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ABSTRACT 

RAMAN-DYE-LABELED NANOPARTICLE PROBES FOR DNA STUDIES 

 

 

UZUN, Ceren 

M.Sc., Department of Chemistry 

Supervisor: Prof. Dr. Mürvet VOLKAN 

 

 

September  2012, 94 pages 

 

 

 

 

The interaction between nanoscience and biomedicine is one of the important 

developing areas of modern science.  The usage of functional nanoparticles with 

biological molecules provides sensitive and selective detection, labeling and 

sensing of biomolecules. Until today, several novel types of tagging materials 

have been used in bioassays, such as plasmon-resonant particles, quantum dots 

(QDs), and metal nanoshells. However,  nowadays, Surface enhanced raman 

scattering (SERS) tags  have been attracting considerable attention as a tagging 

system. SERS-tags  provide high signal enhancement, and they enable multiplex 

detection of biomolecules due to high specificity. 

 

 This thesis is focused on the designing proper SERS nanotags for DNA studies.  

SERS nano-tags are nanostructures consisting of core nanoparticle generally 

silver, Raman reporter molecule for labeling, and shell to make surface 

modifications and to prevent deterioration arising from environmental impact. 

Based on this information, silver core synthesized by thermal decomposition and 

chemical reduction methods. Thermal decomposition method provides synthesis 

of silver nanoparticles in hydrophobic medium, resulting in proper silica coating 
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by reverse microemulsion method. On the other hand, silver nanoparticles 

sythesized by chemical reduction method exhibit hydrophilic property. Due to 

capping reagents, negatively charged silver nanoparticles could easily attach with 

positively charged Raman dye which is brilliant cresyl blue (BCB). After addition 

of Raman active molecule, silica coating process was done by using modified 

Stöber method. The resulting particles were characterized by Scanning Electron 

Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX) ,UV-vis 

Spectrometry (UV-vis) and Surface-Enhanced Raman Spectroscopy (SERS). 

 

In recent years, DNA detection has gained importance for cancer and disease 

diagnosis and the detection of harmful microorganisms in food and drink. In this 

study, gene sequences were detected via SERS. For this, probe sequences were 

labelled with Raman reporter molecule, BCB,and SERS nano-tags and were 

called as SERGen probes. Then, after hybridization of DNA targets to 

complementary probe sequences onto gold substrate, SERS peak was followed. 

 

 

Keywords: Surface Enhanced Raman Spectroscopy, SERS nanotag, SERGen 

probes, multiplex analysis, DNA, hybridization. 
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ÖZ 

DNA ÇALIŞMALARI İÇİN RAMAN BOYA İLE ETİKETLENMİŞ   

NANOPARÇACIK SONDALARI 
 

 

UZUN, Ceren 

Yüksek Lisans, Kimya Bölümü 

Tez Yöneticisi: Prof. Dr. Mürvet VOLKAN 

 

Eylül 2012, 94 sayfa 

 

 

 

Nanobilim ve biyomedikal arasındaki etkileşim modern bilimin gelişmekte olan 

en önemli alanlarından birini oluşturmaktadır. Fonksiyonel nanoparçacıklarının 

biyolojik moleküllerle kullanılması, hassas ve seçici bir tayinle beraber,  

biyomoleküllerin etiketlenerek analiz edilmesini sağlar.  Bu zamana kadar, örnek 

olarak plazmon rezonans parçacıkları, kuantum noktacıkları ve metal nano-

kabuklar olmak üzere, pek çok etiketleme malzemeleri, biyoanalizlerde 

kullanılmıştır. Ancak, son zamanlarda, Yüzeyce Güçlendirilmiş Raman 

Spektroskopisi (YGRS) nano-etiketleri, etiketleme sistemleri olarak dikkat 

çekmektedir. YGRS-etiketleri sinyal şiddetini arttırmasının yanı sıra, özgül olması 

sayesinde biyolojik moleküllerin çoklu analizini mümkün kılar.  

 

Bu tez, DNA çalışmaları için uygun YGRS nano etiketlerinin hazırlanması 

üzerine odaklanmıştır. YGRS nano etiketleri, genellikle gümüş olmak üzere 

çekirdek nanoparçacıkları, etiketleme için Raman aktif molekül ve yüzey 

modifikasyonlarının yapılabildiği ve çevresel etkenleri önleyen kabuktan oluşur. 

Bu bilgiler ışığında, gümüş çekirdek nanoparçacığı yüksek sıcaklıkla parçalanma 

ve kimyasal indirgeme metotları ile sentezlenmiştir.  Yüksek sıcaklıkla 



 
 

 vii

parçalanma yöntemi gümüş nanoparçacıklarının hidrofobik bir ortamda 

sentezlenmesini mümkün kılar, dolayısıyla silika kabuk ile kaplanması ters 

mikroemülsiyon yöntemi ile gerçekleştirilmiştir. Öte yandan, kimyasal indirgeme 

yöntemi ile sentezlenen gümüş nanoparçacıkları hidrofilik özellik gösterirler. 

Tutucu reaktantlar nedeniyle yüzeyi negatif yük ile yüklenmiş olan gümüş 

nanoparçacıkları, kolay bir şekilde pozitif yüklü Raman boya olan brilliant cresyl 

blue (BCB) ile tutturulabilir. Raman aktif boyanın eklenmesinden sonra, silika 

kaplama prosesi geliştirilmiş Stöber yöntemi ile yapılmıştır. Sentezlenen 

parçacıklarının karakterizasyonu Taramalı Elektron Mikroskobu (SEM), 

Geçirimli Elektron Mikroskobu (TEM), Enerji Dağılım X-ray Spektroskopisi 

(EDX), UV-vis Spektrometri (UV-vis) ve Yüzeyde Güçlendirilmiş Raman 

Spektroskopisi (YGRS). 

 

Son zamanlarda, DNA tayini kanser ve hastalık tanısında ve aynı zamanda besin 

ve içeceklerdeki zararlı mikroorganizma analizlerinin yapılması hususunda önem 

taşır. Bu çalışmada, insan proteazom gen dizilimleri YGRS yardımıyla tayin 

edilmiştir. Bunun için, prob dizilimler Raman tanıyıcı molekül olan BCB ve 

SERS nano-problarla etiketlenip, SERGen prob adını almıştır.  Daha sonra, altın 

tabaka üzerinde DNA hedeflerinin eşlenik prob dizilimleri ile hibridizayonu 

yapılıp, YGRS sinyali takip edilmiştir. 

 

 

Anahtar Kelimeler: Yüzeyde Güçlendirilmiş Raman Spektroskopisi, YGRS 

nano etiketleme, YGRS gen prob, çoklu analiz, DNA, hibridizasyon 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1.  Nanoscience and Nanotechnology 

 

In science and technology, the prefix 'nano' refers to one billionth of a unit. 

One nanometer (nm) is one billioth (10-9) of a meter. Nanoscience and 

nanotechnology deal with the materials at the nanometer scale.While 

nanoscience searches the functions of objects at atomic, molecular and 

macromolecular scales, nanotechnology is interested in the design, sythesis 

and application of devices by changing the shapes and sizes of the objects.  

 

1.1.1 Nanoscale: Relation between Physical and Biological Sciences 

 

In literature, nanoscale is defined as the size of atoms ranging from 1 nm to 

100 nanometers and nanomaterial is generally defined as a material which 

has dimension less than 100 nanometers. That is to say, nanomaterials 

consist of all the structures and systems at nanoscale. Significant point in 

this respect is that nanoscale materials have specific and different properties 

compared to the bulk materials. These variances arise from mainly two 

reasons. One reason is that the surface areas of nanomaterials are larger than 

the materials having the same mass but in a larger size. Larger surface area 

not only affects the mechanical and electrical properties of materials, but 

also increases the chemical reactivity of materials. Second reason is that the 

size of the particle moves into the region where quantum effects 

predominate. In other words, once particles become smaller and smaller 

they exhibit quantum mechanical behaviour. 
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1.1.2. Approaches for Synthesis of Nanoparticles 

 

The synthesis of nanostructures is mainly categorized into two processes 

which are known as 'top-down' or 'bottom-up' processes. 

