

A SOFTWARE BENCHMARKING METHODOLOGY

FOR EFFORT ESTIMATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MINA NABI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2012

A SOFTWARE BENCHMARKING METHODOLOGY

FOR EFFORT ESTIMATION

Submitted by Mina Nabi in partial fulfillment of the requirements for the degree of

Master of Science in Information Systems, Middle East Technical University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Prof. Dr. Onur Demirörs

Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

EEE, METU

Prof. Dr. Onur Demirörs

IS, METU

Dr. Ali Arifoğlu

IS, METU

Assist. Prof. Dr. Banu Günel

IS, METU

Assoc. Prof. Dr. Altan Koçyiğit

IS, METU

 Date: 14.09.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this wok.

 Name, Last name: Mina Nabi

 Signature: _________________

iv

ABSTRACT

A SOFTWARE BENCHMARKING METHODOLOGY

FOR EFFORT ESTIMATION

Nabi, Mina

M.Sc., Department of Information Systems

Supervisor: Prof. Dr. Onur DEMİRÖRS

September 2012, 122 pages

Software project managers usually use benchmarking repositories to estimate effort,

cost, and duration of the software development which will be used to appropriately

plan, monitor and control the project activities. In addition, precision of

benchmarking repositories is a critical factor in software effort estimation process

which plays subsequently a critical role in the success of the software development

project. In order to construct such a precise benchmarking data repository, it is

important to have defined benchmarking data attributes and data characteristics and

to have collected project data accordingly. On the other hand, studies show that data

characteristics of benchmark data sets have impact on generalizing the studies which

are based on using these datasets. Quality of data repository is not only depended on

quality of collected data, but also it is related to how these data are collected.

In this thesis, a benchmarking methodology is proposed for organizations to collect

benchmarking data for effort estimation purposes. This methodology consists of

v

three main components: benchmarking measures, benchmarking data collection

processes, and benchmarking data collection tool. In this approach results of previous

studies from the literature were used too. In order to verify and validate the

methodology project data were collected in two middle size software organizations

and one small size organization by using automated benchmarking data collection

tool. Also, effort estimation models were constructed and evaluated for these projects

data and impact of different characteristics of the projects was inspected in effort

estimation models.

Keywords: Benchmarking methodology, benchmarking data, Effort Estimation

Models, Functional Similarity

vi

ÖZ

İŞ GÜCÜ KESTİRİMİ İÇİN BİR YAZILIM REFERANS

VERİ KÜMESİ YÖNTEMİ

Nabi, Mina

M.Sc., Department of Information Systems

Supervisor: Prof. Dr. Onur DEMİRÖRS

Eylül 2012, 122 sayfa

Yazılım proje yöneticileri genellikle iş gücü, maliyet ve yazılım geliştirme süresini

tahmin etmek için referans veri kümelerini kullanırlar. Bu tahminler proje

faaliyetlerinin uygun planlama, izleme, ve kontrolü için kullanılır. İş gücü kestirimi

yazılım geliştirme projesinin başarısında önemli bir rol oynamaktadır ve referans veri

kümesinin kalitesi yazılım proje iş gücü kestirim sürecinde kritik bir faktördür.

Güvenilir bir referans veri kümesi oluşturmak amacıyla, kestirim veri niteliklerinin

ve veri özelliklerinin tanımlı olması önemlidir. Öte yandan, çalışmalar referans veri

kümelerinin veri özellikleri bu veri kümelerine dayalı çalışmaların yaygınlaştırılması

üzerinde etkili olduğunu göstermektedir. Referans veri kümelerin kalitesi sadece

toplanan veri niteliğine bağlı değildir, aynı zamanda bu verilerin nasıl toplandığıyla

da ilgilidir.

Bu tezde, organizasyonlarda iş gücü kestirim amacıyla referans veri kümesine veri

toplamak için bir metodoloji önerilmiştir. Bu metodoloji, üç ana bölümden

oluşmuştur: referans veri kümesinin ölçüleri, referans veri kümesinin veri toplama

süreçleri, referans veri kümesi için veri toplama aracı. Bu yaklaşımda literatürde

önceki çalışmaların sonuçlarından da yararlanılmıştır. Metodolojiyi doğrulamak ve

vii

geçerlemek amacıyla, iki orta boy yazılım organizasyonundan proje verileri otomatik

referans veri kümesi veri toplama aracını kullanarak toplandı. Ayrıca, iş gücü

kestirim modelleri oluşturuldu ve bu projelerin verileri ve projelerin farklı

özelliklerinin etkisi iş gücü kestirimi için değerlendirildi.

Anahtar Kelimeler: Referans Veri Kümesi Oluşturma Metodolojisi (Benchmarking

Metodolojisi), Referans Veri , İş Gücü Kestirim Modeli, Fonksiyonel Benzerlik.

viii

To My Family

ix

ACKNOWLEDGEMENTS

I would like to offer my special thanks and gratitude to Prof. Dr. Onur Demirors for

his supervision, encouragement, patience and continuous support throughout my

thesis study.

I would like to give great thanks to Baris Ozkan for his supports and patience. He

always helped me without hesitating whenever I had question in my thesis, specially

related to Cubit.

I would grateful to express my special thanks to Ozden Ozcan Top and Seckin

Tunalilar for their contributions and supports during my thesis. Without their helps it

would be very difficult to solve problems I had encountered in my thesis.

I am thankful to my dear friend Gokcen Yilmaz who helped me on different stages of

my thesis study. I would also want to thank to my best friends Deniz Emeksiz, Puren

Guler, and Arezo Abrishhami for their moral support. They were always there for me

whenever I had problem and I will never forget their kindness.

I would like to express my special thanks to my dear friend Bahram Lotfi Sadigh for

his continuous encouragement, help, patience and moral support.

Finally, I would like to express my special gratitude to my parents (Ahad Nabi and

Farideh Abdi) for their support, sacrifices, patience, and endless love throughout my

life. I am also grateful to my dear brother Babak Nabi, and my lovely sister Roxana

Nabi for their love and emotional support. I am proud to have such a supportive and

lovely family.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENT .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES... xiv

LIST OF ABBREVIATIONS AND ACRONYMS ... xv

CHAPTER 1 .. 1

INTRODUCTION.. 1

1.1.Background of the problem ... 1

1.2.Statement of the Problem .. 2

1.3.The Purpose of the Study .. 4

1.4.Significance of the Study .. 5

1.5.Research Questions ... 6

1.6.Road Map .. 6

CHAPTER 2 .. 7

BACKGROUND AND RELATED RESEARCH ... 7

2.1.Synthesis of the Literature... 7

2.1.1.Data repository and accuracy of data repository ... 7

2.1.2.Developed estimation models and improvement opportunities for effort

estimation ... 12

CHAPTER 3 .. 17

SOFTWARE BENCHMARKING APPROACH FOR EFFORT ESTIMATION 17

3.1.Benchmarking Measures ... 17

3.1.1.Submission Attributes ... 18

3.1.2.Project Attributes ... 19

3.1.3.Product Attributes .. 23

3.1.4.Size Attributes ... 27

xi

3.1.5.Effort Attributes... 29

3.1.6.Productivity Factors... 36

3.2.Benchmarking Data Collection Processes ... 37

3.2.1.Infrastructure Definition Process ... 40

3.2.2.Cubit Infrastructure Definition Process ... 41

3.2.3.Data Collection Process ... 41

3.2.3.1. Project Data Collection Process ... 41

3.2.3.2. Product Data Collection Process .. 42

3.2.3.3. Software Size Data Collection Process .. 42

3.2.3.3.1. Software Functional Size Measurement Process 42

3.2.4.Effort Data Collection Process .. 43

3.2.4.1. Data Collection Process for Project Management Effort Data 43

3.2.4.2. Data Collection Process for Requirements Activities‘ Effort Data 44

3.2.4.3. Data Collection Process for Design Activities‘ Effort Data 44

3.2.4.4. Data Collection Process for Integration Activities‘ Effort Data........... 44

3.2.4.5. Data Collection Process for Test Activities‘ Effort Data 45

3.2.4.6. Data Collection Process for Quality Activities‘ Effort Data 45

3.3.Benchmarking Tool ... 46

CHAPTER 4 .. 56

APPLICATION OF THE MODEL AND AUTOMATED BENCHMARKING

DATA COLLECTION... 56

4.1.Research Questions ... 56

4.2.Case Study Design .. 57

4.2.1.Case Selection Criteria and Background of these selected cases 58

4.3.Case study 1: Exploratory Case Study .. 58

4.3.1.Case Study 1 Plan .. 59

4.3.2.Case Study 1 Conduct ... 59

4.3.3.Case study 1 Results .. 66

4.4.Case study 2: Validation of the Benchmarking Methodology and Automated

Benchmarking Data Collection Tool... 67

4.4.1.Case Study 2 Plan .. 67

4.4.2.Case Study 2 Conduct ... 68

xii

4.4.3.Case study 2 Results .. 78

4.5.Validity Threats ... 80

CHAPTER 5 .. 81

CONCLUSIONS .. 81

5.1.Conclusions ... 81

5.2.Future Work .. 86

REFERENCES ... 87

APPENDIX .. 92

EPC Diagrams for Benchmarking Data Collection Processes 92

1.Infrastructure Definition Process .. 92

2.Cubit Infrastructure Definition Process .. 94

3.Data Collection Process .. 96

3.1.Submission Attributes Data Collection Process .. 98

3.2.Project Attributes Data Collection Process ... 99

3.3.Product Attributes Data Collection Process .. 102

3.4.Software Attributes Data Collection Process size ... 104

3.4.1.Measure COSMIC size ... 106

4.Effort Attributes Data Collection Process ... 107

4.1.Data Collection Process for Project Management Effort Data 111

4.2.Data Collection Process for Requirements‘ Activities Effort Data 114

4.3.Data Collection Process for Design Activities‘ Effort Data 116

4.4.Data Collection Process for Integration Activities‘ Effort Data 118

4.5.Data Collection Process for Test Activities‘ Effort Data 120

4.6.Data Collection Process for Quality Activities‘ Effort Data 121

xiii

LIST OF TABLES

Table 1: EPC model objects used in benchmarking data collection processes (Davis

& Brabander 2007) .. 39

Table 2: Data Repositories Evaluated in This Study ... 60

Table 3: Project Attribute Existence of the Repositories ... 62

Table 4: Productivity ratio (Person-hours/FP) ... 64

Table 5: Size/Effort ratio for functional similarity consideration 69

Table 6: Estimation model of 7 discussed data repositories and case study projects

data .. 73

Table 7: MMRE and PRED (30) values for comparison of accuracy of effort

estimation models for total and development effort .. 75

Table 8: MMRE and PRED (30) values for comparison of accuracy of effort

estimation models for software development activity efforts 76

Table 9: MMRE and PRED(30) values for comparison of accuracy of effort

estimation models for software development activity efforts by considering BFC of

size data .. 77

xiv

LIST OF FIGURES

Figure 1: Use case model for cubit benchmarking part ... 47

Figure 2: Benchmarking Home .. 48

Figure 3: Benchmarking Question Category.. 49

Figure 4: Benchmarking Question List .. 50

Figure 5 Define Single Textbox Question ... 51

Figure 6 : Define MultipleTextbox Question ... 52

Figure 7: Define Multiple Choice with One Answer Question.................................. 53

Figure 8: Define Multiple Choice with Multiple Answer Question 54

Figure 9: Answer benchmarking questions .. 55

Figure 10: Infrastructure Definition Process .. 92

Figure 11: Cubit Infrastructure Definition Process .. 94

Figure 12: Data Collection Process .. 96

Figure 13: Submission Attributes Data Collection Process 98

Figure 14: Project Attributes Data Collection Process .. 99

Figure 15 : Product Attributes Data Collection Process .. 102

Figure 16: Software Attributes Data Collection Process size 104

Figure 17: Measure COSMIC size ... 106

Figure 18 : Effort Attributes Data Collection Process ... 107

Figure 19: Data Collection Process for Project Management Effort Data 111

Figure 20: Data Collection Process for Requirements‘ Activities Effort Data 114

Figure 21: Data Collection Process for Design Activities‘ Effort Data 116

Figure 22: Data Collection Process for Integration Activities‘ Effort Data 118

Figure 23: Data Collection Process for Test Activities‘ Effort Data 120

Figure 24: Data Collection Process for Quality Activities‘ Effort Data 121

xv

LIST OF ABBREVIATIONS AND ACRONYMS

ARIS : Architecture of Integrated Information Systems

BFC : Base Functional Component

COSMIC : The Common Software Measurement International Consortium

CSBSG : Chinese Software Benchmarking Standards Group

EPC : Event-driven Process Chain

FSM : Functional Size Measurement

GUI : Graphical User Interface

IPA/SEC : Information-Technology Promotion Agency/Software Engineering

Center

ISBSG : International Software Benchmarking Research Group

LOC : Line of Code

MMRE : Mean Magnitude of Relative Error

MRE : Magnitude of Relative Error

PRED : Prediction Level Parameter

PROMISE : Predictor Models in Software Engineering

SLOC : Source Line of Code

SRS : Software Requirement Specification

WBS : Work Breakdown Structure

1

CHAPTER 1

INTRODUCTION

1.1. Background of the problem

For software organizations it is important to deliver a software product on time

within expected quality to their customers. For the purpose of allocating appropriate

resource and making reasonable schedule in project planning phase, reliable and

accurate effort estimation is important (Huang & Chiu, 2006). Software effort

estimation is crucial input for monitoring and controlling the allocated resources

during project management activities. Also, the accuracy of the development effort

estimation plays an important role in success of the maintenance activities in the

software development of the project (Huang, Chiu, & Liu, 2008).

Many effort estimation methods have been suggested by researchers during the last

decade. Among these methods estimation by expert judgment, analogy based

estimation, and parametric (algorithmic) estimation are widely used (Huang & Chiu,

2006), (Huang, et al., 2008), (Mendes, 2009). Expert estimation is an estimation

method which is conducted by a person who is expert in the task. In this estimation

method expert follows a non-explicit and non-recoverable process to estimate

required development effort (Jorgenson & Sjoberg, 2004). In analogy based

estimation similar projects to the one to be estimated are found from historical data

and then estimation is derived from the valued of selected projects (Jorgenson,

Indahl, & Sjoberg 2003). Algorithmic effort estimation methods are based on using

statistical analysis to predicate the effort estimation equations. Constructive cost

model (COCOMO), and ordinary least square (OLS) regression model are most

commonly used methods among the parametric effort estimation techniques

(Kaczmarek & Kucharski, 2004), (Huang et al., 2008). All of these estimation

models rely on historical (benchmarking) datasets. Benchmarking dataset is

2

reference for making decision in start phase of the project, and in order to establish a

reliable estimation model and predicting required effort and cost, accurate and

sufficient historical project data are needed. Since new software organizations do not

have enough project data and also most of the organizations ignore the need for data

collection, there is a strong need for external benchmark datasets. International

Software Benchmarking Standards Group (ISBSG) dataset (2007), Chinese Software

Benchmarking Standards Group (CSBSG) dataset (2006), Information Technology

Promotion Agency (IPA/SEC) dataset (2004), Predictor Models in Software

Engineering (PROMISE) Dataset (2008), Laturi/Finnish software metrics association

(FISMA) Experience dataset (2009) are common datasets provided by research

groups for this propose.

Benchmarking process is defined by Bundschuh and Dekkers (2008) as the process

of identifying and using knowledge of best practices to improve in any given

business, also the most important point is that benchmarking is not a standalone

action. It is also defined by Dekkers (2007) as a continuous and repeatable process of

measuring and comparing with other best practices. Benchmarking can be

distinguished as internal and external benchmarking. In internal benchmarking the

comparison takes place with projects which belong to the same or a different

enterprise. But in contrast, external benchmarking cope with market-related

comparisons, and its data is from outside of the organization (Bundschuh & Dekkers

2008). A secondary classification of benchmarking is based on the availability of the

dataset. The dataset can be public, semi-public or private benchmark repository.

When the data itself is available like data in ISBSG (2007) it is called public. In other

cases the data is not available but the analysis results are open to the public as

IPA/SEC (2004) dataset it is semi-public. Finally, it is private when the repository is

not accessible since the data is integrated within a software estimation tool as in SPR

(2010).

1.2. Statement of the Problem

Researches show that data characteristics of benchmark data sets have impact on

studies based on using these datasets. Unfair and unbalanced datasets have potential

effects on the performance of effort estimation techniques, and these problems in the

3

datasets raise threats in generalizing the effort estimation techniques, algorithms and

tools used by these methods (Bachmann & Bernstein, 2010), (Bachmann &

Bernstein, 2009). Accurate benchmark data repository is a crucial key factor for

improving accuracy of effort estimation. Many studies have been conducted to

propose effective effort estimation methods, but in those studies distribution of the

historical data, which has a impact on effort estimation accuracy, have not been

considered (Seo, Yoon, & Bae, 2009). So the inaccuracy and noise in benchmark

data repository is an important problem which should be considered.

Benchmarking data repositories suffer from some problems: collection of the data are

expensive and difficult; they are limited in collected project numbers, outliers in the

dataset can have misleading influence in the estimation result, academics have

limited access to industrial project datasets, and finally the missing data is significant

in the datasets. Also in order to validate these data sets, the correlation among the

variables should be considered. When for example 10 variables are measured, 45

correlations should be considered. Obviously, by increasing the number of variables,

the number of correlations rises rapidly and the systematically large correlation

metrics are needed (Liu & Mintram, 2006). Another problem of benchmark datasets

is that, there is low rate data submission in software industry and because of the lack

of publicly available benchmarking datasets and limitation of their size, effort

estimation models cannot be validated truly (Cukic, 2005).

