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ABSTRACT 

 

SHORT RANGE THRUSTING PROJECTILE TRACKING 
 

 

Bilgin, Ozan Özgün 

 

M. S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

September 2012, 74 pages 

Short range thrusting projectiles are one of the various threats against armored 

vehicles and helicopters on the battlefield. Developing a countermeasure for this kind 

of projectiles is very crucial since they are vast in number and easy to operate on the 

battlefield. A countermeasure may consist of fire point prediction of the projectile 

and attack the launcher of it, or it may be the impact point prediction of the projectile 

and apply a hard-kill counter measure on its way to the ally target. For both of the 

countermeasure concepts, dynamics and parameters of the projectile must be 

estimated precisely. In this thesis, dynamic models for thrusting and ballistic flight 

modes of thrusting projectile are obtained. Three different tracking filters are 

suggested for precise tracking of the projectiles and their estimation performances 

are compared. These filters are the Extended Kalman Filter (EKF), the Particle Filter 

(PF) and the Marginalized Particle Filter (MPF).  

Keywords: Ballistic, Target Tracking, Thrusting Projectile, Parameter Estimation, 

Marginalization, Kalman Filter, Particle Filter 
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ÖZ 

KISA MENZĐLLĐ ĐTKĐYE SAHĐP MERMĐLERĐN TAKĐBĐ 
 

 

Bilgin, Ozan Özgün 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler 

 

Eylül 2012, 74 sayfa 

Kısa menzilli itkiye sahip mermiler zırhlı araçlara ve helikopterlere karşı tehdit 

oluşturan ve savaş alanında oldukça fazla bulunan tehditlerin başında gelmektedir. 

Savaş alanında çok fazla bulunması ve kolaylıkla dost unsurlara karşı kullanılabilir 

olması nedeniyle bu tip tehditlere karşı tedbir uygulanması oldukça önemlidir. Karşı 

tedbir yöntemleri olarak atım noktasının tahmini ile birlikte atıcıya karşı önlem 

alınması veya çarpışma noktasının hesaplanarak merminin havada imha edilmesi 

yöntemleri sıralanabilir. Bu tip karşı tedbir yöntemleri için merminin dinamiğinin iyi 

şekilde kestirilmesi gerekmektedir. Bu çalışmada, itkiye sahip ve balistik uçuş 

durumlarını içeren hedef dinamik modelleri elde edilmiştir. Daha sonra elde edilen 

hedef modelleri kullanılarak hedef üç farklı izleme süzgeci ile izlenmiş ve bu 

süzgeçlerin başarımları karşılaştırılmıştır. Gerçeklenen süzgeçler genişletilmiş 

Kalman süzgeci (EKF), parçacık süzgeci (PF) ve ayrıştırılmış parçacık süzgeci 

(MPF)’dir.  

Anahtar Kelimeler: Balistik, Hedef Đzleme, Đtkiye Sahip Mermi, Parametre Kestirimi, 

Kalman Süzgeci, Parçacık Süzgeci  
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CHAPTER 1 

 

INTRODUCTION 

Short range thrusting projectiles are one of the various threats against armored 

vehicles and helicopters on the battlefield. Their dynamics are highly nonlinear and 

they change modes between thrusting and ballistic through their flight. Therefore, the 

dynamics of the projectile cannot be defined by classical linear models such as, 

constant velocity, acceleration etc. The focus of this thesis is to derive dynamic 

model of the thrusting projectile and develop a precise tracking algorithm for the 

estimation of position and velocity of the projectile. In this chapter, first, information 

about short range thrusting projectiles is introduced. Then, the radar concept about 

the ballistic target tracking with radar concept will be described. These tracking 

algorithms are the Extended Kalman Filter (EKF), the Particle Filter (PF) and the 

Marginalized Particle Filter (MPF). In addition, survey of the literature on the 

tracking algorithms that are used for thrusting projectiles is reviewed. This chapter is 

completed with the outline of the thesis. 

1.1. Short Range Thrusting Projectiles 

Short range thrusting projectiles are generally man launched short range missiles. 

Their external flight can be considered in two phases as thrust and ballistic. They are 

fin-stabilized projectiles [1]. The most famous type of the man launched projectile is 

Rocket Propelled Grenade (RPG). The most famous RPG of all is the RPG-7 (Figure 

1). 

The rocket motor of the projectile is ignited after a short period it leaves the 

launcher. At the beginning of the flight it has an initial velocity which is referred as 

the nozzle velocity [2]. Before the ignition of rocket motor, the projectile is in the 
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ballistic phase. Once the rocket motor is ignited, projectile enters the thrust phase. In 

this phase, the rocket motor applies thrust to the projectile generally for a brief 

period. When the rocket motor is depleted, in other words, when the thrust applied to 

the projectile is almost zero, the projectile enters ballistic phase again and flies in this 

phase until it impacts. The target dynamics and the dominant forces acting on the 

projectile are different in each phase. The launch sequence of the RPG-7 can be seen 

in Figure 2. 

 

Figure 1: the RPG-7 Projectile [2] 
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Figure 2: the RPG-7 Launch Sequence [2] 

Unfortunately, there is no detailed information about these kinds of projectiles in the 

literature and therefore, the ballistic parameters and the thrust profile are not known. 

For this reason, the projectile simulation in this thesis is performed for a hypothetical 

model with some dynamic model simplifications. Details are given in Chapter 5. 

1.2. Ballistic Target Tracking with Radar 

There is great interest in the literature for the tracking of the ballistic targets. The 

focus of these studies is mainly on the tracking of the long range and high altitude 

missile systems. The motivation of these studies is to enhance practical tracking 

applications for homeland security and missile defense systems. There are a vast 

number of studies that focused on the tracking of the missiles on their reentry phase. 

Reentry phase is the phase where missile is under endo-atmospheric effects like air 

lift and resistance. Two of the major papers on this subject surveys about the ballistic 

target tracking filters that are developed so far [3], [4]. In [3], the Extended Kalman 

Filter (EKF), the Unscented Kalman Filter (UKF) and the particle filter (PF) 

performances are compared. The focus of these studies are better modeling of the 
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ballistic target and implementing tracking with the classical suboptimal Bayesian 

estimation algorithms. 

There are also other studies on tracking ballistic missiles on their thrust 

phases[5],[6]. However, the first tracking algorithm for thrusting and ballistic mode 

switching target is developed by Yuan [7], [8]. In his study, Yuan focused on 

multiple model tracking of a short range thrusting projectile by Interacting Multiple 

Model EKF and predicting its impact point. 

Bruno and Pavlov are focused on state estimation ballistic targets by the PF in their 

several studies [9], [10] and [11]. They assume a model with four states which favors 

the particle filter because it is well known that the particle filter performance 

decreases as the state dimension increases. More precisely, to achieve the same 

performance, the number of particles should be increased exponentially with the 

number of states.  

There is an algorithm developed to improve estimation performances of particle 

filters for high state dimension models. This algorithm is called Marginalization (or 

sometimes it is called Rao-Blackwellization). The idea is to marginalize out the 

linear states from the system model, and estimate them with classical Kalman filter. 

The study on marginalization for different types of systems can be found in [12] and 

[13]. 

Our motivation is to develop a precise target tracking filter for thrusting short range 

projectiles. The filter should be a multiple model filter because of the thrusting and 

the ballistic modes of the projectile. With this motivation, a multiple model 

marginalized particle filter algorithm is developed and its estimation performance for 

different scenarios is compared with EKF and PF. 
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1.3. Outline of the Thesis 

This thesis is composed of six chapters. The first chapter is introduction. In the 

second and third chapters, theoretical background required for this study is given. 

Fourth chapter provides detailed information about the tracking algorithms used in 

this study. The fifth chapter includes simulation description done in this study and 

the results of these simulations. Thesis is summarized in the conclusion chapter. 
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CHAPTER 2 

 

RADAR THEORY 

Radar stands for the Radio Detection and Ranging. Radars transmit electromagnetic 

radiation into the environment and receive returned reflections from objects in the 

environment. Radar radiation propagates at the speed of light. In this chapter, 

introductory information about radar fundamentals is given. More detailed 

information for interested readers can be found in [14] and [15]. 

2.1. Detection 

The main purpose of the radar is to determine whether there is a target in the field of 

the view of the radar or not. Detection is based on transmitting electromagnetic 

waves and receiving its reflection from targets and clutter (Clutter is all other 

undesired objects other than the target.). In addition to the electromagnetic power 

received from the target and the clutter, there is also an additive white noise in the 

received signal which is caused by the thermal noise of the radar receiver. 

In radar detection, there is a tradeoff between probability of detection (Pd) and 

probability of false alarm (Pfa). Typically, the Pfa is used to establish a detection 

threshold on the received signal. This threshold sets the Pd for a target based on its 

signal to interference ratio.  

The detection process also depends on the radar cross section fluctuations and the 

statistical model employed to describe the fluctuating model. The fluctuating models 

are called Swerling models. There are four different Swerling models which are 

proposed for different distributions of the scatter points of the target and level of the 

correlation between measurements. A widely used model is Swerling – 1, in which 
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radar cross section (RCS) value of the target is assumed to be correlated between the 

measurements for coherently integrated pulses. The relation between Pfa and Pd is as 

follows: 

 �� ≅ ���� ���	
��  (2-1) 

The SNR value in (2-1) is in linear scale.  

The detection threshold is calculated for the desired Pfa by using the noise level. The 

most famous and optimal algorithm for the detection threshold calculation is 

Constant False Alarm Rate (CFAR). CA-CFAR (Cell Averaging CFAR) uses 

adaptive measurements of the noise in the neighboring cells of the Range – Doppler 

matrix and adaptively adjusts the detection threshold. CA-CFAR maintains the 

desired Pfa in a noise varying environment. Range – Doppler matrix is obtained by 

applying matched filter to the complex envelope of the received filter and processing 

a bank of received pulses together [14]. 

