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ABSTRACT 

 

 
A FULLY AUTOMATIC SHAPE BASED GEO-SPATIAL OBJECT 

RECOGNITION  
 

 
Ergül, Mustafa 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

 

September 2012, 152 pages 

 

 

 

A great number of methods based on local features or global appearances have 

been proposed in the literature for geospatial object detection and recognition 

from satellite images. However, since these approaches do not have enough 

discriminative capabilities between object and non-object classes, they produce 

results with innumerable false positives during their detection process. Moreover, 

due to the sliding window mechanisms, these algorithms cannot yield exact 

location information for the detected objects. Therefore, a geospatial object 

recognition algorithm based on the object shape mask is proposed to minimize the 

aforementioned imperfections. In order to develop such a robust recognition 

system, foreground extraction performance of some of popular fully and semi-

automatic image segmentation algorithms, such as normalized cut, k-means 

clustering, mean-shift for fully automatic, and interactive Graph-cut, GrowCut, 

GrabCut for semi-automatic, are evaluated in terms of their subjective and 

objective qualities. After this evaluation, the retrieval performance of some shape 

description techniques, such as ART, Hu moments and Fourier descriptors, are 

investigated quantitatively. In the proposed system, first of all, some hypothesis 

points are generated for a given test image. Then, the foreground extraction 

operation is achieved via GrabCut algorithm after utilizing these hypothesis points 
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as if these are user inputs. Next, the extracted binary object masks are described 

by means of the integrated versions of shape description techniques. Afterwards, 

SVM classifier is used to identify the target objects. Finally, elimination of the 

multiple detections coming from the generation of hypothesis points is performed 

by some simple post-processing on the resultant masks. Experimental results 

reveal that the proposed algorithm has promising results in terms of accuracy in 

recognizing many geospatial objects, such as airplane and ship, from high 

resolution satellite imagery. 

 

Keywords: object recognition, image segmentation, foreground extraction, shape 

description 
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ÖZ 

 

 
TAM OTOMATİK ŞEKİL TABANLI YER UZAMSAL NESNE TANIMA 

 

 
Ergül, Mustafa 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

 

 

Eylül 2012, 152 sayfa 

 

 

 

Son yıllarda, uydu görüntülerinden yer uzamsal nesne tespiti ve teşhisi hakkında 

literatürde yerel öznitelikler veya bütünsel görünüş temelli çok sayıda metot 

önerilmiştir. Ama bu metotlar nesne sınıfı ile arkaplan sınıfı arasında yeterince 

ayırt edici kabiliyete sahip olmadığı için tespit işlemi sırasında çok sayıda yanlış 

alarmlı sonuç üretirler. Ayrıca tespit işleminde kullanılan kayan pencere 

mekanizmasından dolayı genellikle bu algoritmalar bulunan nesnelerin konum 

bilgisini tam olarak veremezler. Bundan dolayı  yukarıda bahsedilen eksiklikleri 

gidermek için nesnenin şekline dayalı yer uzamsal nesne tanıma algoritması 

önerilmiştir. Böyle bir gürbüz nesne tanıma sistemini geliştirmek için öncelikle 

bazı popüler tam ve yarı otomatik görüntü bülütleme algoritmalarının, örneğin 

tam otomatik için düzgülü kesik, k-orta kümeleme, ortalama kayma ve yarı 

otomatik için interaktif grafik kesik, GrabCut, GrowCut, önplan nesne çıkarımı 

performansları nesnel ve öznel olarak  değerlendirilmiştir. Ondan sonra ARD, Hu 

momentler ve Fourier tanımlayıcıları gibi  bazı şekil tanımlayıcı tekniklerinin 

erişim performansları incelenmiştir. Önerilen sistemde ilk önce verilen test 

görüntüsündeki hipotez noktaları üretilmektedir.  Daha sonra, bu hipotez noktaları 

kullanıcı girdisi gibi kullanıldıktan sonra interaktif GrabCut algoritması 

vasıtasıyla önplan nesnesini elde etme işlemi gerçekleştirilir. Ardından, çıkarılan 



 vii 

ikili nesne maskeleri şekil tanımlayıcı tekniklerinin entegre edilmiş sürümü 

aracılığıyla tanımlanır. Daha sonra, hedef nesneleri tespit etmek için DVM 

sınıflandırıcısı kullanılır. Son olarak, hipotez noktalarının üretimi sırasında 

meydana gelen birden fazla tespitlerin elenmesi sonuç maskeleri üzerinde birkaç 

basit ileri işlemeyle gerçekleştirilir. Deney sonuçları önerilen algoritmanın yüksek 

çözünürlüklü uydu görüntülerinden uçak ve gemi gibi çok sayıda sınıftan yer 

uzamsal nesnelerin tanıma performansı açısından umut verici sonuçlara sahip 

olduğunu göstermiştir.  

 

Anahtar Kelimeler: nesne tanıma, görüntü bölütleme, önplan çıkarımı, şekil 

tanımlayıcı 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Computer vision is a discipline with wide application areas while it attracts many 

researchers due to its variety of innovative consequences. However, despite a 

considerable amount of efforts over the last few decades, many problems are still 

unsolved and require further investigation. The robot navigation systems, human 

motion modeling and its adaptation to animation, traffic surveillance, 3D data 

extraction, environment modeling, organizing information, target detection, object 

segmentation and recognition are still some of the active research areas under 

computer vision discipline. Therefore, this thesis is devoted to geospatial target 

detection techniques. 

 

By virtue of the recent advances in satellite technology, acquisition and storage of 

satellite images of any region in the world is becoming easier and easier. This 

advance in the technology causes the creation of the huge amount of data in 

electronic formats. Unfortunately, this much amount of data cannot be interpreted 

easily by humans; hence, there is a requirement for automated systems that could 

replace a human operator for image understanding. For this purpose, a remarkable 

amount of object detection and recognition algorithms from satellite or aerial 

imagery has been proposed in the literature. The local feature based object 

detection, such as Bag-of-Visual Words methods (BOVW) [1], and the global 

appearance based object detection, such as matched filters based methods [2], are 

some examples of these algorithms. Nevertheless, they have some imperfections 

affecting the system performance. The first drawback is that these algorithms 
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usually give outputs with high false alarm rates, since the extracted features 

cannot sufficiently represent the target objects in the image, and so this deficiency 

causes the discrimination problem between the target and non-target regions. The 

second disadvantage is that these algorithms cannot give the exact location of the 

target objects due to the sliding window mechanism used for detection process. 

On the other hand, unlike the local feature based and global appearance based 

methods, the shape based object recognition methods might yield results with 

high precision rates and precisely known position, although it is extremely 

difficult to extract the object shape from the image. This result is due to the fact 

that the shape of an object includes more precise and complete knowledge about 

the object identity and function.  

 

In this thesis, the main goal is to be able to perform automatic detection, 

recognition and localization of certain kinds of objects, such as aircrafts and ships, 

in a satellite image by using a shape based method. 

 

1.1 Literature Review for Object Detection and Recognition 
 

Object detection and recognition is a crucial, yet a challenging vision task. It is a 

critical part in many applications, such as image search, image auto-annotation 

and scene understanding; however, it is still an open problem due to the 

complexity of object classes and images. Therefore, there exists an extensive 

literature for the object detection and recognition. Among various methods 

proposed for different situations over the years, those of the state-of-the-art 

approaches that could be utilized for object detection and recognition from 

satellite and aerial images could be categorized as follows: 

 

 Local Feature Based Approaches 

 Global Appearance Based Approaches  

 Shape Based approaches 
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In the following three parts, a brief survey is presented for the efforts that 

construct the basis for each one of the aforementioned three approaches as well as 

the studies that exploit those methods for geospatial object detection and 

recognition problem. 

 

1.1.1 Local Feature Based Approaches 

 

The central idea of local feature-based object detection and recognition algorithms 

lies in finding interest points, often occurred at intensity discontinuity, and then 

describing regions around those interest points. Local features are extracted from 

highly repetitive salient regions that are invariant to changes due to scale, 

illumination and affine transformation. These regions are characterized by 

corners, edges, blobs, ridges etc. Some of the well-known and successful interest 

point detection techniques in the sense of runtime, repeatability, invariance to 

scale, illumination and affine changes can be recorded as: Harris and Hessian 

based feature detectors, Difference of Gaussian (DoG) blob detector, Maximally 

Stable Extremal Regions (MSER), Entropy Based Salient Region detector 

(EBSR), Intensity Based Regions and Edge Based Regions (IBR, EBR) [3]. 

Regions around the interest points already identified by one of the detector 

algorithms are described in terms of certain invariance properties by feature 

descriptors. Invariance means that the description should be robust against various 

image variations, such as affine distortions, scale changes, illumination changes 

or compression artifacts (e.g. JPEG). The most popular descriptors proposed up to 

now can be listed as follows: Scale Invariant Feature Transform (SIFT), PCA-

SIFT, gradient location-orientation histograms (GLOH), spin images, shape 

context, Locally Binary Patterns (LBP), complex and steerable filters [3]. A 

performance evaluation among various local descriptors can be examined in [3] 

[4], and an extensive study on region detectors is presented in [3] [5]. After 

extracting and describing local features, the object type is learned by using 
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discriminative classifier, such as Support Vector Machines (SVM), Linear 

Discrepant Analysis (LDA) or Boosting. 

 

There are specific techniques that aim geospatial object detection from satellite or 

aerial imagery. As a prominent example, Sun et al. [6] have proposed a novel 

method to solve the problem of detecting geospatial objects in high resolution 

remote sensing images automatically. Each image is represented as a 

segmentation tree by performing a multi- scale segmentation algorithm at first, 

and all of the tree nodes are described as coherent groups instead of binary 

classified values. Afterwards, the trees are matched to choose the maximally 

matched subtrees, denoted as common subcategories, and these are organized to 

learn the embedded taxonomic semantics of object classes. This approach allows 

categories to be defined recursively, and express both explicit and implicit spatial 

arrangement of categories. Hence, this procedure provides a meaningful 

explanation for image understanding by realizing detection, recognition and 

segmentation of the geospatial objects in an image simultaneously. 

 

In another local feature based approach, Tao et al. [7] present a new technique in 

order to detect airports in large high-spatial-resolution IKONOS satellite images. 

For this purpose, an airport is described by a set of SIFT keypoints and detected 

by using an improved SIFT matching strategy. After extracting matched SIFT 

points, a novel region–location method is suggested to discard the redundant 

matched keypoints and locate the possible regions of candidates that contain the 

target. This method utilizes the clustering knowledge from matched SIFT 

keypoints and the region information extracted through the image segmentation. 

Finally, airport detection is achieved by employing the prior information to the 

candidate regions. 

 

Similar to the previous method proposed by Tao et al. [7], Sahli et al. [8] offer a 

feature based vehicle detection algorithm from high resolution aerial imagery. 

SIFT algorithm is employed to obtain keypoints in the image and the local 
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structure in the neighboring of those keypoints are described by 128 gradient 

orientation based features. Then, a support vector machine is utilized to generate a 

model which can predict whether the keypoints belong to car structure in the 

image or not. Lastly, the collection of SIFT keypoints with car label are clustered 

in the geometric space into subsets such that each subset is associated to one car.      

 

In another study, Rainey et al. [9] improve ship recognition and classification 

algorithm in electro-optical satellite imagery. The authors propose a modification 

for the sparse representation based classification (SRC) algorithms typically used 

in face detection. This modification focuses on the appropriate feature selection 

and description. To this end, feature vectors are obtained from SIFT keypoints by 

using SIFT descriptors coupled with the visual Bag-of-Words method. This 

approach improves the performance of the SRC algorithm on data set with 

nonuniform size, small amounts of training data, and large in-class variations 

significantly.       

 

As a general notice, the local feature based methods are not robust to the 

challenges encountered in a typical satellite image, such as shadows and 

background clutters, since they dramatically change local appearances, and thus 

the corresponding local features. Furthermore, all of these methods experience the 

difficulty of lack of keypoints repeatability caused by intra-class variation of 

object categorizes. 

 

1.1.2 Global Appearance Based Approaches 

 

Global appearance based methods attempt to exploit the visual outlook of an 

object as a whole in order to identify this entity. They formulate the object 

detection and recognition as a classification problem, and hence, they could also 

be named as classifier-based methods. In these approaches, the image is 

partitioned into a set of overlapping windows and a decision is taken at each 
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window about whether it contains a target object or not. The algorithms carry out 

the detection\recognition process as a binary classification which aims at learning 

an object class and discriminating it from the background. The classification 

function is learned through a set of labeled positive and negative examples 

together with some features extracted from them. Haar wavelets, Haar filters 

(rectangle features), Histogram Distance on Haar Regions (HDRD), edges 

together with chamfer distance, edge fragments and Histogram of Oriented 

Gradients (HOG) are some examples of features used in the algorithms. A 

discriminative classifier is used to exploit the class specific information and some 

of them are k-nearest neighbor, neural network, dynamic link architecture, Fisher 

linear discriminant, SVM and boosting algorithms.  

 

Template matching of the different appearances of the detected object can be 

given as a simple example for this type of algorithms. The proposal of more 

complex and elaborate algorithms has started with a face detection\recognition 

problem. Most notably, the eigenface method suggested by Turk and Pentland 

[10] is one of the first face recognition systems that are computationally efficient 

and relatively accurate. The underlying idea of this approach is to compute 

eigenvectors from a set of vectors where each one represents one face image as a 

raster scan vector of grayscale pixel values. Each eigenvector, called as an 

eigenface, captures certain variation among all vectors, and a small set of 

eigenvectors captures almost all the appearance variation of facial images in the 

training set. Given a test image represented as a vector of grayscale pixel values, 

its identity is specified by determining the nearest neighbor of this vector after 

being projected onto a subspace spanned by a set of eigenvectors. The eigenface 

approach has been also adopted in recognizing generic objects. Afterwards, state-

of-art global appearance based algorithms are proposed by Viola-Jones [11], 

Papageorgiu-Poggio [12], and Heisele et al. [13] in order to detect and recognize 

the face or human classes in the image. 
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Perrotton et al. [14] offer a specific solution to geospatial object detection and 

localization problem, such as aircrafts in clutter backgrounds, from aerial or 

satellite imagery by exploiting the appearance characteristics of objects. A 

boosting algorithm is employed to select discriminating features. A new 

descriptor, Histogram Distance on Haar Regions (HDHR), which is robust to the 

background and target texture variations, is introduced. This descriptor is based 

on the assumption that targets and background have different textures. 

Unfortunately, collecting the large amount of training data required for the 

AdaBoost learning algorithm is quite difficult to achieve considering the 

unavailability of such large annotated database. Therefore, image synthesis is 

utilized to generate a large amount of learning data such that the AdaBoost has 

access to sufficient representative data to take into account the variability of real 

operational scenes. 

 

On the other hand, Cai et al. [15] present a technique to detect airplanes in 

panchromatic remote-sensing images. A circle-frequency filter (CF-filter) is 

introduced to locate airplane centers from the background. The filter first extracts 

candidate points of airplane centers and then airplane centers can be located 

through a basic clustering method. Since the CF-filter takes only the nine specific 

intensity changes around a circle fitted on an airplane center into account, this 

method cannot exactly represent the global outlook of the object. Thus, the system 

would naturally yield higher false alarm rates on regions with man-made objects, 

and structures with cross shape arrangements etc. 

 

Global appearance based approaches have several drawbacks preventing to 

achieve high detection performances. The first of these drawbacks is that they are 

sensitive to illumination changes and occlusions. Secondly, the contrast between 

the object and the background is a critical factor in learning and detection 

procedure; for example, a bright-colored plane and a dark-colored plane cannot be 

learned and detected as the same object and needs utilization of different features. 

The next one is that these types of methods also tend to memorize the object 
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categorize and might not provide a good generalization in detection and 

recognition process. Finally, the most notable limitation is that the detection is not 

invariant to rotation of the object, and hence, one should train a new classifier for 

each of the different pose or viewpoint of an object class. The other solution is 

that the detection operation should be performed by rotating the test image.  

 

1.1.3 Shape Based Approaches 

 

Early attempts on object detection and recognition were focused on using 

geometric models or shape of objects to achieve invariance across their 

appearance variation due to viewpoint and illumination change. The main idea is 

that the target structure has characteristic and distinguishable information and so 

this knowledge facilitates the recognition process using the edge or boundary of 

the object which is invariant to certain illumination change. However, an initial 

segmentation is required in order to acquire shape information of the object. After 

extracting the object shape, segmented region is described by one of the shape 

representation methods. Finally, the classification of segmented region is 

implemented via a classifier trained with a training set. There are numerous 

number of the shape representation algorithms in the literature and detail 

explanation of them can be found in Chapter 3.  

 

In a particular shape based approach, Hsieh et al. [16] present hierarchical 

classification algorithm to accurately recognize aircrafts in satellite images. With 

the purpose of the achievement of rotation invariance, a new algorithm based on 

symmetry property is proposed to estimate the orientation of an aircraft. In 

addition, several image preprocessing techniques such as noise removal, 

binarization, and geometrical adjustments are also applied to remove distortions 

on shape before recognition. After these steps, distinguishable shape features are 

derived from each aircraft for aircraft recognition. Different features have 

different discrimination abilities to recognize the types of aircrafts. Therefore, a 
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novel boosting algorithm is proposed to learn a set of proper weights from 

training samples for feature integration. Finally, a hierarchical recognition scheme 

is proposed to recognize the types of aircrafts by using the area feature at first for 

a rough categorization on which detailed classifications are then achieved using 

several suggested features. 

