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ABSTRACT

MEMS SENSOR BASED UNDERWATER AHRS (ATTITUDE AND HEADING
REFERENCE SYSTEM) AIDED BY COMPASS AND PRESSURE SENSOR

Ozgeneci, Mehmet Ercin
M.Sc., Department of Electrical and Electronics Engineering
Supervisor : Prof. Dr. Tolga Cifigu
Co-Supervisor : Assoc. Prof. Dr. Gatay Candan

September 2012, 84 pages

Attitude and Heading angles are crucial parameters for navigation. @dowal navigation
methods mostly uses IMU and GPS devices to calculate these angles. MEM®I|oggh
offers small sized, low cost IMU sensors with moderate performance. HoWe®S cannot

be used in underwater. Thereforeffeient aiding sensors are used in underwater vehicles in
order to increase the accuracy. As the accuracy of devices insfe¢laseost of these devices
also increases. In this thesis, rather than using GPS and high quality INddrselow cost
MEMS IMU sensor is used together with a magnetometer and a pressum ssmaiding
sensors. Considering the IMU error model and motion dynamics, two systenesigned
and simulated using real data. The results seem to be satisfactory angbresegre sensor

as an aiding sensor improves the attitude angles estimation.

Keywords: AHRS, MEMS IMU, underwater navigation, pressure 8ens



Oz

PUSULA VE BASING SEN®RU YARDIMIYLA MEMS SENSORLERI ILE SU ALTI
DURUM VE YONELIM SISTEMI

Ozgeneci, Mehmet Ercin
Yilksek Lisans, Elektrik ve Elektronik hendislgi Bolumi
Tez Yoneticisi : Prof. Dr. Tolga Cilglu
Ortak Tez Yoneticisi : Do¢. Dr. Cgatay Candan

Eylul 2012, 84 sayfa

Durum ve yonelim acilari navigasyon sistemleri iggnemli parametrelerdir. Geleneksel navi-
gasyon sistemleri, ataletsaktl birimi ve GPS kullanarak bu acilari hesaplar. Gelisen MEMS
teknolojisi Kiglik boyutta, digik maliyetli ve makul performansa sahip ataletSigli birim-

leri sunmaktadir. Fakat, GPS cihazlari su altinda kullanilamamaktadir. Bplegbe alti ci-
hazlarinda hassasiyeti ve@alugu arttirmak icin farkl yardimci sedder kullaniimaktadir.

Bu sens$rlerin hassasiyeti arttikca, maliyeti de artigstermektedir. Bu calismada, GPS ve
kaliteli ataletseldlct birimi kullanmak yerine, basing seémd ve manyetometre ile birlikte
dugik fiyath MEMS ataletseblct birimi kullaniimistir. Ataletseblgt biriminin hata mode-

li ve hareket dinamikleri dginulerek, iki farkli sistem tasarlanarak, gercek verilerle simule
edilmistir. Sonuclarin oldukc¢a tatmin edici olgiu gozlemlenmis olup, basing sén@nin

yardimci sendr olarak kullaniimasi durum acilarinin hesaplanmasinda iyilestirgiarsastir.

Anahtar Kelimeler: Ataletsalcti birimi (AOB), su alti navigasyon, basing séris
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CHAPTER 1

INTRODUCTION

Inertial Navigation Systems (INS) are one of the most critical parts of mowémicles and
Attitude and Heading Reference System (AHRS) is a common part of INSsiidtems are
first developed for navigating rockets during World War 1l and then itgyasarea spread out
to marine, aerospace and land systems [8]. Direction of the vehicle is tisgridasmation for
navigation, because position depends on the movement direction of théevebicattitude
and heading angles must be determined with high accuracy. INS systemmsiatg com-
posed of gyroscopes and accelerometers which altogether are namediasMeasurement
Unit (IMU). Attitude and Heading angles are also calculated using thesoiehut aiding

sensors are required in order to reduce the error.

Magnetometer can be interpreted as the digital version of a compass whbighk 8fe direc-
tion according to the magnetic north. Magnetometers are widely used in AHR&sy for
heading calculation, but the materials around and changing environmeiritegfere mag-
netometer outputs easily. Therefore, magnetometer must be calibratedyhmiere using
it for navigation purposes. Presure sensor is also one of the mosigseesors of the un-
derwater vehicle. The depth of the water can be easily measured bysagregnsor. It is

prefered in most of the underwater vehicles because of its convenience

IMU outputs stfter from diferent error sources which cause drift over time when their outputs
are integrated. Thus, using only IMU sensor and mechanization equatioed by Newton’s
Law of Motion results as a drift free INS [9]. Aiding sensor is a genevlation to overcome
the drift problem. Nevertheless, aiding sensors also have some dagsiémccertain type of
motions which cause large amount of errors in the output. Because ofrdesms, AHRS

system must be designed by considering all of these problems.



1.1 Scope of Thesis

MEMS technology €fers low cost IMU sensors with small sizes but these sensors include
serious errors which makes them unsuitable for stand-alone operattwrefdore, MEMS

IMU sensor needs to be integrated with other aiding sensors like magnetandt&lobal
Positioning System (GPS). However, the challenges of working in armwatier environment
restrict the usage of certain sensors such as GPS. To overcome tbisragfidiferent meth-

ods are proposed and implemented. In the scope of this thesis, magnetomdepeessure
sensor are used as aiding sensors to determine the attitude and headsgohag under-
water vehicle by using Linearized Error State and Extended Kalman Filtelgogthms. In

order to measure the performance of the system, field data is used in simulations

1.2 Outline of Thesis

Chapter 2 presents fundamentals of intertial navigation systems. Reddrames definitions
and frame rotation matrix are given in this chapter. IMU sensors and their miodels are
introduced. In the last sections of Chapter 2, most commonly used navigagi@tions and

their error models are derived.

Chapter 3 provides information about aiding sensors. Magnetometer l&regin detail
because of its complexity. Possible error sources and calibration methblatisdrto these
errors are given in this chapter. At the end of the chapter, the usageesdure sensor is
desribed.

Chapter 4 expresses the background information about Kalman FilterarLamel nonlinear
state space equations are presented. Since the systems are implemented! iengtigitia-
ment, discretization of the state space equations are given. Finally, fiieoedit Kalman
filtering methods are discussed in this chapter: Discrete Kalman Filter ance2igextended
Kalman Filter. The algorithms for these twofféirent implementations are given in related

sections.

Chapter 5 focuses on the newly designed system in this thesis work. 3tlésref Allan
Variance algorithm to measure the error parameters of IMU sensorgvareig the first sec-

tion. Magnetometer calibration and tilt angle calculation using accelerometpresented.

2



Proposed adaptive system is described in detail and the system mogeesar@ed by mech-
anization equations. State space model is constituted for the Kalman Filter. eftiem
system structure of two fierent implementations are presented by figures. In the last section

of this chapter, simulation results are prensented.

Chapter 6 discusses the simulations results and provides a conclusidrhtagthesis study.

Future work related to this work are stated in the last section of this chapter.



CHAPTER 2

INERTIAL NAVIGATION SYSTEMS

This chapter provides the background information about inertial navigagistems. Basic
principles, fundamental equations and crucial points are also clarifiedsictiapter. After
making a brief introduction to inertial navigation systems, sensor units foryttera are
explained. Their error models are considered together with the identificztibe stochastic
error sources. Last part of this chapter includes the coordinate filafirétions and dynamic

mechanization equations.

2.1 Introduction to Inertial Navigation Systems

Navigation is the most important concept of autonomous vehicle systems saycarthnot
operated remotely by a human. Any complication in the navigation system caiddsg

affect other systems of the vehicle. The main information produced by a naviggstem are
position, velocity and attitude of the system. Inertial navigation is the most comrmerofy
navigation techniques for autonomous vehicles and Attitude and HeadiegaReé System

(AHRS) is the most critical part of an Inertial Navigation System (INS).

Basic principles of INS are based on the laws of mechanics which are lcieddy Isaac
Newton. The fundamental law tells us that applied force yields an acceledtibe body.
So, given the ability of measuring acceleration by an accelerometer, thgelramovement
of the vehicle can be detected. By a simple integration of measured accelavdticgespect
to time, velocity change can be calculated. Rotational motion of the vehicle caensed
by gyroscopes so that the direction of the acceleration could be determihedefore, the

movement of the vehicle can be observed for navigation purposes. @abycalerometer and

4



a gyroscope are not icient (especially MEMS ones) for navigation due to the noise and er-
ror characteristics of the sensors [10]. Integration will sum up thesesaaind yields growing
errors in the output of the navigation system. So additional aiding sensoreguired for

navigation systems.

There are two types of INS system configurations witffiedent performances. The first one
is named as gimbaled systems. In that configuration, the accelerometergrascbges are
mounted on a gimballed platform which is always kept aligned with the navigatonef.
This configuration provides accurate navigation data but they are swadie for most ap-
plications because of the complex mechanical structure and high cost.rddsatenance of
gimbaled system must be done in a clean room since it requires very semsililoration.
The second configuration is called strapdown systems. The accelersraategyroscopes
are attached rigidly to the vehicle body. This time, software solution is usedier to keep
track of IMU’s orientation. This method is more practical than gimballed systémse &

reduces size, cost, power consumption and mechanical complexity [11].

GIMBAL-STABILIZED
INERTIAL SENSOR
ASSEMBLY (ISA)

INNER RING

INNER BEARING INERIAL SENSORS |
MOUNTED ON /-/ -
o

COMMON ‘ :

MIDDLE BEARING
BASE

OUTER BEARING

OUTER GIMBAL RING  (COMMON — N~ coMmoN
ASLHARDMOUNTED ~ BASEILLUSTRATED ——_ |\~ BASEMOUNTED

TO HOST VEHICLE FRAME AS TRANSLUCENT BOX) ” E

" ON HOST VEHICLE FRAME

Gimbaled IMU Strapdown IMU

Figure 2.1: Gimbaled and strapdown inertial measurement units (taken2jpm [

In this work, a strapdown INS is implemented considering the advantageh atg@amenti-
noned above. Our major interest is theeet of aiding sensor to the AHRS part of the INS
system. Therefore, because of the proposed aiding sensors thetearén this thesis, INS

system is implemented instead of implementing just AHRS system.
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2.2 Reference Frames

Before going any further, it is important to define the reference frasiese mathematical
representation of INS systems is based on reference frames. Latds chdpter, the mech-
nanization equations are derived considering these reference fratiagference frames
considered in this study form an orthogonal right handed basis setdi@ate frames used

throughout this thesis are explained in the subsequent sections.

2.2.1 Inertial Frame

It is hard to define perfect inertial frame, but an approximation of it fEgant for the most
of the navigation systems. Origin of the inertial frame is defined as Earthtercef mass
and oriented with respect to fixed stars. Inertial frame is assumed nateteeate and not to

rotate with respect to universe [3]. Inertial frame is denoted by a symbol

2.2.2 Earth Frame

Earth frame has its origin at the center of Earth and all axes are fixed gjpleceto Earth’s
surface. Its x-axis points to Greenwich meridian, z-axis is the same as ttier&ation axis
which goes through Earth’s polar axis and y-axis satisfies right haodkedgonal plane so

that y-axis is defined along equatorial plane [12].

Unlike the inertial frame, Earth frame rotates with respect to inertial frame withnatant

angular rate. This angular rate is calculated in Equation 2.1 [4].

_ ~( 1+ 36525cycle )( 2 rad/cycle
e ~

rad
=7.292115x 10°° — 2.1
(365.25)(24hour) 360039c/h0ur) 8 Sec 1)

In Equation 2.1, Earth’s angular rate about its own axis relative to inersiaid is calculated

and denoted bwie. Figure 2.2 shows the axes of the Earth frame.

2.2.3 Navigation Frame

Navigation frame is actually a local frame defined in the operation position ofhiele. Its

origin is at the location of vehicle (navigation system of the vehicle) and its areealigned

6



Figure 2.2: Axes of the Earth frame (taken from [3])

with north, east and down (local vertical down) direction. Because efattes alignment,
it also called as NED frame. Navigation frame axes may rotate as vehicle mouearth

surface due to Earth’s ellipsoidal shape . This rotation is named as tramapo Since
transport rate is angular rotation of navigation frame with respect to Bartief it is denoted

by wen in this study. Figure 2.3 clearly depicts navigation frame and its axes.

x=True north
)

y=East

z=-Normal (Down)

Equator

Prime Meridian

Figure 2.3: Axes of the navigation frame (taken from [4])



2.2.4 Body Frame

Body frame is rigidly attached to the vehicle and origin of the frame is the cehteviga-
tion system on the vehicle. Body frame axes are aligned with roll, pitch andayxa®. In
other words, x-axis is forward along the movement direction of the veliegjs is directed
downward and y-axis is directed towards to right side of the vehicle smtttaigonal right
handed rule is satisfied. Axes of body frame is shown in Figure 2.4. Bedlyef is denoted

by symbolb.

Figure 2.4: Axes of the body frame

2.3 Frame Transformation Matrix

In navigation systems, it is essential to work iffféient frames but the solution must be in
a well defined frame. For strapdown navigation systems, the measurehnmesittial sensors
are defined in body frame which is not a global frame to use at the outptlteofvhole
system. So there has to be a transformation between tfegatit frames. This transformation
is perfomed by a matrix which is called Direction Cosine Matrix (DCM). In this wtilde

following notation is adapted when transforming one vector from one fraraedther frame.

