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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2012



Approval of the thesis:

MEMS SENSOR BASED UNDERWATER AHRS (ATTITUDE AND HEADING
REFERENCE SYSTEM) AIDED BY COMPASS AND PRESSURE SENSOR
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ABSTRACT

MEMS SENSOR BASED UNDERWATER AHRS (ATTITUDE AND HEADING
REFERENCE SYSTEM) AIDED BY COMPASS AND PRESSURE SENSOR

Özgeneci, Mehmet Erçin

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Tolga Çilŏglu

Co-Supervisor : Assoc. Prof. Dr. Çağatay Candan

September 2012, 84 pages

Attitude and Heading angles are crucial parameters for navigation. Conventional navigation

methods mostly uses IMU and GPS devices to calculate these angles. MEMS technology

offers small sized, low cost IMU sensors with moderate performance. However, GPS cannot

be used in underwater. Therefore, different aiding sensors are used in underwater vehicles in

order to increase the accuracy. As the accuracy of devices increases, the cost of these devices

also increases. In this thesis, rather than using GPS and high quality IMU sensors, low cost

MEMS IMU sensor is used together with a magnetometer and a pressure sensor as aiding

sensors. Considering the IMU error model and motion dynamics, two systemsare designed

and simulated using real data. The results seem to be satisfactory and usingpressure sensor

as an aiding sensor improves the attitude angles estimation.

Keywords: AHRS, MEMS IMU, underwater navigation, pressure sensor
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ÖZ

PUSULA VE BASINÇ SENS̈ORÜ YARDIMIYLA MEMS SENSÖRLEṘI İLE SU ALTI
DURUM VE YÖNELİM SİSTEMİ

Özgeneci, Mehmet Erçin

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Prof. Dr. Tolga Çilŏglu

Ortak Tez Ÿoneticisi : Doç. Dr. Çăgatay Candan

Eylül 2012, 84 sayfa

Durum ve ÿonelim açıları navigasyon sistemleri içinönemli parametrelerdir. Geleneksel navi-

gasyon sistemleri, ataletselölçü birimi ve GPS kullanarak bu açıları hesaplar. Gelişen MEMS

teknolojisi k̈uçük boyutta, d̈uş̈uk maliyetli ve makul performansa sahip ataletselölçü birim-

leri sunmaktadır. Fakat, GPS cihazları su altında kullanılamamaktadır. Bu sebeple, su altı ci-

hazlarında hassasiyeti ve doğruluğu arttırmak için farklı yardımcı sensörler kullanılmaktadır.

Bu sens̈orlerin hassasiyeti arttıkça, maliyeti de artış göstermektedir. Bu çalışmada, GPS ve

kaliteli ataletselölçü birimi kullanmak yerine, basınç sensörü ve manyetometre ile birlikte

düş̈uk fiyatlı MEMS ataletsel̈olçü birimi kullanılmıştır. Ataletsel̈olçü biriminin hata mode-

li ve hareket dinamikleri d̈uş̈unülerek, iki farklı sistem tasarlanarak, gerçek verilerle simule

edilmiştir. Sonuçların oldukça tatmin edici olduğu g̈ozlemlenmiş olup, basınç sensörünün

yardımcı sens̈or olarak kullanılması durum açılarının hesaplanmasında iyileştirme sağlamıştır.

Anahtar Kelimeler: Ataletsel̈olçü birimi (AÖB), su altı navigasyon, basınç sensörü
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 INERTIAL NAVIGATION SYSTEMS . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction to Inertial Navigation Systems . . . . . . . . . . . . . . 4

2.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Inertial Frame . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Earth Frame . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Navigation Frame . . . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Frame Transformation Matrix . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Linear Velocity Transformation Matrix . . . . . . . . . . 10

2.3.2 Angular Velocity Transformation Matrix . . . . . . . . . . 10

2.4 Inertial Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 IMU Error Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

viii



2.5.1 Allan Variance . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Sensor Stochastic Model . . . . . . . . . . . . . . . . . . 17

2.6 Inertial Navigation Mechanization Equations . . . . . . . . . . . . . 18

2.7 Error Model of Inertial Navigation Mechanization Equations . . . . 21

3 AIDING SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Magnetometer Error Analysis and Calibration Procedures . 26

3.1.1.1 Magnetic Sensor Error . . . . . . . . . . . . 27

3.1.1.2 Nearby Ferrous Materials . . . . . . . . . . . 27

3.1.1.3 Compass Tilt Errors . . . . . . . . . . . . . . 29

3.2 Pressure Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 KALMAN FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Continuous Time State Space Models . . . . . . . . . . . . . . . . . 32

4.1.1 Continuous Time Linear State Space Models . . . . . . . 33

4.1.2 Continuous Time Nonlinear State Space Models . . . . . . 33

4.2 Discrete Time Kalman Filter . . . . . . . . . . . . . . . . . . . . . 34

4.3 Discrete Extended Kalman Filter . . . . . . . . . . . . . . . . . . . 35

5 SYSTEM DESIGN AND SIMULATIONS . . . . . . . . . . . . . . . . . . . 38

5.1 Allan Variance Results . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Magnetometer Calibration . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Calculation of Tilt Angles Using Accelerometer Outputs . . . . . . . 47

5.4 Adaptive Filter Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Continuous Angle Generation . . . . . . . . . . . . . . . . . . . . . 57

5.7 State Space Model of Kalman Filters and Overall System Structure . 58

5.7.1 Linearized Error State Kalman Filter Implementation . . . 59

5.7.2 Extended Kalman Filter Implementation . . . . . . . . . . 60

5.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 CONCLUSION AND FUTURE WORKS . . . . . . . . . . . . . . . . . . . 79

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

x



LIST OF TABLES

TABLES

Table 2.1 IMU classification [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 2.2 Allan variance noise analysis . . . . . . . . . . . . . . . . . . . . . . . . .17

Table 2.3 Inertial navigation mechanization equations . . . . . . . . . . . . . . . .. 21

Table 2.4 Error model of inertial navigation mechanization equations . . . . . .. . . 24

Table 4.1 Discrete time Kalman filter algorithm . . . . . . . . . . . . . . . . . . . . 35

Table 4.2 Discrete time extended Kalman filter algorithm . . . . . . . . . . . . . . . 36

Table 5.1 Error coefficients of IMU sensors . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.2 Calculation of roll and pitch angles in terms of accelerometer outputs .. . . 49

Table 5.3 Scale factor matrix for adaptive system scenarios . . . . . . . . . .. . . . 53

Table 5.4 Linearized mechanization equations for newly designed system . .. . . . . 57

Table 5.5 Linearized error state Kalman filter RMS errors . . . . . . . . . . . . .. . 72

Table 5.6 Extended Kalman filter RMS errors . . . . . . . . . . . . . . . . . . . . . .78

xi



LIST OF FIGURES

FIGURES

Figure 2.1 Gimbaled and strapdown inertial measurement units (taken from [2]) . . . 5

Figure 2.2 Axes of the Earth frame (taken from [3]) . . . . . . . . . . . . . . .. . . 7

Figure 2.3 Axes of the navigation frame (taken from [4]) . . . . . . . . . . . .. . . . 7

Figure 2.4 Axes of the body frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.5 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.6 Simple accelerometer structure (taken from [3]) . . . . . . . . . . .. . . . 12

Figure 2.7 Data structure for Allan variance method . . . . . . . . . . . . . . . . .. 15

Figure 2.8 Typical Allan variance plot for MEMS inertial sensor (taken from [5]) . . . 16

Figure 3.1 Disturbance of ferrous material in uniform magnetic field (taken from [6]) 28

Figure 5.1 Sparkfun 9DOF Razor IMU (taken from [7]) . . . . . . . . . . .. . . . . 39

Figure 5.2 Feedback extended Kalman filter configuration . . . . . . . . . . . .. . . 39

Figure 5.3 Feedback linearized error state Kalman filter configuration . . . .. . . . . 40

Figure 5.4 Allan variance plot of triple axis ITG-3200 Gyroscope . . . . . .. . . . . 41

Figure 5.5 Allan variance plot of triple axis ADXL345 Accelerometer . . . . . .. . . 41

Figure 5.6 Allan variance plot of gyroscope X-axis with error lines . . . . .. . . . . 42

Figure 5.7 Allan variance plot of gyroscope Y-axis with error lines . . . . .. . . . . 42

Figure 5.8 Allan variance plot of gyroscope Z-axis with error lines . . . . .. . . . . 43

Figure 5.9 Allan variance plot of accelerometer X-axis with error lines . . . .. . . . 43

Figure 5.10 Allan variance plot of accelerometer Y-axis with error lines . . .. . . . . 44

Figure 5.11 Allan variance plot of accelerometer Z-axis with error lines . . .. . . . . 44

Figure 5.12 Uncalibrated and calibrated magnetometer data . . . . . . . . . . . . .. . 46

xii



Figure 5.13 Projection of gravitational acceleration on body axes for rolland pitch ro-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.14 Block diagram of the system with linearized error state Kalman filter. . . 61

Figure 5.15 Block diagram of the system with extended Kalman filter . . . . . . . .. 64

Figure 5.16 Defined reference path for simulations . . . . . . . . . . . . . . . .. . . . 65

Figure 5.17 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for motion period without adaptive system and pressure sensor . . . . . .. . . . 66

Figure 5.18 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for stationary period without adaptive system and pressure sensor . .. . . . . . . 66

Figure 5.19 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for motion period with pressure sensor . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.20 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for stationary period with pressure sensor . . . . . . . . . . . . . . . . . . . .. . 68

Figure 5.21 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for motion period with adaptive system . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.22 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for stationary period with adaptive system . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.23 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for motion period with adaptive system and pressure sensor . . . . . . . . .. . . 70

Figure 5.24 Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter

for Stationary period with adaptive system and pressure sensor . . . . .. . . . . 70

Figure 5.25 Velocity output of linearized error state Kalman filter with adaptivesystem

and pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.26 Position output of linearized error state Kalman filter with adaptivesystem

and pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.27 Roll, pitch and yaw angles outputs of extended Kalman filter for motion

period without adaptive system and pressure sensor . . . . . . . . . . . .. . . . 73

Figure 5.28 Roll, pitch and yaw angles outputs of extended Kalman filter for stationary

period without adaptive system and pressure sensor . . . . . . . . . . . .. . . . 73

xiii



Figure 5.29 Roll, pitch and yaw angles outputs of extended Kalman filter for motion

period with pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.30 Roll, pitch and yaw angles outputs of extended Kalman filter for stationary

period with pressure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.31 Roll, pitch and yaw angles outputs of extended Kalman filter for motion

period with adaptive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.32 Roll, pitch and yaw angles outputs of extended Kalman filter for stationary

period with adaptive system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.33 Roll, pitch and yaw angles outputs of extended Kalman filter for motion

period with adaptive system and pressure sensor . . . . . . . . . . . . . . .. . . 76

Figure 5.34 Roll, pitch and yaw angles outputs of extended Kalman filter for stationary

period with adaptive system and pressure sensor . . . . . . . . . . . . . . .. . . 76

Figure 5.35 Velocity output of extended Kalman filter with adaptive system andpres-

sure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.36 Position output of extended Kalman filter with adaptive system andpres-

sure sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



CHAPTER 1

INTRODUCTION

Inertial Navigation Systems (INS) are one of the most critical parts of movingvehicles and

Attitude and Heading Reference System (AHRS) is a common part of INS. INS systems are

first developed for navigating rockets during World War II and then its usage area spread out

to marine, aerospace and land systems [8]. Direction of the vehicle is the basic information for

navigation, because position depends on the movement direction of the vehicle. So attitude

and heading angles must be determined with high accuracy. INS systems aremainly com-

posed of gyroscopes and accelerometers which altogether are named asInertial Measurement

Unit (IMU). Attitude and Heading angles are also calculated using these sensors but aiding

sensors are required in order to reduce the error.

Magnetometer can be interpreted as the digital version of a compass which shows the direc-

tion according to the magnetic north. Magnetometers are widely used in AHRS systems for

heading calculation, but the materials around and changing environment can interfere mag-

netometer outputs easily. Therefore, magnetometer must be calibrated properly before using

it for navigation purposes. Presure sensor is also one of the most generic sensors of the un-

derwater vehicle. The depth of the water can be easily measured by a pressure sensor. It is

prefered in most of the underwater vehicles because of its convenience.

IMU outputs suffer from different error sources which cause drift over time when their outputs

are integrated. Thus, using only IMU sensor and mechanization equation formed by Newton’s

Law of Motion results as a drift free INS [9]. Aiding sensor is a generic solution to overcome

the drift problem. Nevertheless, aiding sensors also have some deficiencies for certain type of

motions which cause large amount of errors in the output. Because of thesereasons, AHRS

system must be designed by considering all of these problems.
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1.1 Scope of Thesis

MEMS technology offers low cost IMU sensors with small sizes but these sensors include

serious errors which makes them unsuitable for stand-alone operation. Therefore, MEMS

IMU sensor needs to be integrated with other aiding sensors like magnetometerand Global

Positioning System (GPS). However, the challenges of working in an underwater environment

restrict the usage of certain sensors such as GPS. To overcome this deficiency, different meth-

ods are proposed and implemented. In the scope of this thesis, magnetometer and pressure

sensor are used as aiding sensors to determine the attitude and heading angles of an under-

water vehicle by using Linearized Error State and Extended Kalman Filtering algorithms. In

order to measure the performance of the system, field data is used in simulations.

1.2 Outline of Thesis

Chapter 2 presents fundamentals of intertial navigation systems. Reference frames definitions

and frame rotation matrix are given in this chapter. IMU sensors and their error models are

introduced. In the last sections of Chapter 2, most commonly used navigationequations and

their error models are derived.

Chapter 3 provides information about aiding sensors. Magnetometer is explained in detail

because of its complexity. Possible error sources and calibration methods related to these

errors are given in this chapter. At the end of the chapter, the usage ofpressure sensor is

desribed.

Chapter 4 expresses the background information about Kalman Filter. Linear and nonlinear

state space equations are presented. Since the systems are implemented in digital environ-

ment, discretization of the state space equations are given. Finally, two different Kalman

filtering methods are discussed in this chapter: Discrete Kalman Filter and Discrete Extended

Kalman Filter. The algorithms for these two different implementations are given in related

sections.

Chapter 5 focuses on the newly designed system in this thesis work. The results of Allan

Variance algorithm to measure the error parameters of IMU sensors are given in the first sec-

tion. Magnetometer calibration and tilt angle calculation using accelerometer arepresented.

2



Proposed adaptive system is described in detail and the system model is represented by mech-

anization equations. State space model is constituted for the Kalman Filter. Thenentire

system structure of two different implementations are presented by figures. In the last section

of this chapter, simulation results are prensented.

Chapter 6 discusses the simulations results and provides a conclusion about this thesis study.

Future work related to this work are stated in the last section of this chapter.