 

 1.1.2.1. Top-down and Bottom-Up Approach 

 

 Top-down approaches start with bulk material and break down the 

microstructure into a nanostructure until the desired structure is obtained. 

Most microfabrication techniques such as lithography and milling 

techniques for inorganic materials describe this definition. However, top-

down techniques may result in the crystallographic damage and 

contamination problems. As the surface area of nanomaterials is very large, 

such defects may affect mechanical properties and surface modification of 

nanostructures severely. On the other hand, bottom-up approaches start with 

smaller components to arrange the nanostructures atom by atom and layer 

by layer to obtain more complex assemblies.  Due to reduction of Gibbs free 

energy, nanostructures produced with this approach are closer to a 

thermodynamic equilibrium state. Nanomaterials synthesized by bottom- up 

approach have generally fewer defects, better regularity of arrangement of 

particles and more homogeneous chemical composition compared to 

nanomaterials synthesized by top-down approach.  
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1.2.1. Tagging Materials 
 

In recent years, scientists are focused on nonradioactive tagging systems for 

the increase usage of biomolecules in nanotechnology in order to provide 

improved safety and specificity.  In bioassays, upto date, several types of 

tagging materials have been used such as plasmon-resonant particles [6], 

quantum dots (QDs) [7], metal nanoshells [8], and Raman tags [9].  

Recently, the design of Surface Enhanced Raman Scattering tags (SERS- 

tags) have gained considerable interest due to several advantages compared 

to other tagging systems. 

 

 1.2.1.1. Plasmon resonant particles (PRP's) 

 
Nanometer-sized silver or gold colloids are known as plasmon resonant 

particles, and these colloids are one of the important nanostructures used as 

labelling and detection of biomolecules in bio-analysis [6]. Plasmon 

resonant particles have generally 10-120 nm diameter in size and they are 

advantageous, namely: they are inert, non-toxic, stable in different 

environmental conditions and they have convenient optical and electronic 

properties, and besides synthesis of these nanostructures in different size 

and shape does not need so long procedures. Plasmon resonant particles 

have unique surface plasmon resonance band (SPR) in the visible range 

[10]. The surface plasmon oscillation of metal free electrons results in a 

strong enhancement of absorption  and  scattering of electromagnetic 

radiation  with the SPR frequency of the metal nanoparticles, giving them 

not only intense colors but also interesting optical properties. The formation 

of nanoparticle can easily monitored by recording of UV-vis spectra of the 

reaction solution.  That is,  the absorption spectra of plasmon resonant 

particles are characterized by intense absorption peak that is absent in the 

bulk spectra. The SPR band depends on the particle size, shape, structure, 

dielectric properties of metal and surrounding medium. These factors 

influences the electron charge density on the particle surface.  
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 They offer many advantages due to their special optical properties [14]. 

These properties arise from the size of QD's ranging from 1-10 nm in radius. 

For example, QD's offer  narrow band emission and broad UV excitation, 

which enables multiplexed imaging of cells or tissue under a single light 

source [14-16]. Other applications consist of biosensing using QD-

fluorescent resonance energy transfer based nanoprobes and cancer 

research. In literature, it was estimated that the molar excitation coefficients 

of CdSe QD's are changing from 105 to 106 M-1 cm-1, depending of particle 

size. These values are 10-100 times greater than organic dyes. However, it 

should be noted that for biological applications, QD's need to be in water-

soluble form by making functionalization of these nanostructures with 

different chemicals or encapsulation by block copolymers. The second 

disadvantage of quantum dots  is the biotoxicity of these nanostructures. 

When exposed to UV-light excitation, surface oxidation of QDs and this 

leads to the release of cadmium ions which is really toxic even if 

concentration of QDs is in low amount.  

 

1.2.1.3. Metal Nanoshells 

 

An interesting alternative to tagging materials are metal nano-shells 

consisting of dielectric core and metallic shell. Nanoshells provide strong 

localized- surface- plasmon (LSP) resonances which could be used in 

plasmon-related spectroscopies. By controlling the thickness of metallic 

shells with respect to dielectric core, it is proper to achieve this 

enhancement.  
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1.3.1.Raman with Improved Sensitivity 

 

General trend in Raman Spectroscopy is to increase sensitivity and  to 

decrease detection limit by using SERS advantages. By this, it is likely to 

increase applications of Raman or even make Raman spectroscopy possible 

to apply some systems that could not be used before. With the help of SERS 

advantages, it is possible to increase applications of Raman spectroscopy  in 

several systems. ''Trace detection'' is one of the important applications of 

SERS. For several methods, choosing the proper analyte to increase 

sensitivity of these methods is one of the important strategies that scientists 

use. However, for SERS applications, optimization of experimental 

conditions such as changing substrates or power of laser excitation is 

necessary to increase signals and lower the detection limits. 

 

1.4. Surface Enhanced Raman Scattering (SERS) 

 

Surface Enhanced Raman Spectroscopy (SERS) is a Raman Spectroscopic 

(RS) technique providing enhanced Raman signal from Raman -active 

molecules that adsorbed onto specially prepared metal surfaces. Generally, 

enhancement of intensity in Raman signal has been observed as 104- 106, 

and for some systems the values can be as high to 108-1014. SERS provides 

surface selectivity and sensitivity that  RS is lack of.  

 

In the early 1970's, several groups were interested in observing vibrational 

spectra of molecules which covered onto solid surface as a monolayer 

coverage. It was known that such ability can be used in  many fields such as 

electrochemistry, catalysis and surface sciences. Surface infrared 

spectroscopy was one of the optical techniques that was developing rapidly 

for this aim [26]  
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In 1974, which is also the first observation about SERS effect, Fleischmann 

et al [27] presented the results that they observed Raman signals from 

monolayer of pyridine  covered onto electro-chemical roughened silver 

electrodes. According to Fleishmann, increase in surface area was 

responsible for the enhancement. However, on one side, Jeanmaire and Van 

Duyne, and on other side, Albrecht and Creighton demonstrated that 

enhancement of Raman signal could not be due to increase in surface area, 

but most probably due to different form of enhancement factors causing by 

the interaction between light and matter.   

 

The reason of the dramatic enhancement in SERS is still controversial. 

However, intensity of Raman signal is directly proportional to induced 

dipole moment which is µ = αE. The formula exactly shows that the 

enhancement directly depends on the enhancement of polarizability α, and 

the enhancement of electrical field E. The enhancement factors are going to 

mention as electromagnetic enhancement and chemical enhancement in 

details.  

 

1.4.1. Electromagnetic Enhancement 

 

The widespread idea about the most effective enhancement factor of Raman 

scattering is the electromagnetic enhancement. In electromagnetic 

enhancement, when nanostructures on substrate  are exposed to 

electromagnetic radiation with certain frequency, conduction electrons onto 

surface of nanostructures are driven into collective oscillation by this 

radiation, which is defined as surface plasmon resonance (SPR). Oscillating 

dipoles generated in nanostructure also radiates a secondary field as shown 

in Figure 12. The  total oscillating field E at the surface is the sum of both 

incident and secondary fields. So that, generation of large electromagnetic 

fields onto surface of nanostructures results in enhancement of Raman 

intensity. 
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However, fluorescence spectrum are relatively broad bands resulting in less 

structural information on the molecule [37]. Secondly, whereas fluorophore 

is needed for fluoresence spectroscopy, SERS can be directly used for any 

molecule. This difficulty for fluorescence can be prevented by providing 

attachment of fluorescent tags to molecules. This tagging system is also 

used to design good SERS probes, however avoiding this step is obviously 

attractive advantage of SERS. Thirdly, SERS can work at any excitation 

wavelength, whereas the working region of fluorescence is limited with the 

visible region. This limitation may be problem for living tissues of which 

optical absorption spectrum is in the visible region, causing difficulty in 

interpretation of signals. Finally, photobleaching of the fluorophore is the 

other disadvantage of fluorescence, whereas there is no such a complication 

under SERS conditions. 

