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ABSTRACT

MODELING NEURONS THAT CAN SELF ORGANIZE INTO BUILDING BLOCKS 

AND HIERARCHIES: AN EXPLORATION BASED ON VISUAL SYSTEMS

POLAT, AYDIN GÖZE

M.Sc., Department of Cognitive Science

Supervisor: Assist. Prof. Dr. Murat Perit Çakır

September 2012, 123 pages

Cell-cell  and cell-environment interactions are controlled by a set of  local 

rules  that  dictate  cell  behavior.  With  such  local  rules,  emergence  of 

computationally  meaningful  building  blocks  and  hierarchies  can  be 

observed.  For  example,  at  the  cellular  level  organization  in  the  visual 

system,  receptive  field  of  a  retinal  ganglion  cell  displays  an  activation 

inhibition  behavior  that  can  be  modeled  as  Mexican  Hat  wavelet  or 

Difference  of  Gaussians.  This  precise  organization  is  the  product  of  a 

harmonious collaboration of different cell types located at the lower levels in 

a  hierarchical  structure  for  each  ganglion  cell.  Moreover,  a  similar 

hierarchical organization is observed at higher levels in the visual system. 

This thesis investigates the visual system from several perspectives in an 

effort  to  explore  the  biological/computational  principles  underlying  these 

local rules. The investigation results in a hybrid computer model that can 

combine  the  advantages  of  evolutionary  and  developmental  principles  to 

explore the effects of local rules on cellular differentiation, retinal mosaics, 

layered structures and network topology.

Keywords:  self organization, visual system,  entropy, multiresolution
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ÖZ

ÖZDÜZENLEME İLE YAPITAŞLARI VE HİYERARŞİLER OLUŞTURABİLEN NÖRON 

MODELLENMESİ: GÖRSEL SİSTEMLER ÜZERİNE BİR ARAŞTIRMA

POLAT, AYDIN GÖZE

Yüksek Lisans, Bilişsel Bilimler

Tez Yöneticisi: Yard. Doç. Dr. Murat Perit Çakır

Eylül 2012, 123 sayfa

Hücre-hücre  ve  hücre-çevre  arasındaki  etkileşimler,  hücre  davranışının 

belirleyicisi  olan  bazı  yerel  kurallarla  konrol  edilir.  Bu  kurallar  ile, 

matematiksel ve berimsel olarak anlamlı bazı yapıtaşlarının ve hiyerarşilerin 

özdüzenlenmesini  gözlemlemek  mümkündür.  Örneğin,  görsel  sistemde 

retinadaki  ganglion  hücrelerinin  alıcı  alanlarında  gözlenen  etkinleştirme 

baskılama davranışı Meksika şapkası (Mexican hat)  dalgacığı (wavelet) veya 

Gausslar farkı ile modellenebilir. Bu etkinleştirme/baskılama davranışı daha 

alt seviyedeki farklı hücre tiplerinin bir arada uyum içinde çalışmaları sonucu 

ortaya çıkar. Ayrıca, benzer hiyerarşik özdüzenleme, görsel sistemdeki daha 

üst seviyelerde de gözlenir. Bu tez çalışması, görsel sistemi farklı yönlerden 

inceleyerek, özdüzenlemeyi sağlayan yerel kuralların altında yatan biyolojik 

ve  matematiksel/berimsel  prensipleri  araştırmaktadır.  Bu  incelemenin 

sonunda, bu prensiplerden yararlanarak yazılan hibrid bir bilgisayar modeli 

kullanılarak, yerel kuralların hücre farklılaşması, mozaik retina, katmanlı yapı 

ve ağ topolojisine etkisi araştırılmıştır.

Anahtar Kelimeler:  özdüzenleme, görsel sistem, entropi, çoklu çözünürlük
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CHAPTER 1

 1 Introduction

Sophisticated  organisms  often  display  a  well  controlled  complexity, 

regularity  and hierarchical  organization that emerge from cell-cell  and 

cell-environment  interactions.  Brain  and  perceptual  systems  are  the 

epitome of this phenomenon. A perceptual  system transforms external 

stimulus into internal representation(s) while still mostly maintaining the 

spatio-temporal consistency within the transformed representation of the 

stimulus (i.e. a retinotopic map, see subsection 4.3.1). This “consistent” 

transformation  often  requires  regularly  organized  computational 

“building  blocks”  (i.e.  receptive  field  mosaics  described  in  subsection 

3.2.3) and, especially in the case of the visual system, a well organized 

hierarchical  structure  (subsection  4.1.1)  that  may  be  the  result  of 

information theoretic constraints (i.e. uniform sampling and joint entropy, 

sections 5.1 to 5.3). 

Cell-cell and cell-environment interactions offer a way to understand how 

the organization of complex systems such as brain and visual system is 

controlled at cellular and hierarchical levels. These interactions can be 

described as local rules dictated by the DNA and epigenetic mechanisms. 

Local rules can be used in a computer model for modeling neurons that 

1



can  self  organize  into  computationally  meaningful  building  blocks  and 

hierarchies that are observed in the visual system and brain. 

Rigorous experimental analysis of various cell types (i.e. retinal ganglion 

cells,  simple cells,  complex cells described in sections 4.2 and 4.3) as 

well as computational and conceptual models make the visual system a 

relatively well documented area. Moreover evolution and development of 

visual systems are well studied. Therefore, an exploration of how  visual 

systems  evolve,  develop  and  what  the  computational  properties  and 

constraints of vision are, may yield valuable information for a computer 

model. For this purpose, an investigation of evolutionary, developmental 

and computational  principles  underlying the organization of  the visual 

system is required.

The quest for understanding the underlying principles of organization in 

the circuitry of visual system requires one to delve deep into the sea of 

knowledge within the territories of several disciplines. As visual system 

first decomposes visual input into its constituents, this thesis work, first 

starts  with  an  analysis  of  the  visual  system  from  the  evolutionary, 

developmental  and  computational  perspectives.  The  analysis  of  the 

visual  system spans the next three chapters.  Each chapter represents 

insights and findings from a distinct perspective. 

First,  the chapter on the evolutionary perspective outlines the roots of 

synapse, neuron, the nervous system, eye and the visual system, and the 

biological  diversity  observed  across  the  visual  systems  of  primitive 

vertebrates  in  a  comparative  way.  Then the  chapter  proceeds  with  a 

possible set of evolutionary mechanisms that may be responsible from 

the evolution of complex organs.

In  the next  chapter,  a  developmental  perspective  is  adopted.  Starting 

from the early development of the nervous system, processes such as 

cell  proliferation,  cell  migration,  axon  guidance  and  cellular 

differentiation as well  as programmed cell  death and synaptic pruning 

are  investigated.  Next,  the  development  of  the  retina,  the  visual 
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pathways and the developmental role of prenatal activity and postnatal 

stimuli are discussed.

In  the  third  part  of  the  analysis  of  the  visual  system,  a  conceptual/ 

computational approach is assumed. After starting with a review of  well 

known  conceptual/computational  modeling  paradigms  developed  for 

investigating the visual system, mathematical models of receptive fields 

of the cells in retina, lateral geniculate nucleus (LGN) and primary visual 

cortex (V1) are investigated. Then, in the discussion section, the modern 

view of visual system is compared to the traditional view.

In  chapter  5,  a  synthesis  of  the  highlighted  points  drawn  from  the 

previous three chapters  is  provided. The synthesis  has revealed three 

fundamental principles which are relevant for modeling and investigation 

of computational properties of vision. These three principles are related 

to information theory, network theory and dynamical systems theory. For 

the  first  principle,  information  theoretic  relation  between entropy and 

visual  pathways,  the  multiresolution  scheme  and  its  evolutionary 

advantages are discussed. For the second principle, the relation between 

the idea of  reusability  and systems displaying scale  free network and 

small  world  properties  are  discussed.  Finally,  for  the  last  principle, 

development, edge of chaos and dynamical systems are discussed.

In chapter 6, a hybrid computer model that was implemented to jointly 

explore evolutionary and developmental principles is given. In particular, 

within a computational framework, the effects of local rules are observed. 

Via  successive  addition  of  new  rules  to  an  initially  simple  computer 

model, different connection and cellular differentiation schemes, new cell 

types, mosaic and layered structures are observed.

Overall, questions such as “How visual system “acquired” the elaborate 

and  precise  organization  through  the  evolution?  What  were  the 

constraints  and mechanisms?  How visual  system develops and how is 

complexity  achieved  during  development?  What  are  the  relevant 

computational  properties  of  vision?  What  is  the  author's  overall 

computational perspective on the underlying principles?” are answered in 

3



the next four chapters.  Then an evolutionary developmental  computer 

model,  which  embodies  some  of  the  design  principles  derived  from 

previous chapters, is used for an investigation of local rules which define 

cellular interactions and their  overall  effects on cellular differentiation, 

mosaic and layered structures. 

Main contributions of the computer model is that this model combines 

the advantages of  multi-objective optimization and differential evolution 

(with  modifications  such  as  whole  genome  duplication,  dynamic 

crossover  rate  etc.,  see  subsection  6.2.3)  with  the  advantages  of 

developmental rules (regional identity, cellular differentiation, exclusion 

zones  etc.).  Since  the  design  of  the  model  is  inspired  from  the 

evolutionary  and  developmental  research  on  the  visual  system,  the 

model  generally  uses  biologically  plausible  principles. Moreover  this 

model  introduces  a  methodology  to  create/evolve  cell  types  that  can 

have highly specific behavior via successive addition of restrictive rules 

to  the  genome  using  an  evolutionary  component.  This  allows 

simultaneous  existence  of  cell  types  that  have  different  degrees  of 

precision in their differentiation and connection scheme (subsections 5.1 

to 5.3 are relevant).  The model does not require predefined cell  types 

except a single generic cell  type. Therefore, in theory, this model can 

generate infinitely many number of cell  types that can have separate 

differentiation and connection scheme. Using this model, one can create 

a  network  which  incorporates  various  cell  types  that  have  certain 

characteristics similar to known biological structures  (such as retina). 
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CHAPTER 2

 2 Evolutionary Perspective

 2.1 Origin of Nervous System 

Research on many essential features of the nervous system shared by a 

wide spectrum of species points to a common ancestor that already had 

the basic circuitry (Ghysen, 2003). It seems there are few reasons for a 

developing organism not to use an already well-tested initial structure. If 

there is a highly selective pressure which requires a critical change, then 

a late modification to the initial structure is still possible. 

From the developmental perspective, a well-tested fundamental circuitry 

is critical for an initial setting that allows later modifications to build upon 

it.  Moreover,  as time passes and evolutionary changes build upon the 

initial developmental trajectory (as later developmental modifications), a 

prominent change in the initial steps of developmental trajectory while 

maintaining stability  would be less  and less plausible  (Ghysen,  2003). 

Therefore, rather than making an initial change, late modifications can be 

more robust. This idea explains the similarities between ontogeny and 

phylogeny.  To give a well  known example  for  homology,  all  tetrapods 

(vertebrates with four limbs) have five digits, yet they may be modified; 
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some  digits  may  elongate  and  some  may  even  completely  disappear 

before birth so that they can be optimally used for various purposes. 

Development  of  any  complex  organ  depends  on simpler  and  simpler 

versions  of  that  organ  along  the  (reversed)  developmental  trajectory. 

Thus, a late mutation that makes changes to the development of one of 

these simpler versions could disrupt the whole developmental trajectory 

(Andersen, 2003). 

Brain  and  the  nervous  system  also  exhibits  a  complex  structure  and 

therefore the same idea applies. This motivates researchers to search for 

homologies  between  the  nervous  systems  of  species  of  extreme 

diversity.  For  example  in  a  particular  piece  of  research,  the  nervous 

system of flies (Drosphila) and humans are compared and it was shown 

that tripartite organization of brain and corresponding gene expression in 

the embryo of drosophila and human (or in fact any other vertebrate) is 

similar (Hirth et al., 2003). 

This  suggests  an  urbilaterian ancestor  (last  common  ancestor  of  all 

higher animals) that already had a nervous system with an established 

degree of sophistication. To have an idea on the nervous system of this 

urbilaterian ancestor, a finer grained analysis of the origins of nervous 

system is  necessary.  This  requires  an investigation  beginning at  least 

from the synaptic level.

 2.1.1 Origin of Synapses: Ursynapse

Fundamental  properties  related to synaptic  transmission and plasticity 

seem to be mostly conserved across species (Kandel, 2004). Therefore it 

is plausible to assume that there was a common ancestor which had the 

ursynapse (last common ancestor of all synapses ) before an urbilaterian 

ancestor.  Since  without  synapses,  axons  and dendrites  are  irrelevant, 

emergence of synapse seems to be a necessary precursory step for the 

evolution of neurons and therefore the nervous system  (Ryan & Grant, 

2009).
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 2.1.2 Origin and Evolution of Neurons

There are various theories on the origin of various aspects of neurons 

(Miller, 2009). According to one theory which dates back to 1970, a cell 

on a layer of tissue that can respond to physical stimuli by contraction 

may  have  been further  specialized  into  two different  cells,  effectively 

creating two adjacent layers in which the outer layer of cells can detect 

physical  stimuli  and  the  inner  layer  of  cells  can  contract.  The 

communication between these adjacent layers may have been possible 

via  ion  exchange  through  pores.  With  evolutionary  changes,  the  ion 

exchange  mechanism  may  have  turned  into  a  more  elaborate 

mechanism eventually creating synapses and later, axons and dendrites 

(Mackie, 1970). 

The origins of excitability seem to date back to single-celled organisms. 

For  example  Paramecium  caudatum  uses  electrical  excitability  as  a 

steering mechanism. When it bumps into an obstacle, a voltage change 

occurs and its cilia movement changes for a short duration; as a result, 

the organism changes its direction (Miller, 2009).

At  the genetic  level,  investigations of  the  Amphimedon queenslandica  

(sponge)  genome points to a set of genes that are used in precursory 

neurons of more complex animals for differentiation.  According to this 

body of research, this neurogenetic circuitry was ancient enough to be 

used  by  urmetazoans  that  are  the  first  multi-cellular  animals  except 

sponges  (Richards et al.,  2008). Moreover,  it  is well  known that some 

sponges  are  able  to  generate  action  potential  (Leys  et  al.,  1999). 

Therefore, sponges seem to have many of the necessary tools for the 

evolution of neurons and the first primitive nervous system.

Another candidate proposed by some researchers is Ctenephores (comb 

jellyfish) which are considered as one of the first metazoans and they 

have a rudimentary net-like nervous system. However, genome analysis 

shows that the evolution of the nervous system of bilaterians (all higher 

animals)  went  in  parallel  with  them  (Schierwater  &  Kamm,  2010). 

7



Nonetheless, simplicity of their neurons and their nervous system may 

highlight certain features that may also exist in more complex organisms.

 2.1.3 Origin and Evolution of Eyes

From the evolutionary perspective, any organ with the ability to detect 

the direction of light can be considered as some form of eye such as  an 

imaging eye, a  protoeye or an  eye spot (Lamb et al., 2009). There are 

also more strict  definitions in the literature which requires eyes to be 

able to form an image, no matter how crude (Gregory, 2008).

Today, living animals have at least eight different types of eyes that can 

form an image. An animal may have either chambered or compound eyes 

that can use shadows, refraction or reflection for the formation of image 

(Gregory, 2008). What are the origins and mechanisms for the evolution 

of such diversity? To answer this question, one needs to first investigate 

the origins.

  At the cellular level

First, photopigments bearing certain similarities to rhodopsin may have 

been evolved since they can be used by various single-celled organisms 

for  purposes  such  as better  harvesting  light  for  photosynthesis  and a 

better chance of finding mates or food. Research on phototaxis (which 

enables  an  organism  to  move  towards  the  direction  of  light  in  three 

dimensions)  confirms that this  had indeed happened in eukaryotes  at 

least eight times separately (Jékely, 2009). 

 At the multi-cellular level

Rather  than  creating  novel  solutions  on  the  spot,  gradual  changes  in 

cellular specialization, and therefore, a 'division of labor' among different 

cell types is a more plausible scenario to explain the origin and evolution 

of the eyes. According to a recent research study, such a scenario may 

require  a  single  multi-functional  cell  type  that  had  the  ability  of 

phototaxis (Arendt  et  al.,  2009).  An  ancient  cell  type  that  had  cilia 
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movement, shading pigments and photopigments probably accumulated 

an initial  toolbox of genetic  information for the development of multi-

cellular visual organization. Such a multi-functional cell may have been 

then evolved into several specialized cell types such as shading pigment  

cells,  photoreceptor cells or  ciliated locomotor cells.  This idea predicts 

that certain vestigial features may still exist especially in larvae of certain 

animals.  Supporting evidence for this prediction is illustrated in Figure 

2.1  which  shows  multi-functional  cells  found  in  Amphimedon 

(demosponge) and Tripedalia (box jelly) larvae respectively.  These cells 

can function as locomotor ciliated cells (LCC), photoreceptor cells (PRC) 

and shading pigment cells (SPC) (Arendt et al., 2009).  

The compactness of the initial cell types and consequently the idea of an 

initial generic behavior for all cell types can be critical and will be used in 

the evolutionary/computational model (see chapter 6). 

 Figure 2.1. Multi-functional LCC/PRC/SPC cells

(a) Amphimedon (demosponge) larvae having only cilia (b) Tripedalia (box jelly) 

larvae having cilia and microvilli (mv)

(Arendt et al., 2009, p.2810)
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 2.2 Linear Evolution

Sensory evolution requires a simple starting point. That is, through the 

evolutionary  history,  addition  of  'sensory  tasks' on  top  of  a  primitive 

starting point is necessary  (Nilsson, 2009). At first, ambient luminance 

may have been used to modify simple responses according to sea depth, 

time of the day etc.;  then single purpose primitive sensory units  with 

peripheral  filtering may  have  been  relevant  for  a  simple  processing 

circuitry or an effector organ. Only later, as the filtering and/or processing 

circuitry  co-evolved  with  the  sensory  organ,  responding  to  a  larger 

variety of certain aspects of sensory input may have been possible. 

 2.2.1 Visual Acuity

As the evolution of the eyes continued, resolution of the visual input may 

have been a critical factor for predatory behavior, mate and/or predator 

recognition etc. For increased spatial resolution, narrower angles for each 

receptor cell may have been necessary. This may have been achieved by 

pigment-cup  eyes  at  the  cost  of  having  less  number  of  photons  per 

photoreceptor. Although having membrane stacking may have increased 

the sensitivity to a small degree via increasing photoreceptive membrane 

area, focusing optics may have been the next necessary step to establish 

better sensitivity to low luminance and a high degree of spatial resolution 

(Nilsson,  2009).  Overall,  specialization  of  fundamental  tasks  in  eye 

evolution may have  followed below steps:

• Non-directional photoreception,

• Directional scanning photoreception, 

• Membrane stacking (sensitivity to light),

• Spatial vision with low resolution,

• Focusing optics (higher sensitivity to light),

• Spatial vision with high resolution. 
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Visual  acuity is probably a more stringent evolutionary constraint than 

one may expect, since the gradual refinement of the spatial resolution 

have certain computational implications. For example, evolution of better 

spatial  resolution probably required more efficient mechanisms for the 

filtering  and/or  transformation  of  the  visual  stimuli.  This  and  other 

computational  implications  of  the  evolution  of  visual  acuity  will  be 

discussed further in chapter 5.

 2.2.2 Earliest Vertebrates

Hagfish is a jawless vertebrate that survived for hundreds of millions of 

years  without  much  change  (Bardack,  1991).  Hagfish  eyes  are  fairly 

primitive since they lack cornea, iris  and lens. Moreover its retina has 

only  two  layers  instead  of  three,  lacking  bipolar  and  amacrine  cells, 

consequently photoreceptor cells connecting directly to the ganglion cells 

(Lamb et al., 2007). Instead of a cornea, its eyes are completely buried 

under a translucent patch of skin (Lamb, 2011). 

Hagfish eyes may have been degenerated from a simple form of camera 

type eye. However, they seem to be still useful in their diminished form, 

since  their  eyes  were  maintained  for  millions  of  years  without further 

decay. One theory is that hagfish eyes are used to  modulate circadian 

rhythm (24 hour rhythm of bodily functions such as sleep etc) like the 

pineal gland in most vertebrate brain (Lamb, 2011). In fact, development 

of vertebrate eyes display a phase where the retina has only two layers, 

lacking bipolar cells,  and photoreceptor cells  connecting ganglion cells 

directly.

Hagfish  eyes  which  are  only  used  for  detecting  luminance  (or  non-

directional  photoreception)  still  have advantages.  As  one may expect, 

nondirectional photoreception seems to be the simplest possible form of 

vision. This supports Nilsson's theory (see 2.2.1)  where he claims that 

specialization of fundamental tasks in the eye starts with non-directional 

photoreception (2009). After contrasting with Arendt and his colleagues 

research which was already discussed in section 2.1.3, one may conclude 
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that the earliest  task of specialized 'eyes' consisting of specialized cells 

that  had  lost  their  multi-functional  properties  was  measuring  ambient 

luminance (2009).

As the next step, for example a simple sensor effector circuit that could 

only  be  triggered  by  a  specific  form  of  stimuli  may  have  been  later 

evolved into a more multi-purpose system as the nervous system itself 

evolved into an elaborate structure which can process rather complex 

aspects  of  stimuli  (Nilsson,  2009).  This  requires  cellular  level 

specialization.  A supporting evidence for cellular level  specialization in 

the vertebrate retina is based on rhabdomeric photorecepter cells, which 

are  considered  as  the  precursory  cell  that  evolved  into  the  retinal 

ganglion, amacrine and horizontal cells in the vertebrate retina (Arendt, 

2003). Also rod cells are considered to be evolved from cones (Collin et 

al., 2009). Moreover, bipolar cells seem to be derived from rod/cone cells, 

explaining  the  close  resemblance  between  bipolar  cells  and  rod/cone 

cells (Lamb, 2011). 

Overall, evolution of vertebrate eyes required cellular specialization and 

an increase in the number of layers in the retina. This idea may be critical  

for achieving a more sophisticated structure through the evolution1. 

 2.3 Tree Thinking

Linear evolution models of eye can be further refined when combined 

with  the  concept  of  'tree  thinking' (Plachetzki  &  Oakley,  2007).  The 

rationale  is  that,  since  there  is  a common ancestor  for  most  species, 

there should be several mechanisms to generate the observed diversity 

across  species.  Hybridization  of  ideas  from  linear  evolution  and  tree 

thinking  may  bring  a  better  explanation  to  the  evolution  of  complex 

organs.

1Although the implemented evolutionary/developmental computer model (which 
will be discussed in chapter 6) is not a reverse engineering of retinal circuitry of 
the visual system, it supports cellular specialization as well as different number 
of layers.
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 2.3.1 Duplication, Divergence and Co-option

Proposed  mechanisms  by  Plachetzki  and  his  colleagues  (2007)  are 

duplication, diversification and co-option. 'Duplication' applies not only to 

gen(om)e  level  duplications  such  as  segmental  duplication,  whole 

genome duplication  etc.  but  to  any  level  such  as  cell,  organ,  protein 

domain,  groups  of  interactive  proteins  etc.  duplication.  Similarly, 

diversification and co-option also apply to these levels. 

To  exemplify  duplication  and divergence,  any  serial  homolog  such  as 

segments,  limbs,  teeth  and  eyes  are  considered  diverging  duplicates 

(Minelli,  2000).  Duplications  create  redundancies  which  can  freely  be 

modified while the original copy can still maintain its tasks without any 

dramatic change or disadvantage, allowing gradual specialization. 

In  addition  to  duplication  and divergence,  there  is  another  prominent 

mechanism  called  co-option.  Co-option  is  in  essence  an  indirect 

evolutionary  mechanism,  which  is  also  known as  exaptation  (Gregory, 

2008).  Exaptation  recruits already  existing  resources  to  solve  a 

seemingly irrelevant problem. (Assembling several of such resources to 

create a novel functionality is called a collage). An example to exaptation 

is that, due to changes in certain transcription factors,  cells  of certain 

types  may  be  expressed  in  normally  irrelevant  positions  (ectopy). 

Recruitment of these cells for the creation of a novel functionality would 

be exaptation at the cellular level. 

 2.3.2 Scaffolding

Scaffolding explains how organs having seemingly irreducible complexity 

can evolve. An architectural  analog to scaffolding is given by Dawkins 

(1986, p. 149):

An arch of stones...is a stable structure capable of standing for 

many years even if  there is no cement  to bind it.  Building a 

complex  structure  by  evolution  is  like  trying  to  build  a 

mortarless arch if you are allowed to touch only one stone at a 

time. Think about the task naively, and it can’t be done. The 
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arch  will  stand  once  the  last  stone  is  in  place,  but  the 

intermediate stages are unstable.  It’s  quite easy to  build  the 

arch, however, if you are allowed to subtract stones as well as 

add them. Start by building a solid heap of stones, then build 

the arch resting on top of this solid foundation. Then, when the 

arch is all  in position, including the vital  keystone at the top, 

carefully remove the supporting stones and, with a modicum of 

luck, the arch will remain standing.

A summary of the proposed mechanisms which explain the evolution of 

complex  organs  is  given  in  Figure  2.2  below.  Stage  (J)  represents  a 

seemingly irreducible complex organ in which all parts must be present 

to maintain functionality. At one step earlier there is (I) which actually 

has  more  components  than  (J).  One  component  of  (I)  becomes 

unnecessary  and  lost,  leaving  behind  an  irreducibly  complex  organ 

(scaffolding). At an earlier step (H) is constructed via assembling (G) with 

(F)  (collage).  (G)  has  duplicated parts.  (F)  modifies the components  it 

inherited from (E) for a better  performance. (C) recruits (D) to achieve a 

new/better functionality creating (E) (co-option). (C) is again a refinement 

of (B) which is created by two irrelevant components in (A).

 Figure 2.2. How to evolve a complex organ

(Gregory, 2008, p.365)
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 2.4 Summary and Discussion

The  investigation  of  visual  system  from  the  evolutionary  perspective, 

highlighted several  critical  biological  properties.  Three  of  them,  which 

deserve reader's  further attention will be discussed and summarized in 

this section.  

Firstly,  the mechanisms  that  explain  the evolution  of  complex  organs 

(discussed in 2.3) may as well explain how a neural circuitry that requires 

fast  learning  and/or  optimization  of  a  certain  task,  may have  been 

evolved.  Within  the  context  of  this  thesis,  referred  neural  circuitry 

corresponds to an efficient filtering and/or transformation mechanism for 

the visual stimuli, which should require a relatively short learning and/or 

optimization period. This entails that, there should be some mechanisms 

to organize certain properties of the circuit before birth. 

An important evidence for this phenomenon is the observation that the 

development of 'receptive field mosaics of retinal ganglion cells' (which 

provides  uniform  sampling  for  the  visual  space)  does  not  depend  on 

external  stimuli  (Anishchenko et  al.,  2010).  Therefore  receptive  field 

mosaics of retinal ganglion cells already matures before birth. 

One regulation mechanism in prenatal retina is 'waves of activity' which 

synchronizes retinal  ganglion cells  and their  target  cells.  Results  from 

related  experiments  indicate  various  signaling  cascades  which  are 

controlled by several genes  (Blankenship et al., 2011, Torborg & Feller, 

2005).  However,  environmental  factors  can  also  play  decisive  roles 

especially  in  critical  periods  (exemplifying  experience  expectant 

development). For example, postnatal visual circuit development has eye 

specific  characteristics,  since  experience  dependent pruning and axon 

refinement creates eye specific circuitry, which mostly requires external 

input (Huberman, 2007). 

Also, to speculate from an evolutionary perspective, evolution of a purely 

genetic control  mechanism  that  is  responsible  from  a  pre-optimized 

circuit which can consistently  segregate/integrate input from both eyes 
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would  be  harder  than  evolution  of  a  hybrid  mechanism  which  partly 

depends on genes but can also take advantage of the consistency within 

the external stimuli. Thus, self organization of neural circuitry for visual 

system not only requires predetermined local rules which are modulated 

by genes,  but also environmental inputs which have  intrinsic properties 

that can be exploited. 

Secondly, animals share a common urbilaterian ancestor and a common 

genetic  toolbox  for  a  primitive  nervous  system  (Wirmer  et  al.,  2012). 

These  common  genes  used  by  both  vertebrates  and  insects  in  the 

development and later functions of the nervous system. Pallium or cortex 

in vertebrates and mushroom bodies in insects have therefore a single 

evolutionary origin. It is obviously necessary to have novel proteins and 

genes to explain the extent of genetic diversity, however, it seems that 

diversity  of  phenotype  is  achieved  via  more  subtle  ways  than  simply 

adding one novelty after another.  A relevant idea is that novelties are 

more in the form of new combinations of the common genes and timing 

of their expression in development. This may be because of the nature of 

a primitive system which gradually increase its complexity to gain new 

benefits  while  mostly  keeping  the  previous  advantageous  structures 

(since there are no jumps in evolution). Therefore novelties depend on 

and build upon the ancient toolbox. This is why, in general, ancient genes 

have more than one functionality. They are refined, well-tested and used 

more commonly. In other words they are reusable.

Lastly, evolution of temporal and spatial visual acuity and acquisition of a 

more precise visual input have some information theoretic implications. 

These are closely related to the evolution of a multiresolution scheme 

which will be discussed in sections 5.2 and 5.3.

Overall, a subset of the key points highlighted in this chapter were:

• principles necessary for the evolution of complex organs,

• a body of evidence implicating an urbilaterian ancestor that had 

a  relatively  sophisticated  nervous  system  and  idea  of 

reusability,
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• evolutionary  constraints  on visual  acuity  and the information 

theoretic constraints on the processing/filtering circuitry.

This  points  have  certain  computational  implications  and  they  will  be 

discussed in chapter 5.
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CHAPTER 3

 3 Developmental Perspective

 3.1 Development of Nervous System

Neural  development in humans starts  from the third gestational  week 

and  arguably  continues  for  a  lifetime  (Stiles  &  Jernigan,  2010).  The 

developmental process is a complex harmony of both environmental and 

genetic factors, both of which have critical roles in the resulting neural 

circuitry  via triggering of events or regulation between and within the 

developmental 'time windows', which are illustrated below in Figure 3.1. 

Timing of events can be critical from the start, since early events trigger 

later cascades of events (i.e. regulation of cell  metabolism affects cell 

cycles,  cell  cycles  affect  cell  proliferation,  cell  proliferation  affects 

migration and morphogenesis,  migration and morphogenesis affect the 

development of the whole nervous system).

It is also crucial to see that some components of the genetic toolbox that 

are first used in the early stage of development later adopt new roles in 

specific contexts. Morphogens (which are discussed in subsection 3.1.2) 

are  examples  of  this  phenomenon,  as  they  first  function  as  guide 

molecules  for  migration,  then  pattern  formation  and  cell  fate.  Later 
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however,  they  can  be  used  in  tasks  such  as  axon  guidance  and  the 

formation of neural circuitry.

 Figure 3.1. Developmental stages in human brain

(Andersen, 2003, p.5)

 3.1.1 Early Stages

Neural development starts soon after the gastrulation phase, in which a 

single layer of germ cells in the shape of a hollow sphere which is called 

blastula,  folds  inwards  and  transforms  into  a  three  layered  structure 

namely gastrula. After the formation of  notochord, the earliest phase of 

neural development which is called neurulation begins.

 Neurulation

Notochord can secrete several growth factors and also inhibitors which 

prevent  the induction of  an epidermial  fate.  Therefore,  adjacent  germ 
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cells in the ectoderm layer become neural progenitor cells and form the 

neural plate (Stiles & Jernigan, 2010). Neural plate first becomes neural  

groove, then by folding upon itself, transforms into neural tube, which is 

considered the 'primordium of the entire central nervous system' (Greene 

& Copp, 2009). The period in which separation of neuronal cells from the 

ectoderm and morphosis of neural plate into the neural tube occurs is 

called neurulation and the developmental stage is called neurula.

The regulatory role of notochord remains essential throughout the neural 

tube  formation  and involves  complex  cascades  of  molecular  signaling 

which  control  cell  behavior and  pattern  formation (Stiles  &  Jernigan, 

2010). Transcriptional  networks and  biochemical  gradients play critical 

roles when controlling cell  behavior.  Recently,  researchers have found 

another  factor  which  is  called  transmembrane  voltage  gradients  or 

V(mem). It turns out endogenous bioelectrical gradients can also play the 

role of an epigenetic regulator (Levin & Stevenson, 2012). 

 3.1.2 Morphogens

In  a  developing  tissue,  several  signaling  molecules  (not  necessarily 

proteins)  are  secreted  for  the  regulation  of  neighboring  cell 

behavior/specialization; some of these molecules can diffuse and form a 

concentration gradient, creating a coordinate system, which enables cells 

to  assume  a  'regional  identity'2 (Mason,  2009).  These  molecules  are 

called morphogenes. 

Morphogenes  often  have  key  regulatory  roles.  For  example  they  are 

responsible from diversification of motor columns (Dasen & Jessell, 2009) 

and laminar structures as well as foliation and molecular organization of 

the cerebellum (Sillitoe & Joyner, 2007).

A relevant  example to morphogens is  called Sonic  hedgehog (Shh).  It 

plays  key  roles  in  many  aspects  of  vertebrate  development,  such  as 

dorso-ventral patterning of the developing neural tube and a direct effect 
2Since it  appears via  morphogens,  cells  can  assume a regional  identity,  the 
evolutionary/developmental  computer  model  (discussed in  chapter  6),  allows 
progenitor cells in separate layers to initially have different cell type ids (before 
differentiation).
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on axon guidance  (McMahon et al., 2003). Moreover, Shh affects retinal 

ganglion  cells.  It  turns  out  retinal  ganglion  axons  need  a  precise 

regulation of Shh. That is, too high or too low concentrations inside the 

retina can disrupt the centrally directed axons of retinal  ganglion cells 

(Kolpak et al., 2005). 

Another  example  is  Wnt,  a  family  of  secreted  proteins.  In  early 

development,  Wnt  can  counteract with  Shh  expression  on  the  dorsal 

region  of  the  developing  neural  tube   (Robertson  et  al.,  2004). 

Furthermore, Wnt proteins also have various effects on axons in different 

regions (Keeble et al., 2006, Lyuksyutova et al., 2003). In fact, Wnt and 

Shh  are  closely  related,  since  they  mostly  act  in  concert.  In late 

development, Shh and Wnt together can regulate neural circuit formation 

(Wilson & Stoeckli, 2012). 

In summary, morphogens can regulate various early processes such as 

cell proliferation, migration, cell fate and tissue patterning and they can 

play  key  roles  in  later  development  such  as  neural  circuit  formation 

(Petrie et al., 2009). 

 3.1.3 Cell Proliferation

Cell  proliferation or  reproduction begins with neural  tube closure.  Cell 

division always occurs at the inner surface of the neural tube (ventricular 

zone). Two types of cell  division is possible. In  symmetric cell  division, 

two  daughter  cells  remain  in  proliferative  state.  In  assymmetric  cell 

division, one daughter cell remains proliferative, the other migrates away 

from the  neural  tube.  Some  of  these  cells  become  neural  precursors 

(neuroblasts),  while  others  become  glial  precursors  or  glioblasts 

(Kriegstein  et  al.,  2006).  In  proliferation  phase,  one  mother  cell  can 

produce as much as ten thousand daughter cells (thousands per minute). 

 3.1.4 Cell Migration

Cell migration in vertebrates mostly uses molecular mechanisms which 

were  long  before  used  by  simpler  organisms  (Hatten,  2002).  This 
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complies  with the idea of  reusability in  evolution (described in 2.2.1), 

since there is no reason for a complex organism not to use an already 

well-tested toolbox of genes which control initial phases of development, 

even if this toolbox is inherited from much simpler organisms.

 Directionality

The migrating cells often have an asymmetric morphology which allows 

researchers to define a leading and a trailing edge (Petrie et al.,  2009). 

Therefore,  when  there  is  a  cue  for  migration  without  any  available 

directionality information (motogen), direction of the cell migration only 

depends on this intrinsic asymmetry (chemokinesis) (Stoker & Gherardi, 

1991). 

In cells having no intrinsic asymmetry, the movement is random (Petrie 

et  al.,  2009).  However,  when  there  are  external  signals  regulating 

directionality, (asymmetric cues such as external biochemical gradients), 

migration  of  the  cells  are  controlled  via  an  'internal  compass',  or  a 

steering  mechanism  that  can  make  use  of  these  external  cues 

(chemotaxis) (Arrieumerlou & Meyer, 2005). With combinations of several 

such  cues,  regulated  directionality  information  can  have  anterior-

posterior, dorso-ventral or radial characteristics (Hatten, 2002). 

 Neuronal cell migration 

Long  radial  glia  connect  inner  (ventricular  zone)  and  outer  surfaces 

(mantle  zone)  of  neural  tube.  On the surface  of  radial  glia,  there  are 

certain  cues  that  regulate  the  migration  of  cells  from  ventricular  to 

mantle zone (glial mediated migration).  Another mechanism of migration 

is also possible, where first an extension towards mantle zone is created 

and then cell  body follows (nucleokinesis  &  somal  migration).  Overall, 

neuronal cell migration has radial characteristics (Nadarajah et al., 2001). 
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 3.1.5 Development of Cortical Layers

Cortical layers develop inside out. That is, earliest neurons migrate to the 

deepest  cortical  layer.  With  next  waves  of  migrations  bypassing  the 

earlier  layers,  more  superficial  layers  successively  develop  (Stiles  & 

Jernigan, 2010). Note that migrating neurons have no axons or dendrites. 

Development of cortical layers is illustrated in Figure 3.2 in more detail.

 Figure 3.2.  Development of cortical layers

(a) As time passes, superficial layers develop, (b) Neurons first migrate from 

ventricular zone (VZ) and form preplate (PP), then the next wave of migrating 

neurons splits PP into marginal zone (MZ) and subplate (SP) which are transient 

brain structures. Mature brain does not have MZ,SP or VZ. Intermediate zone (IZ) 

becomes white matter layer (WM), Cajal-Retzius (CR) cells produce Reelin which 

is a cue for the migrating cells to stop. 

(Stiles & Jernigan, 2010, p.337)

23



 3.1.6 Cellular Differentiation

Cellular  differentiation  is  specialization  of  progenitor  cells  into  more 

specific cell types. It is closely related to proliferation. 

Research on progenitor cells shows that early in development they can 

produce any type of neurons.  However,  at  later  steps progenitor  cells 

generate only region specific cells and by the end of neurogenesis, they 

are 'lineally commited' to upper layer cells, supporting the idea of  fate 

restriction3 (Desai & McConnell, 2000).

Through the development, different morphogens and mitogens (triggers 

of mitosis) are produced; they can have prominent effects on cell cycle, 

proliferation and differentiation. Some of these are well known, common 

regulators  of  differentiation  (such  as  Notch,  Wnt,  FGF,  Shh)  and 

transcription factors  (such as Sox family,  Oct4 (Pou5f1)  and Myc)  and 

others are specific neurodevelopment transcriptional regulators (such as 

Hes,  Neurogenin,  Math  and  Mash1)  (Kaldis  &  Richardson,  2012).  For 

neural  development,  combinations  of  above  signals  and  certain 

epigenetic mechanisms control  cell  cycle parameters,  proliferation and 

differentiation.

 3.1.7 Axon Guidance

After  migrating neurons reach their  target region,  they develop axons 

and dendrites. Dendrites form dense arbors. Axons elongate and extend, 

growth cones at the tip of axons move towards their targets using cues 

such  as  attractive  and  repulsive  guidance  molecules  which  may  be 

diffusible or may require contact. There is a  fine grained resolution for 

the interaction of growth cones with cue expression; that is, there are 

'hot  spots  of  cue  expression' (Mason,  2009).  Moreover, transcription 

factors  regulate the  guidance  receptor and  cue expression.  Therefore 

same cue may be interpreted as either repulsive or attractive according 

3This idea and idea of regional identity described in section 3.1.2, are used in 
the  computer  model  (discussed  in  chapter  6)  as  layers  where  each  layer 
contains only a subset of overall cell types.
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to  the  receptor.  Some  of  the  well  known  guidance  cues  and  their 

receptors are given below:

Table 3.1.  Axon guidance molecules

Guidance Cue Secreted/Membrane Repel/Attract Receptors

Netrin + +,- DCC,UNC5

Sli + + Robo

Ephrin - +,- Eph,Ephrin

Semaphorin +,- + Plexin,Neuropillin

CAM - +,- CAM

Morphogens: 

BMP,Wnt,FGF 

and Hedgehog

+ ~,+,- Ryk,Frizzled

 + first is true, - second is true, ~ concentration specific

Also known are neurotransmitters like GABA, ECM (extra cellular matrix) 

molecules  such as laminin,  and  growth factors  like  NGF  (Bear  et  al., 

2006,  p.699). These neurotransmitters and growth factors are used for 

either  refinement  in  the  axon  navigation  or  stability  of  newly  made 

connections.

Also  note  that  researchers  believe  the  first  growing  axons  use 

surrounding cells as guides. However, later axons may not need to use 

surrounding  cells  at  all;  especially  if  they  are  forming  bundles,  they 

simply grow along with their mates (Mason, 2009). Moreover growth cone 

behavior may change in  mid-development according to the changes in 

receptor expression.

