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ABSTRACT 

 

A COMPARATIVE STUDY ON DIRECT ANALYSIS METHOD AND 
EFFECTIVE LENGTH METHOD IN ONE-STORY SEMI-RIGID FRAMES 

 

Demirtaş, Afşin Emrah 

M.S., Department of Civil Engineering 

Supervisor: Prof. Dr. Uğurhan Akyüz  

 

September 2012, 135 pages  

 

 

For steel structures, stability is a very important concept since many steel structures 

are governed by stability limit states. Therefore, stability of a structure should be 

assessed carefully considering all parameters that affect the stability of the structure. 

The most important of these parameters can be listed as geometric imperfections, 

member inelasticity and connection rigidity. Geometric imperfections and member 

inelasticity are taken into account with the stability method used in the design. At 

this point, the stability methods gain importance. The Direct Analysis Method, the 

default stability method in 2010 AISC Specification, is a new, more transparent and 

more straightforward method, which captures the real structure behavior better than 

Effective Length Method. In this thesis, a study has been conducted on the semi-rigid 

steel frames to compare Direct Analysis Method and Effective Length Method and to 

investigate the effect of flexible connections to stability. Four frames are designed 

for different connection rigidities with stability methods existing in the 2010 AISC 

Specification: Direct Analysis Method and Effective Length Method. At the end, 
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conclusions are drawn about the comparison of these two stability methods and the 

effect of semi-rigid connections to stability. 

 

Keywords: Direct Analysis Method, Effective Length Method, Semi-Rigid Frames, 

Frame Stability   
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ÖZ 

 

DİREKT ANALİZ METODU İLE EFEKTİF UZUNLUK METODUNUN TEK 
KATLI YARI RİJİT BAĞLANTILI ÇERÇEVELERDE KARŞILAŞTIRILMASI 

 

Demirtaş, Afşin Emrah 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğurhan Akyüz  

 

Eylül 2012, 135 sayfa  

 

 

Çelik yapılar için stabilite kavramı çok önemlidir çünkü çoğu çelik yapı stabilite 

limit durumlarına göre tasarlanmaktadır. Bundan dolayı, bir yapının stabilitesi onu 

etkileyebilecek bütün parametreler göz önünde bulundurularak itinayla 

değerlendirilmelidir. Geometrik kusurlar, elemanların inelastisitesi ve bağlantı 

rijitliği bu parametrelerin en önemlileridirler. Geometrik kusurlar ve eleman 

inelastisiteleri tasarım esnasında kullanılan stabilite metodu ile değerlendirilirler. Bu 

noktada stabilite metotları önem kazanmaktadır. 2010 AISC şartnamesinde geçerli 

stabilite metodu olan Direkt Analiz Metodu yeni, daha şeffaf ve daha dolambaçsız 

bir metot olup Efektif Uzunluk Metodu’na göre gerçek yapı davranışını daha iyi 

yansıtmaktadır. Bu tezde, Direk Analiz Metodu ile Efektif Uzunluk Metodunu 

karşılaştırmak ve esnek bağlantıların stabiliteye etkisini incelemek için yarı rijit çelik 

çerçeveler üzerine bir çalışma yapılmıştır. 2010 AISC şartnamesinde mevcut olan 

stabilite metotları (Direkt Analiz ve Efektif Uzunluk Metotları) kullanılarak değişik 

bağlantı rijitlikleri ile dört tane çelik çerçeve tasarlanacaktır. En sonda, bu iki 
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metodun kıyaslanması ve yarı rijit bağlantıların stabiliteye etkisi üzerine sonuçlar 

çıkartılacaktır. 

 

Anahtar Kelimeler: Direkt Analiz Metodu, Efektif Uzunluk Metodu, Yarı Rijit 

Çerçeveler, Çerçevelerin Stabilitesi 
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CHAPTER 1 
 
 
 

INTRODUCTION 

 

1.1. MOTIVATION 

 

Stability is a very important concept for steel structures since most steel structures 

are governed by stability limit states. Local instability, such as compression flange 

buckling, and member instability, such as buckling of a column, may lead the 

structure to collapse. Therefore, stability provisions of steel design specifications are 

continuously improved to capture the real structure behavior and so to minimize the 

destabilizing effects. 

 

In the Appendix 7 of 2005 AISC Specification for Structural Steel Buildings (AISC 

360-05), Direct Analysis Method (DAM) was first introduced as an alternative to the 

Effective Length Method (ELM). Then in 2010 AISC Specification for Structural 

Steel Buildings (AISC 360-10) it became the default stability design method as it is 

given in Chapter C. 

 

The need to develop a new method is the drawbacks of the ELM. These drawbacks 

can be listed as: 

 ELM is based on many assumptions, which are hardly satisfied in a real 

structure. Inconsistencies between the assumptions and the real structure 

behavior lead to wrong estimation of internal forces and moments. 

 ELM underestimates the internal forces and moments, due to this reason 

ELM cannot be used for structures having drift-ratio greater than 1.5 that 

means ELM is not applicable to all structures. 
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 Geometric imperfections and member inelasticity are not accounted for in the 

analysis instead they are accounted for in the resistance terms that causes 

misinterpretation of both analysis results and member strengths. 

 

On the other hand, DAM is a more straightforward, transparent and accurate stability 

design method. It considers member inelasticity and geometric imperfections in the 

analysis and it calculates compressive strength of members with an effective length 

factor equals to 1.00. Therefore, the DAM captures the real structure behavior better 

than the ELM and it provides the designer a simpler and straightforward stability 

design procedure. 

 

To obtain realistic analysis results, the stability method used in the analysis is 

important along with the realistic modeling of the structure. With the help of 

advanced commercial software, detailed 3-D modeling of structures is possible. 

However, there is still an important idealization in modeling that makes the structural 

model away from the real structure behavior: connections.  

 

Steel frames are designed under the assumption that the beam-to-column connection 

is either fully rigid or ideally pinned. However in reality, any connection is neither 

fully rigid nor ideally pinned. Connection rigidity has an influence on the internal 

force distribution of the system and lateral drift of the structure. Therefore, 

connection rigidity should be modeled such that it reflects the connection behavior. 

 

 

1.2. LITERATURE SURVEY 

 

In this section, the researches conducted on comparison of ELM and DAM and the 

researches carried out with semi-rigid frames are discussed. 

 

Ziemian et al [1] investigated eleven two-and-three-dimensional structural systems to 

evaluate and compare ELM and DAM. Also advanced-second order inelastic 
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analyses were used to assess the adequacy of all design methods. They concluded 

that ELM and DAM provide similar results and for beam-columns subjected to 

minor-axis bending DAM is slightly unconservative. 

 

In the study of Surovek et al [2], an 11-bay single-story frame was studied to discuss 

the three design approaches (Direct Analysis Method, Effective Length Method and 

Advanced Analysis) for the assessment of frame stability. The primary attribute of 

this frame was that it is sensitive to initial imperfection effects. To illustrate 

distinctive features of the design approaches, large gravity loads were applied to 

produce significant P-∆ effects. They concluded that axial forces are similar in each 

method but the internal moments differ substantially. ELM underestimates the 

internal moments since the moments in the frame are highly sensitive to out-of-

plumbness of the structure which is not directly considered in the analysis with ELM, 

and DAM is conservative when calculating the internal moments since the columns 

are elastic at the factored load although the stiffnesses are reduced due to inelasticity. 

 

In his study, Prajzner [3] dealt with the evaluation of case studies including a portal 

frame, a leaning column frame, a multi-story structure, and a multi-bay frame in 

order to assess the adequacy of ELM and DAM. To provide a reasonable 

representation of real frame behavior second-order plastic analysis approach was 

used as the third method and the results obtained with this method were treated as 

real results. In this study, ELM produced unsafe designs in structures where second-

order effects are significant. On the other hand, DAM produced overly conservative 

designs for the same type of structures. He suggested a “sway” factor to quantify the 

second-order effects. The intent of the “sway” factor is to calibrate the results of 

ELM and DAM in structures where the second-order effects are significant. 

 

Surovek et al [4] presented an approach that allows for the consideration of non-

linear connection using commonly available elastic analysis software. The partially 

restrained frames were analyzed using Direct Analysis Method. The aim of the 

proposed connection approach was to simplify the consideration non-linear 
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connection response in the analysis of partially restrained frames. By using Direct 

Analysis Method, they intended to simplify also the strength assessment of the 

structure by eliminating the calculation of effective length factor. In this study, the 

proposed method for handling the connection non-linearity along with the Direct 

Analysis Method have been shown to make it simpler to obtain realistic distribution 

of internal forces in partially restrained frames. 

 

Kartal et al [5] developed a finite element program SEMIFEM in FORTRAN 

language to perform structural analysis that considers semi-rigid connections. The 

aim of their study was to investigate the effect of semi-rigid connections on the 

structure behavior. In their study, they adopted the formula suggested by Monforton 

and Wu [6] to define the connection stiffness in terms of the connection stiffness-

beam stiffness ratio. 

 

The formula suggested by Monforton and Wu [6] was also adopted by Xu [7] in his 

study on calculation of critical buckling loads of semi-rigid steel frames and by 

Patodi et al [8] in their study on first order analysis of plane frames with semi-rigid 

connections. They used this formula to define the stiffness of the connection in terms 

of the stiffness of the beam that the connection is attached to. 

 

 

1.3. OBJECT AND SCOPE 

 

Before development of DAM, ELM was the common stability method that has been 

used widely by many engineers. However ELM is based on some assumptions which 

are hardly satisfied in real structures and it has many drawbacks which make stability 

design very complex and challenging in some cases. DAM was developed and 

presented in the latest version of AISC Specification for Steel Structures to 

compensate the drawbacks of ELM and to make stability design easier and more 

straightforward for engineers. A number of studies were conducted to compare DAM 
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and ELM in order to investigate whether DAM is a more straightforward method and 

superior to ELM. 

 

In this study, DAM and ELM are compared in one-story semi-rigid frames. The 

objective of this study is to compare the two stability methods in semi-rigid frames 

and to investigate the influence of connection rigidity on the stability of the frame. 

 

Four frames are used as case studies: first three ones are one-story one-bay frames 

consisting of two columns and one beam where the columns are oriented such that 

they are in major-axis bending. The only difference between these three frames is the 

loads. In the first frame, horizontal load is the highest but the axial load is the lowest 

and in the third frame, horizontal load is the lowest whereas the axial load is the 

highest. The aim in selecting these three frames is to investigate the load effects on 

the stability methods. The fourth frame is a one-story three-bay frame consisting of 

two columns in major-axis bending, two columns in minor-axis bending and three 

beams. The aim in selecting the fourth frame, where the some of the columns are in 

minor-axis bending, is to investigate the influence of column orientation on stability 

methods. The beams in all cases are connected to the columns with semi-rigid 

connections. The frames are analyzed with different stiffness values of semi-rigid 

connections and with both stability methods. At the end, critical columns in each 

case are designed according to the AISC 360-10 and demand/capacity ratios of 

columns are obtained for different connection stiffnesses and for both DAM and 

ELM. The conclusion part of the study deals with these demand/capacity ratios. 

 

This study is composed of five chapters. In first chapter, an introduction part exists 

which gives a general information about the study, a brief background for the DAM 

along with semi-rigid frames and the aim of the study. In second chapter, the theory 

of methods, which are used in third chapter, are given and explained. These are 

Direct Analysis Method, Effective Length Method, Analysis of Semi-Rigid Frames 

and Approximate Second-Order Analysis. The analysis of frames and the design of 

columns are given in third chapter. The results of the analyses and designs in the 
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third chapter and the discussions related to the results are given in fourth chapter. 

The last chapter, Chapter 5, contains conclusion of the study and future 

recommendations. 
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CHAPTER 2 
 
 
 

THEORY 

 

2.1. DIRECT ANALYSIS METHOD 

 

Direct Analysis Method (DAM) was first introduced in 2005 version of the AISC 

Specification for Structural Steel Buildings as an alternative method to the Effective 

Length Method (ELM) and First-Order Analysis Method. Then in 2010 version of 

the specification, it became the standard stability design method as it is addressed in 

Chapter C. DAM has many advantages, such as; it obtains the analysis results more 

accurately and realistic, it is applicable to all type of structures and it eliminates the 

calculation of K factor.  

 

ELM neglects initial imperfections and inelasticity during analysis and 

underestimates member demand. To compensate this underestimate, it requires the 

use of K factor to decrease the member capacity. Therefore, in ELM, the forces and 

capacities obtained do not reflect the real behavior of the structure. In DAM, initial 

imperfections and inelasticity are considered during the analysis and this eliminates 

the need for the K factor. Thus, DAM results in a design which is very close to the 

real structure behavior. 

 

DAM is the most applicable method among all stability methods. It can be used for 

all types of steel structures such as braced frames, moment frames and combined 

systems without any limitation. The ratio of second-order drift to first-order drift 

shall be equal to or less than 1.5 in ELM however there is no such a limitation in 

DAM. 

 



 
8 

 

The biggest advantage that DAM provides is the elimination of K factor calculation. 

In ELM, the analysis is performed with neglecting the geometric imperfections and 

inelasticity and they are accounted for in member capacity calculations with 

increasing the K factor. In DAM, geometric imperfections and inelasticity are 

included in the analysis therefore the need to calculate the K factor is unnecessary 

and it can be taken as 1.0 for all members.  

 

Since DAM has many advantages, it is expected that there are too many 

sophisticated requirements however the requirements of DAM are simple and easy to 

apply. There are three main requirements of DAM which are; 

 

1. A rigorous second-order analysis including both P-Δ and P-δ effects should 

be conducted. Use of approximate methods is also permitted. 

2. The effect of initial imperfections should be taken into account. The out-of-

plumbness of columns can be directly modeled by displacing the points of 

intersection of members from their nominal locations or notional loads can 

be used. 

3. Reduced stiffness of members should be used in the analysis. This reduction 

accounts for system reliability (uncertainty in stiffness and strength) and 

inelasticity. 

 
Second-Order Analysis 

To reflect a real structure behavior, a rigorous second-order analysis considering 

both P-Δ and P-δ effects should be conducted. It is also acceptable to obtain second-

order results by an approximate method given in Appendix 8 of the AISC 360-10. In 

this alternative and approximate method there are two multipliers; B1 and B2. By 

applying these multipliers to the results of a first-order analysis an approximate 

second-order solution may be obtained. This method will be explained in details in 

Section 2.4. 
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L

L/500

Initial Imperfections 

The effect of out-of-plumbness of columns should be taken into account by 

considering the initial imperfections in the intersection of members. These 

imperfections can be directly modeled by displacing the intersection of members 

from their nominal locations or can be represented by notional loads. The notional 

loads at each level of the structure are calculated as; 

 
௜ܰ ൌ 0.002 · ߙ · ௜ܻ                                                  ሺ2.1ሻ 

 
 
where  α  = 1.0 for LRFD and 1.6 for ASD 
  Ni  = notional load applied at ith level (N) 
  Yi  = gravity load applied at ith level (N) 
 
 

 
 
 
 
 
The notional load coefficient 0.002 is based on a nominal 

initial out-of-plumbness ratio of L/500 which is the maximum 

tolerance on column plumbness specified in the AISC Code of 

Standard Practice.  

 
 
 
 
 
 

 

Y3

Y2

Y1

N3 

N2 

N1 
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If the second-order drift to first-order drift ratio is smaller than or equal to 1.7, it is 

not obligatory to use notional loads in a load combination which includes other 

lateral loads. 

 
 
Reduced Stiffness 

After rolling or welding process, the cross-section of the steel member begins to 

cool. First the extreme fibers of the section cool, then the remaining portions of the 

section cool. When the remaining portions cool, their contraction is prevented by 

extreme fibers that have already cooled. This results in development of tensile and 

compressive stresses in the cross-section. When a compressive force is applied to this 

cross-section, yielding will first occur in the portions of the section which are under 

compressive residual stress. Therefore, the spread of plasticity in the cross-section is 

affected by the presence of residual stress [9]. To account for geometric 

imperfections in the cross-section and the spread of plasticity due to residual stresses, 

stiffness reduction factor 0.8τb is applied to the stiffness of members which are 

considered to contribute to the stability of the building. 

 

A factor of 0.80 should be applied to the stiffnesses of all members whether or not 

they contribute to the stability of the building. The aim of the application of this 

reduction to stiffnesses of all members is to prevent an artificial distortion of the 

structure and unintended redistribution.  

 

An additional τb factor is applied for the following conditions; 
 
 

ሺ݅ሻ ܹ݄݁݊     
ߙ ௥ܲ

௬ܲ
൑ 0.5          ߬௕ ൌ 1.0                                                                         ሺ2.2ሻ 

 

ሺ݅݅ሻ ܹ݄݁݊     
ߙ ௥ܲ

௬ܲ
൒ 0.5          ߬௕ ൌ 4 · ቆ

ߙ ௥ܲ

௬ܲ
ቇ · ቆ1 െ

ߙ ௥ܲ

௬ܲ
ቇ                                    ሺ2.3ሻ 
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Where  Pr = required axial compressive strength using LRFD or ASD load 

combinations (N) 

  Py = axial yield strength (=Fy·Ag) 

Ag = gross cross-sectional area of the member (m2) 

 

When the αPr/Py ratio is higher than 0.5, the calculation and application of τb for each 

member can be painful therefore it is permissible to use τb = 1.0 for all members if a 

notional load of 0.001·α·Yi is applied at all levels. 

 
 
 
The Reasons for Use of 0.80 Factor 
 
In AISC 360-10 Chapter E3, columns are separated into two groups for 

determination of compressive strength: slender columns and intermediate or stocky 

columns. For these two groups, stiffness reduction factor should be determined 

separately.  

 

For slender columns, effective length method implies a safety factor, 

ØPn=0.9(0.877Pe)=0.79Pe. Stiffness reduction factor for DAM should compensate 

this safety factor of 0.79 therefore stiffness reduction factor for slender columns is 

chosen as 0.80 [10].  

 

Stiffness reduction factor for stocky columns should account for additional softening 

under combined axial compression and bending and the stiffness reduction factor for 

stocky columns is also 0.80 and this is a fortunate coincidence that for both groups 

the stiffness reduction factor is the same. The stiffness reduction factor 0.8τb is valid 

for all columns regardless of their slenderness whereas the τb factor accounts for 

stiffness loss under high compressive loads [10]. 

 

 

 

 



 
12 

 

2.2. EFFECTIVE LENGTH METHOD 

 
 
2.2.1. Introduction 

 
The effective length method has been used widely in column design for many years. 

It can be considered as mathematically reducing the evaluation of critical stress for 

columns to that of equivalent pinned-ended braced columns. In Eqn. 2.4, Euler 

buckling stress of a pinned-ended braced column is given and this can be used for all 

elastic column buckling problems by substituting the actual length of the column (L) 

with an effective length (KL). The effective length factor K can be obtained by 

performing a buckling analysis of the structure [11]. For idealized structures, K 

factor may be obtained from alignment charts (or nomographs) given in AISC 360-

10 Appendix 7 however to be able to use these alignment charts, the assumptions that 

was considered during derivation of nomographs should not be violated. One of these 

assumptions is that “All joints are rigid”. Therefore, for frames with semi-rigid 

connections, the alignment charts cannot be used. To obtain effective length factor K 

for semi-rigid frames, buckling analysis is needed. 