3



CHAPTER 2

INERTIAL NAVIGATION SYSTEMS

This chapter provides the background information about inertial navigation systems. Basic

principles, fundamental equations and crucial points are also clarified in this chapter. After

making a brief introduction to inertial navigation systems, sensor units for the system are

explained. Their error models are considered together with the identificationof the stochastic

error sources. Last part of this chapter includes the coordinate framedefinitions and dynamic

mechanization equations.

2.1 Introduction to Inertial Navigation Systems

Navigation is the most important concept of autonomous vehicle systems since they are not

operated remotely by a human. Any complication in the navigation system could seriously

affect other systems of the vehicle. The main information produced by a navigation system are

position, velocity and attitude of the system. Inertial navigation is the most common type of

navigation techniques for autonomous vehicles and Attitude and Heading Referance System

(AHRS) is the most critical part of an Inertial Navigation System (INS).

Basic principles of INS are based on the laws of mechanics which are introduced by Isaac

Newton. The fundamental law tells us that applied force yields an acceleration of the body.

So, given the ability of measuring acceleration by an accelerometer, the change in movement

of the vehicle can be detected. By a simple integration of measured acceleration with respect

to time, velocity change can be calculated. Rotational motion of the vehicle can besensed

by gyroscopes so that the direction of the acceleration could be determined. Therefore, the

movement of the vehicle can be observed for navigation purposes. Only an accelerometer and

4



a gyroscope are not sufficient (especially MEMS ones) for navigation due to the noise and er-

ror characteristics of the sensors [10]. Integration will sum up these errors and yields growing

errors in the output of the navigation system. So additional aiding sensors are required for

navigation systems.

There are two types of INS system configurations with different performances. The first one

is named as gimbaled systems. In that configuration, the accelerometers and gyroscopes are

mounted on a gimballed platform which is always kept aligned with the navigation frame.

This configuration provides accurate navigation data but they are not desirable for most ap-

plications because of the complex mechanical structure and high cost. Also,maintenance of

gimbaled system must be done in a clean room since it requires very sensitive calibration.

The second configuration is called strapdown systems. The accelerometers and gyroscopes

are attached rigidly to the vehicle body. This time, software solution is used in order to keep

track of IMU’s orientation. This method is more practical than gimballed systems since it

reduces size, cost, power consumption and mechanical complexity [11].

Gim baled I MU Strapdown I MU

Figure 2.1: Gimbaled and strapdown inertial measurement units (taken from [2])

In this work, a strapdown INS is implemented considering the advantages which are menti-

noned above. Our major interest is the effect of aiding sensor to the AHRS part of the INS

system. Therefore, because of the proposed aiding sensors that areused in this thesis, INS

system is implemented instead of implementing just AHRS system.

5



2.2 Reference Frames

Before going any further, it is important to define the reference frames,since mathematical

representation of INS systems is based on reference frames. Later on this chapter, the mech-

nanization equations are derived considering these reference frames. All reference frames

considered in this study form an orthogonal right handed basis set. Coordinate frames used

throughout this thesis are explained in the subsequent sections.

2.2.1 Inertial Frame

It is hard to define perfect inertial frame, but an approximation of it is sufficient for the most

of the navigation systems. Origin of the inertial frame is defined as Earth’s center of mass

and oriented with respect to fixed stars. Inertial frame is assumed not to accelerate and not to

rotate with respect to universe [3]. Inertial frame is denoted by a symboli.

2.2.2 Earth Frame

Earth frame has its origin at the center of Earth and all axes are fixed with respect to Earth’s

surface. Its x-axis points to Greenwich meridian, z-axis is the same as the Earth rotation axis

which goes through Earth’s polar axis and y-axis satisfies right handedorthogonal plane so

that y-axis is defined along equatorial plane [12].

Unlike the inertial frame, Earth frame rotates with respect to inertial frame with aconstant

angular rate. This angular rate is calculated in Equation 2.1 [4].

wie ≈
(

1+ 365.25 cycle
(365.25)(24hour)

) (
2π rad/cycle

3600sec/hour

)
= 7.292115× 10−5 rad

sec
(2.1)

In Equation 2.1, Earth’s angular rate about its own axis relative to inertial frame is calculated

and denoted bywie. Figure 2.2 shows the axes of the Earth frame.

2.2.3 Navigation Frame

Navigation frame is actually a local frame defined in the operation position of thevehicle. Its

origin is at the location of vehicle (navigation system of the vehicle) and its axes are aligned
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Figure 2.2: Axes of the Earth frame (taken from [3])

with north, east and down (local vertical down) direction. Because of the axes alignment,

it also called as NED frame. Navigation frame axes may rotate as vehicle moves on Earth

surface due to Earth’s ellipsoidal shape . This rotation is named as transport rate. Since

transport rate is angular rotation of navigation frame with respect to Earth frame, it is denoted

by wen in this study. Figure 2.3 clearly depicts navigation frame and its axes.

Figure 2.3: Axes of the navigation frame (taken from [4])
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2.2.4 Body Frame

Body frame is rigidly attached to the vehicle and origin of the frame is the center of naviga-

tion system on the vehicle. Body frame axes are aligned with roll, pitch and yawaxes. In

other words, x-axis is forward along the movement direction of the vehicle,z-axis is directed

downward and y-axis is directed towards to right side of the vehicle so thatorthogonal right

handed rule is satisfied. Axes of body frame is shown in Figure 2.4. Body frame is denoted

by symbolb.

Figure 2.4: Axes of the body frame

2.3 Frame Transformation Matrix

In navigation systems, it is essential to work in different frames but the solution must be in

a well defined frame. For strapdown navigation systems, the measurement of inertial sensors

are defined in body frame which is not a global frame to use at the output ofthe whole

system. So there has to be a transformation between two different frames. This transformation

is perfomed by a matrix which is called Direction Cosine Matrix (DCM). In this study, the

following notation is adapted when transforming one vector from one frame toanother frame.

xto = Rto
f rom x f rom (2.2)

Throughout this work, Euler angles are used to identify the attitude and heading of the vehicle.

The Euler angles, roll(φ), pitch(θ), and yaw(ψ), are depicted in Figure 2.5.
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Figure 2.5: Euler angles

In this thesis work, a simple notation is adopted for the representation of specific forces and

rotations. For example,ωc
ab describes the rotation of frame-a relative to frame-b, and this

rotation represented in frame-c. Similarly, f c
ab means the specific force of frame-a relative to

frame-b, and this force represented in frame-c.

Transformation between body and navigation frames is the most important transformation

since Euler angles between these frames are highly dependent on vehicledynamic motion.

By using this transformantion matrix, linear velocities and angular velocities canbe trans-

formed from body frame to navigation frame or vice versa. In order to construct DCM matrix

for body to navigation frame transformation, principal rotation matrices for each axes are re-

quired. Principal rotation matrices for x, y and z axis are given in Equations 2.3, 2.4 and 2.5

respectively.

Rx,φ =



1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)


(2.3)
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Ry,θ =



cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


(2.4)

Rz,ψ =



cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


(2.5)

2.3.1 Linear Velocity Transformation Matrix

Transformation matrix for linear velocity transformation is described by principal rotation

matrices about z, y and x axis. It is crucial that this order of axes is not arbitrary. In navi-

gation systems, it is common to use thiszyx convention for the transformation from body to

navigation frame in terms of Euler angles [13]. Direction Cosine Matrix from body to navi-

gation frame can be represented byRn
b(Θ) whereΘ is the Euler angles,

[
φ θ ψ

]T . Euler angles

argument (Θ) is dropped to simplify notation, so that direction cosine matrix from body to

navigation frame is denoted byRn
b in this thesis work. Direction Cosine Matrix for linear

velocity is formulated in Equations 2.6 - 2.7

(
Rb

n

)−1
=

(
Rb

n

)T
= Rn

b = Rz,ψ Ry,θ Rx,φ (2.6)

After, substituting the principle rotation matrices in Equations 2.3,2.4 and 2.5, finalform of

the DCM matrix is obtained in Equation 2.7.

Rn
b =



cos(ψ) cos(θ) − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ) sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ)

sin(ψ) cos(θ) cos(ψ) cos(φ) + sin(ψ) sin(θ) sin(φ) − cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(φ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)


(2.7)

Note that direction cosine matrix for transformation between navigation and body frame is a

unitary matrix.

2.3.2 Angular Velocity Transformation Matrix

The body fixed angular velocities and Euler’s angle rates are related through Angular Velocity

Transformation Matrix. This relation can be expressed as

Θ̇ = T n
b (Θ) ωb

nb (2.8)
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whereT n
b (Θ) is the angular velocity transformation matrix from body frame to navigation

frame andωb is the angular velocities (rates) of the vehicle measured in body frame. In this

work, angular velocity transformation matrix is shortly symbolized byT n
b . Angular velocity

transformation matrixT n
b is given in Equation 2.9 [13].

T n
b =



1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)


(2.9)

2.4 Inertial Measurement Unit

Inertial Navigation System uses inertial data, acceleration and angular rate, to determine the

position, velocity and attitude of the vehicle with respect to a known reference frame. Since

INS uses acceleration and angular rate data, accelerometer and gyroscope are the main sensors

of the INS systems. The combination of these two sensors is called Inertial Measurement Unit

(IMU).

Different types of IMUs are available in the market for several applications.For critical

applications, IMU’s error must be minimum in order operate with high accuracy but low error

IMUs are expensive. Thus, IMUs can be classified according to their error performances. This

classification is presented with their specification limitations in Table 2.1. Strategic grades of

Table 2.1: IMU classification [1]

ERROR Tactical Grade Navigation Grade Strategic Grade
< 20 km/h < 1 km/h < 30 m/h

Gyroscope Drift 1− 10 deg/h 0.015deg/h 0.0001deg/h
Accelerometer Bias 100−1000µg 50−100µg 1 µg

COST <$10000 $10000-70000 >$200000

inertial sensors are used in submarines and spacecraft to satisfy highest accuracy. Navigation

grade IMUs are the main components of the aircraft’s navigation areas andcontrol systems.

Finally, tactical grade IMUs have a wide range of utilization areas. They are prefered in

guided weapons, unmanned aerial and underwater vehicles due to their lower cost and smaller

size.
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2.4.1 Accelerometer

Working principal of an accelerometer is based on spring-mass system. Figure 2.6 depicts

simple accelerometer structure. A mass is free to move with respect to the accelerometer

case. When any force is applied to the case, mass will move, compressing one spring and

stretching the other. So the resultant position of the mass with respect to caseis proportional

to the acceleration applied to the case. The significant point is the acceleration which is caused

by gravitational force. Gravitation acts on mass directly, not via the springs. So there is no

relative motion of the mass with respect to case caused by gravitational force [3].

Figure 2.6: Simple accelerometer structure (taken from [3])

Accelerometer is a device that measures the specific force on the vehicle. This implies that

accelerometer senses both inertial acceleration of the vehicle and gravitational acceleration.

Therefore, when inertial forces are applied to the vehicle in the presence of Earth gravitational

field, accelerometer will produce an output signal as in Equation 2.10.

f = p̈ −Gb (2.10)

In Equation 2.10,f represents specific force,p is the position (displacement) andGb is the

gravitational acceleration in body frame. To elaborate more about the accelerometer output,

the above discussion clearly indicates that accelerometer measures specific force (or relative

acceleration) between the case and the mass, not the accelerations that affect the case and

mass identically [4]. It’s worth considering some cases to understand the behaviour of the

accelerometer. If an accelerometer is in free-fall with no applied externalforces in a non-

rotating frame, accelerometer output will bef = 0 . If an accelerometer is fixed (not moving)

in a non-rotating frame, then its output isf = −G . If a high quality accelerometer is at rest on
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the Earth surface, then it measures the gravity and the force caused by Earth’s rotation about

its own axis. So the output will bef = ω̃ie ω̃ie p −G whereω̃ie is the skew-symmetric matrix

of the Earth angular rate.

MEMS technology is a crucial step for sensor applications since it gives achance to produce

sensors in small size with lower costs and large quatities. So development in theMEMS tech-

nology directly affects the inertial sensor technology, too. Even that MEMS inertial sensor

production becomes one of the most popular subject of MEMS technology.Today, MEMS in-

ertial sensors are used in a wide range of commercial applications. Accelerometers have also

been advanced compared to old ones by means of MEMS technology. Now small, low cost,

high range, high resolution MEMS accelerometers can be produced by many companies. Ac-

tually, MEMS accelerometer does not have different working principles. MEMS accelerome-

ter may be built using either pendulous or vibrating-beam design like the old fashioned ones

[3]. The difference in MEMS accelerometers comes from the production techniques thatre-

sult as low power consumption, low cost and small size. Because of these advantageous

features, MEMS accelerometer are prefered in most of the autonomous applications. So Ana-

log Devices ADXL345 3-axis MEMS accelerometer is used for the implementationof this

work.

2.4.2 Gyroscope

Gyroscope is a device that measures angular rate of the platform it is mounted on. Mechan-

ically, gyroscopes are more complicated sensors than accelerometers. Itis mostly used in

marine applications. The first functional marine gyroscope is designed and used by Hermann

Anscḧutz-Kaempfe [14]. These gyroscopes are mounted on a gimbaled platformso that they

have a complicated structure to be built. Today, gimballed gyroscopes are stillused in sub-

marines, warships etc.

Gyroscopes can be categorized in three in terms of their working principles: spinning mass,

optical and vibratory. Spinning mass gyroscopes operates on principle of conservation of

angular momentum which is a part of Newton’s second law of dynamics. There are differ-

ent types of optical gyroscopes such as ring laser gyroscope (RLG), fiber optic gyroscope

(FOG). They work on the principle that light travels at a constant speed ina given medium.

Optical gyroscopes are high performance sensors, but they are highly priced equipments.
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Modern rocketry and spacecraft technology are their popular usageareas. Vibratory gyro-

scopes’ working princible is based on Coriolis effect. All MEMS gyroscopes are classified

as vibratory gyroscope [3]. In the context of this thesis, InvenSenseITG-3200 3-axis MEMS

gyroscope is modeled and used in the implementation.

MEMS gyroscopes are rigidly attached to the vehicle, so that they measure the angular rate

of the body with respect to inertial frame in body frame. So it senses all of the rotation

components: vehicle angular rate, angular rate as the vehicle moves aboutthe spherical Earth

(rotation of navigation frame with respect to Earth frame) and angular rate of the Earth itself

[15]. The output of the gyroscope is given in Equation 2.11.

ωb
ib = ω

b
ie + ω

b
en + ω

b
nb (2.11)

In Equation 2.11,ωb
ie represents Earth rotation about itself represented in body frame,ωb

en is

the angular rate of navigation frame with respect to Earth frame represented in body frame as

the vehicle moves about the spherical Earth andωb
nb is the vehicle’s angular rate about its axis

represented again in body frame.

