

Operations to perform reconfiguring from Main-Line pattern to Producer-Consumer pattern

differ from other reconfigurations explained in sections 4.2 and 4.3. In previous reconfigura-

tions, to accomplish a main-line and producer-consumer structure, components were moved

to their new locations (VOBs) and a project (main-line or producer) was created for each

component. Besides, as can be understood from the previous sections, the main difference

between a Main-Line pattern and Producer-Consumer pattern is that follow-on projects were

allowed to make changes in the components and deliver it to main-line project but consumer

projects were not allowed to make changes in the component. In this reconfiguration, since

the main-line component has its own project and follow-on projects contributing to the de-

velopment of the component by delivering their work to the project of main-line component,

there is no need to create a new producer project if follow-on projects’ rights to change the

component are taken from them. When a follow-on project can not make a change in the

main-line component, this automatically makes a main-line project a producer project and a

follow-on project a consumer project.

Disabling follow-on projects from changing the reusable component is established with trig-

gers. A trigger is a monitor that causes one or more procedures or actions to be run whenever

a certain Rational ClearCase operation is performed [14]. Triggers can be used to restrict

operations to specific users. Triggers can also be used on certain UCM operations to enforce

customized development policies for project teams [14]. In our case, we used triggers to

restrict any checkouts to the reusable components except for the producer projects. We im-

plemented the trigger as a pre-operation trigger of a checkout operation so that, before any

49

checkout operation is performed a check is done to ensure that any element of a component

is not about to change by a project which is in the restricted list of the component.

Triggers are attached to every element under a component. In order to attach a trigger to every

element under a component, a trigger type should be defined. A trigger type is defined with

the following command for this section’s example reconfiguration:

cleartool mktrtype -element -preop checkout -execwin

"ccperl <path> Airline_Prj@Airliner_PVOB AutoPilot_Prj@AutoPilot_PVOB"

chk_prj_Simulators_Main

• mktrtype is a command of cleartool which is used to make trigger types.

• element indicates that this trigger type can be applied to elements.

• preop indicates that this trigger will be a pre-operation trigger.

• checkout indicates that this trigger is fired before checkout operations.

• execwin indicates that this trigger’s script will be working on Windows environment.

• ccperl <path> Airline Prj@Airliner PVOB AutoPilot Prj@\AutoPilot PVOB is script

to call from command-line and <path> is the path to the trigger’s perl script. Air-

line Prj@Airliner PVOB and AutoPilot Prj@\AutoPilot PVOB are the projects which

are going to be disabled from checkouts and they are given as command-line arguments

to the perl script.

• chk prj Simulators Main is the name of trigger type.

After defining the trigger type, trigger is attached to all elements under Simulators Main

component.

cleartool mktrigger -recurse chk_prj_Simulators_Main

M:\Simulators_Main_Prj_int\AirlineShared_VOB\Simulators_Main

• mktrigger is a command of cleartool which is used to make triggers.

50

• recurse indicates that this trigger will be applied recursively for each element under

Simulators Main component.

• chk prj Simulators Main is the name of trigger type that is going to be attached to

elements.

• M:\Simulators Main Prj int\AirlineShared VOB\Simulators Main is the long path of

the component combined with the view name.

When triggers are attached to the elements of reusable component, follow-on projects which

are Airline Prj and AutoPilot Prj will be consumer projects and the main-line project of Sim-

ulators Main component will be the producer project. Then if the user selected to create a new

consumer project in second step of the wizard, see Figure 4.18, a consumer project is created

as described in section 4.3. In this section’s example reconfiguration process, a consumer

project is not created.

Figure 4.20: Checkout warning

Figure 4.21 illustrates the SCM structure of our example system before and after the reconfig-

uration. Before reconfiguring to Producer-Consumer pattern, Airline Prj, Simulators Main Prj

and AutoPilot Prj had read&write access rights to the Simulators Main component. After re-

configuration, only Simulators Main Prj can write on the component since it is the producer

component, but Airline Prj and AutoPilot Prj can only read (rebase to) the component since

they are the consumer projects. This example’s summary page output is given in Appendix B.