 3.1.8 Programmed Cell Death

As a natural phenomenon, at least fifty per cent of synaptic connections 

and a similar rate of neurons is eliminated in a systematical way in the 

developing brain (Stiles & Jernigan, 2010). In some regions, the rate is as 

high as seventy per cent (Rabinowicz et al., 1996). Neuronal loss mostly 
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occurs prenatally, while pruning of axons spans a larger timescale and it 

is  mostly  postnatal.  For  programmed  cell  death,  a  gene  regulated 

mechanism called  apoptosis which consists of a series of physiological 

events that describes an intrinsic suicide program is used.

Apoptosis can be triggered by various environmental factors as well as 

cell intrinsic ones. Likewise, apoptosis can also be prevented by several 

factors. For example, neurotrophic factors protect the cell from apoptosis. 

These  factors  are  mostly  produced  by  target  neurons.  A  'successful' 

afferent neuron is granted neurotrophic factors at synaptic sites which 

are used 'effectively'  (Huang & Reichardt,  2001). Therefore, there is a 

high  stake  competition between  neurons  to  establish  effective 

connections since survival  of the neurons is  directly influenced by the 

amount  of  neurotrophic  factors4.  Cells  which  are  solely  used  for 

'construction' or cells  that have  transient roles in development can be 

eliminated  via  apoptosis  after  they  have  fulfilled  their  tasks. 

Consequently,  apoptosis  rate  is  also  high in  neural  progenitors  (de  la 

Rosa & de Pablo, 2000).

 3.1.9 Synaptic Elimination/Pruning

Developing  neurons  make  extremely  abundant  amounts  of  synaptic 

connections.  Although  this  may  provide  an  initial  advantage  for  the 

development of  robust  and  malleable  circuits  in  prenatal  and  early 

postnatal  periods,  at  later  phases  in  development,  a  more  precise 

circuitry  is  favored.  Therefore  initial  number  of  synapses  in  an  infant 

brain, which has double the number of synapses compared to an adult 

brain, slowly declines with childhood and adolescence (Stiles & Jernigan, 

2010). 

Similar to the  transient cells, which have a scaffolding role in prenatal 

development, transient connections are observed in infants. For example, 

pathways  having  such  a  role  are  observed  between/within  corpus 

callosum,  thalamocortical  pathways,  cortico-spinal  tract,  as  well  as 

4This  idea  was  used  in  the  evolutionary/developmental  computer  model 
discussed in chapter 6.
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temporal  lobe and limbic system (Stiles & Jernigan,  2010,  Innocenti  & 

Price, 2005).

Pruning  and  neurotrophic  factors  are  closely  related.  For  example, 

competition between synaptic connections for neurotrophic factors is a 

prominent  mechanism for  pruning.  This  also  puts  the role  of  external 

stimuli  in  the  picture  since  afferent  input  may  be  critical  to  stabilize 

certain pathways. 

At  the  microscale,  researchers  show  that  there  is  a  highly  balanced 

dynamism at work. For example, rapid sampling, synapse formation and 

retraction  are  supporting  mechanisms  for  axon  guidance  and  target 

detection (Hua & Smith, 2004). 

 3.2 Development of the Visual System

How does the visual system achieve a well organized circuitry? The same 

principles for the development of nervous system apply. How does the 

visual  system further  refine the circuitry  and achieve  more  precision? 

Answering this  question  requires  one to look into the development  of 

retina and then investigate the roles of prenatal development (internal 

stimuli) and postnatal development (external stimuli).

 3.2.1 Development of Retina

Retina has at least seven major cell types (rod, cone, amacrine, bipolar, 

horizontal,  ganglion and Müller  glial  cells)  and production of  each cell 

type in right ratios requires a regulation at the proliferation stage (with 

the  exception  of  ganglion  cells  whose  number  is  regulated  via 

programmed cell death). 

After progenitor cells produce these cell types, migration into a correct 

location is the next necessary step. Migration into three distinct layers of 

retina occurs mostly as somal migrations (see 3.1.4). Meanwhile, before 

ganglion cells reach to their final positions, their axons already develop 

and  extend  across  the  inner  retinal  surface  (Reese,  2011).  After 
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postmitotic  cells  position  themselves  into  their  destinations,  their 

anchoring radial connections are lost (Ford & Feller, 2012). 

Next,  axon and dendrite growth occurs and inner plexiform layer (IPL, 

connection site of retinal ganglion, amacrine and bipolar cells) and outer 

plexiform layer (OPL, connection site of rod and cones, bipolar cells and 

horizontal  cells)  in  retina develops  (Morgan et al.,  2011).  First,  retinal 

ganglion cells and amacrine cells form the earliest functional circuits in 

IPL.  Then,  horizontal  cells  and  photoreceptors  connect  to  each  other, 

forming OPL. 

At  this stage,  there are  transient connections between photoreceptors 

and  ganglion  cells.  Therefore,  early  in  development,  retina  has  a 

primitive form (probably reminiscent of an earlier ancestor) having two 

layers instead of three. Only later, bipolar cells (as mentioned earlier in 

2.2.2) are created and they migrate between IPL and OPL. Then axons of 

bipolar cells connect to IPL and dendrites connect to OPL detaching the 

two layers  and causing  the ganglion cells  to  lose  the  transient  direct 

connections  to  photoreceptors  (Lamb,  2011).  In  the  final  step, 

synchronization  between  and  within  layers  (lateral  and  vertical 

organization) and synaptic elimination occurs.

 3.3 Development of Thalamocortical Pathway

The  thalamocortical  (TC)  pathway transmits  sensorimotor  information 

(retina,  cochlea,  muscle  or  skin)  to  neocortex  via  the  thalamus.  It 

develops starting from the later part of the second trimester in humans 

till  26th  gestational  week  (Kostović   et  al.,  2006).  The  subplate  layer 

(which is  a  transient  structure  observed in prenatal  development,  see 

3.1.5), has a role in the construction of the TC pathway. Initially TC axons 

connect to the subplate layer and the subplate layer axons connect to the 

real  targets of TC axons in cortical  layer 4 (which is the primary input 

layer). With the help of subplate neurons, normal patterns of TS pathway 

develop.  Only  after  around  four  weeks,  the  TC  pathway  becomes 
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complete  and  subplate  neurons  start  to  gradually  remove  their 

connections and eventually die (Stiles & Jernigan, 2010).

 3.3.1 The Role of Prenatal Activity

Researchers show that prenatal retina already develops similar 'receptive 

field mosaics'  to adults;  that is,  receptive field center  distribution and 

receptive  field  overlap  distribution  of  ganglion  cells  are  already  fairly 

developed  before  birth (Anishchenko et  al.,  2010).  One explanation is 

that in the  prenatal retina,  there are spontaneous patterned waves of 

activity.  Such activity  may effectively  refine connections in an orderly 

way to represent maps of sensory space (Torborg & Feller, 2005). It was 

already  observed  decades  ago  that  prenatal  retinal  ganglion  cells 

activate (almost once per minute) in a periodical manner (Galli & Maffei, 

1988). It turns out, the activation of ganglion cell can propagate from one 

cell  to the next like a wave.  This  phenomenon is  observed in various 

forms such as

• embryonic waves (which use gap junctions or electrical synapses),

• cholinergic waves (which use chemical synaptic transmission), 

• glutamatergic waves (observed mostly in postnatal development, 

use of glutamate in synaptic transmission; also unlike the first two, 

waves observed within only a subset of neighboring cells (mostly 

OFF cells)).

Above  mechanisms  may  contribute  to  the  development  of  dendritic 

maturation of ganglion cells which will become 'committed to' one of ON-

OFF  layers  (only  responding  to  either  onset  or  cessation  of  light 

respectively)  which are physically segregated from each other  (Ford & 

Feller,  2012). This is called ganglion cell  stratification. In fact,  there is 

supporting evidence that  cholinergic waves have a role in ganglion cell 

stratification  (Bansal et al., 2000). However, cell  stratification does not 

explain how receptive field mosaics develop before birth.
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Another possibility is that instead of retinal waves, receptive field mosaic 

formation may be primarily determined by the formation of  anatomical  

mosaics5 (Anishchenko et al., 2010). A proposed theory is that anatomical 

mosaic  formation  can  be  achieved  via  type-specific  neighboring  cell 

interactions (Fuerst et al., 2008). Live imaging studies support this view 

since repulsive interaction between the same cell types are observed. For 

example most retinal ganglion dendrites avoid the dendrites of the same 

type (Lohmann et al., 2001). 

Overall,  the  prenatal  development of the retina seems to rely on both 

retinal  waves  and  construction  rules which  intrinsically  enable  the 

creation of anatomical mosaics and stratification.

 3.3.2 The Role of External Stimuli

From  the  beginning  of  prenatal  period  till  opening  of  eyes,  several 

refinements are already made and consequently some characteristics of 

visual  circuitry  are  already  in  mature  form  (McLaughlin  et  al.,  2005, 

Chapman,  et  al.,  1996).  However,  although  connections  are  well 

patterned  and  some  have  even  matured,  there  are  still  connections 

which are mostly malleable. 

Light sensitivity and visual acuity increases with postnatal adjustments 

and/or  refinements  to  certain  characteristic  of  some  cell  types,  for 

example the receptive field properties of neurons in the visual system. 

Therefore external stimuli become critical on the maturation process of 

visual circuitry. While axon guidance cues, some signaling cascades and 

certain regulatory molecules still  have roles on postnatal development, 

spontaneous neural activity becomes most prominent for the maturation 

of receptive field structures for neurons in various hierarchical levels. 

These receptive fields together define a circuitry for feature maps such 

as retinotopic maps (Huberman et al., 2008). A well balanced and mostly 

segregated  eye  specific  circuitry  also  develops  with  external  stimuli 

5The  idea  of  anatomical  mosaics  is  used  in  the  evolutionary/developmental 
computer model (see chapter 6).
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(ocular  dominance  columns and  eye-specific layers).  Spontaneous 

activity (retinal waves) and external stimuli in critical periods allow the 

visual  circuitry  to  achieve  more  precise  connections  and  an  overall 

refinement. Certain molecules quicken this process by translating activity 

into structural changes (Stevens et al., 2007). 

While the effects of external stimuli can be critical for the development of 

certain  characteristics,  as  mentioned earlier,  not everything is  activity 

dependent. Layer formation, overall map layout and retinal map mosaics 

(subbsection  3.2.3)  are  stereotyped  features  which  are  effectively 

controlled by genes and they mostly do not require external stimuli.

 3.4 Summary and Discussion

The investigation of visual system from the developmental perspective, 

highlighted  several  critical  biological  properties.  Some of  them,  which 

deserve reader's  further attention will be summarized and discussed in 

this section.

Firstly, it is evident that genes have strong control on the development of 

nervous system (see Morphogens under 3.1.2). Therefore, cellular (self) 

organization  strictly  depends  on  genes.  However,  this  does  not 

necessarily mean that the process of neural developmental is a strictly 

deterministic one. On the contrary, development per se may have certain 

chaotic characteristics, especially due to epigenetic factors. For example, 

no identical twins have the exact same fingerprint, nor have the exact 

brain structure. That is, regarding both fingerprints and brain structures, 

identical twins can have different 'folds' (gyri&sulci). Yet, the chance that 

they  have  the  same fingerprint  'type'  (used  in  pattern  recognition)  is 

much  higher  (0.7440)  than  non-identical  twins  (0.3215)  (Tao  et  al., 

2012). Likewise, similarity between brain scans of identical twins is much 

more significant, when compared to non-identical twins (Thompson et al., 

2001, Pell et al., 2010).

Secondly,  regarding the evolution of complex 'organs' and evolutionary 

constraints, (see 2.3), events in the developmental trajectory may build 
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upon each other and changing the genetic toolbox that controls  early 

events may become harder and harder while an organism evolves and 

becomes  more  complex.  For  example,  proliferating  cells  use  aerobic 

glycosis (2 ATPs), rather than using oxidative phosphorylation (36 ATPs) 

to generate energy (Warburg effect). The answer to the question, why 

they use this inefficient mechanism even with abundant oxygen, lies in 

the fact that proliferating cell  growth machinery  needs a high ATP/ADP 

ratio  and  certain  'metabolic requirements that  extend  beyond  ATP' 

(Vander et al.,  2009).  To speculate from evolutionary perspective, one 

prediction would be that proliferating cells still  depend on a machinery 

that was 'invented' long before oxidative phosphorylation. 

Thirdly, the  similarity  between  axon  guidance  and  cell  migration 

(discussed  in  3.1.4)  is  hard  to  miss.  It  is  highly  plausible  that  cell 

migration contributed to the evolution of axon guidance. A relevant work 

which compares the underlying signal  transduction pathways of neural 

growth cones with migrating cell  types (dictyostelium, neutrophils  and 

fibroblasts) supports this idea. It turns out that axon growth shares some 

“conserved mechanisms such as localized PI3  kinase/PIP3 signaling and 

a common output, the regulation of the cytoskeleton by Rho GTPases” 

(Philipsborn et al., 2007). From the evolutionary perspective, this may be 

a relevant example for exaptation (recruitment and usage of an earlier 

functionality in a different context which was discussed in 2.3.1).  Also 

from the developmental perspective, a prediction is that transmembrane 

voltage gradients (which are epigenetic factors that function similar to 

morphogens,  discussed  in  3.1.1)  may  have  a  role  in  axon  guidance, 

probably as a cue that provides local  information (spatio-temporal)  on 

neuronal activity.

As  a conclusion,  controlled  yet  chaotic  characteristics  of  development 

and  reusable  nature  of  genes  deserve  further  attention  and  their 

computational implications will be discussed in chapter 5.
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CHAPTER 4

 4 Conceptual/Computational Perspective

Since  the  extensive  research  of  Hubel  and  Wiesel  on  receptive  field 

properties of the cells in the primary visual cortex of various animals, the 

visual  system  drew  the  attention  of  a  progressively  more  number  of 

researchers from various disciplines  (Hubel  & Wiesel,  1962). The term 

receptive field which was first used in the early studies of retina, now has 

a more general meaning (Martinez et al., 2003). If a stimulus on a  spatial 

(and temporal) region can change the behavior of a cell (not only  retinal 

cells but also cells of higher levels, as well as cells of different sensory 

modalities  such as the sense of touch);  then the region is  considered 

within the receptive field of the cell.

Ideas  of  Hubel  and  Wiesel  rightfully  dominated  the  field  for  decades 

because  of  the  systematic  nature  of  their  work  and  the  resulting 

hierarchical model. Therefore this chapter will start with a review of the 

traditional  perspective.  Then,  mathematical  models  which  mostly 

incorporate  traditional  ideas  will  be  given.  Finally,  at  the  end  of  the 

chapter, recent contributions and a comparison between the traditional 

and the modern view will be made.
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 4.1 Comparison of Models

There are  three well  known frameworks  that contribute to the overall  

view of how the visual system works. Hierarchical model will be discussed 

first.

 4.1.1 Hierarchical Model

Mathematical  models  are  heavily  affected  from  the  traditional 

hierarchical understanding of visual system. Thus, the hierarchical model 

of Hubel & Wiesel will be discussed first (Figure 4.1). 

 Figure 4.1. Simple and Complex cells in Hubel & Wiesel's model

(Martinez & Alonso, 2003, pp.317-331)

Hubel  &  Wiesel's  idea  was  that  receptive  fields  of  simple  cells  were 

resulted  from  the  center-surround  receptive  fields  of  aligned  lateral 

34



geniculate nucleus (LGN) cells. Complex cells which were considered at 

the top of the hierarchy (layer 2 and 3), received only input from simple 

cells with similar orientation selectivity from layer 4. 

According to Hubel & Wiesel,  simple cells  had common characteristics 

such as: 

1. they were subdivided into distinct  excitatory and inhibitory 
regions 

2.  there  was  summation  within  the  separate  excitatory  and 
inhibitory parts 

3.  there  was  antagonism  between  excitatory  and  inhibitory 
regions 

4. it was possible to predict responses to stationary or moving 
spots  of  various  shapes  from  a  map  of  the  excitatory  and 
inhibitory areas.  (Hubel & Wiesel, 1962, as cited in Martinez et 
al., 2003, p.318)

Complex  cells  had  not  been  classified  according  to  their  common 

characteristics (which were little), instead, they were the cells that did 

not fit above characteristics.  Later, quantitative methods (i.e. response 

modulation) were developed to make a better distinction between the 

two cell types (De Valois et al., 1982). 

In the hierarchical model, only simple cells received input from LGN cells 

and complex cells being at higher levels of the hierarchy were assumed 

to  have  no direct  connections  from LGN cells.  However,  later  studies 

suggested that this was not the case and there were direct connections 

(Martin et al., 1984).

Yet, some computational models supported Hubel & Wiesel's ideas. First, 

energy models arose.  Complex cells  were modeled as “square sum of 

simple  cells  with  similar  orientation  and  spatial  frequency  but  with 

phases that differed in 90 degrees”. (Ohzawa et al., 1990, Shams & von 

der Malsburg, 2002, as cited in Martinez et al., 2003). The energy models 

all assumed successive stages and therefore an underlying hierarchical 

model.
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 4.1.2 Parallel Model

Since  it  was  demonstrated  that  complex  cells  also  receive  input from 

LGN, some researchers suggested separate channels where complex and 

simple  cells  work  in  parallel  (Stone  et  al.,  1979).  They  argued  that 

nonlinearity  started  from retina  and complex  cells  did  not  need input 

from simple cells to achieve their nonlinear behavior. 

Parallel  model  was supported by some experiments in which complex 

cells were activated yet simple cells were not (Hammond et al., 1977). 

However, the idea that complex cells were completely independent from 

simple cells was also refuted by some researchers (i.e. Callaway, 2001). 

Computational models that supported the parallel model were suggesting 

that  LGN  input  with  overlapping  on  and  off  centers  could  create 

orientation  selectivity  with  insensitivity  to  phase  changes  (phase-

invariant orientation tuning) (Mel et al., 1998).

 4.1.3 Recurrent Model

Being  a  more  modern  approach,  advocates  of  the  recurrent  model 

pointed to the discovery that the number of synapses between cortical 

regions and cells were much larger than the number of synapses coming 

from LGN (Martinez et al., 2003, Ahmed et al., 1994, Martin, 2002). In the 

recurrent model, it was proposed that intracortical connections may play 

the role of an amplifier for the weak percentage of input (10%) coming 

from LGN (Peters et al., 1993). Therefore the idea that a modulation of 

linearity  by  mainly  cortical  components  is  plausible.  However,  as  the 

complexity of the model increases the amount of possible computational 

models with different perspectives also increases  (Somers et al., 1995, 

Martinez et al., 2003).

Overall,  above models  highlight  certain  properties  of  vision and these 

properties are not necessarily mutually exclusive (Martinez et al., 2003). 

Consequently,  a  more  generalized  model  that  takes  into  account 

processing  modes which  are  specific  to  task  types,  would  draw ideas 

from all three models.
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 4.2 Retina

Visual processing starts with the retina. There are several types of cells 

each mostly specialized on a single task. They function together in both 

parallel and hierarchical ways. For example there are cells specialized for 

color and detail as well as there are cells specialized for light sensitivity. 

Photoreceptors  which  are  called  rods  are  very  sensitive  to  light  and 

mostly  insensitive  to color.  Counter  intuitively,  photoreceptor  cells  are 

depolarized  in  the  dark  (Schnapf  et  al.,  1987).  This  means  that 

photoreceptors are excited in the dark and inhibited in the presence of 

light. 

When light levels become low, rods become active. Cones on the other 

hand, work best in daylight since they are less sensitive to light than rods 

and  more  sensitive  to  color.  In  fact,  this  specialization  of  cells  into 

opposite  tasks  is  observed  also  in  other  levels  of  the  retina  and 

throughout the visual system. However, the role of retina is not only to 

segregate the visual input into its constituents, but also to function as a 

filter, reducing the redundancies within the stimuli.  Photoreceptor cells 

(and some retinal ganglion cells) absorb the light and this initial signal is 

preprocessed via bipolar, horizontal and amacrine cells in a hierarchical 

way  before  it  reaches  most  of  the  retinal  ganglion  cells.  These  cells 

together construct the receptive fields of retinal ganglion cells. Receptive 

fields have certain mathematical properties and they can be studied with 

formal approaches. 

Although  in  reality,  there  are  more  than  twelve  retinal  ganglion  cell 

types, in the traditional view of the visual system, retinal ganglion cells 

are  divided  into  two  major  categories  according  to  their  size: 

magnocellular and parvocellular cells (Figure 4.2). Magnocellular (M) cells 

are large and insensitive to color, they also have large receptive fields 

and they can transmit information at a faster rate than parvocellular (P) 

cells. M cells can be further classified into two basic functional types. The 

first type, which is called on-center type, is inhibited if light falls on the 
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surround, and activated when light falls on the center. The second type is 

called off-center type and it acts in the exact opposite way. 

 Figure 4.2. Retinal ganglion center surround receptive field types

(Left) M cells have larger receptive fields. (Right) P cells have smaller receptive 

fields and they are color sensitive. (Top) Center-off surround-on receptive fields 

(Bottom) Center-on surround-off receptive fields.

P cells are the most common cell type in the retina. They are sensitive to 

color. They can have red-green or yellow-blue receptive fields. Red green 

types can be further divided into red-center green-surround  and green-

center  red-surround  subtypes.  Similarly  there  are  also  P  cells  having 

either  yellow-center  blue-surround  or  blue-center  yellow-surround 

receptive field.

Receptive field size closely depends on the position of the ganglion cell. 

For example some ganglion cells on the fovea region receive input from 

only one photoreceptor cell (only cones), while some on the peripheral 

regions  receive  input  from ten  thousands  of  photoreceptors.  This  has 

some computational implications which will be later discussed6.

6Since ganglion  receptive  fields  represent  band  pass  filters  (see subsections 
4.2.1 and 4.2.2 below) cells that have various receptive field sizes effectively 
allows sensitivity to various intervals of frequencies. This is relevant to the idea 
of  multifrequency  channels  and  the  multiresolution  scheme,  discussed  in 
sections 5.2 and 5.3 .
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 4.2.1 Mathematical Formulation

Receptive  field  of  the  retinal  ganglion  cells  generally  modeled  using 

difference  of  Gaussians  (this  resembles  Mexican  Hat  wavelets,  see 

subsection 5.2.1) 7:

O   ~ ωc exp [−k2
σ c

2
/2]−ωs exp [−k2

σ s
2
/2 ]  (Equation 4.1)

where output response O increases with k until a peak frequency kp, then 

decreases symmetrically (Zhaoping, 2012, p.21).

Since the output response is most sensitive to an interval (or a band) of 

frequencies, one can conclude that center-surround type receptive fields 

of retinal ganglion cells such as P and M cells, mostly behave like a band 

pass filter.

 4.2.2 Computational Properties

Center  surround receptive  fields,  regular  and precise  connections  and 

mosaic positioning of cells types have several computational advantages. 

Firstly, they result in band pass filters that reduce the redundancies and 

in effect compress the input data. This can also be predicted from the 

fact that the number of rod and cone cells are much higher (100x) than 

ganglion  cells    (Curcio  et  al.,  1990).  Secondly,  retina,  consisting  of 

several types of neurons, intrinsically has some nonlinear properties. This 

nonlinearity  results  in  high  degrees  of  decorrelation.  That  is,  high 

contrast images can be coded (and transmitted through the optic nerve 

fiber bottleneck) with higher efficiencies  (Pitkow et al., 2012). Thirdly in 

color vision, because wavelengths of red and green color are very close, 

ganglion cell types having red-center, green-surround receptive fields or 

cells  having  green-center,  red  surround  receptive  fields  enhance  the 

difference between them. In addition to this, receptive field mosaics, (a 

uniform  spatial arrangement of similar cell  types with similar receptive 

fields),  produce  a  uniform  sampling mechanism  of  visual  space 

(Anishchenko et al., 2010). Moreover, average response is kept mostly 

constant  in  natural  scenes,  independent  from  receptive  field  size  of 
7Derivation of the formula is given in the Appendix.
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ganglion cells  (Graham et al., 2006). Therefore, these points show that 

intrinsic nonlinearity and receptive field properties of various cell types in 

the retina, transform the input into a more “whitened” or flattened and 

balanced  form  through  decorrelation,  via  a  well  organized  work  from 

ganglion cells with different receptive field types.

There are also some trade-offs. For instance, retina is dominated by the 

rod type photoreceptors. Moreover, with increased distance from fovea, 

ganglion  cells  receive  input  from  more  and  more  rod  cells.  This 

effectively create larger receptive fields and higher sensitivity to light at 

the cost of higher precision. To achieve high resolution in a compensatory 

way,  cone  receptors  are  crowded  together  into  a  focused  area  called 

fovea. However,  this in turn makes it  necessary for the eyes to make 

saccadic  movements,  jump  from  one  spot  to  another  to  “bring  the 

objects  of  interests  to  the  fovea”  (Zhaoping,  2012, p.24)  Also,  unlike 

some invertebrates such as mollusks, all vertebrates have a blind spot 

because of the inverse order of layers where the optic nerve has to pass 

through retina  (Lamb, 2011). As a consequence, human visual  system 

uses spatial sampling to fill in the “blanks”.

 4.3 LGN and Primary Visual Cortex

Optic nerve, which is considered as an information bottleneck, carries the 

activation  information  of  retinal  ganglion  cells  to  lateral  geniculate 

neuclei (LGN) which is a subregion of thalamus. LGN cells then transmit 

the information to (mostly) primary visual cortex. LGN has several roles 

and in addition to connections from the retinal  ganglion cells,  its cells 

also receive  a high amount of  feedback from higher  visual  areas.  For 

now, only the feed forward connections and the role of LGN cells from the 

traditional perspective will be discussed. 

Primary  visual  cortex (V1)  is  the largest  area in the occipital  lobe (or 

visual  cortex).  Optic  radiations from  LGN  create  the  receptive  field 

structures of two major cell types called simple and complex cells (Hubel 

& Wiesel,  1962).  Simple  cells  generally  have excitatory  and inhibitory 

40



regions in their receptive fields. They are mostly classified as edge or bar 

detectors; they are also sensitive to orientation. Complex cells are more 

common than simple cells. Generally they have large receptive fields and 

they can respond to moving lines or edges in an orientation and direction 

specific  way.  However,  their  receptive  fields  in  general  are  harder  to 

model and have nonlinear characteristics (such as lack of sensitivity to 

small spatial shifts).

 4.3.1 Mathematical Formulation

At higher levels,  the transformation of the visual input results in more 

complex spatio-temporal receptive fields. Since the connection scheme is 

much  more  complex  than  the  retina,  receptive  field  models  are  not 

directly  derived  from  the  circuitry;  instead,  a  proposed  mathematical 

model  is  directly  compared  to  the  receptive  field  of  the  relevant  cell 

type(s) in the higher levels of the visual system, to see how much the 

mathematical  model  fits  the biological  data  (i.e.  Young & Lesperance, 

2001). Below, some of these mathematical models are discussed.

 Lateral Geniculate Nucleus (LGN)

Like  retinal  ganglion  cells,  LGN  cells  have  center-surround  receptive 

fields. LGN cells in layers 1 and 2 resemble magnocellular cells and in 

layers  3  to  6  they  resemble  parvocellular  cells.  Since  they  bear 

similarities  to  retinal  ganglion  cells,  their  spatial  filters8 are  mostly 

modeled as a difference of Gaussians as in Equation 4.1. However, there 

are also models where LGN cells are assumed to have small orientation 

biases that later can lead to a “sharpening” of orientation selectivity in 

visual  cortex  (Kuhlmann  & Vidyasagar,  2011).  Kuhlmann  et  al.  model 

their spatial filter as below

K xy(x , y)=A exp [
x2

ch
2 +

y2

cv
2 ]−B exp [

x2

sh
2 +

y 2

sv
2 ]  (Equation 4.2)

8Spatio-temporal filters are often called kernel functions. See Appendix for more 
information.
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where the constants A, B and ch, cv and sh,sv are used to define horizontal, 

vertical  and  center  characteristics  of  inner  and  outer  Gaussians.  To 

introduce  an  orientation  bias  in  a  generic  way,  the  modeler  can  first 

define a Kxy with a vertically or horizontally biased anisotropic center and 

then  rotate it (Kuhlmann et al., 2011).

Unlike retinal  ganglion cells,  LGN cells  also act  like transient filters  in 

time  (Teich & Qian, 2006).  That is, in a sense, they compute the first 

order temporal derivative of the visual stimuli9. Temporal filter Kt for LGN 

cells şs defined as

K t (t)=
t

τ
2 exp(

−t
τ )cos(ωt t +ϕ)  (Equation 4.3)

where  τ  is  response  time  constant  (or  “the  duration  of  the  temporal 

envelope”),  ωt is  the  temporal  frequency  for  the  sinusoidal  term  to 

generate excitatory or inhibitory responses, and  φ is the temporal phase 

(Kuhlmann et al., 2011, Teich et al., 2006).

Overall,  assuming an input stimulus S(x,y,t), the response of LGN cells 

OLGN can be formulated as the spatio-temporal convolutions of S with the 

space-time separable  K (x , y , t)=K t( t) K xy (x , y )  as below  (Teich & Qian, 

2006).

OLGN=S (x , y ,t )∗K t(t )∗K xy( x , y )  (Equation 4.4)

Above formulation can be used in feed forward linear models. However, 

in reality, the circuitry in LGN is more complex. For example, there are 

koniocelluler cells (which do not have center surround receptive field) in 

addition to magnocellular and parvocellular cells  (Saalmann & Kastner, 

2009). Moreover  there are  nonlinear components due to the feedback 

form visual cortex as well as nonlinearity directly from retina. Therefore 

in a more realistic model, one may need to take into account feedback 

and nonlinearity.

9Some may  also  define  LGN receptive  field  as  Laplacian  of  a  Gaussian  (for 
spatial domain) multiplied by the first order time derivative of a Gaussian.
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 Primary Visual Cortex

Primary  visual  cortex  has  several  computational  properties.  It  has 

different cell types with different mathematical properties, as well as a 

well  organized connection scheme which results in retinotopic  map as 

discussed below.

 Retinotopic Map

In the primary visual cortex, number of neurons is much higher (100x) 

than the ganglion cells in the retina (Zhaoping, 2012). Yet, neighborhood 

information within the image is mostly preserved in V1 and also V2, V3 

and V4, even though the visual input is filtered and preprocessed during 

its transformation to the cortical  surface. That is, from retina to visual 

cortex,  activity  within  close  by  regions  still  maintains  a  spatial 

relationship (Wu et al., 2012). However, similar to the increased number 

of  ganglion cells  and photoreceptors  in  fovea,  the number  of  neurons 

dedicated  to  central  vision  is  proportionally  high  in  the  visual  cortex 

(around half of the total number of neurons in visual cortex). There is also 

distortion in the angles. Thus, spatial relationship is not straightforward10. 

 Simple and Complex Cells

Primary  visual  cortex  contains  several  types of  cells  which  are  in  the 

traditional model simplified into two general types: complex and simple 

cells.  Below,  some  mathematical  models  for  both  cell  types  are 

discussed.

Simple Cells

Simple cells in the early visual system have receptive fields that can be 

classified as Gaussian derivatives (Young & Lesperance, 2001). Gaussian 

derivatives  in  general  also  act  like  band  pass filters.  Moreover  they 

closely resemble to Gabor functions (where a sinusoidal is multiplied with 

a  Gaussian  function).  In  fact,  the  limiting  case  for  the  higher  order 

derivatives of a Gaussian leads to a Gabor function. It appears, in certain 

10See the Appendix for mathematical formulation.
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cases,  Gaussian  derivatives  fit  to  experimental  data  even  better  than 

Gabor  functions  (Young et  al.,  2001).  Thus,  for  simple  cells,  Gaussian 

Derivative (GD) spatio-temporal model will be discussed.

If a Gaussian basis function g0 is defined as,

g0( x)=e−x2
/2  (Equation 4.5)

then derivatives of g0 which are 

gn( x)=
dn

dx n g0(x )  for n=1,2,3... (Equation 4.6)

can be used in the representation of a receptive field. To exemplify, for a 

single  dimension,  a  receptive  field  can  be  modeled  using  Gaussian 

derivatives such as 

g1(x )=−x g0(x )  (Equation 4.7)

g2(x )=(x2
−1) g0(x )  (Equation 4.8)

g3( x)=−(x3
−3x) g0( x)  (Equation 4.9)

g4 (x)=(x4
−6x2

+3)g0(x ) (Equation 4.10)

where n is 1,2,3 and 4. As one may observe, the derivative of a Gaussian 

is simply a multiplication with a polynomial of the same degree (i.e. 4th 

derivative means multiplication of basis with a polynomial with degree 4). 

Therefore, instead of a multiplication with a sinusoidal as in the case of 

Gabor functions, GD spatio-temporal model uses a polynomial. 

The generic formula for the real GD basis function is

Gn , o , p(x ' , y ' ,t ' )=gn(x ')go( y ' ) gp( t ' )  for n,o,p = 0,1,2,... (Equation 4.11) 

the multiplication of three one-dimensional Gaussian derivatives, where 

x',y',t' are normalized coordinate axes and n,o,p are order of derivative 

for the coordinate axes respectively. 

A simplified version of the above formula that still fits the experimental 

data is also given 

Gn , p(x ' , y ' , t ')=gn(x ')g0( y ' )g p( t ' )  for n=0,1,2,3,4, p=0,1 (Equation 4.12)
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where o is no longer necessary (Young et al., 2001).

A discrete version of the above model, which is biologically more relevant 

is  called  Difference  of  Offset-Gaussians  (DOOG)  (Young et  al.,  2001). 

Since  a  derivative  is  the  limit  of  the  difference  approaching  zero, 

derivatives for the one dimensional case are

g1(x )=g0(x+h)−g0(x−h)  (Equation 4.13)

g2(x )=g0(x+2h )−2g0(x )+g( x−2h )  (Equation 4.14)

g3( x)=g0(x+3h )−3g0( x+h)+3g0(x−h)−g (x−3h )  (Equation 4.15)

g3( x)=g0(x+4h)−4g0( x+2h)+6g0(x )−4g (x−2h)+g( x−4h)  (Equation 4.16)

where h goes to zero. The above weights correspond to a Pascal triangle 

  1  

 1    -1

   1    -2      1

    1     -3      3     -1

    1      -4     6     -4      1

They can be predicted by a “function of distance” from the middle of a 

random  normal  distribution  (Young et  al.,  2001).  The  signs  are 

interpreted  as  a  mixing  of  inhibitory  and  excitatory  inputs.  It  is 

biologically plausible that Gaussian-like connections are constructed by a 

connection  scheme  in  which  the  probability  of  connections  decreases 

with distance, also reducing the wiring cost11. Moreover, because gn can 

be constructed by gn-1 and gn-1 can be constructed by gn-2 and so on, they 

may  also  offer  a  biologically  plausible  model  for  the  sequential 

processing of the visual input.

Even though GD spatio-temporal  model  and its discrete version DOOG 

explain some biological phenomena, they are linear models and they fail 

to  explain  nonlinear  events.  Especially  for  complex  cells,  GD  model 

11This idea (Gaussian like connection scheme that depends on distance) is used 
in the computer model discussed in chapter 6.
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requires nonlinear components. Therefore, below, a nonlinear model for 

complex cells which is inspired from GD model is given.

Complex Cells

Complex  cells  are  not  as  well  understood  as  simple  cells.  While  their 

temporal  response  is  similar  to  simple  cells,  they lack  a well  defined 

spatial  receptive field.  Below is  a  simplified formulation,  based on GD 

model with a nonlinear characteristic12

C (x ,θ)=max t∣S (x )∗G1(x+ω t ,θ)∣,  where  ∣t∣≤p  (4.17)

where, x denotes a spatial vector (x,y)T. S(x) is the original visual input 

and G1 is  the Gaussian kernel13 rotated by the angle  θ for orientation 

selectivity.  After the rotation by angle θ, the model behaves as if there 

was a spatial axis where single cells are aligned. Note that as long as the 

shift magnitude |t| is smaller than p, response C will always return the 

maximum magnitude of the convolution of signal S and Gaussian kernel 

G1.  Thus, this model takes into account the insensitivities to the small  

spatial shifts observed in complex cells (Hansard & Horaud, 2011). 

Since  a  nonlinear  component  is  integrated,  potentially,  Hansard  and 

Horaud's model can describe the receptive field of complex cells better 

than linear models. Moreover, since their model is based on GD model 

and as discussed in the previous subsection, GD model and its discrete 

version  have  biologically  plausible  properties,  Hansard  and  Horaud's 

model  may also incorporate biologically plausible  properties.  However, 

their model seems to be still “in development”, since there are certain 

problems  such  as  p  being  too  general,  no  scaling  parameters  for 

receptive fields, usage of the basis of only the first order etc. (Hansard et 

al.,  2011).  Yet,  by  adding  nonlinearity  to  achieve  a  more  realistic 

behavior, this model proclaims an incoming of models in the near future 

where  complexity  is  embraced  for  the  sake  of  expressive  power  and 

biological plausibility.

12Here,  a  nonlinear  characteristic  is  achieved  via  conditional  behavior.  The 
output of the system is not always directly proportional to the input anymore.

13See the Appendix for more information on kernel functions.
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 4.3.2 Modern View

Gabor filter, DOOG and GD spatio-temporal models had a fair amount of 

success  in  explaining  the  early  vision.  These  models  and  traditional 

hierarchical  view of  visual  processing  are  closely  connected.  However 

these models generally show few cues on whether they are compatible 

with the modern view of the visual system. 

There  are  various  conceptual/computational  perspectives  which  are 

incorporated  into  modern  view  of  the  visual  system.  For  example, 

efficient coding perspective has an important role on the mathematical 

formulations  of  early  vision  (Pitkow & Meister,  2012).  Since  the  optic 

nerve  is  considered  as  an information  bottleneck,  the efficient  coding 

principle states that early vision must somehow maximally compress the 

visual  signal,  keeping  as  much  relevant  information  as  possible.  To 

achieve  that,  an  efficient  encoding  mechanism  would  remove  the 

redundancies and transform the signal  into a set of  uncorrelated data 

which can still  be used in a fairly efficient  reconstruction or  decoding 

phase. However this is not simply achieved via center-surround receptive 

fields of the retinal ganglion cells which was taken into account in the 

traditional  models;  Pitkow  and  Meister's  research  shows  that  efficient 

coding also  heavily  depends on the intrinsic  nonlinearity in  the retina 

which is largely ignored in the mathematical models. 

There is  also the more recent  V1 saliency map hypothesis (Zhaoping, 

2012). A  bottom  up  saliency  map  may  further  refine  the  information 

selectivity, also serving as a bottom up filtering mechanism for attention. 

This alternative perspective to early vision can explain the redundancies 

which may still be present in the transformed visual input. Saliency map 

hypothesis  also  takes  into  account  intra-cortical  interactions  and 

therefore it is a more modern view of the visual system (see The Modern 

View  below).  Priority  map  hypothesis builds  upon  the  saliency  map 

hypothesis.  It  states that  there is  always an attentional  priority  which 

behaves  as  a  dynamical  system  (Bisley,  2011).  Attentional  priority  is 

constructed dynamically by both bottom up (saliency map) and top down 
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drives  (task  goals,  personal  biases,  evaluation  of  importance  etc). 

According to this theory, the peak of attentional  priority map changes 

dynamically  according  to  the  eye  movements  (which  themselves  are 

controlled by the attentional peak on the priority map).

 A Comparison Between the Modern and Traditional View

In mammalian visual systems, there are at least twelve afferent channels 

(Masland et al., 2007, Rockhill et al., 2002). Reciprocal feedback between 

cortical  areas  as  well  as  cortical  and  thalamic  regions  is  common. 

Moreover  there  is  nonlinearity  even  at  the  retinal  ganglion  cell  level 

(Schwartz et al., 2011, Pitkow et al., 2012). Therefore, traditional models 

make  several  simplifications  when  assuming  a  homogeneous  sea  of 

ganglion  cell  types  having  only  canonical  concentric  center-surround 

receptive  fields  with  prominently  feed-forward  connections  and  linear 

behavior  (Martin  & Solomon, 2011). A summary of  the traditional  and 

modern view is illustrated below in  Figure 4.3.  The traditional  view is 

summarized in two main stages :

(A) Pathways:  retinal  ganglion  cells  (having  center-surround receptive 

fields) transmit information in parallel via (MC) magnocellular (movement 

and distance) and (PC) parvocellular (color and find detail) pathways to 

LGN. 

(B) Then  in  visual  cortex,  a  line  of  adjacent  LGN cells  having  center 

surround concentric receptive fields are used as feed forward inputs to a 

cortical  neuron  such  as  a  simple  or  a  complex  cell  to  detect  edge, 

orientation  and/or  movement;  finally  with  increasing  levels  of  feature 

selection,  (A)  visual  input  is  further  divided  into  where  (position)  and 

what (identity) pathways. In Figure 4.3, the modern view raises following 

criticisms to the traditional view:

(C) There are several parallel pathways or channels (more than a dozen), 

for  example  non-standard  cells  such  as  koniocellular  cells  (KC)  also 

contribute to the vision via KC layers in LGN, superior colliculus (SC) and 

lateral posterior-pulvinar complex (LP). 
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(D) Feedback  between cortical  regions  (cortico-cortical  pathways)  and 

from cortical  regions to LP, SC and LGN (cortico-thalamic pathways) is 

fairly common. In fact at least half of the input to thalamus comes from 

visual  cortex;  feedback  to  primary  visual  cortex  from  other  cortical 

regions is also common. The amount of retinal input to LGN is as low as 

ten per cent (Saalmann et al., 2009).