 

௘ܨ ൌ
ଶߨ · ܧ

ቀݎܮቁ
ଶ                                                                    ሺ2.4ሻ 

 
Where  

   E = Modulus of elasticity (MPa) 

   L = Length of the column (m) 

   r = Radius of gyration (m) 

 

2.2.2. Buckling Analysis of Semi-Rigid Frames 

 
To perform a buckling analysis for a semi-rigid frame, the modified stiffness 

matrices of columns and beams that constitute the frame should be considered. Beam 

matrices should include the connection flexibility, which will be discussed in Section 
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2.3.4 in details, whereas column matrices should include stability functions which 

include the effective length factor. 

 

Stiffness matrix of a column is given in “Stability Design of Steel Frames” [12] and 

it is used in this thesis. One may refer to the reference for the details. 

 

݇ ൌ
ܫܧ
ܮ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ܣ
ܫ

0 0 െ
ܣ
ܫ

0 0

0
12
ଶܮ
ଵ׎

6
ܮ
ଶ׎ 0 െ

12
ଶܮ
ଵ׎

6
ܮ
ଶ׎

0
6
ܮ
ଶ׎ ଷ׎4 0 െ

6
ܮ
ଶ׎ ସ׎2

െ
ܣ
ܫ

0 0
ܣ
ܫ

0 0

0 െ
12
ଶܮ
ଵ׎ െ

6
ܮ
ଶ׎ 0

12
ଶܮ
ଵ׎ െ

6
ܮ
ଶ׎

0
6
ܮ
ଶ׎ ସ׎2 0 െ

6
ܮ
ଶ׎ ଷ׎4 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                     ሺ2.5ሻ 

 

In Eqn. 2.5, Ø1, Ø2, Ø3 and Ø4 are the stability stiffness functions and for the case 

when Pcr is a compressive axial load: 

 

ଵ׎ ൌ
ሺ݇ܮሻଷܮ݇݊݅ݏ

௖׎12
                                                                         ሺ2.6ሻ 

 

ଶ׎ ൌ
ሺ݇ܮሻଶሺ1 െ ሻܮ݇ݏ݋ܿ

௖׎6
                                                             ሺ2.7ሻ 

 

ଷ׎ ൌ
ܮ݇݊݅ݏሺܮ݇ െ ሻܮ݇ݏ݋ܿܮ݇

௖׎4
                                                     ሺ2.8ሻ 

 

ସ׎ ൌ
ܮሺ݇ܮ݇ െ ሻܮ݇݊݅ݏ

௖׎2
                                                                 ሺ2.9ሻ 
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In which 

 

௖׎ ൌ 2 െ ܮ݇ݏ݋2ܿ െ  ሺ2.10ሻ                                                  ܮ݇݊݅ݏܮ݇

 

݇ ൌ ඨ ௖ܲ௥

ܫܧ
                                                                                      ሺ2.11ሻ 

 

Once the stiffness matrix of the structure (Kstructure) is constructed, the determinant of 

the Kstructure is set equal to zero (det |Kstructure|=0) to obtain k. From k, we get the 

effective length factor K: 

 

௖ܲ௥ ൌ ௘ܨ · ܣ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ · ܣ ൌ

ܫܧଶߨ
ሺܮܭሻଶ

                                                         ሺ2.12ሻ 

 

݇ ൌ ඨ ௖ܲ௥

ܫܧ
ൌ
ඩ
ܫܧଶߨ
ሺܮܭሻଶ

ܫܧ
ൌ ඨ

ଶߨ

ሺܮܭሻଶ
ൌ

ߨ
ܮܭ

   ՜ ܭ    ൌ
ߨ
ܮ݇
                      ሺ2.13ሻ 

 

Where  
  Pcr = Critical buckling load 

  Fe = Critical buckling stress (Eqn. 2.4) 

  A = Cross-sectional area of the column 

 

 

2.2.3. AISC 360-10 Requirements 

 

The requirements for ELM are given in Appendix 7 of the AISC 360-10. These 

requirements can be listed as below; 
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1. Maximum second-order drift to maximum first-order drift ratio shall be equal 

to or less than 1.5. If this requirement is not satisfied, the ELM cannot be 

used. 

2. Nominal stiffnesses of members shall be used, no stiffness reduction is 

necessary. 

3. Notional loads shall be applied in the analysis. The same rules as in the DAM 

are valid for the ELM. 
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2.3. ANALYSIS OF SEMI-RIGID FRAMES 

 

In this section, types, behavior, modeling and analysis of semi-rigid connections are 

discussed. At the end of this section, stiffness matrix of a flexible-ended beam will 

be obtained. The related sections of “Stability Design of Steel Frames” [12] are 

discussed here, for the details one may refer to this book. 

 

 

2.3.1. Introduction 

 

In reality, all steel frames behave as semi-rigid however to simplify the analysis and 

design, they are idealized as fully rigid or perfectly pinned. In this idealization, rigid 

connections are assumed that they exhibit no deformation and pinned connections are 

assumed to have no moment capacity. However, in reality, rigid frame connections 

exhibit deformation and pinned connections have moment capacity even if it is small. 

For a more realistic and correct analysis, connection flexibility should be taken into 

account.  

 

 

 

Figure 2.1 - Typical Moment-Rotation Curves for the Connection Types 

 

Rotation

Moment

Pinned

Semi-Rigid

Rigid
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2.3.2. Types of Semi-Rigid Connections 

 

There exist many beam-to-column connection types but the most commonly used 

ones are briefly discussed here. These common types of beam-to-column connections 

can be listed as single web angle, single plate, double web angle, header plate, top 

and seat angle, top and seat angle with double web angle, extended end-plate, flush 

end-plate and t-stub connections. Each connection type has a different moment-

rotation curve and these curves are given in Figure.2.2. 

 

 

Figure 2.2 – Moment-Rotation Curves of Connections 

 

There are many modeling types for semi-rigid connections to obtain moment-rotation 

curves. Key parameters such as initial connection stiffness or ultimate connection 

moment capacity are determined from these models. However the derivation of 

initial connection stiffness and determination of ultimate connection moment 

capacity are not in the aim of this study therefore only brief descriptions of the 

connections are given. 

Single Web Angle

Double Web Angle

Header Plate

Top and Seat Angle

End Plate

T-Stub

Rotation

Moment
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Single Web Angle 

The beam is connected to the column through an angle member, welded or bolted 

both to the beam and column. This is a very flexible connection, it has very little 

moment capacity and it is considered as shear connection. 

 

Single Plate 

In this connection, a plate is used instead of an angle member. The plate member is 

welded or bolted to the beam and column. This connection type is also very flexible 

and considered as shear connection. 

 

Double Web Angle  

The beam is connected to column through two angle members on the both side of the 

beam web. The moment-rotation rigidity of this connection is higher than the 

rigidities of single web angle and single plate connections however this connection 

type is also considered as shear connection. 

 

Header Plate Connections 

Header plate connection consists of an end plate which is welded to the web of the 

beam and bolted to the flange of the column. In this connection type, the length of 

the plate is less than the depth of the beam. The moment-rotation rigidity of this 

connection is similar to that of double web angle connection. This connection is also 

considered as shear connection. 

 

Top and Seat Angle Connections 

This connection consists of two angle members welded or bolted to the beam, one is 

at the bottom (seat angle) and the other one is at the top. The angles are bolted to the 

column flange. The seat angle carries gravity loads but does not contribute 

significantly to the moment capacity of the connection. The top angle is for the 

lateral stability of the beam and does not carry any gravity loads. The experimental 

results show that this type of connections is capable of resisting some of the end 

moment of the beam. 
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Top and Seat Angle Connections with Double Web Angle 

This connection is the combination of double web angle connection and top and seat 

angle connection. This type is considered as semi-rigid connection. 

 

Extended & Flush End-Plate Connections 

Flush end-plate connections consist of a plate welded to the beam end (along both 

top and bottom flanges and web) and bolted to the column. If the end-plate extends 

on tension side or both on tension and compression sides, this connection type is 

called extended end-plate connection. These two types of connections are considered 

as moment connections. 

 

T-stub Connections 

This connection type is one of the stiffest connections and consists of two T-stubs 

bolted to the beam at the top and bottom flange. The t-stubs are also bolted to the 

column. This connection gets stiffer when used with double web angles. 
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Figure 2.3 – Types of Semi-Rigid Connections 
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Figure 2.3 – Continued 
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Figure 2.3 – Continued 

 

 

2.3.3. Behavior and Modeling of Connections 

 

The general behavior of a connection is that when a moment is applied to it, it 

exhibits rotational deformation. If the response of the connection to moment is 

plotted, the moment-rotation curve of the connection is obtained. The moment-

rotation curves of different types of semi-rigid connections were given in Figure 2.2 

EXTENDED END
PLATE
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and a typical moment-rotation behavior of a semi-rigid connection is given in Figure 

2.4. 

 

 

 

Figure 2.4 – Typical Moment-Rotation Behavior of a Semi-Rigid Connection 

 

 

As it is seen in the Figure 2.4, the behavior of the connection is nonlinear. Factors 

such as bolt slip, stress concentration and local yielding lead connection to exhibit 

nonlinear response. Also the response of the connection to loading and unloading is 

different. To predict the actual behavior of the connection, nonlinearity and 

loading/unloading characteristic of the connection should be accounted for modeling 

the connection. There are many types of models such as linear models (linear, bi-

linear, piecewise linear), polynomial model, b-spline model, power models and 

exponential models. Among these models, linear model is the weakest model to 

predict the actual behavior of the structure however it is the simplest one. Since the 

aim of this study is to compare effective length method and direct analysis method in 

semi-rigid frames and to investigate the effect of flexible connections to stability, it 

is sufficient to use the linear connection model. The linear model is shown in Figure 

2.4. The only parameter in linear model is the initial stiffness, Rki. 
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2.3.4. Analysis of Semi-Rigid Frames 

 

To take into account the effect of flexible joints in the analysis, it is necessary to 

modify the stiffness matrix of the beam elements in the structure. To obtain the 

stiffness matrix of a beam element which considers flexible joints, the slope-

deflection equation of the beam element need to be modified. In this section, the 

slope-deflection equation of the beam element is modified and the stiffness matrix 

considering flexible joint effect is obtained. 

 

 

 

Figure 2.5 – Beam Element 

 

Consider the beam element in Figure 2.5. It is subjected to end moments MA and MB. 

To represent the flexible connection effect, rotational springs are assigned at both 

ends of the beam. The initial stiffnesses of these springs are denoted as RkiA and RkiB. 

The relative rotations between the joint and the beam end due to the rotational 

springs are θrA and θrB at ends A and B, relatively. These relative rotations can be 

expressed as; 

 

௥஺ߠ ൌ
஺ܯ

ܴ௞௜஺
௥஻ߠ       ݀݊ܽ         ൌ

஻ܯ

ܴ௞௜஻
                                                  ሺ2.14ሻ 

 
 
If the joint rotations at A and B are denoted as θA and θB, respectively, then the 

slope-deflection equations of the beam can be written as; 
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஺ܯ ൌ
ܫܧ
ܮ
ሾ4ሺߠ஺ െ ௥஺ሻߠ ൅ 2ሺߠ஻ െ ௥஻ሻሿߠ   ൌ   

ܫܧ
ܮ
൤4 ൬ߠ஺ െ

஺ܯ

ܴ௞௜஺
൰ ൅ 2 ൬ߠ஻ െ

஻ܯ

ܴ௞௜஻
൰൨     ሺ2.15ܽሻ 

 

஻ܯ ൌ
ܫܧ
ܮ
ሾ2ሺߠ஺ െ ௥஺ሻߠ ൅ 4ሺߠ஻ െ ௥஻ሻሿߠ ൌ   

ܫܧ
ܮ
൤2 ൬ߠ஺ െ

஺ܯ

ܴ௞௜஺
൰ ൅ 4 ൬ߠ஻ െ

஻ܯ

ܴ௞௜஻
൰൨       ሺ2.15ܾሻ 

 

The equations 2.15a and 2.15b can be expressed as; 

஺ܯ ൌ
ܫܧ
ܮ
൫ݏ௜௜

כ · ஺ߠ ൅ ௜௝ݏ
כ ·  ஻൯                                                                               ሺ2.16ܽሻߠ

 

஻ܯ ൌ
ܫܧ
ܮ
൫ݏ௝௜

כ · ஺ߠ ൅ ௝௝ݏ
כ ·  ஻൯                                                                              ሺ2.16ܾሻߠ

 
Where 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
                                                                                                ሺ2.17ܽሻ 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
                                                                                                ሺ2.17ܾሻ 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ
                                                                                                        ሺ2.17ܿሻ 

 
In which 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ · ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

· ൬
4

ܴ௞௜஺ · ܴ௞௜஻
൰                          ሺ2.18ሻ 
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Figure 2.6 – Degrees of Freedom 

 
For the degrees of freedom shown in the Figure 2.6, the stiffness matrix of the beam 

is obtained as; 
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ሺ2.19ሻ 

 

End-Fixity Factor 
 

In the analysis of semi-rigid frames, EI/L represents the stiffness of the beam 

member and Rki represents the stiffness of connection. There should be a relation 

between these two such that it gives a physical interpretation of the rigidity available 

in the connection [7]. 

 

Monforton and Wu [6] define an end-fixity factor and suggest a formula; 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

                                                                   ሺ2.20ሻ 
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d3

d4

d5

d6
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End-fixity factor, r, is an indicator of the relation between the beam stiffness and the 

connection stiffness. It simplifies the analysis procedure and provides designers to 

compare the structural responses of a member with semi-rigid connections [7]. The 

upper and lower boundaries of end-fixity factor can be checked by setting connection 

stiffness, Rki, to 1 N·m and 106 N·m; 

 

ܴ௞௜ ൌ 1 ܰ · ݎ               ݉ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

ൌ
1

1 ൅
3000
1

ൌ
1

3001
ൌ 0.00033 ൎ 0.00 

 
 

ܴ௞௜ ൌ 10଺ ܰ · ݎ          ݉ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

ൌ
1

1 ൅
3000
10଺

ൌ
1

1.003
ൌ 0.99701 ൎ 1.00 

 
 
As the connection stiffness approaches to zero which is the case of a pin connection, 

the end-rigidity (r) approaches to zero and as the stiffness approaches to infinity 

which is a fully rigid connection case, r approaches to 1. 

 

The Eqn. 2.20 suggested by Monforton and Wu [6] is also used in this thesis. The 

connection stiffnesses in the case studies are determined by this equation. 
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2.4. APPROXIMATE SECOND-ORDER ANALYSIS 

 

In a structural analysis, if the original (or undeformed) geometry of the structure is 

considered when writing the equilibrium and kinematic relationships then the 

analysis is referred to as a first-order analysis. However, if the deformed geometry of 

the structure is considered when writing the equilibrium and kinematic relationships 

then the analysis is referred to as a second-order analysis. For the stability 

consideration of structures, second-order analysis is a must [12]. Both of the stability 

methods, Direct Analysis Method and Effective Length Method, require that a 

rigorous second-order analysis including both P-∆ and P-δ effects. As an alternative 

to a rigorous second-order analysis, the approximate method presented in Appendix 

8 of the AISC 360-10 can be used. This method is based on the amplification of first-

order analysis forces and moments by the multipliers, B1 and B2. The B1 factor 

accounts for P-δ effects and the B2 factor accounts for P-∆ effects. B1 is a member 

parameter and applied to the moment due to gravity loads to account for the 

displacements between the two ends of the column member. B2 is a story parameter 

and applied to the moment and axial force due to the lateral loads to account for the 

lateral displacement of the story. 

 

The approximate second-order moment and axial force are determined as follows; 

 

௥ܯ ൌ ଵܤ · ௡௧ܯ ൅ ଶܤ ·  ௟௧                                                ሺ2.21ሻܯ

 
௥ܲ ൌ ௡ܲ௧ ൅ ଶܤ · ௟ܲ௧                                                            ሺ2.22ሻ 

Where  

 

Mlt = 1st order moment due to lateral translation of the structure only (N·m) 

Mnt = 1st order moment with the structure restrained against lateral translation 

(N·m) 

Mr = required 2nd order flexural strength (N·m) 

Plt = 1st order axial force due to lateral translation of the structure only (N) 
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Pnt = 1st order axial force with the structure restrained against lateral 

translation (N) 

Pr = required 2nd order axial strength (N) 

 

Calculation of B1 

 

B1 is a member parameter and for each member it is calculated as follows; 

 

ଵܤ ൌ
௠ܥ

1 െ ߙ ௥ܲ

௘ܲଵ

൒ 1                                                   ሺ2.23ሻ  

 
Where  
 

Cm = coefficient assuming no lateral translation of the frame determined 

as follows: 

a) For beam-columns not subjected to transverse loading between 

supports in the plane of bending 

 

௠ܥ ൌ 0.6 െ 0.4 · ሺܯଵ/ܯଶሻ                                                 ሺ2.24ሻ 

 

Where M1 and M2 are the smaller and larger moments, 

respectively, at the ends of that portion of the member unbraced in 

the plane of bending under consideration. M1/M2 is positive when 

the member is bent in reverse curvature, negative when bent in 

single curvature. 

 

b) For beam-columns subject to transverse loading between supports, 

the value of Cm shall be determined either by analysis or 

conservatively taken as 1.0 for all cases. 
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Pe1 = elastic critical buckling strength of the member in the plane of 

bending, calculated based on the assumption of no lateral translation 

at the member ends (N) 

 

௘ܲଵ ൌ
ଶߨ · כܫܧ

ሺܭଵܮሻଶ
                                                             ሺ2.25ሻ 

 

EI* = flexural rigidity required to be used in the analysis (=0.8τbEI 

when used in DAM) 

 

K1 = effective length factor in the plane of bending, calculated 

based on the assumption of no lateral translation at the 

member ends, set equal to 1.0 unless analysis justifies a 

smaller value 

 
 

Calculation of B2 

 

B2 is a story parameter and calculated for each story and each direction of lateral 
translation as follows; 
 

ଶܤ ൌ
1

1 െ
ߙ ௦ܲ௧௢௥௬

௘ܲ ௦௧௢௥௬

൒ 1.0                                                 ሺ2.26ሻ 

 

Where  
 

Pstory = total vertical load supported by the story including loads in 

columns that are not part of the lateral force resisting system 

(N) 

Pestory = elastic critical buckling strength for the story in the direction 

of translation being considered and calculated as; 
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௘ܲ ௦௧௢௥௬ ൌ ܴெ
ܮܪ
∆ு

                                                   ሺ2.27ሻ 

 

Where  
 

RM = 1 – 0.15·(Pmf/Pstory) 

L = story height (mm) 

Pmf = total vertical load in columns in the story that are part of 

moment frames, if any, in the direction of translation being 

considered (N) 

ΔH = 1st order interstory dirft, in the direction of translation being 

considered, due to lateral forces computed using the stiffness 

required to be used in the analysis (mm). 