2.2. Radar Range Equation 

Radar range performance is measured by the signal to noise ratio of the echo 

received from the target. The signal to interference ratio on the receiver depends on 

the transmitter, receiver, and antenna characteristics of the radar as well as the target 

and the environment. Received power from the target is calculated as: 

 �
 = �����
���(4�)������� (2-2) 

where, 

  ��: Transmitted signal peak power [W] 

  ��: Transmit antenna gain [Unitless] 

  �
: Receive antenna gain [Unitless] 

  �: Wavelength of the transmitted signal [m] 

  �: RCS of the target [m2] 
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  ��: System losses [Unitless] 

  ��: Atmospheric Loss [Unitless] 

  �: Range of the target [m] 

The received signal noise power is calculated as follows: 

 �� = �� ! (2-3) 

where, 

  �: Boltzman Constant = 1.38&10(�� [J/K] 

  �: Standart Temperature [K] 

   : Noise equivalent bandwidth of the receiver [Hz]  

  !: Noise figure of the receiver [Unitless] 

The signal to noise ratio S/N is calculated using the ratio between the received signal 

power and the received noise power.  

The maximum radar range can be then calculated with the minimum detectible signal �
)*� and (2-2) as: 

 �)�+ = , �����
���(4�)������
)*�-
. �/
 (2-4) 

2.3. Measurements 

In most applications, it is not enough to know the target is present or not. It is also 

necessary to know the target’s location. Radar can measure target’s distance (range) 

and direction (angle) with respect to the radar as follows: 
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2.3.1. Range Measurement 

Range is determined by the measurement of the time that the radio waves take to 

reach the target and return. Radio waves travel at constant speed, the speed of light. 

Therefore, target’s range is the speed of the light times half of the round trip time. 

Different kinds of waveforms can be used to apply different kind of ranging 

techniques. The most common radar waveform is a train of narrow rectangular-

shaped pulses modulating the sine wave carrier. 

 

Figure 3: Pulsed Ranging [15] 

The transit time is measured by observing the time delay �0 between the transmitted 

and received pulse. 

 � = 1. �02  (2-5) 

 

For correct range measurement, echoes of the closely spaced targets should not be 

overlapped (after the pulse compression if a pulse compression technique is used). 

The bandwidth (BW) of the transmitted pulse determines the range resolution. 

 �
3� = 12.  4 (2-6) 
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Once radar transmits a pulse, it has to wait a sufficient time to transmit the next pulse 

before the echo of the pervious pulse returns to guarantee that there is no ambiguity 

occurs. Therefore, the maximum rate at which pulses may be transmitted is 

determined by the maximum unambiguous range desired. 

 �5��)6 = 12. ��7 (2-7) 

PRF stands for the pulse repetition frequency. 

The range measurement error probability density function directly depends on the 

measurement resolution and can be assumed uniform within the range resolution cell. 

There are some complicated techniques to determine the range within the range 

resolution cell by using the signal power levels from the cell under investigation and 

neighboring cells. After applying such techniques range error tends to the Gaussian 

distribution. The standard deviation of this error depends on both bandwidth and 

SNR [14]. 

 �0��83	:

;
 ≅ 12 √2. =!� (2-8) 

2.3.2. Doppler Measurement 

The Doppler effect is a shift in the frequency of a wave reflected or received by an 

object in motion [15]. The wave radiated from a point source is compressed in the 

direction of motion and is spread out in the opposite direction. In other words, 

Doppler shift is the frequency difference between the transmitted and the received 

waves. 

For every half wavelength per second that a target’s range decreases, the radial 

frequency phase of the received echo advances by the equivalent one whole cycle per 

second. 
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 >?;@@A3
 = −�C� 2⁄  (2-9) 

where, �C  is the radial component of the relative velocity between target and radar. 

The Doppler resolution frequency depends on the PRF and number of coherently 

processed pulses N. The Doppler frequency is obtained by slow time FFT. In another 

words, the FFT is taken between pulses on the same range bin. Therefore, the 

sampling frequency is PRF and FFT size is the number of samples. The radial 

velocity resolution of the radar is: 

 E
3� = ��7! . �2 (2-10) 

From the sampling theory, the maximum unambiguous Doppler frequency is 

determined by the sampling PRF. The maximum unambiguous radial velocity of the 

radar is: 

 E5��)6 = ��72 . �2 (2-11) 

The Doppler measurement error probability function directly depends on the Doppler 

resolution of the radar and the SNR. 

 �?;@@A3
	:

;
 ≅ ��7. �2!√2. =!� (2-12) 

By sensing Doppler frequency Radar does not only measures range rate directly but 

also differentiates the moving targets from stationary clutter [15]. This feature is 

called Moving Target Identification (MTI). MTI eliminates clutter by passing 

multiple coherent pulses through an MTI filter. MTI filter eliminates spectral regions 

with heavy clutter. For stationary radar, clutter is spread around zero Doppler 

frequency. 
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2.3.3. Direction Finding 

Direction finding (DF) is a process to find the angular position of the target in the 

receive beam of the radar. In other words, DF is the angular error between boresight 

of the receive beam and the target [14]. There are different DF techniques. These 

techniques can be categorized in two as sequential lobing and monopulse techniques. 

In sequential lobing, two beams with different angle offsets are directed on the target 

sequentially in time (Figure 4). These beams are constructed with the same and only 

antenna aperture. The angle error is calculated by difference of the signal amplitude 

acquired by sequential beams. The drawback of the sequential lobing is that, it is 

affected by the signal amplitude fluctuations. 

 

Figure 4: Amplitude Comparison Direction Finding [15] 

The other method is the monopulse technique. In this technique, two simultaneous 

beams are produced by different halves of the antenna aparture to avoid inaccuracies 

due to pulse-to-pulse fluctuations in the received signal. By using simultaneous 

beams angle error is sensed in a single pulse. In amplitude comparison monopulse, 

overlappling beams are directed to the target and amplitude difference is used to 

calculate angle error (Figure 4). In another technique, both halves of the antenna 

produce beams pointing in the boresight direction and phase difference of the 

received signal is used to calculate angle difference. 
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Figure 5: Phase Comparison Monopulse Direction Finding [15] 

In phase comparison monopulse, the angle error F3 is proportional to the phase 

difference between the signals acquired by the two different halves of the antenna. 

In monopulse, the DF angle error standard deviation depends on the beam width of 

the receive beam and the SNR.  

 

 

�?G	:

;
 ≅ F 4�H√2. =!� (2-13) 

where, 

  FIJ: 3 dB beam width of the receive beam 

  �): slope of the amplitude ratio of sum and diff antenna patterns. It depends 

on the illumination tapering of the antenna. 
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CHAPTER 3 

 

DYNAMICS OF BALLISTIC PROJECTILES 

Our purpose in this thesis is to develop dynamic models for thrusting and ballistic 

modes of thrusting projectiles and develop a precise tracking algorithm. 

Unfortunately, there is not much detailed information about thrusting ballistic 

projectiles in the literature. Especially for the thrust profiles, there is no information 

at all. In this study, the modeling of a ballistic target few sources that exist in the 

literature are used. In this chapter, dynamics of the thrusting projectile for ballistic 

and thrust phases are explained. The equations in this chapter are mainly adopted 

from [16] and [17].  

It is known from [1] that thrusting ballistic projectile are in the class of fin stabilized 

projectiles. This chapter constitutes mathematical models representing the flight of 

fin-stabilized projectiles which are dynamically stable and at least trigonometrically 

symmetric. The essential forces acting on ballistic projectiles are investigated. 

3.1. Forces Acting on Fin Stabilized Projectiles 

In this section dominant forces acting on the projectile are investigated. The forces 

are composed of, the Drag Force	(K7LLLLLM), the Lift Force	(�7LLLLM), the Magnus 

Force	(N7LLLLLLM), the Gravitational Force	(�M) and the Thrust Force (�LM). Newton’s law of 

motion of the center of mass of the projectile is: 

 7M = HOM = K7LLLLLM + �7LLLLM + N7LLLLLLM + �M + �LM  (3-1) 

These forces are explained in the following subsections. Since short range ballistic 

trajectories are our interest, effects of the Earth rotation are neglected (i.e. Coriolis 



force) when constructing equations of motion. 

assumed to be flat. 

3.1.1. Drag Force

The aerodynamic drag force opposes the forward velocity of the projectile, as 

illustrated in Figure 6

is studied and generally referred as “air

Figure 

The vector representation

 K7LLLLLM = −
where, 

  Q = air density

  RLM = velocity vector

  R= the scalar magnitude of the velocity

  = = projectile reference area 

  S?= drag coefficient. 

15 

) when constructing equations of motion. Based on the same reasoning Earth is 

orce 

The aerodynamic drag force opposes the forward velocity of the projectile, as 

6. Drag is the first force to remember when the 

is studied and generally referred as “air resistance” [16]. 

Figure 6: Drag Force Acting on the Projectile [16]

representation of the drag force is as follows: 

− .� 	Q=S?RLMR  

air density 

vector 

the scalar magnitude of the velocity vector 

projectile reference area  

drag coefficient.  

Based on the same reasoning Earth is 

The aerodynamic drag force opposes the forward velocity of the projectile, as 

the exterior ballistics 

 

[16] 

(3-2) 
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In practice the reference area = is defined as: 

 = = �T�4  (3-3) 

where, 

  d = projectile diameter.  

The diameter is usually taken as the diameter after the o-give nose section of the 

projectile. The effect of the yawing (or pitching since the projectile is assumed 

rotationally symmetric) is accounted in the drag coefficient	S?. This can be thought 

as if the effective reference area of the projectile is changed when the nose of the 

projectile is deflected with respect to the velocity vector	RLLLM. The drag coefficient	S? is 

well approximated by the following equation. 

 S? = S?U +	S?VWX� (3-4) 

where, 

  S?U= the zeros-yaw drag coefficient 

  S?VW= yaw drag coefficient 

  X = YZ[	(\�) 
  \� = the angle between the projectile nose direction and velocity vector 

Note that as the yaw angle increases, drag coefficient and drag force are increasing in 

a quadratic manner. Drag force renders the projectile dynamics as highly nonlinear. 

