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ABSTRACT

A COMPARATIVE STUDY ON DIRECT ANALYSIS METHOD AND
EFFECTIVE LENGTH METHOD IN ONE-STORY SEMI-RIGID FRAMES

Demirtas, Afsin Emrah
M.S., Department of Civil Engineering
Supervisor: Prof. Dr. Ugurhan Akyiiz

September 2012, 135 pages

For steel structures, stability is a very important concept since many steel structures
are governed by stability limit states. Therefore, stability of a structure should be
assessed carefully considering all parameters that affect the stability of the structure.
The most important of these parameters can be listed as geometric imperfections,
member inelasticity and connection rigidity. Geometric imperfections and member
inelasticity are taken into account with the stability method used in the design. At
this point, the stability methods gain importance. The Direct Analysis Method, the
default stability method in 2010 AISC Specification, is a new, more transparent and
more straightforward method, which captures the real structure behavior better than
Effective Length Method. In this thesis, a study has been conducted on the semi-rigid
steel frames to compare Direct Analysis Method and Effective Length Method and to
investigate the effect of flexible connections to stability. Four frames are designed
for different connection rigidities with stability methods existing in the 2010 AISC
Specification: Direct Analysis Method and Effective Length Method. At the end,
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conclusions are drawn about the comparison of these two stability methods and the

effect of semi-rigid connections to stability.

Keywords: Direct Analysis Method, Effective Length Method, Semi-Rigid Frames,
Frame Stability
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DIREKT ANALIZ METODU [LE EFEKTIF UZUNLUK METODUNUN TEK
KATLI YARI RIJIT BAGLANTILI CERCEVELERDE KARSILASTIRILMASI

Demirtas, Afsin Emrah
Yiiksek Lisans, insaat Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Ugurhan Akyiiz

Eyliil 2012, 135 sayfa

Celik yapilar igin stabilite kavrami ¢ok onemlidir ¢linkli ¢ogu c¢elik yapi stabilite
limit durumlarina gore tasarlanmaktadir. Bundan dolayi, bir yapmin stabilitesi onu
etkileyebilecek  biitlin  parametreler g6z Oniinde bulundurularak itinayla
degerlendirilmelidir. Geometrik kusurlar, elemanlarin inelastisitesi ve baglanti
inelastisiteleri tasarim esnasinda kullanilan stabilite metodu ile degerlendirilirler. Bu
noktada stabilite metotlar1 6nem kazanmaktadir. 2010 AISC sartnamesinde gecerli
stabilite metodu olan Direkt Analiz Metodu yeni, daha seffaf ve daha dolambagsiz
bir metot olup Efektif Uzunluk Metodu’na gore gercek yapr davranisini daha iyi
yansitmaktadir. Bu tezde, Direk Analiz Metodu ile Efektif Uzunluk Metodunu
karsilastirmak ve esnek baglantilarin stabiliteye etkisini incelemek igin yar1 rijit ¢elik
cerceveler iizerine bir ¢alisma yapilmistir. 2010 AISC sartnamesinde mevcut olan
stabilite metotlar1 (Direkt Analiz ve Efektif Uzunluk Metotlar1) kullanilarak degisik

baglant1 rijitlikleri ile dort tane celik cergeve tasarlanacaktir. En sonda, bu iki
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metodun kiyaslanmasi ve yari rijit baglantilarin stabiliteye etkisi iizerine sonuglar

cikartilacaktir.

Anahtar Kelimeler: Direkt Analiz Metodu, Efektif Uzunluk Metodu, Yar1 Rijit

Cerceveler, Cergevelerin Stabilitesi
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CHAPTER 1

INTRODUCTION

1.1. MOTIVATION

Stability is a very important concept for steel structures since most steel structures
are governed by stability limit states. Local instability, such as compression flange
buckling, and member instability, such as buckling of a column, may lead the
structure to collapse. Therefore, stability provisions of steel design specifications are
continuously improved to capture the real structure behavior and so to minimize the

destabilizing effects.

In the Appendix 7 of 2005 AISC Specification for Structural Steel Buildings (AISC
360-05), Direct Analysis Method (DAM) was first introduced as an alternative to the
Effective Length Method (ELM). Then in 2010 AISC Specification for Structural
Steel Buildings (AISC 360-10) it became the default stability design method as it is
given in Chapter C.

The need to develop a new method is the drawbacks of the ELM. These drawbacks

can be listed as:

e ELM is based on many assumptions, which are hardly satisfied in a real
structure. Inconsistencies between the assumptions and the real structure

behavior lead to wrong estimation of internal forces and moments.

e ELM underestimates the internal forces and moments, due to this reason
ELM cannot be used for structures having drift-ratio greater than 1.5 that

means ELM is not applicable to all structures.



e Geometric imperfections and member inelasticity are not accounted for in the
analysis instead they are accounted for in the resistance terms that causes

misinterpretation of both analysis results and member strengths.

On the other hand, DAM is a more straightforward, transparent and accurate stability
design method. It considers member inelasticity and geometric imperfections in the
analysis and it calculates compressive strength of members with an effective length
factor equals to 1.00. Therefore, the DAM captures the real structure behavior better
than the ELM and it provides the designer a simpler and straightforward stability

design procedure.

To obtain realistic analysis results, the stability method used in the analysis is
important along with the realistic modeling of the structure. With the help of
advanced commercial software, detailed 3-D modeling of structures is possible.
However, there is still an important idealization in modeling that makes the structural

model away from the real structure behavior: connections.

Steel frames are designed under the assumption that the beam-to-column connection
is either fully rigid or ideally pinned. However in reality, any connection is neither
fully rigid nor ideally pinned. Connection rigidity has an influence on the internal
force distribution of the system and lateral drift of the structure. Therefore,

connection rigidity should be modeled such that it reflects the connection behavior.

1.2. LITERATURE SURVEY

In this section, the researches conducted on comparison of ELM and DAM and the

researches carried out with semi-rigid frames are discussed.

Ziemian et al [1] investigated eleven two-and-three-dimensional structural systems to

evaluate and compare ELM and DAM. Also advanced-second order inelastic
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analyses were used to assess the adequacy of all design methods. They concluded
that ELM and DAM provide similar results and for beam-columns subjected to

minor-axis bending DAM is slightly unconservative.

In the study of Surovek et al [2], an 11-bay single-story frame was studied to discuss
the three design approaches (Direct Analysis Method, Effective Length Method and
Advanced Analysis) for the assessment of frame stability. The primary attribute of
this frame was that it is sensitive to initial imperfection effects. To illustrate
distinctive features of the design approaches, large gravity loads were applied to
produce significant P-A effects. They concluded that axial forces are similar in each
method but the internal moments differ substantially. ELM underestimates the
internal moments since the moments in the frame are highly sensitive to out-of-
plumbness of the structure which is not directly considered in the analysis with ELM,
and DAM is conservative when calculating the internal moments since the columns

are elastic at the factored load although the stiffnesses are reduced due to inelasticity.

In his study, Prajzner [3] dealt with the evaluation of case studies including a portal
frame, a leaning column frame, a multi-story structure, and a multi-bay frame in
order to assess the adequacy of ELM and DAM. To provide a reasonable
representation of real frame behavior second-order plastic analysis approach was
used as the third method and the results obtained with this method were treated as
real results. In this study, ELM produced unsafe designs in structures where second-
order effects are significant. On the other hand, DAM produced overly conservative
designs for the same type of structures. He suggested a “sway” factor to quantify the
second-order effects. The intent of the “sway” factor is to calibrate the results of

ELM and DAM in structures where the second-order effects are significant.

Surovek et al [4] presented an approach that allows for the consideration of non-
linear connection using commonly available elastic analysis software. The partially
restrained frames were analyzed using Direct Analysis Method. The aim of the

proposed connection approach was to simplify the consideration non-linear



connection response in the analysis of partially restrained frames. By using Direct
Analysis Method, they intended to simplify also the strength assessment of the
structure by eliminating the calculation of effective length factor. In this study, the
proposed method for handling the connection non-linearity along with the Direct
Analysis Method have been shown to make it simpler to obtain realistic distribution

of internal forces in partially restrained frames.

Kartal et al [5] developed a finite element program SEMIFEM in FORTRAN
language to perform structural analysis that considers semi-rigid connections. The
aim of their study was to investigate the effect of semi-rigid connections on the
structure behavior. In their study, they adopted the formula suggested by Monforton
and Wu [6] to define the connection stiffness in terms of the connection stiffness-

beam stiffhess ratio.

The formula suggested by Monforton and Wu [6] was also adopted by Xu [7] in his
study on calculation of critical buckling loads of semi-rigid steel frames and by
Patodi et al [8] in their study on first order analysis of plane frames with semi-rigid
connections. They used this formula to define the stiffness of the connection in terms

of the stiffness of the beam that the connection is attached to.

1.3. OBJECT AND SCOPE

Before development of DAM, ELM was the common stability method that has been
used widely by many engineers. However ELM is based on some assumptions which
are hardly satisfied in real structures and it has many drawbacks which make stability
design very complex and challenging in some cases. DAM was developed and
presented in the latest version of AISC Specification for Steel Structures to
compensate the drawbacks of ELM and to make stability design easier and more

straightforward for engineers. A number of studies were conducted to compare DAM



and ELM in order to investigate whether DAM is a more straightforward method and

superior to ELM.

In this study, DAM and ELM are compared in one-story semi-rigid frames. The
objective of this study is to compare the two stability methods in semi-rigid frames

and to investigate the influence of connection rigidity on the stability of the frame.

Four frames are used as case studies: first three ones are one-story one-bay frames
consisting of two columns and one beam where the columns are oriented such that
they are in major-axis bending. The only difference between these three frames is the
loads. In the first frame, horizontal load is the highest but the axial load is the lowest
and in the third frame, horizontal load is the lowest whereas the axial load is the
highest. The aim in selecting these three frames is to investigate the load effects on
the stability methods. The fourth frame is a one-story three-bay frame consisting of
two columns in major-axis bending, two columns in minor-axis bending and three
beams. The aim in selecting the fourth frame, where the some of the columns are in
minor-axis bending, is to investigate the influence of column orientation on stability
methods. The beams in all cases are connected to the columns with semi-rigid
connections. The frames are analyzed with different stiffness values of semi-rigid
connections and with both stability methods. At the end, critical columns in each
case are designed according to the AISC 360-10 and demand/capacity ratios of
columns are obtained for different connection stiffnesses and for both DAM and

ELM. The conclusion part of the study deals with these demand/capacity ratios.

This study is composed of five chapters. In first chapter, an introduction part exists
which gives a general information about the study, a brief background for the DAM
along with semi-rigid frames and the aim of the study. In second chapter, the theory
of methods, which are used in third chapter, are given and explained. These are
Direct Analysis Method, Effective Length Method, Analysis of Semi-Rigid Frames
and Approximate Second-Order Analysis. The analysis of frames and the design of

columns are given in third chapter. The results of the analyses and designs in the



third chapter and the discussions related to the results are given in fourth chapter.
The last chapter, Chapter 5, contains conclusion of the study and future

recommendations.



CHAPTER 2

THEORY

2.1. DIRECT ANALYSIS METHOD

Direct Analysis Method (DAM) was first introduced in 2005 version of the AISC
Specification for Structural Steel Buildings as an alternative method to the Effective
Length Method (ELM) and First-Order Analysis Method. Then in 2010 version of
the specification, it became the standard stability design method as it is addressed in
Chapter C. DAM has many advantages, such as; it obtains the analysis results more
accurately and realistic, it is applicable to all type of structures and it eliminates the

calculation of K factor.

ELM neglects initial imperfections and inelasticity during analysis and
underestimates member demand. To compensate this underestimate, it requires the
use of K factor to decrease the member capacity. Therefore, in ELM, the forces and
capacities obtained do not reflect the real behavior of the structure. In DAM, initial
imperfections and inelasticity are considered during the analysis and this eliminates
the need for the K factor. Thus, DAM results in a design which is very close to the

real structure behavior.

DAM is the most applicable method among all stability methods. It can be used for
all types of steel structures such as braced frames, moment frames and combined
systems without any limitation. The ratio of second-order drift to first-order drift

shall be equal to or less than 1.5 in ELM however there is no such a limitation in

DAM.



The biggest advantage that DAM provides is the elimination of K factor calculation.
In ELM, the analysis is performed with neglecting the geometric imperfections and
inelasticity and they are accounted for in member capacity calculations with
increasing the K factor. In DAM, geometric imperfections and inelasticity are
included in the analysis therefore the need to calculate the K factor is unnecessary

and it can be taken as 1.0 for all members.
Since DAM has many advantages, it is expected that there are too many
sophisticated requirements however the requirements of DAM are simple and easy to

apply. There are three main requirements of DAM which are;

1. A rigorous second-order analysis including both P-A and P-4 effects should

be conducted. Use of approximate methods is also permitted.

2. The effect of initial imperfections should be taken into account. The out-of-

plumbness of columns can be directly modeled by displacing the points of
intersection of members from their nominal locations or notional loads can
be used.

3. Reduced stiffness of members should be used in the analysis. This reduction

accounts for system reliability (uncertainty in stiffness and strength) and

inelasticity.

Second-Order Analysis

To reflect a real structure behavior, a rigorous second-order analysis considering
both P-A and P-d effects should be conducted. It is also acceptable to obtain second-
order results by an approximate method given in Appendix 8 of the AISC 360-10. In
this alternative and approximate method there are two multipliers; B; and B,. By
applying these multipliers to the results of a first-order analysis an approximate
second-order solution may be obtained. This method will be explained in details in

Section 2.4.



Initial Imperfections

The effect of out-of-plumbness of columns should be taken into account by

considering the initial imperfections in the intersection of members. These

imperfections can be directly modeled by displacing the intersection of members

from their nominal locations or can be represented by notional loads. The notional

loads at each level of the structure are calculated as;

where o

< Z

N3

N2

Ny

L/500

N; =0.002-a-Y; 2.1)

= 1.0 for LRFD and 1.6 for ASD
= notional load applied at i level (N)
= gravity load applied at i level (N)

K

—
K
—
K
—

The notional load coefficient 0.002 is based on a nominal
initial out-of-plumbness ratio of L/500 which is the maximum
tolerance on column plumbness specified in the AISC Code of

Standard Practice.



If the second-order drift to first-order drift ratio is smaller than or equal to 1.7, it is
not obligatory to use notional loads in a load combination which includes other

lateral loads.

Reduced Stiffness

After rolling or welding process, the cross-section of the steel member begins to
cool. First the extreme fibers of the section cool, then the remaining portions of the
section cool. When the remaining portions cool, their contraction is prevented by
extreme fibers that have already cooled. This results in development of tensile and
compressive stresses in the cross-section. When a compressive force is applied to this
cross-section, yielding will first occur in the portions of the section which are under
compressive residual stress. Therefore, the spread of plasticity in the cross-section is
affected by the presence of residual stress [9]. To account for geometric
imperfections in the cross-section and the spread of plasticity due to residual stresses,
stiffness reduction factor 0.8t is applied to the stiffness of members which are

considered to contribute to the stability of the building.

A factor of 0.80 should be applied to the stiffnesses of all members whether or not
they contribute to the stability of the building. The aim of the application of this
reduction to stiffnesses of all members is to prevent an artificial distortion of the

structure and unintended redistribution.

An additional T, factor is applied for the following conditions;

B
(i) When % <05 1,=10 2.2)
y
. aP. aPb. aP.
—X>0. =4.[Z).[1-= _
(ii) When B, = 0.5 T, =4 < P, > <1 P, > (2.3)
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Where P; = required axial compressive strength using LRFD or ASD load
combinations (N)
P, = axial yield strength (=F,-A,)

A, = gross cross-sectional area of the member (m?)
When the aP,/Py ratio is higher than 0.5, the calculation and application of 1, for each

member can be painful therefore it is permissible to use 1, = 1.0 for all members if a

notional load of 0.001-0-Y; is applied at all levels.

The Reasons for Use of 0.80 Factor

In AISC 360-10 Chapter E3, columns are separated into two groups for
determination of compressive strength: slender columns and intermediate or stocky
columns. For these two groups, stiffness reduction factor should be determined

separately.

For slender columns, effective length method implies a safety factor,
OP,=0.9(0.877P.)=0.79P.. Stiffness reduction factor for DAM should compensate
this safety factor of 0.79 therefore stiffness reduction factor for slender columns is

chosen as 0.80 [10].

Stiffness reduction factor for stocky columns should account for additional softening
under combined axial compression and bending and the stiffness reduction factor for
stocky columns is also 0.80 and this is a fortunate coincidence that for both groups
the stiffness reduction factor is the same. The stiffness reduction factor 0.8t is valid
for all columns regardless of their slenderness whereas the T, factor accounts for

stiffness loss under high compressive loads [10].
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2.2. EFFECTIVE LENGTH METHOD

2.2.1.Introduction

The effective length method has been used widely in column design for many years.
It can be considered as mathematically reducing the evaluation of critical stress for
columns to that of equivalent pinned-ended braced columns. In Eqn. 2.4, Euler
buckling stress of a pinned-ended braced column is given and this can be used for all
elastic column buckling problems by substituting the actual length of the column (L)
with an effective length (KL). The effective length factor K can be obtained by
performing a buckling analysis of the structure [11]. For idealized structures, K
factor may be obtained from alignment charts (or nomographs) given in AISC 360-
10 Appendix 7 however to be able to use these alignment charts, the assumptions that
was considered during derivation of nomographs should not be violated. One of these
assumptions is that “All joints are rigid”. Therefore, for frames with semi-rigid
connections, the alignment charts cannot be used. To obtain effective length factor K

for semi-rigid frames, buckling analysis is needed.

F,=— (2.4)

Where
E = Modulus of elasticity (MPa)
L = Length of the column (m)
r = Radius of gyration (m)

2.2.2.Buckling Analysis of Semi-Rigid Frames

To perform a buckling analysis for a semi-rigid frame, the modified stiffness
matrices of columns and beams that constitute the frame should be considered. Beam

matrices should include the connection flexibility, which will be discussed in Section

12



2.3.4 in details, whereas column matrices should include stability functions which

include the effective length factor.

Stiffness matrix of a column is given in “Stability Design of Steel Frames” [12] and

it is used in this thesis. One may refer to the reference for the details.

r A A
7 0 0 -7 0 0
12 6 12 6
0 L_ZQ)I Z@z 0 _ﬁwl Z@Z
6 6
£l 0 ZQZ 40 0 —Z(Z)z 20,
k=71 | (2.5)
-7 0 0 7 0 0
12 6 12 6
0 -0 —70, 0 30 70,
6 6
0 ZQZ 20, 0 —Z(Z)z 405

In Eqn. 2.5, O, ©,, @3 and O, are the stability stiffness functions and for the case

when P, is a compressive axial load:

4. — (kL)3sinkL 26
T (20
_ (kL)*(1 — coskL)
0, = - 2.7)
6. = kL(sinkL — kLcoskL) 28
- - (2.8)
kL(kL — sinkL)
_ (2.9)

4 ZQC
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In which

@. = 2 — 2coskL — kLsinkL (2.10)
_ Per
k= |5 (2.11)

Once the stiffness matrix of the structure (Kgyeture) 18 constructed, the determinant of
the Kgiruerre 18 set equal to zero (det |Ksuuerre/=0) to obtain k. From k, we get the

effective length factor K:

m’E _ m’El
(KLY’ A= &y

w2El
P | (KL)? 2 m T
ko= /EI ~ B /(KL)Z %1~ KT (2.13)

P = Critical buckling load

P, =F A= (2.12)

Where

Fe = Critical buckling stress (Eqn. 2.4)

A = Cross-sectional area of the column

2.2.3.AISC 360-10 Requirements

The requirements for ELM are given in Appendix 7 of the AISC 360-10. These

requirements can be listed as below;

14



Maximum second-order drift to maximum first-order drift ratio shall be equal
to or less than 1.5. If this requirement is not satisfied, the ELM cannot be
used.

