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ABSTRACT

FUSING SEMANTIC INFORMATION EXTRACTED FROM VISUAL, AUDITORY AND
TEXTUAL DATA OF VIDEOS

Gülen, Elvan

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

July 2012, 68 pages

In recent years, due to the increasing usage of videos, manual information extraction is be-

coming insufficient to users. Therefore, extracting semantic information automatically turns

out to be a serious requirement. Today, there exists some systems that extract semantic in-

formation automatically by using visual, auditory and textual data separately but the number

of studies that uses more than one data source is very limited. As some studies on this topic

have already shown, using multimodal video data for automatic information extraction en-

sures getting better results by guaranteeing increase in the accuracy of semantic information

that is retrieved from visual, auditory and textual sources. In this thesis, a complete system

which fuses the semantic information that is obtained from visual, auditory and textual video

data is introduced. The fusion system carries out the following procedures; analyzing and

uniting the semantic information that is extracted from multimodal data by utilizing concept

interactions and consequently generating a semantic dataset which is ready to be stored in a

database. Besides, experiments are conducted to compare results obtained from the proposed

multimodal fusion operation with results obtained as an outcome of semantic information ex-

traction from just one modality and other fusion methods. The results indicate that fusing
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all available information along with concept relations yields better results than any unimodal

approaches and other traditional fusion methods in overall.

Keywords: information fusion, multimedia, semantic video analysis, automatic information

extraction
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ÖZ

VİDEOLARDA GÖRÜNTÜ, SES VE METİN VERİLERİNDEN ÇIKARILAN
ANLAMSAL BİLGİLERİN BİRLEŞTİRİLMESİ

Gülen, Elvan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Temmuz 2012, 68 sayfa

Son yıllarda, video kullanımının hızla artması ile birlikte, videolardaki anlamsal içeriklerin

manüel olarak çıkarılması kullanıcılara yeterli gelmemekte ve dolayısıyla videolardan otomatik

anlamsal bilgi çıkarımı zorunlu hale gelmektedir. Günümüzde görüntü, ses ve metin gibi

video verilerinden ayrı ayrı bilgi çıkarımı yapan sistemler mevcuttur; ancak birden fazla veri

kaynağını kullanan çalışmalar sınırlı sayıdadır. Bu konuda yapılan bazı araştırmaların da

gösterdiği üzere, videolarda birden fazla kaynağın otomatik bilgi çıkarımında kullanılması,

elde edilen anlamsal bilgilerin doğruluk payını arttırıp daha iyi sonuçlar elde edilmesini

sağlayacaktır. Bu tezde, videolardaki görüntü, ses ve metin verilerinden çıkarılmış anlam-

sal bilgileri füzyon eden bir sistem sunulmaktadır. Bilgi füzyonu sistemi farklı kaynaklar-

dan çıkarılan anlamsal bilgilerin analiz edilmesi, bu bilgilerin konsept ilişkilerinden de fay-

dalanılarak bütünleştirilmesi ve böylece veritabanına kaydetmeye hazır hale getirilmiş bir an-

lamsal veri seti oluşturulması işlemlerini gerçekleştirmektedir. Bunun yanısıra, tek kaynak-

tan anlamsal bilgi çıkarımı sonucu elde edilen verileri ve geleneksel bilgi füzyonu yaklaşım

sonuçlarını, bilgi füzyonunun gerçekleştirilmesi sonucu oluşan verilerle karşılaştıran deneyler

yapılmıştır. Deney sonuçlarının gösterdiği üzere, mevcut olan tüm bilgi kaynaklarının kon-
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sept ilişkilerini de kullanarak birleştirilmesi, genel olarak tüm tek kaynaklı yaklaşımlardan ve

diğer geleneksel füzyon yöntemlerinden daha iyi sonuçların elde edilmesini sağlamaktadır.

Anahtar Kelimeler: bilgi füzyonu, çokluortam, anlamsal video analizi, otomatik bilgi çıkarımı
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CHAPTER 1

INTRODUCTION

Lately, developments in computing, communication and multimedia technologies led to a

rapid increase in the usage of large amount of multimedia data, especially videos. Storing and

accessing videos with only limited information such as name, record date, frame rate or for-

mat are not enough to meet the end-user’s requirements alone. Therefore, there is a growing

need in extracting semantic information, semantic indexing and managing the video based

on its content. Most of the current solutions still rely on manual extraction of the semantic

information. Even though it provides information at the semantic level in a similar way to

the human understanding, manual extraction still lags behind in fulfilling humans’ demands.

Because small text descriptions may not cover the whole video content and manual solutions

cannot provide users to access certain parts of the video. Besides manual information extrac-

tion is very time consuming, difficult, inefficient, even sometimes inaccurate and subjective.

So these limitations directed researchers to propose content-based information processing and

retrieval systems for automatic management of videos.

Most of the early studies focused on low-level processing of video but the low-level repre-

sentation of the content still does not offer meaningful information to users. Semantic infor-

mation/content containing high-level information like objects, concepts, and events are much

more preferable by end-users. Additionally, since semantic content refers to a higher level of

information, the semantic gap [1] emerges which can be restated for multimedia domain as a

problem concerning the disparity between the low-level representation of the multimedia data

and the human interpretation of the same multimedia data. Due to these reasons, higher level

processing for semantic content analysis becomes unavoidable.

Videos, by its very own nature, contain different types of data such as text, audio and image
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in itself. In other words, it has a multimodal structure. Hence, the semantic information

that is going to be extracted is directly connected to these different data sources. Therefore,

analyzing the video just from a visual or a textual perspective isn’t adequate in most cases.

To obtain a successful system, it is crucial that all these data sources, i.e. modalities, must be

utilized effectively by following a multimodal approach.

As mentioned above, for effective information extraction, it is very important to exploit dif-

ferent sources of data and combine them in such a way that the resulting system outperforms

any single modality in overall. This incorporation is known as information fusion. In short,

the fusion of different modalities can be utilized as an error compensation or a validation tool

or as an additional source of information [2]. This thesis aims to build a fusion system which

integrates evidence from visual, auditory and textual modalities. It carries out the following

procedures; analyzing and uniting the semantic information that is extracted from multimodal

data and fulfilling the incomplete parts by producing new information.

1.1 Motivation

There are many semantic video analyzing systems which extract semantic information from

a single modality, yet there are not many studies using all of the three (visual, auditory and

textual) modalities. Some information may not be obtained from the modality that is used

for semantic information extraction. For instance, musical information in a video cannot be

reached from a system that is dependent just on the visual modality. Apart from these, using a

single source may result in poor or wrong information in case of noisy data. Instead, the noise

effect can be reduced or even stopped by using multiple sources. In addition, the information

systems based on a single modality can suffer from the shortcomings of the source since it

relies fully on that source; but the dependence on any modality can be minimized through the

medium of information fusion. Moreover, multiple sources can be utilized to obtain higher ac-

curacy in detecting objects, concepts and events. For example; the accuracy of an ambulance

object, which is obtained from the visual cues with certain accuracy, can be increased by an

ambulance siren sound captured from the audio part of the video. Additionally, multimodal

collaboration provides great advantage in detecting the events. Events generally include sev-

eral objects such as people, and occur under certain scenes with certain audio sounds [3] and

also the textual part may contain some cues about the event. Let’s take a look at the rocket
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launch event. The rocket object and the big smoke/fire that occurs during launch, the explosion

sound, the words like rocket, launch in the textual part, all would help in capturing this event

from the video.