In addition, as speed increases, drag force increases also in a quadratic manner and 

tends to slow down the projectile.  

3.1.2. Lift Force 

Aerodynamic lift is the force perpendicular to the projectile trajectory as it can be 

seen in Figure 7. If the nose of the projectile is above its trajectory, the projectile 



tends to climb because of the lift force. The lift force is the force which causes 

airplanes to fly. 

Figure 

The vector form of the lift force is as follows:

 �7LLLLM = −
where, 

  &M= projectile nose direction

  S]^= lift coefficient. 

and other parameters are same as defined before.

The lift force coefficient exhibits nonlinear behavior because the lift coefficient 

varies with the yawing of the projectile

 S]^ = S
where, 

  S]^U= linear lift 

  S]^W= cubic lift 
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tends to climb because of the lift force. The lift force is the force which causes 

Figure 7: Lift Force Acting on the Projectile [16]

The vector form of the lift force is as follows: 

− .� 	Q=S]^RLM _ (&M _ RLM)  

= projectile nose direction 

= lift coefficient.  

and other parameters are same as defined before. 

The lift force coefficient exhibits nonlinear behavior because the lift coefficient 

varies with the yawing of the projectile. 

S]^U +	S]^WX� 

= linear lift force coefficient 

= cubic lift force coefficient 

tends to climb because of the lift force. The lift force is the force which causes 

 

[16] 

(3-5) 

The lift force coefficient exhibits nonlinear behavior because the lift coefficient 

(3-6) 



Note that as the yaw angle increases lift coefficient and 

cubic manner because of the cross product in 

coefficient in (3-6) is referred as cubic lift coefficient. Lift fo

which renders the projectile

3.1.3. Magnus Force

Magnus force is the phenomenon which 

fluid creates a whirlpool around itself and experiences a force perpendicular to the 

line of motion. This force is caused because of the unequal pressures on the each side 

of the projectile which is caused by the viscous interaction between the fluid (air) 

and the spinning surface. Curved flight of the football is a demonstration of the 

Magnus force.  

Figure 

The vector equation defining the Magnus force is as follows:

 

where, 
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Note that as the yaw angle increases lift coefficient and the lift force increas

cubic manner because of the cross product in (3-5). This is why the second 

is referred as cubic lift coefficient. Lift force is another 

which renders the projectile dynamics as nonlinear  

Magnus Force 

the phenomenon which occurred when a spinning object flying in a 

fluid creates a whirlpool around itself and experiences a force perpendicular to the 

e of motion. This force is caused because of the unequal pressures on the each side 

of the projectile which is caused by the viscous interaction between the fluid (air) 

and the spinning surface. Curved flight of the football is a demonstration of the 

Figure 8: Magnus Force Acting on the Projectile [16]

The vector equation defining the Magnus force is as follows: 

N7LLLLLLM = −12 	QR�= `aTR bScd^ eRLMR _ &Mf 

lift force increases in a 

. This is why the second 

rce is another factor 

when a spinning object flying in a 

fluid creates a whirlpool around itself and experiences a force perpendicular to the 

e of motion. This force is caused because of the unequal pressures on the each side 

of the projectile which is caused by the viscous interaction between the fluid (air) 

and the spinning surface. Curved flight of the football is a demonstration of the 

 

[16] 

(3-7) 
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  Scd^= Magnus force coefficient 

  T=diameter of the projectile 

  a= axial spin ( in radians per second, positive for right hand spin) 

and other parameters are as defined before. 

The Magnus force is proportional to the product of the spin and the sine of the 

yawing angle. The Magnus force coefficient is nonlinear in the yawing angle. The 

characteristics of this force are very similar with the lift force. 

 Scd^ = Scd^U +	Scd^WX� (3-8) 

where, 

  Scd^U= linear lift force coefficient 

  Scd^W= cubic lift force coefficient 

3.1.4. Gravitational Force 

This force is nothing but the well known gravitational force caused by the 

gravitational acceleration. Acceleration due to gravity is calculated by [17]: 

 gM = gh ` �i�i + ℎb� (3-9) 

 gh = 9.80665n1 − 0.0026 ∗ 1pY	(2qOr)s (3-10) 

where, 

  �i= mean radius of the Earth 

  ℎ= height from sea level 

  qOr= latitude in radians 



For our applications height and latitude change through the flight of the projectile is 

negligible so that, the gravitational acce

Furthermore, Earth is assumed to be flat in this study.

3.1.5. Thrust 

Thrust is the force induced by the rocket motor of the projectile. The thrust vector is 

on the direction of the nose of the projectile. 

Figure 

The vector equation defining the Thrust is as follows:

 

Thrust is a time varying force because of the

projectile. 

Thrust profile of a projectile is directly depended to the physical structure of the 

rocket motor. It is known from 

rocket motors. The thrust profiles of these 

of the motor. The grain is th

[18], [19]. 
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For our applications height and latitude change through the flight of the projectile is 

negligible so that, the gravitational acceleration is assumed 

Furthermore, Earth is assumed to be flat in this study. 

is the force induced by the rocket motor of the projectile. The thrust vector is 

on the direction of the nose of the projectile.  

Figure 9: Thrust Acting on the Projectile [16] 

The vector equation defining the Thrust is as follows: 

�LM = �(r)&M 
Thrust is a time varying force because of the nature of the rocket motor of the 

Thrust profile of a projectile is directly depended to the physical structure of the 

rocket motor. It is known from [1] that the type of projectile in our concern has solid 

motors. The thrust profiles of these kinds of motors depend

The grain is the shape of the burning surface of the

For our applications height and latitude change through the flight of the projectile is 

leration is assumed to be constant. 

is the force induced by the rocket motor of the projectile. The thrust vector is 

 

 

(3-11) 

nature of the rocket motor of the 

Thrust profile of a projectile is directly depended to the physical structure of the 

that the type of projectile in our concern has solid 

depend on the grain shape 

burning surface of the solid motor fuel 
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Figure 10: Schematic of a solid fuelled rocket motor [18] 

The resultant force occurs on the rocket is directly depends to the rate of burn of the 

solid rocket fuel. From the Newton’s second law of motion: “the resultant of the 

forces acting on an object is equal to the rate of change of the linear momentum of 

the object”. Therefore the shape of the burning surface is the factor which designates 

the thrust profile. 

 

Figure 11: Thrust profiles for different kinds of grain shapes [19] 
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CHAPTER 4 

 

TRACKING METHODOLOGY 

In order to predict the trajectory of the thrusting projectiles, motion models for 

thrusting and ballistic phases should be constructed. After that, these models are used 

in multiple model Bayesian estimation algorithms in order to accomplish the tracking 

of the target. In this chapter, dynamic model of the thrusting ballistic projectile is 

constructed and the tracking algorithms that are used in simulations are defined. 

4.1. Dynamic Model 

The significant forces acting on a thrusting projectile are gravity, drag and thrust [7]. 

By ignoring other insignificant forces, dynamic models for both thrusting and 

ballistic modes of a ballistic target is obtained according to point mass motion 

equations. General expression of the dynamic model is as follows: 

 tC (r) = >ut(r)v + wx(r)  (4-1) 

Motion model is best defined in Cartesian coordinates. Therefore, in this study, we 

used Cartesian coordinates for the motion model of the target. The state consists of 

the positions and the velocities of the target in each axis as well as the drag (\(r)) 
and thrust (y(r)) parameters [7]. 

 t(r) = n&(r)	&C (r)	z(r)	zC (r)	{(r)	{C(r)	\(r)	y(r)s|  (4-2) 

The dynamic model for thrusting ballistic projectile can be written as follows. 
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 }&~ (r)z~ (r){~(r)� = �(�)�(�) }&C (r)zC (r){C(r)� + \(r)K(r) }
&C (r)zC (r){C(r)� + g �

00−1� +	wx�  (4-3) 

In (4-3), the acceleration for each axis is modeled by considering the effect of the 

dominant forces. In addition to that there is additive gravitational acceleration in the 

z axis. 

The first term on the right side of the equation is the specific thrust in each of the 

three axes. y(r)	is the acceleration in m/s2, R(r) is the magnitude of the velocity of 

the projectile in m/s. For the free-flight mode effect of this acceleration is zero. 

The second term is the acceleration caused by the drag force that affects the 

projectile in each three axes. This force is related to the velocity and the altitude of 

the projectile. \(r) is the drag coefficient in m2/kg and D(t) is a parameter consists of 

velocity and air density.  

 K(r) = 	(�(�)�(�)�   

Q({) = 	Q(0)i(��  

(4-4) 

In (4-4), z is the altitude in meters and c is the air density constant in m-1. 

In addition to the deterministic coefficients, the dynamic uncertainties of the motion 

are modeled by a zero mean white Gaussian noise	wx�. Thrust and drag parameters 

are modeled as follows: 

 \(r) = \h +wx�(r)  (4-5) 

 y(r) = yh +wx�(r)  (4-6) 

wx� and wx� are zero mean white Gaussian noises. Dynamic model process noise is as 

follows: 
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 wx = }	wx�(r)wx�(r)	wx�(r)�  (4-7) 

Details and the model of the process noise is given in part 4.3. 

4.2. Discrete Time Motion Model 

The motion model given above is discretized since the Bayesian estimation is done in 

discrete time. One reason for it is that the measurement flow to the tracker system is 

discrete because of the nature of the measurement device (i.e. radar). Our goal is to 

obtain the following equation from (4-1). 

 tn� + 1s = >�(tn�s) + w�  (4-8) 

In the discretization procedure we first assume that the noise is zero and write the 

solution of the nonlinear differential equation recursively then add the corresponding 

noise term as a Gaussian noise with appropriate mean and covariance matrix.  

There are several discretization methods like Euler method, Runge - Kutta methods 

etc. [20]. More complex methods are also developed all aim to improve the 

discretization performance, in other words to decrease the discretization error. More 

complex methods use higher order moments of the state. Performance of the 

discretization method depends on the discretization time period. Discretization 

performance increases as the time period decreases [20]. In this work, dynamic 

model is discretized by the Euler’s forward method with a relatively short time 

period (1 ms). 