. Nominal stiffnesses of members shall be used, no stiffness reduction is
necessary.

. Notional loads shall be applied in the analysis. The same rules as in the DAM
are valid for the ELM.
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2.3. ANALYSIS OF SEMI-RIGID FRAMES

In this section, types, behavior, modeling and analysis of semi-rigid connections are
discussed. At the end of this section, stiffness matrix of a flexible-ended beam will
be obtained. The related sections of “Stability Design of Steel Frames” [12] are

discussed here, for the details one may refer to this book.

2.3.1.Introduction

In reality, all steel frames behave as semi-rigid however to simplify the analysis and
design, they are idealized as fully rigid or perfectly pinned. In this idealization, rigid
connections are assumed that they exhibit no deformation and pinned connections are
assumed to have no moment capacity. However, in reality, rigid frame connections
exhibit deformation and pinned connections have moment capacity even if it is small.
For a more realistic and correct analysis, connection flexibility should be taken into

account.

Moment A\

Rigid

Semi-Rigid

Pinned

> Rotation

Figure 2.1 - Typical Moment-Rotation Curves for the Connection Types
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2.3.2. Types of Semi-Rigid Connections

There exist many beam-to-column connection types but the most commonly used
ones are briefly discussed here. These common types of beam-to-column connections
can be listed as single web angle, single plate, double web angle, header plate, top
and seat angle, top and seat angle with double web angle, extended end-plate, flush
end-plate and t-stub connections. Each connection type has a different moment-

rotation curve and these curves are given in Figure.2.2.

Moment A\
T-Stub

End Plate

Top and Seat Angle

Header Plate
Double Web Angle
Single Web Angle

~ )
—> Rotation

Figure 2.2 — Moment-Rotation Curves of Connections

There are many modeling types for semi-rigid connections to obtain moment-rotation
curves. Key parameters such as initial connection stiffness or ultimate connection
moment capacity are determined from these models. However the derivation of
initial connection stiffness and determination of ultimate connection moment
capacity are not in the aim of this study therefore only brief descriptions of the

connections are given.
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Single Web Angle

The beam is connected to the column through an angle member, welded or bolted

both to the beam and column. This is a very flexible connection, it has very little

moment capacity and it is considered as shear connection.

Single Plate

In this connection, a plate is used instead of an angle member. The plate member is
welded or bolted to the beam and column. This connection type is also very flexible

and considered as shear connection.

Double Web Angle

The beam is connected to column through two angle members on the both side of the
beam web. The moment-rotation rigidity of this connection is higher than the
rigidities of single web angle and single plate connections however this connection

type is also considered as shear connection.

Header Plate Connections

Header plate connection consists of an end plate which is welded to the web of the
beam and bolted to the flange of the column. In this connection type, the length of
the plate is less than the depth of the beam. The moment-rotation rigidity of this
connection is similar to that of double web angle connection. This connection is also

considered as shear connection.

Top and Seat Angle Connections

This connection consists of two angle members welded or bolted to the beam, one is
at the bottom (seat angle) and the other one is at the top. The angles are bolted to the
column flange. The seat angle carries gravity loads but does not contribute
significantly to the moment capacity of the connection. The top angle is for the
lateral stability of the beam and does not carry any gravity loads. The experimental
results show that this type of connections is capable of resisting some of the end

moment of the beam.
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Top and Seat Angle Connections with Double Web Angle

This connection is the combination of double web angle connection and top and seat

angle connection. This type is considered as semi-rigid connection.

Extended & Flush End-Plate Connections

Flush end-plate connections consist of a plate welded to the beam end (along both
top and bottom flanges and web) and bolted to the column. If the end-plate extends
on tension side or both on tension and compression sides, this connection type is
called extended end-plate connection. These two types of connections are considered

as moment connections.

T-stub Connections

This connection type is one of the stiffest connections and consists of two T-stubs
bolted to the beam at the top and bottom flange. The t-stubs are also bolted to the

column. This connection gets stiffer when used with double web angles.
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Figure 2.3 — Types of Semi-Rigid Connections
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Figure 2.3 — Continued
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Figure 2.3 — Continued

2.3.3.Behavior and Modeling of Connections

The general behavior of a connection is that when a moment is applied to it, it
exhibits rotational deformation. If the response of the connection to moment is
plotted, the moment-rotation curve of the connection is obtained. The moment-

rotation curves of different types of semi-rigid connections were given in Figure 2.2
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and a typical moment-rotation behavior of a semi-rigid connection is given in Figure

24.

Moment oading
Linear
Rt
1
R N _
1 Ry =Initial Stiffness
unloading Ry =Tangent Stiffness
Ry
1

Rotation

Figure 2.4 — Typical Moment-Rotation Behavior of a Semi-Rigid Connection

As it is seen in the Figure 2.4, the behavior of the connection is nonlinear. Factors
such as bolt slip, stress concentration and local yielding lead connection to exhibit
nonlinear response. Also the response of the connection to loading and unloading is
different. To predict the actual behavior of the connection, nonlinearity and
loading/unloading characteristic of the connection should be accounted for modeling
the connection. There are many types of models such as linear models (linear, bi-
linear, piecewise linear), polynomial model, b-spline model, power models and
exponential models. Among these models, linear model is the weakest model to
predict the actual behavior of the structure however it is the simplest one. Since the
aim of this study is to compare effective length method and direct analysis method in
semi-rigid frames and to investigate the effect of flexible connections to stability, it
is sufficient to use the linear connection model. The linear model is shown in Figure

2.4. The only parameter in linear model is the initial stiffness, Ry;.
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2.3.4. Analysis of Semi-Rigid Frames

To take into account the effect of flexible joints in the analysis, it is necessary to
modify the stiffness matrix of the beam elements in the structure. To obtain the
stiffness matrix of a beam element which considers flexible joints, the slope-
deflection equation of the beam element need to be modified. In this section, the
slope-deflection equation of the beam element is modified and the stiffness matrix

considering flexible joint effect is obtained.

Figure 2.5 — Beam Element

Consider the beam element in Figure 2.5. It is subjected to end moments M and Mp.
To represent the flexible connection effect, rotational springs are assigned at both
ends of the beam. The initial stiffnesses of these springs are denoted as Ryjs and Ryip.
The relative rotations between the joint and the beam end due to the rotational
springs are 0,4 and 0,5 at ends A and B, relatively. These relative rotations can be
expressed as;

M, M
4 and 6,5 5

Ora (2.14)

Ryia Ryip

If the joint rotations at A and B are denoted as 05 and Og, respectively, then the

slope-deflection equations of the beam can be written as;
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M, = %[4(@1 —0,4) +2(05 — 0,5)] = %[4 (eA _ M ) +2 (93 - IQ/IB )] (2.15a)

My = % [2(64 — 6,4) + 4(85 — 6,5)] = % [2 (eA - ﬂ) +4 (93 - ;W—B)] (2.15b)

The equations 2.15a and 2.15b can be expressed as;

EI , | .
MA :T(Sii .HA +Sij ‘03) (2.16(1)
EI , .
MB = T(Sji * 9A + Sj] ¢ QB) (2'16b)
Where
(4+ 17ey)
Si*i = Tt (217(1)
()
Sjj = T (2.17[))
2
Si' = Sji = F (217C)
In which
R*_(1+ 4E1) (1+ 4EI> (51)2 ( 4 ) (2.18)
LRyia LRy;g L Ryia - Ryip '
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d, ds
dsfjh def%

dl d4

Figure 2.6 — Degrees of Freedom

For the degrees of freedom shown in the Figure 2.6, the stiffness matrix of the beam

is obtained as;

E 0 0 4 0 0
I I
0 (si; + 2si;+s ]) (si; + si*]-) 0 - (s + 2si;+s ]) (s{‘j + s]-*j)
L2 L L2 L
4 sk 4 sk
gl 0 (sii y sij) s 0 _ (si - sij) i

kpeam =+

-— 0 0 0 0

rq
o~
~| >

(su + 25 +s 1) (s{‘i + sfj) 0 (su + 25 + s]) B (sg“]- + sj*]-)

L2 L L2 L

(sij +s5;) . _(si +s75) )

| 0 S AU R I i Sij 0 ~ I 2 Sjj
(2.19)

End-Fixity Factor

In the analysis of semi-rigid frames, EI/L represents the stiffness of the beam
member and Ry; represents the stiffness of connection. There should be a relation
between these two such that it gives a physical interpretation of the rigidity available
in the connection [7].

Monforton and Wu [6] define an end-fixity factor and suggest a formula;

(2.20)
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End-fixity factor, r, is an indicator of the relation between the beam stiffness and the
connection stiffness. It simplifies the analysis procedure and provides designers to
compare the structural responses of a member with semi-rigid connections [7]. The
upper and lower boundaries of end-fixity factor can be checked by setting connection

stiffness, Ry;, to 1 N-m and 10° N-m;

1 1
Ryi=1N-m r=1+3E1=1+3000=3001=0.00033z0.00
LRy 1
Ry; = 106 N _t _r _ = 0.99701 ~ 1.00
ki = m T—1+3E1‘1+3000‘1.oo3_ ' o
IRy 106

As the connection stiffness approaches to zero which is the case of a pin connection,
the end-rigidity (r) approaches to zero and as the stiffness approaches to infinity

which is a fully rigid connection case, r approaches to 1.

The Eqn. 2.20 suggested by Monforton and Wu [6] is also used in this thesis. The

connection stiffnesses in the case studies are determined by this equation.
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2.4. APPROXIMATE SECOND-ORDER ANALYSIS

In a structural analysis, if the original (or undeformed) geometry of the structure is
considered when writing the equilibrium and kinematic relationships then the
analysis is referred to as a first-order analysis. However, if the deformed geometry of
the structure is considered when writing the equilibrium and kinematic relationships
then the analysis is referred to as a second-order analysis. For the stability
consideration of structures, second-order analysis is a must [12]. Both of the stability
methods, Direct Analysis Method and Effective Length Method, require that a
rigorous second-order analysis including both P-A and P-6 effects. As an alternative
to a rigorous second-order analysis, the approximate method presented in Appendix
8 of the AISC 360-10 can be used. This method is based on the amplification of first-
order analysis forces and moments by the multipliers, B; and B,. The B; factor
accounts for P-o effects and the B, factor accounts for P-A effects. B; is a member
parameter and applied to the moment due to gravity loads to account for the
displacements between the two ends of the column member. B, is a story parameter
and applied to the moment and axial force due to the lateral loads to account for the

lateral displacement of the story.

The approximate second-order moment and axial force are determined as follows;

MT' = Bl . Mnt + Bz . Mlt (2.21)
P.=P,;+ B, P, (2.22)
Where
M, = 1* order moment due to lateral translation of the structure only (N'm)

My = 1* order moment with the structure restrained against lateral translation
(N'm)
M; =required 2" order flexural strength (N-m)

Py = 1® order axial force due to lateral translation of the structure only (N)
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P, = 1% order axial force with the structure restrained against lateral
translation (N)

P.  =required 2" order axial strength (N)

Calculation of B,

B, is a member parameter and for each member it is calculated as follows;

Cm
B; = — p_ >1 (2.23)
1—as-
P el
Where
Cn = coefficient assuming no lateral translation of the frame determined

as follows:
a) For beam-columns not subjected to transverse loading between

supports in the plane of bending

Cp = 0.6 — 0.4 (M;/M,) (2.24)

Where M; and M, are the smaller and larger moments,
respectively, at the ends of that portion of the member unbraced in
the plane of bending under consideration. M;/M, is positive when
the member is bent in reverse curvature, negative when bent in

single curvature.

b) For beam-columns subject to transverse loading between supports,
the value of C, shall be determined either by analysis or

conservatively taken as 1.0 for all cases.

29



P.; = elastic critical buckling strength of the member in the plane of
bending, calculated based on the assumption of no lateral translation

at the member ends (N)

p, = El 2.25
el — (KlL)Z ( ' )
EI* = flexural rigidity required to be used in the analysis (=0.8t,EI
when used in DAM)
Ky = effective length factor in the plane of bending, calculated

based on the assumption of no lateral translation at the
member ends, set equal to 1.0 unless analysis justifies a

smaller value

Calculation of B,

B, is a story parameter and calculated for each story and each direction of lateral
translation as follows;

1
By=——>—2>10 2.26
2 1 _ aPStOT‘y ( )

P, story

Where

Pgory = total vertical load supported by the story including loads in

columns that are not part of the lateral force resisting system

(N)

Pesiory = €lastic critical buckling strength for the story in the direction

of translation being considered and calculated as;
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Where

Rm

me

An

HL
P, story = RME (2.27)

=1-0.15:(Pmi/Pstory)

= story height (mm)

= total vertical load in columns in the story that are part of
moment frames, if any, in the direction of translation being
considered (N)

= 1* order interstory dirft, in the direction of translation being
considered, due to lateral forces computed using the stiffness
required to be used in the analysis (mm).

= story shear, in the direction of translation being considered,

produced by the lateral forces used to compute Ay.

31



CHAPTER 3

CASE STUDIES

3.1. GENERAL INFORMATION AND ASSUMPTIONS

To compare DAM and ELM in semi-rigid frames, four case studies are analyzed. In
each case study, a frame is designed according to AISC 360-10 and stability design
of these frames is conducted according to both DAM and ELM. 21 analyses are
performed for different values of end-fixity factor (ranging from O to 1 with 0.05
increments) for each stability method. Total of 168 analyses are performed for the
four cases. The analyses are performed with Microsoft Office — Excel software
however for each case, one of the analyses is described in details for both ELM and
DAM in Sections 3.2, 3.3, 3.4 and 3.5 to explain the procedure in Excel spreadsheets.
For each case study and for each stability method, the analysis with end-fixity factor

of 0.75 is selected to be performed in this chapter. The analyses are summarized in

Figure 3.1.

— r=0.00 = — r=0.00
— r=0.05 — r=0.05

ELM [~ : I ELM [~ : 21
[ r=095 Analyses — r=095 Analyses
L. r=100 J L. r=1.00

Case Study - | Case Study - I
1 — r=0.00 ) _L — r=0.00 )

I~ r=005 — r=0.05

DAM [~ : — 2 DAM [~ : — 2
— r=095 Analyses [ r=095 Analyses
L. r=100 = L. r=100 .
— r=0.00 3 — r=0.00 T
— r=0.05 — r=0.05

ELM [~ : L2 ELM [~ : | A
| r=095 Analyses [ r=095 Analyses
L r=100 J L r=1.00 J

Case Study - llI Case Study - IV
1 — r=0.00 1 _L — r=0.00

— r=0.05 — r=0.05

DAM [— : . DAM [— : 21
— r=095 Analyses — r=095 Analyses
L. r=100 . L. r=1.00

Figure 3.1 — Summary of Analyses
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Each ELM analysis consists of structural analysis, buckling analysis and column
design parts whereas DAM consists of structural analysis and column design parts.

The flowcharts of both ELM and DAM are given in Figure 3.2.

EFFECTIVE LENGTH METHOD

[ ineut | [ PROCESS | [ ineut | [ PROCESS |
FRAME FRAME
nd
i) Loads 2" Order i) End-fixit Buckling
ii) End-fixity Structural HEnamTaty Analysis
Analysis
\ 4
ANALYSIS RESULTS EFFECTIVE LENGTH
(P, M) AISC 360-10
i) Effective Column
length Design
\/ Equations

COLUMN CAPACITY

(Pc, M)
COMBINED FORCES CHECK
DIRECT ANALYSIS METHOD
iNeUT | | PROCESS | [ neur | | PROCESS
FRAME COLUMN
. 2 order ) End-fixity AISC 360-10
i) Loads i1) Effective Column
ii) End-fixity Structural " Design
Analysis Length = 1.0 Equations
ANALYSIS RESULTS COLUMN CAPACITY
(P, M) (P, M)
COMBINED FORCES CHECK

Figure 3.2 — Flowcharts of ELM and DAM
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The general overview of the case studies is given in Figure 3.3.

300 kN 300 kN
—
175 kN IPE500
HEA300 HEA300
H H
Case — 1
1000 kN 1000 kN
| |
115 kN IPE500
HEA300 HEA300
H H
Case — 11
1900 kN 1900 kN
_ P~
40 kN IPE500
HEA300 HEA300
H H
Case — 111
300 kN 55i kN 550 kN 300 kN
—
200 kN IPE500 IPE500 IPE500
HEA300 HEA300 HEA300 HEA300
T H H I
Case - IV

Figure 3.3 — The General Overview of Case Studies
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Some general assumptions are made for the case studies. These can be listed as

below;

1. All column-to-base connections are fixed whereas all beam-to-column
connections are semi-rigid.

2. All springs (representing semi-rigid connections) in each case are identical, in
other words they have the same stiffnesses.

In all cases, columns are HEA300 and beams are IPE500.

4. All members are made of the same material and they have the same yield
strength, Fy, = 345 MPa.

5. The beam members are assumed as axially rigid.

6. All columns, regardless of their orientation, are assumed as braced at their
midpoint in out-of-plane direction. In other words, out-of-plane length of the
columns is half of the in-plane length.

7. The applied loads are assumed as factored loads therefore no need to multiply
these loads with load factors again.

8. Load and Resistance Factor Design (LRFD) is adopted for design

calculations.

The physical properties of sections HEA300 and IPE500 are given in Table 3.1.
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Table 3.1 — Physical Properties of Sections

b

~ —_,E__J
f

Lyt

HEA300 IPE500
E : elastic modulus 200000 MPa 200000 MPa
Fy : yield strength 345 MPa 345 MPa
b : width of the flange 300 mm 200 mm
h : total depth 290 mm 500 mm
tr : thickness of flange 14 mm 16 mm
tw : thickness of web 8.5 mm 10.2 mm
I, : moment of inertia in x-dir. 182600000 mm* | 482000000 mm*
I, : moment of inertia in y-dir. 63100000 mm* 21420000 mm"*
A : cross-sectional area 11300 mm® 11300 mm”
Ix : radius of gyration in x-dir. 127.1 mm 203.8 mm
ry : radius of gyration in y-dir. 74.7 mm 43.0 mm
J : torsional constant 878000 mm" 891000 mm"
Sy : section modulus about x-axis 1259310 mm’ 1928000 mm’
Sy : section modulus about y-axis 420667 mm’ 214200 mm’
Zy : plastic section modulus about x-axis 1833000 mm’ 2194000 mm’
Z, : plastic section modulus about y-axis 641000 mm’ 336000 mm’
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3.2. CASE STUDY -1

One-bay, one-story portal frame is analyzed and designed in this case. The portal
frame consists of two columns with a height of 4m and one beam having 8m length.
The geometry of the frame, sections and labels of members are shown in Figure 3.4.
The column sections are HEA300 and the beam section is IPE500. The columns are

oriented such that their strong axes are in the plane of bending.