H = story shear, in the direction of translation being considered, 

produced by the lateral forces used to compute ΔH. 
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CHAPTER 3 
 
 
 

CASE STUDIES 

 

3.1. GENERAL INFORMATION AND ASSUMPTIONS 

 

To compare DAM and ELM in semi-rigid frames, four case studies are analyzed. In 

each case study, a frame is designed according to AISC 360-10 and stability design 

of these frames is conducted according to both DAM and ELM. 21 analyses are 

performed for different values of end-fixity factor (ranging from 0 to 1 with 0.05 

increments) for each stability method. Total of 168 analyses are performed for the 

four cases. The analyses are performed with Microsoft Office – Excel software 

however for each case, one of the analyses is described in details for both ELM and 

DAM in Sections 3.2, 3.3, 3.4 and 3.5 to explain the procedure in Excel spreadsheets. 

For each case study and for each stability method, the analysis with end-fixity factor 

of 0.75 is selected to be performed in this chapter. The analyses are summarized in 

Figure 3.1. 

 

Figure 3.1 – Summary of Analyses 
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Each ELM analysis consists of structural analysis, buckling analysis and column 

design parts whereas DAM consists of structural analysis and column design parts. 

The flowcharts of both ELM and DAM are given in Figure 3.2. 

 

 

 

Figure 3.2 – Flowcharts of ELM and DAM 
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The general overview of the case studies is given in Figure 3.3.  

 

 

Case – I  

 

Case – II  

 

Case – III  

 

Case – IV  

 

Figure 3.3 – The General Overview of Case Studies 
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Some general assumptions are made for the case studies. These can be listed as 

below; 

 

1. All column-to-base connections are fixed whereas all beam-to-column 

connections are semi-rigid. 

2. All springs (representing semi-rigid connections) in each case are identical, in 

other words they have the same stiffnesses. 

3. In all cases, columns are HEA300 and beams are IPE500. 

4. All members are made of the same material and they have the same yield 

strength, Fy = 345 MPa. 

5. The beam members are assumed as axially rigid. 

6. All columns, regardless of their orientation, are assumed as braced at their 

midpoint in out-of-plane direction. In other words, out-of-plane length of the 

columns is half of the in-plane length. 

7. The applied loads are assumed as factored loads therefore no need to multiply 

these loads with load factors again. 

8. Load and Resistance Factor Design (LRFD) is adopted for design 

calculations. 

 

The physical properties of sections HEA300 and IPE500 are given in Table 3.1. 
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b

w
h

t

ft

y

x

Table 3.1 – Physical Properties of Sections 

 

 

 

 

 

 

 

 HEA300 IPE500 
E : elastic modulus 200000 MPa 200000 MPa 
Fy : yield strength 345 MPa 345 MPa 
b : width of the flange 300 mm 200 mm 
h : total depth 290 mm 500 mm 
tf : thickness of flange 14 mm 16 mm 
tw : thickness of web 8.5 mm 10.2 mm 
Ix : moment of inertia in x-dir. 182600000 mm4 482000000 mm4 
Iy : moment of inertia in y-dir. 63100000 mm4 21420000 mm4 
A : cross-sectional area 11300 mm2 11300 mm2 
rx : radius of gyration in x-dir. 127.1 mm 203.8 mm 
ry : radius of gyration in y-dir. 74.7 mm 43.0 mm 
J : torsional constant 878000 mm4 891000 mm4 
Sx : section modulus about x-axis 1259310 mm3 1928000 mm3 
Sy : section modulus about y-axis 420667 mm3 214200 mm3 
Zx : plastic section modulus about x-axis 1833000 mm3 2194000 mm3 
Zy : plastic section modulus about y-axis 641000 mm3 336000 mm3 
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175 kN
u

10

v1 v2

20

3.2. CASE STUDY – I  

 

One-bay, one-story portal frame is analyzed and designed in this case. The portal 

frame consists of two columns with a height of 4m and one beam having 8m length. 

The geometry of the frame, sections and labels of members are shown in Figure 3.4. 

The column sections are HEA300 and the beam section is IPE500. The columns are 

oriented such that their strong axes are in the plane of bending.  

 

 

 
Figure 3.4 – Geometry of the Frame and Sections of Members in Case – I  

 

The degrees of freedom and loads acting on the frame are shown in Figure 3.5. There 

are 5 degrees of freedom: u represents the lateral drift of the frame, v1 and v2 

represent the axial deformation of columns and θ1 and θ2 represent the rotational 

deformations at each end of the beam. The horizontal load is 175 kN and the vertical 

loads acting on top of each column are 300 kN. 

 

 

 

 

 

 

 

Figure 3.5 – Degrees of Freedom and Loads Acting on the Frame in Case - I 
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The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using 

both stability methods, DAM and ELM.  

 

 

3.2.1. Design with Effective Length Method 

 

To design columns in the frame, first-order structural analysis should be conducted, 

and then the buckling length of the columns should be determined. At the end, the 

columns are designed according to AISC 360-10 Chapter H1. 

 

As explained in Section 2.2, nominal stiffnesses of members are used during design 

with ELM. In addition, there is no need to use notional loads since there exists a 

horizontal load and the drift ratio is smaller than 1.5 (calculated in Section 3.2.1.1 as 

B2). 

 

3.2.1.1. Structural Analysis 

 

Structural analysis of the frame is conducted by using stiffness method. First, the 

stiffness matrices of members are constructed then the system matrix is obtained. For 

the beam, stiffness matrix in Eqn. 2.19 in Section 2.3.4 is used. For the columns, the 

stiffness matrix in Eqn. 3.1 for the degrees of freedom given in Figure 3.6 is used. 

 

 

 

 

Figure 3.6 – Degrees of Freedom for the Stiffness Matrix in Eqn. 3.1 
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ଷܮ

െ
ܫܧ6
ଶܮ
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ܫܧ6
ଶܮ

ܫܧ2
ܮ

0 െ
ܫܧ6
ଶܮ

ܫܧ4
ܮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                              ሺ3.1ሻ 

 

 

Since the columns are identical, their stiffness matrices are identical too. For the 

physical properties of HEA300 given in Table 3.1 (E, I and A) and column length of 

4m (L), the stiffness matrix in Eqn. 3.1 becomes (units are in N and mm), 

 

 

݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷ െ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

        ሺ3.2ሻ 

 

 
 
The displacement matrices of columns are, 

 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                      ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                                            ሺ3.3ܽ & 3.3ܾሻ 



 
40 

 

 

The stiffness matrix of the beam is constructed by using the matrix in Eqn. 2.19 but 

first connection stiffnesses should be determined. The end-fixity factor is chosen as 

0.75 and accordingly the connection stiffnesses is determined by using Eqn. 2.20. 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 1.085 · 10ଵଵܰ · ݉݉ 

 

Since the connections are assumed identical, Rki, obtained above, is used in the 

below formulas for both RkiA and RkiB.  

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · 1.085 · 10ଵଵ
ቇ
ଶ

െ ቆ
2 · 10ହ · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ1.085 · 10ଵଵሻଶ
൰ 

 
כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 

 

The stiffness matrix in Eqn. 2.19 in Section 2.3.4 can be written as in Eqn. 3.4 (units 

are in N and mm) by substituting E, I, and A with the values given in Table 3.1, L 

with 8m, sii
*, sjj

* and sij
* with the values found above. In addition, since the beam is 
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assumed as axially rigid, the degree of freedom representing the axial displacement 

of the beam is removed. 

 

݇஻ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

                    ሺ3.4ሻ 

 
The displacement matrix of the beam member is, 

 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪                                                                   ሺ3.5ሻ 

 
The stiffness matrix of the system, K, is constructed by combining the member 

stiffness matrices according to the system displacement matrix given in Eqn. 3.6. 

 

ܦ ൌ

ۏ
ێ
ێ
ێ
ۍ
ݑ
ଵݒ
ଵߠ
ଶݒ
ےଶߠ
ۑ
ۑ
ۑ
ې

                                                                        ሺ3.6ሻ 

 

ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ସݔ1.37 0 10ସݔ1.37 0 10଻ݔ1.37

0 10ହݔ5.66 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10ସݔ1.37 10଺ݔ5.42 10ଵ଴ݔ6.81 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

0 െ1.3610ݔଷ െ5.4210ݔ଺ 10ହݔ5.66 െ5.4210ݔ଺

10ସݔ1.37 10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ6.81 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                  ሺ3.7ሻ 

 
 

The force vector, Q, can be written as, 

 

ܳ ൌ

ۏ
ێ
ێ
ێ
ۍ
175000
െ300000

0
െ300000

0 ے
ۑ
ۑ
ۑ
ې

   

ܰ
ܰ
ܰ · ݉
ܰ
ܰ · ݉

                                                  ሺ3.8ሻ 

 

The Eqn. 3.9 is solved to obtain displacement matrix, D. 
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ܳ ൌ      ܦ ܭ ՜ ܦ      ൌ   ଵ ܳ                                              ሺ3.9ሻିܭ

 

The inverse of system stiffness matrix is taken and K-1 is obtained. 
 

ଵିܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ିସݔ1.11 10ି଻ݔ3.65 െ1.9110ି଼ݔ െ3.6510ିݔ଻ െ1.9110ି଼ݔ

10ି଻ݔ3.65 10ି଺ݔ1.77 െ1.8310ିݔଵ଴ 10ିଵ଴ݔ7.38 െ1.8310ିݔଵ଴

െ1.9110ି଼ݔ െ1.8310ିݔଵ଴ 10ିଵଵݔ1.85 10ିଵ଴ݔ1.83 10ିଵଷݔ6.69

െ3.6510ିݔ଻ 10ିଵ଴ݔ7.38 10ିଵ଴ݔ1.83 10ି଺ݔ1.77 10ିଵ଴ݔ1.83

െ1.9110ି଼ݔ െ1.8310ିݔଵ଴ 10ିଵଷݔ6.69 10ିଵ଴ݔ1.83 10ିଵଵݔ1.85 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ሺ3.10ሻ 

 

Multiplying K-1 by Q gives the displacement matrix D. 

 
       ܳ        ݔ                                                 ଵିܭ                                                       ൌ  ܦ      

 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ିସݔ1.11 10ି଻ݔ3.65 െ1.9110ି଼ݔ െ3.6510ିݔ଻ െ1.9110ି଼ݔ

10ି଻ݔ3.65 10ି଺ݔ1.77 െ1.8310ିݔଵ଴ 10ିଵ଴ݔ7.38 െ1.8310ିݔଵ଴

െ1.9110ି଼ݔ െ1.8310ିݔଵ଴ 10ିଵଵݔ1.85 10ିଵ଴ݔ1.83 10ିଵଷݔ6.69

െ3.6510ିݔ଻ 10ିଵ଴ݔ7.38 10ିଵ଴ݔ1.83 10ି଺ݔ1.77 10ିଵ଴ݔ1.83

െ1.9110ି଼ݔ െ1.8310ିݔଵ଴ 10ିଵଷݔ6.69 10ିଵ଴ݔ1.83 10ିଵଵݔ1.85 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
175000

െ300000

0

െ300000

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
19.470

െ0.4671

െ0.0033

െ0.5949

െ0.0033ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

ܦ ൌ

ۏ
ێ
ێ
ێ
ۍ
ݑ
ଵݒ
ଵߠ
ଶݒ
ےଶߠ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
19.470
െ0.4671
െ0.0033
െ0.5949
െ0.0033ے

ۑ
ۑ
ۑ
ې

  

݉݉
݉݉
݀ܽݎ
݉݉
݀ܽݎ

                                                   ሺ3.11ሻ 

 

After the displacement matrix D is determined, it is multiplied with member stiffness 

matrices to obtain the member forces. For columns, C1 and C2, the stiffness matrix 

in Eqn. 3.2 and displacement matrices in Eqn. 3.3a and Eqn. 3.3b are used, 

respectively. For the beam, stiffness matrix in Eqn. 3.4 and displacement matrix in 

Eqn. 3.5 are used. 

 



 
43 

 

Member forces for C1 is (units are in kN and m), 
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0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.4671

19.470

െ0.0033

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ263.9

87.5

144.5

263.9

െ87.5

205.5 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C2 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.5949

19.470

െ0.0033

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ336.1

87.5

144.5

336.1

െ87.5

205.5 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ0.4671

െ0.0033

െ0.5949

െ0.0033ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ36.1

െ144.5

36.1

െ144.5ے
ۑ
ۑ
ۑ
ې

 

 

These are the first order analysis results and can be shown on the system as in Figure 

3.7. 
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Figure 3.7 – First-Order Analysis Results of Case – I with ELM 

 

As seen from the results, the critical column is C2 since the axial compressive force 

is higher on C2. C2 governs the column design therefore the first-order forces and 

moments of C2 are converted to second-order forces and moments with the 

approximate method described in Section 2.4. The second order design axial load Pr 

and design bending moment Mr are calculated as, 

 

௥ܯ ൌ ଵܤ · ௡௧ܯ ൅ ଶܤ · ௟௧ܯ ൌ ଵܤ · 0 ൅ 1.0200 · 205.5 ൌ 209.7 ݇ܰ · ݉  
 

௥ܲ ൌ ௡ܲ௧ ൅ ଶܤ · ௟ܲ௧ ൌ 300 ൅ 1.02 · 36.1 ൌ 336.8 ݇ܰ · ݉ 
 
௡௧ܯ ൌ 0 ݇ܰ · ݉           ՜  ଵܤ ݁ݐ݈ܽݑ݈ܿܽܿ ݋ݐ ݀݁݁݊ ݋ܰ          
 
௟௧ܯ ൌ 205.5 ݇ܰ · ݉ 

-263.9 kN -336.1 kN

87.5 kN 87.5 kN

36.1 kN

205.5 kN.m

144.5 kN.m 144.5 kN.m

205.5 kN.m

SHEAR FORCE

MOMENT

AXIAL FORCE
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௡ܲ௧ ൌ 300 ݇ܰ 

 

௟ܲ௧ ൌ 336.1 െ 300 ൌ 36.1 ݇ܰ 
 

ଶܤ ൌ
1

1 െ
ߙ · ௦ܲ௧௢௥௬

௘ܲ ௦௧௢௥௬

ൌ
1

1 െ 1 · 600
30560

ൌ 1.02 

 
௦ܲ௧௢௥௬ ൌ 300 ൅ 300 ൌ 600 ݇ܰ 

 

௘ܲ ௦௧௥௢௬ ൌ ܴெ
ܪ · ܮ
∆ு

ൌ 0.85 ·
175 · 4000
19.47

ൌ 30560 ݇ܰ 

 

ܴெ ൌ 1 െ 0.15 · ௠ܲ௙

௦ܲ௧௢௥௬
ൌ 1 െ 0.15 ·

600
600

ൌ 0.85 

 
∆ுൌ ݑ ൌ 19.47 ݉݉ 

 
 
As a summary, the second-order design forces and moments for the critical column 

C2 are, 

 

Pr = 336.8 kN  Mr = 209.7 kN.m 

 

 

3.2.1.2. Buckling Analysis 

 

Buckling length of the frame is determined by setting the determinant of the stiffness 

matrix of the system equal to zero. However, during constructing the stiffness matrix, 

the column matrices shall be modified as described in Section 2.2 and so the stability 

functions including the term K (effective length factor) are included into the system. 

The smallest value of K, which makes the determinant equal to zero, is the buckling 

length of the frame. 

 

The buckling analyses are performed with the help of Microsoft Office – Excel and 

in this section the calculation procedure in the spreadsheet is explained. The effective 
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length factor is obtained by trial and error method in the spreadsheet therefore, for 

simplicity, only the calculation steps for the exact value of effective length are 

presented here. 

 

For end-fixity factor of 0.75 the effective length factor K is determined as 1.193. 

Using Eqn. 2.13 k is obtained as, 

 

ܭ ൌ
ߨ
ܮ݇
   ՜    ݇ ൌ

ߨ
ܮܭ

ൌ
ߨ

1.193 · 4000
ൌ   10ିସݔ6.58

 

ܮ݇ ൌ 10ିସݔ6.58 · 4000 ൌ 2.632 

 

By using Eqns. 2.6, 2.7, 2.8, 2.9 and 2.10 the stability functions are obtained. 

 

௖׎ ൌ 2 െ ܮ݇ݏ݋2ܿ െ ܮ݇ · ܮ݇݊݅ݏ ൌ 2 െ 2 · cosሺ2.632ሻ െ 2.632 · sinሺ2.632ሻ ൌ 2.466 

 

ଵ׎ ൌ
ሺ݇ܮሻଷܮ݇݊݅ݏ

௖׎12
ൌ
ሺ2.632ሻଷ · sin ሺ2.632ሻ

12 · 2.466
ൌ 0.300 

 

ଶ׎ ൌ
ሺ݇ܮሻଶሺ1 െ ሻܮ݇ݏ݋ܿ

௖׎6
ൌ
ሺ2.632ሻଶ൫1 െ ሺ2.632ሻ൯ݏ݋ܿ

6 · 2.466
ൌ 0.878 

 

ଷ׎ ൌ
ܮ݇݊݅ݏሺܮ݇ െ ሻܮ݇ݏ݋ܿܮ݇

௖׎4
ൌ
2.632൫݊݅ݏሺ2.632ሻ െ 2.632 · ሺ2.632ሻ൯ݏ݋ܿ

4 · 2.466
ൌ 0.744 

 

ସ׎ ൌ
ܮሺ݇ܮ݇ െ ሻܮ݇݊݅ݏ

௖׎2
ൌ
2.632൫2.632 െ ሺ2.632ሻ൯݊݅ݏ

2 · 2.466
ൌ 1.146 

 

After determining stability functions, they are inserted into the column stiffness 

matrix as described in Eqn.2.5. The stiffness matrix of the columns C1 and C2 given 

in Eqn. 3.2 is modified as below, 
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݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ2.06 10଻ݔ1.20 0 െ2.0610ݔଷ 10଻ݔ1.20

0 10଻ݔ1.20 10ଵ଴ݔ2.72 0 െ1.2010ݔ଻ 10ଵ଴ݔ2.09

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ2.0610ݔଷ െ1.2010ݔ଻ 0 10ଷݔ2.06 െ1.2010ݔ଻

0 10଻ݔ1.20 10ଵ଴ݔ2.09 0 െ1.2010ݔ଻ 10ଵ଴ݔ2.72 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

System stiffness matrix is formed with combining column matrices calculated above 

with the beam matrix obtained in Eqn. 3.4. In system stiffness matrix, elastic 

modulus (E) is the same for all members and each term of the matrix includes E 

therefore while taking the determinant of the matrix, E can be taken as a common 

multiple. To simplify the calculation, the elastic modulus E is assumed as 1. The 

system stiffness matrix with E=1 MPa is, 

 

ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0.02 0 60.14 0 60.14

0 2.83 27.11 െ0.01 27.11

60.14 27.11 293625 െ27.11 59155

0 െ0.01 െ27.11 2.83 െ27.11

60.14 27.11 59155 െ27.11 ے293625
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Determinant of K equals to zero. 

 

3.2.1.3. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column having 4m length and in-plane effective length factor of 1.193 are 

determined and the column is checked under the combined effect of compression and 

flexure. 
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In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3164 kN. The calculation steps are given in Appendix B. 