 

1.5.  Applications of SERS 

 

SERS provides rich spectroscopic information and high sensitivity so that it 

is an ideal tool for trace analysis and in situ investigations of several 

processes. The high intensity obtained from SERS spectrum makes it 

possible to observe vibrational spectrum of diluted solutions. According to 

Kneipp et al, it is possible to observe SERS spectrum with 4x 10-12 mol/l 

concentration of rhodamine 6G on silver solutions [38] On the other hand, 

the method provides opportunity for the study of several molecules from 

diatomic to biological molecules.  

 

Several investigations focus on the possibility of using SERS for the 

analysis of the samples separated by chromatography techniques such as 

thin-layer chromatography (TLC), high performance liquid chromatography 

(HPLC) and gas chromatography (GC). According to literature it was 

mentioned that Tran et al. made trace analysis of dyes on filter paper using 

SERS technique , whereas Freeman described the combination of SERS 

with HPLC  and Roth and Kiefer described combination with GC. On the 

other hand, Ni et al. demonstrated that combination of SERS with flow 
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injection analysis (FIA), it is possible to obtain real-time spectra of RNA 

bases on silver solutions. 

 

Besides trace analysis of some samples, surface analysis is the important 

area where SERS can be applied successfully. Due to large enhancement 

factors, it is possible to detect mono or submonolayers adsorbed on metal 

surfaces. 

 

Discovery of SERS also provides an advantage of detection of glucose level 

in blood quantitatively. According to National Institutes of Health, there are 

171 million people suffering from diabetes mellitus worldwide. This disease 

due to fluctuations in glucose level may result in kidney disease, hearth 

disease, blindness, nerve damage and gangrene. Many methods have been 

used for detection of glucose level until today, however all these methods 

have difficulties depending on their usage, however, SERS has advantage of 

being faster, easier and less painful method for measuring glucose level [39] 

 

It was demonstrated that SERS can be also used to design robust and 

sensitive optical probes for intracellular detection. These measurements 

have significance in order to obtain information from subcellular structures 

and compartments. Today, SERS-based nanosensors using for living cell 

provides high content of information about the molecules and high 

sensitivity. The ability of detecting such information will be beneficial in 

future as clinical diagnostic and therapeutic monitoring. 

 

Other  important potential application of SERS includes single molecule 

detection. Due to high enhancement factors  known as chemical and 

electromagnetic effects, SERS enhancement is observed on the order of 

1014. Single-molecule detection capability provides new aspects to SERS in 

the field of biochemistry  [38]. This ability is an advantage for monitoring 

proteins in their own environment and  rapid detection of  DNA and RNA 

sequencing. Recently, DNA-based diagnostic systems have gained 

importance, because such information is motivated by applications in many 
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fields such as DNA diagnostics, gene analysisi, fast detection of biological 

warfare agents, and also detection of genetic mutations before any symptom 

of the disease appears. DNA detection systems based on the hybridization of 

single-stranded DNA target and its complementary probe in proper 

conditions for hybridization in solution or on a solid support. In conclusion, 

SERS is a technique for detecting and identifying a molecule without any 

labelling, because almost all molecules have raman-active vibration modes 

that can be seen by the Raman effect, and it allows continous, fast, sensitive 

and selective detection [40].  

 

 1.6. Synthesis of Silver Nanoparticles 

 

The sizes of silver nanoparticles are generally found to be smaller than 100 

nm and they contain 20-15000 silver atoms. Due to interesting properties, 

nanoparticles of silver are finding their way into several areas of science 

including medicine [41] , chemical catalysis [42], textile engineering [43], 

biotechnology [44], water treatment [45], electronics [46], and optics [47]. 

 

Today, there is growing attention to develop environmentally friendly 

methods for synthesis of monodisperse silver nanoparticles. It is possible to 

synthesize silver nanoparticles both pyhsical and chemical methods. 

However, chemical methods are prefered to due to simple synthesis and low 

cost. Because such methods mostly consist of chemical reduction of silver 

ions to silver nanoparticles with stabilizing agents in aqueous solutions or 

thermal decomposition in organic solvents. In literature, the methods for 

synthesis of silver nanoparticles until today have been arranged as chemical 

reduction by sodium citrate, borohydride, hydroxylamine and hydrogen 

[48], by microwave plasma synthesis [49], by laser ablation [50], by 

microemulsion [51], by photochemical method [52], by thermal 

decomposition  [53], by hydrothermal process [54], by sonoelectrochemical 

[55], and by electron irradiation [56] 
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1.7.  Synthesis of SERS nano-tags 

 

Surface  enhanced raman scattering tags in short, SERS-tags, include a 

Raman enhancing metal such as silver and gold core, a Raman active 

molecule (reporter molecule) attached to surface of metal core, and an 

encapsulant which can be rarely a polymer or usually SiO2. The prepared 

nanostructure has a proper design to obtain SERS spectrum. Polymer 

encapsulant has some disadvantages including hydrophobicity which results 

in agglomeration in aqueous medium and swelling in organic solvents 

which results in leaking of the dye. However, the silica shell both protects 

the metal nanoparticle and the Raman active molecule. Except protecting 

ability, silica shell also provides further surface modification, good 

transparency (so that chemical reactions can be analyzed spectroscopically), 

biocompatibility. 

 

1.7.1.  Sol-gel Methods for Silica Coating 

 

In literature, two synthetic approaches have been mentioned for silica 

coating. The first approach is the Stöber method and the second is the so-

called reverse microemulsion (water-in-oil microemulsion) 

 

 In 1968, Stöber et al. pointed out the possible synthesis of silica particles by 

using tetraethoxysilane (TEOS) as silica precursor, water and ethanol as 

cosolvent, and ammonia as catalyst. The synthesis particles had sizes in the 

range of 500 nm to 2 µm [58]. The reaction proceeds as  hydrolysis and 

condensation reactions of  TEOS to synthesize silica particles. Later on, this 

chemistry has been used for silica encapsulation of noble metals such as 

gold and silver to increase their physical, chemical and biological 

properties. It was reported by Iler et al. [59], for silane precursor to crosslink 

onto the nanoparticle surfaces, the medium pH should be basic enough to 

achieve proper silica coating, but not to much basic  to form silica nuclei. 

Stoichiometrically,the hydrolysis of TEOS in ethanol followed by 

condensation reactions are written as 
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                 Si (OR)4 + 4 H2O              Si(OH)4 + 4ROH (hydrolysis) 

                 Si (OH)4                        SiO2  +  4 H2O (condensation) 

                 Si(OC2H5)4 +2H2O          SiO2 + 4C2H5OH (formation of silica 

shell via TEOS)  

 

The polymerization of silicic acid starts in acidic and basic medium in two 

ways. In acidic medium,  condensation of silane groups produces chain-like 

or open-branched polymer, whereas in basic medium, internal condensation 

and crosslinking results in the attachment of siloxanes and hydroxyl groups 

of silicic acid onto the surface of nanoparticles [60, 61, 62]. 

 

In literature, it was reported that size distribution of silica shell on 

nanoparticles depends on concentration of TEOS, concentration of catalyst 

which is ammonia, concentration of water, alcohol used as the solvent and  

reaction temperature [63,64]. 

 

Optically, synthesized silica coated gold or silver nanoparticles  show a 

significant red shift in absorption spectrum compared to the reactant silver 

and gold nanoparticles. This changing is arising from the change in 

dielectric constant around nanoparticles after silica coating.  

 

In general, silica encapsulation process has based on Stöber sol-gel process, 

however this process is only proper for hydrophilic materials. 

Inapplicability of this process to hydrophobic material has accelerated the 

usage of reverse microemulsion systems for encapsulating nanoparticles. 

Reverse micelles are certain compositional range of water in oil 

microemulsions. Microemulsions are transparent, isotropic and 

thermodynamically stable systems formed by at least three components, two 

of which are nonmiscible water and nonpolar oil phase, and third 

component is surfactant which has an amphiphilic behaviour.  The size of 

the micelles ranges from a few to tens of nanometers and depends on both 

molar ratio of water to surfactant, as well as concentrations of cosurfactants 



 
 

 26

and nonpolar solvent presented in the reaction medium. In this system, 

water droplets behave such as nanoreactors in which synthesis of 

nanoparticle is taking place and as water is added to system, a 

microemulsion is formed including nano-sized water droplets in oil phase. It 

should be noted that as the water amount increases, that is, as the molar ratio 

of water to surfactant increases, the size of the micelles also increases. 

