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ABSTRACT 

COMPARISON OF EMITTER LOCALIZATION 

METHODS WITH A MOVING PLATFORM IN THREE 

DIMENSIONS 

 

Tufan, Burcu 

 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Temel Engin Tuncer 

 

September 2012, 106 pages 

 

In passive target localization, source position is estimated by only using the source 

signal. In this thesis, position of a stationary target is estimated by using the data 

collected by a moving platform. Since the focus of the thesis is the location 

estimation, the parameters used for localization such as angle-of-arrival (AOA), 

time-difference-of-arrival (TDOA), Doppler frequency shift are assumed to be 

known. 

Different emitter localization methods are implemented in this thesis. Some of these 

methods are known in the literature and some are the modified or hybrid versions of 

these algorithms. Orthogonal Vector Estimator (OVE), Pseudolinear Estimator 

(PLE), Weighted Instrumental Variables Estimator (WIVE) and Maximum 

Likelihood Estimator (MLE) use only the AOA information. In MLE, Gauss 

Newton (GN) search algorithm is used to realize the search process effectively. 

AOA localization methods are also implemented together with the extended 

Kalman filter (EKF) realization.  
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Doppler Shifted Frequency (DSF) based Least Squares (LS) and MLE are 

implemented which use Doppler frequency shift only. AOA-DSF combined hybrid 

algorithm is shown to perform better. 

LS and Maximum Likelihood (ML) TDOA localization methods are also 

implemented. AOA-DSF-TDOA combined hybrid algorithm is shown to perform 

better than the algorithms which use one type of parameter and AOA-DSF hybrid 

algorithm. 

Estimator performances are analyzed in this thesis. Error ellipsoid is a useful tool to 

evaluate an estimator‟s performance. The parameters of the ellipsoids are drawn 

from Cramer-Rao Lower Bound (CRLB) matrices. The effect of target-sensor 

positioning is also investigated by using error ellipsoids. 

 Several experiments are done where a platform is assumed to be moving on a pre-

determined path while the target is stationary. The effects of different parameters 

are considered for the location estimation accuracy.  

 

Keywords: 3D Target Localization, AOA, CRLB, DSF, TDOA, Error Ellipsoid 
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ÖZ 

HAREKETLİ TEK PLATFORM İLE ÜÇ BOYUTLU 

HEDEF KONUM BELİRLEME TEKNİKLERİNİN 

KARŞILAŞTIRILMASI 

 

Tufan, Burcu 

 

Yüksek Lisans, Elektrik Elektronik Mühendisligi Bölümü 

Tez Yöneticisi: Prof. Dr. Temel Engin Tuncer 

 

Eylül 2012, 106 sayfa 

 

Pasif hedef konum bulma yönteminde, hedef konumu sadece kaynak sinyali 

kullanılarak bulunur. Bu tezde durağan hedefin konumu hareketli tek platform 

tarafından toplanan bilgiler kullanılarak kestirilmiştir. Tezin odak noktası hedef 

konum kestirimi olduğu için, konum bulurken kullanılan Geliş Açısı (GA), Varış 

Zaman Farkları (VZF), Doppler frekans kayması parametrelerinin değerleri 

biliniyor kabul edilmiştir.  

Tez kapsamında farklı konum bulma yöntemleri incelenmiştir. Bu yöntemlerin 

bazıları literatürde bilinirken bazıları bu algoritmaların değiştirilmiş ya da 

birleştirilmiş halleridir. Dikgen Vektör Kestirici (DVK), Sahte-Doğrusal Kestirici 

(SDK), Ağırlıklı Etkili Değişken Kestirici (AEDK) ve En Büyük Olabilirlik 

Kestiricisi (EBOK) sadece GA bilgisini kullanarak konum bulmaktadır. EBOK, 

arama işlemini etkili bir şekilde yapabilmek için Gauss Newton (GN) arama 

algoritmasını kullanmaktadır. Genişletilmiş Kalman süzgeci kullanılarak GA ile 

konum bulma yöntemleri de incelenmiştir.  
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Sadece Doppler frekans kaymasını kullanarak konum bulan Doppler Kaymış 

Frekans (DKF) temelli En Küçük Kareler (EKK) ve EBOK yöntemleri  

gerçeklenmiştir. GA-DKF hibrit algoritmasının daha iyi sonuç verdiği 

gösterilmiştir.  

Varış Zaman Farkları (VZF) temelli EKK ve EBOK yöntemleri de gerçeklenmiştir. 

GA-DKF-VZF hibrit algoritmasın tek parametre kullanan algoritmalardan ve GA-

DKF hibrit algoritmasından daha iyi sonuç verdiği gösterilmiştir.  

Tez kapsamında kestiricilerin performansları da incelenmistir. Hata elipsoidi bir 

kestiricinin performansını değerlendirmek için kullanılan yararlı bir araçtır. 

Elipsoidin parametreleri Cramer-Rao Alt Sınır (CRAS) matrisinden çıkarılmaktadır.  

Hedef-platform geometrisinin performansa etkisi de hata elipsoidleri kullanılarak 

incelenmiştir. 

Hareketli platformun belirlenmiş bir güzergahta durağan bir hedef üzerinde hareket 

ettiği çeşitli deneyler yapılmıştır. Farklı parametrelerin konum kestirim 

doğruluğuna etkileri incelenmiştir.  

 

Anahtar Kelimeler: 3B Hedef Konum Kestirimi, GA, CRAS, DKF, VZF, Hata 

Elipsoidi 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

Determining the location of an emitting target is one of the fundamental functions 

of Electronic Warfare (EW) systems [1]. It is generally accepted that EW has three 

distinct components: (1) electronic support (ES), (2) electronic attack (EA) and 

electronic protect (EP). Emitter localization is performed in ES systems. Beside 

military uses, localization is important in commercial uses such as localization of 

mobile phone calls to emergency services [2]. On the other hand, since the target 

does not cooperate, this is a complicated task. Estimation procedure consists of two 

steps. First the parameters which will be used in the estimation algorithm are 

estimated. Then by using these parameters the target position is estimated. These 

mentioned parameters can be TDOA, frequency and/or bearing measurements. 

Estimation of these parameters is out of scope of this thesis but brief information 

will be given in the following sections. In this thesis the focus is the location 

estimation given the parameter estimates.  

In the literature, there are many papers about emitter localization. Bearing-only 

emitter localization algorithm is one of the most-common methods. In this method, 

emitter location is obtained by intersecting the bearing lines taken at different 

platform positions. This method is referred to as triangulation. Stansfield estimator 

[3] is one of the first bearing-only localization methods which is a Weighted Least-

Squares (WLS) estimator. It can be viewed as a small error approximation of the 
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MLE [4]. On the other hand, Stansfield estimator is biased unlike MLE which is 

asymptotically unbiased. In [5], PLE is presented which requires no range 

information of the target different from the Stansfield‟s method. MLE is an 

effective method which is based on minimizing a cost function [5]. Taylor-Series 

method is used for solving simultaneous set of algebraic position equations 

(generally nonlinear), starting with a rough initial estimate [6]. The points where 

bearing measurements are collected play a crucial role in estimator accuracy. In [8] 

the impact of measurement points on localization performance is investigated. The 

method is based on minimizing the Mean-Square-Error (MSE) of the localization 

algorithm. 

Doppler-shift is also used to locate an emitter when there is relative motion between 

locator platform and target. Due to relative motion, the emitted signal‟s frequency 

and the received frequency by the locator platform are different. In [9] a grid search 

method is proposed for DSF localization. LS and ML estimation methods are 

presented in [10]. Emitter localization using both bearing and frequency methods 

are also available [11]. In [12] target localization of radars which change their 

frequency in time (frequency-hopping radars) is presented. In this thesis, it is 

assumed that the target is emitting at a constant frequency. [13] uses digital terrain 

data while estimating target position with frequency measurements. Digital terrain 

data gives terrain altitude values as a function of      . Effect of this data on 

estimator performance is analyzed and compared with the case where no terrain 

information is available. 

TDOA based localization is known as quadratic position-fixing methods. In this 

method, the arrival times of the same pulse is measured between different sensors. 

Estimation of these arrival times is critical in position estimation accuracy. The 

measured TDOA values define a hyperboloid where the target lies. Position 

estimate is found by intersecting these hyperboloids. This is why TDOA 

localization is also called as hyperbolic positioning. Position estimate can be found 

by using closed-form estimators [14]. In [17], position is estimated by using 
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hyperbolic asymptotes.  The property that the TDOA equations become linear in the 

far field is used and the equations are solved analytically as the intersection of 

hyperbolic asymptotes. Most TDOA localization algorithms process one set of 

TDOA measurements to estimate target position. In [18] a closed-form multi-

platform localization algorithm is presented that exploits additional information 

available from multiple TDOA measurements. WLS and WIVE are analyzed. 

Different sensor placement strategies for TDOA based localization are investigated 

in literature [19]. 

Beside these methods emitter localization techniques based on antenna scan 

properties are available [20]. Unlike TDOA methods, high-precision TOA 

measurements are not required for these algorithms. However these methods are 

applicable for mechanically scanning radar with a narrow azimuth beamwidth. 

Target-Platform geometry has a large effect on estimator accuracy. In [23] a path 

planning algorithm is presented which minimizes localization uncertainty. It is a 

nonlinear programming problem which uses an approximation of the Fisher 

Information Matrix (FIM) to generate optimum platform trajectories. 

In literature it is stated that hyperbolic position-fixing methods based on TDOA and 

Dopplerized frequencies yield better accuracy than bearing-only methods. On the 

other hand for these methods, longer integration times are required than for the DF 

approaches [2].  

1.2 Scope and Contributions of the Thesis 

In this thesis, three main types of localization approaches are investigated. These 

are bearing based methods, frequency based methods and TDOA based methods. In 

addition, hybrid methods obtained from the combinations of these methods are 

considered. In the simulations, target is assumed to be stationary. The locator 

platform is flying over a path and collecting the parameters from the target.  

The contribution of this thesis is the implementation and comparison of different 

localization methods under the same framework. Therefore, it is possible to have an 
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idea about the possible performance of different algorithms. While it is not possible 

to have a completely fair comparison between different methods, the comparisons 

give a good idea about the expected performance of different methods. Note that 

since different methods use different parameters such as AOA, frequency, TDOA, 

etc., a completely fair comparison is not possible. However, the accuracy achieved 

for the estimation of AOA, frequency and TDOA parameters is well known in 

practice and those values can be used to have an idea about the possible 

performances achieved by different methods.  

Certain modifications to existing algorithms are done and these versions of the 

algorithms can be seen as partly novel algorithms. In addition hybrid algorithms are 

implemented which are reported in this thesis. 

The thesis is organized in five chapters. In CHAPTER 2, localization techniques 

based on bearing measurements is analyzed. OVE, PLE, WIVE and MLE 

algorithms are presented and their performances are compared for different cases. 