 

The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand/capacity ratio is 

obtained. 

 

௥ܲ

௖ܲ
ൌ

336.8
3164.0

ൌ 0.106 ൏ 0.200 

 

ܦ ⁄ܥ ൌ ௥ܲ

2 ௖ܲ
൅
௥ܯ

௖ܯ
ൌ

336.8
2 · 3164.0

൅
209.7
413.1

ൌ 0.561 ൏  ԥܭܱ       1.000

 

 

3.2.2. Design with Direct Analysis Method 

 

In design according to DAM, the structural analysis is performed in the same way 

with ELM however in DAM reduced stiffnesses are used instead of nominal 

stiffnesses. The notional loads are not used in DAM too, with the same reason as in 

ELM. The stiffness reduction factor is determined according to Section 2.1 (Eqn. 2.2 

& 2.3). It requires an iterative procedure to determine the reduction factor. First, a τb 

value is assumed and the structure is analyzed with this value then using the obtained 

forces, the assumed τb value is checked whether it is acceptable or not. If it is 

unacceptable, another value is assumed for τb and the same procedure is followed 

until τb satisfies the conditions. For the Case – I, in the first iteration step, τb is 

assumed as 1.0 and the structure is analyzed with the member stiffnesses reduced by 

1.0x0.80 and the axial compressive load, Pr, is obtained as 337 kN (obtained in 

Section 3.2.2.1) for the critical column C2. 
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ߙ ௥ܲ

௬ܲ
ൌ

1 · 337000
11300 · 345

ൌ 0.09 ൏ 0.50              ՜             ߬௕ ൌ 1.0 

 

In the first iteration step τb is obtained. The stiffness reduction factor is 0.8 for both 

columns, C1 and C2 and for the beam. The Pr value above is calculated for the 

critical column C2, the axial load on C1 is smaller than the one on C2 therefore the 

ratio for C1 is also smaller than 0.50. 

 

3.2.2.1. Structural Analysis 

 

The structural analysis by using DAM is conducted by using the same procedure as 

described in ELM. Therefore, the calculation steps are skipped and only the resultant 

stiffness matrix of the system, displacement matrix and member forces are presented. 

The stiffness matrix of the system is, 

 

ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ସݔ1.10 0 10ସݔ1.10 0 10଻ݔ1.10

0 10ହݔ4.53 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10ସݔ1.10 10଺ݔ4.34 10ଵ଴ݔ5.45 െ4.3410ݔ଺ 10ଵ଴ݔ9.46

0 െ1.0810ݔଷ െ4.3410ݔ଺ 10ହݔ4.53 െ4.3410ݔ଺

10ସݔ1.10 10଺ݔ4.34 10ଵ଴ݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ5.45 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The displacement matrix of the system is, 

 

ܦ ൌ

ۏ
ێ
ێ
ێ
ۍ
ݑ
ଵݒ
ଵߠ
ଶݒ
ےଶߠ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
24.3380
െ0.5838
െ0.0042
െ0.7436
െ0.0042ے

ۑ
ۑ
ۑ
ې

  

݉݉
݉݉
݀ܽݎ
݉݉
݀ܽݎ

 

 

The first-order analysis results are as in Figure 3.8. 
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Figure 3.8 – First-Order Analysis Result of Case – I with DAM 

 

The second-order analysis results are obtained as; 

 

௥ܯ ൌ ଵܤ · ௡௧ܯ ൅ ଶܤ · ௟௧ܯ ൌ ଵܤ · 0 ൅ 1.0252 · 205.5 ൌ 210.7 ݇ܰ · ݉  

 
௥ܲ ൌ ௡ܲ௧ ൅ ଶܤ · ௟ܲ௧ ൌ 300.0 ൅ 1.0252 · 36.1 ൌ 337.0 ݇ܰ · ݉ 

 
௡௧ܯ ൌ 0 ݇ܰ · ݉           ՜  ଵܤ ݁ݐ݈ܽݑ݈ܿܽܿ ݋ݐ ݀݁݁݊ ݋ܰ          

 
௟௧ܯ ൌ 205.5 ݇ܰ · ݉ 

 

௡ܲ௧ ൌ 300.0 ݇ܰ 

-263.9 kN -336.1 kN

87.5 kN 87.5 kN

36.1 kN

205.5 kN.m

144.5 kN.m 144.5 kN.m

205.5 kN.m

SHEAR FORCE

MOMENT

AXIAL FORCE
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௟ܲ௧ ൌ 336.1 െ 300.0 ൌ 36.1 ݇ܰ 

 

ଶܤ ൌ
1

1 െ
ߙ · ௦ܲ௧௢௥௬

௘ܲ ௦௧௢௥௬

ൌ
1

1 െ
1 · 600
24447

ൌ 1.0252 

 
௦ܲ௧௢௥௬ ൌ 300 ൅ 300 ൌ 600 ݇ܰ 

 

௘ܲ ௦௧௥௢௬ ൌ ܴெ
ܪ · ܮ
∆ு

ൌ 0.85 ·
175 · 4000
24.338

ൌ 24447 ݇ܰ 

 

ܴெ ൌ 1 െ 0.15 · ௠ܲ௙

௦ܲ௧௢௥௬
ൌ 1 െ 0.15 ·

600
600

ൌ 0.85 

 
∆ுൌ ݑ ൌ 24.338 ݉݉ 

 

As a summary, the second-order design forces and moments for the critical column 

C2 are, 

 

Pr = 337.0 kN  Mr = 210.7 kN.m 

 

 

3.2.2.2. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column with 4m length and in-plane effective length factor of 1.0 are determined and 

the column is checked under the combined effect of compression and flexure. 

 

In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3263 kN. The calculation steps are given in Appendix B. 
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The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is 

obtained. 

 

௥ܲ

௖ܲ
ൌ

337.0
3263.0

ൌ 0.103 ൏ 0.200 

 

௥ܲ

2 ௖ܲ
൅
௥ܯ

௖ܯ
ൌ

337.0
2 · 3263.0

൅
210.7
413.1

ൌ 0.562 ൏  ԥܭܱ       1.000
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1000 kN 1000 kN

115 kN
u

10

v1 v2

20

3.3. CASE STUDY – II 

 

The portal frame in Case – I is analyzed and designed with different loads in this 

case. The compressive loads are increased and the horizontal load is decreased. The 

geometry of the frame, sections and labels of members are shown in Figure 3.9. The 

degrees of freedom and loads acting on the frame are shown in Figure 3.10. The only 

difference between this frame and the frame in Case – I is the loads acting on it. 

 

 

 
Figure 3.9 – Geometry of the Frame and Sections of Members in Case – II  

 

 

 

 

 

 

 

Figure 3.10 – Degrees of Freedom and Loads Acting on the Frame in Case - II 

 

The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using 

both stability methods, DAM and ELM.  

 

 

 

 8m

 4m C1 C2

B1S1 S2

HEA300

IPE500

HEA300
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3.3.1. Design with Effective Length Method 

 

In Case – II, like in Case – I, first structural analysis is conducted, then buckling 

length of the columns is determined and at the end, the columns are designed. The 

procedures used in Case – I to obtain member forces and buckling length of the 

frame are followed in Case – II too, therefore in this part only the results are 

presented, the steps are given in Appendix C. In analysis with ELM, nominal 

stiffnesses of members are used and the notional loads are not used due to the 

presence of a horizontal load. 

 

3.3.1.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 

stiffness matrix of the system is, 

 

ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ସݔ1.37 0 10ସݔ1.37 0 10଻ݔ1.37

0 10ହݔ5.66 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10ସݔ1.37 10଺ݔ5.42 10ଵ଴ݔ6.81 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

0 െ1.3610ݔଷ െ5.4210ݔ଺ 10ହݔ5.66 െ5.4210ݔ଺

10ସݔ1.37 10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ6.81 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The displacement matrix D and force vector Q are, 
 

ܦ ൌ

ۏ
ێ
ێ
ێ
ۍ
ݑ
ଵݒ
ଵߠ
ଶݒ
ےଶߠ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
12.795
െ1.7279
െ0.0022
െ1.8119
െ0.0022ے

ۑ
ۑ
ۑ
ې

  

݉݉
݉݉
݀ܽݎ
݉݉
݀ܽݎ

             ܳ ൌ

ۏ
ێ
ێ
ێ
ۍ
115000

െ1000000
0

െ1000000
0 ے

ۑ
ۑ
ۑ
ې

   

ܰ
ܰ
ܰ · ݉
ܰ
ܰ · ݉

   

 

The first-order analysis results are as in Figure 3.11. 
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Figure 3.11 – First-Order Analysis Results of Case – II with ELM  
 

 

The second-order design forces and moments for the critical column C2 are, 

 

Pr = 1025.4 kN  Mr = 144.5 kN.m 

 

3.3.1.2. Buckling Analysis 

 

The buckling analysis results for Case – II are the same with the results of Case – I 

since the frames are identical. The loads on the frame do not affect the buckling 

length of the frame. The buckling length of the frame for r = 0.75 is determined as 

1.193. 

 

-976.3 kN -1023.7 kN

57.5 kN 57.5 kN

23.7 kN

135.1 kN.m

94.9 kN.m 94.9 kN.m

135.1 kN.m
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3.3.1.3. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column having 4m length and in-plane effective length factor of 1.193 are 

determined and the column is checked under the combined effect of compression and 

flexure. 

 
In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3164 kN. The calculation steps are given in Appendix B. 

 
The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand/capacity ratio is 

obtained. 

 

௥ܲ

௖ܲ
ൌ
1025.4
3164.0

ൌ 0.324 ൐ 0.200 

 

ܦ ⁄ܥ ൌ ௥ܲ

௖ܲ
൅
8
9
·
௥ܯ

௖ܯ
ൌ
1025.4
3164.0

൅
8
9
·
144.5
413.1

ൌ 0.635 ൏  ԥܭܱ       1.000

 

3.3.2. Design with Direct Analysis Method 

 

The columns are designed with effective length factor of 1.0 after determining the 

second-order forces from the structural analysis. During the analysis, reduced 

stiffnesses are used and the notional loads are ignored due to the presence of a 

horizontal load. The stiffness reduction factor is determined as described in Section 

3.2.2. For the Case – II, the τb is obtained as 1.0 and the validity of it can be shown 

as; 

 
ߙ ௥ܲ

௬ܲ
ൌ
1 · 1025800
11300 · 345

ൌ 0.26 ൏ 0.50              ՜             ߬௕ ൌ 1.0 
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3.3.2.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 

stiffness matrix of the system is, 

 

ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
10ସݔ1.10 0 10ସݔ1.10 0 10଻ݔ1.10

0 10ହݔ4.53 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10ସݔ1.10 10଺ݔ4.34 10ଵ଴ݔ5.45 െ4.3410ݔ଺ 10ଵ଴ݔ9.46

0 െ1.0810ݔଷ െ4.3410ݔ଺ 10ହݔ4.53 െ4.3410ݔ଺

10ସݔ1.10 10଺ݔ4.34 10ଵ଴ݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ5.45 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The displacement matrix D and force vector Q are, 
 

ܦ ൌ

ۏ
ێ
ێ
ێ
ۍ
ݑ
ଵݒ
ଵߠ
ଶݒ
ےଶߠ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
15.993
െ2.1599
െ0.0027
െ2.2649
െ0.0027ے

ۑ
ۑ
ۑ
ې

  

݉݉
݉݉
݀ܽݎ
݉݉
݀ܽݎ

             ܳ ൌ

ۏ
ێ
ێ
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The first-order analysis results are as in Figure 3.12. 
 

The second-order design forces and moments for the critical column C2 are, 

 

Pr = 1025.8 kN  Mr = 147.1 kN.m 

 

3.3.2.2. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column with 4m length and in-plane effective length factor of 1.0 are determined and 

the column is checked under the combined effect of compression and flexure. 
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Figure 3.12 – First-Order Analysis Results of Case – II with DAM 

 

In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3263 kN. The calculation steps are given in Appendix B. 

 
The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is 

obtained. 
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3.4. CASE STUDY – III 

 

The portal frame in Case – I and Case - II is analyzed and designed with different 

loads in this case. The compressive loads are increased and the horizontal load is 

decreased when compared with Case - II. The geometry of the frame, sections and 

labels of members are shown in Figure 3.13. The degrees of freedom and loads 

acting on the frame are shown in Figure 3.14. The only difference between this frame 

and the frames in Case – I and Case - II is the loads acting on it. 

 

 

 
Figure 3.13 – Geometry of the Frame and Sections of Members in Case – III  

 

 

 

 

 

 

 

Figure 3.14 – Degrees of Freedom and Loads Acting on the Frame in Case - III 

 

The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using 

both stability methods, DAM and ELM.  
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3.4.1. Design with Effective Length Method 

 

In Case – III, like in Case – I, first structural analysis is conducted, then buckling 

length of the columns is determined and at the end, the columns are designed. The 

procedures used in Case – I to obtain member forces and buckling length of the 

frame are followed in Case – III too, therefore in this part only the results are 

presented, the steps are given in Appendix C. In analysis with ELM, nominal 

stiffnesses of members are used and the notional loads are not used due to the 

presence of a horizontal load. 

 

3.4.1.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 

stiffness matrix of the system is, 
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ۍ
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ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

The displacement matrix D and force vector Q are, 
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The first-order analysis results are as in Figure 3.15. 
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Figure 3.15 – First-Order Analysis Results of Case – III with ELM  
 

 

The second-order design forces and moments for the critical column C2 are, 

 

Pr = 1909.4 kN  Mr = 53.7 kN.m 

 

3.4.1.2. Buckling Analysis 

 

The buckling analysis results for Case – III are the same with the results of Case – I 

and Case - II since the frames are identical. The loads on the frame do not affect the 

buckling length of the frame. The buckling length of the frame for r = 0.75 is 

determined as 1.193. 
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3.4.1.3. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column having 4m length and in-plane effective length factor of 1.193 are 

determined and the column is checked under the combined effect of compression and 

flexure. 

 
In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3164 kN. The calculation steps are given in Appendix B. 

 
The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand/capacity ratio is 

obtained. 
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3.4.2. Design with Direct Analysis Method 

 

The columns are designed with effective length factor of 1.0 after determining the 

second-order forces from the structural analysis. During the analysis, reduced 

stiffnesses are used and the notional loads are ignored due to the presence of a 

horizontal load. The stiffness reduction factor is determined as described in Section 

3.2.2. For the Case – III, the τb is obtained as 1.0 and the validity of it can be shown 

as; 
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ൌ
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3.4.2.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 

stiffness matrix of the system is, 
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The displacement matrix D and force vector Q are, 
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The first-order analysis results are as in Figure 3.16. 
 

The second-order design forces and moments for the critical column C2 are, 

 

Pr = 1909.8 kN  Mr = 55.6 kN.m 

 

3.4.2.2. Column Design 

 

In this part, the axial compressive strength and moment capacity of a HEA300 

column with 4m length and in-plane effective length factor of 1.0 are determined and 

the column is checked under the combined effect of compression and flexure. 
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Figure 3.16 – First-Order Analysis Results of Case – III with DAM 

 

In-plane flexural strength of the column is determined according to Chapter F of the 

AISC 360-10. The in-plane flexural strength of C1 and C2 is Mc = 413.1 kN.m. The 

calculation steps are given in Appendix A. The compressive strength of C1 and C2 is 

Pc = 3263 kN. The calculation steps are given in Appendix B. 

 
The check of the column considering the interaction of flexure and compression is 

conducted according to Chapter H1 of AISC 360-10 and demand capacity ratio is 

obtained. 
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3.5. CASE STUDY – IV 

 

Three-bay, one-story portal frame is analyzed and designed in this case. The portal 

frame consists of four columns with a height of 4m and three beams having 8m 

length. The geometry of the frame, sections and labels of members are shown in 

Figure 3.17. The column sections are HEA300 and the beam sections are IPE500. 

The exterior columns (C1 & C4) are oriented such that their weak axes are in the 

plane of bending whereas interior columns (C2 & C3) are oriented such that their 

strong axes are in the plane of bending.  

 

 

 

Figure 3.17 – Geometry of the Frame and Sections of Members in Case - IV 

 

The degrees of freedom and loads acting on the frame are shown in Figure 3.18. 

There are total of 9 degrees of freedom: u represents the lateral drift of the frame, v1, 

v2, v3 and v4 represent the axial deformation of columns and θ1, θ2, θ3 and θ4 

represent the rotational deformations at each end of the beam. The horizontal load is 

200 kN and the vertical load acting on top of exterior columns is 300 kN and top of 

interior columns is 550 kN. 
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Figure 3.18 – Degrees of Freedom and Loads Acting on the Frame in Case – IV  

 
The portal frame is analyzed and designed with an end-fixity factor of 0.75 by using 

both stability methods, DAM and ELM.  

 
3.5.1. Design with Effective Length Method 

 

In Case – IV, like in Case – I, first structural analysis is conducted, then buckling 

length of the columns is determined and at the end, the columns are designed. The 

procedures used in Case – I to obtain member forces and buckling length of the 

frame are followed in Case – IV too, therefore in this part only the results are 

presented, the steps are given in Appendix C. In analysis with ELM, nominal 

stiffnesses of members are used and the notional loads are not used due to the 

presence of a horizontal load. 

 

3.5.1.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 
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stiffness matrix of the system is given in Figure 3.20. The displacement matrix D and 

force vector Q are, 
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The first order analysis results are as in Figure 3.19. 
 
 

 
 
 

Figure 3.19 – First-Order Analysis Results of Case – IV with ELM  
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Figure 3.20 – The Stiffness Matrix of the System in Case – IV with ELM 
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The second-order design forces and moments for the critical columns are; 

 
Critical interior column : C3 Pr = 552.7 kN  Mr = 165.4 kN·m 

Critical exterior column : C4 Pr = 315.0 kN  Mr = 60.8 kN·m 

 
 
3.5.1.2. Buckling Analysis 

 

The buckling analysis is performed with Microsoft Office - Excel and the buckling 

length of the frame is determined as 1.095. The resultant stiffness matrix of the 

system is presented in Figure 3.21. Like in the Case – I, elastic modulus E is assumed 

as 1 instead of 200000 to simplify the solution. The determinant of the matrix is 

equal to zero. 