X0 = R xfrom (2.2)

Throughout this work, Euler angles are used to identify the attitude amtirtieaf the vehicle.
The Euler angles, rol(), pitch@), and yaw{), are depicted in Figure 2.5.



W)

YAW

Bl
X vz

Figure 2.5: Euler angles

In this thesis work, a simple notation is adopted for the representation dfisgeces and
rotations. For exampley? describes the rotation of fran@erelative to frameb, and this
rotation represented in frame-Similarly, f5 means the specific force of franeerelative to

frameb, and this force represented in fraroe-

Transformation between body and navigation frames is the most importasfainaation
since Euler angles between these frames are highly dependent on \mal®ic motion.
By using this transformantion matrix, linear velocities and angular velocitiebeanans-
formed from body frame to navigation frame or vice versa. In order tattoat DCM matrix
for body to navigation frame transformation, principal rotation matricesdohexes are re-
quired. Principal rotation matrices for x, y and z axis are given in EquaoB, 2.4 and 2.5

respectively.

1 0 0
Rxs = |0 cosp) -sin(@) (2.3)
0 sin@) cosg)



cos@) 0O sin@)
Re=| 0 1 0 (2.4)
—sin@) 0 cosP)

cosf) -—sin@) O
Rzy =|sin@) cos@) O (2.5)
0 0 1

2.3.1 Linear Velocity Transformation Matrix

Transformation matrix for linear velocity transformation is described by ppaiaotation
matrices about z, y and x axis. It is crucial that this order of axes isnitray. In navi-
gation systems, it is common to use tlyx convention for the transformation from body to
navigation frame in terms of Euler angles [13]. Direction Cosine Matrix framytto navi-
gation frame can be representedRjy©) where® is the Euler angleg¢ 6 ;.//]T. Euler angles
argument @) is dropped to simplify notation, so that direction cosine matrix from body to
navigation frame is denoted Wy} in this thesis work. Direction Cosine Matrix for linear

velocity is formulated in Equations 2.6 - 2.7

(RE)_l = (Rg)T = R) = Rey Ryg Ry (2.6)
After, substituting the principle rotation matrices in Equations 2.3,2.4 and 2.5 fdimalof
the DCM matrix is obtained in Equation 2.7.
cos(y) cosP) - sin(y)cosg) + cosfy) sin@) sin(@)  sin@) sin(g) + cosg) sin@) cose)
R} = |sin@) cosp) cosf)cosg) + sin@)sin@) sin@) — cosg) sin@) + sin() sin@) cose)

—sin(@) cosp) sin(p) cosp) cosg)
(2.7)

Note that direction cosine matrix for transformation between navigation aahyl foame is a

unitary matrix.

2.3.2 Angular Velocity Transformation Matrix

The body fixed angular velocities and Euler’s angle rates are relatagythngular Velocity

Transformation Matrix. This relation can be expressed as
0 = T(©) b, (2.8)

10



whereT](@) is the angular velocity transformation matrix from body frame to navigation
frame andw® is the angular velocities (rates) of the vehicle measured in body frame. In this
work, angular velocity transformation matrix is shortly symbolizedTljy Angular velocity

transformation matrix is given in Equation 2.9 [13].

1 sin@)tan@) cosg)tan@)
To=|0  cosg) —sin(@) (2.9)
0 sin@)secf) cosp)sechH)

2.4 Inertial Measurement Unit

Inertial Navigation System uses inertial data, acceleration and angtdatoaletermine the
position, velocity and attitude of the vehicle with respect to a known referame. Since
INS uses acceleration and angular rate data, accelerometer andogp@ase the main sensors
of the INS systems. The combination of these two sensors is called Iner@gaiuviment Unit

(IMU).

Different types of IMUs are available in the market for several applicatidfs. critical
applications, IMU’s error must be minimum in order operate with high acgusatlow error
IMUs are expensive. Thus, IMUs can be classified according to tireirgerformances. This

classification is presented with their specification limitations in Table 2.1. Strategiesg of

Table 2.1: IMU classification [1]

ERROR Tactical Grade | Navigation Grade | Strategic Grade
< 20km/h < 1km/h < 30m/h
Gyroscope Drift 1-10deg/h 0.015deg/h 0.0001deg/h
Accelerometer Bias 100-1000ug 50-100ug 1ug
COST <$10000 $10000-70000 >$200000

inertial sensors are used in submarines and spacecraft to satisfytldigbesacy. Navigation
grade IMUs are the main components of the aircraft’s navigation areasoaticbl systems.
Finally, tactical grade IMUs have a wide range of utilization areas. Theypegfered in

guided weapons, unmanned aerial and underwater vehicles due towetictst and smaller

size.
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2.4.1 Accelerometer

Working principal of an accelerometer is based on spring-mass systemre ¢ depicts
simple accelerometer structure. A mass is free to move with respect to theraoucstier
case. When any force is applied to the case, mass will move, compressrgping and
stretching the other. So the resultant position of the mass with respect tis gasportional
to the acceleration applied to the case. The significant point is the accelevaiith is caused
by gravitational force. Gravitation acts on mass directly, not via the spriBgghere is no

relative motion of the mass with respect to case caused by gravitational[8rc

Accelerating force

Equilibrium (nongravitational)
§\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\; =\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ o
5 N P » 5
N N Sensitive g {
] - - . 5 N
b i 5 b 14
3 3 axis i
N 7000 & COOO\N H §
N OO0 QOO0 R N \
3 3 N §
N SR 3 H 8
3 5 - 13
5 iy -] 5
] 3 ¥ ]
§ FLSLSLS ALY § ! e t
AR AR EOR TR, WL C ase R AR R A R R R L LR R

Proof Pickoff Spring Displacement

mass

Figure 2.6: Simple accelerometer structure (taken from [3])

Accelerometer is a device that measures the specific force on the vehitgeimplies that
accelerometer senses both inertial acceleration of the vehicle and grasdtataxeleration.
Therefore, when inertial forces are applied to the vehicle in the pres#iigarth gravitational

field, accelerometer will produce an output signal as in Equation 2.10.
f=p-GP° (2.10)

In Equation 2.10, represents specific force,is the position (displacement) a@¥ is the
gravitational acceleration in body frame. To elaborate more about théeemTeter output,
the above discussion clearly indicates that accelerometer measuresdpedi(or relative
acceleration) between the case and the mass, not the accelerationgeittathe case and
mass identically [4]. It's worth considering some cases to understand Haviber of the
accelerometer. If an accelerometer is in free-fall with no applied extéoneds in a non-
rotating frame, accelerometer output will be= 0 . If an accelerometer is fixed (not moving)

in a non-rotating frame, then its outputfis=s -G . If a high quality accelerometer is at rest on
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the Earth surface, then it measures the gravity and the force causexdthisEotation about
its own axis. So the output will bé = wje wie p— G Wherewie is the skew-symmetric matrix

of the Earth angular rate.

MEMS technology is a crucial step for sensor applications since it gichsace to produce
sensors in small size with lower costs and large quatities. So developmenMiEME tech-
nology directly @fects the inertial sensor technology, too. Even that MEMS inertial sensor
production becomes one of the most popular subject of MEMS techndloggy, MEMS in-
ertial sensors are used in a wide range of commercial applications. Amteliers have also
been advanced compared to old ones by means of MEMS technology. Ndlyvlema&ost,
high range, high resolution MEMS accelerometers can be produced hycoampanies. Ac-
tually, MEMS accelerometer does not havéetient working principles. MEMS accelerome-
ter may be built using either pendulous or vibrating-beam design like the sibfaed ones
[3]. The difference in MEMS accelerometers comes from the production techniques-that
sult as low power consumption, low cost and small size. Because of theaatageous
features, MEMS accelerometer are prefered in most of the autonomplisagipns. So Ana-
log Devices ADXL345 3-axis MEMS accelerometer is used for the implementafidinis

work.

2.4.2 Gyroscope

Gyroscope is a device that measures angular rate of the platform it is rdaamtéMechan-
ically, gyroscopes are more complicated sensors than accelerometeygndstly used in
marine applications. The first functional marine gyroscope is desigreedsad by Hermann
Anschitz-Kaempfe [14]. These gyroscopes are mounted on a gimbaled platfotimat they
have a complicated structure to be built. Today, gimballed gyroscopes angsstillin sub-

marines, warships etc.

Gyroscopes can be categorized in three in terms of their working princigbésning mass,
optical and vibratory. Spinning mass gyroscopes operates on prindigienservation of
angular momentum which is a part of Newton’s second law of dynamics.eTdrer diter-

ent types of optical gyroscopes such as ring laser gyroscope (Rib8) optic gyroscope
(FOG). They work on the principle that light travels at a constant speadjiven medium.

Optical gyroscopes are high performance sensors, but they arky Ipigbed equipments.
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Modern rocketry and spacecraft technology are their popular useges. Vibratory gyro-
scopes’ working princible is based on Corioli§ezt. All MEMS gyroscopes are classified
as vibratory gyroscope [3]. In the context of this thesis, InvenSHESe3200 3-axis MEMS

gyroscope is modeled and used in the implementation.

MEMS gyroscopes are rigidly attached to the vehicle, so that they measuamdiular rate
of the body with respect to inertial frame in body frame. So it senses alleofdtation
components: vehicle angular rate, angular rate as the vehicle movedtadepherical Earth
(rotation of navigation frame with respect to Earth frame) and angular fabe d&arth itself

[15]. The output of the gyroscope is given in Equation 2.11.
wibb = wibe + wgn + wﬁb (2.11)

In Equation 2-11Wibe represents Earth rotation about itself represented in body frafpés
the angular rate of navigation frame with respect to Earth frame represartiedy frame as
the vehicle moves about the spherical Earth @ﬁbdis the vehicle’s angular rate about its axis

represented again in body frame.

2.5 IMU Error Models

MEMS inertial sensors are favorable in today’s navigation systems beaduheir low cost
and small sizes but they 8ar from the accuracy compared to the gimbaled and optical sen-
sors. This low accuracy is caused by twéelient types of error sources which can be catego-
rized as deterministic and stochastic errors. In early times of MEMS technaleterminis-

tic errors dfect the output of the system significantly unless they are calibrated. Bone,

in order to implement a three axes gyroscope system, there had to be ftiieeendlisingle
MEMS gyroscope mounted on the navigation system. This kind of a desigrsagmsith a
serious misalignment problem between axes. Today, almost all MEMSappegroduced
with three axes in a single chip. Thus, misalignment error is minimized (approtjnzai®)

at the production stage of the inertial sensor. So latest MEMS inertiabsenginly siffer

from stochastic error sources.

MEMS IMU measures the vehicle acceleration and angular velocity, thee theasure-
ments are integrated to obtain position, velocity and attitude of the vehicle. léowbese

measurements are not pure outcomes of the vehicle motion, they are didgtyrbdhastic
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error sources. Because of the integration, these errors are actednaial result as drift in
the position, velocity and attitude calculation. Therefore, MEMS sensfiex $tom stochas-
tic random noises severely so that the navigation system degrades ifviresg®ns in ac-

celerometer and gyroscope outputs are not modelled and compensatedypjto].

There are dierent type of methods to identify the stochastic errors. Allan Variance itpodn

is used in this thesis study which is the most commonly applied one for the emdifichion

of MEMS inertial sensors. Allan Variance technique is actually a time domaiessanalysis
which is developed in 1966 for studying the frequency stability of precisgmillators [17].
Allan variance method is simple and it is straightforward to interpret the redultdNegative
aspect of Allan Variance is that it needs long term static data to produztogsults. In this
work, Allan variance method is appliedfiine and once it runs then its results are given as

parameter to the navigation system. So this negative aspect dodkeabttze overall system.

2.5.1 Allan Variance

Allan Variance method requires short calculations so that they are easylememnt. The re-
sult of Allan Variance method gives information about five basic noise tefimsse five basic
noise terms are quantization noise, apgocity random walk, bias instability, raeeceleration
random walk, and ramp noise. Details of the method are given in this secBhn4&sume
that, recorded static data has a lengtiNofvith a sampling timeg. This data is divided into
clusters and each cluster includesamplest < N/2). So each cluster has a durationTof

seconds, which equals tiy.

T=nt, T=nty T=nt;
| | | |
12345 n 2n-1 3n-2 N
1 | |
n<N/2 t

Figure 2.7: Data structure for Allan variance method
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If the output of the sensor at tintes represented b€A(t), cluster average is calculated as

Q(T) = % ft o Q(t)dt. (2.12)

In Equation 2.12§k(t) represents average of th8 cluster out ofN/n clusters. After obtain-

ing averages of clusters,ftkrences are calculated:
Ekr1k = Qura(T) = Qu(T) (2.13)

Allan variance aims to calculate the variance of thesgich is calculated using the average

of each consecutive clusters. Thus, Allan Variance of lefigithcalculated as follows:

N-2n

2 _ 1 2
URET e PICED (2.14)

Allan Variance method is completed when these calculations are repeatedrpdifiarent
cluster timesT. The analysis of the Allan Variance can be interpreted by an Allan Variance

plot. A typical Allan Variance plot is given in Figure 2.8.

