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ABSTRACT 

 

 

INVESTIGATION OF FLUID RHEOLOGY EFFECTS ON 

ULTRASOUND PROPAGATION 

 

 

Özkök, Okan 

M.S., Department of Chemical Engineering 

Supervisor: Assoc. Prof. Dr. Yusuf Uludağ 

 

September 2012, 87 pages 

 

In this study, a mathematical model is developed for investigating the discrete 

sound propagation in viscoelastic medium to identify its viscoelastic 

properties. The outcome of the model suggests that pulse repetition frequency 

is a very important parameter for the determination of relaxation time. 

Adjusting the order of magnitude of the pulse repetition frequency, the 

corresponding relaxation time which has similar magnitude with pulse 

repetition frequency is filtered while the others in the spectrum are discarded. 

Discrete relaxation spectrum can be obtained by changing the magnitude of 

the pulse repetition frequency. Therefore, the model enables to characterize 

the relaxation times by ultrasonic measurements.  

 

Keywords: Fluid Rheology, Ultrasonic Characterization Techniques, Discrete 

Sound Signal Propagation, Viscoelasticity, Relaxation Time 
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ÖZ 

 

 

AKIŞKAN REOLOJİSİNİN ULTRASON YAYILMASI       

ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ 

 

Özkök, Okan 

Yüksek Lisans, Kimya Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Yusuf Uludağ 

 

Eylül 2012, 87 sayfa 

 

Bu çalışmada viskoelastik özelliklerin tayini için, viskoelastik ortamda kesikli 

ses sinyallerinin yayılmasını inceleyen bir matematiksel modelleme 

geliştirildi. Modellemenin sonuçları, dalga tekrarlanma frekansının relaksiyon 

zamanının tayininde çok önemli bir ölçüt olduğunu vurgulamaktadır. Dalga 

tekrarlanma frekansının büyüklüğünün ayarlanmasıyla,  bu büyüklüğe yakın 

büyüklükteki relaksiyon zamanı süzülür ve bu arada spektrumdaki diğer 

relaksiyon zamanları elenir. Bu, dalga tekrarlanma frekansının büyüklüğünün 

değiştirilmesiyle kesikli relaksiyon spektrumunun elde edilmesini sağlar. 

Böylece, geliştirilen model relaksiyon zamanlarının ultrason ölçümleriyle 

bulunmasını sağladı.   

 

Anahtar Kelimeler: Akışkan Reolojisi, Ultrasonik Karakterizasyon Teknikleri, 

Kesikli Ses Sinyali Yayılımı , Viskoelastiklik, Relaksiyon Zamanı 
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CHAPTER 1 

 

 

                                   INTRODUCTION 

 

 

 

Non-invasive methods for characterization of materials have been commonly 

used over the last decades since they have various superiorities on the 

conventional methods such as viscometer and rheometer [1]. Ultrasonic 

techniques are one of the most promising methods among them since they 

offer high confidence level results with fast measurements and at lower 

equipment and labor costs [2] compared to other techniques.  In the ultrasonic 

techniques two parametric quantities are used for characterization of materials; 

ultrasound propagation speed and the attenuation. The latter corresponds to the 

decrease in the amplitude of sound due to the absorption and scattering [3]. 

Since, these parameters are strongly dependent on the material properties, they 

can be utilized to determine the structure and physical properties [4] of the 

materials, mobility of molecules [5], complex modulus of elasticity [6], phase 

transformations [7], specific heat, thermal conductivity and other 

thermophysical properties [8, 9].  

In particular, ultrasonic methods are suitable for polymer processing since fast 

monitoring of the process is critical for the end product quality and economics 

of the production. Hence, there are various studies done for in-line and on-line 

monitoring of the process. In their study, P. Zhao and his fellow workers used 

online ultrasonic measurement method in order to probe viscoelastic 

properties of the polymers during injection molding [4]. Their measurements 

were based on the relation between polymer structure and attenuation of 
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ultrasound propagating in the polymer. Any change observed in the amplitude 

versus time plot was a direct indicator of the viscoelastic properties of the 

polymer throughout the process.  

Acoustic methods can also be used for the investigation of phase morphology 

of polymers. Wang and co-workers studied the structure of the high density 

polyethylene/ polyamide 6 blend melts with the addition of compatibilizer 

[10]. They found that the sound speed changes linearly with the blend 

composition. In addition, an exponential increase in the sound attenuation was 

observed as compatibilizer concentration was increased. Therefore, the phase 

morphology of polymer blends during processing can be watched online by 

using the ultrasonic techniques [11]. Similarly, Silva et al. accomplished the 

microstructural characterization of different types of AISI steels [13]. Their 

results revealed that the sound speed changes according to the type of steel. 

The variation of the sound speeds between these phases is mainly due to 

different degree of lattice distortion that changes the modulus of elasticity of 

these phases.  

Ultrasonic methods are also commonly applied for characterizing the 

crystallization behavior of polymers. In the research of Zhao and coworkers, 

the connection between crystallization process of poly(ethyleneterephthalate) 

and ultrasonic parameters were investigated [7]. Variation of attenuation and 

sound speed in polymer samples with respect to time and temperature resulted 

in significant data about the crystallization process, specifically rate of 

crystallization and degree of crystallinity.  

Ultrasonic techniques can also be employed to determine the complex 

modulus of elasticity.  In their work, Laura and co-workers [16] probed the 

complex modulus of elasticity of dough during its fermentation by the use of 

attenuation and sound speed. Since, the properties of the medium change 

during fermentation, the complex modulus of elasticity changes, as well. This 

makes it available to monitor the process online. Similar study is done by 
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Álvarez et al. [12] for the determination of complex modulus of elasticity of 

silica aerogels. Frequency dependent values of modulus of elasticity were 

evaluated. Increase in the storage component with frequency was observed.  

Besides, many studies are done to investigate the viscoelastic properties of 

materials by exploring the sound propagation in the material. Different 

mechanisms can contribute to the sound absorption like viscous effects, 

thermal conduction and chemical effects. In particular, in liquid systems 

viscous or viscoelastic effects are the main cause of the sound absorption [13]. 

Complex modulus of elasticity is an important instrument for viscoelastic 

characterization of materials [14, 15]. 

 
Developing a mathematical relation between sound attenuation and the 

viscoelastic parameters of the material is of the essence for acoustical 

characterization of the viscoelasticity. One of the approaches for obtaining 

these relations is to solve equation of continuity and motion with appropriate 

initial and boundary conditions, and determining the attenuation as a function 

of viscoelastic properties of the material.   

One of the work done by this order belongs to Assia et al. [16]. The group 

solved the wave equation for acoustic pressure for Newtonian systems by 

Laplace transformation method. Hence, the influence of frequency variation, 

penetration length and relaxation time on the decrease in the sound pressure 

amplitude is determined by their model.  

However, mathematical modeling of sound propagation in viscoelastic media 

entails to overcome many complications [17]. Hence, using such techniques 

requires complex mathematics and it is very difficult to deal with set of non-

linear equations especially when the thermal effects are considered. Another 

approach frequently used for getting the attenuation and sound speed as a 

function of sound frequency and material properties is to propose a solution 

for the wave equation. Inserting the proposed solution into the governing 

differential equations, acoustic parameters in terms of these properties are 
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obtained. These types of approaches are more practical to use than the integral 

transformation techniques in wave propagation studies [17]. By using this 

pattern, Sotolongo et al modeled the propagation of small amplitude waves in 

viscoelastic media [18]. The model shows that two fundamental arguments are 

strictly dependent on the acoustic parameters; bulk modulus and 

viscoelasticity of the solution. It is also realized that at low frequencies the 

polymer solution behaves like a compressible viscous fluid. In this range the 

impact of increasing polymer concentration is to increase the solution 

viscosity. At high sound frequencies, the addition of polymer does not 

influence the behavior of the solution. It is the solvent viscosity that 

determines the sound propagation. At the intermediate frequencies both 

longitudinal modulus and solvent viscosity determine the sound propagation. 

An extensive study on the sound propagation in viscoelastic media including 

the heat effects by using similar procedure was done by Perepechko et al. [8]. 

They found that at low frequencies sound propagates adiabatically. However, 

as frequency gets higher, the sound propagation deviates from adiabatic 

condition and dissipation of sound energy becomes more observable.  In 

addition, dynamic modulus of elasticity and sound speed increases with 

frequency, as well.  

Aforementioned studies principally dealt with the outcome of the base 

frequency of sound on propagation. Hence, the propagation of continuous 

sound wave has been clearly investigated by the former researches. 

Nevertheless, the sound propagation with discrete ultrasound signal pattern or 

the effects of pulse repetition frequency have not been apparently explored 

yet. Therefore, in this study, a mathematical model simulating the discrete 

sound propagation is developed for the characterization of viscoelastic liquids 

mainly based on the pulse reputation frequency of ultrasound. It should be 

noted that base or natural frequency of ultrasound can vary between kHz to 

MHz ranges. On the other hand, the pulse repetition frequency is in the order 

of Hz ranges. Therefore, it is possible to probe viscoelastic material properties 
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or characteristic times of relaxation in the time scales from milliseconds to 

seconds as opposed to the previous studies. The verification of the proposed 

mathematical model is performed by comparing its predictions with those of 

experimental observations obtained during this work. 
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     CHAPTER 2 

 

 

NON NEWTONIAN FLUID BEHAVIOR AND FLUID 

VISCOELASTICITY 

 

 

2.1 Non Newtonian Fluid Behavior 

All gases and liquids consisting of small molecules are Newtonian fluids [24]. 

For them, the ratio of shear stress to shear rate is constant and equal to 

viscosity. On the other hand, in Non-Newtonian ones, viscosity of the fluids 

changes with shear rate.  Indeed, for some fluids, viscosities change up to 

1000 times with shear rate [25].  Non-Newtonian fluids are usually structurally 

complex fluids such as polymer melts and solutions, lubricants, suspensions 

and emulsions [24].  Another major difference between Newtonian and Non-

Newtonian fluids is the normal stress effects (σxx , σyy , σzz) . In Newtonian 

fluids, normal stresses are zero; nevertheless, for Non-Newtonian fluids they 

are non-zero and different.   