 

3.5.1.3. Column Design 

 

3.5.1.3.1. Design of Interior Columns 

 

The compressive and flexural strength of interior columns (C2 & C3) are determined 

and they are checked under the combined effect of compression and flexure. The in-

plane effective length factor is calculated as 1.095. In-plane flexural strength of the 

column is determined according to Chapter F of the AISC 360-10. The in-plane 

flexural strength of C2 and C3 is Mc = 413.1 kN.m. The calculation steps are given in 

Appendix A. The compressive strength of C2 and C3 is Pc = 3216 kN. The 

calculation steps are given in Appendix B. The check of the column considering the 

interaction of flexure and compression is conducted according to Chapter H1 of 

AISC 360-10 and demand capacity ratio is obtained. 
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Figure 3.21 – The Stiffness Matrix of the System for Buckling Analysis in Case – IV 
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3.5.1.3.2. Design of Exterior Columns 

 

The compressive and flexural strength of exterior columns (C1 & C4) are determined 

and they are checked under the combined effect of compression and flexure. The in-

plane effective length factor is calculated as 1.095. In-plane flexural strength of the 

column is determined according to Chapter F of the AISC 360-10. The in-plane 

flexural strength of C1 and C4 is Mc = 187.8 kN.m. The calculation steps are given in 

Appendix A. The compressive strength of C1 and C4 is Pc = 2732 kN. The 

calculation steps are given in Appendix B. The check of the column considering the 

interaction of flexure and compression is conducted according to Chapter H1 of 

AISC 360-10 and demand capacity ratio is obtained. 
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3.5.2. Design with Direct Analysis Method 

 

The columns are designed with effective length factor of 1.0 after determining the 

second-order forces from the structural analysis. During the analysis, reduced 

stiffnesses are used and the notional loads are ignored due to the presence of a 

horizontal load. The stiffness reduction factor is determined as described in Section 

3.2.2. For the Case – IV, the τb is obtained as 1.0 and the validity of it can be shown 

as; 
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3.5.2.1. Structural Analysis 

 

The stiffness matrix of the system, displacement matrix, force vector and member 

forces are presented here, for details of calculation please see Appendix C. The 

stiffness matrix of the system is given in Figure 3.23. The displacement matrix D, 

force vector Q and first-order analysis results are as below; 
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Figure 3.22 – First-Order Analysis Results of Case – IV with DAM 
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Figure 3.23 – The Stiffness Matrix of the System in Case – IV with DAM 
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The second-order design forces and moments for the critical columns are; 

Critical interior column : C3 Pr = 552.8 kN  Mr = 166.9 kN·m 

Critical exterior column : C4 Pr = 315.1 kN  Mr = 61.3 kN·m 

 
 
3.5.2.2. Column Design 

 

3.5.2.2.1. Design of Interior Columns 

 
The compressive and flexural strength of interior columns (C2 & C3) are determined 

and they are checked under the combined effect of compression and flexure. The in-

plane effective length factor is 1.00. In-plane flexural strength of the column is 

determined according to Chapter F of the AISC 360-10. The in-plane flexural 

strength of C2 and C3 is Mc = 413.1 kN.m. The calculation steps are given in 

Appendix A. The compressive strength of C2 and C3 is Pc = 3263 kN. The 

calculation steps are given in Appendix B. The check of the column considering the 

interaction of flexure and compression is conducted according to Chapter H1 of 

AISC 360-10 and demand capacity ratio is obtained. 

 

௥ܲ

௖ܲ
ൌ

552.8
3263.1

ൌ 0.169 ൏ 0.200 

 

ܦ ⁄ܥ ൌ ௥ܲ

2 ௖ܲ
൅
௥ܯ

௖ܯ
ൌ

552.8
2 · 3263.1

൅
166.9
413.1

ൌ 0.489 ൏  ԥܭܱ       1.000

 
 
 
3.5.2.2.2. Design of Exterior Columns 

 
The compressive and flexural strength of exterior columns (C1 & C4) are determined 

and they are checked under the combined effect of compression and flexure. The in-

plane effective length factor is calculated as 1.00. In-plane flexural strength of the 

column is determined according to Chapter F of the AISC 360-10. The in-plane 
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flexural strength of C1 and C4 is Mc = 187.8 kN.m. The calculation steps are given in 

Appendix A. The compressive strength of C1 and C4 is Pc = 2848 kN. The 

calculation steps are given in Appendix B. The check of the column considering the 

interaction of flexure and compression is conducted according to Chapter H1 of 

AISC 360-10 and demand capacity ratio is obtained. 

 

௥ܲ

௖ܲ
ൌ

315.1
2847.9

ൌ 0.111 ൏ 0.200 

 

ܦ ⁄ܥ ൌ ௥ܲ

2 ௖ܲ
൅
௥ܯ

௖ܯ
ൌ

315.1
2 · 2847.9

൅
61.3
187.8

ൌ 0.382 ൏  ԥܭܱ       1.000
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CHAPTER 4 
 
 
 

RESULTS AND DISCUSSIONS OF RESULTS 

 

4.1. RESULTS 

 

In Section 3.1, it is explained that there are total of 168 analyses. In Sections 3.2, 3.3, 

3.4 and 3.5, for each case one analysis is explained in details and the results of that 

analysis are presented at the end of those sections. In this section, all results for all 

analyses are presented.  

 
The terms used in the tables are explained as below; 

 
r : end-rigidity factor 

Pr : second-order design compressive load (kN) 

Mr : second-order design moment (kN·m) 

Pc : compressive strength (kN) 

Mc : flexural strength (kN·m) 

K : effective length factor 

B2 : the ratio of second-order drift to first-order drift 

D/C : demand/capacity ratio 

 

In the tables given below, second-order forces and moments (Pr & Mr), member 

compressive and flexural strengths (Pc & Mc), effective length factors (K), drift ratios 

(B2) and demand/capacity ratios for all end-rigidity factors (ranging from 0 to 1) and 

for both stability methods are presented. After each table, a figure showing the D/C 

ratios for both stability methods is presented. 
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4.1.1. Results of Case - I 

 
 
Analysis and design results of the critical column C2 in Case – I are presented in 

Table 4.1. 

 

 

 

 

Table 4.1 – Analysis and Design Results of C2 in Case – I 

 

 

 

 

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.1. 

C1 C2

r Pr Mr Pc Mc K B2 D/C Pr Mr Pc Mc K B2 D/C

1.00 339.5 198.2 3203.4 413.1 1.120 1.018 0.533 339.7 199.1 3263.1 413.1 1.00 1.022 0.534

0.95 339.0 200.1 3196.6 413.1 1.133 1.018 0.537 339.2 201.0 3263.1 413.1 1.00 1.023 0.539

0.90 338.6 202.2 3189.7 413.1 1.146 1.018 0.543 338.7 203.1 3263.1 413.1 1.00 1.023 0.544

0.85 338.0 204.5 3182.2 413.1 1.160 1.019 0.548 338.2 205.4 3263.1 413.1 1.00 1.024 0.549

0.80 337.5 206.9 3174.2 413.1 1.175 1.019 0.554 337.6 208.0 3263.1 413.1 1.00 1.024 0.555

0.75 336.8 209.7 3164.9 413.1 1.192 1.020 0.561 337.0 210.7 3263.1 413.1 1.00 1.025 0.562

0.70 336.1 212.7 3154.4 413.1 1.211 1.021 0.568 336.3 213.8 3263.1 413.1 1.00 1.026 0.569

0.65 335.4 216.0 3143.3 413.1 1.231 1.021 0.576 335.6 217.2 3263.1 413.1 1.00 1.027 0.577

0.60 334.5 219.7 3130.3 413.1 1.254 1.022 0.585 334.7 220.9 3263.1 413.1 1.00 1.028 0.586

0.55 333.6 223.9 3115.9 413.1 1.279 1.023 0.595 333.7 225.2 3263.1 413.1 1.00 1.029 0.596

0.50 332.5 228.6 3099.6 413.1 1.307 1.024 0.607 332.7 229.9 3263.1 413.1 1.00 1.030 0.608

0.45 331.2 233.9 3080.6 413.1 1.339 1.025 0.620 331.4 235.4 3263.1 413.1 1.00 1.032 0.621

0.40 329.8 240.0 3058.8 413.1 1.375 1.027 0.635 330.0 241.6 3263.1 413.1 1.00 1.033 0.635

0.35 328.2 247.1 3033.5 413.1 1.416 1.028 0.652 328.4 248.9 3263.1 413.1 1.00 1.035 0.653

0.30 326.2 255.5 3003.9 413.1 1.463 1.030 0.673 326.4 257.4 3263.1 413.1 1.00 1.038 0.673

0.25 324.0 265.4 2969.0 413.1 1.517 1.032 0.697 324.1 267.5 3263.1 413.1 1.00 1.040 0.697

0.20 321.2 277.4 2926.6 413.1 1.581 1.035 0.726 321.4 279.8 3263.1 413.1 1.00 1.044 0.727

0.15 317.7 292.2 2875.5 413.1 1.656 1.038 0.763 317.9 295.0 3263.1 413.1 1.00 1.048 0.763

0.10 313.4 311.0 2811.6 413.1 1.747 1.042 0.809 313.5 314.3 3263.1 413.1 1.00 1.053 0.809

0.05 307.7 335.6 2730.4 413.1 1.859 1.047 0.869 307.8 339.6 3263.1 413.1 1.00 1.060 0.869

0.00 300.0 369.0 2624.7 413.1 2.000 1.054 0.950 300.0 374.1 3263.1 413.1 1.00 1.069 0.952

Effective Length Method Direct Analysis Method
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Figure 4.1 – Demand/Capacity vs. End-Rigidity for Case – I 
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4.1.2. Results of Case - II 

 
Analysis and design results of the critical column C2 in Case – II are presented in 

Table 4.2. 

 

 

 

 

 

Table 4.2 – Analysis and Design Results of C2 in Case – II 

 

 

 

 

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.2. 

C1 C2

r Pr Mr Pc Mc K B2 D/C Pr Mr Pc Mc K B2 D/C

1.00 1027.1 135.8 3203.4 413.1 1.120 1.061 0.613 1027.5 137.9 3263.1 413.1 1.00 1.077 0.612

0.95 1026.8 137.2 3196.6 413.1 1.133 1.063 0.617 1027.2 139.4 3263.1 413.1 1.00 1.079 0.615

0.90 1026.5 138.8 3189.7 413.1 1.146 1.064 0.621 1026.9 141.1 3263.1 413.1 1.00 1.081 0.618

0.85 1026.2 140.6 3182.2 413.1 1.160 1.066 0.625 1026.6 142.9 3263.1 413.1 1.00 1.084 0.622

0.80 1025.8 142.5 3174.2 413.1 1.175 1.068 0.630 1026.2 144.9 3263.1 413.1 1.00 1.086 0.626

0.75 1025.4 144.5 3164.9 413.1 1.192 1.070 0.635 1025.8 147.1 3263.1 413.1 1.00 1.089 0.631

0.70 1025.0 146.8 3154.4 413.1 1.211 1.072 0.641 1025.4 149.5 3263.1 413.1 1.00 1.092 0.636

0.65 1024.5 149.4 3143.3 413.1 1.231 1.075 0.647 1024.9 152.3 3263.1 413.1 1.00 1.096 0.642

0.60 1023.9 152.3 3130.3 413.1 1.254 1.078 0.655 1024.4 155.3 3263.1 413.1 1.00 1.099 0.648

0.55 1023.3 155.5 3115.9 413.1 1.279 1.081 0.663 1023.8 158.7 3263.1 413.1 1.00 1.104 0.655

0.50 1022.6 159.1 3099.6 413.1 1.307 1.085 0.672 1023.1 162.6 3263.1 413.1 1.00 1.109 0.663

0.45 1021.8 163.3 3080.6 413.1 1.339 1.089 0.683 1022.3 167.1 3263.1 413.1 1.00 1.114 0.673

0.40 1020.9 168.1 3058.8 413.1 1.375 1.094 0.696 1021.4 172.2 3263.1 413.1 1.00 1.121 0.684

0.35 1019.8 173.8 3033.5 413.1 1.416 1.100 0.710 1020.3 178.3 3263.1 413.1 1.00 1.128 0.696

0.30 1018.5 180.5 3003.9 413.1 1.463 1.107 0.727 1019.1 185.4 3263.1 413.1 1.00 1.138 0.711

0.25 1017.0 188.5 2969.0 413.1 1.517 1.115 0.748 1017.5 194.1 3263.1 413.1 1.00 1.149 0.729

0.20 1015.1 198.3 2926.6 413.1 1.581 1.126 0.774 1015.6 204.7 3263.1 413.1 1.00 1.162 0.752

0.15 1012.8 210.6 2875.5 413.1 1.656 1.138 0.805 1013.2 218.2 3263.1 413.1 1.00 1.179 0.780

0.10 1009.8 226.5 2811.6 413.1 1.747 1.155 0.847 1010.2 235.6 3263.1 413.1 1.00 1.201 0.817

0.05 1005.7 247.8 2730.4 413.1 1.859 1.177 0.901 1006.0 259.2 3263.1 413.1 1.00 1.231 0.866

0.00 1000.0 277.7 2624.7 413.1 2.000 1.207 0.979 1000.0 292.9 3263.1 413.1 1.00 1.274 0.937

Effective Length Method Direct Analysis Method
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Figure 4.2 – Demand/Capacity vs. End-Rigidity for Case – II 
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4.1.3. Results of Case - III 

 
Analysis and design results of the critical column C2 in Case – III are presented in 

Table 4.3. 

 

 

 

 

 

Table 4.3 – Analysis and Design Results of C2 in Case – III 

 

 

 

 

The demand/capacity ratios of C2 for ELM and DAM are drawn in Figure 4.3. 

C1 C2

r Pr Mr Pc Mc K B2 D/C Pr Mr Pc Mc K B2 D/C

1.00 1910.0 50.0 3203.4 413.1 1.120 1.123 0.704 1910.3 51.6 3263.1 413.1 1.00 1.158 0.696

0.95 1909.9 50.6 3196.6 413.1 1.133 1.126 0.706 1910.2 52.2 3263.1 413.1 1.00 1.162 0.698

0.90 1909.8 51.2 3189.7 413.1 1.146 1.129 0.709 1910.1 53.0 3263.1 413.1 1.00 1.167 0.699

0.85 1909.7 52.0 3182.2 413.1 1.160 1.133 0.712 1910.0 53.8 3263.1 413.1 1.00 1.172 0.701

0.80 1909.6 52.8 3174.2 413.1 1.175 1.137 0.715 1909.9 54.6 3263.1 413.1 1.00 1.178 0.703

0.75 1909.4 53.7 3164.9 413.1 1.192 1.142 0.719 1909.8 55.6 3263.1 413.1 1.00 1.184 0.705

0.70 1909.3 54.6 3154.4 413.1 1.211 1.147 0.723 1909.6 56.7 3263.1 413.1 1.00 1.191 0.707

0.65 1909.1 55.7 3143.3 413.1 1.231 1.153 0.727 1909.5 57.9 3263.1 413.1 1.00 1.199 0.710

0.60 1908.9 57.0 3130.3 413.1 1.254 1.159 0.732 1909.3 59.3 3263.1 413.1 1.00 1.208 0.713

0.55 1908.7 58.4 3115.9 413.1 1.279 1.167 0.738 1909.1 60.9 3263.1 413.1 1.00 1.217 0.716

0.50 1908.5 59.9 3099.6 413.1 1.307 1.175 0.745 1908.9 62.7 3263.1 413.1 1.00 1.229 0.720

0.45 1908.3 61.8 3080.6 413.1 1.339 1.185 0.752 1908.7 64.8 3263.1 413.1 1.00 1.242 0.724

0.40 1907.9 63.9 3058.8 413.1 1.375 1.196 0.761 1908.4 67.2 3263.1 413.1 1.00 1.258 0.729

0.35 1907.6 66.4 3033.5 413.1 1.416 1.209 0.772 1908.0 70.1 3263.1 413.1 1.00 1.276 0.736

0.30 1907.1 69.5 3003.9 413.1 1.463 1.225 0.784 1907.6 73.6 3263.1 413.1 1.00 1.298 0.743

0.25 1906.6 73.2 2969.0 413.1 1.517 1.245 0.800 1907.0 77.9 3263.1 413.1 1.00 1.326 0.752

0.20 1905.9 77.8 2926.6 413.1 1.581 1.269 0.819 1906.4 83.4 3263.1 413.1 1.00 1.360 0.764

0.15 1905.1 83.7 2875.5 413.1 1.656 1.300 0.843 1905.5 90.5 3263.1 413.1 1.00 1.405 0.779

0.10 1903.9 91.5 2811.6 413.1 1.747 1.341 0.874 1904.3 100.1 3263.1 413.1 1.00 1.466 0.799

0.05 1902.4 102.5 2730.4 413.1 1.859 1.399 0.917 1902.6 113.8 3263.1 413.1 1.00 1.554 0.828

0.00 1900.0 118.8 2624.7 413.1 2.000 1.485 0.979 1900.0 135.1 3263.1 413.1 1.00 1.689 0.873

Effective Length Method Direct Analysis Method
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Figure 4.3 – Demand/Capacity vs. End-Rigidity for Case – III 
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4.1.4. Results of Case - IV 

 
Analysis and design results of critical columns C3 (interior) and C4 (exterior) in 

Case – IV are presented in this part. 

 

 

 

 
4.1.4.1. Results of C3 (Interior Column) 

 
 

Table 4.4 - Analysis and Design Results of C3 (interior column) in Case – IV 

 

 

The demand/capacity ratios of C3 for ELM and DAM are drawn in Figure 4.4. 