During microemulsion formation, hydrophilic head of surfactant points to 

the polar aqueous phase, whereas hydrophobic tail of the surfactant points to 

the nonpolar oil phase. Commonly used surfactants include AOT (sodium 

di-2-ethylhexyl sulfosuccinate),  CTAB(cetyltrimethylammonium bromide), 

phosphatidylcholine (PTC), Igepal CO-520 (Polyoxyethylene(5) 

nonylphenylether), and TritonX-100 . The advantages of employing reverse 

micelle system for the synthesis of core-shell nanostructure is to produce 

really monodisperse structures due to ability of dissolving reactants in the 

water core so that size of the nanostructures are limited by the size of the 

micelles and second advantage is to  easy exchange of hydrophobic 

nanostructures to aqueous phase among micelles after silica coating and 

finally to provide synthesis of nanoparticles at a higher concentration (up to 

1.5 x 1013 particles ml-1) nearly three orders of magnitude higher in 

concentration compared to the concentration of synthesized particles via 

Stöber method. 

 

1.8. Aim of The Study 

 

The aim of this study is , firstly, to synthesize silver nanoparticles via 

thermal decomposition and chemical reduction, and synthesized 

nanoparticles were coated with silica layer via reverse microemulsion and 

Stöber methods respectively. Secondly, in this study, we designed raman-

dye-labeled nanoparticle probes by embedding Raman reporter molecule, 

BCB, into silica shell for Surface Enhanced Raman Spectroscopic(SERS) 

measurements for the detection of biological molecules. Thirdly, SERGen 

probes were prepared by non-covalent binding with BCB and SERS nano-
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tags and by covalent binding with SERS nano-tags, and finally, 

hybridization experiments were done.  
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CHAPTER 2 

 

 

EXPERIMENTAL 

 

 

 

2.1 Chemicals and Reagents 

 

In this study, all the chemicals and reagents were analytical grade and used 

without further purification.  All the glass and plastics were cleaned in the 

10 % HNO3 solution at least one day, and then splashed with distilled water. 

During preparation of SERS nano-tags de-ionized water obtained from 

Millipore water purification system was used. For DNA hybridization 

studies, all the equipments and buffer solutions were sterilized in autoclave 

before each experiments.  

 

   2.1.1. Synthesis of Silver Nanoparticles 

 

      2.1.1.1. By Thermal Decomposition Method 

 

• Silver Acetate; 

• Oleic Acid, (9Z)- Octadecenoic acid; analytical standard, 

Fluka 

• Oleylamine, 9-Octadecenylamine; 70.0 %, Fluka 

• Diphenyl ether; 99.0 %, Sigma-Aldrich 

• Toluene; 99.0 %, Merck 

• Methanol; 99.5 %, Sigma-Aldrich 

 

       2.1.1.2. By Chemical Reduction Method 

 

• Silver Perchlorate; 

• Sodium Citrate Tribasic Dehydrate; 
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• Sodium Borohydride;    

 

 2.1.2. Preparation of SERS Nano-Tags 

 

• Brilliant Cresyl Blue; Sigma Aldrich. 10-4 M stock solution 

was prepared by using de-ionized water 

     

           2.1.2.1. By Reverse Microemulsion Method 

 

• Tetraethyl Orthosilicate, TEOS; 98.0 %, Aldrich 

• Polyoxyethylene (5) nonphenylether, Igepal CO-520; Mn 

441, Sigma-Aldrich 

• 1,8-Diazabicycloundec-7-ene, DBU; 98 %, Aldrich 

• Cyclohexane; 99.0 %, Sigma-Aldrich 

• Acetone;  99.0 %, Sigma-Aldrich 

• 1-Butanol; 99.0 %, Sigma-Aldrich 

• 1-Propanol; 99.0 %, Merck 

• Ethanol; 99.5 %, Sigma-Aldrich 

 

         2.1.2.2. By Stöber Method 

 

• Tetraethyl Orthosilicate, TEOS; 98.0 %, Aldrich 

• Ethanol; 99.5 %, Sigma-Aldrich 

• Dimethylamine, DMA; 60.0 %,  

 

    2.1.3. DNA Oligonucleotides and Chemicals used for DNA 

Hybridization 

 

      2.1.3.1.DNA Oligonucleotides;  

 

•  As complementary targets; 

5'- SH- TTTTTTTTTT GCA GTG GAT TCT CGG GCC  

• As probe sequence; 
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                 5'- GGC CCG AGA ATC CAC 

 

The nucleic acid probes and target DNA oligonucleotides were purchased 

from Alpha DNA (Canada) and used without any purification. Later on, 

during experimental process, due to purification steps, mini quick spin 

oligo columns (Sephadex G-25, Roche Applied Science)  were used.      

      

    2.1.3.2. Chemicals used for DNA Hybridization 

 

• Dithiothreitol, DTT; 

• 11-mercapto-1-undecanol; 

• Sodium Chloride 

 
2.2. Instrumentation 
 
 
2.2.1. Centrifugation 
 

To remove unreacted species in the reaction medium, Sigma 2-16 model 

laboratory centrifuge with maximum rotating speed capacity of 15000 rpm 

was used. 

 

2.2.2. UV-VIS Spectrometer 

 

The optical properties of oligonucleotides and silver nanoparticles were 

performed by using Varian Cary 100 UV-Visible Spectrophotometer. With 

this double beam instrument, the range between 300-800 nm were scanned 

and quartz cells were used in all experiments. 

 

2.2.3. Raman Spectrometer 

 

The SERS spectra of BCB labeled oligonucleotides and SERS nano-tags 

were performed with Jobin Yvon LabRam  HR confocal microscopy Raman 

spectrometer with charge coupled device (CCD) detector and holographic 

notch filter.  He-Ne laser with total power of 20 mW is used to provide 
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SERS excitation. The spectrometer has 1800 grooves/mm grating and 200 

µm entrance slit. These values kept constant for all measurements.  

 

2.2.4. Field Emission Scanning Electron Microscopy(FE-SEM) 

 

Field Emission Scanning Electron Microscopy (FE-SEM) was used to 

characterize size and shape of nanoparticles. SEM allows the generation of 

complete 3D datasets of the nanostructures. The model of instrument is 

Quanta 400 FE-SEM from FEI. It was operated at 30 kV at high vacuum 

with the resolution of  1.2 nm. All FE-SEM analysis were done in METU 

Central Laboratory. Samples containing water and organic solvent were 

dropped on copper grids without gold coating.  Carbon coated cupper grids 

were not preferred due to embedding of such small particles to the carbon 

tape. The large aluminium peak comes from the SEM-grids.  All sample, 

after dropping process, were left to dry for one day before operating SEM 

analysis. From the FE-SEM images, average particle diameter of 

nanostructures were determined. 

 

2.2.5. Transmission Electron Microscopy (TEM) 

 

The JEOL 2100F Transmission Emission Microscopy (TEM) was used to 

characterize size and shape of nanoparticles smaller than 20 nm in diameter. 

The instrument is an advanced field emission electron microscope with an 

accelerating voltage of maximum 200 kV. It uses Schottky type field 

emission gun as an electron source, and the instrument has 0.19 nm TEM 

point resolution. 200 mesh holey carbon coated grids and 200 mesh lacey 

carbon coated grids were used for analysis. Analysis were done after 

dilution of samples 1:10 ratio and all the experiments were performed in 

METU Central Laboratory.  

 

 

 

 



 
 

 32

2.2.6. Energy Dispersive X-Ray Spectroscopy (EDX) 

 

Energy dispersive X-ray spectroscopy (EDX) is an analytical tool used for 

elemental analysis. It is one of the powerful attachments of SEM. The same 

samples were used in EDX prepared for SEM analysis.  