On the other hand, number of data attributes collected in multi organizational

benchmarking data set is high, for example in ISBSG version 11 there are 118

attributes, and the task of collecting such a number of attribute is not possible. So,

the number of missing data is high in these data repositories. As it is mentioned

missing data influences the accuracy of estimated effort. Furthermore, some of the

techniques for imputation of these missing data results in loss of data and

subsequently inaccurate estimation (Sentas & Angelis, 2006). On the other hand

software repositories contain heterogeneous project data, so parametric effort

estimation methods encounter with poor adjustment and predictive accuracy. So,

heterogeneity is another problem of data repositories (Cuadrado, Rodriguez, Sicilia,

Rubio, & Crespo, 2007) (Huang et al., 2008). Unbalanced data also have impact on

4

the accuracy of effort estimation methods, and it imposes a validity threat to the

validation of effort estimation techniques (Bachmann & Bernstein, 2010).

Researchers propose to use single company data repository, rather than cross

company data repository. The studies show that benchmarking using single company

dataset produces more accurate data in comparison to multi-company dataset, but

organizations face three problems when using within company project data: the time

required for collecting data from a single company can be excessively high,

technologies used in the company can change and older projects will not be

representative any more for new projects, and data care is needed to guaranty the

consistency of the dataset. So, many organizations tend to use cross company

datasets, which on the other hand suffers from other problems: again care for keeping

consistency of dataset is needed, and difference in process and used technologies of

different companies may cause trend through different companies (Mendes, Lokan,

Harrison, & Triggs, 2005), (Mendes & Lokan, 2007). In cross company

benchmarking data set project data is collected from different companies with

different application domains and technologies. Since mostly large scale companies

contribute in this process, the sample in these data sets is not random and not

representative, as in CSBSG dataset (Wang, Wang, & Zhang, 2008). Therefore these

data sets cannot result in accurate estimation.

In addition, there is not an international standard for developing benchmark dataset,

and different repositories are developed in different countries which include different

attributes and categories. Thus, mapping between attributes of diverse data

repositories is not possible, and estimation result from different repositories cannot

be compared to verify and generalize the findings (Gencel, Buglione, & Abran,

2009).

1.3. The Purpose and Scope of the Study

The purpose of this study is to develop an approach for data collection which

includes meta-data model of project attributes for benchmark data repository, data

collection process, and tool support for data collection according to defined

benchmarking attributes and processes. Firstly, in this study the characteristics of

available benchmark data sets were evaluated and the core factor drivers of effort

5

estimation were identified. Also, a survey was performed in the literature for finding

benchmarking attributes. In order to define a data model with correct and not noisy

data, project attributes was categorized as core project attributes and extended project

attributes. Core project attributes are sufficient for an accurate and reliable

estimation, and meanwhile the extended attributes elaborate more precise

characteristics of software business domain. In this case, data collection process will

be more precise from viewpoint of completeness and high fill in ratio.

Secondly, previously defined benchmarking data collection processes were refined

for automation purpose. Implementation of collecting benchmarking dataset was the

next target of this study. This automated benchmarking data collection tool with

considering defined benchmarking methodology and data collection processes will

ease the data collection process.

1.4. Significance of the Study

One important reason for this study is that current external benchmark datasets

include missing and noisy data, and they contain heterogeneous project data.

Existence of such noisy data leads to inaccuracy in effort estimation methods.

Meanwhile, the number of attributes in these benchmark datasets is too much hence

it is difficult for data provider to submit all these attributes, so this phenomena lead

to constructing benchmark dataset with missing and dirty data. In this study by

proposing meta-model key project attributes will be determined and by eliminating

unnecessary attributes more accurate data without noise will be collected from

providers. The core project attributes will guarantee reliable effort drivers to estimate

the required development effort. On the other hand, by integrating defined

benchmarking attributes, benchmarking data collection processes, and tool support it

will be a substantial improvement for constructing benchmarking data repository.

In addition, tool support will be very useful in decreasing consumed time and effort

for data collection and it will be efficient for the usage of accurate effort estimation

in project management. Also, since it can be customized within organizations it will

be a useful tool in benchmarking data collection for organizations.

6

1.5. Research Questions

In order to overcome the problems described in the ―Purpose of the Study‖ section,

these research questions will be explored:

Q1: What are project attributes of a benchmarking meta-model which can be used in

establishing reliable effort estimation models?

Q2: For the purpose of software benchmarking which measures can be collected in

organizations in practice?

Q3: What are the requirements of automated benchmarking data collection processes

which improves benchmarking data repositories?

Q4: Is this benchmarking methodology applicable to other organizations?

Q5: Does data collected by this methodology lead to better effort estimation?

1.6. Road Map

In chapter 2, a review of relevant literature on benchmarking, effort estimation

models are described.

In chapter 3, proposed benchmarking methodology is described in detail. It includes

three subsections: benchmarking measures, benchmarking data collection processes,

and benchmarking data collection tool Cubit (http://smrg.ii.metu.edu.tr/cubit/). As an

attachment to this chapter, refined benchmarking data collection processes are given

in APPENDIX.

In chapter 4, the implementation of the approach which is used in this study and its

design is described. The chapter describes two case studies conducted in this thesis;

the explanatory case study, and the validation case study.

In chapter 5, conclusions and contributions of this research are presented briefly, and

suggestions for future work are made.

7

CHAPTER 2

BACKGROUND AND RELATED RESEARCH

2.1. Synthesis of the Literature

The word ―benchmark‖ has been used in the past in different ways. One of the usages

of this word is the ability of a software organization to determine the competitiveness

in a given business area, and required productivity improvement for sustaining a

specific business. From this viewpoint benchmarking is a data intensive process,

which means for benchmarking it is necessary to have a benchmarking database.

Such a database contains performance measures and other characteristics for a set of

projects. Then similar projects will be found and performance of these projects will

be compared with the target project (Beitz & Wieczorek, 2000).

 According to Meli (1998) a benchmarking dataset is a collection of technical and

management data for the software to develop forecasts for the future and evaluation

of the productivity of present project. They contain actual and anticipated data of

projects for organizations, and they are collected according to proven security and

refinement model. For benchmarking the dataset can be filtered by similar projects,

then the selected projects data can be analyzed individually or by respect to statistical

dispersion and correlation indicators.

2.1.1. Data repository and accuracy of data repository

The quality of a benchmark data set is relative to the quality of the data in the data

set. There are studies which evaluated the data quality of the benchmark data. Herzog

(2007) suggested most seven cited properties of quality as (1) relevance, (2)

accuracy, (3) timeliness, (4) accessibility and clarity of results, (5) comparability, (6)

coherence, and (7) completeness. Liebchen and Shepperd (2008) examined the

8

quality of the data with accuracy and noise of the data with objective of assessing the

techniques used in quality management of software engineering. Noise was described

as incorrect and inaccurate data. They evaluated the studies which address the

accuracy of data in datasets. Surprisingly they observed that only the total of 23

studies directly address this problem at that time, and in comparison to other

empirically based disciplines it is not studied enough. Among these studies 73% of

the evaluated articles claimed data noise is a significant problem. Empirical analysts

address this problem by the approach of manual inspection and prevention

techniques such as tool support for data collection.

Data values can be absent from a benchmark data repository because of various

reasons, like inability to measure a specific benchmark attribute. Many research for

handling missing data have been done. A comprehensive experimental analysis of

five techniques of handling and imputation of missing data which were conducted by

Van Hulse and Khoshgoftaar (2007) is one of these studies. Deleting data from a

dataset can cause in loss of potentially valuable data. In this study also impact of

noise on the imputation process were examined and high impact of noisy data on the

effectiveness of imputation techniques observed. Bayesian multiple imputation and

regression imputation reported as most effective techniques, and mean imputation

reported as extremely poor performance technique.

Strike, Emam, and Madhavji (2001) also performed a comprehensive simulation to

evaluate the techniques for dealing with missing data in software cost estimation

modeling. Three techniques of listwise deletion, mean imputation, and eight different

of hot-deck imputation were assessed in this study. They observed that all these

techniques are well performed, and they suggested listwise deletion as reasonable

choice. But they also state that this technique does not provide best performance

necessarily, so using hot-deck imputation suggested as a method which produce best

performance with minimal bias and highest precision.

Similarly, Sentas and Angelis (2006) conducted a comparative study on missing data

techniques (multinomial logistic regression (MLR), list wise deletion (LD), mean

imputation (MI), expectation maximization, and regression imputation) and

suggested multinomial logistic regression (MLR) for using imputation on databases

with missing data. In this experimental research, ISBSG version 7 was used, which

9

contained 1238 projects information at that time. Since they want to observe the

difference in efficiency of these MLR methods, they first selected projects which

have complete data with no missing values. They resulted in 166 project data. Then

by using three different mechanisms they create missing data. These mechanisms

were: missing completely at random (MCAR), non-ignorable missingness (NIM),

and missing at random (MAR). For analyzing the difference between missing data

techniques, analysis of variance (ANOVA) was used. This statistical method was

applied by using SPSS program. The results show that in small percentage of missing

data, the purposed method (MLR) gives satisfactory results like other methods, but in

high percentage of missing data it performs better than other methods. Although LD

approach is more used as missing data imputation techniques, but the loss of

precision and bias are major problems of this method. Determining when LD method

is unsuitable method, problem of missing data from other aspects is stated as future

work in this paper.

Moses and Farrow (2005) also used Bayesian statistical simulation program BUGS

to impute missing data. The ISBSG Data Repository (2003) is analyzed, and used for

reexamining a statistical model for work effort. Different distributions were used to

model missing data: categorical distribution applied to language type (LT),

imputation regressions used for imputing maximum team size (MTS), and also

Gamma distribution used for imputing MTS. Differences between 2 and 4GLs, 3 and

4GLs, APG and 4GLs, 5 and 4GLs, 3GLs and APGs were observed. Imputing MTS

for missing data revealed differences in required effort for development of systems

with different LDs, and development types. After imputation the author observed that

the model derived from this model imputation is likely to be useful than model which

using deletion strategy.

There are also studies which evaluate the benchmark data repository, and possible

improvement in data repositories. Gencel, Buglione, and Abran (2009) mentioned

some reasons which cause disagreement in relating effort and cost drivers. Not

existing an international standard for creating benchmarking data repository and

difficulty in mapping attributes of different repository, are stated as a major problem.

Improvements opportunities for benchmarking and using benchmarking repositories

are suggested in this paper. Developing a standard definition and categorizing

10

benchmarking attributes which are used in data repositories, is one of important

improvement opportunities mentioned here, and supported by giving examples from

ISBDG data repository. This allows benchmarking repositories to be unified and

mapped to an internationally accepted standard. Another improvement suggestion for

data repositories stated as reporting effort and duration based on software

development life cycle phases. An improvement and refining way of classifying the

application types in software engineering based on classifications in civil engineering

and two software practice standards of ISO 12182 and ISO 14143-5 has purposed

too.

Distribution of benchmark data is an important issue which influences the accuracy

of software effort estimation. Seo, Yoon, and Bae (2009) proposed a data

partitioning model by using Magnitude of Relative Error (MRE) and Magnitude of

Error Relative (MER) values which subsequently will improve the weak points of

effort estimation models based on least square regression (LSR). They stated that

MRE and MER are usually used in effort estimation accuracy measurement by

considering deviation of data point from LSR. The authors conducted an empirical

experimental study by using two industry data sets: ISBSG Release 9 and a bank data

set which consists of project data from a bank in Korea. In this experimentation by

comparison between estimation accuracy of a single LSR without using partitioning,

and LSR with data partitioning using fuzzy clustering and also proposed partitioning

approach, an improvement in software effort estimation observed. Also the boundary

values for MRE and MER were proposed to be between 0.1 and 0.5 which can

ensure better effort estimation accuracy.

In another study an estimation process proposed by Cuadrado et al. (2007) for

improving predictive accuracy of datasets and overcoming the problem of

heterogeneous projects data in data set. One possible way of overcoming to the

problem of such datasets was proposed to use mathematical equations derived from

partitioning dataset according to different parameters and subsequently clustering

these partitions for finding more accurate model. They used ISBSG release 8 for

validating proposed process. The steps of proposed effort estimation process were:

first according to importance of attributes data repository were divided to partitions,

then by using EM algorithm partitions were clustered, then for each cluster

11

regression equation was calculated, and finally in order to perfume new estimation

according to available data a regression equation should be selected. In addition, in

this study a tool support for effort estimation was presented to facilitate the

estimation process.

However in another study Huang et al. (2008) investigated the accuracy of the effort

estimation models which are derived from data clustered by diverse effort drivers.

Ordinary least square (OLS) regression method, which is a popular method in

creating software effort estimation models, is used to establish effort estimation

model in each dataset clustered by effort derivers. Next, difference of accuracy in

effort estimates are compared between clustered and not clustered data. In this

research Pearson Correlation, and one way ANOVA were used to identify the effort

drives for utilizing in software estimation model. Then, k-means and Scheffe‘s

method are used to cluster effort drivers which obtained from previous stage. After

clustering effort drivers, by using OLS method, effort estimation model was

established for each group. ISBSG repository version 7 was used in this study.

Projects with quality rating ―C‖ and ―D‖ were excluded from the study, and data

which had International Function Point User Group (IFPUG) counting approach are

selected. Among these selected data there were projects with missing data, after

excluding them a remaining 171 projects were selected to be used in this research.

They selected six effort drivers as function points (FP), max team size (MTS),

development type (DT), development platform (DP), language type (LT), and

methodology acquired (MA). The results of their study show that software effort

estimation models based on homogeneous and inhomogeneous datasets do not differ

in producing accurate effort estimates.

The impact of development type, and used language as project factors are examined

by Moses, Farrow, Parrington, and Smith (2006) on effort estimation and

productivity. The aim of this study was to provide a comparison of productivity rates

of a company with productivity rates of international data repositories. In this study,

projects data of ISBSG (2003) data repository and projects data used in Reifer in a

paper were used. In Reifer‘s paper 500 projects from 38 organizations are utilized.

They examined three productivity measures: Hours per Line of Code HR/SLOC,

Source Lines of Code per Staff month SLOC/SM, and Hours per Function Points

12

HR/FP. This study showed that the productivity rate for the studied company is

higher than ISBSG and Reifer Consultants Incorporated data repository. The reasons

behind this outperforming are indicated by several factors. Firstly, in the company

projects were led by company staff that had wide company knowledge of both

systems and business processes. Secondly, the company had an optimized

development process, and those activities which do not add any value were

eliminated from development process of the company. Thirdly, the company is data

model driven and it supports Rapid Application development and reuse code. Lastly,

in this company a programming language and a DBMS were used for developing

which developers had several years of experience in them within the organization.

The study shows that ignoring projects data can result in inaccurate productivity

rates.

2.1.2. Developed estimation models and improvement opportunities for effort

estimation

Many effort estimation models have been suggested by researchers based on using

benchmark data repositories. There are many studies which evaluate the accuracy of

these methods. Jeffery, Ruhe, and Wieczorek (2000) investigated accuracy difference

between two estimation models of ordinary least squares (OLS) regression as

parametric technique and analogy-based estimation as non-parametric technique.

They used magnitude of relative error (MRE) for evaluation of estimation models.

Also, the difference of estimation accuracy between estimation derived from multi-

company data and company-specific data is explored. They used multi organization

data of ISBSG and compared the accuracy results of estimation with the results of

using company-specific data from an Australian company which at that time did not

contribute to ISBSG data repository. As a result they observed that estimation

accuracy in estimates using company specific data is higher than estimates using the

ISBSG data repository. They observed that in using company data both OLS

regression and analogy can be considered, but in using ISBSG data set for a non-

contributing company OLS regression should be considered rather than analogy

based estimation.

Neural networks are one of software effort estimation methods which are often

selected because of their capability to approximate any continuous function with

13

arbitrary accuracy. Setiono, Dejaeger, Verbeke, Martens, and Baesens (2010) applied

a comprehensible if-then rules derived from neural networks trainings in software

effort estimation based on rule extraction method. For validating this proposed

method, they used ISBSG release 11. They compared the neural network extraction

algorithm with three other methods: ordinary least square (OLS) regression, radial

basis function networks, and Classification and Regression Trees (CART). They

observed that CART method results in most accurate estimations, but because of

CART tree size the obtained model did not have comprehensibility. The authors

stated that, by considering comprehensibility, the neural network by role extraction is

more suitable for effort estimation.

In another study Liu, Qin, Mintram, and Ross (2008) applied the framework which

has been proposed by Liu and Mintram in 2005 to ISBSG data repository release 9 to

with the purpose of demonstrating practical utility of this framework. This

framework applies statistical analysis to a publicity dataset, in order to remove

outlier variables and identify the dominate variables. As evaluation metrics they used

Mean Magnitude of Relative Error (MMRE), Median of Magnitude of Relative Error

(MdMRE), balanced MMRE (BMMRE), Magnitude of Error Relative (MER), mean

MER (MMER), median of MER (MdMER), and prediction at level 1. They results

show that removing outliers, and removing inter-correlated predictor variables will

improve accuracy of effort estimation. Also, they came up with conclusions: a few

variables in this case study contributed the most effort prediction, and the models

using parametric techniques (ordinary least squares regression and Robust

Regression Model) have estimation accuracy higher than non-parametric techniques.