 
 

C1 C2 C3 C4

r Pr Mr Pc Mc K B2 D/C Pr Mr Pc Mc K B2 D/C

1.00 553.8 160.4 3234.9 413.1 1.058 1.033 0.474 553.8 161.7 3263.1 413.1 1.00 1.041 0.476

0.95 553.5 161.2 3233.4 413.1 1.061 1.033 0.476 553.6 162.6 3263.1 413.1 1.00 1.042 0.478

0.90 553.3 162.1 3229.4 413.1 1.069 1.034 0.478 553.4 163.5 3263.1 413.1 1.00 1.042 0.480

0.85 553.1 163.1 3224.9 413.1 1.078 1.034 0.481 553.2 164.5 3263.1 413.1 1.00 1.043 0.483

0.80 552.9 164.2 3219.8 413.1 1.088 1.035 0.483 553.0 165.6 3263.1 413.1 1.00 1.044 0.486

0.75 552.7 165.4 3216.3 413.1 1.095 1.036 0.486 552.8 166.9 3263.1 413.1 1.00 1.045 0.489

0.70 552.6 166.8 3210.1 413.1 1.107 1.036 0.490 552.6 168.3 3263.1 413.1 1.00 1.046 0.492

0.65 552.4 168.4 3206.0 413.1 1.115 1.037 0.494 552.4 170.0 3263.1 413.1 1.00 1.047 0.496

0.60 552.2 170.2 3199.2 413.1 1.128 1.038 0.498 552.2 171.9 3263.1 413.1 1.00 1.048 0.501

0.55 552.0 172.3 3190.2 413.1 1.145 1.039 0.504 552.0 174.0 3263.1 413.1 1.00 1.050 0.506

0.50 551.8 174.8 3180.6 413.1 1.163 1.041 0.510 551.8 176.6 3263.1 413.1 1.00 1.051 0.512

0.45 551.6 177.7 3170.9 413.1 1.181 1.042 0.517 551.7 179.6 3263.1 413.1 1.00 1.054 0.519

0.40 551.5 181.3 3156.1 413.1 1.208 1.044 0.526 551.5 183.3 3263.1 413.1 1.00 1.056 0.528

0.35 551.3 185.6 3139.3 413.1 1.238 1.047 0.537 551.3 187.8 3263.1 413.1 1.00 1.059 0.539

0.30 551.1 191.0 3115.3 413.1 1.280 1.049 0.551 551.1 193.4 3263.1 413.1 1.00 1.063 0.553

0.25 550.9 198.0 3091.3 413.1 1.321 1.053 0.568 550.9 200.7 3263.1 413.1 1.00 1.067 0.570

0.20 550.7 207.3 3055.8 413.1 1.380 1.058 0.592 550.7 210.3 3263.1 413.1 1.00 1.074 0.594

0.15 550.5 220.3 3004.5 413.1 1.462 1.065 0.625 550.5 223.9 3263.1 413.1 1.00 1.082 0.626

0.10 550.3 239.7 2932.6 413.1 1.572 1.075 0.674 550.3 244.2 3263.1 413.1 1.00 1.095 0.676

0.05 550.1 271.6 2823.0 413.1 1.731 1.091 0.755 550.1 277.9 3263.1 413.1 1.00 1.116 0.757

0.00 550.0 333.5 2624.7 413.1 2.000 1.122 0.927 550.0 343.9 3263.1 413.1 1.00 1.157 0.917

Effective Length Method Direct Analysis Method
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Figure 4.4 – Demand/Capacity vs. End-Rigidity for C3 in Case – IV  
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4.1.4.2. Results of C4 (Exterior Column) 

 
 

Table 4.5 - Analysis and Design Results of C4 (exterior column) in Case – IV 

 
 
 
The demand/capacity ratios of C4 for ELM and DAM are drawn in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r Pr Mr Pc Mc K B2 D/C Pr Mr Pc Mc K B2 D/C

1.00 315.2 58.4 2777.9 187.8 1.058 1.033 0.368 315.3 58.9 2847.9 187.8 1.00 1.041 0.369

0.95 315.2 58.8 2770.5 187.8 1.064 1.033 0.370 315.3 59.3 2847.9 187.8 1.00 1.042 0.371

0.90 315.1 59.3 2761.9 187.8 1.071 1.034 0.373 315.3 59.8 2847.9 187.8 1.00 1.042 0.374

0.85 315.1 59.7 2753.2 187.8 1.078 1.034 0.375 315.2 60.2 2847.9 187.8 1.00 1.043 0.376

0.80 315.0 60.2 2743.3 187.8 1.086 1.035 0.378 315.2 60.8 2847.9 187.8 1.00 1.044 0.379

0.75 315.0 60.8 2732.1 187.8 1.095 1.036 0.381 315.1 61.3 2847.9 187.8 1.00 1.045 0.382

0.70 314.9 61.4 2719.6 187.8 1.105 1.036 0.385 315.0 62.0 2847.9 187.8 1.00 1.046 0.385

0.65 314.8 62.1 2704.5 187.8 1.117 1.037 0.389 314.9 62.7 2847.9 187.8 1.00 1.047 0.389

0.60 314.6 62.8 2688.1 187.8 1.130 1.038 0.393 314.8 63.4 2847.9 187.8 1.00 1.048 0.393

0.55 314.5 63.7 2669.0 187.8 1.145 1.039 0.398 314.6 64.3 2847.9 187.8 1.00 1.050 0.398

0.50 314.3 64.7 2646.0 187.8 1.163 1.041 0.404 314.4 65.4 2847.9 187.8 1.00 1.051 0.403

0.45 314.1 65.9 2620.2 187.8 1.183 1.042 0.411 314.2 66.6 2847.9 187.8 1.00 1.054 0.410

0.40 313.8 67.2 2587.7 187.8 1.208 1.044 0.419 313.9 68.0 2847.9 187.8 1.00 1.056 0.417

0.35 313.4 68.8 2548.4 187.8 1.238 1.047 0.428 313.5 69.7 2847.9 187.8 1.00 1.059 0.426

0.30 312.9 70.8 2499.4 187.8 1.275 1.049 0.440 313.1 71.7 2847.9 187.8 1.00 1.063 0.437

0.25 312.3 73.3 2437.9 187.8 1.321 1.053 0.454 312.5 74.3 2847.9 187.8 1.00 1.067 0.451

0.20 311.5 76.5 2358.2 187.8 1.380 1.058 0.474 311.6 77.7 2847.9 187.8 1.00 1.074 0.468

0.15 310.3 80.9 2250.4 187.8 1.459 1.065 0.500 310.5 82.2 2847.9 187.8 1.00 1.082 0.492

0.10 308.5 87.1 2099.3 187.8 1.569 1.075 0.537 308.7 88.8 2847.9 187.8 1.00 1.095 0.527

0.05 305.6 97.0 1877.8 187.8 1.731 1.091 0.598 305.8 99.2 2847.9 187.8 1.00 1.116 0.582

0.00 300.0 115.2 1523.0 187.8 2.000 1.122 0.712 300.0 118.9 2847.9 187.8 1.00 1.157 0.686

Effective Length Method Direct Analysis Method
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Figure 4.5 – Demand/Capacity vs. End-Rigidity for C4 in Case – IV  
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4.2. DISCUSSION OF RESULTS 

 
 
In this section, each table and each figure given in Section 4.1 are discussed 

separately. 

 

Table 4.1 

 

 In Case – I, the contribution of compression to the D/C ratio is very low when 

compared with flexural bending. For example, for the end-rigidity ratio of 

0.15, the contribution of compression is 5.52% in ELM and 4.87% in DAM 

whereas the contribution of flexural bending is 70.73% in ELM and 71.41% 

in DAM. 

 
r = 0.15 (selected randomly) 

Effective Length Method Direct Analysis Method 

௥ܲ

2 ௖ܲ
   ൅

௥ܯ

௖ܯ
 ௥ܲ

2 ௖ܲ
  ൅   

௥ܯ

௖ܯ
 

317.7
2 · 2875.5

  ൅
292.2
413.1

 
317.9

2 · 3263.1
 ൅  

295.0
413.1

 

            5.52%    70.73%           4.87%   71.41% 

76.25% 76.28% 

 
 

 Second-order forces and moments (Pr & Mr) obtained with DAM are greater 

than those obtained with ELM.  

 
 D/C ratios of DAM and ELM are very close in Case – I. 

 
 The ratio of second-order drift to first-order drift, B2, is very low in Case – I. 
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Figure 4.1 

 

 The effect of flexible connections is better observed in the figure than the 

table. In the pinned connected case (r = 0.00) the D/C ratio is about 0.95 

whereas in rigidly connected case (r = 1.00) the D/C ratio is about 0.53 for 

both methods. Between end-rigidity values of 1.00 and 0.50 the increase in 

the D/C ratio is not significant, it rises from 0.53 to 0.61 for both methods. 

However, between end-rigidity values of 0.50 and 0.00 the increase in the 

D/C ratio is significant. It increases from 0.61 to 0.95 for both methods. 

 

Table 4.2 

 

 In Case – II, the contribution of compression to the D/C ratio is lower than 

the contribution of flexural bending but close to it. For example, for the end-

rigidity ratio of 0.15, the contribution of compression is 35.22% in ELM and 

31.05% in DAM whereas the contribution of flexural bending is 45.32% in 

ELM and 46.95% in DAM. 

 
r = 0.15 (selected randomly) 

Effective Length Method Direct Analysis Method 

௥ܲ

௖ܲ
   ൅    

8
9
·
௥ܯ

௖ܯ
 ௥ܲ

௖ܲ
൅    

8
9
·
௥ܯ

௖ܯ
 

1012.8
2875.5

  ൅   
8
9
·
210.6
413.1

 
1013.2
3263.1

൅  
8
9
·
218.2
413.1

 

            35.22%    45.32%           31.05%   46.95% 
80.54% 78.00% 

 
 

 Second-order forces and moments (Pr & Mr) obtained with DAM are greater 

than those obtained with ELM.  

 
 D/C ratios of DAM and ELM are close to each other however as r factor 

approaches to 0.00, the D/C ratios become different in Case – II. 
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 The ratio of second-order drift to first-order drift, B2, is average in Case – II. 

 

Figure 4.2 

 
 In pinned connected case (r = 0.00) the D/C ratio is 0.98 for ELM and 0.94 

for DAM whereas in rigidly connected case (r = 1.00) the D/C ratio is about 

0.61 for both methods. Between end-rigidity values of 1.00 and 0.50, the 

increase in the D/C ratio is not significant; it rises from 0.61 to 0.67 for ELM 

and to 0.66 for DAM. However, between end-rigidity values of 0.50 and 0.00 

the increase in the D/C ratio is significant. It increases from 0.67 to 0.98 for 

ELM and it increases from 0.66 to 0.94 for DAM. 

 

Table 4.3 

 

 In Case – III, the contribution of compression to the D/C ratio is greater than 

the contribution of flexural bending. For example, for the end-rigidity ratio of 

0.15, the contribution of compression is 66.25% in ELM and 58.40% in DAM 

whereas the contribution of flexural bending is 18.01% in ELM and 19.47% 

in DAM. 

 
r = 0.15 (selected randomly) 

Effective Length Method Direct Analysis Method 

௥ܲ

௖ܲ
   ൅    

8
9
·
௥ܯ

௖ܯ
 ௥ܲ

௖ܲ
൅    

8
9
·
௥ܯ

௖ܯ
 

1905.1
2875.5

  ൅   
8
9
·
83.7
413.1

 
1905.5
3263.1

൅  
8
9
·
90.5
413.1

 

            66.25%    18.01%           58.40%   19.47% 
84.26% 77.87% 

 
 

 Second-order forces and moments (Pr & Mr) obtained with DAM are greater 

than those obtained with ELM.  
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 As r approaches to 0.00 from 1.00, the difference between the D/C ratios of 

ELM and DAM increases. The D/C ratios of ELM are greater than the D/C 

ratios of DAM. 

 
 The ratio of second-order drift to first-order drift, B2, is high in Case – III. 

 

Figure 4.3 

 

 In pinned connected case (r = 0.00) the D/C ratio is 0.98 for ELM and 0.87 

for DAM whereas in rigidly connected case (r = 1.00) the D/C ratio is about 

0.70 for both methods. Between end-rigidity values of 1.00 and 0.50, the 

increase in the D/C ratio is not significant; it rises from 0.70 to 0.75 for ELM 

and to 0.72 for DAM. However, between end-rigidity values of 0.50 and 0.00 

the increase in the D/C ratio is significant. It increases from 0.75 to 0.98 for 

ELM and it increases from 0.72 to 0.87 for DAM. 

 

Table 4.4 

 

 For the critical interior column C3 In Case – IV, the contribution of 

compression to the D/C ratio is low when compared with flexural bending. 

For example, for the end-rigidity ratio of 0.15, the contribution of 

compression is 9.16% in ELM and 8.44% in DAM whereas the contribution 

of flexural bending is 53.33% in ELM and 54.20% in DAM. 

 
r = 0.15 (selected randomly) 

Effective Length Method Direct Analysis Method 

௥ܲ

2 ௖ܲ
   ൅

௥ܯ

௖ܯ
 ௥ܲ

2 ௖ܲ
  ൅   

௥ܯ

௖ܯ
 

550.5
2 · 3004.5

  ൅
220.3
413.1

 
550.5

2 · 3263.1
 ൅  

223.9
413.1

 

            9.16%    53.33%             8.44%   54.20% 
62.49% 62.64% 
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 Second-order forces and moments (Pr & Mr) obtained with DAM are greater 

than those obtained with ELM.  

 
 D/C ratios of DAM and ELM are very close for the interior column C3 in 

Case – IV. 

 
 The ratio of second-order drift to first-order drift, B2, is low in Case – IV. 

 

Figure 4.4 

 

 In the pinned connected case (r = 0.00) the D/C ratio is about 0.92 whereas in 

rigidly connected case (r = 1.00) the D/C ratio is about 0.47 for both methods. 

Between end-rigidity values of 1.00 and 0.50 the increase in the D/C ratio is 

not significant, it rises from 0.47 to 0.51 for both methods. However, between 

end-rigidity values of 0.50 and 0.00 the increase in the D/C ratio is 

significant. It increases from 0.51 to 0.92 for both methods. 

 

Table 4.5 

 

 For the critical exterior column C4 In Case – IV, the contribution of 

compression to the D/C ratio is low when compared with flexural bending. 

For example, for the end-rigidity ratio of 0.15, the contribution of 

compression is 6.89% in ELM and 5.45% in DAM whereas the contribution 

of flexural bending is 43.08% in ELM and 43.77% in DAM. 

 
r = 0.15 (selected randomly) 

Effective Length Method Direct Analysis Method 

௥ܲ

2 ௖ܲ
   ൅

௥ܯ

௖ܯ
 ௥ܲ

2 ௖ܲ
  ൅   

௥ܯ

௖ܯ
 

310.3
2 · 2250.4

  ൅
80.9
187.8

 
310.5

2 · 2847.9
 ൅  

82.2
187.8

 

            6.89%    43.08%             5.45%   43.77% 
49.97% 49.22% 
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 Second-order forces and moments (Pr & Mr) obtained with DAM are greater 

than those obtained with ELM.  

 
 D/C ratios of DAM and ELM are close for the exterior column C4 in Case – 

IV. 

 
 The ratio of second-order drift to first-order drift, B2, is low in Case – IV. 

 

Figure 4.5 

 

 In the pinned connected case (r = 0.00) the D/C ratio is about 0.70 whereas in 

rigidly connected case (r = 1.00) the D/C ratio is about 0.37 for both methods. 

Between end-rigidity values of 1.00 and 0.50 the increase in the D/C ratio is 

not significant, it rises from 0.37 to 0.40 for both methods. However, between 

end-rigidity values of 0.50 and 0.00 the increase in the D/C ratio is 

significant. It increases from 0.40 to 0.70. Between r values of 0.00 and 0.25 

(where the effective length factor begins to increase significantly) it is 

observed that DAM becomes slightly unconservative when compared with 

ELM. At r equals to 0.25 the D/C ratio is 0.45 for both methods. At r equals 

to 0.00 the D/C ratio for ELM is 0.71 and for DAM it is 0.69. 
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CHAPTER 5 
 
 
 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

5.1. CONCLUSIONS 

 
 
To compare DAM and ELM in semi-rigid frames and to investigate the effect of 

semi-rigid joints to stability, four case studies were conducted and the results of these 

cases were obtained in terms of the demand/capacity ratio. The results were 

presented and discussed in Chapter 4. Based on these discussions, following 

conclusions were obtained. 

 

 In Case – I, the contribution of compression to D/C ratio is very low and 

accordingly the results of ELM and DAM are very close. In Case – II, the 

contribution of compression increases and accordingly ELM becomes more 

conservative than DAM. In Case – III, the D/C ratios are governed by 

compression therefore the difference between ELM and DAM becomes large. 

When comparing Case – I, Case – II and Case – III, it is concluded that as the 

contribution of compression to D/C ratio increases, the D/C ratios obtained 

with ELM become greater than the D/C ratios obtained with DAM. This 

means that as the compressive force increases ELM gives conservative results 

when compared with DAM. 

 

 ELM underestimates the internal forces and moments when compared with 

DAM since geometric imperfections and member inelasticity are not 

accounted for in the analysis whereas DAM considers these in the analysis. 

To compensate the underestimation of internal forces and moments, ELM 

decreases the compressive strength of members by using effective length 
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factors. In cases where ELM and DAM give similar design results for the 

members, the internal forces obtained with ELM are lower than the forces 

obtained with DAM and this creates problem in connection design. The 

connections are designed with smaller forces and moments with ELM. 

Connection design is very important and critical for steel design since the fail 

of a connection may lead the fail of the entire structure therefore, design of 

connections with smaller forces than required is an undesired and 

unacceptable situation. 

 

 From the results of the exterior column in Case – IV it is observed that in 

minor-axis bending, DAM becomes slightly unconservative when compared 

with ELM between the end-rigidity factor range of 0.00 and 0.25. This 

conclusion is also obtained in the study of Ziemian and Martinez-Garcia [1]. 

As the end-rigidity factor approaches from 0.25 to 0.00, the influence of 

semi-rigid connections becomes more significant and this is reflected by the 

effective length factors in ELM. Since the influence of effective length factor 

on the compressive strength is more pronounced in minor-axis bending in 

general, the compressive strength of the members decreases more than it 

decreases in major axis bending within this end-rigidity range. 

 

 From the results of all cases, it is observed that between end-rigidity values of 

0.00 and 0.50, the connection stiffness significantly affects the D/C ratios 

whereas between 0.50 and 1.00 it loses its influence. If the structure is 

designed assuming the joints are ideally pinned (end-rigidity values is zero), 

the structure will have more capacity than the calculated since the 

connections are not perfectly pinned. In other words, small moment capacity 

of the connections may increase the resistance of the structure significantly if 

the connections are designed as pinned. This means that economy can be 

provided by using semi-rigid connections instead of pinned connections. If 

the structure is designed assuming the joints are fully rigid, the actual 

capacity of the structure will be less than the calculated. In this case, an 
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unsafe design comes out. However if the connections are designed as semi-

rigid instead of fully rigid, safety of the design is guaranteed with a little bit 

increase in the cost of the structure. The increase in the cost is low because 

within the end-rigidity range of 0.50-1.00 the increase in the demand/capacity 

ratio is small. 
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5.2. FUTURE RECOMMENDATIONS 

 
 
The followings are recommended for future studies: 
 
 

 One may perform the analyses assuming column bases semi-rigid instead of 

fully rigid to determine the influence of column bases to the stability of the 

structure. 

 
 Model the semi-rigid connections as non-linear instead of linear modeling to 

obtain more realistic results. 

 
 Model a 3-D structure to investigate the effect of stability methods on major-

axis or minor-axis bending of columns. 
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APPENDIX A 
 
 
 

FLEXURAL STRENGTH OF COLUMNS 
 

 

 

a) Flexural Strength of Columns in Case – I, Case – II and Case – III 

 

In-plane flexural strength of a column is determined according to Chapter F of the 

AISC 360-10. First, the compactness of HEA300 should be checked. The limiting 

values are given in Table B4.1b of AISC 360-10 which is given in Table A1. 