2.5 IMU Error Models

MEMS inertial sensors are favorable in today’s navigation systems because of their low cost

and small sizes but they suffer from the accuracy compared to the gimbaled and optical sen-

sors. This low accuracy is caused by two different types of error sources which can be catego-

rized as deterministic and stochastic errors. In early times of MEMS technology, determinis-

tic errors affect the output of the system significantly unless they are calibrated. For example,

in order to implement a three axes gyroscope system, there had to be three different single

MEMS gyroscope mounted on the navigation system. This kind of a design comes up with a

serious misalignment problem between axes. Today, almost all MEMS gyroscope produced

with three axes in a single chip. Thus, misalignment error is minimized (approximately zero)

at the production stage of the inertial sensor. So latest MEMS inertial sensors mainly suffer

from stochastic error sources.

MEMS IMU measures the vehicle acceleration and angular velocity, then these measure-

ments are integrated to obtain position, velocity and attitude of the vehicle. However, these

measurements are not pure outcomes of the vehicle motion, they are disturbedby stochastic
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error sources. Because of the integration, these errors are accumulated and result as drift in

the position, velocity and attitude calculation. Therefore, MEMS sensors suffer from stochas-

tic random noises severely so that the navigation system degrades if thesevariations in ac-

celerometer and gyroscope outputs are not modelled and compensated properly [16].

There are different type of methods to identify the stochastic errors. Allan Variance technique

is used in this thesis study which is the most commonly applied one for the error identification

of MEMS inertial sensors. Allan Variance technique is actually a time domain series analysis

which is developed in 1966 for studying the frequency stability of precisionoscillators [17].

Allan variance method is simple and it is straightforward to interpret the results of it. Negative

aspect of Allan Variance is that it needs long term static data to produce correct results. In this

work, Allan variance method is applied offline and once it runs then its results are given as

parameter to the navigation system. So this negative aspect does not affect the overall system.

2.5.1 Allan Variance

Allan Variance method requires short calculations so that they are easy to implement. The re-

sult of Allan Variance method gives information about five basic noise terms.These five basic

noise terms are quantization noise, angle/velocity random walk, bias instability, rate/acceleration

random walk, and ramp noise. Details of the method are given in this section [18]. Assume

that, recorded static data has a length ofN with a sampling timet0. This data is divided into

clusters and each cluster includesn samples(n < N/2). So each cluster has a duration ofT

seconds, which equals tont0.

Figure 2.7: Data structure for Allan variance method
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If the output of the sensor at timet is represented byΩ(t), cluster average is calculated as

Ω̄k(T ) =
1
T

∫ tk+T

tk
Ω(t)dt. (2.12)

In Equation 2.12,̄Ωk(t) represents average of thekth cluster out ofN/n clusters. After obtain-

ing averages of clusters, differences are calculated:

ξk+1,k = Ω̄k+1(T ) − Ω̄k(T ) (2.13)

Allan variance aims to calculate the variance of theseξ which is calculated using the average

of each consecutive clusters. Thus, Allan Variance of lengthT is calculated as follows:

σ2(T ) =
1

2(N − 2n)

N−2n∑

k=1

(ξk+1,k)
2 (2.14)

Allan Variance method is completed when these calculations are repeated for many different

cluster timesT . The analysis of the Allan Variance can be interpreted by an Allan Variance

plot. A typical Allan Variance plot is given in Figure 2.8.

Figure 2.8: Typical Allan variance plot for MEMS inertial sensor (taken from [5])

The most significant feature of Allan variance is its ability to separate different types of noises

by the slopes on the Allan Variance plot. Coefficients for five basic noise terms, their respec-

tive slopes and formulas in Allan Variance plot are given in Table 2.2.
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Table 2.2: Allan variance noise analysis

Noise Types AV σ2(τ) Noise Coefficient Slope

Quantization Noise 3Q2

τ2 Q -1

Angle/Velocity Random Walk N2

τ
N -1/2

Bias Instability 2B2 ln(2)
π

B 0

Rate/Acceleration Random Walk K2τ
3 K +1/2

Ramp Noise R2

2τ2 R +1

2.5.2 Sensor Stochastic Model

In this section, stochastic sensor model is developed considering some noise terms available in

the MEMS IMU sensors. Before going further, it is senseful to assume that the constant bias,

misalignment error and scale factor error are calibrated by the manufacturer in the factory, so

that these errors are not considered in the stochastic model of the sensors in this study.

The types of noise avaible in the MEMS inertial sensors are listed in Table 2.2.These noises

are taken into consideration in the stochastic model of sensors. However,quantization noise

is neglected in the model since Songlai Han and Knight points out that quantization noise

cannot be modelled in Kalman filter equations due to the non-rational spectra depending on

occurence of derivative of white noise [19]. So accelerometer and gyroscope have the follow-

ing noise components in their outputs.

• Angle / Velocity Random Walk (ARW)

Angle / Velocity Random Walk has rational spectra and it is modelled as white noise.

Differential equation for ARW is given in Equation 2.15 [20].

arw(t) = Nv(t) (2.15)

In Equation 2.15,N is the Allan Variance coefficient for ARW noise andv(t) is unit

white noise.

• Bias Instability

Bias Instability is caused by variations in the bias term of the sensors. Many different
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models are developed for bias instability noise. In this work, first order Gauss-Markov

approach is used. The differential equation for bias instability noise is [20]

ḟ n(t) = −β f n(t) + βBv(t) (2.16)

whereβ is reciprocal of time constant which can be determined by autocorrelation

analysis;B is Allan Variance bias instability noise parameter andv(t) is unit white

noise.

• Rate / Acceleration Random Walk (RRW)

Rate/ acceleration random walk has rational spectrum so that its model can be derived

easily using its power spectral density. The differential equation for rate/ acceleration

random walk can be formulated as Equation 2.17 [20].

˙rrw(t) = Kv(t) (2.17)

In Equation 2.17,K is the Allan Variance coefficient for RRW noise andv(t) is unit

white noise.

• Ramp Noise

Ramp noise results as very slow monotonic change in the outputs of gyroscope and

accelerometer. The effect of ramp noise could be observed over a long period of oper-

ation times (hours). This noise can be modelled approximately as second order Gauss-

Markov process [20]. In this thesis study, the effect of ramp noise is disregarded because

of its small impact.

Ultimately, our inertial sensor model is a combination of three different noise components plus

true sensor measurements. Equations 2.18 and 2.19 show the formulation of accelerometer

and gyroscope output models respectively.

aoutput = atrue + aarw + a f n + arrw (2.18)

woutput = wtrue + warw + w f n + wrrw (2.19)

2.6 Inertial Navigation Mechanization Equations

In this section, inertial navigation mechanization equations are derived considering Earth

model, coriolis effect and gravity. The aim of these derivations is to express position, ve-
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locity and attitude of the vehicle in terms of accelerometer, gyroscope and aiding sensors’

outputs. Before the derivation, some notation and parameters need to be clarified.

In the equations, skew-symmetric matrices are used instead of cross product operations.

Skew-symmetrix matrix form of a vector is represented in Equation 2.20.

a × b = ã b =



0 −a3 a2

a3 0 −a1

a2 a1 0





b1

b2

b3


(2.20)

Earth rate is given in Equation 2.1 and it is symbolized asωe
ie which means angular rate of

Earth frame with respect to inertial frame resresented in the Earth frame.

ωe
ie =



0

0

7.292115× 10−5


rad/s (2.21)

Equation 2.21 also implies that Earth rotational rate is constant such that ˙ωe
ie = 0. Moreover,

since Earth rotational speed varies with different points on Earth, Earth rate equation in navi-

gation frame is a function of geodetic latitude (L) of the vehicle. Then, Equation 2.22 shows

the expression for Earth rate in navigation frame.

ωn
ie =



7.292115× 10−5 cos(L)

0

−7.292115× 10−5 sin(L)


(2.22)

As it is stated in Section 2.2.3, navigation frame will move as vehicle changes its position.

However, considering this rotation increases the computational load and thecomplexity of

equations a lot. So it is assumed that navigation frame is fixed with respect to Earth frame

such thatωn
in = ω

n
ie.

For the gravity model, ”plumb-bob gravity or local gravity” is used. This model comprises

of gravitational acceleration plus centripetal acceleration caused by Earth rate. Therefore, the

gravitational acceleration can be writen as in Equation 2.23.

Gn
ib = gn

ib + ω̃
n
ie ω̃

n
ie pn

nb (2.23)

In Equation 2.23,ω̃n
ie (also equals tõωn

in because of fixed navgation frame) is the skew-

symmetric form of Earth rate in navigation frame,pn
nb is the position represented in navigation

frame andgn
ib is the gravitational acceleration in navigation frame.
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Considering all the information given in the previous sections, generic inertial navigation

mechanization equations can know be formulated. While the velocity is represented in body

frame, position attitude angles are expressed in navigation frame in the equations. Mecha-

nization equations are itemized as follows:

• Position Equation

The derivative of position is velocity. So the derivative of position in navigation frame

can be defined as

ṗn
nb = Rn

b vb
nb (2.24)

wherevb
nb is the velocity of the vehicle in body frame.

• Velocity Equation

The derivative of velocity is acceleration. So the differential equation for velocity in

navigation frame can be derived as follows by also taking into account the gravitational

and coriolis forces [21]. Position of a vehicle with respect to inertial frameand its

derivative can be written as

pi
ib = pi

in + Ri
n pn

nb (2.25)

ṗi
ib = ṗi

in + Ri
n[ω̃n

in pn
nb + ṗn

nb] (2.26)

whereωn
in represents the rotation of navigation frame with respect to inertial frame

and represented in navigation frame,pi
in is the position of navigation frame relative to

inertial frame,Ri
n is the transformation matrix from navigation frame to inertial frame

andpn
nb is the position of body frame with respect to navigation frame. Differentiating

Equation 2.26 with respect to time and solving for acceleration of the body relative to

navigation frame is given in Equations 2.27.

p̈n
nb = f n

ib + (Gn
ib − ω̃n

inω̃
n
in pn

nb) − p̈n
in − 2ω̃n

in ṗn
nb −

˙̃
ωn

in pn
nb

= f n
ib + gn

ib − 2ω̃n
in ṗn

nb

(2.27)

In Equation 2.27,f n
ib is the specific force of body with respect to inertial frame rep-

resented in navigation frame. The first step of Equation 2.27 is simplified in the sec-

ond step considering plumb-bob gravity, constant Earth rate and fixed navigation frame

which are mentioned in this section before.

Finally, using basic equalitiesvb
nb = ṗb

nb, ṗb
nb = Rb

n ṗn
nb and Equation 2.27, differential

equation for the velocity of the body frame relative to navigation frame, represented in
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body frame is calculated in Equations 2.28.

p̈b
nb = Ṙb

n ṗn
nb + Rb

n p̈n
nb

= (Rb
nω̃

b
nb)Rn

b ṗb
nb + Rb

n( f n
ib + gn

ib − 2ω̃n
in ṗn

nb)

v̇b
nb = f b

ib + Rb
ngn

ib − Rb
nω̃

n
inRn

bvb
nb − ω̃b

ibvb
nb

(2.28)

In the last part of Equation 2.28,ωb
ib is also substituted forωb

nb + Rb
nω

n
ie.

• Attitude Equation

There are two different methods to define the attitude mechanization equation. The

first one is already given in Equation 2.8. Another method is actually an indirect way

of calculating attitude angles. The purpose of second method is to make use of the

direction cosine matrix andωb
nb.Then differential equation for direction cosine matrix

is

Ṙn
b = Rn

b ω̃
b
nb. (2.29)

With the knowledge of initial conditions of the direction cosine matrix,Rn
b can be solved

so that the attitude of the craft can be determined [15].

A summary of the mechanizations equations in terms of accelerometer outputf b
ib and gyro-

scope outputωb
nb is given in Table 2.3.

Table 2.3: Inertial navigation mechanization equations

Position Equation ṗn
nb = Rn

b vb
nb

Velocity Equation v̇b
nb = f b

ib + Rb
ngn

ib − Rb
nω̃

n
inRn

bvb
nb − ω̃

b
ibvb

nb

Attitude Equation Θ̇ = T n
b ω

b
nb or Ṙn

b = Rn
b ω̃

b
nb

2.7 Error Model of Inertial Navigation Mechanization Equations

For the integration of IMU sensors and aiding sensors, linear estimation filternamely Kalman

Filter which is explained in Chapter 4, is applied. However, mechanization equations found
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in Section 2.6 are non-linear equations. Therefore, these equations need to be linearized prop-

erly. For that purpose, this section describes the error model of previously defined navigation

mechanization equations and their derivations.

For the linearization procedure, mechanization equations are perturbed by first order as in

Equations 2.30, 2.31, 2.32.

pn
nb = p̂n

nb + δpn
nb (2.30)

vb
nb = v̂b

nb + δpb
nb (2.31)

Rn
b = R̂n

b + δR
n
b (2.32)

Also IMU sensor outputs and gravitational acceleration are perturbed asin Equations 2.33,

2.34, 2.35. Actually, these perturbations in IMU sensors are the sum of stochastic IMU errors

which are introduced in Section 2.5.2.

f b
ib = f̂ b

ib + δ f b
ib (2.33)

wb
ib = ŵb

ib + δw
b
ib (2.34)

gn
ib = ĝn

ib + δg
n
ib (2.35)

Following relations are obtained by using small-angle approximation of transformation matrix

and they are useful for further derivations [21]:

R̂n
b = (I − δ̃Θ)Rn

b (2.36)

Rn
b = (I + δ̃Θ)R̂n

b (2.37)

R̂b
n = Rb

n(I + δ̃Θ) (2.38)

Rb
n = R̂b

n(I − δ̃Θ) (2.39)

Then using the equations above and nonlinear mechanization equations, error model can be

formulated for position, velocity and attitude.

• Position Error Model Equation

By differentiating Equation 2.30 and using given relations, position error model is com-

puted [21].

δ ṗn
nb = ṗn

nb − ˙̂pn
nb

= Rn
bvb

nb − R̂n
bv̂b

nb

=
(
R̂b

n(I − δ̃Θ)
)
(δvb

nb + v̂b
nb) − R̂n

bv̂b
nb

= R̂n
bδv

b
nb + δ̃ΘR̂n

bδv
b
nb + δ̃ΘR̂n

bv̂b
nb

(2.40)
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In Equation 2.40,̃δΘR̂n
bδv

b
nb part could be neglected since bothδΘ andδvb

nb is small.

Then, the final form of position error is rewritten in Equation 2.41 by using the fact that

ã b = −b̃ a.

δ ṗn
nb ≈ R̂n

bδv
b
nb −

˜̂Rn
bv̂b

nb δΘ (2.41)

• Velocity Error Model Equation

The method in the derivation of position error model is adopted for velocity error model

equation but this time the derivation is longer and contains more terms. So the final form

of the velocity error model is given in Equation 2.42 [21].

δv̇b
nb = v̇b

nb − ˙̂vb
nb

≈ R̂b
n

(˜̂gn
ib + ω̂

n
ie(R̂

n
bv̂b

nb)T − (ω̂n
ie · R̂

n
bv̂b

nb)I
)
δΘ

−
(
˜̂ωb

ib + R̂b
n
˜̂ωn

inR̂n
b

)
δvb

nb − δ f b
ib −

˜̂vb
nbδω

b
ib

+ R̂b
nδg

n
ib + R̂b

n
˜̂Rn

bv̂b
nbδω

n
ie

(2.42)

In Equation 2.42,δωn
ie represents the error of Earth rate in navigation frame. Since

Equation 2.42 consists of detailed error parameters, INS system requiresa comprehen-

sive analyses and sensitive IMU sensors.