Combining (4-3) through (4-7) the continuous time deterministic motion model 

(differential equation) is obtained as follows. 
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&C = >ut(r)v =
���
���
���
�� &C (r)�(�)�(�) &C(r) + \(r)K(r)&C (r)zC (r)�(�)�(�)zC (r) + \(r)K(r)zC (r){C(r)�(�)�(�) {C(r) + \(r)K(r){C(r) − g00 ���

���
���
��
  (4-9) 

In (4-9) continuous time state transition function can be seen. Discrete time state 

transition function is calculated by Euler’s forward method [20] as follows. 

 tn� + 1s = >�(tn�s) ≅ tn�s + ℎ>(tn�s) (4-10) 

Where, >(. ) is defined in (4-9) and ℎ is the discretization step size which is defined 

as track update period T from now on. 

 

>�(tn�s) =

���
���
���
���
� &n�s + 	�&C n�s&C n�s e1 + 	� ��n�s�n�s+ \n�sKn�s�fz(�) + 	�zC (�)zC n�s e1 + 	� ��n�s�n�s+ \n�sKn�s�f{(�) + 	�{C(�){Cn�s e1 + 	� ��n�s�n�s+ \n�sKn�s�f − g�\n�syn�s ���

���
���
���
�

  (4-11) 

More accurate discretization can be done by taking higher order moments of >(. ) 
into consideration. But, this level is sufficient for this work, since the quantization 

period is taken fairly small. 
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4.3. Process Noise Model 

Process noise in (4-8) is acting on the states that represent motion and ballistic 

parameters. The process noise of the motion states are modeled in continuous time 

(CWNA) [7]. Then it is discretized. The advantage of this model is that it is 

independent to the discretization period compared to the direct discrete time 

modeling (DWNA) [7]. The covariance matrix for process noise Q for the states 

defined in (4-2) is as follows. 

 � = }��� 0 000 ��� 00 ����  (4-12) 

 ��� =	 ��� 0 000 �� 00 ���  (4-13) 

 �� =	 ���
���� 3/ �� 2/�� 2/ � ���

�� ��  (4-14) 

��, �� and �� are the corresponding power spectral densities (PSD) of process noises.  

 �� = T���  (4-15) 

 �� = T���  (4-16) 

 �� = T���  (4-17) 

Where, T�	(H/Y�), T�(H� (�g. Y)⁄ ) and T�(H/Y�) are the root mean square (rms) 

rate of change in velocity, drag coefficient rate of change and thrust coefficient rate 

of change correspondingly[7]. 
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4.4. Separation of the Linear and Nonlinear Parts 

Performances of the three filters (EKF, PF and MPF) are compared in this study. All 

of them use an IMM approach with two models which correspond to the thrust and 

ballistic parts of the trajectory. In section 4.6, details of the implementation are 

given. The application of the marginalized particle filter requires the separation of 

the linear and the nonlinear parts of the model. At this point, we give an approximate 

equivalent of the state space equations that is separated into the linear and the 

nonlinear subsystems. Marginalization reduces the dimension of the nonlinear 

system so that the model can be utilized to obtain better estimates of the state using 

the same number of particles as that of standard particle filter. [12]- [13] The idea in 

the marginalized particle filter is to marginalize out the linear states using Bayes’ 

theorem and filter them with standard Kalman filter which is optimal for linear and 

Gaussian estimation problems. This technique is sometimes referred as Rao-

Blackwellization. Below, a brief explanation for the marginalized particle filter is 

given. 

Let the state vector be partitioned as follows: 

 t� = �t�At���  (4-18) 

Where t�A  denotes the states with conditionally linear dynamics and t�� denotes the 

states with nonlinear dynamics. The goal is to obtain a system model in the following 

form with the selected linear and nonlinear states. 

 t��.A 	= �.A (t��) + ��A (t��)t�A +w�A   (4-19) 

 t��.� 	= �.�(t��) + ���(t��)t�A +w��  (4-20) 

 z� 	= S(t��)t�A + E�  (4-21) 

System model is given in (4-11). We select the velocities as the nonlinear part of the 

state. A close investigation of (4-11) shows that this choice seems to be inappropriate 
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because of the altitude {(�) term in	K(�). However, thrusting projectiles can be 

assumed flying less than 100 m altitude always. This is especially true for man-

launched projectiles. 

As it can be seen from Figure 12, air density changes slightly for the altitude range 

from 0 m to 100. This means Drag force would change slightly in this altitude range. 

To illustrate, let a projectile has S x Cd = 10-4 m2, m = 2 kg and V = 150 m/s, the 

difference in the drag force that affects the projectile between 0 m and 100 m altitude 

is 0.01 N. This shows that, it is possible to assume that the air density is constant 

during the flight. Hence, the system model can be marginalized. This assumption is 

reasonable because such an uncertainty in air density always exists due to the 

changes in the humidity and the temperature of the air density. 

 

 

Figure 12: Air Density w.r.t. Altitude 

A close look at (4-11) shows that the drag and the thrust parameter as well as 

position states can be taken as linear states. 
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 t�A =
���
��&n�szn�s{n�s\n�syn�s���

��
  (4-22) 

 t�� = }&C n�szC n�s{Cn�s�  (4-23) 

From (4-11), (4-22) and (4-23) the linear state transition model can be written in the 

following form. 

 t��.|�A = ���
��� 0 00 � 0000

000
�00���
�� t�� + �1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 1�

�+� t�A +w�A   (4-24) 

Hence, the linear state transition model can be expressed as in (4-19). �.A (t��)	and ��A (t��)	are the first and second terms on the right hand side of (4-24) respectively. 

More than that, these functions are in special forms. �.A  is a linear function of the 

nonlinear states so it can be expressed as a matrix coefficient and ��A  is independent 

of t�� and its 5x5 identity matrix. 

The nonlinear state transition model can be put in the following form. 

 

t��.|�� =
�1 0 00 1 00 0 1� t�� − �

00−g�� +

���
��0 0 0 |�n�s &C n�s Kn�s&C n�s0 0 0 |�n�s zC n�s Kn�szC n�s0 0 0 |�n�s {Cn�s Kn�s{Cn�s���

��
�+�

t�A +w��  

(4-25) 
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The nonlinear states can also be expressed in the desired form in (4-20). �.�(t��)	is 

the sum of the first two expressions on the right hand side of (4-25). It’s a nonlinear 

(affine) function of t��. ���(t��) is the third expression on the right hand side. 

As it can be seen from (4-24) and (4-25), the state noise is also partitioned into linear 

and nonlinear structures. The state noise is assumed white and Gaussian where 

density is defined as follows. 

  w� = �w�Aw��� ~!(0, ��)  (4-26) 

 �� =	 , ��A ��A�u��A�v| ��� -  (4-27) 

After these steps, our model is considered as marginalizable. The expressions are 

used in the marginalized particle filter algorithm are given in Section 4.8.3. 

4.5. Measurement Model 

The measurement unit is assumed to be a three dimensional radar that produces 

measurements in the three axes in spherical coordinates so the measurements are 

nonlinear functions of the state variables. Because of this the measurement model of 

the radar is nonlinear. 



31 

 

Figure 13: Spherical Coordinate System Definition 

The measurement vector consists of azimuth angle (F), elevation angle (�) and range 

(R) respectively.	E� 	is the measurement noise and is independent of the process noise 

and white Gaussian. 

 z� = �F)�) ) � = ¡ rO[(.(z &⁄ )rO[(.({ ¢&� + z�⁄ )¢&� + z� + {� £ + �E¤E¥E
 � (4-28) 

 	E¤~!(0, �¤�) 
	E¥~!u0, �¥�v 
	E
~!(0, �
�) 

(4-29) 

4.6. Converted Measurements 

In this work, the goal is to track a ballistic target with radar. This means both the 

process and measurement models are nonlinear. For measurement systems of high 

accuracy, nonlinearity in measurement model can be handled by unbiased conversion 

[8]. In this study, converted measurements are used for measurement update in 

Tracking Filters [21]. 
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Assuming the spherical measurement noises are Gaussian, the unbiased converted 

measurements are as follows: 

 &)5 = ¦.(.¦�(. )1pY	(F))1pY	(�))	 
z)5 = ¦.(.¦�(. )YZ[	(F))1pY	(�))		 
{)5 = ¦.(. )YZ[	(�))		 

(4-30) 

where, 

 ¦. = i(§Ẅ �⁄ 	 
	¦� = i(§©W �⁄

 

(4-31) 

Note that the spherical measurements are defined in (4-28) and (4-29). Since the 

measurements are assumed as Gaussians, their covariance matrix should be 

transformed to the Cartesian coordinate system too. Let �)5  be a 3x3 covariance 

matrix of the unbiased converted measurements. Elements of this matrix are as 

follows: 

 �)5 (1,1) = n(¦.¦�)(� − 2s )�1pY�F)1pY��)  

+ .� ( )� + �
�)(1 − ¦.�1pY2F))(1 + ¦��1pY2�))  (4-32) 

 �)5 (2,2) = n(¦.¦�)(� − 2s )�YZ[�F)1pY��)  

+ .� ( )� + �
�)(1 − ¦.�1pY2F))(1 + ¦��1pY2�))  (4-33) 

 �)5 (3,3) = n(¦�)(� − 2s )�YZ[��)  

+ .� ( )� + �
�)(1 + ¦��1pY2�))  (4-34) 

 �)5 (1,2) = n(¦.¦�)(� − 2s )�YZ[F)1pYF)1pY��)  

+ .� ( )� + �
�)¦.�1pY2F)(1 + ¦��1pY2�))  (4-35) 
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 �)5 (1,3) = n¦.(.¦�(. − ¦.(. − ¦.s )�1pYF)1pY�)YZ[�)  

+ .� ( )� + �
�)¦.¦��1pYF)YZ[2�)  
(4-36) 

 �)5 (2,3) = n¦.(.¦�(. − ¦.(. − ¦.s )�YZ[F)1pY�)YZ[�)  

+ .� ( )� + �
�)¦.¦��YZ[F)YZ[2�)  
(4-37) 

Rest of the elements of the covariance matrix �)5 	is zero. 

