
AN ONTOLOGY-BASED APPROACH TO REQUIREMENTS REUSE PROBLEM IN

SOFTWARE PRODUCT LINES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELİF KAMER KARATAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

AUGUST 2012



Approval of the thesis:

AN ONTOLOGY-BASED APPROACH TO REQUIREMENTS REUSE PROBLEM IN

SOFTWARE PRODUCT LINES

submitted by ELİF KAMER KARATAŞ in partial fulfillment of the requirements for the de-

gree of Master of Science in Computer Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering

Dr. Ayşenur Birtürk

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ferda Nur Alpaslan

Computer Engineering Dept., METU

Dr. Ayşenur Birtürk

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar

Computer Engineering Dept., METU

Dr. Cevat Şener

Computer Engineering Dept., METU

Tolga İpek, M.Sc.

Manager, ASELSAN

Date:



I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results that

are not original to this work.

Name, Last Name: ELİF KAMER KARATAŞ

Signature :

iii



ABSTRACT

AN ONTOLOGY-BASED APPROACH TO REQUIREMENTS REUSE PROBLEM IN

SOFTWARE PRODUCT LINES

Karataş, Elif Kamer

M.S., Department of Computer Engineering

Supervisor : Dr. Ayşenur Birtürk

August 2012, 66 pages

With new paradigms in software engineering such as Software Product Lines, scope of reuse

is enlarged from implementation upto design, requirements, test-cases, etc. In this thesis an

ontology-based approach is proposed as a solution to systematic requirement reuse problem

in software product lines, and the approach is supported with a reuse automation tool. A

case study is performed on the projects of an industrial software product line using hereby

proposed solution and then based on the evaluated metrics it’s reported that the content of

requirements specifications documents can be prepared upto 80% by derivation of reusable

requirements.

Keywords: Software Product Lines, Reusable Requirements, Ontology modeling

iv



ÖZ

YAZILIM ÜRÜN HATLARINDA ONTOLOJİ TABANLI GEREKSİNİM YENİDEN

KULLANIMI

Karataş, Elif Kamer

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Ayşenur Birtürk

Ağustos 2012, 66 sayfa

Yazılım mühendisliği dünyasında yeniden kullanım bilindik bir kavram olmakla beraber,

güncel paradigmalarla yeniden kullanılabilir kavramların seviyesi kaynak kod yanında tasarım,

gereksinim ve testleri de kapsayacak şekilde değişmiştir. Bu tez çalışması kapsamında, yazılım

ürün hatlarında gereksinim yeniden kullanımının sistemli bir şekilde sağlanabilmesi için on-

toloji tabanlı bir çözüm ortaya konmuş, ayrıca yeniden kullanım sürecini desteklemek amacıyla

bir otomasyon aracı geliştirilmiştir. Önerilen yöntem, durum çalışması olarak endüstriyel bir

yazılım ürün hattında kullanıma alınmış, bu süreçte elde edilen deneyimler ve alınan ölçümler

paylaşılmıştır.

Anahtar Kelimeler: Yazılım ürün hattı, Yeniden kullanılabilir gereksinimler, Ontoloji mod-

elleme

v



to my dear father Hüseyin Karataş

vi



ACKNOWLEDGMENTS

First I would like to thank my supervisor Dr. Ayşenur Birtürk for her guidance, motivation

and patience during my research. I thank my team members at Aselsan Inc. for their feedback

and support to my research, especially Mr. Barış İyidir for sharing his domain experience. I

thank my team leader Mrs. Evrim Kahraman for her tolerance and motivation during this

process. I thank my department manager Mr. Tolga İpek for accepting to take part in the

thesis committee. I thank my father for giving me a life full of books, dreams and ideals. I

thank Kezi for her valuable advice throughout my life. I thank Şule for the delicious food she

cooked for me during these three years. I thank Mr. Anderson for not giving up and making

me believe in the path that I chose. Finally I would like to thank TUBİTAK for the scholarship

it provided during my graduate education.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Software Product Lines (SPLs) . . . . . . . . . . . . . . . . . . . . 1

1.2 Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Domain Modeling Approaches . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Feature Modeling . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1.1 Limitations of Feature Modeling . . . . . . . 9

2.1.2 Ontology Modeling . . . . . . . . . . . . . . . . . . . . . 11

2.2 Requirements Reuse Applications . . . . . . . . . . . . . . . . . . . 12

2.3 Product Configuration Problem . . . . . . . . . . . . . . . . . . . . 14

3 PROPOSED SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Domain Knowledge: Fire Control SPLs . . . . . . . . . . . . . . . . 18

3.1.1 Fire Control SPL Reference Architecture . . . . . . . . . 19

3.2 Domain Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Domain Requirements . . . . . . . . . . . . . . . . . . . 23

3.2.2 Domain Concepts . . . . . . . . . . . . . . . . . . . . . . 26

viii



3.3 Reuse Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Ontology-based Requirements Derivation Tool: OntSRDT 33

3.4 Reusable Requirements Management . . . . . . . . . . . . . . . . . 33

4 CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Conduction of Case Study . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Metrics and Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 37

5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDICES

A EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 A Simple Configuration Example . . . . . . . . . . . . . . . . . . . 48

A.2 Sample Requirements Specifications . . . . . . . . . . . . . . . . . 59

ix



LIST OF TABLES

TABLES

Table 4.1 Computed metrics for FCS-P1 . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.2 Computed metrics for FCS-P2 . . . . . . . . . . . . . . . . . . . . . . . . 39

x



LIST OF FIGURES

FIGURES

Figure 1.1 SPL Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 History of reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Knowledge pyramid of software phases . . . . . . . . . . . . . . . . . . . 4

Figure 1.4 Product Line Requirement Types . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1 An example feature model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 Feature model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.1 Solution architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.2 Fire control domain and interactions . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.3 Fire Control Reference Architecture . . . . . . . . . . . . . . . . . . . . 20

Figure 3.4 An abstraction of proposed solution model . . . . . . . . . . . . . . . . . 22

Figure 3.5 Textual Requirement Representation . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.6 Parametric Requirement Representation . . . . . . . . . . . . . . . . . . . 24

Figure 3.7 Complex Requirement Representation . . . . . . . . . . . . . . . . . . . . 25

Figure 3.8 Complex requirement instance . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.9 Classification of System environment . . . . . . . . . . . . . . . . . . . . 26

Figure 3.10 Frame for system environment concept . . . . . . . . . . . . . . . . . . . 27

Figure 3.11 Example ActionThing instance . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.12 classification of control panel . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.13 Classification of Missions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.14 A fire control software frame . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.15 Configuration flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



Figure A.1 configuration step1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure A.2 configuration step2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure A.3 configuration step3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure A.4 configuration step4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure A.5 configuration step5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure A.6 configuration view after step5 . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure A.7 configuration step6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure A.8 configuration step7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure A.9 configuration step8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure A.10configuration step9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure A.11configuration step11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure A.12configuration step12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure A.13configuration step13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure A.14configuration step14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure A.15configuration step15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure A.16configuration step16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure A.17configuration step17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xii



CHAPTER 1

INTRODUCTION

Software Product Line approach is popular in software engineering due to its motto of “de-

velopment with reuse”. With this approach the scope of “what is reusable” is enlarged: in

addition to implementation, reuse of artifacts like requirements, architecture and test cases

are made possible but the effort to enable their reuse is not the same. Requirements reuse is

considered to be a higher level reuse and difficult to enable in product line. In this chapter

first some background information on SPLs and software requirements is given and then the

motivation of this thesis is explained.

1.1 Software Product Lines (SPLs)

Traditional approaches to software development which includes methods such as develop-

ment from scratch, “clone and own” [1], and development with reuse libraries are no longer

feasible alternatives due to market’s evolution in which size of software products are increased

enormously, thus companies are usually specialized in a core business domain and build sim-

ilar products [2]. Furthermore increasing customer demand for better quality software causes

producers to meet shorter deadlines while minimizing cost and infamous “software crisis”

emerges [3]. Software product line (SPL) approach is popular especially in embedded soft-

ware industry to increase software quality and reduce development and maintenance costs [2].

Definition of the term “product line” is given in [4] as “ a set of software-intensive systems

sharing a common set of features that satisfy the specific needs of a particular market or mis-

sion and that are developed from a common set of core assets in a prescribed way”, which

introduces the core or domain asset term to denote the reuse repository of a product line [1].

SPL development process consists of two different phases, namely domain engineering and

1



application engineering [5] (See Figure 1.1).

Figure 1.1: SPL Activities [5]

Domain engineering starts with domain analysis step during which product line scope is

specified and commonalities and variability among product line members are identified [5].

Based on the commonalities and variations detected at this phase architecture design is per-

formed to provide a common development framework for all members of a product line where

product variations are supported at known points. During final step of domain engineering

reusable core assets are developed for later use which can be implementation, architecture,

requirements, test cases, reports, etc.

Application engineering is the phase during which individual products are developed

from reusable core assets. Requirements for individual products are derived from the refer-

ence requirements of the product line domain [5] and only the requirements that are valid for

that individual product are implemented. As a result of intensive effort put forward during

domain analysis phase, effort needed for development, test and management of new systems

is largely reduced compared to traditional reuse approaches [1]. Studies in [6, 7, 4] point out

that with SPL development, considerable improvement in terms of productivity, quality and

time to market is possible.

Essence of SPL lies in the paradigm shift it starts from traditional single system devel-

opment to product family development whose success is highly dependent on the quality of

2



domain knowledge. Now, opportunistic reuse is replaced with a planned and systematic reuse

which requires to be supported by automation tools for efficiency

Figure 1.2: History of reuse in software: modified from [8]

1.2 Software Requirements

Software requirements provide the specifications for desired behavior and functionalities of

a product. This knowledge constitutes a base for the other phases of software development

namely; design, implementation and test, see Figure 1.3.

3



Figure 1.3: Knowledge pyramid of software phases

In our study, the term “ requirement” is used to denote software requirements.

In SPL context, Requirements Engineering (RE) processes have two goals: to define and

manage requirements within the product line and to coordinate requirements for the single

products [9]. Deployment and management of RE process is difficult especially in large,

trans-national organizations which produce complex, long lead products in multi-disciplinary

contexts [10]. RE process usually takes longer than planned and is more costly than origi-

nally budgeted for [11]. This nature of RE process often leads to immature and low quality

requirements which are highly error prone [11, 12] and dynamic and changing nature of re-

quirements have catastrophic effects on the following phases of software lifecycle. Instead

of performing RE process from scratch for each project, having stored reusable requirements

elements in a repository might highly improve to the development time, cost and quality of

the resultant products, which is a promoted idea in SPL development [12].