The WIVE algorithm in literature is modified as WIVE2 and the performances of 

WIVE and WIVE2 are compared. Recursive position estimation using EKF is also 

implemented which uses bearing measurements at each time step. Information 

about error ellipsoid is given which is an important tool to analyze estimator 

performances. Calculating the parameters of an ellipsoid, taking slice or projection 

of the ellipsoid on a plane are explained. Error ellipsoid parameters are calculated 

for bearing-only method and the effect of target-platform geometry on estimator 

accuracy is analyzed by using error ellipsoids. In CHAPTER 3, localization 

techniques based on DSF measurements is analyzed. LS and ML solutions are 

presented. Combined method (CM) is presented which uses both bearing and 

frequency measurements. Both the target position and frequency are estimated 

using measurements. At the end of this chapter performances of the algorithms are 

compared for different cases. Also effect of different parameters on estimator 

performance, such as platform velocity, signal frequency is analyzed.  In 

CHAPTER 4, TDOA based localization methods are presented. Localization 
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methods both for multi-platform and single platform are analyzed. At the end of this 

chapter a localization method which uses all parameters which are bearing, 

frequency and TDOA measurements is presented. The performance of this 

combined algorithm is compared with other presented algorithms and shown it 

outperforms all others. Finally CHAPTER 5 summarizes the thesis and proposes 

future work. 
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CHAPTER 2  

 

BEARING-ONLY LOCALIZATION ALGORITHMS 

2.1 General Information 

In this chapter, bearing-only localization algorithms are presented. Bearing-only 

emitter localization is a passive localization technique that employs bearing 

(direction-of-arrival) measurements of the received signals originating from an 

emitter [24]. Algorithms are based on intersecting the Direction-Finding (DF) lines. 

In the absence of noise, the DF lines will intersect at a point where the target lies. 

But in real life this is not the case. Due to noise, lines will intersect each other at 

different points, so many intersection points will occur. At this point, estimation 

algorithms are used to obtain a single position estimate. 

This chapter includes different localization algorithms which are performed in 3D. 

Since 3D scenarios are analyzed, both azimuth and elevation angles are used in the 

algorithms.  

The chapter starts with a brief information about the DF methods. The algorithms 

used for estimating azimuth and elevation angles are explained. After the problem 

formulation part, which explains the scenarios considered, bearing-only localization 

algorithms are presented for 3D localization scenarios such as OVE, PLE, WIVE 

and ML. 
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2.2 Direction-Finding Methods 

In this section, brief information about DF methods is given. However DF 

algorithms are not implemented and it is outside the scope of this thesis. It is 

assumed that DF is already estimated with an error distribution which is known. 

Then this information is used to evaluate the localization algorithms. In simulations, 

azimuth and elevation angles are generated by adding zero mean Gaussian noise to 

the actual values. The noises on azimuth and elevation angles are assumed to be 

independent. 

                           
   

                          
   

(2-1) 

Direction of the target is found by using antenna arrays on the platform. The phase 

difference can be measured between the signals at different antenna elements. If the 

antennas have directionality, the amplitude difference can also be measured [2]. In 

AOA estimation algorithms, it is assumed that the target radar is located at the far 

field of the receiver array and radar is a point emitter. 

In amplitude comparison methods the directional antennas are located on the 

platform. The one which is directed to the target will measure the highest amplitude 

value.  

In phase comparison methods, AOA is estimated by using the differences of phases 

between different antennas. A phase difference between the antennas occurs 

depending on the distance between the sensors    , carrier frequency of the 

received signal      and the angle between target and platform. Although the angle 

can be easily calculated from the phase difference between the signals, this method 

is prone to performance degradation. Thus, using sum and difference of the 

channels can generate more stable angle estimation results [26]. In amplitude and 

phase comparison methods proper antenna calibration is required. 
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AOA estimation with TDOA method finds the direction of arrival of a signal from 

the information of time difference of the signal at the sensors [25].  

2.3 Problem Formulation 

Azimuth and elevation angles of the target are assumed to be obtained by using the 

algorithms which are explained in Section 2.2 by DF-sites. In AOA based 

localization methods, input parameters are the DF angles and the DF platform 

coordinates. In the absence of noise, the DF lines will intersect at a single point as 

stated before. The errors in azimuth and elevation angles will create cone-shaped 

structures as shown in Figure 2-1. So the intersection of these cones will represent a 

volume instead of a single point. The shapes of the cones depend to the standard 

deviation of the azimuth and elevation measurement errors. 

 1
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Figure 2-1 : 3D AOA Based Source Localization for Noisy Case 
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In bearing-only localization algorithms the inputs are the target DF angles, DF error 

variance and the platform coordinates. Target position can be estimated by many 

platforms which lie at different positions, or by a single moving platform which 

takes measurements at different points. In this thesis, a single moving platform is 

used which collects multiple DF measurements.  

2.4 Bearing-Only Localization Algorithms 

In this section, bearing-only localization algorithms have been presented. First OVE 

is given which is a closed form estimator. Then PLE and WIVE algorithms are 

analyzed which are also closed form estimators. In WIVE, the target estimate found 

in PLE is used. MLE follows these algorithms which constructs the estimate in an 

iterative way unlike closed form estimators. GN search algorithm which is an 

iterative method is used in ML estimator. In all these methods the data are collected 

from the moving platform and used in the estimator. On the other hand the ability to 

update a position estimate with a new measurement without using all previous 

measurements is important. By this ability it will be enough to store only the last 

position estimate and the new measurement information in the memory instead of 

all measurements. A recursive position estimator which starts with an initial 

estimate and updates this estimate with new measurements is analyzed in Section 

2.4.5. Extended Kalman Filter (EKF) is used for this algorithm. At the end of the 

section, the simulation results of the mentioned algorithms and performance 

comparison of the methods are given. Effect of different parameters on estimator 

performance is analyzed. 

In this thesis, the true location of the stationary target is represented by   

           
 
 where 

T
denotes matrix transpose.  The single moving platform takes 

N  measurements along its path and the platform position where the 
thk

measurement taken is represented by               
 

. 
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Figure 2-2 : Illustration of azimuth and elevation angles for noise-free case  

 

The moving platform collects azimuth      and elevation      angle at each 

measurement point along its path. These angles are illustrated in Figure 2-2 and the 

relations between positions and angles are given in Equations (2-2) and (2-3). 

         
     

     

  (2-2) 

         
     

        
         

 
  (2-3) 

As seen in Figure 2-2,    is a vector between the platform and the emitter. This 

vector can be written for noise-free case as 

        
          

          

     

  (2-4) 

The relationship between the platform position and the target is given by Equation 

(2-5) 

        (2-5) 
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Since the position of the target is unknown, the information about    vector is 

unavailable. This    term can be eliminated from Equation (2-5) by multiplying 

Equation (2-5) with a unit vector       which is orthogonal to             
      . 

The orthogonal vector is obtained by increasing the elevation angle by 2/ radians 

in   . 

    

        
        

        
        

        
   

   
           

           

     

  (2-6) 

Since    and    are orthogonal   
      . 

After multiplying both sides of Equation (2-5) with the orthogonal vector of     and 

using the property   
      the following is obtained: 

  
     

    (2-7) 

Above equality is used in the following estimator. It is obvious that exact azimuth 

and elevation angles are not known. These angles are estimated by DF algorithms. 

So    vector is obtained with generated angles ( kk 
~

,
~

) which are true angles 

corrupted with zero-mean Gaussian noise. 

                           
   

                          
  

 

(2-8) 

2.4.1 Orthogonal Vector Estimator (Least Squares Estimator) 

In this estimator, the property derived in Equation (2-7) is used. The generated 

azimuth and elevations are used for defining     which is the noise corrupted 

version of   . 
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(2-9) 

In noisy case, Equation (2-7) becomes    
      

      . It is obvious that the 

noise term is non-linear function of the azimuth and elevation angles‟ measurement 

noise. If the equation is written for all measurements taken at N different points and 

expressed in matrix form, following relation is obtained 

 
   

 

 
   

 
 

 
 

   
   

   

 
   

   

 

     
 

  

  

 
  

 
 

 

 
(2-10) 

In Equation (2-10), sizes of   matrix,   and   vectors are Nx3, 3x1 and Nx1 

respectively.     terms are obtained with generated bearing angles and platform has 

its own position data
 
  . LS solution of      is given by  

              (2-11) 

which is the closed-form 3D orthogonal vector estimator [24]. Since   and   are 

correlated, this estimator exhibits bias and the bias gets larger as bearing noise and 

range-to-baseline ratio increases. 

OVE Algorithm: 

1. Estimate the AOA of the target signal at each measurement point with a 

direction-finding algorithm. 

2. Obtain the matrix   and vector   as mentioned in Equations (2-9) and 

(2-10) by using the generated AOA measurements and platform positions. 

3. Estimate the target position    by using the closed form solution given in 

Equation (2-11). 



13 

 

2.4.2 Pseudolinear Estimator (PLE) 

PLE is another closed form estimator used in target localization. In this method, 

problem is first analyzed as a 2D problem and only azimuth angles are used to 

estimate the target‟s   and   coordinates. Then by using the estimates and the 

elevation angles,  -coordinate of the platform is estimated. Equation (2-2) can be 

written as follows for noisy case 

kP

kP

k

k
k

xx

yy









 ~

cos

~
sin~

tan  (2-12) 

kkpkkkPk yyxx 
~

cos
~

cos
~

sin
~

sin   (2-13) 

kkkkPkPk yxyx 
~

cos
~

sin
~

cos
~

sin   (2-14) 

The equations written for all N measurements can be expressed in matrix form: 
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(2-15) 

Note that the    matrix and   vector in Equation (2-15) are different from   matrix 

and   vector used in OVE. 

By using Equation (2-15), pseudolinear estimate of target‟s   and   coordinates can 

be found as: 

        
    

    
    (2-16) 

At this point   and   coordinates of the target is estimated ( Px̂  and Pŷ ). By using 

these estimates and Equation (2-3),   coordinate of the target can be found. Noisy 
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elevation measurements ( k
~

) are used instead of the actual elevation angles. The     

term in the equation is calculated for all N  measurements and the average of these 

values is calculated. This value is the estimate of the   coordinate, Pẑ . Since the 

relation between elevation angle and target position is non-linear, the corresponding 

equations cannot be written in matrix form as in Equation (2-15). So following 

formula is used 

 



N

k

kkPkPkP yyxxz
N

z
1

22 ~
tan)ˆ()ˆ(

1
ˆ   (2-17) 

PLE Algorithm: 

1. Estimate the AOA of the target signal at each measurement point with a 

direction-finding algorithm. 

2. Obtain the matrix    and vector    as defined in Equation (2-15) by using 

the generated azimuth measurements and platform positions. 

3. Estimate   and y coordinates of the target      by using the closed form 

solution given in Equation (2-16). 

4. Estimate the   coordinate of the target by using     , generated elevation 

measurements and platform positions with Equation (2-17). 

2.4.3 Weighted Instrumental Variables Estimator (WIVE) [24] 

In the PLE above, since the measurement matrix    is correlated with bearing 

noise, the 3D PLE is not consistent. That is,      
does not converge to the true 

location vector       as N  and it is biased [24]. Instrumental variables are 

used to solve this problem.  