[ m |
® ®
T 7 s1 B1 Pso g IPE500 i
4{ c1 c2 HEA300 HEA300
- -

Figure 3.4 — Geometry of the Frame and Sections of Members in Case — I

The degrees of freedom and loads acting on the frame are shown in Figure 3.5. There
are 5 degrees of freedom: u represents the lateral drift of the frame, v; and v,
represent the axial deformation of columns and 0; and 0, represent the rotational
deformations at each end of the beam. The horizontal load is 175 kN and the vertical

loads acting on top of each column are 300 kN.

v v, 300 kN 300 kN

% 82

u

175 kN

Figure 3.5 — Degrees of Freedom and Loads Acting on the Frame in Case - |
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The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using
both stability methods, DAM and ELM.

3.2.1.Design with Effective Length Method

To design columns in the frame, first-order structural analysis should be conducted,
and then the buckling length of the columns should be determined. At the end, the

columns are designed according to AISC 360-10 Chapter H1.

As explained in Section 2.2, nominal stiffnesses of members are used during design
with ELM. In addition, there is no need to use notional loads since there exists a
horizontal load and the drift ratio is smaller than 1.5 (calculated in Section 3.2.1.1 as

B»).

3.2.1.1. Structural Analysis

Structural analysis of the frame is conducted by using stiffness method. First, the
stiffness matrices of members are constructed then the system matrix is obtained. For

the beam, stiffness matrix in Eqn. 2.19 in Section 2.3.4 is used. For the columns, the

stiffness matrix in Eqn. 3.1 for the degrees of freedom given in Figure 3.6 is used.

d, ds
ds/% de/%

dl d4

Figure 3.6 — Degrees of Freedom for the Stiffness Matrix in Eqn. 3.1
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kcotumn =

EA
0 - 0
6EI 12E1  6EI
12 I3 12
4El 6EI  2EI
L L
EA
0 - 0 0
6El 12E1 6EI
12 I3 12
2El 6EI  4EI
L L

(3.1)

Since the columns are identical, their stiffness matrices are identical too. For the

physical properties of HEA300 given in Table 3.1 (E, I and A) and column length of

4m (L), the stiffness matrix in Eqn. 3.1 becomes (units are in N and mm),

[ 5.65x10° 0 0 —5.65x10° 0 0
0 6.85x103 1.37x107 0 —6.85x10% 1.37x107
0 1.37x107 3.65x101° 0 —1.37x107 1.83x101°
k. = (3.2)
—5.65x10° 0 0 5.65x10° 0 0
0 —6.85x103 —1.37x107 0 6.85x10% —1.37x107
0 1.37x107 1.83x101° 0 —1.37x107 3.65x101°
The displacement matrices of columns are,
%1 Uy
u u
dey = %1 de, = 902 (3.3a & 3.3b)
0 0
0 0
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The stiffness matrix of the beam is constructed by using the matrix in Eqn. 2.19 but
first connection stiffnesses should be determined. The end-fixity factor is chosen as

0.75 and accordingly the connection stiffnesses is determined by using Eqn. 2.20.

1 1
= = ;= 101N -
Y- 0.75 3105482 10%) — Ry = 1.085- 10N - mm

LRy 8000 - Ry;

Since the connections are assumed identical, Ry;, obtained above, is used in the

below formulas for both Rya and Ry;p.

R*—(1+ AE] )(1+ 4E1) <E1)2< 4 )
LRyis LRyip L RyiaRyip

e 1+4-(2-105-482-106)2 2-105-482-1062( 4 )
- 8000 - 1.085 - 1011 8000 (1.085 - 1011)2

R* = 2.037
12E1 122 - 105 . 482 . 106
o = (++17,_,) _ (4 8000 - 1.085 - 1011 ) e
"R 2.037 = 2.
12E1 12-2-105 - 482 - 106
o = (4 + LRkiB) _ (4 + 8000 - 1.085 - 1011 ) e
Y R* 2.037 :
. ., 2 2
Sij:S]L_F_m:()BB

The stiffness matrix in Eqn. 2.19 in Section 2.3.4 can be written as in Eqn. 3.4 (units
are in N and mm) by substituting E, I, and A with the values given in Table 3.1, L

with 8m, s;i’, s and s;; with the values found above. In addition, since the beam is
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assumed as axially rigid, the degree of freedom representing the axial displacement

of the beam 1s removed.

1.36x103 5.42x10° —1.36x103

[ 5.42x10°  3.15x101° —5.42x10°
e |—1.36x103 —5.42x10% 1.36x103
l 5.42x10°  1.18x10'° —5.42x10°

The displacement matrix of the beam member is,

U1
01
U2
6,

dgi =

5.42x10° ]
1.18x101° G4
—5.42x10° '
3.15¢1010 ]
(3.5)

The stiffness matrix of the system, K, is constructed by combining the member

stiffness matrices according to the system displacement matrix given in Eqn. 3.6.

u
M

D=6y

V2

6,

[1.37x10* 0 1.37x10* 0

5.42x10°

6.81x101°
—5.42x10°
1.18x101°

0 5.66x10°

1.37x10*  5.42x10°
0 —-1.36x103

11.37x10*  5.42x10°

—1.36x103
—5.42x10°
5.66x10°
—5.42x10°

The force vector, Q, can be written as,

175000

—300000
0

l—300000

o |

Q

=2=z=z==
3

3

The Eqn. 3.9 is solved to obtain displacement matrix, D.
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1.37x107 ]

5.42x10°
1.18x101°
—5.42x10°

(3.6)

(3.7)

6.81x101°

(3.8)



Q=KD - D=K1Q (3.9
The inverse of system stiffness matrix is taken and K™ is obtained.

[ 1.11x10™*  3.65x1077 —1.91x107% —3.65x1077 —1.91x1078
3.65x1077  1.77x107® —1.83x1071° 7.38x107'° —1.83x101°
K™ =[-1.91x10"8 —1.83x1072° 1.85x1071! 1.83x1071° 6.69x10~13 | (3.10)
—3.65x1077 7.38x1071° 1.83x1071° 1.77x107® 1.83x1071°

[—1.91x1078 —1.83x1071% 6.69x107% 1.83x1071° 1.85x10711

Multiplying K™ by Q gives the displacement matrix D.

Kt x Q = D

i T 1
[ 1.11x107*  3.65x1077 —1.91x10% —3.65x1077 —1.91x10787 [ 175000 7 7 19.470 7
3.65x1077 1.77x107® —1.83x1071° 7.38x1071° —1.83x1071° —300000 —0.4671
—1.91x1078 —1.83x1071° 1.85x10°! 1.83x107'° 6.69x10°13 [x 0 =1-0.0033
—3.65x1077 7.38x1071° 1.83x10°1° 1.77x107® 1.83x1071° —300000 —0.5949
[ —1.91x107% —1.83x1071° 6.69x10° % 1.83x1071° 1.85x10°11.1 L 0 1 1-0.0033-

[u] [19.470 mm

vi| |-0.4671| mm

D =|61]=1-0.0033| rad (3.11)
vzl 1-0.5949| mm
6,1 1-0.0033! rad

After the displacement matrix D is determined, it is multiplied with member stiffness
matrices to obtain the member forces. For columns, C1 and C2, the stiffness matrix
in Eqn. 3.2 and displacement matrices in Eqn. 3.3a and Eqn. 3.3b are used,

respectively. For the beam, stiffness matrix in Eqn. 3.4 and displacement matrix in

Eqn. 3.5 are used.
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Member forces for C1 is (units are in kN and m),

5.65x10° 0 0  —565x10° 0 0 1 [~04671] [—263.9]
0  685x10% 1.37x107 0  —6.85x103 1.37x107 | | 19.470 87.5
0 137x107 3.65x10'° 0  —137x107183x10% | [-0.0033| | 1445

~5.65x105 0 0  565x105 0 o || o | |z6309
0  —685x103-137x107 0  6.85x10° —1.37x107 0 ~87.5
0  137x107 1.83x10° 0  -137x1073.65x10°) L 0 1 12055

Member forces for C2 is (units are in kN and m),

[ 5.65x105 0 0  —565x10° 0 0 1 [-059497 r—336.17
0  685x10° 1.37x107 0  —6.85x10° 1.37x107 | | 19.470 87.5
0 137x107 3.65x10° 0  —137x1071.83x10% | |-0.0033| | 1445

~565x10° 0 0  565¢10°5 0 o " o | |3361
0  —685x10°-137x107 0  6.85x10° —1.37x10’ 0 -87.5
0  137x107 1.83x10° 0  -137x1073.65x10°) L o 1 12055

Member forces for Bl is (units are in kN and m),

1.36x103 5.42x10° —1.36x10% 5.42x10° [—0.4671] [—36.1]

5.42x10° 3.15x101° —5.42x10° 1.18x10%° —0.0033 —144.5
X =

—1.36x10% —5.42x10° 1.36x10° —5.42x10°| |—0.5949 36.1

5.42x10° 1.18x10'° —5.42x10% 3.15x10'° —0.0033 —144.5

These are the first order analysis results and can be shown on the system as in Figure

3.7.
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-263.9 kN -336.1 kN AXIAL FORCE
36.1 kN
87.5 kN 87.5 kN SHEAR FORCE
144.5 kN.m 144.5 kN.m
MOMENT
2055 kN.m | 2055 kN.m

Figure 3.7 — First-Order Analysis Results of Case — I with ELM

As seen from the results, the critical column is C2 since the axial compressive force
is higher on C2. C2 governs the column design therefore the first-order forces and
moments of C2 are converted to second-order forces and moments with the
approximate method described in Section 2.4. The second order design axial load P,

and design bending moment M; are calculated as,

MT == Bl . Mnt + BZ . Mlt - Bl . 0 + 10200 . 2055 - 2097 kN m
P.=P, +B,-P; =300+ 1.02-36.1 =336.8kN-m
M,; =0kN-m - No need to calculate B;

M, = 205.5 kN - m
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P,; = 300 kN

P, =336.1 —300 = 36.1 kN

1 1

B, = = = 1.02
? T @ Puory ;1600
Prstory 30560

Pstory = 300 + 300 = 600 kN

H-L 175 - 4000

Pe stroy = RME =0.85 1947 30560 kN

Ry =1-045 - —1_015.22°_ g5
M Py T 6000

Ay=u=19.47 mm

As a summary, the second-order design forces and moments for the critical column

C2 are,

P,=336.8 kN M; =209.7 kN.m

3.2.1.2. Buckling Analysis

Buckling length of the frame is determined by setting the determinant of the stiffness
matrix of the system equal to zero. However, during constructing the stiffness matrix,
the column matrices shall be modified as described in Section 2.2 and so the stability
functions including the term K (effective length factor) are included into the system.
The smallest value of K, which makes the determinant equal to zero, is the buckling

length of the frame.

The buckling analyses are performed with the help of Microsoft Office — Excel and

in this section the calculation procedure in the spreadsheet is explained. The effective
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length factor is obtained by trial and error method in the spreadsheet therefore, for
simplicity, only the calculation steps for the exact value of effective length are

presented here.

For end-fixity factor of 0.75 the effective length factor K is determined as 1.193.
Using Eqn. 2.13 k is obtained as,

= 6.58x107*

T
kL T KL 1.193-4000

kL = 6.58x10~* - 4000 = 2.632
By using Eqns. 2.6, 2.7, 2.8, 2.9 and 2.10 the stability functions are obtained.

@, = 2 — 2coskL — kL - sinkL = 2 — 2 - cos(2.632) — 2.632 - sin(2.632) = 2.466

_ (kL)3sinkL _ (2.632)° - sin (2.632)

% =170, 122466 200
_ (kL)P(1 = coskL) _ (2:632)%(1 — cos(2632)) _
2 = 60, - 6-2.466 o
_ kL(sinkL — kLcoskL) _ 2.632(sin(2.632) — 2.632 - cos(2.632)) 0.744
3= 10, = 4 - 2.466 o
_ KL(kL = sinkL) _ 2.632(2632 = sin(2:632) _ .
4= 20, = 2-2.466 o

After determining stability functions, they are inserted into the column stiffness
matrix as described in Eqn.2.5. The stiffness matrix of the columns C1 and C2 given

in Eqn. 3.2 is modified as below,
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[ 5.65x10° 0 0 —5.65x10° 0 0
0 2.06x103  1.20x107 0 —2.06x103 1.20x107
) 0 1.20x107 2.72x10° 0 —1.20x107 2.09x10'°
o —5.65x10° 0 0 5.65x10° 0 0
0 —2.06x103 —1.20x107 0 2.06x103 —1.20x107
0 1.20x107  2.09x101° 0 —1.20x107 2.72x10%°

System stiffness matrix is formed with combining column matrices calculated above
with the beam matrix obtained in Eqn. 3.4. In system stiffness matrix, elastic
modulus (E) is the same for all members and each term of the matrix includes E
therefore while taking the determinant of the matrix, E can be taken as a common

multiple. To simplify the calculation, the elastic modulus E is assumed as 1. The

system stiffness matrix with E=1 MPa is,

r 0.02 0 60.14 0 60.14 1

0 2.83 27.11 -0.01 27.11

K =160.14 27.11 293625 —-27.11 59155
0 -0.01 -27.11 2.83 -27.11
L160.14 27.11 59155 —-27.11 293625

Determinant of K equals to zero.

3.2.1.3. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column having 4m length and in-plane effective length factor of 1.193 are

determined and the column is checked under the combined effect of compression and

flexure.
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In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C1 and C2 is M. = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P. = 3164 kN. The calculation steps are given in Appendix B.

The check of the column considering the interaction of flexure and compression is

conducted according to Chapter HI of AISC 360-10 and demand/capacity ratio is

obtained.
b _ 3368 _ 0.106 < 0.200
P. 31640 '

D/C = b + My __3368 + 2097 _ 0.561 < 1.000  OK!!
2P M. 2-3164.0 4131 ' "

3.2.2.Design with Direct Analysis Method

In design according to DAM, the structural analysis is performed in the same way
with ELM however in DAM reduced stiffnesses are used instead of nominal
stiffnesses. The notional loads are not used in DAM too, with the same reason as in
ELM. The stiffness reduction factor is determined according to Section 2.1 (Eqn. 2.2
& 2.3). It requires an iterative procedure to determine the reduction factor. First, a 1y
value is assumed and the structure is analyzed with this value then using the obtained
forces, the assumed 1, value is checked whether it is acceptable or not. If it is
unacceptable, another value is assumed for 1, and the same procedure is followed
until 1, satisfies the conditions. For the Case — I, in the first iteration step, T, is
assumed as 1.0 and the structure is analyzed with the member stiffnesses reduced by
1.0x0.80 and the axial compressive load, P,, is obtained as 337 kN (obtained in
Section 3.2.2.1) for the critical column C2.
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ah, _ 1-337000 o
—=——=0. . - =1
P, ~ 11300-345 R

In the first iteration step 1y, is obtained. The stiffness reduction factor is 0.8 for both
columns, C1 and C2 and for the beam. The P, value above is calculated for the
critical column C2, the axial load on C1 is smaller than the one on C2 therefore the

ratio for C1 is also smaller than 0.50.

3.2.2.1. Structural Analysis

The structural analysis by using DAM is conducted by using the same procedure as
described in ELM. Therefore, the calculation steps are skipped and only the resultant
stiffness matrix of the system, displacement matrix and member forces are presented.

The stiffness matrix of the system is,

[1.10x10% 0 1.10x10% 0 1.10x107

0 4.53x10°  4.34x10° —1.08x103 4.34x10°

K =[1.10x10* 4.34x10° 5.45x10'° —4.34x10° 9.46x10'°
0 —1.08x103 —4.34x10° 4.53x105 —4.34x10°
11.10x10*  4.34x10°  9.46x10'° —4.34x10° 5.45x10%°

The displacement matrix of the system is,

—0.5838| mm

u] 24.33807 mm
=[-0.0042| rad

lv,| |—0.7436| mm
lOzJ —0.0042] rad

The first-order analysis results are as in Figure 3.8.
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-263.9 kN -336.1 kN
36.1 kN
87.5 kN 87.5 kN
144.5 kN.m 144.5 kN.m
2055 kN.m | 205.5kN.m

AXIAL FORCE

SHEAR FORCE

MOMENT

Figure 3.8 — First-Order Analysis Result of Case — I with DAM

The second-order analysis results are obtained as;

M, =B, My, + B, My =B, -0+ 1.0252 - 205.5 = 210.7 kN - m

P. =Py, + B, - P, = 300.0 + 1.0252 - 36.1 = 337.0 kN - m

My, = O kN -

m e

M = 2055 kN - m

P,; = 300.0 kN
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P, = 336.1 —300.0 = 36.1 kN

1 1
B, = = = 1.0252
2T @ Pugy | _ 1600
Pe story 24447

Pstory = 300 + 300 = 600 kN

H-L 175 - 4000
Pestroy=RM_=0 :

85— = 24447 kN
Ay 24.338

Ry =1-015-2 —1_015.2%0_ g5
M= 7 Psory Y600

Ay=u = 24.338 mm

As a summary, the second-order design forces and moments for the critical column

C2 are,

P,=337.0 kN M; =210.7 kN.m

3.2.2.2. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column with 4m length and in-plane effective length factor of 1.0 are determined and

the column is checked under the combined effect of compression and flexure.

In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C; and C, is M. = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P. =3263 kN. The calculation steps are given in Appendix B.
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The check of the column considering the interaction of flexure and compression is

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is

obtained.
b _ 3370 _ 0.103 < 0.200
P.  3263.0 '

P M, 3370 2107

- = 0.562 < 1.000  OK!!
20 M, 232630 4131
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3.3. CASE STUDY - 1I

The portal frame in Case — I is analyzed and designed with different loads in this

case. The compressive loads are increased and the horizontal load is decreased. The

geometry of the frame, sections and labels of members are shown in Figure 3.9. The

degrees of freedom and loads acting on the frame are shown in Figure 3.10. The only

difference between this frame and the frame in Case — I is the loads acting on it.

|
[

@)

8m

S1

C1

AN

H

Bl

S2

C2

AN

H

9

HEA300

IPES00

HEA300

Figure 3.9 — Geometry of the Frame and Sections of Members in Case — 11

8,
u

Vi

~

v

8.,

1000 kN

1000 kN

115 kN

Figure 3.10 — Degrees of Freedom and Loads Acting on the Frame in Case - II

The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using
both stability methods, DAM and ELM.



3.3.1.Design with Effective Length Method

In Case — II, like in Case — I, first structural analysis is conducted, then buckling
length of the columns is determined and at the end, the columns are designed. The
procedures used in Case — I to obtain member forces and buckling length of the
frame are followed in Case — II too, therefore in this part only the results are
presented, the steps are given in Appendix C. In analysis with ELM, nominal
stiffnesses of members are used and the notional loads are not used due to the

presence of a horizontal load.

3.3.1.1. Structural Analysis

The stiffness matrix of the system, displacement matrix, force vector and member

forces are presented here, for details of calculation please see Appendix C. The

stiffness matrix of the system is,

[1.37x10* 0 1.37x10* 0 1.37x107 ]

0 5.66x10° 5.42x10° —1.36x103 5.42x10°

K =11.37x10* 5.42x10° 6.81x10° —542x10° 1.18x10'°
0 —1.36x10% —5.42x10° 5.66x10°> —5.42x10°
[1.37x10* 5.42x10° 1.18x10'° —5.42x10° 6.81x101°

The displacement matrix D and force vector Q are,

4] 12.795 7 mm 115000 7 N
(21 —1.7279| mm —1000000| N
D =1611=1-0.0022| rad Q= 0 N-m
12 —1.8119| mm —1000000| N
0 —0.0022! rad 0 N-m

The first-order analysis results are as in Figure 3.11.
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-976.3 kN -1023.7 kN AXIAL FORCE
23.7kN
57.5 kN 57.5 kN SHEAR FORCE
94.9 kN.m 94.9 KN.m
MOMENT
135.1kNm 135.1kN.m

Figure 3.11 — First-Order Analysis Results of Case — II with ELM

The second-order design forces and moments for the critical column C2 are,

P,=1025.4 kN M; = 144.5 kN.m

3.3.1.2. Buckling Analysis

The buckling analysis results for Case — II are the same with the results of Case — I
since the frames are identical. The loads on the frame do not affect the buckling
length of the frame. The buckling length of the frame for r = 0.75 is determined as
1.193.
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3.3.1.3. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column having 4m length and in-plane effective length factor of 1.193 are
determined and the column is checked under the combined effect of compression and

flexure.