According to [21], unbiased conversion is valid when the following inequalities 

stand. 

  )	�¤��
 < 0.4 (4-38) 

 �¤ < 0.4 OT ≈ 23; (4-39) 

  )	�¥��
 < 0.4  

 �¥ < 0.4 OT ≈ 23;  

All of these inequalities are satisfied in this study. 

4.7. State Initialization 

Since projectiles that are in concern have very short time of flights, their tracks 

should be in steady state in a short time. In other words, the transition times of tracks 

should be short. For this purpose initial state estimation should be done precisely. In 

the literature, velocity initialization of targets is generally done by converting two 

measurements in Cartesian coordinates and differentiating them [7]. But for our 

application this kind of initialization leads to poor general estimation performances. 

The solution that we used is given in [7] as N-point initialization. The initialization is 
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done by polynomial fitting to N unbiased converted measurements. Second order 

polynomial fitting and line fitting is tested and it is observed that line fitting lead 

better results. Polynomial fitting is done as follows: 

Let the kth measurement be modeled as follows: 

 	z@(�) = ℎ(�)O� + E� (4-40) 

where, 

 	ℎ(�) = �1	r� …	r��[! � (4-41) 

 O� = nOh	O.…	O�s (4-42) 

Position and velocities in each three axes are initialized by polynomial fitting. “n” 

denotes the order of the polynomial. Fitting is done by least squares method. For the 

linear case (i.e. n = 1), the solution is as follows: 

 O. =	 �®ℎ(�)ℎ(�)|c
�¯. �(.®ℎ(�)z@(�)c

�¯.  (4-43) 

And the covariance of the polynomial coefficients are calculated as follows: 

 �@ =	 �®ℎ(�)ℎ(�)|�@�(�)
c
�¯. �(. (4-44) 

From the calculated polynomial coefficients and their covariance matrix mean and 

covariance of the position and velocity of the target can be found. The drag 

coefficient and the thrust coefficient are initialized by certain values. The drag and 

thrust accelerations are coupled. In another words, they are affecting the projectile on 

the same axis. Therefore, it is not possible to estimate both of them correctly. In this 

study, drag coefficient is assumed to be known (initialized with real value and small 

variance) and thrust coefficient is estimated (initialized with a high random value and 

large variance). 
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4.8. Tracking Filters 

4.8.1. Extended Kalman Filter 

The extended Kalman filter is a very widely used state estimation algorithm for 

nonlinear but Gaussian systems. The filtering is done by the linearization (a series 

expansion) of the nonlinearities in the dynamic system. In the Extended Kalman 

Filter, the state transition and measurement models need not be linear functions of 

the state but must be differentiable. Assume that at time �,	the state of the system is 

estimated as t�|�	with the corresponding covariance matrix	��|�. The prediction 

equations are simply obtained using the nonlinearities as follows. 

 t��.|� = >�ut�|�v  (4-45) 

 °��.|� = ℎ�ut��.|�v (4-46) 

The state covariance matrix prediction is done by means of Kalman filter equations 

using the Jacobian matrices of the nonlinearity of the state and the observation. 

 7� = ±²>�²& ³+´|´  (4-47) 

and 

 µ��. = ±²ℎ�²& ³+´��|´  (4-48) 

There is obligation to use unbiased converted measurements in marginalized particle 

filter. In order to make a fair comparison between these filters unbiased converted 

measurements are used in EKF too. As a result, nonlinear function in (4-46) becomes 

linear and the measurement update is done as in the classical Kalman filter. 
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The pseudo code of the extended Kalman filter algorithm is as follows: 

Table 1: Extended Kalman Filter 

1) Initialization: 

Set k �1 

Set the initial estimate: t�|� = th, ¶�|� = ¶h 
2) Prediction: 

Calculation of Process Model Jacobian: 

 7� = ±·�¸·t ¹t´|´   

State Mean Prediction: t��.|� = >�ut�|�v 
State Covariance Prediction:���.|� = 7���|�7�| + � 

3) Measurement Update 

Calculation of Measurement Model Jacobian: 

 µ��. = ±·�¸·t ¹t´�|´   

Innovation Mean: {��. = °��. − ℎ�ut��.|�v 
Innovation Cov: 	=��. = µ��.���.|�µ��.| + � 
Kalman Gain:	º��. = ���.|�µ��.|=��.(. 
State Mean Estimate: t��.|��. = t��.|� +º��.{��. 
State Cov. Estimate: ���.|��. = ���.|� − º��.µ��.���.|� 

4) k = k +1 

5) Go to 2 
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4.8.2. Particle Filter 

Particle filter (PF) is a Sequential Monte Carlo method to solve the Bayesian state 

estimation problem for the nonlinear and the non-Gaussian systems. Goal of the 

Bayesian approach is to construct the pdf of the state at the current time k by using 

all the information (measurements) available up to the current time. For our problem, 

the state pdf in (4-49) remains Gaussian in every time step. 

 t�|�~a(t�|»�) (4-49) 

In (4-49), t�|� denotes the posterior estimate of the state vector and 	»� = {°*}*¯.�  

denotes all the available measurements up to the time k.  

The idea of particle filtering is to represent the state pdf with random particles. As 

the number of particles approaches to infinity particle filter represents the pdf of the 

state perfectly and becomes optimal.  

In this study, Sequential Importance Resampling (SIR) algorithm is used. This 

algorithm is selected because it is a solution to the degeneracy problem which will be 

explained shortly [22]. 

4.8.2.1. Sequential Importance Resampling 

Sequential Importance Sampling (SIR) algorithm is one of the most famous PF 

algorithms and also called “bootstrap” filter [22]. The SIR algorithm defines the 

importance density (the density that the samples are drawn for the next time interval 

and also the one where weight update calculation is applied to) as the transitional 

prior density. Posterior densities acquired from other Bayesian estimation filters like 

(KF, EKF) can also be used as importance densities.  

SIR is a simple and easy way to implement the PF. The pseudo code of the algorithm 

is given as follows. 
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Table 2: SIR Algorithm 

1) Initialization: 

FOR i = 1:N 

 Draw samples from initial importance density: th|(.* ~a+U(&h) 
END FOR 

Set k �0 

2) Measurement Update: 

FOR i = 1:N 

 Calculation of weights: w�(*) = auz�¾t�|�(.* v  
END FOR 

Normalization of weights: w�(*) = ¿(́À)
∑ ¿(́Â)
ÂÃ�  

To conserve the notation:	:	t�|� = t�|�(. 
3) Resampling 

  [t�|�, w�]=Resample(t�|�, w�) 

4) PF: Time Update: 

FOR i = 1:N 

  Random number draw: w�(*)~!(0, �)  
  State Prediction: t��.|�(*) 	= ��(t�|�(*) ) + w��,(*)  

END FOR 

5) k = k +1 

6) Go to 2 

The details of the resample function on the resampling stage are given in 4.8.4. 
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4.8.3. Marginalized Particle Filter 

Implementation of the particle filter for nonlinear (even for non-Gaussian) filtering 

problems is easy. But, the main drawback of particle filter is its exponentially 

increasing computational complexity with the state dimension. The tracking problem 

focused on this thesis has eight dimensional space which can be considered very high 

for particle filtering.  

A solution to the complexity problem is to marginalize out the states appearing 

linearly in the dynamics of the system [12]- [13]. Marginalized particle filter solves 

the linear part of the system by using a Kalman filter for each particle of the 

nonlinear part. In another words, “The Marginalized Particle Filter (MPF) is a clever 

combination of the standard particle filter and the Kalman Filter” [13]. 

As in all Bayesian estimation algorithms, our aim is to estimate the posterior state 

density p(t�|»�) where, »� = {°*}*¯.�  is the measurements up to time k. By 

employing Bayesian Theory and partitioning the states as linear and nonlinear the 

estimation of the state variables can be obtained as in (4-50). 

 aut�A , Å��¾»�v = aut�A ¾Å��, »�vÆÇÇÇÈÇÇÇÉÊG a(Å��|»�)ÆÇÇÈÇÇÉËG   (4-50) 

The first expression on the right hand side of (4-50) is analytically tractable since all 

nonlinear states Å�� = {tÌÍ}*¯.�  up to time k are given. Since the underlying model for 

the linear states is linear and linear states are considered as Gaussian distributed the 

linear states estimation can be done with the classical Kalman filter which is the 

optimal solution for linear – Gaussian case. The estimate of the second expression on 

the right hand side of (4-50) is provided by the particle filter.  

Inspecting (4-19) - (4-21), we see that the linear state variables are dependent to the 

nonlinear state variables and vice versa. There should be a nested estimation 

algorithm composed of Kalman filter and particle filter. 

Let’s start the derivation of the MPF structure with (4-20). As it can be seen, the 

linear states are directly added to the nonlinear states with a coefficient.  
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 t��.� 	= �.�(t��) + ���(t��)t�A +w�� (4-51) 

Rewriting (4-51) as, 

 t��.� − �.�(t��)	ÆÇÇÇÇÈÇÇÇÇÉ�´ = ���(t��)t�A +w�� (4-52) 

the right hand side of the (4-52) looks like a measurement equation of linear states. 

We can define left hand side as pseudo measurement and use the right hand side of 

(4-52) as measurement model. 

With the addition of pseudo measurement, state equations are evolved as follows: 

 t��.A 	= �.A (t��) + ��A (t��)t�A +w�A   (4-53) 

 {� 	= ���(t��)t�A +w��  (4-54) 

 z� 	= S(t��)t�A + E�  (4-55) 

We can interpret this system as a system with two measurements. However, there is a 

correlation between pseudo measurement noise (w��) and the process noise (w�A ) 
which should be taken care of. The decorrelation of the noises can be accomplished 

by Gram – Schmidt procedure [23]. 

 wÎ�A 	= w�A − ÏÐw�A (w��)|ÑÏ{w��(w��)|}(.w��  (4-56) 

By using the definition in (4-27), 

 wÎ�A 	= w�A − ��A�(���)(.w��  (4-57) 

The covariance of wÎ�A is as in (4-58). 