 

 

Table A1 – Compactness Limits 
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Compactness Check of Flanges 
 

0.38ඨ
ܧ
௬ܨ
ൌ 0.38ඨ

200000
345

ൌ 9.15          1.0ඨ
ܧ
௬ܨ
ൌ 1.0ඨ

200000
345

ൌ 24.08 

 

ܾ
ݐ
ൌ
300/2
14

ൌ 10.71      ՜         0.38ඨ
ܧ
௬ܨ
൏
ܾ
ݐ
൏ 1.0ඨ

ܧ
௬ܨ
      ՜ ݊݋ܰ      െ  ݈݂݁݃݊ܽ ݐܿܽ݌݉݋ܿ

 
 
Compactness Check of Web 
 

3.76ඨ
ܧ
௬ܨ
ൌ 3.76ඨ

200000
345

ൌ 90.53          5.70ඨ
ܧ
௬ܨ
ൌ 1.0ඨ

200000
345

ൌ 137.2 

 

݄
௪ݐ

ൌ
290 െ 14 · 2

8.5
ൌ 30.8      ՜     

݄
௪ݐ

൏  3.76ඨ
ܧ
௬ܨ
൏ 5.7ඨ

ܧ
௬ܨ
      ՜  ܾ݁ݓ ݐܿܽ݌݉݋ܥ    

 

 
Flexural Strength (According to Chapter F.3 of AISC 360-10) 
 

i. Lateral Torsional Buckling 

 
 
௕ܮ ൌ 4000 ݉݉ 
 

௣ܮ ൌ 1.76 · ௬ݎ · ඨ
ܧ
௬ܨ
ൌ 1.76 · 74.7 · ඨ

200000
345

ൌ 3165 ݉݉ 

 

௥ܮ ൌ 1.95 · ௧௦ݎ ·
ܧ

௬ܨ0.7
ඩ ܬ · ܿ
ܵ௫ · ݄௢

൅ ඨ൬
ܬ · ܿ
ܵ௫ · ݄௢

൰
ଶ

൅ 6.76 ൬
௬ܨ0.7
ܧ

൰
ଶ

ൌ 10868 ݉݉ 

 

Where 
 

E = 200000 MPa 

Fy  = 345 MPa 
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J = 878000 mm4 

c = 1 

Sx = 1259310 mm3 

Iy = 63100000 mm4 

 

݄௢ ൌ ݄ െ ௙ݐ ൌ 290 െ 14 ൌ 276 ݉݉ 

 

௪ܥ ൌ
௬ܫ · ݄௢ଶ

4
ൌ
10ହݔ631 · 276ଶ

4
ൌ  10ଵଶݔ1.202

 

௧௦ݎ ൌ ඨඥ
௬ܫ · ௪ܥ
ܵ௫

ൌ ඨ√63110ݔ
ହ · 10ଵଶݔ1.202

1259310
ൌ 83.15 

 

௣ܮ ൌ 3165 ݉݉  ൏    ௕ܮ ൌ 4000 ݉݉  ൏    ௥ܮ ൌ 10868 ݉݉ 

 

௣ܯ ൌ ௬ܨ · ܼ௫ ൌ 345 · 1383000 ൌ 477 ݇ܰ · ݉ 

 

௡ܯ ൌ ௕ܥ ൥ܯ௣ െ ൫ܯ௣ െ ௬ܵ௫൯ܨ0.7 ቈ
௕ܮ െ ௣ܮ
௥ܮ െ ௣ܮ

቉൩ ൑  ௣ܯ

 

௡ܯ ൌ 2.213 · ൥4.7710଼ݔ െ ሺ4.7710଼ݔ െ 0.7 · 345 · 1259310ሻ ൤
4000 െ 3165
10868 െ 3165

൨൩ 

 

M୬ ൌ 1014 ݇ܰ · ݉ 

 

௡ܯ ൌ 1014 ݇ܰ · ݉ ൐ ௣ܯ ൌ 477 ݇ܰ · ݉     ՜ ௡ܯ      ൌ 477 ݇ܰ · ݉ 

 

Where Cb is calculated as; 
 
 

௕ܥ ൌ
௠௔௫ܯ12.5

௠௔௫ܯ2.5 ൅ ஺ܯ3 ൅ ஻ܯ4 ൅ ஼ܯ3
ൌ

12.5 · 209.7
2.5 · 209.7 ൅ 3 · 58.1 ൅ 4 · 31.2 ൅ 3 · 120.4

 

 

Cୠ ൌ 2.213 
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Figure A1 – Moment Values for Cb Calculation 

 

In Cb calculation, the moment values of the critical column in Case – I are used. In 

this part it is shown that Cb does not affect the moment capacity of the columns 

therefore for the Cases II and III it is unnecessary to calculate Cb value. 

 

ii. Compression Flange  Buckling 

 

ߣ ൌ
ܾ
௙ݐ2

ൌ
300
2 · 14

ൌ ௣௙ߣ              10.71 ൌ 0.38ඨ
ܧ
௬ܨ
ൌ ௥௙ߣ               9.15 ൌ 1.0ඨ

ܧ
௬ܨ
ൌ 24.08 

 

௡ܯ ൌ ௣ܯ െ ൫ܯ௣ െ ௬ܵ௫൯ܨ0.7 ቈ
ߣ െ ௣௙ߣ
௥௙ߣ െ ௣௙ߣ

቉ ൌ 459 ݇ܰ · ݉ 

 

The nominal flexural strength, Mn, shall be the smaller of the values determined 

according to the limit states of lateral-torsional buckling and compression flange 

buckling.  

 
௡ܯ ൌ ݉݅݊ሺ477 ݇ܰ · ݉ ; 459 ݇ܰ · ݉ሻ ൌ 459 ݇ܰ · ݉ 
 

The design moment capacity of the column is; 
 

௖ܯ ൌ ௕׎ · ௡ܯ ൌ 0.9 · 459 ൌ 413.1 ݇ܰ · ݉ 

147.3 kN.m

58.1 kN.m

1000mm

1000mm

1000mm

1000mm

MA

MB

MC

31.2 kN.m

120.4 kN.m

209.7 kN.m MMAX
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b) Flexural Strength of Columns in Case – IV 

 

There are two types of columns in Case IV: interior columns and exterior columns. 

For both types the columns are HEA300 however their orientations are different 

which causes their in-plane flexural capacities to differ. 

 

i. Interior Columns 

 

The flexural strength of interior columns is the same as the flexural strength of 

columns in Case - I since the all the properties are the same. The design moment 

capacity of interior columns is Mc = 413.1 kN.m. 

 

ii. Exterior Columns 

 

Lateral Torsional Buckling 

 

Since the out-of-plane axis is stronger than in-plane axis, lateral torsional buckling 

does not apply. The flexural strength is determined according to compression flange 

buckling. 

 

Compression Flange Buckling 

 

௣ܯ ൌ ௬ܨ · ܼ௫ ൌ 345 · 641000 ൌ 221.1 ݇ܰ · ݉ 
 

Where Zx refers to Zy in Table 3.1 in Section 3.1. 
 

ߣ ൌ
ܾ
௙ݐ2

ൌ
300
2 · 14

ൌ ௣௙ߣ              10.71 ൌ 0.38ඨ
ܧ
௬ܨ
ൌ ௥௙ߣ              9.15 ൌ 1.0ඨ

ܧ
௬ܨ
ൌ 24.08 

 

௡ܯ ൌ ௣ܯ െ ൫ܯ௣ െ ௬ܵ௫൯ܨ0.7 ቈ
ߣ െ ௣௙ߣ
௥௙ߣ െ ௣௙ߣ

቉ ൌ 208.7 ݇ܰ · ݉ 
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The design moment capacity of the column is; 
 

௖ܯ ൌ ௕׎ · ௡ܯ ൌ 0.9 · 208.7 ൌ 187.8 ݇ܰ · ݉ 
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APPENDIX B 
 

 

COMPRESSIVE STRENGTH OF COLUMNS 

 

 
a) Compressive Strength of Columns in Case – I, Case – II and Case – III  

 

i. Design with ELM 

 

Compressive strength of the columns is determined according to Chapter E of AISC 

360-10. The physical properties of HEA300 are given in Section 3.1 and the effective 

length factor of the column is calculated as 1.193 in Section 3.2.1.2. The calculated 

effective length factor is for the in-plane buckling, the out-of-plane effective length is 

assumed as 0.5 in assumption 6 in Section 3.1. 

 

௫ܭ ൌ ௫ݎ        1.193 ൌ 127.1 ݉݉        
ܮ௫ܭ
௫ݎ

ൌ
1.193 · 4000

127.1
ൌ 37.5 

 

௬ܭ ൌ ௬ݎ        0.500 ൌ 74.7 ݉݉        
ܮ௬ܭ
௬ݎ

ൌ
0.5 · 4000
74.7

ൌ 26.8 

 
ܮܭ
ݎ
ൌ 37.5     ሺ݀݁ݏݑ ܾ݁ ݈݈݅ݓ ݁݊݋ ݈ܽܿ݅ݐ݅ݎܿ ݄݁ݐሻ 

 

4.71ඨ
ܧ
௬ܨ
ൌ 4.71ඨ

200000
345

ൌ 113.4 ൐ 37.5 ൌ
ܮܭ
ݎ

 

 

௖௥ܨ ൌ ቆ0.658 
ி೤
ி೐ቇ ௬ܨ ൌ ൬0.658 

ଷସହ
ଵସ଴ଷ൰ 345 ൌ  ܽܲܯ 311.1
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௘ܨ      ݁ݎ݄݁ݓ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ ൌ

ଶ200000ߨ
ሺ37.5ሻଶ

ൌ  ܽܲܯ 1403

 
௡ܲ ൌ ௖௥ܨ · ௚ܣ ൌ 311.1 · 11300 ൌ 3515 ݇ܰ     ׷     ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݈ܽ݊݅݉݋݊

     
௖׎ · ௡ܲ ൌ 0.9 · 3515 ൌ 3164 ݇ܰ                        ׷  ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݊݃݅ݏ݁݀

 
Available axial strength of the column is Pc = 3164 kN. 

 

ii. Design with DAM 

 

The physical properties of HEA300 are given in Section 3.1, the in-plane effective 

length factor of the column is 1.0 and the out-of-plane effective length factor is 0.5 as 

specified in Section 3.1. 

 

௫ܭ ൌ ௫ݎ        1.0 ൌ 127.1 ݉݉        
ܮ௫ܭ
௫ݎ

ൌ
1.0 · 4000
127.1

ൌ 31.5 

 

௬ܭ ൌ ௬ݎ        0.5 ൌ 74.7 ݉݉        
ܮ௬ܭ
௬ݎ

ൌ
0.5 · 4000
74.7

ൌ 26.8 

 
ܮܭ
ݎ
ൌ 31.5     ሺ݀݁ݏݑ ܾ݁ ݈݈݅ݓ ݁݊݋ ݈ܽܿ݅ݐ݅ݎܿ ݄݁ݐሻ 

 

4.71ඨ
ܧ
௬ܨ
ൌ 4.71ඨ

200000
345

ൌ 113.4 ൐ 31.5 ൌ
ܮܭ
ݎ

 

 

௖௥ܨ ൌ ቆ0.658 
ி೤
ி೐ቇ ௬ܨ ൌ ൬0.658 

ଷସହ
ଵଽ଼ଽ൰ 345 ൌ  ܽܲܯ 320.8

 

௘ܨ      ݁ݎ݄݁ݓ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ ൌ

ଶ200000ߨ
ሺ37.5ሻଶ

ൌ  ܽܲܯ 1989



 
108 

 

 
௡ܲ ൌ ௖௥ܨ · ௚ܣ ൌ 320.8 · 11300 ൌ 3625 ݇ܰ     ׷    ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݈ܽ݊݅݉݋݊

      
௖׎ · ௡ܲ ൌ 0.9 · 3625 ൌ 3263 ݇ܰ                        ׷  ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݊݃݅ݏ݁݀

 
Available axial strength of the column is Pc = 3263 kN. 

 

b) Compressive Strength of Columns in Case – IV 

 

i. Interior Columns 

 

Design with ELM 

 

Compressive strength of the columns is determined according to Chapter E of AISC 

360-10. The physical properties of HEA300 are given in Section 3.1 and the effective 

length factor of the column is calculated as 1.095 in Section 3.5.1.2. The calculated 

effective length factor is for the in-plane buckling, the out-of-plane effective length is 

assumed as 0.5 in assumption 6 in Section 3.1. 

 

௫ܭ ൌ ௫ݎ        1.095 ൌ 127.1 ݉݉        
ܮ௫ܭ
௫ݎ

ൌ
1.095 · 4000

127.1
ൌ 34.5 

 

௬ܭ ൌ ௬ݎ        0.500 ൌ 74.7 ݉݉        
ܮ௬ܭ
௬ݎ

ൌ
0.5 · 4000
74.7

ൌ 26.8 

 

ܮܭ
ݎ
ൌ 34.5     ሺ݀݁ݏݑ ܾ݁ ݈݈݅ݓ ݁݊݋ ݈ܽܿ݅ݐ݅ݎܿ ݄݁ݐሻ 

 

4.71ඨ
ܧ
௬ܨ
ൌ 4.71ඨ

200000
345

ൌ 113.4 ൐ 34.5 ൌ
ܮܭ
ݎ

 

 

௖௥ܨ ൌ ቆ0.658 
ி೤
ி೐ቇ ௬ܨ ൌ ൬0.658 

ଷସହ
ଵ଺ହ଼൰ 345 ൌ  ܽܲܯ 316.2
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௘ܨ      ݁ݎ݄݁ݓ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ ൌ

ଶ200000ߨ
ሺ34.5ሻଶ

ൌ  ܽܲܯ 1658

 

௡ܲ ൌ ௖௥ܨ · ௚ܣ ൌ 316.2 · 11300 ൌ 3573 ݇ܰ     ׷         ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݈ܽ݊݅݉݋݊

 

௖׎ · ௡ܲ ൌ 0.9 · 3573 ൌ 3216 ݇ܰ                        ׷  ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݊݃݅ݏ݁݀

 

Available axial strength of the column is Pc = 3216 kN. 

 

Design with DAM 

 

The interior columns in Case - IV have the same properties with those of columns in 

Case I (both of them are HEA300, have 4m length and effective length factor of 

1.00) therefore interior columns in Case - IV (C2 & C3) have the same compressive 

strength with the columns in Case - I.  

 

Available axial strength of the interior columns is Pc = 3263 kN. 

 

ii. Exterior Columns 

 

Design with ELM 

 

The only difference between the interior and exterior columns is the orientation. The 

flexural strength of exterior columns is calculated in the same way with the interior 

columns however the physical properties given for x-direction is accepted as they are 

for y-direction and the properties given for y are for x-direction. 

 

௫ܭ ൌ ௫ݎ        1.095 ൌ 74.7 ݉݉        
ܮ௫ܭ
௫ݎ

ൌ
1.095 · 4000

74.7
ൌ 58.5 
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௬ܭ ൌ ௬ݎ        0.500 ൌ 127.1 ݉݉        
ܮ௬ܭ
௬ݎ

ൌ
0.5 · 4000
127.1

ൌ 15.7 

 

ܮܭ
ݎ
ൌ 58.5     ሺ݀݁ݏݑ ܾ݁ ݈݈݅ݓ ݁݊݋ ݈ܽܿ݅ݐ݅ݎܿ ݄݁ݐሻ 

 

4.71ඨ
ܧ
௬ܨ
ൌ 4.71ඨ

200000
345

ൌ 113.4 ൐ 58.5 ൌ
ܮܭ
ݎ

 

 

௖௥ܨ ൌ ቆ0.658 
ி೤
ி೐ቇ ௬ܨ ൌ ൬0.658 

ଷସହ
ହ଻଻൰ 345 ൌ  ܽܲܯ 268.6

 

௘ܨ      ݁ݎ݄݁ݓ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ ൌ

ଶ200000ߨ
ሺ58.5ሻଶ

ൌ  ܽܲܯ 577

 

௡ܲ ൌ ௖௥ܨ · ௚ܣ ൌ 268.6 · 11300 ൌ 3035 ݇ܰ     ׷         ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݈ܽ݊݅݉݋݊

 

௖׎ · ௡ܲ ൌ 0.9 · 3031 ൌ 2732 ݇ܰ                        ׷  ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݊݃݅ݏ݁݀

 
Available axial strength of the column is Pc = 2732 kN. 

 
 
Design with DAM 

 
The in-plane effective length factor of the exterior columns is 1.0 and the out-of-

plane effective length factor is 0.5 as specified in Section 3.1. The properties given 

for x and y directions are replaced as described in Design with ELM for exterior 

columns in Case – IV. 

 

௫ܭ ൌ ௫ݎ        1.00 ൌ 74.7 ݉݉        
ܮ௫ܭ
௫ݎ

ൌ
1.00 · 4000

74.7
ൌ 53.5 

 

௬ܭ ൌ ௬ݎ        0.50 ൌ 127.1 ݉݉        
ܮ௬ܭ
௬ݎ

ൌ
0.5 · 4000
127.1

ൌ 15.7 
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ܮܭ
ݎ
ൌ 53.5     ሺ݀݁ݏݑ ܾ݁ ݈݈݅ݓ ݁݊݋ ݈ܽܿ݅ݐ݅ݎܿ ݄݁ݐሻ 

 

4.71ඨ
ܧ
௬ܨ
ൌ 4.71ඨ

200000
345

ൌ 113.4 ൐ 53.5 ൌ
ܮܭ
ݎ

 

 

௖௥ܨ ൌ ቆ0.658 
ி೤
ி೐ቇ ௬ܨ ൌ ൬0.658 

ଷସହ
ହ଻଻൰ 345 ൌ  ܽܲܯ 280.0

 

௘ܨ      ݁ݎ݄݁ݓ ൌ
ܧଶߨ

ቀݎܮܭ ቁ
ଶ ൌ

ଶ200000ߨ
ሺ53.5ሻଶ

ൌ  ܽܲܯ 688

 

௡ܲ ൌ ௖௥ܨ · ௚ܣ ൌ 280.0 · 11300 ൌ 3164 ݇ܰ     ׷     ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݈ܽ݊݅݉݋݊

     

௖׎ · ௡ܲ ൌ 0.9 · 3164 ൌ 2848 ݇ܰ                        ׷  ݄ݐ݃݊݁ݎݐݏ ݁ݒ݅ݏݏ݁ݎ݌݉݋ܿ ݊݃݅ݏ݁݀

 

 
Available axial strength of the column is Pc = 2848 kN. 
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APPENDIX C 
 

 

STRUCTURAL ANALYSIS STEPS OF CASES 

1. Case - II 

 

a) Design with ELM 

 

Stiffness matrix of the columns C1 and C2, 
 

݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷ െ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of columns C1 and C2, 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                      ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

 
Stiffness matrix of the beam B1, 
 

݇஻ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې
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Displacement matrix of beam B1, 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪ 

 

The connection stiffness and stability functions are calculated as, 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 1.085 · 10ଵଵܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · 1.085 · 10ଵଵ
ቇ
ଶ

െ ቆ
2 · 10ହ · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ1.085 · 10ଵଵሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 
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Member forces for C1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1.7279

12.7947

െ0.0022

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ976.3

57.5

94.9

976.3

െ57.5

135.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C2 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1.8119

12.7947

െ0.0022

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1023.7

57.5

94.9

1023.7

െ57.5

135.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ1.7279

െ0.0022

െ1.8119

െ0.0022ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ23.7

െ94.9

23.7

െ94.9ے
ۑ
ۑ
ۑ
ې
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b) Design with DAM 

 

Stiffness matrix of the columns C1 and C2, 
 

 

݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ4.52

ହ 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷ െ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of columns C1 and C2, 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                      ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

 
Stiffness matrix of the beam B1, 
 

݇஻ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

 

 
 
Displacement matrix of beam B1, 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪ 
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The connection stiffness and stability functions are calculated as, 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ160000 · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 8.676 · 10ଵ଴ܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ160000 · 482 · 10଺ሻ

8000 · 8.676 · 10ଵ଴
ቇ
ଶ

െ ቆ
160000 · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ8.676 · 10ଵ଴ሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 160000 · 482 · 10଺

8000 · 8.676 · 10ଵ଴ ൰

2.037
ൌ 2.62 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 160000 · 482 · 10଺

8000 · 8.676 · 10ଵ଴ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 

 

 

Member forces for C1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ2.1599

15.9934

െ0.0027

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ976.3

57.5

94.9

976.3

െ57.5

135.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Member forces for C2 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ2.2649