In localization problem, a linear model            is used where some of the 

   variables are correlated with  . This occurs when    contains measurement 
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errors. For general case    is nxk,     is kx1,    and   are nx1. Suppose there is a 

nxk array of variables   , called instruments, which have the property that the 

variables in    are uncorrelated with  . Premultiplying the linear model equation 

with   
  yields 

  
         

      
   (2-18) 

The idea of an IV estimator of     is to approximate   
   by zero, and solve 

Equation (2-19). 

   
           

    (2-19) 

The IV estimate of the target is: 

        
    

    
    (2-20) 

The only change is in     which is called as instrumental variable (IV) matrix. By 

using an instrumental variable matrix which is uncorrelated with the bearing noise, 

the consistency of the estimate is established and the estimator becomes 

asymptotically unbiased. In some algorithms in literature, uncorrelation between IV 

matrix and the bearing noise is established by using an iterative process for 

calculating an IV matrix [24]. Noise free version of the 1A matrix is an optimal IV 

matrix, but since the actual angle values are not known, this is not practical. 

However by using the PLE found in Section 2.4.2, azimuth angles can be re-

calculated and a suboptimal IV matrix can be obtained. In other words, instead of 

the noisy azimuth angles      , azimuth angle estimates       calculated by using 

the position estimate will be used. 















 

kP

kP
k

xx

yy

ˆ

ˆ
tanˆ 1  (2-21) 

IV matrix is constructed by using estimated azimuth angles: 
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  (2-22) 

By using the PLE estimate found in 2.4.2, the distances between emitter and the 

platform positions can be estimated. The measurements taken at closer points are 

more trustworthy. This information is used in the estimation by introducing a 

weighting matrix which is: 

          
       

   (2-23) 

             
          

  (2-24) 

By using the IV matrix and the weighting matrix, the Weighted Instrumental 

Variable (WIV) estimate of the target is obtained with the following equation. As in 

PLE, first   and   coordinates of the target are estimated. Then by using these 

estimates,   coordinate of the target is found. 

         
       

    
       (2-25) 

        
 

 
                  

              
        

 

   

 (2-26) 

WIVE Algorithm: 

1. Estimate the AOA of the target signal at each measurement point with a 

direction-finding algorithm. 

2. Calculate the azimuth angles        by using the      estimate obtained with 

PLE as in Equation (2-21). 

3. Obtain the IV matrix    by using the calculated azimuth angles in Step 2 as 

in Equation (2-22). 
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4. Calculate the distance between target and platform positions by using the 

     estimate obtained with PLE and obtain the weighting matrix   as in 

Equation (2-23). 

5. Estimate   and y coordinates of the target       by using the closed form 

solution given in Equation (2-25). 

6. Estimate the   coordinate of the target         by using the generated 

elevation angles and the       obtained in Step 5. 

In WIVE algorithm, the IV matrix    is calculated by using the PLE estimate. In 

this thesis the same procedure is repeated such that the IV matrix is updated by 

using the position estimate obtained by WIVE. This algorithm is named as WIVE2. 

WIVE2 Algorithm: 

1. Calculate the azimuth angles        by using the       estimate obtained 

with WIVE. 

2. Update the IV matrix    by using the calculated azimuth angles in Step 1. 

3. Estimate   and y coordinates of the target       by using the updated IV 

matrix. 

4. Estimate the   coordinate of the target         by using the generated 

elevation angles and the       obtained in Step 3. 

2.4.4 Maximum Likelihood Estimator 

The maximum likelihood estimator (MLE) is obtained from the maximization of the 

joint probability density function of the bearing measurements  kk 
~

,
~

, k=1,…,N 

[24]. 

Assuming the bearing noise is zero mean Gaussian, the MLE of the target position 

can be written as 
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       (2-27) 

where the ML cost function is given by 

                    (2-28) 

  is the       covariance matrix of the bearing noise and      is the      error 

vector which are defined as 

          

     

       

     

     

       

   (2-29) 

                                                   (2-30) 

It is seen that the ML estimator does not have a closed form solution. A search 

algorithm should be used to find the target position that maintains the minimum 

cost. GN algorithm is used for this purpose which is a batch iterative minimization 

technique. The method is as follows 

             
       

    
                                  (2-31) 

where
 
   is the 2Nx3 Jacobian matrix evaluated at the current position estimate: 
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(2-32) 

In the algorithm an initial estimate is required. The estimate obtained with pre-

mentioned algorithms (PLE, WIVE) can be used. Jacobian matrix is evaluated at 

this estimate                  
 

. Then the estimate is updated according to the 

Equation (2-31). This procedure is repeated for a defined iteration number 

             or until the norm of the position update is smaller than a sufficiently 

small number. In MLE, the important point is choosing the initial estimate.  If the 

initial estimate is not close enough to the actual target position, due to non-convex 

structure of cost function the estimator can diverge.  

MLE Algorithm: 

1. Estimate the AOA of the target signal at each measurement point with a 

direction-finding algorithm. 

2. Obtain the measurement covariance matrix   as defined in Equation (2-29). 

3. Start with an initial position estimate     and calculate the error vector for 

this estimate which is defined in Equation (2-30). 

4. Calculate the Jacobian matrix    for the initial estimate as in Equation 

(2-32). 
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5. Perform GN search algorithm which updates position estimate by updating 

error vector and Jacobian matrix at each step as in Equation (2-31). 

6. End the search algorithm when the defined update criterions are met.  

2.4.5 Recursive Estimation with Extended Kalman Filter 

In previous sections, information about different bearing-only localization 

algorithms is given. In these methods, bearings are used all at once to find the target 

location. In certain cases, recursive location estimation may be preferred where the 

location estimation is updated as the new data is collected. In situations where 

memory is limited in the platform, there may not be enough space to store all 

measurements. Also the calculation capacity of the platform can be restrictive. At 

this point a recursive estimator can be used which stores the position estimate and 

the new measurement only. First, a few measurements are taken and a position 

estimate is obtained which may be far from the actual position. By using this 

position and the new measurement, a new position estimate is obtained. The user 

does not need to store old measurements. Kalman filter (KF) is used for this 

problem.   

KF can be used in linear-Gaussian systems. The „linear‟ term means the relation 

between the observations and the state which is desired to estimate is linear. In 

emitter localization system the state is the target location. Since the target is 

stationary, the state is constant. The measurements are azimuth and elevation 

angles. As seen in Equations (2-2) and (2-3) the relation between measurements and 

state is non-linear which means KF cannot be used in this problem directly. 

While KF is the optimal solution when the system model is linear, the real life 

systems are usually non-linear. For non-linear cases, the idea is to linearize the 

system equations such that the assumptions hold, and then run the standard KF 

algorithm. This is called the Extended Kalman Filter (EKF) [28]. The important 
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point is that the linearization is done recursively on the current state estimate. The 

system equations are as follows: 

               (2-33) 

             (2-34) 

where       represents system model and       represents measurement model.    

and    are the process noise and measurement noise, respectively. 

In the emitter localization problem    represents the target position for the thk  time 

instant and    represents the measurements which are azimuth and elevation angles. 

Since the target is stationary the following equation holds: 

        (2-35) 

Since the state model is linear, the linearization process is only done for the 

measurement model. The measurement relation is linearized around the predicted 

state        
 
. 

                                           (2-36) 

            
    
        

 
 
            

 (2-37) 

Time update and measurement update equations are as follows: 

Time Update Step: 

              (2-38) 

            (2-39) 

Since the emitter is stationary there is no time update.      is the covariance matrix 

of the state estimate. 
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Measurement Update Step: 

                                           (2-40) 

               
                

       
  

 (2-41) 

                           
 

(2-42) 

where    
is the covariance matrix of the measurement noise and      is the 

Kalman gain.  In the analyzed problem, since measurement noise is not changing 

with time, the sub index k may be removed. Covariance matrix of the initial position 

estimate        is required in the algorithm. The covariance matrix of the algorithm 

which is used to find the initial target estimate is used as     . Then the matrix is 

updated with measurement update step as seen above. The cycle of EKF is seen in 

Figure 2-3. 
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Figure 2-3 : Cycle of EKF [29] 

 

In emitter localization problem the state is target position and the measurement 

vector consists of azimuth and elevation angles. 

    

  

  

  

         
  

  
  (2-43) 
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        (2-44) 

             (2-45) 

The linearization of the measurement model is done by calculating the gradient of 

the measurements vector with respect to the state variables which are coordinates of 

the target. The calculation of    matrix is same as the calculation of Jacobian 

matrix in MLE which is given in Section 2.4.4. 

To sum up, in recursive position estimation with EKF, first K measurements are 

taken and an initial position estimate is obtained. Then with new measurements the 

position estimate is updated without the necessity of storing old measurements. 

Only the current estimate and the new measurements are used.  

2.5 Error Ellipsoids 

In emitter localization problems, algorithm performances depend on the geometry 

between emitter and the platform positions. For bearing-only localization 

algorithms, the measured angle measurements should differ from each other for a 

good estimate. If the difference between angles is too small, then the DF lines will 

be parallel to each other, and the lines can intersect at far from the true target 

position. 

While implementing a localization algorithm, analyzing the emitter-target geometry 

is useful. For 3D problem, which is the case analyzed in this thesis, an error 

ellipsoid is used for this purpose. The error ellipsoid around the true target position 

represents the area that the target estimate will lie with a defined probability. For 

example a %90 error ellipsoid around the true target position will include the target 

estimate which is estimated by an unbiased estimator with a 0.9 probability. By 

using error ellipsoids, one can comment on which target position, the estimator 

performs better. A smaller error ellipsoid means estimator accuracy is better. 
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An error ellipsoid can be drawn around the estimated target position instead of 

actual target position. This ellipsoid represents the area where the true target lies 

with   probability. Ellipsoid around the true target position and the target estimate 

are similar concepts. Both represents an area that the target or estimate will lie. The 

only difference is the covariance matrix which is used to compute the ellipsoid 

parameters. If ellipsoid is drawn around position estimate, the covariance matrix of 

the estimate is used. In this thesis the error ellipsoid around true target position is 

analyzed. So the CRLB matrix which is calculated at the actual target position is 

used. 

In 2D error ellipses, in 3D error ellipsoids are used. For higher dimensions 

hyperellipsoids are used but they are hard to visualize. In that case slice or 

projection of the hyperellipsoid can be used for desired parameters. Details of these 

concepts will be given in this chapter. 

2.5.1 Calculating the Ellipsoid Parameters 

The aim is to obtain the smallest error ellipsoid around the true target position 

which an unbiased estimator can achieve. For this purpose CRLB matrix is used to 

compute the ellipsoid parameters. Let the parameters which are desired to be 

estimated are represented by vector  . Then the measured parameters (e.g. angle, 

phase, time of arrival) are a function of the vector  . These parameters are modeled 

by adding Gaussian noise on the actual value. For time   , the data vector is 

                       (2-46) 

In this case where N measurements are taken, the data vector used to estimate the 

desired parameters is defined as, 

                                   
 
 (2-47) 
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The data vector is distributed according to                 where   is the 

covariance matrix of the zero-mean Gaussian noise. To calculate CRLB matrix, first 

Fisher Information Matrix (FIM) is calculated with the following equation: 

             (2-48) 

where   matrix is defined as 

    

  
       

            
             

  (2-49) 

   

 
 
 
 
 
 
 
 

 

   
       

 

   
       

 
 

   
       

 
 
 
 
 
 
 
 

 (2-50) 

In the equations    
represents the number of the estimated parameters. 