In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C1 and C2 is M. = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P. = 3164 kN. The calculation steps are given in Appendix B.

The check of the column considering the interaction of flexure and compression is

conducted according to Chapter HI of AISC 360-10 and demand/capacity ratio is

obtained.
b _ 10254 0.324 > 0.200
P. 31640 '
P 8 10254 8 1445

D/C =

M,
+=—= +—=- = 0.635 < 1.000 OK!!
9 M, 31640 9 413.1

P,
3.3.2.Design with Direct Analysis Method

The columns are designed with effective length factor of 1.0 after determining the
second-order forces from the structural analysis. During the analysis, reduced
stiffnesses are used and the notional loads are ignored due to the presence of a
horizontal load. The stiffness reduction factor is determined as described in Section
3.2.2. For the Case — II, the 13, is obtained as 1.0 and the validity of it can be shown
as;

aPb, _ 1-1025800

- 0 — 026 < 0.50 = 1.0
P, ~ 11300 -345 o
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3.3.2.1. Structural Analysis

The stiffness matrix of the system, displacement matrix, force vector and member

forces are presented here, for details of calculation please see Appendix C. The

stiffness matrix of the system is,

[1.10x10% 0 1.10x10* 0 1.10x107 ]

0 453x10°>  4.34x10° —1.08x10% 4.34x10°

K =[1.10x10* 4.34x10° 5.45x10'° —4.34x10° 9.46x10'°
0 —1.08x103 —4.34x10° 4.53x105 —4.34x10°
[1.10x10*  4.34x10°  9.46x10'° —4.34x10° 5.45x10%°

The displacement matrix D and force vector Q are,

[u] 15.993] mm [ 115000 1 N

vi| |-2.1599| mm | —1000000| N

D =|61|=]-0.0027| rad Q= 0 N-m
12 —2.2649| mm —1000000| N
0, —0.00271 rad 0 N-m

The first-order analysis results are as in Figure 3.12.

The second-order design forces and moments for the critical column C2 are,
P, =1025.8 kN M; = 147.1 kN.m

3.3.2.2. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column with 4m length and in-plane effective length factor of 1.0 are determined and

the column is checked under the combined effect of compression and flexure.
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-976.3 kN -1023.7 kN AXIAL FORCE
23.7kN
57.5 kN 57.5 kN SHEAR FORCE
94.9 kN.m 94.9 KN.m
MOMENT
135.1kNm 135.1kN.m

Figure 3.12 — First-Order Analysis Results of Case — II with DAM

In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C; and C, is M. = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P. = 3263 kN. The calculation steps are given in Appendix B.

The check of the column considering the interaction of flexure and compression is

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is

obtained.
F_10258 0.314 < 0.200
P.  3263.0 '

1025.8 8 147.1

= — = I
3263.0 + 9 2131 0.631 < 1.000 OK!

P 8 M,
D/C=Z+-.—L
/ TR

58



3.4. CASE STUDY - 11I

The portal frame in Case — I and Case - II is analyzed and designed with different
loads in this case. The compressive loads are increased and the horizontal load is
decreased when compared with Case - II. The geometry of the frame, sections and
labels of members are shown in Figure 3.13. The degrees of freedom and loads
acting on the frame are shown in Figure 3.14. The only difference between this frame

and the frames in Case — I and Case - 11 is the loads acting on it.

8m

\
5
)
©

7 s1 B1 Ps2 IPE500

4m | c1 Cc2 HEA300 HEA300

— oo RN T AN

= =

Figure 3.13 — Geometry of the Frame and Sections of Members in Case — 111
v v, 1900 kN 1900 kN

B 02/

u

40 kN

Figure 3.14 — Degrees of Freedom and Loads Acting on the Frame in Case - 111

The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using
both stability methods, DAM and ELM.
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3.4.1.Design with Effective Length Method

In Case — III, like in Case — I, first structural analysis is conducted, then buckling
length of the columns is determined and at the end, the columns are designed. The
procedures used in Case — I to obtain member forces and buckling length of the
frame are followed in Case — III too, therefore in this part only the results are
presented, the steps are given in Appendix C. In analysis with ELM, nominal
stiffnesses of members are used and the notional loads are not used due to the

presence of a horizontal load.
3.4.1.1. Structural Analysis
The stiffness matrix of the system, displacement matrix, force vector and member

forces are presented here, for details of calculation please see Appendix C. The

stiffness matrix of the system is,

[1.37x10* 0 1.37x10* 0 1.37x107 ]

0 5.66x10° 5.42x10° —1.36x103 5.42x10°

K =11.37x10* 5.42x10° 6.81x10° —542x10° 1.18x10'°
0 —1.36x10% —5.42x10° 5.66x10°> —5.42x10°
[1.37x10* 5.42x10° 1.18x10'° —5.42x10° 6.81x101°

The displacement matrix D and force vector Q are,

4] 4450 1 mm [ 40000 N
121 —3.3482 mm —1900000| N
D =1611=1-0.0008| rad Q= 0 N-m
12 —3.3774 mm —1900000| N
0 —0.0008/ rad 0 N-m

The first-order analysis results are as in Figure 3.15.
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-1891.7 kN -1908.3 kN AXIAL FORCE
8.3 kN
20.0 kN 20.0 kN SHEAR FORCE
33.0 kN.m 33.0 kN.m
MOMENT
470KkN.m 470KN.m

Figure 3.15 — First-Order Analysis Results of Case — I1I with ELM

The second-order design forces and moments for the critical column C2 are,

P, =1909.4 kN

M; =53.7 kN.m

3.4.1.2. Buckling Analysis

The buckling analysis results for Case — III are the same with the results of Case — I
and Case - II since the frames are identical. The loads on the frame do not affect the
buckling length of the frame. The buckling length of the frame for r = 0.75 is

determined as 1.193.
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3.4.1.3. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column having 4m length and in-plane effective length factor of 1.193 are
determined and the column is checked under the combined effect of compression and

flexure.

In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C1 and C2 is M. = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P. = 3164 kN. The calculation steps are given in Appendix B.

The check of the column considering the interaction of flexure and compression is

conducted according to Chapter HI of AISC 360-10 and demand/capacity ratio is

obtained.
b _ 19094 0.603 > 0.200
P. 31640 '

19094 8 53.7

—. = I
3164.0+9 2131 0.719 < 1.000 OK!

pre=" 43
P 9 M,

3.4.2.Design with Direct Analysis Method

The columns are designed with effective length factor of 1.0 after determining the
second-order forces from the structural analysis. During the analysis, reduced
stiffnesses are used and the notional loads are ignored due to the presence of a
horizontal load. The stiffness reduction factor is determined as described in Section
3.2.2. For the Case — III, the 1 is obtained as 1.0 and the validity of it can be shown
as;

aP, 11909800
P, 11300 - 345

=0.49 < 0.50 - 7, = 1.0
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3.4.2.1. Structural Analysis

The stiffness matrix of the system, displacement matrix, force vector and member
forces are presented here, for details of calculation please see Appendix C. The

stiffness matrix of the system is,

[1.10x10% 0 1.10x10* 0 1.10x107 ]

0 453x10°>  4.34x10° —1.08x10% 4.34x10°

K =[1.10x10* 4.34x10° 5.45x10'° —4.34x10° 9.46x10'°
0 —1.08x103 —4.34x10° 4.53x105 —4.34x10°
[1.10x10*  4.34x10°  9.46x10'° —4.34x10° 5.45x10%°

The displacement matrix D and force vector Q are,

u [ 5.563 1 mm 40000 N
[vl] | —4.1853| mm [—1900000 N

D =|61|=|-0.0010| rad Q =| 0 | N-m
v| |-4.2218| mm l—1900000J N
0, —0.0010{ rad 0 N-m

The first-order analysis results are as in Figure 3.16.

The second-order design forces and moments for the critical column C2 are,
P, =1909.8 kN M; = 55.6 kN.m

3.4.2.2. Column Design

In this part, the axial compressive strength and moment capacity of a HEA300
column with 4m length and in-plane effective length factor of 1.0 are determined and

the column is checked under the combined effect of compression and flexure.
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-1891.7 kN -1908.8 kN AXIAL FORCE
8.3 kN
20.0 kN 20.0 kN SHEAR FORCE
33.0 kN.m 33.0 kN.m
MOMENT
47.0 kN.m o 47.0 kN.m o

Figure 3.16 — First-Order Analysis Results of Case — III with DAM

In-plane flexural strength of the column is determined according to Chapter F of the
AISC 360-10. The in-plane flexural strength of C; and C, is M, = 413.1 kN.m. The
calculation steps are given in Appendix A. The compressive strength of C1 and C2 is

P, =3263 kN. The calculation steps are given in Appendix B.

The check of the column considering the interaction of flexure and compression is

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is

obtained.
b _ 19098 0.585 < 0.200
P. 32630 '

P. 8 M, 19098 8 55.6
D/C=ZL4+-.—L=

= —. =0.705 < 1.000  OK!!
P "9 M, 32630 9 4131
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3.5. CASE STUDY -1V

Three-bay, one-story portal frame is analyzed and designed in this case. The portal
frame consists of four columns with a height of 4m and three beams having 8m
length. The geometry of the frame, sections and labels of members are shown in
Figure 3.17. The column sections are HEA300 and the beam sections are IPE500.
The exterior columns (C1 & C4) are oriented such that their weak axes are in the
plane of bending whereas interior columns (C2 & C3) are oriented such that their

strong axes are in the plane of bending.

: 8m : 8m : 8m :
S1 Bl S2 B2 S3 B3 sS4
4m | c1 (o7 C3 c4
I H H I
IPE500 IPE500 IPE500
HEA300 HEA300 HEA300 HEA300

Figure 3.17 — Geometry of the Frame and Sections of Members in Case - IV

The degrees of freedom and loads acting on the frame are shown in Figure 3.18.
There are total of 9 degrees of freedom: u represents the lateral drift of the frame, v,
vy, v3 and vy represent the axial deformation of columns and 0;, 6, 6; and 04
represent the rotational deformations at each end of the beam. The horizontal load is
200 kN and the vertical load acting on top of exterior columns is 300 kN and top of

interior columns is 550 kN.
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91% 8, HA\ 8; f% 84 f%

u—>
300 kN 550 kN 550 kN 300 kN
—
200 kN

Figure 3.18 — Degrees of Freedom and Loads Acting on the Frame in Case — [V

The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using
both stability methods, DAM and ELM.

3.5.1. Design with Effective Length Method

In Case — 1V, like in Case — I, first structural analysis is conducted, then buckling
length of the columns is determined and at the end, the columns are designed. The
procedures used in Case — I to obtain member forces and buckling length of the
frame are followed in Case — IV too, therefore in this part only the results are
presented, the steps are given in Appendix C. In analysis with ELM, nominal
stiffnesses of members are used and the notional loads are not used due to the

presence of a horizontal load.

3.5.1.1. Structural Analysis

The stiffness matrix of the system, displacement matrix, force vector and member

forces are presented here, for details of calculation please see Appendix C. The
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stiffness matrix of the system is given in Figure 3.20. The displacement matrix D and

force vector Q are,

rU7 13.739 7 mm - 200 1 kN
04 —0.0011| rad 0
0, —0.0016| rad 0
63| [-0.0016| rad 0

D =|64|=1-0.0010| rad 0=| o
2] —0.5062| mm —300| kN
12} —0.9680| mm —550| kN
V3 —0.9781| mm —550| kN
lv,] L—0.5566] mm L300 kN

The first order analysis results are as in Figure 3.19.

-286.0 kN -546.9 kN -552.6 kN -314.5 kN

AXIAL FORCE

17.1kN
14.0 kN 14.5 kN

27.3kN 72.2 kN 72.8 kN 27.8 kN

SHEAR FORCE

61.0kN.m 68.0 kN.m 52.4 kN.m
51.1 kN.m 129.8 kN.m 131.3kN.m 52.4 kN.m
51.1 kN.m 68.8 kN.m 63.3kN.m
58.1 kN.m 159.0 kN.m 159.7 kN.m 58.7 kN.m
MOMENT

Figure 3.19 — First-Order Analysis Results of Case — IV with ELM
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Figure 3.20 — The Stiffness Matrix of the System in Case — IV with ELM
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The second-order design forces and moments for the critical columns are;

Critical interior column :C3 P,=552.7kN M;=165.4 kN'-m
Critical exterior column :C4 P,=315.0kN M; = 60.8 kN'm

3.5.1.2. Buckling Analysis

The buckling analysis is performed with Microsoft Office - Excel and the buckling
length of the frame is determined as 1.095. The resultant stiffness matrix of the
system is presented in Figure 3.21. Like in the Case — I, elastic modulus E is assumed
as 1 instead of 200000 to simplify the solution. The determinant of the matrix is

equal to zero.
3.5.1.3. Column Design
3.5.1.3.1. Design of Interior Columns

The compressive and flexural strength of interior columns (C2 & C3) are determined
and they are checked under the combined effect of compression and flexure. The in-
plane effective length factor is calculated as 1.095. In-plane flexural strength of the
column is determined according to Chapter F of the AISC 360-10. The in-plane
flexural strength of C2 and C3 is M= 413.1 kN.m. The calculation steps are given in
Appendix A. The compressive strength of C2 and C3 is P, = 3216 kN. The
calculation steps are given in Appendix B. The check of the column considering the
interaction of flexure and compression is conducted according to Chapter H1 of

AISC 360-10 and demand capacity ratio is obtained.

B 5527
P 3216.3

=0.172 < 0.200

D/C = b 5527 + 1654 _ 0.486 < 1.000  OK!!
2P, M, 2-32163 4131 ' :
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Figure 3.21 — The Stiffness Matrix of the System for Buckling Analysis in Case — [V



3.5.1.3.2. Design of Exterior Columns

The compressive and flexural strength of exterior columns (C1 & C4) are determined
and they are checked under the combined effect of compression and flexure. The in-
plane effective length factor is calculated as 1.095. In-plane flexural strength of the
column is determined according to Chapter F of the AISC 360-10. The in-plane
flexural strength of C1 and C4 is M= 187.8 kN.m. The calculation steps are given in
Appendix A. The compressive strength of C1 and C4 is P, = 2732 kN. The
calculation steps are given in Appendix B. The check of the column considering the
interaction of flexure and compression is conducted according to Chapter H1 of

AISC 360-10 and demand capacity ratio is obtained.

b _ 3150 _ 0.115 < 0.200
P, 27321 '
B M, 315.0 60.8
D/C =— =0.381 < 1.000 OK!

+—L= +
2P, ' M, 2-2732.1 1878

3.5.2.Design with Direct Analysis Method

The columns are designed with effective length factor of 1.0 after determining the
second-order forces from the structural analysis. During the analysis, reduced
stiffnesses are used and the notional loads are ignored due to the presence of a
horizontal load. The stiffness reduction factor is determined as described in Section
3.2.2. For the Case — IV, the 1, is obtained as 1.0 and the validity of it can be shown
as;

aP.  1-552800

o 2 .14 < 0.50 = 1.0
P, ~ 11300-345 R
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3.5.2.1. Structural Analysis

The stiffness matrix of the system, displacement matrix, force vector and member

forces are presented here, for details of calculation please see Appendix C. The

stiffness matrix of the system is given in Figure 3.23. The displacement matrix D,

force vector Q and first-order analysis results are as below;

U1 r17.17417 mm - 200 1 kN
01 —0.0014| rad 0
021 |-0.0020| rad 0
03 —0.0019| rad 0
D =|04|=]-0.0013| rad Q= 0
121 —0.6327| mm —3001 kN
vy —1.2100! mm —5501 kN
V3 —1.2227] mm —550| kN
v, L-0.6957] mm L—-3004 kN
-286.0 kN -546.9 kN -552.6 kN -314.5 kN
AXIAL FORCE
17.1 kN
14.0 kN 14.5 kN
27.3kN 72.2 kN 72.8 kKN 27.8 kN

SHEAR FORCE

61.0 kN.m 68.0 kN.m 52.4 kN.m
51.1 kN.m 129.8 kN.m 131.3 kN.m 52.4 KN.m
51.1kN.m 68.8 kN.m 63.3 kN.m
58.1 kN.m 159.0 kN.m 159.7 kN.m 58.7 kN.m
MOMENT

Figure 3.22 — First-Order Analysis Results of Case — IV with DAM
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Figure 3.23 — The Stiffness Matrix of the System in Case — [V with DAM
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The second-order design forces and moments for the critical columns are;
Critical interior column :C3  P,=552.8kN M; =166.9 kN'm
Critical exterior column :C4 P,=315.1kN M;=61.3 kN'm

3.5.2.2. Column Design

3.5.2.2.1. Design of Interior Columns

The compressive and flexural strength of interior columns (C2 & C3) are determined
and they are checked under the combined effect of compression and flexure. The in-
plane effective length factor is 1.00. In-plane flexural strength of the column is
determined according to Chapter F of the AISC 360-10. The in-plane flexural
strength of C2 and C3 is M, = 413.1 kN.m. The calculation steps are given in
Appendix A. The compressive strength of C2 and C3 is P, = 3263 kN. The
calculation steps are given in Appendix B. The check of the column considering the
interaction of flexure and compression is conducted according to Chapter H1 of

AISC 360-10 and demand capacity ratio is obtained.

P 5528

= =0.1 2
P = 32631 = 169 < 0200

P. M, 5528 1669

+—= + = 0.489 < 1.000 OK!
2P, M, 2-3263.1 4131

D/C =

3.5.2.2.2. Design of Exterior Columns

The compressive and flexural strength of exterior columns (C1 & C4) are determined
and they are checked under the combined effect of compression and flexure. The in-
plane effective length factor is calculated as 1.00. In-plane flexural strength of the

column is determined according to Chapter F of the AISC 360-10. The in-plane
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flexural strength of C1 and C4 is M= 187.8 kN.m. The calculation steps are given in
Appendix A. The compressive strength of Cl1 and C4 is P, = 2848 kN. The
calculation steps are given in Appendix B. The check of the column considering the
interaction of flexure and compression is conducted according to Chapter H1 of

AISC 360-10 and demand capacity ratio is obtained.

E_ 3151 0.111 < 0.200
P. 28479 '

B M, _ 3151 613
2P, M. 2-28479 1878

D/C = =0.382 < 1.000 OK!
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CHAPTER 4

RESULTS AND DISCUSSIONS OF RESULTS

4.1. RESULTS

In Section 3.1, it is explained that there are total of 168 analyses. In Sections 3.2, 3.3,
3.4 and 3.5, for each case one analysis is explained in details and the results of that
analysis are presented at the end of those sections. In this section, all results for all

analyses are presented.