Requirements reuse has not get as much attention from research community as design

and implementation reuse and the proposed solution ideas have been restricted to small-scale

academic examples and largely untested for industrial or commercial capacity [13]. Factors

that make requirements reuse difficult include the existence of different notations, different

formats and different abstraction levels for requirements knowledge [12]. Product line re-

quirements are classified to three different categories (See Figure 1.4) whose reuse handling

4



mechanisms will be different than each other .

Figure 1.4: Product Line Requirements

• Common requirements originate from the commonalities in a product line and they

should be implemented for each member of a product line. Their handling is easier

since they are used as it is.

• Variable requirements originate from the variability in a product line. They should be

implemented for only the products that are valid for, which make their handling more

complicated. The need for an underlying model for variable requirements is mandatory

to enable their systematic reuse.

• Product specific requirements originate from scoped out variations in a product line,

mostly customer specific and their reuse are not intended because with a well conducted

domain analysis phase the percentage of product specific requirements will be so low

that the effort to enable their reuse is not affordable anymore.

Study at [12] states that addressing systematic requirements reuse requires a model for

reusable requirements elements and three different kinds of requirements representation mod-

els are available [12]: Formal models are based on rigorous semantic and syntax. S emi f ormal

models make the negotiation among producers and customers easier. Non − f ormal models

are usually in the form of expressions in natural language. Based on a requirements represen-

tation model a mechanism for reuse should be prescribed.

5



1.3 Motivation

SPL approach enables mass-production of a family of related products in software industry

and its proposed systematic reuse strategy can be adopted at any phase of software develop-

ment but the benefits of systematic reuse at each phase will be different. Consider a product

line in which there is no systematic reuse at requirements engineering phase: Requirements

specifications should be written for each instance of the product line and these documents are

either going to be created from scratch or copied from existing specifications for similar sys-

tems and then modified which is inefficient in time aspect and leads to low quality, unstandart

specifications.

Similar systems appear to have similar functionalities, thus documenting requirements

specifications for similar system from scratch or first copying then manually editing is a time

waste in the sense that same work is repeatedly performed by possibly different people, which

introduces uncontrolled differences in resultant specification documents. There may be a con-

trol list to write good specifications in natural language, but even if the structure of the sen-

tences can be controlled with some little sentence analysis it’s not possible to avoid from a vast

source of semantic differences and ambiguities. Requirements knowledge is mostly the re-

sult of domain expertise and depending on the experience level of the authors and knowledge

sharing among them knowledge reflected to specification documents varies. Another problem

which is a result of multi-source requirements specifications is that editors may decide to fol-

low different abstraction levels independent from each other which disables the visibility of

some knowledge in some of documents and its difficult to be sure of these kind of knowledge

supressions do not occur in documents, furthermore there is no formal mechanism to check

that the selected abstraction level covers necessary information and consistent throughout the

whole document.

Uncontrolled variations among requirements specifications annihilate the potential ad-

vantages of domain commonalities and reduces the efficiency of domain variability handling.

Starting with these unpredictable requirements its difficult to obtain high quality results at

later phases of software development. Incomplete, missing, erroneous or ambiguous require-

ments are followed by incorrect design solutions, implementation errors or faulty test results.

Especially the quality of test phase outputs is directly dependent on the quality of require-

ments specifications due the fact that for each requirement specification there should be a

6



corresponding test case and missing information and semantic ambiguity is directly trans-

ferred to test case specifications. For example if some domain requirement is not documented

its related behavior in the product is not formally tested and test cases written for ambiguous

requirements result in false negatives or false positives which decreases the confidence to a

software product.

To sum up following problems are identified as a result of not reusing software requirements:

• content and abstraction level diversity in documents of similar products

• textual representation diversity in documents of similar products

• high time costs for preparation of documents for similar products

• less feedback among documents of similar products

It’s obvious that not adopting systematic reuse in requirements engineering phase dis-

ables the advantages introduced with SPL approach and jeopardize the overall quality of a

product line. Although above listed problems can be eliminated by enabling requirements

reuse, this subject has not get much attention in research community until recently [13] which

means methods proposed for requirements reuse are not mature enough yet and there are

two well-known obstacles on the way of systematic requirements reuse: one is the lack of

efficient methods for domain commonality/variability modeling and second is the lack of ef-

ficient mechanisms for documentation of product line requirements [14]. Motivation of this

thesis is to develop a practical solution to efficient requirements documentation problem for

SPLs.

7



CHAPTER 2

RELATED WORK

Related work can be classified into domain modeling approaches, existing applications of

requirements reuse, and product configuration problem. Each is discussed in turn.

2.1 Domain Modeling Approaches

The systematic discovery and exploitation of commonality across related software systems

is fundamental technical requirement for achieving successful software reuse [15]. For a

successful reuse application the commonality and variability of a domain should be identi-

fied and modeled appropriately, which increases the importance of selected domain modeling

technique. Three different types of representation models can be listed: formal models are

built on rigorous semantic and syntax (i.e ontology models), semiformal models make the

knowledge sharing easier among users of the knowledge, and non-formal models are usually

expressions in natural language [12]. Since pure non-formal models are not suitable for sys-

tematic reuse activities they are not mentioned in the following subsections. Feature modeling

and ontology modeling are discussed in details as formal knowledge representations.

2.1.1 Feature Modeling

Feature modeling is an increasingly popular technique for commonality and variability model-

ing in Software Product Line Engineering (SPLE) [16] especially for feature oriented domain

analysis (FODA)[17]. The term feature is defined in [18] as “a prominent or distinctive user-

visible aspect, quality, or characteristic of a software system or systems ”. A feature model

8



is a hierarchy of features with a defined set of relations that hold among them [16]. Figure

2.1 displays an example feature model with the explanation of displayed relations. Common-

ality is represented via mandatory features whereas variability is originally represented with

optional features. The main purpose of creating a hierarchy is to organiz ea large number

of features into into different levels with increasing detail [16]. Feature model is a way to

represents a set of available configurations and it can be limited only to valid configurations

with the guidance of constraint-based facilities[19].

Figure 2.1: An example feature model [20]

Study at [21] report that feature modeling based on the FODA method is advantageous

in the following aspects:

• Control over variability

• Reuse of requirements.

• Configuration support.

• Sales and new development support.

2.1.1.1 Limitations of Feature Modeling

Feature models are effective in modeling commonalities of a product line but they are not

efficient when used to model product-line instantiations and their management becomes dif-

9



ficult [14]. Basic feature modeling consists of a hierarchy of features and a propositional

formula to represent knowledge [16] whose descriptive power is limited. Reported concerns

with basic FODA expressions are related on how to express domain knowledge of certain

configurations, such as default values, configuration implications and constraints while re-

taining the simplicity [22], since the strength of basic feature models lies in their simplicity

and intuitiveness [16]. There are a number of extensions proposed to basic feature models to

handle the above listed problems. Multi-level feature trees [23] are proposed in order to dealt

with the complex hierachy generated by the feature model, which are promising but untested

solutions to management problem of feature models [14]. Feature attributes of basic types

are allowed whereas adding attributes invites complex constraints [16]. Another extension

is cloning which enables the existence of features with cardinality greater than one [16] and

which potentially invites a new class of constraints, such as constraints over set of clones

[16]. Reference attribute is another extension that may point to another feature in a feature

configuration and only meaningful in the presence of cloning [16].

Other extensions to feature models are available but they do not influence the configura-

tion or semantics of a feature model [16]. In summary feature models are efficient represen-

tations to capture and convey commonality knowledge of a domain. But the basic form is not

enough to efficiently represent, reason over and manage variability on a domain, thus some

extensions are defined on basic feature models which increases the representation power (See

Figure 2.2) while inviting additional complexity to a model whose power lies in its simplicity

[16].

Figure 2.2: Feature model extensions [24]

10



2.1.2 Ontology Modeling

In computer science, ontology is considered as a formal representational artifact for specifying

the semantics of some knowledge in a certain domain [25] and it should represent a shared

conceptualization in order to be useful [26]. A common definition of ontology in is given in

[27] as “an explicit specification of conceptualization”. “An ontology represents the semantics

of classes and their associations using some descriptive language coupled with first-order

logic or its decidable fragment ” [16].

Ontology modeling is considered to be advantageous in the following listed aspects [28]:

• Rich descriptive power. Being a formal representation based on first-order logics,

makes ontology a powerful knowledge description mechanism. Rich decriptive power

enable complex constraint to be defined according to the nature of a domain [16].

• Reasoning. Use of ontologies enable reasoning over existing knowledge to derive facts

that are not explicitly expressed in the model. Constraint propagation and constraint

solving mechanisms are also supported [16].

• Semantic interoperability. Domain ontologies are the most important part of the Seman-

tic Web [29],they enable knowledge sharing between different knowledge-base applica-

tions, without ontologies web is not semantically interoperable because it is originally

designed for direct human processing of information presented [29].

Different paradigms for ontology modeling are available, among them two widely used

paradigms are OWL and Frames [30]; although they are built on top of constructs such as

class, properties, facet, restriction etc. they display differences in their semantics, expressive

power and available tool support [30]. Some of the major differences between OWL and

Frames are listed in [30] as follows:

• In Frames ontology if truthiness of some knowledge is not explicitly specified it is

considered to be false (closed world assumption) where as in OWL if some knowledge

is not explicitly specified as false it is considered to be true (open world assumption).

• There is a single minimal model that satisfies each of the assertions in a frame ontology

whereas in OWL multiple models that satisfy the assertions in the ontology are possible.

11



• In Frames constraints on a class define the necessary conditions that must hold for all

the instances of that class, whereas in OWL sufficient conditions can also be defined.

• In Frames, reasoner checks if the defined constraints are satisfied, whereas in OWL

consistency check of the ontology is done while trying to build a model to satisfy all

the assertions in the model. Default reasoning is one f the key strengths of Frames

over OWL, since in the former default values are used to fill partial knowledge and

exceptions are supported.

• In OWL, set of classes and instances are disjoint and it is not possible to use classes

as property values and OWL have a poor representation power of numeric expressions

which disables the expression of quantitative relations.

• In OWL, complex expression can be built using intermediate concepts anonymously

(without having to name it prior to use), which reduces the number of explicit facts in

the model. Frames do not have anonymous concept support.

• In OWL, set operations over class descriptions are allowed and also transitive properties

can be modeled, which are non existing features in Frames.

Based on the above characteristics of OWL and Frames, the nature of domain and the

application that will run on top of that domain model have a major effect on the selection of

suitable ontology modeling paradigm.