• Attitude Error Model Equation

The attitude error model is derived by using Equation 2.29. In order to formulate the

attitude error model, following steps must be computed.

˙δRn
b = Ṙn

b −
˙̂Rn

b (2.43)

= Rn
bω̃

b
nb − R̂n

b
˜̂ωb

nb

= (I + δ̃Θ)R̂n
bω̃

b
nb − R̂n

b
˜̂ωb

nb

˙δRn
b = R̂n

b(ω̃b
nb −

˜̂ωb
nb) + δ̃ΘR̂n

bω̃
b
nb (2.44)

Also

δRn
b = Rn

b − R̂n
b

= (I + δ̃Θ)R̂n
b − R̂n

b

δRn
b = δ̃ΘR̂n

b (2.45)

and by taking the derivative with respect to time of Equation 2.45 gives

˙δRn
b =

˙̃
δΘR̂n

b + δ̃Θ
˙̂Rn

b

=
˙̃
δΘR̂n

b + δ̃ΘR̂n
b
˜̂ωb

nb (2.46)
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Combining Equation 2.44 and 2.46 results in

R̂n
b(ω̃b

nb −
˜̂ωb

nb) + δΘR̂n
bω̃

b
nb =

˙̃
δΘR̂n

b + δ̃ΘR̂n
b
˜̂ωb

nb

˙̃
δΘR̂n

b = −δ̃ΘR̂n
b
˜̂ωb

nb + R̂n
b(ω̃b

nb −
˜̂ωb

nb) + δ̃ΘR̂n
bω̃

b
nb

˙̃
δΘ = −δ̃ΘR̂n

b
˜̂ωb

nbR̂b
n + R̂n

b(ω̃b
nb −

˜̂ωb
nb)R̂b

n + δ̃ΘR̂n
bω̃

b
nbR̂b

n

˙̃
δΘ = δ̃ΘR̂n

b(ω̃b
nb −

˜̂ωb
nb)R̂b

n + R̂n
b(ω̃b

nb −
˜̂ωb

nb)R̂b
n (2.47)

˙̃
δΘ ≈ R̂n

b(δ̃wb
ib)R̂b

n (2.48)

where Equation 2.47 is approximated as Equation 2.48 sinceδ̃Θ and (̃ωb
nb −

˜̂ωb
nb) are

both small matrices.

Finally, Equation 2.48 can be written in vector form as

˙δΘ = R̂n
b δw

b
ib (2.49)

So Equation 2.49 shows that attitude error equation depends on estimate of transforma-

tion matrix,R̂n
b and the gyroscope error vector,δwb

ib .

A summary of the linearized error model of mechanizations equations is givenin Table 2.4.

Table 2.4: Error model of inertial navigation mechanization equations

Position Error Equation δ ṗn
nb ≈ R̂n

bδv
b
nb −

˜̂Rn
bv̂b

nb δΘ

Velocity Error Equation

δv̇b
nb ≈ R̂b

n

(˜̂gn
ib + ω̂

n
ie(R̂

n
bv̂b

nb)T − (ω̂n
ie · R̂

n
bv̂b

nb)I
)
δΘ

−
(
˜̂ωb

ib + R̂b
n
˜̂ωn

inR̂n
b

)
δvb

nb − δ f b
ib −

˜̂vb
nbδω

b
ib

+ R̂b
nδg

n
ib + R̂b

n
˜̂Rn

bv̂b
nbδω

n
ie

Attitude Error Equation ˙δΘ = R̂n
b δw

b
ib
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CHAPTER 3

AIDING SENSORS

IMU sensors are not sufficient alone for the navigation system of an underwater vehicle. A

simple time integration algorithm is an ineffective solution due to their error characteristics.

Using an aiding sensor as a measurement could assist to correct these errors that grow with

time. In practice, most commonly used aiding sensors are GPS (Global Positioning System),

magnetometer, doppler navigation sensor, pressure sensor and acoustic navigation systems

[22]. Doppler navigation sensors are called Doppler Velocity Log (DVL). This sensor mea-

sures the speed of a vehicle with respect to sea bed using sonar signals.DVL provides velocity

of a vehicle with a high precision but they are very expensive devices. GPS is a satellite based

system and communicates with radio signals. Using GPS is a very efficient way of deter-

mining the position and velocity of the vehicle in Earth frame. However, GPS signals cannot

penetrate the water. Thus, GPS does not work when the vehicle plunges intowater. Moreover,

acoustic navigation systems are used to obtain position of the vehicle according to deployed

set of transponders. There are three different types of acoustic positioning systems depending

on their baseline length: Ultrashort Baseline (USBL), Short Baseline (SBL) and Long Base-

line (LBL). The position of the vehicle(or responder) is determined by using phase difference

of the detected signals from the transponders [23]. Although they provide very good position

accuracy independent of water depth, they are complex systems that require expert operators,

long times for setup and expensive equipments.

Because of the disadvantages of the systems decribed above, magnetometer and pressure

sensor are chosen as aiding sensors in this work. Magnetometer and pressure sensor are more

appropriate in terms of size, operation simplicity and cost efficiency. In this chapter, properties

of magnetometer and pressure sensor are decribed. Moreover, their error characteristics and

25



calibration methods are examined throughout this chapter.

3.1 Magnetometer

North finding is one of the oldest method of navigation techniques. Looking at north pole star

is the most popular north finding method. Another method is to make use of Earth’s magnetic

field. Magnetic compass aligns itself according to Earth’s magnetic field. By assuming Earth’s

magnetic do not change over long time period, magnetic compasses are startedto be used for

navigation purposes, especially for direction finding.

Electronic compass (magnetometer) measures Earth’s magnetic field in three axis, thus it

provides low cost heading calculation with minor errors. Magnetoresistive, fluxgate, magne-

toinductive types of electronic compasses are available. In this study, Honeywell HMC5883L

series magnetoresistive sensor is used. The sensor converts any incident magnetic field in the

sensitive axis directions to a differential voltage output. These magnetoresistive sensors are

made of a nickel-iron (Permalloy) thin-film and patterned as a resistive strip element. In the

presence of any magnetic field, a change in resistive elements causes a relative change in the

output voltage [24]. Heading of vehicle can be calculated by Equation 3.1 [4]. Magnetometer

has to be calibrated and tilt compensated according to its error analysis before calculating

heading angle.

ψmagneto = tan−1
(
−

magnetoy

magnetox

)
(3.1)

3.1.1 Magnetometer Error Analysis and Calibration Procedures

Magnetometer’s measurements contain different type of errors and some of these errors have

a serious impact on heading calculation. These errors are [6]:

• Quantization Error

• Magnetic Sensor Error

• Temperature Effects

• Nearby Ferrous Materials
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• Compass Tilt Errors

• Variation of the Earth’s Magnetic Field

In this study, quantization error and temperature effects are not considered in the calculations

of the heading. Also it is assumed that Earth’s magnetics field do not changedue to position,

since the vehicle moves in a limited local area. So variation of the Earth’s magneticfield is

negligible.

3.1.1.1 Magnetic Sensor Error

Magnetometers have some errors due to their internal structure. These errors may also be

due to production imperfections. These errors could be sensor noise, linearity, hysteresis, and

repeatability errors [6]. It is hard to model and compensate all of these error. Therefore, the

effect of these errors on heading calculation is modeled as additive white Gaussian noise.

3.1.1.2 Nearby Ferrous Materials

Earth’s magnetic field could be distorted easily by using any ferrous materialssince magni-

tude of Earth’s magnetic field is not too strong. Therefore, it’s expected that magnetometer’s

measurements are disturbed by nearby ferrous materials. If it is assumed that Earth’s mag-

netic field is constant in a local operation area, then the effect of any ferrous object will be

constant as well. This effect is illustrated in Figure 3.1.

When a magnetometer is rotated arbitrarily in a completely isolated environment, the plot of

measurements in three axis must be a complete sphere centered at the origin. However, it is

not the case in practice due to the metalic vehicle body, other electronic components, wiring

etc. Disturbance of these materials can be categorized as hard iron and soft iron effects. The

cause of hard iron distortion is the permanent magnets and ferromagnetic irons on the vehicle

platform. Hard iron effect add a constant magnitude field component along each axes so

that its effect does not change for different heading orientations. This addition of constant

magnitude field appears as a shift in the origin of the sphere. The cause ofthe soft iron

distortion is the interaction of the Earth’s magnetic field and any magnetically softmaterials

around the magnetometer. The difference between soft and hard iron distortion is that soft
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Figure 3.1: Disturbance of ferrous material in uniform magnetic field (takenfrom [6])

iron distortion depends on magnetometer orientation. When magnetometer experiences a soft

iron distortion, the plot of measurements of arbitrary movements become ellipsoidal [6].

Nearby ferrous materials may cause serious errors in heading calculationif the magnetometer

is not calibrated. In order to determine the calibration parameters, simple offline procedure

can be applied [25, 26]:

• Magnetometer is mounted permenantly on the vehicle and then outputs of the magne-

tometer is recorded when the vehicle is rotated around at each three axis arbitrarily.

• By using recorded data, measurement ranges of each axis is calculated:

rangex = max(magraw
x ) − min(magraw

x )

rangey = max(magraw
y ) − min(magraw

y )

rangez = max(magraw
z ) − min(magraw

z )

(3.2)

In Equations 3.2,magraw
x ,magraw

y andmagraw
z represent raw magnetometer data for x,y,z

axes respectively.

• Scale factor coefficient for the soft iron distortion can be determined by using these

range values.

if rangex > rangey then

S y =
rangex
rangey

S x = 1
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else

S x =
rangey

rangex

S y = 1

end if

if S x == 1 then

S z =
rangex
rangez

else

S z =
rangey

rangez

end if

• After the calculation of soft iron scale factors, constant offsets due to the hard iron effect

for each axis are calculated:

O f f setx =

(
max(magraw

x ) − min(magraw
x )

2
− max(magraw

x )

)
× S x

O f f sety =

(
max(magraw

y ) − min(magraw
y )

2
− max(magraw

y )

)
× S y

O f f setz =

(
max(magraw

z ) − min(magraw
z )

2
− max(magraw

z )

)
× S z

(3.3)

• Finally, these calculated scale factors and offset values are applied to all magnetometer

data with respective axis.

magcalibrated
x = magraw

x × S x + O f f setx

magcalibrated
y = magraw

y × S y + O f f sety

magcalibrated
z = magraw

z × S z + O f f setz

(3.4)

In the literature, only x and y axes are the subject of hard and soft iron calibration. In this

thesis work, z axis is also considered for calibration, so that calibration method is modified

in that way. This calibration procedure should be carried out for all different setups, since

calibration parameter varies according to position and orientation of magnetometer in the

platform.

3.1.1.3 Compass Tilt Errors

Magnetometer is attached to the platform in a fixed position. So, the measurementaxes of the

magnetometer depend on the vehicle orientation. However, Earth’s magnetic field is assumed
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to be constant in local area according to earth frame. Therefore, as thevehicle changes its

roll and pitch angles, magnetometer will measure the Earth’s magnetic field with a wrong

axis configuration which concludes as erroneous heading calculation. These tilt error (roll

and pitch) usually contributes the largest percentage error in heading calculation [6]. In order

to compensate for the tilt error, it is required to know roll and pitch angles simultaneously.

Therefore, many magnetometer manufacturers assembles tilt sensors (accelerometer) with

their magnetometers. Tilt sensor calculates roll and pitch angles by taking advantage of grav-

itational acceleration. Because of this, if vehicle moves with a high acceleration, tilt sensor

will not be able to calculate roll and pitch angles correctly.

For correct heading angle, magnetometer’s axes have to be aligned backto the horizontal

plane. For that reason, principal rotations for the NED frame have to be used. These rotation

matrices were already given in Equations 2.3, 2.4 and 2.5. Equation 3.5 shows the back

rotated magnetometer measurements.


magrotated
x

magrotated
y

magrotated
z


=



cosθ 0 sinθ

0 1 1

− sinθ 0 cosθ





1 0 0

0 cosφ − sinφ

0 sinφ cosφ





magcalibrated
x

magcalibrated
y

magcalibrated
z


(3.5)

Since heading angle is specified as in Equation 3.1, only the x and y component of magne-

tometer (calibrated and tilt compensated) is required for the computation of heading angle by

using mangetometer.

magrotated
x = magcalibrated

x cos(θ) + magcalibrated
y sin(θ) sin(φ)

+ magcalibrated
z sin(θ) cos(φ) (3.6)

magrotated
y = magcalibrated

y cos(φ) − magcalibrated
z sin(φ) (3.7)

Finally, rotated and calibrated magnetometer measurements for x and y axis in Equation 3.6

and Equation 3.7 can be used for heading calculation. The result of Equation 3.1 gives heading

angle with respect to magnetic north and this result later on will be used as a measurement for

yaw angle.

3.2 Pressure Sensor

Pressure sensor measures the amount of water pressure on the underwater vehicle. By using

this property, z-axis position of the vehicle can be calculated and this measurement could be
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given as an auxiliary measurement for the navigation system. Pressure sensors are not com-

plex sensors like magnetometers. Most manufacturers produce their items fully temperature

compensated, calibrated and amplified before delivery. So it’s easy to usefor different ap-

plications. In this work, the depth of water (z-axis position) will be measuredusing pressure

sensor.

Assuming that water density is constant and equals to distilled water under standard condi-

tions, then depth of the water can be calculated as in Equation 3.8.

depth = P × 10.1971 (3.8)

In Equation 3.8, P refers to water pressure measured by pressure sensor in terms of bar. Since

1 bar corresponds to 10.1971 meter of water height, Equation 3.8 gives depth in terms of

meter.

Pressure sensor can measure the water pressure with a high accuracy. This accuracy mostly

depends on their full scale range; as the range of the sensor increases, their accuracy decreases.

Honeywell MLH series pressure sensor was used in this work. It delivers as low as 2% total

error of its full scale and its response time is smaller than 2 ms [27].
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CHAPTER 4

KALMAN FILTER

Kalman filter is a recursive data processing algorithm which generates optimal estimate of the

state variables using a set of measurements. Kalman filter works on a linear system model in

which process noises and measurement noises are white and Gaussian. When these conditions

satisfied, Kalman filter produces unique best estimate of the state, so that it is called the

optimal filter [28]. In this work, Kalman filter is used for sensor fusion and error estimation.

By using estimated error states, true state variables can be obtained.

Although Kalman filter works for linear problems, it can be also applied for non-linear prob-

lems. For non-linear problems, either dynamic system equations are linearized by pertubation

technique or a different version of Kalman filter, Extended Kalman Filter (EKF) is used. This

version of Kalman Filter uses partial derivatives as linear approximations of nonlinear equa-

tions.