The terms used in the tables are explained as below;

r : end-rigidity factor

P; : second-order design compressive load (kN)

M, : second-order design moment (kN-m)

P, : compressive strength (kN)

M. : flexural strength (kN-m)

K : effective length factor

B, : the ratio of second-order drift to first-order drift

D/C  :demand/capacity ratio

In the tables given below, second-order forces and moments (P, & M;), member
compressive and flexural strengths (P, & M), effective length factors (K), drift ratios
(B2) and demand/capacity ratios for all end-rigidity factors (ranging from 0 to 1) and
for both stability methods are presented. After each table, a figure showing the D/C

ratios for both stability methods is presented.
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4.1.1.Results of Case - 1

Analysis and design results of the critical column C2 in Case — I are presented in

Table 4.1.

C1 Cc2

Table 4.1 — Analysis and Design Results of C2 in Case — |

Effective Length Method Direct Analysis Method

r e[ m | pe [ M| k|8 [P [ m | p | m][k] s [or

1.00 | 3395  198.2  3203.4  413.1  1.120 | 1.018 = 0.533 | 339.7 @ 199.1 § 3263.1  413.1 1.00 1.022 0.534
0.95 | 339.0 200.1 319.6 413.1 1.133  1.018 | 0.537 | 339.2 201.0 3263.1 413.1  1.00 | 1.023 | 0.539
0.90 | 338.6 202.2 3189.7 413.1 1.146  1.018 | 0.543 | 338.7 203.1 3263.1 413.1  1.00 | 1.023 ' 0.544
0.85 | 338.0 2045 31822 413.1 1.160  1.019 | 0.548 | 338.2 2054 3263.1 413.1 1.00 | 1.024 @ 0.549
0.80 | 337.5 206.9 31742 413.1 1.175  1.019 | 0.554 | 337.6 = 208.0 3263.1 413.1 1.00 | 1.024 | 0.555
0.75 | 336.8 209.7 31649 413.1 1192 | 1.020 = 0.561 | 337.0 @ 210.7  3263.1 413.1 1.00 1.025 0.562
0.70 | 336.1 212.7 31544 413.1 1.211 H 1.021 | 0.568 | 336.3 213.8 3263.1 413.1 1.00 | 1.026 @ 0.569
0.65 ' 3354 216.0 3143.3 4131 1.231 | 1.021 @ 0.576 | 335.6 @ 217.2 ' 3263.1 413.1 1.00 1.027 @0.577
0.60 | 3345 219.7 3130.3 413.1 1.254 | 1.022 | 0.585 | 334.7 220.9 3263.1 413.1 1.00 | 1.028 ' 0.586
0.55 | 333.6 2239 31159 413.1 1.279 | 1.023 | 0.595 | 333.7 225.2 3263.1 413.1  1.00 | 1.029 ' 0.596
0.50 | 332.5 228.6 3099.6 413.1 1.307 @ 1.024 | 0.607 | 332.7 229.9 3263.1 413.1 1.00 | 1.030 @ 0.608
0.45 | 331.2 2339 3080.6 413.1 1339  1.025 | 0.620 | 331.4 2354 3263.1 413.1 1.00 | 1.032 @ 0.621
0.40 | 329.8 240.0 3058.8 413.1 1375  1.027 | 0.635 | 330.0 241.6 3263.1 413.1 1.00 | 1.033 | 0.635
0.35 | 328.2 247.1 3033.5 413.1 1416 1.028 | 0.652 | 3284 2489 3263.1 413.1 1.00 | 1.035 | 0.653
0.30 | 326.2 255.5 3003.9 413.1 1.463  1.030 | 0.673 | 3264 257.4 3263.1 413.1 1.00 | 1.038 | 0.673
0.25 | 3240 2654 2969.0 413.1 1517 H 1.032 | 0.697 | 324.1 267.5 3263.1 413.1 1.00 | 1.040 0.697
0.20 | 321.2 2774 2926.6 413.1 1581  1.035 | 0.726 | 321.4 279.8 3263.1 413.1 1.00 | 1.044 @ 0.727
0.15 | 317.7  292.2 2875.5 413.1 1.656  1.038 | 0.763 | 317.9 295.0 3263.1 413.1 1.00 | 1.048 | 0.763
0.10 ' 313.4  311.0 28116 4131 1747 | 1.042 0.809 | 313.5 314.3  3263.1 413.1 1.00 1.053 @0.809
0.05 | 307.7 335.6 2730.4 413.1 1.859 | 1.047 | 0.869 | 307.8 339.6 3263.1 413.1 1.00 | 1.060 @ 0.869
0.00 | 300.0 369.0 2624.7 413.1 2.000  1.054 | 0.950 | 300.0 374.1 3263.1 413.1 1.00 | 1.069 | 0.952

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.1.
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Figure 4.1 — Demand/Capacity vs. End-Rigidity for Case — I
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4.1.2.Results of Case - I1

Analysis and design results of the critical column C2 in Case — II are presented in

Table 4.2.

C1 Cc2

Table 4.2 — Analysis and Design Results of C2 in Case — 11

Effective Length Method Direct Analysis Method

r I m | po[m ] k][ 8 [oc] p [ m | r [ m ] k]| s | o

1.00  1027.1 | 135.8 | 3203.4 413.1 1.120| 1.061 & 0.613 | 1027.5 137.9 | 3263.1 413.1 1.00  1.077 @ 0.612
0.95  1026.8 | 137.2 | 3196.6 413.1  1.133 | 1.063 & 0.617 | 1027.2 139.4 | 3263.1 | 413.1 1.00 @ 1.079 @ 0.615
0.90  1026.5 | 138.8 | 3189.7 413.1  1.146 1.064 & 0.621 | 1026.9 141.1 | 3263.1  413.1 1.00 1.081 0.618
0.85 | 1026.2 | 140.6 | 3182.2 413.1 1.160  1.066 @ 0.625 | 1026.6 142.9 | 3263.1 | 413.1 1.00 1.084 @ 0.622
0.80 | 1025.8  142.5 | 3174.2 413.1 | 1.175 1.068 @ 0.630 | 1026.2 = 144.9 ' 3263.1 413.1 1.00 | 1.086 | 0.626
0.75 | 1025.4 | 144.5 31649 413.1 1.192  1.070 @ 0.635 | 1025.8 147.1 | 3263.1 | 413.1 1.00 @ 1.089 @ 0.631
0.70 | 1025.0 | 146.8 | 3154.4 413.1  1.211  1.072 & 0.641 | 1025.4 149.5 | 3263.1 | 413.1 1.00 @ 1.092 @ 0.636
0.65 | 1024.5 | 149.4 | 3143.3 413.1 1231 | 1.075 @ 0.647 | 1024.9 152.3 | 3263.1 | 413.1 1.00 1.09 @ 0.642
0.60 | 1023.9  152.3 | 3130.3  413.1 | 1.254 1.078 @ 0.655 | 1024.4 | 155.3 ' 3263.1 413.1 1.00 | 1.099 | 0.648
0.55 | 1023.3 | 155.5 | 31159 413.1  1.279 | 1.081 & 0.663 | 1023.8 158.7 | 3263.1 | 413.1 1.00 1.104 @ 0.655
0.50 | 1022.6 | 159.1 | 3099.6 413.1 1.307 | 1.085 & 0.672 | 1023.1 162.6 | 3263.1 | 413.1 1.00 1.109 @ 0.663
0.45  1021.8 | 163.3 | 3080.6 413.1 1.339 | 1.089 & 0.683 | 1022.3 167.1 | 3263.1 | 413.1 1.00 1.114 0.673
0.40  1020.9 | 168.1 | 3058.8 413.1 1375 1.094 @ 0.69 | 1021.4 172.2 | 3263.1  413.1 1.00 1121 0.684
0.35 | 1019.8  173.8 | 3033.5 413.1 | 1.416 1.100 @ 0.710 | 1020.3 | 178.3 ' 3263.1 413.1 1.00 | 1.128 | 0.696
0.30 ' 1018.5 | 180.5 | 3003.9 413.1  1.463  1.107 & 0.727 | 1019.1 185.4 | 3263.1 | 413.1 1.00 1.138 @ 0.711
0.25  1017.0 | 188.5 | 2969.0 413.1 1517 | 1.115  0.748 | 1017.5 194.1 | 3263.1 | 413.1 1.00  1.149 @ 0.729
0.20 | 1015.1 | 198.3 | 2926.6 413.1 1581  1.126 @ 0.774 | 1015.6 = 204.7 | 3263.1 | 413.1 1.00 1.162 @ 0.752
0.15 | 1012.8  210.6 | 2875.5 413.1 | 1.656 1.138 = 0.805 | 1013.2 | 218.2 ' 3263.1 413.1 1.00 | 1.179 | 0.780
0.10 A 1009.8 | 226.5 | 2811.6 413.1 1.747 | 1.155 & 0.847 | 1010.2 235.6 | 3263.1 | 413.1 1.00 1.201 @ 0.817
0.05 ' 1005.7 | 247.8 | 2730.4 413.1  1.859  1.177 | 0.901 | 1006.0 259.2 | 3263.1 | 413.1 1.00 1.231 @ 0.866
0.00 ' 1000.0 | 277.7 | 2624.7 413.1 2.000 | 1.207 | 0.979 | 1000.0 292.9 | 3263.1  413.1 1.00 1.274 @ 0.937

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.2.
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Figure 4.2 — Demand/Capacity vs. End-Rigidity for Case — II
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4.1.3.Results of Case - I11

Analysis and design results of the critical column C2 in Case — III are presented in

Table 4.3.

C1 Cc2

Table 4.3 — Analysis and Design Results of C2 in Case — III

Effective Length Method Direct Analysis Method

rl e [m | o[ M | k|8 [ p [ m | e | m | k]| s | or

1.00 | 1910.0 | 50.0 K 3203.4 413.1 1.120 | 1.123 | 0.704 | 1910.3 | 51.6 | 3263.1 413.1  1.00 1.158 0.696
0.95  1909.9  50.6 | 3196.6 | 413.1  1.133 1126 0.706 | 1910.2 52.2 | 3263.1 413.1 | 1.00 1.162 0.698
0.90 1909.8 | 51.2 | 3189.7 | 413.1 1146 1.129 0.709 | 1910.1 53.0 | 3263.1 413.1 | 1.00  1.167 0.699
0.85 1909.7 | 52.0 | 3182.2 | 413.1  1.160 1.133 0.712 | 1910.0 53.8 | 3263.1 413.1 | 1.00 1.172 0.701
0.80 1909.6 = 52.8 | 3174.2 | 413.1 1175 1.137 0.715 | 1909.9 54.6 | 3263.1 413.1 | 1.00 1.178 0.703
0.75 1909.4 | 53.7 | 3164.9 | 413.1  1.192 1.142 0.719 | 1909.8 55.6 | 3263.1 413.1 | 1.00  1.184 0.705
0.70 | 1909.3 | 54.6 | 3154.4 | 413.1  1.211 1.147 0.723 | 1909.6 = 56.7 | 3263.1  413.1 | 1.00  1.191 @ 0.707
0.65 1909.1 55.7 | 3143.3 | 413.1  1.231 1153 @ 0.727 | 1909.5 57.9 | 3263.1 413.1 | 1.00 1.199 @ 0.710
0.60 | 1908.9  57.0 | 3130.3 | 413.1 | 1.254 1159 & 0.732 [ 1909.3  59.3 | 3263.1 413.1 1.00 1.208 0.713
0.55  1908.7 | 58.4 | 31159 | 413.1 1.279 1.167 0.738 | 1909.1 60.9 | 3263.1 @ 413.1 | 1.00  1.217 0.716
0.50 1908.5 | 59.9 | 3099.6 | 413.1 1307 1.175 0.745 | 1908.9 62.7 | 3263.1 413.1 | 1.00  1.229 0.720
0.45 1908.3  61.8  3080.6 | 413.1  1.339 1.185 0.752 | 1908.7 64.8 | 3263.1 413.1 | 1.00 1.242 0.724
0.40 19079  63.9  3058.8 | 413.1 1375 119 0.761 | 1908.4 67.2 | 3263.1 413.1 | 1.00  1.258 0.729
0.35 1907.6  66.4 | 3033.5| 413.1 1416 1.209 0.772 | 1908.0 70.1 | 3263.1 413.1 | 1.00 1.276 0.736
0.30  1907.1 | 69.5 | 3003.9 | 413.1 1463 1.225 0.784 | 1907.6 73.6 | 3263.1 413.1 | 1.00  1.298 @ 0.743
0.25  1906.6 | 73.2 | 2969.0 | 413.1 @ 1.517 1.245 0.800 | 1907.0 77.9 | 3263.1 413.1 | 1.00  1.326  0.752
0.20 | 1905.9  77.8 | 2926.6 = 413.1 | 1.581 1.269 @ 0.819 [ 1906.4 83.4 | 3263.1 413.1 1.00 1.360 0.764
0.15| 1905.1 | 83.7 | 2875.5  413.1 | 1.656 1.300 @ 0.843 [ 1905.5 90.5 | 3263.1 413.1 1.00 1.405 0.779
0.10  1903.9 | 91.5 | 2811.6 | 413.1 1747 1341 0.874 | 1904.3 100.1 | 3263.1 = 413.1 | 1.00  1.466 0.799
0.05 1902.4 | 102.5 2730.4 | 413.1  1.859 1.399 0.917 | 1902.6 113.8 | 3263.1 413.1 | 1.00 A 1.554 0.828
0.00 1900.0 | 118.8  2624.7 | 413.1  2.000 1.485 0.979 | 1900.0 135.1 | 3263.1 413.1 | 1.00 1.689 0.873

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.3.
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4.1.4.Results of Case - IV

Analysis and design results of critical columns C3 (interior) and C4 (exterior) in

Case — IV are presented in this part.

i . @ 6
H I

4.1.4.1. Results of C3 (Interior Column)

Table 4.4 - Analysis and Design Results of C3 (interior column) in Case — [V

Effective Length Method Direct Analysis Method

el m | e[ m ] k|8 [ |[m || m]| k]| B8 |oc

1.00 | 553.8 | 160.4 | 3234.9 | 413.1 | 1.058 | 1.033 | 0.474 | 553.8 | 161.7 | 3263.1 | 413.1 | 1.00 | 1.041 | 0.476
0.95 | 553.5 | 161.2 | 3233.4 | 413.1 | 1.061 | 1.033 | 0.476 | 553.6 | 162.6 | 3263.1 | 413.1 | 1.00 | 1.042 | 0.478
0.90 | 553.3 | 162.1 | 3229.4 | 413.1 | 1.069 | 1.034 | 0.478 | 553.4 | 163.5 | 3263.1 | 413.1 | 1.00 | 1.042 | 0.480
0.85 | 553.1 | 163.1 | 3224.9 | 413.1 | 1.078 | 1.034 | 0.481 | 553.2 | 164.5 | 3263.1 | 413.1 | 1.00 | 1.043 | 0.483
0.80 | 552.9 | 164.2 | 3219.8 | 413.1 | 1.088 | 1.035 | 0.483 | 553.0 | 165.6 | 3263.1 | 413.1 | 1.00 | 1.044 | 0.486
0.75 | 552.7 | 165.4 | 3216.3 | 413.1 | 1.095 | 1.036 | 0.486 | 552.8 | 166.9 | 3263.1 | 413.1 | 1.00 | 1.045 | 0.489
0.70 | 552.6 | 166.8 | 3210.1 | 413.1 | 1.107 | 1.036 | 0.490 | 552.6 | 168.3 | 3263.1 | 413.1 | 1.00 | 1.046 | 0.492
0.65 | 552.4 | 168.4 | 3206.0 | 413.1 | 1.115 | 1.037 | 0.494 | 552.4 | 170.0 | 3263.1 | 413.1 | 1.00 | 1.047 | 0.496
0.60 | 552.2 | 170.2 | 3199.2 | 413.1 | 1.128 | 1.038 | 0.498 | 552.2 | 171.9 | 3263.1 | 413.1 | 1.00 | 1.048 | 0.501
0.55 | 552.0 | 172.3 | 3190.2 | 413.1 | 1.145 | 1.039 | 0.504 | 552.0 | 174.0 | 3263.1 | 413.1 | 1.00 | 1.050 | 0.506
0.50 | 551.8 | 174.8 | 3180.6 | 413.1 | 1.163 | 1.041 | 0.510 | 551.8 | 176.6 | 3263.1 | 413.1 | 1.00 | 1.051 | 0.512
0.45 | 551.6 | 177.7 | 3170.9 | 413.1 | 1.181 | 1.042 | 0.517 | 551.7 | 179.6 | 3263.1 | 413.1 | 1.00 | 1.054 | 0.519
0.40 | 551.5 | 181.3 | 3156.1 | 413.1 | 1.208 | 1.044 | 0.526 | 551.5 | 183.3 | 3263.1 | 413.1 | 1.00 | 1.056 | 0.528
0.35 | 551.3 | 185.6 | 3139.3 | 413.1 | 1.238 | 1.047 | 0.537 | 551.3 | 187.8 | 3263.1 | 413.1 | 1.00 | 1.059 | 0.539
0.30 | 551.1 | 191.0 | 3115.3 | 413.1 | 1.280 | 1.049 | 0.551 | 551.1 | 193.4 | 3263.1 | 413.1 | 1.00 | 1.063 | 0.553
0.25 | 550.9 | 198.0 | 3091.3 | 413.1 | 1.321 | 1.053 | 0.568 | 550.9 | 200.7 | 3263.1 | 413.1 | 1.00 | 1.067 | 0.570
0.20 | 550.7 | 207.3 | 3055.8 | 413.1 | 1.380 | 1.058 | 0.592 | 550.7 | 210.3 | 3263.1 | 413.1 | 1.00 | 1.074 | 0.594
0.15 | 550.5 | 220.3 | 3004.5 | 413.1 | 1.462 | 1.065 | 0.625 | 550.5 | 223.9 | 3263.1 | 413.1 | 1.00 | 1.082 | 0.626
0.10 | 550.3 | 239.7 | 2932.6 | 413.1 | 1.572 | 1.075 | 0.674 | 550.3 | 244.2 | 3263.1 | 413.1 | 1.00 | 1.095 | 0.676
0.05 | 550.1 | 271.6 | 2823.0 | 413.1 | 1.731 | 1.091 | 0.755 | 550.1 | 277.9 | 3263.1 | 413.1 | 1.00 | 1.116 | 0.757
0.00 | 550.0 | 333.5 | 2624.7 | 413.1 | 2.000 | 1.122 | 0.927 | 550.0 | 343.9 | 3263.1 | 413.1 | 1.00 | 1.157 | 0.917

The demand/capacity ratios of C3 for ELM and DAM are drawn in Figure 4.4.
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Figure 4.4 — Demand/Capacity vs. End-Rigidity for C3 in Case — IV
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4.1.4.2. Results of C4 (Exterior Column)