 

Similar to the method introduced in Hsieh et al. [16], Eikvil et al. [17] propose a 

solution to the problem of vehicle detection from high resolution satellite images.  

Firstly, the segmentation process is implemented to extract the target objects in 

the image. Then, the resulting regions are described by gray-level and shape-

based features, such as area, compactness, Hu moments, height and width. Next, a 

rule-based classifier is utilized to eliminate non-vehicle objects. Lastly, the 

potential vehicles are obtained by two different statistical classifiers, Linear 

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).       

 

Similar to the aforementioned algorithms, Bo and Jing [18] propose a method for 

airplane target detection in remotely sensed imagery. The techniques consist of 

two steps. First, segmentation of the original image is implemented to create 

discrete image regions used to determine which region belongs to candidates in 

the target area. Second, each candidate area is reprocessed into a binary image 

and a simple statistical feature is calculated from the binary mask for target 

detection.   

 

In addition, Iisaka et al. [19] introduce a robust method to describe any shape in 

the remote sensing images. The shape of the object is represented by a series of 

pattern primitives or structural elements with varying size. The initial few 

coefficients in a small number of primitives set can reasonably approximate the 

object shape in satellite images. 

 

In another shape-based algorithm for geospatial object detection, a contour-based 

spatial model is introduced by Li et al. [20] to detect targets accurately in high 
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resolution remote sensing images. To this end, each image is firstly partitioned 

into parts as target candidate regions by using multiple scale segmentation. Next, 

the automatic identification of target seed regions is conducted by computing the 

similarity of contour information with the target template via dynamic 

programming. In the final part, the contour-based similarity is updated and 

combined to manage the missing parts with spatial relationship.  

 

The shape of an object carries valuable information about the object identity and 

function and so the features extracted from this information is more characteristic 

and discriminative than ones extracted from local and global appearance of 

objects for target detection and recognition purpose. Nevertheless, the 

segmentation procedure in the beginning is the weakness of shape based methods. 

Sometimes, it is not robust to low foreground-background contrast, shadows and 

occlusions by other object conditions which are encountered in real scenarios. 

Thus, a robust segmentation algorithm is needed in shape based approaches.   

 

In the literature, there are also additional algorithms, which combine two or more 

different methods existing in the abovementioned approaches. In recent years, 

these approaches become prevalent, since they take advantage of more aspects 

and to produce a higher performance. One example of these approaches for object 

detection and recognition is proposed by Murphy et al. [21] [22]. They realize the 

object detection and localization process by combining local and global 

appearance features. Thus, the ambiguity caused from local features due to the 

small object of interest or imaging condition is reduced by using global features, 

which are called as “gist” of the scene, as additional evidence. In some other 

methods [23] [24] [25], the shape based approaches are combined with the other 

type of algorithms. There are two main steps in these approaches: a hypothesis 

generation step and a verification step. In the hypothesis generation step, a set of 

hypothesis of possible object locations is generated by tuning them for low-

missed detections and high false-positives. Local feature based algorithms are 

commonly used for this purpose. In the second step, the hypothesis points are 
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validated by using one of the image segmentation and shape representation 

methods for each.  

 

1.2 Scope of the Thesis 
 

This thesis is devoted to the problem of geospatial object recognition from 

satellite images, and the proposed solution exploits shape features extracted from 

visual data. The motivation behind this study can be presented in three main 

ways. The first one is to eliminate the false alarms generated by other geospatial 

object detection algorithms. The second one is to solve the localization problem. 

The last one is to find the aspect ratio and/or size of the object in order to 

determine the target type by getting the object silhouette in the image. 

 

The dissertation can be analyzed in three main steps performed sequentially for 

the main purpose of the thesis. For each step, various possible solutions are tested, 

and their performances are examined qualitatively and quantitatively. The first 

step of the thesis is to extract the object mask from the image.  For this objective, 

the several image segmentation algorithms are analyzed in detail. This step 

provides a comparison between fully automatic and semi-automatic methods that 

utilize the color or intensity distribution among the images. The next step is to 

describe the extracted object mask via shape representation and description 

method(s) in the feature domain. In order to determine the method used for this 

purpose, various different algorithms are analyzed and compared in this block. 

Finally, image segmentation algorithms and shape description algorithms are 

integrated in order to propose a solution to the object recognition problem in 

vision. The general flowchart of the proposed system and parts of the thesis is 

shown in Figure 1. 
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Figure 1: Overall flowchart of the proposed object recognition algorithm and sections of the 

thesis 
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1.3 Outline of the Thesis 
 

The thesis is composed of three main parts involving the steps mentioned 

previously.  

 

Chapter 2 focuses on image segmentation methods and their comparison. In the 

first subsection of Chapter 2, fully automatic image segmentation algorithms are 

analyzed. First, a literature survey on color image segmentation algorithms is 

presented, and methods are classified. Then, k-means clustering, mean-shift and 

normalized cut image segmentation algorithms are explained in detail, and 

comparison of these methods is performed on a variety of images with two types 

of targets; i.e aircrafts and ships, in an objective and subjective manner. The 

second subsection elaborately analyzes semi-automatic or interactive image 

segmentation algorithms. In this context, the interactive graph-cuts, GrowCut and 

GrabCut foreground extraction algorithms are represented and examined. Finally, 

the performances of all image segmentation methods are tested with the resulting 

images for subjective comparison and precision-recall values for objective 

comparison.  

 

In Chapter 3, the shape representation algorithms are discussed. Initially, a 

literature review about shape description methods is presented, and a 

classification of these methods is given. Next, the performances of various shape 

description techniques which are angular radial transform (ART), geometric (Hu) 

moment invariants for region-based and Fourier descriptors for contour-based, are 

compared based on the Nearest Neighbor (NN) and k-NN classifiers. Finally, the 

experimental results are given with confusion matrices. 

 

In Chapter 4, a novel geospatial object recognition algorithm is proposed and 

explained in detail. After clarifying the proposed method, the bag of visual words 

(BoVW) object detection algorithm is introduced for hypothesis generation in the 
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following subsection. Next, as a classification method, support vector machine 

(SVM) is explained. In the final part, the proposed method is evaluated by 

experiments using images containing different object types subjectively and 

objectively. 

 

Finally, the summary, as well as conclusions of the thesis is given in Chapter 5, 

and the future directions are suggested. 
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CHAPTER 2 

 

 

IMAGE SEGMENTATION 

 

 

 

In areas, such as computer vision and image processing, one of the most 

challenging problems is image segmentation, which plays an important role in 

many applications. Up to the present moment, innumerable segmentation methods 

have been proposed to solve this problem in the literature. Therefore, the problem 

of segmentation has been, and still is, relevant research field due to its wide range 

usage and application [26]-[39]. The image segmentation is usually utilized as an 

initial step in many high-level operations and so its accuracy is a critical and 

extremely significant issue for these high-level systems. Some of the practical 

applications of image segmentation are the medical imaging, locating objects in 

satellite images (road, forest, building etc.), vision-guided autonomous robotics, 

traffic control systems, image retrieval and segment-based image or video 

compression systems which may contribute to make better the human life [26]. 

 

The image segmentation is verbally defined as the process of domain independent 

partitioning an image into a set of disjoint (non-overlapping) regions that are 

visually distinct, homogenous and meaningful with respect to some characteristics 

or computed properties, such as gray level intensity, texture or color that makes 

image analysis (e.g. object identification, classification and reconstruction) easy 

[27] [28] [29] [30]. The formal or mathematical definition of segmentation is can 

be stated as follows [31]:  
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Let the image domain be I and P ( ) be a uniformity predicate defined on groups 

of the connected pixels. A segmentation result of I is a partitioning set of 

connected subset or image region              such that 

 

   

 

   

                                                                      

 

and the uniformity predicate satisfies 

 

                                                                                

                                                 

                                                                   

 

                                                              

 

To be able to exploit any segmentation results for high-level operations (e.g. 

object identification, classification, representation), it is desirable to succeed 

semantically meaningful segmentation output. Despite of the fact that many 

diverse algorithms for this issue have been proposed in the literature in the last 

couple of decades, exactly accurate and complete solution has not been found yet 

(still far from being) due to its complicated nature.  In general, the difficulty of 

this problem originates from the ambiguity in the description of “semantically 

meaningful” segmentation. In other words, even two people might segment a 

presented image differently due to the individual human perception [32]. Since 

there is a lack of uniqueness criteria for the solution of segmentation, the general 

and complete solution cannot be acquired. Nevertheless, the unique and 

meaningful solution might only be obtained by considering some rules or 

constraints on the segmentation problem.  
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Within the scope of this thesis, image segmentation is utilized as an initial step in 

the object recognition process. To be able to identify the targets in the image 

precisely, the shape of the desired objects should be holistically extracted via any 

segmentation algorithm. In the light of this information, the “semantically 

meaningful” segmentation can be described a foreground/background separation 

such that the desired object should be thoroughly extracted as the foreground and 

the remaining parts are considered as the background. Therefore, this study does 

not attach to importance to the segmentation accuracy within the background 

parts, and this is also called as foreground extraction or foreground/background 

segmentation in the literature. 

 

In this sense, two main types of the segmentation classes in the literature are 

examined for this purpose; fully automatic image segmentation algorithms and 

semi-automatic or interactive image segmentation algorithms. In the semi-

automatic or interactive image segmentation algorithms, the user interaction, 

which identifies some part of the foreground and/or the background, is desired as 

input, whereas the fully automatic image segmentation algorithms does not need. 

In the first part of this chapter, three well-known fully automatic segmentation 

algorithms are briefly introduced, and foreground extraction performances are 

compared. In the following section, three popular interactive segmentation 

methods are described, and the performance comparison of fully and semi-

automatic image segmentation methods are realized. 

 

2.1 Fully Automatic Image Segmentation 
 

Discontinuity and similarity/homogeneity are generally two fundamental 

properties of the pixels in relation to their local neighborhood used for 

segmentation purpose [30], [33], [34]. The segmentation methods based on 

discontinuity of pixels, which are called as boundary-based or contour-based 

methods, intend to identify some basic discontinuities (e.g. points, edges and 
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lines) which constitute boundaries existing among the desired regions. On the 

other hand, the segmentation methods based on similarity or homogeneity of 

pixels, which are called region-based methods, utilize some similarity 

(homogeneity) property between the neighboring pixels to categorize image 

pixels into meaningful regions [30], [33], [34]. There are also many suggested 

segmentation methods based on both discontinuity and similarity property, which 

are called hybrid-based methods, to improve the segmentation performance in 

terms of accuracy and completeness  [33], [35] [36] [37] 

 

The fully automatic image segmentation techniques in the literature can be 

classified into four main categories in the following manner [38]: 

 

 Thresholding based techniques 

 Clustering based techniques 

 Edge/boundary - based techniques 

 Region - based techniques 

 

In the thresholding techniques [38], [39], the thresholding process converts a 

multi-level image into binary image i.e., it assigns the value of 0 (background) or 

1 (objects or foreground) to each pixel of an image based on comparison with 

some threshold value T, which is determined by using intensity or color 

distribution of the image by means of its histogram. In this approach, the 

neighborhood relations between image pixels are not considered and so the 

segmentation results may have disjoint pixels, which is usually an undesired case.   

 

In the clustering approach [38] [39], a data set (image pixels) is combined into 

clusters with respect to pixel color, intensity or other computed features and then 

center values (means) of the clusters are assigned into the pixel values in the same 

cluster to constitute homogenous regions. The general principle in the clustering 

approach is that pixels within each cluster should display a high degree of 
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similarity, while they should present a very low resemblance across different 

clusters. One of the most commonly used methods is the k-means algorithm. 

 

The other group of techniques is the edge/boundary-based methods [38] [39] and 

the segmentation operation is realized by detecting edges or discontinuities among 

regions in the image. Classical edge detection methods, such as Laplacian of 

Gaussian, the Canny edge detector, can be used to identify the edges or 

boundaries in the image.  

 

The final group of methods is the region-based segmentation [38] [39] whose goal 

is to exploit image features to map individual pixels in an input image to a set of 

pixels called regions that might correspond to an object or a meaningful part of it. 

The region-based segmentation algorithms can be classified into two sub-groups, 

the global and local methods. In the local methods, the algorithms usually begin 

with a single pixel and continue by combining the pixels until getting totally 

connected regions. These methods achieve the segmentation operations with a 

bottom-to-top approach. The global methods [40] [41] , on the contrary, are in a 

top-to bottom approach and realized such that an image is initially considered as a 

single region and the segmentation process is continued by sequentially splitting 

this region into smaller, homogenous regions.  

 

Moreover, there are many hybrid-based methods [33] [35] [36] [37] which 

combine different segmentation algorithms in one algorithm to achieve 

holistically correct segmentation outputs.  

 

This section is composed of five main sub-sections. In the first two subsections, 

the algorithmic steps of the k-means clustering [42], mean-shift [43] image 

segmentation methods are given in detail, respectively. Next, the definition and 

mathematical expression of the graph theory are introduced. After that, the 

detailed information about normalized cuts [40] image segmentation algorithm is 

given. Finally, the comparison among three different algorithms is performed in 
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experimental results part with the segmentation outputs of different set of images 

qualitatively and quantitatively.  

 

2.1.1 K-means Clustering Image Segmentation 

 

K-Means algorithm [42], [44] is an unsupervised clustering technique that follows 

the simple procedure to classify a given input data set into multiple classes based 

on their inherent distance from each other [45]. The algorithm updates the 

partition of the given feature space iteratively, where the points in the feature 

space are exchanged between classes based on a predefined metric (e.g. the 

Euclidian distance between cluster centers) in order to satisfy the criteria of 

minimizing the variation within each cluster and maximizing the difference 

between the resulting clusters. The algorithm is iterated until no exchanged 

between clusters. As a feature, the RGB color value of the each pixel is utilized 

for the segmentation purpose. The traditional k-means algorithm steps are 

summarized as follows [45]:    

 

1. Initially, the number of clusters K is 

preselected. Next, for every region random 

initial feature points are selected for the 

cluster centers μi.  

 

2. Cluster the points based on Euclidian distance of 

their color values from centroid values according 

to (2.5). 
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3. Recalculate the centers of clusters receiving new 

data points and clusters losing data points 

according to (2.6). 

 

    
                
   

           
 
   

                                                  

 

4. Repeat the steps 2 and 3 until the cluster labels 

of the image do not change anymore. 

 

where i iterate over the all the feature points, j 

iterates over all of the centroids and μi is the 

centroid points. 

 

The main drawback of k-means clustering algorithm is that the spatial coherence 

of the regions is not taken into account and; thus, it generally yields spatially 

unconnected and incoherent regions. The other limitation is the uncertainty in 

selection starting points chosen for cluster centers. This deficiency causes the 

different algorithmic result for each run. 

 

2.1.2 Mean-Shift Segmentation 

 

Mean-shift (MS) [43] is a general non-parametric iterative technique proposed for 

analyzing a complex multimodal feature space. The mean shift paradigm can 

provide reliable solutions for many vision tasks due to its adaptable and excellent 

qualities. Therefore, it is widely used in many computer vision applications, such 

as discontinuity preserving smoothing, image segmentation, object tracking and 

identification. In the mean shift framework, the local peaks or modes of the 

multivariate probability density function (pdf) are tried to be estimated from the 

observed data sampled from this density function. Dense regions in the input 
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feature space correspond to local peaks of the pdf  or to the modes of the 

unknown density function. As soon as locations of the local peaks are obtained, 

the clusters associated with individual modes are generated around these modes 

based on the local structure of the feature space [43]. The most noticeable 

advantages of the mean shift algorithm are the automatic detection of the number 

of clusters and the lack of a fixed shaped cluster density. On the other hand, the 

most significant drawback is the high computational cost. However, various 

optimization techniques are proposed to minimize the computational cost recently 

[46], [47]. 

 

Before progressing to the algorithmic details, it should be mentioned about the 

feature space used in the mean shift image segmentation algorithm. An image is 

typically represented as a two-dimensional lattice of p - dimensional vectors (i.e. 

pixels), where p = 1 for gray-level images and p = 3 for color images. The space 

of lattice is evaluated as the spatial domain, whereas the color or gray-level 

intensity information is considered in the range domain [48]. The features space 

used in the segmentation algorithm consists of the color (range) and spatial 

domain information of the image pixels. To be able to get a meaningful 

segmentation output, the image in RGB color space is initially converted to 

another color space so that the perceived color differences correspond to 

Euclidian distances in the color space chosen to represent the pixels. Since an 

Euclidian metric is not guaranteed for the RGB color space, L*u*v and L*a*b 

color spaces were designed to best approximate perceptually uniform color 

spaces. The new color spaces are created by the nonlinear dependency on RGB 

[43]. L coordinate defines the “lightness” or “luminance” and the other 

coordinates define “chrominance” for both color spaces. While generating the 

feature space, the location and color vectors are concatenated in the joint domain 

whose dimension is d = p + 2, and the normalization operation is performed to be 

able to compensate their different nature.  
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After establishing the feature space utilized in the segmentation, algorithm details 

can be explained. The mean shift segmentation procedure is composed of two 

basic steps; a mean shift filtering of the original image data in feature space 

(filtering step) and then clustering of the filtered data points or the modes (fusion 

step) [48]. The detailed explanation for each of these steps will be given in the 

below. 