This chapter of the thesis provides fundamental background for the Kalman filter. In the

first section, continuous time state space representation of a generic system is given. In the

second section, conversion from continuous to discrete time Kalman filter is explained with

its algorithm and the third section decribes the implementation of discrete extendedKalman

filter.

4.1 Continuous Time State Space Models

In real world, it is sometimes easy to formulate system dynamics in continuous time rather

than discrete time. However, most of the system implementations depend on today’s digital

technology. Considering this situation, modelling the system in continuous time andconvert-
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ing this model from continuous time domain to discrete time domain seems to be the best

option.

Systems can be classified as linear systems and nonlinear systems. State space models of

linear and nonlinear systems have different representations.

4.1.1 Continuous Time Linear State Space Models

The dynamics of a linear system can be described as

ẋ(t) = A(t)x(t) +G(t)w(t) (4.1)

z(t) = C(t)x(t) + v(t) (4.2)

In equation 4.1,x(t) is n × 1 state vector,A(t) is n × n state transition matrix,G(t) is n × r

process noise coupling matrix andw(t) is 1× r zero mean process noise. In equation 4.2,z(t)

is m × 1 measurement vector,C(t) is m × n measurement sensitivity matrix andv(t) is m × 1

zero mean measurement noise vector.v(t) can be expressed as zero mean additive Gaussian

noise with

E
〈
v(t)vT (t + τ)

〉
= Rc(t)δ(τ) (4.3)

w(t) can be expressed as zero mean additive Gaussian noise with

E
〈
w(t)wT (t + τ)

〉
= Qc(t)δ(τ) (4.4)

4.1.2 Continuous Time Nonlinear State Space Models

The dynamics of a nonlinear system can be described as

ẋ(t) = f (x(t), t) + g(w(t), t) (4.5)

z(t) = h(x(t), t) + v(t) (4.6)

In Equation 4.5,x(t) is state vector,f (x(t), t) is nonlinear state transition function,g(w(t), t)

is process noise coupling fucntion andw(t) is zero mean process noise. In Equation 4.6,

z(t) is measurement vector,h(x(t), t) is nonlinear measurement sensitivity function andv(t) is

zero mean measurement noise vector.v(t) andw(t) can be expressed as zero mean additive

Gaussian noise with same covariance given in Equations 4.3 - 4.4.
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4.2 Discrete Time Kalman Filter

Since Kalman filter is implemented in digital platforms, continous time systems have to be

converted to discrete time domain. This convertion is based on linear state space representa-

tion of a system since Kalman filter works for linear systems. A discrete time linearsystem

can be represented as in the following form of Equations 4.7 - 4.8.

xk+1 = Fk xk + wk (4.7)

zk+1 = Hk xk+1 + vk+1 (4.8)

A(tk) andG(tk) are the state transition matrix and process noise coupling matrix at a sample

time tk respectively, assuming that continuous time state transition matrixA(t) and process

noise coupling matrixG(t), which are defined in Equation 4.1, are constant over a sampling

time period∆t. So Equation 4.7 can be written in terms of continuous time state space system

parameters as follows [29].

xk+1 = eA(tk) ∆t xk +

∫ t+∆t

t
eA(tk) (t+∆t−τ)G(tk) w(τ)dτ (4.9)

Equation 4.9 shows that state transition matrixFk is a matrix exponential which equals to

eA(tk) ∆t. So it can be calculated easily by using Taylor series expansion. However, computa-

tion of an integral involving matrix exponential is more challenging than a matrix exponential.

For the calculation of discrete time process noise matrix, Van Loan’s method (1978) is used

[30].

Υ = exp




−A GQcGT

0 AT

∆t

 (4.10)

=


... F−1Qd

0 FT

 (4.11)

Then, by using upper right and the transpose of lower right part of thematrixΥ, discrete time

equivalent process noise covariance matrix is obtained.

Qd = (FT )T ∗ F−1Qd (4.12)

Although Van Loan’s methods appears to be easy intuitively, it requires large amount of nu-

merical calculation if state space matrices are big. Then, using first order approximation of

these numerical calculations decreases computational load. Thus, algorithm will be able to
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work faster. Continuous to discrete time conversion of state space representation is given in

Equations 4.13 according to first order approximation by assuming again that system dynam-

ics matrices are constant over a sampling time period [28, 29] .

Fk = I + A(tk)∆t

Qd = G(tk)Qc(tk)G(tk)
T∆t

Hk = C(tk)

Rd =
Rc(tk)
∆t

(4.13)

Discrete Time Kalman Filter estimates the state of a noisy system by using measurements

which are also exposed to noise. These noises are assumed to be white Gaussian noise, so

that Kalman filter predicts the best optimal state. Discrete Time Kalman filter containstwo

stages: time update and measurement update. In the time update stage, state is predicted

using the system model and in measurement update stage, predicted state in time update stage

is corrected by current measurements. The aim of the whole algorithm is to minimize error

covariance matrix of the estimator. The Kalman Filter algorithm for discrete time system is

summarized in Table 4.1 [28].

Table 4.1: Discrete time Kalman filter algorithm

Discrete Time Linear State Space Model
xk+1 = Fk xk + wk

zk+1 = Hk xk+1 + vk+1

Initialization
x̂0 = E(x0)

P0 = E
(
(x0 − x̂0)(x0 − x̂0)T

)

Time Update
x̂k+1|k = Fk x̂k|k

Pk+1|k = FkPk|kFT
k + Qd

Kalman Gain Kk+1 = Pk+1|kHT
k

(
HkPk+1|kHT

k + Rd

)−1

Measurement Update
x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − Hk x̂k+1|k)

Pk+1|k+1 = (I − Kk+1Hk)Pk+1|k

4.3 Discrete Extended Kalman Filter

Standard Kalman filter has been formulated for the linear systems. However,the reality is

that most of the systems in engineering world are nonlinear. So, linearization procedure can
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be used to extend the Kalman filter for nonlinear systems. Hence this filter is called Extended

Kalman Filter. Extended Kalman filter is commonly used in navigation systems.

The main idea of behind the extended Kalman filter is to linearize the nonlinear state-space

model of Equations 4.5 - 4.6 at each time instant around the most recent state estimate. Once

a linear model is obtained, the standard Kalman filter equations are applied [31].

In order to implement extended Kalman filter, first of all, continous time nonlinearstate space

system is given in Equations 4.5 - 4.6 should be written in discrete form of equations with the

input parameteruk:

xk+1 = fk(xk, uk) + wk (4.14)

zk+1 = hk(xk+1) + vk+1 (4.15)

Linearization procedure is applied by calculating Jacobian matrices offk and hk given in

Equations 4.16

Fk =
∂ fk(xk, uk)

∂x
|x=xk|k ,u=uk

Hk =
∂hk(xk)
∂x

|x=x̂k+1|k

(4.16)

Using this linearization procedure, extended Kalman filter algorithm for discrete time system

is described in Table 4.2 [29, 32].

Table 4.2: Discrete time extended Kalman filter algorithm

Discrete Time Nonlinear State Space Model
xk+1 = fk(xk, uk) + wk

zk+1 = hk(xk+1) + vk+1

Initialization
x̂0 = E(x0)

P0 = E
(
(x0 − x̂0)(x0 − x̂0)T

)

Jacobians for Linearization
Fk =

∂ fk(xk, uk)
∂x

|x=xk ,u=uk

Hk =
∂hk(xk)
∂x

|x=xk+1|k

Time Update
x̂k+1|k = fk(x̂k|k, uk)

Pk+1|k = FkPk|kFT
k + Qd

Kalman Gain Kk+1 = Pk+1|kHT
k

(
HkPk+1|kHT

k + Rd

)−1

Measurement Update
x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk+1 − hk(x̂k+1|k)

)

Pk+1|k+1 = (I − Kk+1Hk)Pk+1|k

EKF has two different implementation types: direct (total-state) EKF and indirect (error-
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state) EKF. Direct EKF uses original navigation variables in the states of thefilter, that are

available in system formulation in Section 2.6. Indirect EKF uses error states(also used for

linearization) of the navigation variables which are depicted in Section 2.7 [33]. Indirect EKF

corrects the navigation variable by updating these error states in the measurement update stage

of Kalman filter.

If the indirect Kalman filter collapses because of any failures, the inertial navigation system

estimator part will continue to integrate the IMU data since Kalman filter is out of theINS

estimator. However, for direct Kalman filter configuration, INS estimator will be useless if

the Kalman filter collapses since outputs of the INS estimator goes directly to Kalmanfilter.

Therefore, entire navigation system will crash when any failures occurs in direct Kalman filter

configuration [34].
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CHAPTER 5

SYSTEM DESIGN AND SIMULATIONS

This chapter focuses on a strapdown inertial navigation system which is designed for a un-

derwater vehicle using a low cost IMU, a magnetometer and a pressure sensor. The effects of

the aiding sensors on the system outputs are observed in simulations. The designed system

is different from the common ones mainly in terms of the way the pressure sensor is coupled

and vehicle dynamic motion assumptions. Accelerometer is used also as an aidingsensor for

measuring tilt angles (pitch and roll) and the filter for the sensor integration is adapted accord-

ing to the total acceleration of the vehicle. Although the main point of this thesis is AHRS,

velocities and positions are also taken into consideration because of the presssure sensor aid.

Thus the system is implemented as an INS, however the observed states are attitude and head-

ing angles. Considering all of these specific features, the implementation steps of the system

is explained throughout this chapter.

For the system implementation, Sparkfun 9DOF Razor IMU sensor is used. This IMU in-

cludes ITG-3200 triple-axis digital output gyroscope, ADXL345 triple-axis accelerometer

and HMC5883L triple-axis digital magnetometer [7]. This sensor has ATmega328 processor

on board to process sensor outputs but this is a weak processor to implement high dimen-

sional Kalman filters. In order to solve this problem, sensor outputs are recorded and all other

processes are applied in MATLABc© environment.

For the integration of the IMU sensor and aiding sensors, linearized error state Kalman filter

and indirect extended Kalman filter are implemented in discrete time whose details are given

in Chapter 4. Thus, error states are the key point for both of the these filters. Moreover there

are two types of implementations of the overall system based on the outputs of Kalman filter

(error states), feedforward and feedback. Their main difference is the way that they handle
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Figure 5.1: Sparkfun 9DOF Razor IMU (taken from [7])

updated error estimate which are the output of Kalman filters. In feedforward implementation,

estimated error states are fed forward to currently estimated navigation variables that are

calculated using IMU outputs and the inertial navigation equations. So no correction occurs

when INS system produces new estimates of navigation variables before going into Kalman

filter. In feedback implementation, new estimated error states is fed back to the INS to correct

its estimated navigation variables. Therefore feedback system has the advantage of keeping

the error states bounded, while unbounded error states could be observed in the feedforward

implementation which may influence the linearization procedure negatively [35]. Because of

these reasons, systems are designed in feedback configurations in this thesis. The feedback

configuration for the linearized error state Kalman filter and extended Kalmanfilter version

are depicted in Figure 5.3 and Figure 5.2 respectively.

Figure 5.2: Feedback extended Kalman filter configuration
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Figure 5.3: Feedback linearized error state Kalman filter configuration

The steps, that are performed in the design process, are described in the following sections.

These steps are crucial to design a convenient navigation system. If anyof these steps are

misevaluated, significant errors could be observed in the system output.

5.1 Allan Variance Results

In order to work with a proper model of the IMU sensors, error coefficients must be identified

using the Allan Variance method described in Section 2.5.1. In the error modelof gyroscope

and accelerometer, Angle/ Velocity Random Walk, Bias Instability and Rate/ Acceleration

Random Walk errors are considered as it is stated in Equations 2.18 and 2.19. Therefore, the

parts of Allan Variance plot related to these noise terms are evaluated.

For the implementation, approximately 20 hours data of stationary accelerometerand gyro-

scope at a sampling rate of 50Hz is recorded. Then the algorithm descriped in Section 2.5.1 is

implemented in MATLAB. Since triple axis accelerometer and gyroscope are used, each axis

must be evaluated seperately assuming that they are independent of eachother. So there are

different error coefficients for each axis of accelerometer and gyroscope. The resulting Allan

Variance plots of gyroscope and accelerometer are given in Figure 5.4 and 5.5, respectively.

The error parameters can be found by using the formulas given in Table 2.2. Noise coefficient

is determined by adjusting the coefficient such that a straight line with a fixed slope overlaps

the Allan Variance plot. Figure 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 show the Allan Variance plots

of x, y and z axes of gyroscope and accelerometer with three different error lines respectively

when the coefficients of ARW, RRW and bias instability errors are correctly adjusted. The

40



10
−2

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

T

σ(
T

)

 

 
x−axis
y−axis
z−axis

Figure 5.4: Allan variance plot of triple axis ITG-3200 Gyroscope
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Figure 5.5: Allan variance plot of triple axis ADXL345 Accelerometer
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Figure 5.6: Allan variance plot of gyroscope X-axis with error lines
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Figure 5.7: Allan variance plot of gyroscope Y-axis with error lines
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Figure 5.8: Allan variance plot of gyroscope Z-axis with error lines
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Figure 5.9: Allan variance plot of accelerometer X-axis with error lines
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Figure 5.10: Allan variance plot of accelerometer Y-axis with error lines
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Figure 5.11: Allan variance plot of accelerometer Z-axis with error lines
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error coefficients for gyroscope and accelerometer that will be used in the Kalman Filter is

obtained by applying the method explained above. The list of these coefficients is given in

Table 5.1.

Table 5.1: Error coefficients of IMU sensors

Sensor Angle/Velocity Bias Rate/Acceleration

Random Walk - N Instability - B Random Walk - K

Gyroscope X-axis 0.0069 0.00597 0.00013

Gyroscope Y-axis 0.0066 0.00522 0.00021

Gyroscope Z-axis 0.0073 0.00352 0.00028

Accelerometer X-axis 0.00666 0.00182 0.0003

Accelerometer Y-axis 0.00736 0.00145 0.00014

Accelerometer Z-axis 0.01014 0.00095 0.00002

These error coefficients must be identified reliably as far as possible. Because these coeffi-

cients form the error covariance matrix (process noise) of Kalman Filter which is significant

for the operation of designed navigation systems.

5.2 Magnetometer Calibration

Magnetometer is the critical aiding sensor for the calculation of heading anglein the naviga-

tion systems but it is vulnerable to magnetic disturbances caused by different metals, electric

currents etc. around itself. Effect of these disturbances can be eliminated by using the method

discribed in Section 3.1.1, assuming that the placement of the magnetometer and the other

items do not change during the operation time.

As it is described before, the calibration is handled at three axes instead of only X-Y axis.

Therefore magnetometer is rotated arbitrarily about its three axes to collect data for different

attitude and heading angles. This collected data is given as an input to the algorithm which

is also implemented in MATLAB. This algorithm actually is not a part of the navigation
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algorithm. It is only used to determine the calibration parameters of the magnetometer at a

certain configuration. When it is run once, resulting calibration parametersare stored and

applied to the rest of the magnetometer data according to formula given in Equation 3.4.