Using multiple sources obviously provides more valuable and more accurate information, and

this is experimented and proven by various studies [4–9]. However, the fusion system needs

to be taken up comprehensively and modeled accordingly. Because, as different modalities

involve complementary information, they can contain conflicting information too. Further-

more, the impacts of different sources on the information that is going to be extracted can be

differing. In other words, for particular target concepts, certain modalities can perform better

than others, and this can be different for all target concepts. For example; even though textual

data is more important in classifying a broadcast news as political news, audio and visual cues

may gain more importance in a battle video. Which information should be used as features

or which modalities are needed to be selected in modeling the concepts? Or maybe all infor-

mation is supposed to be used but with what confidence levels, i.e. weights, and how these

confidence levels must be specified? When and how the results of different modalities should

be aggregated? At feature level or at decision level? Also, do different modalities need to

be synchronized? Following a multimodal approach obviously provides more efficient infor-

mation, but it brings some complexity with it and poses some difficult questions. We believe

that all of these factors can play a significant role in modeling the system and must be ad-

dressed scrutinizingly. In short, such distinctive issues should be considered in detail during

the design of the fusion system. Extracting semantic information with exploiting different

modalities is an expanding area in video analysis, yet the number of successful studies which

address all of the mentioned issues is still lacking. In this regard, dealing with the fusion

problem from many aspects is one of the motivation for this thesis.

Most of the current studies are very much domain dependent. Since each domain (e.g., news,

sports, commercials) may have its own characteristic, the optimal fusion approaches can vary

according to the research domain. Nevertheless, more generic fusion systems, which supports

to work on any domain, are also needed. Another motivation of this thesis is to propose

a relatively generic fusion systems which is not limited to certain video domain. Also, we

believe that this study would be inspiring for future studies that prefer to consider the fusion

problem from a broad perspective.
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As far as we observe, obtaining new information with the help of visual, auditory and textual

cues isn’t a prevailing task for video analysis. However, single modality dependent systems

generally do not provide more complex semantic information like events or more general

concepts like scenes and genres of the videos. One of the prime reasons that lies behind is

that the researchers mostly work with widely used datasets such as TRECVID benchmarking

workshops. As the evaluations are based on predefined concepts, studies do not feel obtaining

new information necessary. Another substantial reason for that is the problem in finding

the ground truth of the new concepts. Nonetheless, producing totally new information with

the help of the existing visual, auditory and textual cues must be considered in multimodal

information fusion. Thereby, it becomes another motivation for this study.

Apart from these, most of the studies build individual concept detectors without considering

the relationships between the semantic concepts. But some associations may exist between

concepts and this can assist as an additional helper to increase the detection accuracy of the

concepts. For example; a boat-ship object generally appears with sea. When there is a boat-

ship in the video, it’s very normal to expect a sea object appearing at the same time. So

these relations should not to be ruled out in semantic video analysis. Shortly, fusion can

take part not just in combining the evidences of the same target concept but also in utilizing

the observations of related concepts to obtain a higher performance in determining the target

concept.

1.2 Contributions

Main contributions of this thesis can be listed as follows:

• Introducing a more complete and generic system which fuses the semantic information

that is obtained from visual, auditory and textual video data.

• Introducing a fusion method which takes cognizance of the differing significance levels

of the modalities.

• Investigating the contribution of using the interactions of concepts.

• Ability to produce completely new information such as events that single modality

based systems do not or cannot produce.
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• Showing the resulting fusion system outperforms the single modality based systems in

terms of performance in overall.

• Comparing the results of the proposed fusion method with the results of traditional

fusion methods such as average fusion, maximum fusion, linear weighted fusion, etc.

• Enabling the fusion method to perform cross-validation with respect to different evalu-

ation metrics besides the accuracy criteria.

1.3 Organization of the Thesis

The organization of the thesis is as follows:

• Chapter 2: In this chapter, an overview of multimodal information fusion is given.

After that, it describes the fusion levels and the methods that can be used for the fusion

task. Moreover, some distinctive issues relating to the fusion problem are addressed.

• Chapter 3: This chapter reviews the existing studies on multimodal information fusion

and focuses on the studies which integrate the several modalities. Again the review is

conducted from various aspects such as the fusion levels and methods, research domain,

etc.

• Chapter 4: Chapter 4 introduces the proposed system and its architecture. After ex-

plaining the reasons behind the selection of the methods, the work flow of the system is

described in detail under two main sections; preprocessing and the integration phases.

• Chapter 5: The datasets used, the evaluation metrics and the evaluation results of the

fusion system are reported in this chapter. The results include the comparison between

the results of single modality dependent systems and the proposed fusion system. Ad-

ditionally, the performance of other fusion methods are experimented and compared

with our method.

• Chapter 6: Finally, this chapter concludes the thesis with discussing the outcomes of

the research. Also it highlights the perspective of the proposed fusion system. At the

end, some future research directions are emphasized.
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CHAPTER 2

BACKGROUND

2.1 Overview of Multimodal Information Fusion

Multimodal information fusion is the cooperation of several media sources, their features, or

the intermediate decisions in order to carry out a multimedia analysis task [10]. The multiple

data sources that are used in information fusion can differ according to the purpose and the

research area. For instance; sensors are treated as the data sources in wireless sensor networks,

whereas the human voice or the fingerprint are the data sources in biometry research area.

Since our work focuses on semantic video analysis, the data sources that can be used as

modalities, i.e. information channels, are quite different than those that are mentioned above.

These modalities can be features, classifiers, or modalities like image, audio and text. For

example; several visual features can be fused to detect objects in an image, or visual, auditory

and textual data can be fused in order to obtain a semantic information from a video, or an

integration technique can be used while merging the scores of multiple classifiers.

Definition 1 Modality: A particular way in which the data is to be encoded for presentation

(in semiotics). It refers to a specific type of information and/or the representation format in

which information is stored.

Definition 2 Visual Modality: A set of images which involves everything that appears in the

video, either naturally or artificially created.

Definition 3 Auditory Modality: Modality that involves the speech, environmental sound,

music, noise, etc. which can be heard in the video.

Definition 4 Textual Modality: Modality that involves textual data such as closed caption,

6



speech transcript, production meta-data, which represents the content of the video.

By processing the above modalities, semantic video analysis aims to parse the video data into

semantic units that appeals to the human understanding and involves various subtasks in it.

These semantic units are built up the content of the video data and as expected they are tried

to be extracted automatically by multimedia analysis. Some of these prominent multimedia

analysis tasks that use multimodal information fusion are listed below:

• Object recognition,

• Object tracking,

• Event detection,

• Video genre/sub-genre detection

• News video story segmentation,

• Semantic concept detection,

• Video scene classification,

• Emotion recognition,

• Highlight extraction in sports videos, etc.

The commonly studied multimedia analysis task is semantic concept detection which is ba-

sically a general expression for object/event/scene detection tasks. That is to say, these tasks

can aggregately be called concept detection. So for the sake of simplicity, these semantic

information (objects, events, etc.) will be referred as concepts in rest of the thesis.

Definition 5 Concept: A class of elements that together share essential characteristics which

define the class. In this study, it refers a group of objects such as car, building, dog, etc. or

events such as people marching, airplane flying, etc.