Thus, for a given “emitter-platform geometry”, it is possible to compute   matrix 

and then use it to compute the CRLB covariance matrix, from which an eigen-

analysis can be done [30]. CRLB is the inverse of the FIM 

                        (2-51) 

After CRLB matrix is derived, the ellipsoid parameters can be calculated. Principle 

axes and principle axes lengths are required to define an ellipsoid completely. The 

principle axes are determined from eigenvectors and lengths of the axes are 

determined from eigenvalues. In Figure 2-4, parameters of an ellipse are shown for 

simplicity instead of an ellipsoid. The relation between eigenvalues, eigenvectors 

and ellipse parameters is given on figure.  The eigenvalues of the CRLB matrix are 

represented by 1 and 2 , eigenvectors are represented by 1v  and 2v  respectively.  
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Figure 2-4: Error ellipse parameters 

 

The off-diagonal elements of the CRLB matrix determine the tilt angles of the 

ellipsoid. Location accuracy characteristics depend on the CRLB structure. In 

Figure 2-5 scatter plots for the estimated target location is seen for 2D. Although 

each case has the same variances, the first one‟s CRLB matrix has off-diagonal 

terms different form the second one, so ellipses are not aligned with the axes. Since 

ex̂ and eŷ are correlated, the ellipses are tilted.  Location accuracy characteristics 

are very different. 

 

Figure 2-5: The effect of off-diagonal elements of CRLB matrix  
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For creating error ellipsoid, eigenvectors and eigenvalues of the 3x3 CRLB matrix 

are used. Ellipsoid axes are aligned with the three eigenvectors. Axes lengths are 

square root of the eigenvectors multiplied with a   term. This   term takes different 

values according to the probability   indicated by the ellipsoid. As explained before 

  value is the probability that the estimate will lie in the ellipsoid. The larger the   

value is, bigger the ellipsoid is. Most common values of   are 0.9 and 0.95. 

According to   value,   value and consequently axes lengths of the ellipsoid are 

changed. For calculating the   value, the following property is used: 

Given n-dimensional Gaussian random vector  , with mean    and covariance 

matrix    , the scalar random variable k defined by the quadratic form 

      
   

           (2-52) 

has a chi-square distribution with n degrees of freedom [31]. 

In the emitter localization problem    is the true target position,     is the CRLB 

matrix. This equation defines an n-dimension hyperellipsoid. 

The probability that the scalar random variable k is less than or equal to a given 

constant,    
   

       
            

   
           

     (2-53) 

is given in the following table where n is the number of degrees of freedom [31].  

Table 1: Chi-square values 

n       
       

        
       

       
       

       
       

       
       

  

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039 

2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103 

3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352 

4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711 
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According to the Table 1, for 3D problem,   value is 6.25 for %90 error ellipsoid. 

So principle axes are square root of 6.25 times eigenvalues. 

2.5.2 Slice of Error Ellipsoid 

After creating the error ellipsoid, a slice of the ellipsoid can be taken on the desired 

surface. For hyperellipsoids which are hard to visualize, desired estimated 

parameters can be chosen and the error ellipse (for 2 parameters) or error ellipsoid 

(for 3 parameters) can be obtained. Also the projection of the ellipsoid can be taken. 

At this point, it is important not to confuse slice and projection. In Figure 2-6, the 

distinction is seen for an ellipse: 

 

Figure 2-6 : Comparison of slice and projection 

 

Same projection matrix is used for taking slice and projection on the surface. It is a 

matrix where each row has a single one in it at the location of one of the parameters 

that remains in desired subspace. For example, in a case where  ,   and   

coordinates of a target is estimated, for taking a slice over x-y surface, the 

projection matrix is defined as follows: 
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  (2-54) 

By using this matrix, the new CRLB matrix is obtained: 

                   
        (2-55) 

By using the 2x2             matrix, the ellipse parameters are calculated as 

explained in 2.5.1. While calculating ellipse parameters, the same “k” value which 

is used while calculating ellipsoid parameters is used. 

2.5.3 Projection of Error Ellipsoid 

The projection of error ellipsoid can be taken on desired surface. This provides 

convenience while analyzing the results. The projected CRLB matrix is obtained as 

follows: 

                  
  (2-56) 

2.6 Error Ellipsoid for Bearing-Only Localization 

In bearing-only localizations the measurements are azimuth and elevation angles. 

So the   matrix defined in Section 2.5.1 is calculated by using these measurements. 

The azimuth and elevation angles are defined in Equations (2-2) and (2-3). 

For the case where   measurements are taken, the data vector is a      vector 

which consists of   azimuth and   elevation angles. 

        
        

       (2-57) 

                    (2-58) 

                    (2-59) 
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The   matrix is calculated as 
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 (2-60) 

where  is the gradient operator. 

The first   rows of   are partial derivatives of azimuth angles with respect to  ,   

and   coordinates of the target which are calculated as: 
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In a similar way, the derivatives of the elevation angles are taken and the second 

  rows of   matrix are obtained, 
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The covariance matrix of the measurements is defined as 
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   (2-67) 

By using the calculated   matrix and the above covariance matrix, FIM and CRLB 

matrices are computed as in Equations (2-48) and (2-51). By using CRLB matrix, 

ellipsoid parameters are calculated as explained in Section 2.5.1. The slice and 

projection of the ellipsoid can be taken as explained in Sections 2.5.2 and 2.5.3. 

In Figure 2-7, there is an illustration of the P=0.9 error ellipsoid. The target lies at 

        and the platform flies through a straight path. The standard deviations of 

azimuth and elevation angles are       . The center of the ellipsoid is the true 

target position. 100 Monte Carlo simulations are run for the ML estimator and the 

estimates are seen on the figure. 

 

 

Figure 2-7 : Error ellipsoid around true target position 
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The zoomed version of the error ellipsoid is in Figure 2-8. As seen from the figure, 

most of the estimates are in the 0.9 error ellipsoid (nearly %90 of the estimates) 

 

Figure 2-8 : Error ellipsoid and the position estimates 

 

In the scenario examined above, no information is available about the target 

position. If there was information that the target‟s   coordinate is zero         

and only   and   coordinates of the target are estimated, this would be a different 

case. The error ellipsoid for the case of not estimating a parameter is found by 

taking a slice through the full-parameter error ellipsoid with the plane defined by 

setting the eliminated error variable to zero [13]. In Figure 2-9 the case of knowing 

  coordinate of the target is analyzed. The slice of the ellipsoid and the estimates are 

seen on the figure. The estimates are found by moving forward the 3D estimates 

along the direction of ellipsoid and intersect with     plane. 
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Figure 2-9 : Slice of the error ellipsoid (known     ) 

 

By using the error ellipsoids, the effect of target-platform geometry on accuracy can 

be observed. In Figure 2-10 the error ellipsoids for different target positions are 

plotted. The smaller is the ellipsoid, the better is the accuracy.  
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Figure 2-10 : Error ellipsoids for different target locations 

 

By taking the projection of the above error ellipsoids on x-y plane, the effect of 

geometry can be observed better. In Figure 2-11 projection of the ellipsoids can be 

seen. 
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Figure 2-11 : Projection of the error ellipsoids for different target positions 

 

In Figure 2-10 and Figure 2-11 the effect of geometry on accuracy can be observed 

easily. As target distance increases, the accuracy degrades. Another observation is 

that as the difference between measured angles increases, the accuracy gets better. It 

is seen that as target gets closer to      , ellipses get smaller. For targets which 

lie on same     plane, the maximum azimuth angle change between 

measurements occurs at       for above scenario. 

2.7 Simulation Results 

In this section, performances of the bearing-only localization algorithms are 
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         and collects bearing measurements at every 10 seconds. Platform 

starts its path at                       with a velocity vector in the direction of 

     and    . After collecting 4 measurements, velocity vector changes in the 

direction of      and     . 4 measurements are taken along this path and the 

velocity vector changes to the direction       and     and collects 4 more 

measurements. The scenario is as shown in Figure 2-12. 

 

Figure 2-12 : Scenario used in the simulations 

 

In the simulations, the performances are compared with CRLB which is the 

minimum achievable error. The derivations of CRLB matrix were given in Section 
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localization variance [27]. 
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   (2-68) 

  
              (2-69) 

Simulation results are obtained by running 1000 Monte Carlo runs and the RMS 

errors are calculated. Results are compared for four different algorithms which are 

OVE, PLE, WIVE and MLE for different standard deviation values. In MLE, the 

estimates obtained in WIVE are used as initial estimates. Performance analyses are 

also done for WIVE2 algorithm.  

In the first scenario, both azimuth and elevation angle errors have the same standard 

deviation values which are changing between      and  
 . The results are seen in 

Figure 2-13. It is observed that OVE has the worst; MLE has the best performance 

among all algorithms. MLE performance is very close to the CRLB. Another 

important point is that WIVE has a significant improvement over PLE and OVE. 

Since it is a closed form estimator, its computational complexity is much lower than 

MLE. So in systems where low complexity of implementation is an important 

consideration, WIVE would be a reasonable choice. WIVE and WIVE2 have 

approximately the same performances. There is a slight improvement in WIVE2 

method‟s accuracy. So it can be concluded that updating the instrumental variable 

matrix is not useful. 
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Figure 2-13 : Performance comparison of bearing-only localization algorithms for 

    case 

 

To see the effect of azimuth and elevation errors individually, two scenarios are 

analyzed. In the first one, elevation deviation is fixed to    and only azimuth 

deviation is changed between      and   . In the second scenario azimuth deviation 

is fixed to    and elevation deviation is changed between      and    . The results 

are in Figure 2-14 and Figure 2-15 respectively. 
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Figure 2-14: Performance comparison of bearing-only localization algorithms for 

fixed 
3  case 
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Figure 2-15 : Performance comparison of bearing-only localization algorithms for 

fixed 
3  case 
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estimate. Then, as new measurement arrives the position is updated. In below 

figures the  -axis represents the new measurement number. N=3+9=12 

measurements are used as in the above scenarios. Simulation results are obtained by 

running 100 Monte Carlo runs. The RMS of the position error is calculated for each 

update time. As seen in Figure 2-16 and Figure 2-17, as new measurement arrives 

the position error gets smaller. 