Uncalibrated and calibrated magnetometer data are shown in Figure 5.12 in three dimen-

sional plot. It is expected that uncalibrated data forms an eliptical shape because of the soft

iron effect. Also the center of the shape is away from the origin due to the hard iron effect.

The algorithm produces the parameters that reforms this eliptical shape into amore smooth

spherical one which is centered at the origin. Although the elipsoidal shape of uncalibrated

magnetometer data is not obvious in Figure 5.12, the offset from the origin can be observed

explicitly.
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Figure 5.12: Uncalibrated and calibrated magnetometer data

After hard and soft iron calibrated data is obtained, tilt calibration procedure must be followed

which is explained in Section 3.1.1.3. This calibration is performed online since the current

attitude angles are required. Since Equations 3.6 and 3.7 contains trigonometric functions,
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singularities may occur at certain angles. In order to get rid of these singularities, accelerom-

eter outputs can be substituted for trigonometric functions. The equivalentsof these trigono-

metric functions in terms of accelerometer output is explained in Section 5.3 in detail. So

the final form of tilt calibration and heading calculation from hard and softiron calibrated

magnetometer data is given in Equation 5.1.

ψmagneto = atan2


9.81(az magcalibrated

y − ay magcalibrated
z )

(a2
y + a2

z) magcalibrated
x − ax ay magcalibrated

y − ax az magcalibrated
z

 (5.1)

In Equation 5.1,ax, ay andaz are the accelerometer outputs at three different axes,magcalibrated
x ,

magcalibrated
y andmagcalibrated

z denote the hard and soft iron calibrated magnetometer outputs at

three different axes. Also atan2 function is used for the inverse tangent in orderto determine

the correct quadrant.

5.3 Calculation of Tilt Angles Using Accelerometer Outputs

Tilt angles refer to roll and pitch angles of body frame with respect to navigation frame in the

navigation systems. These angles are especially important for the frame transformations. In

order to determine the amount of the these angles correctly, accelerometer could be used for

measurement sensor. By combining the direction cosine matrix and gravitational acceleration

roll and pitch angles can be derived just by using the low cost, MEMS accelerometers [36].

When vehicle rotates about its x or y axis, gravitational acceleration measured on z-axis of

accelerometer is scattered also to x and y axis. Using the amount of this scattering on three

axes of accelerometer, the roll and pitch angle can be calculated. Briefly,the projection of

the gravitational acceleration on the accelerometer axes gives critical information about tilt

angles of the vehicle. Figure 5.13 illustrates the projection of gravitational acceleration with

red arrows on body axes for roll and pitch rotations.

When there is no external force applied on the vehicle, accelerometer onlymeasures the

plumb-bob gravity according to Equation 2.10. It is unfeasible to observe the coriolis ef-

fect of Earth rotation on accelerometer, since ADXL345 is a low cost MEMSaccelerometer.

Therefore, coriolis effect of Earth rotation can be neglected, i.e.wn
ie = 0. Thus only the
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Figure 5.13: Projection of gravitational acceleration on body axes for roll and pitch rotations

gravitational component is left which is also given in Equation 5.2.

gb
ib = Rb

n gn
ib

=



−9.81 sin(θ)

9.81 sin(φ) cos(θ)

9.81 cos(φ) cos(θ)



(5.2)

Then when no external force applied, the output of the accelerometer become

ab
ib =



ax

ay

az


=



9.81 sin(θ)

−9.81 sin(φ) cos(θ)

−9.81 cos(φ) cos(θ)


(5.3)

Using basic algebra and trigonometric identities, sine and cosine function of the roll and pitch

angles can be extracted from Equation 5.3. These functions are given inEquations 5.4, 5.5,

5.6 and 5.7.

sin(θ) =
ax

9.81
(5.4)

cos(θ) =

√
a2

y + a2
z

9.81
(5.5)

sin(φ) =
−ay√
a2

y + a2
z

(5.6)

cos(φ) =
−az√
a2

y + a2
z

(5.7)

Then by making use of the inverse tangent function, roll and pitch angle can be derived as in
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Equations 5.8 and 5.9.

φ = tan−1
(
ay

az

)
(5.8)

θ = tan−1


ax√

a2
y + a2

z


(5.9)

Instead of tan− 1 function,atan2(y
x ) function is used in the MATLABc© implementation of

this method.atan2(y, x) function takes into account the sign ofy andx so that the quadrant of

the angle is correctly obtained. Because of this property, Equation 5.8 is modified considering

body frame axes and rotations depicted in Figure 2.5. This modification does not change the

magnitude of the angle, it does only place the angle in correct quadrant. This modification is

given in Equation 5.10.

φ = atan2

(−ay

−az

)
(5.10)

Final forms of tilt angles in terms of accelerometer output is summarized in Table 5.2.

Table 5.2: Calculation of roll and pitch angles in terms of accelerometer outputs

Roll φacc = atan2
(−ay

−az

)

Pitch θacc = atan2

(
ax√

a2
y+a2

z

)

Up to now in this section, it is assumed that the vehicle is not exposed to any external forces

that causes acceleration of the body. However, this assumption is not validfor all of the oper-

ation time. The vehicle may need to slow down or speed up depending on its mission. When

the vehicle is making these kinds of motions, the accelerometer also measures these acceler-

ation or deceleration activities plus the gravitational acceleration. Therefore, the calculation

of tilt angles with the method presented in this section will not be correct. This problem is

considered further in Section 5.4.

5.4 Adaptive Filter Gain

In this work, accelerometer is also used as an aiding sensor for roll and pitch angles calcu-

lation. However, this aid is not reliable when the vehicle makes accelerated motion. The
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derivation of the tilt angles using accelerometer data in Section 5.3 shows thattilt angles

depend directly on gravitational acceleration measured by the accelerometer. So any extra

acceleration on vehicle motion causes miscalculation of the tilt angles. Actually, the gravita-

tional acceleration(∼ 9.81m/sn2) is far bigger than the acceleration of the vehicle that it could

reach. This problem is nevertheless worth investigating in order to have a stable and accurate

navigation system.

When the vehicle moves with positive or negative acceleration, it is challenging to get rid of

the errors in the tilt angle calculation because of difficulty to distinguish between the gravita-

tional acceleration and vehicle acceleration in the accelerometer output. Therefore the most

feasible and simple method is to impose an adaptation depending on the total acceleration of

the vehicle. The main idea of this method is to reduce the importance of the aiding sensor (ac-

celerometer tilt measurements) when the vehicle accelerates or decelerates so that filter relies

more on the dynamic model of the system. Not only the tilt angles are affected by accelerated

motions, but also magnetometer heading angle calculation is affected due to tilt calibration

given in Equation 5.1. Because of these reason, adaptive Kalman filter is used in this thesis

work.

In the literature, different methods exist for the adaptive Kalman filter implementations. Among

them, manipulating the error covariance matrices is the easiest way to handle it. So, adaptive

Kalman filter can be implemented by applying a scale factorS < 1 to a priori estimate co-

variance matrix calculation to deliberately decrease the weight given to measurements from

aiding sensors [37]. Adaptive a priori estimate covariance matrix calculation is carried out in

the Kalman Filter algorithm using a scale factorS as given in Equation 5.11.

Pk+1|k = S
(
FkPk|kFT

k + Qd

)
(5.11)

Instead of manipulating a priori estimate covariance matrix, it is more likely to scalethe

measurement error covariance matrix which is used in the Kalman gain calculation step since

acceleration directly increases the amount of error in the measurements. Therefore, the scale

factor can be applied to the measurement error covariance matrix in the innovation covariance

calculation stage before the Kalman gain calculation as in Equation 5.12.

Rk = HkPk+1|kHT
k + S Rd (5.12)

This scaling is designed as a diagonal matrix since measurements could be affected in differ-
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ent rates. Thus, the measurement error values are multiplied with different rates when any

disturbing case occurs.S is determined by thresholding total acceleration of the vehicle, x-

axis acceleration and high rotational speed. The threshold values are decided experimentally

after experimenting over different cases of the application.

Any acceleration caused by water flow or other effects could disturb the measurements, espe-

cially roll and pitch angles. So, instead of observing the acceleration in y and z axes, it is more

beneficial to check the total acceleration of the vehicle because both extraaccelerations in y-z

axes and the vehicle’s true acceleration can be observed. Also it’s not required to substract the

projection of gravitational acceleration in y and z axes due to the pitch and roll angles. Total

vehicle acceleration is simply calculated as in Equation 5.13.

α =

√
a2

x + a2
y + a2

z − 1 g (5.13)

The vehicle movement can be classified in three groups based on total vehicle acceleration

given in Equation 5.13 [38]:

• Non-acceleration mode

In this mode, acceleration of the vehicle is so small such that|α|< 0.05 g where|α| is

the absolute value of the vehicle acceleration. So the scale factor is small which means

that there is no deliberate intervention in the Kalman Filter process, specificallyin the

a measurement covariance matrix. At this mode, system corrects its estimates based

on incoming measurements from aiding sensors since aiding sensors workswith a high

precision. Generally this mode is valid when the vehicle has a constant speed.

• Low-acceleration mode

In this mode, the vehicle moves with an acceptable acceleration so that there is alittle

uncertainty in the measurements of the aiding sensors. This acceptable threshold is

defined as 0.5g > |α|≥ 0.05g. At this mode, scale factor is assigned a value larger

than 1 so that importance of the measurements are slightly reduced by increasing the

measurement error covariance matrix.

• High-acceleration mode

In this mode, vehicle is in high dynamics and the aiding sensors are far from being

accurate. The threshold for the vehicle acceleration is assigned as|α|≥ 0.5g. When the

vehicle acceleration is above the this threshold value, scale factor is too large which
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implies that the measurements coming from aiding sensors are not taken into consider-

ation due to the large measurement error covariance matrix. At this mode, the system

works according to system model and gyroscope error model.

The accelerometer outputs are too noisy if the vehicle makes vibratory fast moves. So some-

times just observing the total acceleration does not give clear results. Therefore, it is worth-

while to check the x-axis acceleration also with the total vehicle acceleration. If the value of

the x-axis acceleration is above the threshold value, then the measurements error covariance

values will be scaled up so that measurement importance is reduced in the Kalman Filter.

The last condition is the high rotational speed. When the vehicle rotates at a high rate, it is far

more accurate to detect the amount of this rotation using gyroscope. So this rotation is mea-

sured using system mechanization equations and gyroscope outputs. Also, high rate rotation

could cause changes in the accelerometer measurement because of the coriolis effect. These

changes reflect as an error in the measurements. Coriolis effect indeed can be calibrated but

meausuring this coriolis effect is difficult with MEMS sensors. Because of these reasons, high

rotational speed detection seems to be the best option for the correct system implementation.

Considering these three conditions, adaptive system could be describedby nine scenarios

which are summarized in Table 5.3.

Diagonal values in the scale matrix are determined experimentally and optimized for the low-

est RMS error. Scale factor matrix has different values for each kind of measurements since

the effect of each condition gives different responses in the measurements.

This method is implemented as a function which has inputs from accelerometer andgyroscope

and produces the scale factor matrix,S as an output.

5.5 System Model

The navigation system in this thesis work is designed for an underwater vehicle. Because

of the complexity of the underwater environment and lack of the use of some aiding sensors,

system is modelled in a different structure based on three assumptions. These assumptions are

zero buoyancy, x-axis body velocity and offgrade MEMS sensor properties. These assumption

are represented in the mechanization equations in this section.
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Table 5.3: Scale factor matrix for adaptive system scenarios

Total Vehicle X-Axis High Rotational Scale Factor
Acceleration Acceleration Speed Matrix

Non-acceleration Below Below Identity Matrix
Threshold Threshold

Non-acceleration Below Above Large Diagonal
Threshold Threshold Values

Non-acceleration Above Below Large Diagonal
Threshold Threshold Values

Non-acceleration Above Above Large Diagonal
Threshold Threshold Values

Low-acceleration Below Below Low Diagonal
Threshold Threshold Values(> 1)

Low-acceleration Below Above Large Diagonal
Threshold Threshold Values

Low-acceleration Above Below Large Diagonal
Threshold Threshold Values

Low-acceleration Above Above Large Diagonal
Threshold Threshold Values

High-acceleration x x Largest Diagonal
Values(>> 1)

The underwater vehicle does not sink or surface when no external force is applied to it. It stays

where it is left in the underwater when its propulsion system does not work. This means that

buoyant force equals to the weight of the vehicle, i.e. the buoyancy is zero. This assumption

is called as zero buoyancy which makes it easier to model the movement of the vehicle in

navigation frame. If it is buoyancy is not zero, it will always move in the z-axis. Since

very limited number of sensors are available in this system, it is hard to model this kind of

motion in z-axis. A detailed model of gravitational force is required for the correct analysis.

Therefore, in this work, the vehicle buoyancy is assumed to be zero in order to simplify the

system model.

X-axis velocity assumption is the most critical assumption for the movement of the vehicle

in this system. It is assumed that propulsion system of the underwater vehicleonly thrust

into x-axis of the vehicle in body frame. Other motions in y-axis and z-axis areneglected

so that vehicle moves forward only in the direction of its attitude and heading angle. This

assumption also neglects the drift in the y-axis and z-axis because of the water course. X-axis

velocity assumption is compatible with the zero buoyancy assumption such that thevehicle

does not change its position if it has zero buoyancy. If the vehicle moves with a high speed, x-
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axis velocity assumption becomes more realistic. Moreover, this kind of assumption makes it

easier to model the motion of the vehicle since there is no aiding sensor to measure the velocity

of the vehicle directly. Because of these reasons, mechanization equations in Sections 2.6 and

2.7 are modified according to x-axis velocity assumption.

The last assumption is actually adopted due to the properties of MEMS IMU sensors. In this

work, a low cost MEMS IMU sensor is used and its accuracy is not enough to measure all

of the terms available in the mechanization equations given in Tables 2.3 and 2.4.MEMS

gyroscopes are not able to sense the Earth rate and it is hard to observethe coriolis effect

in MEMS accelerometers. They can only measure the primary rotations and accelerations.

Therefore, these terms should be neglected in the mechanization equations and reformulate

according to MEMS sensor properties. That is also why only the gravitational component is

considered and coriolis effect is neglected in the plumb-bob gravity model given in Equation

2.23 in the previous calculations.

Mechanization equations are derived assuming that navigation frame doesnot rotate. This

assumption is based on that the underwater vehicle does not go far away from its starting

point. Moreover, since MEMS sensor is not able to detect the Earth rate, itcould be assumed

thatwn
in = wn

ie = 0. This means that the navigation frame does not rotate with respect to any

frame. So navigation frame (NED) can be expressed as a local frame thatthe vehicle does not

go out of it, i.e. navigation frame can be defined as the inertial frame of this system. Thus the

attitude angles, heading angle and position are calculated in the navigation frame. However,

it is easier to express velocity in the body frame because of the x-axis velocity assumption.

Considering all of the statements above, nonlinear mechanization equations given in Section

2.6 are rewritten in Equations 5.14, 5.15 and 5.16 which will be used in the extended Kalman

filter implementation.