 ���A 	= ��A −��A�(���)(.��A�  (4-58) 

To obtain decorrelated system, (4-57) is substituted into (4-53), 
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 t��.A 	= �.A (t��) + ��A (t��)t�A +wÎ�A + ��A�(���)(.w��  (4-59) 

And by combining (4-54) and (4-59),  

 t��.A 	= �.A (t��) + ��A (t��)t�A +wÎ�A + ��A�(���)(.Ò{� −���(t��)t�A s  (4-60) 

Rewriting (4-60), the decorrelated state space model of the system is obtained as: 

 t��.A 	= �.A (t��) + �A(t��)t�A + ��A�(���)(.{� +wÎ�A   (4-61) 

 �A(t��) = ��A (t��) + ��A�(���)(.���(t��)  (4-62) 

The decorrelated system is composed of (4-61) as its process model and, (4-54) and 

(4-55) as two uncorrelated measurements of this system. From this point forward, the 

algorithm is constructed step by step by using the decorrelated state space system 

model. The pseudo code of the algorithm is given in Table 3. 

Table 3: Marginalized Particle Filter Algorithm 

1) Initialization: 

FOR i = 1:N 

 �Z[iO 	aO rZ1qiY:	th|(.A,(*) = thA , 	�h|(.(*) = �h 
 Nonlinear particles: th|(.�,(*)~atUÓ(th�) 
END FOR 

Set k �0 

2) PF Measurement Update: 

FOR i = 1:N 

 Calculation of weights: w�(*) = a�z�¹Ô��,(*), Õ�(.�  

END FOR 
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Normalization of weights: w�(*) = ¿(́À)
∑ ¿(́Â)
ÂÃ�  

To conserve the notation: t�|�� = t�|�(.�
 

3) Resampling 

  [t�|�� , t�|�(.A , ¶�|�(., w�s 	= 	�iYOHaqi(t�|�� , t�|�(.A , ¶�|�(., w�) 
4) KF: Measurement Update: 

FOR i = 1:N 

  Innovation Covariance Calc.: N�(*) = S�(*)��|�(.(*) �S�(*)�| + �� 
  Kalman Gain Calculation: º�(*) = ��|�(.(*) �S�(*)�|�N�(*)�(. 
  State Mean Estimation: t�|�A,(*) 	= t�|�(.A,(*) + º�(*)(z� − S�(*)t�|�(.A,(*) ) 
  State Covariance Estimation: ��|�(*) = ��|�(.(*) − º�(*)N�(*)�º�(*)�| 

END FOR 

Combine and output result for time k: t�|� = ,t�|�At�|�� - 
5) PF: Time Update: 

FOR i = 1:N 

  Random number draw: w��,(*)~!(0, ��)  
  State Prediction: t��.|��,(*) 	= �.�(�, Z) + ���(�, Z)t�|�A,(*) +w��,(*)  

END FOR 

6) KF: Time Update: 

FOR i = 1:N 

  Innovation Calculation: !�(*) = ���(�, Z)��|�(*)u���(�, Z)v| + ���  

  Kalman Gain Calculation: ��(*) = �A(�, Z)��|�(*)u���(�, Z)v|�!�(*)�(. 
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  State Mean Estimation and One Step Ahead Prediction: 

  t��.|�A,(*) 	= �A(�, Z)t�|�A,(*) + ��A�(���)(.{�(*)+	�.A (�, Z) + 
  ���(*)({� − ���(�, Z)t�|�A,(*)) 
  State Covariance Estimation and One Step Ahead Prediction: 

  ���.|�(*) = �A(�, Z)��|�(*)��A(�, Z)�| − ���(*)!�(*)����(*)�| + ���A   
END FOR 

7) k = k +1 

8) Go to 2 

Details of the Resampling step are given in 4.8.4. 

4.8.3.1. Initialization 

The algorithm starts with Initialization. N particles are selected for the linear and the 

nonlinear states. Nonlinear particles are drawn from the initial pdf of the nonlinear 

states. Although, it is not necessary for our problem nonlinear states are assumed to 

be Gaussian in general. Linear states are assumed to be Gaussian and linear particles 

and their corresponding covariance matrices are initialized as mean and covariance 

matrix of the initial pdf of the linear states. In this algorithm, a Kalman filter is 

constructed for each particle. 

 th|(.�,(*)~atUÓ(th�)  (4-63) 

 th|(.A,(*) = thA , ∀Z = 1. . !  

�h|(.(*) = �h, ∀Z = 1. . !  

(4-64) 
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4.8.3.2. Measurement Update of Nested Particle Filter 

Measurement update of the particle filter is done via weight update in the classical 

particle filter. The density of the output prediction is given in (4-65).  

 a(z�|Ô��, Õ�(.) = !(S�t�|�(.A , S���|�(.S�| + ��)  (4-65) 

The predictions of nonlinear particles are used to calculate output prediction as in 

(4-65). After that, weight update is accomplished by the calculation of the 

measurement likelihood for each output prediction calculated from N particles. 

 w�(*) = a�z�¹Ô��,(*), Õ�(.�  (4-66) 

After the weight update for all the particles is completed, normalization should be 

done to make sure that the sum of weights is equal to one. 

 w�(*) = ¿(́À)
∑ ¿(́Â)
ÂÃ�   (4-67) 

4.8.3.3. Measurement Update of Nested Kalman Filter 

The information available in the actual measurement z� is used to update linear 

states	&�A . The measurement z�	is assumed to be Gaussian; the linear state can be 

estimated by Kalman Filtering. Assuming that the estimates of the nonlinear states 

and the predictions of the linear states at time k are known, linear states estimation is 

done as follows (The ‘(i)’ notation denotes the ith particle): 

 t�|�A,(*) 	= t�|�(.A,(*) + º�(*)(z� − S�(*)t�|�(.A,(*) )  (4-68) 

 ��|�(*) = ��|�(.(*) − º�(*)N�(*)�º�(*)�|  (4-69) 

 º�(*) = ��|�(.(*) �S�(*)�|�N�(*)�(.  (4-70) 
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 N�(*) = S�(*)��|�(.(*) �S�(*)�| + ��  (4-71) 

4.8.3.4. Time Update of Nested Particle Filter 

Time update (prediction) of nested particle filter is done after the measurement 

update of Kalman filters of each particle. Since, the linear portion of the particles are 

used to calculate the time update of nonlinear portion of the state vector their best 

estimates at time k (current time) should be used. This is the reason that the time 

update of particle filter is done after the measurement updates of Kalman Filters. The 

time update of particle filter is done as follows. 

 aut��.|�� ¾Ô��, Õ�v =! `�.�ut�|�� v +
���ut�|�� vt�|�A , 	���ut�|�� v��|� ����ut�|�� v�| + ����  

(4-72) 

Since the pdf is represented by particles, pdf update is done by particle updates. For 

each particle prediction is calculated as in (4-73).  

Notation gets complicated from here. To simplify function of states are defined 	�.��t��,(*)� = 	�.�(�, Z) from here on. 

 t��.|��,(*) 	= �.�(�, Z) + ���(�, Z)t�|�A,(*) +w��,(*)  (4-73) 

Of course this method is an approximation and it’s close to optimal when number of 

particles is fairly large. The last term of (4-73) is the additive noise to spread 

particles (w��,(*)	~!(0, ���)). 
4.8.3.5. Time Update of Nested Kalman Filter 

Despite this part is called time update, it is both measurement update with pseudo 

measurement and time update of linear portion of particles. After the time update of 
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particle filter, the pseudo measurement defined in (4-52) is available. Since the 

measurements are uncorrelated, the measurement update with pseudo measurement 

is done as in classical Kalman Filter. The ‘*’ notation is used to distinguish between 

first and second measurement update. 

 t�|�A,(*)∗ 	= t�|�A,(*) + ��({� − ���(�, Z)t�|�A,(*))  (4-74) 

 ��|�(*)∗ = ��|�(*) − ��(*)!�(*)���(*)�|  (4-75) 

 ��(*) = ��|�(*)u���(�, Z)v|�!�(*)�(.  (4-76) 

 !�(*) = ���(�, Z)��|�(*)u���(�, Z)v| + ���  (4-77) 

The final job is to do the time update of the linear portions of particles. Since the 

state noise is assumed as Gaussian, the time update can be handled by Kalman Filter. 

According to process model of decorrelated system (4-61) and the last estimation, the 

state update is accomplished as follows. 

 t��.|�A,(*) 	= �.A (�, Z) + �A(�, Z)t�|�A,(*)∗ + ��A�(���)(.{�(*)  (4-78) 

It is not very easy to derive state covariance prediction. By combining (4-74) and 

(4-78), an expression analogous to measurement update occurs. 

 t��.|�A,(*) 	= �A(�, Z)t�|�A,(*) + ��A�(���)(.{�(*)+	�.A (�, Z) +���(*)({� − ���(�, Z)t�|�A,(*))  (4-79) 

 ��(*) = �A(�, Z)��(*)  (4-80) 

By using the analogy between (4-74) and (4-79), the prediction of covariance is 

obtained as follows. 
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 ���.|�(*) = �A(�, Z)��|�(*)��A(�, Z)�| − ���(*)!�(*)����(*)�| + ���A 	  (4-81) 

By this last step, all the steps of single model MPF algorithm are completed.  

4.8.4. Particle Degeneracy 

Particle filtering, weights of the particles are calculated in the estimation (weight 

update) stage. As time passes, weights of to all particles tend to zero except few. 

Therefore, number of effective particles that represent the pdf is very low. In other 

words, pdf is not represented well. This problem is called the degeneracy problem. 

To overcome this problem resampling method is offered. 

In resampling, the particles with weights close to zero are replaced with particles 

whose weights are relatively high. This way effective number of particles remains 

high. Effective number of particles is calculated in [22] as follows.  