Bourque, Oligny, Abran, and Fournier (2007) proposed a model for software

engineering project duration based on project effort. They used ISBSG data

repository fourth release for their analysis. Models for developed projects for

personal computer, midrange, mainframe platforms, and for entire project types are

created. Also different models are built for projects with required effort fewer and

more than 400 person-hours. Meanwhile, investigating was conducted to opportunity

of constructing model directly from project functional size, and results revealed that

estimation can be derived from project size, and also it gives better estimation.

Lastly, the impact of maximum number of resources on duration of project was

14

examined, and using this attribute increased 10% more duration variance.

Observations showed that relation between effort and duration of project is not

linear, and there is an exponential in the range of 0.3 and 0.4. The developed models

show that ―first order‖ estimation from effort values can be used for estimating

duration of the project.

On the other hand, different techniques have been utilized for improvement of effort

estimation models. Huang and Chiu (2006) investigated the appropriate weighted

similarity measures for each effort drivers in analogy based effort estimation model

by using genetic algorithm in order to observe improvement on effort estimation

accuracy. Three different analogy methods which studied in this paper are: unequally

weighted, linearly weighted, and nonlinearly weighted methods. ISBSG dataset

release 8 and IBM DP services databases are used to in experimental study. They

observed that the weighted analogy methods generated higher software effort

estimation accuracy rather than traditional unweighted approach, and this

demonstrates that using genetic algorithm for finding weights for effort derives

provide better results in compare to subjective weights assigned by experts.

Software engineering research community presented many models for effort

estimation which function point (FP) is one of them. FP method is a useful software

estimation methodology to improving project estimation accuracy. A study was

conducted by Ahmed, Salah, Serhani, and Khalil (2008) to adjusting the complexity

weight metric of function point (FP). In order to adjust the complexity weight

metrics of FP, genetic algorithm based approach is used. They consider a

chromosome as a vector of real parameters, and a gene as a real number representing

one FP complexity weight. They also used 40% two-cut point, 20% uniform, and

20% arithmetic crossover operations by 0.7 probabilities, and random mutation

operation by 0.2 probabilities to find better results. They used MMRE as fitness

function in their genetic algorithm. Also, ISBSG data repository release 9 was used

in this research, and they selected 600 data from ISBSG by considering quality rating

of ―A‖ and ―B‖ and also new development projects with IFPUG counting approach.

As a result, by using information and integration of past projects FP structural

elements and using genetic algorithm, they observed an average of 50%

improvement in MMRE.

15

Lokan and Mendes (2009) investigated the difference of effort estimation accuracy

between project by project split and date based split against each other. Accordingly,

by considering project by project chronological splitting and date based splitting, and

using multivariate regression estimation models were built, and evaluated using

training set (from which the model is built) and testing set (which the model

accuracy is assessed). ISBSG release 10 is used in this study, which contained 4106

projects. They excluded projects with quality rating not equal to ―A‖ and ―B‖, and

projects with measurement approach not equal to IFPUG. They also excluded

projects which their unadjusted function points, and development team effort are

unknown, and projects which had extremely influential, so they come up with 906

projects. As a result they stated in their study, estimation accuracy using a simple

date based split seems to be the same as estimation accuracy sing a project by project

split. But because of the threats to validity which they stated themselves (ISBSG is

not a random sample project, and assumptions they take in order to build models

automatically, and not stabling their results) they didn‘t generalize their findings, and

they stated it needs further study.

 In most effort estimation researches all assumptions are on the fact that software size

is a primary predictor, so it should not be underestimated. So, Gencel and Demirors

(2008) revisit the function size measurement (FSM) methods in order to find

improvement opportunity for FSM, and subsequently improvement in benchmarking

and effort estimation. They used International Software Benchmarking Standards

Group (ISBSG) for their empirical study. Among their findings, the convertibility of

size among different functional size methods, considering the target functional

domain type of FSM methods, developing methods for size estimation in earlier

stages of life cycle before availability of FURs, and convertibility of size for later

phases in life cycle are more effective in later effort estimation improvements.

There are many studies which investigate new size estimation techniques and effort

estimation models to improve effort estimation accuracy, but a few of studies pay

attention to quality of historical data which were used in constructing estimation

models (Tunalilar, S., 2011). Tunalilar (2011) proposed an effort estimation

methodology for organization in order to manage effort estimation processes within

the organizations. In this methodology, all necessary steps of effort estimation

16

processes are defined which include data collection, size measurement, data analysis,

calibration, effort estimation processes. Also, effect of functional similarity, and

application domain of project are investigated in this study. The results of this study

showed that considering functional similarity, a Base Functional Components (BFC),

and classifying projects by application domains of them improve correlation between

effort and size.

17

CHAPTER 3

SOFTWARE BENCHMARKING APPROACH FOR EFFORT

ESTIMATION

In this chapter a software benchmarking methodology is proposed for effort

estimation. This approach consists of three parts; benchmarking measures,

benchmarking data collection processes, and benchmarking tool. In the section 3.1 of

this chapter benchmarking measures are explained in detail. In the section 3.2,

benchmarking processes are introduced. Finally, section 3.3 presents the developed

benchmarking tool for automating the methodology.

3.1. Benchmarking Measures

There are many benchmarking measures which are collected in benchmarking data

repositories. However in most of the organizations projects data is not kept in such a

detail and this leads to sparseness of the benchmarking data repositories. As

discussed earlier in the literature review, although International Software

Benchmarking Standards Group (ISBSG) initiated benchmarking standardization

studies in 2008, there is not a benchmarking standard yet.

The aim of benchmarking measures in our methodology is to define projects‘ data

attributes which should be collected in organizations to build an effective

benchmarking data repository. In defining these attributes several points were taken

into account. Firstly, these attributes were chosen based on compatibility with project

attributes of ISBSG data repository. This compatibility will let organizations to

follow the same standardization efforts which ISBSG tries to make. Secondly,

projects attributes which includes important information for organizations were

selected as benchmarking measures in this methodology. Thirdly, we examined each

18

selected benchmarking measure to find out if they can be collected in practice in

other organizations or not. Also, applicability of each of these measures was

inspected in three different organizations.

In our study 49 attributes are considered for the purpose of benchmarking data

collection. These attributes are classified into 6 groups of attributes which are

Submission Attributes, Project Attributes, Product Attributes, Size Attributes, Effort

Attributes, and Productivity Factors. Following are the definition of these groups and

included attributes:

3.1.1. Submission Attributes

The information of project data submitter is collected under this group. The reason

behind collecting this data is to provide information for benchmarking data

repository managers to contact to the person who submitted the project data to get

more detailed information in necessary situations. In order to provide confidentiality,

this group of data attributes is only visible to administrators.

ID of the Attribute: A1 Description: Name and surname of the

person who fills in the questionnaire Name: Contact Person

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of

Benchmarking data collection

Collector: NA

ID of the Attribute: A2 Description: Name of the

company/organization

Name: Company

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of

Benchmarking data collection

Collector: NA

19

ID of the Attribute: A3 Description: Phone number of the contact

person

Name: Phone Number

Scale: Nominal Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the beginning of

Benchmarking data collection

Collector: NA

ID of the Attribute: A4 Description: E-mail of the contact person

 Name: E-mail

Scale: Nominal Measure Type: Noun and Number

Type: Base Collection Frequency: Once

Collection Time: At the beginning of

Benchmarking data collection

Collector: NA

ID of the Attribute: A5 Description: Role of the contact person in

the organization. i.e. Project Manager, Team

Leader, Software Engineer...
Name: Role of the Submitter

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

questionnaire

Collector: NA

ID of the Attribute: A6 Description: Date in which the

questionnaire is filled in Name: Submission Date

Scale: Ordinal Measure Type: Date

Type: Base Collection Frequency: Once

Collection Time: At the beginning of

Benchmarking data collection

Collector: NA

3.1.2. Project Attributes

The information specific to a project is collected under project attributes group.

Project attributes collect information such as project name, project start and end date,

project type, industry type, functional domain type, development team, and other

20

information about the project. These attributes will be used in selecting homogenous

projects data for effort estimation.

ID of the Attribute: B1 Description: Name of the project

 Name: Name of the Project

Scale: Nominal Measure Type: Date

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

ID of the Attribute: B2 Description: Start date of the project in the

format of DD/MM/YY. If the exact date is

not known MM/YY is acceptable
Name: Project Start Date

Scale: Ordinal Measure Type: Date

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

ID of the Attribute: B3 Description: End date of the project in the

format of DD/MM/YY. If the exact date is

not known MM/YY is acceptable
Name: Project End Date

Scale: Ordinal Measure Type: Date

Type: Base Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager

ID of the Attribute: B4 Description: Classification of the project

based on whether it is New Development,

Enhancement, Maintenance or

Redevelopment

Name: Project Type

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

Detailed Description: (a) New Development—At least %90 of the system is developed

21

from scratch or totally new. (b) Maintenance— The system is in use, however, functions

added, updated or deleted. At least % 90 of the system is protected; % 10 of the system is

new developed. (c) Enhancement —Modification percentage on an existing system can be

from %10 to % 90. (d) Redevelopment---- The system is rebuild based on an existing system

without making any changes on functional requirements. (ref. IPA/SEC)

ID of the Attribute: B5 Description: Classification of the projects

in one of the industry types based on the

given list.
Name: Industry Type

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

Detailed Description: (a) Information Systems and Communications, (b) Finance,

(c)Transport, (d) Wholesale and Trail, (e) Manufacturing, (f)Medical, Healthcare,

(g)Education and Learning, (h)Government (i) Insurance (adopted from IPA/SEC)

ID of the Attribute: B6 Description: Classification of the projects

in one of the industry types based on the

given list.
Name: Functional Domain Type

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

Detailed Description: Char Method ISO/IEC 14143-5

Functional Domain Type

Control- and

Communication-

Rich

Data-

Rich

Manipulation-

and Algorithm-

Rich

Pure Data Handling System negligible dominant negligible

Information System negligible dominant present

Data Processing System negligible present present

Controlling Information System present dominant negligible

Controlling Data System present present negligible

Complex Controlling Information present dominant present

22

System

Non-Specific (Complex) System present present present

Simple Control System dominant negligible negligible

Control System present negligible present

Complex Control System dominant negligible present

Data Driven Control System dominant present negligible

Complex Data Driven Control System dominant present present

Pure Calculation System negligible negligible dominant

Controlling Calculation System present negligible dominant

Scientific Information System negligible present dominant

Scientific Controlling Data

Processing System present present dominant

ID of the Attribute: B7 Description: It is new business if the project

is new in one of the industry or functional

domain types
Name: New Business Area or not

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

ID of the Attribute: B8 Description: Weather new technology is

used in the project or not. Architecture,

platform, programming language and DBMS

should be considered.

Name: New Technology or not

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the beginning of the

project

Potential Collector: Project Manager

ID of the Attribute: B9 Description: What kind of tool support has

been used during development process? i.e.

IDE, CVS, CASE Tools
Name: Tools‘ Use

Scale: Nominal Measure Type: Noun

23

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

ID of the Attribute: B10 Description: Programming and tool skills,

experiences of the development team

members on average in years. i.e: 2 years

Name: Experiences of the development

team members

Scale: Ratio Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: At the initiation phase of

the project

Potential Collector: Project Manager, Team

Leader

ID of the Attribute: B11 Description: Number of the people who

involved in the one of the phases of the

project.

Name: Number of the team members

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

ID of the Attribute: B12 Description: Degree of the team member

change for the whole software life cycle. Name: Stability of the team

Scale: Ratio Measure Type: Number

Type: Derived Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

Formula: (Number of the changed members)/Total numbers of team members

3.1.3. Product Attributes

The information related to products is collected under this category. Product

attributes include programming language, data base management system,

architecture, software development methodology, information related to platform,

24

and reuse rate. These attributes will also be used in selecting homogenous projects

data for effort estimation.

ID of the Attribute: C1 Description: Name of the programming

language used in the project Name: Programming Language

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

Detailed Description: (a) Assembly language, (b) COBOL, (c) PL/I, (d) C++, (e) Visual

C++, (f) C, (g) VB,(h)Excel (VBA), (i)PL/SQL, (j): C#, (k) ABAP, (l): Visual Basic.NET,

(m) Java, (n) Perl, (o) Shell script, (p) Delphi, (r)HTML, (s) XML. (ref. IPA/SEC)

ID of the Attribute: C2 Description: Name of the data base

management system used in the project Name: DBMS

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

Detailed Description: a: Oracle, b: SQL Server, c: PostgreSQL, d: MySQL, e: Sybase, f:

Informix, g: ISAM, h: DB2, i: Access, j: HiRDB, k: IMS, l: Other (description), m: None.

(ref. IPA/SEC)

ID of the Attribute: C3 Description: Name of the architecture type

used in the developed project. Name: Architecture

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

Detailed Description: a: Stand-alone b: Client/Server Model (2 tier, 3 tier...) c: Search

Oriented Architecture d: Service Oriented Architecture e: Distributed Computing f:Peer to

Peer g: Other

25

ID of the Attribute: C4 Description: Name of the life cycle model

followed in the project. i.e. Waterfall,

Iterative, Evolutionary, Spiral, Agile, Object

Oriented other.

Name: Software Development Methodology

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

ID of the Attribute: C5 Description: Does the organization has

CMM, CMMI, SPICE certification or not. Name: Process improvement standard

existence

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

ID of the Attribute: C6 Description: If the project is conducted

based on standards or not. IEEE-830-1998,

IEEE-1058-1998,etc.
Name: Standard Use

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

ID of the Attribute: C7 Description: What is the target operating

system? i.e. Linux, Unix, .Net, Java Name: Platform Use

Scale: Nominal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After the project planning

phase

Potential Collector: Project Manager, Team

Leader

26

ID of the Attribute: C8 Description: What is the Algorithm

complexity level which is used in project? Name: Algorithm Complexity Level

Scale: Ordinal Measure Type: Noun

Type: Base Collection Frequency: Once

Collection Time: After requirements and

design phase

Potential Collector: Project Manager, Team

Leader

Detailed Description: These three levels of complexity is interpretation of algorithm

complexity in subjective way.

1. Basic Algorithms (Level 1): Small algorithms include only basic mathematical

calculations and simple data manipulations which are: Derived data creation by

transforming existing data, Mathematical formulas/calculations, Condition analysis

to determine which are applicable, Data validation, Equivalent-value conversion,

and Data filtering/selection by specified criteria. This classification of data

manipulation is adopted from action type list defined in Santillo & Abran (2006).

2. Medium complex algorithms (Level 2): Algorithms in this level include medium

complex algorithms which have different operations than defined action type above

(defined in the basic algorithms), and in these algorithms there isn‘t any integration

with other algorithms in the system. Also, in this kind of algorithms there isn‘t

parallel and multitasking usage of processes. In this level the input of algorithms

are a group of parameters, and the result of medium complexity operation can be

one or several outputs.

3. Very complex algorithms (Level 3): Algorithms which includes very complex

operations, and there is integration with other algorithms. In this kind of algorithms

extra hardware are involved. In addition, in this kind of algorithms, there are real

time criteria as limitation factors.

ID of the Attribute: C9 Description: Percentage of reused LOC of

software components. Name: Reuse rate of source code

Scale: Ratio Measure Type: Number

Type: Derived Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

Formula: %software component reused

By reuse we mean the percentage of effort consumed for reusing.

27

3.1.4. Size Attributes

The size of software projects are measured by using the COSMIC function size

measurement according to ISO/IEC as an international standard. Project size data is

collected in BFC level, and not only numerical information is kept, but also

functional requirements, data groups, object of interests, and data movements are

collected under this attribute group. In this case it is possible to calculate functional

similarity which reflects the project size better.

ID of the Attribute: D1 Description: Detailed size data in COSMIC

(functional requirements, data groups, object

of interest, and data movements)
Name: Detailed Size Data in COSMIC

Scale: ratio Measure Type: number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

Detailed Description: Project size is measured by using COSMIC method, and detailed size

data of the project is collected.

ID of the Attribute: D2 Description: Number of Entries in

COSMIC measurement Name: Number of Entries

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

ID of the Attribute: D3 Description: Number of Exits in COSMIC

measurement Name: Number of Exits

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

28

ID of the Attribute: D4 Description: Number of Reads in COSMIC

measurement Name: Number of Reads

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

ID of the Attribute: D5 Description: Number of Writes in COSMIC

measurement Name: Number of Writes

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

ID of the Attribute: D6 Description: Number of Functional

Processes in COSMIC measurement Name: Number of Functional Processes

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: In the project planning

phase

Potential Collector: Project Manager,

software engineer

Detailed Description: Number of identified functional processes in COSMIC functional

size measurement of the project.

ID of the Attribute: D7 Description: Number of Added

functionality in COSMIC measurement Name: Added functionality

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency:

Collection Time: During project Potential Collector: Project Manager,

software engineer

Detailed Description: Number of added functionality in COSMIC functional size

measurement of the project. The baseline for added functionality is the original version of

the project which the COSMIC functional size measure is calculated.

29

ID of the Attribute: D8 Description: Number of Deleted

functionality in COSMIC measurement Name: Deleted functionality

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency:

Collection Time: During project Potential Collector: Project Manager,

software engineer

Detailed Description: Number of Deleted functionality in COSMIC functional size

measurement of the project. The baseline for deleted functionality is the original version of

the project which the COSMIC functional size measure is calculated.