ṗn
nb = Rn

b vb
nb (5.14)

v̇b(x)
nb = f b(x)

ib + Rb
ngn(x)

ib (5.15)

Θ̇ = T n
b ω

b
nb (5.16)

Actually, Equations 5.14, 5.15 and 5.16 are the simplified version of the Equations given in

Table 2.3 based on the system assumptions.

Nonlinear mechanization equations can be linearized using the perturbation method and error
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models of MEMS accelerometer and gyroscope given in Section 2.5. The linearized error

state mechanization equations for newly designed system are derived as follows:

Position Error Model

Let’s define the correct position aspn
nb and estimated position as ˆpn

nb. Then perturbation

equation and its derivative can be written as

δp = pn
nb − p̂n

nb (5.17)

δ̇p = ṗn
nb − ˙̂pn

nb (5.18)

Using Equation 5.14 and 2.37, Equation 5.18 can be rewritten as follows:

δ̇p = Rn
b vb

nb − R̂n
b v̂b

nb (5.19)

= (I + δ̃Θ)R̂n
b(v̂b

nb + δv
b
nb) − R̂n

b v̂b
nb (5.20)

= R̂n
b v̂b

nb + R̂n
b δv

b
nb + δ̃ΘR̂n

b v̂b
nb + δ̃ΘR̂n

b δv
b
nb︸      ︷︷      ︸

small

−R̂n
b v̂b

nb (5.21)

= R̂n
b δv

b
nb + δ̃ΘR̂n

b v̂b
nb (5.22)

δ̇p = R̂n
b δv

b
nb −

˜̂Rn
b v̂b

nbδΘ (5.23)

Velocity Error Model

The error state of velocity is derived using ’derivative of velocity equals acceleration’ relation.

Accelerometer output can be fully rewritten as in Equation 5.24 using Equations 2.10 and

2.18.

f b = p̈ − gb
nb + aarw + a f n + arrw (5.24)

The derivatives of estimate and real velocities can be identified as

v̇b
nb = p̈b (5.25)

˙̂vb
nb = f b + ĝb

nb (5.26)
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Using the error definition, the linearized error state for velocity can be derived as follows:

δ̇vb
nb = v̇b

nb − ˙̂vb
nb (5.27)

= p̈b − ( f b + ĝb
nb) (5.28)

= p̈b − ( p̈b − gb
nb + aarw + a f n + arrw) − ĝb

nb (5.29)

= −aarw − a f n − arrw + R̂b
n(I − δ̃Θ)gn

nb − R̂b
n gn

nb (5.30)

= −R̂b
n δ̃Θ gn

nb − aarw − a f n − arrw (5.31)

δ̇vb
nb = R̂b

n g̃n
nb δΘ − aarw − a f n − arrw (5.32)

According to the x-axis velocity assumption, only x-axis component of the vehicle velocity is

calculated and other components are ingored in the body frame such thatvb(y)
nb = vb(z)

nb = 0. So

Equation 5.32 is converted for the x-axis velocity representation as in Equation 5.33.

δ̇vb(x)
nb = R̂b

n g̃n
nb δΘ (1, :) − ax

arw − ax
f n − ax

rrw (5.33)

In Equation 5.33,̂Rb
n g̃n

nb δΘ (1, :) means the first row of the matrix̂Rb
n g̃n

nb δΘ.

Attitude Error Model

The attitude error state model is based on Equation 2.29. The derivatives of estimate and real

direction cosine matrix can be identified as

Ṙn
b = Rn

b ω̃
b
nb (5.34)

˙̂Rn
b = R̂n

b
˜̂ωb

nb (5.35)

Then the derivative of the error state of direction cosine matrix is calculatedas

˙δRn
b = Ṙn

b −
˙̂Rn

b (5.36)

= Rn
b ω̃

b
nb − R̂n

b
˜̂ωb

nb (5.37)

= (I + δ̃Θ)R̂n
bω̃

b
nb − R̂n

b
˜̂ωb

nb (5.38)

= R̂n
b(ω̃b

nb −
˜̂ωb

nb) + δΘR̂n
bω̃

b
nb (5.39)

Also the derivative of the error state of direction cosine matrix can be calculated directly as

follows.

δRn
b = Rn

b − R̂n
b (5.40)

= (I + δ̃Θ)R̂n
b − R̂n

b (5.41)

= δ̃Θ R̂n
b

derivative−−−−−−−→ ˙δRn
b =

˙̃
δΘR̂n

b + δ̃Θ
˙̂Rn

b (5.42)

˙δRn
b =

˙̃
δΘR̂n

b + δ̃Θ R̂n
b
˜̂ωb

nb (5.43)

56



Combining Equation 5.39 and Equation 5.43 result as

˙̃
δΘR̂n

b + δ̃Θ R̂n
b
˜̂ωb

nb = R̂n
b(ω̃b

nb −
˜̂ωb

nb) + δ̃ΘR̂n
bω̃

b
nb (5.44)

˙̃
δΘR̂n

b = −δ̃Θ R̂n
b
˜̂ωb

nb + R̂n
b(ω̃b

nb −
˜̂ωb

nb) + δ̃ΘR̂n
bω̃

b
nb (5.45)

˙̃
δΘ = −δ̃Θ R̂n

b
˜̂ωb

nbR̂b
n + R̂n

b(ω̃b
nb −

˜̂ωb
nb)R̂b

n + δ̃ΘR̂n
bω̃

b
nbR̂b

n (5.46)

˙̃
δΘ = − δ̃Θ︸︷︷︸

small

R̂n
b (˜̂ωb

nb − ω̃
b
nb)

︸        ︷︷        ︸
small

R̂b
n + R̂n

b(ω̃b
nb −

˜̂ωb
nb)R̂b

n (5.47)

˙̃
δΘ = R̂n

b(ω̃b
nb −

˜̂ωb
nb)R̂b

n
in vector f orm
−−−−−−−−−−−→ ˙δΘ = R̂n

bδω
b
nb (5.48)

In Equation 5.48,δωb
nb implies the gyroscope error which can be formulated using Equation

2.19 as in Equation 5.49.

δωb
nb = ω

b
nb − ω̂

b
nb

= ωb
nb − (ωb

nb + warw + w f n + wrrw)

= −warw − w f n − wrrw (5.49)

Finally, the attitude error equation is defined in Equation 5.50 by substituting Equation 5.49

into Equation 5.48.

˙δΘ = −R̂n
b warw − R̂n

b w f n − R̂n
b wrrw (5.50)

Linearized mechanization error equations for this thesis work is summarized inTable 5.4.

These equations will be used for the state space model of the linearized error state Kalman

filter implementation.

Table 5.4: Linearized mechanization equations for newly designed system

Position Equation δ̇p = R̂n
b δv

b
nb −

˜̂Rn
b v̂b

nbδΘ

Velocity Equation δ̇vb(x)
nb = R̂b

n g̃n
nb δΘ (1, :) − ax

arw − ax
f n − ax

rrw

Attitude Equation ˙δΘ = −R̂n
b warw − R̂n

b w f n − R̂n
b wrrw

5.6 Continuous Angle Generation

Attitude and heading angles are calculated usingatan2 function in Equations 5.1, 5.10 and

5.9. This function calculates the inverse tangent between [−π, π]. Therefore full rotations
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(360◦) cannot be detected in any axes. Estimated attitude angles are calculated by integrating

gyroscope outputs so that estimated angles are piecewise continous. Therefore, a simple

algorithm is developed to make the results of theatan2 function in continuous form. Equation

5.51 and 5.52 describe this algorithm.

kopt = argmin
k
|Θn−1 − (Θaid

n + 2πk)| k : integer; (... − 2,−1,0,1,2, ...) (5.51)

Θcont
n = Θaid

n + 2πkopt (5.52)

In Equation 5.51,Θn−1 previous attitude or heading angle which is calculated at timen−1,Θaid
n

is the output of the aiding sensor at timen andk is the set of positive and negative integers.

By comparing these two angles,k value is calculated. Actually, the coefficient k implies

the number of 180◦ rotations at respective axes for roll, pitch and heading angles. Using

this optimal coefficient kopt, outputs of aiding sensor generated by atan2 function become

continuous in Equation 5.52.

The drawback of this method is chosing the size of the setk in Equation 5.51. If the set

contains too many consecutive integers, more rotations can be detected. So, the interval of

continuity will be that long but the computational time will be longer. Therefore,a proper

search set should be determined. If the vehicle rotates too much due to its dynamic stability

or mission definition, a large set searchk is required. If the vehicle does not rotate frequently,

a smaller set with a safety margin can be used.

Continuous angle generation block is crucial for the system in this work since it makes to

observe the critical movements of the vehicle that could damage its stability. Thus, this algo-

rithm is applied to all of the aiding sensor outputs.

5.7 State Space Model of Kalman Filters and Overall System Structure

In order to implement extended Kalman filter (EKF) and linearized error state Kalman filter,

state space representation must be constructed according to mechanizationequations given

in Section 5.5. State space representation will be different for these two implementations

since one of them uses linearized error state mechanization equations and the other one uses

nonlinear mechanization equations. When state space model is constructed,Kalman filtering

procedures can be applied as given in Chapter 4. State space models of these two different

implementations are explained in the following subsections.
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5.7.1 Linearized Error State Kalman Filter Implementation

State space model is formed according to the equations given in Table 5.4 andIMU error

models are explained in Section 2.5. Position error, velocity error, attitude and heading error,

rate random walk error for accelerometer and gyroscope and bias instability for accelerometer

and gyroscope are chosen as the components of state. State space representation for these

error states is given in Equations 5.53 and 5.54.



˙δp

˙δvb
nb

˙δΘ

˙arrw

˙wrrw

˙a f n

˙w f n



=



03×3 R̂n
b −˜̂Rn

bv̂b
nb 03×3 03×3 03×3 03×3

03×3 03×3 A23 A24 03×3 A26 03×3

03×3 03×3 03×3 03×3 −R̂n
b 03×3 −R̂n

b

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 −βa 03×3

03×3 03×3 03×3 03×3 03×3 03×3 −βg





δp

δvb
nb

δΘ

arrw

wrrw

a f n

w f n



+



03×3 03×3 03×3 03×3 03×3 03×3

N(x)
a 03×3 03×3 03×3 03×3 03×3

03×3 R̂n
bNg 03×3 03×3 03×3 03×3

03×3 03×3 Ka 03×3 03×3 03×3

03×3 03×3 03×3 Kg 03×3 03×3

03×3 03×3 03×3 03×3 βaBa 03×3

03×3 03×3 03×3 03×3 03×3 βgBg





varw
a

varw
g

vrrw
a

vrrw
g

vbias
a

vbias
g



(5.53)

y =



0 0 1 01×3 01×3 01×3 01×3 01×3 01×3

01×3 01×3 1 0 0 01×3 01×3 01×3 01×3

01×3 01×3 0 1 0 01×3 01×3 01×3 01×3

01×3 01×3 0 0 1 01×3 01×3 01×3 01×3





δp

δvb
nb

δΘ

arrw

wrrw

a f n

w f n



+ S v (5.54)
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The open form ofA23, A24 andA26 are as follows:

A23 =



R̂b
n g̃n

nb δΘ (1, :)

0 0 0

0 0 0


(5.55)

A24 = A26 =



−1 0 0

0 0 0

0 0 0


(5.56)

Also N(x)
a is a 3-by-3 matrix whose first element is the x component of angular random walk

error of accelerometer and the other elements are all zero. Open form ofN(x)
a is given in

Equation 5.57. Ka, Kg, βa, βg, Ba and Bg are the diagonal matrices of rate random walk

coefficients, reciprocals of time constants and bias instability coefficients respectively for ac-

celerometer and gyroscope. These coefficients are determined before the operation as it is

declared in Section 5.1.

N(x)
a =



Nx
a 0 0

0 0 0

0 0 0


(5.57)

For each new data, state space matrices are recalculated and used in the Kalman filter in order

to estimate the amount of error. Then these estimated error are given as a feedback for the

correct position, velocity and heading calculations. Complete block diagramof the system

with a linearized error state Kalman filter is shown in Figure 5.14.

5.7.2 Extended Kalman Filter Implementation

For the extended Kalman filter (EKF) implementation, Jacobian of nonlinear mechanization

equations given in Equations 5.14, 5.15 and 5.16 are used for the state staterepresentation.

The reason of using the Jacobian matrix calculation is to linearize the mechanization equations

in the most recent state. So the Jacobian of the equations is calculated first and then its discrete

equivalent matrices are generated in the implementation. Although the nonlinearequations

are written for the real states (position, velocity, attitude and heading), the Jacobian of them
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Figure 5.14: Block diagram of the system with linearized error state Kalman filter

are also valid for the error states. The proof is given below [39].

ẋ(t) = f (x(t), u, t) + w(t) (5.58)

x(t) = x̂(t) + δx(t) (5.59)

Combine Equations 5.58 and 5.59

˙̂x(t) + δ̇x(t) = f (x̂(t) + δx(t), u, t) + w(t) (5.60)

Using Taylor Series expansion and omiting second and higher terms gives

˙̂x(t) + δ̇x(t) ≈ f (x̂(t), u, t) +
∂ f
∂x
|x=x̂ δx + w(t) (5.61)

Since ˙̂x(t) = f (x̂(t), u, t), it’s concluded that

δ̇x(t) =
∂ f
∂x
|x=x̂ δx + w(t) (5.62)

As Equation 5.62 indicates that error states equations can be extracted using Jacobian of non-

linear equations. So, the indirect extended Kalman filter implementation is based on this

property. Finally, the state space representation for the EKF is given in Equations 5.63 and

5.64 that involves the Jacobian matrix of nonlinear equations.
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

˙δp

˙δvb
nb

˙δΘ

˙arrw

˙wrrw

˙a f n

˙w f n



=



03×3 Rn
b A13 03×3 03×3 03×3 03×3

03×3 03×3 A23 A24 03×3 A26 03×3

03×3 03×3 A33 03×3 −T n
b 03×3 −T n

b

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 −βa 03×3

03×3 03×3 03×3 03×3 03×3 03×3 −βg





δp

δvb
nb

δΘ

arrw

wrrw

a f n

w f n



+



03×3 03×3 03×3 03×3 03×3 03×3

N(x)
a 03×3 03×3 03×3 03×3 03×3

03×3 T n
b Ng 03×3 03×3 03×3 03×3

03×3 03×3 Ka 03×3 03×3 03×3

03×3 03×3 03×3 Kg 03×3 03×3

03×3 03×3 03×3 03×3 βaBa 03×3

03×3 03×3 03×3 03×3 03×3 βgBg


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varw
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varw
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vrrw
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vrrw
g

vbias
a

vbias
g



(5.63)

y =



0 0 1 01×3 01×3 01×3 01×3 01×3 01×3

01×3 01×3 1 0 0 01×3 01×3 01×3 01×3

01×3 01×3 0 1 0 01×3 01×3 01×3 01×3

01×3 01×3 0 0 1 01×3 01×3 01×3 01×3





δp

δvb
nb

δΘ

arrw

wrrw

a f n

w f n



(5.64)

The open form ofA13, A23, A24, A26 andA33 in Equation 5.63 is shown below:

A13 =



0 − sin(θ) cos(ψ)v(x)
b − cos(θ) sin(ψ)v(x)

b

0 − sin(θ) sin(ψ)v(x)
b cos(θ) cos(ψ)v(x)

b

0 − cos(θ)v(x)
b 0


(5.65)

A23 =



0 −9.81 cos(θ) 0

0 0 0

0 0 0


(5.66)
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A24 = A26 =



−1 0 0

0 0 0

0 0 0


(5.67)

A33 =



cos(φ) tan(θ)wy − sin(φ) tan(θ)wz sin(φ) sec2(θ)wy + cos(φ) sec2(θ)wz 0

− sin(φ)wy − cos(φ)wz 0 0
cos(φ)wy−sin(φ)wz

cos(θ)
sin(φ) sin(θ)wy+cos(φ) sin(θ)wz

cos2(θ) 0


(5.68)

In Equation 5.65,v(x)
b is the recent x-axis velocity of the vehicle in body frame. Also in

Equation 5.68,wx, wy andwz represent the recent estimated angular rates of the vehicle when

the error terms are extracted. Equation 5.64 is the same of Equation 5.54 sincemeasurement

equation is linear. Therefore, there is no need for the Jacobian of the observation equation

h(x(t), t). TheT n
b in the process noise matrix and state transition matrix is the angular velocity

transformation matrix which is shown in Equation 2.9.