2.2 Requirements Reuse Applications

Reuse is not a new concept in software community, traditional reuse techniques that are sup-

ported by object oriented programming such as polymorphism, encapsulation and inheritance

are used by programmers to write modular and to some extent reusable code [31]. Reuse

libraries [32] are another traditional reuse approach which is based on storing any previous

solution of the development process for later use. But with the emerge of SPL development,

the concept of what is reusable, changed dramatically. In addition to implementation, now it

is possible to reuse requirements, design templates, test cases, reports, etc. Effort for enabling

reuse of different assets and also benefits gained from their reuse are different from each other.

12



Although enabling requirements reuse have an overall affect in the performance of a

product line [33], there is not much research on the subject until recently [14], thus solution

domain is not mature enough. which results in the proposed solutions to be usually restricted

to small-scale academic examples and untested in terms of industrial or commercial capacity

[13].

Existing research on requirements reuse indicates that RE is a highly knowledge inten-

sive process [11, 28, 14] thus knowledge based solutions become increasingly popular [28].

For example potential uses of ontologies are listed in [28] as:

• representation of requirements model,

• domain knowledge acquisition,

• representation of domain knowledge

In [14] following RE problems, that are related to knowledge intensive activities are listed:

• insufficient requirements traceability,

• lack of systematic requirements reuse,

• lack of integration of RE activities,

• communication problem in distributed development.

Since SPL development is about systematic reuse, lack of systematic requirements reuse

is an important problem for product line success. In [34] two key challanges for requirements

reuse in product line development is identified as effective techniques for domain analysis,

and how to document product line requirements. Also the diversity of representations and the

existence of different levels of requirements description are factors that make requirements

reuse difficult [12].

Feature oriented and ontology based methods are the two mostly used methods in do-

main analysis [13, 28]. In [33] an approach to capture and validate software requirements

using OWL and reasoning technology is presented. This mentioned approach extends OWL

with closed world constraints to check the completeness of requirements model against well

13



established metrics such a ISO/IEC 9126. OntoREM [11] is an ontology-driven requirements

engineering methodology, which introduced in order to improve requirements quality while

reducing the efforts (ie. development and maintenance) for requirements reuse. Although it

is not a study on software requirements reuse, it is important in the sense that it reports eval-

uation results of the proposed method in a case study on aircraft operability domain, which

increases the confidence in ontology based methods in requirements reuse problem. A fea-

ture oriented study in [13] proposes a requirements management process in the concept of

reuse in product lines and shares the experience with the proposed method in embedded soft-

ware industry. The findings of the study can be listed as features are efficient mechanisms

for reusable requirements and reusable test cases development. In [12] a requirements meta

model to define reusable requirement is proposed, contribution of the study is the introduction

of a meta model to enable requirement reuse in domains where semiformal representations are

used to capture requirements information. Another study that focuses on reusing traditional

textual requirements is presented in [35], which proposes a reuse model based on “derived re-

quirements” concept and reports engineering efforts savings with requirements reuse as high

as 61

In summary, domain analysis and requirements documentation is two important prob-

lems in the way systematic requirements reuse that waits for efficient solutions. Feature ori-

ented and ontology based approaches are available for domain modeling. Successful applica-

tions of ontology based solutions have been reported. In addition to development of reusable

requirements, methods to define process for reuse and management of reusable requirements

are needed. Although the findings in [11, 13, 35] are promising, in general the ideas are either

restricted to small-scale academic examples or untested in genuine industrial or commercial

capacity [13].

2.3 Product Configuration Problem

“Given a set of customer requirements and a product family description, the configuration

task is to find a valid and completely specified product structure among all alternatives that

the generic structure describes” [36]. While domain analysis and modeling are the important

problems of domain engineering phase of SPL development, product configuration is the

major problem of application engineering phase in which software products of a company

14



are configured from a set of components, according to the needs of individual customers.

Even after a commonality and variability modeling solution is presented, an industrial scale

SPL may include very large number of different instantiations of the underlying model, thus

selecting valid product configurations for individual systems is a difficult problem to solve

manually [37], thus product con f igurators are needed.

Product configurators are considered to be among the most succesful applications of

artificial intelligence technology [36] but usually adopted for the configuration process of

non-software products, and product configurators used for non-software products give results

as abstract products , but during software product configuration it’s also possible to give re-

sult as the product’s itself [38]. Different configuration approaches are listed in literature

such as rule-based, model-based and case-based approaches [36]. Each of these approaches

have a different underlying ontology that is used to represent the domain knowledge, domain

entities and relations that hold between these entities [36]. Logic-based, resource-based and

constraint-based representations are commonly used for the implementation of model-based

approaches [36].

In [39],the fact that a configurable product and the configurator software should be de-

veloped in parallel is highlighted which makes knowledge acquisition and maintenance of

configuration knowledge bases critical. This study [39] states that the existence of different

proprietary knowledge representations which are not integrated into standard software de-

velopment processes makes knowledge based configuration more complicated and proposes

UML usage to construct a configuration knowledge base.

In [38] a model-based product derivation methodology for application in software-intensive

domains is proposed. A novel aspect of the study is stated as the combination of tool-

supported configuration and realization into one process for deriving software products [38].

Experiences gained from the experiments with industrial partners are also reported.

Following important properties for a product cofiguration solution methodology is listed

in [40]:

• explanation, product training, and help desk support

• reasoning schemeas that handle incomplete or ambiguous information

15



• inconsistency detection, error handling and retraction

In [41] an interactive configuration approach is presented which is a combination of

configuration and content-based recommendation of product lines. In [42] a model-based

framework for automated product derivation is presented relying on an independent model-

based design layer. It’s proposed that this design bridges the gap between feature models and

product implementations.

16



CHAPTER 3

PROPOSED SOLUTION

Requirements engineering(RE) is considered to be a knowledge intensive process in software

lifecycle which encourages the use of knowledge based techniques in this area of software

engineering[use], depending on this fact an ontology based approach is proposed for require-

ments reuse problem in SPLs. In this chapter, the proposed solution, basic information about

the problem domain, phases of domain modeling studies and the OntSRDT tool built on this

domain knowledge is discussed in detail.

RE and architecting are the two initial phases of software lifecycle whose major out-

comes are requirements specifications and architecture documents which contain dense knowl-

edge that has prominent effects on the success of a project and depending on the fact that these

two phases have an interweaved relationship and overlapping knowledge [14] with common-

alities, some RE problems can be solved by reusing solutions for architectural knowledge

(AK) management [14] and in literature proposed methods for reuse of AK are based on for-

mal domain models. Accordingly, this thesis proposes an ontology based domain knowledge

formalization for SPLs, ontology modeling is preferred over feature modeling due to their de-

scriptive power and also to overcome management problems of feature models that proliferate

with increased variability. Reuse is achieved by a tool support which is based on an interactive

product configuration scenario which guides the user to enter required information to instan-

tiate a valid product of the product line and the related requirements with this configuration

is enlisted automatically. Requirements formalization and support tool design are performed

such that enlisted requirements have unique identifiers to accomplish the management of re-

quirements of the domain ontology. With this feature it is possible to import the outputs

of automation tool to a commercial requirements management tool and any changes due to

following updates on domain ontology can be reflected upon previously created documents.

17



Figure 3.1 illustrates the solution architecture:

Figure 3.1: Solution architecture

According to this solution architecture, a GUI Handler is developed to provide some

forms to user in order to collect information about product configuration and to document

the configuration related requirements. GUI Handler is in communication with an Ontology

Handler which enables controlled access to underlying domain ontology and provides the in-

formation exchange required by GUI Handler. Domain ontology and domain repository is the

part where the model and instances of different concepts in the model are stored respectively.

3.1 Domain Knowledge: Fire Control SPLs

Before going into details of domain modeling, it is useful to provide some introductory in-

formation about the target domain in this study.“ Fire control in general encompasses all

operations required to apply fire on a target” [43] but it can be divided into two as tactical or

technical fire control, tactical fire control is responsible for the planning and evaluation part

where technical fire control softwares are usually embedded in a weapon system and focus

on computational and mechanical operations required for that weapon system to hit a specific

target with a specific munition [43]. They operate in real-time and are mission critical,thus

18



for this type of software determinism, system and operator safety are important. These soft-

wares are surrounded with various sensors to obtain information about the target and physical

environment of the weapon, accompanied with platforms and actuators to enable motion of

the system and also in interaction with a user control panel or tactical fire control systems.

Figure 3.2 illustrates the basic concepts in technical fire control software world.

Figure 3.2: Fire control domain and interactions [43]

3.1.1 Fire Control SPL Reference Architecture

According to the previously conducted domain analysis and architecting studies a reference

architecture [44] is agreed upon to be adopted in fire control software development. As men-

tioned in the begining of this chapter, RE and architecting are two interweaved processes

whose outputs are feedbacks to each other [14], in that sense when starting to domain model-

ing for requirements reuse in mind, its not like starting from scratch. Key concepts, relations

between them and domain rules are mostly already identified during architecting studies but

these knowledge is not formalized in a way to be machine readable and analyzable. Thus ex-

19



isting reference architecture model (See Figure 3.3) and reports constitute as a good starting

point for the domain modeling studies and throughout this study domain model is constructed

in consistency with reference architecture which means although the structural definitions of

the domain concepts are different, the rules that hold between them should not violate the

previously defined reference architecture.

Figure 3.3: Fire Control Reference Architecture [44]

According to the above figure, there are four important main concepts in FCS Product

Line:

• S ystem Environment Concept corresponds to the various types of sensors and actua-

tors , which will be referred to as units in the rest of this document,that surround a fire

control software. Examples to these can be but not limited to inertial navigation sys-

tems (INS) for sensing vehicle movement and changes in angular position, reading the

current position of the system on earth or power control devices to manage the power

distribution of the systems, servo controllers to perform angular positioning of the plat-

forms, gun controllers to perform firing of some munitions with a specified setting, etc.

Different kinds of system environment elements are identified, their provided services

and information are explored and they are grouped into family of devices. Before our

work, this concept was the most exploited one, but their effects to product requirements

20



were not documented explicitly.

• Capability Concept correspond to different groups of management operations that are

required for centralized management of system environment inputs and services. For

example platform management capability handles different angular inputs from differ-

ent sensors, which can be attached to different platforms, and provides data transforma-

tion between different platforms. Capabilities can be seen as guards that prevents direct

access to system environment inputs and services. They are also well defined concepts,

different groups of capabilities are identified to be used throughout the related product

line, in that sense they are similar to system environment concepts but are less open to

changes, functionalities and data of capabilities are rarely updated. Before our work,

effects of capabilities to product requirements also were not documented explicitly.