 



7 
 

 

Figure 2.1 Shear stress versus shear rate for various types of fluids 

Non-Newtonian fluids can be classified into several types as shown in Figure 

2.1. For Pseudo plastic fluids resistance to flow decreases with increasing 

shear rate, hence they exhibit shear thinning behavior. Most of the polymer 

melts and solutions are examples to Pseudo plastic fluids. However, in the 

dilatant fluids, the resistances to flow increase with the shear rate, so they are 

shears thickening fluids, e.g. some slurries. In addition, in Bingham plastics, 

like sewage sludge, fluid does not flow until a threshold yield stress. After this 

stress it flows [15, 26]. 

However, none of the fluids in Figure 2.1 exhibit time dependent 

viscoelasticity. Duration of the shear is important for time dependent fluids. 

For some fluids, under constant shear rate viscosity decreases with time. These 

types of fluids are called as thixotropic fluids such as paints. For rheopectic 

fluids like some petroleum products on the other hand, viscosity increases with 

constant shear rate over a period of time as depicted in Figure 2.2.  
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Figure 2.2 Time dependent fluid behavior 

2.2 Polymer Melts and Solutions 

If the flow characteristics of the polymer melts and solutions are analyzed in a 

wide range of shear rates, logarithmic curves are obtained (Figure 2.3). 

Usually it is observed that at lower shear rates, the flow is in the region of 

“lower Newtonian” with a zero-shear viscosity, η0. This is due that at lower 

shear rates intermolecular forces in the polymer chain segments overcome 

molecular alignment in shear field. Thus, molecules are in entangled state 

which results in highest resistance to flow.  Increasing the shear rate to 

intermediate region, molecules starts to untangle and flow resistance starts to 

decrease. At this region the material behaves as a pseudo plastic fluid. 

Ultimately, after sufficiently high shear rates, molecules are completely 

aligned hence, resistance to flow is minimized. Here, viscosity reaches to η∞, 

which is in the upper “upper Newtonian” region.  



9 
 

 

Figure 2.3 Generalized flow properties of polymer melts and solutions [15] 

2.3 Fluid Viscoelasticity 

Elasticity is the capability of materials to store mechanical energy with no 

energy dissipation. On the other hand, Newtonian fluid dissipates energy 

without storing it [17]. Viscoelastic behavior is the combination of both 

viscous and elastic properties of the materials [28, 30]. One of the most 

interesting properties of polymers is their viscoelastic behavior when a stress 

induced to them [31].  For them, stress is a function of both strain (
yx ) and 

rate of strain (
.

yx ) [25] .  

It should be noted that most of the liquids are not pure Newtonian liquids such 

that they have not any elastic property. Furthermore, there is not an ideal solid 

that completely obey Hooke’s law at any deformation condition. It is the 

Maxwell J. who was one of the first people paying attention to this 

phenomenon [29].  

There are two fundamental instruments for the determination of mechanical 

properties of polymers; stress and strain. When a differential volume in a 

polymer is considered, the force applied on the faces of this volume is stress 
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tensor. Strain tensor is the change in the dimensions of the volume under the 

action of stress tensor.  

Stress relaxation is one of the properties of the polymer characterizing time 

dependent behavior of the polymers. Suppose that suddenly a constant strain 

0  is applied on a viscoelastic material. Then, one will observe that the stress 

necessary to sustain this constant strain is a decreasing function of time [25]. 

This behavior is defined by the relaxation modulus; 

yx

0

G(t)



                   (2.1)

 

In addition, the initial relaxation modulus is denoted as 0G ( as time goes to 0) 

and the equilibrium relaxation modulus is shown as G (as time goes to  ) . 

Viscoelastic properties of polymers can also be investigated by creep test. In 

creep test, suddenly a constant stress ( 0 ) is applied on the material. 

Meanwhile, the strain is continuously increased to keep stress constant. This is 

defined by the creep compliance, J [25]; 

yx

0

(t)
J(t)




                   (2.2)

 

In addition, creep recovery is another test for investigating viscoelastic 

properties of polymers. This is done by suddenly removing stress from the 

material. Then, stress starts to go back to zero.    

There are some mathematical models developed to express stress relaxation 

and creep behaviors of the viscoelastic materials. These models can be 

schematically represented by spring for denoting elastic behavior and dashpot 

for denoting viscous behavior. Each model consists of combination of these 

elements connected to each other serial or parallel. The contribution of 

elasticity to the viscoelastic properties of material is given by Hooke’s Law. 
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The viscous contribution is expressed by the Newton’s Law of viscosity. Some 

commonly used viscoelastic models are given below. 

2.4 Viscoelastic Models 

2.4.1 Maxwell Model 

Maxwell model is one of the simplest viscoelastic constitutive models. It 

consists of serially connected spring and dashpot elements [15], as shown in 

figure 2.4. 

 

Figure 2.4 Spring-dashpot representation of Maxwell Model 

In this model, the spring and dashpot experience the same stress; 

spring dashpot    
                 (2.3)

 

In addition, the total strain comes from the summation of the strains of the 

spring and dashpot; 

spring dashpot    
                 (2.4)

 

Taking the derivative with respect to time, 

. . .

spring dashpot                         (2.5) 

Note that, 
.

dashpot yx /     and 
. .

yxspring / G   , inserting them in to Equation 

2.5 gives the Maxwell model as, 

 
.

yx

yx yx
G t


   


                   (2.6) 
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Furthermore, the ratio / G in Equation 2.6 is stress relaxation time and can 

be denoted by 0  and changing   with η0, the Equation 2.6 will become; 

.
yx

yx 0 0 yx
t


     

                 
(2.7) 

Maxwell Model has also two more equivalent forms [15]: 

0

t .
( t t ')/0

yxyx

0

(t) e (t ')dt '
  



 
    

 
                (2.8) 

0

t .
( t t ')/0

yxyx 2

0

(t) e (t ')dt '
  



 
    

 


              (2.9)

 

These equations indicate that stress at the time, t depend on the rate of strain at 

time t and also the rate of strain at all the past times, t
’
. The term in bracket in 

Equation 2.8 is also called as relaxation modulus, G( t t ') .  

To see the creep behavior, differential Equation 2.7 can be solved with 

constant shear stress, 0 . Then, it is obtained that, 

0
yx 0 0 0

0 0

t 1 t
(t) ( ) J(t)

G


        

              (2.10)

 

To see the stress relaxation behavior, differential Equation 2.7 can be solved 

with constant strain, 0 . Hence, Equation 2.3 becomes, 

t/ t/

yx 0 0 0(t) e Ge G(t)         
            (2.11) 

2.4.2 Voigt-Kelvin Model 

In this model, spring and dashpot are assumed to be connected in parallel 

(Figure2.5).  Hence, the strain assisting the dashpot and the spring are same 

[15], 
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spring dashpot                        (2.12) 

So, the total stress on the system is the summation of the stress on the spring 

and the dashpot.  

spring dashpot                     (2.13) 

Combining Equation 2.12 and Equation 2.13 gives the governing differential 

equation for Voigt-Kelvin model. 

yx

yx 0 yxG
t


    


                (2.14) 

 

Figure 2.5 Spring-dashpot representation of Voigt-Kelvin Model 

Creep test can be done by solving differential Equation 2.14 with constant 

shear stress, 0 . Then, it is obtained that [15], 

t /0
yx 0(t) (1 e ) J(t)

G

 
    

             (2.15)
 

If the stress is removed when the equilibrium is reached, the strain becomes, 

t /0
yx (t) e

G

 
 

               (2.16)
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2.4.3 Generalized Maxwell Model 

The generalized Maxwell model considers n Maxwell elements connected 

parallel to each other [15] as shown in Figure 2.6. 

 

Figure 2.6 Spring-dashpot representation of Generalized Maxwell Model 

Now, the stress for each Maxwell element is given by, 

it /

yx,i 0 i(t) G e
 

  
               (2.17)

 

A constant strain, 0  is applied to all the Maxwell elements, and then using the 

superposition principle summation of stresses by each element is calculated as, 

i

n n
t/

yx yx,i 0 i

i 1 i 1

(t) (t) G e
 

 

                     (2.18) 

where  

i i i/ G                   (2.19) 

Equation 2.18 can also be represented as [15], 

0,i

t n .
(t t ')/0,i

yxyx

i 1 0,i

(t) e (t ')dt '
  



  
    

  


            (2.20)
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This equation can also represented in terms of relaxation modulus, 

t .

yxyx (t) G(t t ') (t ')dt '


    
             (2.21) 

2.4.4 Generalized Voigt-Kelvin Model 

The generalized Voigt-Kelvin model considers n Voigt-Kelvin elements 

connected in series to each other [15] as shown in Figure 2.7. 

 

Figure 2.7 Spring-dashpot representation of Generalized Voigt-Kelvin Model 

Now, the strain for each Voigt-Kelvin element is given by, 

t /0
yx 0(t) (1 e ) J(t)

G

 
    

             (2.15)
 

A constant strain, 0  is applied to all the Voigt-Kelvin elements, and then 

using the superposition principle summation of strains by each element is 

calculated as, 

i

n
t/0

yx

i 1 i

(t) (1 e )
G

 




                    (2.22) 

2.4.5 Relaxation Spectra 

Summation of Maxwell elements gives the distribution of relaxation times      

“ n ” with respect to corresponding modulus “Gn”. When the number of 

relaxation times is increased infinitely, G (t) takes the integral form of, 



16 
 

t /

k

0

G(t) G ( )e d



                  (2.23) 

Here, kG ( )  is the relaxation spectrum. 

2.5 Relation between Stress and Strain 

The relation between stress and strain can be represented by, 

E                   (2.24) 

Here, E  represents the complex modulus of elasticity. The real part of E
*
 

gives dynamic modulus of elasticity while the imaginary part of E
*
 gives the 

loss modulus. In other words, 

*E (w) E'(w) E''(w)                (2.25) 

The dynamic modulus of elasticity characterizes the amount of energy stored 

while the loss modulus is related to the energy dissipation characteristics of a 

material.   

Suppose that a sinusoidal stress is being applied on the material such that, 

0 sin(wt)  
               (2.26)

 

If the material exhibits linear viscoelastic behavior, the strain will also change 

sinusoidally with a phase shift, 

0 sin(wt )   
               (2.27)

 

where  

 is the phase shift.  