 

2.3. Procedures 

 

2.3.1. Synthesis of Silver Nanoparticles by Thermal Decomposition 

Method 

 

Silver nanoparticles, firstly synthesized by thermal decomposition method. 

235 µl oleylamine and 160 µl oleic acid were dissolved in 12.5 ml diphenyl 

ether (boiling point, 259 º C), then 85 mg silver acetate (Ag-Ac) as silver 

precursor was added to this mixture. In this study, oleic acid was used as 

reducing agent and oleylamine as stabilizer (Figure 15). 

 

Thermal decomposition method is a chemical decomposition caused by 

heat, that  is, the growth stage takes place at higher reaction temperature, so 

that synthesis of silver nanoparticles were heated with diphenyl ether upto 

120º C for 5 hours in hot plate with magnetic stirrer. Before thermal 

decomposition, the solution has light brown colour, and after thermal 

decomposition, colour of the solution turned to dark brown colour.  

 

After the reaction, the contents were cooled down to room temperature. 15 

ml methanol was added to the product in order to make separation by 

centrifuging for 30 min at 13500 rpm. After centrifuging step, the 

precipitate was redispersed in toluene. The precipitation by methanol, 

centrifugation and redispersion in toluene steps were done three times to 

wash silver nanoparticles.  Synthesized nanoparticles can be dispersed in 

nonpolar solvents, in this case  the solvent was cyclohexane (Figure 16). 

 

 



 
 

 

 

 

Figu

Figu

 

 

2.3.2. Syn

 

Silver nan

a typical r

in 198 ml 

 

 

 

 

 

 

 

 

 

re 15: Sche

ure 16: The 

nanopa

nthesis of Si

noparticles, 

reaction, 4.0

of de-ioniz

eme for the 

experiment

articles by th

ilver Nanop

secondly sy

0 mg  NaBH

zed water a

33

synthesis o

 

 

tal setup use

hermal deco

particles by

ynthesized b

H4 and 25.0 

and left to c

f silver nan

ed for the sy

omposition 

y Chemical

by chemical

mg sodium

cooling at 0º

noparticles b

ynthesis of 

method 

l Reduction

l reduction m

m citrate was

º C. Afterw

by TD 

silver 

n Method 

method. In 

s dissolved 

wards, 2 ml 



 
 

 

of 0.01 M

under mag

reaction, t

on, deepen

room temp

 

 

Figure 

 

 

2.3.3. Pre

Microemu

 

Silver nan

silica coat

CO-520 w

20 minute

solution, a

Then 100 

and from t

M AgCIO4 s

gnetic stirri

the colour o

ned to brig

perature for

17: Scheme

eparation o

ulsion Meth

noparticles 

ting by reve

was added to

es. Afterwa

and left mix

µl of TEO

this solution

solution at 

ing. Mixing

of the solutio

ght yellow. 

r further exp

e for the syn

red

of  Silica 

hod 

synthesized

erse microem

o 6 ml of c

ards, 500 µl

xing for add

S was mixe

n 40 µl was

34

0º C was 

g was contin

on immedia

Ag colloid 

periments  a

nthesis of si

duction meth

Coated Sil

d by therm

mulsion me

cyclohexane

l of silver 

ditional 30 

ed with 20 µ

 added to fi

injected qu

nued for 20

ately turned 

solutions w

as shown in 

ilver nanopa

hod 

lver Nanop

mal decomp

ethod. For t

e and disper

nanoparticl

minutes un

µl of DBU 

irst solution

uickly to th

0 minutes. D

light yellow

were stored

Figure 17. 

articles by c

particles by

position wa

this, 1000 µ

rsed by son

es were ad

nder magnet

in an eppen

n (Figure 18

his solution 

During the 

w and later 

d at dark at 

chemical 

y Reverse 

s used for 

µl of Igepal 

nication for 

dded to the 

tic stirring. 

ndorf tube, 

). 



 
 

 

 

In order to

was added

temperatu

the mediu

rpm for 25

 

Later on, 

and water

and reacta

redispersio

prevent ad

coated nan

 

 

Figure 

 

 

 

o provide fo

d to mixtur

ure. In order

um, acetone

5 minutes.  

washing ste

r respectivel

ant molecul

on of silic

dsorption o

noparticles w

18:  Schem

formation of

re. The mix

r to stop the

e was adde

eps were do

ly by using

les. For wa

a coated s

of nanopart

were disper

me for the si

micro

35

f micelles, 

xture was le

e reaction an

d to the so

one by usin

g centrifuge 

ashing steps

ilver nanop

ticles onto 

rsed in 10 m

lica coated 

oemulsion m

 

 

extra 100 µ

eft mixing 

nd isolate th

olution, and

ng 1-butano

to remove 

s sonication

particles in 

centrifuge 

ml de-ionize

silver nanop

method 

µl of de-ion

for 24 hour

he nanopart

d centrigued

l, 1-propan

unwanted 

n was used 

the solven

tubes. Fina

ed water (Fig

particles by

nized water 

rs at room 

ticles from 

d at 13500 

nol, ethanol 

surfactants 

to provide 

nts and to 

ally, silica 

gure 19). 

y reverse 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 

2.3.4. Pre

Method 

 

Silver Nan

coating by

added to 

solution, t

which is D

with 3 tim

de-ionized

at 13500 r

 

 

            

 

 

 

19: Ag NP

eparation 

noparticles 

y modified 

20 ml of e

then silica 

DMA. Then

mes with eth

d water. Wa

rpm.  

's in cycloh

Nanos

of  Silica 

synthesized

Stöber me

ethanol.  L

coating wa

n the solutio

hanol-water

ashing steps

36

hexane befor

structures in

 

 

Coated Si

d by chemi

ethod. For t

Later on, 6 

as initiated 

on left mixi

r solution (5

s were done

re silica coa

n water 

ilver Nano

cal reductio

this, 5 ml o

µl of TEO

by rapidly

ng for one 

5:4) and one

e by using c

ating and Ag

oparticles b

on was used

of silver co

OS was add

y injecting 

day, and th

e additional

centrifuger 

g@SiO2 

by Stöber 

d for silica 

olloid  was 

ded to the 

of catalyst 

hen washed 

l time with 

for 10 min 



 
 

 

 

 

 

Figure

2.3.5. Pre

 

The pH o

was adjus

nanopartic

Cresyl Bl

synthesize

was added

stirrring at

 

For silica 

solution, t

solution l

ethanol-w

Washing s

e 20: Schem

paration of

of silver nan

sted to 7.0.

cles was di

lue (BCB) 

ed was adde

d and solut

t room temp

coating ste

then silica c

eft to mixi

water solutio

steps were 

me for the si

f  A Raman

noparticles 

. The effec

iscussed in 

in silica co

ed to 20 ml 

tion was le

perature.  

ep, differen

coating was

ing for one

on (5:4) and

done by us

37

lica coated 

method 

 

 

n-Dye- Lab

synthesized

ct of pH ch

section 3.

oating laye

of ethanol. 

eft mixing 

nt concentra

s initiated by

e day, and 

d one additi

sing centrif

silver nanop

beled Nanop

d by chemi

hange on t

5.For enca

er, firstly 5

 Later on, 1

for 30 min

ation of TE

y rapidly in

then washe

onal time w

fuger for 5 

particles by

particle Pr

ical reductio

the stability

apsulation o

 ml of silv

125 µl of 10

nutes under

EOS was ad

njecting of D

ed with 3 t

with de-ioni

min at 135

y Stöber 

robes 

on method 

y of silver 

of Brilliant 

ver colloid 

0-4 M BCB 

r magnetic 

dded to the 

DMA. The 

times with 

ized water. 

500 rpm in 



 
 

 

eppendorf

FE-SEM a

 

F

2.3.6. Pre

 

Brilliant C

DNA and 

SH- TTTT

AGA ATC

 

2.3.6.1.  N

 

In the elec

10 µl of d

incubated 

reaction m

Figure 22 

            

 

f tube and fi

and SERS a

Figure 21: S

paration of

Cresyl Blue

probe DNA

TTTTTTT 

C CAC (the

Non-covalen

ctrostatic at

dye solutio

at 50 ºC fo

mixture, gel

shows the p

final produc

analysis.  