Rate Random

Sinuscidal

Bias
| Instabity T

Figure 2.8: Typical Allan variance plot for MEMS inertial sensor (takemf [5])

The most significant feature of Allan variance is its ability to separdtereént types of noises
by the slopes on the Allan Variance plot. Gdaents for five basic noise terms, their respec-

tive slopes and formulas in Allan Variance plot are given in Table 2.2.
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Table 2.2: Allan variance noise analysis

Noise Types AV o?(1) | Noise Codficient | Slope
Quantization Noise 3%2 Q -1
Angle/Velocity Random Walk NTZ N -1/2
Bias Instability % B 0
Rate/Acceleration Random Walk KTZT K +1/2
Ramp Noise zﬁrz R +1

2.5.2 Sensor Stochastic Model

In this section, stochastic sensor model is developed considering soradarais available in
the MEMS IMU sensors. Before going further, it is senseful to assuatdhle constant bias,
misalignment error and scale factor error are calibrated by the manwdactuhe factory, so

that these errors are not considered in the stochastic model of thesentos study.

The types of noise avaible in the MEMS inertial sensors are listed in TabldBeae noises
are taken into consideration in the stochastic model of sensors. Howeegrtization noise
is neglected in the model since Songlai Han and Knight points out that qatotiznoise
cannot be modelled in Kalman filter equations due to the non-rational spegeading on
occurence of derivative of white noise [19]. So accelerometer arasggpe have the follow-

ing noise components in their outputs.

e Angle/ Velocity Random Walk (ARW)
Angle/ Velocity Random Walk has rational spectra and it is modelled as white noise.

Differential equation for ARW is given in Equation 2.15 [20].
arw(t) = Nv(t) (2.15)

In Equation 2.15N is the Allan Variance cd#cient for ARW noise and(t) is unit

white noise.

¢ Bias Instability

Bias Instability is caused by variations in the bias term of the sensors. Mépyemt
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models are developed for bias instability noise. In this work, first ordeis&Markov

approach is used. Theftérential equation for bias instability noise is [20]
fn(t) = —Bfn(t) + BBV(t) (2.16)

whereg is reciprocal of time constant which can be determined by autocorrelation
analysis; B is Allan Variance bias instability noise parameter aifj is unit white

noise.

e Rate/ Acceleration Random Walk (RRW)
Rate/ acceleration random walk has rational spectrum so that its model camibedde
easily using its power spectral density. Théalential equation for rateacceleration

random walk can be formulated as Equation 2.17 [20].
rrw(t) = Kv(t) (2.17)

In Equation 2.17K is the Allan Variance cd@cient for RRW noise and(t) is unit

white noise.

e Ramp Noise
Ramp noise results as very slow monotonic change in the outputs of gyeoaoop
accelerometer. Thdlect of ramp noise could be observed over a long period of oper-
ation times (hours). This noise can be modelled approximately as secomd=angies-
Markov process [20]. In this thesis study, tifEeet of ramp noise is disregarded because

of its small impact.

Ultimately, our inertial sensor model is a combination of thrékedént noise components plus
true sensor measurements. Equations 2.18 and 2.19 show the formulatmmelgfemeter

and gyroscope output models respectively.

Qoutput = Strue + Aarw + Afn + Arrw (2.18)

Woutput = Wirue + Warw + Wtn + Wrrw (2.19)

2.6 Inertial Navigation Mechanization Equations

In this section, inertial navigation mechanization equations are derivesidesing Earth

model, coriolis éect and gravity. The aim of these derivations is to express position, ve-

18



locity and attitude of the vehicle in terms of accelerometer, gyroscope andjadmsors’

outputs. Before the derivation, some notation and parameters need toifieccla

In the equations, skew-symmetric matrices are used instead of crosscparations.
Skew-symmetrix matrix form of a vector is represented in Equation 2.20.
0 -ag a||b
axb=ab=|az 0 -ay||b (2.20)

A a1 0 b3

Earth rate is given in Equation 2.1 and it is symbolizedv§swhich means angular rate of

Earth frame with respect to inertial frame resresented in the Earth frame.

0
w, = 0 rad/s (2.21)
7.292115x 10°°
Equation 2.21 also implies that Earth rotational rate is constant sucl{hat0. Moreover,
since Earth rotational speed varies witftelient points on Earth, Earth rate equation in navi-
gation frame is a function of geodetic latitude (L) of the vehicle. Then, Equ&ti®2 shows
the expression for Earth rate in navigation frame.
7.292115x 10°° cos()
wh = 0 (2.22)
—7.292115x 107° sin(L)

As it is stated in Section 2.2.3, navigation frame will move as vehicle changessitiopo
However, considering this rotation increases the computational load arabigexity of
equations a lot. So it is assumed that navigation frame is fixed with respectttofézane

such thatw]} = wj.

For the gravity model, "plumb-bob gravity or local gravity” is used. This maaenprises
of gravitational acceleration plus centripetal acceleration caused lly iaée. Therefore, the
gravitational acceleration can be writen as in Equation 2.23.

b = O + Wiy Wit Py (2.23)

In Equation 2.23 % (also equals tau because of fixed navgation frame) is the skew-
symmetric form of Earth rate in navigation franp8, is the position represented in navigation

frame andgy is the gravitational acceleration in navigation frame.
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Considering all the information given in the previous sections, generitiah@avigation
mechanization equations can know be formulated. While the velocity is repeesa body
frame, position attitude angles are expressed in navigation frame in the eguatiecha-

nization equations are itemized as follows:

¢ Position Equation
The derivative of position is velocity. So the derivative of position in natian frame

can be defined as
pﬂb = RQ Vlr)mb (2.24)

whereV?, is the velocity of the vehicle in body frame.

e Velocity Equation
The derivative of velocity is acceleration. So théeliential equation for velocity in
navigation frame can be derived as follows by also taking into accountévé@agional
and coriolis forces [21]. Position of a vehicle with respect to inertial frame its
derivative can be written as
Pib = Pl + Ro Py (2.25)

Plo = iy + Ru[wl o, + P) (2.26)
wherew] represents the rotation of navigation frame with respect to inertial frame
and represented in navigation framu?h is the position of navigation frame relative to
inertial frame,R"n is the transformation matrix from navigation frame to inertial frame
and pp, is the position of body frame with respect to navigation framefeDéntiating
Equation 2.26 with respect to time and solving for acceleration of the bodyvecta
navigation frame is given in Equations 2.27.

Pho = fib + (Gip - ‘@J.ﬁn Pho) — Bh — 260, PRy — @l Py 2.27)
= fip + O — 2}, PR,
In Equation 2.27 f is the specific force of body with respect to inertial frame rep-
resented in navigation frame. The first step of Equation 2.27 is simplified inettie s
ond step considering plumb-bob gravity, constant Earth rate and fixéghtian frame

which are mentioned in this section before.

Finally, using basic equalitie®, = p2, p°, = R} p7}, and Equation 2.27, fferential

equation for the velocity of the body frame relative to navigation frameessmted in
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body frame is calculated in Equations 2.28.

bﬁb =R, Prb + Rr?pﬂb
= (RywP RGPS, + RA(FD + aff — 200 Pl) (2.28)

Vﬁb = fibb + Rr?ginb - nginnRg‘/ﬁb - wibbvgb
b, n

In the last part of Equation 2.28{ is also substituted fap?, + Row!.

e Attitude Equation
There are two dferent methods to define the attitude mechanization equation. The
first one is already given in Equation 2.8. Another method is actually an cidiray
of calculating attitude angles. The purpose of second method is to make use of th
direction cosine matrix and»ﬁb.Then diterential equation for direction cosine matrix
is

R =Rl b (2.29)

With the knowledge of initial conditions of the direction cosine matikcan be solved

so that the attitude of the craft can be determined [15].

A summary of the mechanizations equations in terms of accelerometer d@tpu’d gyro-

scope outpu&»ﬁb is given in Table 2.3.

Table 2.3: Inertial navigation mechanization equations

Position Equation Prb = R Vﬁb

Velocity Equation | V% = f£ + Righ — Rﬁ‘;.i\RBng - ‘;ivgb

Attitude Equation @=Tlwd orRI =R J;;

2.7 Error Model of Inertial Navigation Mechanization Equations

For the integration of IMU sensors and aiding sensors, linear estimatiomilteely Kalman

Filter which is explained in Chapter 4, is applied. However, mechanizatioatieqs found
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in Section 2.6 are non-linear equations. Therefore, these equatiahsorizelinearized prop-
erly. For that purpose, this section describes the error model of pisdyidefined navigation

mechanization equations and their derivations.

For the linearization procedure, mechanization equations are pertuybidtoorder as in

Equations 2.30, 2.31, 2.32.

Pho = Pip + SRRy (2.30)
VB, = 0B, + 6P, (2.31)
Rl =Rl +6R] (2.32)

Also IMU sensor outputs and gravitational acceleration are perturbédEguations 2.33,
2.34, 2.35. Actually, these perturbations in IMU sensors are the sumabfesttoc IMU errors

which are introduced in Section 2.5.2.

f2 = 2+ of> (2.33)
wh = Wk + owh) (2.34)
Gib = Oib + 9Gih (2.35)

Following relations are obtained by using small-angle approximation of tranaf@mn matrix

and they are useful for further derivations [21]:

Rl = (I - 6@O)R] (2.36)
RY = (I + 6O)R] (2.37)
RC = RY(I + 60) (2.38)
R} = R)(I - 66) (2.39)

Then using the equations above and nonlinear mechanization equati@nsnedel can be

formulated for position, velocity and attitude.

e Position Error Model Equation

By differentiating Equation 2.30 and using given relations, position error modsmiis ¢

puted [21].
6 pﬂb = pﬂb - ﬁﬂb
= R\?, — RWP
an) b ,RE b A (2.40)
= (RR(I - 66)) (6v8, + ¥,) — RO%%,
= Iig&/ﬁb + (%QE&\}gb + 5\@ﬁgvﬁb

22



In Equation 2-405@3@5\& part could be neglected since bai@® andév‘gb is small.
Then, the final form of position error is rewritten in Equation 2.41 by usieddlot that
ab=-ba

Sph ~ ROV, — Rgvb 50 (2.41)

¢ Velocity Error Model Equation
The method in the derivation of position error model is adopted for veloaity erodel
equation but this time the derivation is longer and contains more terms. So ttferfima

of the velocity error model is given in Equation 2.42 [21].
6\./ﬁb = ")ﬁb - \.A/ﬁb
=~ R (G, + OL(R%)" - (Gf, - RR)1) o0
- (&)ib + Rr?&’inn':zg)fS - 515 - Bswl,
+ Roogl) + Rﬁvab Sl

In Equation 2.42pw;, represents the error of Earth rate in navigation frame. Since

(2.42)

Equation 2.42 consists of detailed error parameters, INS system reguioesprehen-

sive analyses and sensitive IMU sensors.

e Attitude Error Model Equation
The attitude error model is derived by using Equation 2.29. In order tadltate the

attitude error model, following steps must be computed.

A

SR =R -R (2.43)
= Roohy =~ Rodhy
= (1 + 3O)RuB, - RGGE,

SR = Ri(wb, — 0P) + SORIWE (2.44)
Also
R =Ry -
=(I + c?@)FAQB -
6R) = 6OR] (2.45)
and by taking the derivative with respect to time of Equation 2.45 gives
oR = 56RY + 50K
= 6“ + 5ORIP. b, (2.46)

23



Combining Equation 2.44 and 2.46 results in
RA(wf, ~ o) + 5ORIE, = GOR] + SORIIE,
5OR] = ~GORIGR, + Ry(wh, - aB,) + FORIR,
56 = —5ORIAP R + Ri(wb, — B, )RR + GORIWD. RS
56 = 5ORN @b, — AP )RS + R(Wh, — P )R (2.47)
56 ~ Ri(oWE )R (2.48)

where Equation 2.47 is approximated as Equation 2.48 siecand @ﬁwb - &F)EJ) are

both small matrices.

Finally, Equation 2.48 can be written in vector form as
= R owd) (2.49)

So Equation 2.49 shows that attitude error equation depends on estimatestdrnza-

tion matrix,lfzg and the gyroscope error vectﬁwf’b .
A summary of the linearized error model of mechanizations equations is igiviexble 2.4.

Table 2.4: Error model of inertial navigation mechanization equations

Position Error Equation opl, ~ RISVE, — IQ/B\"VK 50
5% ~ RA (G, + D(Re%hy) " — (@ - R%R,)1) 50
Velocity Error Equation 5 + Rnmeb) ~5fh - \‘/ﬁbéwib
+ Rbsglh + RnRgvb Swh,
Attitude Error Equation 60 = Rl owh
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CHAPTER 3

AIDING SENSORS

IMU sensors are not siicient alone for the navigation system of an underwater vehicle. A
simple time integration algorithm is an ifiective solution due to their error characteristics.
Using an aiding sensor as a measurement could assist to correct ttoesdheat grow with
time. In practice, most commonly used aiding sensors are GPS (Global Pogjt®ystem),
magnetometer, doppler navigation sensor, pressure sensor anticaoaugation systems
[22]. Doppler navigation sensors are called Doppler Velocity Log (DMI)is sensor mea-
sures the speed of a vehicle with respect to sea bed using sonar sipialsrovides velocity

of a vehicle with a high precision but they are very expensive devicBS i€a satellite based
system and communicates with radio signals. Using GPS is a Vicjeat way of deter-
mining the position and velocity of the vehicle in Earth frame. However, GP&sigiannot
penetrate the water. Thus, GPS does not work when the vehicle plungesieto Moreover,
acoustic navigation systems are used to obtain position of the vehicle agctwdieployed

set of transponders. There are threfedent types of acoustic positioning systems depending
on their baseline length: Ultrashort Baseline (USBL), Short Baseliné)8Bd Long Base-
line (LBL). The position of the vehicle(or responder) is determined bygighrase dtference

of the detected signals from the transponders [23]. Although they prandd/ good position
accuracy independent of water depth, they are complex systems thaerexpert operators,

long times for setup and expensive equipments.