When a checkout operation is wanted to be performed from one of the consumer projects, the

trigger script is fired and disabled users from checking the element out with giving a warning

to the user. The warning window is shown in Figure 4.20.

51

(a) SCM Structure before reconfiguration

(b) SCM Structure after reconfiguration

Figure 4.21: (a) SCM structure of the main-line projects before reconfiguration and (b) SCM
structure of producer and consumer projects after reconfiguration

52

CHAPTER 5

CONCLUSION

From the software governance perspective, flexibility emerges as an important feature, be-

cause of the dependencies and dynamics between projects of companies. Software develop-

ment activities should be adaptable to the changing software governance structures and in this

thesis we have addressed the adaptation of software configuration management activities to

the governance structures dynamically.

If the governance structure of a project changes during the development phase and SCM

structure of a project is not adapted accordingly, project team(s) would face problems while

performing crucial SCM activities such as integration, merge and release activities. Misuse

of SCM patterns would be hardening software development activities instead of facilitating

them.

When a single-line component or sub-component is required to be developed by multiple

projects and Main-Line pattern is not implemented, options of other projects to develop the

component in parallel will be:

• copying contents of shared component or sub-component to a new VOB which will be

used by other project and developing that component apart from the original project

• adding component to their configurations directly and branching from the first project’s

integration stream

Both options have drawbacks in common activities of SCM. First option brings the problem

of re-work when a new feature is added by one of the projects which is required by other

projects as well. One of the problems that second option causes is new projects have to

53

add redundant sub-components to its configuration if only a sub-component is required to

be a main-line component. Another problem of second option raises when more than two

projects wants to develop Simulators component in parallel. Project which will form the

basis for triple integration and merge operations is imprecise. Cascading 2.3.2 project and

release problem is another outcome of not using Main-Line pattern. On the other hand, our

DSCM system solves these problems easily by reconfiguring SCM structure to Main-Line

pattern because the existence of a main-line project eliminates the problems of re-work and

ambiguity of integration&merge operations. In addition, none of the projects have to add

or access redundant code because sub-components are transformed into components by our

system.

Similarly, when a single-line component or sub-component is required to be reused by multi-

ple projects and Producer-Consumer pattern is not implemented, options of other projects to

reuse the component in parallel will be:

• copying contents of shared component or sub-component to a new VOB which will be

used by other project

• adding component to their configurations directly and rebasing to the desired baseline

of component from the first project’s integration stream

Again, both options have drawbacks which are resolved by our DSCM system. The problem

of re-work rises when first option is preferred over migration to Producer-Consumer pat-

tern. One of the problems of selecting second option rises when the reusable software is a

sub-component of a component. If sub-component is not transformed into a reusable com-

ponent, all of the other projects will have to add the whole component encapsulating that

sub-component which is redundant. Also, projects may access software parts which they

should not access. By reconfiguring single-line components or sub-components to reusable

components using our DSCM approach, these problems are eliminated because Producer-

Consumer pattern helps re-usability of components and resolves the problems of redundancy

and re-usability in an efficient way.

When a main-line component or sub-component is required to be reused by follow-on projects

and developed by the main-line project and adaptation to Producer-Consumer pattern is not

performed, follow-on projects may do undesired changes on the re-usable components and

54

deliver to the main-line project. The probability of this undesired delivers problem will be

very high if preventive measures are not taken. The triggers we defined and applied prevent

follow-on projects from making uncontrolled changes to the reusable component(s).

These problems are only a few of the problems that will raise if SCM is not flexible enough

to address the needs of the project governance. Efficiency of using appropriate SCM pat-

tern with software governance structures were studied before, and using inappropriate SCM

pattern will reduce the efficiency that can be obtained from software transactions. Our dy-

namic software configuration management approach solves these and other problems easily.

First of all, whenever a shared or reusable component development is required, a proposed

SCM model is ready to be implemented. Secondly, we automatized the process to migrate

from one SCM structure to another which makes reconfigurations easier. We proposed a dy-

namic SCM model and developed a tool integrated with a commercial tool, IBM Rational

ClearCase, showing that our model is applicable and compatible with SCM tools. Since we

have developed a meta-model for a dynamic SCM system, our pattern reconfiguration tool can

be utilized to be integrated with other SCM tools easily in future. To integrate our Dynamic

SCM system with other SCM tools, the tools should meet the following requirements:

• SCM tool should support component-based development

• SCM tool should support branching

• SCM tool should provide an Application Programming Interface (API) or Command

Line Interface (CLI)

If the above requirements are met by the SCM tools, our Dynamic SCM model can be appli-

cable to adapt configuration management structures to the changing development governance

structures.