ID of the Attribute: D9 Description: Number of Changed

functionality in COSMIC measurement Name: Changed functionality

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency:

Collection Time: During project Potential Collector: Project Manager,

software engineer

Detailed Description: Number of Changed functionality in COSMIC functional size

measurement of the project. The baseline for changed functionality is the original version of

the project which the COSMIC functional size measure is calculated.

ID of the Attribute: D10 Description: Reflective functional

similarity size

Name: Reflective functional similarity size

Scale: ratio Measure Type: number

Type: derived Collection Frequency: Once

Collection Time: In the project planning

phase, after completion of measurement

Potential Collector: Project Manager,

software engineer

Detailed Description: Project size is measured by using COSMIC method, and reflective

functional similarity is calculated using detailed size of project (OzanTop O., 2008)

3.1.5. Effort Attributes

Effort data is collected based on ISO 12207 Software life cycle processes standard

under 11 categories: Project management activities, requirements definition

activities, design activities, coding activities, software integration activities, Testing

30

activities, system installation activities, operation activities, quality assurance

activities, quality management activities, and maintenance activities. As mentioned

before, these effort attributes are defined based on ISO 12207 standard, and in this

international standard the use of any particular life cycle model is not required. So,

by following various types of life cycle models such as waterfall, incremental

development, evolutionary development, and etc. it is possible to detect defined

efforts. Thus, categorization of effort data is life cycle independence. Moreover,

Effort data for each of these activities are kept in detailed level. Based on the level of

effort data and how these data is collected, quality of effort data is classified into

three levels.

ID of the Attribute: E1 Description: Total actual effort in person

hours for the whole project life cycle. Name: Actual Total Effort in person hours

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

ID of the Attribute: E2.1 Description: Total actual effort in person

hours for the project management activities.

For details check detailed description.

Name: Total Actual Effort Project

Management Activities

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: During the project life

cycle

Potential Collector: Project Manager, Team

Leader

Detailed Description: Project Management Activities include:

6.3.1 Project Planning Activities: to determine the scope of the project management and

technical activities, process outputs, project tasks and deliverables; to establish schedule for

project task conduct, including achievement criteria, and required resources to accomplish

project tasks.

6.3.2 Project Assessment and Control Activities: to determine the status of the project and

ensure that the project performs according to plans and schedules, and within projected

budgets, and that it satisfies technical objectives.

31

6.3.3 Decision Management Activities: to select the most beneficial course of project action

where alternatives exist.

6.3.4 Risk Management Activities: to identify, analyze, treat and monitor the risks

continuously.

6.3.5 Configuration Management Activities: to establish and maintain the integrity of all

identified outputs of a project or process and make them available to concerned parties.

6.3.6 Information Management Activities: to provide relevant, timely, complete, valid and,

if required, confidential information to designated parties during and, as appropriate, after

the system life cycle

6.3.7 Measurement Activities: to collect, analyze, and report data relating to the products

developed and processes implemented within the organizational unit, to support effective

management of the processes, and to objectively demonstrate the quality of the products.

ID of the Attribute: E2.2 Description: Total actual effort in person

hours for the requirements definition

activities. For details check detailed

description.

Name: Total Actual Effort Requirements

Definition Activities

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the

requirement definition activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: Requirements Definition Activities include:

6.4.1 Stakeholder Requirements Definition Activities: The purpose of the Stakeholder

Requirements Definition Process is to define the requirements for a system that can provide

the services needed by users and other stakeholders in a defined environment.

It identifies stakeholders, or stakeholder classes, involved with the system throughout its life

cycle, and their needs and desires. It analyzes and transforms these into a common set of

stakeholder requirements that express the intended interaction the system will have with its

operational environment and that are the reference against which each resulting operational

service is validated in order to confirm that the system fulfills needs.

6.4.2 System Requirements Analysis Activities: The purpose of System Requirements

Analysis is to transform the defined stakeholder requirements into a set of desired system

technical requirements that will guide the design of the system.

7.1.2 Software Requirements Analysis Activities: The purpose of Software Requirements

Analysis Process is to establish the requirements of the software elements of the system.

32

ID of the Attribute: E2.3 Description: Total actual effort in person

hours for the design activities. For details

check detailed description.
Name: Total Actual Effort Design Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the design

activities

Potential Collector: Project Manager, Team

Leader

Detailed Description:

Design Activities include:

6.4.3 System Architectural Design Process: The purpose of the System Architectural

Design Process is to identify which system requirements should be allocated to which

elements of the system.

7.1.3 Software Architectural Design Activities: The purpose of the Software Architectural

Design Process is to provide a design for the software that implements and can be verified

against the requirements

7.1.4 Software Detailed Design Process: The purpose of the Software Detailed Design

Process is to provide a design for the software that implements and can be verified against

the requirements and the software architecture and is sufficiently detailed to permit coding

and testing.

ID of the Attribute: E2.4 Description: Total actual effort in person

hours for the software coding activities. For

details check detailed description.

Name: Total Actual Effort Software Coding

Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the coding

activities

Potential Collector: Project Manager, Team

Leader

Detailed Description:

7.1.5 Software Construction Activities: This process includes the activities to produce

executable software units that properly reflect the software design.

33

ID of the Attribute: E2.5 Description: Total actual effort in person

hours for the software integration activities.

For details check detailed description.

Name: Total Actual Effort Software

Integration Activities

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the

Software Integration Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: Software Integration Activities include;

6.4.5 System Integration Process: The purpose of the System Integration Process is to

integrate the system elements (including software items, hardware items, manual operations,

and other systems, as necessary) to produce a complete system that will satisfy the system

design and the customers‘ expectations expressed in the system requirements.

7.1.6 Software Integration Activities: This process is to combine the software units and

software components, produce integrated software items.

ID of the Attribute: E2.6 Description: Total actual effort in person

hours for the software testing activities. For

details check detailed description.
Name: Total Actual Effort Testing Activities

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the

Software Testing Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: Testing Activities include;

6.4.6 System Qualification Testing Activities: Systems Qualification Testing Process

includes the activities to ensure that the implementation of each system requirement is tested

for compliance and that the system is ready for delivery.

7.1.7 Software Qualification Testing Activities: This process includes the activities to

confirm that the integrated software product meets its defined requirements.

ID of the Attribute: E2.7 Description: Total actual effort in person

hours for the system installation activities.

For details check detailed description.

Name: Total Actual Effort System

Installation Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

34

Collection Time: At the end of the

Software Installation and Acceptance

Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: System Installation Activities include;

6.4.7 System Installation Activities: The purpose of the Software Installation Process is to

install the software product that meets the agreed requirements in the target environment.

ID of the Attribute: E2.8 Description: Total actual effort in person

hours for the operation activities. For details

check detailed description.

Name: Total Actual Effort Operation

Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the

Operation Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: This process includes the activities to operate the software product in

its intended environment and to provide support to the customers of the software product.

ID of the Attribute: E2.9 Description: Total actual effort in person

hours for the software quality assurance

activities. For details check detailed

description.

Name: Total Actual Effort Software Quality

Assurance Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the

Software Quality Assurance Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: Software Quality Assurance Activities Include;

7.2.3 Software Quality Assurance Process: The purpose of the Software Quality Assurance

Process is to provide assurance that work products and processes comply with predefined

provisions and plans.

7.2.4 Software Verification Process: The purpose of the Software Verification Process is to

confirm that each software work product and/or service of a process or project properly

reflects the specified requirements.

7.2.5 Software Validation Process: The purpose of the Software Validation Process is to

confirm that the requirements for a specific intended use of the software work product are

35

fulfilled.

7.2.6 Software Review Process: The purpose of the Software Review Process is to maintain a

common understanding with the stakeholders of the progress against the objectives of the agreement

and what should be done to help ensure development of a product that satisfies the stakeholders.

Software reviews are at both project management and technical levels and are held throughout the life

of the project.

7.2.7 Software Audit Process: The purpose of the Software Audit Process is to

independently determine compliance of selected products and processes with the

requirements, plans and agreement, as appropriate

ID of the Attribute: E2.10

Description: Total actual effort in person

hours for the quality management activities.

For details check detailed description. Name: Total Actual Effort Quality

Management Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the Quality

Management Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: This process includes the activities to assure that products, services

and implementations of life cycle processes meet organizational quality objectives and

achieve customer satisfaction

ID of the Attribute: E2.11

Description: Total actual effort in person

hours for the maintenance activities. For

details check detailed description. Name: Total Effort for Maintenance

Activities

Scale: Ratio Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the

Maintenance Activities

Potential Collector: Project Manager, Team

Leader

Detailed Description: 6.4.10 Software Maintenance Process: The purpose of the Software

Maintenance Process is to provide cost-effective support to a delivered software product.

36

ID of the Attribute: E3 Description: This question addresses how

the actual effort data was collected in the

organization. Potential answers are –using

timesheets in daily bases, weekly bases, or at

the end of the month; using MS project...

Name: What kinds of procedures were used

for the record of the effort?

Scale: Nominal Measure Type: Noun Phrase

Type: Base Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

3.1.6. Productivity Factors

Productivity factors which have influence on productivity and effort of the project

are collected under this attribute group. These productivity factors are: reliability,

usability, maintainability, efficiency, and portability. Data related to these factors are

gathered in ordinal scale from a level of 1 to 5.

ID of the Attribute: F1 Description: Requirement volatility is a

measure of how much software requirements

change (added, deleted and modified) after

agreed on a set of requirements by both

client and supplier.

Name: Requirements volatility

Scale: Ratio Measure Type: Number

Type: Base Collection Frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

Detailed Description: Requirements Volatility Percentage=

(added+ deleted+ modified requirements)/(total Number of requirements in the specific

version)

ID of the Attribute: F1 Description: Does a standard or body

impose nonfunctional requirements in

software.
Name: Nonfunctional requirements

Scale: Ordinal Measure Type: Number

Type: Base Collection Frequency: Once

37

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

Detailed Description: Nonfunctional requirements:

Reliability: Ability of software to behave consistently in an acceptable manner Give a range

from 1 to 5 based on the intensity reliability intensity imposed in the project. 1 is the lowest,

5 is the highest reliability

Usability: Usability of user interface. Give a range from 1 to 5 based on the intensity of the

usability requirements in the project. 1 is the lowest, 5 is the highest usability

Maintainability Level of cohesion and coupling. Give a range from 1 to 5 based on the

intensity maintainability requirements in the project. 1 is the lowest, 5 is the highest

maintainability

Efficiency: The level at which software uses system resources. Give a range from 1 to 5

based on the intensity efficiency requirements in the project. 1 is the lowest, 5 is the highest

efficiency

Portability: The degree of ease to port software running on one system environment to

another one. Give a range from 1 to 5 based on the intensity portability requirements in the

project. 1 is the lowest, 5 is the highest portability.

ID of the Attribute: F3 Description Is the system Safety Critical or

not. What is the level of it? Name: Is the system Safety Critical or not.

What is the level

Scale: Nominal Measure Type: Number

Type: Base Collection frequency: Once

Collection Time: At the end of the project Potential Collector: Project Manager, Team

Leader

3.2. Benchmarking Data Collection Processes

For the purpose of constructing a reliable benchmarking data repository, not only

projects measures are important, but also data collection processes play critical role

in improving quality of benchmarking projects data (Ozantop, Nabi, & Demirors,

2011). So, in order to improve the accuracy and consistency of the benchmarking

data, data collection processes are defined and modeled based on software

development stages in our methodology. These processes are based on Ozcan Top

and Demirors (2011) technical report and refined in this section. In these data

38

collection processes it is determined that in which stage of software development,

which data, and from where should be collected. The benchmarking data collection

processes are modeled in ARIS modeling tool by utilizing the Event-driven process

chain (EPC) notations. In the first level of these processes, data collection

infrastructure and Cubit infrastructure is defined, then in the next stage data

collection process begins, and projects data are collected in the subsequent stages of

the processes. These processes and sub processes are:

1. Infrastructure Definition Process

2. Cubit Infrastructure Definition Process

3. Data Collection Process

3.1. Submission Attributes Data Collection Process

3.2. Project Attributes Data Collection Process

3.3. Product Attributes Data Collection Process

3.4. Software Attributes Data Collection Process size

3.4.1. Measure COSMIC size

4. Effort Attributes Data Collection Process

4.1. Data Collection Process for Project Management Effort Data

4.2. Data Collection Process for Requirements‘ Activities Effort Data

4.3. Data Collection Process for Design Activities‘ Effort Data

4.4. Data Collection Process for Integration Activities‘ Effort Data

4.5. Data Collection Process for Test Activities‘ Effort Data

4.6. Data Collection Process for Quality Activities‘ Effort Data

EPC is a dynamic modeling notation to present flow of activities in processes by

unifying static resources of business such as systems, organizations, data, etc. (Davis

& Brabander 2007)

There are four basic type of objects used in EPC: Events, Functions, Rules, and

Resources like data, systems, organizations, etc. Events represent the external

changes which trigger the start of the process, internal changes of states by preceding

the process, and the final outcome of the process. They present the pre-conditions

and post-conditions for each step of processes. Functions represent the activities and

tasks which are executed as part of processes and they receive inputs, creates outputs,

39

and use resources. An event can trigger a function, and a function creates one or

more events (Davis & Brabander 2007).

To illustrate the flow of process models, combination of rules with functions and

events are used. There are three types of rules: OR, XOR, and AND rules (Davis &

Brabander 2007). The object symbol and their descriptions which are used in the

benchmarking collection processes are given in Table 1.

Table 1: EPC model objects used in benchmarking data collection processes (Davis &

Brabander 2007)

Object Name Object Symbol Object Description

Function

A function represents the activities

and tasks.

Event

An event represents the external

changes which trigger the start of the

process, internal changes of states by

preceding the process, and the final

outcome of the process.

AND

Following a function, process flow

splits into two or more parallel paths.

Preceding a function, all events must

occur in order to trigger the following

function.

XOR

Following a function, one, but only

one, of the possible paths will be

followed. Preceding a function, one,

but only one, of the possible events

will be the trigger.

Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Other

O
rg

a
n
iz

a
ti
o
n
a
..
.

.

Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Other

O
rg

a
n
iz

a
ti
o
n
a
..
.

.

40

Table 1: EPC model objects used in benchmarking data collection processes (Davis &

Brabander 2007) (Continued)

Object Name Object Symbol Object Description

OR

Following a function, one or many

possible paths will be followed as a

result of the decision. Preceding a

function, any one event, or

combination of events, will trigger the

function.

Position

A position is Role performed by

individual person.

Document

Document is an Information Carrier.

Application

System

A software system running on a

computer used to support the carrying

out of a function.

Screen

The design of a particular display

screen format (GUI) used by a system

to support functions requiring user

input or displaying information to

users.

3.2.1. Infrastructure Definition Process

Defining infrastructure is the first process in benchmarking data collection. In this

process project manager, quality manager, software engineer, or benchmarking data

manager is responsible for theoretical defining infrastructure for the organization.

This process begins by a motivation for data collection and the purpose of the

benchmarking data collection is identified in the first place. Subsequently, attributes

of data collection is identified and each attribute will be defined. In this stage the

Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Carries out & Supports Other

O
rg

a
n
iz

a
ti
o
n
a
..
.

.

41

reports and tools which will be used in data collection process, the frequency of data

collection, and also responsible people for data collection are identified.

3.2.2. Cubit Infrastructure Definition Process

Benchmarking data collection Cubit infrastructure is defined in this process.

Benchmark data manager defines Cubit infrastructure for a specific project. As a first

step, an account (user and password) is requested from Cubit manager for benchmark

data manager of the organization. After receiving Cubit account information,

benchmark data manager logs in to Cubit and defines users for benchmark

responsible persons in the organization, and send user information to responsible

persons. In order to collect benchmarking data, benchmarking questions, answer

types, and questions types are defined by benchmarking data manager as a Cubit

benchmarking infrastructure for target organization.

3.2.3. Data Collection Process

In this process, benchmarking data manager or benchmarking responsible person

define the project. Subsequently data related to projects attributes, product attributes,

software size measurement, project efforts, and productivity factors data are

collected. This process contains sub processes for collecting each benchmarking

attributes category.

3.2.3.1. Project Data Collection Process

In this process project attributes such as project name, project start and end date,

project type, industry type, functional domain type, development team, and other

information about the project are collected. Project attributes data are extracted by

data submitter from related reports or documents. First, project Charter is checked

for identifying project name, and project name is entered using answer benchmarking

questions screen of Cubit. The next steps are to check out project plan, Gantt chart,

and Work Breakdown Structure (WBS) to identify project start and end date, and

then submitting them to Cubit. In order to find project type and industry type of the

target project Software Requirement Specification (SRS) and attribute definition

document (or organization benchmark report) should be examined. Project

42

management plan and human resource management record are other artifacts which

should be examined to extracting project attributes data.

3.2.3.2. Product Data Collection Process

Benchmarking data for product attributes category are collected in this process.

Product data should be extracted from relevant documents and reports, and then

submitted to the Cubit by using benchmarking screens. In order to identify

programming language attribute, submitter should refer to SRS, technical

management plan, and also attribute definition document. Software design and

architecture design are the next documents which should be checked for identifying

architecture type of the project. Following these, software development methodology

is identified by referring to project management plan and also attribute definition

document. Technical management plan and source code are other items which

should be used for identifying other product attributes in an organization.