• Mission Concept is closer to end user due to its higher level of abstraction and can be

further divided into different types of missions which are basically the scenario man-

agers in a system, based on what capability world provides to them they are responsible

for the conduction of operational scenarios while assuring system safety and user spec-

ifications. Although some initial understanding on mission concept exists, it is usually

handled in a free format way rather than studying and modeling the commanality and

variability throughout the product line. Structure of mission layer and attributes do not

exist prior to this study and also their reflection to product requirements are not for-

mally studied. An important difficulty that arises with the mission concept is that most

of the domain knowledge on missions are not documented, they are usually embedded

to the product via the domain expertise knowledge of the developers and product re-

quirements corresponding to mission concepts are the ones where divergence among

requirements specification documents are most visible.

• External Inter f ace Concept is the part where user interaction enters the scene of fire

control software and also the part where everything goes hand in hand. Different types

of external interfaces can be user consoles on which some button, switch, led kind of

entities make it possible to start/stop scenarios and alert user, alternatively tactical fire

control softwares may have software interface to operate through technical fire control

softwares. Results of previous domain research [44] indicates that its difficult to model

the behavior and structure of external interface concept in isolation from other concepts

that constitutes the fire control software. This part usually includes system specific

21



requirements and thus external interface concept modeling is not among the initial goals

of this study but still some effort is used for identification of the structure of external

interface related domain requirements.

3.2 Domain Modeling

During this study, ontology modeling approach is chosen over feature modeling due to its

richer descriptive power and suitability for formal analysis. Frame ontology paradigm is fol-

lowed. Ontology model is developed on Protege3.4.7 ontology editor because of its support

for frame ontology [45]. Final domain model should include formalizations for domain con-

cepts, constraints and domain requirements; during the modeling process, existing reference

architecture documents of the domain is used as initial input to indentify key domain concepts,

architecture models and documents are used as input to identify domain rules, previously doc-

umented requirements specifications are used as input to identify domain requirements, apart

from these codified inputs, expert knowledge is also investigated to be made explicit in the

model. We propose a solution model such that, domain requirements and domain concepts are

formalized and if some domain concept invokes a set of requirements in real world, in model

that concept is also related with these requirements, thus when a fire control software is built

up from specified domain concepts, domain requirements related to these configuration are

also built up. Figure 3.4 displays the intended solution model.

Figure 3.4: An abstraction of proposed solution model

22



3.2.1 Domain Requirements

After analysis of existing requirements specification documents, two types of requirements

are identified:

• constant requirements that do not display variations for different products. Examples:

– Software should end laying when laying accuracy is achieved.

– Software should stop firing when ammunition empitied.

• variable requirements, that display some variations according to the product configura-

tion. Examples:

– Software should check INS connection error be f ore laying.

– Software should check INS connection error during laying.

– Software should check INS connection error during f ire.

– Software should check servo connection error be f ore f ire.

Based on above descriptions about requirements specifications, our aim in this work is

to formalize textual requirements specifications such that, both constant and variable require-

ments can be supported. Constant requirements are trivial but variable requirements needs a

mechanism to enable variations, which is the introduction of “requirement parameters”. A

requirements specification is considered to be “complex requirement” consisting of one or

more “textual requirements” and zero or more “parametric requirements”. Figure 3.5. and

3.6 displays model snapshots for introduced terms.

Figure 3.5: A snapshot from model: Textual Requirement Representation

23



Figure 3.6: A snapshot from model: Parametric Requirement Representation

Parametric requirements are stored in repository without their actual parameters entered,

instead a textual representation is developed as place holders. Parameters will be determined

later at reuse time, with some little parsing actual values of parameters will be inserted to the

related location. Complex requirements is mainly a combination of textual and parametric

requirements, but some more information is added to its definition to also specify a template

document structure for resultant requirements specifications. See Figure 3.7 for a snapshot of

complex requirement definition. The template document structure is to group requirements to

related headings thus introduce a document hierarchy for readability.

24



Figure 3.7: A snapshot from model: Complex Requirement Representation

After a formalization for requirements specification is developed, construction of repos-

itory of domain requirements is started, but since requirements are related with domain con-

cepts, repository construction is performed in parallel to domain modeling, while new con-

cepts are added to the model.

Figure 3.8: A snapshot from model: example complex requirement instance

Figure 3.8 diplays an example complex requirement instance with its assigned slots/attributes.

This complex requirement instance is composed of a set of parametric and textual require-

ments, apart from requirements representation other types of information such as level, head-

25



ing(to be used in the template),and parameter type are also exist. For example this complex

requirement instance will appear under laying requirements heading of mission requirements

section in the document.

3.2.2 Domain Concepts

In domain study the initial effort was on answering the question “Which concepts are used

to built a fire control software?”. Reference architecture indicates some of these concepts

namely system environment, capability, mission, without giving formal definitions. Aim of

this study is to provide an ontology model that includes representations of these more general

concepts from software requirements perspective. Meaning of a concept can be divided into a

number of sub concepts, with the following base condition: if a newly introduced sub concept

is not a parameter of some requirement in the repository or has no effect on the evaluation of

domain constraints, just don’t introduce it. In this section details of the modeled concepts are

given.

• S ystemEnvironmentThing concept is introduced to model fire control software system

environment units. Reference architecture includes unit type enumerations for a number

of sensors and actuators, based on this knowledge classification of system environment

concept is as in Figure 3.9.

Figure 3.9: A snapshot from model: Classification of System environment concept

26



After detailed inspection of interfaces defined for different unit types, there emerged

a common representation frame for units as displayed in Figure 3.10 which enlists

the attributes of a system environment unit and additional information such as their

cardinalities.

Figure 3.10: A snapshot from model: Frame for system environment concept

It’s proposed that a unit may provide zero or more services, is related to a set of require-

ments and provides some information that can be grouped into following 4 categories:

– setting is the information group that specifies some operation configuration, which

can be read from and write into a unit

– data/info is the information group that a unit outputs, which is read only for the

fire control software

– mode of operation which can be commanded to change(writable) or only readable

for some units

– errors are special types of information for a unit to indicate faults occurring during

operation,which is read only.

Following example requirements are related with members of system environment con-

cept, meaning for each unit included in the product configuration, its related require-

ments will be added to document automatically:

– Software should report UNIT XXX ERRORYYY error.

27



– Software should report UNIT XXX INFOYYY information.

– Software should read UNIT XXX MODEYYY mode.

– Software should write UNIT XXX S ETT INGYYY setting.

– Software should write UNIT XXX S ETT INGYYY setting.

An example unit of type INS has the following fields:

– setting: initialization time, boresight, orientation, shutdown with stored heading,

information accuracy, alignment time

– info: north referenced angle values, GPS data, initial position, vehicle moving,

remaining time to complete alignment

– mode: zero velocity update requested, initial position requested, initialization

mode, stored heading alignment mode, gyro compass alignment mode, etc.

– error: connection error, initialization error, communication error, crtical fault

• S erviceThing concept is introduced while modeling S ytemEnvironmentThing concept,

it’s known that some members of system environment are there to provide some ser-

vices while supporting information, settings or mode related to these services. A ser-

vice is modeled with a service name and a supplier instance of system environment. A

portion of services introduced to model are listed as follows:

– Angle Service provides angular information about the platform of the service sup-

porting unit.

– GPSPosition Service provides the GPS position of the service supporting unit.

– Stabilization Service provides stabilized motion of a platform

– Drive with Speed Service provides the motion of a platform with a commanded

speed.

– Drive with Position Service provides the motion of a platform to a commanded

position.

– Drive with Error Service provides the motion of a platform from its current posi-

tion as the specified error.

– Drive with Torque Service provides the motion of a platform with commanded

torque value.

28



– Target Velocity Service provides the velocity information about a detected target.

– Firing Service provides the firing of some munition.

During service concept modeling, following feedback to current architecture is given:

Current architecture defines a “driveService” which may have the following drive modes

as enumerations: move with speed, move with position, move with error, move with

torque. This type of encoded usage of different drive services disables the detection of

configuration inconsistencies at model level. When a system environment unit arrives

its supported services are also known thus instead of encoding different service types

as enumerations a different service interface can be defined, which enables the model

based check of “each service used should be provided by some unit” rule.

• ActionThing concept is introduced to model missions which control different scenar-

ios.(which will also be introduced later). Mission scenarios can be thought as actions

and each action is triggered by some external/internal event, and that action is realized

by some mission. Figure 3.11 displays an example action instance which is the scenario

of laying to combat position, triggered by some button in the system and that action is

realized by a sub type of laying mission.

• TriggerThing concept is introduced to model different types of scenario starters in a

fire control software which is usually an external command from either a control panel

or a user interface software. Each trigger trigs an action in the software. Since most of

the triggers are caused by external interface events, although initial goal of this study

does not include a complete model of fire control software external interface, control

panel related part of external interface sub domain is studied to complete the relationhip

between a mission, an action and a trigger.

• UnitControlPanel is a special member of system environment concept which has some

additional concepts other than modes,information, errors, etc. These additional con-

cepts are grouped under a different concept named ControlPanelElement, see Figure

3.12.

A control panel element is either a button, switch, led or joystick that resides on a sys-

tem environment member of tye UnitControlPanel which has the following additional

requirements:

– Software should set the status of LEDXXX on UNITCTRLPANELYYY

29



Figure 3.11: A snapshot from model: an example ActionThing instance

– Software should read the status of S WITCHXXX on UNITCTRLPANELYYY

– Software should read the status of BUTTONXXX on UNITCTRLPANELYYY

– Software should set the origin of JOYS T ICKXXX on UNITCTRLPANELYYY

A switch or button usually have some substates such as ON/OFF, ENABLE/DISABLE,

etc. and each state of these control panel elements are triggers of actions in a fire control

software.

• MissionThing concept is introduced to model for supported mission scenarios of a fire

control software. Reference architecture does not include any specification for mission

concept, just indicates the existence of it. Thus depending on the applications in exist-

ing projects and including expert knowledge on this subject a number of requirements

related to mission concept are enlisted and following classification is introduced (See

Figure 3.13).

Unlike units, mission types do not have much commonality in structure, since informa-

tion used and operations performed by different missions are usually disjoint. But an

underlying mechanism that is modeled with this work is that: each mission type has a

30



Figure 3.12: A snapshot from model: classification of control panel elements

Figure 3.13: A snapshot from model: Classification of Mission concept

set of supported scenarios whose support status depends on the availability of related

service suppliers, and each scenario is triggered by some event.

– S tartup Mission is responsible for the operation of start up scenarios of fire con-

trol softwares, these scenarios usually include restoring of parameter values tha

are stored in non-volatile memory and managing power up scenario of system en-

vironment units included in the system configuration. Types of parameters that

are stored on non-volatile memory and the units whose power is controlled by fire

control software are variable according to system configuration.