 

2.1.2.1 Filtering step 

 

The main purpose of this step is the determination of the modes of the underlying 

pdf and associating them any points in the basin of attraction. This process can be 

performed as follows [43]: 

 

Let xi and zi, i = 1, …, n  be the d–dimensional 

input and filtered image pixels in the joint 

spatial-range domain, respectively. For a color 

image, d is equal to five (two of them from the 

spatial domain and other ones from the range 

domain). Let Li be the label of the i
th
 pixel in 

the segmented image. 

 

1. Initialize j=1 and yi,1 = xi for all i = 1, …, n. 

(Denoting {yj}j=1,2,… the sequence of consecutive 

locations of the kernel G) 

 

2. Compute the next iterant  yi,j+1  according to 

(2.7) until convergence, y = yi,c for all i  
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where h denotes the bandwidth parameter and g 

denotes the profile of symmetric kernel G.  The 

bandwidth parameter h reveals as hs for spatial 

radius and hr for range (color) radius in this 

case, and xi represents the data points (pixels in 

feature space) within the window defined by the 

bandwidth parameters, hs and hr.  

 

3. Assign zi = (xi
s, yi,c

r
) for all i = 1,2… n, where 

the superscripts s and r denote the spatial and 

range components of a vector, respectively. The 

assignment states that the filtered data at the 

spatial location xi
s
 will have the range component 

of the point of convergence yi,c
r
. 

 

The kernel window in the mean shift procedure moves in the direction of the 

maximum increase of the joint spatial-range density gradient and the filtering 

process is guaranteed to converge. In addition, the determination of the mode 

associated with each data point smoothes the image, while preserving 

discontinuity. For example, if two points’ xi and xj   are far from each other in the 

feature space, xj does not contribute to the mean shift vector gradient estimates of 

xi and thus the trajectory of it will move away from xj. As a result, pixels on either 

side of strong discontinuity will not affect each other [48].  

 

2.1.2.2 Fusion step 

  

After running the mean shift filtering process for image and determining all the 

information about the convergence points or modes in zi, the fusion operation is 
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performed in order to eliminate the noisy modes. This clustering operation can be 

carried out as follows [43]: 

 

1. Delineate in the joint domain the clusters 

{Cp}p=1,…m by grouping all zi which are closer than 

hs in the spatial domain and hr in the range 

domain, i.e., concatenate the basin of attraction 

of the corresponding convergence points.  

 

2. For each  i = 1,2, ….,n,  assign Li = {p| zi   Cp} 

 

 

3. Optionally, eliminate spatial regions containing 

less than M pixels and assign them to the closest 

neighboring region in the range domain (in terms 

of the norm of average region intensity or color 

differences). 

 

The fusion step is considered as basic post-processing and so it is only 

implemented by simple single linkage clustering. However, this step can be 

refined by using some other methods for clustering purpose. One of such methods 

is that a region adjacency graph (RAG) is created in order to cluster the modes 

hierarchically. Moreover, edge knowledge from an edge detector and the color 

information is brought together to achieve better clustering performance [46].  

 

To make better visualization, the algorithm steps are illustrated with an example 

in Figure 2.  In Figure 2.b., the mean shift trajectories associated with every pixel 

and their modes are shown. The modes of hills that are available at the original 

image in the Figure 2.a. are localized in the filtering stage result, as shown in 

Figure 2.c, and this causes quasi-homogenous regions at the output. The effect of 

fusion operation is displayed in Figure 2.d. 
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Figure 2: Visualization of mean shift segmentation steps. (a) The original data. (b) Mean 

shift trajectories for the pixels. The black dots show the modes. (c) Filtering stage result. (d) 

Fusion stage result [43]. 
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2.1.3 Fundamentals of Graph Theory 

 

A graph is an abstract representation of a set of nodes where some pairs of the 

nodes are connected by links. The interconnected nodes are represented by 

mathematical abstractions called as vertices, and links that connect some pairs of 

vertices are called as edges. The mathematical representation of a graph is given 

as           composed of a set    of  vertices or nodes together with a set    

of edges or links. The example of a graph with six vertices and seven edges is 

shown in the Figure 3. 

 

A graph is called as a weighted graph if a value (weight) is assigned to each edge. 

Such weights represent the connection strengths, costs, lengths or capacities etc. 

(depending on the problem at hand) between two vertices.  If each pair of vertices 

is connected by an edge in the graph, then the graph is called as a complete graph. 

However, each vertex is not necessarily connected to every other vertex in many 

applications and such a graph is called as partial graph.  

 

For some application, the direction of an edge can be significant for the weighting 

of the graph and the weights can vary according to the direction, this kind of 

graphs is called as directed weighted graphs.  On the other hand, if the edge 

direction is not decisive and the weight values are equivalent in both directions, 

that graph is called as undirected weighted graphs.    

 

 

 

Figure 3: A simple graph with six vertices [49] 

http://en.wikipedia.org/wiki/Vertex_(graph_theory)
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2.1.4 Normalized Cut Segmentation 

 

Normalized cut image segmentation [40] is a global approach that solves the 

coherent perceptual grouping problem in vision. It is a global method due to its 

focus on the global impression of an image instead of its local features. The 

normalized cut algorithm considers the image segmentation problem as a graph 

partitioning problem that is solved by utilizing a splitting process beginning from 

the entire image into the bottom parts. The splitting process can be implemented 

by using the decomposition of eigenvectors of special matrices (e.g. affinity 

matrices) of constructed graph, which examines the spectral properties of affinity 

matrices. There exist different kinds of special (affinity) matrices to be 

decomposed in the literature. A review and comparison of these methods are 

represented in [50] and it is examined that the normalized cut method shows 

better performance than the other methods for overall case.  

  

The normalized cut image segmentation algorithm is typically divided into two 

main steps, as the formation of the graph and iterative graph partitioning. The 

first step is the formation of the graph which initially maps the image to a graph 

that holds the relations between pixels. A set of points in an arbitrary feature 

space is represented as an undirected weighted graph         , in which the 

vertices of the graph correspond to the points in the feature space and an edge is 

formed between every pair of vertices. The weight on each link,        , is a 

function of the similarity between nodes   and   and the function is defined as the 

product of a feature similarity term and spatial proximity term as follows:   
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The weight values resulted from this function reflect the likelihood that two pixels 

belong to the same object. In the cost function,      is the feature vector based on 

intensity, color or texture info at pixel   and      is the spatial term and indicates 

the spatial location of that pixel.  According to this weight function, the 

constructed graph is partial (not complete), since the pixels that are located within 

a circle of radius R are only connected to each other.     and     are the parameters 

of feature similarity and spatial proximity terms, respectively.  

 

The second step of the segmentation algorithm is the iterative graph partitioning 

and it is accomplished by iteratively partitioning the set of vertices    into disjoint 

sets            where by some measure, the similarity among the vertices     is 

high and, across different sets,    and     is low. At each iteration, a graph 

         is divided into two disjoint sub-graph, A and B, such that A ∩ B = 0, A 

U B = V, by simply removing edges connecting the two parts. A cut on a link 

separates the two nodes connected to each other with the corresponding link. The 

cuts on a graph generally involve more than one link and so the separation of two 

groups of nodes can be achieved as in the Figure 4.  Every cut in the graph has a 

cost value, and it is calculated by adding the weight value of the removed links 

(cut). For example, the cost of the cut is the summation of the link weights of 2 

and 5 in the Figure 4. 

 

 

 

Figure 4: A simple cut on a graph 
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The spectral-based segmentation methods [40], [41], [51], [52]  try to minimize a 

cost function that is totally related to the cost of the cuts and the association of the 

partitions during the segmentation process. The difference between those 

algorithms originates from the difference in the cost function to be minimized. 

The well-known three methods are reviewed and compared in [53] and the 

normalized cut method outperforms the other methods due to its normalization 

during the formulation of the segmentation algorithm. The degree of dissimilarity 

between the two sub-graphs can be computed as the summation of the weights of 

the links that have been removed (cut) and it is formally defined as: 

 

                                                                                                     

       

 

         

The minimum cut algorithm [51] [52] tries to find the cut combination which 

minimizes this cut cost.  However, as noticed in [40] [51], the minimum cut 

criteria favors cutting the graph into small pieces, especially if there are nodes 

located at distant locations (i.e. isolated nodes), resulting in a desperate 

segmentation. Figure 5 illustrates one such case. Assuming the edge weights are 

inversely proportional to the distance between the two nodes, it can be seen that 

the cut separating the node n1 or n2 will have quite a small cut cost, whereas bad 

partition. 

 

 

Figure 5: A case where minimum cut gives a bad partition [40] 
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To prevent the unnatural bias of the minimum cut algorithm for partitioning out 

small sets of isolated points, the new global criterion is defined in the normalized 

cut segmentation algorithm. In this criterion, the cut cost in the minimum cut 

algorithm is normalized with the total edge weights obtained by adding the total 

edge weights of the nodes in the separated groups and it is called as Normalized 

cut (Ncut): 

 

            
        

          
  

        

          
                                  

 

where  

 

                   

       

                                                    

                            

In this formula, cut (A, B) indicates the cut cost computed between partition A and 

partition B. assoc(A,V) is the summation of total weight from nodes in A to all 

nodes in the graph V. The normalized measure reflects how tightly the nodes 

within the different separated groups are connected to each other. 

 

The exact minimization of the normalized cut is a np-complete problem. 

Nevertheless, when the normalized cut problem is reformulated in real-valued 

domain by using the change of variables, an approximate solution can be obtained 

efficiently [40].  The theoretical analysis and the formation of the new 

formulation [40] are clarified in detail in Appendix A. This new formulation is 

rewritten as, 
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where   is an N x N diagonal matrix of a graph with N nodes and it states the total 

edge weights belonging to each node individually.    is an N x N symmetrical 

matrix, the affinity matrix, of the graph indicating the similarities between the 

nodes and the entries of this matrix are        such that the diagonal entries are 1 

because each node is completely similar to itself. Finally,    is an N x 1 vector 

whose elements is real and corresponds to the similarities of the nodes satisfying 

the following constraints: 

 

                                                                             

 

 and   

 

                                                                                 

     

The open form of   is represented in Appendix A, and     is an N x 1 vector whose 

rows are all “1”.  The separation of the values in    identifies the partitioning such 

that the same signed nodes belong to sthe same group 

 

The expression in (2.12) is the Rayleigh quotient [54] and if   is relaxed to take 

on real values, it can be minimized by solving the generalized eigenvalue system; 

 

                                                                       

                          

                                                                

  

The second smallest eigenvector of the generalized eigenvalue system in (2.15) 

and (2.16) is the real valued solution of the normalized cut problem [40].  

However, there are two constraints on   which come from the condition on the 

corresponding indicator vector   stated in (2.13) and (2.14). The constraint in 

(2.14) is automatically satisfied by the solution of the generalized eigensystem. 
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On the other hand, the constraint in (2.13) is violated, since   has different real 

valued elements after the eigenvalue decomposition. Therefore, an approximate 

solution is obtained by means of discretization instead of exact one.  

 

In summary, the eigenvalue decomposition and determination of the second 

smallest eigenvector provides a partitioning on the corresponding graph. 

Moreover, this algorithm recursively performs the segmentation as follows: 

 

1. Construct a weighted graph         by taking each 

pixel as a node and linking each pair of pixels 

by a weighted edge. The weight of that edge 

should reflect the likelihood that two pixels 

belong to one object.  

 

2. Create the   and     matrices through the edge 

weights. 

 

3. Solve the generalized eigenvalue system in (2.15) 

and (2.16) for the eigenvectors with smallest 

eigenvalues. 

 

4. Use the eigenvector with the second smallest 

eigenvalue to bipartition the graph 

 

5. Decide whether the current partition should be 

subdivided and recursively bipartition the 

segmented parts if necessary. 

 

The partitioning is implemented by thresholding the second smallest eigenvector 

and labeling it into two parts such that the nodes above a threshold and the ones 

below the threshold. This threshold is specified by a one-dimensional search 

between the minimum and the maximum values within the elements of the 
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eigenvector, and the partition that minimizes the normalized cut value given in 

(2.12). The minimum normalized cut value evaluated during the one dimensional 

search determines the decision of the repartitioning the segmented parts. If the 

value is small enough, then the repartitioning is not performed for the 

corresponding segment. If it has high value, then the recursive partitioning 

continues.  

 

2.1.5 Experimental Results 

 

In this sub-section, the segmentation performances of the described fully 

automatic algorithms are evaluated on several test images via subjective and 

objective comparisons. Ten test images, while half of them are for airplanes and 

the other half are for ships, are utilized during the experiments with  different 

scene complexities. The airplane images are acquired from different civilian and 

military airports, and the ship images are obtained from various different harbors 

via Google Earth. Those images are represented in Figure 6 and Figure 7 with 

their corresponding ground truth. The corresponding ground truth segmentations 

are generated manually.  

 

During the experiments, each algorithm is executed three times with different 

parameters for each test image and produces three segmented images with 

different number of segments. Figure 8 and Figure 9 display the results of k-

means clustering segmentation algorithm with 3, 5 and 10 segments for airplane 

and ship images. Similarly, normalized cut segmentation results with different 

number of segments are given for same images in Figure 10 and Figure 11. 

Finally, the mean-shift segmentation algorithm results are represented in Figure 

12 and Figure 13. As it can be observed from the results, all of the examined fully 

automatic segmentation algorithms do not produce smooth region boundaries 

overlapping with the ground truth segment boundaries.  
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As it can be observed, k-means segmentation algorithm produces the segmented 

regions with arbitrary topological properties; in other words, the segmented 

regions might consist of several isolated connected blobs in the image. This result 

is due to the fact that k-means segmentation algorithm does not utilize the spatial 

connectivity constraint which takes into account the spatial coherence of the 

segmented regions. Moreover, it depends on the initially selected cluster centers, 

the number of clusters and other predefined parameters. Due to the 

aforementioned reasons, although some solid colored targets (e.g. white colored 

civilian planes) can precisely be extracted from the image by using this algorithm, 

most of the multicolored targets (e.g. multicolored airplanes and ships) cannot be 

segmented as a whole to be able to apply for the target recognition.  

 

The implementation of Cour et al. [55] for normalized cut image segmentation 

algorithm is used during the experiments. For this algorithm, the initial number of 

segments must be specified as in k-means segmentation algorithm. The 

experimental results show that the boundaries of segmented regions do not 

coincide with ground truth segment boundaries for especially small number of 

segments. The reason of this result is that normalized cut algorithm takes into 

account the global characteristic of the target image instead of its local sense. 

Nevertheless, the overlapping between the boundaries of segmented regions and 

ground truth can be occurred partially by over-segmenting the target image via the 

increment of the number of segments. However, these results cannot be used for 

target recognition purposes due to incomplete extraction of the target. 

 

The third segmentation algorithm, the mean-shift method, outperforms other 

methods and relatively produces segmented regions whose boundaries overlap 

with the regions of the ground truth segmentation owing to the discontinuity 

preserving property of mean-shift algorithm. However, the performance of the 

algorithm highly depends on the predefined parameter set such as minimum 

segment area, spatial and range bandwidth. As it can be observed from the results, 

the parameter set (minimum segment area, spatial and range bandwidth) should be 
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precisely defined in order to get correct segmentation regions for each target 

image. Thus, target extraction with mean-shift segmentation algorithm cannot be 

possible for many images due to the parameter dependency and inadequacy of the 

algorithm.  

 

Up to this point, the performance of the segmentation algorithms has been 

evaluated in terms of subjective metrics. For an objective evaluation, a 

performance metric, precision-recall values of the segmentation results with 

respect to the ground truth segmentation, is used in this work. Before giving the 

definition of precision and recall values, one should define the following 

concepts. 

 

 

 True Positives, tp : The number of items correctly labeled as belonging to 

the positive class (i.e. correct results) 

 False Positive, fp: The number of items incorrectly labeled as belonging 

to the negative class (i.e. unexpected results) 

 True Negative, tn : The number of items correctly labeled as belonging to 

the negative class (i.e. correct absence of results ) 

 False Negative, fn : The number of items incorrectly labeled as belonging 

to the positive class (i.e. missing results) 

 

Hence, precision and recall values are calculated by the following expressions, 
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In the light of the abovementioned definitions for the segmentation, recall is 

defined as the ratio of the number of correctly labeled target pixels (true positive) 

over the total number of target pixels in the image (true positive + false negative). 

Precision is described as the ratio of the number of correctly labeled target pixels 

(true positive) over the total number of pixels which are labeled as target (true 

positive + false positive). While calculating the precision-recall values during the 

evaluation of the fully automatic segmentation algorithms, the segment, which 

maximally coincides with the ground truth of the corresponding target is accepted 

as the target mask (true positive + false negative) obtained from the segmentation. 

 

The precision-recall values of k-means clustering, normalized cut and means-shift 

segmentation algorithms are represented in the Tables 1-6, respectively. As it can 

be seen from these tables, the subjective evaluations are supported by the 

precision – recall values. As expected, mean-shift algorithm outperforms other 

methods and yields the highest precision-recall measures. Nevertheless, the recall 

values of that are far from the desired ones even though the precision is 

satisfactory.  