3.2.3.3. Software Size Data Collection Process

Software size attributes data are collected in this process. As a first step, size

measurement tool should be identified, and then software size of the target project is

measured by using COSMIC measurement method. The number of Entries, Exits,

Reads, and Writes in COSMIC measurement of the project are counted, then total

size in COSMIC Function Point (CFP) is calculated. The number of functional

processes, new added functionalities, deleted functionalities, and modified

functionalities are identified and submitted to the CUBIT.

3.2.3.3.1. Software Functional Size Measurement Process

In this sub process, the process of functional size measurement of the project is

defined. First, measurement scope should be identified by referring to SRS, user

manuals, and user screens of the software. The boundaries should be identified in the

next step. Functional processes, object of interests, data groups, data movements,

added functionalities, deleted functionalities, and changed functionalities are

identified by using COSMIC measurement method. Finally, total size in CFP is

calculated, and size measurement is verified by Cubit.

43

3.2.4. Effort Data Collection Process

Data Collection process for effort attributes are given in this process. In this process

effort for each effort attributes, which were identified in benchmarking measures

section (section 3.1) are collected (see APPENDIX). The first step is to identify

effort for project management activities which is done in ―Data Collection Process

for Project Management Effort Data‖ sub process. The next step is to identify effort

for requirement definition activities; this step is also elaborated in ―Data Collection

Process for Requirements‘ Activities Effort Data‖ sub process in section 3.2.4.2.

Following, effort of design activities is collected in ―Data Collection Process for

Design Activities‘ Effort Data‖ sub process. As the next task, in order to identify

effort for coding activities, work items related with coding activities are determined

by referring to project plan, WBS, WBS Dictionary, and project schedule. Then

effort records are mapped to work items of coding activities. Subsequently, effort for

Integration activities, and testing activities are identified by following ―Data

Collection Process for Integration Activities‘ Effort Data‖, and ―Data Collection

Process for Test Activities‘ Effort Data‖ sub processes respectively. The next steps

are identifying items related to installation activities, and operation activities to find

effort of each of these activities. These items should be extracted from project plan,

WBS, WBS Dictionary, and project schedule. After mapping and summing effort

records to work items, work effort for both installation, and operation activities are

collected. Next, effort for software quality assurance activities are collected by

following ―Data Collection Process for Quality Activities‘ Effort Data‖ sub process.

The next tasks are identifying effort for quality management and maintenance

activities similar to the tasks done for identifying effort of coding activities. As a last

task in this process, the procedures which were used for the record of effort are

identified.

3.2.4.1. Data Collection Process for Project Management Effort Data

In this Sub process, data collection process of effort data for project management

activities is elaborated. First step is to identify work items related to developing

Project Plan (6.3.1) by referring to Project Plan, WBS, WBS Dictionary, and project

schedule. Then, effort records are extracted from timesheet application (or any other

44

effort record), and these records are mapped to identified work items, and the total

effort for project planning activities are calculated and submitted to Cubit. The next

tasks are identifying work items related with project assessment and control activities

(6.3.2), decision management activities (6.3.3), Risk management activities (6.3.4),

configuration management activities (6.3.5), information management activities

(6.3.6), and measurement activities (6.3.7) respectively in order to find effort

consumed for these activities. For all these tasks the same procedure which was done

for developing project plan will be pursued. At the end, total effort for project

management activities will be calculated and submitted to Cubit.

3.2.4.2. Data Collection Process for Requirements Activities’ Effort Data

Effort data for requirement activities are collected in this sub process. In this process

effort data for stakeholder requirement definition activities (6.4.1), system

requirement analysis activities (6.4.2), and software requirement analysis activities

(7.1.2) are collected. For this purpose, first work items related with each of these

activities are identified by referring to Project Plan, WBS, WBS Dictionary, and

project schedule. Then effort records are mapped to these work items and total effort

for each of these activities are found and submitted to Cubit. After finding effort data

for all of these activities the total effort for requirement phase is calculated and also

submitted.

3.2.4.3. Data Collection Process for Design Activities’ Effort Data

In this sub process, effort data for design activities are collected. In order to find

effort consumed for each design activity of system architectural design activities

(6.4.3), software architectural design activities (7.1.3), and software detailed design

activities (7.1.4), related work items should be identified. Then effort records which

are extracted from timesheet or other artifact are mapped to these work items. After

mapping effort record to work items, the sums of effort of each activity are submitted

to cubit. Lastly, total effort for all activities is calculated as effort of design phase.

3.2.4.4. Data Collection Process for Integration Activities’ Effort Data

Effort data for Integration activities are collected in this sub process. In this process

effort data for System Integration activities (6.4.5) and Software Integration activities

45

(7.1.6) are collected. For this purpose, first work items related with each of these

activities are identified by referring to Project Plan, WBS, WBS Dictionary, and

project schedule. Then effort records are mapped to these work items and total effort

for each of these activities are found and submitted to Cubit. After finding effort data

for all of these activities the total effort for Integration phase is calculated and also

submitted to Cubit.

3.2.4.5. Data Collection Process for Test Activities’ Effort Data

Effort data for Test activities are collected in this sub process. In this process effort

data for System Qualification testing activities (6.4.6) and Software Qualification

Testing activities (7.1.7) are collected. For this purpose, first work items related with

each of these activities are identified by referring to Project Plan, WBS, WBS

Dictionary, project schedule, Test Plan, and Test Cases. Then effort records are

mapped to these work items and total effort for each of these activities are found and

submitted to Cubit. After mapping effort record to work items, the sums of effort of

each activity are submitted to cubit. Lastly, total effort for all activities is calculated

as effort of testing phase.

3.2.4.6. Data Collection Process for Quality Activities’ Effort Data

Data collection process for Quality activities‘ effort data is elaborated in this sub

process. The first task in this process is to identify work items related with Software

Quality Assurance activities (7.2.3) by referring to Quality Management Plan,

Project Plan, WBS, WBS Dictionary, and project schedule. Then in order to find

total effort of software quality assurance activities effort records which are extracted

from timesheets are mapped to these identified work items. The next step is to

identify effort data of Software Verification activities (7.2.4) by identifying related

work items. These work items are extracted from Project Plan, WBS, WBS

Dictionary, and project schedule artifacts. Once more effort records are mapped to

these work items to determine the amount of effort consumed for software

verification activities. The same procedure is followed for identifying effort data for

Software Validation Activities (7.2.5). As the next task, work items related with

Software Review activities (7.2.6) is identified by referring to Project Plan, WBS,

46

WBS Dictionary, project schedule, and Review Schedules. Afterward, total effort for

software review activities are determined by mapping effort record to these identified

work items. Next, effort data for Software Audit activities (7.2.7) are identified

similarly by referring to Project Plan, WBS, WBS Dictionary, and project schedule

artifacts. After finding effort data for all of these activities the total effort for Quality

activities is calculated and also submitted to Cubit.

3.3. Benchmarking Tool

Considering benchmarking defined measures and data collection processes, an

automated benchmarking data collection tool was integrated on Cubit

(http://smrg.ii.metu.edu.tr/cubit/). The Cubit toolset is a web based application which

have Java technologies and Groovy as an upper level language for its infrastructure.

Cubit toolset is developed by using Grails framework and as DBMS the PostgreSQL

rational database is used. For development of Cubit an iterative and incremental

methodology was pursued. Cubit enables user to measure software projects, and

collect projects size measurements details, define infrastructure for data collection,

and collect benchmarking data in a reliable way.

System administrator of the Cubit is responsible to define an organization and an

administrator user for the organization. Subsequently, organizational administrator

can define several users within the organization.

Several projects can be defined within an organization, and then size measurement

data and benchmarking data of these projects can be collected.

Use case model diagram for Cubit benchmarking is given in Figure 1.

47

Figure 1: Use case model for cubit benchmarking part

In the Cubit benchmarking part there are three kinds of user; system administrator,

benchmarking data manager (Benchmarking administrator), and benchmarking

responsible person. As mentioned before, benchmarking administrator is defined by

cubit administrators for an organization. Subsequently, benchmark data administrator

has the responsibility of defining users for persons who are responsible of

benchmarking in the organization.

There are two use cases defined in benchmarking part; Manage benchmarking

question (define cubit infrastructure), and collect benchmarking project data.

48

 Figure 2: Benchmarking Home

In manage benchmarking question use case, users define new Question Category,

modify and delete existing ones. Also, new benchmarking question can be defined,

modified, deleted, and ordered. It should be mentioned that, based on our

methodology there are questions defined by system administrator, but benchmarking

data manager can also add new questions to question lists. In collect benchmarking

project use case, user answers benchmarking questions and modify previous answers.

The screenshot of benchmarking home page is shown in Figure 2.

49

Figure 3: Benchmarking Question Category

To define the infrastructure of benchmarking questions, the benchmarking data

administrator defines benchmarking question categories, and subsequently

benchmarking questions. Figure 3 and Figure 4 depict benchmarking question

category and benchmarking question lists Graphical User Interface (GUI).

50

Figure 4: Benchmarking Question List

In order to define different questions, question types and choice types are used. There

are four different question types: multiple choice questions with single answer,

multiple choice questions with multiple answers, single textbox question, and

multiple textbox questions. Choice type is the type of the answer a benchmark

question can have, and it assesses defining different question types. It consists of:

Text, checked Text, and selection choice types. Text choice type is used for the

answers which has only text answer. Checked text choice type is used for the

answers which enable selection and text answer. Selection type is used for multiple

choice questions which the answer should be selected. In addition, validation formats

(String, Date Format DD/MM/YY or MM/YY, Integer, and Float) are defined for

each question and are used for validating the answer of each question. Also, a range

for string, integer and float were defined to collect valid data.

51

Figure 5 presents the ―define single textbox question‖ GUI. This question type is

designed for benchmarking measures which has only one textual answer. As an

example, this question type can be utilized in collecting ―Project Name‖ data in

project attributes category.

Figure 5 Define Single Textbox Question

Figure 6 presents the ―define multiple textbox question‖ GUI. This question type is

designed for benchmarking measures which has multiple textual answers. As an

example, this question type can be defined for collecting benchmarking measures of

effort attributes.

52

Figure 6 : Define MultipleTextbox Question

Figure 7 presents the ―define multiple choice questions‖ with one answer GUI. This question type is designed for collecting benchmarking

measures which one answer should be selected between several defined choices. In answer benchmarking questions the choices of this

question are displayed as radio buttons. For instance, this question type is used for collecting ―functional domain type‖ data which is depicted

in Figure 7.

53

Figure 7: Define Multiple Choice with One Answer Question

Figure 8 presents the ―define multiple choice questions‖ with multiple answers GUI. This question type is designed for collecting

benchmarking measures which several answers can be selected between defined choices. As an example, this question type can be utilized in

collecting ―Standard Use‖ benchmarking measure data in product attributes category.

54

Figure 8: Define Multiple Choice with Multiple Answer Question

In the second stage the data submitter logs into the Cubit with specified user and password to answer the questions related to benchmarking.

After selecting project from the list of projects, benchmarking questions are displayed according to question categories, and question orders.

After answering benchmarking questions of each category, users use Next or Back buttons to navigate to the next question category or to the

questions of previous question category respectively. In order to give information about each question, description of each benchmarking

question according to defined benchmarking measures (section 3.1) is provided as a tooltip text when the mouse moves over questions. The

55

answers for benchmarking questions will be validated (according to validation

formats which explained) before saving them, and if any problem related to answers

is found, the system will warn the user. Figure 9 presents the answer benchmarking

questions GUI of Cubit benchmarking data collection tool.

Figure 9: Answer benchmarking questions

56

CHAPTER 4

APPLICATION OF THE MODEL AND AUTOMATED

BENCHMARKING DATA COLLECTION

This chapter describes the two case studies which are utilized to develop and validate

the benchmarking methodology. In the first case study the requirements of

developing benchmarking methodology and benchmarking measures is explored.

Then, project data for the identified benchmarking measures are collected, and

improvement opportunities for these benchmarking measures are investigated. As the

result of this case study an automated benchmarking data collection tool is

developed. In the second case study, our purpose was to validate the proposed

methodology and benchmarking data collection tool. Benchmarking projects data for

another organization were collected for this purpose and fill in ratios of

benchmarking measures, productivity ratios of projects are examined. Also effort

estimation models are constructed and evaluated.

In this chapter, research questions and research methodology is explained. Then case

study design, plan, and case study results are described. Finally, in the last part the

threats to the validity of the study are discussed.

4.1. Research Questions

The purpose of this study is to investigate improvement opportunity for efficient

software benchmarking methodology by considering a meta-data model of project

attributes for benchmark data repository and defining data collection processes. In

this study the characteristics of available benchmark data sets were evaluated and the

benchmarking measures were identified. Then processes for collecting data for these

measures were identified. By considering identified benchmarking measures and

57

benchmarking data collection processes, implementation of collecting benchmark

dataset was the next target of this study.

In order to cover these purposes the following research questions were explored:

Q1: What are project attributes of a benchmarking meta-model which can be used in

establishing reliable effort estimation models?

Q2: For the purpose of software benchmarking which measures can be collected in

organizations in practice?

Q3: What are the requirements of automated benchmarking data collection processes

which improves benchmarking data repositories?

Q4: Is this benchmarking methodology applicable to other organizations?

Q5: Does data collected by this methodology lead to better effort estimation?

We used qualitative research methodology to answer the research questions. There

are several approaches in qualitative research: case study, Ethnography, Ethology,

Ethnomethodology, Grounded theory, Phenomenology, Symbolic interaction, action

research, and historical research. Among these nine approaches for answering the

research questions, case study approach is selected in this study. We have selected

case study approach since we wanted to do detailed exploratory investigations to get

more insights for the causes of inaccuracy of benchmarking data repositories, and we

do not have any control on behavioral events and variables.

4.2. Case Study Design

Two case studies were conducted to explore the answers for the research questions.

In the first case study, an exploratory study was conducted to find the benchmarking

data attributes and benchmarking data collection processes in the literature. The first,

second, and third research questions were answered in this case study. In order to

find benchmarking measures available benchmarking data repositories were

examined and evaluated and benchmarking measures and benchmarking data

collection processes were identified for software benchmarking purpose.

Subsequently, in this case study projects data which were collected from an

organization based on these identified benchmarking measures were evaluated and

improvement possibilities for the identified measures and benchmarking data

58

collection processes were investigated by using these data. Meanwhile, the third

research question was answered in this case study and as a result of this case study an

automated benchmarking data collection was integrated to Cubit. Also, a project data

were collected from another company in order to observe collection potential of

benchmarking measures and get more insight about quality of projects data.

At the end, in the second case study validation of the automated benchmarking data

collection tool was performed and fourth and fifth research questions were answered

in this case study. This automated tool is validated by using benchmarking project

data to investigate whether benchmarking project data leads to better effort

estimation or not.

4.2.1. Case Selection Criteria and Background of these selected cases

The cases which were used in the both case studies were gathered by researchers in

researches in Software Management Research group

(http://smrg.ii.metu.edu.tr/smrgp/). The first case projects data were from

organization projects data of banking domain and also a project from communication

domain. The second case was from project data of an organization in different

domain. These three organizations were selected in order to be able to generalize the

results of the study for organizations of wider domains. On the other hand since we

were conducting other projects with the organizations from these domains it was

easy to reach information of benchmarking project data in these three organizations.

4.3. Case study 1: Exploratory Case Study

In this case study software benchmarking measures which can be used in

constructing reliable effort estimation models, and requirements of benchmarking

data collection tool are explored. In order to find these measures and requirements

first literature review was conducted. As the result of this survey benchmarking

measures, and data collection processes were determined for benchmarking purpose.

Projects data were collected from three organizations to find improvement

opportunities for this identified approach. Lastly after refining these measures and

processes, benchmarking data collection tool is automated as a part of proposed

benchmarking methodology.

59

4.3.1. Case Study 1 Plan

The activities which were included in case study 1 were determined in the case study

plan. Detailed activities of this plan are as follows;

 Planning the literature survey to evaluate available benchmarking data

repositories.

 Identifying benchmarking project attributes which were used in available

benchmarking data repositories, and selecting benchmarking measures which

can be collected from software organizations in practice.

 Planning Literature survey to identify benchmarking data collection processes

used in data collection of available data repositories and refine these

processes in order to improve the quality and reliability of benchmarking data

set.

 Selecting projects from an organization which includes benchmarking data

and applying measures on the selected projects to collect benchmarking

project data.

 Analyzing benchmarking project data in order to find problems and biases

related to gathered data. In this step after detection of problems of

benchmarking project data, problem resolution will be done.

 Tailor the benchmarking measures and processes based on results of analyzed

data and proposed problem resolutions.

 Collecting a sample project data from another company to get inside about

quality of collecting data

 Developing tool support for benchmarking measures and data collection

processes.

4.3.2. Case Study 1 Conduct

The first step in this case study was literature review on external software

benchmarking data repositories from effort estimation perspective. Benchmarking

data repositories which were utilized in software engineering research studies were

selected in this evaluation. The selection criteria for benchmarking datasets were the

accessibility of the repository data or availability of total software size and total

60

project effort in the data repository. 14 data repositories which are shown in Table 2

were selected for this evaluation.