Before analyzing these modalities, fundamental units of each are determined. Since the visual

modality is represented as a set of sequential images or frames, the fundamental units are the

image frames. Likewise, the fundamental units of auditory modality are the audio samples

taken within specified time spans. Lastly, individual characters are the atomic units of the
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textual modality. Then an aggregation process may be applied on these units and results in

camera, audio and text shots. However, these shots may not be the optimal unit for semantic

video analysis task. To exemplify, a video scene, which is the story telling unit, can be a better

choice to manipulate the video regarding the visual modality in certain cases. The shot term

will be used to express in the visual shot rest of the thesis, below the definition is given. After

these operations, low-level feature extraction is performed.

Definition 6 Shot: A sequence of frames recorded contiguously and representing a continuous

action in time or space. Mostly, a shot is represented by a key-frame chosen among the

sequence of shot frames, e.g., the first frame, middle frame, etc.

Definition 7 Feature: An individual measurable heuristic property of a phenomenon being

observed (in machine learning and pattern recognition).

In multimedia domain, these features may be numerous but some of them are mentioned

briefly below:

• Auditory features: pitch, sub-bands energy, zero crossing rate (ZCR), loudness, mel-

frequency cepstral coefficients (MFCC), linear predictor coefficients (LPC), etc.

• Textual features: features such as term frequency-inverse document frequency (TF-

IDF), N-grams, word vector, etc. These features can be extracted from the closed

caption, optical character recognition (OCR), automatic speech recognizer (ASR) tran-

script, and so on.

• Visual features: color-based (e.g., color layout, color structure), shape-based (e.g., re-

gion shape), texture-based (e.g., edge histogram, contrast), etc.

After extracting the low-level features, multimodal information fusion may step in or features

of each modality can be processed separately and then followed by an integration phase. In

the second case, the low-level features are mapped to a higher-level by various methods, but

since the way how the single modality dependent systems works is not in the scope of the

thesis, they are not going be discussed.

As pointed out earlier, the fusion of multiple resources can provide complementary informa-

tion, high accuracy in detecting concepts, increase in performance, and new information that

is not and could not be extracted from single modality. In order to present a successful and
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optimal fusion system, several issues like selection and the characteristics of the modalities,

how and when they are going to be fused should be considered carefully to answer the pur-

pose of the system. Considering the objective tasks that need to be carried out, the method

selection, or the fusion level must be addressed.

2.2 Levels of Fusion

One of the primary considerations is to plan what strategy to follow in integration of multiple

modalities. There are mainly two levels which are early fusion and late fusion. Some of the

studies in the literature take into account a third level; hybrid fusion which can be viewed as

a join of both. Since hybrid level is just using the late and early fusion approaches, only the

early and late fusion schemes are described in more detail with highlighting the pros and cons

of each fusion strategies.

2.2.1 Early Fusion

The early fusion method begins with concatenating multimodal features into a single feature

vector which can be processed like in the regular unimodal methods. In other words, this

fusion level combines features obtained from single modalities before learning concepts. In

this fusion level, the features extracted from different modalities can be visual features such as

texture features, shape features, or audio features such as Mel-frequency Cepstral Coefficient,

zero crossing rate, or text features like term frequency-inverse document frequency, etc.

Figure 2.1 illustrates the general scheme of early fusion strategy. After features are extracted

from each modalities, they are concatenated in a multimodal features combiner and then sent

to the analysis unit. The analysis unit processes the concatenated multimodal feature vector

and produces a semantic-level decision.

• Pros:

– Use of correlation and dependencies between multiple features at an early stage

helps in better task accomplishment

– Requires just one learning phase
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Figure 2.1: A general scheme for early fusion

• Cons:

– Hard to combine features into a common representation, they should be repre-

sented in the same format

– Difficult to represent the time synchronization between the multimodal features

– Hard to learn the cross-correlation between heterogeneous features when the num-

ber of modalities augments

2.2.2 Late Fusion

This fusion scheme aims to benefit from the individual strengths of the features. Therefore, the

fusion takes place after analyzing each modality separately. After the detection outputs, which

can be scores, ranks or decision, are produced by single-modality dependent approaches, the

late fusion scheme directly integrates these outputs by applying any late fusion method.

There are mainly three types of late fusion;

• Score-level fusion: In score-level fusion, matching scores coming from several uni-

modal approaches, i.e. experts, are combined. Even this type of fusion reveals more

information than the other two, it may need an additional normalization phase since dif-

ferent classifiers may produces scores in different intervals. Some score-based fusion

methods are MAX selection, MIN selection, linear weighted fusion, average fusion,

and other classifier-based approaches.
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• Rank-level fusion: Rank-level fusion methods are a little bit simpler to develop than

score-level fusion because the outputs of individual experts are only ranks and they do

not need a normalization process. Borda count method, Condorcet method, highest

rank are examples of such methods.

• Decision-level fusion: At the highest level there is decision-level fusion. At this level,

since only the final decisions of each expert are obtained, the complexity of the integra-

tion process is very low and also simple to develop. However, the information gain is

very minimal. Mostly, rule-based approaches are used at this level such as AND, OR

rules, majority voting, etc. A learning-based approach may also be applied by putting

the decisions of various classifiers in a learning process to procure the final decision.

Figure 2.2 illustrates the general scheme of late fusion strategy. After features are extracted

from each modalities, they are classified independently in individual analysis units. Each anal-

ysis unit produces intermediate decisions (i.e. scores, ranks, decision). Then they pass into

multimodal decision fusion unit. This unit outputs a fused decision vector that is processed

further to produce a final semantic-level decision by the analysis unit.

Figure 2.2: A general scheme for late fusion

• Pros:

– Scores, ranks, decisions generally have the same representation

– Allows to use most appropriate methods for processing each individual modality
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– Offers flexibility and scalability

– Able to utilize the interactions of concepts

• Cons:

– Cannot exploit the feature level correlation between modalities

– Requires too much learning effort (every modality needs to follow a separate

learning phase)

– The integration stage also needs an additional learning process

2.3 Fusion Methods

The selection of the fusion method is another essential step for information fusion. There are

many different fusion methods that can be used to perform various multimedia analysis tasks.

In this section, some of the commonly used fusion approaches are investigated briefly and

the fusion method followed in this study (SVM) is examined in more detail. Additionally,

weaknesses and strengths of these representative methods are discussed. These methods can

be researched by classifying them diversely; they can be categorized into rule-based and ma-

chine learning approaches or like in [10], we can analyze these strategies by grouping them

as rule-based, classification-based and estimation based methods. Alternatively, they can be

classified as trainable and non-trainable approaches. In this thesis, we prefer to consider these

methods as rule-based and classification-based methods. Since estimation-based methods are

mainly used for object tracking tasks, they are not further reviewed in this study. Addition-

ally, since rank-based methods are mostly used in content-based retrieval tasks, they also fall

outside the scope of this thesis. A figurative representation of major fusion methods is shown

in Figure 2.3.

2.3.1 Rule-based Fusion Methods

The rule-based fusion method includes many basic rules of merging multimodal information.

These methods are weighted linear combination (sum and product, majority voting), MAX,

MIN, MED, AND, OR rules. Moreover, there are custom-defined (knowledge-based) rules

12



Figure 2.3: A categorization of the fusion methods

which are formed using the domain knowledge related to the field of the multimedia analysis

task.