 

Consequently, it is not possible (until now) to extract the foreground or target 

completely and accurately with fully automatic segmentation algorithms.  
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(a)                                                                                            (b) 

 

Figure 6: (a) Original plane images (b) The ground truth segmentation 
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(a)                                                                         (b) 

Figure 7 :  (a) Original ship images (b) The ground truth segmentation 
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(a)                                                  (b)                                                   (c) 

 

Figure 8: K-means segmentation results for plane images (a) k = 3  (b) k = 5   (c) k = 10 
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(a)                                             (b)                                                  (c) 

 

Figure 9: K-means segmentation results for ship images (a) k = 3   (b) k = 5  (c) k = 10 
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(a)                                                 (b)                                                    (c) 

Figure 10 : Ncut segmentation results for plane images   (a) N = 5 (b) N = 10 (c) N = 20 
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(a)                                             (b)                                                (c)  

 

Figure 11: Ncut segmentation results for ship images   (a) N = 5 (b) N = 10 (c) N = 20 
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(a)                                              (b)                                                    (c)  

Figure 12 : Mean-shift segmentation results for plane images (minimum segment area = 320)  

(a) hs = 7 and hr = 6.5   (b) hs = 10 and hr = 9.5   (c) hs =17 and hr = 16.5 
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(a)                                                 (b)                                                   (c) 

Figure 13: Mean-shift segmentation results for ship images (minimum segment area = 3020) 

(a) hs = 7 and hr = 6.5   (b) hs = 10 and hr = 9.5   (c) hs =17 and hr = 16.5 
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Table 1: The precision-recall values of k-means segmentation results for plane images 

 

Precision k = 3 k = 5 k = 10 

Plane 1 0,41 0,65 0,68 

Plane 2 0,07 0,13 0,34 

Plane 3 0,06 0,06 0,11 

Plane 4 0,11 0,15 0,20 

Plane 5 0,83 0,85 0,88 

Average 0,30 0,37 0,44 

    

    Recall k = 3 k = 5 k = 10 

Plane 1 0,75 0,49 0,40 

Plane 2 0,70 0,63 0,56 

Plane 3 0,46 0,410 0,27 

Plane 4 0,70 0,53 0,34 

Plane 5 0,75 0,73 0,56 

Average 0,67 0,56 0,43 

 

Table 2: The precision-recall values of k-means segmentation results for ship images 

 

Precision k = 3 k = 5 k = 10 

Ship 1 0,12 0,19 0,23 

Ship 2 0,06 0,07 0,11 

Ship 3 0,06 0,12 0,71 

Ship 4 0,43 0,61 0,75 

Ship 5 0,08 0,20 0,31 

Average 0,15 0,24 0,42 

    

    Recall k = 3 k = 5 k = 10 

Ship 1 0,39 0,40 0,22 

Ship 2 0,77 0,45 0,33 

Ship 3 0,51 0,29 0,24 

Ship 4 0,54 0,46 0,37 

Ship 5 0,60 0,42 0,38 

Average 0,56 0,40 0,31 
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Table 3: The precision-recall values of Ncut segmentation results for plane images 

 

Precision N = 5 N = 10 N = 20 

Plane 1 0,06 0,10 0,87 

Plane 2 0,02 0,19 0,64 

Plane 3 0,09 0,13 0,87 

Plane 4 0,18 0,33 0,82 

Plane 5 0,11 0,73 0,72 

Average 0,09 0,30 0,79 

    

    Recall N = 5 N = 10 N = 20 

Plane 1 0,39 0,40 0,47 

Plane 2 0,47 0,38 0,42 

Plane 3 0,62 0,64 0,52 

Plane 4 0,86 0,73 0,63 

Plane 5 0,69 0,78 0,74 

Average 0,61 0,59 0,56 

 

Table 4: The precision-recall values of Ncut segmentation results for ship images 

 

Precision N = 5 N = 10 N = 20 

Ship 1  0,10 0,10 0,63 

Ship 2 0,05 0,18 0,23 

Ship 3 0,10 0,26 0,73 

Ship 4 0,96 0,96 0,91 

Ship 5 0,28 0,80 0,73 

Average 0,30 0,46 0,64 

    

    Recall N = 5 N = 10 N = 20 

Ship 1  0,55 0,49 0,30 

Ship 2 0,84 0,84 0,82 

Ship 3 0,48 0,70 0,59 

Ship 4 0,70 0,67 0,33 

Ship 5 0,88 0,88 0,48 

Average 0,69 0,72 0,50 
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Table 5: The precision-recall values of mean-shift segmentation results for plane images 

 

Precision hs = 7 hr = 6.5  hs = 10 hr = 9.5 hs = 17 hr = 16.5 

Plane 1 0,87 0,99 0,99 

Plane 2 0,92 0,98 0,93 

Plane 3 0,83 0,94 0,96 

Plane 4 0,94 0,71 0,96 

Plane 5 0,94 0,94 0,91 

Average 0,90 0,91 0,95 

    

    Recall hs = 7 hr = 6.5  hs = 10 hr = 9.5 hs = 17 hr = 16.5 

Plane 1 0,56 0,55 0,45 

Plane 2 0,48 0,44 0,46 

Plane 3 0,50 0,70 0,81 

Plane 4 0,32 0,42 0,34 

Plane 5 0,84 0,84 0,61 

Average 0,54 0,59 0,53 

 

Table 6: The precision-recall values of mean-shift segmentation results for ship images 

 

Precision hs = 7 hr = 6.5  hs = 10 hr = 9.5 hs = 17 hr = 16.5 

Ship 1 0,97 0,96 0,91 

Ship 2 0,94 0,93 0,34 

Ship 3 0,91 0,86 0,85 

Ship 4 0,99 0,99 0,99 

Ship 5 0,97 0,99 0,99 

Average 0,96 0,95 0,82 

    

    Recall hs = 7 hr = 6.5  hs = 10 hr = 9.5 hs = 17 hr = 16.5 

Ship 1 0,81 0,78 0,84 

Ship 2 0,89 0,88 0,46 

Ship 3 0,86 0,65 0,66 

Ship 4 0,63 0,63 0,59 

Ship 5 0,69 0,48 0,46 

Average 0,78 0,69 0,60 
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2.2 Semi-automatic or Interactive Image Segmentations 

 

Even though fully automated segmentation techniques are being continuously 

improved, there is still no automated image analysis technique applied in fully 

autonomous manner with guaranteed performance for the general case in the 

literature. Therefore, semi-automatic segmentation techniques or interactive 

segmentation techniques that allow solving moderate and hard segmentation tasks 

by modest effort on the part of the user are becoming more and more popular for 

last few decades [56], [57], [58], [59], [60], [61], [62], [63] [64]. The main goal of 

such segmentation techniques is to partition an image into two segments as object 

and background by employing the user defined inputs.  

 

Graph cuts and deformable models are two of the most notable frameworks in 

semi-automatic image segmentation. Both of these approaches depend on energy 

minimization of certain objective function. For deformable models, the first 

algorithm, called as active contour models, is proposed by Kass et. al. [64], which 

delineates an object's outline from a 2D image. This framework tries to minimize 

the contour energy E defined as the sum of external energy and internal energy. 

The external energy pulls the contours towards desired image features such as 

edges whereas the internal energy helps achieve smooth boundaries. The active 

contours, also called as snakes, are based on deforming an initial contour at a 

number of control points selected along a given initial contour. This approach has 

several drawbacks. First of all, the minimized energy function in this approach 

depends on only boundary properties of the given image and it does not regard 

about region properties or coherence. Therefore, the segmentation capabilities 

dramatically decreases when there are no strong edges on the desired object 

boundary. Second, the snakes move toward the nearest local minimum of the 

initial contour, and hence, it has a tendency to find a local minimum which in 

general does not coincide with the object contour. This leads to sensitivity to 

initialization of the user defined contour, when there exist a large number of local 
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minima near the user defined contour due to image noise or background clutter 

typically encountered in satellite imagery. Third, the algorithm highly depends on 

its parameters and so automatic selection of various parameters such as the 

weights in  the energy function is still an open problem. Finally, the discretization 

of the contours into a number of control points may cause problems with uneven 

pacing and self crossing while the contours are deforming, and make it difficult to 

extract the complex shaped objects. Therefore, these limitations of the active 

contour models prevent to achieve robust and accurate segmentation results in the 

general case.  

 

On the other hand, graph cuts based approaches have the ability to jump over 

local minima, and hence provide a more global and robust solution. Furthermore, 

the optimization process in graph cuts runs faster than the deformable models, and 

the exact solution can be found in polynomial time. As  a result, graph cuts based 

interactive foreground extraction algorithms are investigated in this thesis.   

 

In this work, three popular interactive image segmentation algorithms are 

examined. These are interactive graph cut [60], interactive GrabCut [63] and 

interactive GrowCut [62] image segmentation algorithms. After introducing the 

algorithmic detail in the following three sub-sections, the experimental results are 

given in the final part in order to compare the algorithms qualitatively and 

quantitatively. 

 

2.2.1 Interactive Graph Cuts Image Segmentation 

 

The interactive graph cut image segmentation algorithm is first described by 

Boykov and Jolly in 2001 [60]. The main issue with this algorithm is that a user 

imposes certain hard constraints which are relevant to the user’s segmentation 

purpose, and then the whole image is automatically divided into segments based 

on these constraints. This aim can be achieved by firstly marking certain pixels 
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(seeds), which undoubtedly have to be part of the object and certain pixels which 

have to be part of the background. In other words, these hard constraints should 

provide clues on the objective of the segmentation of the user. The remaining 

pixels in the image are clustered automatically by obtaining a global optimum 

among all segmentations satisfying the hard constraints imposed by a user. For 

this purpose, a cost function, which is described in terms of the boundary and 

region properties of the resulted segments, is introduced. These properties can 

also be considered as soft constraints for the segmentation. 

 

The cost function used as soft constraints for the segmentation should be 

comprehensive enough to incorporate both region and boundary information of 

segments. In the light of the abovementioned requirement, the cost function 

obtained in the context of MAP-MRF estimation can be defined as follows: 

 

Consider an arbitrary set of data elements (pixels in an image)    and some 

neighborhood system represented by a set   all unordered pairs {p, q} of 

neighboring elements in  . Let A = (A1, …, Ap, …, A|P|) be a binary vector whose 

elements Ap identifies assignments to pixels p in   such that each Ap can be either 

“obj” or “bkg” which are the abbreviation of “object” and “background”, 

respectively. Hence, the binary vector A defines a kind of segmentation. Then, the 

cost function      which defines the soft constraint imposed on the boundary and 

region properties of A is: 

 

                                                                          

where 
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and 

           
          
           

                                                

 

This cost function is the energy function utilized for the segmentation. The 

coefficient     in (2.19) identifies a compromise between the relative 

significance for the region properties term      and the boundary properties 

term      . The regional term      is the penalties for assigning the pixels p into 

the object or background and the individual penalties are described with the term 

           and           for object and background, respectively. The term 

     expresses the boundary or discontinuity information of the segmentation A. 

The coefficient           indicates the penalty for a discontinuity between p and 

q. Generally,        is large when pixels p and q are similar in terms of related 

feature(s) and it is close to zero as the two pixels are becoming more and more 

different. These features that can be used for this purpose might be any function 

of distance between two pixels, color and texture information, local intensity 

gradient, Laplacian zero-crossing, gradient direction, etc. 

 

There are many different types of hard constraints proposed in the literature for 

interactive segmentation algorithms. Some of them are based on labeling of 

certain pixels in the desired segmentation regions and the other ones are based on 

indicating certain pixels on the segmentation boundary pixels. The hard 

constraints used in the interactive graph cut algorithm are based on labeling the 

segmented regions rather than boundary pixels such that some pixels are marked 

as internal (object seeds) and some as external (background seeds) for a given 

object of interest. The marked pixels can be anywhere in the related regions, since 

the algorithm yields the similar outputs irrespective of particular seeds positioning 

within the same image object.  
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The main idea of the algorithm is to incorporate the soft constraints encoded by 

(2.19) with user defined hard constraints in order to achieve perfect segmentation 

results. Before the detailed explanation of how it can be achieved, the basic 

terminology that is related to graph cuts in the context of this segmentation should 

be clarified. An undirected graph          is defined as a set of nodes or 

vertices   and a set of undirected edges   that join these nodes. An example of a 

graph used in this context is illustrated in the Figure 14.a. The nodes of the graph 

can represent pixels of an image and the edges can represent any neighborhood 

relationship between the pixels.  

 

There are also two additional special nodes which are called as terminals: an 

object terminal (a source S) and background terminal (a sink T). These nodes are 

connected like a grid by edges. These sets of edges consist of two types of 

undirected edges (or links): n-links which are also called as neighborhood links 

and t-links which are also called as terminal links. Terminal links (t-links), which 

are denoted as {p, S} and {p, T}, connect each pixel p into the terminal nodes S 

and T. Similarly, each pair of neighboring pixels is connected by a neighborhood 

link (n-links) and denoted as {p, q}. Each edge        in the graph is assigned a 

nonnegative weight (cost)    . A s/t cut on a graph with two terminals is a 

partition of vertices in the graph into two disjoint subsets such that the terminals 

become separated on the induced graph. Therefore, any cut will correspond to a 

binary segmentation. Figure 14.b illustrates one example of a cut. The severed n-

links and t-links constitute a s/t cut-set      and so the cost of cut in the 

combinatorial optimization is defined as the sum of the weight of the edges in this 

cut-set  . 
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(a)                                                                          (b) 

 

Figure 14:   (a) A graph with two terminals (b) A cut on the graph [65] 

 

 

After defining the basic terminology regarding of the graph cuts, the algorithmic 

details about interactive graph cuts segmentation can be explained as follows:  

 

Assume that   and   denote the pixels marked as object and background seeds, 

respectively. Moreover, they satisfy the conditions that                

   . Then, the hard constraints are defined mathematically as follows: 

 

                    obj                                                                

                    bkg                                                               

 

After imposing the hard constraints, the graph with two terminals           is 

constructed from a given digital image such that the nodes of the graph except the 

source and sink terminals correspond to pixels    of the image and these nodes 

are connected by weighted edges via n-links and t-links. Therefore, the total 

vertices in the graph become            and all edges become    

                    . The weight (cost) of each edge in   is introduced in 

Table 7.  
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Table 7: The weights of links 

 

Edge Weight (cost) For 

                     

      

                            

       

0      

 

      

                            

0      

       

 

 

where 

                     

        
   

                                                          

         

 

 

The weight of t-links that connect pixels labeled into the object or background 

should theoretically be infinite. However, parameter   which has very high value 

is used instead of the infinite in the calculation. 

 

The computation of the weights of the edges plays a crucial role in the 

segmentation performance, since the value of weight can integrate all aspects of 

feature information, such as gray-level, color, and texture of images, into the 
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segmentation. Consequently, the values of the edges are calculated based on the 

similarity, continuity and proximity of the two nodes, and reflect the likelihood 

that two pixels belong to the same segment. 

 

The weight of n-link expresses the discontinuity of corresponding pixels p and q, 

and        can be described as follows: 

 

             
       

 

   
  

 

         
                              

 

This function increasingly penalizes the discontinuities when two neighboring 

pixels are becoming more and more similar (i.e.           ). However, when 

pixels are remarkably different,          , the penalty decreases.  

 

The weight of the t-links is denoted by        which reflects on how the intensity 

of pixels   fits into a known intensity model (or histogram) of the object and 

background. The intensity models (or histograms) of the object and background 

can be estimated by using the intensity value of the pixels marked as seeds. Then, 

these intensity models are employed for computing the regional penalties        

as negative log-likelihoods:  

 

                                                                            

                                                                           

 

After the graph is completely defined, the segmentation boundary can be 

constructed between the object and the background by finding the global 

minimum cost cut    on the graph   . The globally minimum cost cut    on 

graph    can be calculated exactly in low-order polynomial time with the help of 

the optimization algorithms used for cutting the graph with two terminals 
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assuming that the edge weights of the graph are non-negative. A version of “min-

cut/max-flow” algorithm reported in [66] is utilized for the implementation of 

combinatorial optimization algorithm. Consequently, a cut with minimum cost 

gives the best segmentation of the image with the region and boundary properties 

satisfying the user defined hard constraints. The proof of minimum cut can be 

reached in Appendix B.    

 

As a summary, implementation of the algorithm can be expressed in the following 

statements: 

 

1. Impose the hard constraints by labeling certain 

pixels that have to be part of the object as 

object seeds and certain pixels which have to be 

part of background as background seeds. 

 

2. Establish the cost function (energy function) 

that describes the region and boundary properties 

of the resulted segments.   

 

  

3. Construct the graph with two terminals from the 

target image and assign a particular weight into 

each edge in the graph. The value of the weights 

should reflect the similarity, proximity and 

continuity of two nodes in the graph. 

 

4. Finally, compute the minimum cost cut in the 

graph via “min-cut/max-flow” combinatorial 

optimization algorithm in order to get optimal 

segmentation satisfying soft and hard 

constraints.      
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In order to make the process more comprehensive, the general workflow of the 

algorithm is illustrated by an example in Figure 15. A graph with two terminals in 

Figure 15.b is built from a 3 x 3 synthetic image in Figure 15.a such that the cost 

of edges is defined in terms of the parameters in the region and the boundary 

properties (soft constraints) and hard constraints. The next step is to determine the 

globally optimum minimum cut separating two terminals, source and sink as 

shown in Figure 15.c. Finally, this s/t cut gives the best segmentation result of the 

original image in Figure 15.d.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

                                 

(a) Original image and hard                                              (d) Segmentation results 

                        constraints  

 

 

 

 

            

 

 
(a) Graph with two terminals                                                     (c)  A s/t cut 

 

 

Figure 15 : A 3 x 3 synthetic image segmentation example. Seeds are    and   . The weight 

value of each edge is illustrated by the edge’s thickness. Low-priced edges are selected for 

the minimum cost cut [60]. 
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2.2.2 Interactive GrabCut Image Segmentation 

 

 

Interactive GrabCut is a powerful and innovative 2D image segmentation 

algorithm which is described by Rother et al. in 2004 [63].  This method aims to 

solve the problem of efficient, interactive extraction of a foreground object in a 

complex environment whose background cannot be trivially subtracted with high 

performance (i.e. accurate segmentation of object from background) at the cost of 

only modest interactive effort for the user.  