Because of the disadvantages of the systems decribed above, magnetomdepgessure
sensor are chosen as aiding sensors in this work. Magnetometer aadrpreensor are more
appropriate in terms of size, operation simplicity and c@#tiency. In this chapter, properties

of magnetometer and pressure sensor are decribed. Moreover rtheictearacteristics and
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calibration methods are examined throughout this chapter.

3.1 Magnetometer

North finding is one of the oldest method of navigation techniques. Lookingréh pole star
is the most popular north finding method. Another method is to make use of &andignetic
field. Magnetic compass aligns itself according to Earth’s magnetic field. 8y@isg Earth’s
magnetic do not change over long time period, magnetic compasses aretstéeadsed for

navigation purposes, especially for direction finding.

Electronic compass (magnetometer) measures Earth’s magnetic field in tise¢has it
provides low cost heading calculation with minor errors. Magnetoresjdtivaggate, magne-
toinductive types of electronic compasses are available. In this studgyiei HMC5883L
series magnetoresistive sensor is used. The sensor converts aeyimsafnetic field in the
sensitive axis directions to aftBrential voltage output. These magnetoresistive sensors are
made of a nickel-iron (Permalloy) thin-film and patterned as a resistive $mpeat. In the
presence of any magnetic field, a change in resistive elements causs$/a ohange in the
output voltage [24]. Heading of vehicle can be calculated by EquatiortR. Magnetometer

has to be calibrated and tilt compensated according to its error analysig lealoulating
heading angle.

_ magnetoy (3.1)
magnetoy '

Ymagneto = tan (

3.1.1 Magnetometer Error Analysis and Calibration Procedures

Magnetometer's measurements contaiifiedént type of errors and some of these errors have

a serious impact on heading calculation. These errors are [6]:

Quantization Error

Magnetic Sensor Error

Temperature Eects

Nearby Ferrous Materials
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e Compass Tilt Errors

e Variation of the Earth’s Magnetic Field

In this study, quantization error and temperatuteas are not considered in the calculations
of the heading. Also it is assumed that Earth’s magnetics field do not cloaeg® position,
since the vehicle moves in a limited local area. So variation of the Earth’s madje&tics

negligible.

3.1.1.1 Magnetic Sensor Error

Magnetometers have some errors due to their internal structure. These reay also be
due to production imperfections. These errors could be sensor noesityn hysteresis, and
repeatability errors [6]. It is hard to model and compensate all of these dherefore, the

effect of these errors on heading calculation is modeled as additive whitsi@ausise.

3.1.1.2 Nearby Ferrous Materials

Earth’s magnetic field could be distorted easily by using any ferrous mateimals magni-
tude of Earth’s magnetic field is not too strong. Therefore, it's expectadtlgnetometer’s
measurements are disturbed by nearby ferrous materials. If it is assuatdgatith’s mag-
netic field is constant in a local operation area, then theceof any ferrous object will be

constant as well. Thisfkect is illustrated in Figure 3.1.

When a magnetometer is rotated arbitrarily in a completely isolated environmentottud p
measurements in three axis must be a complete sphere centered at the arigavekl it is

not the case in practice due to the metalic vehicle body, other electronic cemtppwiring

etc. Disturbance of these materials can be categorized as hard ironfaimdrseffects. The
cause of hard iron distortion is the permanent magnets and ferromagnesioimdhe vehicle
platform. Hard iron fect add a constant magnitude field component along each axes so
that its dfect does not change forftBrent heading orientations. This addition of constant
magnitude field appears as a shift in the origin of the sphere. The cauke gbft iron
distortion is the interaction of the Earth’s magnetic field and any magneticallyrsdérials

around the magnetometer. Thefdience between soft and hard iron distortion is that soft
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Figure 3.1: Disturbance of ferrous material in uniform magnetic field (tétan [6])

iron distortion depends on magnetometer orientation. When magnetometdeagpsia soft

iron distortion, the plot of measurements of arbitrary movements become elkp§gjid

Nearby ferrous materials may cause serious errors in heading calculditiemagnetometer
is not calibrated. In order to determine the calibration parameters, sirfipfee@rocedure

can be applied [25, 26]:

e Magnetometer is mounted permenantly on the vehicle and then outputs of the-magne

tometer is recorded when the vehicle is rotated around at each threelzittesrdy.

e By using recorded data, measurement ranges of each axis is calculated:

range, = max(mag;™) — min(mag{®"

range, = max(mag;™) — min(mag}" (3.2)

range, = max(magj™) — min(mag;

In Equations 3.2magid”,magi®" andmag;?" represent raw magnetometer data for x,y,z

axes respectively.

e Scale factor cocient for the soft iron distortion can be determined by using these

range values.

if rangey > range, then

— rangex
Sy ~ rangey
SX = 1
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else

_ rangey
Sx = rangex
end if
if Sy == 1then
_ rangex
Sz = range,
else
_ rangey
Sz = range,
end if

o After the calculation of soft iron scale factors, constdtdets due to the hard irofftect

for each axis are calculated:

rawy _ i raw
Of fset, = (max(magx 5 min(mag,™) _ max(magi" ) X Sy
max(magl2") — min(mag 2"
Offsety:( (magy )2 (magy —max(mag{,aw))xsy (3.3)
max(magha¥) — min(mag. 2V
Offsetzz( (mag . (mag; -max(mag;aw)xsZ

e Finally, these calculated scale factors afidet values are applied to all magnetometer

data with respective axis.

mag@iPraed — maglaW i S, + Of f sety

mag@raed — pagia¥ ) 4+ Of fset, (3.4)
mag(zzalibrated =mag®' x S, + Of fset,

In the literature, only x and y axes are the subject of hard and soft atioration. In this

thesis work, z axis is also considered for calibration, so that calibrationothéshmodified

in that way. This calibration procedure should be carried out for &édint setups, since

calibration parameter varies according to position and orientation of magretomehe

platform.

3.1.1.3 Compass Tilt Errors

Magnetometer is attached to the platform in a fixed position. So, the measuteresrdf the

magnetometer depend on the vehicle orientation. However, Earth’s mageletis fissumed
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to be constant in local area according to earth frame. Therefore, aglinde changes its
roll and pitch angles, magnetometer will measure the Earth’s magnetic field witoragw
axis configuration which concludes as erroneous heading calculatioeseTtilt error (roll
and pitch) usually contributes the largest percentage error in headouatin [6]. In order
to compensate for the tilt error, it is required to know roll and pitch angleslsmeously.
Therefore, many magnetometer manufacturers assembles tilt sens@ier@oeter) with
their magnetometers. Tilt sensor calculates roll and pitch angles by takiagtade of grav-
itational acceleration. Because of this, if vehicle moves with a high acceleratiocsensor

will not be able to calculate roll and pitch angles correctly.

For correct heading angle, magnetometer’s axes have to be alignedobtdek horizontal
plane. For that reason, principal rotations for the NED frame have tede (r'hese rotation
matrices were already given in Equations 2.3, 2.4 and 2.5. Equation 3.5 gshevback

rotated magnetometer measurements.

magg(otaled cosd 0 sing||1 0 0 magg(al ibrated
mag;otated = 0 1 1 0 COS(]& —sin ¢ rnaggal ibrated (3 ) 5)
magctated —sind 0 co||0 sing cos¢ ||maggdibrated

Since heading angle is specified as in Equation 3.1, only the x and y contpgimeagne-
tometer (calibrated and tilt compensated) is required for the computation difhlyeengle by

using mangetometer.

mag X = mag@ P cos(g) + magi? @ sin(6) sin(¢)

+ magP o3 sin (9) cos(¢) (3.6)
r.n(,:lg;otated — mag)c/alibrated COS(¢) _ maggalibrated Siﬂ((b) (3'7)

Finally, rotated and calibrated magnetometer measurements for x and y axigatidace3.6
and Equation 3.7 can be used for heading calculation. The result ofi&g@al gives heading
angle with respect to magnetic north and this result later on will be used assaraeeent for

yaw angle.

3.2 Pressure Sensor

Pressure sensor measures the amount of water pressure on theatadeehicle. By using

this property, z-axis position of the vehicle can be calculated and this nesasat could be
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given as an auxiliary measurement for the navigation system. Presssm@sare not com-
plex sensors like magnetometers. Most manufacturers produce their itiyrierfioperature
compensated, calibrated and amplified before delivery. So it's easy tiouddferent ap-
plications. In this work, the depth of water (z-axis position) will be measusaag pressure

Sensor.

Assuming that water density is constant and equals to distilled water unddasdazondi-

tions, then depth of the water can be calculated as in Equation 3.8.
depth = P x 10.1971 (3.8)

In Equation 3.8, P refers to water pressure measured by pressapg seterms of bar. Since
1 bar corresponds to 10.1971 meter of water height, Equation 3.8 giptis itheterms of

meter.

Pressure sensor can measure the water pressure with a high acdunacgccuracy mostly
depends on their full scale range; as the range of the sensor irgréeseaccuracy decreases.
Honeywell MLH series pressure sensor was used in this work. Itetslizs low as 2% total

error of its full scale and its response time is smaller than 2 ms [27].
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CHAPTER 4

KALMAN FILTER

Kalman filter is a recursive data processing algorithm which generates dpstimaate of the
state variables using a set of measurements. Kalman filter works on a liséamayodel in
which process noises and measurement noises are white and Gaudstarthése conditions
satisfied, Kalman filter produces unique best estimate of the state, so thatlteid the
optimal filter [28]. In this work, Kalman filter is used for sensor fusion armdreestimation.

By using estimated error states, true state variables can be obtained.

Although Kalman filter works for linear problems, it can be also applied forlreear prob-
lems. For non-linear problems, either dynamic system equations are lircehyipertubation
technique or a dierent version of Kalman filter, Extended Kalman Filter (EKF) is used. This
version of Kalman Filter uses partial derivatives as linear approximatibnsrdinear equa-

tions.

This chapter of the thesis provides fundamental background for the IKdifter. In the
first section, continuous time state space representation of a generim sgygven. In the
second section, conversion from continuous to discrete time Kalman filtepiaiesad with
its algorithm and the third section decribes the implementation of discrete ext&attadn

filter.

4.1 Continuous Time State Space Models

In real world, it is sometimes easy to formulate system dynamics in continuousdtirer r
than discrete time. However, most of the system implementations depend ois toigégl

technology. Considering this situation, modelling the system in continuous timecandrt-
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ing this model from continuous time domain to discrete time domain seems to be the best

option.

Systems can be classified as linear systems and nonlinear systems. Statmsgats of

linear and nonlinear systems havé@eient representations.

4.1.1 Continuous Time Linear State Space Models

The dynamics of a linear system can be described as

(1) = ADX() + GOW(E) (4.1)
2(t) = COX(t) + V() (4.2)

In equation 4.1x(t) is n x 1 state vectorA(t) is n x n state transition matrixa(t) isnxr
process noise coupling matrix amdt) is 1 x r zero mean process noise. In equation 412,
is mx 1 measurement vectdZ(t) is m x n measurement sensitivity matrix amft) ismx 1
zero mean measurement noise vecwr) can be expressed as zero mean additive Gaussian

noise with

E(vt)V' (t+ 7)) = Re(t)o(7) (4.3)

w(t) can be expressed as zero mean additive Gaussian noise with

E(wtw' (t+ 7)) = Qe(t)o(r) (4.4)

4.1.2 Continuous Time Nonlinear State Space Models

The dynamics of a nonlinear system can be described as

X(t) = f(x(), ) + g(w(t), 1) (4.5)
2(t) = h(x(®), t) + V(t) (4.6)

In Equation 4.5x(t) is state vectorf (x(t), t) is nonlinear state transition functiog(w(t), t)
is process noise coupling fucntion amdt) is zero mean process noise. In Equation 4.6,
Z(t) is measurement vectdr(x(t), t) is nonlinear measurement sensitivity function a&(tlis
Zzero mean measurement noise vectdt) andw(t) can be expressed as zero mean additive

Gaussian noise with same covariance given in Equations 4.3 - 4.4.
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4.2 Discrete Time Kalman Filter

Since Kalman filter is implemented in digital platforms, continous time systems have to be
converted to discrete time domain. This convertion is based on linear staterspaesenta-
tion of a system since Kalman filter works for linear systems. A discrete time Igyséem

can be represented as in the following form of Equations 4.7 - 4.8.