This matrices are formed according to new inputs and recent outputs at each step. Also the

state space representation matrices are written above in continuous time. Therefore, they must

be converted to discrete time using Equations 4.13. Complete block diagram of the system

with an extended Kalman filter is shown in Figure 5.15.

Figure 5.15 shows that outputs of IMU sensors go directly through to the Kalman Filter dif-

ferent than that in linearized error state implementation. In extended Kalman filter block, first

of all the navigation parameters are calculated using the nonlinear equationsand the IMU

sensor outputs. Then error state is estimated by the Kalman filter algorithm with theaid of

measurements coming from pressure sensor and continous angle generation blocks. Finally,

calculated navigation parameters are corrected with the estimated error statesand IMU errors

in the error state is given as a feedback to correct IMU outputs.

When the state space matrices for both systems are compared, the most significant difference

is theA33 term. This term comes from the partial differentiation of nonlinear attitude equation

with respect to attitude and heading (roll, pitch, yaw) angles. Also both of thesystems are

partially observable which means that all of the state parameters cannot be estimated correctly.

This issue is verified in the simulations.
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Figure 5.15: Block diagram of the system with extended Kalman filter

5.8 Simulations

To test the designed system, an inclined path is planned for the vehicle movement. This

path also consists of different manoeuvres. The vehicle follows the reference path which is

shown in Figure 5.16 for visualization of generated scenario, so that the system designed in

this thesis work is compared with the reference values. As it is stated in Section5.7, both of

the designed systems are not fully observable. Therefore, some of the state variables are not

estimated correctly. The main issue about these simulations is the integration of thepressure

sensor and adaptive system. Thus, the effects of these two terms are evaluated with Root

Mean Square Error (RMSE) values for attitude and heading angles.

In the simulations, both error state Kalman filter implementation and extended Kalman filter

implementation are tested. For both systems, the effects of pressure sensor aid and adaptive

system are analyzed. In order to observe whether there is an improvement or not, RMSE of

the results are calculated using Equation 5.69

RMS E =

√√√
1
N

N∑

n=1

(xn − xre f
n )2 (5.69)

RMSE is calculated for roll, pitch and yaw angles seperately. This error calculation is divided
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Figure 5.16: Defined reference path for simulations

into two groups for motion period and stationary period in order to have a better comparison.

Moreover, output data of IMU sensor and pressure sensor are recorded when the vehicle

moves in the defined path. Then same data set is used for every different run in MATLABc©

implementations of the described system.

Figure 5.17 and Figure 5.18 are the results of direct implementation of linearized error state

Kalman filter without adaptive system and pressure sensor for the attitude and heading angles,

for motion and stationary periods, respectively. Position and velocity values are not given

since they are not estimated correctly due to the partial observability. The errors of position

and velocity diverge.

It is obvious from the given figures that when pressure sensor and adaptive system are not

included, the navigation system is not practically useful because of the large amount of errors.

Especially when the vehicle moves and rotates, outputs deviate from the reference curves

significantly.

As it is stated in the scope of thesis, the integration of pressure sensor could reduce the amount
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Figure 5.17: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
motion period without adaptive system and pressure sensor
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Figure 5.18: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
stationary period without adaptive system and pressure sensor
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of error. Therefore, pressure sensor aid is given as a measurement to the linearized error State

Kalman filter implementation. The results are presented in Figure 5.19 and Figure5.20 for

motion period and stationary period, respectively.

If Figure 5.19 and Figure 5.20 are evaluated carefully, the slight improvement can be observed

in the Pitch angle. Also it is obvious in stationary position plot that pressure sensor makes

pitch angle output to converge faster to the real value.

Although, pressure sensor provide a little improvement in the attitude and heading angles, the

amount of error is still too large. As it is mentioned in Section 5.4, the reason ofthis error is

the sensitivity of the measurements to the highly dynamic vehicle motion. So adaptive system

that is explained in Section 5.4 is integrated to the navigation system. In order to observe the

effect of adaptive system only, the simulation is run first without pressure sensor aid. The

resulting output graphs for attitude and heading angles are given in Figure 5.21 and Figure

5.22 for motion period and stationary period respectively.

The outputs graphs in Figure 5.21 and Figure 5.22 shows that, outputs are closer to the refer-

ence values so that adaptive system provides a considerable improvement in the attitude and

heading angle.

For the lowest possible error, both adaptive system and pressure sensor is included in the

navigation system and Figure 5.23 and Figure 5.24 represent the attitude and heading angle

outputs of the simulation result for motion period and stationary period, respectively.

It is obvious when pressure sensor and adaptive system work together, best calculation results

are achieved for linearized error state Kalman filter implementation. Velocity andposition

graphs are given for this system in Figure 5.25 and Figure 5.26, respectively.

As it is mentioned before, velocity and position are not observable in the system. Therefore

velocity and position outputs contains large amount of error. Therefore,they are not consid-

ered in the comparison of the navigation system implementations.

Performances of linearized error state Kalman filter implementations are compared in terms

of RMSE error. RMSE error for the above simulations are given for comparison in Table 5.5

for roll, pitch and yaw angles grouped by motion period and stationary period.

The improvements of the adaptive system and pressure sensor can be easily observed in Table
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Figure 5.19: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
motion period with pressure sensor
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Figure 5.20: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
stationary period with pressure sensor
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Figure 5.21: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
motion period with adaptive system
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Figure 5.22: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
stationary period with adaptive system
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Figure 5.23: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
motion period with adaptive system and pressure sensor
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Figure 5.24: Roll, pitch and yaw angles outputs of linearized error state Kalmanfilter for
Stationary period with adaptive system and pressure sensor
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Figure 5.25: Velocity output of linearized error state Kalman filter with adaptive system and
pressure sensor
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Figure 5.26: Position output of linearized error state Kalman filter with adaptive system and
pressure sensor
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Table 5.5: Linearized error state Kalman filter RMS errors

Linearized Error State Kalman Filter RMS Errors
Pressure OFF Pressure ON Pressure OFF Pressure ON
Adaptive OFF Adaptive OFF Adaptive ON Adaptive ON

Roll
Error 3.2935 3.1533 2.1707 1.7245

(Motion)
Pitch
Error 4.6746 4.2787 2.809 1.7926

(Motion)
Yaw

Error 4.4009 4.4154 1.3187 1.4973
(Motion)

Roll
Error 0.07828 0.14215 0.08631 0.09674

(Stationary)
Pitch
Error 1.5611 1.4175 1.8026 0.35412

(Stationary)
Yaw

Error 1.7459 1.7542 0.6379 0.5758
(Stationary)

5.5 for the linearized error state Kalman filter implementation. Integration of adaptive system

to the Kalman filter makes an important improvement in the RMS errors. Pressuresensor

reduces the pitch error for both motion period and stationary period.

Same course of experiments are applied for the extended Kalman filter implementation. In

the first simulation, both pressure sensor and adaptive system are not available in the system

and outputs of this system are given in Figure 5.27 and Figure 5.28. Then,Figure 5.29 and

Figure 5.30 show the output of the system when only pressure sensor is included. After that,

only adaptive system is included in the simulation and output graphs for attitudeand heading

angles are given in Figure 5.31 and Figure 5.32. Finally, both adaptive system and pressure

sensor is integrated in the extended Kalman filter implementation. The results for the final

simulation are given in Figure 5.33 and Figure 5.34.

Although, the EKF system is not completely observable, velocity and position outputs are

given in Figure 5.35 and Figure 5.36 respectively. Position and velocity graphs show that they

diverge as time goes by becaues of the error accumulation.
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Figure 5.27: Roll, pitch and yaw angles outputs of extended Kalman filter for motion period
without adaptive system and pressure sensor
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Figure 5.28: Roll, pitch and yaw angles outputs of extended Kalman filter for stationary period
without adaptive system and pressure sensor
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Figure 5.29: Roll, pitch and yaw angles outputs of extended Kalman filter for motion period
with pressure sensor
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Figure 5.30: Roll, pitch and yaw angles outputs of extended Kalman filter for stationary period
with pressure sensor
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Figure 5.31: Roll, pitch and yaw angles outputs of extended Kalman filter for motion period
with adaptive system
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Figure 5.32: Roll, pitch and yaw angles outputs of extended Kalman filter for stationary period
with adaptive system
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Figure 5.33: Roll, pitch and yaw angles outputs of extended Kalman filter for motion period
with adaptive system and pressure sensor
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Figure 5.34: Roll, pitch and yaw angles outputs of extended Kalman filter for stationary period
with adaptive system and pressure sensor
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Figure 5.35: Velocity output of extended Kalman filter with adaptive system and pressure
sensor
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Figure 5.36: Position output of extended Kalman filter with adaptive system and pressure
sensor
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As in the linearized error state implementation, best results are obtained when adaptive system

and pressure sensor are available. RMSE values for extended Kalman filter implementations

are summarized in Table 5.6

Table 5.6: Extended Kalman filter RMS errors

Extended Kalman Filter RMS Errors
Pressure OFF Pressure ON Pressure OFF Pressure ON
Adaptive OFF Adaptive OFF Adaptive ON Adaptive ON

Roll
Error 3.2848 3.2267 2.0792 1.8358

(Motion)
Pitch
Error 4.7308 4.2872 2.8431 1.684

(Motion)
Yaw

Error 4.5616 4.5494 1.4367 1.5309
(Motion)

Roll
Error 0.07655 0.07251 0.07591 0.1179

(Stationary)
Pitch
Error 1.39451 1.2828 1.7759 0.3835

(Stationary)
Yaw

Error 1.78960 1.7914 0.71776 0.5872
(Stationary)

When RMSE errors in Table 5.5 and Table 5.6 are compared, linearized error state Kalman

filter appears to have a better performance. Only pitch angle in motion period isestimated

better by extended Kalman filter. Therefore, linearized error state Kalman filtering implemen-

tation should be prefered for the navigation system of the vehicle if the pitch angle is not the

most critical element for the operation.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this thesis, integration of pressure sensor and adaptive gain is examined for attitude and

heading reference system of underwater vehicle. Attitude and Heading calculation is the most

crucial part of the navigation of an underwater vehicle. Linearized error state Kalman filter

is the most widely used algorithm for AHRS systems, but extended Kalman filter algorithm

is also practiced in this thesis work. Since there is a lack of aiding sensor opportunities

for underwater environment, only magnetometer, pressure sensor and accelerometer can be

used. However these sensors are not accurate enough, so an adaptive system is developed

in this thesis work. MEMS IMU sensor is used in order to reduce the cost ofthe system,

however such sensors yield large amounts of error. For the system implementations, these

errors are categorized and their parameters are measured. The designed system is verified

in MATLAB c© using the real field data which is collected by using a low cost MEMS IMU

sensor.

In the literature, error state model of mechanization equations are mostly usedin the naviga-

tion system. While working on mechanization equations for this thesis work, it is experienced

that working with error states is easier. The derivation of the equations are simple and most

of the terms in equations can be figured out intuitively. Furthermore using theerror states

provides an advantage in Kalman Filter implementation because of the simple terms and the

basic form of equations. That is why the error state model of mechanizationequations is

preferred.

In the simulations, it is found that the designed system and pressure sensor provides a sig-
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nificant improvement in the attitude and heading angles. Especially adaptive system reduces

the RMS error in motion period more than 50%. On the other hand, pressure sensor mostly

focuses on pitch angles as it is expected. Because of the x-axis velocity and zero buoyancy as-

sumption, when the pitch angle of the vehicle changes, it’s z-position also changes. Therefore,

pressure sensor supports the pitch angle estimation of the navigation system.

Because of the limited number of the aiding sensors, the position and velocity ofthe vehicle

cannot be observed in the simulations. So they are considered in the simulations in detail.

The main concern is the attitude and heading angles with the new designed system model.

Therefore, this system can be interpreted as an attitude and heading reference system.

When the RMS errors of extended and linearized error state Kalman filter are compared,

linearized error state Kalman filter implementation has a better performance. Actually, it is

expected that extended Kalman filter would work better, because the linearization is more

accurate. However, because of the observability problem, some of the terms in the state

transition matrix are not linearized perfectly. For example,A13 matrix contains velocity (x-

axis) of the vehicle which is not estimated correctly. So this results in an increase in the error

of the attitude and heading angles.

If the extended Kalman filter outputs are analyzed in short time periods, it is observed that

outputs deviate from the reference values when the vehicle moves with swings. The under-

lying reason for this situation is the fact that the first order linearization of extended Kalman

filter cannot handle this kind of motions. Thus, growing nonlinearity error isreflected as an

error in the outputs of the Kalman Filter.

The simulation results show that adaptive system is the critical block of the whole system.

So the output of the adaptive system block must be designed properly. Itis observed that,

the RMS errors are dependent on this output, named as scale factor matrix.The diagonal

elements of this matrix must be optimized for the best performance.

6.2 Future Work

In order to further increase the performance of the navigation system, proper initialization of

the state and covariance matrix could be further considered, so that the RMS error would be
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reduced in the initialization period. Also a different aiding sensor can be added to the system.

Thus, the observability problem could be solved. In order to measure the velocity, a pitot

tube could be used. However, this kind of implementation will increase the costand space

requirement. Also an extra mechanical effort is needed.

This system can be compared with another IMU sensor. This sensor couldbe of better quality

than the one used in this thesis work. So, the significance of the algorithm canbe observed.

Finally, a better adaptive system can be developed by considering all posible situations. This

adaptation might be designed to achieve smooth crossing between different models of Kalman

Filter.

Finally, the number of simulations can be increased along with scenarios as a future work.

Increase in the number of simulations and their critical studies could help to improve the

system performance.
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