15.9934

െ0.0027

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1023.7

57.5

94.9

1023.7

െ57.5

135.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ2.1599

െ0.0027

െ2.2649

െ0.0027ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ23.7

െ94.9

23.7

െ94.9ے
ۑ
ۑ
ۑ
ې
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2. Case - III 

 

a) Design with ELM 

 

Stiffness matrix of the columns C1 and C2, 
 
 

݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷ െ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of columns C1 and C2, 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                      ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

 
Stiffness matrix of the beam B1, 
 

݇஻ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

 

 
Displacement matrix of beam B1, 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪ 
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The connection stiffness and stability functions are calculated as, 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 1.085 · 10ଵଵܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · 1.085 · 10ଵଵ
ቇ
ଶ

െ ቆ
2 · 10ହ · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ1.085 · 10ଵଵሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 
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Member forces for C1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ3.3482

4.4503

െ0.0008

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1891.7

20.0

33.0

1891.7

െ20.0

47.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C2 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ3.3774

4.4503

െ0.0008

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1908.3

20.0

33.0

1908.3

െ20.0

47.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ3.3482

െ0.0008

െ3.3774

െ0.0008ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ8.3

െ33.0

8.3

െ33.0ے
ۑ
ۑ
ۑ
ې
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b) Design with DAM 

 

Stiffness matrix of the columns C1 and C2, 
 

 

݇௖ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ4.52

ହ 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷ െ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of columns C1 and C2, 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

                      ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

 

 
Stiffness matrix of the beam B1, 
 

݇஻ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

 

 
 
Displacement matrix of beam B1, 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪ 
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The connection stiffness and stability functions are calculated as, 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ160000 · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 8.676 · 10ଵ଴ܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ160000 · 482 · 10଺ሻ

8000 · 8.676 · 10ଵ଴
ቇ
ଶ

െ ቆ
160000 · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ8.676 · 10ଵ଴ሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 160000 · 482 · 10଺

8000 · 8.676 · 10ଵ଴ ൰

2.037
ൌ 2.62 

 

௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 160000 · 482 · 10଺

8000 · 8.676 · 10ଵ଴ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 

 

 

Member forces for C1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ4.1853

5.5629

െ0.0010

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1891.7

20.0

33.0

1891.7

െ20.0

47.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Member forces for C2 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ2.2649

15.9934

െ0.0027

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1908.3

20.0

33.0

1908.3

െ20.0

47.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 is (units are in kN and m), 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ2.1599

െ0.0027

െ2.2649

െ0.0027ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ8.3

െ33.0

8.3

െ33.0ے
ۑ
ۑ
ۑ
ې
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3. Case - IV 

 

a) Design with ELM 

 
 
Stiffness matrix of the columns C1 and C4, 
 

݇௖ଵ ൌ ݇௖ସ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ2.37 10଺ݔ4.73 0 െ2.3710ݔଷ 10଺ݔ4.73

0 10଺ݔ4.73 10ଵ଴ݔ1.26 0 െ4.7310ݔ଺ 10ଽݔ6.31

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ2.3710ݔଷ െ4.7310ݔ଺ 0 10ଷݔ2.37 െ4.7310ݔ଺

0 10଺ݔ4.73 10ଽݔ6.31 0 െ4.7310ݔ଺ 10ଵ଴ݔ1.26 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

     

 
 
Stiffness matrix of the columns C2 and C3, 
 

݇௖ଶ ൌ ݇௖ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ5.65

ହ 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷ െ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

     

 

Displacement matrices of columns C1, C2, C3 and C4, 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଷݒ
ݑ
ଷߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ସ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ସݒ
ݑ
ସߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې
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Stiffness matrix of the beams B1, B2 and B3, 
 

݇஻ଵ ൌ ݇஻ଶ ൌ ݇஻ଷ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of beams B1, B2 and B3: 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪          ݀஻ଶ ൌ ൦

ଶݒ
ଶߠ
ଷݒ
ଷߠ

൪          ݀஻ଷ ൌ ൦

ଷݒ
ଷߠ
ସݒ
ସߠ

൪ 

 

The beams are identical therefore, stiffness matrices, connection stiffnesses and 

stability functions are identical too. The connection stiffness and stability functions 

are calculated as, 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

    ՜    0.75 ൌ
1

1 ൅
3 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · ܴ௞௜

    ՜     ܴ௞௜ ൌ 1.085 · 10ଵଵܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ2 · 10ହ · 482 · 10଺ሻ

8000 · 1.085 · 10ଵଵ
ቇ
ଶ

െ ቆ
2 · 10ହ · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ1.085 · 10ଵଵሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 
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௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 

 

Member forces for C1 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ2.37 10଺ݔ4.73 0 െ2.3710ݔଷ 10଺ݔ4.73

0 10଺ݔ4.73 10ଵ଴ݔ1.26 0 െ4.7310ݔ଺ 10ଽݔ6.31

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ2.3710ݔଷെ4.7310ݔ଺ 0 10ଷݔ2.37 െ4.7310ݔ଺

0 10଺ݔ4.73 10ଽݔ6.31 0 െ4.7310ݔ଺ 10ଵ଴ݔ1.26 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.5062

13.739

െ0.0011

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ286.0

27.3

51.1

286.0

െ27.3

58.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C2 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.9680

13.739

െ0.0016

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ546.9

72.2

129.8

546.9

െ72.2

159.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C3 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ6.85 10଻ݔ1.37 0 െ6.8510ݔଷ 10଻ݔ1.37

0 10଻ݔ1.37 10ଵ଴ݔ3.65 0 െ1.3710ݔ଻ 10ଵ଴ݔ1.83

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ6.8510ݔଷെ1.3710ݔ଻ 0 10ଷݔ6.85 െ1.3710ݔ଻

0 10଻ݔ1.37 10ଵ଴ݔ1.83 0 െ1.3710ݔ଻ 10ଵ଴ݔ3.65 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.9781

13.739

െ0.0016

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ552.6

72.8

131.3

552.6

െ72.8

159.7 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Member forces for C4 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ5.65 0 0 െ5.6510ݔହ 0 0

0 10ଷݔ2.37 10଺ݔ4.73 0 െ2.3710ݔଷ 10଺ݔ4.73

0 10଺ݔ4.73 10ଵ଴ݔ1.26 0 െ4.7310ݔ଺ 10ଽݔ6.31

െ5.6510ݔହ 0 0 10ହݔ5.65 0 0

0 െ2.3710ݔଷെ4.7310ݔ଺ 0 10ଷݔ2.37 െ4.7310ݔ଺

0 10଺ݔ4.73 10ଽݔ6.31 0 െ4.7310ݔ଺ 10ଵ଴ݔ1.26 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.5062

13.739

െ0.0011

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ314.5

27.8

52.4

314.5

െ27.8

58.7 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ0.5062

െ0.0011

െ0.9680

െ0.0016ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ14.0

െ51.1

14.0

െ61.0ے
ۑ
ۑ
ۑ
ې

 

 

Member forces for B2 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ0.9680

െ0.0016

െ0.9781

െ0.0016ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ17.1

െ68.8

17.1

െ68.0ے
ۑ
ۑ
ۑ
ې

 

 

Member forces for B3 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.36 10଺ݔ5.42 െ1.3610ݔଷ 10଺ݔ5.42

10଺ݔ5.42 10ଵ଴ݔ3.15 െ5.4210ݔ଺ 10ଵ଴ݔ1.18

െ1.3610ݔଷ െ5.4210ݔ଺ 10ଷݔ1.36 െ5.4210ݔ଺

10଺ݔ5.42 10ଵ଴ݔ1.18 െ5.4210ݔ଺ 10ଵ଴ݔ3.15 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ0.9781

െ0.0016

െ0.5566

െ0.0010ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ14.5

െ63.3

14.5

െ52.4ے
ۑ
ۑ
ۑ
ې
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b) Design with DAM 

 
 
 
Stiffness matrix of the columns C1 and C4: 
 

݇௖ଵ ൌ ݇௖ସ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ4.52

ହ 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ1.89 10଺ݔ3.79 0 െ1.8910ݔଷ 10଺ݔ3.79

0 10଺ݔ3.79 10ଵ଴ݔ1.01 0 െ3.7910ݔ଺ 10ଽݔ5.05

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ1.8910ݔଷ െ3.7910ݔ଺ 0 10ଷݔ1.89 െ3.7910ݔ଺

0 10଺ݔ3.79 10ଽݔ5.05 0 െ3.7910ݔ଺ 10ଵ଴ݔ1.01 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Stiffness matrix of the columns C2 and C3: 
 

݇௖ଶ ൌ ݇௖ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 10ݔ4.52

ହ 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷ െ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of columns C1, C2, C3 and C4: 
 

݀஼ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݒ
ݑ
ଵߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଶݒ
ݑ
ଶߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ଷ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଷݒ
ݑ
ଷߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې

          ݀஼ସ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ସݒ
ݑ
ସߠ
0
0
0 ے
ۑ
ۑ
ۑ
ۑ
ې
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Stiffness matrix of the beams B1, B2 and B3: 
 

݇஻ଵ ൌ ݇஻ଶ ൌ ݇஻ଷ ൌ

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

 

 

Displacement matrices of beams B1, B2 and B3: 
 

݀஻ଵ ൌ ൦

ଵݒ
ଵߠ
ଶݒ
ଶߠ

൪          ݀஻ଶ ൌ ൦

ଶݒ
ଶߠ
ଷݒ
ଷߠ

൪          ݀஻ଷ ൌ ൦

ଷݒ
ଷߠ
ସݒ
ସߠ

൪ 

 

The beams are identical therefore, stiffness matrices, connection stiffnesses and 

stability functions are identical too. The connection stiffness and stability functions 

are calculated as: 

 

ݎ ൌ
1

1 ൅
ܫܧ3
௞௜ܴܮ

  ՜  0.75 ൌ
1

1 ൅
3 · ሺ0.8 · 2 · 10ହ · 482 · 10଺ሻ

8000 · ܴ௞௜

  ՜  ܴ௞௜ ൌ 8.676 · 10ଵ଴ܰ · ݉݉ 

 

כܴ ൌ ൬1 ൅
ܫܧ4
௞௜஺ܴܮ

൰ ൬1 ൅
ܫܧ4
௞௜஻ܴܮ

൰ െ ൬
ܫܧ
ܮ
൰
ଶ

൬
4

ܴ௞௜஺ܴ௞௜஻
൰ 

 

כܴ ൌ ቆ1 ൅
4 · ሺ0.8 · 2 · 10ହ · 482 · 10଺ሻ

8000 · 8.676 · 10ଵ଴
ቇ
ଶ

െ ቆ
0.8 · 2 · 10ହ · 482 · 10଺

8000
ቇ
ଶ

൬
4

ሺ8.676 · 10ଵ଴ሻଶ
൰ 

 

כܴ ൌ 2.037 

 

௜௜ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஺ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 
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௝௝ݏ
כ ൌ

ቀ4 ൅
ܫܧ12
௞௜஻ܴܮ

ቁ

כܴ
ൌ
൬4 ൅

12 · 2 · 10ହ · 482 · 10଺

8000 · 1.085 · 10ଵଵ ൰

2.037
ൌ 2.62 

 

௜௝ݏ
כ ൌ ௝௜ݏ

כ ൌ
2
כܴ

ൌ
2

2.037
ൌ 0.98 

 

Member forces for C1 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ1.89 10଺ݔ3.79 0 െ1.8910ݔଷ 10଺ݔ3.79

0 10଺ݔ3.79 10ଵ଴ݔ1.01 0 െ3.7910ݔ଺ 10ଽݔ5.05

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ1.8910ݔଷെ3.7910ݔ଺ 0 10ଷݔ1.89 െ3.7910ݔ଺

0 10଺ݔ3.79 10ଽݔ5.05 0 െ3.7910ݔ଺ 10ଵ଴ݔ1.01 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.6327

17.1741

െ0.0014

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ286.0

27.3

51.1

286.0

െ27.3

58.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C2 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1.2100

17.1741

െ0.0020

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ546.9

72.2

129.8

546.9

െ72.2

159.0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for C3 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ5.48 10଻ݔ1.10 0 െ5.4810ݔଷ 10଻ݔ1.10

0 10଻ݔ1.10 10ଵ଴ݔ2.92 0 െ1.1010ݔ଻ 10ଵ଴ݔ1.46

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ5.4810ݔଷെ1.1010ݔ଻ 0 10ଷݔ5.48 െ1.1010ݔ଻

0 10଻ݔ1.10 10ଵ଴ݔ1.46 0 െ1.1010ݔ଻ 10ଵ଴ݔ2.92 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ1.2227

17.1741

െ0.0019

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ552.6

72.8

131.3

552.6

െ72.8

159.7 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې
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Member forces for C4 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
10ହݔ4.52 0 0 െ4.5210ݔହ 0 0

0 10ଷݔ1.89 10଺ݔ3.79 0 െ1.8910ݔଷ 10଺ݔ3.79

0 10଺ݔ3.79 10ଵ଴ݔ1.01 0 െ3.7910ݔ଺ 10ଽݔ5.05

െ4.5210ݔହ 0 0 10ହݔ4.52 0 0

0 െ1.8910ݔଷെ3.7910ݔ଺ 0 10ଷݔ1.89 െ3.7910ݔ଺

0 10଺ݔ3.79 10ଽݔ5.05 0 െ3.7910ݔ଺ 10ଵ଴ݔ1.01 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ0.6957

17.1741

െ0.0013

0

0

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
െ286.0

27.3

51.1

286.0

െ27.3

58.1 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Member forces for B1 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ0.6327

െ0.0014

െ1.2100

െ0.0020ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ14.0

െ51.1

14.0

െ61.0ے
ۑ
ۑ
ۑ
ې

 

 

Member forces for B2 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ1.2100

െ0.0020

െ1.2227

െ0.0019ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ17.1

െ68.8

17.1

െ68.0ے
ۑ
ۑ
ۑ
ې

 

 

Member forces for B3 (units are in kN and m); 

 

ۏ
ێ
ێ
ێ
ۍ
10ଷݔ1.08 10଺ݔ4.34 െ1.0810ݔଷ 10଺ݔ4.34

10଺ݔ4.34 10ଵ଴ݔ2.52 െ4.3410ݔ଺ 10ଽݔ9.46

െ1.0810ݔଷ െ4.3410ݔ଺ 10ଷݔ1.08 െ4.3410ݔ଺

10଺ݔ4.34 10ଽݔ9.46 െ4.3410ݔ଺ 10ଵ଴ݔ2.52 ے
ۑ
ۑ
ۑ
ې

ݔ

ۏ
ێ
ێ
ێ
ۍ
െ1.2227

െ0.0019

െ0.6957

െ0.0013ے
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ۍ
െ14.5

െ63.3

14.5

െ52.4ے
ۑ
ۑ
ۑ
ې
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APPENDIX D 
 

 

LATERAL DRIFT VALUES OF CASES 

1. Case - I 

 

 

Table D.1 – Lateral Drift Values for Case - I 

 

 

 

 

 

 

 

 

r

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

55.81 59.13

63.89 68.29

25.11 25.76

25.96 26.66

26.91 27.66

21.38 21.86

21.88 22.37

22.42 22.93

23.00 23.55

23.64 24.22

24.34 24.95

41.47 43.28

45.16 47.32

49.80 52.43

33.87 35.07

35.98 37.33

38.47 40.02

29.16 30.05

30.52 31.49

32.08 33.15

27.97 28.78

53.89

31.76

34.33

37.50

41.51

46.75

23.89

25.03

26.34

27.86

29.64

19.86

20.50

21.21

22.00

22.89

1
st
 Order Drift (mm)

17.11

17.50

17.93

18.40

18.91

19.47

20.09

20.77

21.53

22.38

23.33

24.42

25.66

30.78

33.18

36.13

39.84

44.64

27.10

28.78

51.11

2
nd
Order Drift (mm)

Effective Length Method

1
st
Order Drift (mm) 2

nd
 Order Drift (mm)

Direct Analysis Method

17.41

17.82

18.26

18.75

19.28
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2. Case - II 

 

 

Table D.2 – Lateral Drift Values for Case - II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 33.59 40.56 41.99 53.47

26.18 30.23 32.73 39.30

29.34 34.52 36.67 45.14

21.80 24.54 27.25 31.67

23.74 27.02 29.68 34.99

18.91 20.94 23.64 26.89

20.22 22.56 25.28 29.04

16.86 18.45 21.08 23.63

17.81 19.59 22.26 25.12

15.33 16.64 19.17 21.25

16.05 17.48 20.06 22.35

14.15 15.25 17.68 19.44

14.70 15.90 18.38 20.29

13.20 14.16 16.50 18.02

13.65 14.67 17.06 18.69

12.43 13.27 15.53 16.87

12.79 13.69 15.99 17.42

11.78 12.54 14.73 15.93

12.09 12.89 15.11 16.38

11.24 11.93 14.05 15.14

11.50 12.22 14.38 15.52

Effective Length Method Direct Analysis Method

1
st
 Order Drift (mm) 2

nd
Order Drift (mm) 1

st
Order Drift (mm) 2

nd
 Order Drift (mm)
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3. Case - III 

 

 

Table D.3 – Lateral Drift Values for Case - III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 11.68 17.35 14.60 24.67

9.11 12.21 11.38 16.69

10.20 14.27 12.76 19.82

7.58 9.62 9.48 12.90

8.26 10.74 10.32 14.51

6.58 8.06 8.22 10.68

7.03 8.76 8.79 11.66

5.87 7.01 7.33 9.22

6.19 7.49 7.74 9.88

5.33 6.27 6.67 8.19

5.58 6.61 6.98 8.67

4.92 5.70 6.15 7.43

5.11 5.97 6.39 7.78

4.59 5.27 5.74 6.83

4.75 5.47 5.93 7.11

4.32 4.92 5.40 6.36

4.45 5.08 5.56 6.59

4.10 4.63 5.12 5.98

4.21 4.77 5.26 6.16

3.91 4.39 4.89 5.66

4.00 4.50 5.00 5.81

Effective Length Method Direct Analysis Method

1
st
 Order Drift (mm) 2

nd
Order Drift (mm) 1

st
Order Drift (mm) 2

nd
 Order Drift (mm)
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4. Case - IV 

 

 

Table D.4 – Lateral Drift Values for Case - IV 

 

 

r

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 43.41 48.70 54.27 62.78

27.78 29.85 34.72 38.02

33.29 36.31 41.61 46.44

21.92 23.19 27.40 29.42

24.31 25.88 30.39 32.88

18.85 19.78 23.56 25.04

20.18 21.25 25.22 26.92

16.95 17.71 21.19 22.38

17.80 18.63 22.25 23.56

15.67 16.31 19.59 20.59

16.26 16.94 20.32 21.41

14.74 15.30 18.42 19.31

15.17 15.77 18.96 19.90

14.03 14.54 17.54 18.34

14.36 14.90 17.95 18.80

13.48 13.95 16.85 17.59

13.74 14.23 17.17 17.94

13.03 13.47 16.29 16.98

13.24 13.70 16.55 17.27

12.67 13.08 15.83 16.48

12.84 13.27 16.05 16.72

Effective Length Method Direct Analysis Method

1
st
 Order Drift (mm) 2

nd
Order Drift (mm) 1

st
Order Drift (mm) 2

nd
 Order Drift (mm)