Custom-defined rule based fusion mostly works good if the domain knowledge can be trans-

ferred into rules effectively. Also it has the flexibility of including new rules based on the

requirements. However, in general, these rules are domain specific, therefore, a proper knowl-

edge of the domain is required to define the rules. Also, a knowledge-based approach needs

appropriate temporal match of different modalities since the performance of the fusion strat-

egy is directly proportional to the success of temporal alignment. This type of fusion method

is widely used in the domain of sports video analysis.

Weighted linear combination, i.e. linear weighted fusion, is one of the simplest and widely

used fusion approaches. In this method, the information gathered from different modalities

is combined in a linear fashion. The information that enters into the fusion process could

be the low-level features, matching scores or semantic-level decisions. Normalized weights

can be calculated by various weight normalization approaches such as z-score, min-max, etc.

and applied on the outputs of different modalities in order to fuse the information. Even this

method is computationally less expensive and easy to implement, determining the appropriate
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weights of the information that is going to be combined is a challenging task and being studied

extensively in the literature. The most frequently used types of weighted linear combination

are linear weighted product and linear weighted sum. General methodology of this fusion

strategy is shown below. Let n be the total number of experts, i.e. classifiers, and let wk be the

weight assigned to the kth expert and Dk be a decision or a feature vector or matching score

provided by kth expert, where 1 ≤ k ≤ n. In Equation 2.1, the information is combined via

product operator and in Equation 2.2, the fusion is applied with the use of sum operator and

the fusion process results in a high-level decision.

D =

n∏
k=1

Dwk
k , (2.1)

D =

n∑
k=1

wk × Dk. (2.2)

There is a popular special case of weighted linear combination method which is majority

voting where all weights are taken equal. In majority voting based fusion, the final decision

is the one where the majority of the experts, in our case unimodal techniques, which is more

than the half of the votes, reaches a similar decision.

2.3.2 Classification-based Fusion Methods

In this category, there are several classification methods aiming to find the correct class of

the multimodal observation. These classification techniques are the support vector machine

(SVM), Bayesian inference, dynamic Bayesian networks, decision trees, neural networks, k-

nearest neighbor algorithms, maximum entropy model, Dempster-Shafer theory, etc. Also

these methods can be classified as generative and discriminative models from the machine

learning perspective. For example, Bayesian inference and dynamic Bayesian networks are

generative models, while support vector machine and neural networks are discriminative mod-

els.

In Bayesian inference method, information from multiple modalities is integrated in accor-

dance with the rules of probability theory. The observations or decisions procured from sev-

eral modalities are fused and the approach makes an inference of the joint probability of an

observation or a decision. Even allowing for any prior knowledge about the likelihood of the

hypothesis to be utilized in the inference process is an advantage, it may become a drawback

14



when priori and the conditional probabilities of the hypothesis are not well defined. This

method can be extended to a network in which temporal relations can be modeled. In this net-

work, namely dynamic Bayesian networks (DBN), the nodes denote observations of various

modalities and the edges represent the according probabilistic dependencies. Hidden Markov

Model (HMM) is the most extensively used type of a DBN. It also has a broad area of usage

in semantic video analysis like video shot classification, speaker identification, multimodal

dialog detection, etc.

Another combination method with an increasing popularity is Dempster-Shafer theory which

is a generalization of the Bayesian theory. But in contradistinction to the Bayesian inference,

Dempster-Shafer theory can handle uncertainty and mutually exclusive hypotheses. It eases

the Bayesian inference method’s restriction on mutually exclusive hypotheses by enabling to

fuse evidence from different experts and arrive at a degree of belief which considers all of

the available observations. The method uses two values to represent the evidence and the

corresponding uncertainty; belief (the lower bound of the confidence in which an assumption

is predicted as true) and plausibility (the upper bound of the possibility that the assumption

could be true). Fusion methods using the Dempster-Shafer theory can be encountered gener-

ally in human-computer interaction and image segmentation oriented studies, so the theory is

not common in semantic video analysis task utilizing different modalities. Neural networks,

maximum entropy, decision trees, etc. can also be exemplified to the methods used for in-

tegrating several modalities but these methods rarely appear in multimodal integration based

studies.

SVM is one of the most successful and favored classification based methods in semantic

content analysis. Since the proposed fusion method of this study is grounded on SVM, below

it is further discussed in detail.

Support Vector Machine (SVM)

Support vector machines were developed by Cortes & Vapnik [11] for binary classification

and has become very popular for classification in pattern recognition area. More specifically,

in the multimedia domain, SVMs are being used for text categorization, concept classification,

face detection, etc. From the perspective of multimodal fusion, SVM treats the fusion problem

as a pattern classification problem and is utilized to learn the target class, i.e. concept, from a
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set of prediction scores obtained from individual modalities, i.e. experts.

Figure 2.4: Binary classification with SVM

First of all, a classification task begins with separating the data into two sets, namely; train

and test. Given a set of training samples, with corresponding target values -1, 1 indicating

two classes, a model that predicts whether a new sample belongs to one class or the other is

built by SVM in the training phase. The model aims to find the optimal separating hyperplane

between two classes by maximizing the margin between closest of the training data points,

see Figure 2.4. The middle of the margin is the maximum-margin hyperplane, i.e. optimal

separating hyperplane, and samples on the margin are called support vectors.

Given a training set of sample target value (xi, yi), i = 1, ..., l where xi ∈ Rn and yi ∈ {1,−1},

in order to find the maximum-margin, the solution of the optimization problem shown in

Equation 2.3 is needed. Feature vectors in the training set, xi are mapped into a higher

dimensional space by the function φ. The purpose of this transformation is to find a linear

separating hyperplane in this higher dimensional space if the data is not linearly separable

in the original space. If there is no hyperplane that can divide the data into two separate

classes linearly, in other words if there exists some mislabeled instances, then the soft margin

method weights down the mislabeled data points to decrease their effect. It then finds an

optimal separating hyperplane which divides the samples as clean as possible by maximizing

the margin while softly penalizing misclassified points where C > 0 is the penalty parameter.
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The misclassification rate of the data xi is measured by the slack variables, ξi.

min
w,b,ξ

1
2

wT w + C
l∑

i=1

ξi,

subject to yi(wTφ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0.

(2.3)

By using the kernel concept, the basic SVM method is extended to construct a nonlinear

classifier, where every dot product in the basic SVM formalism is altered using a nonlinear

kernel function [10]. K(xi, x j) ≡ φ(xi)Tφ(x j) is called the kernel function. Some of the most

used basic kernel functions are linear, polynomial, radial basis function (RBF), and sigmoid

function, also there are studies proposing new kernel functions.

SVM has become one of the most successful techniques in solving classification problems.

Even the primary purpose of the SVM is binary classification, there are some extensions

developed in order to perform multi-classification, multi-labeling or regression. On the other

hand, it may hold several disadvantages. For instance; since the kernel parameters directly

influence the performance, a search on the parameter space must be applied to find the optimal

parameters but this process may take a long time. In addition to that, training time complexity

may increase drastically when the datasets are too large.