Currently, the DSCM tool we designed takes the information of which sub-components or

components will be transformed into main-line or reusable components as an input from the

user. In other words, the information of changing structures and dependencies of components

is given to our system by the users. The first step beyond our approach would be gath-

ering these information from the configuration management system itself instead of asking

from user. Dependency Structure Matrices (DSM) are designed for extracting dependency

information from the code and for organizing the components of projects according to the

55

dependencies extracted. Thus, DSMs can be helpful in identifying the dependency changes

and component identification which can directly trigger our DSCM system. DSM approach

can be integrated to our system in the future to extract inputs automatically from projects.

56

REFERENCES

[1] Guide to the Software Engineering Body of Knowledge 2004 Version SWEBOK rA
project of the IEEE Computer Society Professional Practices Committee, chapter 7 -
Software Configuration Management. IEEE Press, 2004.

[2] IEEE Standard for Configuration Management in Systems and Software Engineering.
IEEE Std 828-2012 (Revision of IEEE Std 828-2005), pages 1 –71, 16 2012.

[3] André Van Der Hoek and Dennis Heimbigner and Alexander L. Wolf. Software Archi-
tecture, Configuration Management, and Configurable Distributed Systems: A Ménage
a Trois. Technical report, 1998.

[4] Bannerman, Paul L. Software Development Governance: A Meta-Management Per-
spective. In Proceedings of the 2009 ICSE Workshop on Software Development Gover-
nance, SDG ’09, pages 3–8, Washington, DC, USA, 2009. IEEE Computer Society.

[5] S. Berczuk and B. Appleton. Software Configuration Management Patterns: Effective
Teamwork and Practical Integration (Software Patterns Series). Addison-Wesley Long-
man, Amsterdam, illustrated edition edition, 2002.

[6] Bradbury, Jeremy S. and Cordy, James R. and Dingel, Juergen and Wermelinger, Michel.
A Survey of Self-Management in Dynamic Software Architecture Specifications. In
Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, WOSS ’04,
pages 28–33, New York, NY, USA, 2004. ACM.

[7] Cheng, Tjan-Hien and Jansen, Slinger and Remmers, Marc. Controlling and Monitoring
Agile Software Development in Three Dutch Product Software Companies. In Proceed-
ings of the 2009 ICSE Workshop on Software Development Governance, SDG ’09, pages
29–35, Washington, DC, USA, 2009. IEEE Computer Society.

[8] Chulani, Sunita and Williams, Clay and cYaeli, Avi. Software Development Gover-
nance and Its Concerns. In Proceedings of the 1st international workshop on Software
Development Governance, SDG ’08, pages 3–6, New York, NY, USA, 2008. ACM.

[9] S. Dart. Concepts in Configuration Management Systems. In Proceedings of the 3rd
International Workshop on Software Configuration Management, SCM ’91, pages 1–
18, New York, NY, USA, 1991. ACM.

[10] S. Dart. The Past, Present, and Future of Configuration Management. Technical report.
Carnegie Mellon University, Software Engineering Institute, 1992.

[11] C. Erbaş and B. c. Erbaş. Software Development under Bounded Rationality and Op-
portunism. In Proceedings of the 2009 ICSE Workshop on Software Development Gov-
ernance, SDG ’09, pages 15–20, Washington, DC, USA, 2009. IEEE Computer Society.

57

[12] J. Estublier, D. Leblang, A. v. d. Hoek, R. Conradi, G. Clemm, W. Tichy, and D. Wiborg-
Weber. Impact of Software Engineering Research on the Practice of Software Configu-
ration Management. ACM Trans. Softw. Eng. Methodol., 14(4):383–430, Oct. 2005.