– S hutdown Mission for the operation of controlled shutdown of a fire control soft-

ware, which includes the storing of some parameter values to non-volatile mem-

ory and also power down scenario of system environment unis included in the

system configuration. Types of parameters that are stored on non-volatile mem-

ory and the units whose power is controlled by fire control software are variable

according to system configuration.

– Fire Mission is mainly responsible for hitting a target with a munition, apart from

that some safety requirements are assigned to that concept such that some safety

checks are performed before and during a fire mission. Types of safety controls

are variable according to system configuration and also according to the controlled

31



firing scenario, for example safety requirements of a stationary firing scenario are

different than the safety requirements of a non-stationary firing scenario.

– Laying Mission is mainly responsible for the motion of a platform to some other

position or with some specified speed, etc. , apart from that some safety require-

ments are assigned to that concept such that some safety checks are performed

before and during a laying mission. Types of safety controls are variable accord-

ing to system configuration and also according to the controlled laying scenario,

for example safety requirements of a non-stabilized laying scenario are different

that the safety requirements of a stabilized laying scenario.

• FireControlS o f tware concept makes use of other defined concepts in its frame defi-

nition to built a fire control software according to the underlying domain model. See

Figure 3.14 for the example frame of a FireCotrolS o f tware concept.

Figure 3.14: A snapshot from model: a partial view of a fire control software frame

3.3 Reuse Mechanism

At the end of domain modeling phase a reuse repository for requirements and domain concepts

is constructed. Reuse mechanism proposed in this study is to handle requirement reuse as a

conceptual product configuration problem. Since domain concepts are modeled in a way that

if a domain concept introduces a set of requirements to product line, then this concept is

related with its requirements on the model. Thus if a concept is included in some conceptual

product configuration its requirements are also included. Manual product configuration is a

time consuming and error prone task which will endanger the success of reuse. Tool support

32



is required at that point to decrease human errors and increase reuse efficiency.

3.3.1 Ontology-based Requirements Derivation Tool: OntSRDT

During this study an ontology based automation tool for requirements reuse and documen-

tation is developed. OntSRDT is designed to be in interaction with a user via a graphical

user interface and ask some questions or give some tasks in order to lead user to valid prod-

uct configurations of the product line and documenting requirements specifications for that

configuration. By valid product configuration, it is mentioned that user should not be able

to configure a product which is out of domain scope or violating domain constraints, the

tool is responsible for disabling user from making invalid decisions and also for checking the

validity of user entered data against domain constraints, this way any configuration will be

a valid product and requirements will be valid requirements for that product. This requires

an information entry flow to be defined to collect most restricting information from user as

soon as possible so that invalid configuration paths are disabled earlier. For that purpose the

information flow in Figure 3.15 is adopted during this study.

3.4 Reusable Requirements Management

Being able to automatically derive and document product configuration related requirements

is a big improvement, but it is not enough in requirements engineering domain. Requirements

repository should be updateable when needed and it will be needed since domain modeling

is usually performed in iterations, with each iteration the coverage of the model is increased

and possibly new requirements are introduced to the model, or some errors detected at re-

quirements textual representations should be corrected with updates to repository. Without

a management policy the outputs of the support tool will only be useful for producing the

first version of a product’s requirements specifications, and after that point traceability of

repository requirements with documented requirements will be lost. Just like repository re-

quirements, requirements specification documents are open to changes and considered to be

dynamic in nature. Before a requirements specification document is formally published it’s

sent for review by other functional participants of the project such as test engineers, system

engineers, quality department, etc. According to the review results initial document needs to

33



Figure 3.15: Configuration flow of the tool

be modified and this change proposals may be given for requirements which are derived from

requirements repository, if manual change is permitted after documents first release then there

is no way to guarantee that systematic requirements reuse is achieved. Another aspect that

should be considered is that although product specific requirements are not in scope of any

reuse activity, they are also members of requirements specification documents and proposed

management solutions should not ignore their existence.

OntSRDT is an automation support tool, not a requirements management tool. Usually

there is a generally accepted commercial requirements management tool at companies and

using some other management tool independently will lead to more serious synchronization

34



problems with other participants of the project. Our proposal is to implement an add-on for

existing commercial requirements management tool in order to import the outputs of the de-

veloped support tool in this thesis. One more problem that arises after the output requirements

of the tool is migrated to a commercial management tool, is the reflection of changes to the

document that resides in that other tool. To handle this problem it’s decided that our support

tool should include some unique id generation mechanism for repository requirements, which

also requires the underlying model to include partial identifiers for concepts and their related

requirements. Documenting each requirement specification with a unique identifier solves

management problem of reusable requirements management. Even though updates are per-

formed on domain concepts or requirements repository, when related product configuration

is applied on support tool and outputs are imported to commercial management tool again,

unique id mechanism is enough for that tool to apply changes only to affected requirements

and preserves identifiers and specifications for other requirements.

35



CHAPTER 4

CASE STUDY

One problem with proposed solutions for requirements reuse in software engineering is that

they are usually untested for industrial usage [13]. To support the reuse solution proposed in

this thesis with results obtained by application of it on an industrial scope product line, a case

study on fire control software product lines developed by Aselsan Inc. is planned. Conduction

details of case study and results are discussed in detail.

4.1 Conduction of Case Study

In order to evaluate content and coverage of domain ontology and automatically derived re-

quirements specified with this study, the support tool is enabled in RE of two different fire

control software projects under development, this projects will be referred to as FCS-P1 and

FCS-P2 in this document. FCS-P1 and FCS-P2 have the following general product configu-

rations:

• Servo Controller

• Gun Controller

• INS/Compass

• tracking as a type of laying mission

• fire mission

Requirements specification documents for the above product configurations are documented

by the support tool developed in this study. But since meeting the deadlines of the above

36



project was necessary and graphical user interface of the tool was not completed at the time,

case study is conducted by performing product configuration manually inside code. Initial

goal of the case study was to display the coverage of ontology based requirements specifica-

tions thus valid product configurations are supplied to the tool. Output files of the tool are

imported to commercial requirements management tool and each document is opened to re-

view of a group of engineers from software engineering, test engineering, systems engineering

and software quality engineering departments. The information that some of the requirements

are automatically derived from a requirements repository is not shared with the review group.

After review process is completed and change proposals are reflected upon the documents

some metrics are calculated which are shared in the following section.

4.2 Metrics and Evaluations

During this case study the number of requirements in the repository is noted as 59. Initial

versions of requirement specification documents for FCS-P1 and FCS-P2 contain 264 and

304 requirements respectively. During evaluations comparison with existing systems’ re-

quirements are not preferred mostly due to their different abstraction levels than the hereby

introduced one. Thus some of the requirements documented within this study are almost in-

visible in existing documents which makes the comparison difficult. Apart from abstraction

level, quality and content of existing documents are not standard to be considered as a bases

for comparison.

Following metrics are introduced for evaluations, see Table 4.1 and Table 4.2 for com-

puted values of these metrics.

• Ratio of automatically derived requirements to overall requirements, as an indicator of

document coverage of automatically derived requirements in terms of percentage.

• Ratio of automatically derived requirements that are manually updated, as an indicator

of maturity for used requirements repository. Updated requirements are inspected and

different update types are noted, for each update type a different metric is introduced.

• Ratio of syntax updates to overall updates, indicates the ratio of updates to correct

typo mistakes and some Turkish natural language corrections about suffixes to derived

requirements. Following requirements are extracted from documents as examples:

37



– initial requirement: Software should check that servo controller unit is clear of

Hardware error ...

– updated requirement: Software should check that servo controller unit is clear of

hardware error ...

• Ratio of naming updates to overall updates, as an indicator of a need to rename some

concepts in the document without imposing any semantic difference. Following re-

quirements are extracted from documents as examples:

– initial requirement: Software should check that “gun controller unit” is clear of

not ready to fire error ...

– updated requirement: Software should check that “gun otomation unit” is clear

of not ready to fire error ...

– initial requirement: Software should check that mode of “servo controller unit”

is ready to move ...

– updated requirement: Software should check that mdoe of “azimuth servo con-

troller unit” is ready to move ...

• Ratio of semantic updates to overall updates, as an indicator of semantically immature

requirements. Following examples are extracted from documents as examples:

– initial requirement: Software should propose an ammunition type to be fired.

– updated requirement: Software should propose an ammunition type to be fired

according to the result of ammunition proposal calculations.

• Ratio of deletions to overall updates, as an indicator of unwanted requirements due

to their irrelevance of configuration or abstraction level. Following requirements are

extracted from document as examples to deleted requirements:

– deleted requirement: Software should enable target type entry for an active target.

– deleted requirement: Software should enable target angular position entry for an

active target.

38



Table 4.1: Computed metrics for FCS-P1

Metric Value(%)

Ratio of derived requirements to overall requirements 81.71

Ratio of manual updates on derived requirements 25.57

Ratio of deletions to overall updates on derived requirements 1.82

Ratio of syntax updates to overall updates on derived requirements 23.52

Ratio of concept renaming updates to overall updates on derived requirements 66.66

Ratio of semantic updates to overall updates on derived requirements 15.68

Table 4.2: Computed metrics for FCS-P2

Metric Value(%)

Ratio of derived requirements to overall requirements 84.38

Ratio of manual updates on derived requirements 18.50

Ratio of deletions to overall updates on derived requirements 4.76

Ratio of syntax updates to overall updates on derived requirements 19.04

Ratio of concept renaming updates to overall updates on derived requirements 78.57

Ratio of semantic updates to overall updates on derived requirements 7.14

Based on the above metrics, with the proposed solution approach most of the product

requirements can be automatically derived (81.71% - 84.38%). As previously stated after

reviews some requirements are updated manually, depending on the effects of these update

following comments are made:

• The ratio of deletions on derived requirements is less than 5%, this means our approach

mostly documents in scope requirements, not causing false positives in measurements.

• The ratio of syntax updates (19.04% - 23.52%) is an indicator of need for review of

textual fragment in the requirements repository and sentence compositions for more

natural language looking sentences, it’s detected that some sentence structures irritates

the reviewers.

• Based on the ratio of concept renaming updates (66.66%- 78.57%), depending on the

project without changing the semantics, there is a need fro flexibility in our tool design

to be able to give proper names especially to system environment units in order to

increase documents’ understandability.

39



• Based on the ratio of semantic updates (7.14%-15.68%), it can be said that our domain

model and requirements repository are not mature enough, model should be updated in

the light of these semantic changes.