(E) Modern signal processing scheme in primary visual cortex takes into 

account  the role  of  feedback  and reciprocal  connections  between the 

neurons  processing  related  parts  of  information  within  the  spatio-

temporal  visual  stimuli.  Contrast  resolution  in  LGN  is  increased  via 

cortico-thalamic feedback. In general, recent evidence points to the role 

of  high  level perception  and  cognition  in  the  modulation  of  LGN 

(Saalmann et al., 2009).  

Overall, with recent findings, it is evident that traditional computational 

models  that  still  assume  a  simple  feed-forward  visual  system  require 

refinements  to  achieve  better  biological  plausibility.  Modern  view 

embraces  a  dynamical  model  with  a  lot  of  reciprocal  feedback  and 

parallel  channels.  Therefore,  parallel  channels  should  be  taken  into 

account.  For  example,  receptive  fields  of  retinal  ganglion  cells  is 

essentially  a  band  pass  filter.  Retinal  ganglion  cells  have  various 

receptive field sizes that depend on cell types and distance to the fovea. 

This allows selective sensitivity to various intervals of frequencies (i.e. 

multifrequency  channels).  Such  selective  sensitivity  is  important, 

because it is required when the visual system decomposes the stimulus 

into its  constituents.  This will  be discussed in more detail  in  the next 

chapter (see subsections 5.1 to 5.3).

For simple cell  types, Young et al.'s GD spatio-temporal  model  and its 

discrete version predict a hierarchy of cell types each having Gaussian 

like connection scheme that depends on distance (see subsection 4.3.1). 

Such a connection scheme also decreases the overall wiring cost, since 

long range connections are kept minimum. This idea is incorporated in 

the computer model discussed in chapter 6.
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 Figure 4.3. Recent additions to the traditional view

(A) and (B) depict the traditional view, (C), (D), (E) illustrate the contributions of 
modern view (Martin & Solomon, 2011, p.30).
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CHAPTER 5

 5 Synthesis

In the previous chapters, features of the visual system from evolutionary, 

developmental and computational perspectives were discussed. A subset 

of these explored features have underlying principles that are essential 

to  the  computational  model  developed  in  this  thesis  work.  These 

“distilled principles” (and relevant information) will be discussed in this 

chapter.

The first  principle is about controlling  entropy,  therefore precision and 

resolution.  This is closely related to the information theory. A biological 

system  that  has  multi-scale  resolution (also  possibly  multi-scale 

organization)  can  minimize  joint  entropy.  This  will  be  discussed  in 

sections 5.1 to 5.3.

The  second  principle  is  about  evolution  and  reusability.  A  biological 

system that has a component which is mathematically or computationally 

meaningful, can maximize reusability.  This will  be discussed in section 

5.4.

The third principle is about development and  edge of chaos.  Changing 

cell  cycle  in  early  development  can  have  chaotic results.  This  will  be 

discussed in section 5.5.
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 5.1 Precision and Joint Entropy

Transformation of visual signal can be investigated from the information 

theory perspective. Assuming orthogonal time and frequency domains14, 

it is a well established phenomenon that there is a duality between their 

precision  (Lewis  &  Mayer,  1929).  Increase  of  precision  in  one  domain 

results in uncertainty in the other domain, therefore they are inversely 

related. The relationship between two domains is given by Gabor as the 

joint entropy

∆ t ∆ f≥
1
2

 (5.1)

where  ∆t  and  ∆f  are  the  entropy  in  time  and  frequency  domain 

respectively  (Gabor, 1946 as cited in Silveira et al., 2008). This states 

that simultaneous increase in the precision of both frequency and time 

domain is impossible. 

Above inequality predicts an advantage of having receptive fields with 

variant  time/frequency  resolutions.  If  retinal  ganglion  cells  were  all 

identical,  they  would  reduce  the  uncertainty  (or  entropy)  in  only  one 

domain at the cost of losing all the precision in the other domain. Retina 

has more than a dozen channels that incorporate cell  types that have 

complementary roles. Moreover, receptive field size of each cell type can 

be variant.

Therefore,  this  brings  an  information  theoretic  explanation  to  the 

phenomena such as receptive fields of retinal  ganglion cells  narrowing 

down in fovea and spreading out in peripheral regions and also different 

retinal  ganglion  cell  types  having  different  spatial  resolution.  This  is 

necessary to take advantage of variant precision in time and frequency  

domains.  Moreover receptive field of ganglions are also almost optimal, 

since they are very similar to Gabor functions which have minimal joint 

entropy (see the next subsection).

14 In the traditional sense, time domain represents the domain  where the raw 
input or signal is. The raw input is can be a function of space (spatial input), or a 
function of time (temporal input). Frequency domain represents the domain of 
transformed signal. For example it can be temporal or spatial frequency domain.
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 5.1.1 Gabor functions

Gabor  functions  have  minimal  joint  entropy  in  time  and  frequency 

domains (5.1)  (Gabor, 1946). A Gabor function is in essence a harmonic 

oscillation multiplied by a Gaussian. General formula is given by 

ψ(t)=exp [−α2(t−t 0)
2]exp [2π i f 0( t−t0)+θ i ]  (5.2)

where  f0 controls  oscillation  frequency,  θ  is  phase,  α  and  t0 control 

sharpness and peak (Silveira et al.., 2008). 

Transformation  of  a  Gabor  function  between  reciprocal  domains 

(time&frequency)  using  Fourier  transform  gives  the  same  “analytical 

form” (Silveira, et al., 2008). Fourier transform of Gabor function is 

ϕ( f )=∫ ψ(t)e−2π ift dt  (5.3)

ϕ( f )=exp[−( π
α )

2

( f − f 0)
2
]exp[2π i( f 0−f )+θ i ]  (5.4)

Gabor functions can be used as basis  functions in  expansion of  other 

functions. Therefore any function can be represented by Gabor functions 

or Gabor “atoms”.

 5.1.2 P and M Receptive Fields

Receptive  field  of  Parvocellular  (P)  and  magnocellular  (M)  cells  “fit 

together”. They fit together (within the cell types) as each cell type can 

have either center-on or center-off receptive fields. It turns out this can 

be explained in terms of function expansions. That is, P and M cells may 

be operators of some form of mathematical expansion of visual input that 

uses Gabor atoms as basis functions (Silveira et al., 2008). 

Moreover,  their  receptive  fields  are  complementary  (between the  cell 

types).  While  M  cells  have  high  precision  in  1D  time  and  2D  spatial 

frequency domain, they have low resolution in 2D space domain and 1D 

temporal frequency domain. Conversely, while P cells have high precision 

on 2D space domain and 1D temporal frequency domain and they have 
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low  precision  on  the  reciprocal  domains15 (Silveira  et  al.,  2008).  High 

temporal and spatial resolution, as one may observe, cannot be achieved 

together.  This  also  explains  why  P  and  M  pathways  specialized  into 

parallel or multifrequency channels.

 5.2 Multiresolution Analysis and Wavelet Transform

Wavelet transform is defined by Mallat as the “decomposition into a set 

of frequency channels, having the same bandwidth on a logaritmic scale” 

(Mallat, 1989b, p.2091). (See the relation with early vision above in 5.1.2. 

and below in 5.3) 

With Fourier transform, a function (which essentially has perfect precision 

in the time domain) is transformed into another function that acquires 

perfect  precision  in  the  frequency  domain.  However,  it  loses  all  the 

precision  in  the  time  domain.  To  prevent  this,  short-time  Fourier 

transform  (STFT)  can  be  used.  A  time  window  of  constant  size  is 

necessary  to  achieve  locality  in  both  time  and  frequency  domains. 

However, adjusting the size of the time window should be done manually.

The  main  motivation  of  multiresolution  analysis  is  that,  natural  visual 

stimuli  consist  of  objects  having  different  sizes.  Large  objects  do  not 

require high resolution and small objects do not require low resolution. 

Since there is no  a priori information on the size of objects, with STFT, 

adjusting the time window according to each image is required for better 

performance. To prevent this, multifrequency channel decomposition is 

used, where time window is not constant but changing. This also achieves 

a  time-frequency  representation,  intrinsically  keeping  some  precision 

from  both  time  and  frequency  domains.  Below,  wavelets  and 

multiresolution analysis are described in more detail.

 

15Note that the traditional “time domain” (which has an entropy ∆t)  represents 
here 2D space and 1D time, while “frequency domain” (which has an entropy 
∆f) represents 2D spatial frequency and 1D temporal frequency.
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 Figure 5.1. Wavelets

(Left) Meyer Wavelet, (Right) Mexican Hat Wavelet

(From “Meyer Wavelet” by J.M. Loone, 2012, 

http://en.wikipedia.org/wiki/File:MeyerMathematica.svg. Copyright 2012 by Jon Mac Loone, 

From “Mexican Hat Wavelet” by  J.M. Loone,2012, 

http://en.wikipedia.org/wiki/File:MexicanHatMathematica.svg,Copyright 2012 by Jon Mac 

Loone. Reprinted with permission.)

 5.2.1 Wavelets

Wavelets are localized forms of waves which integrate to zero (Figure 

5.1).  They are  used in  areas  such as image compression,  i.e.   digital 

fingerprint  image  compression  by  FBI.  Also,  wavelet  decomposition  / 

thresholding / composition strategy on raw data can greatly improve the 

data quality, getting rid of the noise.

Wavelets  can  be  used  as  basis  functions  to  represent  any  function 

(similar to sines and cosines used as basis functions in Fourier analysis). 

“Mother  wavelet”s  can  be  dilated  and  shifted  (translated)  to  create 

specialized variants which can be derived from below.

ψ jk (x )=c ψ(2 j x−k)  (5.5)

These variants can create a basis for L2(R), where c is a constant, and L2 

is the Hilbert space of functions that have finite energy (functions that 

are  square integrable).  That is,  any square integrable function can be 

represented  by  the  linear  combinations  of  ψjk.  Simplest  and  oldest 

example of wavelets is called Haar wavelet (Block, Rogers & Ruck, 1994). 
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It  is  a  simple  step  function,  defined  between  [0,1].  Dilation  and 

translation operations are illustrated in Figure 5.2. 

 Figure 5.2. Haar wavelets

(Left) Mother Haar wavelet (Right) Scaled and shifted versions, their linear 

combinations can represent any square integrable function 

 5.2.2 DWT and Multiresolution Analysis

Discrete  wavelet  transform  (DWT)  and  multiresolution  analysis  (MRA) 

intrinsically  make  use  of  the  information  theoretic  ideas  described  in 

section 5.1. Unlike Fourier transform, wavelet transforms take advantage 

of  wavelet  functions  that  are  local  in  both  time  and  space  (Mallat, 

1989a).

Multiresolution  analysis,  which  unifies  the  earlier  methods  such  as 

“subband  coding”  and  “pyramidal  coding”,  analyzes  the  signal  in 

different resolutions.  This is achieved via  upsampling and  subsampling 

where the rate of sampling is increased or decreased by a factor of 2. 

Scale  of  the  signal  is  doubled  whenever  there  is  low pass  filter  (and 

subsampling)  and it  is  halved whenever  there  is  high pass  filter  (and 

upsampling). This is done in a hierarchical way, effectively dividing signal 
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into “multifrequency channels” and creating  an analysis of the signal 

consisting of several  components that have different precision in time 

and frequency domains (Mallat, 1989b).

As  the  first  step,  DWT  decomposes  the  signal  into  its  coarse  (low 

frequency)  and  detailed  (high  frequency)  components.  Then,  DWT 

recursively  repeats the  same  operation  on  the  high  frequency 

component. Each step of decomposition can be described as below:

X h[k ]=∑n
x [n]g [2k−n]  (5.7)

X l [k ]=∑n
x [n]h[2k−n]  (5.8)

where  Xh is  the  high  frequency  component  X l is  the  low  frequency 

component, filtered by g (high pass filter) and h (low pass filter). At each 

step, time resolution is halved and frequency resolution is doubled. 

 5.3 Early Visual Processing and Multiresolution Analysis

When  introducing  the  multiresolution  analysis  to  the  scientific 

community, Stephane Mallat and Yves Meyer were already aware of the 

fact  that  early  visual  processing  has  “multifrequency  channels”.  From 

Mallat's own words:

..[M]ultichannel  models  have  been  particularly  successful  in 

explaining some low-level processing in the visual cortex. The 

expansion  of  a  function  into  several  frequency  channels 

provides representation which is intermediate between a spatial 

and  a  Fourier  representation.  ...Biological  studies  of  human 

vision have always been a source of ideas for computer vision 

and  image  processing  research.  Indeed  the  human  visiual 

system  is  generally  considered  to  be  an  optimal  image 

processor. (Mallat, 1989b, p.2091)

Application  of  this  idea  which  was  inspired  from  biology,  to  image 

processing was a success. Their ideas were fairly well  received by the 

image processing community. In fact, most of their ideas later became 

part of the JPEG2000 standard (Unser & Blu, 2003).
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Multiresolution  scheme was also  used  in  image  compression  methods 

such as image pyramids. Image pyramid structure closely resembles  to 

human visual encoding. Pyramid algorithms use spatial orientations in a 

similar manner to the human visual system (Wandell, 1995). 

 5.3.1 Evolution and Multiresolution Scheme

A robust perception system requires a mechanism to analyze all relevant 

types of natural stimuli. How can this be achieved in a generic way? The 

answer is decomposition of the input into its “constituents”. In the case 

of  visual  processing,  creating  a  time-frequency  representation  of  the 

visual signal has evolutionary advantages for predatory behavior, mate 

detection, recognition of moving objects etc. How does the visual system 

decompose  the  signal  into  its  constituents?  Theoretically  this  can  be 

achieved via Fourier (uses pure frequency representation, no locality) or 

more  plausibly,  wavelet  analysis  (has  locality,  this  intrinsically  keeps 

some time representation as well). 

Note that the decomposition method may not be necessarily  universal 

among  animals;  the  only  necessity  is  a  generic  method  to  analyze 

aspects  of  natural  visual  stimuli  that  is  relevant  to  the  organism. 

However,  in  any  case,  this  brings  the  time-frequency  duality  into  the 

scene. That is, the more precision the organism acquires in perceiving 

the  stimuli  (time  representation),  the  less  precise  the  analytic 

representation of the stimuli (frequency representation) becomes.

 Evolution of Parallel Channels

Researchers  in  the  image  processing  community  (i.e.  Mallat  1989b, 

Wandell,  1995)  already  suspect  that  a  biological  correlate  to 

multiresolution  scheme  exist  in  the  visual  system.  Assuming  that  the 

most primitive visual system had identical ganglion types, why multiple 

channels  had  evolved?  Silveria  et  al.  (2008)  propose  an  information 

theoretical  reason  (namely  joint  entropy)  for  the  existence  of  multi-

frequency  channels  (P  and  M  pathways)  in  the  visual  system.  As 
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discussed above and in section 5.1, joint entropy prevents the evolution 

of a single visual pathway with identical cells that has both high time and 

high frequency resolution16. 

Evolution of an organism that has a single visual pathway specialized for 

temporal  resolution can be possible. However, high temporal  precision 

would  result  in  low  precision  in  the  domain  of  temporal  frequency, 

(therefore  ambiguous  temporal  “constituents“  to  analyze  the  signal). 

Evolution of an organism that is good at resolving the spatial details is 

also  possible,  yet  the  same problem appears,  this  time  in  the spatial 

frequency  domain.  Thus,  for  a  balanced  perception,  evolution  of 

complementary  parallel  channels  at  some  point  is  a  necessity. 

Meanwhile,  Gabor  function  like  receptive  fields  which  minimize  joint 

entropy  can  also  evolve;  however,  even  with  such  receptive  fields, 

without  parallel  channels  or  variant  receptive  field  size,  no  more 

improvements can be achieved.

A multiscale analyisis, or in a more generalized sense, a multiresolution 

scheme may provide a solution  to the problem stated above,  since  a 

multiresolution scheme would allow a balanced representation of  time 

and frequency domains. That is,  to acquire complementary information  

on  time-frequency  representation  that  has  variant  time/frequency  

precision  ratios  (or  to  work  around  the  joint  entropy  problem),  

emergence of a multiresolution scheme may have been necessary for  

the evolution of a robust visual  system.  Note that instead of the term 

multiresolution analysis, the term multiresolution scheme is used. This is 

because evolution can find various solutions to the same problem. The 

only requirement is to find a generic and balanced method to analyze the 

components of the signal relevant to the organism. This generic method 

may  have  nonlinearities.  However,  this  does  not  cause  a  problem 

because there are examples of nonlinear multiresolution schemes such 

as  nonlinear  pyramid  decomposition  (Goutsias  &  Heijmans,  2000). 

Therefore, there is no reason for some form of multiresolution scheme to 

16This  is  impossible because  they  represent  reciprocal  domains,  therefore  a 
transformation from one domain to another would result in precision loss.
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be not used in the visual system to generate variant precision ratios in 

the reciprocal domains. 

 Where and What Pathways

What if above idea17 also applies to higher levels in the visual cortex? 

One  speculation  would  be that  joint  entropy  principle  brings  an 

information theoretic explanation to where and what pathways. What and 

where  pathways  extract  “mostly”  independent  features  (where  =  a 

position in a map, object details is less precise, what = object details, 

object position is less precise) which can be considered as  features of 

different dimensions. It may also be the case that they also complement 

each other in the reciprocal domains . 

Supporting evidence for this claim may be found in the neuro-anatomical 

connections  suggesting  that  parvocellular  channel  mainly  feeds  the 

ventral stream which is the what pathway. However, this does not mean 

that  the  ventral  pathway is  a  continuation  of  P  channels.  Rather  this 

simply should be seen as an evidence for a  biased input that is more 

precise  in  one  domain.  The  “raw  input”  coming  to  what  pathway  is 

probably already analyzed and transformed, yet it is still highly plausible 

that there is a bias and certain orthogonal features have “highlighted” 

precision while other features have low precision. It is also possible that, 

input  to  the  where  pathway has  some of  the exact  opposite  features 

highlighted. Therefore they may have, to some extent, complementary 

roles, from the joint entropy perspective. 

Note  that  heavy connections  between  where  and what  pathways  and 

resulting complex interactions should also be taken into account (Keizer 

et al., 2008). However, this requires a detailed investigation of high level 

processes in brain, which is outside the scope of this thesis.

17As explained in the previous subsection, a multiresolution scheme in the visual 
system is suspected/predicted by the image processing community. Combining 
this with the work of Silveira et al. (2008) (i.e. P and M segregation and joint 
entropy), it becomes evident that multiresolution scheme may be relevant in 
the biological context as an evolutionary solution to robustly work around the 
joint entropy problem.
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 5.4 Evolution and Reusability 

A component  that  has  mathematical/computational/abstract  properties 

has a prominent advantage that can be summarized as reusability. The 

idea of reusability can be used to create a complex model from simple 

rules. A component in a model can be in essence, an abstraction of many 

possible  components.  (For  instance  a  component  that  can  become  of 

immediate use in new contexts) Similarly, it can also be a multi-purpose 

component  that already has several simultaneous roles. 

To give an example from the visual system, center surround receptive 

fields have  several usages such as filtering and removing redundancies 

and decorrelation of the input (subsection 4.2.2).  Receptive fields also 

resemble Gabor function, which has the property of minimal joint entropy 

discussed in section 5.1. Ganglion cell receptive fields have varying sizes 

and, in a sense, they are parameterized according to the distance from 

fovea.  Mosaic  receptive  field  structures  for  the  same  ganglion  types 

along the retina and uniform sampling of the visual input is also related, 

therefore  this  organization  requires  an  elaborate  organization  of 

“reusable  components”.  Multiresolution  scheme  also  intrinsically  has 

reusability (reuses the mother wavelet). Moreover, image blending task, 

which  visual  system  has  to  do  constantly,  can  be  achieved  via  a 

multiresolution scheme (Burt & Adelson, 1983, Wandell, 1995).

From  the  evolutionary  perspective,  since  the  advantages  of  reusable 

components are many, one may expect complex organisms to acquire 

several  reusable components. Moreover,  because evolution of complex 

organs requires mechanisms such as exaptation (section 2.3), having an 

“abstract”  component  that  can  be  used  in  several  contexts  would 

promote  the  increase  of  complexity  via  exaptation.  As  the  toolbox  of 

reusable  components  enlarges,  combinatorial  usage  would  be  more 

plausible. As discussed section in 2.4, novelties are indeed in the form of 

new combinatorial usages and small changes.

From the developmental perspective, specific combinations of reusable 

components translate to specialized or differentiated cell  behavior. For 
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example same genes can be used in both neurulation and then later in 

axon guidance (subsection 3.1.2). A more extensive research shows that 

“a surprisingly small number of signaling pathways are used reiteratively 

during neural development, eliciting very different responses depending 

on the cellular context”  (Kiecker & Lumsden, 2009).  In fact,  the more 

ancient  the  component,  the  better  tested  it  becomes,  and  many 

functionalities  depends  on  these  ancient  components.  Because  with 

evolution an increasing number of functionalities become dependent on 

reusable components, these components, as well as the systems that are 

build upon them, become harder to change with time. This may be a rule 

of thumb for any system that successively increase its complexity. This 

idea is  also  applicable  to  the circuitry  of  the brain,  evolution of  gene 

regulatory networks and even the construction of roads, power grids or 

the  development  of  the  Internet.  The  resulting  structure  has  often  a 

characteristic  form which  is  called  a  scale  free  network  as  illustrated 

below in Figure 5.3. 

 Figure 5.3. A gene regulatory network18 (model)

Hub like nodes describe high amount of reusability and control, while nodes with 

few connections describe highly context specific usage. (Fujita et al., 2007, p.41)

18Genes  are  hereditary  molecular  units  which  encode  cell  behavior,  cell 
differentiation and cell growth. Transcription, translation, RNA processing and 
epigenetic mechanisms regulate gene behavior. These mechanisms generally 
trigger or inhibit other mechanisms and the overall system can be represented 
as a  sparsely connected network, namely a  gene regulatory network. Such a 
network is responsible from complex cell behavior.
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 5.4.1 Scale Free and Small World Networks

A scale free network is characterized by that the number of connections 

display a power law distribution  (Barabasi & Albert, 1999). A scale free 

network  can  be  constructed  via  addition  of  new nodes  that  have  an 

increasing  connection  bias  towards  the  nodes  with  higher  number  of 

connections. The probability to connect a node i is given by:

Pconect (i)=
cki

∑ k j

  (5.9)

where ki is the number of connections node i has and c is a constant.

Another way to construct such networks is using a  fitness model. Each 

node has a fitness value and fitter nodes attract more nodes, while less 

fit nodes lose connections. Fitness values may vary from the start, thus 

the network topology may also change in a more dynamical way with the 

addition of each new node.

A critical property of scale free networks should be emphasized. Random 

node  deletion  generally  does  not  have  large  effects  on  the  topology 

(Barabasi  &  Albert,  1999).  This  explains  the  graceful  degradation 

phenomenon and the robustness of gene regulatory networks to random 

mutations. 

 Small World Network

Another relevant network type that is commonly observed is small world 

networks. A small world network has the property that any node can be 

linked together via a small number of steps. Minimal wiring becomes a 

constraint as the brain size increases, therefore brain circuitry has the 

small  world  property.  For  example,  laminar  structures  in  the  cortex 

minimizes connection lengths19. Moreover, brain has a network structure 

that can be defined as  clusters of clusters.  There are hub like regions 

which have a large number of incoming and outgoing connections as well  

as hub like neurons that connect to significantly more number of other 

19Advantages of a laminar structure to reduce wiring cost were explored in the 
computer model in the next chapter using evolutionary algorithms.
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pre-synaptic  and  post-synaptic  neurons.  Therefore  connections  in  the 

brain are organized into a hierarchy, “from the microscopic cellular level 

via  the  mesoscopic  level  of  local  neural  circuits  and  columns  to  the 

macroscopic level of nerve fiber projections between brain areas” (Zhou 

et  al.,  2006).  Overall,  brain  circuitry  achieves  scale  free  network  and 

small world network properties via laminar stratification and a topology 

that resembles a self repeating structure, a fractal. 

 5.4.2 Fractals and Iterated Function Systems

Fractals  can  be  generated  using  iterated  function  systems.  Iterated 

function  systems (IFS)  are  especially  relevant,  because  they are  local 

operators (on contractive maps) that transform a previous structure in a 

recursive way into a self symmetric structure, as illustrated below.

 Figure 5.4. Iterated function system

Applying an iterated function system to a simple initial structure results in a more 

elaborate self-similar structure called fractals. Above, well known fractals such as 

Gosper island, Koch snowflake, box fractal and Sierpinski triangle are illustrated.

(From “Fractal” by E. Weisstein, 2012, http://mathworld.wolfram.com/Fractal.html. 

Copyright 2012 by E. Weisstein. Reprinted with permission.)
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How is self similarity achieved in a developing organism? Theoretically a 

multi-agent  system  can  create  self  similarity  at both  behavioral  and 

structural  levels (Hoskins,  1995).  Therefore,  developmental  rules  and 

cellular  level  interactions  are  capable  of  leading  to  an  emergence  of 

functional/  behavioral  self  similarity.  Emergence  of  self  similarity  in  a 

multi-agent  system  is  relevant,  because  this  means  a  set  of 

local/developmental  rules can create  almost  any hierarchical  structure 

(i.e. a model of early visual system that uses multiresolution scheme, a 

network topology that displays a hierarchical organization similar to the 

brain, that is, a cluster of clusters).  Also note that, unlike traditional IFS, 

local/developmental rules can create more than fractals. Combination of 

local rules that are used in a cell, can even change via differentiation.

Overall, the idea of reusable local rules is plausible. Combinations of local 

rules can be used for creating hierarchies and self similar structures (and 

in theory self similar behavior as well). Simple developmental local rules 

and differentiation can lead to creation of complex systems.

 5.5 Development and Timing of Events

A disturbance in the timing of cell  cycles of progenitor cells  can have 

chaotic results. For example, according to Cecconi et al. (2007), a defect 

in  apoptosis  or cell  cycle  regulation of  a small  number of  cells  in  the 

neural  folds at  the early  stages of  development can later  affect  large 

territories of the neural tube. Another example is that cell sizes can be 

affected from metabolic inputs. If the metabolic input is not controlled, 

increased cell size can disrupt the timing of cell cycle, this in turn can 

change  the  rate  of  proliferation  and  at  the  later  phases  of  the 

development, this can be magnified into a large defect in the embryo. 

Therefore, small  changes in the initial  conditions, can later have large 

consequences.  However,  there  is  also  robustness  enough  to  produce 

“almost” the same phenotype from the same genotype (identical twins). 

Identical  twins  may  have  small  differences  in  their  brain  anatomy  or 

fingerprints (discussed in 3.5), yet they are proofs of high precision and 
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strong  control  of  development.  This  somewhat  chaotic  strong  control 

brings to the mind the notion called edge of chaos (Kauffman, 1993). 

 Strange Attractors

In a dynamical system, state changes or trajectories can be represented 

in phase space. If a system has nonlinearities, sometimes its phase space 

contains limit  cycles.  Limit  cycles can be stable  or unstable.  If  a limit 

cycle is stable, it is an attractor. That is, any neighboring trajectory will 

eventually  converge to it.  Therefore,  the dynamical  system eventually 

converges to a repetitive oscillatory behavior (Kauffman, 1993).

Strange attractors, on the other hand, are very different from stable limit 

cycles.  They  have  properties  that  make  them  relevant  for  the 

development  of  complex  organisms.  They  are  unstable  and  mostly 

chaotic.  Therefore,  two neighboring  trajectories  that  are  on a strange 

attractor generally diverge and get arbitrarily far apart (Kauffman, 1993). 

However,  obviously  they  cannot  escape  from  the  attractor.  Moreover 

strange  attractors  have  low  dimensionality  even  in  high  dimensional 

state spaces. Therefore, this is literally “chaos in a box”. 

 Figure 5.5. Lorenz attractor

(From “Lorenz attractor”, by S. Roberts, 2011, http://replicatedtypo.com/creative-cultural-

transmission-as-chaotic-sampling/3684.html. Copyright 2011 by S. Roberts,Reprinted with 

permission)
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Another critical idea from Kauffman is that since a dynamical system may 

have many parameters, by representing these parameters similarly in a 

parameter space, it is theoretically possible to describe developmental 

phenomena such as morphogenesis (Kauffman, 1993). This explains how 

large morphological differences can occur with small genetic differences 

(i.e.  high morphological  diversity between the species that are  closely 

related, such as species on the same family).

Overall,  as  Kauffman  (1993)  stated,  edge  of  chaos can  be  a 

diversification  mechanism for  the  development.  In  its  phase  space,  a 

gene regulatory network (which is essentially a dynamical system) can 

contain stable attractors. For example stable cell types and homeostatic 

mechanisms  may  correspond  to  stable  attractors.  There  can  also  be 

unstable attractors. For instance cellular differentiation mechanisms and 

morphogenesis  may  correspond  to  unstable  attractors.  Both  stable 

attractors  and  unstable  attractors  emerge  from the  interaction  of  the 

components  of  the  gene  regulatory  network.  Consequently,  this  can 

explain  the  curious  phenomenon:  “a  surprisingly  small  number  of 

signaling  pathways  are  used  reiteratively during  neural  development, 

eliciting  very  different  responses  depending  on  the  cellular  context” 

(Kiecker & Lumsden, 2009). This is because, simple interactions between 

a small number of (reusable) components have rich consequences.

 5.6 Summary and Discussion

The  investigation  of  visual  system  from  various  perspectives  in  the 

previous chapters revealed a core subset of evolutionary/developmental 

and conceptual/computational  features  that  have  underlying principles 

which  are  closely  relevant  to  information  theory,  network  theory  and 

dynamical systems theory.

In  the  sections  5.1-5.3,  the  restrictive  role  of  (joint)  entropy  on  the 

evolution  of  parallel  visual  pathways  and  its  relation  to  the 

multiresolution scheme were discussed. Also as a speculation, possible 

role  of  joint  entropy on the segregation  of  where  and what  pathways 
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were mentioned. This may stimulate more information theoretic research 

on  the  role  of  joint  entropy  as  an  evolutionary  constraint  for  the 

segregation of sensory pathways (and possibly higher brain regions).

In section 5.4, the idea that a developing/evolving complex system would 

need to successively build upon its simpler versions and the connection 

of  this  phenomenon to the idea of  reusability  were  discussed.  Having 

abstract  or  computationally  meaningful  components  may  be  an 

evolutionary  advantage  because  they  maximize  reusability.  Thus, 

computationally  meaningful  structures  may  be  more  common  in  the 

complex  organisms  than  one may  predict.  This  may  (partly)  bring an 

evolutionary  explanation  to  questions  such  as  why  does  the  visual 

system  have  highly  precise  structural  components  which  are  often 

associated with several computational characteristics. 

As a structural counterpart to the reusability idea, the emergent structure 

which  is  often  observed  in  the  developing  complex  systems,  namely 

scale  free  networks,  were  also  discussed.  Hub  like  nodes  (reusable 

components)  that  have  large  number  of  connections  among a  sea  of 

nodes with fewer connections have biological  equivalents in the brain. 

From the gene regulatory networks to the topology and interconnections 

within/between whole brain regions, it seems, scale free networks are at 

work. 

Robust  characteristics  of  scale  free networks  make them a prominent 

candidate for modeling approaches. For example, overall  topology of a 

scale free network is not heavily affected from random deletion of nodes, 

making them suitable for both gene regulatory networks which require 

robustness against mutations as well as neural networks which require 

graceful degradation where random deletion of synapses does not have a 

prominent effect to the overall network behavior/topology.  

In  addition  to  this,  small  world  networks  were  discussed.  With  the 

increase of brain size, wiring becomes much more costly.  Brain has a 

laminar structure and hub like regions/neurons to reduce the wiring cost 
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while maintaining the small world property where any node can be linked 

to any other node in a small number of steps.

In the last section (5.5),  a biological  property of developing organisms 

was  discussed.  Edge  of  chaos is  a  way  to  create  diversity  while  still 

tightly regulating a large subset of events from the level of cell cycles to 

the level of developmental time windows. Gene regulatory networks are 

dynamical systems and their phase space contains stable and unstable 

attractors.  Kauffman's  idea  was  that  stable  attractors  can  simply 

translate to the known cell types while unstable attractors can be used as 

the so called edge of chaos mechanism to create the required diversity, 

using only a small set of local interaction rules.
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CHAPTER 6

 6 An Evolutionary Developmental Model

In the previous chapters, several research directions were explored.  In 

this  chapter,  a  hybrid  computer  model  which  embodies  some  of  the 

principles derived from these research directions will be introduced. The 

model can combine the advantages of evolutionary and developmental 

principles to explore the effects of local rules on cellular differentiation, 

retinal mosaics, layered structures and network topology.

There are various types of relevant modeling lines that seek biological 

plausibility and focus on one of the areas such as spiking neurons, self 

organization,  gene  regulatory  networks  and  genetic  direct/indirect 

encoding methods for evolutionary computation. After a literature survey 

on  such  models,  the  evolutionary  developmental  computer  model 

designed and implemented by the author of this thesis will be introduced.

 6.1 Computer Models with Varying Perspectives

A  disparate  set  of  perspectives  and  corresponding  models  exist.  For 

example, NEURON focuses on the  realistic behavior of a single neuron 

(Hines  et  al.,  2007,  Hines  &  Carnevale,  2000).  NEURON  simulates 

intricate  anatomical  and  biophysical  characteristics  of  a  single  cell, 

aiming to answer high level research questions of neuroscience. A similar 
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toolkit is Genesis, again aiming a realistic simulation of neuron behavior 

(Bower et al., 2007). Both NEURON and Genesis are capable of simulating 

networks  of  large  sizes  when  running  on  a  parallel  computational 

architecture (i.e. a cluster) even though on a single computer they are 

aimed  to  simulate  small  networks.  Topographica,  on  the  other  hand, 

focuses  on  large  scale  structure  and  behavior of  networks  or 

“topographic  maps”,  introducing  the  idea  of  “neuronal  sheets”  as 

building  units  to  create  a  more  practical  model  (Bednar,  2009). 

Topographica can control  the level  of detail,  because potentially being 

compatible  with  NEURON and Genesis,  it  provides  an interface  where 

neuronal  sheets  can  be  extended  to  more  realistic  models.  NEURON 

made an enhancement to be able to efficiently simulate spiking neurons 

(Hines et al., 2007). Spiking neural networks (SNN) focus on time, rather 

than biophysical properties. Consequently, spiking behavior of a neuron 

depends  on  the  timing  of  incoming  spikes  which  decay  in  time.  To 

achieve  a  more  complex  behavior,  stochastic  components  are  usually 

added. Although none of the above models are intended for simulation of 

development and cellular differentiation, they allow high level  and low 

level configurations which could be used in a developmental model (at 

least in theory). 

There  is  a  recent  study  which  introduces  a  model  where  stochastic 

parameters in SNN are controlled with genes, affecting the overall spiking 

behavior  of  SNN  (Soltic  &  Kasabov,  2010).  The  focus  of  Soltic  and 

Kasabov's  study  is computational  neurogenetic  modeling where 

interaction between genes which control stochastic parameters in SNN, is 

simulated through time via gene regulatory networks. However, in this 

study, since genes only control the stochastic parameters, they have an 

“overall” effect on the spiking behavior of the whole network, rather than 

specific cell behavior.  Self organization can also be a point of focus. For 

instance, using temporal rules which are analogous to the spatial rules of 

Kohonen's self organizing map (SOM), self organization of SNNs can be 

achieved. However, the self organization behavior in Soltic et al.'s study 

is basic and it only affects the connection weights.
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Bottom up approaches  such  as  agent  based modeling  are  also  worth 

mentioning,  since  they  make  use  of  local  interactions.  For  example 

ABNNSim is suitable for research on self organizing topologies which can 

emerge from local rules. Even though neuron type diversity is ignored, it 

is demonstrated that extending the model for usage of spiking neuron 

instead  of  default  neuron  type  perceptron  is  rather  simple,  making 

ABNNSim a candidate for more detailed models. It is also noteworthy that 

ABNNSim  can  use  a  medium  for  chemical  signals  such  as  adrenalin 

(Schoenharl, 2005). 

More realistic developmental models also exist. For example, Zubler and 

his colleagues developed a simulation tool called CX3D, where physical 

interactions (depending on physical shape etc) between growing neurons 

and  developing  networks  are  taken  into  account  (Zubler  &  Douglas, 

2009).  Another  line  of  modeling  exemplified  by  Zubler  et  al.,  is  self 

organization and construction of state machine like rule networks which 

control cell behavior. This in turn allows their model to incorporate gene 

regulatory network like properties (Zubler et al., 2011).

In the artificial  life context,  hybrid models that combine evolution and 

development exist. For instance, Nolfi and Parisi's work (1995) focuses on 

evolving  neural  networks  that  develop  in  time  and  represent  an 

organism's nervous system. Their model translates genetic information 

into low level  parameters that describe position of neurons, branching 

angle,  synaptic  weight  etc.  The  developing  network  affects  the 

organism's  behavior.  Organisms  evolve  in  a  virtual  world  where  the 

fitness function is given by the number of collected “food elements”.

Kumar and Bentley's (2003) model, Evolutionary Developmental System 

(EDS),  focuses  on  multi-cellular  morphology.  Using  gene  regulatory 

networks, their model generates cells that can organize themselves into 

certain shapes such as a line, a plane, a cube or a sphere.  A similar but 

more  recent  model,  GReaNs  (Genetic  Regulatory  evolving  artificial 

Networks)  can  use  gene  duplications  to  achieve  higher  complexity 

(Joachimczak  &  Wrobel,  2012).  GReaNs  explicitly  focuses  on 

72



morphogenesis  where self  organization and differentiation of cells  into 

various  3D  patterns  occurs.  Although  these  models  allow  cellular 

differentiation and cell-cell interactions, they do not use neuron like cells 

or any connection scheme.

 6.2 An Evolutionary Developmental Computer Model

As  discussed  above,  highly  diverse  computer  models  exist  in  the 

literature.  Therefore as the first  step,  three basic  questions should be 

answered about the computer model developed in this study.  

 6.2.1 The ”What” Question

This model is not :

• a network of identical neurons or a neural network,

• a reverse engineering of visual system or retina,

• a simulation which mimics physical/chemical rules 

This is:

• a hybrid evolutionary and developmental computer model written 

in C++

• a model of a developing network or rather a 'tissue' of progenitor 

cell  types  that  later  differentiate  into  other  cell  types  such  as 

neurons20 according to neighborhood information

• a model that allows one to define and/or evolve local rules which 

are  described  in  the  DNA  where  these  rules  are  indirectly 

translated into a network topology via cellular interactions.

 6.2.2 The “Why” Question

This model incorporates ideas from both evolution and development. The 

design  principles  used  in  the  model  incorporates  their  combined 

20There is relevant information in the genotype, describing cell types that may 
or  may not  connect  to  other  cells  i.e.  glia  vs.  neurons,  however  the  model 
mostly focuses on the connection scheme and ignores activation behavior.
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strength. For example, in the developmental component, developmental 

parameters  are  configured  by  the  DNA  which  allows  an  evolutionary 

model to use or change this information. If the modeler has no idea on 

the developmental parameters, (s)he can simply give the requirements in 

the  form  of  a  set  of  objectives  (or  fitness  functions);  then  the 

developmental  parameters  will  be  searched  by  the  evolutionary 

component of the model.

This model can be used as a pure developmental model as well as a pure 

evolutionary  model.  Moreover  the  evolutionary  component  can  have 

either single or multiple objectives. In this thesis work, the model is used 

for  the purpose  of  finding and/or  configuring local  rules  that  describe 

cellular  level  interactions  (developmental  component)  as  well  as 

exploring  high  level  properties  such  as  lamination  and  wiring  cost 

(evolutionary  and  developmental  components).  Building  upon  the 

previous configurations is, as illustrated in the results section, fairly easy.

This model  contributes to the literature at least in two different ways. 

Firstly,  it  combines the advantages of  multi-objective optimization and 

differential  evolution  (with  modifications  such  as  whole  genome 

duplication,  dynamic  crossover  rate  etc.)  with  the  advantages  of 

developmental rules (regional identity, cellular differentiation, exclusion 

zones  etc.).  Since  the  design  of  the  model  is  inspired  from  the 

evolutionary  and  developmental  research  on  the  visual  system,  the 

model  has  biological  plausibility. Secondly,  the  model  introduces  a 

methodology to create/evolve  cell  types  that  can  have  highly  specific 

behavior  via  addition  of  restrictive  rules  to  the  genome.  This  allows 

simultaneous  existence  of  cell  types  that  have  different  degrees  of 

precision  in  their  connection  scheme21.  Therefore,  cell  types  are  not 

predefined and in theory, infinitely many number of cell  types  can be 

generated. As a result, using this model, one can create a network which 

incorporates various cell types that have certain characteristics similar to 

known biological structures  (such as retina). 