Table 4.5 - Analysis and Design Results of C4 (exterior column) in Case — [V

Effective Length Method Direct Analysis Method
r P, | M, P, | M, K | B, | D/C P, | M, P, | M, | K B, | D/C
1.00 | 315.2 | 58.4 | 27779 | 187.8 | 1.058 | 1.033 | 0.368 | 315.3 | 58.9 | 28479 | 187.8 | 1.00 | 1.041 | 0.369
0.95 | 315.2 | 58.8 | 2770.5 | 187.8 | 1.064 | 1.033 | 0.370 | 315.3 | 59.3 | 2847.9 | 187.8 | 1.00 | 1.042 | 0.371
0.90 | 315.1 | 59.3 | 27619 | 187.8 | 1.071 | 1.034 | 0.373 | 315.3 | 59.8 | 2847.9 | 187.8 | 1.00 | 1.042 | 0.374
0.85 | 315.1 | 59.7 | 2753.2 | 187.8 | 1.078 | 1.034 | 0.375 | 315.2 60.2 | 28479 | 187.8 | 1.00 | 1.043 | 0.376
0.80 | 315.0 | 60.2 | 2743.3 | 187.8 | 1.086 | 1.035 | 0.378 | 315.2 60.8 | 28479 | 187.8 | 1.00 | 1.044 | 0.379
0.75 | 315.0 | 60.8 | 2732.1 | 187.8 | 1.095 | 1.036 A 0.381 | 315.1 | 61.3 | 2847.9 | 187.8 | 1.00 | 1.045 | 0.382
0.70 | 3149 | 614 | 2719.6 | 187.8 | 1.105 | 1.036 | 0.385 | 315.0 | 62.0 | 2847.9 | 187.8 | 1.00 | 1.046 | 0.385
0.65 | 314.8 | 62.1 | 2704.5 | 187.8 | 1.117 | 1.037 | 0.389 | 3149 | 62.7 | 28479 | 187.8 | 1.00 | 1.047 | 0.389
0.60 | 314.6 | 62.8 | 2688.1 | 187.8 | 1.130 | 1.038 | 0.393 | 314.8 | 63.4 | 28479 187.8 | 1.00 | 1.048 | 0.393
0.55 | 3145 | 63.7 | 2669.0 | 187.8 | 1.145 | 1.039 | 0.398 | 314.6 | 64.3 | 2847.9 | 187.8 | 1.00 | 1.050 | 0.398
0.50 | 3143 | 64.7 | 2646.0 | 187.8 | 1.163 | 1.041 A 0.404 | 3144 | 654 | 28479 187.8 | 1.00 | 1.051 | 0.403
0.45 | 314.1 | 65.9 | 2620.2 | 187.8 | 1.183 | 1.042 A 0411 | 314.2 | 66.6 | 28479  187.8 | 1.00 | 1.054 | 0.410
0.40 | 313.8 | 67.2 | 2587.7 | 187.8 | 1.208 | 1.044 | 0.419 | 3139 | 68.0 | 28479  187.8 | 1.00 | 1.056 | 0.417
0.35 | 313.4 | 68.8 | 2548.4 | 187.8 | 1.238 | 1.047 | 0.428 | 313.5 | 69.7 | 28479  187.8 | 1.00 | 1.059 | 0.426
0.30 | 3129 | 70.8 | 2499.4 | 187.8 | 1.275 | 1.049 | 0.440 | 313.1 71.7 | 28479 | 187.8 | 1.00 | 1.063 | 0.437
0.25 | 312.3 | 73.3 | 24379 | 187.8 | 1.321 | 1.053 | 0454 | 3125 | 743 | 28479 | 187.8 | 1.00 | 1.067 | 0.451
0.20 | 311.5 | 76.5 | 2358.2 | 187.8 | 1.380 | 1.058 | 0.474 | 3116 | 77.7 | 28479 187.8 | 1.00 | 1.074 | 0.468
0.15 | 310.3 | 80.9 | 2250.4 | 187.8 | 1.459 | 1.065 A 0.500 | 310.5 | 82.2 | 2847.9 | 187.8 | 1.00 | 1.082 | 0.492
0.10 | 308.5 | 87.1 | 2099.3 | 187.8 | 1.569 | 1.075 | 0.537 | 308.7 | 88.8 | 2847.9 | 187.8 | 1.00 | 1.095 | 0.527
0.05 | 305.6 | 97.0 | 1877.8 | 187.8 | 1.731 | 1.091 A 0.598 | 305.8 | 99.2 | 2847.9  187.8 | 1.00 | 1.116 | 0.582
0.00 | 300.0 | 115.2 | 1523.0 | 187.8 | 2.000 | 1.122 | 0.712 | 300.0 | 1189 | 2847.9 | 187.8 | 1.00 | 1.157 | 0.686

The demand/capacity ratios of C4 for ELM and DAM are drawn in Figure 4.5.
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Figure 4.5 — Demand/Capacity vs. End-Rigidity for C4 in Case — IV



4.2. DISCUSSION OF RESULTS

In this section, each table and each figure given in Section 4.1 are discussed

separately.

Table 4.1

e In Case — I, the contribution of compression to the D/C ratio is very low when
compared with flexural bending. For example, for the end-rigidity ratio of
0.15, the contribution of compression is 5.52% in ELM and 4.87% in DAM
whereas the contribution of flexural bending is 70.73% in ELM and 71.41%

in DAM.
r=0.15 (selected randomly)
Effective Length Method Direct Analysis Method
oM £ M
2P, M, 2P, M,
317.7 N 292.2 317.9 N 295.0
2-2875.5 413.1 2-3263.1  413.1
5.52% 70.73% 4.87% 71.41%
76.25% 76.28%

e Second-order forces and moments (P; & M;) obtained with DAM are greater

than those obtained with ELM.
e D/C ratios of DAM and ELM are very close in Case —I.

e The ratio of second-order drift to first-order drift, B,, is very low in Case — .
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Figure 4.1

The effect of flexible connections is better observed in the figure than the
table. In the pinned connected case (r = 0.00) the D/C ratio is about 0.95
whereas in rigidly connected case (r = 1.00) the D/C ratio is about 0.53 for
both methods. Between end-rigidity values of 1.00 and 0.50 the increase in
the D/C ratio is not significant, it rises from 0.53 to 0.61 for both methods.
However, between end-rigidity values of 0.50 and 0.00 the increase in the

D/C ratio is significant. It increases from 0.61 to 0.95 for both methods.

Table 4.2

In Case — II, the contribution of compression to the D/C ratio is lower than
the contribution of flexural bending but close to it. For example, for the end-
rigidity ratio of 0.15, the contribution of compression is 35.22% in ELM and
31.05% in DAM whereas the contribution of flexural bending is 45.32% in
ELM and 46.95% in DAM.

r=0.15 (selected randomly)

Effective Length Method Direct Analysis Method

B, 8 M B, 8 M

P. 9 M, P. 9 M,
1012.8 N 8 210.6 1013.2 N 8 218.2
2875.5 = 9 413.1 3263.1 9 413.1
3522% | 4532% 31.05% | 46.95%

80.54% 78.00%

Second-order forces and moments (P, & M;) obtained with DAM are greater

than those obtained with ELM.

D/C ratios of DAM and ELM are close to each other however as r factor
approaches to 0.00, the D/C ratios become different in Case — I1.
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The ratio of second-order drift to first-order drift, B,, is average in Case — II.

Figure 4.2

In pinned connected case (r = 0.00) the D/C ratio is 0.98 for ELM and 0.94
for DAM whereas in rigidly connected case (r = 1.00) the D/C ratio is about
0.61 for both methods. Between end-rigidity values of 1.00 and 0.50, the
increase in the D/C ratio is not significant; it rises from 0.61 to 0.67 for ELM
and to 0.66 for DAM. However, between end-rigidity values of 0.50 and 0.00
the increase in the D/C ratio is significant. It increases from 0.67 to 0.98 for

ELM and it increases from 0.66 to 0.94 for DAM.

Table 4.3

In Case — III, the contribution of compression to the D/C ratio is greater than
the contribution of flexural bending. For example, for the end-rigidity ratio of
0.15, the contribution of compression is 66.25% in ELM and 58.40% in DAM
whereas the contribution of flexural bending is 18.01% in ELM and 19.47%
in DAM.

r=0.15 (selected randomly)

Effective Length Method Direct Analysis Method
o, 8 M Fo, 8 M
P, 9 M, P, 9 M,
19051 8 837 19055 8 90.5
28755 9 413.1 32631 = 9 413.1
66.25% | 18.01% 58.40% | 19.47%
84.26% 77.87%

Second-order forces and moments (P, & M;) obtained with DAM are greater

than those obtained with ELM.
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As 1 approaches to 0.00 from 1.00, the difference between the D/C ratios of
ELM and DAM increases. The D/C ratios of ELM are greater than the D/C
ratios of DAM.

The ratio of second-order drift to first-order drift, B,, is high in Case — III.

Figure 4.3

In pinned connected case (r = 0.00) the D/C ratio is 0.98 for ELM and 0.87
for DAM whereas in rigidly connected case (r = 1.00) the D/C ratio is about
0.70 for both methods. Between end-rigidity values of 1.00 and 0.50, the
increase in the D/C ratio is not significant; it rises from 0.70 to 0.75 for ELM
and to 0.72 for DAM. However, between end-rigidity values of 0.50 and 0.00
the increase in the D/C ratio is significant. It increases from 0.75 to 0.98 for

ELM and it increases from 0.72 to 0.87 for DAM.

Table 4.4

For the critical interior column C3 In Case — IV, the contribution of
compression to the D/C ratio is low when compared with flexural bending.
For example, for the end-rigidity ratio of 0.15, the contribution of
compression is 9.16% in ELM and 8.44% in DAM whereas the contribution
of flexural bending is 53.33% in ELM and 54.20% in DAM.

r=0.15 (selected randomly)
Effective Length Method Direct Analysis Method
£ M oM
2P. M, 2P. M,
550.5 N 220.3 550.5 N 223.9
2-3004.5 = 413.1 2-3263.1  413.1
9.16% | 53.33% 8.44% | 54.20%
62.49% 62.64%
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e Second-order forces and moments (P & M;) obtained with DAM are greater

than those obtained with ELM.

e D/C ratios of DAM and ELM are very close for the interior column C3 in
Case — IV.

e The ratio of second-order drift to first-order drift, B,, is low in Case — IV.

Figure 4.4

e In the pinned connected case (r = 0.00) the D/C ratio is about 0.92 whereas in
rigidly connected case (r = 1.00) the D/C ratio is about 0.47 for both methods.
Between end-rigidity values of 1.00 and 0.50 the increase in the D/C ratio is
not significant, it rises from 0.47 to 0.51 for both methods. However, between
end-rigidity values of 0.50 and 0.00 the increase in the D/C ratio is

significant. It increases from 0.51 to 0.92 for both methods.

Table 4.5

e For the critical exterior column C4 In Case — IV, the contribution of
compression to the D/C ratio is low when compared with flexural bending.
For example, for the end-rigidity ratio of 0.15, the contribution of
compression is 6.89% in ELM and 5.45% in DAM whereas the contribution
of flexural bending is 43.08% in ELM and 43.77% in DAM.

r=0.15 (selected randomly)
Effective Length Method Direct Analysis Method

5o M 5o M
2P, M, 2P, M,
310.3 80.9 3105 82.2

2-2250.4 * 187.8 2-28479 * 187.8

6.89% | 43.08%

545% | 43.77%

49.97%

49.22%
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e Second-order forces and moments (P & M;) obtained with DAM are greater

than those obtained with ELM.

e D/C ratios of DAM and ELM are close for the exterior column C4 in Case —
IV.

e The ratio of second-order drift to first-order drift, B,, is low in Case — IV.

Figure 4.5

e In the pinned connected case (r = 0.00) the D/C ratio is about 0.70 whereas in
rigidly connected case (r = 1.00) the D/C ratio is about 0.37 for both methods.
Between end-rigidity values of 1.00 and 0.50 the increase in the D/C ratio is
not significant, it rises from 0.37 to 0.40 for both methods. However, between
end-rigidity values of 0.50 and 0.00 the increase in the D/C ratio is
significant. It increases from 0.40 to 0.70. Between r values of 0.00 and 0.25
(where the effective length factor begins to increase significantly) it is
observed that DAM becomes slightly unconservative when compared with
ELM. At r equals to 0.25 the D/C ratio is 0.45 for both methods. At r equals
to 0.00 the D/C ratio for ELM is 0.71 and for DAM it is 0.69.
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CHAPTER 5

CONCLUSIONS AND FUTURE RECOMMENDATIONS

5.1. CONCLUSIONS

To compare DAM and ELM in semi-rigid frames and to investigate the effect of

semi-rigid joints to stability, four case studies were conducted and the results of these

cases were obtained in terms of the demand/capacity ratio. The results were

presented and discussed in Chapter 4. Based on these discussions, following

conclusions were obtained.

In Case — I, the contribution of compression to D/C ratio is very low and
accordingly the results of ELM and DAM are very close. In Case — II, the
contribution of compression increases and accordingly ELM becomes more
conservative than DAM. In Case — III, the D/C ratios are governed by
compression therefore the difference between ELM and DAM becomes large.
When comparing Case — I, Case — II and Case — 111, it is concluded that as the
contribution of compression to D/C ratio increases, the D/C ratios obtained
with ELM become greater than the D/C ratios obtained with DAM. This
means that as the compressive force increases ELM gives conservative results

when compared with DAM.

ELM underestimates the internal forces and moments when compared with
DAM since geometric imperfections and member inelasticity are not
accounted for in the analysis whereas DAM considers these in the analysis.
To compensate the underestimation of internal forces and moments, ELM

decreases the compressive strength of members by using effective length
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factors. In cases where ELM and DAM give similar design results for the
members, the internal forces obtained with ELM are lower than the forces
obtained with DAM and this creates problem in connection design. The
connections are designed with smaller forces and moments with ELM.
Connection design is very important and critical for steel design since the fail
of a connection may lead the fail of the entire structure therefore, design of
connections with smaller forces than required is an undesired and

unacceptable situation.

From the results of the exterior column in Case — IV it is observed that in
minor-axis bending, DAM becomes slightly unconservative when compared
with ELM between the end-rigidity factor range of 0.00 and 0.25. This
conclusion is also obtained in the study of Ziemian and Martinez-Garcia [1].
As the end-rigidity factor approaches from 0.25 to 0.00, the influence of
semi-rigid connections becomes more significant and this is reflected by the
effective length factors in ELM. Since the influence of effective length factor
on the compressive strength is more pronounced in minor-axis bending in
general, the compressive strength of the members decreases more than it

decreases in major axis bending within this end-rigidity range.

From the results of all cases, it is observed that between end-rigidity values of
0.00 and 0.50, the connection stiffness significantly affects the D/C ratios
whereas between 0.50 and 1.00 it loses its influence. If the structure is
designed assuming the joints are ideally pinned (end-rigidity values is zero),
the structure will have more capacity than the calculated since the
connections are not perfectly pinned. In other words, small moment capacity
of the connections may increase the resistance of the structure significantly if
the connections are designed as pinned. This means that economy can be
provided by using semi-rigid connections instead of pinned connections. If
the structure is designed assuming the joints are fully rigid, the actual

capacity of the structure will be less than the calculated. In this case, an
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unsafe design comes out. However if the connections are designed as semi-
rigid instead of fully rigid, safety of the design is guaranteed with a little bit
increase in the cost of the structure. The increase in the cost is low because
within the end-rigidity range of 0.50-1.00 the increase in the demand/capacity

ratio is small.
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5.2. FUTURE RECOMMENDATIONS

The followings are recommended for future studies:

¢ One may perform the analyses assuming column bases semi-rigid instead of
fully rigid to determine the influence of column bases to the stability of the

structure.

e Model the semi-rigid connections as non-linear instead of linear modeling to

obtain more realistic results.

e Model a 3-D structure to investigate the effect of stability methods on major-

axis or minor-axis bending of columns.
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APPENDIX A

FLEXURAL STRENGTH OF COLUMNS

a) Flexural Strength of Columns in Case — I, Case — II and Case — 111

In-plane flexural strength of a column is determined according to Chapter F of the
AISC 360-10. First, the compactness of HEA300 should be checked. The limiting
values are given in Table B4.1b of AISC 360-10 which is given in Table Al.

Table A1 — Compactness Limits

TABLE B4.1b
Width-to-Thickness Ratios: Compression Elements
Members Subject to Flexure

Limiting
o Width-to-Thickness Ratio
@ Width-to- * *
© Description of Thickness | (compact/ |(noncompact/
Element Ratio noncompact) slender) Examples
10| Flanges of rolled b J *Q-ﬂ
I-shaped sections, E E e | s b
bt 0.38 /7 1.0 /— f T Y
channels, and tees Fy Fy I _ﬁFg:Ff
[ -]
11| Flanges of doubly [a] [b] b ’ b
" and singly symmet- E k.E gzl m%f
= ric I-shaped built-up bt 0.38 | — 0.95,|-2— b
2 sections Fy Lo T
£
2 [ o]
w .
12 | Legs of single
3 o ¢ E E b -
g angles bt 0.54 |— 091 |— e T -
% Fy Fy ‘—F&T 7}4%},,
2[13 Flanges of all
= I-shaped sections E E ] t
and channels in bit 0.38 | — 1.0,/ — h —lj=1
flexure about the \Fy \ Fy i B___Fb
weak axis !
14| Stems of tees E E
ar 0.84 | — 1.03 | — J:t,, d
F, Fy —J
15 | Webs of doubly- -
sym!'netrlc I-shaped h/ty 3.76 & 5.70 E fvg— i tu—i— h
sections and =9 =
channels -
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Compactness Check of Flanges

038 = =038 P00 _ 915 1.0 [Z =10 P20 _ 5408
TR 345 7 CUE T 345 7T

b 300/2 E b E
= =1071 - 0.38 i < 7 <10 |[= - Non - compact flange
y

14 E,

Compactness Check of Web

376 |2 =376 P20% _ 9053 570 |2 = 1.0 [P0 _ 137,
CUJE T 345 7 YU E T 345 T

h _290-14-2_ .0 h 376 |E <57 |E C t web
_—_—— —-re-s--m-—-- . b —_— . —_— . e g
t, 85 t, F, F, ompactwe

Flexural Strength (According to Chapter F.3 of AISC 360-10)

i. Lateral Torsional Buckling

L, = 4000 mm

L, =176 176747 P20 _ 3165
p =Y R T ' 345 oo

L. =195 E 1 J-c | (]'C)2+676(0'7Fy)2—10868
T TS 0 TE, (S, hy ' \S, Ry YO\NTE ) T mm
Where
E =200000 MPa
F,  =345MPa
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J = 878000 mm*

c =1
S,  =1259310 mm’
I,  =63100000 mm*

h, =h—tr =290 — 14 = 276 mm

_L,-h}  631x10° - 2767

Cp = 2 2 = 1.202x10'?
JI - Cy V631x105 - 1.202x1012
Tes = = = 83.15
Sy 1259310

L, =3165mm < L, =4000mm < L, = 10868 mm

M, = F, - Z, = 345- 1383000 = 477 kN - m

r

Ly—L
M, = C, [M,, — (M, — 0.7E,S,) [Lb Lpﬂ <M,

M, = 2.213 - [4.77x10° — (4.77x10° — 0.7 - 345 - 1259310) [M
o | ' | 10868 — 3165

M, = 1014 kN - m
M, = 1014kN-m>Mp =477kN-m —> M, =477kN-m
Where C,, is calculated as;

12.5Mpp0 12.5-209.7

C = =
b 25Mygy + 3My + 4Mp + 3M;  2.5-209.7 +3-58.1+4-31.2 + 3 - 120.4

Cp = 2.213
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AN

147.3 KN.m
1000mm
Ma

58.1 kN.m N
1000mm

31.2 kN.m N

B

1000mm

120.4 kN.m N

Mc

1000mm

209.7 kKN.m Muax J

Figure A1 — Moment Values for Cy, Calculation

In Cy calculation, the moment values of the critical column in Case — I are used. In
this part it is shown that C, does not affect the moment capacity of the columns

therefore for the Cases II and III it is unnecessary to calculate C, value.

ii. Compression Flange Buckling

1=2 =39 _qon App =038
T2t 2-140 pre

KT

E
=9.15 Aoy = LOJF: = 24.08
y

A—2
M, = M, — (M, — 0.7F,S,.) [ﬁ] =459 kN -m

The nominal flexural strength, M,, shall be the smaller of the values determined
according to the limit states of lateral-torsional buckling and compression flange

buckling.
M, = min(477 kN - m ;459 kN - m) = 459 kN - m
The design moment capacity of the column is;

M,=@, M, =09-459 = 413.1 kN -m
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b) Flexural Strength of Columns in Case — 1V

There are two types of columns in Case IV: interior columns and exterior columns.
For both types the columns are HEA300 however their orientations are different

which causes their in-plane flexural capacities to differ.