Xier1 = FroXi + Wic 4.7)

Zir1 = HiXir + Vi1 (4.8)

A(tk) andG(tx) are the state transition matrix and process noise coupling matrix at a sample
time tx respectively, assuming that continuous time state transition magtj>xand process
noise coupling matrixs(t), which are defined in Equation 4.1, are constant over a sampling
time periodAt. So Equation 4.7 can be written in terms of continuous time state space system

parameters as follows [29].
t+At
Xir1 = €0 Ay 4 f /W ATIG (1) w(r)dr (4.9)
t

Equation 4.9 shows that state transition mafjxis a matrix exponential which equals to
eAt) At S it can be calculated easily by using Taylor series expansion. Hoveewveputa-
tion of an integral involving matrix exponential is more challenging than a matpgresntial.
For the calculation of discrete time process noise matrix, Van Loan’s met®i@)is used
[30].

-A GQGT
T = exp At (4.10)
0 AT
-1
e FQq (4.11)
0 Fr

Then, by using upper right and the transpose of lower right part ahtteix ', discrete time

equivalent process noise covariance matrix is obtained.
Qu = (FN)T + F'Qq (4.12)

Although Van Loan’s methods appears to be easy intuitively, it requirge Emount of nu-
merical calculation if state space matrices are big. Then, using first ogpgepxdmation of

these numerical calculations decreases computational load. Thus, atguwiithoe able to
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work faster. Continuous to discrete time conversion of state space eepagen is given in
Equations 4.13 according to first order approximation by assuming agaisystam dynam-
ics matrices are constant over a sampling time period [28, 29] .

Frk =1 + A(t) At

Qu = G(t) Qe(t)G(t) " At

(4.13)
Hk = C(ty)
_ Re(ty)
Ra = At

Discrete Time Kalman Filter estimates the state of a noisy system by using measisremen
which are also exposed to noise. These noises are assumed to be whistaGawise, so
that Kalman filter predicts the best optimal state. Discrete Time Kalman filter cortteons
stages: time update and measurement update. In the time update stage, stdetiedor
using the system model and in measurement update stage, predicted state putiesstage

is corrected by current measurements. The aim of the whole algorithm is to menémiar
covariance matrix of the estimator. The Kalman Filter algorithm for discrete tinterayis

summarized in Table 4.1 [28].

Table 4.1: Discrete time Kalman filter algorithm

Xer1 = FreXic + Wi

Zr1 = HikXie 1 + Vi1
X0 = E(xo)

Discrete Time Linear State Space Model

Initialization " o NT
Po = E((%0 — %o)(%o - %0)")
X = FX
Time Update rllk = Tkl .
Prs1k = FkPrkFy + Qd
. -1
Kalman Gain Kis1 = PryicHy (HkPk+1|kHE + Rd)

Rir k1 = Kiertk + Kiar1(Zer1 — HiXir 1)

Measurement Update
I:’k+l|k+1 = (I - Kk+lHk)F’k+1|k

4.3 Discrete Extended Kalman Filter

Standard Kalman filter has been formulated for the linear systems. Howleeaeality is

that most of the systems in engineering world are nonlinear. So, linearizatoadure can
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be used to extend the Kalman filter for nonlinear systems. Hence this filter id Eaftended

Kalman Filter. Extended Kalman filter is commonly used in navigation systems.

The main idea of behind the extended Kalman filter is to linearize the nonlinearspiate
model of Equations 4.5 - 4.6 at each time instant around the most recentstiatate. Once

a linear model is obtained, the standard Kalman filter equations are applied [31

In order to implement extended Kalman filter, first of all, continous time nonlistede space
system is given in Equations 4.5 - 4.6 should be written in discrete form @ftieqs with the
input parameteuy:
Xier1 = (X, Uk) + Wi (4.14)
Zir1 = (K1) + Vis1 (4.15)

Linearization procedure is applied by calculating Jacobian matricefg ahd hy given in

Equations 4.16

oo 0 fi(X, Uk)
k = —8X |x:xk“<,u:uk 416
Ho — Ohi(X) s (4.16)
k = ax X=Xk+1lk

Using this linearization procedure, extended Kalman filter algorithm for elis¢ime system
is described in Table 4.2 [29, 32].

Table 4.2: Discrete time extended Kalman filter algorithm

Xir1 = (X, Ui) + Wic

Discrete Time Nonlinear State Space Model
L1 = hk(Xk+l) + Vi1

S %o = E(x)
Initialization o o \T
Po = E((X0 — %o)(o - %0)")
F = 9Tk W)
EESP T e
Jacobians for Linearization Ahi (%)
Hk = “ox |x=Xcs 1
% = (K, U
Time Update o = Wl Tk)
Pisak = FkPikFy + Qd
] -1
Kalman Gain Kie1 = PiraiHg (HkPk+1|kHI + Rd)

)A(k+l\k+1 = )A(k+1|k + K1 (Zs1 — hk(2k+l|k))

Measurement Update
F)k+1\k+1 = (I - Kk+1Hk)F)k+1|k

EKF has two diferent implementation types: direct (total-state) EKF and indirect (error-
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state) EKF. Direct EKF uses original navigation variables in the states dfitétre that are
available in system formulation in Section 2.6. Indirect EKF uses error s used for
linearization) of the navigation variables which are depicted in Section 2]71[88rect EKF
corrects the navigation variable by updating these error states in the me@siupdate stage

of Kalman filter.

If the indirect Kalman filter collapses because of any failures, the inewigbation system
estimator part will continue to integrate the IMU data since Kalman filter is out ofNIse
estimator. However, for direct Kalman filter configuration, INS estimator vélluseless if
the Kalman filter collapses since outputs of the INS estimator goes directly to Kdiliean
Therefore, entire navigation system will crash when any failures eé¢outirect Kalman filter

configuration [34].

37



CHAPTER 5

SYSTEM DESIGN AND SIMULATIONS

This chapter focuses on a strapdown inertial navigation system whictsigneel for a un-
derwater vehicle using a low cost IMU, a magnetometer and a pressus@r.séhe fects of
the aiding sensors on the system outputs are observed in simulations. Sifpeedesystem
is different from the common ones mainly in terms of the way the pressure sensopied
and vehicle dynamic motion assumptions. Accelerometer is used also as ansaiasag for
measuring tilt angles (pitch and roll) and the filter for the sensor integratiatajstad accord-
ing to the total acceleration of the vehicle. Although the main point of this thesis R$H
velocities and positions are also taken into consideration because of ssyme sensor aid.
Thus the system is implemented as an INS, however the observed statiiuate and head-
ing angles. Considering all of these specific features, the implementatienatdge system

is explained throughout this chapter.

For the system implementation, Sparkfun 9DOF Razor IMU sensor is udeid.INTU in-
cludes ITG-3200 triple-axis digital output gyroscope, ADXL345 tripkisaaccelerometer
and HMC5883L triple-axis digital magnetometer [7]. This sensor has ATBR&yprocessor
on board to process sensor outputs but this is a weak processor to implagteimen-
sional Kalman filters. In order to solve this problem, sensor outputs anededt and all other

processes are applied in MATLAB environment.

For the integration of the IMU sensor and aiding sensors, linearizedstat® Kalman filter
and indirect extended Kalman filter are implemented in discrete time whose detagisen
in Chapter 4. Thus, error states are the key point for both of the thess.fill®reover there
are two types of implementations of the overall system based on the outpuddnoiKfilter

(error states), feedforward and feedback. Their maffence is the way that they handle
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Figure 5.1: Sparkfun 9DOF Razor IMU (taken from [7])

updated error estimate which are the output of Kalman filters. In feedfdriwgplementation,
estimated error states are fed forward to currently estimated navigatiorblearihat are
calculated using IMU outputs and the inertial navigation equations. So mection occurs
when INS system produces new estimates of navigation variables beiogigto Kalman
filter. In feedback implementation, new estimated error states is fed back td$he lcorrect
its estimated navigation variables. Therefore feedback system has tetagky of keeping
the error states bounded, while unbounded error states could beetgethe feedforward
implementation which may influence the linearization procedure negatively B&gjause of
these reasons, systems are designed in feedback configurations iresliss ffhe feedback
configuration for the linearized error state Kalman filter and extended Kafittemversion

are depicted in Figure 5.3 and Figure 5.2 respectively.

.| INERTIAL
IMU "| SYSTEM
L EXTE‘E'\lDED NAVIGATION
KALMAN » SYSTEM
FILTER OUTPUTS
E
AIDING
SENSORS

Figure 5.2: Feedback extended Kalman filter configuration
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Figure 5.3: Feedback linearized error state Kalman filter configuration

The steps, that are performed in the design process, are describedfafiatving sections.
These steps are crucial to design a convenient navigation system. &f dimgse steps are

misevaluated, significant errors could be observed in the system output.

5.1 Allan Variance Results

In order to work with a proper model of the IMU sensors, errorfioents must be identified
using the Allan Variance method described in Section 2.5.1. In the error mbgdgtoscope
and accelerometer, Anglévelocity Random Walk, Bias Instability and Ratécceleration
Random Walk errors are considered as it is stated in Equations 2.18 &dRdrefore, the

parts of Allan Variance plot related to these noise terms are evaluated.

For the implementation, approximately 20 hours data of stationary accelercanetefyro-
scope at a sampling rate of 50Hz is recorded. Then the algorithm desariSection 2.5.1 is
implemented in MATLAB. Since triple axis accelerometer and gyroscope aik sach axis
must be evaluated seperately assuming that they are independent otfeerciSo there are
different error cofficients for each axis of accelerometer and gyroscope. The resulting Allan

Variance plots of gyroscope and accelerometer are given in Figure& 8.5, respectively.

The error parameters can be found by using the formulas given in Tabldl@ise cofficient

is determined by adjusting the d@eient such that a straight line with a fixed slope overlaps
the Allan Variance plot. Figure 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 show the Alldante plots

of X, y and z axes of gyroscope and accelerometer with thféereint error lines respectively

when the cofficients of ARW, RRW and bias instability errors are correctly adjusted. The
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Figure 5.5: Allan variance plot of triple axis ADXL345 Accelerometer
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Figure 5.6: Allan variance plot of gyroscope X-axis with error lines
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Figure 5.7: Allan variance plot of gyroscope Y-axis with error lines
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Figure 5.8: Allan variance plot of gyroscope Z-axis with error lines
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Figure 5.9: Allan variance plot of accelerometer X-axis with error lines
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Figure 5.10: Allan variance plot of accelerometer Y-axis with error lines
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Figure 5.11: Allan variance plot of accelerometer Z-axis with error lines
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error codficients for gyroscope and accelerometer that will be used in the Kalman Filter is

obtained by applying the method explained above. The list of thed@idests is given in

Table 5.1.
Table 5.1: Error cocients of IMU sensors

Sensor Angle/Velocity Bias Rate/Acceleration

Random Walk - N | Instability - B | Random Walk - K
Gyroscope X-axis 0.0069 0.00597 0.00013
Gyroscope Y-axis 0.0066 0.00522 0.00021
Gyroscope Z-axis 0.0073 0.00352 0.00028
Accelerometer X-axis 0.00666 0.00182 0.0003
Accelerometer Y-axis 0.00736 0.00145 0.00014
Accelerometer Z-axis 0.01014 0.00095 0.00002

These error cd@cients must be identified reliably as far as possible. Because thefe coe
cients form the error covariance matrix (process noise) of Kalman Filterhwé significant

for the operation of designed navigation systems.

5.2 Magnetometer Calibration

Magnetometer is the critical aiding sensor for the calculation of heading antfie naviga-

tion systems but it is vulnerable to magnetic disturbances causedtbsedi metals, electric
currents etc. around itself filect of these disturbances can be eliminated by using the method
discribed in Section 3.1.1, assuming that the placement of the magnetometeeasitidh

items do not change during the operation time.

As it is described before, the calibration is handled at three axes insteaudyoX-Y axis.
Therefore magnetometer is rotated arbitrarily about its three axes to calkactod diferent
attitude and heading angles. This collected data is given as an input to thighatgahich

is also implemented in MATLAB. This algorithm actually is not a part of the navigatio
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algorithm. It is only used to determine the calibration parameters of the magnet@hate
certain configuration. When it is run once, resulting calibration paramaterstored and

applied to the rest of the magnetometer data according to formula given itiéyQat.

Uncalibrated and calibrated magnetometer data are shown in Figure 5.12 endihren-
sional plot. It is expected that uncalibrated data forms an eliptical shageige of the soft
iron efect. Also the center of the shape is away from the origin due to the hardfiiext.e
The algorithm produces the parameters that reforms this eliptical shapenmioeasmooth
spherical one which is centered at the origin. Although the elipsoidalesbipncalibrated
magnetometer data is not obvious in Figure 5.12, tffieed from the origin can be observed

explicitly.

O Uncalibrated Magnetometer Data
O  Calibrated Magnetometer Data

v 400 <o

Figure 5.12: Uncalibrated and calibrated magnetometer data

After hard and soft iron calibrated data is obtained, tilt calibration prasechust be followed
which is explained in Section 3.1.1.3. This calibration is performed online simceuttient

attitude angles are required. Since Equations 3.6 and 3.7 contains trigoicdionattions,
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singularities may occur at certain angles. In order to get rid of theselanitgs, accelerom-
eter outputs can be substituted for trigopnometric functions. The equivaletitese trigono-
metric functions in terms of accelerometer output is explained in Section 5.3 iih deta
the final form of tilt calibration and heading calculation from hard and soft calibrated

magnetometer data is given in Equation 5.1.