It should also be noted that the value of E’ increases or remains constant with 

increase in the frequency.   
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The absolute value of complex modulus of elasticity can be found by,  

2 2 0

0

E(w) (E(w)') (E(w)'') 
  

             (2.28)

 

The phase shift  gives the slope of mechanical losses or loss tangent, namely, 

E''
tan

E '
 

                (2.29)
 

The relation between the components of E  and phase shift,  can be 

constructed by, 

E' E cos 
               (2.30)

 

E'' E sin 
               (2.31) 

 

 

Figure 2.8 the relation between the components of E  and phase shift   

The concept of complex compliance can be established by, 

1
J J ' iJ ''

E




  

               (2.32)
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Here, J '  is dynamic or storage compliance and J ''  is the loss compliance. 

Since the relation between E  and J  is known, J  and its components can 

readily be written in terms of  E , E'  and E'' , 

2

1 1
i tan

E ' E 'J
1 tan



 


                 (2.33)
 

and 

2

1

E 'J '
1 tan


                 (2.34)

 

2 2 1

tan 1

E ' E ''J ''
1 tan 1 (tan )



 
                 (2.35)
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CHAPTER 3 

 

SOUND AND MATERIAL INTERACTIONS 

 

3.1 Nature of Sound 

Sound is mechanical vibration and/or mechanical waves, which is an 

oscillation of pressure transmitted through an elastic media [20]. It is first 

elaborated by Newton, in his book Principia, as pressure wave propagating 

through the adjacent particles and his pioneering studies were followed by the 

works of Euler, Lagrange and d’Alembert [21].  During the 19
th

 century, 

theoretical background of acoustics was established. “The Theory of Sound” 

by Rayleigh 1886 is still used as important reference by the researchers.  

To handle the physics of sound, sound waves are often mathematically 

interpreted by differential equations, wave equations. Wave equations are 

generally are in the form of partial differential equations since the dependent 

variable, usually sound pressure or displacement, is a function of both position 

and time [21]. Propagating sinusoidally, sound has a frequency and the 

frequencies above 20 kHz correspond to ultrasound [21]. Sound can propagate 

through the media in two different fashion; longitudinal and transverse wave 

propagation [22] . In longitudinal wave propagation, the displacements of the 

particles are parallel to the direction of the propagation of the wave (Figure 

3.1). In this type, the region where the sound is passing through is compressed, 

then it is relaxed, ultimately particles come back to their equilibrium position 

[19]. In the case of transverse propagation, on the other hand, the 

displacements of the particles are perpendicular to the direction of the sound 
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propagation (Figure 3.1).  Transverse waves can propagate in solids; 

nevertheless, fluids are not able to sustain transverse wave as there is no 

mechanism in liquids and gases for driving motion perpendicular to the 

propagation of wave [22]. 

 

Figure 3.1 Schematic representation of longitudinal (left) and transverse 

(right) wave propagation [23] 

 

3.1.1 Sound Attenuation 

Sound attenuation is the measure of the decrease in the sound amplitude or 

level or the energy dissipated to heat through the viscous effects of the 

material [23]. The energy loss stems from the scattering, reflection and 

absorption of the sound signal. The level of the sound attenuation is 

determined by both the frequency of ultrasound and the material properties. It 

can be calculated from; 

1

2 1 2

1 A
ln

x x A

 
   

  
                (3.1) 

where  , x and A refer to the sound attenuation, coordinates and the sound 

amplitude, respectively. Subscripts are used to mark the positions.  
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3.2 Relation between Complex Modulus and Acoustic Parameters 

Physical and chemical natures of a material have a strong influence on the 

sound attenuation and sound propagation speed [8]. For example, the relation 

between the complex modulus of elasticity and these aspects are given through 

the following equations; 

2

2

2
2

c 1
2

M'

1
2

  
   

   
  
  

   

                (3.2) 

2

2
2

2 c
2M''

1
2





  
  

   

                 (3.3) 

where M'  and M''  are the storage and loss components. Then the complex 

modulus of elasticity, M
*
, is given by the following equation; 

*M M' iM''                   (3.4) 

Derivation of Equations 3.2 and 3.3 are given in Appendix A.1. Bonding 

energy between the atoms forming the main chain of the polymer and the 

intermolecular forces between the neighboring polymer chains determines the 

change in the complex modulus of elasticity as a function of frequency. In the 

acoustic experiments, each one of these forces can reveal itself. To illustrate, 

the sound propagation speed in a polymer fiber in the direction of the fibers 

orientation is about 5(8 12)x10 cm / s . Bonding energy between atoms plays 

dominant role for this speed. However, when it is measured not on the 

direction of orientation, intermolecular forces determines the velocity and it is 

detected about 5(1.2 1.5)x10 cm / s  [34, 35].  

The dynamic modulus of elasticity provides many indications about the 

physical situation of a polymer. For example, intermolecular forces are greater 
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in glassy state of polymers than the rubbery state. Hence, the values of 

dynamic modulus of elasticity in the glassy polymers are in the order of

10 210 dyn / cm , while it is in the order of 6 7(10 10 )  dyn/cm
2
 in the rubbery 

polymers. Any change in the intermolecular structure of polymers also alters 

the dynamic modulus of elasticity, so that sound propagation is also affected. 

As a result, sound speed and amplitude attenuation provide information about 

the mechanical properties, physical and chemical structure and the 

composition of the material. Besides, these parameters can also be used for the 

determination of the relaxation times of the materials.  

3.3 Physical Interpretation of Sound Absorption  

The relaxation theory clarifies the fundamental acoustic properties of 

polymers. Under the action of wave propagation, the system deviates from the 

thermodynamic equilibrium state. When the wave propagation is interrupted 

the system assumes back its thermodynamic equilibrium state by internal 

forces. This period is called as relaxation time, i.e. the time necessary for 

reaching equilibrium is the relaxation time. Various kinds of molecular 

motions have contribution on the system to come back thermodynamic 

equilibrium from the transition state. A proper relaxation process is defined by 

matching relaxation times to corresponding molecular motion. It is necessary 

to adjust the experimental duration with the relaxation time in the same order 

of magnitude to determine the relaxation process with corresponding 

molecular motion [8].  

3.4 Material Characterization by Acoustic Methods 

Ultrasonic techniques for the investigation of polymers are based on pulsed 

ultrasound and operate in two modes; pulse-echo and transmittance mode. In 

pulse-echo mode (Figure 3.2), first, ultrasonic wave (A0) is emitted by a 

transducer. Then, some part of it (A0r) is reflected between the interface of the 
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transducer and the material. This gives the first echo. Meanwhile, the 

remaining part of the wave (A1r) propagates through the material. When it 

reaches to the interface between the material and its bordering, some part of it 

(A0r) is reflected. This gives the second echo. Hence, the sound speed and 

attenuation can be determined by measuring the time between two successive 

echoes and their amplitudes.  

 

Figure 3.2 Representation of pulse-echo mode [23] 

In the transmission method (Figure 3.3), two probes are necessary, one is used 

as transmitter and the other is used as receiver. Sound emitted by the 

transducer with A0 amplitude eventually reaches to the receiver as A2. The 

sound attenuation here can be determined by comparing the amplitudes of the 

echo received with and without material of interest between the transducers.  

 

Figure 3.3 Representation of transmission mode [23] 
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CHAPTER 4 

 

MATHEMATICAL MODELLING OF ULTRASOUND 

PROPAGATION IN A VISCOELASTIC MATERIAL 

 

4.1 Propagation of Sound Waves in Viscoelastic Medium  

In this part, modeling of sound propagating in a viscoelastic media is 

presented. Specifically, the interaction between successive ultrasound pulses 

and the material is modeled. Eventually, the model will be instrumental to 

probe viscoelastic properties of the material through the modulated ultrasound 

pulses. 

The model begins with the displacement of the particles in the medium when 

subjected to continuous wave propagation.  

iwt x

0ku u e                    (4.1) 

where σ is complex wave number;  

w
i

c
   

                  (4.2)
 

However, Equation 4.1 should be modified to capture the propagation of 

modulated waves in a medium. In Figure 4.1, discrete or modulated wave 

propagation is schematically represented. Here, discrete signals are sent 

successively, and pulse length of each signal is denoted as “n”.  In addition, 

duration between the end of a pulse and the start of its successor (PRF) is 

denoted as “a”.  
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Figure 4.1 Representation of discrete sound waves in the medium 

At time, t1 the first sound signal is sent to sample.  Therefore, between the 

time t1 and t1+n, Equation 4.1 models the displacement of the particles. After 

the time, t1+n, the sound is no longer sent to the medium. Hence, to start and 

stop the wave mathematically at the time, t1 and t1+n, respectively, the 

following equation can be written;  

iwt x iwt x

1 0k 1 0ku H(t t )u e H(t (t n))u e                    (4.3) 

where H is the Heaviside unit step function, namely; 

1 if t a

H(t a) 1/ 2 if t a

0 if t a

 
 

   
        

 

The first term in Equation 4.3 is equal to iwt x

0ku e   after the time, t1; however, 

the second term is still zero until the time, t1+n.  After time, t1+n the second 

term is converted to iwt x

0ku e  ; hence, these terms vanish each other, and 

Equation 4.3 becomes zero. However, this is not enough to model the system. 

This can only model the system between time t1 and t1+n. After the time t1+n, 

the particles are not in their equilibrium positions, but the particles starts to 
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settle their equilibrium positions. Therefore, a recovery term should be 

included in the model equation for the particles’ recovery to their equilibrium 

positions. This can be expressed by adding a recovery function to Equation 

4.3. At time, t1+n the displacement is 1iw(t n) x

0ku e
  , constituting the initial 

condition of the recovery term, which can be obtained by the use of 

viscoelastic constitutive equations. Figure 4.2 is an illustrative figure 

representing the behavior of the medium or the output when exposed to the 

discrete sound wave propagation or the input.  