I.  Interior Columns
The flexural strength of interior columns is the same as the flexural strength of

columns in Case - I since the all the properties are the same. The design moment

capacity of interior columns is My =413.1 kN.m.

ii. Exterior Columns

Lateral Torsional Buckling

Since the out-of-plane axis is stronger than in-plane axis, lateral torsional buckling
does not apply. The flexural strength is determined according to compression flange

buckling.

Compression Flange Buckling

M, = F, - Z, = 345- 641000 = 221.1 kN - m

Where Z, refers to Z, in Table 3.1 in Section 3.1.

1=2 =30 _qon Jpy = 038 == 915 Ay =10 |2 = 24.08
T2ty 2-14 R VA R, T

A2
M, = M, — (M, — 0.7F,S,,) [A—”

] = 208.7kN -m
rf — Apr
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The design moment capacity of the column is;

M,=@,-M,=09-208.7 = 187.8 kN - m
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APPENDIX B

COMPRESSIVE STRENGTH OF COLUMNS

a) Compressive Strength of Columns in Case — I, Case — II and Case — 111

i.  Design with ELM

Compressive strength of the columns is determined according to Chapter E of AISC
360-10. The physical properties of HEA300 are given in Section 3.1 and the effective
length factor of the column is calculated as 1.193 in Section 3.2.1.2. The calculated
effective length factor is for the in-plane buckling, the out-of-plane effective length is

assumed as 0.5 in assumption 6 in Section 3.1.

K,L 1.193-4000
= =375
T 1271

K,=1193 1, =127.1mm

K, = 0.500 — 747 KyL _05-4000 ., ¢
y = U. Ty— S mm T‘y = 747 = .

- = 37.5 (the critical one will be used)

471 |2 =471 P20 1134537525
CUE T 345 T Tor

B 345
F..=(0.658% |F, = (0.658 1403) 345 = 311.1 MPa

106



X o - TE _m'200000 oo
where = (ﬂ)z = G52 a

r

B, = F4 Ay =311.1-11300 = 3515 kN : nominal compressive strength

@, B, =09-3515 = 3164 kN : design compressive strength

Available axial strength of the column is P, = 3164 kN.

ii.  Design with DAM

The physical properties of HEA300 are given in Section 3.1, the in-plane effective
length factor of the column is 1.0 and the out-of-plane effective length factor is 0.5 as

specified in Section 3.1.

K.L 1.0-4000
= =315
T 127.1

K, =10 T, = 127.1mm

KyL 0.5-4000

7 74.7

K, = 0.5 r, = 74.7 mm

K
- = 31.5 (the critical one will be used)

471 |2 =471 2200 _ 11345315 = 22
YR 345 7 T

b 345
F, = (0.658 Fe> E, = (0.658 1989) 345 = 320.8 MPa

. o o TE _m?200000 oo
where F, = (ﬂ)z = G757 - a
r
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B, = F, - Ay =320.8-11300 = 3625 kN  : nominal compressive strength

@, B, =09-3625 =3263 kN : design compressive strength

Available axial strength of the column is P, = 3263 kN.

b) Compressive Strength of Columns in Case — 1V

i. Interior Columns

Design with ELM

Compressive strength of the columns is determined according to Chapter E of AISC
360-10. The physical properties of HEA300 are given in Section 3.1 and the effective
length factor of the column is calculated as 1.095 in Section 3.5.1.2. The calculated
effective length factor is for the in-plane buckling, the out-of-plane effective length is

assumed as 0.5 in assumption 6 in Section 3.1.

K,L 1.095-4000
= =345
T 1271

K,=1.095 1, =127.1mm

KyL 0.5-4000

K, =0500 1, =747 mm a7 = 268

Ty

KL
- = 34.5 (the critical one will be used)

471 |5 = a7 P20 11345345 =5
CUE T 345 T Tor

b 345
F, = (0.658 Fe)Fy = (0.658 1658) 345 = 316.2 MPa
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" o o TE _m'200000 o
where = (ﬂ)z = @Gasy? a

r

B, = Fy Ay =316.2-11300 = 3573 kN : nominal compressive strength

@.-P, =09-3573 =3216 kN : design compressive strength

Available axial strength of the column is P, = 3216 kN.

Design with DAM

The interior columns in Case - IV have the same properties with those of columns in
Case I (both of them are HEA300, have 4m length and effective length factor of
1.00) therefore interior columns in Case - IV (C2 & C3) have the same compressive

strength with the columns in Case - I.

Available axial strength of the interior columns is P, = 3263 kN.

ii. Exterior Columns

Design with ELM

The only difference between the interior and exterior columns is the orientation. The
flexural strength of exterior columns is calculated in the same way with the interior
columns however the physical properties given for x-direction is accepted as they are

for y-direction and the properties given for y are for x-direction.

Ky = 1095 1,=747 Kl (10954000 _ 445
= 1. 1, = 74.7 mm T 17 = 58.

109



KyL  0.5-4000
= =15.7
T, 127.1

K, =0500 1, =127.1mm

K
- = 58.5 (the critical one will be used)

471 |5 =471 P20 11345585 =5
YR T 345 T Tor

o 345
E, = (0.658 Fe> F, = (0.658 577) 345 = 268.6 MPa

__mE__ 200000
- Q)Z‘ (5852 ¢

r

where F,

B, =Fy Ay =268.6-11300 = 3035 kN  : nominal compressive strength

@.-B, =09-3031 =2732kN : design compressive strength

Available axial strength of the column is P, = 2732 kN.

Design with DAM

The in-plane effective length factor of the exterior columns is 1.0 and the out-of-
plane effective length factor is 0.5 as specified in Section 3.1. The properties given
for x and y directions are replaced as described in Design with ELM for exterior

columns in Case — I'V.

K.L 1.00-4000
Ke=100  r=747mm == — = 53.5

KyL _0.5-4000 15
1274 T

Ky = 0.50 T, = 127.1mm m
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KL
- = 53.5 (the critical one will be used)

471 E—471 200000—1134>535—KL
CUE 345 ' Ty

o 345
F,=(0658% |F, = (0.658 577) 345 = 280.0 MPa

" . m’E B w2200000 _ 688 MP
where = (ﬂ)z = G357 a

r

B, = Fy Ay = 280.0- 11300 = 3164 kN : nominal compressive strength

@, B, =09-3164 = 2848 kN : design compressive strength

Available axial strength of the column is P, = 2848 kN.
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APPENDIX C

STRUCTURAL ANALYSIS STEPS OF CASES

1. Case - 11

a) Design with ELM

Stiffness matrix of the columns C1

[ 5.65x10° 0
0 6.85x103
0 1.37x107
k.=
—5.65x10° 0
0
0 1.37x107

and C2,

0
1.37x107
3.65x101°

0

—6.85x10% —1.37x107

1.83x101°

—5.65x10° 0 0
0 —6.85x10° 1.37x107
0 —1.37x107 1.83x10'°
5.65x10° 0 0
0 6.85x10° —1.37x107
0 —1.37x107 3.65x10°

Displacement matrices of columns C1 and C2,

U1 U2
u u
0 0
dCl - 01 dCZ - 02
0 0
0 0
Stiffness matrix of the beam B1,
1.36x103 5.42x10° —1.36x103
5.42x10%  3.15x10'° —5.42x10°
B1 =
—1.36x10% —5.42x10° 1.36x103
5.42x10° 1.18x101° —5.42x10°
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1.18x101°
—5.42x10°
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Displacement matrix of beam B1,

The connection stiffness and stability functions are calculated as,

1 1

= .75 = R.. = 1. . 101N -

" 1+£ - 075 1+3'(2-105.482.106) = Ry 085-10 mm
LRyi 8000 - Ry,

R*—(1+ 4EI)(1+ 4E1> (El)z( 4 )
LRyix LRyp L/ \RyiaRyip

R — 1+4'(2-105-482-106)2 2.105 - 482 - 106 2( 4 )
- 8000 - 1.085 - 1011 8000 (1.085 - 1011)2
R* =2.037
12E1 12-2-105 - 482 - 106
sk = (4 * LRkiA) _ (4 + 78000 - 1.085 - 1011 ) 262
’ R 2.037 -
12E1 12-2-105 - 482 - 106
sk = (4 + LRkiB) _ (4 + 8000 -1.085 - 1011 ) 262
V R 2.037 -
x , 2 2
Sij = Sji = 2037 0.98
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Member forces for C1 is (units are in kN and m),

[ 5.65x10° 0 0 —5.65x10° 0 0

0 6.85x10% 1.37x107 0 —6.85x103 1.37x107

0 1.37x107 3.65x10%° 0 —1.37x107 1.83x10%°

—5.65x10° 0 0 5.65x10° 0 0

0 —6.85x103—-1.37x107 0 6.85x10% —1.37x107

0 1.37x107 1.83x10° 0
Member forces for C2 is (units are in kN and m),

[ 5.65x10° 0 0 —5.65x10° 0 0

0 6.85x10% 1.37x107 0 —6.85x10% 1.37x107

0 1.37x107 3.65x10'° 0 —1.37x107 1.83x10°

0

0 —6.85x103—1.37x107 0 6.85x10% —1.37x107

0 1.37x107 1.83x10'° 0 —1.37x107 3.65x10°

Member forces for Bl is (units are in kN and m),

1.36x103 5.42x10° —1.36x10% 5.42x10°
5.42x10° 3.15x10° —542x10° 1.18x10%°

5.42x10° 1.18x10'° —542x10° 3.15x10'°
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—1.37x107 3.65x101°

x
—5.65x10° 0 0 5.65x10° 0

r—1.72797
12.7947
—0.0022
0
0

0

(—1.81197
12.7947
—0.0022
0
0

—0.0022

0

[—1.7279] [—23.7]

—0.0022
X
—1.36x10® —5.42x10° 1.36x10° —5.42x10°| |—1.8119

23.7

r—1023.77

L 135.1 A

—-94.9

—94.9

[—976.37
57.5
94.9

976.3
—57.5
- 135.1 4

57.5
94.9
1023.7
-57.5




b) Design with DAM

Stiffness matrix of the columns C1 and C2,

[ 4.52x10° 0 0 —4.52x10°

0 5.48x10% 1.10x107 0

0 1.10x107 2.92x101° 0

ke =
—4.52x10° 0 0 4.52x10°
0 —5.48x103 —1.10x107 0
0 1.10x107 1.46x101° 0
Displacement matrices of columns C1 and C2,
V1 Uy
%] [
6 0
dCl - 01 dCZ - 02
0 0
0 0
Stiffness matrix of the beam B1,
1.08x103 4.34x10° —1.08x103
4.34x10° 2.52x10'° —4.34x10°
B1 =

—1.08x10% —4.34x10° 1.08x103
4.34x10° 9.46x10° —4.34x10°

Displacement matrix of beam B1,
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0 0

—5.48x10% 1.10x107
—1.10x107 1.46x10%°
0 0

5.48x10% —1.10x107

—1.10x107 2.92x10%°

—

4.34x10°

9.46x10°
—4.34x10°
2.52x101°



The connection stiffness and stability functions are calculated as,

1 1
= 2 = = L1010n .
"= 14 3EI 0.75 14 3- (160000 - 482 - 10°) - Ry; =8.676-10""N -mm
LRy 8000 - Ry;

R*—(1+ 4E1)(1+ 4E1> (EI)2< 4 )
LRyia LRyig L/ \RyiaRyig

. 4. (160000 - 482 - 105)\> /160000 - 482 - 10° 2( 4 )
- 8000 - 8.676 - 1010 8000 (8.676 - 1010)2
R* = 2.037
12E1 12 - 160000 - 482 - 106
o (++Rg,) _ (+ +“5500- 5678 - 1) ey
i R* 2.037 '
12EI 12 - 160000 - 482 - 10°
o (++2hgp) _ (4 + 55005678 - 197 ) es
Ji R* 2.037 '
2 2
Sij=S]l_F=m=O.98

Member forces for C1 is (units are in kN and m),

F452x10° 0 0 —452x10° 0 0 1 [-215997 —976.3]
0  548¢10° 1.10x107 0  —548x10° 1.10x107 | [15.9934 57.5
0 110x107 292x10'° 0  —1.10x107 146x10%° | (-0.0027| | 94.9

—452x105 0 0 452x10°5 0 o |1l o | o763
0  —548x103-1.10x107 0  5.48x10° —1.10x10’ 0 ~57.5
0 110x107 1.46x10° 0  —110x107292x10) L o 1 L1351
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Member forces for C2 is (units are in kN and m),

Member forces for B1 is (units are in kN and m),

1.08x103 4.34x10° —1.08x10% 4.34x10° —2.1599 —23

[ 4.52x10° 0 0 —4.52x10° 0 0 1 1—2.26491
0 5.48x10% 1.10x107 0 —5.48x10% 1.10x107 15.9934
0 1.10x107 2.92x10'° 0 —1.10x107 1.46x10° —0.0027 B
—4.52x10° 0 0 4.52x105 0 0 * 0 -
0 —5.48x103-1.10x107 0 5.48x10% —1.10x107 0
0 1.10x107 1.46x10'° 0 —1.10x107 2.92x10*°1 t 0

(—1023.77
57.5
94,9

1023.7
-57.5
L 135.1 A

7

4.34x10% 2.52x10'° —4.34x10° 9.46x10° —0.0027 —94.9

X =

—1.08x10® —4.34x10° 1.08x10° —4.34x10°| |—2.2649 23.7

4.34x10° 9.46x10° —4.34x10° 2.52x10'° —0.0027 —94,
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2. Case - I11

a) Design with ELM

Stiffness matrix of the columns C1 and C2,

[ 5.65x10° 0 0 —5.65x10°
0 6.85x10% 1.37x107 0
0 1.37x107 3.65x10%° 0
k. =
—5.65x10° 0 0 5.65x10°
0 —6.85x103% —1.37x107 0
0 1.37x107 1.83x101° 0
Displacement matrices of columns C1 and C2,
2] v,
%] [
0 0
dCl - 01 dCZ - 02
0 0
0 0
Stiffness matrix of the beam B1,
[ 1.36x103 5.42x10° —1.36x103
5.42x10°  3.15x10'° —5.42x10°
B1 =
l—1.36xlO3 —5.42x10° 1.36x103
5.42x10°  1.18x10'° —542x10°
Displacement matrix of beam B1,
V1
(7]
dBl - U;
6,
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0 0

—6.85x103 1.37x107

—1.37x107 1.83x10%°
0 0

6.85x10% —1.37x107

—1.37x107 3.65x10%°

—

5.42x10°

1.18x101°
—5.42x10°
3.15x101°

|



The connection stiffness and stability functions are calculated as,

1 1
= 0.75 = 1085 101N
' 1+£ ” 1+3~(2-105.482.106) - ki mm
LRui 8000 - Ry,

R*—(1+ 4EI)(1+ 4E1> (51)2( 4 )
LRyia LRyip L7 \RypiaRkis

e 4-(2-105-482-10%)\ 2-105-482-1062( 4 )
- 8000 - 1.085 - 1011 8000 (1.085 - 1011)2

R* = 2.037
12E1 12-2-105 - 482 - 106
o = (++17_,) _ (4 + 8000 - 1.085 - 101 ) e
R 2.037 =2
12E1 12:2 - 105 . 482 . 106
o = (++17,) _ (4 + 8000 - 1.085 - 1011 ) e
o R* 2.037 :
2
Sij =S =57 = 57025 =098
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Member forces for C1 is (units are in kN and m),

[ 5.65x10° 0 0 —5.65x10° 0 0
0 6.85x10% 1.37x107 0 —6.85x10% 1.37x107
0 1.37x107 3.65x10%° 0 —1.37x107 1.83x101°
—5.65x10° 0 0 5.65x10° 0 0
0 —6.85x103—1.37x107 0 6.85x10% —1.37x107
0 1.37x107 1.83x10%° 0 —1.37x107 3.65x101°

Member forces for C2 is (units are in kN and m),

[ 5.65x10° 0 0 —5.65x10° 0 0
0 6.85x10% 1.37x107 0 —6.85x10% 1.37x107
0 1.37x107 3.65x10'° 0 —1.37x107 1.83x10°
—5.65x10° 0 0 5.65x10° 0 0
0 —6.85x103—1.37x107 0 6.85x10% —1.37x107
0 1.37x107 1.83x10'° 0 —1.37x107 3.65x10°

Member forces for Bl is (units are in kN and m),

1.36x103 5.42x10° —1.36x10% 5.42x10° [—3.3482]
5.42x10°  3.15x10'° —5.42x10° 1.18x10%° —0.0008
—1.36x10® —5.42x10° 1.36x10° —5.42x10° * —3.3774

5.42x10° 1.18x10'° —542x10° 3.15x10'° —0.0008

120

(—3.34827
4.4503
—0.0008

(—3.37747
4.4503
—0.0008

(—1891.77
20.0
33.0

1891.7

—20.0
47.0

r—1908.37
20.0
33.0

1908.3
—20.0
47.0

[ —-8.3 ]

—-33.0
8.3
—-33.0



b) Design with DAM

Stiffness matrix of the columns C1 and C2,

[ 4.52x10° 0 0 —4.52x10°

0 5.48x10% 1.10x107 0

0 1.10x107 2.92x101° 0

ke =
—4.52x10° 0 0 4.52x10°
0 —5.48x103 —1.10x107 0
0 1.10x107 1.46x101° 0
Displacement matrices of columns C1 and C2,
V1 Uy
%] [
6 0
dCl - 01 dCZ - 02
0 0
0 0
Stiffness matrix of the beam B1,
1.08x103 4.34x10° —1.08x103
4.34x10° 2.52x10'° —4.34x10°
B1 =

—1.08x10% —4.34x10° 1.08x103
4.34x10° 9.46x10° —4.34x10°

Displacement matrix of beam B1,
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0 0

—5.48x10% 1.10x107
—1.10x107 1.46x10%°
0 0

5.48x10% —1.10x107

—1.10x107 2.92x10%°

—

4.34x10°

9.46x10°
—4.34x10°
2.52x101°



The connection stiffness and stability functions are calculated as,

1 1
= 2 = = L1010n .
"= 14 3EI 0.75 14 3- (160000 - 482 - 10°) - Ry; =8.676-10""N -mm
LRy 8000 - Ry;

R*—(1+ 4E1)(1+ 4E1> (EI)2< 4 )
LRyia LRyig L/ \RyiaRyig

. 4. (160000 - 482 - 105)\> /160000 - 482 - 10° 2( 4 )
- 8000 - 8.676 - 1010 8000 (8.676 - 1010)2
R* = 2.037
12E1 12 - 160000 - 482 - 106
o (++Rg,) _ (+ +“5500- 5678 - 1) ey
i R* 2.037 '
12EI 12 - 160000 - 482 - 10°
o (++2hgp) _ (4 + 55005678 - 197 ) es
Ji R* 2.037 '
2 2
Sij=S]l_F=m=O.98

Member forces for C1 is (units are in kN and m),

F452x10° 0 0 —452x10° 0 0 7 [—4.1853] [—1891.7
0  548¢10° 1.10x107 0  —548x10% 1.10x107 | | 5.5629 20.0
0 110x107 292x101° 0  —1.10x107 1.46x10% | [-0.0010| | 33.0

—452x105 0 0 452x105 0 o || o | |18917
0  —548x10°-1.10x107 0  5.48x10° —1.10x107 0 ~20.0
0 110x107 1.46x10° 0  —1.10x107292¢t0d L o 1 L 470
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Member forces for C2 is (units are in kN and m),

[ 4.52x10° 0 0 —4.52x10° 0 0
0 5.48x10% 1.10x107 0 —5.48x10% 1.10x107
0 1.10x107 2.92x10'° 0 —1.10x107 1.46x10°
—4.52x10° 0 0 4.52x105 0 0
0 —5.48x103-1.10x107 0 5.48x10% —1.10x107
0 1.10x107 1.46x10'° 0 —1.10x107 2.92x101°

Member forces for B1 is (units are in kN and m),

[—2.26491
15.9934
—0.0027

0
0

(—1908.37

0

1.08x103 4.34x10° —1.08x10% 4.34x10° —2.1599
434x10% 2.52x10%° —4.34x10° 9.46x10° —0.00271
—1.08x10® —4.34x10° 1.08x10° —4.34x10° * —2.2649 -
4.34x10° 9.46x10° —4.34x10° 2.52x10'° —0.0027
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-8.3
—-33.0
8.3
—-33.0

20.0
33.0
1908.3
—20.0
47.0




3.Case -1V

a) Design with ELM

Stiffness matrix of the columns C1 and C4,

ke =key =

[ 5.65x10° 0 0 —5.65x10° 0
0 2.37x10% 4.73x10° 0 —2.37x103
0 4.73x10° 1.26x10° 0 —4.73x10°
—5.65x105 0 0 5.65x10° 0
0 —2.37x103 —4.73x10° 0 2.37x103
0 4.73x10°  6.31x10° 0 —4.73x10°

Stiffness matrix of the columns C2 and C3,

ke =kes =

[ 5.65x10° 0 0 —5.65x10° 0
0 6.85x103 1.37x107 0 —6.85x103
0 1.37x107 3.65x101° 0 —1.37x107
—5.65x10° 0 0 5.65x10° 0
0 —6.85x103 —1.37x107 0 6.85x10°
0 1.37x107 1.83x10° 0 —1.37x107

Displacement matrices of columns C1, C2, C3 and C4,

A
dc1=i01i dc2=i02i decz = 03 dc4=i04i
H H Lo Lol
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0
4.73x10°
6.31x10°

0

—4.73x10°

1.26x10°

0
1.37x107
1.83x101°
0
—1.37x107
3.65x1010 .