2.4 Remarks on Information Fusion

When representative works are analyzed, some methods step forward. These preponderantly

studied fusion methods are weighted linear combination, SVM, DBN. The main underlying

reasons of the popularity of these methods are as follows. Weighted linear combination is

highly used because it can satisfy the needs of applications which have less computational

requirements. Additionally, being able to specify the importance of modalities makes the

method more appealing. SVM is widely found successful in many multimodal information

tasks, especially in semantic concept detection, on the grounds that it has improved clas-

sification performance and works well with noisy data as well. DBN is mostly preferred

because of its ability to model the temporal relations between the multimodal data. Although

to a lesser extent than the popular fusion approaches, methods such as majority voting and

custom-defined rules are also studied. Such methods are computationally less expensive since
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they do not require a training phase to obtain a decision. On the other hand, some trainable

methods may be unfavorable because of suffering slow training more than others, for instance;

neural networks.

The suitable fusion level for each integration method can differ. For instance; weighted linear

combination is more convenient to perform at the decision level and score-level. Even DBN

can work at decision-level as well as feature-level, it is generally chosen to work at the feature

level because of its ability in dealing with temporal dependencies. Methods such as Borda

count, Rankboost can only perform at rank-level fusion as well as some basic aggregation

operations such as AND, OR is just used at the decision-level. Moreover, some aggregation

methods such as AVG, MIN, MAX are more appropriate to be used in score-level fusion.

Additionally, some methods are suitable to be applied at both feature and decision levels such

as Bayesian inference, neural networks, etc.

If the fusion methods are analyzed according to the application area, it can be observed that

some fusion methods perform better in specific multimedia analysis tasks. So it can be said

that the success of the fusion methods is often dependent on the application domain and pur-

pose. For example; custom-defined rules is more appropriate for application specific tasks, so

they are preferred frequently in news and sports analysis tasks due to its capability to repre-

sent the complex structure of the domain knowledge by proper rules. On the other side, since

object tracking task requires to process the data in a temporal manner, DBN is a reasonable

method for such tasks. For semantic concept detection tasks, weighted linear combination

and SVM approach is used more.

The detailed information on how these fusion methods are applied and the applications areas

of these methods are examined in Chapter 3.
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CHAPTER 3

RELATED WORK

This chapter reviews studies on multimodal information fusion from various aspects. It dis-

cusses some studies according to the methods used for information fusion or the fusion level

used. It analyzes some studies in terms of how they handle concept interactions and also

shows the performance of several studies. In the literature, there are many successful stud-

ies on semantic video analysis. For extracting semantic information automatically, most of

these studies use just one modality such as image [12–14], audio [15–17], and text [18, 19].

However, a multimodal approach in which different data sources are combined concertedly or

another approach which finds and uses the optimal modality must be followed to obtain better

results. Even the number of such studies has not satisfied the literature yet, they increase day

after day.

There are a few review papers which discuss the current multimodal fusion approaches. While

Wang et al. [20] examine methods available for analyzing and integrating the visual and audi-

tory modalities, others additionally consider the studies which put the textual modality into the

integration process. In [2], Snoek and Worring investigate multimodal fusion approaches by

classifying them according to their differential features in regard to the processing cycle of the

fusion method which is grouped as iterated by enabling the incremental utilization of context

or non-iterated, the content segmentation which is categorized according to the processing

fashion of the modalities as symmetric, in other words simultaneous, and asymmetric, i.e.,

ordered, and the classification method which are knowledge-based and statistical approaches.

The large amount of the studies up to now choose to apply symmetric and non-iterated ap-

proaches for integration purpose. But still there are a few studies proposing asymmetric and

iterated methods [21]. For instance; Babaguchi et al. [21] propose such method which inter-

acts textual and visual information to build semantic index results, and then these become the
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inputs of an advance analysis phase which uses semantic indexes to seek the exact time spans

in which the score related events occur. Atrey et al. [10] cover the waterfront of multimodal

information fusion and analyze the studies from various angles like the level that the fusion

occurs and methods performed for multimodal integration. Apart from these, the survey ex-

amines how the studies address the difficult issues regarding the fusion process in detail.

As it has been mentioned earlier, several studies demonstrate that multimodal integration ap-

proaches provide higher performance than any single modality dependent approach. In order

to give more detail, some of these studies are discussed here. Besides, more detail about the

performance improvements obtained by multimodal fusion based approaches can be found

in Section 3.5. Ramachandran et al. [8] present a new multi-label video classification algo-

rithm, named as VideoMule. They integrate the results of various classification and clustering

algorithms which are trained with visual and textual information separately by a heuristic

consensus technique. The authors say that a video can be involved in many categories and

therefore the work labels the videos with one or more semantic classes to achieve a more

robust and completed semantic analysis system. Also, the test conducted with videos down-

loaded from Youtube show that the proposed algorithm performs better than each individual

classification and clustering algorithms in terms of precision, recall and accuracy.

While in other work [9], the fusion approach processes in a serial fashion since it uses the

sources incrementally. First the possible categories, that the image may belongs to, are iden-

tified with using low level features of the image. After that, textual information is extracted

and utilized to make a decision on the correct category of the image. For example; the text on

the signboards a highway image are used for this purpose. The experiments show that adding

the textual information definitely improves the results.

3.1 Early vs Late Fusion

In the literature, late fusion is more extensively studied and preferred than early fusion for

the semantic content analysis task. Apart from being popular, late fusion appears to be more

successful in terms of the detection performance [6, 22].

Snoek et al. [22] compare the success rate of two fusion levels in terms of performance in

detecting twenty concepts (e.g., airplane take off, beach, financial news anchor, outdoor,
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people walking, weather news, etc.). In total, 184 hours of broadcast video data is used to

conduct the experiments and SVM is adopted for both fusion tasks. Results indicate that late

fusion scheme performs slightly better than early fusion in detection fourteen of the concepts.

However, the difference range of the performance is wider in detecting the other six concepts

where early fusion gives better results. For instance; late fusion performs better in detecting

ice hockey concept because of the easily separable scores. In contrast, early fusion performs

better in detecting stock quotes because less prominent scores cause late fusion approach to

misclassify some shots which have scores close to zero. The authors conclude that even late

fusion performs better in most of the concept, using an integration approach on a per concept

basis can be more efficient.

Another study of Snoek et al. [23] can be given as an example to early fusion studies. In this

work, low-level feature vectors of individual modalities are concatenated in a longer feature

vector to obtain a fused multimodal representation of the video content. After merging the

features, supervised learning techniques are used to classify the semantic concepts.

As in early fusion, low-level features of different modalities are needed to be extracted to

obtain semantic information from the video data at late fusion level. Yet, the low-level features

of different modalities are processed separately to obtain the semantic information. [24] can be

cited for such approaches. In another study [25], the late fusion process carries out two fusion

methods which are linear weighted sum and linear weighted product to find monologue scenes

in video archives. In this fusion approach, information obtained by the outputs of detecting

faces and recognizing the speech in company with their synchrony scores are integrated.

3.2 Multimodal Fusion Methods

In the literature, the prevailing integration methods used in semantic video analyzing can be

categorized as trainable and non-trainable methods [26]. For non-trainable methods; rule

based methods are more popular and classification based approaches are mostly preferred for

trainable methods. Rule-based approaches are often applied in simple fusion tasks or other

fusion tasks which are strongly dependent on domain knowledge. Event detection in sports

videos can be an example for such a task.