 

Figure 4.2 Representation of the displacement of particles with time 

For the recovery of molecules generalized Voigt-Kelvin model is used. This is 

one of the simplest models to explain the behavior of the molecules under 

action of constant loading and their recovery when the stress is removed. The 

Voigt-Kelvin analogy fits the case in discrete wave propagation in viscoelastic 

media. Since, during the wave propagation at a fixed position, the molecules 

are first under the action of the pressure of the ultrasound. Although the wave 

has a sinusoidal character, the mean amplitude of the wave pressure remains 

constant. Hence, in this period the molecules at this position can be accepted 

to be exposed to a constant loading. When the wave stops, the molecules tend 

to recover their equilibrium position. Hence, this behavior can be added to 
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model by inserting the recovery of molecules according to Voigt-Kelvin 

model. Thus, when the stress is removed, they will come back to equilibrium 

position according to Voigt-Kelvin by; 

i

tp

i

i 1

u u e

 
 
 



 
                 (4.4)

 

By adding this term into Equation 4.3, and making the similar calculation for 

the second wave, it is obtained that; 

i1

1

i1

iwt x iwt x

1 0k 1 0k

tp
iw(t n) x

1 0k

i 1

iwt x iwt x

1 0k 1 0k

(t ( t 2n a))
p

iw(t 2n a) x

1 0k

i 1

u H(t t )u e H(t (t n))u e

H(t (t n))u e e

H(t (t n a))u e H(t (t 2n a))u e

H(t (t 2n a))u e e

 

 
 
   



 

    
 

    



    

  

       

   



              

(4.5) 

Equation 4.5 can be generalized for “m” number waves as, 

( t ( t ( j 1) n ja ))1

i1

m
x iwt iwt

0k 1 1

j 0

p
iw(t ( j 1)n ja )

1

n 1

u u e [e H(t (t j(n a))) e H(t (t ( j 1)n ja))

e H(t (t ( j 1)n ja)) e

    





 
      



        


    






          

(4.6)

 

Temperature and density variations can also be expressed similar to the 

displacement; 

( t ( t ( j 1) n ja ))1

1 i

m
x iwt iwt

0k 1 1

j 0

p
iw(t ( j 1)n ja )

1

n 1

T T e [e H(t (t j(n a))) e H(t (t ( j 1)n ja))

e H(t (t ( j 1)n ja)) e

    





   



        


    





          (4.7)
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( t ( t ( j 1) n ja ))1

1 i

m
x iwt iwt

0k 1 1

j 0

p
iw(t ( j 1)n ja )

1

n 1

e [e H(t (t j(n a))) e H(t (t ( j 1)n ja))

e H(t (t ( j 1)n ja)) e

    





   



          


    





          

(4.8) 

Furthermore, the pressure variation can also be defined as; 

( t ( t ( j 1) n ja ))1

1 i

m
x iwt iwt

0k 1 1

j 0

p
iw(t ( j 1)n ja )

1

n 1

P P e [e H(t (t j(n a))) e H(t (t ( j 1)n ja))

e H(t (t ( j 1)n ja)) e

    





   



        


    





          (4.9) 

Now, proposed solutions for u, ρ and T are obtained. Here, the main quantity 

characterizing the u, ρ and T variations is “σ”. Hence, in order to identify the 

u, ρ and T variations through “σ”, these suggested solutions for u, ρ and T, 

should be inserted into the governing differential equations. Dependent 

variables in the governing differential equations should be written in terms of 

u, ρ and T. Hence, some simplifications and modifications are done in the 

equation of continuity, motion and energy. Their derivations are shown in 

Appendix A.2. Ultimately, the governing differential equations take the form 

of; 

2

0

u
0

t x t

 
 

                  (4.10)
 

2 2

0 T V2 2

u T u
K L 0

t x x

  
    

                (4.11)
 

2

V T
V 2 2

0 0

T KT k T
C 0

t t x

  
  

    
             (4.12)

 

To make simplification in the u, ρ and T, lets define A and B as, 
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1 1A H(t (t j(n a))) H(t (t ( j 1)n ja))        
          (4.13)

 

1iw(t ( j 1)n ja)

1B e H(t (t ( j 1)n ja))
  

                 (4.14)
 

Substituting the density, displacement and temperature into our governing 

differential equations, equation of continuity becomes, 

1

i

1

i

( t ( t ( j 1)n ja ))
pm

x iwt

0k

j 0 i 1 i

( t ( t ( j 1)n ja ))
pm

x iwt

0 0k

j 0 i 1 i

1
e Ae iw B e

1
u e ( ) Ae iw B e 0

     
 

  

 

     
 

  

 

   
     

     

   
      

     

 

 
        (4.15) 

Similarly equation of motion becomes,

 

1

i

1

i

1

2 (t ( t ( j 1)n ja ))
pm

x iwt 2

0 0k

j 0 i 1 i

( t ( t ( j 1)n ja ))
pm

x iwt

T V 0k

j 0 i 1

(t ( t ( j 1)n ja

x 2 iwt

0k

1
u e Ae w B e

K T e ( ) Ae B e

L u e ( ) Ae B e

     
 

  

 

     
 

  

 

    



   
      

     

  
     

  
  

  

 

 

i

))
pm

j 0 i 1

0

 
 

 

 

  
   

  
  

           (4.16) 

Finally, equation of energy becomes as, 
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1

i

1

i

( t ( t ( j 1)n ja ))
pm

x iwt

V 0k

j 0 i 1 i

( t ( t ( j 1)n ja ))
pm

x iwtV T
0k2

j 0 i 10 i

( t (

x 2 iwt

0k

0

1
C T e Ae iw B e

T K 1
e Ae iw B e

k
T e ( ) Ae B e

     
 

  

 

     
 

  

 

 



   
    

     

    
      

      

  


 

 

1

i

t ( j 1)n ja ))
pm

j 0 i 1

0

   
 

 

 

  
   

  
  

          (4.17)

 

For further simplification let’s define N, M and S as,  

1

i

(t ( t ( j 1)n ja))
p

i 1 i

1
N B e

     
 

 



 
  

 


             (4.18)

 

1

i

2 (t (t ( j 1)n ja))
p

i 1 i

1
M B e

     
 

 



 
  

 


             (4.19)

 

1

i

(t ( t ( j 1)n ja))
p

i 1

S B e

     
 

 



 
              (4.20) 

Each of the equations has number of solution; however, for non-trivial 

solution of the set of equations, the determinant of the following matrix should 

be zero. 

0k 0k 0k

m m
iwt iwt

0

j 0 j 0

m m m
iwt 2 2 iwt iwt

0 T V

j 0 j 0 j 0

m m m
iwt 2 iwt iwtV T

V2
j 0 j 0 j 000

u T

[Ae iw N] [( )(Ae iw N)] 0

det 0
0 [ Ae w M] L [( ) (Ae S)] K [( )(Ae S)]

T K k
[Ae iw N] 0 [( ) (Ae S)] C [Ae iw N]

 

  

  



   


        


      



 

  

  

  

                                                                                                                 (4.21) 
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Taking the determinant yields, 

m m
iwt iwt 2

0

j 0 j 0

m m m
2 iwt 2 iwt iwt

V

j 0 j 0 j 00

m m
iwt iwt iwV T

0 T V 2
j 0 j 0 0

[Ae iw N] (( A)e w M)

k
L [( ) (Ae S)] [( ) (Ae S)] C [Ae iw N]

T K
( ) [Ae iw N] K ( ) [Ae iw S] [Ae

 

  

 

  
     

  

  
         

  

   
       

  

 

  

 
m

t

j 0

iw N] 0


 
  

 


 

                                   (4.22) 

Hence, rearranging we ultimately obtain; 

m m m
4 iwt iwt iwt

j 0 j 0 j 00

m m m
2 2 iwt 2 iwt iwt

j 0 j 0 j 0

m m
iwt iwt

V

j 0 j 0

Lk
[Ae S] [Ae iw N] [Ae S]

k [( A) e w M] [Ae iw N] [Ae S]

LC [Ae iw S] [Ae iw N]

  

  

 

     
       

     

    
         

    

 
   

 

  

  

 
m

iwt

j 0

2 2 m m m
iwt iwt iwtV T

j 0 j 0 j 00

m m m
iwt 2 iwt iwt

0 v

j 0 j 0 j 0

[Ae iw N]

T K
[Ae iw N] [Ae S] [Ae iw N]

C [( A)e w M] [Ae iw N] [Ae iw N] 0



  

  

 
  

 

    
       

    

     
         
     



  

   (4.23) 

 

 

This is the dispersion equation relating the viscoelastic properties of the media 

with the acoustic parameters.  

4.2 Further Simplification of the Mathematical Model 

As it stands Equation 4.23 is too complicated to be employed. Possible 

simplifications for practical applications can make it easier to employ the 

equation. For this purpose, to evaluate Equation 4.23 term by term, now let’s 

define y1, y2, y3, y4 and y5 as; 
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m m m
iwt iwt iwt

j 0 j 0 j 00

Lk
y1 [Ae S] [Ae iw N] [Ae S]

  

    
       

     
  

         (4.24) 

m m m
2 iwt 2 iwt iwt

j 0 j 0 j 0

y2 k [( A) e w M] [Ae iw N] [Ae S]
  

    
         
     

  
     (4.25) 

m m m
iwt iwt iwt

V

j 0 j 0 j 0

y3 LC [Ae iw S] [Ae iw N] [Ae iw N]
  

    
        
     

  
                             

( 4                                                                                                                (4.26) 

2 2 m m m
iwt iwt iwtV T

j 0 j 0 j 00

T K
y4 [Ae iw N] [Ae S] [Ae iw N]

  

    
        

     
  

(4.27) 

m m m
iwt 2 iwt iwt

0 v

j 0 j 0 j 0

y5 C [( A)e w M] [Ae iw N] [Ae iw N]
  

    
         
     

  
 

       (4.28) 

so, Equation 4.23 is converted to; 

4 2(y1) (y2 y3 y4) y5 0                  (4.29) 

Although, physical properties of liquids vary, the magnitudes of the properties 

are usually in the same order. Hence, the magnitude of each term in Equation 

4.29 can be evaluated by the approximate properties of a liquid.  

The physical properties are taken as k=0.5 W/m K, ρ0=1000 kg/m
3
, CV=4140 

J/kg K, αv=2.56x10
-4

 K
-1

, L=KT=10
9 

Pa and T=300 K. 

and the average value of the wave number “σ” can be taken as; 

4 310 10 i    

Inserting them into Equation 4.29 for m=50; 
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9 15

4 27 33

y1 2.257x10 i2.513x10

y1 8.61x10 i9.3x10

 

   
 

22 27y2 1.189x10 i3.349x10   

34 40y3 6.641x10 i7.395x10   

28 23y4 6.985x10 i2.481x10   

So for the term (y2+y3+y4), y3 is the dominating term among the others. 