[13] J. Highsmith. Agile Software Development Ecosystems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[14] IBM. IBM Rational ClearCase Help Page. https://publib.boulder.ibm.

com/infocenter/cchelp/v7r1m0/index.jsp?topic=/com.ibm.rational.

clearcase.help.ic.doc/helpindex_clearcase.htm.

[15] IBM. IBM Rational ClearCase Home Page. http://www-01.ibm.com/software/
awdtools/clearcase/index.html.

[16] IBM. IBM Rational ClearCase Terminology Page. http://www.ibm.com/

developerworks/rational/library/08/0129_clearcase_glossary/index.

html.

[17] F. G. Kandemir. Automatic Transition between Software Configuration Management
Patterns. In Proceedings of the 2nd Symposium on Software Quality and Software De-
velopment Tools, 2010.

[18] Kofman, Alexander and Yaeli, Avi and Klinger, Tim and Tarr, Peri. Roles, Rights, and
Responsibilities: Better Governance Through Decision Rights Automation. In Proceed-
ings of the 2009 ICSE Workshop on Software Development Governance, SDG ’09, pages
9–14, Washington, DC, USA, 2009. IEEE Computer Society.

[19] Larsson, Magnus and Crnkovic, Ivica. Component Configuration Management. In Pro-
ceedings of the ECOOP Conference, Workshop on Component Oriented Programming,
Nice, France, June 2000.

[20] Lehto, Ilkka and Rautiainen, Kristian. Software Development Governance Challenges
of a Middle-Sized Company in Agile Transition. In Proceedings of the 2009 ICSE
Workshop on Software Development Governance, SDG ’09, pages 36–39, Washington,
DC, USA, 2009. IEEE Computer Society.

[21] Magnus Larsson. Applying Configuration Management Techniques to Component-
Based Systems. Licentiate thesis, Department of Information Technology, Uppsala Uni-
versity, Dec. 2000. Also published as report MRTC 00/24 at Mälardalens högskola.

[22] A. K. Midha. Software Configuration Management for the 21st Century. Bell Labs
Technical Journal, 2:154–155, 1997.

[23] N. Pala Er and C. Erbaş. Aligning Software Configuration Management with Gover-
nance Structures. In Proceedings of the 2010 ICSE Workshop on Software Development
Governance, SDG ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[24] N. Pala Er, C. Erbaş, and B. Ç. Erbaş. Modern Software Engineering Concepts and
Practices: Advanced Approaches, chapter Software Development Governance: A Case
Study for Tools Integration, pages 315–332. IGI Global, 2011.

[25] Szyperski, Clemens. Component Technology: What, Where, and How? In Proceedings
of the 25th International Conference on Software Engineering, ICSE ’03, pages 684–
693, Washington, DC, USA, 2003. IEEE Computer Society.

58

[26] Tarr, Peri and Williams, Clay and Hailpern, Brent. Toward Governance of Emergent
Processes and Adaptive Organizations. In Proceedings of the 1st international workshop
on Software development governance, SDG ’08, pages 21–24, New York, NY, USA,
2008. ACM.

[27] W. Tichy. Tools for Software Configuration Management. In Proc. Int’l Workshop
Software Version and Configuration Control, pages 1–20. Teubner Verlag, 1988.

[28] W. Tichy. Software Configuration Management Overview. Technical report, 2008.

[29] S. Vance. Advanced SCM Branching Strategies. Technical report, Perforce Software,
Inc., 1998.

[30] Walrad, Chuck and Strom, Darrel. The Importance of Branching Models in SCM. Com-
puter, 35(9):31–38, Sept. 2002.

[31] Williams, Clay. Technical Creativity and the Challenge of ”Governing” Software De-
velopment. In Proceedings of the 1st international workshop on Software development
governance, SDG ’08, pages 15–15, New York, NY, USA, 2008. ACM.

[32] L. Wingerd and C. Seiwald. High-level Best Practices in Software Configuration
Management. In B. Magnusson, editor, System Configuration Management, volume
1439 of Lecture Notes in Computer Science, pages 57–66. Birkhauser Basel, 1998.
10.1007/BFb0053878.

59

APPENDIX A

IBM Rational ClearCase Terminology

The following list of terminologies are taken directly from IBM Rational ClearCase Glossary

Page [16].