9.81(a maq;alibrated_ a ma@alibratetﬁ
(56 + a%) magialibrated_ aay mag/:alibrated_ a a ma@alibrated

Ymagneto = atan (5.1)

In Equation 5.1ay, a, anda, are the accelerometer outputs at threedent axesnag$?orated,
mag@Prated andmaggitraed denote the hard and soft iron calibrated magnetometer outputs at
three diferent axes. Also atan2 function is used for the inverse tangent in tordetermine

the correct quadrant.

5.3 Calculation of Tilt Angles Using Accelerometer Outputs

Tilt angles refer to roll and pitch angles of body frame with respect to &g frame in the
navigation systems. These angles are especially important for the frarafotraations. In
order to determine the amount of the these angles correctly, acceleromeatbbe used for
measurement sensor. By combining the direction cosine matrix and gravit@omederation

roll and pitch angles can be derived just by using the low cost, MEMSexceeeters [36].

When vehicle rotates about its X or y axis, gravitational acceleration mebsare-axis of
accelerometer is scattered also to x and y axis. Using the amount of thisisgatierthree
axes of accelerometer, the roll and pitch angle can be calculated. Btieflprojection of
the gravitational acceleration on the accelerometer axes gives criticaiiation about tilt
angles of the vehicle. Figure 5.13 illustrates the projection of gravitatiomalem@tion with

red arrows on body axes for roll and pitch rotations.

When there is no external force applied on the vehicle, accelerometemmwdgures the
plumb-bob gravity according to Equation 2.10. It is unfeasible to obsee&dholis ef-
fect of Earth rotation on accelerometer, since ADXL345 is a low cost MEIS:Ierometer.

Therefore, coriolis fect of Earth rotation can be neglected, ix;, = 0. Thus only the
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Figure 5.13: Projection of gravitational acceleration on body axes fioamd pitch rotations

gravitational component is left which is also given in Equation 5.2.

g = R df,
—-9.81sin@) (5.2)
=19.81sing) cosp)
9.81 cos) cosf)
Then when no external force applied, the output of the accelerometemuae
ax 9.81sinf)
af =|a,| =|-9.81sing)cosp) (5.3)
a, —9.81 cosp) cosp)

Using basic algebra and trigonometric identities, sine and cosine functioa ailtland pitch
angles can be extracted from Equation 5.3. These functions are giggquations 5.4, 5.5,

5.6 and5.7.

ax

sin@) = g o7 (5.4)
ag +as

cosp) = ~o8l (5.5)

sin@) = —2 (5.6)
NERE-Y

cosp) = ——2 (5.7)
al + a2

Then by making use of the inverse tangent function, roll and pitch angléeaerived as in

48



Equations 5.8 and 5.9.

Z

¢ = tan‘l(?) (5.8)

ax

6 =tant (5.9)

ag +ag
Instead of tan1 function,atanZ(%) function is used in the MATLAR) implementation of
this methodatan2(y, X) function takes into account the signyodndx so that the quadrant of
the angle is correctly obtained. Because of this property, Equation 5.8 i§@dazbnsidering
body frame axes and rotations depicted in Figure 2.5. This modification dbetange the
magnitude of the angle, it does only place the angle in correct quadrastmbulification is

given in Equation 5.10.
¢ = atanZ(%) (5.10)

Final forms of tilt angles in terms of accelerometer output is summarized in Table 5

Table 5.2: Calculation of roll and pitch angles in terms of accelerometer outputs

Roll Gacc = atanz(%)

; _ a
Pitch Hacc_atanz( \/@)

Up to now in this section, it is assumed that the vehicle is not exposed to ampadtarces
that causes acceleration of the body. However, this assumption is notoraditl of the oper-
ation time. The vehicle may need to slow down or speed up depending on its miadiem
the vehicle is making these kinds of motions, the accelerometer also measseeacbeler-
ation or deceleration activities plus the gravitational acceleration. Threrdfee calculation
of tilt angles with the method presented in this section will not be correct. Thislem is

considered further in Section 5.4.

5.4 Adaptive Filter Gain

In this work, accelerometer is also used as an aiding sensor for rollisridgmgles calcu-

lation. However, this aid is not reliable when the vehicle makes acceleratednmdiioe
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derivation of the tilt angles using accelerometer data in Section 5.3 showsltlzaigles
depend directly on gravitational acceleration measured by the accelerorBetany extra
acceleration on vehicle motion causes miscalculation of the tilt angles. Actuallgravita-
tional acceleration{ 9.81m/sn) is far bigger than the acceleration of the vehicle that it could
reach. This problem is nevertheless worth investigating in order to haebla and accurate

navigation system.

When the vehicle moves with positive or negative acceleration, it is challgngiget rid of
the errors in the tilt angle calculation because didlilty to distinguish between the gravita-
tional acceleration and vehicle acceleration in the accelerometer outpuefdieethe most
feasible and simple method is to impose an adaptation depending on the totaladime &f
the vehicle. The main idea of this method is to reduce the importance of the aidiswy $ac-
celerometer tilt measurements) when the vehicle accelerates or decelerhiastiter relies
more on the dynamic model of the system. Not only the tilt anglesfégetad by accelerated
motions, but also magnetometer heading angle calculatiofidstad due to tilt calibration
given in Equation 5.1. Because of these reason, adaptive Kalman filteedsimi this thesis

work.

Inthe literature, dierent methods exist for the adaptive Kalman filter implementations. Among
them, manipulating the error covariance matrices is the easiest way to handigateptive
Kalman filter can be implemented by applying a scale faSter 1 to a priori estimate co-
variance matrix calculation to deliberately decrease the weight given to neeaesots from
aiding sensors [37]. Adaptive a priori estimate covariance matrix calcoleicarried out in

the Kalman Filter algorithm using a scale fac®as given in Equation 5.11.
Pcak = S (FiPukFy + Qu) (5.11)

Instead of manipulating a priori estimate covariance matrix, it is more likely to shele
measurement error covariance matrix which is used in the Kalman gain caloudsdfmsince
acceleration directly increases the amount of error in the measurementefdri, the scale
factor can be applied to the measurement error covariance matrix in thetrorogovariance

calculation stage before the Kalman gain calculation as in Equation 5.12.

Rq = HkPi:1kHy + S Ry (5.12)

This scaling is designed as a diagonal matrix since measurements cotlddiechin diter-
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ent rates. Thus, the measurement error values are multiplied Vit rates when any
disturbing case occursS is determined by thresholding total acceleration of the vehicle, x-
axis acceleration and high rotational speed. The threshold valuesadedexperimentally

after experimenting over fierent cases of the application.

Any acceleration caused by water flow or othffeets could disturb the measurements, espe-
cially roll and pitch angles. So, instead of observing the acceleration id ¥ ares, it is more
beneficial to check the total acceleration of the vehicle because botreeggkerations in y-z
axes and the vehicle’s true acceleration can be observed. Also itsoquited to substract the
projection of gravitational acceleration in y and z axes due to the pitch direhigles. Total

vehicle acceleration is simply calculated as in Equation 5.13.
a= jag+ai+az-1g (5.13)

The vehicle movement can be classified in three groups based on totdevatieleration

given in Equation 5.13 [38]:

e Non-acceleration mode
In this mode, acceleration of the vehicle is so small such|that0.05 g wherda] is
the absolute value of the vehicle acceleration. So the scale factor is smdil nvaans
that there is no deliberate intervention in the Kalman Filter process, speciiicalig
a measurement covariance matrix. At this mode, system corrects its estimsees ba
on incoming measurements from aiding sensors since aiding sensorswitbrkshigh

precision. Generally this mode is valid when the vehicle has a constant speed

e Low-acceleration mode
In this mode, the vehicle moves with an acceptable acceleration so that thdittles a
uncertainty in the measurements of the aiding sensors. This acceptableltiriss
defined as ®g > |a|> 0.05g. At this mode, scale factor is assigned a value larger
than 1 so that importance of the measurements are slightly reduced by ingrdees

measurement error covariance matrix.

e High-acceleration mode
In this mode, vehicle is in high dynamics and the aiding sensors are far feamg b
accurate. The threshold for the vehicle acceleration is assigret+a&5g. When the

vehicle acceleration is above the this threshold value, scale factor is t@wduigh
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implies that the measurements coming from aiding sensors are not taken isidecon
ation due to the large measurement error covariance matrix. At this modeystieens

works according to system model and gyroscope error model.

The accelerometer outputs are too noisy if the vehicle makes vibratory fassm®o some-
times just observing the total acceleration does not give clear resultsefdtes it is worth-
while to check the x-axis acceleration also with the total vehicle accelerafitre Vvalue of
the x-axis acceleration is above the threshold value, then the measurementoeariance

values will be scaled up so that measurement importance is reduced in thenkiltea

The last condition is the high rotational speed. When the vehicle rotatesgit eake, it is far
more accurate to detect the amount of this rotation using gyroscope. Sot#tiem is mea-
sured using system mechanization equations and gyroscope outputshiglscate rotation
could cause changes in the accelerometer measurement because obtrseefiect. These
changes reflect as an error in the measurements. Corffdist éndeed can be calibrated but
meausuring this coriolisfect is dificult with MEMS sensors. Because of these reasons, high

rotational speed detection seems to be the best option for the correch sygikementation.

Considering these three conditions, adaptive system could be desbsib@de scenarios

which are summarized in Table 5.3.

Diagonal values in the scale matrix are determined experimentally and optimizbe fow-
est RMS error. Scale factor matrix hasfdrent values for each kind of measurements since

the dfect of each condition givesfiierent responses in the measurements.

This method is implemented as a function which has inputs from acceleromegyrasdope

and produces the scale factor matfixas an output.

5.5 System Model

The navigation system in this thesis work is designed for an underwat@le/elBecause

of the complexity of the underwater environment and lack of the use of salimg &ensors,
system is modelled in afilerent structure based on three assumptions. These assumptions are
zero buoyancy, x-axis body velocity anfigrade MEMS sensor properties. These assumption

are represented in the mechanization equations in this section.
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Table 5.3: Scale factor matrix for adaptive system scenarios

Total Vehicle X-Axis High Rotational Scale Factor
Acceleration Acceleration Speed Matrix
Non-acceleration Below Below Identity Matrix
Threshold Threshold
Non-acceleration Below Above Large Diagonal
Threshold Threshold Values
Non-acceleration Above Below Large Diagonal
Threshold Threshold Values
Non-acceleration Above Above Large Diagonal
Threshold Threshold Values
Low-acceleration Below Below Low Diagonal
Threshold Threshold Valuesé 1)
Low-acceleration Below Above Large Diagonal
Threshold Threshold Values
Low-acceleration Above Below Large Diagonal
Threshold Threshold Values
Low-acceleration Above Above Large Diagonal
Threshold Threshold Values
High-acceleration X X Largest Diagona
Valuest> 1)

The underwater vehicle does not sink or surface when no extemealifoapplied to it. It stays
where it is left in the underwater when its propulsion system does not Wik means that
buoyant force equals to the weight of the vehicle, i.e. the buoyancyas Zéis assumption
is called as zero buoyancy which makes it easier to model the movement ahifaevin
navigation frame. If it is buoyancy is not zero, it will always move in thexisa Since
very limited number of sensors are available in this system, it is hard to modelinii®k
motion in z-axis. A detailed model of gravitational force is required for theemb analysis.
Therefore, in this work, the vehicle buoyancy is assumed to be zero ar twaimplify the

system model.

X-axis velocity assumption is the most critical assumption for the movement ofethiele
in this system. It is assumed that propulsion system of the underwater vehigl¢hrust
into x-axis of the vehicle in body frame. Other motions in y-axis and z-axisiagéected
so that vehicle moves forward only in the direction of its attitude and headiglg.ai his
assumption also neglects the drift in the y-axis and z-axis because of tiiecoarse. X-axis
velocity assumption is compatible with the zero buoyancy assumption such thathiote

does not change its position if it has zero buoyancy. If the vehicle moikswigh speed, x-
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axis velocity assumption becomes more realistic. Moreover, this kind of asisumnpakes it
easier to model the motion of the vehicle since there is no aiding sensor to mdasuelocity
of the vehicle directly. Because of these reasons, mechanization eguat®ections 2.6 and

2.7 are modified according to x-axis velocity assumption.

The last assumption is actually adopted due to the properties of MEMS IMébreern this
work, a low cost MEMS IMU sensor is used and its accuracy is not emeagneasure all

of the terms available in the mechanization equations given in Tables 2.3 anMEMS
gyroscopes are not able to sense the Earth rate and it is hard to obsemeriolis éfect

in MEMS accelerometers. They can only measure the primary rotations asbitions.
Therefore, these terms should be neglected in the mechanization equatioref@mulate
according to MEMS sensor properties. That is also why only the gravittcmmponent is
considered and coriolidfect is neglected in the plumb-bob gravity model given in Equation

2.23in the previous calculations.

Mechanization equations are derived assuming that navigation framendbestate. This
assumption is based on that the underwater vehicle does not go far emmayt$ starting
point. Moreover, since MEMS sensor is not able to detect the Earth ratyld be assumed
thatw, = wi, = 0. This means that the navigation frame does not rotate with respect to any
frame. So navigation frame (NED) can be expressed as a local frantbehaghicle does not

go out of it, i.e. navigation frame can be defined as the inertial frame of teisrsy Thus the
attitude angles, heading angle and position are calculated in the navigatiza friowever,

it is easier to express velocity in the body frame because of the x-axistyedssumption.