 

Figure 2-16 : RMS error of recursive estimator as new measurement arrived for 
o1    case 

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

Iteration Number

P
o
s
it
io

n
 E

rr
o
r



44 

 

 

Figure 2-17 : RMS error of recursive estimator as new measurement arrived for 
o3    case 
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at that moment. 
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CHAPTER 3  

 

LOCALIZATION ALGORITHMS USING DOPPLER 

FREQUENCY SHIFT 

3.1 General Information 

In this thesis, a moving platform such as a plane or UAV is considered to estimate 

the position of a stationary RF transmitter. When there is relative motion between 

the emitter (target) and the receiver (platform), the measured frequencies by the 

receiver will differ from the original emitted frequency. These frequencies which 

are different from the actual frequency are called Doppler-shifted frequencies 

(DSF). In localization algorithms based on DSF, the measured frequencies from 

target, platform positions and velocities are used as input to the algorithm and target 

position and the frequency of the emitted signal are estimated.  

The measured DSFs depend on the emitter location and frequency. However 

relationship between them is non-linear. In the special case where the moving 

receiver measures frequencies along a straight path at constant speed, the 

relationship becomes linear [10]. By using this special case, location of the target 

and the transmitted frequency is estimated by a LS estimator. By using the LS 

estimate as initial estimate, ML estimates are obtained. Results are compared with 

the CRLB. 
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In the second part of the chapter, emitter localization by using both frequency and 

bearing measurements is analyzed. It is shown that the location methods based on 

bearing and frequency measurements differ significantly [11]. So combining these 

two methods lead to a significant performance improvement. In the rest of this 

section, the method where only frequencies are used will called as Doppler-Shifted 

Frequency (DSF) method, both bearings and frequencies are used will called as 

combined method (CM). 

3.2 Frequency Estimation 

Emitter localization by Doppler-shifted frequencies consists of two main steps. 

First, the platform estimates the Doppler-shifted frequencies and then by using these 

frequencies with an estimator, target position is estimated. Frequency estimation 

concept is out of scope of this thesis. However brief information about this concept  

will be given. In simulations, frequency estimates are obtained by adding zero mean 

Gaussian noise on the actual frequency values. 

Several techniques can be used to estimate the frequency of a signal such as ML 

estimation, FFT-based techniques [32], etc. In FFT approach, center frequency of 

the bin which contains the most energy is used as frequency estimate. Step size of 

frequency spacing determines the accuracy of the estimation. As the size of the FFT 

increases, the performance gets better but this also increases computational 

complexity and needs larger memory. Zoom-FFT is another technique which deals 

with only the bins that contain most energy [33]. In [34], interpolation is done using 

bins adjacent to the maximum bin and avoids increasing the FFT size. 

3.3 Problem Formulation 

In DSF method, the problem is estimating the position of the stationary target which 

is represented by              
 
. The single moving platform takes   

measurements along its path which consists of different straight line segments. The 
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platform position where the thk  measurement is taken is represented by    

           
 

 and the velocity of the platform at that point is represented by 

                
 
 . The target is transmitting a radar signal at an unknown carrier 

frequency   . Due to the relative motion between target and the moving platform, 

received carrier frequency is different from the transmitted carrier frequency. For 

different time instants, since the relative motion changes, the received carrier 

frequencies also change. 

 

Figure 3-1: Measured frequencies at different points [30] 

 

The received frequency depends on transmitter‟s carrier frequency      and target‟s 

position             
 
 . If these parameters are shown with a parameter vector, 

then the received frequencies are function of time and this parameter vector. 

Parameter vector is given as                
   

The received frequency can be written as  
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(3-1) 

where   is the speed of the platform and   is the propagation speed. The angle 

between the platform‟s velocity vector and the vector from platform to emitter is 

represented by   . Since target position is not known, there is no information about 

this angle too.  

The measured Doppler frequencies are created by adding zero mean, independent 

and identically distributed Gaussian noise      on the actual Doppler-shifted 

frequencies: 

                      (3-2) 

The platform position and velocity at thk  time instant are shown by the following 

vectors 

                         (3-3) 

                             (3-4) 

The target position is represented by the following vector 

                         (3-5) 
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Figure 3-2 : Target and platform vectors 

 

In emitter localization scenario, the moving platform is following a path which 

consists of different straight segments. In other words, the direction of the velocity 

vector changes. The direction of the velocity at thk  time instant may be represented 

by azimuth and elevation angles. Azimuth angle      represents the angle between 

velocity vector and the x-axis, elevation angle      represents the angle with 

respect to the x-y plane. The components of the velocity can be written as follows: 

               

               

          

(3-6) 

where  represents the speed of the moving platform. 

3.4 Least Squares Estimator 

In least squares method, a closed form estimate of the target position is obtained. 

Since the frequency of the emitted signal is not available, first 1-D discrete search is 
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done for frequency estimation, and then with LS estimator a coarse estimate of the 

emitter coordinates is obtained [10]. 

According to Figure 3-2 the inner product of velocity vector and the vector from 

target to emitter is: 

                            (3-7) 

                          
         

         
  (3-8) 

By substituting Equation (3-6) and Equation (3-8) into Equation (3-7) the following 

equation is obtained 

                          (3-9) 

where   ,   ,    and    are defined as  

              (3-10) 

              (3-11) 

         (3-12) 

                     (3-13) 

In Figure 3-3, the platform is moving on a straight path, such that azimuth and 

elevation angles of the velocity vector are constant.  
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Figure 3-3: Non-manoeuvring path of the moving platform  

 

According to Figure 3-3, the following equality can be written by applying the sine 

law, i.e, 

   

      
 

  

     
 (3-14) 

   

      

 
  

     

              

 

(3-15) 

    represents the distance between platform position at k=1 and k=2,3,…N. Also 

as seen from Figure 3-3 the angle     may be written as 

                  (3-16) 

Combining the above equations results in 

   
        

          
 (3-17) 
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             (3-18) 

By writing Equation (3-9) for all measurements          the following matrix 

equation is obtained 

     (3-19) 

   

  

  

  

      
      

   
      

      
          

 
          

  (3-20) 

Then the LS solution for the target position is 

              (3-21) 

In this algorithm the important point is the measurement equation is linear in 

             
 
 for a fixed    along a non-manoeuvring path of constant coarse 

and speed [10]. So the above equations are written for different non-manoeuvring 

path segments individually and then equations are combined as a matrix.  

To find    in Equation (3-21), the elements of   matrix and   vector should be 

known. However since    terms in   are not known, a 1D search algorithm is 

implemented over frequency and     values are calculated for each frequency in the 

search space. 

Since the frequency of the emitted signal is unknown, a search over frequency is 

developed. The average of the measured frequencies is calculated       and a range 

is defined for the search space, from        to        .    is the maximum 

frequency shift and calculated as        
 

 
. Search starts from           and by 

using Equation (3-1)   values are calculated for k=1,2,…,N. Generated frequency 

values       are used for    and     is used for    in Equation (3-1).  Then by using 

these calculated    values,    values are estimated with Equations (3-17) and 
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(3-18). Now all the elements of   matrix is available and by using Equation (3-21), 

LS estimate of target is obtained. For this position estimate,    and    values are 

re-calculated and predicted Doppler-shifted frequency       is found by using these 

values. Finally a cost function is evaluated which measures the difference between 

the predicted frequency and the generated frequency. The cost function   is given as 

            
 

 

   

 (3-22) 

This procedure is done for all frequencies in the search space. The frequency 

granularity can be chosen as 1Hz. Then the frequency value and the corresponding 

              
 
 value that give the minimum cost are chosen as LS estimate. 

As will be shown in simulations parts, the LS estimates do not meet CRLB, 

however they are close enough to the actual values to be chosen as initial estimates 

in ML estimate. 

LS Algorithm: 

1. Estimate the Doppler shifted frequencies with a frequency estimation 

algorithm at each measurement point. 

2. Obtain the   matrix by using the direction of platform‟s velocity vector and 

platform positions as defined in Equations (3-10), (3-11), (3-12) and (3-20). 

3. Define a search space for frequency, from        to        where       is 

the average of the estimated frequencies in Step 1 and        
 

 
. 

4. For each frequency value in search space, calculate the    values as in 

Equation (3-1) by substituting    with this frequency value and       with 

the measured frequency for k=1,2,…N. 

5. By using these    values, estimate    values with Equations (3-17) and 

(3-18). 
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6. Obtain the   vector by using   ,    and    as in Equation (3-20). 

7. Estimate the target position    by using the closed form estimator in 

Equation (3-21). 

8. Re-calculate the    and    values for this position estimate    and by using 

these values with Equation (3-1) find the predicted Doppler-shifted 

frequencies     . 

9. Calculate the cost function defined in Equation (3-22). 

10. Repeat Step 4-9 for each frequency in the search space and choose the 

frequency value which gives the minimum cost and the corresponding 

position estimate    as LS estimate. 

3.5 Maximum Likelihood Estimator 

The optimum MLE is obtained from the maximization of the joint probability 

density function of the Doppler-shifted frequency measurements      , k=1,…,N . 

Assuming the frequency measurement noise is Gaussian distributed, the ML 

estimate of the target position and the signal frequency can be written as 

           
 

       (3-23) 

where the ML cost function is given by 

                    (3-24) 

As indicated in Section 3.3 the target position and the signal frequency are 

combined in parameter vector 

               
  (3-25) 

In the cost function,   is the     covariance matrix of the frequency noise and 

     is the Nx1 error vector which are defined as 
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   (3-26) 

                           (3-27) 

It is seen that the ML estimator does not have a closed form solution. A search 

algorithm should be used to find the target position that maintains the minimum 

cost. GN algorithm is used for this purpose which is a batch iterative minimization 

technique. The update for the parameter vector is done as follows 

             
       

    
                                  (3-28) 

where    is the Nx4 Jacobian matrix evaluated at the current frequency and position 

estimate: 

   

 
 
 
 
 
      

   

      

   

      

   

      

   
    

      

   

      

   

      

   

      

    
 
 
 
 

     

 (3-29) 

The terms of the Jacobian matrix are calculated as follows: 

  
   

 
 (3-30) 

           
         

         
  (3-31) 

                                 (3-32) 

      

   

   
  

   

 
         

   
   (3-33) 

      

   

   
  

   

 
         

   
   (3-34) 



56 

 

      

   
   

  

   

 
         

   
   (3-35) 

      

   
    

   

   
 
 

(3-36) 

While calculating the above elements the current estimate values are used for  

               
 . In the algorithm an initial estimate is required. The LS estimate 

obtained in Section 3.4 is used as initial estimate. Jacobian matrix is evaluated at 

this estimate. Then the estimate is updated according to the Equation (3-28). This 

procedure is repeated for a defined iteration number or until the norm of the 

position update is smaller than a sufficiently small number. 

MLE Algorithm: 

1. Estimate the Doppler shifted frequencies with a frequency estimation 

algorithm at each measurement point 

2. Obtain the measurement covariance matrix   as defined in Equation (3-26). 

3. Start with an initial estimate (LS estimate) and calculate the error vector for 

this estimate which is defined in Equation (3-27). 

4. Calculate the Jacobian matrix    for the initial estimate as in Equation 

(3-29). 

5. Perform GN search algorithm which updates position estimate by updating 

error vector and Jacobian matrix at each step as in Equation (3-28). 

6. End the search algorithm when the defined update criterions are met. The 

final     value is the ML estimate of the parameters. 