Hence, they can be neglected. 

2 42 50(y2 y3 y4) 1.985x10 i1.423x10       

In addition, magnitude of the term “ 4y1 ” is very small with respect to “

2(y2 y3 y4)   ”, so it can also be neglected. 

43 49y5 5.226x10 i1.856x10   

Therefore, Equation 4.29, reduces to  

2y3 y5 0                  (4.30) 

or in open form, 

m m m
2 iwt iwt iwt

V

j 0 j 0 j 0

m m m
iwt 2 iwt iwt

0 v

j 0 j 0 j 0

LC [Ae iw S] [Ae iw N] [Ae iw N]

C [( A)e w M] [Ae iw N] [Ae iw N] 0

  

  

     
        

     

     
         

     

  

  
  

Further simplification gives,              (4.31) 
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m
iwt 2

j 02 0

m
iwt

j 0

[( A)e w M]

L
[Ae iw S]





 


 






             (4.32)

 

or 

m
iwt 2

j 00

m
iwt

j 0

[( A)e w M]

L
[Ae iw S]





 


 






             (4.33) 

Hence, density and longitudinal modulus is much more dominant for the 

determination of σ. Heat effects and thermal expansion is negligibly small. 

Indeed, it will be shown in the results part by the simulations that temperature 

variation during the wave propagation is too small.  

4.3 Spectral Analysis 

In this part it is questioned whether changing some acoustic parameters can 

filter a relaxation time while the others in the spectrum are discarded. If it is 

possible, by changing the acoustic parameters, corresponding relaxation times 

can be obtained. Hence, relaxation spectrum is obtained. Coming back to the 

equation for pressure variation; 

( t ( t ( j 1) n ja ))1

i1

m
x iwt iwt

0k 1 1

j 0

p
iw(t ( j 1)n ja )

1

i 1

P P e [e H(t (t j(n a))) e H(t (t ( j 1)n ja))

e H(t (t ( j 1)n ja)) e

    





 
      



        


    






          (4.9) 

Suppose that the time is t = t1+mn+ma (just before the beginning of the m
th

 

wave) 
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Then, the equation takes the form; 

( t ( t ( j 1) n ja ))1

i1

pm 1
iw(t ( j 1)n ja)x

0k

j 0 i 1

P P e e e

     
       

 

 
 
 
 

 
           (4.34)

 

For simplicity take m=3, then, 

1 i 1 i 1 i

(2n 3a) (n 2a) ap p p
iw(t n) iw(t 2n a) iw(t 3n 2a)x

i 1 i 1 i 10k

P
e e e e e e e

P

 
  

       

  

 
   

 
 

  
        (4.35) 

Suppose that, the relaxation time that is wanted to be filtered is τ1, then 

1 1 i 1 1 i 1 1 i 1

a (2n 3a) a (n 2a) a a ap p p
iw(t n) iw(t 2n a) iw(t 3n 2a)x

i 1 i 1 i 10k

P
e e e e e e e e

P

 
      
           

  

 
   

 
 

  

                                                                                                                    (4.36) 

Therefore, when “a”<<τi for i 1 then term in the exponent goes to zero or 

when “a”>> τi for i 1  then term in the exponent goes to minus infinity. Only 

the relaxation time which is in the same order with” a”, is observed. Hence, by 

changing the PFR, corresponding relaxation times with “a” is filtered. This 

makes it possible to get relaxation time spectrum with “a”.  

4.4 Determination of Relaxation Time 

Now, suppose that “a” has such a magnitude that only the relaxation time, τ is 

observed as explained in the spectral analysis part.  

Hence, rearranging Equation 4.9 for just before the beginning of the 4
th

 wave 

again, 

1 1 1

a (2n 2a) (n a)

iw(t n) iw(t 2n a) iw(t 3n 2a)x x x

0k

P
e e e e e e e e e

P

 
  

        
 

   
   

                 (4.37) 
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Taking the natural logarithm of both sides;

 

1 1 1

(2n 2a) (n a)

iw(t n) iw(t 2n a) iw(t 3n 2a)x x x

0k

P a
ln ln e e e e e e e e

P

 
 

       
 

     
  

                 (4.38)

 

or in general form; 

1

( j)(n a)m 1

(m 1) j

j 00k

P a
ln ln K e

P

 


 



  
     

     


            (4.39)

 

where  

1iw(t ( j 1)n ja)x

jK e e
  

              (4.40)
 

Taking the derivative with respect to “a” 

1

1

( j)(n a)m 1
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The second term in the right hand side of the equation corresponds to 

superposition of recovery terms growing in number at the end of each signal. 

Here, if “n” is taken sufficiently large, all of the recovery terms except the 

final one become negligibly small, so second term in the equation goes to 

zero, then the equation reduces to, 

0k 1

d P 1
ln

da P

 
  

                 (4.42)

 

Equation 4.42 can be used to obtain relaxation time of a viscoelastic solution 

through modulated ultrasound pulse measurements.  
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4.5 Relation between Complex Displacement, Density, Temperature and 

Pressure Amplitudes  

To run simulations by using Equations 4.6, 4.7, 4.8 and 4.9, u0k, ρ0k, T0k and 

P0k should be specified. However, they cannot be arbitrarily specified since 

they depend on each other. Specifying of one these quantities the others are 

obtained spontaneously.  In the ultrasonic experiments, the measured quantity 

is sound pressure or the echo amplitude rather than displacement, density or 

temperature. Hence, determination of u0k, ρ0k and T0k in terms of P0k is better 

for the simulations. Their relative magnitudes can be calculated by the 

following procedure. 

Substituting the expressions for displacement, density and temperature 

variations in their continuous forms (Equation 4.1) into Equations 4.10, 4.11 

and 4.12; 

0k 0 0kiw iw u 0                   (4.43) 
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Hence, rearranging the equations, ρ0k and T0k are found in terms of u0k as; 
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Finally, equation of motion can be used to relate P0k with u0k.  
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Inserting Equation 4.6 and 4.9 into Equation 4.48 results in; 
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CHAPTER 5 

 

EXPERIMENTAL 

 

5.1 Ultrasonic Measurements 

In this work Ultrasound Doppler Velocimetry (UDV) system DOP2000 

(Signal-Processing, Switzerland) is used. Many operating parameters such as 

ultrasound frequency, pulse reputation frequency and gate number can be 

adjusted by user. The experiments can be conducted in the ultrasound base 

frequencies of 0.5, 1.0, 2.0, 4.0 and 8.0 MHz. The pulse reputation frequency 

can be adjusted up to 15625 Hz. During the experiments the room temperature 

is kept as 25
0
C. In the experiments, the piezzo ceramic transducer (SUHNER 

Switzerland RG 174/U 50 ohm) is immerged into 1L sample solution. The 

depth of the tip of the transducer is kept as 2 cm from the surface of the 

solution. The main parameter in the experiments is the PRF. Echo-history data 

with different PRF’s are obtained to evaluate the mathematical model 

developed. Hence, echo amplitude versus time histories with various position 

data are recorded.  2.0, 3.0 and 4.0 wt % carboxy methyl cellulose (CMC) 

solutions are used as sample. CMC is taken from Sigma-Aldrich. Deionized 

water is used for the preparation of the CMC solutions. It is also obtained from 

Innovation Pure Water System. 

Preparation procedure of CMC solutions is important since it is not easy to 

dissolve CMC in water. They are prepared by adding CMC into water in 

portions for well mixing. After the addition of CMC to water, the solution is 

mixed intermittently at 30
0
C. Dissolution of CMC is completed after 2 days. 
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In addition, some properties of CMC taken from Sigma-Aldrich are given in 

Table 5.1. 

Table 5.1 Properties of CMC 

Property Value 

Molecular Weight 90 kDa 

Degree of Polymerization 400 

Degree of Substitution 

0.65-0.90 (6.5-9.0 carboxymethyl 

groups per 10 anhydroglucose units) 

Purity 99.5 % by weight 

 

CMC is a derivative of cellulose consisting of carboxymethyl groups and its 

structure is shown in Figure 5.1.  

 

Figure 5.1 Repeating unit of CMC 

 

The UDV devise also allows sound speed measurements by means of its 

dedicated accessory.  Once defining the distance from the transducer end to 

the micrometric screw, the speed of sound in the liquid is measured. A 

detailed technical specification of the DOP2000 is given in Appendix A3.  
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Figure 5.2 DOP2000 System 

Although ultrasonic measurements on stationary fluids are not widely used, 

DOP2000 can also give important ultrasonic data. Applying the ultrasonic 

field measurement feature property, the attenuation coefficient can be 

obtained. In addition, amplitudes of the echoes coming from various times can 

be obtained by the DOP2000. By further evaluation of these echoes acoustic 

characterization of the material can be achieved. The relation between acoustic 

parameters and the material properties are developed and shown in the 

previous mathematical model derivation part.  

5.2 Rheological Characterization 

In order to evaluate the results obtained by the UDV measurements, the 

samples are also characterized by a well-established rheological measurement 

technique. These rheological measurements are done in METU Central 

Laboratory by ARES Rheometer (TA Instruments, Spain) (Figure 5.3). During 

the measurements, the device is operated in parallel plate mode at 25
0
C. The 

diameters of the plates are 25 mm. By the rheometer creep experiments are 
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done on the CMC/water solutions. In these experiments, constant stresses (50 

Pa) are applied on the samples. Thus, strain data with respect to time are 

collected. The obtained data are fitted to generalized Voigt-Kelvin model; 

hence, relaxation times according to model are obtained. The raw data 

obtained from the experiments are shown in the Appendix A.4.   

 

  

 

Figure 5.3 ARES Rheometer (TA Instruments, Spain) 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

6.1 Analysis of Discrete Wave Propagation in Viscoelastic Medium by the 

Model Developed 

In this part, on the basis of the model developed, numerical simulations are 

done to analyze the ultrasound propagation in a viscoelastic medium. In the 

simulations some physical properties of the hypothetical medium which are 

parameters in the model equation are listed in Table 6.1. Those values are 

similar to those of liquids. Furthermore, some ultrasonic experiments are also 

done to evaluate the results of the simulations.  