40



CHAPTER 5

DISCUSSION

Results of the case study indicate that document coverage of automatically derived product

line requirements is acceptable, thus proposed method is promising and applicable in prac-

tice. But during this study it was not possible to perform a comperative study of our method

with existing approaches/tools since the success of the method is to a great extent dependent

on quality, scope and complexity of underlying domain model. Tools developed for other

domains can not be directly applied to the domain studied in this research, thus comparison

of our results with the results of other methods evaluated in other domains does not provide

significant information because there is no way to compare the complexity and the scope of

the underlying domain models used in different research. Since results of existing methods

in literature are not suitable for a comperative study with the hereby proposed method, for

further evaluation of our method, a set of metrics for continuous evaluation should be defined

and evaluated with updates on our approach and/or domain ontology and thus new versions

of our method will be compared against previous versions and we will be able to track the

improvements with future updates.

Another point is that evaluated metrics in this research do provide information about

document coverage of automatically derived product line requirements, but do not provide

any information about the quality improvements achieved with the proposed method. A set of

metrics should be selected and evaluated on documents created with the method introduced

in this thesis and existing documents that are created with traditional approaches, so that a

comparison in terms of requirements quality is possible.

41



CHAPTER 6

CONCLUSION

In this thesis an ontology based solution is proposed to enable requirements reuse in a product

line to eliminate the disadvantages of not reusing software requirements. The main contribu-

tion of this work is the introduction of a practical mechanism for requirements reuse and man-

agement of these reusable requirements. Hereby proposed approach is applied in RE phase of

two different fire control software and metrics we obtained from this practice is reported. The

benefits of the proposed approach can be listed as follows:

• Requirements whose source are reference architecture or reusable components are made

visible in the documents independent from the document owners’ decision. Expert

knowledge is represented in the model such that even unexperienced engineers working

in the domain can prepare a great percentage of requirements specifications documents

by just following their knowledge about system configuration.

• Previously domain knowledge was stored in raw text documents such as reports of ar-

chitecting studies, in UML to represent reference architecture and interface definitions

in C++, the accumulated knowledge on fire control domain is not in a machine readable

form, which prevents analysis and development of assisting applications on this knowl-

edge. Studies in this thesis started the migration of knowledge from other existing for-

mats to a formal format as domain ontology. During this migration process some useful

feedbacks to architectural interfaces are generated. For example current architecture de-

fines a “DriveServiceInterface” which encodes different drive services as enumerations

such as drive with torque or drive with speed. When a unit arrives which kind of drive

services it support is known in advance based on its interface control documents, but

embedding this knowledge as enumerations prevents the detection of improper usage

42



of the “DriveServiceInterface” on model level. Thus, instead of enumerating different

drive services of the domain, “DriveServiceInterface” can be breakdown into sub types.

• One of the main quality indicators of a requirement statement is having one and only

one requirement in it. Traditional requirements engineering methods can not detect

these types of quality deficiencies before requirements reviewing phase. Since auto-

matically derived requirements are coming from the same source, by controlling re-

quirements in the repository in terms of their language and quality, all of the following

documents will be affected from this quality assessment.

• Document prepared by traditional methods may differ in abstraction level, by using

automatically derived requirements even if the documents are created by different level

except from product specific requirements, abstraction level is consistent throughout a

single document and throughout all product line requirements specification document.

Product specific requirements will be in minority and there will be enough time for

their careful inspection. Reuse of requirements will increase the quality of requirements

while decreasing the effort used to documenting them in the long term.

Although the results obtained from the experience gained with this study is very promis-

ing, efficiency of the proposed method is directly related to completeness and correctness of

the ontology model and quality of the tool support. Thus, following items are listed to be

studied in future:

• The coverage of the ontology model is not complete yet, which prevents its efficient

usage for some of the product line members. One way to continuously improve the

coverage is to apply this approach on the upcoming projects and collect feedbacks from

them.

• The conformity of requirements specifications in the repository to quality standards

on requirements should be checked by introducing the evaluation of required metrics.

Based on this metrics it will be possible to comment on the general quality of prepared

documents with this reuse method.

• There is more to do with the support tool, current status of OntSRDT tool is suitable to

support the requirements reuse process but it should be improved to be open to public

use as a product configurator. Also it should be updated for each new concept that

43



affects a product configuration is introduced into model to get synchronized with the

underlying model. Current tool support is only for regular user and do not let any

changes to happen to underlying ontology model with user actions. But there is also a

need for a special user, who also cannot change the structure of the model but can add

new instances of concepts usually for system environment units. It can be enhanced to

an expert system in the future and can be used to for human training and optimization

for valid product configurations.

Above listed work items are important to keep alive the studies that started with the hereby

presented work, but application of knowledge based methods in software engineering are not

limited to RE activities. This encourages us to enhance the underlying domain model in

future such that on top of requirements, automatic test case derivation can be supported to an

extent, furthermore some relation to implementation can be supplied such that the support tool

that’s currently only used to conceptually configure a product can also be used to configure

an implementation for that product in the future.

44



REFERENCES

[1] Colin Atkinson and et al. Component-based Product Line Engineering with UML.

Addison-Wesley, 2002.

[2] Patrick Heymans and Jean-Christophe Trigaux. Software product lines: State of the art.

Technical Report EPH3310300R0462/215315, Facultes Universitaires Notre-Dame de

La Paix, Institut d’Informatique, Rue Grandgagnage, 21, B-5000 NAMUR(Belgique),

September 2003. Project: Product Line Engineering of food Traceability Software,

Financing: Region Wallone and Fonds Socia Europeen.

[3] Kurt Bittner and Ian Spence I. Use Case Modeling. Addison-Wesley, 2003.

[4] Paul Clements and Linda Northrop. Software Product Lines, Practices and Patterns.

Addison-Wesley, 2001.

[5] Ulrike Dowie, Nicole Gellner, Sven Hanssen, Andreas Helferich, Georg Herzwurm, and

Sixten Schockert. Quality assurance of integrated business software: An approach to

testing software product lines. Universitat Stuttgart, Institute of Business Adminstration,

Chair of Information System II.

[6] Jan Bosch. Design Use of Software Architectures. Addison-Wesley, 2000.

[7] Lisa Brownsword and Paul Clements. A case study in successful product line develop-

ment. Technical Report CMU/SEI-TR-016, Carnegie Mellon University,Software Engi-

neering Institute, 1996.

[8] Linda Northrop. Software product lines: Reuse that makes business sense, 2007.

[9] Olfa Djebbi and Camille Salinesi. Red-pl, a method for deriving product requirements

from a product line requirements model. In Proceedings of the 19th International Con-

ference On Advanced Information Systems Engineering, 2007.

[10] Gerald Kotonya and Ian Sommervile. Requirements Engineering: Process and Tech-

niques. Wiley, 1998.

[11] Mario Kossmann and Mohammed Odeh. Ontology-driven requirements engineering -

a case study of ontorem in the aerospace context. INCOSE, International Symposium,

2010.

[12] Oscar Lopez, Muguel A. Laguna, and Francisco J. Garcia. Metamodeling for require-

ments reuse, 2002.

[13] Seungyun Lee and et al. Reusable sw requirements development process: Embedded sw

industry experiences. Australian Software Engineering Conference (ASWEC), 2007.

[14] Peng Liang and Paris Avgeriou. From architectural knowledge to requirements knowl-

edge management. Technical Report RUG-SEARCH-09-L02, Department of Mathe-

matics and Computing Science, University of Groningen, February 2009.

45



[15] Ruben Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Software Engi-

neering Notes, 15(2):47–54, April 1990.

[16] Chang Hwan Peter Kim. On the relationship between feature models and ontologies,

2006.

[17] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. Feature oriented domain analysis (foda), feasibility study. Technical Re-

port CMU/SEI-90-TR-21, Carnegie-Mellon University Software Engineering Institute,

November 1990.

[18] American Heritage. The American Heritage Dictionary. Springer, Houghton Mifflin,

Boston, MA, 1985.

[19] Don S. Batory. Feature models, grammars and propositional formulas. Software Prod-

uct Lines, 9th International Conference, SPLC, 2005.

[20] Detlef Streitferdt, Periklis Sochos, Christian Heller, and Ilka Philippow. Configuring

embedded system families using feature models.

[21] Michael Schlickm and Andreas Hein. Knowledge engineering in software product lines.

[22] Pietu Pohjalainen. Feature oriented domain analysis expressions.

[23] Mark-Oliver Reiser and Matthias Weber. Managing highly complex product families

with multi-level feaure trees. 14th IEEE International Requirements Engineering Con-

ference, 2006.

[24] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg. Feature

models are views on ontologies. In Software Product Line Conference. IEEE, August

2006.

[25] Dean Allemand and James A. Hendler. Semantic web for the working ontologist: Mod-

eling in RDF, RDFS and OWL. Elseiver, 2008.

[26] Glen Dobson and Peter Sawyer. Revisiting ontology-based requirements engineering in

the age of the semantic web. in: Dependable requirements engineering of computerised

systems at npps, 2006.

[27] Thomas R. Gruber. Towards principles for the design of ontologies used for knowledge

sharing. Technical Report KSL93-04, Stanford University, August 1993.

[28] Veronica Castaneda, Luciano Ballejos, Ma. Lauro Caliusco, and Ma. Rosa Galli. The

use of ontologies in requirements engineering. Global Journal of Researches in Engi-

neering, 10(6):2–8, November 2010.

[29] Dragan Djuric, Dragan Gasevic, and Vladan Devedzic. Ontology modeling and mda.

Journal of Object Technology, 4(1), January-February 2005.

[30] Hai H. Wang and et al. Frames and owl side by side. 9 th International Protege Confer-

ence, 2006.

[31] Michel Ezran, Maurizio Morisio, and Colin Tully. Practical Software Reuse. Springer,

2002.

46



[32] Frakes W. and Kang K. Software reuse research: Status and future. IEEE Transactions

on Software Engineering, 31(7):529–536, July 2005.

[33] Katja Siegemund, Edward J. Thomas, Yuting Zhao, Jeff Pan, and Uwe Assmann. To-

wards ontology-driven requirements engineering. In 7th International Workshop on Se-

mantic Web Enabled Software Engineering, October 2011.

[34] Betty H. Cheng and Joanne M. Atlee. Research directions in requirements engineering.

29th International Conference on Software Engineering (ICSE), 2007.

[35] Antonio Monzon. A practical approach to requirements reuse in product families of

on-board sytems. 16th IEEE Internationa Requirements Engineering Conference, 2008.

[36] Thersten Blecker, Nizal Abdelkafi, Gerold Kreuter, and Herhard Friedrich. Product con-

figuration systems: State-of-the-art, conceptualization and extensions. In 8th Maghre-

bian Conference on Software Engineering and Artificial Intelligence, May 2004.