21Different degree of precision is also possible in other cellular interaction rules, 
however they are not explored in this thesis work.
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 6.2.3 The “How” Question

As the third step, “how questions” are answered, and the methodology is 

described. Even though the model primarily focuses on local interactions 

between cells, the design of the model is inspired from the evolutionary, 

developmental  and  computational  research  on  the  visual  system. 

Therefore, evolutionary and developmental components of the model use 

ideas such as division of labor, whole genome duplication, diversification 

and exaptation (chapter 2), cellular differentiation, exclusion zones and 

anatomical  mosaics  (chapter  3),  a  Gaussian  connection  scheme  that 

depends  on  distance,  reusability,  control  of  entropy  and  precision22 

(chapter 4 and 5). While these ideas are incorporated in the model, some 

of the explored ideas (i.e. the edge of chaos idea) are not used23. 

For the evolutionary component of the model, differential evolution and 

multi-objective  optimization  methods  were  used.  For  the  development 

component,  a  simple  initial  model  was  progressively  improved  via 

addition of  biologically  plausible  developmental  rules  such  as  regional 

identity,  new  cell  types  with  different  connection  aggressiveness, 

differentiation,  source-target  dependent connection scheme and finally 

cell popularity.

22Cell  specification  via  evolution  from  a  single  generic  cell  type  (i.e. 
heterogeneous  addition  of  restrictive  rules)  bears  resemblance  to  a 
multiresolution scheme.

23Not all discussed ideas are used in this model and an overall verbosity or an 
abundance of explored topics through the previous chapters was intentional for 
several reasons. Firstly, the author plans to extend the model. Therefore, some 
of the ideas such as edge of chaos will be incorporated in the model in the near 
future. Secondly,  an overall  exploration of  the multi-disciplinary literature by 
itself can be useful for other researchers. Finally, throughout the thesis, there 
were certain testable predictions conjectured by the author (i.e. proliferation 
still  depends  on  aerobic  glycosis  because  of  the  reusability  idea,  that  is, 
proliferation still depends on the regulatory role of some of the components that 
belonged to an ancient genetic toolbox that controlled aerobic glycosis, (see 
chapter 3 discussion section), or joint entropy idea as an evolutionary constraint 
for the emergence of a multiresolution like scheme in the visual system and 
possibly in higher levels of cortical organization (i.e. where and what pathways), 
see subsection 5.3.1). Although certain amount of verbosity was inevitable, this 
ideas may stimulate other research that is not necessarily relevant to modeling 
yet relevant to deep evolutionary, developmental and computational principles 
that affect and constrain not only the visual system but also cognition and the 
brain. 
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 Evolutionary Algorithms

Evolutionary  computation  finds  solutions  in  a  large  search  space  by 

simulating evolutionary aspects  such as reproduction,  competition and 

natural selection. It is a way of freeing the modeler from the burden of 

dubious  assumptions  (especially  if  little  is  known  about  the  optimal 

solution). Evolutionary computation is also useful when the modeler has 

more than one purpose and aims to explore the search space. For this 

reason  multi-objective  optimization  methods  can  be  combined  with 

evolutionary algorithms. The computer model implemented for this thesis 

work uses differential evolution and multi-objective optimization. 

 Differential Evolution

Differential evolution (DE) is a simple and popular evolutionary algorithm 

that uses difference between two individuals to evolve another individual. 

The genotype information is usually encoded as floating points. DE is self 

adaptive  since,  after  a  number  of  iterations,  the  differences  between 

individuals will diminish and the population will converge. 

In the implementation, DE  starts with a random population and randomly 

selects three vectors, denoting the genotype of three individuals, I1,I2  ,I3. 

For each dimension i , I4[i] is given by

I 4[ i ]=I 1+M (I 2[ i]−I 3[ i ])     if ρ<CR  (Equation 6.1)

I 4[ i ]=I 1[i ]                             if ρ≥CR  (Equation 6.2)

where M is the mutation scaling factor and CR is for controlling crossover 

rate. If the random variable p is smaller than the crossover parameter 

CR, then  I4[i] depends on the difference between the second and the 

third individuals as well as the scaling factor.

Modifications to DE

In the traditional version of differential evolution (DE/rand/1/bin24) CR and 

M are  fixed  (Kukkonen,  2012).  However,  in  this  model  CR is  updated 

24DE/rand/1/bin is the name of the default differential evolution algorithm used 
by DE community.
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according  to  the  acceptance  rate. Acceptance  rate  describes  whether 

recent individuals which were created via above method were fit enough.

Acceptance rate is a dynamical variable that changes after each decision. 

If  the  individual  is  accepted,  it  “jumps”,  if  the  successively  more 

individuals are rejected it decreases gradually, approaching to a minimal 

value. CR changes according to the acceptance rate, if the rate is low it 

increases,  if  the  acceptance  rate  is  high,  it  decreases  (similar  to  a 

homeostatic mechanism).

Another change in the traditional DE in this model is local search. When 

CR value becomes low, the probability of local search slightly increases. 

Therefore, if a new individual is accepted, acceptance rate jumps and CR 

rate  decreases  instantly.  This  allows a higher  chance  for  local  search 

around the newly found individual. However, after a short period of time, 

if no new individual is accepted, CR value and acceptance rate returns to 

the normal. Therefore Equation 6.2 was updated into

I 4[ i ]=I 1[i ]±σ        if ρlocal≤CR / K  (Equation 6.3)

Where  ơ is  a small  random value for local  search  around a randomly 

chosen individual I1 and K is a constant. Acceptance of an individual is 

generalized  into  more  than  one  fitness  function  using  multi-objective 

optimization as described in the next subsection.

 Multi-objective Optimization

In the computer model, a simple version of multi-objective optimization 

method was used for the purpose of finding a set of solutions that is close 

to pareto-optimal  or close to the pareto front.  A pareto-optimal  set of 

solutions  contains  all  solutions  that  represent  “best  possible 

compromises” between different objectives (Kukkonen, 2012).

The implementation used several  rough versions of  heuristics  such as 

weighted  summation  of  each  parameter,  elitism,  finding  knees  and 

greedy approaches as well  as diversity  maintenance mechanisms that 

are configurable via weights. Therefore, the multi-objective method itself 
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had a genotype. To find the best mix of approaches, “individuals” which 

themselves  are  “multi-objective  optimization  methods”  with  different  

focuses  on  diversity  maintenance,  elitism  etc. were  evolved  (using  a 

simple test problem to check whether they converge at a local minima or 

find  global  minimum)  and  the  genome  of  individual  with  the  best 

performance were used for other problems. 

 Figure 6.1. Pareto front in a biobjective problem

Solution candidates for pareto front are given in the bounded area

(Kukkonen, 2012, p.23)

No Free Lunch theorem (NFL) forbids a method to be optimal for all types 

of  problems.  However,  in  the  scope  of  this  thesis,  finding  the  global 

minimum in a reasonable amount of time was the only requirement. To 

guarantee convergence, two key conditions were  taken into account:

• Elitism (always keeping the best candidates for pareto-optimal set)

• Potential to fully explore the search space 

Elitism  check  is  done  before  the  decision  of  whether  to  discard  an 

individual. To ensure the exploration, another random variable is used in 

a similar manner to Equation 6.3. It is used with a small probability in the 

nonlocal search. Unlike the ơ in Equation 6.3, this variable had a much 

larger variance to ensure full exploration of the search space.
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 Indirect Genetic Encoding of Cellular Interactions

Unlike a direct genetic encoding method where the network topology is 

directly  encoded  into  the  DNA,  indirect  encoding  does  not  store  the 

topology  information  in  the  DNA.  Instead  a  “recipe” that  consists  of 

developmental rules which describe how to build the network is stored. In 

this computer  model,  the recipe consists  of  restrictive  local  rules that 

describe cellular interactions and connection schemes.

Any  system  that  displays  regularity  and/or  predictability  has  an 

underlying set of restrictive rules that describes the interactions between 

its  components.  Restrictive  rules  reduce  the  possible  ways  of 

interactions. Thus, restrictive rules or specializations are mechanisms to 

reduce  entropy.  Specialization  can  be  described  as  a  process  where 

initially large imprecisions at certain aspects progressively diminish. For 

example,  developing organisms require  an elaborate  balance  between 

complexity and regularity. To achieve that, development starts with stem 

cells which have high “expressive power”. However, at later steps, higher 

organization  requires  specialization of  cells.  Consequently,  cells 

differentiate into more restrictive forms. 

Behaviors of the differentiated cells are more predictable and therefore 

they  are  easier  to  control.  Brain  development  also  follows  a  similar 

trajectory  where  number of  initial  connections later  diminishes to half 

and the  overall  circuitry  acquires  a  higher  amount  of  precision.  Since 

achieving precision requires cells to specialize, evolution of various cell 

types with different characteristics and various levels of specialization is 

possible25. 

Overall,  to  achieve  precision,  direct  rules  are  not  always  needed, 

especially  if  there  is  a  developmental  component.  In  this  model,  an 

indirect encoding method which mostly consists of local restrictive rules, 

25The idea of using restrictive rules to control the amount of precision (i.e. cell 
types  with  varying  specialization  levels)  was  inspired  from  the  information 
theoretic  principles  (i.e.  entropy  and  multiresolution  scheme)  discussed  in 
sections 5.1 to 5.3. as well as the division of labor idea discussed in 2.1.3.
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is used for the differentiation of cell types and the development of the 

later network circuitry. 

 Simplest Local Rules and The Initial Model

For test purposes, an initial model that used a connection function with a 

Gaussian  connection  scheme26 to  decide  the  range  and  interval  of 

connections  between source  and target  cells  was  implemented.  While 

this initial computer model could make use of the distance information 

and it was possible to use different connection functions, there were no 

cell specific interactions. Therefore, all cell types behaved the same. This 

will be referred as default behavior in the next subsections. 

Later,  more  elaborate  versions  that  used  indirect  genetic  encoding 

methods to represent other cellular level interactions was build upon the 

initial model. These models were tested using a developmental scenario 

where progenitor cells with initial types later could differentiate into more 

specific  types  according  to  local  interactions  between  cells  in  close 

neighborhood. To have an idea on the topology of the network, overall  

distribution of the connections were tested in all versions. Moreover the 

resulting  network  was  rendered  using  a  visualization  library  (see 

Visualization subsection below).

 Whole Genome Duplication

Through the  evolutionary  history,  researchers  believe  that  there  were 

several  whole genome duplications. The advantage of a whole genome 

duplication is the preservation of the underlying gene regulatory circuitry 

for  vital  processes,  while  experimenting  on  the  redundant  (duplicate) 

parts  (Hoyle, 2011). In 2.3.1, duplication was recognized as a means to 

achieve higher complexity.

This computer model allowed (and used) whole genome duplications. To 

achieve that, a finish “codon” with a special value was added to the end 

of genome. The length of the genome was small  in the initial  random 

26The probability to make a connection decreases with distance.
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population. In the reproduction phase, when the finish codon of I1 was 

reached  (see  Differential  Evolution  subsection  above),  with  a  small 

probability, whole genome duplication occurred. This could happen until 

the genome length was increased into a predefined limit. To control the 

increase  of  size,  a  fitness  function could  forbid/punish long genotypes 

(see  Results  section  below).  Another  motivation  for  whole  genome 

duplication in this model was to reuse the earlier genotype and add new 

behavior  upon the old ones.  (See section  5.4  for  more  details  on the 

reusability principle).

 Layered Initialization

In  sections 3.1.5 and 3.2.1,  development of  cortical  layers  and retinal 

layers  were discussed.  (It  seems,  waves of  migrating cells  form these 

layers). Moreover, in 3.1.2 the idea of regional identity27 was discussed. 

Cells  migrating to each layer had regional  identities.  Therefore,  in the 

implementation of the model, it was assumed that initially each layer had 

a subset of progenitor cell types. Progenitor cells could later differentiate 

and take their final form. The model  skipped the cell  migration phase; 

that is, half way specialized progenitor cells were directly generated in 

different  layers.  The  information  regarding  the  number  of  layers  was 

acquired from the DNA28. 

 Differentiation and Radius of Interaction

In the model, the “radius of interaction” for each cell type was translated 

from DNA.  The amount of acquired neighborhood information was cell 

type specific.  The acquired neighborhood information was used for the 

progenitor cells to differentiate into more specific cells types. 

27Even progenitor cells partly achieve regional identity. They can become half 
way specialized.

28In a more realistic model, these processes (migration and formation of layers) 
can be controlled via gene regulatory networks. This computer model did not 
use  gene  regulatory  networks.  Therefore,  the  exploration  of  one  of  the 
principles discussed in chapter 5, Kauffman's edge of chaos idea, were left as a 
future work (see section 5.5).
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Stable  attractors  in  the  phase  space  of  gene  regulatory  networks 

correspond  to  stable  cell  types  (see  section  5.5).  The  model  allowed 

certain  cell  types to differentiate  into stable  types by using exclusion 

zones29. Differentiation depended dynamically on the neighboring cells. 

 Source-target Restriction

Source-target specific restrictive information was also kept in the DNA30. 

Since  this  model  was  built  upon  the  initial  simplistic  model  where 

connections were determined according to distance, source-target rules 

brought  some  constraints  on  the  distance  rule.  Initially,  source-target 

information was more generic. Any type of cells were able to connect any 

type of cells. Addition of new source-target rules therefore had inhibitory 

effects,  preventing  connections  between  specific  cell  types. 

Consequently,  source-target  rules  served as  restrictive  rules  to  create 

more  specific  cell  behaviors.  Initially,  whole  genome  duplication  had 

practically no effect on source-target information. Yet, after mutations, a 

source cell type could acquire new restrictions on target types instead of 

a more general connection behavior.

 Aggressiveness

Instead of a more direct implementation of a connection function, all cell 

types  connected  to  their  distal  and/or  proximal  targets  with  a  type 

specific  probability  which  depended  on  DNA  and  distance  value.  As 

explored  in  subsection  4.3.1,  it  is  plausible  that  cells  (such  as retinal 

ganglion cells and simple cells) use a connection scheme that depends 

on distance. However it is also known that there are other  restrictions, 

that can potentially  lead to structures such as receptive field mosaics 

(see subsection 3.2.3). This requires construction rules (i.e. source-target 

restriction,  exclusion  zones)  which  intrinsically  enable  the  creation  of 

anatomical mosaics. 
29More detail can be found in Retinal Mosaics subsection under 6.2.4.

30Source and target  do not correspond to indexes or positions of cells.  They 
correspond to specific types of cells.
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 Greed

Cell type dependent tendency to make new connections with other cells 

is  called greed.  If  a cell  type has high greed value,  it  will  have more 

chance  to  make  new  connections.  Cell  types  with  high  greed  value 

generally had more axonal (and optionally dendritic31) connections.

 Cell Popularity

As discussed in 5.4.1,  having hub like nodes32 in a network, generally 

results  in  robust  properties  and  brain  circuits  and  gene  regulatory 

networks  display  such  properties.  Therefore  the  model  incorporated  a 

means of  control  for  creating networks  with  hub like  nodes.  A simple 

approach to create hub like nodes was to assign a fitness or popularity 

value to the target  cell  before deciding whether  to connect  or not.  In 

developmental  terms, the fitness value may depend on the amount of 

secreted and received neurotrophic  factors (see subsections 3.1.8 and 

3.1.9).

 DNA

DNA consisted of floating point values. Encoding of restrictive rules with 

various scopes was possible. Default rules were encoded at the beginning 

of the DNA as below:

{#layers, differentiation time window, short range aggr, long range 

aggr, dummy, .... , dummy33}

First floating point element was translated into number of layers at the 

beginning of the development 34. Second element controlled the duration 

31The model allowed configuration of greed value explicitly for axons, dendrites 
or both.

32Hub like nodes are common to both scale free and small world networks.
33The  model  supports  extension  of  new  default  rules,  because  the  DNA  is 
processed as blocks of 4 elements. After addition of new default rules, if the 
length of overall default rules is not divisible by four, dummy rules are added.

34There will be certain changes in the encoding when gene regulatory networks 
are introduced in the near future.
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of the differentiation process. Third element controlled the tendency to 

make close by connections (i.e.  how close is too close). Fourth element 

controlled the tendency to make long range connections (i.e.  how far is 

too far). Type specific radius of interaction for cellular differentiation was 

also stored in the DNA:

{r1, r2, ..., rk, dummy,...,dummy35}

For k different cell types, k different interaction radiuses were defined.

Whole  genome  duplication  allowed  exaptation  into  new  source–target 

rules.  Source-target rules were represented as blocks of four elements:

{source type, target type, short range aggr, long range aggr} 

Source-target  rules  had  restrictive  roles  on  the  overall  connection 

scheme (reducing overall entropy, see subsection 6.2.4).

After whole genome duplication (and mutations), new source-target type 

specific restrictive rules were created. That is, duplicate default rules and 

radius  of  interaction  rules  later  became  source-target  rules  via 

exaptation. Secondary and later duplications initially had no effects, yet, 

after mutations new restrictive rules were emerged and more specialized 

cell types evolved. Below is a sample DNA:

{1.95559  0.942985  1.46869 1.98658  1.37547 1.78545  0.322011  1.83782 

1.60741 1.17164 1.29342 0.372859 1.37088 1.86503 1.559 1.90499 1.40935 

0.589819 0.886342 1.54457 1.77957 0.847671 1.41514 0 0.253119 1.0497 

0.903606  1.14618  0.104051  0.718838  0.497239  0.424195  -10036 

dummy,..,dummy}

 A Quick Summary of Events

In the evolutionary component of the model, the population started with 

individuals that had randomly generated DNA (with minimum length and 

no restrictive rules).  Then, for each individual, the genetic information 

was translated into phenotype via developmental rules described above 

(i.e.  networks  with  different  default  aggressivenes  value,  different 

35 For best performance, number of cell types and therefore number of radius of 
interaction elements were kept as multiples of four.
36-100 denotes the end of genetic information
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number of layers, different radius of interaction rules). In the next step, a 

fitness value was assigned (i.e. wiring cost) to each individual. Individuals 

with better fitness values were accepted into the next generation using 

the  methodology  described  in  Multi-objective  Optimization  subsection. 

Then, new individuals were generated using the methodology described 

in  Differential  Evolution  subsection.  With  a  small  probability,  whole 

genome  duplication  occurred,  DNA  size  doubled  and  (via  either 

exaptation  or  mutation)  new  source-target  restriction  rules  were 

generated. After several generations, the population converged into a set 

of genotypes that had acceptable fitness values.

 Visualization

For the visualization of resulting network topologies and cell types, Open 

Scene Graph (OSG) was used. OSG is a high performance graphics library 

written in C++ and OpenGL. It allowed visualization of large networks.

 6.2.4 Results

Several  tests  and scenarios were applied to the initial  and successive 

models. They will be discussed in a chronological way. Initial versions of 

the  model  only  used  the  developmental  component.  The  evolutionary 

component was used only in the last two scenarios. 

 Initial Model

The initial model defined the default behavior of any cell. There were no 

restrictive  rules and the default behavior was to greedily connect  any 

nearby cell with a connection probability that decreased with distance37. 

In Figure 6.2 below, initial  model is compared to a random connection 

scheme where connections were completely random (therefore they did 

not depend on distance).

37This  idea  was inspired from the  research  on  the  computational/conceptual 
properties of the visual system. See subsection 4.3.1 and Simple Cells for more 
details.
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 Figure 6.2. Random vs default connection scheme 

(Left) Connection scheme is completely random. (Right) One can observe an 

overall lack of long range connections, cells tend to connect other close by cells, 

forming local clumps or clusters of cells that are highly connected and blank 

regions where cells are too far to connect each other.

 Figure 6.3 Random vs default connection scheme38 

(x: # connections, y: # cells)

Default connection scheme reduced the number of connections between 

distant cells. Since cells that were closer to each other would make more 

connections, overall connection distribution was not a Gaussian anymore.

38Using  hard  coded  configuration  parameters  (within  the  implementation), 
shifting  and scaling of  the  connection distributions  were possible.  Therefore, 
even initial  model  could  generate  different  connection  distributions  and  the 
illustration  given  above  was  only  one  of  the  possibilities.  For  the  sake  of 
consistency,  the  configuration  parameters  that  generated  the  distribution 
illustrated above were kept constant in the later scenarios below.
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When default connection distribution was plotted for axons and dendrites 

separately (Figure 6.4), scatter plots demonstrated that neither outgoing 

connection  (axonal)  distribution, nor incoming  connection  (dendritic) 

distribution was Gaussian39 40. Therefore, in accordance with the distance 

function used in  the  default  connection  scheme,  some cells  sent and 

received substantially more connections than the others41.

 Figure 6.4. Default connection scheme

(Left) axonal distribution (x: # outgoing connections, y: # cells) 

(Right) dendritic distribution (x: # incoming connections, y: # cells)

 Introduction of New Cell Types

Initial  model had only a single cell  type. Greed value therefore had no 

visible  effect.  Addition  of  new cell  types  that  had  type-specific  greed 

values resulted in a visible effect in the distribution depicted in Figure 

6.5.

39This can be interpreted as a decrease in overall entropy, since the connection 
scheme was less random, number of possible configurations was decreased.

40While  the  initial  model  did  not  display  a  difference  between  axonal  and 
dendritic distributions, in the later versions of the model, different axonal and 
dendritic  distributions  were  observed  according  to  the  local  rules  that  were 
introduced.  Therefore  the  model  is  capable  of  creating  cell  types that  have 
unbalanced axon/dendrite ratio.

41This demonstrates that a connection scheme that depends on distance can 
create a  connectivity bias depending  on the 3D network shape, since neurons 
that are positioned at the center of the network would have more chance to 
make connections, unlike the neurons at the boundaries.
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 Figure 6.5. Default connection scheme + 2 new cell types 

(Left) Visualization of the resulting network, with different colors for different cell 

types. (Right) Overall connection distribution. Addition of 2 new higher greed 

values is also fairly visible in the distribution (compare to the initial model). 

 Addition of Type Specific Connection Scheme

Type-specific connection scheme required restrictive source-target rules 

that were defined in the DNA. Consequently, using randomly generated 

DNA (in  several  trials),  observation  of  various  connection  distributions 

was possible42.

 Figure 6.6. Type-specific connection scheme

(Left) Restriction of connections between specific source-target cell types is 

possible. Compared to Figure 6.5, this visual lacked almost all of the green 

connections. (Right) Connection distribution that displayed a restriction on 

connections, nullifying the effect of type specific greed value of at least one of 

the cell types. (x: # connections, y: # cells)
42The usage of evolutionary component was not necessary.
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 Figure 6.7. Other type-specific connection scheme possibilities

Different source-target restriction rules and cell types resulted in different 

connection distributions. (x: # connections, y: # cells)

 Figure 6.8. Retinal mosaics

S cells are circled. (Circles do not represent the exclusion zone) The radius of the 

exclusion zone is approximately the distance between two closest S cells.

 Modeling Retinal Mosaics

Self  organization  ideas  on  differentiation  were  tested  using  a  simple 

scenario  in  which  progenitor  cells  of  a  single  type  differentiated  into 

either  a  primary  (P:  green)  or  secondary  type  (S:  red)  cell.  The  self 
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organization rule was exclusion zones43 that had certain radius depended 

on the DNA44. Differentiation into P cells occurred if there were no other P 

cells  in  the  exclusion  zone.  If  there  was  a  close  by  P  cell,  then 

differentiation into S cells occurred. This can be considered as a simple 

simulation for the emergence of retinal mosaics45 (see Figure 6.8).

 Figure 6.9. Retinal mosaics (zoomed out)

The overall ratio of S cells is small, therefore zooming out (left to right) reveals a 

dominant green color (the color of P cells). Total number of cells was around forty 

thousand.

For  comparison,  Figure  6.10  below  depicts  another  individual  where 

radius of exclusion adjusted to a small value to prevent the mosaic effect.

 Figure 6.10. Retinal mosaics (zoomed out)

The overall ratio of S cells was large, since the radius of exclusion zone became 

too small. Rather than in a mosaic form, cells were randomly differentiated. 

Therefore zooming out (left to right) reveals a yellowish red color (which is the 

mix of green (P) and red (S) colors).
43In this scenario, “radius of interaction” value stored in the DNA defined the 
radius of exclusion zones.

44Although individuals were always initialized via DNA, in this scenario and the 
previous cases, multi-objective optimization and differential evolution were not 
necessary. Therefore, DNA consisted of user defined values. The model also had 
some stochasticity.

45 For more information on mosaic organization via anatomical rules, see 3.2.3.
 

90



 Emergence of A Mosaic Network

Combining  above  version  of  the  model  with  the  initial  default  model 

resulted  in  emergence  of  cell  types  that  differentiated  according  to 

exclusion zones and created a mosaic connection scheme, as illustrated 

in Figure 6.11. As previously discussed in subsection 3.2.3, receptive field 

mosaic  formation  may  be  primarily  determined  by  the  formation  of 

anatomical mosaics  (Anishchenko et al., 2010). A proposed theory was 

that  anatomical  mosaic  formation  could  be  achieved  via  type-specific 

neighboring cell interactions (Fuerst et al., 2008). 

 Figure 6.11. Retinal mosaics like differentiation

Red cells illustrate differentiated cells. Similar to S cells described in the previous 

subsection, red cells differentiated according to exclusion zones. 

 Figure 6.12. Comparison to default connection distribution
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(Left) Initial model, (Right) Mosaic network. As one may observe, connection 

distribution did not change. The only change to the initial model was the addition 

of the differentiation rule. (x: # connections, y: # cells)

Addition  of  type  specific  greed  and  aggressiveness  value  resulted  in 

highly aggressive and greedy, hub-like neurons.

  Figure 6.13. Emergence of hub-like neurons

Compared to Figure 6.12, red cells became more aggressive, they made more 

long range connections and overall number of connections made by them were 

also increased. Green cells remained the same.

 Figure 6.14. Comparison to type specific greed and aggressiveness
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Compared  to  the  previous  version  of  the  model  that  did  not  use 

differentiation  (see  figures  6.5,  6.6  and  6.7),  greedy  cell  types  were 

mostly differentiated into default types (P cells that were colored green). 

Only a handful of them (circled in the right) were able to maintain, due to 

the exclusion zones.  Those cells  gained hub-like properties  since they 

had relatively high greed and aggressiveness values.

 Cell Popularity and Resemblance to Scale-free Networks

Assigning fitness or popularity value to cells according to some criteria, 

and deciding whether to connect or not according to this value resulted in 

an even more segregated network of cells that made several connections 

and cells that remained mostly isolated.

 Figure 6.15. A network of admirers

Notice that some of the green cells on the background had almost no 

connections (circled in yellow).  Moreover, aside from red cells that made red 

connections, green hub-like cells also emerged (circled in black).
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 Admiration

Admiration  rule  was  conjectured  as  following:  A  source  cell  had  an 

increased tendency to make connection as the assigned fitness value to 

the  target  cell  increased46 (see  Figure  6.15).  For  testing  this  idea,  a 

fitness value47 assigned to the target cell as below.

f target=sagnsd+t dg n td−cnsa  (Equation 6.4)

Fitness  value depended on axonal  greed of  source  cell  (sag),  dendritic 

greed of target cell (tdg) number of dendrites source cell had (nsd) number 

of dendrites target cell had (ntd) number of axons source cell had (nsa) and 

a constant value c. 

 Figure 6.16. Axonal and dendritic connection distributions

Axonal (left) and dendritic (right) connection distributions demonstrated a highly 

segregated connection scheme. (x: # connections, y: # cells)

Since the network contained hub-like cells as well as a high number of 

poorly connected cells, overall connection distribution resembled a power 

law distribution. (At least, when compared to Figure 6.14, the distribution 

was much closer to a pareto distribution; notice the long tail).

46This  idea  was  inspired  from  the  research  on  scale-free  networks,  see 
subsection 5.4.1 for more information.

47There can be several ways to assign a fitness value. Equation 6.1 used only 
source-target specific information. However a fitness function that uses target 
information and information retrieved from a randomly selected cell instead of 
source may also be plausible.
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 Jealousy

Jealous rule was the opposite of the admiration rule and conjectured as 

following: A source cell had an increased tendency to make connection as 

the  assigned  fitness  value  to  the  target  cell  decreased.  The  fitness 

function was conjectured as below48.

f target=c [nsa+nta ]−sagnsd−t dg ntd  (Equation 6.5)

Fitness  value depended on axonal  greed of  source  cell  (sag),  dendritic 

greed of target cell (tdg) number of dendrites source cell had (nsd) number 

of dendrites target cell had (ntd) number of axons source cell had (nsa), 

number of axons target cell had (nta) and a constant value c.

 Figure 6.17. Scale-free network effect amplified

This  new  rule,  resulted  in  a  network  that  contained  few  cells  that 

dominated  the network as  well  as  few cells  with  mediocre  amount  of 

connections.  The  remaining  cells  all  had  very  small  amount  of 

connections if not none.
48Changing  the  sign  of  the  fitness  function  would  result  in  admiration  rule, 
therefore they can be generalized into a single cell popularity rule. However, the 
author plans to extend the model to simultaneously incorporate cell types which 
have admiration and cell types which have jealousy behavior. Therefore, they 
were introduced as separate rules within the cell popularity context.
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 Figure 6.18. Axonal and dendritic connection distributions

Axonal (left) and dendritic (right) connection distributions demonstrated even 

more segregated connection scheme. The tail is longer in both distributions when 

compared to Figure 6.17. (x: # connections, y: # cells)

Overall,  popularity  rule  were  used   for  creation  of  non-homogeneous 

network  properties.  The  easiest  to  observe  effect  was  emergence  of 

scale-free network like properties (i.e. a distribution with a long tail and 

hub  like  cells).  However,  the  model  allowed  many  other  connection 

schemes  by  changing  the  proposed  fitness  functions.  For  example, 

another fitness function for jealousy rule could generate effects such as 

cell types that had unbalanced axon/dendrite ratio.

 Figure 6.19. Scale-free like axon distribution (low entropy)

The scatter plot resembled a power law distribution
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 Figure 6.20. Dendrite distribution of the same network (high entropy)

Compared to axonal connection scheme in Figure 6.19, dendritic connection 

scheme was less precise (high entropy) and therefore more similar to a Gaussian.

The  fitness  function  that  generated  such  a  connection  scheme  was 

simple (yet effective). 

f target=c nta−sag nsa  (Equation 6.6)

Fitness value depended on axonal greed of source cell (sag), number of 

axons source cell had (nsa), number of axons target cell had (nta) and a 

constant  value  c.  If  the  target  high  number  of  axons,  connection 

probability  decreased,  therefore  the  overall  number  of  feedback 

connections  decreased  compared  to  the  previous  scale  free  like 

network49. 

Because number of axonal connections vs number of cells resembled a 

power law distribution (i.e. Figure 6.19 resembled a pareto distribution) 

and dendritic connection distribution were mostly random, this created 

an axonal connection bias within the network. That is,  this connection 

49Unlike the previous hub like cells that had high number of both axons and 
dendrites,  in  this  network,  the  probability  to  connect  to  a  cell  was  not 
proportional  to  the  number  of  axons  the  target  cell  had  (see  Figure  6.20). 
Therefore the number of feedback connections was reduced while the network 
still maintained a hierarchical structure due to the power law like distribution of 
axonal connections.
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scheme allowed evenly spreading information to the whole network in a 

roughly  feed  forward  manner  (because  of  the  decreasing  number  of 

axons and lower  probability  for  feedback  connections)  starting from a 

relatively  few  number  of  cells  (that  had  high  number  of  axonal 

connections50). 

 Layered structures

Sample images illustrating layered structures are given below:

 Figure 6.21. Layered organization

Number  of  layers  were  controlled  by  DNA  and  progenitor  cells  were 

directly positioned in layers (without migration) with slightly randomized 

positions. Layered structures were 3D and the distance between cells in 

different layers was accordingly calculated. Different sets of progenitor 

cell types were used in each layer. However, the resulting configuration 

still  mostly  depended on the differentiation  phase  and the DNA.  (Like 

retina, exclusion zones were used to determine cell fate). As one can see 

from the figure, there exist different cell types with different connection 
50Because these cells have high number of axons, they can be used for a top 
down spread of information within this emergent hierarchical network structure.
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schemes. Edges in the figure that have halfway changing colors depict 

connection between different cell types.

 A Simple Evolutionary Test

Wiring cost is known to be a critical constraint in the mammalian brain. 

Even though the simulated network generally consisted of a rather small 

number of nodes, keeping the wiring length minimum may have certain 

advantages. 

The differential  evolution component  of  the model  was tested using a 

single fitness function that returned a better fitness value (closer to 0) if 

the  network  had  a  smaller  wiring  length  ratio.  It  turned  out,  such  a 

scenario  favored  short  range  connections instead  of  longer  range 

connections and also  lamination and a larger DNA with more  restrictive 

rules. Number of layers were specified by DNA, therefore networks with 

different number of layers evolved. 

Table 6.1. Wiring cost vs lamination, DNA size and aggressiveness 

# layers fitness value network size DNA size aggrL

10 0.0180 1000 80 0.51

11 0.0336 1100 40 0.63

11 0.0596 1100 40 1.15

6 0.0703 600 40 0.83

9 0.1969 900 80 3.44

4 0.4649 400 40 3.37

3 0.6608 300 40 10.41

3 0.8930 300 40 10.60

After the evolution, the resulting population had the lamination, DNA size, 

aggressiveness and network size vs fitness ratios (see Table 6.1), where 

aggrL  stands  for  long  range  aggressiveness  values  (the  tendency  to 

make  long  range  connections)  and  fitness  value  is  wiring  cost  (the 

smaller the better). As one can observe, the lower the aggrL value, the 

better  the  fitness  value  is.  However,  there  are  other  factors  such  as 
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lamination  and  DNA  size.  Generally  it  seems  better  to  have  a  large 

number of layers to reduce the wiring cost51. Since as DNA size increased, 

number of restrictive  rules also increased,  the best individual  had the 

longest DNA.

 A Multi-objective Evolutionary Test

In this final version of the model, above test was extended into a multi-

objective  scenario  where  there  were  two  fitness  values:  wiring  cost 

(lower is better) and DNA cost52 (lower is better). As one may observe, 

these objectives may require a trade-off since in the previous test, the 

best individual had the longest DNA. This often is the nature of a multi-

objective optimization problem. The modeler  may require a population 

where  there  are  several  solutions  which  represent  trade-offs  between 

various objectives. Therefore this final test checked whether the multi-

objective  component  of  the  model  was  capable  of  finding  multiple 

solutions with various fitness values. 

Note that the initial population members always started with small DNA 

sizes. Therefore, as individuals with larger DNA sizes evolved, the fitness 

function for the DNA size returned larger (worse) values. Yet individuals 

with  longer  DNA  generally  had  lower  wiring  cost.  Thus,  the  multi-

objective  optimization  component  was  able  to  select  individuals  with 

lower wiring cost while still maintaining a relatively small DNA size. 

In Table 6.2. below, Fitness 1 denotes DNA cost and Fitness 2 denotes 

wiring cost. As one may observe, decreasing DNA cost generally resulted 

in an increase in the wiring cost and vice versa. Another observation is 

that wiring cost not only depended on lamination (# layers), tendency to 

make long range connections (aggrL) and DNA size, but also depended 

on the restrictive  rules  themselves.  Consequently  individuals  that  had 

51This is biologically plausible since, large brains use cortical layers to reduce 
the wiring cost as also discussed in subsection 5.4.1

52The advantage of having a smaller DNA is a smaller search space, especially 
for local search discussed in Modifications to DE subsection.
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similar  DNA size,  #  layers  and aggrL  could  still  have  different  wiring 

costs, since the restrictive rules encoded in their DNA were different. 

Also  note  that  while  restrictive  rules  had  some  effects,  aggrL  and  # 

layers  strongly  controlled  the  wiring cost  outcome.  Consequently,  one 

can conclude that default or generic rules kept in the DNA is more critical 

than specification rules which restrict cell behavior. Therefore a mutation 

on these type of rules may have larger effects. However, this complies 

with the scale  free properties  of  a gene regulatory network,  because, 

while  a  targeted  mutation  in  specific  nodes  may have critical  effects, 

random mutations mostly keep the overall network topology intact.

Table 6.2. DNA cost and wiring cost vs lamination, DNA size and aggressiveness 

# layers Fitness 1 Fitness 2 netw size DNA size aggrL

2 0.0002 0.056 200 20 0.61

3 0.0004 0.028 300 40 0.59

6 0.0004 0.025 600 40 1.02

9 0.0004 0.014 900 40 1.14

9 0.0004 0.010 900 40 0.72

9 0.0004 0.0098 900 40 0.62

10 0.0004 0.0086 1000 40 0.58

10 0.0008 0.0075 1000 80 0.50

 6.3 Summary and Discussion

In  this  chapter,  a  hybrid  computer  model  that  could  combine  the 

advantages of evolutionary and developmental principles was introduced. 

Using this model, effects of local rules on cellular differentiation, retinal 

mosaics,  layered  structures,  wiring  cost  and  network  topology  were 

explored.

Differential  evolution  and  multi-objective  optimization  methods  were 

implemented  as  the  evolutionary  component  of  the  computer  model. 
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There were certain modifications such as whole genome duplication and 

a control mechanism for crossover rate. These ideas were mostly inspired 

from  the  research  on  the  evolution  of  visual  system  (also  ideas  of 

reusability and control of entropy that were discussed in chapter 5). 

Developmental  rules  were  inspired  from  the  computational  and 

developmental research on visual system. For example default Gaussian 

like connection scheme that depended on distance was inspired from the 

computational  research  (see  Simple  Cells  under  subsection  4.3.1). 

Differentiation and mosaic organization of cells were inspired from the 

developmental  research  (see  subsection  3.2.3).  Cell  popularity  was 

inspired  from  the  effects  of  neurotrophic  factors  mentioned  in 

subsections 3.1.8 and 3.1.9. 

The methodology where cell  specification occurred via addition of new 

restrictive rules was inspired from the division of labor idea describe ind 

subsection 2.1.3 and multiresolution idea described in subsections 5.1 to 

5.3. Since whole genome duplication could occur several times, the size 

of the DNA and the number of restrictive rules could increase, allowing 

more elaborate descriptions of cell types. Since each rule was cell type 

specific, the DNA could contain different number of descriptive rules for 

each  cell  types.  This  allowed  cell  types  with  relatively  generic  or 

relatively specific behavior within the network simultaneously. Since the 

DNA  size  could  increase  and  rules  such  as  radius  of  interaction  and 

aggressiveness  were  represented  as  floating  point  values,  the 

evolutionary component was, in theory, capable of generating infinitely 

many number of cell types and networks of  various combinations of cell 

types.
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CHAPTER 7

 7 Conclusion & Future Work

In this thesis work, both the research on disparate properties of visual 

system  and  the  developmental  scenarios  explored  by  the  computer 

model proved fruitful. Research on various perspectives revealed certain 

underlying  principles  that  were  discussed  in  chapter  five.  These 

principles, in certain ways also affected/constituted the design principles 

of the computer model. Therefore, the decomposition of knowledge on 

the visual system into its evolutionary, developmental and computational 

components in the second third and fourth chapters was critical. 

Firstly,  in chapter two, evolution of nervous system and visual  system 

was investigated. A possible scenario for the evolutionary history of how 

nervous system evolved is summarized below:

1. (Molecular phase, skipped)

2. Single cell phase: creation of a compact toolbox for several tasks 

such as cell metabolism, cell division, chemotaxis,  phototaxis and 

action potential (see 2.1.2)

3. Multicellular phase I: a more specific toolbox that builds upon the 

core components of the previous one, for cell-cell interactions, cell 
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adhesion molecules and extracellular matrix, cell collaboration and 

competition.

4. Multicellular phase II: beginning of cell specification, emergence of 

most primitive sensorimotor system for a multicellular organism. 

(For  example,  as  discussed  in  section  2.1.3,  simplest  larvae  or 

plankton  like  organisms  still  have  generic cells  with  phototaxis. 

These cells  can collaborate with other cells  for  slightly different 

tasks, i.e. pigmented cells exist around the cells with cilia, yet task 

specification is still minimal)

5. Multicellular phase III: refinements to cell-cell interactions, further 

cell specification, distinct layers of cells. Outer layer specialization 

for sensory tasks, motor tasks achieved by inner layer(s). Cellular 

communication is still slow and limited, yet it is possible that cells 

started to use action potentials (for electrical synapses and state 

change mechanisms for other etc).

6. Synaptic  phase:  emergence  of  first  real  (electrochemical) 

synapses.  (Note  that  all  the  components  were  already  used in 

different  contexts.  Action  potential  was  used  as  a  steering 

mechanism, chemical receptors were used in chemotaxis and cell 

collaboration). 

7. Morphogenic phase: efficient usage of morphogens, cell adhesion 

molecules  and  extracellular  matrix  for  the  purposes  of  cellular 

migration  and  axon  guidance.  With  the  emergence  of  more 

elaborate  nervous  systems,  reaction  speeds  and  perception 

becomes  a  key  factor  for  survival.  (Note  that  growth  cone  like 

structures  and  cell  adhesion  molecules  are  used  in  both  cell 

migration and axon guidance (subsections 3.1.2, 3.1.7). Moreover, 

these molecules were already mostly “discovered” in the earlier 

phases,  since  collaboration and stability  were  required from the 

start of multicellular phase, for example it is highly plausible that 

the transition from single cell phase to multicellular phase required 

cell  adhesion  mechanisms.  Another  implication  is  emergence  of 
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segmented  body  parts,  since  they  depend  on  morphogens. 