Activity

An object that tracks the work required to complete a development task. An activity includes

a text headline, which describes the task, and a change set, which identifies all versions that

developers create or modify while working on the activity.

Administrative VOB

A versioned object base (VOB) that contains global type objects. Local copies of global type

objects can be created in any VOB that has an AdminVOB hyperlink to the administrative

VOB that defines the global type object.

Artifact

An entity that is used or produced by a software development process. Examples of artifacts

are models, source files, scripts, and binary executable files.

Baseline

An object that represents a stable configuration for one or more components. A baseline

identifies activities and one version of every element that is visible in one or more components.

Branch

An object that specifies a linear sequence of versions of an element. Each branch is an instance

of a branch type object. build

Checked-out version

A copy of a file that corresponds to a version of an element. See also Version.

60

Checkin

The action that creates a new version of an element on any branch of its version tree.

Component

A ClearCase object that is used to group a set of related directory and file elements within a

Unified Change Management (UCM) project. Typically, the elements that make up a com-

ponent are developed, integrated, and released together. A project must contain at least one

component, and it can contain multiple components. Projects can share components.

Delivery operation

A ClearCase operation in which developers merge the work from their own development

streams to the project’s integration stream or to a feature-specific development stream. If

required, the deliver operation invokes the Merge Manager to merge versions.

Development stream

An object that determines which versions of elements appear in a development view and main-

tains a list of a developer’s activities. The development stream configures the development

view to select the versions associated with the foundation baselines plus any activities and

versions that developers create after they join the project or rebase their development stream.

Dynamic view

A view that uses a network file system to access versions of elements.

Element

An object that encompasses a set of versions, organized into a version tree.

Element type

A property of an element that specifies how versions of that element are constructed.

Foundation baseline

A baseline that configures a stream. Foundation baselines specify the versions and activities

that appear in a view.

History

Metadata in a versioned object base (VOB) that consists of event records for objects in that

VOB.

61

Label

An instance of a label type object, which provides a user-defined name for a version. See also

object.

Main branch

The starting branch of a version tree of an element. The default name for this branch is main.

Metadata

Data that describes the characteristics of data; descriptive data.

Object

An item stored in a versioned object base (VOB). An object can be identified by an object-

selector string, which includes a prefix that indicates the kind of object, the object’s name, and

a suffix that indicates the VOB in which the object resides. Examples: lbtype:REL1@/vobs/

vega on UNIX and lbtype:REL1@\vega on Windows. See also label.

Project

An object that contains configuration information, activities, and policies required to manage

a development effort.

Project VOB (PVOB)

A versioned object base (VOB) that stores Unified Change Management (UCM) objects, such

as projects, streams, activities, and change sets.

PVOB

See Project VOB

Rebase

A ClearCase operation that makes a development work area current with the set of versions

represented by a more recent baseline in another stream, usually the project’s integration

stream or a feature-specific development stream.

Snapshot view

A view that uses a local file system to access versions of elements.

Stream

An object that specifies configuration rules for a UCM view.

62

Trigger

A monitor that specifies one or more standard programs or built-in actions to be executed

whenever a certain ClearCase operation is performed.

UCM

See Unified Change Management.

Unified Change Management

A process for organizing software development teams and their work products. Members of

a project team use activities and components to organize their work.

Version

An object that implements a particular revision of an element. The versions of an element are

organized into a version tree structure. See also checked-out version.

Versioned object base (VOB)

A repository that stores versions of file elements, directory elements, derived objects, and

metadata associated with these objects.

Version tree

A graphic representation of a versioned object that shows all branches and the versions on

each branch.

View

A ClearCase object that provides a work area for one or more users. For each element in a

VOB, a view’s configuration specification selects one version from the element’s version tree.

VOB

See versioned object base.

VOB database

The part of a versioned object base (VOB) storage directory in which metadata and VOB

objects are stored.

63

APPENDIX B

Summaries of SCM Pattern Reconfiguration Wizards

B.1 Summary of Single-Line to Main-Line Pattern Reconfiguration Wizard

AirlineShared PVOB created successfully.

Created hyperlink ”AdminVOB@107@\AirlineShared PVOB”.

AirlineShared VOB created successfully.