The covariance matrix of the ML estimator is calculated by using the Jacobian 

matrix obtained in the last iteration and the measurement error covariance matrix. 

               (3-37) 
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By using the covariance matrix of the estimator, the error ellipsoid around the 

estimated target position can be plotted as explained in Section 2.5.1. The error 

ellipsoid with probability   represents the area that the true target is in with 

probability  . 

By using the Jacobian matrix evaluated at the true signal frequency, actual target 

position and the measurement covariance matrix, CRLB matrix is evaluated as in 

Equation (3-37). By using CRLB matrix, the error ellipsoid around true target 

position can be plotted.  

3.6 Combined Method for Position Estimation 

In the previous sections, localization algorithms based on bearings and frequency 

measurements are presented individually. Combined set of bearing and frequency 

measurements can also be exploited for emitter position estimation [11]. In the 

remaining of this section, this method is called as Combined Method (CM). In CM, 

position estimation is obtained in ML sense. ML estimators for bearing-only and 

DSF methods are presented in Sections 2.4.4 and 3.5. In CM, the error vector and 

Jacobian matrix are evaluated such that they include information about both 

bearings and frequencies. In DSF method, the Jacobian matrix is     where the last 

column is calculated for dependence of measurements on center frequency of the 

emitted signal. On the other hand, in bearing-only method Jacobian matrix is     , 

since there is no dependence of bearing measurements to center frequency. In CM, 

Jacobian matrices of bearing-method and DSF method are combined by adding a 

     zeros column at the end of Jacobian matrix of bearing method. The   vector 

used in Equation (3-39) is defined in Equation (3-25). In MLE the covariance 

matrix of the measurement noise is used in the update step. In Section 2.4.4 

covariance matrix of bearing noise, in Section 3.5 covariance matrix of frequency 

noise is used which are defined in Equations (2-29) and (3-26) respectively. In CM 

covariance matrix of both bearing noise and frequency noise is used which is 

defined as follows 
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   (3-38) 

The error vector is also combined as in above case. The error vectors are defined in 

Equations (2-30) and (3-27) for bearing-only method and DSF method respectively. 

In CM, the error vector which combines these error vectors is used. 

                                                         

                    
(3-39) 

The Jacobian matrix used in CM is obtained by combining the Jacobian matrices 

used in bearing-only method and DSF method. 

       
        

    
  (3-40) 

In above equation          represents the Jacobian matrix of bearing-only method 

which a      zeros column is added to the end of the matrix to indicate 

independence of angle measurements and frequency. By using these combined 

vectors and matrices, the ML estimate is obtained as described in Sections 2.4.4 and 

3.5. The update for the parameter vector is done as follows 

                  
      

          
  

       
      

          

                       

(3-41) 

An initial position estimate found by bearing-only or DSF-only method can be used 

in the MLE. 

MLE Algorithm: 

1. Estimate the AOA and received frequency of the target signal at each 

measurement point with a direction-finding and frequency estimation 

algorithm. 
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2. Obtain the measurement covariance matrix   as defined in Equation (3-38). 

3. Start with an estimate and calculate the error vector for this estimate which 

is defined in Equation (3-39). 

4. Calculate the Jacobian matrix       for the initial estimate as in Equation 

(3-40). The calculated Jacobian matrices in Equations (2-32) and (3-29) are 

combined. 

5. Perform GN search algorithm which updates estimate by updating error 

vector and Jacobian matrix at each step as in Equation (3-41). 

6. End the search algorithm when the defined update criterions are met. The 

final     value is the ML estimate of the parameters. 

3.7 Simulation Results 

In simulations the same scenario used in bearing-only algorithm is used. The target 

is at                         . The platform is traveling with a constant speed 

         and collects frequency measurements at every 10 seconds. Platform 

starts its path at                       with a velocity vector in the direction of 

     and    . After collecting 4 measurements, velocity vector changes in the 

direction of      and     . 4 measurements are taken along this path and the 

velocity vector changes to the direction       and     and collects 4 more 

measurements. The scenario is as shown in Figure 3-4. As the algorithm required, 

the path consists of non-maneuvering path segments where a linear relation between 

frequency measurements and target position can be written. 
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Figure 3-4 : Scenario used in the simulations 

 

First, the performance of the DSF algorithm is considered. The frequency 

measurement error standard deviation is changed between 1Hz and 15Hz. Results 

are obtained by running 1000 Monte Carlo runs and RMS errors in target position 

and frequency estimation are calculated. The results are as in Figure 3-5 and Figure 

3-6. 
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Figure 3-5 : RMS error for target position 
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Figure 3-6 : RMS error for frequency 
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projecting the ellipsoid on desired plane were explained in Section 2.5. So the 

details are not repeated in this section. An ellipsoid around true target position 

represents the volume where the estimates obtained from an unbiased estimator will 

lie with a probability  . So it can be concluded that a smaller error ellipsoid 

represents a better estimator performance since the estimates will lie in a smaller 

area. The alignment and size of the ellipsoids cannot be seen clearly when plotted 

on the same plot since they overlap. So the projections of the ellipsoids on x-y plane 

are plotted. The ellipses are plotted for the case where azimuth and elevation errors 

standard deviation is 3 degrees and frequency error standard deviation is 70Hz. The 

probabilities of the ellipsoids are 0.9. 

 

Figure 3-7: Projection of error ellipsoids for different methods 
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The algorithms are run 100 times. It is assumed that the information that the target 

is on     plane is available. So the algorithms which use this information are 

used. The estimates are expected to be in the area which is defined by the slice of 

the ellipsoid taken at    .  

 

Figure 3-8: The estimates obtained with different algorithms 
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First, the case where standard deviations of azimuth and elevation angles are fixed 

to 3 degrees is examined. The standard deviation of the frequency measurements 

are changed between 10Hz and 90Hz. 

 

Figure 3-9: Performance comparison of algorithms for different frequency standard 

deviations 
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frequency standard deviation values gets larger as expected. The important point is 

that CM always has a better performance than DSF method and bearing-only 

method as seen from the error ellipsoids in Figure 3-7. 

In Figure 3-10, the performance of the CM is compared with the CRLB. As seen 

from the figure, the error is nearly equal to the best achievable error. 

 

Figure 3-10: Comparison of position accuracy with CRLB of the combined 

algorithm 
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Figure 3-11: Frequency estimation accuracies for DSF and CM 
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Figure 3-12: Comparison of frequency accuracy with CRLB for different frequency 

standard deviations 
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Figure 3-13: Performance comparison of algorithms for different bearing standard 

deviations 
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Figure 3-14 : Comparison of position accuracy with CRLB for different bearing 

standard deviations 
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on the target‟s signal frequency  0f  and platform velocity  V . To see the effect of 

these parameters on estimation performance, followings simulations are performed. 

To see the effect of platform velocity on position estimation accuracy, the platform 

velocity is changed between        and        and all other parameters kept 

constant. As seen from Figure 3-15, as platform velocity gets larger, the position 

RMSE gets smaller both for DSF method and CM. Since higher platform velocities 

cause higher Doppler shifts, the effect of noise gets smaller. 

 

Figure 3-15 : Effect of platform velocity on position estimation accuracy 
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the position RMSE gets smaller both for DSF method and CM. Similar with the 

above case, as frequency gets larger, according to Equation (3-1) Doppler shift 

becomes larger too. So the effect of noise is smaller for higher Doppler shifts. 

 

Figure 3-16 : Effect of signal frequency on position estimation accuracy 
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CHAPTER 4  

 

TDOA BASED LOCALIZATION ALGORITHMS 

4.1 General Information 

Passive emitter localization by time difference of arrival (TDOA) has applications 

in a wide range of areas such as localization of lightning strikes, geolocation of 

mobile phones, radar, sonar and electronic warfare [35]. In this method, the emitter 

is transmitting a signal and receivers at different locations receive this signal. The 

TDOA values between the pairs of the receivers are used to estimate the target 

position. In passive localization, there is no information about the pulse 

transmission times. So the arrival time of the signal does not provide information 

about the target. The time differences are measured at multiple receivers with 

known locations, and subsequently used for computing a location estimate [18]. 

For 2D problem, the TDOA value between two receivers defines a hyperbola. For 

noise-free case, target is at the intersection of hyperbolas defined by different sensor 

pairs. In 3D, the TDOA value defines hyperboloids. Target position is found by 

solving N-1 non-linear equations. Solution can be found in closed-form or by using 

a maximum likelihood estimator. In this thesis, target is first estimated with the 

closed-form estimator. Then by using this closed-form estimate in ML estimator, a 

better estimate is obtained which attains CRLB.  As explained in previous sections, 

ML estimator does not have a closed form solution, so an iterative GN method is 

used to obtain the estimate. Because of the non-convex topology of ML cost 
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function, the iterative ML estimators require an initial estimate close to the solution 

in order to avoid divergence [15]. 

The localization accuracy in TDOA method depends on three factors which are the 

accuracy of TDOA estimates, the choice of the location estimator and the sensor 

position relative to the source [19]. The effect of sensor placement on localization 

accuracy can be examined in terms of CRLB matrix. This can be done by 

calculating the CRLB matrix and plotting the error ellipsoid. The optimum sensor 

placement is the one which minimizes the trace of the CRLB, in other words, which 

maximizes the trace of FIM.  

There are two important advantages of estimating the target position with TDOA. 

Localization is realized without any knowledge about received waveform of the 

signal [36]. The arrival times of the pulse are sufficient for localization. The other 

advantage is that antenna array calibration is not needed different from bearing-only 

localization algorithms. On the other hand, this method is very sensitive to time 

synchronization between platforms. 

4.2 TDOA Estimation 

In this section, a short summary of TDOA estimation methods is given. However 

these methods are not implemented. It is outside the scope of this thesis. In 

simulations, TDOA values are generated by adding zero mean Gaussian noise to the 

actual values.  

One of the methods for estimating TDOA between two sensors is “Leading-Edge 

TDOA”. In this method, arrival times of the signals are measured at the sensors and 

their difference is taken. The arrival time of the signal can be determined by 

measuring the time at which the signal crosses an adaptive threshold level [25]. This 

problem is analyzed in literature [37]. Another TDOA estimation method is “Cross-

Correlation Method”. In this method the cross-correlation of the received 

waveforms is calculated and the delay value is estimated as the value which 

maximizes this function. Let model the received signals at the sensors as [38]: 
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                 (4-1) 

                             (4-2) 

where      represents the emitted signal from target,       and       represent the 

noise in the receivers. Observation time is denoted by  . In Equation (4-2),   is the 

unknown delay which is desired to be estimated. In the method, it is assumed that 

the correlation durations of the signals is very small compared to the observation 

time. The estimate of time delay        is found as  

        
 

               
 

 

 (4-3) 

There is also “Generalized Cross Correlation Method” which finds the maximum 

value of the cross correlation of prefiltered signals [38]. 

TDOA estimation accuracy is one of the most important factors that determine the 

TDOA based localization estimator performance. The accuracy of TDOA 

estimation depends on receiver noise, center frequency of the signal, received SNR 

and observation time. All these parameters also affect the localization performance. 