Segmented  body  parts,  in  developing  organisms  allow  simple 

construction  and  then  morphogenesis  as  well  as  they  allow  in 

evolving organisms separate evolution of each segment)

8. Domination  phase:  success  of  a  more  sophisticated  nervous 

system and higher complexity results in the domination of other 

species by an urbilaterian ancestor. (This motivates researchers to 

seek homologies between vertebrate brains and insect mushroom 

bodies, as discussed in section 2.5)

9. Diversification  phase:  as  in  the  transition  from  single  celled 

organisms  to  metazoans,  a  compact  set  of  toolbox  is  used  in 

diverse ways. 

According  to  this  scenario,  one  may  expect  that  different  eye  types 

emerged at the diversification phase, replacing the previous  eye spots. 

Rhabdomeric  photoreceptor  cells  became  ganglion,  amacrine  and 

horizontal  cells  (see  subsection  2.2.2).  Eyes  were  used  not  only  for 

circadian rhythm (there are  still  ancient ganglion cells  in  human eyes 

that are sensitive to the light) and detecting the luminance but also for 

detecting the direction of light. However, since ganglion cells were/are 

not sensitive to direction, this was achieved via cone cells. Some cones 

later evolved into rod cells and some rods and cones later  evolved into 

bipolar cells. (Note that this does not necessarily mean linear evolution 

from one  previous  cell  type  to  another;  new combinations  and  slight 

changes in existing gene expression may more easily result in new cell 

types). Meanwhile, visual acuity and visual system coevolved, resulting in 

parallel  channels  for  high  temporal  and  spatial  frequency  resolution. 

Some of the mechanisms necessary for the evolution of complex organs, 

namely exaptation (or co-option), collage, duplication, diversification and 

scaffolding discussed in subsection 2.3.1, were later partly adopted by 

the evolutionary computer model. 

In  chapter  three,  developmental  perspective  revealed  the connections 

between  mechanisms  such  as  axon  guidance  and  cell  migration. 
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Investigation  of   morphogens  in  subsection  3.1.2  showed  that 

morphogens were commonly used in both migration and axon guidance. 

This point later lead to the realization of an underlying principle common 

to both evolution and development, namely the idea of reusability. The 

timing of events and possibility of chaotic results were also  considered in 

this  chapter.  Moreover  the  role  of  external  internal/stimuli  were 

discussed. For example the investigation on the development of retina, 

revealed two different mechanisms to achieve regularity. In the first one, 

mosaic  structures are  created  simply  via  local  interactions 

between/within the components of cells. In the second one, mass level 

organization  and  refinement  was  acquired  via  random  “waves  of 

activations” in the retina exemplifying internal stimuli.

In  the  fourth  chapter,  a  conceptual/computational  perspective  was 

employed  when comparing  the  well  known  conceptual/computational 

modeling paradigms of the visual system, namely hierarchical, sequential 

and hybrid models. Mathematical models of receptive fields of the cells in 

retina, LGN and primary visual cortex (V1) were also investigated. Then, 

in the discussion section, modern view of visual system was compared to 

the traditional view. This showed that a traditional linear model of vision 

lacks  a  crucial  component  when  considering  the  number  of  feedback 

connections  and  the  existence  of  more  than  twelve  distinct  visual 

pathways.  However,  it  was  also  apparent  that  the  three  well  known 

traditional  model  (hierarchical,  sequential,hybrid)  constantly  fed  from 

new experiments and refined themselves.  (Therefore they approach to 

each other and slowly converge into one single model).

Research on chapter 2, 3 and 4 stirred several questions and highlighted 

many directions for a deeper level investigation. In chapter 5, three of 

these  directions  were  explored  within  a  computational  context.  The 

research on the computational perspective highlighted that there were 

parallel information processing pathways in the visual system, this in turn 

lead to the question of why parallel channels evolved. This was answered 

by an information theoretic principle: it was a necessity to distribute the 

time-frequency information in different ratios (similar to a multiresolution 
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scheme) to get around the joint entropy problem. The unevenness of the 

P  and  M  channel  inputs  to  the  where  and  what  pathways  and  their 

complementary nature, was then conjectured as an indication of a similar 

constraint at higher levels.

The  research  on  the  evolutionary  perspective  lead  to  the  idea  that 

animals had a common “body plan” that was inherited from a common 

urbilaterian ancestor. This was not on the level of a primitive segmented 

body  plan  but  on  the  level  of  an  elaborate  form  where  even  a 

sophisticated nervous system existed. This in turn translated to the idea 

that  evolving  complex  organisms  “reuse“  the  previous  “abstract” 

components in diverse ways. A generalized version of this idea then was 

conjectured as:  Abstract  or mathematically/computationally meaningful 

components could maximize reusability. 

The  research  on  the developmental  perspective  entailed  the question 

that how development can both have reliable and chaotic nature. This 

lead to the notion called edge of chaos. Ideas from researchers such as 

Kauffman revealed that development depends on the stable attractors 

and unstable/chaotic attractors that are defined in the phase space of the 

gene regulatory networks which are described as dynamical systems. 

In the sixth chapter, some of the ideas acquired from the research on 

evolution and development  was used as  design principles  to  create  a 

computer  model.  The  computer  model  proved  highly  configurable 

because it allowed later additions of “new rules” which were represented 

as the components of DNA. Therefore new tests and approaches could 

build  upon  the  previous  version  with  ease.  Moreover,  evolutionary 

component of the model used ideas such as whole genome duplication 

that was drawn from the knowledge acquired during the research on the 

evolution  of  visual  system.  Whole  genome  duplication  created 

redundancies  and  allowed  individuals  to  evolve  while  keeping  the 

previous progress. 

Certain rules kept in the DNA (such as number of layers and the default 

connection scheme) may be considered more critical than specification 
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rules which restrict cell behavior, therefore a mutation on these type of 

rules  may  have  larger  effects,  yet,  this  complies  with  scale  free 

properties  of  a  gene  regulatory  network,   because,  while  a  targeted 

mutation on a specific node may have critical effects, random mutations 

mostly keep the overall network topology intact.

As a conclusion, this thesis consisted of an analysis of visual system in 

evolutionary, developmental and computational contexts and a synthesis 

of  the  acquired  data,  (a  synthesis  that  displayed  the  author's 

perspective). Development and evolution of brain was also a prominent 

part of the research and this affected the types of tests that were used in 

the computer model.

The computer model was implemented not to reverse engineer or “hard 

code”  the  literal  knowledge  but  to  apply  and  test  some  of  the  deep 

principles that were used in both the design of the computer model and 

in  the  test  scenarios  (that  grew  successively  more  complex).  The 

computer  model  displayed  a  hierarchical  (and  multiresolution like) 

scheme where rules had different scopes (i.e. source-target specific rules 

vs rules that defined non-type specific default behavior).

One  may  draw  several  conclusions  from  this  thesis,  for  example  the 

question, “how can systems organize themselves in such a way that they 

acquire  both  complexity  and  regularity?”  (which  may  be  relevant  to 

researchers  from  diverse  disciplines)  may  be  answered  by  the 

introduction of local rules that have mostly restrictive nature. Local rules 

reduce  and  control  the  entropy  by  increasing  the  precision  of  the 

description level  of the interactions of the components in a dynamical 

system in a progressive way.

Another  conclusion  may be  drawn from the  complementary  nature  of 

parallel  pathways in the visual system, that resulted from evolutionary 

constraints,  that were in essence information theoretic constraints (i.e. 

joint entropy in 5.1). Joint entropy may explain more than simply P and M 

pathways  (5.1.2,  5.2,  5.3).  It  may  be  possible  that,  where  and  what 

pathways  or  in  more  general  overall  segregation  of  information  into 
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several  “aspects”  (or  dimensions)  was  in  essence  a  multiresolution 

scheme like solution to the joint entropy problem.

 Future Work

In the near future, the model discussed in chapter 6 will be extended to a 

neural network where existing or new cell specific characteristics in the 

DNA are translated into different activation functions. Another possible 

extension is  cellular  migration.  Current  model  generates and positions 

progenitor  cells  into  their  destinations  instantly.  To  achieve  better 

biological  plausibility,  a  more  realistic  scenario  can  be  applied.  For 

example, gene regulatory networks can be used. The effects of GRNs and 

the edge of chaos idea to migration, differentiation and overall network 

topology can be explored.
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APPENDIX

Additional Formulas and Derivations for Visual 

System

   Derivation of Retinal Ganglion Receptive Field

Assuming that light-sensitive cells are only photoreceptor cells, assuming 

that the role of amacrine, horizontal and bipolar cells can be reduced into 

synaptic  weights  between  the  photoreceptor  cells  and  ganglion  cells, 

receptive  field  (RF)  of  a  retinal  ganglion  cell  (RGC)  traditionally 

formulated as following (according to Zhaoping, 2012, pp.16-21). Given x 

as different photoreceptor cells at different positions53, a weight kernel or 

spatial filter  Kx(x) as receptive field of the ganglion cell,  and a steady 

input image as signal Sx(x), if  τ is the  spontaneous firing rate, then the 

output response O can be formulated as

O=∫ K x (x )Sx( x)dx+τ  (Equation A.1)

Assuming  that  all  ganglion  cells  have  more  or  less  a  Mexican  hat 

receptive field, kernel function can be formulated as

K x (x)=
ωc

σ c
2 exp [−x2

/(2σ c
2
)]−

ωs

σ s
2 exp [−x2

/ (2σ s
2
)] (Equation A.2)

which is the difference of Gaussians ( σc<  σs and c≈s)54.

53x does not necessarily denote a single dimension, it can be interpreted as a 
vector
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Kernel  function  K  and  signal  S  also  has  time  components.  Therefore 

assuming a stimuli exists between t and t',  the equation describing the 

output response  becomes

O(t)=∫dt ' dxK ( x , t−t ' )S (x ,t ')+τ  (Equation A.3)

Note that the kernel function depends on the time interval of input and it 

is now a spatio-temporal filter. Moreover if the stimulus is unchanging, it 

can be formulated as 

S (x , t)=S x (x) H (t )  (Equation A.4)

where Sx is the spatial filter and H(t) is step function where it is 1 if t >=0 

and 0 otherwise. Assuming that the stimulus is unchanging, extending 

from (A.3)

O(t)=∫dxS x (x)∫0

t
dt ' K (x , t−t ' )  (Equation A.5)

Kernel function can also be extended from (A.2)

K (x , t)=K t
c
(t )

ωc

σ c
2 exp[−x2

/(2σ c
2
)]−K t

s
( t)

ωs

σ s
2 exp[−x2

/(2σ s
2
) ]  (Equation 4.6)

where  Gaussian  functions  are  multiplied  by  the  impulse  response  of 

center and surround components of the receptive field ( K t
c (t ) ,K t

s(t ) ).

Above kernel function has the expressive power to define parvocelluler 

(P) cells with long impulse response and small receptive fields (they have 

good  spatial  resolution)  and  magnocellular  cells  with  short  impulse 

response and large receptive field (they have good temporal resolution) 

(Zhaoping, 2012).

 Sinusoidal gratings

A sinusoidal stimuli can be formulated as 

S x (x)=Sk cos (kx+ϕ)+c  (Equation A.7)

where c is constant, φ is phase and Sk is the amplitude. 

54Here, only center-on surround-off receptive fields will be discussed. Center-off 
surround-on receptive field is simply the negative of this function, -Kx(x).
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Kx can be decomposed into its sine and cosine components as

K x (x)=∫dk [gc (k )cos (kx )+gs(k )sin (kx )]  (Equation A.8)

where gc(k) and gs(k) are 

gc (k )=∫ dxK x( x)cos (kx ) ,   gs(k )=∫ dxK x( x)sin(kx )  (Equation A.9)

the Fourier cosine and and Fourier sine transforms of Kx(x) respectively 

(Zhaoping, 2012). Since the assumed Kx(x) is an even function (i.e. Kx(-

x)=Kx(x)),  its  Fourier  sine  transform  gs(k) is  actually  0.  As  a  result, 

asymptotic response becomes

O(t→∞)=∫ dxSk [cos (kx+ϕ)+c ]∫ dr cos (rx )∫ dpK x( x)cos (rp) (Equation A.10)

since  in  essence  multiplication  of  two  cosines  (sinusoidal  stimuli  and 

cosine  component  of  Kx(x))  is  integrated,  largest  response  can  be 

achieved  when  peaks  of  two  cosines  coincides  with  each  other.  This 

happens when  φ is  0 and k is adjusted according to the frequency of 

cosine component of Kx(x). As a consequence, O simply depends on

gc (k )cos(ϕ)  (Equation A.11)

 Generalization

For a more general Kx(x), which is not necessarily an even function gs(k) 

also plays a role. Thus, O depends on

 gc (k )cos (ϕ)−gx (k )sin(ϕ)=∣g(k )∣cos (ϕ−θ)  (Equation A.12)

where g(k) is a two dimensional vector of sine and cosine components of 

Kx(x) g(k )=[gc (k ) ,−gs (k )]T  having length ∣g (k )∣≡√ gc
2
(k )+gs

2
(k )  and angle 

θ.55

In fact, g(k) can also be interpreted as the complex variable:

g(k )=gc (k )−i gs(k )  and  this  is  the  Fourier  transform of  Kx(x)  at  k,  as 

given below:

55When θ and gs(k) both becomes 0, it falls back to the previous case where 
Kx(x) is an even function.
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g(k )=∫ dxK x ( x)e−i k x
=∫dx K x (x)(cos (kx )−i sin(kx ))  (Equation A.13)

In the case where Kx(x) is the difference of Gaussians,  g(k) also depends 

on a difference of Gaussians in the form of 

ωc exp [−k2
σ c

2
/2 ]−ωs exp [−k2

σ s
2
/2]  (Equation A.14)

where g(k) (and therefore the output response) increases with k until a 

peak frequency kp then decreases symmetrically (Zhaoping, 2012, p.21). 

   Retinotopic Map

The  approximate  relationship  between  the  input  and  its  spatial 

representation on the cortical surface is given by  

X=λ ln(1+e /e0) ,Y =−
λ ea π

(e0+e )1800  (Equation A.15)

where λ and e0 are constants, negative sign is the inversion of the image, 

e is  the 'angle  eccentricity' to denote how 'peripheral'  the position of 

stimuli (Zhaoping, 2012).

   Orientation selectivity

A simple approach to model orientation selectivity could be based on the 

2D Gabor connectivity function which describes the input from LGN cells 

to vertically oriented V1 cells (i.e. V1 cell receptive field) is defined by 

K (x , y )=exp[−
x2

2σ x
2 −

y2

2σ y
2 ]cos(k x+ϕ)  (Equation A.16)

where K(x,y) is the multiplication of a sinusoid by a Gaussian function 

(Teich & Qian,  2006). To a spatial  grating stimulus which depends on 

cos (k ' x+ϕ ' ) , the modeled V1 cell would respond as

O=∫ dx dy K (x , y )S (x , y)=∫dx dy K (x , y )cos(k ' x+ϕ ' )  (Equation A.17)

where k' represents a range of frequencies centered around a specific 

frequency  k,   (Zhaoping,  2012).  Moreover,  in  order  to  extend  this 
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approach beyond vertical orientation, one can obtain kernel functions for 

different orientations by rotating the  x, y coordinates 

x→ xcos (θ)+ y sin(θ) ,    y→ y cos(θ)−x sin (θ) (Equation A.18)

 Motion selectivity

Motion selectivity requires the neurons to capture temporal differences. A 

space-time separable receptive field 

K (x , y , t−t ')=K s(x , y)K t (t−t ' )  (Equation A.19)

where Ks(x,y) is the Gabor connectivity function described in (4.20) and K t 

is used for the tuning of temporal frequency of the stimuli such as a tilted 

grating moving in a certain direction (Zhaoping, 2012).
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	Although the implemented evolutionary/developmental computer model (which will be discussed in chapter 6) is not a reverse engineering of retinal circuitry of the visual system, it supports cellular specialization as well as different number of layers.
	Since it appears via morphogens, cells can assume a regional identity, the evolutionary/developmental computer model (discussed in chapter 6), allows progenitor cells in separate layers to initially have different cell type ids (before differentiation).
	This idea and idea of regional identity described in section 3.1.2, are used in the computer model (discussed in chapter 6) as layers where each layer contains only a subset of overall cell types.
	This idea was used in the evolutionary/developmental computer model discussed in chapter 6.
	The idea of anatomical mosaics is used in the evolutionary/developmental computer model (see chapter 6).
	Since ganglion receptive fields represent band pass filters (see subsections 4.2.1 and 4.2.2 below) cells that have various receptive field sizes effectively allows sensitivity to various intervals of frequencies. This is relevant to the idea of multifrequency channels and the multiresolution scheme, discussed in sections 5.2 and 5.3 .
	Derivation of the formula is given in the Appendix.
	Spatio-temporal filters are often called kernel functions. See Appendix for more information.
	Some may also define LGN receptive field as Laplacian of a Gaussian (for spatial domain) multiplied by the first order time derivative of a Gaussian.
	See the Appendix for mathematical formulation.
	This idea (Gaussian like connection scheme that depends on distance) is used in the computer model discussed in chapter 6.
	Here, a nonlinear characteristic is achieved via conditional behavior. The output of the system is not always directly proportional to the input anymore.
	See the Appendix for more information on kernel functions.
	In the traditional sense, time domain represents the domain where the raw input or signal is. The raw input is can be a function of space (spatial input), or a function of time (temporal input). Frequency domain represents the domain of transformed signal. For example it can be temporal or spatial frequency domain.
	Note that the traditional “time domain” (which has an entropy ∆t) represents here 2D space and 1D time, while “frequency domain” (which has an entropy ∆f) represents 2D spatial frequency and 1D temporal frequency.
	This is impossible because they represent reciprocal domains, therefore a transformation from one domain to another would result in precision loss.
	As explained in the previous subsection, a multiresolution scheme in the visual system is suspected/predicted by the image processing community. Combining this with the work of Silveira et al. (2008) (i.e. P and M segregation and joint entropy), it becomes evident that multiresolution scheme may be relevant in the biological context as an evolutionary solution to robustly work around the joint entropy problem.
	Genes are hereditary molecular units which encode cell behavior, cell differentiation and cell growth. Transcription, translation, RNA processing and epigenetic mechanisms regulate gene behavior. These mechanisms generally trigger or inhibit other mechanisms and the overall system can be represented as a sparsely connected network, namely a gene regulatory network. Such a network is responsible from complex cell behavior.
	Advantages of a laminar structure to reduce wiring cost were explored in the computer model in the next chapter using evolutionary algorithms.
	There is relevant information in the genotype, describing cell types that may or may not connect to other cells i.e. glia vs. neurons, however the model mostly focuses on the connection scheme and ignores activation behavior.
	Different degree of precision is also possible in other cellular interaction rules, however they are not explored in this thesis work.
	Cell specification via evolution from a single generic cell type (i.e. heterogeneous addition of restrictive rules) bears resemblance to a multiresolution scheme.
	Not all discussed ideas are used in this model and an overall verbosity or an abundance of explored topics through the previous chapters was intentional for several reasons. Firstly, the author plans to extend the model. Therefore, some of the ideas such as edge of chaos will be incorporated in the model in the near future. Secondly, an overall exploration of the multi-disciplinary literature by itself can be useful for other researchers. Finally, throughout the thesis, there were certain testable predictions conjectured by the author (i.e. proliferation still depends on aerobic glycosis because of the reusability idea, that is, proliferation still depends on the regulatory role of some of the components that belonged to an ancient genetic toolbox that controlled aerobic glycosis, (see chapter 3 discussion section), or joint entropy idea as an evolutionary constraint for the emergence of a multiresolution like scheme in the visual system and possibly in higher levels of cortical organization (i.e. where and what pathways), see subsection 5.3.1). Although certain amount of verbosity was inevitable, this ideas may stimulate other research that is not necessarily relevant to modeling yet relevant to deep evolutionary, developmental and computational principles that affect and constrain not only the visual system but also cognition and the brain.
	DE/rand/1/bin is the name of the default differential evolution algorithm used by DE community.
	The idea of using restrictive rules to control the amount of precision (i.e. cell types with varying specialization levels) was inspired from the information theoretic principles (i.e. entropy and multiresolution scheme) discussed in sections 5.1 to 5.3. as well as the division of labor idea discussed in 2.1.3.
	The probability to make a connection decreases with distance.
	Even progenitor cells partly achieve regional identity. They can become half way specialized.
	In a more realistic model, these processes (migration and formation of layers) can be controlled via gene regulatory networks. This computer model did not use gene regulatory networks. Therefore, the exploration of one of the principles discussed in chapter 5, Kauffman's edge of chaos idea, were left as a future work (see section 5.5).
	More detail can be found in Retinal Mosaics subsection under 6.2.4.
	Source and target do not correspond to indexes or positions of cells. They correspond to specific types of cells.
	The model allowed configuration of greed value explicitly for axons, dendrites or both.
	Hub like nodes are common to both scale free and small world networks.
	The model supports extension of new default rules, because the DNA is processed as blocks of 4 elements. After addition of new default rules, if the length of overall default rules is not divisible by four, dummy rules are added.
	There will be certain changes in the encoding when gene regulatory networks are introduced in the near future.
	For best performance, number of cell types and therefore number of radius of interaction elements were kept as multiples of four.
	-100 denotes the end of genetic information
	This idea was inspired from the research on the computational/conceptual properties of the visual system. See subsection 4.3.1 and Simple Cells for more details.
	Using hard coded configuration parameters (within the implementation), shifting and scaling of the connection distributions were possible. Therefore, even initial model could generate different connection distributions and the illustration given above was only one of the possibilities. For the sake of consistency, the configuration parameters that generated the distribution illustrated above were kept constant in the later scenarios below.
	This can be interpreted as a decrease in overall entropy, since the connection scheme was less random, number of possible configurations was decreased.
	While the initial model did not display a difference between axonal and dendritic distributions, in the later versions of the model, different axonal and dendritic distributions were observed according to the local rules that were introduced. Therefore the model is capable of creating cell types that have unbalanced axon/dendrite ratio.
	This demonstrates that a connection scheme that depends on distance can create a connectivity bias depending on the 3D network shape, since neurons that are positioned at the center of the network would have more chance to make connections, unlike the neurons at the boundaries.
	The usage of evolutionary component was not necessary.
	In this scenario, “radius of interaction” value stored in the DNA defined the radius of exclusion zones.
	Although individuals were always initialized via DNA, in this scenario and the previous cases, multi-objective optimization and differential evolution were not necessary. Therefore, DNA consisted of user defined values. The model also had some stochasticity.
	For more information on mosaic organization via anatomical rules, see 3.2.3.
	
	This idea was inspired from the research on scale-free networks, see subsection 5.4.1 for more information.
	There can be several ways to assign a fitness value. Equation 6.1 used only source-target specific information. However a fitness function that uses target information and information retrieved from a randomly selected cell instead of source may also be plausible.
	Changing the sign of the fitness function would result in admiration rule, therefore they can be generalized into a single cell popularity rule. However, the author plans to extend the model to simultaneously incorporate cell types which have admiration and cell types which have jealousy behavior. Therefore, they were introduced as separate rules within the cell popularity context.
	Unlike the previous hub like cells that had high number of both axons and dendrites, in this network, the probability to connect to a cell was not proportional to the number of axons the target cell had (see Figure 6.20). Therefore the number of feedback connections was reduced while the network still maintained a hierarchical structure due to the power law like distribution of axonal connections.
	Because these cells have high number of axons, they can be used for a top down spread of information within this emergent hierarchical network structure.
	This is biologically plausible since, large brains use cortical layers to reduce the wiring cost as also discussed in subsection 5.4.1
	The advantage of having a smaller DNA is a smaller search space, especially for local search discussed in Modifications to DE subsection.
	x does not necessarily denote a single dimension, it can be interpreted as a vector
	Here, only center-on surround-off receptive fields will be discussed. Center-off surround-on receptive field is simply the negative of this function, -Kx(x).
	When θ and gs(k) both becomes 0, it falls back to the previous case where Kx(x) is an even function.
	121
	1
	4 123
	5 123
	xiii
	xi
	123
	MODELING NEURONS THAT CAN SELF ORGANIZE INTO BUILDING BLOCKS AND HIERARCHIES: AN EXPLORATION BASED ON VISUAL SYSTEMS
	A THESIS SUBMITTED TO
	THE GRADUATE SCHOOL OF INFORMATICS
	OF
	MIDDLE EAST TECHNICAL UNIVERSITY
	BY
	AYDIN GÖZE POLAT
	IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
	FOR THE DEGREE OF MASTER OF SCIENCE
	IN THE DEPARTMENT
	OF
	COGNITIVE SCIENCE
	SEPTEMBER 2012
	Approval of the thesis:
	MODELING NEURONS THAT CAN SELF ORGANIZE INTO BUILDING BLOCKS AND HIERARCHIES: AN EXPLORATION BASED ON VISUAL SYSTEMS
	submitted by AYDIN GÖZE POLAT in partial fulfillment of the requirements for the degree of Master of Science in Department of Cognitive Science, Middle East Technical University by,
	Prof. Dr. Nazife Baykal ________________________
	Director, Informatics Institute
	Prof. Dr. Cem Bozşahin ________________________
	Head of Department, Cognitive Science
	Assist. Prof. Dr. Murat Perit Çakır ________________________
	Supervisor, Cognitive Science, METU
	Examining Committee Members:
	Prof. Dr. Cem Bozşahin ________________________
	Head of Committee, Cognitive Science, METU
	Assist. Prof. Dr. Murat Perit Çakır ________________________
	Supervisor, Cognitive Science, METU
	Assist. Prof. Dr. Cengiz Acartürk ________________________
	Cognitive Science, METU
	Dr. Bilge Say ________________________
	Organizational Development and Planning Office, METU
	Dr. Onur Tolga Şehitoğlu ________________________
	Computer Engineering, METU
	Date: 12.09.2012
	I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.
	
	
	Name, Last name: AYDIN GÖZE POLAT
	Signature:
	ABSTRACT
	MODELING NEURONS THAT CAN SELF ORGANIZE INTO BUILDING BLOCKS AND HIERARCHIES: AN EXPLORATION BASED ON VISUAL SYSTEMS
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	M.Sc., Department of Cognitive Science
	Supervisor: Assist. Prof. Dr. Murat Perit Çakır
	September 2012, 123 pages
	Cell-cell and cell-environment interactions are controlled by a set of local rules that dictate cell behavior. With such local rules, emergence of computationally meaningful building blocks and hierarchies can be observed. For example, at the cellular level organization in the visual system, receptive field of a retinal ganglion cell displays an activation inhibition behavior that can be modeled as Mexican Hat wavelet or Difference of Gaussians. This precise organization is the product of a harmonious collaboration of different cell types located at the lower levels in a hierarchical structure for each ganglion cell. Moreover, a similar hierarchical organization is observed at higher levels in the visual system. This thesis investigates the visual system from several perspectives in an effort to explore the biological/computational principles underlying these local rules. The investigation results in a hybrid computer model that can combine the advantages of evolutionary and developmental principles to explore the effects of local rules on cellular differentiation, retinal mosaics, layered structures and network topology.
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	Hücre-hücre ve hücre-çevre arasındaki etkileşimler, hücre davranışının belirleyicisi olan bazı yerel kurallarla konrol edilir. Bu kurallar ile, matematiksel ve berimsel olarak anlamlı bazı yapıtaşlarının ve hiyerarşilerin özdüzenlenmesini gözlemlemek mümkündür. Örneğin, görsel sistemde retinadaki ganglion hücrelerinin alıcı alanlarında gözlenen etkinleştirme baskılama davranışı Meksika şapkası (Mexican hat) dalgacığı (wavelet) veya Gausslar farkı ile modellenebilir. Bu etkinleştirme/baskılama davranışı daha alt seviyedeki farklı hücre tiplerinin bir arada uyum içinde çalışmaları sonucu ortaya çıkar. Ayrıca, benzer hiyerarşik özdüzenleme, görsel sistemdeki daha üst seviyelerde de gözlenir. Bu tez çalışması, görsel sistemi farklı yönlerden inceleyerek, özdüzenlemeyi sağlayan yerel kuralların altında yatan biyolojik ve matematiksel/berimsel prensipleri araştırmaktadır. Bu incelemenin sonunda, bu prensiplerden yararlanarak yazılan hibrid bir bilgisayar modeli kullanılarak, yerel kuralların hücre farklılaşması, mozaik retina, katmanlı yapı ve ağ topolojisine etkisi araştırılmıştır.
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	CHAPTER 1
	1 Introduction
	Sophisticated organisms often display a well controlled complexity, regularity and hierarchical organization that emerge from cell-cell and cell-environment interactions. Brain and perceptual systems are the epitome of this phenomenon. A perceptual system transforms external stimulus into internal representation(s) while still mostly maintaining the spatio-temporal consistency within the transformed representation of the stimulus (i.e. a retinotopic map, see subsection 4.3.1). This “consistent” transformation often requires regularly organized computational “building blocks” (i.e. receptive field mosaics described in subsection 3.2.3) and, especially in the case of the visual system, a well organized hierarchical structure (subsection 4.1.1) that may be the result of information theoretic constraints (i.e. uniform sampling and joint entropy, sections 5.1 to 5.3).
	Cell-cell and cell-environment interactions offer a way to understand how the organization of complex systems such as brain and visual system is controlled at cellular and hierarchical levels. These interactions can be described as local rules dictated by the DNA and epigenetic mechanisms. Local rules can be used in a computer model for modeling neurons that can self organize into computationally meaningful building blocks and hierarchies that are observed in the visual system and brain.
	Rigorous experimental analysis of various cell types (i.e. retinal ganglion cells, simple cells, complex cells described in sections 4.2 and 4.3) as well as computational and conceptual models make the visual system a relatively well documented area. Moreover evolution and development of visual systems are well studied. Therefore, an exploration of how visual systems evolve, develop and what the computational properties and constraints of vision are, may yield valuable information for a computer model. For this purpose, an investigation of evolutionary, developmental and computational principles underlying the organization of the visual system is required.
	The quest for understanding the underlying principles of organization in the circuitry of visual system requires one to delve deep into the sea of knowledge within the territories of several disciplines. As visual system first decomposes visual input into its constituents, this thesis work, first starts with an analysis of the visual system from the evolutionary, developmental and computational perspectives. The analysis of the visual system spans the next three chapters. Each chapter represents insights and findings from a distinct perspective.
	First, the chapter on the evolutionary perspective outlines the roots of synapse, neuron, the nervous system, eye and the visual system, and the biological diversity observed across the visual systems of primitive vertebrates in a comparative way. Then the chapter proceeds with a possible set of evolutionary mechanisms that may be responsible from the evolution of complex organs.
	In the next chapter, a developmental perspective is adopted. Starting from the early development of the nervous system, processes such as cell proliferation, cell migration, axon guidance and cellular differentiation as well as programmed cell death and synaptic pruning are investigated. Next, the development of the retina, the visual pathways and the developmental role of prenatal activity and postnatal stimuli are discussed.
	In the third part of the analysis of the visual system, a conceptual/ computational approach is assumed. After starting with a review of well known conceptual/computational modeling paradigms developed for investigating the visual system, mathematical models of receptive fields of the cells in retina, lateral geniculate nucleus (LGN) and primary visual cortex (V1) are investigated. Then, in the discussion section, the modern view of visual system is compared to the traditional view.
	In chapter 5, a synthesis of the highlighted points drawn from the previous three chapters is provided. The synthesis has revealed three fundamental principles which are relevant for modeling and investigation of computational properties of vision. These three principles are related to information theory, network theory and dynamical systems theory. For the first principle, information theoretic relation between entropy and visual pathways, the multiresolution scheme and its evolutionary advantages are discussed. For the second principle, the relation between the idea of reusability and systems displaying scale free network and small world properties are discussed. Finally, for the last principle, development, edge of chaos and dynamical systems are discussed.
	In chapter 6, a hybrid computer model that was implemented to jointly explore evolutionary and developmental principles is given. In particular, within a computational framework, the effects of local rules are observed. Via successive addition of new rules to an initially simple computer model, different connection and cellular differentiation schemes, new cell types, mosaic and layered structures are observed.
	Overall, questions such as “How visual system “acquired” the elaborate and precise organization through the evolution? What were the constraints and mechanisms? How visual system develops and how is complexity achieved during development? What are the relevant computational properties of vision? What is the author's overall computational perspective on the underlying principles?” are answered in the next four chapters. Then an evolutionary developmental computer model, which embodies some of the design principles derived from previous chapters, is used for an investigation of local rules which define cellular interactions and their overall effects on cellular differentiation, mosaic and layered structures.
	Main contributions of the computer model is that this model combines the advantages of multi-objective optimization and differential evolution (with modifications such as whole genome duplication, dynamic crossover rate etc., see subsection 6.2.3) with the advantages of developmental rules (regional identity, cellular differentiation, exclusion zones etc.). Since the design of the model is inspired from the evolutionary and developmental research on the visual system, the model generally uses biologically plausible principles. Moreover this model introduces a methodology to create/evolve cell types that can have highly specific behavior via successive addition of restrictive rules to the genome using an evolutionary component. This allows simultaneous existence of cell types that have different degrees of precision in their differentiation and connection scheme (subsections 5.1 to 5.3 are relevant). The model does not require predefined cell types except a single generic cell type. Therefore, in theory, this model can generate infinitely many number of cell types that can have separate differentiation and connection scheme. Using this model, one can create a network which incorporates various cell types that have certain characteristics similar to known biological structures (such as retina).
	CHAPTER 2
	2 Evolutionary Perspective
	2.1 Origin of Nervous System

	Research on many essential features of the nervous system shared by a wide spectrum of species points to a common ancestor that already had the basic circuitry (Ghysen, 2003). It seems there are few reasons for a developing organism not to use an already well-tested initial structure. If there is a highly selective pressure which requires a critical change, then a late modification to the initial structure is still possible.
	From the developmental perspective, a well-tested fundamental circuitry is critical for an initial setting that allows later modifications to build upon it. Moreover, as time passes and evolutionary changes build upon the initial developmental trajectory (as later developmental modifications), a prominent change in the initial steps of developmental trajectory while maintaining stability would be less and less plausible (Ghysen, 2003). Therefore, rather than making an initial change, late modifications can be more robust. This idea explains the similarities between ontogeny and phylogeny. To give a well known example for homology, all tetrapods (vertebrates with four limbs) have five digits, yet they may be modified; some digits may elongate and some may even completely disappear before birth so that they can be optimally used for various purposes.
	Development of any complex organ depends on simpler and simpler versions of that organ along the (reversed) developmental trajectory. Thus, a late mutation that makes changes to the development of one of these simpler versions could disrupt the whole developmental trajectory (Andersen, 2003).
	Brain and the nervous system also exhibits a complex structure and therefore the same idea applies. This motivates researchers to search for homologies between the nervous systems of species of extreme diversity. For example in a particular piece of research, the nervous system of flies (Drosphila) and humans are compared and it was shown that tripartite organization of brain and corresponding gene expression in the embryo of drosophila and human (or in fact any other vertebrate) is similar (Hirth et al., 2003).
	This suggests an urbilaterian ancestor (last common ancestor of all higher animals) that already had a nervous system with an established degree of sophistication. To have an idea on the nervous system of this urbilaterian ancestor, a finer grained analysis of the origins of nervous system is necessary. This requires an investigation beginning at least from the synaptic level.
	2.1.1 Origin of Synapses: Ursynapse

	Fundamental properties related to synaptic transmission and plasticity seem to be mostly conserved across species (Kandel, 2004). Therefore it is plausible to assume that there was a common ancestor which had the ursynapse (last common ancestor of all synapses ) before an urbilaterian ancestor. Since without synapses, axons and dendrites are irrelevant, emergence of synapse seems to be a necessary precursory step for the evolution of neurons and therefore the nervous system (Ryan & Grant, 2009).
	2.1.2 Origin and Evolution of Neurons

	There are various theories on the origin of various aspects of neurons (Miller, 2009). According to one theory which dates back to 1970, a cell on a layer of tissue that can respond to physical stimuli by contraction may have been further specialized into two different cells, effectively creating two adjacent layers in which the outer layer of cells can detect physical stimuli and the inner layer of cells can contract. The communication between these adjacent layers may have been possible via ion exchange through pores. With evolutionary changes, the ion exchange mechanism may have turned into a more elaborate mechanism eventually creating synapses and later, axons and dendrites (Mackie, 1970).
	The origins of excitability seem to date back to single-celled organisms. For example Paramecium caudatum uses electrical excitability as a steering mechanism. When it bumps into an obstacle, a voltage change occurs and its cilia movement changes for a short duration; as a result, the organism changes its direction (Miller, 2009).
	At the genetic level, investigations of the Amphimedon queenslandica (sponge) genome points to a set of genes that are used in precursory neurons of more complex animals for differentiation. According to this body of research, this neurogenetic circuitry was ancient enough to be used by urmetazoans that are the first multi-cellular animals except sponges (Richards et al., 2008). Moreover, it is well known that some sponges are able to generate action potential (Leys et al., 1999). Therefore, sponges seem to have many of the necessary tools for the evolution of neurons and the first primitive nervous system.
	Another candidate proposed by some researchers is Ctenephores (comb jellyfish) which are considered as one of the first metazoans and they have a rudimentary net-like nervous system. However, genome analysis shows that the evolution of the nervous system of bilaterians (all higher animals) went in parallel with them (Schierwater & Kamm, 2010). Nonetheless, simplicity of their neurons and their nervous system may highlight certain features that may also exist in more complex organisms.
	2.1.3 Origin and Evolution of Eyes

	From the evolutionary perspective, any organ with the ability to detect the direction of light can be considered as some form of eye such as an imaging eye, a protoeye or an eye spot (Lamb et al., 2009). There are also more strict definitions in the literature which requires eyes to be able to form an image, no matter how crude (Gregory, 2008).
	Today, living animals have at least eight different types of eyes that can form an image. An animal may have either chambered or compound eyes that can use shadows, refraction or reflection for the formation of image (Gregory, 2008). What are the origins and mechanisms for the evolution of such diversity? To answer this question, one needs to first investigate the origins.
	At the cellular level

	First, photopigments bearing certain similarities to rhodopsin may have been evolved since they can be used by various single-celled organisms for purposes such as better harvesting light for photosynthesis and a better chance of finding mates or food. Research on phototaxis (which enables an organism to move towards the direction of light in three dimensions) confirms that this had indeed happened in eukaryotes at least eight times separately (Jékely, 2009).
	At the multi-cellular level

	Rather than creating novel solutions on the spot, gradual changes in cellular specialization, and therefore, a 'division of labor' among different cell types is a more plausible scenario to explain the origin and evolution of the eyes. According to a recent research study, such a scenario may require a single multi-functional cell type that had the ability of phototaxis (Arendt et al., 2009). An ancient cell type that had cilia movement, shading pigments and photopigments probably accumulated an initial toolbox of genetic information for the development of multi-cellular visual organization. Such a multi-functional cell may have been then evolved into several specialized cell types such as shading pigment cells, photoreceptor cells or ciliated locomotor cells. This idea predicts that certain vestigial features may still exist especially in larvae of certain animals. Supporting evidence for this prediction is illustrated in Figure 2.1 which shows multi-functional cells found in Amphimedon (demosponge) and Tripedalia (box jelly) larvae respectively. These cells can function as locomotor ciliated cells (LCC), photoreceptor cells (PRC) and shading pigment cells (SPC) (Arendt et al., 2009).
	The compactness of the initial cell types and consequently the idea of an initial generic behavior for all cell types can be critical and will be used in the evolutionary/computational model (see chapter 6).
	Figure 2.1. Multi-functional LCC/PRC/SPC cells

	(a) Amphimedon (demosponge) larvae having only cilia (b) Tripedalia (box jelly) larvae having cilia and microvilli (mv)
	(Arendt et al., 2009, p.2810)
	2.2 Linear Evolution

	Sensory evolution requires a simple starting point. That is, through the evolutionary history, addition of 'sensory tasks' on top of a primitive starting point is necessary (Nilsson, 2009). At first, ambient luminance may have been used to modify simple responses according to sea depth, time of the day etc.; then single purpose primitive sensory units with peripheral filtering may have been relevant for a simple processing circuitry or an effector organ. Only later, as the filtering and/or processing circuitry co-evolved with the sensory organ, responding to a larger variety of certain aspects of sensory input may have been possible.
	2.2.1 Visual Acuity

	As the evolution of the eyes continued, resolution of the visual input may have been a critical factor for predatory behavior, mate and/or predator recognition etc. For increased spatial resolution, narrower angles for each receptor cell may have been necessary. This may have been achieved by pigment-cup eyes at the cost of having less number of photons per photoreceptor. Although having membrane stacking may have increased the sensitivity to a small degree via increasing photoreceptive membrane area, focusing optics may have been the next necessary step to establish better sensitivity to low luminance and a high degree of spatial resolution (Nilsson, 2009). Overall, specialization of fundamental tasks in eye evolution may have followed below steps:
	Non-directional photoreception,
	Directional scanning photoreception,
	Membrane stacking (sensitivity to light),
	Spatial vision with low resolution,
	Focusing optics (higher sensitivity to light),
	Spatial vision with high resolution.
	Visual acuity is probably a more stringent evolutionary constraint than one may expect, since the gradual refinement of the spatial resolution have certain computational implications. For example, evolution of better spatial resolution probably required more efficient mechanisms for the filtering and/or transformation of the visual stimuli. This and other computational implications of the evolution of visual acuity will be discussed further in chapter 5.
	2.2.2 Earliest Vertebrates