Created hyperlink ”AdminVOB@42@\AirlineShared VOB”.

Created component ”Simulators Main”.

Created component ”SystemManagement Main”.

Contents of M:\Gulsah Airline Prj Int\Airliner VOB\Test\Simulators

copied to a temporary location.

Contents of M:\Gulsah Airline Prj Int\Airliner VOB\Software\

SystemManagement copied to a temporary location.

Created project ”Simulators Main Prj”.

Changed modifiable component list for project ”Simulators Main Prj”.

Created stream ”Simulators Main Prj Int”.

Selected Server Storage Location ”gkcomp ccstg c views”.

Created view.

Host-local path: gkcomp:c:\ClearCase Storage\views\GKCOMP\

Gulsah+Kandemir\Simulators Main Prj Int.vws

Global path: \\gkcomp\ccstg c\views\GKCOMP\Gulsah+Kandemir\

64

Simulators Main Prj Int.vws

Attached view to stream ”Simulators Main Prj Int”.

Created activity ”Adding to source control for the first time”.

Set activity ”Adding to source control for the first time” in view

”Simulators Main Prj Int”.

Simulators is successfully imported.

Created baseline ”Simulators Main Prj 2 5 2012” in component

”Simulators Main”.

Begin incrementally labeling baseline

”Simulators Main Prj 2 5 2012”.

Done incrementally labeling baseline

”Simulators Main Prj 2 5 2012”.

Changed stream ”Simulators Main Prj Int@\AirlineShared PVOB”.

Created project ”SystemManagement Main Prj”.

Changed modifiable component list for project ”SystemManagement Main Prj”.

Created stream ”SystemManagement Main Prj Int”.

Selected Server Storage Location ”gkcomp ccstg c views”.

Created view.

Host-local path: gkcomp:c:\ClearCase Storage\views\GKCOMP\

Gulsah+Kandemir\SystemManagement Main Prj Int.vws

Global path: \\gkcomp\ccstg c\views\GKCOMP\Gulsah+Kandemir\

SystemManagement Main Prj Int.vws

Attached view to stream ”SystemManagement Main Prj Int”.

Created activity ”Adding to source control for the first time.1734”.

Set activity ”Adding to source control for the first time.1734”

in view ”SystemManagement Main Prj Int”.

SystemManagement is successfully imported.

65

Created baseline ”SystemManagement Main Prj 2 5 2012”

in component ”SystemManagement Main”.

Begin incrementally labeling baseline

”SystemManagement Main Prj 2 5 2012”.

Done incrementally labeling baseline

”SystemManagement Main Prj 2 5 2012”.

Changed stream ”SystemManagement Main Prj Int@\AirlineShared PVOB”.

AutoPilot PVOB created successfully.

Created hyperlink ”AdminVOB@107@\AutoPilot PVOB”.

Created project ”AutoPilot Prj”.

Changed modifiable component list for project ”AutoPilot Prj”.

Created stream ”AutoPilot Prj Int”.

Changed modifiable component list for project ”Airline Prj”.

Propagating changes to the integration stream ”Airline Prj Integration”.

Changes to modifiability of components must be propagated to streams

and their views. Use ’cleartool chstream -generate’ to update the stream with

’cleartool setcs -stream’ for each view attached to the stream or see the stream

and view properties pages.

Changed modifiable component list and propagated changes to streams

in project ”Airline Prj@\Airliner PVOB”.

Adding baseline ”Simulators Main Prj 2 5 2012” of new component ”Simulators Main”

Updating rebase view’s config spec...

Creating integration activity...

Setting integration activity...

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Build and test are necessary to ensure that any merges and configuration changes were com-

pleted correctly.

When build and test are confirmed, run ”cleartool rebase -complete”.

66

Rebase in progress on stream ”Airline Prj Integration”.

Started by ”Gulsah Kandemir” at 2/5/2012 7:04:37 PM.

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Checking in files...

Clearing integration activity...

Updating stream’s configuration...

Cleaning up...

Rebase completed.

Adding baseline ”SystemManagement Main Prj 2 5 2012” of new component

”SystemManagement Main”.

Updating rebase view’s config spec...

Creating integration activity...

Setting integration activity...