[37] Timo Asikainen, Tomi Mannisto, and Timo Soininen. Using a configurator for mod-

elling an configuring software product lines based on feature models. In Workshop on

Software Variability Management for Product Derivation, Software Product Line Con-

ference (SPLC3), 2004.

[38] Katharina Wolter, Lothar Hotz, and Thorsten Krebs. Model-based configuration support

for software product families.

[39] Alexander Fernig, Gerhard E. Friedrich, and Dietmar Jannach. Generating product con-

figuration knowledge bases for precise domain extended uml model, 2000.

[40] Deborah L. McGuinness. The description logic hand book. Cambridge University

Press, 2003.

[41] Camille Salinesi, Raouia Triki, and Raul Mazo. Combining configuration and recom-

mendation to define an interactive product line configuration approach, 2012.

[42] Ina Schaefer, Alexander Worret, and Arnd Poetzsch-Heffer. A model-based frame-

work for automated product derivation. In lnternational Workshop on Model-driven

Approaches in Software Product Line Engineering (MAPLE), August 2009.

[43] Dr. Malcolm Morrison, Dr. Joel Sherrill, Ron O’Guin, and Deborah A. Butler. A fire

control architecture for future combat systems. The Journal of Defense Software Engi-

neering, August 2003.

[44] Aselsan Inc. A reference architecture for fire control systems. Technical Report DR-

0000-0074-R99, Aselsan Inc., November 2009.

[45] www.protege.stanford.edu, Last access on 29 August 2012.

47



APPENDIX A

EXAMPLES

A.1 A Simple Configuration Example

Following images display the steps for a simple product configuration and resulting require-

ments specification.

Figure A.1: configuration step1

48



Figure A.2: configuration step2

Figure A.3: configuration step3

49



Figure A.4: configuration step4

Figure A.5: configuration step5

50



Figure A.6: configuration view after step5

Figure A.7: configuration step6

51



Figure A.8: configuration step7

52



Figure A.9: configuration step8

53



Figure A.10: configuration step9

54



step10]configuration step10

Figure A.11: configuration step11

55



Figure A.12: configuration step12

Figure A.13: configuration step13

56



Figure A.14: configuration step14

57



Figure A.15: configuration step15

58



Figure A.16: configuration step16

Figure A.17: configuration step17

A.2 Sample Requirements Specifications

U: BIRIM AYARLARI ILE ILGILI ISLEMLER

U:21-I:1 INS AYARLARI

U:21-I:1-P:1-NP:1 Yazilim, INS baglanti kurulamadi hatasini bildirecektir.

U:21-I:1-P:2-NP:1 Yazilim, INS haberlesme hatasini bildirecektir.

U:21-I:1-P:3-NP:1 Yazilim, INS donanim hatasini bildirecektir.

U:21-I:1-P:4-NP:1 Yazilim, INS acilma hatasini bildirecektir.

U:21-I:1-P:66-NP:2 Yazilim, INS GPS baglanti hatasini bildirecektir.

U:21-I:1-P:67-NP:2 Yazilim, INS VMS baglanti hatasini bildirecektir.

U:21-I:1-P:6-NP:3 Yazilim, INS tarafindan bildirilen platformun kuzey/ufuk referansli acisal

yonelim degeri bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:7-NP:3 Yazilim, INS tarafindan bildirilen GPS verisi bilgisinin okunabilmesini

saglayacaktir.

U:21-I:1-P:9-NP:3 Yazilim, INS tarafindan bildirilen arac hareketli bilgisinin okunabilmesini

59



saglayacaktir.

U:21-I:1-P:10-NP:3 Yazilim, INS tarafindan bildirilen ilklenmenin tamamlanmasi icin kalan

sure bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:6-NP:4 Yazilim, platformun kuzey/ufuk referansli acisal yonelim degeri bilgisinin

girilebilmesini saglayacaktir.

U:21-I:1-P:8-NP:4 Yazilim, ilk konum bilgisinin girilebilmesini saglayacaktir.

U:21-I:1-P:9-NP:4 Yazilim, arac hareketli bilgisinin girilebilmesini saglayacaktir.

U:21-I:1-P:49-NP:5 Yazilim, INS oryantasyon ayar(lar)inin okunabilmesini saglayacaktir.

U:21-I:1-P:48-NP:5 Yazilim, INS boresight ayar(lar)inin okunabilmesini saglayacaktir.

U:21-I:1-P:46-NP:5 Yazilim, INS ilklenme suresi ayar(lar)inin okunabilmesini saglayacaktir.

U:21-I:1-P:47-NP:5 Yazilim, INS kuzey/ufuk bilgisi hassasiyeti ayar(lar)inin okunabilmesini

saglayacaktir.

U:21-I:1-P:49-NP:6 Yazilim, INS oryantasyon ayar(lar)inin yapilabilmesini saglayacaktir.

U:21-I:1-P:48-NP:6 Yazilim, INS boresight ayar(lar)inin yapilabilmesini saglayacaktir.

U:21-I:1-P:46-NP:6 Yazilim, INS ilklenme suresi ayar(lar)inin yapilabilmesini saglayacaktir.

U:21-I:1-P:47-NP:6 Yazilim, INS kuzey/ufuk bilgisi hassasiyeti ayar(lar)inin yapilabilmesini

saglayacaktir.

U:21-I:1-P:34-NP:7 Yazilim, INS calisma modu CONF bilgisinin okunabilmesini saglaya-

caktir.

U:21-I:1-P:35-NP:7 Yazilim, INS calisma modu PU bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:32-NP:7 Yazilim, INS calisma modu NAV bilgisinin okunabilmesini saglayacak-

tir.

U:21-I:1-P:33-NP:7 Yazilim, INS calisma modu TST bilgisinin okunabilmesini saglayacak-

tir.

U:21-I:1-P:38-NP:7 Yazilim, INS performans modu INU OK TO MOVE bilgisinin okun-

abilmesini saglayacaktir.

U:21-I:1-P:39-NP:7 Yazilim, INS performans modu DEGRADED PERFORMANCE bil-

gisinin okunabilmesini saglayacaktir.

U:21-I:1-P:36-NP:7 Yazilim, INS calisma modu PD bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:37-NP:7 Yazilim, INS performans modu ALIGNMENT NOT COMPLETED bil-

gisinin okunabilmesini saglayacaktir.

U:21-I:1-P:42-NP:7 Yazilim, INS GPS kullanim modu harici GPS bilgisinin okunabilmesini

saglayacaktir.

60



U:21-I:1-P:40-NP:7 Yazilim, INS performans modu FULL PERFORMANCE bilgisinin okun-

abilmesini saglayacaktir.

U:21-I:1-P:41-NP:7 Yazilim, INS GPS kullanim modu dahili GPS bilgisinin okunabilmesini

saglayacaktir.

U:21-I:1-P:27-NP:7 Yazilim, INS zupt ihtiyac var bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:26-NP:7 Yazilim, INS ilkleme ihtiyac var bilgisinin okunabilmesini saglayacaktir.

U:21-I:1-P:28-NP:7 Yazilim, INS calisma modu INIT bilgisinin okunabilmesini saglayacak-

tir.

U:21-I:1-P:30-NP:7 Yazilim, INS calisma modu GCA bilgisinin okunabilmesini saglayacak-

tir.

U:21-I:1-P:34-NP:8 Yazilim, INS calisma modu CONF seciminin yapilabilmesini saglaya-

caktir.

U:21-I:1-P:32-NP:8 Yazilim, INS calisma modu NAV seciminin yapilabilmesini saglayacak-

tir.

U:21-I:1-P:33-NP:8 Yazilim, INS calisma modu TST seciminin yapilabilmesini saglayacak-

tir.

U:21-I:1-P:36-NP:8 Yazilim, INS calisma modu PD seciminin yapilabilmesini saglayacaktir.

U:21-I:1-P:42-NP:8 Yazilim, INS GPS kullanim modu harici GPS seciminin yapilabilmesini

saglayacaktir.

U:21-I:1-P:41-NP:8 Yazilim, INS GPS kullanim modu dahili GPS seciminin yapilabilmesini

saglayacaktir.

U:21-I:1-P:28-NP:8 Yazilim, INS calisma modu INIT seciminin yapilabilmesini saglayacak-

tir.

U:21-I:1-P:30-NP:8 Yazilim, INS calisma modu GCA seciminin yapilabilmesini saglayacak-

tir.

U:1-I:2 YUKSELIS EKSEN SURUCU AYARLARI

U:1-I:2-P:1-NP:1 Yazilim, Yukselis Eksen Surucu baglanti kurulamadi hatasini bildirecektir.

U:1-I:2-P:2-NP:1 Yazilim, Yukselis Eksen Surucu haberlesme hatasini bildirecektir.

U:1-I:2-P:3-NP:1 Yazilim, Yukselis Eksen Surucu donanim hatasini bildirecektir.

U:1-I:2-P:4-NP:1 Yazilim, Yukselis Eksen Surucu acilma hatasini bildirecektir.

U:1-I:2-P:68-NP:2 Yazilim, Yukselis Eksen Surucu asiri isinma hatasini bildirecektir.

U:1-I:2-P:70-NP:2 Yazilim, Yukselis Eksen Surucu savas moduna gecilemedi hatasini bildire-

cektir.

61



U:1-I:2-P:66-NP:2 Yazilim, Yukselis Eksen Surucu harekete yasak alana girildi hatasini bildire-

cektir.

U:1-I:2-P:67-NP:2 Yazilim, Yukselis Eksen Surucu atisa yasak alana girildi hatasini bildire-

cektir.

U:1-I:2-P:6-NP:3 Yazilim, Yukselis Eksen Surucu tarafindan bildirilen platform acisal konum

bilgisinin okunabilmesini saglayacaktir.

U:1-I:2-P:48-NP:5 Yazilim, Yukselis Eksen Surucu sifir noktasi ayar(lar)inin okunabilmesini

saglayacaktir.

U:1-I:2-P:46-NP:5 Yazilim, Yukselis Eksen Surucu harekete yasak alan ayar(lar)inin okun-

abilmesini saglayacaktir.

U:1-I:2-P:27-NP:7 Yazilim, Yukselis Eksen Surucu stabilizasyon modu kapali bilgisinin okun-

abilmesini saglayacaktir.

U:1-I:2-P:26-NP:7 Yazilim, Yukselis Eksen Surucu stabilizasyon modu acik bilgisinin okun-

abilmesini saglayacaktir.