Considering all of the statements above, nonlinear mechanization equatiensrgSection
2.6 are rewritten in Equations 5.14, 5.15 and 5.16 which will be used in thededdfalman

filter implementation.

pﬂb = R'B ng (5.14)
G = 1 R (515)
©=T1wd (5.16)

Actually, Equations 5.14, 5.15 and 5.16 are the simplified version of the Egsajiven in

Table 2.3 based on the system assumptions.
Nonlinear mechanization equations can be linearized using the perturbatioochasd error
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models of MEMS accelerometer and gyroscope given in Section 2.5. Tleeilied error

state mechanization equations for newly designed system are derivatbes f

Position Error Model
Let's define the correct position g%, and estimated position gs, " Then perturbation

equation and its derivative can be written as

6P = Py — Prp (5.17)
op= P, — Py (5.18)

Using Equation 5.14 and 2.37, Equation 5.18 can be rewritten as follows:

op =R Vi, — ROy (5.19)
= (I + 6O)RYWE, + 6\2,) — RI B (5.20)
= Ry %, + R 0V5, + 0ORE 05, + 6OR) oV, —RE 7, (5.21)
e
small
= F}tgé nb"'(’stn Vi (5.22)
op=R) o5, - R 60 (5.23)

Velocity Error Model

The error state of velocity is derived using 'derivative of velocity dgaaceleration’ relation.
Accelerometer output can be fully rewritten as in Equation 5.24 using Eqgaid® and
2.18.

fb = p_ggb"‘aarw"‘afn"'arrw (5.24)

The derivatives of estimate and real velocities can be identified as

Vo = B° (5.25)

B, =12+ 0 (5.26)



Using the error definition, the linearized error state for velocity can bigaetkas follows:

oV, = VB, — B, (5.27)
= PP (2 + %) (5.28)
) b b b
=P’ = (P° — g + Qarw + Afn + Arrw) — G (5.29)
= —8arw — arn — arrw + RY(1 - 50)g, — RO g (5.30)
= —R5 60 g — 8arw — Afn — Brrw (5.31)

SV, = RA g} 60 — 8w — afn — Brnw (5.32)

According to the x-axis velocity assumption, only x-axis component of thizhetelocity is
calculated and other components are ingored in the body frame suaﬁgfhatvﬁg) =0. So
Equation 5.32 is converted for the x-axis velocity representation as intiequas33.

v = R gy 60 (1.2) - &y, — &, — (5.33)
In Equation 5.33R. g, 6O (1,:) means the first row of the matrB& g, 50.
Attitude Error Model

The attitude error state model is based on Equation 2.29. The derivatigsSate and real

direction cosine matrix can be identified as

Ry = R b, (5.34)
RD = R) b, (5.35)
Then the derivative of the error state of direction cosine matrix is calcuéeted
R =R~ R (5.36)
= Ry B, — R af, (5.37)
= (I + 5O)RIwP. — R P, (5.38)
= R, - Y) + 6ORIWY, (5.39)

Also the derivative of the error state of direction cosine matrix can be leadclidirectly as

follows.
RI=R-R (5.40)
= (1 +60)R - R} (5.41)
= 56 Ry VY, son _ GOR + 56 R (5.42)
SR = GORD + 50 R P, (5.43)
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Combining Equation 5.39 and Equation 5.43 result as

5OR] + 56 R 0By = (B, — B, + SORIE, (5.44)

56R] = 50 R afy + Ri(wh, — aBy) + SORIGR, (5.45)

56 = 36 R AR + RY(wh, — GRS + GORIE, R (5.46)

56 =~ 30 R (@B, - By RE + RI(WP, ~ PR (5.47)
small —

small
in vector form

60 = Rl6w?, (5.48)

50 = F}E(“’ﬁb - &)nb)lf\)g
In Equation 5.4860)2'0 implies the gyroscope error which can be formulated using Equation

2.19 as in Equation 5.49.

A~

Swpy = wry — Wy
= WP — (@2 + Warw + Wen + Wery)
= —Warw — Win — Werw (5.49)
Finally, the attitude error equation is defined in Equation 5.50 by substitutingtiegub.49
into Equation 5.48.
60 = —RY Warw — R Win — R Wiry (5.50)
Linearized mechanization error equations for this thesis work is summarizéabie 5.4.

These equations will be used for the state space model of the linearipedite Kalman

filter implementation.

Table 5.4: Linearized mechanization equations for newly designed system

P

Position Equation op = R 6v5, - R) 15,60

Velocity Equation | 6V°% = RA gl 60 (1,:) — &y — &, — &

Attitude Equation 60 = —RI Wary, — R Win — R Wiy

5.6 Continuous Angle Generation

Attitude and heading angles are calculated usitag2 function in Equations 5.1, 5.10 and

5.9. This function calculates the inverse tangent betweens]. Therefore full rotations
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(360°) cannot be detected in any axes. Estimated attitude angles are calculatézbbsgting
gyroscope outputs so that estimated angles are piecewise continousfofdea simple
algorithm is developed to make the results ofdten?2 function in continuous form. Equation

5.51 and 5.52 describe this algorithm.
Kopt = argmin|®,_1 — (039 + 27k)|  k:integer; (. —2,-1,0,1,2,...) (5.51)
k

O™ = OF + 2rkopt (5.52)

In Equation 5.51@Q,,_; previous attitude or heading angle which is calculated at tintg @39

is the output of the aiding sensor at timandk is the set of positive and negative integers.
By comparing these two anglek,value is calculated. Actually, the ceient k implies

the number of 180rotations at respective axes for roll, pitch and heading angles. Using
this optimal coéficient ko, outputs of aiding sensor generated by atan2 function become

continuous in Equation 5.52.

The drawback of this method is chosing the size of thekset Equation 5.51. If the set
contains too many consecutive integers, more rotations can be detectetthe $uerval of
continuity will be that long but the computational time will be longer. Therefarproper
search set should be determined. If the vehicle rotates too much due todmidystability

or mission definition, a large set seaicts required. If the vehicle does not rotate frequently,

a smaller set with a safety margin can be used.

Continuous angle generation block is crucial for the system in this worle sinbakes to
observe the critical movements of the vehicle that could damage its stability, fhifsialgo-

rithm is applied to all of the aiding sensor outputs.

5.7 State Space Model of Kalman Filters and Overall System Suicture

In order to implement extended Kalman filter (EKF) and linearized error stali@#n filter,
state space representation must be constructed according to mecharégatidions given
in Section 5.5. State space representation will fBedint for these two implementations
since one of them uses linearized error state mechanization equationgasideghone uses
nonlinear mechanization equations. When state space model is constaitaedn filtering
procedures can be applied as given in Chapter 4. State space modelseofwbediferent

implementations are explained in the following subsections.
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5.7.1 Linearized Error State Kalman Filter Implementation

State space model is formed according to the equations given in Table 51#1anerror

models are explained in Section 2.5. Paosition error, velocity error, attitudibeading error,

rate random walk error for accelerometer and gyroscope and biakilitgfar accelerometer

and gyroscope are chosen as the components of state. State spasenigpion for these

error states is given in Equations 5.53 and 5.54.
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The open form of\y3, Ax4 andAyg are as follows:

Re gl 60 (L)

A3 =0 0 0 (5.55)
0 0 0
100
Auu=Ap=0 0 O (5.56)
0O 0O

Also Néx) is a 3-by-3 matrix whose first element is the x component of angular randdkn w
error of accelerometer and the other elements are all zero. Open foNﬁ‘)d‘s given in
Equation 5.57.Kj, Kg, Ba, By, Ba and By are the diagonal matrices of rate random walk
codficients, reciprocals of time constants and bias instabilityfmaents respectively for ac-
celerometer and gyroscope. Theseffioents are determined before the operation as it is

declared in Section 5.1.

NX 0 0
NO=|o 0 0 (5.57)
0O 0O

For each new data, state space matrices are recalculated and used itmtae #ler in order
to estimate the amount of error. Then these estimated error are given edbadk for the
correct position, velocity and heading calculations. Complete block diagfatre system

with a linearized error state Kalman filter is shown in Figure 5.14.

5.7.2 Extended Kalman Filter Implementation

For the extended Kalman filter (EKF) implementation, Jacobian of nonlinearaniettion

equations given in Equations 5.14, 5.15 and 5.16 are used for the stateeptatgentation.
The reason of using the Jacobian matrix calculation is to linearize the medi@meaguations
in the most recent state. So the Jacobian of the equations is calculateditisér its discrete
equivalent matrices are generated in the implementation. Although the norgigeations

are written for the real states (position, velocity, attitude and heading)attobian of them
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Figure 5.14: Block diagram of the system with linearized error state Kalman filter

are also valid for the error states. The proof is given below [39].

X(t) = F(X(), U, t) + W(t) (5.58)
X(t) = X(t) + ox(t) (5.59)

Combine Equations 5.58 and 5.59
() + 6x(t) = F(R(t) + 5X(t), u, t) + w(t) (5.60)
Using Taylor Series expansion and omiting second and higher terms gives
5 : . of
X(t) + ox(t) = f(X(1),u,t) + I Ix=g X + W(t) (5.61)
Sincex(t) = f(X(t),u,t), it's concluded that
- of
OX(t) = I Ix=% X + W(t) (5.62)

As Equation 5.62 indicates that error states equations can be extractgdasubian of non-
linear equations. So, the indirect extended Kalman filter implementation is bas#dso
property. Finally, the state space representation for the EKF is givenuati®egs 5.63 and

5.64 that involves the Jacobian matrix of nonlinear equations.
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The open form of\13, Azs, Az, A2ze andAss in Equation 5.63 is shown below:
0 —sin@) cos(b)vg‘) - cosp) sin(w)vf)x)

Aiz=[0 -sin@)sing)?)  cosg) cosg)v? (5.65)
0 —cos@)vf)’o 0

0 -9.81lcosf) O
Az =10 0 0 (5.66)
0 0 0
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-1 0 O
Aos=RAx=|0 0 O (5.67)
0O 0O

cos) tan@)wy — sin(p) tan@)w, sin(@) se¢()wy + cosg) seé(@w, 0

Asz = — sin(g)wy — cos@)w; 0 o| (5.68)
COS(p)Wy—Sin(p)w; sin(g) sin(@)wy+cose) sin(O)w; 0
cosg) co2(0)

In Equation 5.65,\/8‘) is the recent x-axis velocity of the vehicle in body frame. Also in
Equation 5.68yy, Wy andw, represent the recent estimated angular rates of the vehicle when
the error terms are extracted. Equation 5.64 is the same of Equation 5.54ngasarement
equation is linear. Therefore, there is no need for the Jacobian of gexwaition equation
h(x(),t). TheT} in the process noise matrix and state transition matrix is the angular velocity

transformation matrix which is shown in Equation 2.9.

This matrices are formed according to new inputs and recent outputstastegc Also the
state space representation matrices are written above in continuous timefoféehey must
be converted to discrete time using Equations 4.13. Complete block diagram sjdtem

with an extended Kalman filter is shown in Figure 5.15.

Figure 5.15 shows that outputs of IMU sensors go directly through to thaataFilter dif-
ferent than that in linearized error state implementation. In extended Kalmaubfdte, first
of all the navigation parameters are calculated using the nonlinear equatidrtte IMU
sensor outputs. Then error state is estimated by the Kalman filter algorithm widdtloé
measurements coming from pressure sensor and continous angletigengcks. Finally,
calculated navigation parameters are corrected with the estimated erroasitésU errors

in the error state is given as a feedback to correct IMU outputs.

When the state space matrices for both systems are compared, the mostsigdifierence
is theA33 term. This term comes from the partiaffdrentiation of nonlinear attitude equation
with respect to attitude and heading (roll, pitch, yaw) angles. Also both ofykems are
partially observable which means that all of the state parameters canrstirbated correctly.

This issue is verified in the simulations.
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Figure 5.15: Block diagram of the system with extended Kalman filter

5.8 Simulations

To test the designed system, an inclined path is planned for the vehicle madveifrtaa
path also consists of fierent manoeuvres. The vehicle follows the reference path which is
shown in Figure 5.16 for visualization of generated scenario, so thaystens designed in
this thesis work is compared with the reference values. As it is stated in Séctionoth of

the designed systems are not fully observable. Therefore, some dahtbesariables are not
estimated correctly. The main issue about these simulations is the integratiorpoésisare
sensor and adaptive system. Thus, theats of these two terms are evaluated with Root

Mean Square Error (RMSE) values for attitude and heading angles.

In the simulations, both error state Kalman filter implementation and extended Kaltean fi
implementation are tested. For both systems, ffexts of pressure sensor aid and adaptive
system are analyzed. In order to observe whether there is an impravenest, RMSE of

the results are calculated using Equation 5.69

N
1
RMSE = 4| & PNCIERAE (5.69)
n=1
RMSE is calculated for roll, pitch and yaw angles seperately. This ertaulegion is divided
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Figure 5.16: Defined reference path for simulations

into two groups for motion period and stationary period in order to have ar loetteparison.
Moreover, output data of IMU sensor and pressure sensor aoedest when the vehicle
moves in the defined path. Then same data set is used for ekamedt run in MATLABDO

implementations of the described system.