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Build and test are necessary to ensure that any merges and configuration changes were com-

pleted correctly.

When build and test are confirmed, run ”cleartool rebase -complete”.

Rebase in progress on stream ”Airline Prj Integration”.

Started by ”Gulsah Kandemir” at 2/5/2012 7:04:40 PM.

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Checking in files...

Clearing integration activity...

Updating stream’s configuration...

Cleaning up...

Rebase completed.

67

Changed stream ”Airline Prj Integration@\Airliner PVOB”.

Changed stream ”AutoPilot Prj Int@\AutoPilot PVOB”.

B.2 Summary of Single-Line to Producer-Consumer Pattern Reconfiguration

Wizard

DriversVOB created successfully. Created hyperlink ”AdminVOB@42@\DriversVOB”.

Created component ”Drivers Producer”.

Contents of M:\Gulsah Airline Prj Int\Airliner VOB\Drivers copied to a temporary loca-

tion. Created project ”Drivers Producer Prj”. Changed modifiable component list for project

”Drivers Producer Prj”.

Created stream ”Drivers Producer Prj Int”.

Selected Server Storage Location ”gkcomp ccstg c views”.

Created view.

Host-local path: gkcomp:c:\ClearCase Storage\views\GKCOMP\Gulsah+Kandemir\

Drivers Producer Prj Int.vws

Global path: \\gkcomp\ccstg c\views\GKCOMP\Gulsah+Kandemir\

Drivers Producer Prj Int.vws

Attached view to stream ”Drivers Producer Prj Int”.

Created activity ”Adding to source control for the first time.1319”.

Set activity ”Adding to source control for the first time.1319” in view

”Drivers Producer Prj Int”.

Drivers is successfully imported.

Created baseline ”Drivers Producer Prj 2 6 2012” in component ”Drivers Producer”.

Begin incrementally labeling baseline ”Drivers Producer Prj 2 6 2012”.

Done incrementally labeling baseline ”Drivers Producer Prj 2 6 2012”.

68

Changed stream ”Drivers Producer Prj Int@\AirlineShared PVOB”.

HL Design PVOB created successfully.

Created hyperlink ”AdminVOB@107@\HL Design PVOB”.

Created project ”HLDesign Prj”.

Changed modifiable component list for project ”HLDesign Prj”.

Changed modifiable component list for project ”HLDesign Prj”.

Changed modifiable component list and propagated changes to streams in project ”HLDe-

sign Prj@\HL Design PVOB”.

Created stream ”HLDesign Prj Int”.

Adding baseline ”Drivers Producer Prj 2 6 2012” of new component ”Drivers Producer”

Updating rebase view’s config spec...

Creating integration activity...

Setting integration activity...

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Build and test are necessary to ensure that any merges and configuration changes were com-

pleted correctly.

When build and test are confirmed, run ”cleartool rebase -complete”.

Rebase in progress on stream ”Airline Prj Integration”.

Started by ”Gulsah Kandemir” at 2/6/2012 11:40:14 PM.

Merging files...

No versions require merging in stream ”Airline Prj Integration”.

Checking in files...

Clearing integration activity...

Updating stream’s configuration...

Cleaning up...

Rebase completed.

69

Changed stream ”Airline Prj Integration@\Airliner PVOB”.

Changed stream ”HLDesign Prj Int@\HL Design PVOB”.

B.3 Summary of Main-Line to Producer-Consumer Pattern Reconfiguration

Wizard

Created trigger type ”chk prj Simulators Main”.

Added trigger ”chk prj Simulators Main” to inheritance list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main”.

Added trigger ”chk prj Simulators Main” to attached list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main”.

Added trigger ”chk prj Simulators Main” to inheritance list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators”.

Added trigger ”chk prj Simulators Main” to attached list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators”.

Added trigger ”chk prj Simulators Main” to inheritance list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators\sim1”.

Added trigger ”chk prj Simulators Main” to attached list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators\sim1”.

Added trigger ”chk prj Simulators Main” to inheritance list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators\sim2”.

Added trigger ”chk prj Simulators Main” to attached list of ”M:\Simulators Main Prj Int\

AirlineShared VOB\Simulators Main\Simulators\sim2”.

70