	Hagfish is a jawless vertebrate that survived for hundreds of millions of years without much change (Bardack, 1991). Hagfish eyes are fairly primitive since they lack cornea, iris and lens. Moreover its retina has only two layers instead of three, lacking bipolar and amacrine cells, consequently photoreceptor cells connecting directly to the ganglion cells (Lamb et al., 2007). Instead of a cornea, its eyes are completely buried under a translucent patch of skin (Lamb, 2011).
	Hagfish eyes may have been degenerated from a simple form of camera type eye. However, they seem to be still useful in their diminished form, since their eyes were maintained for millions of years without further decay. One theory is that hagfish eyes are used to modulate circadian rhythm (24 hour rhythm of bodily functions such as sleep etc) like the pineal gland in most vertebrate brain (Lamb, 2011). In fact, development of vertebrate eyes display a phase where the retina has only two layers, lacking bipolar cells, and photoreceptor cells connecting ganglion cells directly.
	Hagfish eyes which are only used for detecting luminance (or non-directional photoreception) still have advantages. As one may expect, nondirectional photoreception seems to be the simplest possible form of vision. This supports Nilsson's theory (see 2.2.1) where he claims that specialization of fundamental tasks in the eye starts with non-directional photoreception (2009). After contrasting with Arendt and his colleagues research which was already discussed in section 2.1.3, one may conclude that the earliest task of specialized 'eyes' consisting of specialized cells that had lost their multi-functional properties was measuring ambient luminance (2009).
	As the next step, for example a simple sensor effector circuit that could only be triggered by a specific form of stimuli may have been later evolved into a more multi-purpose system as the nervous system itself evolved into an elaborate structure which can process rather complex aspects of stimuli (Nilsson, 2009). This requires cellular level specialization. A supporting evidence for cellular level specialization in the vertebrate retina is based on rhabdomeric photorecepter cells, which are considered as the precursory cell that evolved into the retinal ganglion, amacrine and horizontal cells in the vertebrate retina (Arendt, 2003). Also rod cells are considered to be evolved from cones (Collin et al., 2009). Moreover, bipolar cells seem to be derived from rod/cone cells, explaining the close resemblance between bipolar cells and rod/cone cells (Lamb, 2011).
	Overall, evolution of vertebrate eyes required cellular specialization and an increase in the number of layers in the retina. This idea may be critical for achieving a more sophisticated structure through the evolution1.
	2.3 Tree Thinking

	Linear evolution models of eye can be further refined when combined with the concept of 'tree thinking' (Plachetzki & Oakley, 2007). The rationale is that, since there is a common ancestor for most species, there should be several mechanisms to generate the observed diversity across species. Hybridization of ideas from linear evolution and tree thinking may bring a better explanation to the evolution of complex organs.
	2.3.1 Duplication, Divergence and Co-option

	Proposed mechanisms by Plachetzki and his colleagues (2007) are duplication, diversification and co-option. 'Duplication' applies not only to gen(om)e level duplications such as segmental duplication, whole genome duplication etc. but to any level such as cell, organ, protein domain, groups of interactive proteins etc. duplication. Similarly, diversification and co-option also apply to these levels.
	To exemplify duplication and divergence, any serial homolog such as segments, limbs, teeth and eyes are considered diverging duplicates (Minelli, 2000). Duplications create redundancies which can freely be modified while the original copy can still maintain its tasks without any dramatic change or disadvantage, allowing gradual specialization.
	In addition to duplication and divergence, there is another prominent mechanism called co-option. Co-option is in essence an indirect evolutionary mechanism, which is also known as exaptation (Gregory, 2008). Exaptation recruits already existing resources to solve a seemingly irrelevant problem. (Assembling several of such resources to create a novel functionality is called a collage). An example to exaptation is that, due to changes in certain transcription factors, cells of certain types may be expressed in normally irrelevant positions (ectopy). Recruitment of these cells for the creation of a novel functionality would be exaptation at the cellular level.
	2.3.2 Scaffolding

	Scaffolding explains how organs having seemingly irreducible complexity can evolve. An architectural analog to scaffolding is given by Dawkins (1986, p. 149):
	An arch of stones...is a stable structure capable of standing for many years even if there is no cement to bind it. Building a complex structure by evolution is like trying to build a mortarless arch if you are allowed to touch only one stone at a time. Think about the task naively, and it can’t be done. The arch will stand once the last stone is in place, but the intermediate stages are unstable. It’s quite easy to build the arch, however, if you are allowed to subtract stones as well as add them. Start by building a solid heap of stones, then build the arch resting on top of this solid foundation. Then, when the arch is all in position, including the vital keystone at the top, carefully remove the supporting stones and, with a modicum of luck, the arch will remain standing.
	A summary of the proposed mechanisms which explain the evolution of complex organs is given in Figure 2.2 below. Stage (J) represents a seemingly irreducible complex organ in which all parts must be present to maintain functionality. At one step earlier there is (I) which actually has more components than (J). One component of (I) becomes unnecessary and lost, leaving behind an irreducibly complex organ (scaffolding). At an earlier step (H) is constructed via assembling (G) with (F) (collage). (G) has duplicated parts. (F) modifies the components it inherited from (E) for a better performance. (C) recruits (D) to achieve a new/better functionality creating (E) (co-option). (C) is again a refinement of (B) which is created by two irrelevant components in (A).
	Figure 2.2. How to evolve a complex organ

	(Gregory, 2008, p.365)
	2.4 Summary and Discussion

	The investigation of visual system from the evolutionary perspective, highlighted several critical biological properties. Three of them, which deserve reader's further attention will be discussed and summarized in this section. 
	Firstly, the mechanisms that explain the evolution of complex organs (discussed in 2.3) may as well explain how a neural circuitry that requires fast learning and/or optimization of a certain task, may have been evolved. Within the context of this thesis, referred neural circuitry corresponds to an efficient filtering and/or transformation mechanism for the visual stimuli, which should require a relatively short learning and/or optimization period. This entails that, there should be some mechanisms to organize certain properties of the circuit before birth.
	An important evidence for this phenomenon is the observation that the development of 'receptive field mosaics of retinal ganglion cells' (which provides uniform sampling for the visual space) does not depend on external stimuli (Anishchenko et al., 2010). Therefore receptive field mosaics of retinal ganglion cells already matures before birth.
	One regulation mechanism in prenatal retina is 'waves of activity' which synchronizes retinal ganglion cells and their target cells. Results from related experiments indicate various signaling cascades which are controlled by several genes (Blankenship et al., 2011, Torborg & Feller, 2005). However, environmental factors can also play decisive roles especially in critical periods (exemplifying experience expectant development). For example, postnatal visual circuit development has eye specific characteristics, since experience dependent pruning and axon refinement creates eye specific circuitry, which mostly requires external input (Huberman, 2007).
	Also, to speculate from an evolutionary perspective, evolution of a purely genetic control mechanism that is responsible from a pre-optimized circuit which can consistently segregate/integrate input from both eyes would be harder than evolution of a hybrid mechanism which partly depends on genes but can also take advantage of the consistency within the external stimuli. Thus, self organization of neural circuitry for visual system not only requires predetermined local rules which are modulated by genes, but also environmental inputs which have intrinsic properties that can be exploited.
	Secondly, animals share a common urbilaterian ancestor and a common genetic toolbox for a primitive nervous system (Wirmer et al., 2012). These common genes used by both vertebrates and insects in the development and later functions of the nervous system. Pallium or cortex in vertebrates and mushroom bodies in insects have therefore a single evolutionary origin. It is obviously necessary to have novel proteins and genes to explain the extent of genetic diversity, however, it seems that diversity of phenotype is achieved via more subtle ways than simply adding one novelty after another. A relevant idea is that novelties are more in the form of new combinations of the common genes and timing of their expression in development. This may be because of the nature of a primitive system which gradually increase its complexity to gain new benefits while mostly keeping the previous advantageous structures (since there are no jumps in evolution). Therefore novelties depend on and build upon the ancient toolbox. This is why, in general, ancient genes have more than one functionality. They are refined, well-tested and used more commonly. In other words they are reusable.
	Lastly, evolution of temporal and spatial visual acuity and acquisition of a more precise visual input have some information theoretic implications. These are closely related to the evolution of a multiresolution scheme which will be discussed in sections 5.2 and 5.3.
	Overall, a subset of the key points highlighted in this chapter were:
	principles necessary for the evolution of complex organs,
	a body of evidence implicating an urbilaterian ancestor that had a relatively sophisticated nervous system and idea of reusability,
	evolutionary constraints on visual acuity and the information theoretic constraints on the processing/filtering circuitry.
	This points have certain computational implications and they will be discussed in chapter 5.
	CHAPTER 3
	3 Developmental Perspective
	3.1 Development of Nervous System

	Neural development in humans starts from the third gestational week and arguably continues for a lifetime (Stiles & Jernigan, 2010). The developmental process is a complex harmony of both environmental and genetic factors, both of which have critical roles in the resulting neural circuitry via triggering of events or regulation between and within the developmental 'time windows', which are illustrated below in Figure 3.1. Timing of events can be critical from the start, since early events trigger later cascades of events (i.e. regulation of cell metabolism affects cell cycles, cell cycles affect cell proliferation, cell proliferation affects migration and morphogenesis, migration and morphogenesis affect the development of the whole nervous system).
	It is also crucial to see that some components of the genetic toolbox that are first used in the early stage of development later adopt new roles in specific contexts. Morphogens (which are discussed in subsection 3.1.2) are examples of this phenomenon, as they first function as guide molecules for migration, then pattern formation and cell fate. Later however, they can be used in tasks such as axon guidance and the formation of neural circuitry.
	Figure 3.1. Developmental stages in human brain

	(Andersen, 2003, p.5)
	3.1.1 Early Stages

	Neural development starts soon after the gastrulation phase, in which a single layer of germ cells in the shape of a hollow sphere which is called blastula, folds inwards and transforms into a three layered structure namely gastrula. After the formation of notochord, the earliest phase of neural development which is called neurulation begins.
	Neurulation

	Notochord can secrete several growth factors and also inhibitors which prevent the induction of an epidermial fate. Therefore, adjacent germ cells in the ectoderm layer become neural progenitor cells and form the neural plate (Stiles & Jernigan, 2010). Neural plate first becomes neural groove, then by folding upon itself, transforms into neural tube, which is considered the 'primordium of the entire central nervous system' (Greene & Copp, 2009). The period in which separation of neuronal cells from the ectoderm and morphosis of neural plate into the neural tube occurs is called neurulation and the developmental stage is called neurula.
	The regulatory role of notochord remains essential throughout the neural tube formation and involves complex cascades of molecular signaling which control cell behavior and pattern formation (Stiles & Jernigan, 2010). Transcriptional networks and biochemical gradients play critical roles when controlling cell behavior. Recently, researchers have found another factor which is called transmembrane voltage gradients or V(mem). It turns out endogenous bioelectrical gradients can also play the role of an epigenetic regulator (Levin & Stevenson, 2012).
	3.1.2 Morphogens

	In a developing tissue, several signaling molecules (not necessarily proteins) are secreted for the regulation of neighboring cell behavior/specialization; some of these molecules can diffuse and form a concentration gradient, creating a coordinate system, which enables cells to assume a 'regional identity'2 (Mason, 2009). These molecules are called morphogenes.
	Morphogenes often have key regulatory roles. For example they are responsible from diversification of motor columns (Dasen & Jessell, 2009) and laminar structures as well as foliation and molecular organization of the cerebellum (Sillitoe & Joyner, 2007).
	A relevant example to morphogens is called Sonic hedgehog (Shh). It plays key roles in many aspects of vertebrate development, such as dorso-ventral patterning of the developing neural tube and a direct effect on axon guidance (McMahon et al., 2003). Moreover, Shh affects retinal ganglion cells. It turns out retinal ganglion axons need a precise regulation of Shh. That is, too high or too low concentrations inside the retina can disrupt the centrally directed axons of retinal ganglion cells (Kolpak et al., 2005).
	Another example is Wnt, a family of secreted proteins. In early development, Wnt can counteract with Shh expression on the dorsal region of the developing neural tube (Robertson et al., 2004). Furthermore, Wnt proteins also have various effects on axons in different regions (Keeble et al., 2006, Lyuksyutova et al., 2003). In fact, Wnt and Shh are closely related, since they mostly act in concert. In late development, Shh and Wnt together can regulate neural circuit formation (Wilson & Stoeckli, 2012).
	In summary, morphogens can regulate various early processes such as cell proliferation, migration, cell fate and tissue patterning and they can play key roles in later development such as neural circuit formation (Petrie et al., 2009).
	3.1.3 Cell Proliferation

	Cell proliferation or reproduction begins with neural tube closure. Cell division always occurs at the inner surface of the neural tube (ventricular zone). Two types of cell division is possible. In symmetric cell division, two daughter cells remain in proliferative state. In assymmetric cell division, one daughter cell remains proliferative, the other migrates away from the neural tube. Some of these cells become neural precursors (neuroblasts), while others become glial precursors or glioblasts (Kriegstein et al., 2006). In proliferation phase, one mother cell can produce as much as ten thousand daughter cells (thousands per minute).
	3.1.4 Cell Migration

	Cell migration in vertebrates mostly uses molecular mechanisms which were long before used by simpler organisms (Hatten, 2002). This complies with the idea of reusability in evolution (described in 2.2.1), since there is no reason for a complex organism not to use an already well-tested toolbox of genes which control initial phases of development, even if this toolbox is inherited from much simpler organisms.
	Directionality

	The migrating cells often have an asymmetric morphology which allows researchers to define a leading and a trailing edge (Petrie et al., 2009). Therefore, when there is a cue for migration without any available directionality information (motogen), direction of the cell migration only depends on this intrinsic asymmetry (chemokinesis) (Stoker & Gherardi, 1991).
	In cells having no intrinsic asymmetry, the movement is random (Petrie et al., 2009). However, when there are external signals regulating directionality, (asymmetric cues such as external biochemical gradients), migration of the cells are controlled via an 'internal compass', or a steering mechanism that can make use of these external cues (chemotaxis) (Arrieumerlou & Meyer, 2005). With combinations of several such cues, regulated directionality information can have anterior-posterior, dorso-ventral or radial characteristics (Hatten, 2002).
	Neuronal cell migration

	Long radial glia connect inner (ventricular zone) and outer surfaces (mantle zone) of neural tube. On the surface of radial glia, there are certain cues that regulate the migration of cells from ventricular to mantle zone (glial mediated migration). Another mechanism of migration is also possible, where first an extension towards mantle zone is created and then cell body follows (nucleokinesis & somal migration). Overall, neuronal cell migration has radial characteristics (Nadarajah et al., 2001).
	3.1.5 Development of Cortical Layers

	Cortical layers develop inside out. That is, earliest neurons migrate to the deepest cortical layer. With next waves of migrations bypassing the earlier layers, more superficial layers successively develop (Stiles & Jernigan, 2010). Note that migrating neurons have no axons or dendrites. Development of cortical layers is illustrated in Figure 3.2 in more detail.
	Figure 3.2. Development of cortical layers

	(a) As time passes, superficial layers develop, (b) Neurons first migrate from ventricular zone (VZ) and form preplate (PP), then the next wave of migrating neurons splits PP into marginal zone (MZ) and subplate (SP) which are transient brain structures. Mature brain does not have MZ,SP or VZ. Intermediate zone (IZ) becomes white matter layer (WM), Cajal-Retzius (CR) cells produce Reelin which is a cue for the migrating cells to stop.
	(Stiles & Jernigan, 2010, p.337)
	3.1.6 Cellular Differentiation

	Cellular differentiation is specialization of progenitor cells into more specific cell types. It is closely related to proliferation.
	Research on progenitor cells shows that early in development they can produce any type of neurons. However, at later steps progenitor cells generate only region specific cells and by the end of neurogenesis, they are 'lineally commited' to upper layer cells, supporting the idea of fate restriction3 (Desai & McConnell, 2000).
	Through the development, different morphogens and mitogens (triggers of mitosis) are produced; they can have prominent effects on cell cycle, proliferation and differentiation. Some of these are well known, common regulators of differentiation (such as Notch, Wnt, FGF, Shh) and transcription factors (such as Sox family, Oct4 (Pou5f1) and Myc) and others are specific neurodevelopment transcriptional regulators (such as Hes, Neurogenin, Math and Mash1) (Kaldis & Richardson, 2012). For neural development, combinations of above signals and certain epigenetic mechanisms control cell cycle parameters, proliferation and differentiation.
	3.1.7 Axon Guidance

	After migrating neurons reach their target region, they develop axons and dendrites. Dendrites form dense arbors. Axons elongate and extend, growth cones at the tip of axons move towards their targets using cues such as attractive and repulsive guidance molecules which may be diffusible or may require contact. There is a fine grained resolution for the interaction of growth cones with cue expression; that is, there are 'hot spots of cue expression' (Mason, 2009). Moreover, transcription factors regulate the guidance receptor and cue expression. Therefore same cue may be interpreted as either repulsive or attractive according to the receptor. Some of the well known guidance cues and their receptors are given below:
	Table 3.1. Axon guidance molecules
	Guidance Cue
	Secreted/Membrane
	Repel/Attract
	Receptors
	Netrin
	+
	+,-
	DCC,UNC5
	Sli
	+
	+
	Robo
	Ephrin
	-
	+,-
	Eph,Ephrin
	Semaphorin
	+,-
	+
	Plexin,Neuropillin
	CAM
	-
	+,-
	CAM
	Morphogens: BMP,Wnt,FGF and Hedgehog
	+
	~,+,-
	Ryk,Frizzled
	+ first is true, - second is true, ~ concentration specific
	Also known are neurotransmitters like GABA, ECM (extra cellular matrix) molecules such as laminin, and growth factors like NGF (Bear et al., 2006, p.699). These neurotransmitters and growth factors are used for either refinement in the axon navigation or stability of newly made connections.
	Also note that researchers believe the first growing axons use surrounding cells as guides. However, later axons may not need to use surrounding cells at all; especially if they are forming bundles, they simply grow along with their mates (Mason, 2009). Moreover growth cone behavior may change in mid-development according to the changes in receptor expression.
	3.1.8 Programmed Cell Death

	As a natural phenomenon, at least fifty per cent of synaptic connections and a similar rate of neurons is eliminated in a systematical way in the developing brain (Stiles & Jernigan, 2010). In some regions, the rate is as high as seventy per cent (Rabinowicz et al., 1996). Neuronal loss mostly occurs prenatally, while pruning of axons spans a larger timescale and it is mostly postnatal. For programmed cell death, a gene regulated mechanism called apoptosis which consists of a series of physiological events that describes an intrinsic suicide program is used.
	Apoptosis can be triggered by various environmental factors as well as cell intrinsic ones. Likewise, apoptosis can also be prevented by several factors. For example, neurotrophic factors protect the cell from apoptosis. These factors are mostly produced by target neurons. A 'successful' afferent neuron is granted neurotrophic factors at synaptic sites which are used 'effectively' (Huang & Reichardt, 2001). Therefore, there is a high stake competition between neurons to establish effective connections since survival of the neurons is directly influenced by the amount of neurotrophic factors4. Cells which are solely used for 'construction' or cells that have transient roles in development can be eliminated via apoptosis after they have fulfilled their tasks. Consequently, apoptosis rate is also high in neural progenitors (de la Rosa & de Pablo, 2000).
	3.1.9 Synaptic Elimination/Pruning

	Developing neurons make extremely abundant amounts of synaptic connections. Although this may provide an initial advantage for the development of robust and malleable circuits in prenatal and early postnatal periods, at later phases in development, a more precise circuitry is favored. Therefore initial number of synapses in an infant brain, which has double the number of synapses compared to an adult brain, slowly declines with childhood and adolescence (Stiles & Jernigan, 2010).
	Similar to the transient cells, which have a scaffolding role in prenatal development, transient connections are observed in infants. For example, pathways having such a role are observed between/within corpus callosum, thalamocortical pathways, cortico-spinal tract, as well as temporal lobe and limbic system (Stiles & Jernigan, 2010, Innocenti & Price, 2005).
	Pruning and neurotrophic factors are closely related. For example, competition between synaptic connections for neurotrophic factors is a prominent mechanism for pruning. This also puts the role of external stimuli in the picture since afferent input may be critical to stabilize certain pathways.
	At the microscale, researchers show that there is a highly balanced dynamism at work. For example, rapid sampling, synapse formation and retraction are supporting mechanisms for axon guidance and target detection (Hua & Smith, 2004).
	3.2 Development of the Visual System

	How does the visual system achieve a well organized circuitry? The same principles for the development of nervous system apply. How does the visual system further refine the circuitry and achieve more precision? Answering this question requires one to look into the development of retina and then investigate the roles of prenatal development (internal stimuli) and postnatal development (external stimuli).
	3.2.1 Development of Retina

	Retina has at least seven major cell types (rod, cone, amacrine, bipolar, horizontal, ganglion and Müller glial cells) and production of each cell type in right ratios requires a regulation at the proliferation stage (with the exception of ganglion cells whose number is regulated via programmed cell death).
	After progenitor cells produce these cell types, migration into a correct location is the next necessary step. Migration into three distinct layers of retina occurs mostly as somal migrations (see 3.1.4). Meanwhile, before ganglion cells reach to their final positions, their axons already develop and extend across the inner retinal surface (Reese, 2011). After postmitotic cells position themselves into their destinations, their anchoring radial connections are lost (Ford & Feller, 2012).
	Next, axon and dendrite growth occurs and inner plexiform layer (IPL, connection site of retinal ganglion, amacrine and bipolar cells) and outer plexiform layer (OPL, connection site of rod and cones, bipolar cells and horizontal cells) in retina develops (Morgan et al., 2011). First, retinal ganglion cells and amacrine cells form the earliest functional circuits in IPL. Then, horizontal cells and photoreceptors connect to each other, forming OPL.
	At this stage, there are transient connections between photoreceptors and ganglion cells. Therefore, early in development, retina has a primitive form (probably reminiscent of an earlier ancestor) having two layers instead of three. Only later, bipolar cells (as mentioned earlier in 2.2.2) are created and they migrate between IPL and OPL. Then axons of bipolar cells connect to IPL and dendrites connect to OPL detaching the two layers and causing the ganglion cells to lose the transient direct connections to photoreceptors (Lamb, 2011). In the final step, synchronization between and within layers (lateral and vertical organization) and synaptic elimination occurs.
	3.3 Development of Thalamocortical Pathway

	The thalamocortical (TC) pathway transmits sensorimotor information (retina, cochlea, muscle or skin) to neocortex via the thalamus. It develops starting from the later part of the second trimester in humans till 26th gestational week (Kostović et al., 2006). The subplate layer (which is a transient structure observed in prenatal development, see 3.1.5), has a role in the construction of the TC pathway. Initially TC axons connect to the subplate layer and the subplate layer axons connect to the real targets of TC axons in cortical layer 4 (which is the primary input layer). With the help of subplate neurons, normal patterns of TS pathway develop. Only after around four weeks, the TC pathway becomes complete and subplate neurons start to gradually remove their connections and eventually die (Stiles & Jernigan, 2010).
	3.3.1 The Role of Prenatal Activity

	Researchers show that prenatal retina already develops similar 'receptive field mosaics' to adults; that is, receptive field center distribution and receptive field overlap distribution of ganglion cells are already fairly developed before birth (Anishchenko et al., 2010). One explanation is that in the prenatal retina, there are spontaneous patterned waves of activity. Such activity may effectively refine connections in an orderly way to represent maps of sensory space (Torborg & Feller, 2005). It was already observed decades ago that prenatal retinal ganglion cells activate (almost once per minute) in a periodical manner (Galli & Maffei, 1988). It turns out, the activation of ganglion cell can propagate from one cell to the next like a wave. This phenomenon is observed in various forms such as
	embryonic waves (which use gap junctions or electrical synapses),
	cholinergic waves (which use chemical synaptic transmission),
	glutamatergic waves (observed mostly in postnatal development, use of glutamate in synaptic transmission; also unlike the first two, waves observed within only a subset of neighboring cells (mostly OFF cells)).
	Above mechanisms may contribute to the development of dendritic maturation of ganglion cells which will become 'committed to' one of ON-OFF layers (only responding to either onset or cessation of light respectively) which are physically segregated from each other (Ford & Feller, 2012). This is called ganglion cell stratification. In fact, there is supporting evidence that cholinergic waves have a role in ganglion cell stratification (Bansal et al., 2000). However, cell stratification does not explain how receptive field mosaics develop before birth.
	Another possibility is that instead of retinal waves, receptive field mosaic formation may be primarily determined by the formation of anatomical mosaics5 (Anishchenko et al., 2010). A proposed theory is that anatomical mosaic formation can be achieved via type-specific neighboring cell interactions (Fuerst et al., 2008). Live imaging studies support this view since repulsive interaction between the same cell types are observed. For example most retinal ganglion dendrites avoid the dendrites of the same type (Lohmann et al., 2001).
	Overall, the prenatal development of the retina seems to rely on both retinal waves and construction rules which intrinsically enable the creation of anatomical mosaics and stratification.
	3.3.2 The Role of External Stimuli

	From the beginning of prenatal period till opening of eyes, several refinements are already made and consequently some characteristics of visual circuitry are already in mature form (McLaughlin et al., 2005, Chapman, et al., 1996). However, although connections are well patterned and some have even matured, there are still connections which are mostly malleable.
	Light sensitivity and visual acuity increases with postnatal adjustments and/or refinements to certain characteristic of some cell types, for example the receptive field properties of neurons in the visual system. Therefore external stimuli become critical on the maturation process of visual circuitry. While axon guidance cues, some signaling cascades and certain regulatory molecules still have roles on postnatal development, spontaneous neural activity becomes most prominent for the maturation of receptive field structures for neurons in various hierarchical levels.
	These receptive fields together define a circuitry for feature maps such as retinotopic maps (Huberman et al., 2008). A well balanced and mostly segregated eye specific circuitry also develops with external stimuli (ocular dominance columns and eye-specific layers). Spontaneous activity (retinal waves) and external stimuli in critical periods allow the visual circuitry to achieve more precise connections and an overall refinement. Certain molecules quicken this process by translating activity into structural changes (Stevens et al., 2007).
	While the effects of external stimuli can be critical for the development of certain characteristics, as mentioned earlier, not everything is activity dependent. Layer formation, overall map layout and retinal map mosaics (subbsection 3.2.3) are stereotyped features which are effectively controlled by genes and they mostly do not require external stimuli.
	3.4 Summary and Discussion

	The investigation of visual system from the developmental perspective, highlighted several critical biological properties. Some of them, which deserve reader's further attention will be summarized and discussed in this section.
	Firstly, it is evident that genes have strong control on the development of nervous system (see Morphogens under 3.1.2). Therefore, cellular (self) organization strictly depends on genes. However, this does not necessarily mean that the process of neural developmental is a strictly deterministic one. On the contrary, development per se may have certain chaotic characteristics, especially due to epigenetic factors. For example, no identical twins have the exact same fingerprint, nor have the exact brain structure. That is, regarding both fingerprints and brain structures, identical twins can have different 'folds' (gyri&sulci). Yet, the chance that they have the same fingerprint 'type' (used in pattern recognition) is much higher (0.7440) than non-identical twins (0.3215) (Tao et al., 2012). Likewise, similarity between brain scans of identical twins is much more significant, when compared to non-identical twins (Thompson et al., 2001, Pell et al., 2010).
	Secondly, regarding the evolution of complex 'organs' and evolutionary constraints, (see 2.3), events in the developmental trajectory may build upon each other and changing the genetic toolbox that controls early events may become harder and harder while an organism evolves and becomes more complex. For example, proliferating cells use aerobic glycosis (2 ATPs), rather than using oxidative phosphorylation (36 ATPs) to generate energy (Warburg effect). The answer to the question, why they use this inefficient mechanism even with abundant oxygen, lies in the fact that proliferating cell growth machinery needs a high ATP/ADP ratio and certain 'metabolic requirements that extend beyond ATP' (Vander et al., 2009). To speculate from evolutionary perspective, one prediction would be that proliferating cells still depend on a machinery that was 'invented' long before oxidative phosphorylation.
	Thirdly, the similarity between axon guidance and cell migration (discussed in 3.1.4) is hard to miss. It is highly plausible that cell migration contributed to the evolution of axon guidance. A relevant work which compares the underlying signal transduction pathways of neural growth cones with migrating cell types (dictyostelium, neutrophils and fibroblasts) supports this idea. It turns out that axon growth shares some “conserved mechanisms such as localized PI3 kinase/PIP3 signaling and a common output, the regulation of the cytoskeleton by Rho GTPases” (Philipsborn et al., 2007). From the evolutionary perspective, this may be a relevant example for exaptation (recruitment and usage of an earlier functionality in a different context which was discussed in 2.3.1). Also from the developmental perspective, a prediction is that transmembrane voltage gradients (which are epigenetic factors that function similar to morphogens, discussed in 3.1.1) may have a role in axon guidance, probably as a cue that provides local information (spatio-temporal) on neuronal activity.
	As a conclusion, controlled yet chaotic characteristics of development and reusable nature of genes deserve further attention and their computational implications will be discussed in chapter 5.
	CHAPTER 4
	4 Conceptual/Computational Perspective
	Since the extensive research of Hubel and Wiesel on receptive field properties of the cells in the primary visual cortex of various animals, the visual system drew the attention of a progressively more number of researchers from various disciplines (Hubel & Wiesel, 1962). The term receptive field which was first used in the early studies of retina, now has a more general meaning (Martinez et al., 2003). If a stimulus on a spatial (and temporal) region can change the behavior of a cell (not only retinal cells but also cells of higher levels, as well as cells of different sensory modalities such as the sense of touch); then the region is considered within the receptive field of the cell.
	Ideas of Hubel and Wiesel rightfully dominated the field for decades because of the systematic nature of their work and the resulting hierarchical model. Therefore this chapter will start with a review of the traditional perspective. Then, mathematical models which mostly incorporate traditional ideas will be given. Finally, at the end of the chapter, recent contributions and a comparison between the traditional and the modern view will be made.
	4.1 Comparison of Models

	There are three well known frameworks that contribute to the overall view of how the visual system works. Hierarchical model will be discussed first.
	4.1.1 Hierarchical Model

	Mathematical models are heavily affected from the traditional hierarchical understanding of visual system. Thus, the hierarchical model of Hubel & Wiesel will be discussed first (Figure 4.1).
	Figure 4.1. Simple and Complex cells in Hubel & Wiesel's model

	(Martinez & Alonso, 2003, pp.317-331)
	Hubel & Wiesel's idea was that receptive fields of simple cells were resulted from the center-surround receptive fields of aligned lateral geniculate nucleus (LGN) cells. Complex cells which were considered at the top of the hierarchy (layer 2 and 3), received only input from simple cells with similar orientation selectivity from layer 4.
	According to Hubel & Wiesel, simple cells had common characteristics such as:
	1. they were subdivided into distinct excitatory and inhibitory regions
	2. there was summation within the separate excitatory and inhibitory parts
	3. there was antagonism between excitatory and inhibitory regions
	4. it was possible to predict responses to stationary or moving spots of various shapes from a map of the excitatory and inhibitory areas. (Hubel & Wiesel, 1962, as cited in Martinez et al., 2003, p.318)
	Complex cells had not been classified according to their common characteristics (which were little), instead, they were the cells that did not fit above characteristics. Later, quantitative methods (i.e. response modulation) were developed to make a better distinction between the two cell types (De Valois et al., 1982).
	In the hierarchical model, only simple cells received input from LGN cells and complex cells being at higher levels of the hierarchy were assumed to have no direct connections from LGN cells. However, later studies suggested that this was not the case and there were direct connections (Martin et al., 1984).
	Yet, some computational models supported Hubel & Wiesel's ideas. First, energy models arose. Complex cells were modeled as “square sum of simple cells with similar orientation and spatial frequency but with phases that differed in 90 degrees”. (Ohzawa et al., 1990, Shams & von der Malsburg, 2002, as cited in Martinez et al., 2003). The energy models all assumed successive stages and therefore an underlying hierarchical model.
	4.1.2 Parallel Model

	Since it was demonstrated that complex cells also receive input from LGN, some researchers suggested separate channels where complex and simple cells work in parallel (Stone et al., 1979). They argued that nonlinearity started from retina and complex cells did not need input from simple cells to achieve their nonlinear behavior.
	Parallel model was supported by some experiments in which complex cells were activated yet simple cells were not (Hammond et al., 1977). However, the idea that complex cells were completely independent from simple cells was also refuted by some researchers (i.e. Callaway, 2001). Computational models that supported the parallel model were suggesting that LGN input with overlapping on and off centers could create orientation selectivity with insensitivity to phase changes (phase-invariant orientation tuning) (Mel et al., 1998).
	4.1.3 Recurrent Model

	Being a more modern approach, advocates of the recurrent model pointed to the discovery that the number of synapses between cortical regions and cells were much larger than the number of synapses coming from LGN (Martinez et al., 2003, Ahmed et al., 1994, Martin, 2002). In the recurrent model, it was proposed that intracortical connections may play the role of an amplifier for the weak percentage of input (10%) coming from LGN (Peters et al., 1993). Therefore the idea that a modulation of linearity by mainly cortical components is plausible. However, as the complexity of the model increases the amount of possible computational models with different perspectives also increases (Somers et al., 1995, Martinez et al., 2003).
	Overall, above models highlight certain properties of vision and these properties are not necessarily mutually exclusive (Martinez et al., 2003). Consequently, a more generalized model that takes into account processing modes which are specific to task types, would draw ideas from all three models.
	4.2 Retina

	Visual processing starts with the retina. There are several types of cells each mostly specialized on a single task. They function together in both parallel and hierarchical ways. For example there are cells specialized for color and detail as well as there are cells specialized for light sensitivity. Photoreceptors which are called rods are very sensitive to light and mostly insensitive to color. Counter intuitively, photoreceptor cells are depolarized in the dark (Schnapf et al., 1987). This means that photoreceptors are excited in the dark and inhibited in the presence of light.
	When light levels become low, rods become active. Cones on the other hand, work best in daylight since they are less sensitive to light than rods and more sensitive to color. In fact, this specialization of cells into opposite tasks is observed also in other levels of the retina and throughout the visual system. However, the role of retina is not only to segregate the visual input into its constituents, but also to function as a filter, reducing the redundancies within the stimuli. Photoreceptor cells (and some retinal ganglion cells) absorb the light and this initial signal is preprocessed via bipolar, horizontal and amacrine cells in a hierarchical way before it reaches most of the retinal ganglion cells. These cells together construct the receptive fields of retinal ganglion cells. Receptive fields have certain mathematical properties and they can be studied with formal approaches.
	Although in reality, there are more than twelve retinal ganglion cell types, in the traditional view of the visual system, retinal ganglion cells are divided into two major categories according to their size: magnocellular and parvocellular cells (Figure 4.2). Magnocellular (M) cells are large and insensitive to color, they also have large receptive fields and they can transmit information at a faster rate than parvocellular (P) cells. M cells can be further classified into two basic functional types. The first type, which is called on-center type, is inhibited if light falls on the surround, and activated when light falls on the center. The second type is called off-center type and it acts in the exact opposite way.
	Figure 4.2. Retinal ganglion center surround receptive field types

	(Left) M cells have larger receptive fields. (Right) P cells have smaller receptive fields and they are color sensitive. (Top) Center-off surround-on receptive fields (Bottom) Center-on surround-off receptive fields.
	P cells are the most common cell type in the retina. They are sensitive to color. They can have red-green or yellow-blue receptive fields. Red green types can be further divided into red-center green-surround and green-center red-surround subtypes. Similarly there are also P cells having either yellow-center blue-surround or blue-center yellow-surround receptive field.
	Receptive field size closely depends on the position of the ganglion cell. For example some ganglion cells on the fovea region receive input from only one photoreceptor cell (only cones), while some on the peripheral regions receive input from ten thousands of photoreceptors. This has some computational implications which will be later discussed6.
	4.2.1 Mathematical Formulation

	Receptive field of the retinal ganglion cells generally modeled using difference of Gaussians (this resembles Mexican Hat wavelets, see subsection 5.2.1) 7:
	(Equation 4.1)
	where output response O increases with k until a peak frequency kp, then decreases symmetrically (Zhaoping, 2012, p.21).
	Since the output response is most sensitive to an interval (or a band) of frequencies, one can conclude that center-surround type receptive fields of retinal ganglion cells such as P and M cells, mostly behave like a band pass filter.
	4.2.2 Computational Properties

	Center surround receptive fields, regular and precise connections and mosaic positioning of cells types have several computational advantages. Firstly, they result in band pass filters that reduce the redundancies and in effect compress the input data. This can also be predicted from the fact that the number of rod and cone cells are much higher (100x) than ganglion cells (Curcio et al., 1990). Secondly, retina, consisting of several types of neurons, intrinsically has some nonlinear properties. This nonlinearity results in high degrees of decorrelation. That is, high contrast images can be coded (and transmitted through the optic nerve fiber bottleneck) with higher efficiencies (Pitkow et al., 2012). Thirdly in color vision, because wavelengths of red and green color are very close, ganglion cell types having red-center, green-surround receptive fields or cells having green-center, red surround receptive fields enhance the difference between them. In addition to this, receptive field mosaics, (a uniform spatial arrangement of similar cell types with similar receptive fields), produce a uniform sampling mechanism of visual space (Anishchenko et al., 2010). Moreover, average response is kept mostly constant in natural scenes, independent from receptive field size of ganglion cells (Graham et al., 2006). Therefore, these points show that intrinsic nonlinearity and receptive field properties of various cell types in the retina, transform the input into a more “whitened” or flattened and balanced form through decorrelation, via a well organized work from ganglion cells with different receptive field types.
	There are also some trade-offs. For instance, retina is dominated by the rod type photoreceptors. Moreover, with increased distance from fovea, ganglion cells receive input from more and more rod cells. This effectively create larger receptive fields and higher sensitivity to light at the cost of higher precision. To achieve high resolution in a compensatory way, cone receptors are crowded together into a focused area called fovea. However, this in turn makes it necessary for the eyes to make saccadic movements, jump from one spot to another to “bring the objects of interests to the fovea” (Zhaoping, 2012, p.24) Also, unlike some invertebrates such as mollusks, all vertebrates have a blind spot because of the inverse order of layers where the optic nerve has to pass through retina (Lamb, 2011). As a consequence, human visual system uses spatial sampling to fill in the “blanks”.
	4.3 LGN and Primary Visual Cortex

	Optic nerve, which is considered as an information bottleneck, carries the activation information of retinal ganglion cells to lateral geniculate neuclei (LGN) which is a subregion of thalamus. LGN cells then transmit the information to (mostly) primary visual cortex. LGN has several roles and in addition to connections from the retinal ganglion cells, its cells also receive a high amount of feedback from higher visual areas. For now, only the feed forward connections and the role of LGN cells from the traditional perspective will be discussed.
	Primary visual cortex (V1) is the largest area in the occipital lobe (or visual cortex). Optic radiations from LGN create the receptive field structures of two major cell types called simple and complex cells (Hubel & Wiesel, 1962). Simple cells generally have excitatory and inhibitory regions in their receptive fields. They are mostly classified as edge or bar detectors; they are also sensitive to orientation. Complex cells are more common than simple cells. Generally they have large receptive fields and they can respond to moving lines or edges in an orientation and direction specific way. However, their receptive fields in general are harder to model and have nonlinear characteristics (such as lack of sensitivity to small spatial shifts).
	4.3.1 Mathematical Formulation

	At higher levels, the transformation of the visual input results in more complex spatio-temporal receptive fields. Since the connection scheme is much more complex than the retina, receptive field models are not directly derived from the circuitry; instead, a proposed mathematical model is directly compared to the receptive field of the relevant cell type(s) in the higher levels of the visual system, to see how much the mathematical model fits the biological data (i.e. Young & Lesperance, 2001). Below, some of these mathematical models are discussed.
	Lateral Geniculate Nucleus (LGN)