Table 2: Data Repositories Evaluated in This Study

Name of the Data

Repository
Data Reference

1. ISBSG International Software Benchmarking Research Group

2. CSBSG Chinese Software Benchmarking Standards Group

3. IPA/SEC
Information-Technology Promotion Agency/ Software

Engineering Center

4. Albrecht Repository By Yanfu and Keung

5. China Repository By Fang

6. Desharnais Repository By Desharnais

7. Finnish Repository By Keung

8. Maxwell Repository By Yanfu

9. Kemerer Repository By Keung

10. COCOMO81 by Barry Boehm

11. NASA93 By Jairus Hihn

12. COCOMO SDR In the form of COCOMO by SoftLab

13. Miyazaki94 By Amasaki

14. COCOMO_NASA In the form of COCOMO by NASA

Data repositories are evaluated from four different perspectives: general features,

properties of data collection processes, properties of data quality and data validation

processes, and project characteristics of data repositories (Ozantop, Nabi, &

Demirors, 2011). In general features point of view, general information such as

geographic origin, the initiated date, data availability, and other general information

about data repository are studied. Meanwhile, properties of data collection processes

provide information about how and from which sources data is collected. Properties

of data quality and data validation processes give information about reliability of

data in the data repository which is an indication of quality of data repository itself.

These properties are not kept in the data repository itself, but they give useful

information about data repository‘s features. Lastly, in project characteristics of data

repositories, attributes which are factor drivers for effort estimation were identified

61

and examined in these datasets. Details about this study can be found in technical

report (Ozantop, Nabi, & Demirors, 2011).

In the project characteristics we examined existence of factor drivers for effort

estimation such as actual effort, size of software, duration of the project, team

experience, team size, software domain, programming language, hardware platform

and the usage of standards through the software development processes. All of the

data repositories contain size and effort data, but only half of these data repositories

provide information about team experience level. It can be observed that, although

software domain and effort data are important in effort estimation, only some of the

data repositories provide these data (Ozantop, Nabi, & Demirors, 2011).

Size and effort data are most important data in effort estimation, so we evaluated the

existence of detail level of these data in data repositories.

Size data in ISBSG has been collected in IFPUG, COSMIC, MarkII, NESMA,

FISMA, and LOC forms. BFC of IFPUG and COSMIC are available in ISBSG, but

just the total numbers are available. However, it was expected that all the

measurement data will be available to the users of the repository. Also, total effort

and phase effort data for each phase of software development lifecycle in person-

hours has been provided in ISBSG. Only for small numbers of projects the amount of

added, changed and deleted functions is available (Ozantop, Nabi, & Demirors,

2011).

Size data is collected in more details in IPA/SEC than ISBSG. Both planned and the

actual size and effort are available in IPA/SEC. Effort and size data is given for each

phase of software development life cycle. Besides, other data like numbers of pages

of documents, number of screens, number of data flow diagrams, and use cases are

given as a size indicator (Ozantop, Nabi, & Demirors, 2011).

Because raw data of CSBSG data repository is not available, it couldn‘t be evaluated

from project characteristics perspective. Among remaining 11 data repositories, only

Alberta and China data repositories includes functional size data in BFC level, and

other data repositories contain only single size data. Effort data in none of these 11

data repositories are given for phases of software development (Ozantop, Nabi, &

Demirors, 2011). Summary of existence of project attributes are given in table 3.

62

Table 3: Project Attribute Existence of the Repositories

N
a
m

e
o
f

th
e

R
ep

o
si

to
ri

es

A
ct

u
a
l

E
ff

o
rt

S
iz

e

T
ea

m

E
x
p

er
ie

n
ce

le
v
el

D
u

ra
ti

o
n

D
o
m

a
in

 o
f

S
W

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

H
W

 P
la

tf
o
rm

S
td

.
U

sa
g
e

In
fo

ISBSG + + + + + + + +

IPS/SEC + + + + + +

CSBSG + + + + +

Albrecht DS + +

China DS + + +

Desharnais DS + + + +

+

Finnish DS + +

Maxwell + + + + +

+ +

Kemerer + +

+ + +

COCOMO 81 + + +

COCOMO NASA + + +

COCOMO SDR + + +

Miyazaki 94 + +

NASA 93 + + + +

After literature survey, 11 projects were selected by researches from an organization

in order to investigate which benchmarking data attributes can be collected in

practice in the organizations considering project attributes of data repositories.

Project type of 5 projects out of these 11 projects, were ―New development‖ and the

remaining were ―enhancement‖.

Projects data was collected by interview and data collection forms in excel document

was utilized for this purpose. Initial collection forms are constructed by considering

ISBSG (2009) and IPA/SEC (2004) data repositories. Researchers attempted to

collect project data under about 70 project attributes in the first attempt, but we (as

researcher) found out that some of these benchmarking attributes cannot be collected

in practice from organizations, so these attributes were eliminated, or refined in order

to find more practical measures for benchmarking purpose. Based on these

observation researchers published a benchmarking attribute definition in Ozcan Top

and Demirors (2011) technical report. Benchmarking attributes of this benchmarking

attribute definition document were considered as a base in this study, and further

investigation and inspection were conducted to refine these measures.

63

The next task in the case study was analyzing benchmarking project data in order to

improve benchmarking measures. Projects data were examined from several aspects

in this evaluation and also for further inspection we calculated the productivity ratios

of the projects. Some problems were detected during and after data collection, which

are listed below;

 There were missing data in projects data.

 Sum of number of Entries, Exits, Reads, and Writes were not equal to

total COSMIC functional size.

 Sum of the effort data of phases was not equal to the total effort.

 There were some effort records which were not in the identified effort

category of benchmarking attribute.

 There were variances in productivity ratio of projects.

For solving these problems in the data base, we undertook some actions. First,

missing data of any benchmarking attributes were asked for resubmission. Second,

functional size measurement of these projects were examined by experts to detect

any problem in the measurement. In the case of any problem, the measurements of

these projects were corrected by experts who have COSMIC FSM certification and

three years measurement experiences. Then, functional size of the projects was

updated in benchmarking data. Third, effort data were examined for inaccuracy, and

we investigate the reasons of this inaccuracy. We found out that some effort data are

not kept in the organization in detail in the effort record, and only total effort of the

project is recorded. In some other cases effort records do not match any identified

effort category in the benchmarking attributes, and there was not any clear process

definition for effort data collection. Obviously, a need for defined data collection

process definition was observed in this problem. Finally, productivity values of these

projects were inspected and In order to find the reasons of variances in productivity

ratio, projects data were studied thoroughly in detail. Productivity ratios of projects

are given in table 4.

64

Table 4: Productivity ratio (Person-hours/FP)

Project
Project Type

Total Effort/Size

ratio

A Enhancement 3.887323944

B New Development 2.539325843

C Enhancement 13.66666667

D Enhancement 6.588235294

E Enhancement 1.473684211

F Enhancement 0.641975309

G Enhancement 3.151515152

H New Development 11.62189055

I New Development 8.342857143

J New Development 2.759358289

K New Development 5.388174807

As a first remark, large variances were observed in effort/size ratios. We detect

outliers by using plot box analysis (Field, 2009) by using SPSS program. In order to

inspect the reasons of these outliers, projects‘ data were examined more precisely.

There are some studies which depict functional similarity as significant impact on the

relation of functional size and software development effort (Santillo & Abran, 2006)

(Tunalilar et.al, 2008) (OzanTop O., 2008) (OzcanTop et.al, 2009) (Tunalilar, S.,

2011). So, functional similarity issue was taken into account in this inspection.

The first outlier had a large effort/size ratio, and the project was an enhancement

project and it was related to implementation of new electronic fund transfer standard

which had complicated business rules. This project was apparently different than

other projects of the organization, and it needed intense requirement analysis activity,

because in order to discuss business rules of this project a lot of meetings had to be

held. On the other hand, because of security issues for small changes in the system, a

long duration of testing activities had to be done. The second outlier had also large

effort/size ratio, and the reason behind this abnormal case was high amount of testing

activities which were performed for this project. The third outlier project had a small

effort/size ratio, because this project was an enhancement project which includes

65

small changes and the functional similarity was very high in this project.

Consequently, functional similarity reflective size was very small and less effort was

required for this project. The forth outlier had also small effort/size ratio, and

similarly high functional similarity. So, functional size reflective size was small and

development effort for this project reduced intensively.

In order to improve benchmarking measures functional similarity reflective size was

considered as project attribute, and for finding this reflective size as mentioned

before it is important to make sure that details of COSMIC functional size

measurement are available. Also, in order to find more homogenous project in

benchmarking process, an explanation for project specific characteristic should be

collected during collecting benchmarking data. For instance, when a project has

different characteristic revealing them will help in selecting homogenous projects.

After these observations, all of these improvement opportunities were considered and

defined benchmarking measures were updated respectively.

A project data from a small size company was also collected. We observed that in

this company effort data is not recorded in daily or even in weekly bases, and during

interview data submitter only provided us with overall consumed time for main

phases of the project with best guess. As it is indicated before, quality of data play

critical role in quality of benchmarking data repository. So, we classified projects

data quality based on the quality of effort data. In the first data quality level (A)

effort data are recorded in daily bases by using effort data collection tool support,

time sheet, etc. In the second project data quality level (B) effort data are collected in

weekly or monthly level without using tool support. Finally, in the third quality level

(C) effort data are not recorded, and only by best guess of the project manager can be

collected.

Benchmarking data collection processes as well as quality of the data are beneficial

in insuring the quality of data. So, as another improvement of benchmarking, data

collection processes which were identified in OzcanTop and Demirors (2011)

technical report are selected, and refined in this study.

By considering defined benchmarking measures, and benchmarking data collection

processes which are given in chapter 3, a benchmarking data collection tool were

implemented in order to seize improvement opportunity for benchmarking. This

66

benchmarking data collection tool is integrated on Cubit as a third and final part of

benchmarking methodology which is proposed in this study. The features of the tool

were discussed in chapter 3 section 3.

4.3.3. Case study 1 Results

In this case study our aim was identifying and defining requirements of

benchmarking methodology which includes benchmarking measures, benchmarking

data collection processes, and automated benchmarking data collection tool. By

using literature survey important benchmarking measures were identified and the

practicability of collecting these measures was investigated by examining 11 projects

from an organization. The problems and inconsistencies were identified to refine

benchmarking measures. Also, data collection processes which were defined in

Ozantop and Demirors (2011) technical report were selected as benchmarking data

collection processes. After refining measures and data collection processes finally,

automated benchmarking data collection tool were integrated on Cubit.

COSMIC functional size is used as size measurement method for measuring

functional size of these 11 projects, and projects‘ detailed functional measurements

were measured and collected by experts. We observed that collecting detailed

functional measurement were necessary in order to calculate functional similarity

which had very large impact on effort/size ratio variances. So by considering (Ozcan

Top O., 2008) and previous implementation of functional similarity measurement for

cosmic FSM method by B. Usgurlu (2010), reflective functional similarity

measurement was integrated to the new version of Cubit.

Also we observed that quality of effort data play critical role in quality of

benchmarking data repository by examining project data of another company. Since

in this company effort data are not collected in daily, or even weekly bases for each

defined activities and only approximated effort data are available, so we classified

this project data in C level.

It should be mentioned that effort data are considered in two levels: activities and sub

activities. Activities are defined as core benchmarking measures, and sub activities

are defined as extended benchmarking measures. We know that effort data are not

recorded in such a detail in most of companies, but we suggest that recording these

67

effort data in sub activity bases will lead to more accurate effort data, and in result

we conclude in more accurate benchmarking data repositories.

Collecting data via this benchmarking tool enable the user to collect benchmarking

measures by following defined benchmarking process. In collecting benchmarking

data answers for benchmarking attribute data is validated by utilizing validation

format of each answer in Cubit. Besides, description of each benchmarking measure

is provided to the user as a tooltip text when the mouse moves over the

benchmarking questions. This feature provides users with extra information about the

benchmarking measures. In this case, projects data will be gathered in more reliable

and accurate way by validating both benchmarking data and size measurement of the

projects. Besides, collecting data via data collection forms and questionnaires takes a

lot of effort and time for both collecting and validating data, but collecting

benchmarking project data with tool support will reduce this time and effort.

4.4. Case study 2: Validation of the Benchmarking Methodology and

Automated Benchmarking Data Collection Tool

This case study is designed to investigate the validity of benchmarking methodology

and explore the answers for fourth and fifth research question. In this case study in

order to validate the benchmarking methodology, benchmarking projects data were

collected by using benchmarking data collection tool Cubit from an organization.

Subsequently, productivity ratio of collected projects were inspected in detail, and by

using linear regression models and multiple regression models effort models were

constructed to evaluate the benchmarking data which is collected by the support of

benchmarking data collection tool.

4.4.1. Case Study 2 Plan

The activities which were planned to be done in case study 2 were determined in the

case study plan. Detailed activities of this plan are as following;

 Selecting projects from an organization for the purpose of collecting

benchmarking data

 Collecting benchmarking data of selected projects by using Cubit,

considering defined benchmarking data collection processes.

68

 Analyzing and inspecting benchmarking projects data

 Using collected projects data for constructing effort estimation models by

using regression models, and calculating MMRE and PRED values for

validation of the quality of the benchmarking project data.

4.4.2. Case Study 2 Conduct

In this case study 40 projects data from another organization utilized for the

validation purpose. Benchmarking data were collected by using benchmarking data

collection tool (Cubit) and interviewing with data submitter. These projects belong to

three different functional domain types: Simple Control System (SCS), Complex

Control System (CCS), and Complex Data Driven Control System (CDDCS). These

functional domain types are identified based on Char Method. Corresponding

software type of these projects based on ISO12182 standard for software

categorizations are real time embedded device driver, real time embedded avionics

message router, and process control system respectively. All project type of these

projects was ―New development‖.

Collected projects data was analyzed from several points and accuracy of these data

were evaluated. In order to perform data analyses, fill in ratio for the entire

benchmarking data attributes were calculated, and also derived attributes such as

productivity ratio and functional similarity were examined thoroughly.

We observed that fill in ratio for project type, industry type, functional domain type,

tool use, experience of team members, stability of team, all attributes in product

attributes category, Effort (for requirements, design, coding, and testing activities),

and detailed size data are 100%. Also there were some effort record which can be

used as an extension of our effort attributes.

Also we inspected size/effort ratio, and we observed that size/effort varies between

0.03 FP/Person-hours and 3.47 FP/Person-hours. When we consider functional

similarity as we expected, this variance decreased, and the size/effort ratio differed

from 0.01 FP/Person-hours to 1.66 FP/Person-hours. Because as mentioned before,

projects data was from three different application types, each of which were

developed under similar conditions by the same team. So, we expect size/effort ratio

values will be similar for each group of projects. When we consider functional

69

similarity and recalculate the size/effort ratio, the variance in these values decreased.

In Table 5 the size/effort ratios before considering functional similarity and after

considering functional similarity are given for projects which had functional

similarity.

Table 5: Size/Effort ratio for functional similarity consideration

Project Name Size
Total Effort

(person hours)

Size/Effort

before FS

Size/Effort

after FS

SCS 1 411 784 0.524235 0.512755

SCS 2 1730 3768 0.45913 0.429936

SCS 5 165 2192 0.075274 0.061588

SCS 7 319 1952 0.163422 0.099898

SCS 9 149 1848 0.080628 0.069264

SCS 10 249 808 0.308168 0.241337

CCS1 2040 2928 0.696721 0.556694

CCS 2 245 5568 0.044001 0.035022

CCS 3 361 1112 0.32464 0.258094

CCS 4 55 1736 0.031682 0.011521

CCS 5 38 1152 0.032986 0.028646

CCS 6 470 2872 0.163649 0.082869

CCS 8 271 1224 0.221405 0.215686

CCS 9 162 904 0.179204 0.167035

CCS 10 50 816 0.061275 0.042892

CDDCS 1 584 1020 0.572549 0.357843

CDDCS 2 1347 396 3.401515 0.997475

CDDCS 3 415 476 0.871849 0.684874

CDDCS 4 1303 376 3.465426 1.659574

CDDCS 5 129 232 0.556034 0.392241

CDDCS 6 76 248 0.306452 0.237903

CDDCS 7 986 536 1.839552 0.451493

CDDCS 8 1384 832 1.663462 0.25

70

Table 5: Size/Effort ratio for functional similarity consideration (Continued)

Project Name Size
Total Effort

(person hours)

Size/Effort

before FS

Size/Effort

after FS

CDDCS 9 132 96 1.375 0.125

CDDCS 10 277 208 1.331731 0.591346

CDDCS 11 193 224 0.861607 0.348214

CDDCS 12 377 792 0.47601 0.222222

CDDCS 13 291 356 0.817416 0.688202

CDDCS 14 328 1020 0.321569 0.191176

CDDCS 15 666 536 1.242537 0.225746

CDDCS 16 332 616 0.538961 0.387987

CDDCS 17 206 476 0.432773 0.344538

 Variances 0.738 0.11

Although by considering functional similarity we were able to reduce the variance in

Size/Effort ratio, we still encounter some outliers in these data. In order to improve

our data quality, we inspected productivity ratios for all projects in more detail.

Examining outliers in these ratios revealed some facts about the projects‘

characteristics. Most of projects with outlier data had algorithms which could not be

measured by using COSMIC measurement size method. We hypothesized that the

existence of these algorithms increased the amount of effort used in these outlier

projects. Since we couldn‘t reach source code of these projects to indicate

Cyclomatic complexity or other complexities, we tried to classify algorithm

complexity to three levels;

1. Basic Algorithms (Level 1): Small algorithms include only basic

mathematical calculations and simple data manipulations which are: Derived

data creation by transforming existing data, Mathematical

formulas/calculations, Condition analysis to determine which are applicable,

Data validation, Equivalent-value conversion, and Data filtering/selection by

specified criteria. This classification of data manipulation is adopted from

action type list defined in Santillo & Abran (2006).