 

GrabCut algorithm [63] relies on interactive graph cut algorithm which 

successfully combines both texture (color) and contrast (edge) information and it 

extends the graph cut algorithm in three regards. First of all, a Gaussian Mixture 

Model (GMM) is used for color data modeling instead of the monochrome image 

model such as histograms. Secondly, a more powerful, iterative procedure for the 

optimization process is developed rather than one-shot optimization. Thirdly, the 

requirements on the interactive user inputs are relaxed by allowing incomplete 

labeling as a result of the iterative cut estimation. 

 

Since it is impractical to build satisfactory color space histograms, the Gaussian 

mixture model (GMM) is utilized for data modeling.  Therefore, two GMMs, one 

for the background and one for the foreground, are created to be a full-covariance 

Gaussian mixture with K components (typically K = 5). For the construction of 

GMMs, both regions (the background and the foreground) are firstly divided into 

K pixel clusters via one of the clustering algorithms. Then, the Gaussian 

components are initialized from the colors in each cluster by calculating the 

parameters of the each component. Mathematically, GMM can be expressed by 

the equation, 
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where   is a  -dimensional continuous-valued data vector (RGB color space in 

this case),             are the mixture weights, and                     

are the component Gaussian densities. Each component density is a  -variate 

Gaussian function of the form, 

 

            
 

    
 
      

 
   
     

 

 
      

   
                             

 

with mean vector     and covariance matrix    . The mixture weights should 

satisfy the constraint that     
 
     . Thus, the complete Gaussian mixture 

model is parameterized by the mean vectors, covariance matrices and mixture 

weights from all component densities. These parameters are collectively 

represented by the notation, 

 

                                                                

      

Now, the cost function or Gibbs energy function for segmentation becomes  

 

                                                                   

 

where   = (            ) is an array of RGB color values of image pixels, 

indexed by index   and                   is an array which expresses the 

segmentation of the image at each pixel by assigning      for background and 

      for foreground. The parameter    describes the GMM parameters defined 

by the expression (2.32) and   = (            ) is the GMM component 

variables. It is defined in order to deal with the GMM easily, in optimization 

viewpoint, by assigning each pixel into unique GMM component with    

         according to      or 1. The data term   is now described as, 
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where 

 

                            
 

 
             

                               
 

 
             

         
                                     

 

The smoothness term   is basically same for both the graph cut and GrabCut 

algorithms [63] except that the contrast term is calculated in color space by using 

the Euclidian distance as follows: 

 

                                         
 

       

                    

 

The energy minimization procedure in GrabCut algorithm iteratively works by 

alternating between cut estimation and GMM parameter learning. While the 

algorithm is working iteratively, the segmentation result,   , changes at each 

iteration by displacing some pixels from the background to the foreground, and 

vice versa. Therefore, the GMMs should be updated in order to reflect the new 

foreground and background color distributions after the cut estimation. This can 

be achieved by running the clustering algorithm used for the initialization again, 

but most of the clustering methods are quite slow. Therefore, GrabCut algorithm 

employs an incremental clustering update to speed up the algorithm, and this is 

implemented in two steps. First, each pixel in the image is assigned into the 

unique GMM component which has the highest likelihood of producing the color 

of pixels. This is realized by simply evaluating the Gaussian equation with the 

color of pixel as input. Hence, the segmentation result,      and the component 

index,    uniquely identifies all of the    components. Next, once the pixels have 

been clustered, the current GMMs are thrown away and the new Gaussian 
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components are generated by computing their parameters. The mean        and 

the covariance         are estimated as the sample mean and the sample 

covariance of pixels in each Gaussian component. The mixture weights        

are computed as the number of pixels in the Gaussian component divided by the 

number of all pixels in the GMM. After the parameter learning is carried out, the 

global optimization algorithm, the graph cut, is run to estimate the new 

segmentation result.  

 

A graph should be constructed in order to obtain a global solution by means of the 

optimization algorithm. The constructed graph in this case is identical to the graph 

described by the graph cut algorithm except the weights of T-links. The 

probabilities acquired from GMMs are utilized for unknown pixels T-link weight. 

The weights of T-links for pixel     are stated in Table 8. 

 

Table 8: The weights of links for GrabCut algorithm 

 

Pixel type Background T-link Foreground T-link 

             0      

                   0 

                             

 

 

In order to enforce pixel   be a member of either the background or foreground 

the following constraint must be satisfied:  

 

              

       

                                                 

 

         and           are the function of the likelihood that the pixel   

belongs to the foreground and background GMMs, respectively. They are 

calculated for pixel    with the background and foreground GMMs as follows: 
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Moreover, the values of T-link weights must be updated during the iteration due 

to the variation of the GMMs. On the other hand, the N-link weights are constant 

throughout the execution of GrabCut algorithm. Therefore, they can be calculated 

once and reused later.  

 

The degrees of interactive effort generally range from editing individual pixels, at 

intensive workload, to only touching the foreground and/or background in a few 

locations. In GrabCut algorithm, the requests on interactive user for a given 

quality of the result are considerably reduced by allowing incomplete labeling as a 

result of iterative estimation. Incomplete labeling means that the user should 

merely specify the background region without any hard foreground labeling. This 

can be done simply by placing a rectangle or a lasso around the desired object, 

and so the strip of the pixels around the outside of the marked rectangle is 

selected as the background. Iterative cut estimation overcomes this 

incompleteness by allowing temporary labels (as the foreground) on the pixels in 

the marked rectangle which can subsequently be retrieved. 

 

Finally, the summary of the algorithm can be stated as follows [67]: 

 

1- The user specifies the hard constraints by 

dragging a rectangle around the desired object. 

Pixels inside the rectangle are selected as 

unknown. Pixels outside the rectangle are marked 

as known background.  

 

2- Initially, all unknown pixels are provisionally 

placed in foreground class, and all known 
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background pixels are placed in the background 

class. 

 

3- Gaussian Mixture Models (GMMs) are constituted 

for initial foreground and background classes 

  

4- Each pixel in the foreground class is assigned to 

the most likely Gaussian component in the 

foreground GMM. Likewise, each pixel in the 

background is assigned to most likely background 

Gaussian component. 

 

 

5- The initial GMMs are ruled out, and new GMMs are 

constructed by estimating the Gaussian parameters 

from the pixel sets created previous set. 

 

6- A graph is built with respect to the created 

GMMs, and the graph cut algorithm is run to find 

a new candidate foreground and background 

classification results. 

 

7- Steps 4-6 are repeated until the classification 

converges to the desired segmentation output. 

 

2.2.3 Interactive GrowCut Image Segmentation 

 

 

GrowCut is an algorithm for interactive multi-label segmentation of N-

dimensional images which is proposed by Vezhnevets and Konouchine in 2005 

[62]. The main idea in the algorithm is that once a small number of user-labeled 
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pixels are given, the rest of the image is segmented automatically by a cellular 

automaton in an iterative manner. The task statement and user input data of the 

method are similar to the graph cut algorithm, but the segmentation equipment 

differs. This method uses the cellular automata for solving the pixel labeling task 

rather than graph cut and is also iterative process, which can give feedback to the 

user while the process is computed. 

 

The cellular automata were described to model a wide variety of dynamical 

systems in different applications by Ulam and von Neumann in 1966 [68]. It is 

usually discrete in both space and time and so operates on a lattice of spots 

       (pixels in image processing). A bi-directional and deterministic 

cellular automaton is a triplet such that          , where   is an non-empty 

state set,   is the neighborhood system and        is the local transition 

function which specifies the rule of calculating the state of cell at t+1 time step, 

given the states of neighboring cells at previous time step t. 4-neighborhood or 8-

neighborhood relationship is the commonly used neighboring systems in this 

algorithm. The cell state     in this case is defined as a triplet            in which 

identify the label, the strength and feature vector of the cell  , respectively. It is 

assumed that         . 

 

An image is a two-dimensional array of       pixels. Then, the unlabeled image 

may be regarded as a specific configuration state of a cellular automaton   and 

initial states for       are set to:  

 

                                                                     

 

where      is the three dimensional vector of pixel   in RGB space. When the 

inputs are specified by a user, the seeded cells are labeled accordingly, and their 

strengths are set to the seed strength value defined by the user. After setting the 
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initial state of the cellular automaton, the cell labels   
    and strengths     

   
 

are updated at iteration     in the following automata evolution rule.  

 

1.  Initially, copy the state values (label and its 

strength) at time t into ones at time t+1 for 

each pixel. 

 

2. Then, the attack force is defined by the attacker 

cell’s strength      and the distance between the 

feature vectors of the attacker       and defender      

and computed with mathematical expression in 

(2.39).  

 

                 
                                              

 

where      is a monotonous decreasing function 

bounded to [0,1] and is defined, 

 

                                 
 

       
                                                 

              

3. Next, the current cell comes under attack by all 

of its neighbors according to neighborhood 

system. If attack force at time t is greater than 

the strength of the defender (current cell) at 

time t, the defending cell is conquered, and its 

label and strength should be updated at time t+1. 
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4. The update rules of labels and strengths are  

 

   
      

                                                                 
 

    
                  

                                          

 

5. The process continues until automaton converges 

to stable image configuration, which means that 

the cell states hold to change.  

 

In this algorithm, the seeds defined by user interaction do not necessarily specify 

hard constraints like the methods based on the graph cut. In other words, the user 

interaction does not need to identify the regions of firm foreground and/or firm 

background. Hence, this gives more versatile control of the segmentation from the 

user and makes the process tolerable to incorrect user inputs. Such seeds can be 

described with the help of the seed strength notion. If it is desired to characterize 

the seed as the hard constraint, which does not allow changing its label during the 

evolution, it is easily achieved by setting seed cell's strength to one. However, for 

soft constraint, initial strength values of the seed is set to smaller than one which 

allows increase or decrease the current cell strength by some value.  

 

2.2.4 Experimental Results 

 

In this sub-section, the performances of the interactive or semi-automatic 

segmentation algorithms introduced in this thesis are examined on test images 

selected for evaluating the fully automatic segmentation algorithms. These images 

can be observed from Figure 6 and Figure 7 with their corresponding ground 

truth.  

 

Qualitative experimental results for aircraft and ship images are represented in 

Figure 16-21. Graph cut segmentation algorithm results with their corresponding 
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user interaction points are displayed in Figure 16 and Figure 17. Similarly, Figure 

18 and Figure 19 exhibit the result of GrowCut segmentation algorithm with their 

user inputs. In order to conduct a fair comparison between these two algorithms, 

the number and position of the user interaction points in the foreground and the 

background are tried to be selected similarly. The red dots represent the 

foreground pixels and the blue ones display the background ones in these cases. 

Finally, the results of GrabCut segmentation method and their related interactions 

are presented in Figure 20 and Figure 21. Unlike the previous two methods, the 

user interaction in this algorithm is only the dragging a rectangle around the 

desired object without specifying any foreground pixels. 

 

As it can be observed from the results, the performance of the graph cut method is 

the poorest approach among the interactive segmentation algorithms and even 

compared to some fully automatic ones such as the mean shift method. This is due 

to the used color data modeling in the algorithm. To calculate the regional penalty 

values in the method, the histograms of the seeds entered by the user are utilized 

in the background and the foreground modeling instead of GMM. Owing to the 

insufficient modeling of the histograms, the necessary and adequate information 

cannot be obtained to get the desired segmentation outputs. Furthermore, the 

effort on the user to select the seed regions for the object and the background is 

quite intense, and this makes difficult to utilize the graph cut algorithm for 

automatic high level applications. Lastly, the implementation of Boykov and 

Kolmogorov [69] is used for solving the graph cut problem in this study. 

 

GrowCut method outperforms the graph cut algorithm and segments the test 

images similar to the ground truth segmentation. However, the performance of the 

algorithm in terms of the user interaction effort is quite inadequate as in the graph 

cut.  Therefore, a large number of seeds should be selected by the user in order to 

obtain the expected results. 
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The final algorithm, GrabCut, outperforms the graph cut in terms of both the 

quality of results and the required user efforts. It also gives comparable results 

with respect to GrowCut algorithm in point of the quality of results whereas the 

required user effort is at the minimal level.  

 

In order to evaluate the performance quantitatively, the precision-recall values of 

the algorithm results are expressed in Tables 9-14, respectively. As it can be 

observed, the objective evaluation confirms the qualitative results. As expected, 

GrowCut and GrabCut methods have convinced the precision-recall values, unlike 

the graph cut.  

 

Ultimately, GrabCut image segmentation algorithm gives the best results among 

all the segmentation algorithms (fully and semi-automatic) introduced by this 

thesis with regards to the quality of results. At the same time, the user inputs 

needed for achievement of the expected results is at the level which can be easily 

obtained by some algorithms. As a result of these observations, it can be 

suggested that Grabcut method should be utilized as a fully automatic 

segmentation algorithm by taking the user inputs from the starting algorithms for 

high level applications. 
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                            (a)                                                                             (b) 
Figure 16 : Interactive graph-cuts segmentation results for plane images   (a) The user input 

(b) The segmentation results 
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(a)               (b) 

Figure 17: Interactive graph-cuts segmentation results for ship images   (a) The user input 

(b) The segmentation result 
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                            (a)                                                                            (b) 

Figure 18: Interactive GrowCut segmentation results for plane images   (a) The user input 

(b) The segmentation results 
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                         (a)                                                                                (b) 
Figure 19: Interactive GrowCut segmentation results for ship images   (a) The user input (b) 

The segmentation result 
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                            (a)                                                                              (b) 

Figure 20: Interactive GrabCut segmentation results for plane images   (a) The user input 

(b) The segmentation results 
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                           (a)                                                                            (b) 
Figure 21: Interactive GrabCut segmentation results for ship images   (a) The user input (b) 

The segmentation results 
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Table 9 : The precision-recall values of graph cut segmentation results for plane images 

Graph Cut Precision Recall 

Plane 1 0,26 0,96 

Plane 2 0,37 0,88 

Plane 3 0,38 0,90 

Plane 4 0,25 0,95 

Plane 5 0,32 0,95 

Average 0,32 0,93 
 

 

Table 10 : The precision-recall values of graph cut segmentation results for ship images 

Graph Cut Precision Recall 

Ship 1 0,363 0,97 

Ship 2 0,47 0,71 

Ship 3 0,79 0,92 

Ship 4 0,76 0,81 

Ship 5 0,33 0,95 

Average 0,54 0,87 
 

 

Table 11 : The precision-recall values of GrowCut segmentation results for plane images 

GrowCut Precision Recall 

Plane 1 0,96 0,86 

Plane 2 0,91 0,78 

Plane 3 0,97 0,79 

Plane 4 0,88 0,85 

Plane 5 0,92 0,88 

Average 0,93 0,83 
 

 

Table 12: The precision-recall values of GrowCut segmentation results for ship images 

GrowCut Precision Recall 

Ship 1 0,84 0,79 

Ship 2 0,91 0,70 

Ship 3 0,99 0,87 

Ship 4 0,99 0,70 

Ship 5 0,97 0,83 

Average 0,94 0,78 
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Table 13: The precision-recall values of GrabCut segmentation results for plane images 

GrabCut Precision Recall 

Plane 1 0,99 0,85 

Plane 2 0,60 0,91 

Plane 3 0,94 0,82 

Plane 4 0,96 0,83 

Plane 5 0,86 0,89 

Average 0,87 0,86 
 

 

Table 14: The precision-recall values of GrabCut segmentation results for ship images 

GrabCut Precision Recall 

Ship 1 0,82 0,95 

Ship 2 0,95 0,80 

Ship 3 0,92 0,95 

Ship 4 0,89 0,96 

Ship 5 0,88 0,84 

Average 0,89 0,90 
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CHAPTER 3 

 

 

SHAPE REPRESENTATION 

 

 

 

Shape information compared to other primary low level image features, like 

texture and color, is much more effective in semantically describing the content of 

an image [70]. This is due to the fact that the shape of objects is strongly 

correlated to object functionality and identity. Human beings can recognize 

characteristic of objects merely from their shapes due to the human visual 

perception system. Therefore, this property discriminates shape information of an 

object from other elementary visual features, such as color and texture [71]. 

 

Shape descriptors are computational tools required for analyzing image shape 

information. They consist of mathematical functions, which are applied to image 

to produce numerical values that are representative of a specific characteristic of 

the given shape in the image. The nature and meaning of such numerical values 

depend on the definition of the shape descriptor [72]. After extracting the shape 

features, they can be used as input features for many image processing 

applications in many areas, such as meteorology, medicine, space exploration, 

manufacturing, entertainment, education, law enforcement and defense [73]. 

 

Although shape information is quite powerful feature for object representation, 

the accurate extraction and representation is a challenging process. Therefore, 

various numbers of studies have been published for the shape representation and 

description in the literature [70]–[94] until now. Shape descriptors are generally 

classified into two main sections with respect to the information that they take 
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into account to calculate their measures. The whole shape pixels and boundary 

(perimeter) are two principal source of information and the methods used this 

information are denoted as region-based shape descriptors [89]-[94] and contour-

based shape descriptor [74]-[88], respectively. Under each class, the different 

techniques are further divided into structural approaches and global approaches. 