	Like retinal ganglion cells, LGN cells have center-surround receptive fields. LGN cells in layers 1 and 2 resemble magnocellular cells and in layers 3 to 6 they resemble parvocellular cells. Since they bear similarities to retinal ganglion cells, their spatial filters8 are mostly modeled as a difference of Gaussians as in Equation 4.1. However, there are also models where LGN cells are assumed to have small orientation biases that later can lead to a “sharpening” of orientation selectivity in visual cortex (Kuhlmann & Vidyasagar, 2011). Kuhlmann et al. model their spatial filter as below
	(Equation 4.2)
	where the constants A, B and ch, cv and sh,sv are used to define horizontal, vertical and center characteristics of inner and outer Gaussians. To introduce an orientation bias in a generic way, the modeler can first define a Kxy with a vertically or horizontally biased anisotropic center and then rotate it (Kuhlmann et al., 2011).
	Unlike retinal ganglion cells, LGN cells also act like transient filters in time (Teich & Qian, 2006). That is, in a sense, they compute the first order temporal derivative of the visual stimuli9. Temporal filter Kt for LGN cells şs defined as
	(Equation 4.3)
	where τ is response time constant (or “the duration of the temporal envelope”), ωt is the temporal frequency for the sinusoidal term to generate excitatory or inhibitory responses, and φ is the temporal phase (Kuhlmann et al., 2011, Teich et al., 2006).
	Overall, assuming an input stimulus S(x,y,t), the response of LGN cells OLGN can be formulated as the spatio-temporal convolutions of S with the space-time separable as below (Teich & Qian, 2006).
	(Equation 4.4)
	Above formulation can be used in feed forward linear models. However, in reality, the circuitry in LGN is more complex. For example, there are koniocelluler cells (which do not have center surround receptive field) in addition to magnocellular and parvocellular cells (Saalmann & Kastner, 2009). Moreover there are nonlinear components due to the feedback form visual cortex as well as nonlinearity directly from retina. Therefore in a more realistic model, one may need to take into account feedback and nonlinearity.
	Primary Visual Cortex

	Primary visual cortex has several computational properties. It has different cell types with different mathematical properties, as well as a well organized connection scheme which results in retinotopic map as discussed below.
	Retinotopic Map

	In the primary visual cortex, number of neurons is much higher (100x) than the ganglion cells in the retina (Zhaoping, 2012). Yet, neighborhood information within the image is mostly preserved in V1 and also V2, V3 and V4, even though the visual input is filtered and preprocessed during its transformation to the cortical surface. That is, from retina to visual cortex, activity within close by regions still maintains a spatial relationship (Wu et al., 2012). However, similar to the increased number of ganglion cells and photoreceptors in fovea, the number of neurons dedicated to central vision is proportionally high in the visual cortex (around half of the total number of neurons in visual cortex). There is also distortion in the angles. Thus, spatial relationship is not straightforward10.
	Simple and Complex Cells

	Primary visual cortex contains several types of cells which are in the traditional model simplified into two general types: complex and simple cells. Below, some mathematical models for both cell types are discussed.
	Simple Cells
	Simple cells in the early visual system have receptive fields that can be classified as Gaussian derivatives (Young & Lesperance, 2001). Gaussian derivatives in general also act like band pass filters. Moreover they closely resemble to Gabor functions (where a sinusoidal is multiplied with a Gaussian function). In fact, the limiting case for the higher order derivatives of a Gaussian leads to a Gabor function. It appears, in certain cases, Gaussian derivatives fit to experimental data even better than Gabor functions (Young et al., 2001). Thus, for simple cells, Gaussian Derivative (GD) spatio-temporal model will be discussed.
	If a Gaussian basis function g0 is defined as,
	(Equation 4.5)
	then derivatives of g0 which are
	for n=1,2,3... (Equation 4.6)
	can be used in the representation of a receptive field. To exemplify, for a single dimension, a receptive field can be modeled using Gaussian derivatives such as
	(Equation 4.7)
	(Equation 4.8)
	(Equation 4.9)
	(Equation 4.10)
	where n is 1,2,3 and 4. As one may observe, the derivative of a Gaussian is simply a multiplication with a polynomial of the same degree (i.e. 4th derivative means multiplication of basis with a polynomial with degree 4). Therefore, instead of a multiplication with a sinusoidal as in the case of Gabor functions, GD spatio-temporal model uses a polynomial.
	The generic formula for the real GD basis function is
	for n,o,p = 0,1,2,... (Equation 4.11)
	the multiplication of three one-dimensional Gaussian derivatives, where x',y',t' are normalized coordinate axes and n,o,p are order of derivative for the coordinate axes respectively.
	A simplified version of the above formula that still fits the experimental data is also given
	for n=0,1,2,3,4, p=0,1 (Equation 4.12)
	where o is no longer necessary (Young et al., 2001).
	A discrete version of the above model, which is biologically more relevant is called Difference of Offset-Gaussians (DOOG) (Young et al., 2001). Since a derivative is the limit of the difference approaching zero, derivatives for the one dimensional case are
	(Equation 4.13)
	(Equation 4.14)
	(Equation 4.15)
	(Equation 4.16)
	where h goes to zero. The above weights correspond to a Pascal triangle
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	They can be predicted by a “function of distance” from the middle of a random normal distribution (Young et al., 2001). The signs are interpreted as a mixing of inhibitory and excitatory inputs. It is biologically plausible that Gaussian-like connections are constructed by a connection scheme in which the probability of connections decreases with distance, also reducing the wiring cost11. Moreover, because gn can be constructed by gn-1 and gn-1 can be constructed by gn-2 and so on, they may also offer a biologically plausible model for the sequential processing of the visual input.
	Even though GD spatio-temporal model and its discrete version DOOG explain some biological phenomena, they are linear models and they fail to explain nonlinear events. Especially for complex cells, GD model requires nonlinear components. Therefore, below, a nonlinear model for complex cells which is inspired from GD model is given.
	Complex Cells
	Complex cells are not as well understood as simple cells. While their temporal response is similar to simple cells, they lack a well defined spatial receptive field. Below is a simplified formulation, based on GD model with a nonlinear characteristic12
	(4.17)
	where, x denotes a spatial vector (x,y)T. S(x) is the original visual input and G1 is the Gaussian kernel13 rotated by the angle θ for orientation selectivity. After the rotation by angle θ, the model behaves as if there was a spatial axis where single cells are aligned. Note that as long as the shift magnitude |t| is smaller than p, response C will always return the maximum magnitude of the convolution of signal S and Gaussian kernel G1. Thus, this model takes into account the insensitivities to the small spatial shifts observed in complex cells (Hansard & Horaud, 2011).
	Since a nonlinear component is integrated, potentially, Hansard and Horaud's model can describe the receptive field of complex cells better than linear models. Moreover, since their model is based on GD model and as discussed in the previous subsection, GD model and its discrete version have biologically plausible properties, Hansard and Horaud's model may also incorporate biologically plausible properties. However, their model seems to be still “in development”, since there are certain problems such as p being too general, no scaling parameters for receptive fields, usage of the basis of only the first order etc. (Hansard et al., 2011). Yet, by adding nonlinearity to achieve a more realistic behavior, this model proclaims an incoming of models in the near future where complexity is embraced for the sake of expressive power and biological plausibility.
	4.3.2 Modern View

	Gabor filter, DOOG and GD spatio-temporal models had a fair amount of success in explaining the early vision. These models and traditional hierarchical view of visual processing are closely connected. However these models generally show few cues on whether they are compatible with the modern view of the visual system.
	There are various conceptual/computational perspectives which are incorporated into modern view of the visual system. For example, efficient coding perspective has an important role on the mathematical formulations of early vision (Pitkow & Meister, 2012). Since the optic nerve is considered as an information bottleneck, the efficient coding principle states that early vision must somehow maximally compress the visual signal, keeping as much relevant information as possible. To achieve that, an efficient encoding mechanism would remove the redundancies and transform the signal into a set of uncorrelated data which can still be used in a fairly efficient reconstruction or decoding phase. However this is not simply achieved via center-surround receptive fields of the retinal ganglion cells which was taken into account in the traditional models; Pitkow and Meister's research shows that efficient coding also heavily depends on the intrinsic nonlinearity in the retina which is largely ignored in the mathematical models.
	There is also the more recent V1 saliency map hypothesis (Zhaoping, 2012). A bottom up saliency map may further refine the information selectivity, also serving as a bottom up filtering mechanism for attention. This alternative perspective to early vision can explain the redundancies which may still be present in the transformed visual input. Saliency map hypothesis also takes into account intra-cortical interactions and therefore it is a more modern view of the visual system (see The Modern View below). Priority map hypothesis builds upon the saliency map hypothesis. It states that there is always an attentional priority which behaves as a dynamical system (Bisley, 2011). Attentional priority is constructed dynamically by both bottom up (saliency map) and top down drives (task goals, personal biases, evaluation of importance etc). According to this theory, the peak of attentional priority map changes dynamically according to the eye movements (which themselves are controlled by the attentional peak on the priority map).
	A Comparison Between the Modern and Traditional View

	In mammalian visual systems, there are at least twelve afferent channels (Masland et al., 2007, Rockhill et al., 2002). Reciprocal feedback between cortical areas as well as cortical and thalamic regions is common. Moreover there is nonlinearity even at the retinal ganglion cell level (Schwartz et al., 2011, Pitkow et al., 2012). Therefore, traditional models make several simplifications when assuming a homogeneous sea of ganglion cell types having only canonical concentric center-surround receptive fields with prominently feed-forward connections and linear behavior (Martin & Solomon, 2011). A summary of the traditional and modern view is illustrated below in Figure 4.3. The traditional view is summarized in two main stages :
	(A) Pathways: retinal ganglion cells (having center-surround receptive fields) transmit information in parallel via (MC) magnocellular (movement and distance) and (PC) parvocellular (color and find detail) pathways to LGN.
	(B) Then in visual cortex, a line of adjacent LGN cells having center surround concentric receptive fields are used as feed forward inputs to a cortical neuron such as a simple or a complex cell to detect edge, orientation and/or movement; finally with increasing levels of feature selection, (A) visual input is further divided into where (position) and what (identity) pathways. In Figure 4.3, the modern view raises following criticisms to the traditional view:
	(C) There are several parallel pathways or channels (more than a dozen), for example non-standard cells such as koniocellular cells (KC) also contribute to the vision via KC layers in LGN, superior colliculus (SC) and lateral posterior-pulvinar complex (LP).
	(D) Feedback between cortical regions (cortico-cortical pathways) and from cortical regions to LP, SC and LGN (cortico-thalamic pathways) is fairly common. In fact at least half of the input to thalamus comes from visual cortex; feedback to primary visual cortex from other cortical regions is also common. The amount of retinal input to LGN is as low as ten per cent (Saalmann et al., 2009).
	(E) Modern signal processing scheme in primary visual cortex takes into account the role of feedback and reciprocal connections between the neurons processing related parts of information within the spatio-temporal visual stimuli. Contrast resolution in LGN is increased via cortico-thalamic feedback. In general, recent evidence points to the role of high level perception and cognition in the modulation of LGN (Saalmann et al., 2009).
	Overall, with recent findings, it is evident that traditional computational models that still assume a simple feed-forward visual system require refinements to achieve better biological plausibility. Modern view embraces a dynamical model with a lot of reciprocal feedback and parallel channels. Therefore, parallel channels should be taken into account. For example, receptive fields of retinal ganglion cells is essentially a band pass filter. Retinal ganglion cells have various receptive field sizes that depend on cell types and distance to the fovea. This allows selective sensitivity to various intervals of frequencies (i.e. multifrequency channels). Such selective sensitivity is important, because it is required when the visual system decomposes the stimulus into its constituents. This will be discussed in more detail in the next chapter (see subsections 5.1 to 5.3).
	For simple cell types, Young et al.'s GD spatio-temporal model and its discrete version predict a hierarchy of cell types each having Gaussian like connection scheme that depends on distance (see subsection 4.3.1). Such a connection scheme also decreases the overall wiring cost, since long range connections are kept minimum. This idea is incorporated in the computer model discussed in chapter 6.
	Figure 4.3. Recent additions to the traditional view

	(A) and (B) depict the traditional view, (C), (D), (E) illustrate the contributions of modern view (Martin & Solomon, 2011, p.30).
	CHAPTER 5
	5 Synthesis
	In the previous chapters, features of the visual system from evolutionary, developmental and computational perspectives were discussed. A subset of these explored features have underlying principles that are essential to the computational model developed in this thesis work. These “distilled principles” (and relevant information) will be discussed in this chapter.
	The first principle is about controlling entropy, therefore precision and resolution. This is closely related to the information theory. A biological system that has multi-scale resolution (also possibly multi-scale organization) can minimize joint entropy. This will be discussed in sections 5.1 to 5.3.
	The second principle is about evolution and reusability. A biological system that has a component which is mathematically or computationally meaningful, can maximize reusability. This will be discussed in section 5.4.
	The third principle is about development and edge of chaos. Changing cell cycle in early development can have chaotic results. This will be discussed in section 5.5.
	5.1 Precision and Joint Entropy

	Transformation of visual signal can be investigated from the information theory perspective. Assuming orthogonal time and frequency domains14, it is a well established phenomenon that there is a duality between their precision (Lewis & Mayer, 1929). Increase of precision in one domain results in uncertainty in the other domain, therefore they are inversely related. The relationship between two domains is given by Gabor as the joint entropy
	(5.1)
	where ∆t and ∆f are the entropy in time and frequency domain respectively (Gabor, 1946 as cited in Silveira et al., 2008). This states that simultaneous increase in the precision of both frequency and time domain is impossible.
	Above inequality predicts an advantage of having receptive fields with variant time/frequency resolutions. If retinal ganglion cells were all identical, they would reduce the uncertainty (or entropy) in only one domain at the cost of losing all the precision in the other domain. Retina has more than a dozen channels that incorporate cell types that have complementary roles. Moreover, receptive field size of each cell type can be variant.
	Therefore, this brings an information theoretic explanation to the phenomena such as receptive fields of retinal ganglion cells narrowing down in fovea and spreading out in peripheral regions and also different retinal ganglion cell types having different spatial resolution. This is necessary to take advantage of variant precision in time and frequency domains. Moreover receptive field of ganglions are also almost optimal, since they are very similar to Gabor functions which have minimal joint entropy (see the next subsection).
	5.1.1 Gabor functions

	Gabor functions have minimal joint entropy in time and frequency domains (5.1) (Gabor, 1946). A Gabor function is in essence a harmonic oscillation multiplied by a Gaussian. General formula is given by
	(5.2)
	where f0 controls oscillation frequency, θ is phase, α and t0 control sharpness and peak (Silveira et al.., 2008).
	Transformation of a Gabor function between reciprocal domains (time&frequency) using Fourier transform gives the same “analytical form” (Silveira, et al., 2008). Fourier transform of Gabor function is
	(5.3)
	(5.4)
	Gabor functions can be used as basis functions in expansion of other functions. Therefore any function can be represented by Gabor functions or Gabor “atoms”.
	5.1.2 P and M Receptive Fields

	Receptive field of Parvocellular (P) and magnocellular (M) cells “fit together”. They fit together (within the cell types) as each cell type can have either center-on or center-off receptive fields. It turns out this can be explained in terms of function expansions. That is, P and M cells may be operators of some form of mathematical expansion of visual input that uses Gabor atoms as basis functions (Silveira et al., 2008).
	Moreover, their receptive fields are complementary (between the cell types). While M cells have high precision in 1D time and 2D spatial frequency domain, they have low resolution in 2D space domain and 1D temporal frequency domain. Conversely, while P cells have high precision on 2D space domain and 1D temporal frequency domain and they have low precision on the reciprocal domains15 (Silveira et al., 2008). High temporal and spatial resolution, as one may observe, cannot be achieved together. This also explains why P and M pathways specialized into parallel or multifrequency channels.
	5.2 Multiresolution Analysis and Wavelet Transform

	Wavelet transform is defined by Mallat as the “decomposition into a set of frequency channels, having the same bandwidth on a logaritmic scale” (Mallat, 1989b, p.2091). (See the relation with early vision above in 5.1.2. and below in 5.3)
	With Fourier transform, a function (which essentially has perfect precision in the time domain) is transformed into another function that acquires perfect precision in the frequency domain. However, it loses all the precision in the time domain. To prevent this, short-time Fourier transform (STFT) can be used. A time window of constant size is necessary to achieve locality in both time and frequency domains. However, adjusting the size of the time window should be done manually.
	The main motivation of multiresolution analysis is that, natural visual stimuli consist of objects having different sizes. Large objects do not require high resolution and small objects do not require low resolution. Since there is no a priori information on the size of objects, with STFT, adjusting the time window according to each image is required for better performance. To prevent this, multifrequency channel decomposition is used, where time window is not constant but changing. This also achieves a time-frequency representation, intrinsically keeping some precision from both time and frequency domains. Below, wavelets and multiresolution analysis are described in more detail.
	Figure 5.1. Wavelets

	(Left) Meyer Wavelet, (Right) Mexican Hat Wavelet
	(From “Meyer Wavelet” by J.M. Loone, 2012, http://en.wikipedia.org/wiki/File:MeyerMathematica.svg. Copyright 2012 by Jon Mac Loone, From “Mexican Hat Wavelet” by J.M. Loone,2012, http://en.wikipedia.org/wiki/File:MexicanHatMathematica.svg,Copyright 2012 by Jon Mac Loone. Reprinted with permission.)
	5.2.1 Wavelets

	Wavelets are localized forms of waves which integrate to zero (Figure 5.1). They are used in areas such as image compression, i.e. digital fingerprint image compression by FBI. Also, wavelet decomposition / thresholding / composition strategy on raw data can greatly improve the data quality, getting rid of the noise.
	Wavelets can be used as basis functions to represent any function (similar to sines and cosines used as basis functions in Fourier analysis). “Mother wavelet”s can be dilated and shifted (translated) to create specialized variants which can be derived from below.
	(5.5)
	These variants can create a basis for L2(R), where c is a constant, and L2 is the Hilbert space of functions that have finite energy (functions that are square integrable). That is, any square integrable function can be represented by the linear combinations of ψjk. Simplest and oldest example of wavelets is called Haar wavelet (Block, Rogers & Ruck, 1994). It is a simple step function, defined between [0,1]. Dilation and translation operations are illustrated in Figure 5.2.
	Figure 5.2. Haar wavelets

	(Left) Mother Haar wavelet (Right) Scaled and shifted versions, their linear combinations can represent any square integrable function
	5.2.2 DWT and Multiresolution Analysis

	Discrete wavelet transform (DWT) and multiresolution analysis (MRA) intrinsically make use of the information theoretic ideas described in section 5.1. Unlike Fourier transform, wavelet transforms take advantage of wavelet functions that are local in both time and space (Mallat, 1989a).
	Multiresolution analysis, which unifies the earlier methods such as “subband coding” and “pyramidal coding”, analyzes the signal in different resolutions. This is achieved via upsampling and subsampling where the rate of sampling is increased or decreased by a factor of 2. Scale of the signal is doubled whenever there is low pass filter (and subsampling) and it is halved whenever there is high pass filter (and upsampling). This is done in a hierarchical way, effectively dividing signal into “multifrequency channels” and creating an analysis of the signal consisting of several components that have different precision in time and frequency domains (Mallat, 1989b).
	As the first step, DWT decomposes the signal into its coarse (low frequency) and detailed (high frequency) components. Then, DWT recursively repeats the same operation on the high frequency component. Each step of decomposition can be described as below:
	(5.7)
	(5.8)
	where Xh is the high frequency component Xl is the low frequency component, filtered by g (high pass filter) and h (low pass filter). At each step, time resolution is halved and frequency resolution is doubled.
	5.3 Early Visual Processing and Multiresolution Analysis

	When introducing the multiresolution analysis to the scientific community, Stephane Mallat and Yves Meyer were already aware of the fact that early visual processing has “multifrequency channels”. From Mallat's own words:
	..[M]ultichannel models have been particularly successful in explaining some low-level processing in the visual cortex. The expansion of a function into several frequency channels provides representation which is intermediate between a spatial and a Fourier representation. ...Biological studies of human vision have always been a source of ideas for computer vision and image processing research. Indeed the human visiual system is generally considered to be an optimal image processor. (Mallat, 1989b, p.2091)
	Application of this idea which was inspired from biology, to image processing was a success. Their ideas were fairly well received by the image processing community. In fact, most of their ideas later became part of the JPEG2000 standard (Unser & Blu, 2003).
	Multiresolution scheme was also used in image compression methods such as image pyramids. Image pyramid structure closely resembles to human visual encoding. Pyramid algorithms use spatial orientations in a similar manner to the human visual system (Wandell, 1995).
	5.3.1 Evolution and Multiresolution Scheme

	A robust perception system requires a mechanism to analyze all relevant types of natural stimuli. How can this be achieved in a generic way? The answer is decomposition of the input into its “constituents”. In the case of visual processing, creating a time-frequency representation of the visual signal has evolutionary advantages for predatory behavior, mate detection, recognition of moving objects etc. How does the visual system decompose the signal into its constituents? Theoretically this can be achieved via Fourier (uses pure frequency representation, no locality) or more plausibly, wavelet analysis (has locality, this intrinsically keeps some time representation as well).
	Note that the decomposition method may not be necessarily universal among animals; the only necessity is a generic method to analyze aspects of natural visual stimuli that is relevant to the organism. However, in any case, this brings the time-frequency duality into the scene. That is, the more precision the organism acquires in perceiving the stimuli (time representation), the less precise the analytic representation of the stimuli (frequency representation) becomes.
	Evolution of Parallel Channels

	Researchers in the image processing community (i.e. Mallat 1989b, Wandell, 1995) already suspect that a biological correlate to multiresolution scheme exist in the visual system. Assuming that the most primitive visual system had identical ganglion types, why multiple channels had evolved? Silveria et al. (2008) propose an information theoretical reason (namely joint entropy) for the existence of multi-frequency channels (P and M pathways) in the visual system. As discussed above and in section 5.1, joint entropy prevents the evolution of a single visual pathway with identical cells that has both high time and high frequency resolution16.
	Evolution of an organism that has a single visual pathway specialized for temporal resolution can be possible. However, high temporal precision would result in low precision in the domain of temporal frequency, (therefore ambiguous temporal “constituents“ to analyze the signal). Evolution of an organism that is good at resolving the spatial details is also possible, yet the same problem appears, this time in the spatial frequency domain. Thus, for a balanced perception, evolution of complementary parallel channels at some point is a necessity. Meanwhile, Gabor function like receptive fields which minimize joint entropy can also evolve; however, even with such receptive fields, without parallel channels or variant receptive field size, no more improvements can be achieved.
	A multiscale analyisis, or in a more generalized sense, a multiresolution scheme may provide a solution to the problem stated above, since a multiresolution scheme would allow a balanced representation of time and frequency domains. That is, to acquire complementary information on time-frequency representation that has variant time/frequency precision ratios (or to work around the joint entropy problem), emergence of a multiresolution scheme may have been necessary for the evolution of a robust visual system. Note that instead of the term multiresolution analysis, the term multiresolution scheme is used. This is because evolution can find various solutions to the same problem. The only requirement is to find a generic and balanced method to analyze the components of the signal relevant to the organism. This generic method may have nonlinearities. However, this does not cause a problem because there are examples of nonlinear multiresolution schemes such as nonlinear pyramid decomposition (Goutsias & Heijmans, 2000). Therefore, there is no reason for some form of multiresolution scheme to be not used in the visual system to generate variant precision ratios in the reciprocal domains.
	Where and What Pathways

	What if above idea17 also applies to higher levels in the visual cortex? One speculation would be that joint entropy principle brings an information theoretic explanation to where and what pathways. What and where pathways extract “mostly” independent features (where = a position in a map, object details is less precise, what = object details, object position is less precise) which can be considered as features of different dimensions. It may also be the case that they also complement each other in the reciprocal domains .
	Supporting evidence for this claim may be found in the neuro-anatomical connections suggesting that parvocellular channel mainly feeds the ventral stream which is the what pathway. However, this does not mean that the ventral pathway is a continuation of P channels. Rather this simply should be seen as an evidence for a biased input that is more precise in one domain. The “raw input” coming to what pathway is probably already analyzed and transformed, yet it is still highly plausible that there is a bias and certain orthogonal features have “highlighted” precision while other features have low precision. It is also possible that, input to the where pathway has some of the exact opposite features highlighted. Therefore they may have, to some extent, complementary roles, from the joint entropy perspective.
	Note that heavy connections between where and what pathways and resulting complex interactions should also be taken into account (Keizer et al., 2008). However, this requires a detailed investigation of high level processes in brain, which is outside the scope of this thesis.
	5.4 Evolution and Reusability

	A component that has mathematical/computational/abstract properties has a prominent advantage that can be summarized as reusability. The idea of reusability can be used to create a complex model from simple rules. A component in a model can be in essence, an abstraction of many possible components. (For instance a component that can become of immediate use in new contexts) Similarly, it can also be a multi-purpose component that already has several simultaneous roles.
	To give an example from the visual system, center surround receptive fields have several usages such as filtering and removing redundancies and decorrelation of the input (subsection 4.2.2). Receptive fields also resemble Gabor function, which has the property of minimal joint entropy discussed in section 5.1. Ganglion cell receptive fields have varying sizes and, in a sense, they are parameterized according to the distance from fovea. Mosaic receptive field structures for the same ganglion types along the retina and uniform sampling of the visual input is also related, therefore this organization requires an elaborate organization of “reusable components”. Multiresolution scheme also intrinsically has reusability (reuses the mother wavelet). Moreover, image blending task, which visual system has to do constantly, can be achieved via a multiresolution scheme (Burt & Adelson, 1983, Wandell, 1995).
	From the evolutionary perspective, since the advantages of reusable components are many, one may expect complex organisms to acquire several reusable components. Moreover, because evolution of complex organs requires mechanisms such as exaptation (section 2.3), having an “abstract” component that can be used in several contexts would promote the increase of complexity via exaptation. As the toolbox of reusable components enlarges, combinatorial usage would be more plausible. As discussed section in 2.4, novelties are indeed in the form of new combinatorial usages and small changes.
	From the developmental perspective, specific combinations of reusable components translate to specialized or differentiated cell behavior. For example same genes can be used in both neurulation and then later in axon guidance (subsection 3.1.2). A more extensive research shows that “a surprisingly small number of signaling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context” (Kiecker & Lumsden, 2009). In fact, the more ancient the component, the better tested it becomes, and many functionalities depends on these ancient components. Because with evolution an increasing number of functionalities become dependent on reusable components, these components, as well as the systems that are build upon them, become harder to change with time. This may be a rule of thumb for any system that successively increase its complexity. This idea is also applicable to the circuitry of the brain, evolution of gene regulatory networks and even the construction of roads, power grids or the development of the Internet. The resulting structure has often a characteristic form which is called a scale free network as illustrated below in Figure 5.3.
	Figure 5.3. A gene regulatory network18 (model)

	Hub like nodes describe high amount of reusability and control, while nodes with few connections describe highly context specific usage. (Fujita et al., 2007, p.41)
	5.4.1 Scale Free and Small World Networks

	A scale free network is characterized by that the number of connections display a power law distribution (Barabasi & Albert, 1999). A scale free network can be constructed via addition of new nodes that have an increasing connection bias towards the nodes with higher number of connections. The probability to connect a node i is given by:
	(5.9)
	where ki is the number of connections node i has and c is a constant.
	Another way to construct such networks is using a fitness model. Each node has a fitness value and fitter nodes attract more nodes, while less fit nodes lose connections. Fitness values may vary from the start, thus the network topology may also change in a more dynamical way with the addition of each new node.
	A critical property of scale free networks should be emphasized. Random node deletion generally does not have large effects on the topology (Barabasi & Albert, 1999). This explains the graceful degradation phenomenon and the robustness of gene regulatory networks to random mutations.
	Small World Network

	Another relevant network type that is commonly observed is small world networks. A small world network has the property that any node can be linked together via a small number of steps. Minimal wiring becomes a constraint as the brain size increases, therefore brain circuitry has the small world property. For example, laminar structures in the cortex minimizes connection lengths19. Moreover, brain has a network structure that can be defined as clusters of clusters. There are hub like regions which have a large number of incoming and outgoing connections as well as hub like neurons that connect to significantly more number of other pre-synaptic and post-synaptic neurons. Therefore connections in the brain are organized into a hierarchy, “from the microscopic cellular level via the mesoscopic level of local neural circuits and columns to the macroscopic level of nerve fiber projections between brain areas” (Zhou et al., 2006). Overall, brain circuitry achieves scale free network and small world network properties via laminar stratification and a topology that resembles a self repeating structure, a fractal.
	5.4.2 Fractals and Iterated Function Systems

	Fractals can be generated using iterated function systems. Iterated function systems (IFS) are especially relevant, because they are local operators (on contractive maps) that transform a previous structure in a recursive way into a self symmetric structure, as illustrated below.
	Figure 5.4. Iterated function system

	Applying an iterated function system to a simple initial structure results in a more elaborate self-similar structure called fractals. Above, well known fractals such as Gosper island, Koch snowflake, box fractal and Sierpinski triangle are illustrated.
	(From “Fractal” by E. Weisstein, 2012, http://mathworld.wolfram.com/Fractal.html. Copyright 2012 by E. Weisstein. Reprinted with permission.)
	How is self similarity achieved in a developing organism? Theoretically a multi-agent system can create self similarity at both behavioral and structural levels (Hoskins, 1995). Therefore, developmental rules and cellular level interactions are capable of leading to an emergence of functional/ behavioral self similarity. Emergence of self similarity in a multi-agent system is relevant, because this means a set of local/developmental rules can create almost any hierarchical structure (i.e. a model of early visual system that uses multiresolution scheme, a network topology that displays a hierarchical organization similar to the brain, that is, a cluster of clusters). Also note that, unlike traditional IFS, local/developmental rules can create more than fractals. Combination of local rules that are used in a cell, can even change via differentiation.
	Overall, the idea of reusable local rules is plausible. Combinations of local rules can be used for creating hierarchies and self similar structures (and in theory self similar behavior as well). Simple developmental local rules and differentiation can lead to creation of complex systems.
	5.5 Development and Timing of Events

	A disturbance in the timing of cell cycles of progenitor cells can have chaotic results. For example, according to Cecconi et al. (2007), a defect in apoptosis or cell cycle regulation of a small number of cells in the neural folds at the early stages of development can later affect large territories of the neural tube. Another example is that cell sizes can be affected from metabolic inputs. If the metabolic input is not controlled, increased cell size can disrupt the timing of cell cycle, this in turn can change the rate of proliferation and at the later phases of the development, this can be magnified into a large defect in the embryo. Therefore, small changes in the initial conditions, can later have large consequences. However, there is also robustness enough to produce “almost” the same phenotype from the same genotype (identical twins). Identical twins may have small differences in their brain anatomy or fingerprints (discussed in 3.5), yet they are proofs of high precision and strong control of development. This somewhat chaotic strong control brings to the mind the notion called edge of chaos (Kauffman, 1993).
	Strange Attractors

	In a dynamical system, state changes or trajectories can be represented in phase space. If a system has nonlinearities, sometimes its phase space contains limit cycles. Limit cycles can be stable or unstable. If a limit cycle is stable, it is an attractor. That is, any neighboring trajectory will eventually converge to it. Therefore, the dynamical system eventually converges to a repetitive oscillatory behavior (Kauffman, 1993).
	Strange attractors, on the other hand, are very different from stable limit cycles. They have properties that make them relevant for the development of complex organisms. They are unstable and mostly chaotic. Therefore, two neighboring trajectories that are on a strange attractor generally diverge and get arbitrarily far apart (Kauffman, 1993). However, obviously they cannot escape from the attractor. Moreover strange attractors have low dimensionality even in high dimensional state spaces. Therefore, this is literally “chaos in a box”.
	Figure 5.5. Lorenz attractor

	(From “Lorenz attractor”, by S. Roberts, 2011, http://replicatedtypo.com/creative-cultural-transmission-as-chaotic-sampling/3684.html. Copyright 2011 by S. Roberts,Reprinted with permission)
	Another critical idea from Kauffman is that since a dynamical system may have many parameters, by representing these parameters similarly in a parameter space, it is theoretically possible to describe developmental phenomena such as morphogenesis (Kauffman, 1993). This explains how large morphological differences can occur with small genetic differences (i.e. high morphological diversity between the species that are closely related, such as species on the same family).
	Overall, as Kauffman (1993) stated, edge of chaos can be a diversification mechanism for the development. In its phase space, a gene regulatory network (which is essentially a dynamical system) can contain stable attractors. For example stable cell types and homeostatic mechanisms may correspond to stable attractors. There can also be unstable attractors. For instance cellular differentiation mechanisms and morphogenesis may correspond to unstable attractors. Both stable attractors and unstable attractors emerge from the interaction of the components of the gene regulatory network. Consequently, this can explain the curious phenomenon: “a surprisingly small number of signaling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context” (Kiecker & Lumsden, 2009). This is because, simple interactions between a small number of (reusable) components have rich consequences.
	5.6 Summary and Discussion

	The investigation of visual system from various perspectives in the previous chapters revealed a core subset of evolutionary/developmental and conceptual/computational features that have underlying principles which are closely relevant to information theory, network theory and dynamical systems theory.
	In the sections 5.1-5.3, the restrictive role of (joint) entropy on the evolution of parallel visual pathways and its relation to the multiresolution scheme were discussed. Also as a speculation, possible role of joint entropy on the segregation of where and what pathways were mentioned. This may stimulate more information theoretic research on the role of joint entropy as an evolutionary constraint for the segregation of sensory pathways (and possibly higher brain regions).
	In section 5.4, the idea that a developing/evolving complex system would need to successively build upon its simpler versions and the connection of this phenomenon to the idea of reusability were discussed. Having abstract or computationally meaningful components may be an evolutionary advantage because they maximize reusability. Thus, computationally meaningful structures may be more common in the complex organisms than one may predict. This may (partly) bring an evolutionary explanation to questions such as why does the visual system have highly precise structural components which are often associated with several computational characteristics.
	As a structural counterpart to the reusability idea, the emergent structure which is often observed in the developing complex systems, namely scale free networks, were also discussed. Hub like nodes (reusable components) that have large number of connections among a sea of nodes with fewer connections have biological equivalents in the brain. From the gene regulatory networks to the topology and interconnections within/between whole brain regions, it seems, scale free networks are at work.
	Robust characteristics of scale free networks make them a prominent candidate for modeling approaches. For example, overall topology of a scale free network is not heavily affected from random deletion of nodes, making them suitable for both gene regulatory networks which require robustness against mutations as well as neural networks which require graceful degradation where random deletion of synapses does not have a prominent effect to the overall network behavior/topology.
	In addition to this, small world networks were discussed. With the increase of brain size, wiring becomes much more costly. Brain has a laminar structure and hub like regions/neurons to reduce the wiring cost while maintaining the small world property where any node can be linked to any other node in a small number of steps.
	In the last section (5.5), a biological property of developing organisms was discussed. Edge of chaos is a way to create diversity while still tightly regulating a large subset of events from the level of cell cycles to the level of developmental time windows. Gene regulatory networks are dynamical systems and their phase space contains stable and unstable attractors. Kauffman's idea was that stable attractors can simply translate to the known cell types while unstable attractors can be used as the so called edge of chaos mechanism to create the required diversity, using only a small set of local interaction rules.
	CHAPTER 6
	6 An Evolutionary Developmental Model
	In the previous chapters, several research directions were explored. In this chapter, a hybrid computer model which embodies some of the principles derived from these research directions will be introduced. The model can combine the advantages of evolutionary and developmental principles to explore the effects of local rules on cellular differentiation, retinal mosaics, layered structures and network topology.
	There are various types of relevant modeling lines that seek biological plausibility and focus on one of the areas such as spiking neurons, self organization, gene regulatory networks and genetic direct/indirect encoding methods for evolutionary computation. After a literature survey on such models, the evolutionary developmental computer model designed and implemented by the author of this thesis will be introduced.
	6.1 Computer Models with Varying Perspectives

	A disparate set of perspectives and corresponding models exist. For example, NEURON focuses on the realistic behavior of a single neuron (Hines et al., 2007, Hines & Carnevale, 2000). NEURON simulates intricate anatomical and biophysical characteristics of a single cell, aiming to answer high level research questions of neuroscience. A similar toolkit is Genesis, again aiming a realistic simulation of neuron behavior (Bower et al., 2007). Both NEURON and Genesis are capable of simulating networks of large sizes when running on a parallel computational architecture (i.e. a cluster) even though on a single computer they are aimed to simulate small networks. Topographica, on the other hand, focuses on large scale structure and behavior of networks or “topographic maps”, introducing the idea of “neuronal sheets” as building units to create a more practical model (Bednar, 2009). Topographica can control the level of detail, because potentially being compatible with NEURON and Genesis, it provides an interface where neuronal sheets can be extended to more realistic models. NEURON made an enhancement to be able to efficiently simulate spiking neurons (Hines et al., 2007). Spiking neural networks (SNN) focus on time, rather than biophysical properties. Consequently, spiking behavior of a neuron depends on the timing of incoming spikes which decay in time. To achieve a more complex behavior, stochastic components are usually added. Although none of the above models are intended for simulation of development and cellular differentiation, they allow high level and low level configurations which could be used in a developmental model (at least in theory).
	There is a recent study which introduces a model where stochastic parameters in SNN are controlled with genes, affecting the overall spiking behavior of SNN (Soltic & Kasabov, 2010). The focus of Soltic and Kasabov's study is computational neurogenetic modeling where interaction between genes which control stochastic parameters in SNN, is simulated through time via gene regulatory networks. However, in this study, since genes only control the stochastic parameters, they have an “overall” effect on the spiking behavior of the whole network, rather than specific cell behavior. Self organization can also be a point of focus. For instance, using temporal rules which are analogous to the spatial rules of Kohonen's self organizing map (SOM), self organization of SNNs can be achieved. However, the self organization behavior in Soltic et al.'s study is basic and it only affects the connection weights.
	Bottom up approaches such as agent based modeling are also worth mentioning, since they make use of local interactions. For example ABNNSim is suitable for research on self organizing topologies which can emerge from local rules. Even though neuron type diversity is ignored, it is demonstrated that extending the model for usage of spiking neuron instead of default neuron type perceptron is rather simple, making ABNNSim a candidate for more detailed models. It is also noteworthy that ABNNSim can use a medium for chemical signals such as adrenalin (Schoenharl, 2005).
	More realistic developmental models also exist. For example, Zubler and his colleagues developed a simulation tool called CX3D, where physical interactions (depending on physical shape etc) between growing neurons and developing networks are taken into account (Zubler & Douglas, 2009). Another line of modeling exemplified by Zubler et al., is self organization and construction of state machine like rule networks which control cell behavior. This in turn allows their model to incorporate gene regulatory network like properties (Zubler et al., 2011).
	In the artificial life context, hybrid models that combine evolution and development exist. For instance, Nolfi and Parisi's work (1995) focuses on evolving neural networks that develop in time and represent an organism's nervous system. Their model translates genetic information into low level parameters that describe position of neurons, branching angle, synaptic weight etc. The developing network affects the organism's behavior. Organisms evolve in a virtual world where the fitness function is given by the number of collected “food elements”.
	Kumar and Bentley's (2003) model, Evolutionary Developmental System (EDS), focuses on multi-cellular morphology. Using gene regulatory networks, their model generates cells that can organize themselves into certain shapes such as a line, a plane, a cube or a sphere.  A similar but more recent model, GReaNs (Genetic Regulatory evolving artificial Networks) can use gene duplications to achieve higher complexity (Joachimczak & Wrobel, 2012). GReaNs explicitly focuses on morphogenesis where self organization and differentiation of cells into various 3D patterns occurs. Although these models allow cellular differentiation and cell-cell interactions, they do not use neuron like cells or any connection scheme.
	6.2 An Evolutionary Developmental Computer Model

	As discussed above, highly diverse computer models exist in the literature. Therefore as the first step, three basic questions should be answered about the computer model developed in this study.
	6.2.1 The ”What” Question

	This model is not :
	a network of identical neurons or a neural network,
	a reverse engineering of visual system or retina,
	a simulation which mimics physical/chemical rules
	This is:
	a hybrid evolutionary and developmental computer model written in C++
	a model of a developing network or rather a 'tissue' of progenitor cell types that later differentiate into other cell types such as neurons20 according to neighborhood information
	a model that allows one to define and/or evolve local rules which are described in the DNA where these rules are indirectly translated into a network topology via cellular interactions.
	6.2.2 The “Why” Question

	This model incorporates ideas from both evolution and development. The design principles used in the model incorporates their combined strength. For example, in the developmental component, developmental parameters are configured by the DNA which allows an evolutionary model to use or change this information. If the modeler has no idea on the developmental parameters, (s)he can simply give the requirements in the form of a set of objectives (or fitness functions); then the developmental parameters will be searched by the evolutionary component of the model.
	This model can be used as a pure developmental model as well as a pure evolutionary model. Moreover the evolutionary component can have either single or multiple objectives. In this thesis work, the model is used for the purpose of finding and/or configuring local rules that describe cellular level interactions (developmental component) as well as exploring high level properties such as lamination and wiring cost (evolutionary and developmental components). Building upon the previous configurations is, as illustrated in the results section, fairly easy.
	This model contributes to the literature at least in two different ways. Firstly, it combines the advantages of multi-objective optimization and differential evolution (with modifications such as whole genome duplication, dynamic crossover rate etc.) with the advantages of developmental rules (regional identity, cellular differentiation, exclusion zones etc.). Since the design of the model is inspired from the evolutionary and developmental research on the visual system, the model has biological plausibility. Secondly, the model introduces a methodology to create/evolve cell types that can have highly specific behavior via addition of restrictive rules to the genome. This allows simultaneous existence of cell types that have different degrees of precision in their connection scheme21. Therefore, cell types are not predefined and in theory, infinitely many number of cell types can be generated. As a result, using this model, one can create a network which incorporates various cell types that have certain characteristics similar to known biological structures (such as retina).
	6.2.3 The “How” Question