Increase in SNR, bandwidth, frequency of the signal and/or integration time result 

in better position estimates. In [39], CRLB of variance for the time delay estimate is 

examined in a detailed way for low and high SNR cases. It is stated that the 

standard deviation of the time delay estimate varies inversely to the square root of 

the SNR for high SNR case (SNR>>1), whereas for low SNR case, it varies 

inversely to the SNR. The effects of other parameters are same for both low and 

high SNR‟s. The derived CRLB values for TDOA estimations are as follows [39]: 
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    for SNR>>1 (4-5) 

In [39], it is assumed that the TDOA estimation is evaluated under the assumption 

that both noise and signal have constant power spectral density over the bandwidth 

specified by    and           . As seen from the above equations, TDOA 

estimation accuracy degrades as signal bandwith decreases. So it can be concluded 

that TDOA based localization methods are not suitable for narrowband 

communication waveforms [27]. 

4.3 Problem Formulation  

In TDOA localization, the problem is estimating the position of the stationary target 

which is represented by              
 
 given the TDOA values for different 

sensor pairs. The arrival time of the signal which is emitted by target is measured at 

  different points. By using the difference between these arrival times, location of 

the target is estimated. The platform position where the     measurement is taken is 

represented by               
 
 for Nk ,,2,1  . The geometry between the 

target and the measurement points is seen in Figure 4-1.    is chosen as the 

reference point and the time difference of arrivals are calculated according to this 

reference point. 

Gx
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Figure 4-1: The geometry of the emitter localization problem  
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The distance between the target and the      measurement point is represented by 

  .     
is the distance between the     measurement point and the reference point. 

Using    as the reference receiver and computing the range difference of arrival 

(RDOA) measurements with respect to   , i.e.,              the target location 

can be obtained by solving the     non-linear equations [18]: 

                 

 
                 

 (4-6) 

The RDOA measurements are generated by adding a zero-mean Gaussian noise to 

the actual RDOA values: 

                          (4-7) 

In Equation (4-7),      is the RDOA noise which is assumed to be stationary zero-

mean Gaussian with covariance matrix [18] 

     

   

 
   

              
  

        
      
      

        

  (4-8) 

where   
  is the RDOA noise variance. In [14], the details about the approximation 

of the covariance matrix as in Equation (4-8) are given. Since RDOA measurements 

are calculated by using a reference sensor, the measurements are correlated and the 

covariance matrix is not diagonal. 

4.4 Multi Platform Emitter Localization 

TDOA localization method is usually used in multi-platform emitter localization 

problems. Platforms at different positions receive the same signal at different arrival 

times and use the difference of these arrival times to estimate the position. LS and 

ML estimators are used for localization. The focus of thesis is emitter localization 
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with a single moving platform. However first details of multi-platform emitter 

localization method is given. Then this algorithm is modified for single-platform 

case and the differences are indicated for these two cases. 

4.4.1 Least Squares Estimator 

In LS estimator, a closed-form solution of the target is obtained. For the triangle in 

Figure 4-1, Law of Cosines property is used, i.e., 

  
    

     
             (4-9) 

The relation between    and    is written by using RDOA values which is equal to 

speed of signal times TDOA values. 

                  (4-10) 

where     is the TDOA value between the reference first platform and the     

platform. 

Combining the above two equations: 

         
    

     
             (4-11) 

Using the vector product property, 

               (4-12) 

Equation (4-11) can be written as, 

         
    

     
                 (4-13) 

Arranging this equation results: 

   
               

          
          (4-14) 
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      (4-15) 

   
            

          
           

      (4-16) 

Equation (4-16) is written for all platforms for         and     equations are 

obtained. These     equations can be written in matrix form as follows: 

     (4-17) 

where  ,   and   are defined as follows  

  

 
 
 
 
       

    

       
    

  
       

     
 
 
 
    

 
  

    

 
 
 
 
       

     
          

   
       

     
          

   
 

       
     

          
    

 
 
 
 (4-18) 

              (4-19) 

In the simulations, instead of actual RDOA values the measured noisy RDOAs 

       are used. 

LS Algorithm: 

1. Estimate the TDOA values between the reference platform and other 

platforms with a TDOA estimation algorithm. 

2. Obtain the   matrix and   vector as defined in Equation (4-18) by using 

platform positions, TDOA values and the distance between platforms. 

3. Estimate the target position and the distance between target and reference 

platform      with a closed form estimator as in Equation (4-19). 
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4.4.2 Maximum Likelihood Estimator 

Under the Gaussian noise assumption, ML estimate of the solution can be found by 

maximizing the joint probability density function of the RDOA measurements 

resulting in [35], 

           
 

       (4-20) 

where )( pJ ML is the ML cost function 

                    (4-21) 

and     is the RDOA error vector which is defined by: 

      
                  

 
                  

 

       

 (4-22) 

The aim is to find the point which makes the cost function minimum. Gauss-

Newton algorithm is used to find the solution. In this method, Jacobian matrix of 

     is evaluated at           . Algorithm starts with an initial estimate 

          and this estimate is updated according to the following expression, 

                                
  

                    

                        
(4-23) 

The update is done for a defined iteration number or until the norm of the difference 

of the position update is smaller than a defined small value. The Jacobian matrix is 

calculated as follows: 

     

 
 
 
 
 
 
            

 

            
 

            
 

            
 

             

            
 

            
 

             
 
 
 
 
 

 (4-24) 
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ML estimate diverges when initial estimate            is not close enough to the 

actual position. Despite the convergence difficulties, the ML estimator is an 

efficient method and asymptotically unbiased [35]. 

MLE Algorithm: 

1. Estimate the TDOA values between the reference platform and other 

platforms with a TDOA estimation algorithm. 

2. Obtain the measurement covariance matrix   as defined in Equation (4-8). 

3. Start with an initial estimate (LS estimate) and calculate the error vector for 

this estimate which is defined in Equation (4-22). 

4. Calculate the Jacobian matrix      for the initial estimate as in Equation 

(4-24). 

5. Perform GN search algorithm which updates position estimate by updating 

error vector and Jacobian matrix at each step as in Equation (4-23). 

6. End the search algorithm when the defined update criterions are met. The 

final         value is the ML estimate of the target position. 

4.5 Single Platform Emitter Localization 

In single-platform emitter localization with TDOA method, there is a single 

platform flying on its path. There are two sensors sufficiently separated from each 

other on the platform. Platform is measuring the TDOA value for these two sensors. 

Since the distance between sensors is relatively small, the measured TDOA values 

are not as large as in multi-platform case. In multi-platform case, the distance 

between the platform pairs where the TDOA values are calculated are in kilometers. 

On the other hand the distance between the sensors on the same platform is in 

meters. This is why single platform emitter localization is more sensitive to TDOA 

error. One advantage of single-platform emitter localization is that since the sensors 

are on the same platform there is nearly no synchronization error between the 
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sensors. For multi-platform case, synchronization error is much larger since TDOA 

is measured between different platforms at different positions. Highly synchronized 

clocks are needed to align the data collected by distributed receivers [20]. Another 

important point that has to be taken in consideration is that the receivers are 

required to detect the same signal from significantly different angles in multi-

platform case [22]. In single platform localization this is not a problem since the 

sensors are close to each other. 

The localization method is very similar to the multi-platform case. In multi-platform 

case, one platform is chosen as the reference platform and TDOA values are 

calculated according to this platform. In single-platform case, this is not the case. 

There is no reference sensor. The TDOA between two sensors is measured at 

different platform positions and the measurement points are always changing. The 

RDOA values between sensors are as in Equation (4-26). It is important to note the 

differences between Equations (4-6) and (4-26). 

                           

 
                           

 (4-25) 

All the equations in (4-6) are written according to the reference sensor position   . 

This enabled to write the equations in a matrix form by defining the   vector as 

target coordinates and the distance between target and reference platform. The   

vector is found with an LS estimator since there are more equations than the 

unknown number. On the other hand in Equation (4-26) there is not a single 

reference sensor. All TDOA values are calculated according to the sensor at the 

back. So it can be said that there are N different reference points which are the 

position of the sensors at the back of the platform at each measurement point. So the 

new   vector consists of target positions and the distance between target and all N 

reference points. In other words the size of    grows with measurement number and 

its size is always larger than the number of equations    . This is why there is no 
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closed form solution for single-platform case. In single-platform localization 

method, MLE is used to find the target position.  

4.5.1 Maximum Likelihood Estimator 

Maximum Likelihood estimation in multi-platform and single-platform cases are 

very similar. MLE for multi-platform case is explained in Section 4.4.2. In this 

section MLE for single-platform will be analyzed but the details of the estimator 

will not be given one more time. Only the differences between multi-platform and 

single-platform cases will be specified.  

In multi-platform case, the TDOAs are written according to a chosen reference 

sensor position     . The Jacobian matrix used in estimator was calculated as in 

Equation (4-24). 

In single platform case, the TDOAs are calculated between two sensors on the 

platform. Let name these sensors as “front” and “back” sensors and choose the one 

at the back as reference sensor. Then the Jacobian matrix will be calculated as 

follows: 

     

 
 
 
 
 
 
                   

 

                  
 

                 
 

                 

 

                  
 

                  
 

                 
 

                  
 
 
 
 
 
 

 (4-26) 

In the same way, the error vector used in the ML estimator is modified for single-

platform case as follows: 

      

                            
 

                            

 

   

 (4-27) 
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In above equation     for         represents the noisy RDOA values between 

two sensors on the platform. These RDOA values are much smaller than the ones in 

multi-platform case. 

The other difference between multi-platform and single platform algorithms is in 

error covariance matrices. In multi-platform case, since the TDOA values are 

measured according to a reference sensor, the error covariance matrix is not 

diagonal as indicated in Equation (4-8). However for single-platform case since 

there is no common reference, covariance matrix can be considered as a diagonal 

matrix: 

    
  

    
    
    
    

  (4-28) 

where   
  is the RDOA noise variance. 

MLE Algorithm: 

1. Estimate the TDOA values between the reference platform and other 

platforms with a TDOA estimation algorithm. 

2. Obtain the measurement covariance matrix   as defined in Equation (4-28). 

3. Start with an initial estimate and calculate the error vector for this estimate 

which is defined in Equation (4-27).  

4. Calculate the Jacobian matrix      for the initial estimate as in Equation 

(4-26). 

5. Perform GN search algorithm which updates position estimate by updating 

error vector and Jacobian matrix at each step as in Equation (4-23). 

6. End the search algorithm when the defined update criterions are met. The 

final         value is the ML estimate of the target position. 

In single platform case, an initial estimate can‟t be obtained with a closed form 

estimator as explained before. A position estimate found with another algorithm 
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or an initial value which is close enough to the actual target position to avoid 

divergence can be used as initial estimate. 

4.6 Combined Method for Position Estimation 

In Section 3.6, emitter localization method which uses both bearing and frequency 

measurements is presented. In simulations, it is shown that the combined method 

outperforms bearing only and DSF only methods. In this section, beside the bearing 

and frequency measurements, TDOA measurements are also used in the localization 

method.  The derivation of combined method is very similar to the combined 

method presented in Section 3.6 which uses both bearing and frequency 

measurements. So the details will not be repeated in this section one more time. 