In [27], Tsekeridou and Pitas conduct the fusion of auditory and visual modalities via knowledge-
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based rules which are defined to detect video parts including speech, silence, speaker identity,

shots with person, shots without person, shots with speaker or shots without speakers. For

instance; to find speakers, first faces are extracted from the camera shots, then a knowledge-

based approach is used with using the speech amount in the shots and the face information.

Further knowledge-based studies can be found in Section 3.3.3.

For multimodal integration, most of the studies use classification based methods. In [28],

Satoh et al. propose a system called Name-It which is based on the ground of a statisti-

cal classification method. The objective of this work is to name and detect faces in news

videos. To accomplish this task, the system computes a co-occurrence factor which combines

the analysis results of face detection and identification, name extraction and closed caption

recognition operations and it links the detected faces with the according names.

One of the widely used statistical-based classification methods that is used for multimodal

information fusion is HMM [7,29]. This approach can be utilized as a combiner of multimodal

features as well as a classifier combination method. Moreover, these data sources can easily be

passed over to product HMM (a subtype of HMM method which is developed lately) in cases

where the data sources are independent of each other [7]. In [29], Alatan et al. propose a novel

HMM-based method which extracts scenes with dialogs from movie and sitcom video data.

HMM is trained via some labels formed according to the sound analysis result (speech, music

and silence information), face and location information, then categorizes the video parts as

establishing, transitional and dialog scenes. Two different HMM topologies are experimented,

namely left-to right and circular HMM topologies. It is concluded that both approaches reach

to a successful conclusion with multimodal strategies.

In [30], Naphade and Huang propose an advanced probabilistic framework which is contin-

gent upon models called multijet and multinet in order to index the semantic video content,

in other words, on the purpose of mapping low-level features to high-level semantics. More

specifically, the framework enables different sources of information to be used symmetrically

by favor of multijets which model the relationships between objects and a multinet which

models the interaction of the semantic content elements, namely concepts. A Bayesian belief

network is used for the fusion task in the multinet. Finally, a significant improvement in the

concept detection performance is shown in the study.

SVM is a widely used fusion method in multimodal information fusion. For instance; in
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[31], a multimodal analysis of news videos is performed by SVM. In another study [24],

Adams et al. compare two late fusion techniques; SVM and Bayesian Networks. The authors

first find some intermediate concepts with the help of auditory, visual, and textual cues and

then model an event by adopting a SVM integration and Bayesian network integration. In

SVM fusion, the scores from all individual semantic models are concatenated to construct

a feature vector and the vector passes to SVM for event classification. As a result, SVM

outperforms all single-modality based systems as well as the Bayesian network integration.

The experiments show the significant success of SVM, that is, nineteen of the top twenty

retrieved shots are target event shots. In another interesting study [32], Wu et al. present a

novel super kernel fusion method, based on SVM, to construct the optimal fusion of individual

modalities, representing features such as speech, color histogram, etc. The method follows a

two-step approach which first finds the best independent modalities and then integrates these

best independent modalities. In average, the study works better than other product or linear

combination methods. But when examining the results of individual concepts, sometimes

linear or product combination provides higher performance in terms of average precision. So,

the authors conclude that different concepts may be best detected by applying different fusion

methods.

Most of the leading studies in the field of information fusion, focus on detecting specific

concepts. In such cases, a knowledge-based fusion method can give satisfying results. How-

ever, this method is deficient in terms of scalability and robustness. So, in semantic video

analysis, studies lean to machine learning techniques, more specifically classification based

approaches, to cope with these shortcomings. In [2], it is also shown that most of the studies

are apt to learning-based approaches. But still, knowledge based approaches are successful

enough in domain specific fields. To put it another way, even the classification based ap-

proaches are preferable with respect to scope of applicability, for different tasks and research

domains the appropriate fusion methods can be superior and this experimented via many stud-

ies. Therefore, it is hard to point out a specific combination method which is suitable and will

work successfully for all the multimodal fusion task. However, in an attempt to propose an

optimal combination solution, it is critical to know which methods are predominantly more

prospering in which cases.

The fusion methods used in several multimedia analysis tasks are gathered in Table 3.1.
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3.3 Application Areas

There are many application areas in which multimodal information fusion proves its effi-

ciency and therefore becomes a crucial analysis approach. The primary application areas are

person detection in biometrics, automatic speech recognition, object tracking from surveil-

lance videos, emotion recognition, semantic video analysis, etc. Since, the research fields

other than the semantic video analysis are not directly related to the scope of this thesis, the

literature survey aims to center around video analysis task which makes use of textual, visual

and auditory evidences as far as possible. The subtasks in semantic content analysis can be

classifying videos into different genres, segmenting the videos into sub-genres, object/con-

cept/event detection, etc. Most of the studies in literature focus one or more such tasks and

apply fusion approaches to accomplish these tasks.

In video analysis, broadcast news and sports are the prominent video genres that more re-

search effort put into. Other genres such as movies and commercials generally come into

view in genre categorization oriented studies.

3.3.1 Video Structuring

In literature, a considerable amount of works which follow a multimodal fusion approach

in classifying video segments into specific genres (e.g., movies, weather forecast, news pro-

grams, sports) appears [5, 7, 42, 45]. For instance; Jasinschi et al., in their proposed sys-

tem [42], utilize visual and auditory cues along with the textual modality to classify video

parts as commercial, financial news or talk show. The system first extracts low-level features

like color, shape, transcript, MFCC and ZCR, then these features are used to find some infor-

mation such as keywords, speech, faces, etc., which referred as mid-level information in the

study. Finally, these mid-level entities are fused with Bayesian Networks to detect the genres

of the video segments.

In another study [7], auditory and visual observations are integrated through several methods

to categorize the video into news reports, commercials, basketball and football. In the exper-

iments, product HMM give better results among other fusion methods (direct concatenation,

two-stage HMM, neural network) and single modality based classifiers.
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3.3.2 Broadcast News Video Analysis

Due to the significant interest in the potential of exploiting the amount of information to

the max, multimodal integration becomes a rapidly expanding area in news video analy-

sis [4, 5, 31, 43, 44, 46], especially for story segmentation. In [46], before deciding on the

final story segments, initial story boundaries are detected by exploiting visual, auditory and

speech information. Then a weighted voting fusion method is applied for outputting the final

story segmentation. Lie and Su propose a Bayesian-based decision rule in order to classify

news videos into several genres which are politics, society, health, sports, and finance in their

study [5]. Besides, various rule-based fusion (sum rule, product rule, maximum rule, median

rule, minimum rule, major vote rule, proposed Bayesian-based decision rule) results and uni-

modal classifier results, which are separately based on caption-text, anchor speech, and visual

features, are compared.

Apart from news genre detection, multimodal information fusion can take part in detecting

people in the video. In order to give an example; several features (transcript clues, named

entities, speaker identity, facial information and video OCR, temporal structure) are extracted

to be further combined in an early fashion to detect and categorize the person object into

anchor, reporter or news subject in the study of Yang and Hauptmann [31]. The study is

tested with the TRECVID dataset and proven to be effective. Separately, the study shows that

the combination of all the features give higher performance than any single feature in terms

of overall classification precision. A similar success is reached from the evaluation results

by the system presented in [44]. Chaisorn et al., combine audio class labels, low-level visual

features (e.g., color histogram), and some mid-level information such as the total number of

faces that appears in the frame to classify news videos into several predefined categories. The

study concentrates on two main tasks; shot classification and story segmentation. An HMM

based analysis is employed with the intent of locating story boundaries. On the other hand,

the shots are categorized via decision trees.