Table 6.1 Physical properties of the hypothetical medium used in the 

simulations 

Physical Property Value 

Density (ρ0) 1000 kg / m
3 

Temperature (T0) 300 K 

Thermal Conductivity (k) 0.5 W / m K 

Constant Volume Heat Capacity (CV) 5000 J / kg K 

Isothermal Bulk Modulus (KT) 10
9
 Pa 

Thermal Expansion Coefficient (αv) 2.5x10
-4

 K
-1

 

  

First of all, behaviors of the media having different relaxation times (1.0 s, 0.1 

s and 1.0x10
-4

 s) are simulated. The simulations are done with a base 
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ultrasonic frequency of 1 MHz, and the time between two consecutive pulse 

“a” (or PRF) is kept as 0.04s while pulse length, “n”, is 0.05 s. The modulation 

of the applied ultrasound pulses are depicted in Figure 6.1.  

 

Figure 6.1 Modulation of the applied ultrasound pulses 

In addition, all the physical properties except the relaxation time are constant. 

The response of the material to the applied ultrasound pulses are shown in 

Figures 6.2, 6.3 and 6.4 in terms of amplitude of sound pressure versus time. 

When Figure 6.2 is analyzed, it represents discrete sound propagation in a 

medium having relaxation time of 1.0 s at a fixed position in the solution. The 

vertical axis shows the sound pressure and the horizontal axis represents the 

time. During the discrete sound propagation the medium is periodically 

compressed and then relaxed like a spring. The compression zone corresponds 

to the continuous propagation of wave. Then, the ultrasound pulse is stopped 

and relaxation of material starts. The duration of the compression and 

relaxation are determined by the pulse length and PRF of the sound. In the 

figure, material is compressed from the time 5.1 s to 5.15 s. Then, wave stops 

and material relaxes until the time 5.19 s. At this time new compression period 

starts. This trend continues during the application of the sound pulses.  
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From the figures it is seen that PRF and the relaxation time should be in the 

same order of magnitude to probe the relaxation phenomenon of the material. 

If PRF is much longer than the relaxation time as in Figure 6.4, the molecules 

come back to equilibrium position very fast so it gives inadequate monitoring 

of relaxation time. On the other hand, if PRF is much shorter than the 

relaxation time, the relaxation of the solution during this period will be 

insignificant, making it difficult to probe the variation of the pressure (Figure 

6.2). It resembles a continuous wave propagation. However, when their 

magnitudes of the orders are similar, the relaxation of the material is clearly 

explored (Figure 6.3). Consequently, this method can be used to obtain 

relaxation time spectrum with different PRF’s. Only the corresponding 

relaxation times with PRF are observed while the others are filtered. Hence, 

relaxation times in generalized viscoelastic models can be captured by 

changing the PRF.   

In addition, pressure amplitude of the ultrasound is set to 5 Pa in simulations. 

For τ=1.0x10
-4

 s, the obtained pressure of sound is 5 Pa. In this case the 

solution relaxation time is much shorter than n which is 0.04 s. However, for 

τ= 0.1 s and 1.0 s, the peak sound pressures have not reached to 5 Pa yet. It 

requires longer “n” values to reach 5 Pa as for longer relaxation times mean 

slower response of the solution.    
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Figure 6.2 Sound pressure versus time for τ=1.0 s, f=1 MHz and PRF=0.04 s 

 

Figure 6.3 Sound pressure versus time for τ=0.1 s, f=1 MHz and PRF=0.04 s 
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Figure 6.4 Sound pressure versus time for τ=1.0x10
-4 

s, f=1 MHz and 

PRF=0.04 s 

Position dependency of the sound pressure amplitudes can also be examined 

by the model.  Figures 6.2, 6.3 and 6.4 represent the results obtained at the 

point 1 cm from the transducer tip. When the sound pressure amplitudes are 

studied at different positions in the solution, it is seen that sound pressures 

gradually decreases with position. This is related with the attenuation of sound 

due to the viscous dissipation or the loss modulus. Figures 6.5, 6.6 and 6.7 

show the sound pressure amplitudes from 2, 5 and 8 cm from the transducer 

end for τ=0.1s, f=1 MHz and PRF=0.04 s. These points lie on the axis of the 

transducer. The positions affects only the amplitude of the sound pressure 

while oscillation characteristics of the sound pressure remain constant as they 

are function of relaxation time of the solution and ultrasound pulse parameters 

of PRF and pulse length.   



48 
 

 

Figure 6.5 Sound pressure versus time for τ=0.1s, f=1 MHz and PRF=0.04 s at 

x=2 cm 

 

 

Figure 6.6 Sound pressure versus time for τ=0.1s, f=1 MHz and PRF=0.04 s at 

x=5 cm 
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Figure 6.7 Sound pressure versus time for τ=0.1s, f=1 MHz and PRF=0.04 s at 

x=8 cm 

Similar analysis can also be done for determining the frequency dependency 

of sound pressure level during discrete wave propagation. As in the position 

dependence, increasing the frequency decreases the sound pressure levels due 

to the sound attenuation. These results are given in Figures 6.8, 6.9 and 6.10 

for 2, 4 and 8 MHz, respectively. It should be noted that, from the time point 

of view, the base frequency of the ultrasound has no effect relaxation of the 

sound pressure as the time scales involved are too different from each other. 

Here relaxation times of the solution in the order of milliseconds or seconds 

are considered while typical time scale of the ultrasound is in the order of 10
-6

 

seconds. These are shown in Figures 6.8, 6.9 and 6.10. On the other hand, the 

UDV system allows one to modulate the pulses with pulse repetition 

frequencies in the range of the solution relaxation times.   
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Figure 6.8 Sound pressure versus time for τ=0.1s, PRF=0.04 s for f=2 MHz 

 

Figure 6.9 Sound pressure versus time for τ=0.1s, PRF=0.04 s for f= 4MHz 
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Figure 6.10 Sound pressure versus time for τ=0.1s, PRF=0.04 s for f= 8 MHz 

6.2 Dependence of Sound Speed on the Acoustical Parameters and 

Material Properties 

Sound propagation speed is another important parameter for the acoustical 

characterization techniques. Its dependence on ultrasound frequency, solution 

relaxation time and temperature are also analyzed through the simulations in 

which Equation 4.22 is employed. The properties of the hypothetical solution 

are listed in Table 6.1. In Figure 6.11 the effect of ultrasound base frequency 

up to 10 MHz on the sound speed are shown. The vertical axis is the sound 

speed and horizontal axis is the base frequency of the sound.  
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Figure 6.11 Sound speed versus frequency for τ=0.1s 

It is seen that sound speed slightly increases with frequency. However, 

increase in the sound speed seems to be limited. Therefore, material 

characterization with a technique based on the sound speed dependent on 

ultrasound frequency is not promising. Experimental measurements for 

investigating the frequency dependency on sound speed are done with 2.0 wt. 

% CMC solution, as well. Figure 6.12 shows the experimental results of 

ultrasonic experiment done with CMC solution for determination of sound 

speed with frequencies from 1 MHz to 8 MHz. From the figure the sound 

speed is gradually increasing with frequency similar to the simulation results. 

The difference between the magnitudes of the sound speed obtained in the 

simulations and in the experiments stems from the differences between 

physical properties of assumed solution in the simulations and the CMC 

solution I the experiment. However, the trend of the sound speed variation 

with respect to the ultrasound frequency should be considered.  From that 

respect simulations seems to capture sound speed versus ultrasound variations 

accurately.   
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Figure 6.12 Sound speeds versus frequency for 2.0 wt. % CMC 

On the other hand, the dependency of sound speed on the relaxation time of 

the material is more pronounced than on the ultrasound frequency. The 

simulations show that the sound speed decreases when the relaxation time of 

the material increases. Lower relaxation time means higher molecular stiffness 

that in turn means higher sound speeds compared to the a material with a 

shorter relaxation time. This behavior is observed in Figure 6.13. An 

exponential decay of speed with log τ is observed in the plot. The vertical axis 

is the sound speed and the horizontal axis is the logarithm of relaxation time 

on the base of ten. 
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Figure 6.13 Sound speed versus log10 (relaxation time) f=1 MHz 

This behavior can also be observed by the experimental sound speed 

measurements with different CMC concentrations. One term in the discrete 

relaxation time spectrums of the CMC solutions of 2.0 wt. %, 3.0 % and 4.0 % 

are 2417 µs, 3211 µs and 4953 µs, respectively. Those values are obtained by 

fitting conventional rheometer measurement results to the generalized Voigt-

Kelvin constitutive rheological model. As the CMC in the solution gets lower, 

relaxation time of the solution also get lower, which is discussed in the coming 

part. Hence, sound speed decreases with the increase in the concentration of 

CMC in the solution. The experiments are done with base frequency of 1 MHz 

and the results are shown in Figure 6.14. The relaxation time range that could 

be obtained in the experiments is very narrow compared to the simulations. On 

the other hand, experimentally it is still possible to observe decreasing trend of 

the sound speed with respect to relaxation time. It should also be pointed out 

that, in the experiments the relaxation times were changed by changing the 

CMC composition of the solutions. This change in the composition could also 

affect speed of sound. As the concentration of the CMC was low, this possible 

effect has been neglected. 
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Figure 6.14 Sound speed versus various CMC relaxation times for f=1 MHz 

Another parameter that might have a significant impact on the sound speed is 

temperature. In order to investigate the temperature effects simulations are 

carried out between 250 K and 360 K for the hypothetical solution introduced 

earlier. The results are shown in Figure 6.15. The vertical axis is the sound 

speed and the horizontal axis is the temperature. It is seen that sound speed 

decreases with temperature. This is mainly due that dynamic modulus 

decreases by temperature. Hence, sound speed is inversely proportional with 

temperature. Despite the considerable temperature variation, the change in the 

sound speed can be considered marginal. Hence for small temperature 

variations, i.e. few degrees, the sound speed can be considered constant.  
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Figure 6.15 Sound speed versus temperature for τ=0.1s f=1 MHz 

6.3 Relation between Sound Attenuation and the Material Properties 

Sound attenuation is also important for the analyzing the sound propagation 

phenomena and commonly used in ultrasonic material characterization 

methods. It is strongly dependent on the frequency and material properties. It 

has already been demonstrated in Figures 6.8, 6.9 and 6.10 that the amplitude 

of ultrasound decreases with ultrasound frequency for a given location. This is 

an expected result since ultrasound at higher frequency is more prone to the 

scattering and other loss effects than that of lower frequency during while 

propagating in medium. In order to provide further insight on this effect, 

simulations and experimental measurements were carried out at different 

ultrasound base frequencies. The respective results are depicted in Figures 

6.16 and 6.17 in the experiments 2.0 wt. % CMC solution was used.  The 

figures show that attenuation gets higher as the ultrasound frequency increases 

since energy dissipation or loss modulus gets stronger in higher frequencies.  