U:1-I:2-P:29-NP:7 Yazilim, Yukselis Eksen Surucu yonlenme durumu hazir degil bilgisinin

okunabilmesini saglayacaktir.

U:1-I:2-P:28-NP:7 Yazilim, Yukselis Eksen Surucu yonlenme durumu hazir bilgisinin okun-

abilmesini saglayacaktir.

U:1-I:2-P:29-NP:8 Yazilim, Yukselis Eksen Surucu yonlenme durumu hazir degil seciminin

yapilabilmesini saglayacaktir.

U:1-I:2-P:30-NP:8 Yazilim, Yukselis Eksen Surucu yonlenme durumu yonleniyor seciminin

yapilabilmesini saglayacaktir.

U:1-I:1 YAN EKSEN SURUCU AYARLARI

U:1-I:1-P:1-NP:1 Yazilim, Yan Eksen Surucu baglanti kurulamadi hatasini bildirecektir.

U:1-I:1-P:2-NP:1 Yazilim, Yan Eksen Surucu haberlesme hatasini bildirecektir.

U:1-I:1-P:3-NP:1 Yazilim, Yan Eksen Surucu donanim hatasini bildirecektir.

U:1-I:1-P:4-NP:1 Yazilim, Yan Eksen Surucu acilma hatasini bildirecektir.

U:1-I:1-P:68-NP:2 Yazilim, Yan Eksen Surucu asiri isinma hatasini bildirecektir.

U:1-I:1-P:69-NP:2 Yazilim, Yan Eksen Surucu motor saturasyon degerine ulasildi hatasini

bildirecektir.

U:1-I:1-P:70-NP:2 Yazilim, Yan Eksen Surucu savas moduna gecilemedi hatasini bildirecek-

tir.

U:1-I:1-P:66-NP:2 Yazilim, Yan Eksen Surucu harekete yasak alana girildi hatasini bildire-

62



cektir.

U:1-I:1-P:67-NP:2 Yazilim, Yan Eksen Surucu atisa yasak alana girildi hatasini bildirecektir.

U:1-I:1-P:6-NP:3 Yazilim, Yan Eksen Surucu tarafindan bildirilen platform acisal konum bil-

gisinin okunabilmesini saglayacaktir.

U:1-I:1-P:49-NP:5 Yazilim, Yan Eksen Surucu yazilimsal limit ayar(lar)inin okunabilmesini

saglayacaktir.

U:1-I:1-P:47-NP:5 Yazilim, Yan Eksen Surucu atisa yasak alan ayar(lar)inin okunabilmesini

saglayacaktir.

U:1-I:1-P:49-NP:6 Yazilim, Yan Eksen Surucu yazilimsal limit ayar(lar)inin yapilabilmesini

saglayacaktir.

U:1-I:1-P:27-NP:7 Yazilim, Yan Eksen Surucu stabilizasyon modu kapali bilgisinin okun-

abilmesini saglayacaktir.

U:1-I:1-P:29-NP:7 Yazilim, Yan Eksen Surucu yonlenme durumu hazir degil bilgisinin okun-

abilmesini saglayacaktir.

U:1-I:1-P:30-NP:8 Yazilim, Yan Eksen Surucu yonlenme durumu yonleniyor seciminin yapi-

labilmesini saglayacaktir.

U:71-I:1 SKB AYARLARI

U:71-I:1-P:4004-NP:25 Yazilim, SKB hedef konumu anahtari konumunun okunabilmesini

saglayacaktir.

U:71-I:1-P:4001-NP:25 Yazilim, SKB nakliye konumu anahtari konumunun okunabilmesini

saglayacaktir.

U:71-I:1-P:4002-NP:25 Yazilim, SKB yukleme konumu anahtari konumunun okunabilmesini

saglayacaktir.

U:71-I:1-P:4506-NP:23 Yazilim, SKB hedef konumu ledi durumunun okunabilmesini saglay-

acaktir.

U:71-I:1-P:4504-NP:23 Yazilim, SKB atis konumu ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4511-NP:23 Yazilim, SKB acil durdur ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4510-NP:23 Yazilim, SKB servo manuel ledi durumunun okunabilmesini saglay-

acaktir.

U:71-I:1-P:4509-NP:23 Yazilim, SKB servo otomatik ledi durumunun okunabilmesini saglay-

acaktir.

63



U:71-I:1-P:4508-NP:23 Yazilim, SKB atese hazir ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4512-NP:23 Yazilim, SKB aku dusuk ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4502-NP:23 Yazilim, SKB durbun acik ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4501-NP:23 Yazilim, SKB sistem acik ledi durumunun okunabilmesini saglaya-

caktir.

U:71-I:1-P:4507-NP:24 Yazilim, SKB yukleme konumu ledi durumunun ayarlanabilmesini

saglayacaktir.

U:71-I:1-P:4505-NP:24 Yazilim, SKB nakliye konumu ledi durumunun ayarlanabilmesini

saglayacaktir.

U:71-I:1-P:4504-NP:24 Yazilim, SKB atis konumu ledi durumunun ayarlanabilmesini saglay-

acaktir.

U:71-I:1-P:4508-NP:24 Yazilim, SKB atese hazir ledi durumunun ayarlanabilmesini saglay-

acaktir.

U:71-I:1-P:1-NP:1 Yazilim, SKB baglanti kurulamadi hatasini bildirecektir.

U:71-I:1-P:2-NP:1 Yazilim, SKB haberlesme hatasini bildirecektir.

U:71-I:1-P:3-NP:1 Yazilim, SKB donanim hatasini bildirecektir.

U:71-I:1-P:4-NP:1 Yazilim, SKB acilma hatasini bildirecektir.

P: SiSTEM AYARLARI iLE iLGiLi isLEMLER

P:1-I:0 SILAH PLATFORMU AYARLARI

P:1-I:0-P:1-NP:11 Yazilim, silah platformunun kuzey referansli acisal konum bilgisinin okun-

abilmesini saglayacaktir.

P:1-I:0-P:1-NP:13 Yazilim, silah platformunun arac referansli acisal konum bilgisinin okun-

abilmesini saglayacaktir.

P:2-I:0 ARAC PLATFORMU AYARLARI

P:2-I:0-P:2-NP:10 Yazilim, arac platformunun dunya uzerindeki konum degerinin degistir-

ilebilmesini saglayacaktir.

P:2-I:0-P:2-NP:11 Yazilim, arac platformunun kuzey referansli acisal konum bilgisinin okun-

abilmesini saglayacaktir.

P:2-I:0-P:2-NP:13 Yazilim, arac platformunun arac referensli acisal konum bilgisinin okun-

abilmesini saglayacaktir.

64



S:2001-I:0 ATIS KONUMU AYARLARI

S:2001-I:0-P:2001-NP:20 Yazilim, atis konumu tanimli konumu icin yukselis ekseni yonelim

hassasiyetinin guncellenebilmesini saglayacaktir.

S:2001-I:0-P:2001-NP:19 Yazilim, atis konumu tanimli konumu icin yan eksen yonelim has-

sasiyetinin guncellenebilmesini saglayacaktir.

S:2001-I:0-P:2001-NP:15 Yazilim, atis konumu tanimli konumu icin mevcut taniminin okun-

abilmesini saglayacaktir.

S:2011-I:0 YUKLEME KONUMU AYARLARI

S:2011-I:0-P:2011-NP:18 Yazilim, yukleme konumu tanimli konumu icin yukselis ekseni

yonelim hassasiyetinin okunabilmesini saglayacaktir.

S:2011-I:0-P:2011-NP:17 Yazilim, yukleme konumu tanimli konumu icin yan eksen yonelim

hassasiyetinin okunabilmesini saglayacaktir.

S:2011-I:0-P:2011-NP:20 Yazilim, yukleme konumu tanimli konumu icin yukselis ekseni

yonelim hassasiyetinin guncellenebilmesini saglayacaktir.

S:2011-I:0-P:2011-NP:19 Yazilim, yukleme konumu tanimli konumu icin yan eksen yonelim

hassasiyetinin guncellenebilmesini saglayacaktir.

S:2011-I:0-P:2011-NP:15 Yazilim, yukleme konumu tanimli konumu icin mevcut taniminin

okunabilmesini saglayacaktir.

S:2011-I:0-P:2011-NP:16 Yazilim, yukleme konumu tanimli konumu icin mevcut taniminin

guncellenebilmesini saglayacaktir.

M: GOREVLER iLE iLGiLi isLEMLER

M:11-I:0 Nonstabilize Modda Yonlenme

M:11-I:0-P:2001-NP:22 Yazilim, atis konumu tanimli konumuna yukselis ekseninde 0.15

derece hassasiyet ile yonlenebilecektir.

M:11-I:0-P:2011-NP:22 Yazilim, yukleme konumu tanimli konumuna yukselis ekseninde 0.1

derece hassasiyet ile yonlenebilecektir.

M:11-I:0-P:2031-NP:22 Yazilim, hedef tanimli konumuna yukselis ekseninde 0.056 derece

hassasiyet ile yonlenebilecektir.

M:11-I:0-P:2001-NP:21 Yazilim, atis konumu tanimli konumuna yan eksende 0.2 derece has-

sasiyet ile yonlenebilecektir.

M:11-I:0-P:2011-NP:21 Yazilim, yukleme konumu tanimli konumuna yan eksende 0.1 derece

hassasiyet ile yonlenebilecektir.

M:11-I:0-P:2031-NP:21 Yazilim, hedef tanimli konumuna yan eksende 0.056 derece has-

65



sasiyet ile yonlenebilecektir.

M:11-I:0-P:71-4005-1-7005-NP:26 Yazilim, SKB acil durdurma butonu basili hale gelmesi

ile acil durdurma baslat islemini baslatacaktir.

M:11-I:0-P:71-4005-2-7006-NP:26 Yazilim, SKB acil durdurma butonu serbest hale gelmesi

ile acil durdurmadan cikis islemini baslatacaktir.

M:11-I:0-P:71-4003-1-7003-NP:26 Yazilim, SKB atis konumu anahtari basili hale gelmesi

ile atis konumuna yonlenme islemini baslatacaktir.

M:11-I:0-P:71-4002-1-7001-NP:26 Yazilim, SKB yukleme konumu anahtari basili hale gelmesi

ile yukleme konumuna yonlenme islemini baslatacaktir.

M:11-I:0-P:71-4001-1-7002-NP:26 Yazilim, SKB nakliye konumu anahtari basili hale gelmesi

ile nakliye konumuna yonlenme islemini baslatacaktir.

M:11-I:0-P:71-4004-1-7004-NP:26 Yazilim, SKB hedef konumu anahtari basili hale gelmesi

ile hedef konumuna yonlenme islemini baslatacaktir.

66