71

2. Medium Complex algorithms (Level 2): Algorithms in this level include

medium complex algorithms which have different operations than defined

action type above (defined in the basic algorithms), and in these algorithms

there isn‘t any integration with other algorithms in the system. Also, in this

kind of algorithms there isn‘t parallel and multitasking usage of processes. In

this level the input of algorithms are a group of parameters, and the result of

medium complexity operation can be one or several outputs.

3. Very complex algorithms (Level 3): Algorithms which includes very complex

operations, and there is integration with other algorithms. In this kind of

algorithms extra hardware are involved. In addition, in this kind of

algorithms, there are real time criteria as limitation factors.

We requested from data submitter to classify algorithms of the projects and classify

projects based on these levels. It was observed that most of the outlier projects had

algorithms in very complex algorithms level.

Following these inspections, effort estimation models were constructed by using

IBM SPSS software, and simple linear regression models were utilized to determine

usability of proposed benchmarking data collection model. Effort data was

considered as dependent variable, and size data considered as independent variable.

The total and development effort of projects in this case study was estimated by

considering functional domain types, and functional similarity. Meanwhile, effort for

main activities in software development lifecycle was estimated. For creation of

these models we used total functional size of the projects. In order to evaluate

constructed effort estimation models, MMRE and prediction level parameter

PRED(30) values were used in this study as presented in Equation 1 through 3. There

are studies which uses PRED(30) to measure how well the estimation model is

performing (Menzies, et al., 2005). Meanwhile, PRED(30) can identify the prediction

models which are generally accurate (Menzies, et al., 2006). A low MMRE and high

PRED value indicate how well an effort estimation model can perform. PRED(N)

means the average percentage of the estimation values is within N percentage of

actual values. For instance, PRED(30) =50 means that 50% of the estimates are

within 30% of the actual values (Menzies et.al, 2006).

72

 ∑ | |

 (Equation 1)

∑ {

}

 (Equation 2)

 ∑ | |

 (Equation 3)

We also used effort estimation models of 7 data repositories (Albrecht, China,

Desharnais, Finnish, Maxwell, Kemerer, and ISBSG) in order to compare accuracy

of estimations from our previous study (OzcanTop et.al, 2011). The selection criteria

for data repositories were related to availability of raw data, and also availability of

functional size and effort data. Among these data repositories ISBSG was the only

data repository which includes size data measured by COSMIC method.

Effort estimation models can differ based on selection of different subset of projects

data in data repositories which subsequently influence the accuracy of the model.

Also, pruning of the data can improve the effort estimation model (Maxwell, K.,

2001). In Ozcan Top et.al (2011) a systematic pruning was utilized to eliminate

unrelated data. The regression model of previous mentioned data repositories and

effort estimation model for total effort of our case study projects data are shown in

Table 6.

73

Table 6: Estimation model of 7 discussed data repositories and case study projects data

Model
Number of

Projects

Mean

of FP
Regression Model MMRE PRED(30)

Albrecht 14 347 E= -1387.4+ (29.3*FP) 4006.6 0

China 398 189 E= 418.8+ (9.4*FP) 2167.3 0

Desharnais 73 243 E= 156.1+ (16.7*FP) 3802.5 0

Finnish 15 273 E= 553.3+ (7*FP) 426.2 0

Maxwell 40 274,5 E= -255.6+ (17.6*FP) 5277.8 0

Kemerer 4 317,3 E= 172.6+ (1.1*FP) 162.7 0

ISBSG 151 134,5 E= 2095.9+ (13.8*FP) 137.0 0

Case Study 2

Projects data
40 435.62 E= 1091.442 + (0.428*FP) 136.995429 22.5

Case Study 2

Projects data

(considering

functional

similarity)

40 287.19 E= 737.298 + (1.45*FP) 95.27 37.5

According to Table 8, linear models built by ISBSG, Albrecht, China, Desharnais,

Finnish, Maxwell and Kemerer repositories do not create models with acceptable

level of MMRE and PRED values. Also, our case study project data do not produce

acceptable results for estimating total effort because a good model is expected to

have PRED (30) higher than 60% (Tunalilar, S., 2011). Since the model which

produce highest PRED(30) and lowest MMRE is considered the best, using our case

study project data resulted better estimation model, and the effort model quality was

improved. Meanwhile by considering functional similarity, PRED value for total

effort was increased and MMRE value was decreased again.

We also constructed different effort estimation models for the selected organization

to observe effect of functional domain type, and functional similarity in quality of

estimation models. Both COSMIC size data without functional similarity

consideration, and reflective functional similarity size data was utilized in model

developments. The results of MMRE and PRED value for total and development

effort models are given in table 7.

74

Obviously it can be seen that effort estimation models which were based on

development effort produced better estimation, since the PRED values are higher and

MMRE values are lower than those which were constructed using total effort. Also,

when projects data are grouped by similar functional domain type it results in better

estimation models. As discussed before, the projects of this case study belongs to

three different functional domain type; Simple Control System (SCS), Complex

Control System (CCS), and Complex Data Driven Control System (CDDCS) which

are identified based on CHAR method. In addition to these observations, it can be

distinguished from the table that considering reflective functional similarity size

improves quality of effort estimation models.

In this study effort data is proposed to be collected in activities bases, so in order to

validate this idea, effort estimation models were constructed for each activities in

software development lifecycle. Comparison table of MMRE and PRED values of

these models are given in table 8.

75

Table 7: MMRE and PRED (30) values for comparison of accuracy of effort estimation models for total and development effort

 Total Effort Development Effort

No FS Reflective FS No FS Reflective FS

 MMRE PRED (30) MMRE PRED (30) MMRE PRED (30) MMRE PRED (30)

Total Projects in case study 136.99 22.5 95.27 37.5 110.04 27.5 93.5 35

Project data with Simple

Control System (SCS)

Functional domain type

45.13 45.45 46.40 45.45 31.11 54.54 28.54 55.55

Project data with Complex

Control System (CCS)

Functional domain type

54.30 33.33 55.86 33.33 39.74 30 38.42 33.33

Project data with Complex

Data Driven Control System

(CDDCS) Functional domain

type

63.22 41.17 51.21 31.25 54 41.17 46.13 52.94

76

Table 8: MMRE and PRED (30) values for comparison of accuracy of effort estimation models for software development activity efforts

 Requirements Activities Design Activities Coding

Activities

Testing Activities

N
o
 F

S

R
ef

le
ct

iv
e

F
S

N
o
 F

S

R
ef

le
ct

iv
e

F
S

N
o
 F

S

R
ef

le
ct

iv
e

F
S

N
o
 F

S

R
ef

le
ct

iv
e

F
S

 M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

M
M

R
E

P
R

E
D

All

Projects

in case

study

127.24 25 129.39 20 148.91 25 146.62 22.5 69.44 28.57 53.91 38.88 194.84 27.5 148.34 35

 SCS

projects
59.98 45.45 59.02 45.45 118.45 36.36 109.59 40 37.36 55.55 37.12 60 27.68 54.54 24.45 66.66

CCS

projects
26.24 66.66 23.30 88.88 67.16 50 68 58.33 131.38 8.33 105.5 27.27 51 33.33 50.27 33.33

CDDCS

projects
67.89 35.29 65.40 35.29 79.22 23.52 76.06 23.52 51.11 47.05 35.02 50 104.06 35.29 82.35 41.17

77

It can be easily seen that effort estimation based on software development activities

can improve the accuracy of effort estimation model. Also, considering functional

similarity and functional domain type are two other ways for increasing quality of

benchmarking projects ‗data.

We also constructed multiple regression models by considering base functional

components (Enter, Exit, Read, and Write) of COSMIC size as independent

variables, and effort of activities in software development lifecycle as dependent

variables. We categorized projects based on functional domain type. Here our

purpose was to observe impact of collecting effort data in activities bases, and size

data in base functional components, and considering functional domain type, and

functional similarity all together. Comparison table of MMRE and PRED values of

these models are given in table 9.

Table 9: MMRE and PRED(30) values for comparison of accuracy of effort estimation models

for software development activity efforts by considering BFC of size data

 Requirements

Activities

Design

Activities

Coding

Activities

Testing

Activities

MMRE PRED MMRE PRED MMRE PRED MMRE PRED

All Projects

in case study
123.9 25 133.7 37.5 44.87 33.33 133.74 32.43

 SCS

projects
26.89 72.72 88.49 36.36 18.78 81.81 17.56 81.81

CCS

projects
18.09 83.33 31.58 58.33 41.19 45.45 33.55 50

CDDCS

projects
42.88 50 54.69 33.33 29.09 62.5 53.22 47.05

As it can be seen in table, when we categorize projects by functional domain type we

can create better estimation models rather than constructing model for all projects in

the case study. We observed that MMRE values decreased and PRED(30) values

increased significantly by considering functional domain type, effort in activities

level, size in BFC level, and functional similarity.

78

4.4.3. Case study 2 Results

In this case study in order to validate benchmarking data collection methodology 40

projects data were collected from an organization by using Cubit benchmarking data

collection tool. Then projects data were inspected thoroughly by considering

productivity ratios and fill in ratio of benchmarking attributes. Lastly, effort

estimation models of collected data were constructed by using simple linear

regression model, and compared to effort estimation models of other data

repositories. Also effort estimation models for total effort, development effort, and

each activities of software development (requirements, design, coding, and testing

activities) are constructed. Meanwhile, effect of functional domain type and

functional similarity were evaluated in effort estimation. In order to compare the

accuracy and quality of effort estimation models MMRE and PRED (30) values were

used. As it mentioned before, A high PRED (30) and low MMRE value can indicate

the quality of prediction model.

In productivity ratio examination, there were some outliers. Because projects data

were from three different functional domain types and they were developed by the

same team. In similar situations, we expected effort/size ratio for projects with same

functional domain type to be same. So, we investigated the reason of these

unexpected outliers. We found out that projects with outlier productivity ratio have

complex algorithm used in them. In order to interpret this fact, we tried to

categorized project data into three different complexity levels of Basic Algorithms,

Medium Complex Algorithms, and Very Complex Algorithms by interviewing the

data submitter. When projects data ranked to three level of complexity, we observed

that projects with outliers mostly have several algorithms with Very Complex

Algorithms level of complexity.

Continuing productivity ratio inspection, we encounter some projects which had

large total effort/size ratio. The reason behind these abnormal projects data were

from projects characteristics. Projects were from functional domain type in which

hardware is included, and they are designed for special control functions within a

larger system. In some of the projects, developer was not familiar with hardware

which is used in these systems and new hardware was used in these projects. The

79

project submitters informed us that it takes more time to be familiar with setting of

new hardware, thus, developing these projects needed more effort.

In addition, in this organization there were some effort records which are not

classified under software development effort, and they include effort data for

documentation, ideal effort time, and standard application effort time. Ideal effort

includes the times when there is not any activity on the project, for example when

there is a problem with hardware and the developers wait for solving this problem.

Although there is no effort consumed on the project, but the developer records this

waiting time as ideal effort. Meanwhile, in some projects, projects should be

developed under a specific standard and applying this standard caused extra testing

effort which included in total effort of these projects. We observed that in outlier

projects these effort records resulted in large total effort, and accordingly large

effort/size ratio.

After these assessments, effort estimation models were evaluated. We observed that

constructing effort models for development effort and each activity in software

development lifecycle produces better estimation models than total effort. Also,

results showed that, classifying projects data based on functional domain type and

constructing effort models for projects with similar functional domain type produces

effort models with higher PRED(30) and lower MMRE values which means better

quality in effort estimation.

In addition, collecting size data in BFC level of COSMIC functional size

measurement method leads to creating better estimation models. As the last

observation, considering functional similarity and functional reflective size improved

the accuracy of effort estimation models.

The results of this case study showed that using benchmarking methodology, we can

improve benchmarking data repositories quality from effort estimation perspective. It

should be mentioned that, in this organization we collect data of finished projects by

considering benchmarking measures and using benchmarking data collection tool.

But benchmarking data collection processes were not pursued from the beginning of

projects to the end, so we believe if the defined benchmarking data collection were

followed in this organization, we would end up with better results.

80

4.5. Validity Threats

During collecting benchmarking data collection, functional size measurement details

of the projects were collected in excels documents, and it may include some errors.

To detect the errors reviews were conducted by experts who have COSMIC FSM

certification and three years measurement experiences.

Projects data for effort attributes are collected by interviews and they are assumed to

be accurate. For the resolution of this threat using automated data collector is

considered as future work.

Finally, we only investigate impact of algorithm complexity in one organization, and

generalizing the impact of this measure should be investigated more.

81

CHAPTER 5

CONCLUSIONS

This chapter summarizes the contributions of the study, and presents suggestions for

future works.

5.1. Conclusions

In order to plan, monitor, and control the project activities, effort estimation of

software projects is an essential step for success of projects. In all diverse estimation

methods, historical data (benchmarking data sets) are necessary elements for

developing estimation models. So, accuracy of benchmarking data is critical for

construction of reliable effort estimation models. In many studies effective effort

estimation methods were studied, but a few of them considered quality of historical

data as an impact on effort estimation accuracy.

We developed a benchmarking data collection methodology to improve quality of

benchmarking data repositories. This approach consisted of three main parts;

Benchmarking measures, benchmarking data collection processes, and automated

benchmarking data collection tool. In order to build reliable benchmarking data

repository, projects data attributes and characteristics were defined precisely. We

observed that quality of benchmarking data repositories does not only depend on

benchmarking measures, but also it depends on the way of collecting benchmarking

data. Therefore, generic benchmarking data collection processes were defined in

order to be applied in an organization to guarantee accurate and efficient

benchmarking data repository.

Meanwhile, collecting benchmarking data is an extensive and difficult task which

needs large effort. In organizations without defined benchmarking measures and data

collection procedures it is really hard and time consuming task to collect projects‘

82

historical data. So, in order to facilitate this task, in this study after defining

benchmarking measures and data collection processes, a data collection tool was

implemented accordingly to support benchmarking data collection.

Two case studies were conducted in this research, the first case study was

exploratory case study, and the second one was for validation of benchmarking

methodology. In the first step of the exploratory case study, effort drivers and

important projects attributes which had to be collected in data repositories in an

organization were explored. Also, an extended comparison study of data repositories

from effort estimation perspective was conducted and important benchmarking

measures were identified. Then feasibility of these identified measures was

investigated in a software organization by inspecting 11 projects data and then

benchmarking measures were refined as a result. We observed large variances (from

1.47 Person-hours/ FP to 13.66 Person-hours/ FP) in size/ effort ratios of some

projects. In some projects the functional similarity rate was high, and by considering

reflective functional similarity size (OzanTop O., 2008) of these projects these

variances (from 1.42 Person-hours/ FP to 6.6 Person-hours/ FP) was decreased

significantly. Also, a project data from another company was collected in order to

study quality of data. Three level of data quality (level A, B, and C) were identified

considering quality of effort data and the frequency of effort data collection in the

organization.

In this study benchmarking data collection processes which were defined by

Ozcantop & Demirors (2011) are refined. Subsequently, a benchmarking data

collection tool was implemented and integrated on Cubit toolset by considering these

refined benchmarking measures and benchmarking data collection processes. This

tool supports all benchmarking data collection processes steps and enables users to

collect projects‘ data according to defined procedure. Using this tool decreased

collection time and effort consumed for data collection, and also it partially validated

the benchmarking data, and it increased accuracy of benchmarking data in the data

repository. Without using benchmarking data collection tool, data collection task was

difficult and time consuming because it had to be done by interview with data

submitter. Since benchmarking measures and data collection processes were not

identified clearly, in order to get accurate data from data submitter, data collector is

83

supposed to spend an amount of time to give necessary information to data submitter.

Since Cubit provides users the feature of recording details of projects functional size

measurement, it is possible to calculate reflective functional similarity size of the

projects in a reliable and easier way.

Cubit benchmarking tool is utilized for collecting internal benchmarking data in

organizations. Our previous study showed that effort estimation based on internal

benchmarking data repositories produces more accurate results than external

benchmarking data repositories (OzcanTop et.al, 2011). So, we implemented internal

benchmarking data collection tool. However, as all organizations uses common data

base through web application, Cubit also has the potential to collect data for external

data repository.

In the second case study the proposed benchmarking methodology was validated. In

this case study 40 projects data were collected from a middle size software

organization by using Cubit benchmarking tool. Projects data were examined in

detail and we observed that fill in ratio for project type, industry type, functional

domain type, tool usage, experience of team members, stability of team, all attributes

in product attribute categories, effort attributes of requirements, design, coding and

testing activities, and details of size measurement and reflective functional size of

projects were 100%. Since in this organization we collected data of finished projects,

we couldn‘t collect remaining benchmarking attributes. But if the benchmarking data

collection processes were pursued then we would be able to collect these project

attributes.