3.3.3 Sports Video Analysis

In studies dealing with sports videos, video analysis mostly relies on several processing tasks.

Scene or shot detection with the help of camera motion is one of the major steps, but other
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detection tasks can be helpful according to the related sports such as player detection, text

extraction, cheering detection, goal post extraction, etc. The results of these tasks are linked

together by an integration phase.

Multimodal information fusion is used mainly in event and highlight detection [21,33,35,36,

47–50]. The approaches mostly model these events by considering the well-defined structure

of the sports videos. Therefore the preferences of the integration method head towards custom

defined rules with using the domain knowledge [6, 35, 50, 51].

Ping and Xiao-qing, in their study [35], incorporate the shot information (long shot, in-field

medium shot, out of field shot, close-up shot) and the auditory clues (commentator’s excited

speech, audience’s cheering) by the defined rules to reach the goal event incorporate. In the

study of Liu et al. [50], again some scene information (court view, bird view, penalty scene,

etc.) and auditory information (excited audience, excited commentator, etc.) incorporate in a

rule-based fashion to detect foul and shot at the basket events in basketball videos. Nepal et

al. [51] proposed a model which extracts interesting sporting events from basketball videos

automatically. The event model is established by cheering, scoreboard and the change in

direction. These cues are obtained heuristically from the low-level features. The system finds

the cheering concept with the help of high energy segments in the audio data. Scoreboard is

obtained by searching the areas with sharp edges. Lastly, change in direction is found from

the motion features. Even though the detection accuracy varies between 50% and 100%, the

range of the detectable event types is very limited.

Separately, there are other studies that follow a classification-based method for the fusion

task. In the study of Delakis et al. [52], the authors perform audiovisual integration with

a newly proposed framework, namely the framework of Segment Models, for tennis video

analyzing. The results of the presented framework and a Hidden Markov Models based fusion

approach are compared and show the superiority of Segment Models. In another study [36], a

framework for extracting the highlights in sports videos is presented. Auditory features such

as MFCC, Energy/ZCR, and MPEG-7 features are used to obtain concepts like applause,

cheers, music, speech, etc. On the video side, color and motion features are extracted to

build detectors for recognizing the type of the camera movements (i.e., close shot, replay,

zoom out). Finally, these information is fused by HMM in order to generate the highlights.

The authors of [47], propose a system that can detect highlights in baseball videos from
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the collaboration of image, audio and speech cues using maximum entropy method. The

fusion takes place in feature level. These features are visual features derived from color, edge,

camera motion, MFCC from audio data, and mid-level entities including player presence,

words from closed caption such as field, score, base. As a result, highlights like home run,

outfield hit, infield out, walk, etc. are obtained with satisfactory recall and precision values.

In [33], an audio-visual feature based model is studied to detect events in field sports videos.

Robust event detectors are build by SVM classifiers with combining the features (i.e., audio

energy, motion, graphic overlay, etc) indicating significant events. Similarly, in [34], for

modeling each football event, an SVM classifier is built up to detect the representative event

by using different sets of keywords which are chosen heuristically.

3.4 Concept Interactions

Our analysis of the multimodal fusion approaches revealed that most them do not consider

the concept relationships. However, this is a hot research topic and researchers started to

realize that exploiting the concept interactions may yield better fusion results. For instance,

researchers develop a contextual late fusion method which uses both multimodal and addi-

tional concept scores, in order to improve the prediction performance in [38]. Instead of

combining just the scores of the target concept obtained from several modalities, the study

fuses available scores of all concepts so that they can exploit the concept interactions too. The

results indicate that contextual late fusion performs better than the compared classical fusion

schemes and unimodal runs.

In [53], Campbell et al. examine several fusion schemes and one of them fuses contextual

information along with multiple modalities. Here, contextual information refers to the addi-

tional concept information. The results indicate that some concepts can significantly benefit

from concept relations. For example; the Car concept is detected with 16.5% success by the

visual baseline. When a multimodal fusion approach is followed the performance jumps to

19.6% in terms of average precision (defined in Equation 5.1). Furthermore, when other con-

cept information such as road, vehicle, etc. are used in the fusion process, the performance

increases to 21%. In other words, additional concept cues improve the multimodal fusion by

7.1%. On the other hand, results point out that contextual cues cannot always contribute to the

fusion stage because there may be no other helpful concept information related to the target
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concept. For instance; according to the experiments, Waterscape Waterfront concept does not

benefit from the contextual information.

In another study [24], authors use concept interactions in order to infer rocket launch event.

Concept scores (explosion, speech, rocket launch, sky, rocket, etc.) obtained from visual,

auditory and textual modalities are concatenated into a feature vector and given SVM to model

the rocket launch event. As a result, the system successfully predict the target concept and

outperforms the best baseline.

3.5 Performance Overview

In literature, there are a considerable amount of studies showing the superiority of multi-

modal fusion over unimodal approaches and sometimes over other fusion methods. In Table

3.2, some of these studies with performance results are summarized. The performance gain of

each study is given as a relative improvement over the best baseline or another fusion strategy.

The performance improvements are given according to differing evaluation metrics which are

figure-of-merit (FOM), mean average precision (MAP), f-measure and accuracy. Besides in-

formation about the datasets that are used in the experiments are stated. As it is seen from

these studies, multimodal fusion can provide a substantial improvement in the semantic con-

tent analysis task.

In [5], the proposed Bayesian-based decision rule is compared with several basic aggregation

rules and unimodal approaches. As a result, the study increases the classification rate by 14%

relative to the best single modality and 3% with respect to the second best fusion rule, i.e.

Product rule. Another study [4], giving better results by virtue of fusion, performs story seg-

mentation by detecting the video segments like story, sports, music/animation. The maximum

entropy based fusion process exploits textual, auditory, visual modalities, more specifically

features like motion, music or speech types, prosody, face, etc. The tests are conducted with

ABC/CNN news videos and the results of the fused system is higher than other modalities in

terms of precision, recall, and f-measure metrics. For example; in ABC videos, the precision

based boundary detection performance is around 0.65 when just the textual modality is used,

0.75 when auditory and visual predictions combined and 0.85 when all modalities join the fu-

sion process. Moreover, in CNN videos f-measure performance of the best unimodal baseline
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(textual) jumps from 0.59 to 0.73 when all modalities (auditory, visual, textual) are fused.

In [32], Wu et al. achieve very satisfying results on TRECVID 2003 dataset. The results of

proposed fusion method are compared with IBM, product fusion and linear weighted fusion

results. According to the experiments, for 7 concepts (16 in total), the presented method gives

better results than the other 3 fusion baseline. Moreover, it reaches 33.29 MAP in overall

whereas the overall performance of IBM, product fusion, linear weighted fusion are 31.38,

22.28, 28.04, respectively. In another study of Wu et al. [54], very successful results are

achieved by the proposed super-kernel nonlinear fusion approach. The study reports that for

most of the TRECVID 2003 concepts, the developed method is highly superior than the best

baseline. In overall, the method increases the best baseline result from 24.6 to 32.5 which

points outs a significant relative improvement of the multimodal fusion approach.