 



57 
 

 

Figure 6.16 Sound attenuation with frequency for τ=0.1s 

 

Figure 6.17 Sound attenuation with frequency for 2.0 wt. % CMC 

Since, the attenuation is powerfully affected by the material properties, the 

attenuation with respect to different relaxation times are also plotted in Figure 

6.18. As seen from the figure, it is increasing with the increase in relaxation 

times. In addition, experiments are done to analyze the relaxation time effect. 

Similar to the sound speed versus the relaxation time results shown in Figure 

6.14, solutions at different relaxation times are obtained by changing the CMC 

composition as 2.0, 3.0 and 4.0 wt. %. Corresponding relaxation times are 
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2417 µs, 3211 µs and 4953 µs.  As CMC concentration or relaxation time gets 

higher, the solution becomes more elastic and sound attenuation increases.  

 

Figure 6.18 Sound attenuation with relaxation time for 1 MHz 

 

Figure 6.19 Sound attenuation with various CMC relaxation times for f=1 

MHz 
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6.4 Analysis of the Temperature Variation in the Material 

The model also helps to determine the temperature changes in the material due 

to the wave propagation. Since, the power of the sound is strongly dependent 

on the sound pressure; increasing the sound pressure level, the temperature 

variations can be expected to get more pronounced. However, the simulations 

show that these temperature variations are extremely small. The temperature 

changes with different ultrasound pressures are shown in Figure 6.20, 6.21 and 

6.22. Even at the extreme sound pressure levels, temperature variations remain 

smaller than 0.1 K. Therefore it is safe to assume that the measurements are 

isothermal as far as the ultrasound effects are concerned.  

 

 

Figure 6.20 Temperature variation as a function of time for f=1MHz at 1 kPa 
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Figure 6.21 Temperature variation as a function of time for f= 1MHz at 1 MPa 

 

Figure 6.22 Temperature variation as a function of time for f=1MHz at 1 GPa 

6.5 Determination of Relaxation Time 

In the modeling Section 4.4, it has been shown that by using appropriate 

modulated ultrasound pulses, it is possible to measure relaxation time of 

viscoelastic materials by ultrasonic measurements.  Making the “n” 

sufficiently long, superposition terms coming due to the previous waves 
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becomes negligibly small, as shown in Section 4.4.  It is shown in Section 4.4 

that the slope of the decay in the sound pressure amplitude with respect to “a” 

is inversely proportional to the relaxation time as 
1




. 

In the data acquisition mode of the DOP2000, the amplitude of the echoes just 

beginning of a wave can be obtained; hence, the relaxation time can be 

obtained by evaluating the experimental data with different “a” values. 

However, real viscoelastic materials, e.g. polymer solutions, have many 

relaxation times originating from different configurations and interactions 

among the chains. As stated earlier, by varying “a” relaxation times with 

similar magnitudes can be probed. Thus, changing the order of magnitude of 

“a”, the relaxation time that corresponds to the same magnitude of “a” is 

filtered. Eventually, spectrum of relaxation time can be achieved. DOP2000 is 

capable of generating pulses having repetition frequency between 64 µs and 

10500 µs. To obtain the spectrum, the ultrasonic experiments are done with 

three different magnitude of “a”. “a” values are set as 65-90 µs, 650-900 µs 

and 6500-9000 µs. Experiments are done with 2,0 wt. %, 3,0 wt. % and 4,0 wt. 

% CMC solutions. From the data acquired, natural logarithms of sound 

amplitude versus “a” graphs are drawn. For Figure 6.23, the vertical axis is the 

natural logarithm of the sound pressure amplitude of the received signal and 

the horizontal axis represents the time “a”. It is seen that linear relation is held. 

The slope of the graph corresponds to 
1




 and the intercept is related with the 

base frequency of the ultrasound. Numerous experiments are done and 

ultrasonic data acquired are consistent. The standard deviations for the 

evaluation of the experimental data are less than 0.1. In the figures arithmetic 

mean of the data are used.  

Figures 6.23, 6.24 and 6.25 belong to the experimental measurements done 

with a=65-90 µs.  Hence, the relaxation time corresponding to this magnitude 
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is filtered. From the figures it is seen that the slopes of the plots are decreasing 

by increasing the concentration. Hence, increasing the concentration of CMC 

in the solution raises the elasticity of the solution. The relaxation times are 

found as 64.5 µs, 78.7 µs and 81.9 µs for the CMC solutions of 2.0 wt. %, 3.0 

wt. % and 4.0 wt. % respectively. Furthermore, the empirical models 

developed for the prediction of viscoelasticity of polymeric solutions also 

suggest that the viscoelasticity of solutions should increase with the 

concentration of the polymer [40].  

 

Figure 6.23 ln(P/P0) versus a for 2.0 wt. % CMC solution at f=1MHz for PRF 

= 65-90 µs 
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Figure 6.24 ln(P/P0) versus a for 3.0 wt. % CMC solution at f=1MHz for PRF 

= 65-90 µs 

 

Figure 6.25 ln(P/P0) versus a for 4.0 wt. % CMC solution at f=1MHz for PRF 

= 65-90 µs 

In addition, results of the similar experiments done with a=650-900 µs are 

shown in Figures 6.26, 6.27 and 6.28. The relaxation times are obtained as 

312.5 µs, 454.5 µs and 526.3 µs for the CMC solutions of 2.0 wt. %, 3.0 wt. % 

and 4.0 wt. % respectively.  The results of the experiments for a=6500-9000 
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µs are presented in Figures 6.29, 6.30 and 6.31. The relaxation times are 

obtained as 2500 µs, 3333 µs and 5000 µs for the CMC solutions of 2.0 wt. %, 

3.0 wt. % and 4.0 wt. % respectively.  

 

 

Figure 6.26 ln(P/P0) versus a for 2.0 wt. % CMC solution at f=1MHz for PRF 

= 650-900 µs 
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Figure 6.27 ln(P/P0) versus a for 3.0 wt. % CMC solution at f=1MHz for PRF 

= 650-900 µs 

 

Figure 6.28 ln(P/P0) versus a for 4.0 wt. % CMC solution at f=1MHz for 

PRF= 650-900 µs 
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Figure 6.29 ln(P/P0) versus a for 2.0 wt. % CMC solution at f=1MHz for PRF 

= 6500-9000 µs 

 

Figure 6.30 ln(P/P0) versus a for 3.0 wt. % CMC solution at f=1MHz for PRF 

= 6500-9000 µs 
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Figure 6.31 ln(P/P0) versus a for 4.0 wt. % CMC solution at f=1MHz for PRF 

= 6500-9000 µs 

6.6 Rheometer Experiments 

Dynamic mechanical testing of polymers is also done for the solutions by TA 

Instruments ARES Rheometer. The data obtained from the rheometer 

experiment is fitted to generalized Voigt-Kelvin model. Use of four terms is 

concluded to express the experimental results sufficiently enough. The Voigt-

Kelvin model parameters for the CMC solutions are tabulated in Table 6.2. 

Table 6.2 Linear viscoelastic parameters in generalized Voigt-Kelvin Model 

for CMC/water solutions 

 

2.0 wt.% CMC 3.0 wt.% CMC 4.0 wt.% CMC 

m λm (µs) ηm (Pas) λm (µs) ηm (Pas) λm (µs) ηm (Pas) 

1 2417 271 3211 370 4953 534 

2 302 13 441 13 521 15 

3 59 6 82 8 90 9 

4 1 1 2 1 3 1 
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In Table 6.2 “m” represents the corresponding Voigt-Kelvin parameter. The 

rheometer results show that first three terms in the generalized Voigt-Kelvin 

model of CMC solutions are close to ultrasonic measurements. Since the 

magnitude of PRF falls in the range of the terms in the model, they are filtered 

while the remaining terms are discarded. Hence, this makes it possible to 

obtain discrete relaxation spectrum, by changing the magnitude of PRF. 

Accuracy of ultrasonic results can be accepted to be high. Since, the ultrasonic 

results deviates from the rheometer results no more than 10%. For qualitative 

ultrasonic measurements, results of the measurements can be corrected by 

calibration from the rheometer results. The comparison of rheometer results 

and ultrasound results are given in Figures 6.32, 6.33 and 6.34.  

 

Figure 6.32 Comparison of rheometer measurements and corresponding 

ultrasound measurements for a = 65-90 µs 



69 
 

 

Figure 6.33 Comparison of rheometer measurements and corresponding 

ultrasound measurements for a = 650-900 µs 

 

Figure 6.34 Comparison of rheometer measurements and corresponding 

ultrasound measurements for a = 6500-9000 µs 
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CHAPTER 7 

 

CONCLUSIONS 

 

In this study, discrete sound wave propagation in viscoelastic medium is 

investigated to probe its viscoelastic properties. For this purpose a 

mathematical model relating the discrete wave propagation with the material 

properties is developed. In the model heat effect due to viscous dissipation 

during the sound propagation is also included. On the basis of the model 

developed numerical simulations are done to visualize the sound propagation. 