Scheme for 

f  SerGEN 

e (BCB) w

A  sequence

GCA GTG

e  compleme

nt Labellin

ttachment o

n was adde

or 4 hours. 

l filtration 

process of n

38

t was dilute

the prepara

 

 

Probe 

was used as 

es used in hy

G GAT TCT

entary seque

ng of Oligon

of cationic d

ed to 1.5 µ

In order to

mini quick

noncovalent

ed 2 ml with

ation of SER

SERS-acti

ybridization

T CGG GC

ence of the 

nucleotide P

dye, BCB to

µl of  (0.5 O

o remove un

k spin oligo

t labelling o

h de-ionized

RS nano-tag

ive label.  

n experimen

C and 5'- G

target) resp

Primers wi

o the oligon

OD) probe 

nreacted dy

o columns w

of  DNA wit

d water for 

gs 

The target 

nts were 5'- 

GGC CCG 

pectively. 

ith BCB 

nucleotide, 

DNA and 

ye from the 

were used. 

th BCB. 



 
 

 

Figure 22

2.3.7. Im
Hybridiza
 

For hybri

treated wi

=8) for 1

disulfide b

 

 

 

 

 

 

 

 

 

2: Schemat

mmobilizatio
ation Cond

idization ex

th 1.22 µl o

 hour at ro

bonds betwe

tic represent

on of SER
ditions 

xperiments, 

of dithiothre

oom tempe

een the olig

39

 

 

tation of no

BCB 

 

 

RGen Prob

0.911 µl 

eitol (DTT) 

rature to c

gonucleotide

ncovalent la

bes onto G

of thiolate

in phospha

leave the p

es as shown

abeling of D

Gold Surfa

d DNA tar

ate buffer (0

possible for

n in Figure 2

DNA with 

ace Under 

rgets were 

0.18 M, pH 

rmation of 

23. 



 
 

 

 

 

 

 

 

 

 

 

 

                

                

Figu

Then, the 

columns t

cleaved th

cm) which

sterile wat

 

The attac

achieved b

Following

removed f

Then, 250

onto gold 

phosphate

the gold s

proper hy

washed w

and then 

amount fr

    

          

re 23: Sche

oliqonucle

to remove u

hiolated DN

h was clean

ter respectiv

chment of 

by adding 

g 4 hours in

from the go

0 µl of spac

substrate. L

e buffer (pH

surface and

ybridization 

with 0.18 M 

washed wi

rom the go

ematic repre

eotides wer

unwanted sp

NA targets 

ed before u

vely.  

thiolated o

 250 µl of

ncubation a

old surface

cer, 1 mM u

Later on, SE

H =7), and 7

d waited fo

conditions

phosphate 

ith sterile w

old surface

40

esentation o

 

 

re purified 

pecies from

were added

using by firs

oligonucleo

f 1 M phos

at room tem

e by washin

undecanol d

ERGen prob

5 µl of 2 M

or 90 min. 

s, Figure 24

buffer in a 

water for 5

before rec

of rupture of

by using m

m the mediu

d onto gold

st diluted eth

otides onto 

sphate buffe

mperature, u

ng four tim

dissolved in

bes dissolve

M NaCI solut

at room te

4. Then, th

plastic petr

 minutes to

ording SER

f disulfide b

mini quick 

um.  Later o

d substrate 

hanol and, a

gold subs

fer solution 

unbound ta

mes with ste

n ethanol,  

ed in 150 µl

tions were a

emperature 

he gold sub

ri dish for 1

o remove e

RS spectra.

bonds. 

spin oligo 

on, freshly 

(2.0 x 2.0 

and second 

strate was 

(pH = 7). 

argets were 

erile water. 

was added 

l of 10 mM 

added onto 

to achieve 

bstrate was 

0 minutes, 

excess salt 

 Later on, 



 
 

 

silver coll

was record

 

 

Figure 2

 
 
 
 

 

 

 

 

loids with w

ded. 

4: Schemat
onto go

were added 

tic represent
old surface u

41

onto the g

tation of im
under hybrid

 

 

 

 

 

 

 

 

 

gold substra

mmobilizatio
dization con

ate, and SER

on of SERG
nditions. 

RS spectra 

Gen probes 



 
 

 42

CHAPTER 3 

 

 

RESULTS AND DISCUSSION 

 

 

 
In this study, firstly silver nanoparticles were synthesized by thermal 

decomposition method,  and synthesized nanoparticles then were coated 

with silica layer via reverse microemulsion Conditions were optimized 

thoroughly for both methods and characterizaton of the particles were  done 

utilizing TEM, SEM and UV-vis Spectrometer.  Silver nanoparticles were 

also synthesized by chemical reduction method, and these nanoparticles 

were coated with silica layer via modified Stöber method. Comparing the 

performances of the particles according to these two synthesis routes, it was 

observed that preparation of raman-dye-labeled nanoparticles probes by 

using second route, which is synthesis of silver core via chemical reduction 

method and silica shell via Stöber method, is easier than the first one for 

DNA studies. For this, SERS nanotags based on this route was studied in. 

Later on, SERGen probes were prepared via noncovalent labelling with 

BCB and SERS nano-tags and via covalent labelling with SERS nanotags, 

and finally hybridization experiments were performed. 

 

3.1. Synthesis of Silver Nanoparticles by Thermal Decomposition 

Method 

 

Silver nanoparticles can be synthesized with various sizes and shaped 

depending on the method which is used. In this study, spherical shape silver 

nanoparticles were preferred. Smaller nanoparticles have surface 

area:volume ratios that are extremely high. This is the reason of studying 

small size silver nanoparticles between the range of 4-15 nm in diameter.   
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Thermal decomposition method provides synthesis of monodisperse silver 

nanoparticles by using silver acetate in diphenyl ether. According to 

literature [65] , silver acetate undergoes decomposition by heat according to 

following reaction at 120 ºC: 

 

             

 

On the other hand, agglomeration of silver nanoparticles as time passes 

prevented by using oleic acid and oleylamine.  Oleylamine weakly adsorbs 

on silver nanoparticles , so that, uniform size formation for silver 

nanoparticles is impossible by using only oleylamine. Therefore oleylamine 

and oleic acid were used together in order to provide self-assembly of silver 

nanoparticles. In general, size of the nanoparticles can be controlled by 

adjusting reaction parameters, such as time, temperature, and amount of 

capping agents, oleic acid and oleylamine. Decreasing time of reaction 

resulted in the agglomeration of nanoparticles later on. However, five hours 

reaction time was enough for the synthesis of monodisperse silver 

nanoparticles, and increasing reaction time more than five hours resulted no 

change according to absorption spectrum of silver colloid results.  

 

UV-vis measurement of silver colloids has great importance for 

characterization and understanding the optical properties of these 

nanostructures. Before thermal decomposition, there is no formation of 

silver nanoparticles, so that no signal was observed as can be seen in Figure 

25-a. However, after thermal decomposition, strong peak at 445 nm was 

observed showing formation of silver nanoparticles (Figure 25-b). 
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Figure 25: Absorption spectra of nanoparticles (a) before thermal decomposition 

method (b) after thermal decomposition 

 

 

Transmission Electron Microscopy (TEM) was used for the characterization 

of silver nanoparticles in terms of size and shape. TEM image of the 

particles show that spherical-shaped  silver nanoparticles synthesized by this 

method and one hundred nanoparticles were selected randomly (Figure 26). 

Number-length (arithmetic) mean size and volume weighted mean size were 

calculated according to the formulas: 

             Number - length (aritmetic) mean size: 

         

ሾ1,0ሿܦ ൌ
∑݀݅ܰ݅
∑ܰ݅  

 

              Volume weighted mean size: 

  ´ 

ሾ4,3ሿܦ   ൌ
∑݀݅ସܰ݅
∑݀݅³ܰ݅

  

 

 

where 'di' is the diameter of nanoparticles and 'Ni' is the number of 

nanoparticles. Results of the calculations  are given in Table 1.   
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range of other molecules such as thiols, amines, polymers, antibodies, and 

proteins. 