This sub-class is based on whether the shape is represented as a whole or by 

segments/sections (primitives). Furthermore, these methods can be distinguished 

into space domain and transform/spectral domain, based on whether the shape 

features are derived from the spatial domain or spectral domain [74]. The 

complete hierarchy of the classification is displayed in the Figure 22. 

 

 

 

Figure 22: Taxonomy of the shape representation and description techniques [74] 

  

The contour-based techniques only exploit the shape boundary information. They 

are usually clear to acquire and sufficiently descriptive for many applications. In 

the global approaches, a feature vector derived from the entire perimeter is used to 

describe the shape. The metric of the shape similarity is usually the Euclidian 

distance between the feature vectors. Many global contour-based shape 
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descriptors exist in the literature. Simple shape descriptors [75] such as area, 

circularity (perimeter
2
/area), eccentricity (length of major axis/length of minor 

axis), major axis orientation and bending energy are used to discriminate objects 

with large dissimilarities. The shape signature represents a shape by a one 

dimensional function derived from shape boundary points. Centroidal profile, 

complex coordinates, centroid distance, tangent angle, cumulative angle, 

curvature, area and chord-length are some of the shape signature in the literature 

[76] [77]. The Autoregressive (AR) method [78] is based on the stochastic 

modeling of a 1D function f obtained from the shape. The curvature scale space 

(CSS) method is firstly proposed for shape representation by Mokhtarian and 

Mackworth [79]  and many improved versions of it are then published in order to 

eliminate its weakness [80] [81]. The spectral descriptions include Fourier 

descriptor [82] [83] [84] and Wavelet descriptor [85] [86] which are derived from 

spectral transforms on 1-D shape signatures. They overcome the problem of noise 

sensitivity and boundary variations existing of other approaches by analyzing the 

shape in the spectral domain.  

 

Another member of the contour shape analysis approaches is a structural shape 

representation. The structural shape methods divide a boundary into segments, 

known as primitives, according to a particular criterion, and then an invariant is 

derived from each segment to represent the curve. The final representation is 

generally a string or a tree, and the measure of shape similarity is string matching 

or graph matching. Chain code representation [87], polygon decomposition [88] 

and smooth curve decomposition [89] are common algorithms in this category. 

 

In region-based methods, all the pixels within a shape region are taken into 

account to obtain the shape representation, and so they have the ability to capture 

the interior content of a shape. Therefore, region-based techniques can be utilized 

to describe non-connected and disjoint shapes. Similar to contour-based 

approaches, region-based methods can also be separated into global and structural 

sub-sections, depending on whether they separate shapes into parts/segments or 
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not. Moment-based descriptors [90] [91] [92] [93] [94], generic Fourier descriptor 

[95], grid method [96] and shape matrix [97] are commonly used to describe 

shapes in the global techniques. The moment-based descriptors include geometric 

moments (Hu moments) [90], orthogonal moments [93] such as Legendre 

moments, Zernike moments, pseudo-Zernike moments and angular radial 

transform [94]. Convex hull, medial axis [74] can be given as examples in the 

region-based structural approaches. 

 

Contour-based techniques are usually sensitive to small changes or noises on the 

shape, which means that these methods produce different and undesirable results 

when the shape boundary changes slightly. Nevertheless, unlike other contour-

based methods, spectral-based methods, such as Fourier and Wavelet descriptors, 

can handle these changes and noises on the shape boundary up to some extent 

[74]. On the other hand, region-based approaches are robust to such small changes 

on the shape; even large changes on the boundary can have a small change on the 

region descriptor. This means that the region-based descriptors are not sensitive to 

noise which can be originated from segmentation, occlusion, and distortion. 

However, this also means that they are unable to perceive small variations on the 

shape and ignore the shape details [72].  

 

Shape descriptors generally require some essential properties in order to describe 

shapes efficiently and effectively. These can be explained as follows [98]: 

 

 Identifiability: shapes perceived similar by human have the same feature 

representations and different from the others. 

 Translation, rotation and scale invariance: the position, orientation and 

scaling variations of the shape must not be affected the extracted 

features. 

 Affine invariance: the extracted features must be as invariant as possible 

with affine transformations. 
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 Noise resistance: the features must be as robust as possible against noise. 

 Occlusion invariance: when some parts of a shape are occulted some 

other objects, the features extracted from the remaining part must be 

same compared to the original shape as possible. 

 Statistically independent: two features extracted from same shape must 

be statistically independent because of compactness of the representation. 

 Reliability: the derived features must remain the same as long as one 

deals with the same pattern. 

 

In order to examine and compare the algorithms, which fully or partially satisfy 

the abovementioned properties, tremendous efforts have been devoted by 

researchers in computer vision and image processing communities during the last 

decades [99] [100] [70] [73] [101] [102] [103] [74].  

 

In this thesis, the shape representation problem is analyzed by comparing three 

different methods. The performances of angular radial transform [94] [71] and 

geometric moment invariants (also called as Hu moment invariants) [90] for 

region-based and Fourier descriptor [83] for contour-based shape representation 

are investigated. Since the results of the segmentation algorithms which are noisy 

and occluded are utilized as test images during the experiments, Fourier descriptor 

is only the used method for contour-based representation due to its noise 

robustness.  

 

This chapter is composed of four main parts; in the first section, the geometric 

moment invariants or Hu moment invariants are presented. Next, the angular 

radial transform description is explained, and the following section is devoted to 

Fourier descriptor method. Finally, the comparison among three different 

algorithms and their combinations is performed in the experimental results 

section. 
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3.1 Geometric Moments Invariants  

 

Geometric moment invariants are firstly introduced by Hu in 1962 [90], and at 

that time Hu derived six absolute orthogonal invariants and one skew orthogonal 

invariants based on algebraic calculation, which are not only invariance of 

rotation, scaling and translation but  also independent of general affine  projection 

[104]. They have been extensively applied to image pattern recognition in a 

variety of applications due to its invariant property on image translation, scaling 

and rotation. Moreover, simple properties of the image  such as area (or total 

intensity), its centroid, and  information about its orientation can be 

obtained via image moments.  

 

For a two-dimensional continuous image function       , the moments (also 

called as raw moments) of order (   ) are defined as:  

 

                                                                 

 

  

 

  

 

 

for              . For the digital image, the raw moments are calculated as 

follows, 

   

                  

  

                                                     

 

However, these moments are not invariant to rotation, translation and scaling of 

the object. The translation invariant feature can be acquired by using central 

moments and they are defined in a digital image as follows: 

 

 
  
                 

  

                                            

http://en.wikipedia.org/wiki/Image_moment#Examples
http://en.wikipedia.org/wiki/Centroid
http://en.wikipedia.org/wiki/Image_moments#Examples_2
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where              and    
   

   
 and    

   

   
  are the components of the 

centroid of the image        . The centroid moments  
  

 calculated via equation 

(3.3) is equivalent to      whose center has been shifted to the centroid of the 

image. Therefore, the central moments are invariant to image translation.  

 

In order to acquire scale invariance moments, the central moments are normalized 

by dividing the corresponding central moment by properly scaled (00)
th 

moment 

by using the following formula.  

 

 
  
 

 
  

 
  

   
   
 
 
                                                       

 

Based on the normalized central moments, Hu [90] established seven moments 

which are invariant under translation, changes in scale, and also rotation. These 

are listed as follows: 
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http://en.wikipedia.org/wiki/Invariant_(mathematics)
http://en.wikipedia.org/wiki/Translation_(geometry)
http://en.wikipedia.org/wiki/Scale_(ratio)
http://en.wikipedia.org/wiki/Rotation
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The first six coefficients of these moments represent the independence of 

translation, rotation and scaling of the object and the last one provides the skew 

invariance. 

 

3.2 Angular Radial Transform 
 

Angular Radial Transform (ART) is a moment-based image description method 

adopted in MPEG-7 as a region-based shape descriptor [71] [94]. It gives compact 

and efficient way to capture pixel distribution within a 2-D object region. This 

descriptor can describe complex objects composed of multiple disconnected 

regions as well as simple objects with or without holes. For example, during the 

segmentation process the target object might be split into disconnected sub-

regions. Such an object can still be retrieved, if the information on the isolated 

sub-regions is provided and used during the descriptor extraction. Hence, the 

descriptor is robust to segmentation noise, such as the disconnected parts or salt 

and pepper noise. Furthermore, it has the property of invariance in rotational, 

translational and scaling of the object.  

 

ART is a complex orthogonal unitary transform defined on a unit disk that 

consists of the complete orthonormal sinusoidal basis functions in polar 

coordinates [71]. Due to the orthonormal basis, it renders no redundant 

information among the coefficients and makes the representation compact and 

effective. The ART coefficients,     of order   and  , are defined by: 

 

                           
 

 

 

  

 

                                   

 

where        is an image function in polar coordinates and          is the ART 

basis functions that are separable along the angular and radial directions, that is, 
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In order to achieve rotation invariance, an exponential function is used for the 

angular basis functions and given by,  

 

                           
 

  
                                                            

 

The radial basis function is described by a cosine function,  

 

         
     

              
                                         

 

The real part and imaginary parts of ART basis functions are shown in Figure 23.  
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(a) Real part 

 

(a) Imaginary part 

 

Figure 23: Real and imaginary parts of ART basis functions 
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The magnitudes of the ART coefficients are inherently rotation invariant. This can 

be examined in the following simple calculations [71]. 

 

Let the image         be the rotated version of        by an angle   about its 

origin,  

 

                                                                       

 

the ART coefficients of rotated images are then given as: 

 

   
             

             
 

 

 

  

 

                                    

 

and this expression can be expressed in, 

 

   
                                                                      

 

Hence, the magnitude of the ART of the rotated image and that of the reference is 

the same, that is,  

 

    
                                                                             

 

The ART descriptor is defined as a set of normalized magnitudes of ART 

coefficients. The rotational invariance is obtained by using the magnitude of the 

coefficients. For scale normalization, the ART coefficients are divided by the 

magnitude of the ART coefficient,    , of order n = 0, m = 0 which is proportional 

to the area of the object. In order to achieve the translational invariance, the center 

of the polar coordinate system is defined as the center of mass of the object, 

which can be easily acquired by geometric moments [105]. According to the 

MPEG-7 Visual Shape Descriptors [71], twelve angular and three radial functions 
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(n < 3, m < 12) are used for the calculation of the basis. Therefore, the ART 

descriptor is expressed by 35 coefficients which are normalized by      .  

 

3.3 Fourier Descriptors 
 

Fourier descriptor (FD) is a well-known spectral domain contour-based shape 

representation method which has nice characteristics, such as simple derivation, 

easy normalization, good representation of shape, noise robustness. These 

desirable properties have made the methods based on FD very popular in a wide 

range of applications, and many of them have been reported in the literature 

including for shape analysis [77] [82], shape classification [78], character 

recognition [83], shape retrieval [70] [95, 84, 106] and shape coding [87]. In these 

methods, different shape signatures have been exploited to obtain FD. 

 

In general, FDs are obtained by applying Fourier transforms on a shape signature 

and the resulting transformed coefficients are normalized in order to get the 

Fourier descriptor of the shape. These descriptions represent the shape of the 

object in the frequency domain. By Fourier descriptors, global shape features are 

captured by the first few low frequency terms, while higher frequency terms 

capture the finer details of the shape. Thus, the noise sensitivity in the shape 

signature representation is surmounted by taking first few low frequency terms of 

FDs with powerful discrimination capability. Moreover, the compact 

representation of a shape is obtained by receiving a subset of FDs, and this offers 

low computational complexity which is an important characteristic of a desirable 

shape descriptor for indexing and online retrieval.     

 

The shape signature is a one-dimensional function which is derived from 

boundary coordinates to represent any shape. Many shape signatures, such as 

centroidal profile, complex coordinates, centroid distance, tangent angle, 

cumulative angular function, curvature function, have been commonly exploited 
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to obtain FD in the literature. However, FD derived from different signatures has 

significant different performance on shape retrieval. As it has been shown in 

[106], FD derived from centroid distance function outperforms the others in 

overall performance, and hence, this type of shape signature is utilized in the 

proposed system. In addition, shape signatures can be employed for shape 

representation without Fourier transform. However, noise sensitivity and rotation 

invariance issues create substantial problems in this case.    

 

The first stage of calculating FD is to obtain the boundary coordinates with 

parametric representation                             and   is the number 

of boundary points. The extraction of the shape boundary points is implemented 

in pre-processing stage, which consists of some image processing methods. After 

extracting the boundary points, the shape signatures are calculated. The centroid 

distance function      is expressed by the distance of the boundary points from 

the centroid (     ) of the shape 

 

               
           

                                       

 

where 

   
 

 
                          

 

 
     

   

   

    

   

   

                           

 

Afterwards, the discrete Fourier transform of the centroid distance shape signature 

     is calculated by, 

 

   
 

 
          

      

 
 

   

   

                                            

 

                  are the Fourier transformed coefficients of     . 
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Since shapes generated through rotation, translation and scaling of any object are 

equivalent, the shape descriptors should be invariant to these operations. In the 

following, it has examined the effects of the change of starting point, translation, 

rotation and scale on the Fourier coefficients [84]. The original boundary is 

expressed as         for shape signature and as    
   

 for its Fourier coefficients in 

this analysis.  

 

 Change of starting point 

The change of starting point can be stated as               . Then, the 

resulting Fourier coefficients become                
   

. 

 

 Translation  

The translation of a shape can be expressed as                and the 

translated contour then has the Fourier coefficients  

 

    
  
   
    

  
   
      

                     

 

This implies that the Fourier coefficients except the first one have translational 

invariance property. The first coefficient (DC component) only represents 

information about the position or average scale of the shape with respect to the 

used shape signature and so it is not useful in describing the shape. Thus, it is 

discarded. 

 

 Rotation  

Assuming the center of mass is positioned at the origin, rotation of          

around the origin with angle    gives the curve expression      

               . This results in the change of Fourier coefficients by    

          
   

. 
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 Scaling  

The scale change in a shape can be specified as                and the change 

in the Fourier coefficients are expressed as        
   

 

 

The outline features of similar shapes are only interested property in shape 

retrieval and description. Therefore, the shape representations must be invariant to 

translation, rotation and scale in order to make the model shape and data shapes 

comparable. Since the shape signature is invariant under translation, the 

corresponding FDs are also translation invariant. Rotation invariance and 

independence of starting point are achieved by ignoring the phase information and 

by taking only the magnitude values of the FDs. For the centroid distance shape 

signature, the first component or DC component of the FDs reflects the average 

scale of the corresponding shape. Therefore, scale invariance is then obtained by 

dividing the magnitude values of the first half of FDs by the DC component. 

 

For the centroidal distance shape signature, unlike the other ones, only half of the 

FDs are needed to index the shape because the function in (3.13) is real-valued 

and so there are only N / 2 different frequencies in the Fourier transform. As a 

result, the FDs, which have invariance properties, can be expressed 

mathematically,  

 

   
     

     
 
     

     
   

       

     
                                              

                                 

Finally, the similarity between a query shape Q and a target shapes T is 

determined by the Euclidean distance d between their FDs: 
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3.4 Experimental Results 
 

In this part of the chapter, the shape description performances of the introduced 

algorithms are quantitatively evaluated on binary test images which are obtained 

from various segmentation algorithm outputs. Three types of binary masks are 

used during the experiments, and these are called as plane masks, ship masks and 

other masks which are procured from the segmentation results of the image parts 

which do not include the targets, such as plane and ship, but they can have 

confusion with them. Some of the examples of these masks are illustrated in the 

Figure 24. As it can be observed, the masks used as test images have the missing 

or adding parts resulted from the occlusion and/or segmentation deficiencies and 

are also noisy. 

 

 

            

(a) Plane masks 

            

(b) Ship masks 

            

(a) Other masks 

Figure 24 : Example of test silhouettes used during the tests 
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The performances of the methods are analyzed by means of the nearest 

neighborhood (NN) and k-nearest neighborhood (k-NN) classification algorithms. 

The nearest neighborhood (NN) algorithm is a method for classifying objects 

based on closest training examples in feature space. In this algorithm, the 

Euclidian distance is employed to determine the closest training sample from the 

query sample and the method is simply defined mathematically; 

 

         

 
 

 
   
 
      

     
   

 

   
 
 

 
                                               

 

where    denotes  -dimensional feature vector,   and   represent the query 

image and training set, respectively. The k-nearest neighbor method is an obvious 

extension of the NN method. This rule classifies the query sample by assigning it 

the label most frequently represented among the k nearest training samples. In 

other words, a decision is made by examining the labels on the k nearest 

neighbors and taking a vote [42]. 

 

The algorithm performances are displayed via confusion matrix in this study. The 

concept of the confusion matrix is proposed by Kohavi and Provost in 1998 [107] 

and it is defined as a specific table layout that allows visualization of the 

performance of an algorithm, typically a supervised learning one. Each column of 

the matrix represents the instances in a predicted class, while each row represents 

the instances in an actual class. One benefit of a confusion matrix is that it is easy 

to see if the system is confusing two classes (i.e. commonly mislabeling one as 

another).  

 

The experimental results are displayed for angular radial transform (ART), 

geometric moment invariants (Hu moment invariants), Fourier descriptors and 

their combinations as the shape descriptor methods in the Table 15-28, 

http://en.wikipedia.org/wiki/Supervised_learning
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respectively. The training sets used during the experiments composed of 770 

different masks in plane class, 380 masks in ship class and 2409 masks in the 

other class. The masks on the plane and ship class are acquired from ground truth 

of the target objects and so they have precise shapes representing the objects 

correctly and thoroughly. The number of masks in the test set is 82 for plane 

class, 83 for ship and 307 for the other.  