	As the third step, “how questions” are answered, and the methodology is described. Even though the model primarily focuses on local interactions between cells, the design of the model is inspired from the evolutionary, developmental and computational research on the visual system. Therefore, evolutionary and developmental components of the model use ideas such as division of labor, whole genome duplication, diversification and exaptation (chapter 2), cellular differentiation, exclusion zones and anatomical mosaics (chapter 3), a Gaussian connection scheme that depends on distance, reusability, control of entropy and precision22 (chapter 4 and 5). While these ideas are incorporated in the model, some of the explored ideas (i.e. the edge of chaos idea) are not used23.
	For the evolutionary component of the model, differential evolution and multi-objective optimization methods were used. For the development component, a simple initial model was progressively improved via addition of biologically plausible developmental rules such as regional identity, new cell types with different connection aggressiveness, differentiation, source-target dependent connection scheme and finally cell popularity.
	Evolutionary Algorithms

	Evolutionary computation finds solutions in a large search space by simulating evolutionary aspects such as reproduction, competition and natural selection. It is a way of freeing the modeler from the burden of dubious assumptions (especially if little is known about the optimal solution). Evolutionary computation is also useful when the modeler has more than one purpose and aims to explore the search space. For this reason multi-objective optimization methods can be combined with evolutionary algorithms. The computer model implemented for this thesis work uses differential evolution and multi-objective optimization.
	Differential Evolution

	Differential evolution (DE) is a simple and popular evolutionary algorithm that uses difference between two individuals to evolve another individual. The genotype information is usually encoded as floating points. DE is self adaptive since, after a number of iterations, the differences between individuals will diminish and the population will converge.
	In the implementation, DE starts with a random population and randomly selects three vectors, denoting the genotype of three individuals, I1,I2 ,I3. For each dimension i , I4[i] is given by
	(Equation 6.1)
	(Equation 6.2)
	where M is the mutation scaling factor and CR is for controlling crossover rate. If the random variable p is smaller than the crossover parameter CR, then I4[i] depends on the difference between the second and the third individuals as well as the scaling factor.
	Modifications to DE
	In the traditional version of differential evolution (DE/rand/1/bin24) CR and M are fixed (Kukkonen, 2012). However, in this model CR is updated according to the acceptance rate. Acceptance rate describes whether recent individuals which were created via above method were fit enough.
	Acceptance rate is a dynamical variable that changes after each decision. If the individual is accepted, it “jumps”, if the successively more individuals are rejected it decreases gradually, approaching to a minimal value. CR changes according to the acceptance rate, if the rate is low it increases, if the acceptance rate is high, it decreases (similar to a homeostatic mechanism).
	Another change in the traditional DE in this model is local search. When CR value becomes low, the probability of local search slightly increases. Therefore, if a new individual is accepted, acceptance rate jumps and CR rate decreases instantly. This allows a higher chance for local search around the newly found individual. However, after a short period of time, if no new individual is accepted, CR value and acceptance rate returns to the normal. Therefore Equation 6.2 was updated into
	(Equation 6.3)
	Where ơ is a small random value for local search around a randomly chosen individual I1 and K is a constant. Acceptance of an individual is generalized into more than one fitness function using multi-objective optimization as described in the next subsection.
	Multi-objective Optimization

	In the computer model, a simple version of multi-objective optimization method was used for the purpose of finding a set of solutions that is close to pareto-optimal or close to the pareto front. A pareto-optimal set of solutions contains all solutions that represent “best possible compromises” between different objectives (Kukkonen, 2012).
	The implementation used several rough versions of heuristics such as weighted summation of each parameter, elitism, finding knees and greedy approaches as well as diversity maintenance mechanisms that are configurable via weights. Therefore, the multi-objective method itself had a genotype. To find the best mix of approaches, “individuals” which themselves are “multi-objective optimization methods” with different focuses on diversity maintenance, elitism etc. were evolved (using a simple test problem to check whether they converge at a local minima or find global minimum) and the genome of individual with the best performance were used for other problems.
	Figure 6.1. Pareto front in a biobjective problem

	Solution candidates for pareto front are given in the bounded area
	(Kukkonen, 2012, p.23)
	No Free Lunch theorem (NFL) forbids a method to be optimal for all types of problems. However, in the scope of this thesis, finding the global minimum in a reasonable amount of time was the only requirement. To guarantee convergence, two key conditions were taken into account:
	Elitism (always keeping the best candidates for pareto-optimal set)
	Potential to fully explore the search space
	Elitism check is done before the decision of whether to discard an individual. To ensure the exploration, another random variable is used in a similar manner to Equation 6.3. It is used with a small probability in the nonlocal search. Unlike the ơ in Equation 6.3, this variable had a much larger variance to ensure full exploration of the search space.
	Indirect Genetic Encoding of Cellular Interactions

	Unlike a direct genetic encoding method where the network topology is directly encoded into the DNA, indirect encoding does not store the topology information in the DNA. Instead a “recipe” that consists of developmental rules which describe how to build the network is stored. In this computer model, the recipe consists of restrictive local rules that describe cellular interactions and connection schemes.
	Any system that displays regularity and/or predictability has an underlying set of restrictive rules that describes the interactions between its components. Restrictive rules reduce the possible ways of interactions. Thus, restrictive rules or specializations are mechanisms to reduce entropy. Specialization can be described as a process where initially large imprecisions at certain aspects progressively diminish. For example, developing organisms require an elaborate balance between complexity and regularity. To achieve that, development starts with stem cells which have high “expressive power”. However, at later steps, higher organization requires specialization of cells. Consequently, cells differentiate into more restrictive forms.
	Behaviors of the differentiated cells are more predictable and therefore they are easier to control. Brain development also follows a similar trajectory where number of initial connections later diminishes to half and the overall circuitry acquires a higher amount of precision. Since achieving precision requires cells to specialize, evolution of various cell types with different characteristics and various levels of specialization is possible25.
	Overall, to achieve precision, direct rules are not always needed, especially if there is a developmental component. In this model, an indirect encoding method which mostly consists of local restrictive rules, is used for the differentiation of cell types and the development of the later network circuitry.
	Simplest Local Rules and The Initial Model

	For test purposes, an initial model that used a connection function with a Gaussian connection scheme26 to decide the range and interval of connections between source and target cells was implemented. While this initial computer model could make use of the distance information and it was possible to use different connection functions, there were no cell specific interactions. Therefore, all cell types behaved the same. This will be referred as default behavior in the next subsections.
	Later, more elaborate versions that used indirect genetic encoding methods to represent other cellular level interactions was build upon the initial model. These models were tested using a developmental scenario where progenitor cells with initial types later could differentiate into more specific types according to local interactions between cells in close neighborhood. To have an idea on the topology of the network, overall distribution of the connections were tested in all versions. Moreover the resulting network was rendered using a visualization library (see Visualization subsection below).
	Whole Genome Duplication

	Through the evolutionary history, researchers believe that there were several whole genome duplications. The advantage of a whole genome duplication is the preservation of the underlying gene regulatory circuitry for vital processes, while experimenting on the redundant (duplicate) parts (Hoyle, 2011). In 2.3.1, duplication was recognized as a means to achieve higher complexity.
	This computer model allowed (and used) whole genome duplications. To achieve that, a finish “codon” with a special value was added to the end of genome. The length of the genome was small in the initial random population. In the reproduction phase, when the finish codon of I1 was reached (see Differential Evolution subsection above), with a small probability, whole genome duplication occurred. This could happen until the genome length was increased into a predefined limit. To control the increase of size, a fitness function could forbid/punish long genotypes (see Results section below). Another motivation for whole genome duplication in this model was to reuse the earlier genotype and add new behavior upon the old ones. (See section 5.4 for more details on the reusability principle).
	Layered Initialization

	In sections 3.1.5 and 3.2.1, development of cortical layers and retinal layers were discussed. (It seems, waves of migrating cells form these layers). Moreover, in 3.1.2 the idea of regional identity27 was discussed. Cells migrating to each layer had regional identities. Therefore, in the implementation of the model, it was assumed that initially each layer had a subset of progenitor cell types. Progenitor cells could later differentiate and take their final form. The model skipped the cell migration phase; that is, half way specialized progenitor cells were directly generated in different layers. The information regarding the number of layers was acquired from the DNA28.
	Differentiation and Radius of Interaction

	In the model, the “radius of interaction” for each cell type was translated from DNA. The amount of acquired neighborhood information was cell type specific. The acquired neighborhood information was used for the progenitor cells to differentiate into more specific cells types.
	Stable attractors in the phase space of gene regulatory networks correspond to stable cell types (see section 5.5). The model allowed certain cell types to differentiate into stable types by using exclusion zones29. Differentiation depended dynamically on the neighboring cells.
	Source-target Restriction

	Source-target specific restrictive information was also kept in the DNA30. Since this model was built upon the initial simplistic model where connections were determined according to distance, source-target rules brought some constraints on the distance rule. Initially, source-target information was more generic. Any type of cells were able to connect any type of cells. Addition of new source-target rules therefore had inhibitory effects, preventing connections between specific cell types. Consequently, source-target rules served as restrictive rules to create more specific cell behaviors. Initially, whole genome duplication had practically no effect on source-target information. Yet, after mutations, a source cell type could acquire new restrictions on target types instead of a more general connection behavior.
	Aggressiveness

	Instead of a more direct implementation of a connection function, all cell types connected to their distal and/or proximal targets with a type specific probability which depended on DNA and distance value. As explored in subsection 4.3.1, it is plausible that cells (such as retinal ganglion cells and simple cells) use a connection scheme that depends on distance. However it is also known that there are other restrictions, that can potentially lead to structures such as receptive field mosaics (see subsection 3.2.3). This requires construction rules (i.e. source-target restriction, exclusion zones) which intrinsically enable the creation of anatomical mosaics.
	Greed

	Cell type dependent tendency to make new connections with other cells is called greed. If a cell type has high greed value, it will have more chance to make new connections. Cell types with high greed value generally had more axonal (and optionally dendritic31) connections.
	Cell Popularity

	As discussed in 5.4.1, having hub like nodes32 in a network, generally results in robust properties and brain circuits and gene regulatory networks display such properties. Therefore the model incorporated a means of control for creating networks with hub like nodes. A simple approach to create hub like nodes was to assign a fitness or popularity value to the target cell before deciding whether to connect or not. In developmental terms, the fitness value may depend on the amount of secreted and received neurotrophic factors (see subsections 3.1.8 and 3.1.9).
	DNA

	DNA consisted of floating point values. Encoding of restrictive rules with various scopes was possible. Default rules were encoded at the beginning of the DNA as below:
	{#layers, differentiation time window, short range aggr, long range aggr, dummy, .... , dummy33}
	First floating point element was translated into number of layers at the beginning of the development 34. Second element controlled the duration of the differentiation process. Third element controlled the tendency to make close by connections (i.e. how close is too close). Fourth element controlled the tendency to make long range connections (i.e. how far is too far). Type specific radius of interaction for cellular differentiation was also stored in the DNA:
	{r1, r2, ..., rk, dummy,...,dummy35}
	For k different cell types, k different interaction radiuses were defined.
	Whole genome duplication allowed exaptation into new source–target rules. Source-target rules were represented as blocks of four elements:
	{source type, target type, short range aggr, long range aggr}
	Source-target rules had restrictive roles on the overall connection scheme (reducing overall entropy, see subsection 6.2.4).
	After whole genome duplication (and mutations), new source-target type specific restrictive rules were created. That is, duplicate default rules and radius of interaction rules later became source-target rules via exaptation. Secondary and later duplications initially had no effects, yet, after mutations new restrictive rules were emerged and more specialized cell types evolved. Below is a sample DNA:
	{1.95559 0.942985 1.46869 1.98658 1.37547 1.78545 0.322011 1.83782 1.60741 1.17164 1.29342 0.372859 1.37088 1.86503 1.559 1.90499 1.40935 0.589819 0.886342 1.54457 1.77957 0.847671 1.41514 0 0.253119 1.0497 0.903606 1.14618 0.104051 0.718838 0.497239 0.424195 -10036 dummy,..,dummy}
	A Quick Summary of Events

	In the evolutionary component of the model, the population started with individuals that had randomly generated DNA (with minimum length and no restrictive rules). Then, for each individual, the genetic information was translated into phenotype via developmental rules described above (i.e. networks with different default aggressivenes value, different number of layers, different radius of interaction rules). In the next step, a fitness value was assigned (i.e. wiring cost) to each individual. Individuals with better fitness values were accepted into the next generation using the methodology described in Multi-objective Optimization subsection. Then, new individuals were generated using the methodology described in Differential Evolution subsection. With a small probability, whole genome duplication occurred, DNA size doubled and (via either exaptation or mutation) new source-target restriction rules were generated. After several generations, the population converged into a set of genotypes that had acceptable fitness values.
	Visualization

	For the visualization of resulting network topologies and cell types, Open Scene Graph (OSG) was used. OSG is a high performance graphics library written in C++ and OpenGL. It allowed visualization of large networks.
	6.2.4 Results

	Several tests and scenarios were applied to the initial and successive models. They will be discussed in a chronological way. Initial versions of the model only used the developmental component. The evolutionary component was used only in the last two scenarios.
	Initial Model

	The initial model defined the default behavior of any cell. There were no restrictive rules and the default behavior was to greedily connect any nearby cell with a connection probability that decreased with distance37. In Figure 6.2 below, initial model is compared to a random connection scheme where connections were completely random (therefore they did not depend on distance).
	Figure 6.2. Random vs default connection scheme

	(Left) Connection scheme is completely random. (Right) One can observe an overall lack of long range connections, cells tend to connect other close by cells, forming local clumps or clusters of cells that are highly connected and blank regions where cells are too far to connect each other.
	Figure 6.3 Random vs default connection scheme38

	(x: # connections, y: # cells)
	Default connection scheme reduced the number of connections between distant cells. Since cells that were closer to each other would make more connections, overall connection distribution was not a Gaussian anymore.
	When default connection distribution was plotted for axons and dendrites separately (Figure 6.4), scatter plots demonstrated that neither outgoing connection (axonal) distribution, nor incoming connection (dendritic) distribution was Gaussian39 40. Therefore, in accordance with the distance function used in the default connection scheme, some cells sent and received substantially more connections than the others41.
	Figure 6.4. Default connection scheme

	(Left) axonal distribution (x: # outgoing connections, y: # cells)
	(Right) dendritic distribution (x: # incoming connections, y: # cells)
	Introduction of New Cell Types

	Initial model had only a single cell type. Greed value therefore had no visible effect. Addition of new cell types that had type-specific greed values resulted in a visible effect in the distribution depicted in Figure 6.5.
	Figure 6.5. Default connection scheme + 2 new cell types

	(Left) Visualization of the resulting network, with different colors for different cell types. (Right) Overall connection distribution. Addition of 2 new higher greed values is also fairly visible in the distribution (compare to the initial model).
	Addition of Type Specific Connection Scheme

	Type-specific connection scheme required restrictive source-target rules that were defined in the DNA. Consequently, using randomly generated DNA (in several trials), observation of various connection distributions was possible42.
	Figure 6.6. Type-specific connection scheme

	(Left) Restriction of connections between specific source-target cell types is possible. Compared to Figure 6.5, this visual lacked almost all of the green connections. (Right) Connection distribution that displayed a restriction on connections, nullifying the effect of type specific greed value of at least one of the cell types. (x: # connections, y: # cells)
	
	Figure 6.7. Other type-specific connection scheme possibilities

	Different source-target restriction rules and cell types resulted in different connection distributions. (x: # connections, y: # cells)
	Figure 6.8. Retinal mosaics

	S cells are circled. (Circles do not represent the exclusion zone) The radius of the exclusion zone is approximately the distance between two closest S cells.
	Modeling Retinal Mosaics

	Self organization ideas on differentiation were tested using a simple scenario in which progenitor cells of a single type differentiated into either a primary (P: green) or secondary type (S: red) cell. The self organization rule was exclusion zones43 that had certain radius depended on the DNA44. Differentiation into P cells occurred if there were no other P cells in the exclusion zone. If there was a close by P cell, then differentiation into S cells occurred. This can be considered as a simple simulation for the emergence of retinal mosaics45 (see Figure 6.8).
	Figure 6.9. Retinal mosaics (zoomed out)

	The overall ratio of S cells is small, therefore zooming out (left to right) reveals a dominant green color (the color of P cells). Total number of cells was around forty thousand.
	For comparison, Figure 6.10 below depicts another individual where radius of exclusion adjusted to a small value to prevent the mosaic effect.
	Figure 6.10. Retinal mosaics (zoomed out)

	The overall ratio of S cells was large, since the radius of exclusion zone became too small. Rather than in a mosaic form, cells were randomly differentiated. Therefore zooming out (left to right) reveals a yellowish red color (which is the mix of green (P) and red (S) colors).
	Emergence of A Mosaic Network

	Combining above version of the model with the initial default model resulted in emergence of cell types that differentiated according to exclusion zones and created a mosaic connection scheme, as illustrated in Figure 6.11. As previously discussed in subsection 3.2.3, receptive field mosaic formation may be primarily determined by the formation of anatomical mosaics (Anishchenko et al., 2010). A proposed theory was that anatomical mosaic formation could be achieved via type-specific neighboring cell interactions (Fuerst et al., 2008).
	Figure 6.11. Retinal mosaics like differentiation

	Red cells illustrate differentiated cells. Similar to S cells described in the previous subsection, red cells differentiated according to exclusion zones.
	Figure 6.12. Comparison to default connection distribution

	(Left) Initial model, (Right) Mosaic network. As one may observe, connection distribution did not change. The only change to the initial model was the addition of the differentiation rule. (x: # connections, y: # cells)
	Addition of type specific greed and aggressiveness value resulted in highly aggressive and greedy, hub-like neurons.
	Figure 6.13. Emergence of hub-like neurons

	Compared to Figure 6.12, red cells became more aggressive, they made more long range connections and overall number of connections made by them were also increased. Green cells remained the same.
	Figure 6.14. Comparison to type specific greed and aggressiveness

	Compared to the previous version of the model that did not use differentiation (see figures 6.5, 6.6 and 6.7), greedy cell types were mostly differentiated into default types (P cells that were colored green). Only a handful of them (circled in the right) were able to maintain, due to the exclusion zones. Those cells gained hub-like properties since they had relatively high greed and aggressiveness values.
	Cell Popularity and Resemblance to Scale-free Networks

	Assigning fitness or popularity value to cells according to some criteria, and deciding whether to connect or not according to this value resulted in an even more segregated network of cells that made several connections and cells that remained mostly isolated.
	Figure 6.15. A network of admirers

	Notice that some of the green cells on the background had almost no connections (circled in yellow). Moreover, aside from red cells that made red connections, green hub-like cells also emerged (circled in black).
	Admiration

	Admiration rule was conjectured as following: A source cell had an increased tendency to make connection as the assigned fitness value to the target cell increased46 (see Figure 6.15). For testing this idea, a fitness value47 assigned to the target cell as below.
	(Equation 6.4)
	Fitness value depended on axonal greed of source cell (sag), dendritic greed of target cell (tdg) number of dendrites source cell had (nsd) number of dendrites target cell had (ntd) number of axons source cell had (nsa) and a constant value c.
	Figure 6.16. Axonal and dendritic connection distributions

	Axonal (left) and dendritic (right) connection distributions demonstrated a highly segregated connection scheme. (x: # connections, y: # cells)
	Since the network contained hub-like cells as well as a high number of poorly connected cells, overall connection distribution resembled a power law distribution. (At least, when compared to Figure 6.14, the distribution was much closer to a pareto distribution; notice the long tail).
	Jealousy

	Jealous rule was the opposite of the admiration rule and conjectured as following: A source cell had an increased tendency to make connection as the assigned fitness value to the target cell decreased. The fitness function was conjectured as below48.
	(Equation 6.5)
	Fitness value depended on axonal greed of source cell (sag), dendritic greed of target cell (tdg) number of dendrites source cell had (nsd) number of dendrites target cell had (ntd) number of axons source cell had (nsa), number of axons target cell had (nta) and a constant value c.
	Figure 6.17. Scale-free network effect amplified

	This new rule, resulted in a network that contained few cells that dominated the network as well as few cells with mediocre amount of connections. The remaining cells all had very small amount of connections if not none.
	Figure 6.18. Axonal and dendritic connection distributions

	Axonal (left) and dendritic (right) connection distributions demonstrated even more segregated connection scheme. The tail is longer in both distributions when compared to Figure 6.17. (x: # connections, y: # cells)
	Overall, popularity rule were used for creation of non-homogeneous network properties. The easiest to observe effect was emergence of scale-free network like properties (i.e. a distribution with a long tail and hub like cells). However, the model allowed many other connection schemes by changing the proposed fitness functions. For example, another fitness function for jealousy rule could generate effects such as cell types that had unbalanced axon/dendrite ratio.
	Figure 6.19. Scale-free like axon distribution (low entropy)

	The scatter plot resembled a power law distribution
	Figure 6.20. Dendrite distribution of the same network (high entropy)

	Compared to axonal connection scheme in Figure 6.19, dendritic connection scheme was less precise (high entropy) and therefore more similar to a Gaussian.
	The fitness function that generated such a connection scheme was simple (yet effective).
	(Equation 6.6)
	Fitness value depended on axonal greed of source cell (sag), number of axons source cell had (nsa), number of axons target cell had (nta) and a constant value c. If the target high number of axons, connection probability decreased, therefore the overall number of feedback connections decreased compared to the previous scale free like network49.
	Because number of axonal connections vs number of cells resembled a power law distribution (i.e. Figure 6.19 resembled a pareto distribution) and dendritic connection distribution were mostly random, this created an axonal connection bias within the network. That is, this connection scheme allowed evenly spreading information to the whole network in a roughly feed forward manner (because of the decreasing number of axons and lower probability for feedback connections) starting from a relatively few number of cells (that had high number of axonal connections50).
	Layered structures

	Sample images illustrating layered structures are given below:
	Figure 6.21. Layered organization

	Number of layers were controlled by DNA and progenitor cells were directly positioned in layers (without migration) with slightly randomized positions. Layered structures were 3D and the distance between cells in different layers was accordingly calculated. Different sets of progenitor cell types were used in each layer. However, the resulting configuration still mostly depended on the differentiation phase and the DNA. (Like retina, exclusion zones were used to determine cell fate). As one can see from the figure, there exist different cell types with different connection schemes. Edges in the figure that have halfway changing colors depict connection between different cell types.
	A Simple Evolutionary Test

	Wiring cost is known to be a critical constraint in the mammalian brain. Even though the simulated network generally consisted of a rather small number of nodes, keeping the wiring length minimum may have certain advantages.
	The differential evolution component of the model was tested using a single fitness function that returned a better fitness value (closer to 0) if the network had a smaller wiring length ratio. It turned out, such a scenario favored short range connections instead of longer range connections and also lamination and a larger DNA with more restrictive rules. Number of layers were specified by DNA, therefore networks with different number of layers evolved.
	Table 6.1. Wiring cost vs lamination, DNA size and aggressiveness
	# layers
	fitness value
	network size
	DNA size
	aggrL
	10
	0.0180
	1000
	80
	0.51
	11
	0.0336
	1100
	40
	0.63
	11
	0.0596
	1100
	40
	1.15
	6
	0.0703
	600
	40
	0.83
	9
	0.1969
	900
	80
	3.44
	4
	0.4649
	400
	40
	3.37
	3
	0.6608
	300
	40
	10.41
	3
	0.8930
	300
	40
	10.60
	After the evolution, the resulting population had the lamination, DNA size, aggressiveness and network size vs fitness ratios (see Table 6.1), where aggrL stands for long range aggressiveness values (the tendency to make long range connections) and fitness value is wiring cost (the smaller the better). As one can observe, the lower the aggrL value, the better the fitness value is. However, there are other factors such as lamination and DNA size. Generally it seems better to have a large number of layers to reduce the wiring cost51. Since as DNA size increased, number of restrictive rules also increased, the best individual had the longest DNA.
	A Multi-objective Evolutionary Test

	In this final version of the model, above test was extended into a multi-objective scenario where there were two fitness values: wiring cost (lower is better) and DNA cost52 (lower is better). As one may observe, these objectives may require a trade-off since in the previous test, the best individual had the longest DNA. This often is the nature of a multi-objective optimization problem. The modeler may require a population where there are several solutions which represent trade-offs between various objectives. Therefore this final test checked whether the multi-objective component of the model was capable of finding multiple solutions with various fitness values.
	Note that the initial population members always started with small DNA sizes. Therefore, as individuals with larger DNA sizes evolved, the fitness function for the DNA size returned larger (worse) values. Yet individuals with longer DNA generally had lower wiring cost. Thus, the multi-objective optimization component was able to select individuals with lower wiring cost while still maintaining a relatively small DNA size.
	In Table 6.2. below, Fitness 1 denotes DNA cost and Fitness 2 denotes wiring cost. As one may observe, decreasing DNA cost generally resulted in an increase in the wiring cost and vice versa. Another observation is that wiring cost not only depended on lamination (# layers), tendency to make long range connections (aggrL) and DNA size, but also depended on the restrictive rules themselves. Consequently individuals that had similar DNA size, # layers and aggrL could still have different wiring costs, since the restrictive rules encoded in their DNA were different.
	Also note that while restrictive rules had some effects, aggrL and # layers strongly controlled the wiring cost outcome. Consequently, one can conclude that default or generic rules kept in the DNA is more critical than specification rules which restrict cell behavior. Therefore a mutation on these type of rules may have larger effects. However, this complies with the scale free properties of a gene regulatory network, because, while a targeted mutation in specific nodes may have critical effects, random mutations mostly keep the overall network topology intact.
	Table 6.2. DNA cost and wiring cost vs lamination, DNA size and aggressiveness
	# layers
	Fitness 1
	Fitness 2
	netw size
	DNA size
	aggrL
	2
	0.0002
	0.056
	200
	20
	0.61
	3
	0.0004
	0.028
	300
	40
	0.59
	6
	0.0004
	0.025
	600
	40
	1.02
	9
	0.0004
	0.014
	900
	40
	1.14
	9
	0.0004
	0.010
	900
	40
	0.72
	9
	0.0004
	0.0098
	900
	40
	0.62
	10
	0.0004
	0.0086
	1000
	40
	0.58
	10
	0.0008
	0.0075
	1000
	80
	0.50
	6.3 Summary and Discussion

	In this chapter, a hybrid computer model that could combine the advantages of evolutionary and developmental principles was introduced. Using this model, effects of local rules on cellular differentiation, retinal mosaics, layered structures, wiring cost and network topology were explored.
	Differential evolution and multi-objective optimization methods were implemented as the evolutionary component of the computer model. There were certain modifications such as whole genome duplication and a control mechanism for crossover rate. These ideas were mostly inspired from the research on the evolution of visual system (also ideas of reusability and control of entropy that were discussed in chapter 5).
	Developmental rules were inspired from the computational and developmental research on visual system. For example default Gaussian like connection scheme that depended on distance was inspired from the computational research (see Simple Cells under subsection 4.3.1). Differentiation and mosaic organization of cells were inspired from the developmental research (see subsection 3.2.3). Cell popularity was inspired from the effects of neurotrophic factors mentioned in subsections 3.1.8 and 3.1.9.
	The methodology where cell specification occurred via addition of new restrictive rules was inspired from the division of labor idea describe ind subsection 2.1.3 and multiresolution idea described in subsections 5.1 to 5.3. Since whole genome duplication could occur several times, the size of the DNA and the number of restrictive rules could increase, allowing more elaborate descriptions of cell types. Since each rule was cell type specific, the DNA could contain different number of descriptive rules for each cell types. This allowed cell types with relatively generic or relatively specific behavior within the network simultaneously. Since the DNA size could increase and rules such as radius of interaction and aggressiveness were represented as floating point values, the evolutionary component was, in theory, capable of generating infinitely many number of cell types and networks of various combinations of cell types.
	CHAPTER 7
	7 Conclusion & Future Work
	In this thesis work, both the research on disparate properties of visual system and the developmental scenarios explored by the computer model proved fruitful. Research on various perspectives revealed certain underlying principles that were discussed in chapter five. These principles, in certain ways also affected/constituted the design principles of the computer model. Therefore, the decomposition of knowledge on the visual system into its evolutionary, developmental and computational components in the second third and fourth chapters was critical.
	Firstly, in chapter two, evolution of nervous system and visual system was investigated. A possible scenario for the evolutionary history of how nervous system evolved is summarized below:
	1. (Molecular phase, skipped)
	2. Single cell phase: creation of a compact toolbox for several tasks such as cell metabolism, cell division, chemotaxis, phototaxis and action potential (see 2.1.2)
	3. Multicellular phase I: a more specific toolbox that builds upon the core components of the previous one, for cell-cell interactions, cell adhesion molecules and extracellular matrix, cell collaboration and competition.
	4. Multicellular phase II: beginning of cell specification, emergence of most primitive sensorimotor system for a multicellular organism. (For example, as discussed in section 2.1.3, simplest larvae or plankton like organisms still have generic cells with phototaxis. These cells can collaborate with other cells for slightly different tasks, i.e. pigmented cells exist around the cells with cilia, yet task specification is still minimal)
	5. Multicellular phase III: refinements to cell-cell interactions, further cell specification, distinct layers of cells. Outer layer specialization for sensory tasks, motor tasks achieved by inner layer(s). Cellular communication is still slow and limited, yet it is possible that cells started to use action potentials (for electrical synapses and state change mechanisms for other etc).
	6. Synaptic phase: emergence of first real (electrochemical) synapses. (Note that all the components were already used in different contexts. Action potential was used as a steering mechanism, chemical receptors were used in chemotaxis and cell collaboration).
	7. Morphogenic phase: efficient usage of morphogens, cell adhesion molecules and extracellular matrix for the purposes of cellular migration and axon guidance. With the emergence of more elaborate nervous systems, reaction speeds and perception becomes a key factor for survival. (Note that growth cone like structures and cell adhesion molecules are used in both cell migration and axon guidance (subsections 3.1.2, 3.1.7). Moreover, these molecules were already mostly “discovered” in the earlier phases, since collaboration and stability were required from the start of multicellular phase, for example it is highly plausible that the transition from single cell phase to multicellular phase required cell adhesion mechanisms. Another implication is emergence of segmented body parts, since they depend on morphogens. Segmented body parts, in developing organisms allow simple construction and then morphogenesis as well as they allow in evolving organisms separate evolution of each segment)
	8. Domination phase: success of a more sophisticated nervous system and higher complexity results in the domination of other species by an urbilaterian ancestor. (This motivates researchers to seek homologies between vertebrate brains and insect mushroom bodies, as discussed in section 2.5)
	9. Diversification phase: as in the transition from single celled organisms to metazoans, a compact set of toolbox is used in diverse ways.
	According to this scenario, one may expect that different eye types emerged at the diversification phase, replacing the previous eye spots. Rhabdomeric photoreceptor cells became ganglion, amacrine and horizontal cells (see subsection 2.2.2). Eyes were used not only for circadian rhythm (there are still ancient ganglion cells in human eyes that are sensitive to the light) and detecting the luminance but also for detecting the direction of light. However, since ganglion cells were/are not sensitive to direction, this was achieved via cone cells. Some cones later evolved into rod cells and some rods and cones later evolved into bipolar cells. (Note that this does not necessarily mean linear evolution from one previous cell type to another; new combinations and slight changes in existing gene expression may more easily result in new cell types). Meanwhile, visual acuity and visual system coevolved, resulting in parallel channels for high temporal and spatial frequency resolution. Some of the mechanisms necessary for the evolution of complex organs, namely exaptation (or co-option), collage, duplication, diversification and scaffolding discussed in subsection 2.3.1, were later partly adopted by the evolutionary computer model.
	In chapter three, developmental perspective revealed the connections between mechanisms such as axon guidance and cell migration. Investigation of morphogens in subsection 3.1.2 showed that morphogens were commonly used in both migration and axon guidance. This point later lead to the realization of an underlying principle common to both evolution and development, namely the idea of reusability. The timing of events and possibility of chaotic results were also considered in this chapter. Moreover the role of external internal/stimuli were discussed. For example the investigation on the development of retina, revealed two different mechanisms to achieve regularity. In the first one, mosaic structures are created simply via local interactions between/within the components of cells. In the second one, mass level organization and refinement was acquired via random “waves of activations” in the retina exemplifying internal stimuli.
	In the fourth chapter, a conceptual/computational perspective was employed when comparing the well known conceptual/computational modeling paradigms of the visual system, namely hierarchical, sequential and hybrid models. Mathematical models of receptive fields of the cells in retina, LGN and primary visual cortex (V1) were also investigated. Then, in the discussion section, modern view of visual system was compared to the traditional view. This showed that a traditional linear model of vision lacks a crucial component when considering the number of feedback connections and the existence of more than twelve distinct visual pathways. However, it was also apparent that the three well known traditional model (hierarchical, sequential,hybrid) constantly fed from new experiments and refined themselves. (Therefore they approach to each other and slowly converge into one single model).
	Research on chapter 2, 3 and 4 stirred several questions and highlighted many directions for a deeper level investigation. In chapter 5, three of these directions were explored within a computational context. The research on the computational perspective highlighted that there were parallel information processing pathways in the visual system, this in turn lead to the question of why parallel channels evolved. This was answered by an information theoretic principle: it was a necessity to distribute the time-frequency information in different ratios (similar to a multiresolution scheme) to get around the joint entropy problem. The unevenness of the P and M channel inputs to the where and what pathways and their complementary nature, was then conjectured as an indication of a similar constraint at higher levels.
	The research on the evolutionary perspective lead to the idea that animals had a common “body plan” that was inherited from a common urbilaterian ancestor. This was not on the level of a primitive segmented body plan but on the level of an elaborate form where even a sophisticated nervous system existed. This in turn translated to the idea that evolving complex organisms “reuse“ the previous “abstract” components in diverse ways. A generalized version of this idea then was conjectured as: Abstract or mathematically/computationally meaningful components could maximize reusability.
	The research on the developmental perspective entailed the question that how development can both have reliable and chaotic nature. This lead to the notion called edge of chaos. Ideas from researchers such as Kauffman revealed that development depends on the stable attractors and unstable/chaotic attractors that are defined in the phase space of the gene regulatory networks which are described as dynamical systems.
	In the sixth chapter, some of the ideas acquired from the research on evolution and development was used as design principles to create a computer model. The computer model proved highly configurable because it allowed later additions of “new rules” which were represented as the components of DNA. Therefore new tests and approaches could build upon the previous version with ease. Moreover, evolutionary component of the model used ideas such as whole genome duplication that was drawn from the knowledge acquired during the research on the evolution of visual system. Whole genome duplication created redundancies and allowed individuals to evolve while keeping the previous progress.
	Certain rules kept in the DNA (such as number of layers and the default connection scheme) may be considered more critical than specification rules which restrict cell behavior, therefore a mutation on these type of rules may have larger effects, yet, this complies with scale free properties of a gene regulatory network, because, while a targeted mutation on a specific node may have critical effects, random mutations mostly keep the overall network topology intact.
	As a conclusion, this thesis consisted of an analysis of visual system in evolutionary, developmental and computational contexts and a synthesis of the acquired data, (a synthesis that displayed the author's perspective). Development and evolution of brain was also a prominent part of the research and this affected the types of tests that were used in the computer model.
	The computer model was implemented not to reverse engineer or “hard code” the literal knowledge but to apply and test some of the deep principles that were used in both the design of the computer model and in the test scenarios (that grew successively more complex). The computer model displayed a hierarchical (and multiresolution like) scheme where rules had different scopes (i.e. source-target specific rules vs rules that defined non-type specific default behavior).
	One may draw several conclusions from this thesis, for example the question, “how can systems organize themselves in such a way that they acquire both complexity and regularity?” (which may be relevant to researchers from diverse disciplines) may be answered by the introduction of local rules that have mostly restrictive nature. Local rules reduce and control the entropy by increasing the precision of the description level of the interactions of the components in a dynamical system in a progressive way.
	Another conclusion may be drawn from the complementary nature of parallel pathways in the visual system, that resulted from evolutionary constraints, that were in essence information theoretic constraints (i.e. joint entropy in 5.1). Joint entropy may explain more than simply P and M pathways (5.1.2, 5.2, 5.3). It may be possible that, where and what pathways or in more general overall segregation of information into several “aspects” (or dimensions) was in essence a multiresolution scheme like solution to the joint entropy problem.
	Future Work

	In the near future, the model discussed in chapter 6 will be extended to a neural network where existing or new cell specific characteristics in the DNA are translated into different activation functions. Another possible extension is cellular migration. Current model generates and positions progenitor cells into their destinations instantly. To achieve better biological plausibility, a more realistic scenario can be applied. For example, gene regulatory networks can be used. The effects of GRNs and the edge of chaos idea to migration, differentiation and overall network topology can be explored.
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	APPENDIX
	Additional Formulas and Derivations for Visual System
	Derivation of Retinal Ganglion Receptive Field

	Assuming that light-sensitive cells are only photoreceptor cells, assuming that the role of amacrine, horizontal and bipolar cells can be reduced into synaptic weights between the photoreceptor cells and ganglion cells, receptive field (RF) of a retinal ganglion cell (RGC) traditionally formulated as following (according to Zhaoping, 2012, pp.16-21). Given x as different photoreceptor cells at different positions53, a weight kernel or spatial filter Kx(x) as receptive field of the ganglion cell, and a steady input image as signal Sx(x), if τ is the spontaneous firing rate, then the output response O can be formulated as
	(Equation A.1)
	Assuming that all ganglion cells have more or less a Mexican hat receptive field, kernel function can be formulated as
	(Equation A.2)
	which is the difference of Gaussians ( σc< σs and c≈s)54.
	Kernel function K and signal S also has time components. Therefore assuming a stimuli exists between t and t',  the equation describing the output response  becomes
	(Equation A.3)
	Note that the kernel function depends on the time interval of input and it is now a spatio-temporal filter. Moreover if the stimulus is unchanging, it can be formulated as
	(Equation A.4)
	where Sx is the spatial filter and H(t) is step function where it is 1 if t >=0 and 0 otherwise. Assuming that the stimulus is unchanging, extending from (A.3)
	(Equation A.5)
	Kernel function can also be extended from (A.2)
	(Equation 4.6)
	where Gaussian functions are multiplied by the impulse response of center and surround components of the receptive field ().
	Above kernel function has the expressive power to define parvocelluler (P) cells with long impulse response and small receptive fields (they have good spatial resolution) and magnocellular cells with short impulse response and large receptive field (they have good temporal resolution) (Zhaoping, 2012).
	Sinusoidal gratings

	A sinusoidal stimuli can be formulated as
	(Equation A.7)
	where c is constant, φ is phase and Sk is the amplitude.
	Kx can be decomposed into its sine and cosine components as
	(Equation A.8)
	where gc(k) and gs(k) are
	(Equation A.9)
	the Fourier cosine and and Fourier sine transforms of Kx(x) respectively (Zhaoping, 2012). Since the assumed Kx(x) is an even function (i.e. Kx(-x)=Kx(x)), its Fourier sine transform gs(k) is actually 0. As a result, asymptotic response becomes
	(Equation A.10)
	since in essence multiplication of two cosines (sinusoidal stimuli and cosine component of Kx(x)) is integrated, largest response can be achieved when peaks of two cosines coincides with each other. This happens when φ is 0 and k is adjusted according to the frequency of cosine component of Kx(x). As a consequence, O simply depends on
	(Equation A.11)
	Generalization

	For a more general Kx(x), which is not necessarily an even function gs(k) also plays a role. Thus, O depends on
	(Equation A.12)
	where g(k) is a two dimensional vector of sine and cosine components of Kx(x) having length and angle θ.55
	In fact, g(k) can also be interpreted as the complex variable:
	and this is the Fourier transform of Kx(x) at k, as given below:
	(Equation A.13)
	In the case where Kx(x) is the difference of Gaussians, g(k) also depends on a difference of Gaussians in the form of
	(Equation A.14)
	where g(k) (and therefore the output response) increases with k until a peak frequency kp then decreases symmetrically (Zhaoping, 2012, p.21).
	Retinotopic Map

	The approximate relationship between the input and its spatial representation on the cortical surface is given by
	(Equation A.15)
	where λ and e0 are constants, negative sign is the inversion of the image, e is the 'angle eccentricity' to denote how 'peripheral' the position of stimuli (Zhaoping, 2012).
	Orientation selectivity

	A simple approach to model orientation selectivity could be based on the 2D Gabor connectivity function which describes the input from LGN cells to vertically oriented V1 cells (i.e. V1 cell receptive field) is defined by
	(Equation A.16)
	where K(x,y) is the multiplication of a sinusoid by a Gaussian function (Teich & Qian, 2006). To a spatial grating stimulus which depends on , the modeled V1 cell would respond as
	(Equation A.17)
	where k' represents a range of frequencies centered around a specific frequency k,  (Zhaoping, 2012). Moreover, in order to extend this approach beyond vertical orientation, one can obtain kernel functions for different orientations by rotating the  x, y coordinates
	(Equation A.18)
	Motion selectivity

	Motion selectivity requires the neurons to capture temporal differences. A space-time separable receptive field
	(Equation A.19)
	where Ks(x,y) is the Gabor connectivity function described in (4.20) and Kt is used for the tuning of temporal frequency of the stimuli such as a tilted grating moving in a certain direction (Zhaoping, 2012).
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