 

 

Figure 27: FE-SEM image of silver nanoparticles synthesized by chemical 

reduction method. 

 

 
Although chemical reduction method requires less time for synthesis (only 

one hour) compared to thermal decomposition method (nearly seven hours). 

This method involves some important considerations. For example, the 

temperature of the solution during reduction is very critical. Temperature 

should be kept at 0ºC in order to obtain clear silver nanoparticles. Any heat 

increase during reaction causes the change of the appearence of the colloid 

solution from clear yellow colour to a blurred yellow and broadening of the 

plasmon absorption spectrum of the silver colloids, Figure 28. These 

observations were indicating the change in size distribution of the particles 

from narrow to wide. 
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Figure 28 : Effect of temperature on the appearance of silver nanoparticles. 

 

 

Another important parameter was the addition rate of the silver perchlorate 

to the mixture of sodium borohydride and sodium citrate solution. For DNA 

studies, nearly 10 nm size silver nanoparticles are large enough to use. In 

order to obtain nanoparticles around 10 nm in size, it should be added 

rapidly. Otherwise larger particles were obtained and this change was  

followed as red-shifting from 400 nm to 410 nm in absorption spectrum as 

seen in Figure 29.  
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Figure shows 45 nm shift in absoption bands, this was an expected result, 

because surface plasmon resonance absorption bands in the visible region 

are very sensitive to particle size, shape, structure, dielectric properties of 

metal and surrounding medium, because these factors affect electron charge 

density around the nanostructures. In thermal decomposition method, 

cyclohexane with refractive index 1.426 and in chemical reduction, water 

with refractive index of 1.000 were used as solvents. Therefore, the 

significant shift was arised due to change in refractive indices of the 

medium. 

 

The elemental analysis or chemical characterization of the prepared samples 

were determined by energy dispersive X-ray (EDX) analysis as can be seen 

in Figure 31. It is mostly used analytical technique with electron microscope 

techniques. The large aluminium peak comes from the SEM-grids. 

Synthesized nanoparticles were so small, and we observed embedding of 

such small particles to the carbon tape, so that, samples  for SEM 

measurements were prepared by dropping onto grids directly without using 

carbon tape.  
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Figure 31: EDX image of silver colloids synthesized by chemical reduction 

method. 

 

 

3.3. Preparation of  Silica Coated Silver Nanoparticles by Reverse 

Microemulsion Method 

 

In addition to the use of hydrophilic metal nanoparticles, hydrophobic metal 

nanoparticles can also be interfaced by silica layer. Via reverse 

microemulsion method, it is possible to form thin silica layer around the 

hydrophobic metal nanostructures. Reverse microemulsion method enables 

to coat small metal nanoparticles, less than 20 nm, and it also can be applied 

for coating high concentration of nanoparticles which creates problems for 

other silica coating methods.  
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The colour matching of stable dispersed silica coated nanoparticles with 

reference solution was expected to show the proper silica coating around 

silver surface. Colour matched solutions were selected  for TEM 

characterization.  

 

In the literature ammonia was used as a base for silica coating of 

nanoparticles, particularly  for gold nanoparticles [68] Therefore ammonia  

was selected as a base in our studies and the  parameters such as the amount 

of base, TEOS , IGEPAL  were optimized.  

 

In the optimization of base concentration, various amount of ammonia 

solution(80 to 150 µl) was used as catalyst as seen in Table 2. 

 

 

 Table 2: Usage of ammonia solution  with different concentration in 

reverse microemulsion method as catalyst. 

Samples  A B C D 

Ag NP's 500 µl 500 µl 500 µl  500 µl 

Igepal 1300 µl 1300 µl 1300 µl 1300 µl 

TEOS 100 µl 100 µl 100 µl  100µl 

NH3. H2O(aq) 80 100 µl 125 µl  150 µl 

 

 

However, it was observed that nanoparticles were precipitated in  water 

either immediately or in one day time. Besides the colours of the dispersions 

were totally different than reference solution of silver nanoparticles as 

shown in Figure 35, which  shows the failure of silica coating  
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coating. Silver nanoparticles were not in the center of these nanostructures 

and in some places silver particles were accumulated more than the others. 

In case of sample H (Figure 38) on the other hand, some of these silica 

particles were formed around silver nanoparticles as desired, although the 

size of the particles were not uniform, the shapes were not disturbed very 

much. There were still empty silica shells, agglomarates and accumulation 

of  silver nanoparticles in some areas. 

 

In literature, it was noted that ammonia usage resulted in succesful silica 

coating of gold nanoparticles, however this case is different for silica 

coating around silver nanoparticles [67]. When the reaction proceeded 

longer in ammonia solution, silver nanoparticles would be oxidized due to 

reaction between hydroxide ion. This event results in the formation of 

AgOH, which easily react with ammonium ions to form Ag(NH3)2
+ complex 

ions.  Oxidation reaction of small silver nanoparticles in ammonia solution 

is shown as following reaction: 

 

4Ag + 8NH3 + O2 + 2H2O                   4Ag( NH3)2
+ + 4OH- [67] 

 

 Ying et al was reported the limitation for the silica coating of silver 

nanoparticles arising from easy oxidizing ability of these nanostructures via 

reverse microemulsion method. They mentioned that successful silica 

coating was achieved, but they also reported to short-term stability of silver 

nanoparticles in ammonia solution [68]. The silver core as they mentioned 

was 12 nm in size. 

  

Therefore we concluded that the disturbed monodispersity and presence of 

empty shells according to TEM images might be the related with the 

deterioration of stability of silver nanoparticles when ammonia solution 

used as a catalyst and decided to change the catalyst.  

 

Since the coating process was taken place in organic solvent, 1,8-

Diazabicycloundec-7-ene (DBU), an organic base was used instead of 
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ammonia solution. The same experiments were repeated with various 

concentrations of the new catalyst, DBU, Table 4. As mentioned before, 

color matching was the first criteria for the success of the coating process. 

The color of the solutions, having various amount of DBU, were compared 

with the color of reference solution, Figure 39.  

 

               

Table 4: Concentration of DBU used throughout  reverse microemulsion 

method. 

 

Samples S1 S2 S3 S4 

Ag NP's 500 µl 500 µl 500 µl 500 µl 

Igepal 1000 µl 1000 µl 1000 µl 1000 µl 

DBU 4 µl 8 µl 20 µL 25 µl 

TEOS 35 µl 35 µl 35 µl 35 µl 

Water 100 µl 100 µl 100µl  100µl 

 

 

For samples S1, S3 and S4, coating process were resulted in the precipitation 

of nanoparticles in water, whereas dispersed nanoparticles in water was 

achieved for sample S2, in which 8 µl of catalyst DBU was used, Figure 39. 

At higher or lower concentration of the catalyst, agglomeration of 

nanoparticles was observed. However precipitation was taken place  at 

longer time when 4 µl DBU was used. 
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formation of high quality core-shell nanoparticles was illustrated by SEM  

as can be seen in Figure 44. 

 

 

Figure 44: FE-SEM image of resulting silica coated silver nanoparticles by 

Stöber method 

 

 

Brighter center part is corresponding to silver and pale part around the silver 

nanoparticles corresponding to silica layer.  FE-SEM image showed a 

homogenous silica shell around the particles. 

 

For silica coated silver nanoparticles by using Stöber method, a single 

plasmon band was measured at 414 nm. This red-shift with respect to the 
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uncoated nanoparticles (λmax = 400 nm) is due to the increase in local 

refractive index around nanoparticles and  scattering from silica shells after 

silica coating. Figure 45 shows the red-shift of the localized surface  

plasmon absorption peak after silica coating.  