Stiffness matrix of the beams B1, B2 and B3,

[ 1.36x103  5.42x10° —1.36x10° 5.42x10° 1
5.42x10°  3.15x10° —5.42x10° 1.18x10%°
kBl = sz = k33 =
l—1.36x103 —5.42x10° 1.36x103 —5.42x106J
5.42x10°  1.18x10° —5.42x10° 3.15x10%°

Displacement matrices of beams B1, B2 and B3:

U1 V2 U3
61 0, 03
dp1 = v, dpz = V3 dps = v,
0, 03 04

The beams are identical therefore, stiffness matrices, connection stiffnesses and
stability functions are identical too. The connection stiffness and stability functions

are calculated as,

_ 1 1

= .75 = R.. = 1. . 101N -

r 1+£ - 0.75 1+3'(2'105'482-106) ki 085-10 mm
LRyi 8000 - Ry,

R*—(1+ 4E1)<1+ 4E1> (EI)Z( 4 )
LRyia LRyip L RyiaRyip

o 1+4-(2-105-482-106)2 2-105-482-1062( 4 )
- 8000 - 1.085 - 1011 8000 (1.085 - 1011)2
R* = 2.037
12E1 12-2-105 - 482 - 10
o (++Trg,) _ (+ + 3500~ 1085 - 107 ) e
i R 2.037 '
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12E1 122105 - 482 - 10°
o (++2hgp) _ (+ + 3500~ 1085 - 107) e
i R* 2.037 '

2
Siji=S;=—=5—=-=098

Member forces for C1 (units are in kN and m);

Member forces for C2 (units are in kN and m);

Member forces for C3 (units are in kN and m);
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[—0.50627

[ 5.65x10° 0 0 —5.65x10° 0 0
0 2.37x10% 4.73x10° 0 —2.37x103 4.73x10°
0 4.73x10° 1.26x10%° 0 —4.73x10° 6.31x10°
—5.65x10° 0 0 5.65x10° 0 0
0 —2.37x10%3-4.73x10° 0 2.37x10% —4.73x10°
0 4.73x10° 6.31x10° 0 —4.73x10° 1.26x101°

r—0.96807

[ 5.65x10° 0 0 —5.65x10° 0 0
0 6.85x10% 1.37x107 0 —6.85x10% 1.37x107
0 1.37x107 3.65x10%° 0 —1.37x107 1.83x10*°
—5.65x10° 0 0 5.65x10° 0 0
0 —6.85x103—1.37x107 0 6.85x10% —1.37x107
0 1.37x107 1.83x10%° 0 —1.37x107 3.65x10°

[ 5.65x10° 0 0 —5.65x10° 0 0
0 6.85x10% 1.37x107 0 —6.85x10% 1.37x107
0 1.37x107 3.65x10° 0 —1.37x107 1.83x10°
—5.65x10° 0 0 5.65x10° 0 0
0 —6.85x103—1.37x107 0 6.85x10% —1.37x107
0 1.37x107 1.83x10° 0 —1.37x107 3.65x101°

13.739
—0.0011

13.739
—0.0016

[—286.07
27.3
51.1

286.0

—-27.3

L 58.1 A

[—546.97
72.2
129.8
546.9
—72.2

(—0.97817

13.739
—0.0016

L 159.0

[—552.67
72.8
131.3
552.6
—72.8
- 159.7 4




Member forces for C4 (units are in kN and m);

[ 5.65x10° 0 0 —5.65x10° 0 0 r—0.50627
0 2.37x10% 4.73x10° 0 —2.37x10% 4.73x10° 13.739
0 4.73x10% 1.26x101° 0 —4.73x10°% 6.31x10° —0.0011
X
—5.65x10° 0 0 5.65x10° 0 0 0
0 —2.37x10%3—4.73x10° 0 2.37x10% —4.73x10° 0
0 4.73x10°% 6.31x10° 0 —4.73x10°6 1.26x101° 0
Member forces for B1 (units are in kN and m);
1.36x103 5.42x10° —1.36x10% 5.42x10° —0.5062
5.42x10° 3.15x10° —5.42x10° 1.18x10%° —0.0011 —51.1
X =
—1.36x10% —5.42x10° 1.36x10% —5.42x10° l—0.9680J
5.42x10° 1.18x10° —5.42x10° 3.15x10%° —0.0016
Member forces for B2 (units are in kN and m);
1.36x103 5.42x10° —1.36x10% 5.42x10° —0.9680
5.42x10° 3.15x10° —5.42x10° 1.18x10° —0.0016 —68.8
X =
—1.36x10% —542x10° 1.36x10% —5.42x10° [—0.9781J l
5.42x10° 1.18x10° —542x10° 3.15x10'° —0.0016
Member forces for B3 (units are in kN and m);
1.36x103 5.42x10° —1.36x10% 5.42x10° —0.9781
5.42x10° 3.15x10° —542x10° 1.18x10%° —0.0016
X =
—1.36x10% —5.42x10° 1.36x10% —5.42x10°%| [—0.5566
5.42x10° 1.18x10° —542x10° 3.15x10%° —0.0010
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(—314.57
27.8
52.4

314.5
—27.8

—14.0

14.0
—61.0

-17.1

17.1
—68.0

—14.5
—63.3
14.5
—-52.4

L 58.7

|



b) Design with DAM

Stiffness matrix of the columns C1 and C4:

[ 4.52x10° 0 0 —4.52x10° 0
0 1.89x10% 3.79x10° —1.89x103
0 3.79x10° 1.01x10%° —3.79x10°

kcl = kc4 =

—4.52x10° 0 0 4.52x10° 0
0 —1.89x103 —3.79x10° 1.89x103
0 3.79x10° 5.05x10° —3.79x10°

Stiffness matrix of the columns C2 and C3:

[ 4.52x10° 0 0 —4.52x10° 0
0 5.48x10% 1.10x107 —5.48x103
0 1.10x107 2.92x101° —1.10x107

kcz = kc3 =

—4.52x10° 0 0 4.52x10° 0
0 —5.48x103 —1.10x107 5.48x103
0 1.10x107 1.46x101° —1.10x107

Displacement matrices of columns C1, C2, C3 and C4:
1] [v2] [73] [4]
A I 4 I 4 I Y
dc1=|01| dc2=|02| des = 03 dc4=|04|
0 0 0 0

Lol Lo 1o Lol
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0
3.79x10°
5.05x10°

0

—3.79x10°
1.01x101°

0
1.10x107
1.46x101°
0
—1.10x107
2.92x101°




Stiffness matrix of the beams B1, B2 and B3:

[ 1.08x103  4.34x10° —1.08x103 4.34x10° 1
434x10° 2.52x101° —4.34x10° 9.46x10°
l—1.08x103 —4.34x10° 1.08x103 —4.34x106J
434x10°  9.46x10° —4.34x10° 2.52x101°

kg = kg, = kps =

Displacement matrices of beams B1, B2 and B3:

U1 V2 U3
61 0, 03
dp1 = v, dpz = V3 dps = v,
0, 03 04

The beams are identical therefore, stiffness matrices, connection stiffnesses and

stability functions are identical too. The connection stiffness and stability functions

are calculated as:

1 1
= 75 = Ry; = 8.676 - 101°N -
TT ], 3H = 075 |+ 3-(08-2-10%-482-10°) = Rii =8676- 107N - mm
LRy 8000 - Ry;

R*—(1+ 4E1)<1+ 4E1> (EI)Z( 4 )
LRyia LRyip L RyiaRyip

o (1 4-(0.8-2-105-482-10%)\° 0.8-2-105-482-1062( 4 )
- 8000 - 8.676 - 1010 8000 (8676 - 1010)2
R* = 2.037
12E1 12-2-105 - 482 - 108
o (++Trg,) _ (+ + 3500~ 1085 - 107 ) e
i R 2.037 '
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12E1 122105 - 482 - 10°
o (++2hgp) _ (+ + 3500~ 1085 - 107) e
i R* 2.037 '

2
Siji=S;=—=5—=-=098

Member forces for C1 (units are in kN and m);

Member forces for C2 (units are in kN and m);

Member forces for C3 (units are in kN and m);

130

(—0.63277

[ 4.52x10° 0 0 —4.52x10° 0 0
0 1.89x10% 3.79x10° 0 —1.89x103 3.79x10°
0 3.79x10° 1.01x10%° 0 —3.79x10° 5.05x10°
—4.52x10° 0 0 4.52x10° 0 0
0 —1.89x10%-3.79x10° 0 1.89x10% —3.79x10°
0 3.79x10° 5.05x10° 0 —3.79x10° 1.01x10*°

r—1.21007

[ 4.52x10° 0 0 —4.52x10° 0 0
0 5.48x10% 1.10x107 0 —5.48x10% 1.10x107
0 1.10x107 2.92x10° 0 —1.10x107 1.46x10°
—4.52x10° 0 0 4.52x10° 0 0
0 —5.48x10%-1.10x107 0 5.48x10% —1.10x107
0 1.10x107 1.46x10° 0 —1.10x107 2.92x10°

[ 4.52x10° 0 0 —4.52x10° 0 0
0 5.48x10% 1.10x107 0 —5.48x103 1.10x107
0 1.10x107 2.92x10° 0 —1.10x107 1.46x10*°
—4.52x10° 0 0 4.52x10° 0 0
0 —5.48x10%3-1.10x107 0 5.48x10% —1.10x107
0 1.10x107 1.46x10%° 0 —1.10x107 2.92x10*°

17.1741
—0.0014
0
0
0

17.1741
—0.0020
0
0

[—286.07
27.3
51.1

286.0

—-27.3

0

(—1.22277

17.1741
—0.0019
0
0

L 58.1 A

[—546.97
72.2
129.8
546.9
—72.2

0

L 159.0

[—552.67
72.8
131.3
552.6
—72.8
- 159.7 4




Member forces for C4 (units are in kN and m);

[ 4.52x10° 0 0 —4.52x10° 0 0 r—0.69577
0 1.89x10% 3.79x10° 0 —1.89x10% 3.79x10° 17.1741
0 3.79x10° 1.01x10° 0 —3.79x10° 5.05x10° —0.0013
X =
—4.52x10° 0 0 4.52x10° 0 0 0
0 —1.89x10%-3.79x10° 0 1.89x103 —3.79x10° 0
0 3.79x10° 5.05x10° 0 —3.79x1061.01x101° 0
Member forces for B1 (units are in kN and m);
1.08x103 4.34x10%° —1.08x10% 4.34x10° —0.6327 —14.0
434x10° 2.52x10'° —4.34x10° 9.46x10° —0.0014 —51.1
X =
—1.08x10% —4.34x10° 1.08x10% —4.34x10°| [—1.2100 14.0
4.34x10° 9.46x10° —4.34x10° 2.52x10° —0.0020 —61.0
Member forces for B2 (units are in kN and m);
1.08x103 434x10° —1.08x10% 4.34x10° —1.2100 -17.1
434x10% 2.52x10'° —4.34x10° 9.46x10° —0.0020 —68.8
X =
—1.08x10% —4.34x10° 1.08x10% —4.34x10° l—1.2227J l 17.1 J
4.34x10° 9.46x10° —4.34x10° 2.52x10° —0.0019 —68.0

Member forces for B3 (units are in kN and m);

1.08x103 4.34x10° —1.08x10% 4.34x10° —1.2227 —-14.5
434x10% 2.52x10%° —4.34x10° 9.46x10° —0.0019} 1-63.3
—1.08x10® —4.34x10° 1.08x10° —4.34x10° * —0.6957| 14.5
4.34x10° 9.46x10° —4.34x10° 2.52x10'° —0.0013 —-52.4
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[—286.07

27.3

51.1
286.0
—-27.3
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APPENDIX D

LATERAL DRIFT VALUES OF CASES

1. Case -1
Table D.1 — Lateral Drift Values for Case - I
Effective Length Method Direct Analysis Method
r 1° Order Drift (mm) | 2" Order Drift (mm) 1% Order Drift (mm) | 2" Order Drift (mm)
1.00 17.11 17.41 21.38 21.86
0.95 17.50 17.82 21.88 22.37
0.90 17.93 18.26 22.42 22.93
0.85 18.40 18.75 23.00 23.55
0.80 18.91 19.28 23.64 24.22
0.75 19.47 19.86 24.34 24.95
0.70 20.09 20.50 25.11 25.76
0.65 20.77 21.21 25.96 26.66
0.60 21.53 22.00 26.91 27.66
0.55 22.38 22.89 27.97 28.78
0.50 23.33 23.89 29.16 30.05
0.45 24.42 25.03 30.52 31.49
0.40 25.66 26.34 32.08 33.15
0.35 27.10 27.86 33.87 35.07
0.30 28.78 29.64 35.98 37.33
0.25 30.78 31.76 38.47 40.02
0.20 33.18 34.33 41.47 43.28
0.15 36.13 37.50 45.16 47.32
0.10 39.84 41.51 49.80 52.43
0.05 44.64 46.75 55.81 59.13
0.00 51.11 53.89 63.89 68.29
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2. Case - 11

Table D.2 — Lateral Drift Values for Case - 11

Effective Length Method Direct Analysis Method
r 1° Order Drift (mm) | 2™ Order Drift (mm) 1° Order Drift (mm) | 2" Order Drift (mm)
1.00 11.24 11.93 14.05 15.14
0.95 11.50 12.22 14.38 15.52
0.90 11.78 12.54 14.73 15.93
0.85 12.09 12.89 15.11 16.38
0.80 12.43 13.27 15.53 16.87
0.75 12.79 13.69 15.99 17.42
0.70 13.20 14.16 16.50 18.02
0.65 13.65 14.67 17.06 18.69
0.60 14.15 15.25 17.68 19.44
0.55 14.70 15.90 18.38 20.29
0.50 15.33 16.64 19.17 21.25
0.45 16.05 17.48 20.06 22.35
0.40 16.86 18.45 21.08 23.63
0.35 17.81 19.59 22.26 25.12
0.30 18.91 20.94 23.64 26.89
0.25 20.22 22.56 25.28 29.04
0.20 21.80 24.54 27.25 31.67
0.15 23.74 27.02 29.68 34.99
0.10 26.18 30.23 32.73 39.30
0.05 29.34 34.52 36.67 45.14
0.00 33.59 40.56 41.99 53.47
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3. Case - I11

Table D.3 — Lateral Drift Values for Case - 111

Effective Length Method Direct Analysis Method
r 1° Order Drift (mm) | 2" Order Drift (mm) 1° Order Drift (mm) | 2" Order Drift (mm)
1.00 3.91 4.39 4.89 5.66
0.95 4.00 4.50 5.00 5.81
0.90 4.10 4.63 5.12 5.98
0.85 4.21 4.77 5.26 6.16
0.80 4.32 4.92 5.40 6.36
0.75 4.45 5.08 5.56 6.59
0.70 4.59 5.27 5.74 6.83
0.65 4.75 5.47 5.93 7.11
0.60 4.92 5.70 6.15 7.43
0.55 5.11 5.97 6.39 7.78
0.50 5.33 6.27 6.67 8.19
0.45 5.58 6.61 6.98 8.67
0.40 5.87 7.01 7.33 9.22
0.35 6.19 7.49 7.74 9.88
0.30 6.58 8.06 8.22 10.68
0.25 7.03 8.76 8.79 11.66
0.20 7.58 9.62 9.48 12.90
0.15 8.26 10.74 10.32 14.51
0.10 9.11 12.21 11.38 16.69
0.05 10.20 14.27 12.76 19.82
0.00 11.68 17.35 14.60 24.67
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4. Case -1V

Table D.4 — Lateral Drift Values for Case - [V

Effective Length Method Direct Analysis Method
r 1% Order Drift (mm) | 2" Order Drift (mm) 1* Order Drift (mm) | 2" Order Drift (mm)
1.00 12.67 13.08 15.83 16.48
0.95 12.84 13.27 16.05 16.72
0.90 13.03 13.47 16.29 16.98
0.85 13.24 13.70 16.55 17.27
0.80 13.48 13.95 16.85 17.59
0.75 13.74 14.23 17.17 17.94
0.70 14.03 14.54 17.54 18.34
0.65 14.36 14.90 17.95 18.80
0.60 14.74 15.30 18.42 19.31
0.55 15.17 15.77 18.96 19.90
0.50 15.67 16.31 19.59 20.59
0.45 16.26 16.94 20.32 21.41
0.40 16.95 17.71 21.19 22.38
0.35 17.80 18.63 22.25 23.56
0.30 18.85 19.78 23.56 25.04
0.25 20.18 21.25 25.22 26.92
0.20 21.92 23.19 27.40 29.42
0.15 24.31 25.88 30.39 32.88
0.10 27.78 29.85 34.72 38.02
0.05 33.29 36.31 41.61 46.44
0.00 43.41 48.70 54.27 62.78
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