 

Each shape representation algorithm gives feature vectors with value of elements 

in a different range of the feature space, and this situation brings about a different 

Euclidian distance result when compared same shapes. Therefore, this can result 

in erroneous classification and retrieval performances when various different 

shape descriptor methods are utilized at the same time. Thus, the feature vectors 

should be normalized while testing the performance of the combination 

algorithms.  

 

As it can be observed from the confusion matrices, angular radial transform 

(ART) gives the best result among three analyzed shape algorithms for retrieving 

of the plane masks and ship masks. However, ART descriptors erroneously 

confuse the target with masks in the other class (especially between ship and other 

classes). Despite of high recall values, the utilization of the angular radial 

transform causes the performance with low precision in the retrieval and 

classification operations.  

 

The geometric moment invariants submit quite inferior results for the plane mask 

retrieval, although the ship and the other mask result are comparable with the 

corresponding best results. The performance analysis about Hu moments 

invariants shows that they successfully retrieve the masks with uncomplicated 

characteristic like a ship, while the complex shape cannot be represented and 

described fully and accurately.  
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The results in the confusion matrices show that the Fourier descriptor method can 

highly discriminate masks in the other class from the target masks. Nevertheless, 

the target retrieval performance is worse than the other two algorithms.           

 

Finally, the experiments are carried out for all of the combinations of the 

algorithms. The experimental results show that the performance characteristic of 

each method determines the performance of the integrated methods. As a result, 

the combination of all of the methods which are ART, Hu moments invariants, 

Fourier descriptors outperforms in the overall case.   
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Table 15: The confusion matrix for ART with NN  

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 75 (92 %) 0 (0 %) 7 (8 %) 

Ship 0 (0 %) 78 (94 %) 5 (6 % ) 

Other 38 (12 %) 77 (25 %) 192 (63 %) 

 
 
 

Table 16: The confusion matrix for ART with k-NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 75 (92 %) 0 (0 %) 7 (8 %) 

Ship 0 (0 %) 81 (98 %) 2 (2 %) 

Other 40 (13 %) 88 (29 %) 179 (58 %) 

 
 
 
Table 17: The confusion matrix for geometric moment invariants with NN  

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 33 (40 %) 0 (0 %) 49 (60 %) 

Ship 0 (0 %) 74 (89 %) 9 (11 %) 

Other 38 (12 %) 41 (13 %) 228 (75 %) 

 
 
 
Table 18: The confusion matrix for geometric moment invariants with k-NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 30 (37 %) 0 (0 %) 52 (63 %) 

Ship 0 (0 %) 80 (96 %) 3 (4 %) 

Other 30 (10 %) 58 (19 %) 219 (71 %) 
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Table 19: The confusion matrix for Fourier descriptors with NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 73 (89 %) 0 (0 %) 9 (11 %) 

Ship 0 (0 %) 69 (83 %) 14 (17 %) 

Other 23 (7 %) 45 (15 %) 239 (78 %) 

 
 
 
Table 20: The confusion matrix for Fourier descriptors with k-NN 

 
 

PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 75 (91 %) 0 (0 %) 7 (9 %) 

Ship 0 (0 %) 76 (92 %) 7 (8 %) 

Other 21 (7 %) 44 (14 %) 242 (79 %) 

 
 
 
Table 21: The confusion matrix for ART plus geometric moments with NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 74 (90 %) 0 (0 %) 8 (10 %) 

Ship 0 (0 %) 80 (96 %) 3 (4 %) 

Other 32 (10 %) 80 (26 %) 195 (64 %) 

 
 
 
Table 22: The confusion matrix for ART plus geometric moments with k-NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 76 (93 %) 0 (0 %) 6 (7 %) 

Ship 0 (0 %) 81 (98 %) 2 (2 %) 

Other 32 (10 %) 91 (30 %) 184 (60 %) 
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Table 23: The confusion matrix for ART Fourier descriptors with NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 80 (98 %) 0 (0 %) 2 (2 %) 

Ship 0 (0 %) 76 (92 %) 7 (8 %) 

Other 29 (9 %) 59 (19 %) 219 (71 %) 

 
 
 
Table 24: The confusion matrix for ART plus Fourier descriptors with k-NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 78 (95 %) 0 (0 %) 4 (5 %) 

Ship 0 (0 %) 81 (98 %) 2 (2 %) 

Other 27 (9 %) 66 (21 %) 214 (70 %) 

 
 
 
Table 25: The confusion matrix for geometric moments plus Fourier descriptors with NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 76 (93 %) 0 (0 %) 6 (7 %) 

Ship 0 (9 %) 73 (88 %) 10 (12 %) 

Other 27 (9 %) 44 (14 %) 236 (77 %) 

 
 
 
Table 26: The confusion matrix for geometric moments plus Fourier descriptors with k-NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 76 (93 %) 0 (0 %) 6 (7 %) 

Ship 0 (0 %) 77 (93 %) 6 (7 %) 

Other 21 (7 %) 54 (18 %) 232 (75 %) 
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Table 27: The confusion matrix for all of the algorithms with NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 80 (98 %) 0 (0 %) 2 (2 %) 

Ship 0 (0 %) 77 (93 %) 6 (7 %) 

Other 27 (9 %) 62 (20 %) 218 (71 %) 

 
 
 
Table 28: The confusion matrix for all of the algorithms with k- NN 

 
PREDİCTED CLASS 

Plane Ship Other 

A
C

TU
A

L 

C
LA

SS
 Plane 79 (97 %) 0 (0 %) 3 (3 %) 

Ship 0 (0 %) 81 (98 %) 2 (2 %) 

Other 29 (9 %) 69 (22 %) 209 (69 %) 
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CHAPTER 4 

 

 

PROPOSED ALGORITHM 

 

 

 

As already mentioned in Chapter 1, a significant number of geospatial object 

detection algorithms in the literature have several deficiencies which can create a 

reduction in the system performance. The first drawback is that they produce 

detection outputs with a considerable amount of false positives (i.e. false alarms), 

which results in a low precision rate. The second one is that many detection 

algorithms cannot give the exact and accurate information about the location of 

the objects. Finally, numerous applications which use the object detection and 

recognition algorithm also request the object mask for various different purposes, 

such as measuring the object size or aspect ratio, assigning the type of an object 

etc. Note that the resolution of the image must be also known to be able to 

determine the object size. As a result, a shape based object recognition system is 

proposed to be able to overcome these drawbacks in this thesis. Since shape 

features offer characteristic information that provides powerful discrimination 

ability for many object classes, such as aircrafts and helicopters, the false 

positives created by any algorithm which does not use the shape features can 

dramatically be reduced by using the shape representation techniques. Moreover, 

after the object mask is extracted from the image, the target position can be 

procured with together the object mask itself. 

 

The overall structure of the remaining of this chapter is organized as follows. In 

Section 4.1, the proposed method for geospatial objects is represented elaborately. 

Then, the subsequent section explains the algorithm used for hypothesis point 
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generation purpose in detail. The next part clarifies the SVM classifier, which is 

utilized in the proposed method. Finally, the performance tests and results are 

presented in Section 4.4. 

 

4.1 Proposed geospatial object recognition algorithm  

 

The developed object recognition procedure in this thesis combines a top-down 

object detection algorithm with the bottom-up image segmentation approach. In 

general, top-down methods often include a training stage to obtain class-specific 

model features or to define object configurations. Hypotheses are then found by 

matching models to the image features. On the contrary, bottom-up approaches 

begin from low-level or mid-level image features. They build up hypotheses from 

such features, extend them by construction rules and then evaluate by certain cost 

functions. Thus, there are two main steps in the improved technique: a hypotheses 

generation step and a verification step. In the top-down hypotheses generation 

step, a typical top-down object detection method is used to generate a set of 

hypothesis of object locations, which have high recall and low precision rates. In 

the verification step, the feasible foreground object that is consistent with the top-

down object hypothesis is first extracted via a bottom-up image segmentation 

algorithm, and then the shape descriptors and classifier are utilized to prune out 

the false positives. It exploits the fact that false positive regions typically have a 

different shape mask from the target object. As a result, the proposed algorithm 

can achieve both high precision and high recall rates by taking advantage of two 

types of object detection approaches. 

 

The general flowchart of the proposed system is represented in Figure 25. The 

hypotheses generation step is implemented in the second block of flowchart called 

as the generation of hypothesis points. The remaining parts of the flowchart 

correspond to the verification step. The study in this thesis predominantly focuses 

and analyzes to these parts in the verification step. 
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Figure 25:  Overall flowchart of the proposed object recognition algorithm 

Input Image 

Generation of 
Hypothesis Points 

Extraction of 
Foreground Object Mask 

Description of Extracted 
Object Mask 

Classification  

Post-processing step 

Object  Mask 
and Position 
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During the generation of hypothesis points, potential target objects in the input 

image are detected by using one of the traditional top-down object detection 

algorithms in the literature. Afterwards, the hypothesis points which are on the 

object or near the object are extracted to represent the found objects in the image. 

Since many object detection algorithms utilize the sliding window mechanism 

during the detection process, the generation of hypothesis points and 

determination of their locations can be tricky. Therefore, the implementation of 

the generation process can vary for each object detection algorithm. For example, 

in the bag of visual words (BoVW) methods; these points can be obtained by 

using the position of the most important words in the sliding image window. In 

the appearance based methods, center point of the sliding window can be used as 

the hypothesis point.    

 

After detecting the hypothesis points, the silhouette of the foreground object 

should be extracted from the image window which built around the hypothesis 

point by involving the target. The extraction process is realized by means of an 

interactive image segmentation algorithm as explained in Chapter 2. First of all, 

different fully automated image segmentation techniques are examined and tested 

for this purpose. However, for the general case none of them can separate 

foreground object from background correctly and thoroughly, since they only 

employ the low level features, such as color and intensity. Therefore, in order to 

regard high level information about the foreground object and background during 

the extraction, several interactive algorithms are analyzed in terms of both the 

quality performance and the amount of user effort which can get the same quality 

result. 

 

As it can be examined in Chapter 2, interactive GrabCut image segmentation 

algorithm outperforms the other fully or semi-automatic methods in terms of the 

segmentation quality and the required user effort. To be able to give extra 

knowledge about the object and background during the extraction process, the 

hypothesis points obtained from the other object detection algorithm are exploited 



 106 

as user inputs in this study. Thereby, the interactive foreground extraction process 

becomes fully automated in the overall system. After identifying the hypothesis 

point, a rectangle including the target object is taken around this point within the 

built image window. The rectangle size is selected as twice of the average target 

size in order to capture the entire object in the image. This input rectangle states 

that outside of it belong to the background region and inside of it is possible 

foreground one. Thus, color information for the object and background, which is 

specified by other algorithm in this case, is utilized to establish the regional 

constraints in the system. Furthermore, the position of hypothesis point is 

employed to select the connected component belonging to the desired object after 

the segmentation algorithm runs. Hence, regions which appear in the 

segmentation output but do not belong to the desired object can be eliminated 

with this knowledge.  

 

The next step is to describe the extracted mask via shape representation 

techniques. In Chapter 3, the performance of various shape description methods 

and their combinations are investigated. Orthogonal moment based Angular 

Radial Transform (ART) and geometric or algebraic moment based Hu moments 

invariants are used as the region based shape descriptors. Fourier descriptor is 

utilized for contour based representation due to its robustness against 

segmentation noise. The experimental results show that the combination of these 

three techniques gives the best retrieval performance and so this integrated 

method is employed in the proposed method. 

 

After producing the shape based feature vectors, a classifier is trained by the 

shape descriptor vectors of the training set used in the Chapter 3. Afterwards, a 

test image is classified as object or non-object by the trained classifier. In this 

work, support vector machine, SVM, is employed as a classifier. It is exhaustively 

explained later. 
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Object detection algorithms, such as BoVW, can detect same object in multiple 

times and so the multiple detection causes big delusion while evaluating the 

performance of algorithms. Therefore, these multiple detections must be 

eliminated to make accurate performance analysis. As a final step, these multiple 

detections are pruned by means of a simple post-processing. In this step, object 

masks extracted from the same object as the result of multiple hypothesis points is 

united with respect to following uncomplicated thresholding technique: 

 

                                       
                      

                
              

     

This fusion operation reduces the number of false alarms resulting from multiple 

detections, and so the precision rate increases significantly. 

 

4.2 Bag of Visual Words based Object Detection Algorithm 
 

Among many different automatic object detection and recognition methods, Bag 

of Visual Words (BoVW) is widely used algorithm exploiting local features for 

object representation and description. In many scientific contests, such as 

TRECVID [108] or PASCAL [109], BoVW and its derivative methods are 

studied and they outperform the other algorithms in the literature. Therefore, a 

version of BoVW algorithm suggested in [1] is utilized for hypothesis generation 

in this thesis. 

 

This method stems from text analysis wherein a document is represented by word 

frequencies (i.e. a sparse histogram over the vocabulary) without regard to their 

order. Similarly, bag of words algorithm in computer vision basically considers an 

image as a document combined with different number of visual words without 

regarding the position of the words in the document. The visual words are defined 
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in terms of local image features. The flowchart of the algorithm is shown in the 

Figure 26. 

 

As it can be seen, the algorithm typically involves five steps. These are listed as 

follows [1]: 

 

 Feature detection 

 Feature description 

 Codebook generation 

 Mapping images into histograms of visual words 

 Classification 

 

 

Figure 26: General block diagram of BoVW method [1]   
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The first step in the method is to detect interest points or regions (i.e. keypoints) 

from the image. For this purpose, the corner detectors, like Harris corner detector 

[110], or blob detectors, such as scale invariant feature transform (SIFT) [111], 

can be used. After detecting the interest points or regions, each image is 

abstracted by several local patches. Feature description methods deal with how to 

represent the patches as numerical vectors and these vectors are called feature 

descriptors. A feature descriptor should handle intensity, rotation, scale and affine 

variations to some extent. One of the most famous descriptors satisfying this 

ability is the scale-invariant feature transform (SIFT) [111]. SIFT descriptor 

converts each patch to 128-dimensional vector. After this step, each image is a 

collection of vectors of the same dimension (128 for SIFT). The next step after 

feature detection and description is to convert the feature vector represented 

patches to codewords, i.e. visual words, in order to produce a visual word 

dictionary, i.e. codebook. A codeword can be considered as a representative of 

several similar patches. One simple method to achieve this goal is performing k-

means clustering [112] over all the descriptor vectors of visual data. Codewords 

are then defined as the centroids of the learned clusters. The number of the 

clusters is the visual word dictionary size, and it is manually defined. Thus, each 

patch in an image is mapped to a certain codeword through the clustering process 

and the image can be represented by the histogram of the codewords from a fixed 

dictionary of K words. The shape of the histogram is assumed to be the most 

informative clue about the existence of an object in an image. Finally, category 

assignment is then achieved by means of any classification algorithm through 

utilization of the shape of the histogram. Support vector machine (SVM) is used 

in this work. 

 

4.3 Support Vector Machines (SVM)  
 

The support vector machine (SVM) is a supervised learning method that analyzes 

data and recognizes patterns, used for classification and regression analysis. It 

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/Histogram
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was firstly proposed by Vladimir Vapnik in 1963 [113] as a linear classifier. Later 

on, a novel algorithm was developed for creating nonlinear classifier by applying 

the kernel trick which implicitly maps its inputs into high dimensional feature 

spaces  and the soft margin concepts [114] [115].  

 

The main problem encountered in a typical linear classifier is that the data cannot 

be generally separated linearly. In order to overcome this challenge, SVMs as a 

classifier rely on preprocessing of the data to represent patterns in a high 

dimension feature space. The aim of this process is to make the data separable in 

the new high dimensional feature space. With an appropriate nonlinear mapping 

function        to a sufficiently high dimension, data from two categories can 

always be separable by a hyperplane or hyperplanes [42]. Here, it assumed that 

each sample    from the data has been transformed to          . For each of 

the   samples,           , we let        with respect to the class that the 

sample     belongs to. Then, a linear discriminant in augmented   space becomes 

 

                                                                         

 

where both the weight vector and the transformed sample vector are augmented 

(by       and      , respectively). Hence, a separating hyperplane 

guarantees  

  

                                                                      

 

The margin is any positive distance from the decision hyperplane. The aim in the 

training of SVM classifier is to determine the separating hyperplane(s) which 

make the margin larger as much as possible because larger margin provides a 

better generalization of the classifier. The distance from any hyperplane to a 

transformed pattern     is measured as             and with an assumption that a 

positive margin   exists, equation (4.3) expresses 
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The goal is to compute the weight vector   which maximizes the margin  .  The 

solution vector can become one of many arbitrarily scaled versions of it that still 

preserve the hyperplane. Therefore, the constraint in (4.5) is imposed in order to 

assure the uniqueness of the solution. Thus,     is tried to be minimized with its 

constraint. 