 !3�� = .∑ u¿À́ vW
ÀÃ�   (4-82) 

!3��	represents number of effective particles which can be both used to characterize 

the filter performance and decide whether to do resampling or not by comparing with 

a threshold value. If computational burden is not a concern resampling can be done 

in each step of the filtering [22]. 

Table 4: Resampling Algorithm 

1) Construction of Cumulative Sum of Weights (CSW) 

 Initialization: 1. = w�.  

 FOR i = 1:N 

  1* = 1*(. +w�*  
 END FOR 

2) Resampling 
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Starting from the 1st value of CSW: 	Z = 1 
Draw a starting point: à.~á(0,!(.) 
FOR j = 1:N 

 Move in CSW: àâ = à* + !(.(ã − 1) 
 WHILE àâ > 1* 
  Z = Z + 1 
 END WHILE 

Assign particle: &�â∗ = &�*   

Assign weight:	w�â∗ = w�*  
END FOR 

For Marginalized particle filter, resampling is applied to the linear particles 

covariance matrices as well as augmented linear and nonlinear particles. 

4.9. Multiple Model Filtering 

4.9.1. Interacting Multiple Model (IMM) - EKF 

In this study, Interacting Multiple Model (IMM) structure is used to interpret 

multiple models with EKF. Two different mode-matched filters are used for the 

thrust mode and the ballistic mode. In the IMM estimator, these two filters are run in 

parallel and the state estimates at the beginning of a cycle are a mixture of the 

estimates of the previous cycle using the “mixing” probabilities [8]. The IMM 

structure can be seen in Figure 14. 
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Figure 14: One Cycle of the IMM Estimator [21] 

The interaction mixing stage is calculation of the weighted average of the state 

estimation at time k by using the mode probabilities at time k. The mixed state mean 

is calculated as follows: 

 t�|�h. = å�|�.|.t�|�. + å�|�.|�t�|��   (4-83) 

 t�|�h� = å�|��|.t�|�. + å�|��|�t�|��  (4-84) 

However the state dimension is not necessarily the same in some multi model 

filtering applications. Therefore, the equations (4-83) and (4-84) are not applicable. 

An idea to augment the lesser dimensioned models to equate the state dimension for 

each model inserts a bias to the state estimation towards zero. Therefore, an unbiased 

mixing algorithm should be applied. The detailed derivation of this algorithm can be 

found in [8]. 
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4.9.2. Regime Transition (RT) – Particle Filter 

In this study, Regime Transition (RT) structure is used with both SIR-PF and MPF. 

Regime Transition is a jumped Markov process that is applied to PF for tracking with 

multiple models [22].  

The regime variable	 ��, determines which dynamic model is in effect 

from	r�(.	to		r�. The first step of this algorithm is to generate a random set of the 

regime variable for each particle based on the transitional probability matrix	�. After 

the initialization, each particle is filtered with the corresponding filter (or model). 

The particles with high weights live and others die in the resampling step of the 

algorithm. After the resampling, regime transition is applied to all particles ensure 

the mode transition according the transitional probability matrix	�. Regime transition 

algorithm is given in Table 5. 

Table 5: Regime Transition Algorithm 

FOR n = 1:N 

 Draw à�~á(0,1) 
 IF  �(.� == 1 & à� > �.. 
  Set  �� = 2 
 ELSE IF  �(.� == 2 & à� > ��� 
  Set  �� = 1 
 END IF 

END FOR 
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CHAPTER 5 

 

SIMULATIONS AND DISCUSSION 

The tracking methodology and the algorithms that are used for short range thrusting 

ballistic projectile tracking are given in the previous chapters. In this chapter, the 

estimates of these algorithms and their performances will be discussed and 

compared. Monte Carlo analyses are performed and the mean RMS error of the 

position and the velocity estimation of the projectile are compared for each tracking 

filter for different scenarios. 

5.1. Simulation Environment 

5.1.1. Trajectory Generation 

The simulation of the target trajectory is constructed by discretized motion model 

(4-11). For trajectory generation, the sampling period is taken very small compared 

to the tracking period so the accuracy of the simulated trajectory is high as if it is 

simulated in continuous time.  

A hypothetical projectile is assumed for this study. The thrust profile of the projectile 

is assumed to be constant while the projectile is in the thrusting mode and zero 

otherwise. Parameters of the hypothetical projectile are as follows.  

� Muzzle Velocity (Initial Velocity): 300 m/s 

� Motor Ignition Time (Thrust Start Time): 1 second 

� Motor Depletion Time (Thrust End Time) :2 seconds 

� Thrust Force: 1000 N 

� Diameter of the Projectile: 40 mm 
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� Mass of the Projectile: 2 kg 

� Zero Yaw Drag Coefficient (Cd): 1 (Unitless) 

It is assumed that there are only drag, thrust and gravitational forces acting on the 

projectile. Other forces are considered as negligible [7]. The trajectory generated for 

five degrees of projection angle (the pitch angle of the launcher) is seen in Figure 15. 

In the trajectory generation and tracking, Earth is assumed to be flat. 

 

Figure 15: Thrusting Projectile Trajectory in 2D 

The projectile assumed to be fired to the zero north direction and there is no 

deflection on the east axis. The thrust curve of the projectile is given in Figure 16. 
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Figure 16: Projectile Thrust Profile 

5.1.2. Target Scenarios 

Four different scenarios are generated in this study. These scenarios address different 

kinds of challenges for the tracker. In two of these scenarios, projectiles are flying 

perpendicular to the boresight of the radar and in the other two; projectiles are flying 

parallel to the boresight of the radar. The reason for the selection of parallel and 

perpendicular trajectories is that for parallel flight the range error and for 

perpendicular flight the angle errors are dominant on the flight direction of the 

projectile. In addition to that, track initialization performances differ for parallel and 

perpendicular flights because of the nonlinearity in the measurement. The details of 

these scenarios are given in the following subsections.  
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5.1.2.1. Target Scenario 1: Ballistic Phase Only Flyby Projectile 

In the first scenario, projectile is assumed to be fired perpendicular to the boresight 

of the radar and the projectile is always in the ballistic phase when it is seen by the 

radar. 

 

Figure 17: Scenario – 1 (Ballistic phase only flyby projectile scenario) 

As the colors indicate in Figure 17, projectile enters radars field of view after its 

rocket motor is depleted. Initial measurements are observed on the upleg of the 

projectile. The projectile is tracked by the radar up to the impact point. 

5.1.2.2. Target Scenario 2: Multiple Phases Flyby Projectile 

In the second scenario, projectile is assumed to be fired perpendicular to the 

boresight of the radar and the projectile changes phases between thrusting and 

ballistic through the flight.  
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Figure 18: Scenario – 2 (Multiple phases flyby projectile scenario) 

In scenario - 2, projectile is observed by the radar from the firing point to the impact 

point. In other words, projectile is always in the radar’s field of view (FOV). 

5.1.2.3. Target Scenario 3: Ballistic Phase Only Incoming Projectile 

In the third scenario, projectile is assumed to be fired parallel to the boresight of the 

radar and the projectile is always in ballistic phase when it is seen by the radar. 
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Figure 19: Scenario – 3 (Ballistic phase only incoming projectile scenario) 

As the colors indicate in Figure 19, projectile enters radars field of view after its 

rocket motor is depleted. Initial measurements are observed on the upleg of the 

projectile. The projectile is tracked by the radar up to the impact point. 

5.1.2.4. Target Scenario 4: Multiple Phases Incoming Projectile 

In the second scenario, projectile is assumed to be fired parallel to the boresight of 

the radar and the projectile changes phases as ballistic-thrusting-ballistic during the 

radar observations as indicated in Figure 20. The projectile is observed by the radar 

from the firing point to the impact point. 
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Figure 20: Scenario – 4 (Multiple phases incoming projectile scenario) 

5.1.3. Radar Model 

Radar is assumed to have a constant field of view and constant track period through 

the flight of the projectile. The measurement noise in azimuth, elevation and range 

are modeled as zero mean white Gaussian random variables. The standard deviations 

of these noises depend on the Signal to Noise Ratio (SNR) as well as the range. For 

measurement generation, the generated trajectory is down sampled to the desired 

measurement period and transformed to the spherical coordinates. Then, the drawn 

measurement noise samples are added to the ideal measurements. 

A hypothetical radar system is designed for this study. Radar is assumed to have an 

approximately 3 km of instrumented range. For the instrumented range, the 

probability of detection (Pd) is assumed to be 0.85 and probability of false alarm is 

assumed to be (Pfa) 10-6. For Swerling-1 type of targets, this leads to 19.2 dB of SNR 
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on the instrumented range. SNR versus range graph can be seen in Figure 21. The 

SNR is inversely proportional to the target’s range to the fourth power	(1 ��/ ). 

 

Figure 21: SNR and Pd graphs of a hypothetical simulation radar 
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Figure 22: Radar Measurements 

5.2. Simulation Results 

In this subsection, simulations are performed to analyze the performances of the 

tracking algorithms proposed in the previous sections. Performance criteria of the 

simulations are root mean square error of the estimated positions, velocities and 

ballistic parameters.  

The simulation parameters are as follows: 

� Sampling period used for trajectory generation: 1 ms 
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5.2.1. Estimation Performance 

To investigate the estimation performance of the proposed tracking algorithms, 

Monte Carlo analysis is performed for all proposed scenarios. Each algorithm is run 

for 100 different randomly generated measurement sets and RMS error is calculated 

at each time instant.  