Moreover, effort/size ratios for every project were also calculated for total effort,

development effort, and each of software development activities. Since projects

belonged to three different functional domain types, and projects in each of these

functional domain types were developed under same situations, we expected

productivity ratio to be in the same range for all projects in the same functional

domain type. But there were some outliers and productivity ratio variances revealed

some projects characteristics which can be the reasons for this unusual behavior of

effort/size ratios. First, there was some reuse rate in the terms of functional similarity

in some of collected projects data. Additionally, some of the projects include very

complex algorithms which cannot be measured by using COSMIC measurement

84

method, and they were ignored during measurement. Since source code of these

projects were not available we couldn‘t reach any standard defined complexity

measure of these projects, therefore we classified algorithm complexity level of these

projects into three levels of Basic Algorithms, Medium Complex Algorithms, and

Very Complex Algorithms by interviewing to data submitter. It was observed that

most of the projects with outlier effort/size ratio were classified in Very Complex

Algorithms level. As a discussion it should be mentioned that, algorithm complexity

was defined as nominal scale, and classifying algorithms based on defined algorithm

complexity may be subjective.

 In some other projects which had large total effort/size ratio, the software were

designed for control function of a new hardware, and unfamiliarity of the hardware

causes extra effort load for the project (especially for testing activities). Besides, in

this organization a special standard was applied for some projects which lead to

produce extra testing activities for these projects. Consequently the total effort for

these projects were increased and caused the unusual behavior of effort/size ratio.

After these observations, in order to evaluate collected data, effort estimation models

were constructed using simple regression models and considering MMRE and PRED

(30) values. In these models total effort was dependent variable, and size value was

independent variable. These estimation models were compared to similar models of

other data repositories in the literature. Although both MMRE and PRED values for

all effort estimation models were not in acceptable boundaries, we observed

improvements. In order to consider an effort estimation model as an accurate

prediction, PRED (30) value should be higher than 60% (Tunalilar, S., 2011). PRED

(30) value of our models for total effort estimation increased to 22.5% and by

considering functional similarity it increased to 37%.

Subsequently, we created effort estimation models by considering development

effort, and effort for each activity in software development lifecycle as dependent

variable, and size effort as independent variables. Results showed that considering

reflective functional similarity and functional domain type improved the accuracy of

benchmarking data in the data repositories, and more accurate effort estimation

models were constructed in this way. The prediction level parameter PRED (30)

increased to 45.45% for project data with Simple Control System (SCS) Functional

85

domain type, 33.33% for project data with Complex Control System (CCS)

Functional domain type, and 41.17% for project data with Complex Data Driven

Control System (CDDCS) Functional domain type for total effort estimation models.

In addition PRED (30) value increased to 55.55% for SCS projects, 33.33% for CCS

projects, and 52.94% for CDDCS project for development effort estimation models.

Also, it is observed that estimation models for development effort produced more

accurate data in comparison to estimation models for total effort data.

We also created effort estimation models with multiple regression models by

considering effort data as dependent variable, and number of BFC of COSMIC

method (Enter, Exit, Read, and Write) as independent variables. We also take into

account functional similarity, and classification of projects based on their functional

domain type. The results show that, when we collect projects size data in BFC level

and projects‘ effort data in activity level we conclude in better estimation. PRED

(30) values for SCS projects increased to 72.72 % for requirements activities,

81.81% for coding activities, and 81.81% for testing activities. For CCS projects

these values were 72.72%, 45.45%, and 50% respectively. Also, it should be

reminded that functional similarity and functional domain type were also accounted.

As contribution of this study, it was the first time that all proposed benchmarking

improvements of benchmarking measure, benchmarking data collection processes,

and tool support were utilized together to improve quality of benchmarking data

repository. Also, reflective functional size was used in previous studies for effort

estimation research but it was the first time it was collected for the benchmarking

purpose in benchmarking data repositories. In addition, using algorithm complexity

suggested as an improvement to benchmarking attributes. The results show that,

some effort records are not classified under software development effort like ideal

effort, standard application effort, and also documentation effort which increase the

total effort of projects. So, these efforts should be considered as an extension of

collected effort.

Another contribution of our study is that the benchmarking tool can be tailored for an

organization, and it can benefit organizations for constructing an internal software

benchmarking repository.

86

5.2. Future Work

In our study we observed improvements in the quality of benchmarking data

repository, but there are still improvement opportunities that can be explored.

The study conducted considering projects data of three software organizations, and it

can be investigated in other organizations in order to achieve more improvements for

benchmarking data repositories. In our study we collected data by using interviews,

and we assumed submitted data is reliable. Violation of this assumption can reduce

validity of our study. As future work automated effort data collector and other

measure collectors can be integrated to Cubit to improve the accuracy of collected

data. Also, the impact of missing data on the quality of the data in our dataset can be

investigated as a future work.

87

REFERENCES

Ahmed, F., Salah, B., Serhani, A., Khalil, I. (2008). Integrating Function Point

Project Information for Improving the Accuracy of Effort Estimation.

Proceedings of the 2008 The Second International Conference on Advanced

Engineering Computing and Applications in Sciences, (PP. 193-198).

Washington, DC: IEEE Computer Society.

Field, A. (2009). Discovering Statistics Using SPSS (Third edition). SAGE

Publications Ltd.

Bachmann, A. & Bernstein, A. (2010). When process data quality affects the number

of bugs: correlations in softwaree datasets. MSR '10: Proceedings of the 7th

IEEE Working Conference on Mining Software Repositories, (pp. 62-71).

Cape Town, South Africa. IEEE

Backman, A. & Bernstein, A. (2009). Software process data quality and

characteristics – A historical view on open and closed source projects.

IWPSE-Evol'09, (pp.119-128). Amsterdam, Netherland. ACM.

Beitz, A. & Wieczorek, I. (2000). Applying benchmarking to learn from best

practices. In Bomarius, F. & Oivo, M. (Ed.), PROFES 2000, LNCS 1840, (pp.

59-72). Springer-Verlag Berlin Heidelberg.

Bourque, P., Oligny, S., Abran, A., Fournier, B. (2007). Developing project duration

models in software engineering. Journal of Computer Science and

Technology, 22, 348-357.

Bundschuh, M., & Dekkers, C. (2008). The IT measurement compendium:

Estimating and benchmarking success with functional size management.

Springer- Verlag Berlin Heidelberg.

Usgurlu, B., (2010). Automating Functional Similarity Measurement for Cosmic

FSM Method. (Tech. Rep. No. METU/II-TR-2010-19). Turkey: Middle East

Technical University, Information Systems.

88

Cuadrado, J. J. C., Rodriguez, D., Sicilia, M. A., Rubio, M. G., Crespo, A. G. (2007).

Software project effort estimation based on multiple parametric models

generated through data clustering. Journal of Computer Science and

Technology, 22, 371-378.

Cukic, B. (2005). The promise of public software engineering data repositories, IEEE

software, (pp.20-22). IEEE.

Davis, R., and Brabander, E. (2007). ARIS Design Platform: Getting Started with

BPM, 1st ed. Springer.

Dekkers, T. (2007). Benchmarkıng is an essentıal control mechanism for

management, RPM- AEMES, Vol.4, 99-103.

Gencel, C., Buglione, L., Abran, A. (2009). Improvement Opportunities and

Suggestions for Benchmarking. 19th International Workshop on Software

Measurement/3rd International Conference on Software Process and Product

Measurement, (PP. 144-156). Berlin: Springer-Verlag.

Gencel, C., Demirors, O. (2008). Functional size measurement revisited. ACM

Transactions On Software Engineering And Methodology, 17, Article 15. doi:

10.1145/1363102.1363106.

Huang, S. J., Chiu, N. H., Liu, Y. J. (2008). A comparative evaluation on the

accuracies of software effort estimates from clustered data. Information and

Software Technology, 50, 879-888. doi: 10.1016/j.infsof.2008.02.005.

Huang, S. J., Chiu, N. H. (2006). Optimization of analogy weights by genetic

algorithm for software effort estimation. Information and Software

Technology, 48, 1034-1045. doi: 10.1016/j.infsof.2005.12.020.

INFORMATION-TECHNOLOGY PROMOTION AGENCY, IPA/SEC. (2007).

White Paper 2007 on Software Development Projects in Japan. Retrieved

from http://www.ipa.go.jp/english/sec/reports/20100507a_1.html

International Software Benchmarking Standardization Group (ISBSG). (1997).

http://www.isbsg.org

Jeffery, R., Ruhe, M., Wieczorek, I. (2000). A comparative study of two software

development cost modeling techniques using multi-organizational and

company-specific data. Information and Software Technology, 42, 1009-

1016.

89

Jorgensen, M., & Sjoberg, D. (2004). The impact of customer expectation on

software development effort estimates, International Journal of Project

Management, 22, 317–325. doi: 10.1016/S0263-7863(03)00085-1

Jorgensen, M., Indahl, U., Sjoberg, D. (2003). Software effort estimation by analogy

and ―Regression toward the mean‖. The Journal of Systems and Software, 68,

253–262. doi: 10.1016/S0164-1212(03)00066-9

Kaczmarek, J. & Kucharski, M. (2004). Size and effort estimation for applications

written in Java, Information and Software Technology, 46, 589–601. doi:

10.1016/j.infsof.2003.11.001

Liu, Q. & Mintram, R. (2006). Using industry based data sets in software

engineering research. Proceedings of the 2006 International Workshop on

Software Engineering Education, Shanghai, China. ACM.

Liu, Q., Qin, W. Z., Mintram, R., Ross, M. (2008). Evaluation of preliminary data

analysis framework in software cost estimation based on ISBSG R9 Data.

Software Quality Journal, 16, 411-458. doi: 10.1007/s11219-007-9041-4.

Lokan, C., Mendes, E. (2009). Investigating the use of chronological split for

software effort estimation. IET Software, 3, 422-434. doi: 10.1049/iet-

sen.2008.0107.

Maxwell, K., (2001). Collecting Data for Comparability: Benchmarking Software

Development Productivity. IEEE Software, 18(5), 22-25.

Meli, R., (1998). Software reuse as a potential factor of database contamination for

benchmarking in Function Points, ISBSG Workshop.

Mendes, E. (2009). Web cost estimation and productivity benchmarking. In De

Lucia, A. & Ferrucci, F. (Ed.) Software Engineering, LNCS 5413, (pp.194-

222). Springer-Verlag Berlin Heidelberg.

Mendes, E., Lokan, C., Harrison, R., Triggs, C. (2005). A replicated comparison of

cross-company and within company effort estimation models using the

ISBSG database. 11th IEEE International Software Metrics Symposium (pp.

328-337). IEEE

Mendes, E., Lokan. C. (2008). Replicating studies on cross- vs single-company effort

models using the ISBSG Database, Empir Software Eng, 13, 3–37. doi:

10.1007/s10664-007-9045-5.

90

Menzies, T., Port, D., Chen, Z., Hihn, J. (2005). Simple software cost analysis: safe

or unsafe? PROMISE '05 Proceedings of the 2005 workshop on Predictor

models in software engineering

Menzies,T., Port, D., Chen, Z., Hihn, J. (2005). Validation Methods for Calibrating

Software Effort Models, Proceedings of the 27th international conference on

Software engineering

Menzies, T., Zhihao C., Hihn, J., Lum, K. (2006). Selecting Best Practices for Effort

Estimation. IEEE Computer Society, 32, 883-895. Doi:

10.1109/TSE.2006.114.

Moses, J., Farrow, M. (2005). Assessing variation in development effort consistency

using a data source with missing data. Software Quality Journal, 13, 71-89.

doi: 10.1007/s11219-004-5261-z.

Moses, J., Farrow, M., Parrington, N., Smith, P. (2006). A productivity

benchmarking case study using Bayesian credible intervals. Software Quality

Journal, 14, 37-52. doi: 10.1007/s11219-006-6000-4.

Özcan Top, Ö. (2008), FUNCTIONAL SIMILARITY IMPACT ON THE RELATION

BETWEEN FUNCTIONAL SIZE AND SOFTWARE DEVELOPMENT

EFFORT, Middle East Technical University, Ankara, Turkey.

Özcan Top, Ö. & Demirörs, O. (2010). Software Project Benchmark Attribute

Definitions and Process Models. (Tech. Rep. No. METU/II-TR-2011-22).

Turkey: Middle East Technical University, Information Systems.

Özcan Top, Ö., Demirörs, O., Türetken, O. (2009). Making functional similarity

count for more reliable effort prediction models. ISCIS, pp 504-512

Ozcan Top, O., Nabi M, Demirors, O. (2011), Comparison of Software

Benchmarking Repositories from Effort Prediction Perspective. International

Conference on Software Metrics and Estimating, London

Özcan Top, O., Nabi, M., Demirörs, O. (2010). Assessment of Benchmarking

Repositories From Software Effort Prediction Perspective, (Tech. Rep. No.

METU/II-TR-2011-32). Turkey: Middle East Technical University,

Information Systems.

http://dx.doi.org/10.1109/TSE.2006.114

91

Santillo, L., & Abran, A. (2006). Software Reuse Evaluation based on Functional

Similarity in COSMIC-FFP Size Components. Paper presented at the

Software Measurement European Forum, SMEF, Rome, Italy.

Sentas, P., Angelis, L. (2006). Categorical missing data imputation for software cost

estimation by multinomial logistic regression. The Journal of Systems and

Software, 79, 404-414. doi: 10.1016/j.jss.2005.02.026.

Seo, Y. S., Yoon, K. A., Bae, D. H. (2009). Improving the Accuracy of Software

Effort Estimation based on Multiple Least Square Regression Models by

Estimation Error-based Data Partitioning. Apsec 09: Sixteenth Asia-Pacific

Software Engineering Conference (PP. 3-10). Los Alamitos, CA: IEEE

Computer Society.

Setiono, R., Dejaeger, K., Verbeke, W., Martens, D., Baesens, B. (2010). Software

Effort Prediction using Regression Rule Extraction from Neural Networks.

22ND International Conference On Tools With Artificial Intelligence (PP. 45-

52). New York, NY: IEEE Computer Society.

Software Productivity Research Group. (2010). http://www.spr.com

The Common Software Measurement International Consortium (COSMIC):2007,

Method Overview v3.0.

Tunalilar S. (2011), EFES: AN EFFORT ESTIMATION METHODOLOGY, Middle

East Technical University, Ankara, Turkey.

Tunalilar S., & Demirors, O, (2008). Effect of Functional Similarity for Establishing

Relation Between Effort and Functional Size, Asia Pasific Software

Engineering Conference, SPACE Workshop, China.

Wang, H., Wang, H., Zhang, H. (2008). Software productivity analysis with CSBSG

data set, International Conference on Computer Science and Software

Engineering, (pp. 587-593). IEEE.

92

APPENDIX

EPC Diagrams for Benchmarking Data Collection Processes

1. Infrastructure Definition Process

Figure 10: Infrastructure Definition Process

93

Figure 10: Infrastructure Definition Process (Continued)

94

2. Cubit Infrastructure Definition Process

Figure 11: Cubit Infrastructure Definition Process

95

Figure 11: Cubit Infrastructure Definition Process (Continued)

96

3. Data Collection Process

Figure 12: Data Collection Process

97

Figure 12: Data Collection Process (Continued)

98

3.1. Submission Attributes Data Collection Process

Figure 13: Submission Attributes Data Collection Process

99

3.2. Project Attributes Data Collection Process

Figure 14: Project Attributes Data Collection Process

100

Figure 14: Project Attributes Data Collection Process (Continued)

101

Figure 14: Project Attributes Data Collection Process (Continued)

102

3.3. Product Attributes Data Collection Process

Figure 15 : Product Attributes Data Collection Process

103

Figure 15: Product Attributes Data Collection Process (Continued)

104

3.4. Software Attributes Data Collection Process size

Figure 16: Software Attributes Data Collection Process size

105

Figure 16: Software Attributes Data Collection Process size (Continued)

106

3.4.1. Measure COSMIC size

Figure 17: Measure COSMIC size

107

4. Effort Attributes Data Collection Process

Figure 18 : Effort Attributes Data Collection Process

108

Figure 18: Effort Attributes Data Collection Process (Continued)

109

Figure 18: Effort Attributes Data Collection Process (Continued)

110

Figure 18: Effort Attributes Data Collection Process (Continued)

111

4.1. Data Collection Process for Project Management Effort Data

Figure 19: Data Collection Process for Project Management Effort Data

112

Figure 19: Data Collection Process for Project Management Effort Data (Continued)

113

Figure 19: Data Collection Process for Project Management Effort Data (Continued)

114

4.2. Data Collection Process for Requirements’ Activities Effort Data

Figure 20: Data Collection Process for Requirements’ Activities Effort Data

115

Figure 20: Data Collection Process for Requirements’ Activities Effort Data (Continued)

116

4.3. Data Collection Process for Design Activities’ Effort Data

Figure 21: Data Collection Process for Design Activities’ Effort Data

117

Figure 21: Data Collection Process for Design Activities’ Effort Data (Continued)

118

4.4. Data Collection Process for Integration Activities’ Effort Data

Figure 22: Data Collection Process for Integration Activities’ Effort Data

119

Figure 22: Data Collection Process for Integration Activities’ Effort Data (Continued)

120

4.5. Data Collection Process for Test Activities’ Effort Data

Figure 23: Data Collection Process for Test Activities’ Effort Data

121

4.6. Data Collection Process for Quality Activities’ Effort Data

Figure 24: Data Collection Process for Quality Activities’ Effort Data

122

Figure 24: Data Collection Process for Quality Activities’ Effort Data (Continued)

 TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : ...
Adı : ...
Bölümü : ...

TEZİN ADI (İngilizce) : ...
..
..
..
..

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla tezimin bir
kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine açılsın. (Bu

seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi ya da

elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

Yazarın imzası Tarih

	Mina Nabi Tez.pdf
	rb-sa01-f01tez_fotokopi_izin_formu