 

                                                                          

 

The support vectors are the transformed training samples which satisfies the 

condition            . This means that the support vectors are equally close to 

the hyperplane and are the closest training samples. It can be observed from the 

illustration in Figure 27. Moreover, the support vectors are the training patterns 

that describe the optimal separating hyperplane and are the hardest patterns to 

categorize. Informally, they are the most informative samples for the 

classification task.  
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Figure 27: An illustration of optimal hyperplane and support vectors [42] 

 

 

It is the most critical issue to assign a transformation function that separates the 

data so that the minimum number of support vectors satisfying maximum margin 

could be obtained which reduces the probability of misclassification. For this 

reason, the first step in training SVM is to select the nonlinear transformation 

functions,     , that map the input data into higher–dimensional space. The 

selection of this transform function usually depends on the characteristic of the 

problem domain. If there is no such information about the input data, one can use 

polynomials, Gaussian or other basis functions [42]. The dimensionality of the 

transformed space can be arbitrarily high, but in practice, it may be limited by 

computational resources. Some common kernel functions are listed as follows: 

 

 Polynomial kernel (homogenous)      :                   
  

 

 Polynomial kernel (inhomogeneous) :                     
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 Gaussian Radial Basis kernel :                       
 
    

 

 Hyperbolic Tangent kernel  :                            

 

Based on experimental performance, Gaussian radial basis function is used in this 

study as a non-linear kernel, although the other selections could also be utilized. 

 

The process of the computation of the optimal weight vector is started by 

recasting the problem of minimizing the magnitude of the weight vector 

constrained by the separation into an unconstrained problem via the method of 

Lagrange undetermined multipliers. Thus, the following function is constructed, 

 

        
 

 
            

                                      

 

   

 

 

and seek to minimize      with respect to the weight vector   and maximize it 

with respect to the undetermined multipliers     . The last term in (4.6) 

specifies the aim of classifying the points correctly. This formulation can be 

reformulated as maximizing,  

 

      
 

 
   

 

   

                                                    

 

   

 

 

subject to the constraint, 
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These equations can be solved via quadratic programming optimization and so a 

vast number of schemes have been derived for this purpose. As a result, the 

solution can be expressed as a linear combination of the training vectors such that 

 

          

 

   

                                                            

  

4.4 Performance Tests and Results 

 
Experiments are conducted for two types of object classes (airplane and ship) in 

order to evaluate the performance of the proposed algorithm. The experiment for 

plane class is performed on a large set of airport images containing various kinds 

of airplanes. The data set for plane class consist of 23 Google Earth images of 

various sizes containing a total of 223 airplanes. For this experiment, Google 

Earth images are approximately adjusted to be 0.3 m - 0.5 m resolution by setting 

the eye altitude to the sum of the elevation terrain and 685 m of distance 

providing the desired resolution. Similarly, the test implemented for ship class is 

executed on a large set of Google Earth images which belong to different seaports 

in the world. These images contain 156 various ships different in terms of size, 

shape, function, type etc., and they are nearly adjusted to be 1.0 m resolution by 

means of the same procedure adopted plane class. 

 

In order to evaluate the performance, precision-recall curves are exploited as a 

performance measure. A precision-recall curve is a graphical plot which 

illustrates the performance of a binary classifier system as its discrimination 

threshold is varied. These curves are highly informative about algorithm 

performance and provide a tool to select possibly optimal models and to reject 

suboptimal ones. The terminology used in the precision and recall rate calculation 

is defined in Chapter 2.1.5. Then, by using the related concept and the general 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier
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description of precision and recall rates; in this context, recall can be considered 

as the proportion of correctly found the object number (true positives) over the 

total object number in the image (true positive +false negative). Similarly, the 

precision is the ratio of the number of correctly found objects (true positive) over 

the total number of found objects (true positive + false positive). In the light of 

this explanation, one can say that an ideal result should have a value equal to 1 for 

both recall and precision rates. 

 

Derivation of the precision-recall curve by using an SVM classifier is a critical 

issue. The SVM classifier is defined as,   

 

    
         

          
                                                         

 

In classical SVM,    is equal to one as the classification condition. If   is chosen 

to be larger than the maximum of         values in the data set, the classifier 

tends to classify all the data points in the feature space as negative class. 

Similarly, if it is chosen smaller than the minimum of         values in the 

dataset, the all data points are classified as positive class. Therefore, by slowly 

varying the threshold    between these two extremes a precision vs. recall curve 

can be extracted by computing these rates for each value of threshold in the 

interval.  

 

For each test image, its corresponding binary ground truth mask is prepared in 

order to count the number of true positives, false positives and false negatives. If 

the center of found object mask stays in its corresponding ground truth mask, that 

object is considered as true positive. Otherwise, it is a false positive. Furthermore, 

in performance evaluation, only one of the multiple detections falling inside the 

same masks are counted as true positive whereas the others are counted as false 

positives. 
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BoVW based object detection algorithm is utilized for the generation of 

hypothesis points during the experiments. The recall rate of the proposed 

algorithm highly depends on the performance of the algorithm used for hypothesis 

generation. Therefore, the recall value of the BoVW algorithm tries to increase by 

sacrificing of precision in order to obtain higher recall rate at the output. For the 

plane class test, 0.87 and 0.06 are the recall and precision rates, respectively. The 

ship class experiment uses the rates of 0.94 for the recall and 0.03 for the 

precision.  

 

Figure 28-32 illustrate the proposed algorithm results for airplane class. The parts 

(a) in the figures show the hypothesis points (i.e. green dots) obtained from 

BoVW based object detection algorithm. The results of the proposed algorithm 

are represented by the boundary of the determined object mask. True positives, 

false alarms, and misses are symbolized with green, blue and red color, 

respectively. The results for ship class are shown with the similar representation 

manner in Figure 35-39. Moreover, Figure 34 and Figure 41 illustrate the recall 

vs. precision curves for airplane and ship classes, respectively. The best 

performance of the algorithm for airplane is obtained with the precision and recall 

values of 0.81 and 0.53, respectively. Likewise, the best performance for the ship 

class is measured as 0.73 and 0.6 for precision and recall rates, respectively.   

 

In order to analyze the effect of the last step, the elimination of multiple 

detections, on the overall system performance, the algorithm is executed for both 

classes without the last thresholding step. The resulting  precision vs. recall curves 

are represented in Figure 33 for airplane and Figure 40 for ship categories. As it 

can be examined from the graphs, the precision values dramatically improves in 

both cases. 
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(a) 

 

 
(b) 

 

Figure 28:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for airplane 
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(a) 

 

 
(b) 

 

 

Figure 29:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for airplane 
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(a) 

 

 
(b) 

 

 

Figure 30:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for airplane 
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(a) 

 

 
(b) 

 

 

Figure 31:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for airplane 
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(a) 

 

 
(b) 

 

 

Figure 32:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for airplane 
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Figure 33: Precision vs. Recall curve without post-processing for airplane class 

 

 
Figure 34: Precision vs. Recall curve for airplane class 
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(a) 

 

 
(b) 

 

Figure 35:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for ship 
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(a) 

 

 

 
(b) 

 

Figure 36:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for ship 
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(a) 

 

 
(b) 

 

 

Figure 37:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for ship 
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(a) 

 

 
(b) 

 

 

Figure 38:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for ship 
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(a) 

 

 
(b) 

 

 

Figure 39:  (a) Result of BoVW based detection algorithm (b) Results of the proposed 

algorithm for ship 
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Figure 40: Precision vs. Recall curve without post-processing for ship class 

 
Figure 41: Precision vs. Recall curve for ship class 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

5.1 Summary of Thesis 
 

This thesis is devoted to the problem of geospatial object recognition from 

satellite imagery. An object recognition method is proposed to handle 

disadvantages of the classical object detection methods by exploiting the object 

shape characteristics.  

 

The problem of image segmentation, which constitutes the key stage of the 

proposed system, is studied in Chapter 2. First of all, a detailed literature survey 

of image segmentation methods is presented with discussions about their strengths 

and weaknesses. Afterwards, normalized cut, k-means clustering and mean-shift 

methods for fully automatic image segmentation are investigated. Then, these 

algorithms are tested on several airplane and ship images and compared in terms 

of the performance of the foreground object extraction. Finally, because adequate 

efficiency cannot be acquired from these fully automated algorithms, multiple 

interactive or semi-automatic image segmentation techniques in the literature are 

researched. Interactive graph cut, GrabCut, and GrowCut image segmentation 

methods are analyzed within the context of this thesis. Their extraction 

performance and the user efforts needed for similar performance are compared in 

an objective and subjective manner in the final experimental result part.  
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Having established the foreground extraction, shape representation and 

description problem are discussed in Chapter 3. Initially, a comprehensive 

literature review for shape representation and description is introduced, and an 

organization of these techniques is given. Then, angular radial transform (ART) 

and geometric moment invariants for the region based methods and Fourier 

descriptor for contour based methods are analyzed in detail. In the final part, the 

performance comparison of these algorithms and all of their combinations is 

performed with NN and k-NN classification algorithms. For quantitative 

comparison, the confusion matrix, a specific table layout that allows visualization 

of the performance of any algorithm, is utilized. 

 

In chapter 4, the proposed framework for geospatial object recognition is 

extensively explained. Next, the following sub-section mentions about the object 

detection algorithm, Bag of Visual Words, used in this thesis as hypothesis 

generation. After that, the classifier used in the proposed method, support vector 

machines (SVM), is reported in detail. Finally, the experimental results on two 

types of object classes, airplane and ship, are presented for the algorithm in a 

qualitative and quantitative approach. 

 

5.2 Discussions 

 

Considering simulation results of the image segmentation algorithms presented in 

Chapter 2, it is obvious that the semi-automatic methods exhibit better 

performance than the fully automated ones in both objective (precision and recall 

values with ground truth) and subjective (visual inspection of the generated 

segments) evaluations. K-means clustering and normalized cut segmentation 

techniques in the fully automated does not produce smooth district boundaries 

overlapping with ground truth segment boundaries. Moreover, they depend on the 

number of clusters that should be determined beforehand.  In the meantime; the 
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fully automated mean-shift algorithm outperforms the previous two methods, and 

it relatively generates segmentation results which overlap with ground truth 

boundaries. However, the algorithm performance highly depends on the 

predefined parameter set such as minimum segment area, spatial and range 

bandwidth which should be precisely specified in order to obtain accurate and 

complete segmentation regions for each target image. Therefore, the target 

extraction with mean shift segmentation algorithm cannot be possible for the 

general case due to the parameter dependency and inadequacy of the method. On 

the contrary, interactive graph-cut and interactive GrowCut algorithms provide 

reliable segmentation outputs at the expense of high level user effort which is 

unfavorable for the proposed method. As a last method, interactive GrabCut 

outperforms the other fully and semi-automatic algorithms in terms of the quality 

of segmentation outputs and the desired user effort. Hence, it is selected as 

foreground extractor in the proposed method. 

 

When shape description performances of ART, Hu moment invariants and Fourier 

descriptor methods are objectively evaluated in Chapter 3, it can be noticed that 

the integration of all of the three techniques outperforms the single methods and 

their different versions of the combination. The reason is that each shape 

descriptor method describes different 2D geometric properties and each one’s role 

are complementary for the description of the 2D shape. As shown in the 

experimental results in the Chapter 3, the retrieval performance of ART shape 

invariants increases at 2D shapes with complex structure, such as airplanes. 

Conversely, the Hu moment invariants efficiently describe elementary 2D 

geometric shapes, such as boats, unlike the complex shapes. On the other hand, 

the contour based shape invariants, Fourier descriptors, have powerful 

discrimination ability between the arbitrary shaped mask and the target objects. 

As a result, the integrated version of all these algorithms displays the properties of 

individual methods. Furthermore, these methods are robust to segmentation 

noises. 
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Experimental results indicate that the proposed geospatial object recognition 

algorithm is effective and promising. When the object masks are accurately and 

completely obtained, the false positives produced by any typical object detection 

methods can be successfully pruned for various object classes having 

characteristic shape. At the same time, the locations of target objects in the image 

are able to be determined exactly and accurately. Nevertheless, the size of the 

input rectangle used for specifying the foreground object should carefully be 

selected to be able to reproduce the entire object mask. The drawn rectangle 

should loosely encapsulate the target. Therefore, the rectangle size is nearly taken 

as two times of standard target object size. 

 

Even though the proposed algorithm provides a great deal of performance 

increase in terms of the precision rate, there are still some problems from the 

viewpoint of the recall rate. These problems usually arise from the extraction of 

the foreground object mask step in the proposed system. One of the main 

problems related to image segmentation is about the foreground and background 

color distribution. This problem can generally occur in three different conditions 

[63]: (i) regions of low contrast at the transition from background to foreground 

(ii) camouflage, in which the true foreground and background distribution overlap 

partially in color space (iii) background material inside the user rectangle happens 

not to be adequately represented in the background region. For the third case, 

shadow is the most notable example excessively encountered in the real scenarios. 

Some examples for three cases are illustrated for aircraft and ship samples in 

Figure 42 and Figure 43, respectively. 
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(a)                                         (b)                                          (c) 

 

Figure 42: Some illustration of the encountered problems in airplane class. (a) Regions of 

low contrast at transition (b) Camouflage (c) Background material inside the rectangle not 

enough represented in the background region. 

 

 

    

(a)                                           (b)                                                 (c) 

 
Figure 43: Some illustration of the encountered problems for ship class. (a) Regions of low 

contrast at transition (b) Camouflage (c) Background material inside the rectangle not 

enough represented in the background region. 

 

 

When the experimental results for object recognition in the aircraft and ship 

categories are examined, it can be seen that the precision rates of the airplane 

class are much better than the ship type’ ones. The reason of this failure in the 

ship object is about the inadequacy of the shape representation methods in the 

description of the ship class. In other words, the ship masks and other masks 



 134 

extracted from rectangle shaped buildings, piers, etc. cannot sufficently be 

discriminated each other because of the closeness of their feature vectors in the 

feature space. Therefore, many places, such as building, pier, and rectangle field 

in the image can be recognized as a ship object at the end of the algorithm and so 

these false alarms reduce the precision rate significantly.  

 

5.3 Future Work 
 

The shadow can generate big troubles during the object extraction and these 

problems can be handled in several manners. Firstly, a shadow detection and 

restoration technique may be employed as a preprocessing step before 

segmentation algorithm. However, this idea can be discussed in terms of 

computational cost. Moreover, the performance of the shadow restoration 

algorithm considerably depends on the shadow detection part, which is still an 

unsolved problem in the literature. Another solution to be proposed is that, after 

shadow detection, the foreground extraction process is implemented by marking 

the found shadow pixels as background initially. In addition, this idea can be 

generalized into general background regions, e.g. sea, airfield, and port, existing 

in many cases by learning the backgrounds with GMM modeling technique.  

 

The discrimination problem of the ship class can be tried to be solved by utilizing 

a cascade classifier. The first classifier is trained to separate the ship and similar 

masks from arbitrary shaped object masks. Then, the second classifier strictly 

distinguishes ship masks from the rectangular object masks. 
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APPENDIX A 

 

 

NORMALIZED CUTS FORMULATION 

 

 

 

Let’s assume that a graph, V, is partitioned into two disjoint sets A and B, and let x 

be an N = |V| dimensional indicator vector, such that xi = 1 if node i is in A and xi 

= -1 if otherwise. The total connection from node   to all other nodes is defined 

by      such that               , where        indicate the link weight 

between node   and   . With the definitions of x and d, the normalized cut value 

can be rewritten as:  

 

              
        

          
   

        

          
 

                                                                   

  
                      

       
   

                      

       
 

 

Let D be an N x N diagonal matrix whose entries are     ’s and W be an N x N 

symmetric matrix with W (i, j) =      , then, define k as:  

 

  
         

      
 

 

and     be an Nx1 vector of all ones.  For      and       , the indicator vector 

can be defined as  
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 , respectively. Thus,           can be written 

as: 
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Let’s define the following auxiliary variables, 
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Then, the above equation can be expressed as follows: 

                
                    

       
 

                
                    

       
 
         

 
 
     

 
 
  

 
 

  

The last constant term is dropped since it is equal to zero in this case, 

                    

                
                              

       
 
     

 
 

                

          
      

         
       
      

    

 
   

 
 
     

 
 

 

Setting       
 

   
 , then  
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Setting                 , it is easy to see that 

 

          
    

     
    

   

 

Since    
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By putting everything together, the normalized cut formulation can be expressed 

as: 
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with the condition             and          . 
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APPENDIX B 

 

 

 GRAPH CUT ALGORITHM 
 

 

 

 

 

In the interactive graph cut segmentation algorithm, the main goal is to compute 

the global minimum of the cost function defining the soft constraints among all 

segmentation results that satisfy additional hard constraint imposed by a user. 

This computation can be carried out by finding the global minimum cost cut on a 

graph with two terminals. Below it is shown how the minimum cut    defines 

segmentation     and that this segmentation is optimal. Assume that    denotes a 

set of feasible cuts    on graph   such that  

 

   severs exactly one t-links at each   

          iff     are t-linked to different terminals 

 If     , then          

 If     , then          

 

Therefore, the minimum cut    on graph is feasible (    ) according to the 

definition of the feasible cut   .  Moreover, a unique corresponding segmentation 

     for any feasible cut      can be defined such that 

 

        
 obj            

 bkg            
                                                         

 

In light of the abovementioned facts, a corresponding segmentation            

can be defined for the minimum feasible cut    and this segmentation output 
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minimizes the cost function defined by (2.19) among all segmentation satisfying 

constraints in (2.24) and (2.25). The proof of the theorem can be explained as 

follows:  

 

By using the table of edge weights defined in Table 7, definition of feasible 

cuts   , and mathematical expression of the segmentation defined in (1), a cost of 

any     is 

 

        

     

                 
       

                 

                                        
   

             
   

        

 

Thus,                     . In fact, the equation (1) gives one-to-one 

correspondence between the set of all feasible cuts in   and the set   of all 

assignments   that satisfy hard constraint in (2.24) and (2.25). Then, 

 

                      
   

              
   

            
   

           

 

and this expression proves that the results of the algorithm are optimal.  

  

 

 

 

 

 