RMS position estimation errors are calculated as follows: 

 �N=@;�*�*;�(�)
= æ 1!)� ® n&3

;
�(�,H1) + z3

;
�(�,H1) + {3

;
�(�,H1)scçè

)�¯.  
(5-1) 

where, 

 &3

;
(�,H1) = &3��(�,H1) − &
3�A(�,H1), ∀�,H1  

z3

;
(�,H1) = z3��(�,H1) − z
3�A(�,H1), ∀�,H1  

{3

;
(�,H1) = {3��(�,H1) − {
3�A(�,H1), ∀�,H1  

(5-2) 

RMS velocity estimation errors are calculated as follows: 

 �N=�3A;�*�é(�)
= æ 1!)� ® ÒR&3

;
�(�,H1) + Rz3

;
�(�,H1) + R{3

;
�(�,H1)êcçè

)�¯.  
(5-3) 

where, 

 R&3

;
(�,H1) = R&3��(�,H1) − R&
3�A(�,H1), ∀�,H1  

Rz3

;
(�,H1) = Rz3��(�,H1) − Rz
3�A(�,H1), ∀�,H1  

R{3

;
(�,H1) = R{3��(�,H1) − R{
3�A(�,H1), ∀�,H1  

(5-4) 
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RMS Thrust and Drag parameter estimation errors are calculated as follows: 

 �N=?
�8(�) = æ 1!)� ® uK Og3��(�,H1) − K Og
3�A(�,H1)v�cçè
)�¯.  (5-5) 

 �N=|ë
5��(�) = æ 1!)� ® u�ℎ àYr3��(�,H1) − �ℎ àYr
3�A(�,H1)v�cçè
)�¯.  (5-6) 

For these simulations, number of particles for PF and MPF are selected 30k and track 

update time is selected 100 milliseconds. The probability of detection at 3km is set as 

0.85 and it decreases with range. It is assumed that there is no false alarm. 

Position and Velocity estimation RMS error plots for each scenario are as follows: 

 

Figure 23: Position and Velocity Estimation Performances of Scenario -1 
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For Scenario-1, in which projectile flies perpendicular to the field of view of the 

radar and it is always in the ballistic mode; the position estimation performances of 

EKF and MPF are very close and they give better estimates compared to the PF. 

However, the velocity estimation performance of the EKF is worst for the half of the 

track but when the estimation is settled all filters give almost the same performance. 

It is not unfair to say that the overall performance of the MPF is best for this 

scenario. 

 

Figure 24: Position and Velocity Estimation Performances of Scenario -2 
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As it can be seen from Figure 24, the mode transition performance of the EKF is 

better than the other filters. However, in the steady state there are spikes in the 

velocity estimation of the EKF. In other words, EKF tends to switch between modes 

more than other filters even the same mode transition probabilities are used for all 

filters. Spikes in the velocity estimation error of EKF are caused by the false 

transition to the thrusting phase. 

In Scenarios 1 and 2, the measurement error starts decreasing as the range of the 

projectile decreases and after passing the boresight of the radar the error increases as 

the range of the projectile increases. This is the reason that the position estimation 

error of the tracking filters is increasing after 4th second. 

For Scenario -3 and Scenario -4, results are very similar but the MPF performance is 

slightly better compared to the other results.  

 

Figure 25: Scenario -3 Position and Velocity Estimation Performances of Filters 
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Figure 26: Scenario -4 Position and Velocity Estimation Performances of Filters 
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Table 7: Mean RMS Velocity Error [m/s] Comparison 

 Scenario - 1 Scenario – 2 Scenario – 3 Scenario – 4 

EKF 
15.0913 7.9601 12.9662 6.6286 

PF (30k particles) 
9.4410 9.9252 5.9904 9.1856 

MPF (30k 
particles) 

7.6078 8.7107 4.4790 7.9827 

When we look at the comparison tables, it is seen that the filter position estimation 

performances are very similar but EKF is slightly better than others. For velocity 

estimation overall performance of MPF is better than others. 

The envelope of the measurements and tracker outputs are investigated for Scenario-

2.  

 

Figure 27: Scenario -2 Monte Carlo Simulation Measurement and Estimation 

Envelopes 
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to each other and the PF has the worst performance. Envelopes are obtained by 

taking maximum and minimum values of the Monte Carlo runs in each time instant. 

The estimation of the parameters of drag and thrust are important for both projectile 

identification and impact – fire point prediction. The drag and thrust parameters 

estimation performances of filters for scenario – 2 can be seen in Figure 28. 

 

Figure 28: Scenario -2 Drag and Thrust Estimation Performances of Filters 
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5.2.2. Effect of Number of Particles on Estimation Performance 

In this part effect of the number of particles on position and velocity estimation 

performance of PF and MPF is analyzed. For the Scenario – 2, PF and MPF are 

applied for different number of particles. In the analysis, 1k, 3k, 10k and 30k 

particles are used. 

 

Figure 29: Effect of the Number of Particles on PF 
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Figure 30: Effect of the Number of Particles on MPF 

As it can be seen from the Figure 29 and Figure 30, estimation performance gets 

better as the number of particles increases as expected. The mean RMSE in time is 

given in Table 8. 

Table 8: Mean RMSE for Different Number of Particles 

Algorithm MPF PF 

 Pos. RMSE 
[m] 

Vel. RMSE 
[m/s] 

Pos. RMSE 
[m] 

Vel. RMSE 
[m/s] 

1k Particle 4.888 14.391 4.055 17.890 

3k Particle 3.149 10.680 3.186 12.233 

10k Particle 2.826 9.479 2.942 10.534 

30k Particle 2.669 9.061 2.906 9.831 

State covariance estimation performances are analyzed. The results are parallel with 

the RMS errors. 
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5.2.3. Computational Complexity 

The algorithms are run one by one for different number of particles and their 

calculation times are observed. The calculation complexity for each algorithm can be 

seen in Table 9. 

Table 9: Calculation Load Comparison 

Algorithm Relative Computational Load 

EKF 1 

PF (1k Particle) 240 

MPF (1k Particle) 560 

PF (N k Particle) 240 x N 

MPF (N k Particle) 560 x N 

There is a big difference in computation times of EKF and other filters. And the MPF 

is the filter with highest computation time. Also the computation of the particle 

filters is linearly depended with the number of particles. It is mentioned that the MPF 

performance is comparable with the EKF for 30k of particles, but the computational 

complexity of MPF is nearly 17000 times higher than the EKF’s for this case. 
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CHAPTER 6 

 

CONCLUSIONS 

In this thesis, tracking of thrusting projectile with radar problem is studied. Three 

different multiple model tracking filters are implemented and their estimation 

performances are compared. These filters are the Extended Kalman Filter (EKF), the 

Particle Filter (PF) and the marginalized particle filter (MPF). The performances are 

compared by RMS error calculation of state estimations by Monte Carlo simulations. 

In the 2nd chapter, fundamental information about radar is given. The probability of 

detection and probability of false alarm terms for radar’s detection procedure are 

discussed. Furthermore, the mechanisms in the radar for generation of the 

measurements of the target are mentioned. The characteristics of the range, Doppler 

and direction finding (DF) measurements of the radar are given. 

In the 3rd chapter, theory on dynamics of the thrusting and the ballistic phases of the 

thrusting projectile is given in detail. The projectile is modeled as a point mass model 

and forces acting on the projectile are characterized. The continuous time dynamic 

model of the projectile for both the ballistic phase and the thrusting phase is 

constructed by taking into consideration of the dominant forces acting on the 

projectile. The forces taken into account are the drag force, the thrust force and the 

gravitational force. 

In the 4th chapter, firstly, the discrete time motion model of the thrusting projectile is 

constructed by Euler’s forward method from the continuous time model. Also, the 

discretized motion model’s linear and nonlinear portions are separated with some 

approximations. Algorithm blocks and pseudo codes of the classical EKF, PF and 

MPF are given. Most of the effort in this chapter is to apply the ballistic model and 
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thrusting models to the MPF. In addition, process noise, measurement noise and the 

measurement models used in this study are given in detail. 

Because of the lack of a sophisticated simulator for the thrusting projectile which 

takes into account of all important forces and moments on the projectile and 

generates trajectory, the trajectories for the simulations are generated using the 

constructed discrete time model. To insert model mismatch between tracker and 

trajectory models, noise is added to the generated trajectory in addition to the 

measurement noise.  

Different scenarios are generated and the estimation performances of the tracking 

filters are compared. The filters are compared by the RMS errors in position and 

velocity estimations which are calculated by Monte Carlo results. In general, EKF 

has the best performance on position estimation and MPF has the best performance 

on velocity estimation. Overall worst performance was PF’s. The reason is that the 

state dimension of the system model is fairly large for PF application. For the same 

performance, number of particles increases exponentially with the increase in state 

dimension. The MPF is the solution to this problem. The linear portion of the model 

is marginalized out and estimated by classical Kalman filter. In other words, a 

Kalman filter is constructed for each particle. As it can be seen, from the results MPF 

performance is better than the PF. However, it cannot surpass the EKF. The PF and 

MPF performances get better with the increase in the number of particles but even 

for the 30k particle case MPF does not give better results than EKF but their 

performances are comparable. Results are valid when the target ballistic coefficient 

is a priori known. 

The MC simulation with 100 runs, PF and MPF comparison with 30k number of 

particles takes half a day with a commercial computer (2.8 GHz Processor, 4 GB 

RAM). Increasing number of particles may increase the estimation performance of 

the MPF further but, it is not reasonable to run simulations with higher number of 

particles because of the huge computational complexity. 

In our simulations, results are in favor of the EKF. Very similar results are obtained 

when EKF and PF is compared in [3]. The EKF combines good estimation 
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performance and low computational load. The reasons that the EKF is better than 

other compared filters are, 

� The selected time step is fairly small, and because of this, nonlinearity is not 

effective. But, for these kinds of applications, time steps are generally smaller 

than the one used in simulations. 

� The state dimension is large and number of particles should be fairly large 

(significantly larger than 30k) to obtain better performance than EKF. 

� Converted measurements are used (observation is linear) and it is in favor of 

EKF. 

As a future work, for a better comparison of the filters, they may be compared with 

trajectories generated by more sophisticated models and tools. It would be best; if 

there will be a chance to work on the real data acquired by radar. Another topic may 

be use of Doppler measurements to improve the estimation performance. For the 

projectiles coming towards to the radar (with high Doppler) it may improve the thrust 

estimation and mode transition of the filters. In addition to that, this study can be 

followed by the impact and the fire point prediction of the projectile using the tracker 

output. Finally, IMM particle filter can be implemented and its performance can be 

compared with regime transition particle filter. In IMM particle filter, number of 

particles in each mode is constant and same which may increase the state transition 

performance. 
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