Jacobian matrix, error vector and covariance matrix which are used in single-

platform ML estimator are defined in Equations (4-26), (4-27) and (4-28) 

respectively. To include the TDOA measurements in ML estimator, these terms are 

added to the pre-defined corresponding vector or matrix which are defined in 

Equations (3-40), (3-39) and (3-38) respectively and the combined versions are 

obtained. The combined covariance matrix of measurement noise vector is as in 

Equation (4-29). As in bearing-only case, there is no relation between TDOA 

measurements and the center frequency of the emitted signal. So a zeros column is 

added to the end of the Jacobian matrix of TDOA method while combining the 

Jacobian matrices.  

              

     

       

     

     

       

     
     

       

     
       

   (4-29) 

       

        

    

     

  (4-30) 

where       is defined as follows  
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 (4-31) 

 

MLE Algorithm: 

1. Estimate the AOA, received frequency and TDOA values at each 

measurement point with a direction-finding, frequency estimation and 

TDOA estimation algorithm. 

2. Obtain the measurement covariance matrix       as defined in Equation 

(4-29). 

3. Start with an estimate and calculate the combined error vector for this 

estimate. 

4. Calculate the Jacobian matrix       for the initial estimate as in Equation 

(4-30) .  

5. Perform GN search algorithm which updates estimate by updating error 

vector and Jacobian matrix at each step as in Equation (3-41). 

6. End the search algorithm when the defined update criterions are met. The 

final     value is the ML estimate of the parameters. 

4.7 Simulation Results 

Simulations are made for both multi-platform and single platform emitter 

localization algorithms. In single platform simulations, the same path used in 

bearing-only and DSF method is used. For multi-platform case a different scenario 

is created.  
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For multi-platform localization, target is chosen at                       . 

The platforms are positioned at           ,            ,            , 

             and            . In other words, platforms are at the corners of a 

          square and an extra platform is used at             to avoid 

singularity. The platforms positions should be chosen well. Otherwise the       

matrix in Equation (4-19) will be singular and become non-invertible. The target-

platform geometry is as shown below: 

 

Figure 4-2 :  Used target-platform geometry in multi-platform case 

 

To see the effect of TDOA error on estimator accuracy, the standard deviation of 

the TDOA estimates is changed between 1e-12 sec and 1e-7 sec. For higher TDOA 
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between these values. The performance comparison of LS estimator and ML 

estimator is seen in Figure 4-3. As seen from this figure, ML estimator attains the 

CRLB while LS performs poorly as       increases. 

 

Figure 4-3 : RMS error for target position 
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                  is the case where the estimator performs best. As 

hyperboloids get parallel, noise or small measurement errors can cause considerable 

errors in estimating the target position. This is called Geometric Dilution of 

Precision (GDOP). The farther away from the sensor baselines, the worse GDOP 

gets [1]. 

 

Figure 4-4 : Error ellipses for different target positions 

 

For single platform TDOA localization simulations, the same scenario used in 

bearing-only and DSF localization algorithms is used. The target is at            
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   . After collecting 4 measurements, velocity vector changes in the direction of 

     and     . 4 measurements are taken along this path and the velocity 

vector changes to the direction       and     and collects 4 more 

measurements. At each measurement point the TDOA is measured between sensors 

on the same platform. The distance between sensors is chosen as       unless 

otherwise stated. The general scenario is as follows: 

 

Figure 4-5 : Scenario used in the single-platform simulations 

 

To see the effect of TDOA measurement error on localization accuracy, standard 
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     . As expected as TDOA error increases, the accuracy of the estimator 

decreases and ML estimator starts to diverge from CRLB. 

 

Figure 4-6: RMS error for target position when d=10m 

 

To see the effect of the distance between sensors, TDOA error is kept constant at 

1ns and distance between sensors is changed between 10m and 50m.  
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Figure 4-7 : RMS error for target position when sec1nTDOA   

 

It is observed from Figure 4-7 that, as the distance between sensors is increased, the 

estimator performance gets better. For larger distances between sensors, larger 

TDOA values occur and the effect of the noise gets smaller. 

Performance comparison of DSF method, bearing method (BM), TDOA method 

and the combined method (CM) which uses all parameters is done by using the 

projections of the error ellipsoids on x-y plane. The ellipses are as shown in Figure 

4-8. Azimuth and elevation angles‟ standard deviations are chosen as 3 degrees, 

frequency standard deviation is 70 Hz and TDOA standard deviation is 1nsec. The 

emitted signal frequency is 10GHz and the distance between sensors on the 

platform which are used in TDOA method are chosen as 10m. The probabilities of 

the ellipses are 0.95. 
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Figure 4-8 : Comparison of error ellipses for different methods 

 

As seen from the figure, the ellipse for the combined method is smallest which 

means the estimates are confined in a smaller area. This means that the performance 

of the combined method is better than all the other methods as expected. In Figure 

4-9, the estimates obtained with the algorithms are seen. Since error ellipsoids are 

hard to visualize, the algorithms are implemented with the knowledge that the target 

is on     plane and the slice of the error ellipsoids are plotted.  
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Figure 4-9 : The estimates obtained with different algorithms 

 

In this thesis two hybrid algorithms are implemented. First bearing and frequency 

measurements are combined to find a target position. Then by adding TDOA values 

another hybrid algorithm is implemented. To see the effect of TDOA measurements 

to estimator accuracy, error ellipses for two hybrid algorithms are plotted in Figure 

4-11. 
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Figure 4-10 : Comparison of error ellipses for hybrid algorithms 

 

As seen in Figure 4-10 the error ellipse (yellow) for the hybrid algorithm which 

uses bearing and frequency measurements is larger than the ellipse (blue) of hybrid 

algorithm which uses TDOA measurement in addition to bearing and frequency 

measurements. The improvement in estimator accuracy is observed by using error 

ellipses. An important point in Figure 4-10 is that the error ellipse alignments for 

BM and TDOA methods are similar. Since in single-platform TDOA localization 

method, the sensors where TDOA value is calculated are very close to each other. 

So the hyperbolas created in these sensors pairs are similar with DF lines.  
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standard deviation of the frequency measurements are changed between 10Hz and 

90Hz. The results are as in Figure 4-11. 

 

Figure 4-11 : Performance comparison of algorithms for different frequency 

standard deviations 

 

To see the algorithm performances for different angle measurement standard 
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Figure 4-12 : Performance comparison of algorithms for different bearing standard 

deviations 

 

To see the algorithm performances for different TDOA measurement standard 

deviations, TDOA standard deviations are changed between 0.5 and 1.5 nsec. 

Frequency standard deviation is fixed to 100Hz and bearing standard deviation is 
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Figure 4-13 : Performance comparison of algorithms for different TDOA standard 

deviations 

 

In all plots above it is observed that the combined ML method meets CRLB. 
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CHAPTER 5  

 

CONCLUSIONS 

In this thesis, different localization algorithms in 3D are considered. In the scenarios 

the target is stationary and the locator system is moving on its trajectory. The 

algorithms are examined mainly in three parts. 

In the first group, bearing-only localization algorithms are analyzed. First the closed 

form estimators are presented which are OVE, PLE and WIVE. In WIVE algorithm, 

the estimate obtained with PLE is used. Then ML estimator is presented which uses 

the estimate obtained with WIVE as initial estimate and finds the solution in an 

iterative way. GN search algorithm is used in ML estimator. Position accuracies are 

calculated for different azimuth and elevation standard deviations for all these 

methods and it is observed that ML estimator has the best performance among all 

other methods. On the other hand, performance of WIVE algorithm is close to MLE 

and its computational complexity is relatively low. In these bearing-only 

localization methods, position is estimated after all measurements are collected. A 

recursive emitter localization method is presented which uses EKF. In this method, 

an initial position estimate is found with a few measurements and it is updated as a 

new measurement arrives without the need of storing old measurements. This 

method is useful when memory is an important criterion in the system. 

In second group, Doppler-shift-based algorithms are considered. Due to the relative 

motion between platform and target there is a Doppler shift in frequency. By using 

the LS and ML algorithms, the position of the target and the emitted frequency are 

estimated. After implementing both bearing-only and DSF methods, these two 
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algorithms are combined in the ML estimator. It is observed that both position and 

frequency estimation is better in the combined method.  

Finally TDOA based localization methods are considered. First multi-platform case 

is analyzed where the platforms are positioned at different locations. In TDOA 

based localization method, one platform is chosen as reference and TDOA values 

are measured according to this platform. By using this single reference platform, 

TDOA equations can be expressed in a matrix equation where the distance to the 

reference platform is modeled as an unknown variable. This property enables a 

closed form estimate (LS). By using this closed form estimate as an initial estimate, 

ML estimate of the TDOA method is obtained. Position accuracies are calculated 

for different TDOA standard values and it is observed that ML estimator 

performance is better than the LS as expected. For single-platform case, it is 

assumed that there are two sensors on the platform and the TDOA between these 

two sensors is measured. Platform is moving along its trajectory and measures the 

TDOA values between these two sensors at different positions. In this method, the 

reference sensor is the one at the back but at each measurement point the reference 

sensor is at a different position. So when TDOA equations are written in matrix 

form, the distance of the platform to the reference sensor is always changing and all 

these distance are added to the vector as an unknown. Number of unknowns is 

always greater than the number of equations. So closed form estimate is not 

available for a single-platform TDOA. It is assumed that an initial estimate of the 

target is known and ML estimate is obtained. Performance of the algorithm is 

analyzed for different TDOA values and sensor distances and observed that 

algorithm performance gets better as the distance between sensors on the platform 

gets longer. It is shown that in single-platform TDOA method, since TDOA values 

are much smaller than multi-platform TDOA method, it is more sensitive to noise. 

After analyzing all algorithms, all methods are combined in the ML framework. The 

performance of the combined method is compared with all methods individually 

and it is shown that combined method is better as expected. 
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In simulations, to gain an idea about the performance of the algorithms, the error 

ellipsoid concept is examined. The ellipsoid parameters are obtained from CRLB 

matrix which represents the minimum achievable error for unbiased estimators. The 

error ellipsoids are plotted around the true target positions. It is explained that a 

smaller ellipsoid corresponds to a better estimator performance. For all algorithms, 

error ellipsoids are obtained using the CRLB matrices and error ellipsoid 

parameters are obtained. ML estimator performances are compared with the related 

CRLB values and shown that ML estimators meet CRLB. Since error ellipsoids are 

hard to visualize, the projection and slice of the ellipsoid are taken on x-y plane. 

Error ellipsoid around true target positions are plotted for different target positions 

and the effect of target-platform geometry on algorithm performance is shown. 

As a future work, simulations can be done with real trajectory and measurement 

data. In this thesis, Cartesian coordinates are used. It is assumed that platform is on 

smooth x-y plane.  The geometry of Earth and terrain data is not taken into account. 

By using digital terrain elevation data (DTED) and an earth model, algorithms can 

be analyzed in a more practical scenario. 
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