The simulations mainly deal with sound pressure variation with time under 

different conditions. It is seen that pressure change looks like spring. During 

wave propagation, pressure increases like compression. When the wave stops, 

then pressure decreases as decompression. Relaxation time is very critical 

parameter determining these increase and decrease trends. If the relaxation 

time is much higher when compared with the pulse repetition frequency, 

material does not have enough time to relax during PRF; hence, discrete wave 

propagation resembles to a continuous wave propagation.  Material behaves 

like a perfectly elastic material. When the relaxation time of the material and 

PRF are close to each other, relaxation of the material is clearly observed 

during the period of PRF. However, if the relaxation time is much smaller than 

PRF, then material immediately relaxes when wave stops. This results in that 

no relaxation behavior is observed. Material behaves like perfectly inelastic 

body. Hence, PRF is an important for the detection of relaxation time. Hence, 

changing the time between two consecutive pulses the corresponding 
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relaxation times in the generalized viscoelastic models can be filtered. This 

makes it available to obtain relaxation time spectrum. Furthermore, the model 

imposes that a linear relation exists between natural logarithm of sound 

pressure amplitude and the time PRF.  

The change in the sound pressure with different positions and frequencies are 

also simulated. Besides, sound speed and attenuation is also calculated from 

the model for different operating conditions. Furthermore, heat effect is 

concluded to be negligibly small as results of simulations. Ultrasonic 

measurements by DOP2000 are also done to examine the results of the 

simulations by 2.0 wt., 3.0 wt., and 4.0 wt. % CMC/water solutions. In these 

measurements, three different ranges of PRF are used; 65-90 µs, 650-900 µs 

and 6500-9000 µs. For each range, the relaxation time which has similar 

magnitude with PRF is probed. Hence, three terms in the discrete relaxation 

spectrum are obtained. In addition, for comparison, the rheological properties 

of the solution are also investigated with TA Instruments ARES Rheometer . 

The rheological data are fitted to generalized Voigt-Kelvin model having four 

terms. Finally, for the range of PRF = 65-90 µs, the relaxation times are 

determined as 64.5 µs, 78.7 µs and 81.9 µs for 2.0 wt. %, 3.0 wt. % and 4.0 

wt. % CMC solutions, respectively. The corresponding results of the 

rheometer are 59.7 µs, 81.9 µs and 89.8 µs for 2.0 wt. %, 3.0 wt. % and 4.0 

wt. % CMC solutions, respectively. When the range of PRF is set between 650 

and 900 µs, the relaxation terms are obtained as 312.5 µs, 454.5 µs and 526.3 

µs for 2.0 wt. %, 3.0 wt. % and 4.0 wt. % CMC solutions, respectively. The 

rheometer results for this magnitude are 302.5 µs, 441.1 µs and 521.3 µs for 

2.0 wt. %, 3.0 wt. % and 4.0 wt. % CMC solutions, respectively. For the 

values of PRF between 6500 µs and 9000 µs, the relaxation times are probed 

as 2500 µs, 3333 µs and 5000 µs for 2.0 wt. %, 3.0 wt. % and 4.0 wt. % CMC 

solutions, respectively. The rheometer results come out as 2417 µs, 3211 µs 

and 4953 µs for 2.0 wt. %, 3.0 wt. % and 4.0 wt. % CMC solutions, 
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respectively. The ultrasonic measurements and rheometer results slightly 

deviate from each other. Hence, corrected results can be obtained from the 

calibration of the ultrasonic measurements.  
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APPENDICES 

 

A1. Derivation of Loss and Storage Modulus in Terms of Acoustic 

Parameters 

The governing differential equation for the longitudinal sound wave 

propagation in elastic medium can be written as; 

2 2

2 2

u 4 u
K G

t 3 x

  
     

             (A1.1) 

Assuming that “u” is proportional with exp{iwt-xσ}, and inserting this into the 

equation A1.1 ; 

2

4
K G

3V






              (A1.2) 

where V is the longitudinal sound wave velocity in Equation A1.2. Complex 

modulus has already been defined in Equation 3.4 as; 

M
*
=M’+iM’’                  (3.4) 

Assuming “u” is proportional with exp{iwτ-(α+iw/V)x}, the relation between 

M’, M’’ and α, V can be obtained.  

Separating the imaginary and real parts of the M, it is found that; 

2

2

2
2

c 1
2

M'

1
2

  
   

   
  
  

                    (3.2) 
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2

2
2

2 c
2M''

1
2





  
  

                     (3.3)

 

In addition the value of  “
2




”  is usually very low with respect to 1. Hence, 

further simplifications on the equations 3.2 and 3.3 give that; 

2M' V                 (A1.3) 

32 V
M''

w
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               (A1.4) 
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A2. Obtaining the Governing Differential Equations 

Considering the plane sound wave propagation in isotropic heat conducting 

viscoelastic medium, the equation of continuity, motion and thermal energy 

simplifies to; 

xv
0

t x

 
 

                (A2.1)
 

2

xx

2

u
0

t x

 
  
                (A2.2)

 

V x
V T

TT q
C K

t t x

  
   

                (A2.3)

 

For the velocity of particles of the medium it can also be written that; 

du
v

dt


               (A2.4)
 

To solve the systems of differential equations simultaneously, it is essential to 

express the stress tensor.  The stress tensor for an isotropic viscoelastic 

medium can be formulated as [39]; 

ik ik ik '   
              (A2.5)

 

where ik  stress tensor of elastic solid 

and ik '  dissipative stress tensor 

For the elastically deformed bodies, the stress tensor is given by 

ik

ik T

A

u

 
   

                (A2.6)

 

where A= Helmholtz free energy 
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iku  strain tensor 

For small deformations strain tensor is determined by; 

i k
ik

k i

1 u u
u

2 x x

  
  

                (A2.7)

 

It can also be converted into 

ik ik ik ll ik ll

1 1
u u u u

3 3

 
     
              (A2.8)

 

Helmholtz free energy as a function of temperature can be written as 

2

2T
0 T v 0 ll ik ik ll ll

1 K
A(T) A (T) K (T T )u G u u u

3 2

 
        

          (A2.9)

 

Inserting into Equation A2.6 

ik T V 0 ik T ll ik ik ik ll

1
K (T T ) K u 2G u u

3

 
           

         (A2.10)

 

Hence; 

x
xx T V 0 T

4 u
K (T T ) K G

3 x

 
       

           (A2.11)

 

The term 
T

4
K G

3

 
 

 
 can also be expressed as longitudinal modulus, L.  
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A3. Technical Specifications of DOP2000 

Technical Specifications 

Emission 

Emitting Frequency   Model 2032 

     5 different frequencies : 0.5, 1 , 2, 4 and 8 

     MHz 

Emitting Power   3 levels. Instantaneous maximum power for  

setting (approx. ) : 

low = 0.5 W, medium = 5 W, high = 35 W 

Number of emitted cycles  2, 4 or 8 cycles 

Pulse Repetition Frequency selectable values between 10000 µs and 

     64 µs, step of 1 µs 

Reception 

Number of Gates   variables between 1000 and 3, step of 1 gate 

Position of the First Channel movable by step of 250 ns 

Amplification (TGC)  Uniform, Slope, Custom 

     Slope mode 

     Exponential amplification between two  

defined depth values. 

Value at both depths variable between 

-40 dB and +40 dB 

Custom mode 

User’s defined values between -40 dB and + 

40 dB 

In cells. 



82 
 

Variable number, size and position of the 

cells. 

Sensitivity    > -100 dBm 

Resolution 

Sampling Volume: lateral size resolution defined by the acoustical 

characteristics of the transducer 

Sampling Volume: longitudinal 

 size Model 2032 

 Minimum value of 1.2 µs or 0.9 mm 

 Depends on busrt length 

 Maximum value of 16 µs or 12 mm 

 (c = 1500 m/s, approximate value, defined at 

50 % of the received) 

Display Resolution distance between the center of each sample 

 Volume selectable between 0.25 µs or 0.187 

mm  

 and 20 µs or 15 mm, step of 0.25 µs (c 

=1500 m/s) 

Velocity Resolution 1 LSB, doppler frequency given in a signed 

 Byte format 

 Maximum = 0.0091 mm/s; minimum = 91.5 

 mm/s (c=1500 m/s) 

Ultrasonic Processor 

Doppler Frequency computation based on a correlation 

algorithm 

Bandwidth of Demodulated  

Signals Model 2032 
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 Bandwidth 220 kHz 

Wall Filter Stationary echoes removed by IIR high-pass 

 Filter 2
nd

 order 

Number of Emissions per Profile between 1024 and 8, any values 

Detection Level 5 levels of the received Doppler energy may 

 disable the computation 

Acquisition Time per Profile minimum: about 2-3 ms 

Filters on profiles moving average: 

 Based on 2 to 32000 profiles 

 Zero values included or rejected 

 Median, based on 3 to 32 profiles 

Maximum Velocity 11.72 m/s for bi-directional flow (at 0.5 

MHz, 

 c = 1500 m/s) 

 variable positive and negative velocity 

range. 

Acquisition 

Compute and Display velocity 

 Doppler energy 

 Echo modulus 

 Velocity profile with echo modulus or 

 Doppler energy 

 Velocity profile with velocity versus time of 

 One selected gate 

 Velocity profile with flow rate versus time 
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 (circular section assumed) 

 Velocity profile with real time histogram 

 Echo modulus with real time histogram 

 Doppler energy with real time histogram 

 Power spectrum of one selected gated 

Cursor displays the velocity and depth value, 

tracking 

 Mode ( follow the displayed curve).  

 Statistical values available. 

Statistics Mean, standard deviation, minimum, 

maximum 

Trigger by external signal, change in the logic state 

 (TTL/CMOS level) 

 by keyboard action 

 Selectable repeated acquisition procedure 

 Of bloc of profiles 

 Automatic record capability 

Trigger Delay from a 1 ms to 1s, step of 1 ms 

Utilities freeze/run mode 

Velocity Component automatic computation of the projected 

velocity component 

Replay Mode replays a recorded measure from the disk 

Memory/Files 

Internal Memory variable size, memorization from 2 to 32000 

 Profiles 

Configuration 10 saved configurations 
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Data File Binary 

 (include: ASCII short into blocks, 476 bytes 

 Of ASCII comments, all parameters, all data 

 Profiles) 

 ASCII (statistical information available) 
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A4. The Raw Data Obtained From the Rheological Characterization of 

CMC/Water Solutions 

 

 

Figure A.4.1 Results of the creep experiment on 2.0 wt. % CMC solution 

 

Figure A.4.2 Results of the creep experiment on 3.0 wt. % CMC solution 
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Figure A.4.3 Results of the creep experiment on 4.0 wt. % CMC solution 

 