 

 

Figure 45: Absorption spectra of silica coated silver nanoparticles via 

Stöber method 

 

 

3.5.  Preparation of  A Raman-Dye- Labeled Nanoparticle Probes 

 

SERS-aided biodetection have come into prominence recently. Thanks to 

presence of Raman-active reporter molecules, several Raman nanotags can 

be designed in order to obtain sensitive detection of biological molecules. In 

this study, to prepare core-shell nanoparticles with an embedded Raman 

reporter molecule, silver nanoparticles synthesized by chemical reduction 

method was used as core, and Stöber method for silica coating was applied. 

Before silica coating, brilliant cresyl blue (BCB) was added to the reaction 

mixture, which provides embedding of raman reporter into silica shell. BCB 
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between stability of nanoparticles corresponding to change in zeta potential 

values [69]. 

 

 

 

Table 6: Stability Behaviour of the colloid  depending on zeta potential 

ranging from 0 to ±61 [69] 

Zeta Potential  Stability Behavior of The Colloid 

From 0 to ± 5  Rapid Coagulation 

From ± 10 to ± 30  Incipient instability 

From ± 30 to ± 40  Moderate Stability 

From ±40 to ±60 Good Stability 

More than ± 61 Excellent Stability 

   

 

Table 7: Zeta Potential measurements using silver nanoparticles at different 

pH ranges [70] 

pH Zeta Potential (mV) 

5 -25.5 ± 0.38 

7.4 -30.1 ± 0.41 

9 -38.3 ± 0.33 

 

 

 

For the preparation of SERS nano-tags, although at pH 9, nanoparticles 

show good stability, due to deterioration of dye at this pH, pH of the 

solution was set to 7. 

 

Except pH of the solutions, also the concentration of Raman reporter 

molecule added was one of the crucial parameters. When, 10-3 M dye 

concentration was used, oxidation of silver nanoparticles was observed. This 

change was examined by the removal of surface plasmon absorption peak of 

nanoparticles measured with UV-vis spectrometer (in Figure 48), and by the 

absence of  characteristic peak of BCB in SERS measurements (in Figure 
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positively charge BCB  Raman dye provides electrostatic attachment easily. 

For this, labeling was done electrostatically. Electrostatic attachment of 

Raman dye to the oligonucleotide was achieved as described in section 

2.3.6.1.  

 

Preparation of SERGen probes can also be done  by covalent labelling of 

oligonucleotide primers to Raman dye. However, noncovalent labelling is 

advantageous of being easier, less time consuming and less expensive 

chemicals needed. For this reasons, noncovalent labelling (also name as 

electrostatic attachment) was decided to use in the preparation of SERGen 

probes. 

 

3.7. Immobilization of SERGen Probes onto Gold Surface Under 
Hybridization Conditions 
 

Thiols are frequently used with noble metal substrates due to strong affinity 

of sulfur for these metals. Using this information, formation of covalent 

bonds between the sulfur and gold atoms was applied for the attachment of 

thiolated oligonucleotides onto gold surface. 

 

In this study, gold substrate was used where hybridization experiments were 

done. To attach the oligonucleotides onto the gold substrate, 5'-end of thiol 

modified gene sequence was used as complementary target.  

 

In the presence of oxygen, the formation of disulfide bonds result in not to 

be tied of oligonucleotides onto gold substrate. The possible formation of 

disulfide bonds between thiolated oligonucleotides were prevented by using 

a reducing agent  as shown in Figure 58 [71].  In this case it was 

dithiothreitol (DTT).  

 

 

 



 
 

 

Figure 58

 

 

Apart from

groups, su

backbone.

gold subst

achieve hy

study we p

59 shows 

no spacer 

 

 

 

 

 

 

 

 

  

Figure 59

 

8: Schemati

m disulfide 

uch as ami

. These par

trate. These

ybridization

preferred us

the possible

is used for 

9:  Possible 

ic represent

bonds, olig

ines and ca

rts of oligo

e secondary 

n experimen

sing  11-me

e bindings o

hybridizatio

interaction

w

78

tation of rup

DTT 

gonucleotid

arbonyls an

onucleotides

interaction

nts. Various

ercapto-1-un

of oligonucl

on experime

s between o

without spac

pture of disu

des have sev

nd negativel

s have also

s should be

s spacers ca

ndecanol fo

leotides ont

ents [71]. 

oligonucleot

cer 

ulfide bond

veral other 

ly charged 

o interactio

e prevented 

an be used, 

r this functi

to gold subs

tides and go

s by using 

functional 

phosphate 

n between 

in order to 

but in this 

ion. Figure 

strate when 

old surface 



 
 

 79

 

Removal of the spacer in hybridization experiments causes in the 

convergence of DNA strands to the gold surface and to each other. This 

event results in the prevention of the binding capability of target 

oligonucleotide to SERGen probe, thus no hybridization of two 

oligonucleotides occur.  

 

In this study, the base sequence of oligonucleotides used as target DNA was 

5'- SH- TTTTTTTTTT GCA GTG GAT TCT CGG GCC as target gene 

sequence and the base sequence of nucleic acid probe was  5'- GGC CCG 

AGA ATC CAC. As can be seen, target and probe sequences are not in the 

same length. The importance of being long chain of target DNA compared 

to probe sequence is to decrease steric hindrance of arising from the 

interaction between SERGen probe and gold surface. 

 

In literature, it was also mentioned that the short sequences of DNA targets 

which have mainly between 12-40 mer provide hybridization between DNA 

probes easily [72]. At this point, immobilization of target oligonucleotides 

onto substrate plays important role to increase sensitivity and selectivity. 

For this, immobilized biomolecules should maintain stability to minimize 

nonspecific adsorption and finally nonspecific bindings. 

 

Before recording SERS measurements, silver nanoparticles were added onto 

gold substrate, and left to dry. It was observed that gold surface, by itself is 

not enough to generate electromagnetic enhancement. Apart from gold 

surface, silver colloids shoud be added onto the surface in order to increase 

signal intensity. According to SERS spectra as seen in Figure 60, it was 

concluded that hybridization of thiolated DNA targets and SERGen probes 

on the gold surface was achieved.   
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 

In this study, SERS nanotags were designed in order to obtain strong Raman 

signal and to prevent photobleaching of dye by coating with silica layer 

while detecting biological molecules. SERS nano-tags consist of Raman-

active molecule and  Raman signal enhancer core encapsulated by 

protective shell against environmental factor. Silica layer, except protecting 

ability, also provides surface modification of SERS tags for further 

experiments. SERS nano-tags that have been developed in this study will be 

used in order to make multiplex detection of DNA. In the preparation of 

SERS nano-tags, positively charged brilliant cresyl blue (BCB) was used as 

Raman reporter molecule. For the attachment of dye onto the silver surface, 

several parameters were changed, and characterizations were made 

systematically. 

 

To synthesize silver core, mainly two methods, thermal decomposition and 

chemical reduction method were used. Silver nanoparticles synthesized by 

thermal decomposition method, then were coated with silica layer by 

reverse microemulsion method. On the other hand, silver nanoparticles 

synthesized by chemical reduction method, were coated with modified 

Stöber method. 

 

In reverse microemulsion method, a new organic base DBU was proposed 

as catalyst instead of ammonia solution to remove problems arising from 

short-term stability of nanoparticles in ammonia solution, and it was 

observed that preliminary results obtained were comparable with literature 

values. 
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In this study, in contrary to common belief, we also observed that silica 

coating for small nanoparticles at the size of 10 nm is also proper via Stöber 

method.  

 

Prepared SERS nano-tags have high signal intensity. However, an important 

decrease in SERS signal was observed after amine group modification onto 

silica shell. With further studies, we will try to prevent this decrease in the 

signal. 

 

In this study, we also performed hybridization experiments with DNA. With 

this aim, immobilization of SERGen probes onto gold platform was 

achieved. Proper results were obtained in hybridization experiments carried 

out with SERGen probes prepared with BCB dye. Strong signal of BCB 

showed the proper attachment of dye onto the oligonucleotide, and success 

hybridization experiments were done with dye molecule. 

 

Hybridization experiments were also carried out  with SERGen probes 

prepared  with SERS nano-tags for labelling by covalent and noncovalent 

binding. However, after amine functionalization step, large decline in SERS 

intensity directed us to make further optimizations to increase intensity. 
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