Figure 5.17 and Figure 5.18 are the results of direct implementation of lindagirer state
Kalman filter without adaptive system and pressure sensor for the attitddeeading angles,
for motion and stationary periods, respectively. Position and velocity saue not given
since they are not estimated correctly due to the partial observability. Ttws ef position
and velocity diverge.

It is obvious from the given figures that when pressure sensor datige system are not
included, the navigation system is not practically useful because of tieedanount of errors.
Especially when the vehicle moves and rotates, outputs deviate from thenedecurves

significantly.
As itis stated in the scope of thesis, the integration of pressure sensdreduce the amount
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Figure 5.17: Roll, pitch and yaw angles outputs of linearized error state Kdiftemfor
motion period without adaptive system and pressure sensor
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Figure 5.18: Roll, pitch and yaw angles outputs of linearized error state Kdiittemfor
stationary period without adaptive system and pressure sensor
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of error. Therefore, pressure sensor aid is given as a meastrentiea linearized error State
Kalman filter implementation. The results are presented in Figure 5.19 and Bigréor

motion period and stationary period, respectively.

If Figure 5.19 and Figure 5.20 are evaluated carefully, the slight improwecaa be observed
in the Pitch angle. Also it is obvious in stationary position plot that pressurgosenakes

pitch angle output to converge faster to the real value.

Although, pressure sensor provide a little improvement in the attitude anthgeadyles, the
amount of error is still too large. As it is mentioned in Section 5.4, the reastmsoérror is
the sensitivity of the measurements to the highly dynamic vehicle motion. So aslaypsiem
that is explained in Section 5.4 is integrated to the navigation system. In ordeseove the
effect of adaptive system only, the simulation is run first without pressurgoseid. The
resulting output graphs for attitude and heading angles are given ineFigt and Figure

5.22 for motion period and stationary period respectively.

The outputs graphs in Figure 5.21 and Figure 5.22 shows that, outputsseeto the refer-
ence values so that adaptive system provides a considerable impravertienattitude and

heading angle.

For the lowest possible error, both adaptive system and presswerderincluded in the
navigation system and Figure 5.23 and Figure 5.24 represent the attitdideeading angle

outputs of the simulation result for motion period and stationary period, cteply.

Itis obvious when pressure sensor and adaptive system work todetkecalculation results
are achieved for linearized error state Kalman filter implementation. Velocitypasition

graphs are given for this system in Figure 5.25 and Figure 5.26, rasggc

As it is mentioned before, velocity and position are not observable in thersys herefore
velocity and position outputs contains large amount of error. Theretfoeg,are not consid-

ered in the comparison of the navigation system implementations.

Performances of linearized error state Kalman filter implementations are ceenipaierms
of RMSE error. RMSE error for the above simulations are given for @iapn in Table 5.5
for roll, pitch and yaw angles grouped by motion period and stationary period

The improvements of the adaptive system and pressure sensor cailpeleserved in Table
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Figure 5.19: Roll, pitch and yaw angles outputs of linearized error state Kdiittemfor
motion period with pressure sensor

Attitude and Heading Angles
_1 T T T T T
~ e estimated

e N
- e "4
I/ reference ||

Roll (Degree)
0

_3 1 | | | 1
50 100 150 200 250 300 350 400 450 500

Data Sequence

’CI? 0 ! T

=4 estimated
[0

8 -10 reference ||
<

2

o i

50 100 150 200 250 300 350 400 450 500
Data Sequence

—_
o

J// estimated

reference ||
Il

50 100 150 200 250 300 350 400 450 500
Data Sequence

Yaw (Degree)
(6]

o

Figure 5.20: Roll, pitch and yaw angles outputs of linearized error state Kdiittemfor
stationary period with pressure sensor
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Figure 5.21: Roll, pitch and yaw angles outputs of lineari
motion period with adaptive system
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Figure 5.22: Roll, pitch and yaw angles outputs of linearized error state Kdiittemfor
stationary period with adaptive system
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Figure 5.23: Roll, pitch and yaw angles outputs of linearized error state Kdiittemfor
motion period with adaptive system and pressure sensor
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Data Sequence

a —1 T T T T T
) S T Tt estimated
o
o} _zr, reference ||
2
5
CE Il Il Il Il Il Il Il Il Il
-3
50 100 150 200 250 300 350 400 450 500
Data Sequence
= 0
=4 estimated
éi —Sr’— reference ||
S
E _10 Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500
Data Sequence
o 10 !
4 estimated
W
5, af reference ||
]
©
> 6 i i i i i
50 100 150 200 250 300 350 400 450 500

Stationary period with adaptive system and pressure sensor

70



Body Velocities in 3-Axes
20 T T T

0 100 200 300 400 500 600 700 800
Data Sequence

X-axis (m/s)
o

Y-axis (m/s)

0 100 200 300 400 500 600 700 800
Data Sequence

Z-axis (m/s)
o

0 100 200 300 400 500 600 700 800
Data Sequence

Figure 5.25: Velocity output of linearized error state Kalman filter with adetixstem and
pressure sensor
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Figure 5.26: Position output of linearized error state Kalman filter with adaptgtem and
pressure sensor
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Table 5.5: Linearized error state Kalman filter RMS errors

Linearized Error State Kalman Filter RMS Errors
Pressure OFF | Pressure ON | Pressure OFF| Pressure ON
Adaptive OFF | Adaptive OFF | Adaptive ON | Adaptive ON
Roll
Error 3.2935 3.1533 2.1707 1.7245
(Motion)
Pitch
Error 4.6746 4.2787 2.809 1.7926
(Motion)
Yaw
Error 4.4009 4.4154 1.3187 1.4973
(Motion)
Roll
Error 0.07828 0.14215 0.08631 0.09674
(Stationary)
Pitch
Error 1.5611 1.4175 1.8026 0.35412
(Stationary)
Yaw
Error 1.7459 1.7542 0.6379 0.5758
(Stationary)

5.5 for the linearized error state Kalman filter implementation. Integration oftadagystem
to the Kalman filter makes an important improvement in the RMS errors. Pressnser

reduces the pitch error for both motion period and stationary period.

Same course of experiments are applied for the extended Kalman filter impl¢iorenta
the first simulation, both pressure sensor and adaptive system aneailabke in the system
and outputs of this system are given in Figure 5.27 and Figure 5.28. Fimne 5.29 and
Figure 5.30 show the output of the system when only pressure sensoluiddd. After that,
only adaptive system is included in the simulation and output graphs for attihdleeading
angles are given in Figure 5.31 and Figure 5.32. Finally, both adaptsterayand pressure
sensor is integrated in the extended Kalman filter implementation. The resultsefinah

simulation are given in Figure 5.33 and Figure 5.34.

Although, the EKF system is not completely observable, velocity and posititputs are
given in Figure 5.35 and Figure 5.36 respectively. Position and veloahgrshow that they

diverge as time goes by becaues of the error accumulation.
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Figure 5.27: Roll, pitch and yaw angles outputs of extended Kalman filter fiomperiod
without adaptive system and pressure sensor
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Figure 5.28: Roll, pitch and yaw angles outputs of extended Kalman filtetdtiosary period
without adaptive system and pressure sensor
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Figure 5.29: Roll, pitch and yaw angles outputs of extended Kalman filter fiomperiod
with pressure sensor
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Figure 5.30: Roll, pitch and yaw angles outputs of extended Kalman filtetdtiosary period
with pressure sensor
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Figure 5.31: Roll, pitch and yaw angles outputs of extended Kalman filter fiomperiod

with adaptive system
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Figure 5.32: Roll, pitch and yaw angles outputs of extended Kalman filtetdtiosary period

with adaptive system
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Figure 5.33: Roll, pitch and yaw angles outputs of extended Kalman filter fiomperiod
with adaptive system and pressure sensor
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Figure 5.34: Roll, pitch and yaw angles outputs of extended Kalman filtetdtiosary period
with adaptive system and pressure sensor
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Figure 5.35: Velocity output of extended Kalman filter with adaptive systedhpaiassure
sensor
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Figure 5.36: Position output of extended Kalman filter with adaptive systehpeessure

sensor
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As in the linearized error state implementation, best results are obtained wamivagystem
and pressure sensor are available. RMSE values for extended Kalteaimfplementations

are summarized in Table 5.6

Table 5.6: Extended Kalman filter RMS errors

Extended Kalman Filter RMS Errors
Pressure OFF | Pressure ON | Pressure OFF| Pressure ON
Adaptive OFF | Adaptive OFF | Adaptive ON | Adaptive ON
Roll
Error 3.2848 3.2267 2.0792 1.8358
(Motion)
Pitch
Error 4.7308 4.2872 2.8431 1.684
(Motion)
Yaw
Error 45616 4.5494 1.4367 1.5309
(Motion)
Roll
Error 0.07655 0.07251 0.07591 0.1179
(Stationary)
Pitch
Error 1.39451 1.2828 1.7759 0.3835
(Stationary)
Yaw
Error 1.78960 1.7914 0.71776 0.5872
(Stationary)

When RMSE errors in Table 5.5 and Table 5.6 are compared, linearizadséate Kalman
filter appears to have a better performance. Only pitch angle in motion peresdiisated
better by extended Kalman filter. Therefore, linearized error state Kalttenmiy implemen-
tation should be prefered for the navigation system of the vehicle if the pitgle & not the

most critical element for the operation.

78



CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this thesis, integration of pressure sensor and adaptive gain is exhfomattitude and
heading reference system of underwater vehicle. Attitude and Heaalmgation is the most
crucial part of the navigation of an underwater vehicle. Linearizeor estate Kalman filter
is the most widely used algorithm for AHRS systems, but extended Kalman fieritam
is also practiced in this thesis work. Since there is a lack of aiding sensartapijies
for underwater environment, only magnetometer, pressure sensoceglérameter can be
used. However these sensors are not accurate enough, so déineadggtem is developed
in this thesis work. MEMS IMU sensor is used in order to reduce the codteofystem,
however such sensors yield large amounts of error. For the system impégioes, these
errors are categorized and their parameters are measured. Theedesygtem is verified
in MATLAB © using the real field data which is collected by using a low cost MEMS IMU

Sensor.

In the literature, error state model of mechanization equations are mostlyruednaviga-
tion system. While working on mechanization equations for this thesis work Xxperienced
that working with error states is easier. The derivation of the equatiensiple and most
of the terms in equations can be figured out intuitively. Furthermore usingrtoe states
provides an advantage in Kalman Filter implementation because of the simple tetitiean
basic form of equations. That is why the error state model of mechanizagjoations is

preferred.
In the simulations, it is found that the designed system and pressura geagiges a sig-
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nificant improvement in the attitude and heading angles. Especially adaysitesrsreduces
the RMS error in motion period more than 50%. On the other hand, presuseramostly

focuses on pitch angles as it is expected. Because of the x-axis velodingeo buoyancy as-
sumption, when the pitch angle of the vehicle changes, it's z-position alsgebaTherefore,

pressure sensor supports the pitch angle estimation of the navigation system.

Because of the limited number of the aiding sensors, the position and velotitg e&hicle
cannot be observed in the simulations. So they are considered in the sinaiatidetail.
The main concern is the attitude and heading angles with the new designet systel.

Therefore, this system can be interpreted as an attitude and headisgoefeystem.

When the RMS errors of extended and linearized error state Kalman fikeccampared,
linearized error state Kalman filter implementation has a better performanceallfctuis

expected that extended Kalman filter would work better, because the liagamiZzs more
accurate. However, because of the observability problem, some of the terthe state
transition matrix are not linearized perfectly. For exampig; matrix contains velocity (x-
axis) of the vehicle which is not estimated correctly. So this results in an seiadhe error

of the attitude and heading angles.

If the extended Kalman filter outputs are analyzed in short time periods, itsisnedd that
outputs deviate from the reference values when the vehicle moves withsswiihg under-
lying reason for this situation is the fact that the first order linearizatiorxneled Kalman
filter cannot handle this kind of motions. Thus, growing nonlinearity erroefiected as an

error in the outputs of the Kalman Filter.

The simulation results show that adaptive system is the critical block of théevelgetem.
So the output of the adaptive system block must be designed propeityoliserved that,
the RMS errors are dependent on this output, named as scale factor nidtexdiagonal

elements of this matrix must be optimized for the best performance.

6.2 Future Work

In order to further increase the performance of the navigation systempepinitialization of

the state and covariance matrix could be further considered, so that tBeeRbr would be
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reduced in the initialization period. Also affiirent aiding sensor can be added to the system.
Thus, the observability problem could be solved. In order to measureetbeity, a pitot
tube could be used. However, this kind of implementation will increase theacoksspace

requirement. Also an extra mechanictibet is needed.

This system can be compared with another IMU sensor. This sensorlmafdetter quality
than the one used in this thesis work. So, the significance of the algorithimecalnserved.
Finally, a better adaptive system can be developed by considering ddlgostuations. This
adaptation might be designed to achieve smooth crossing betwEenedi models of Kalman

Filter.

Finally, the number of simulations can be increased along with scenariosuaisra Wwork.
Increase in the number of simulations and their critical studies could help to v pine

system performance.
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