In the study of Ayache et al. [38], three efficient SVM-based fusion approaches are pro-

posed and compared with other traditional fusion schemes and unimodal approaches on the

TRECVID 2006 dataset. All of the presented integration approaches, i.e., normalized early

fusion, kernel fusion, contextual late fusion, outperform the compared baselines. As an exam-

ple; the normalized early fusion outperforms the classical early fusion by 20.3%. In addition

to this, kernel fusion increases the best unimodal baseline (visual) performance from 0.0634

to 0.0805 in terms of MAP. In another study [55], a relief-based linear weighted fusion scheme

focusing on the optimal modality selection is performed on TRECVID 2007. The satisfying

results indicate that fusing visual, textual and auditory cues with the proper modality selection

can improve the performance of the system significantly.

The experiments of the previously mentioned studies are mostly conducted on TRECVID

datasets. Another dataset with gaining popularity is CCV Database. There are several studies

reported their performance on this dataset. For instance; in [56], a rank minimization tech-

nique which integrates the matching scores of multiple models provides higher performance

in terms of MAP for 19 of the CCV concepts (20 in total). Also it performs better than the

best baseline (Kernel Average) by 6.6% in overall. In [58], Yilmaz et al. compare the per-

formance of the proposed nonlinear weighted averaging fusion method with unimodal runs

and other fusion methods (AVG, MIN, MAX, linear weighted fusion, SVM-based fusion and

Naive Bayes-based fusion approach). The reported results show that the suggested fusion

method works in higher performance than all other compared fusion strategies and unimodal

31



approaches in overall. Besides it gives superior results for 16 concept of CCV concepts. It

outperforms the best unimodal baseline by 24.2%, and the best fusion method (SVM) by

6.3%.
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CHAPTER 4

THE PROPOSED SYSTEM

The proposed fusion system is designed to work in cooperation with other unimodal mod-

ules, i.e. visual, auditory, textual content analyzers, to carry out the semantic video analysis

task and consequently extract semantic information ready to be stored in a database for fur-

ther retrieval tasks. Since a separate information fusion system is intended for integrating the

semantic information obtained from independent modalities and due to the existing studies

showing that a late fusion scheme performs better than an early one [22], a late fusion ap-

proach, which is performed at the score level, is chosen for our research. Score-level fusion

provides more information among other late fusion schemes. Moreover, score-level fusion

offers good balance between information complexity and the flexibility in modeling the de-

pendency between different modalities [59].

Before explaining the fusion method and the motivation behind it, let’s mention the nature of

the inputs, in other words the outputs of unimodal content analyzers of the system. Different

modalities may intrinsically contain relevant but different types of information. For instance;

in a soccer game, while the visual content contains objects like ball, referee, field, player, etc.,

the audio content includes sounds like commentator’s speech, applause, whistle. Apart from

these, the text may contain the names of the teams, the time information, or events like red

card, goal, etc. Some of these information can be extracted from more than one modalities

such as red card. But most of the time, the extracted information is not same between the

modalities. However, generally most of them are related (e.g. the relationship between cheer-

ing concept extracted from the auditory modality and the goal event extracted from textual

or visual modalities). In the light of these aspects the fusion problem and the purpose of the

fusion system are as follows: The fusion problem is integrating the observations belonging to
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the same class and utilizing the interactions between the observations of different classes cap-

tured from independent modalities. The purpose of the system is to fuse the observations with

the purpose of increasing detection accuracy of the concepts and obtaining new information

by exploiting the relations of the concepts that is not retrieved from each modalities.

Before deciding on the fusion method, several aspects and purposes, as mentioned above, of

the expected system are evaluated. First of all, we aim to build a system as generic as pos-

sible; it is not domain-dependent because it enables expansion with new domain knowledge

and concept definitions. Due to these reasons, the system is decided not to be predicated on

custom-defined rules. Besides, the inputs of the fusion system mostly will be different pre-

diction scores of different classes, so the methods, e.g. AND, OR, MIN, MAX aggregations,

which focuses on merging the decisions belonging to the same class is not sufficient enough.

Therefore, SVM, one of the most successful classification methods [60], is chosen for the

fusion strategy. Besides, SVM is observed to be the most used and corroborated to be very

effective in the studies which follows a multimodal approach for semantic concept detection,

see fusion methods for semantic concept detection task in Table 3.1. Additionally, the success

of the fusion methods is compared with several primary fusion methods in Chapter 5.

Even the proposed fusion system is established on an existing supervised learning method

(SVM), it can be viewed as a naive approach when it is analyzed all in all. The prominent

features of the system are the ability to detect a new concept, performing a Relief based

feature selection procedure to select important concept scores, utilizing concept interactions,

and using the appropriate evaluation metric in performing the cross-validation. Briefly, there

is no other study which has all these features within the same fusion system to the best of

our knowledge. Therefore, it can be said that the proposed fusion system brings a different

approach in multimodal information fusion.

In Figure 4.1, the overall architecture of the semantic video system is illustrated. The fo-

cus of this thesis is the multimodal information fusion part of the architecture which mainly

consists of four modules; concept construction module, feature selection module, concept

learner and finally the concept classifier. Briefly, the concept constructor simply processes the

concept definitions to form the concept instance and performs a temporal alignment between

the modalities according to the shot boundaries. Finally, for each concept it constructs the

training or test data according to the purpose. Feature selection module calculates the weights
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Figure 4.1: A general architecture of semantic video analysis system

of all features according to the training data and eliminates the features having the weight

values below the threshold. Note that the features of the fusion system refer to the concept

scores obtained from single modality based systems. It then gives the updated training data

to concept constructor, which updates the concept feature information and weights. After the

training data is transferred to SVM format, it passes into the concept learner. Then the concept

learner constructs the concept model after some series of processes. In the testing phase, the

test data is formed according to the scores obtained from several modalities and then given to

the concept classifier to create a new concept or generate a new integrated concept score.

In Section 4.2, the operations performed by the concept constructor and feature selector and

in Section 4.3 the concept learner and classifier are explained in more detail. Also in Figure
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4.2, the detailed work flow of a training process, in other words each process performed during

the concept learning phase is shown. Besides, the general work flow of concept classification

process is shown in figure 4.3. But before explaining the fusion process, let’s touch briefly

on the semantic concept detection task.

4.1 Semantic Concept Detection

As mentioned earlier, the focus of this study is the fusion of scores of semantic concepts to

improve the score of an existing concept or to detect a new concept. Note that, detecting a

new concept is what makes a difference from other studies. The approach simply estimates

the label yc ∈ {1, 0} for concept c from a collection of scores for concepts that are related to the

concept c, denoted as x = [x1, ..., xM]. The related concepts are determined by an automatic

feature selection procedure or heuristically, i.e. human expert. When the target concept is

an already detected concept by one or more modalities, these scores are also fed into the

feature vector and other related concept scores are used to help in increasing the detection

performance. So, the fusion approach is established on base of interactions and probabilities.

Interactions address the ontological relationship, e.g., a car is likely to be seen outdoors and

unlikely to be in a building. Also knowing both presence or absence of rocket and explosion

sound may help us decide if a rocket launch event occurs or not.

4.2 Preprocessing

All of the concept information, video content data including shot information of auditory,

visual and textual modalities, annotations, concept scores are assumed to be taken as an in-

put. According to this information, for each concept an instance is created by the concept

constructor module. These instances include the feature information, absence or presence in

shots, scores if exist and annotation information of the related concept. These information

are used to create the training data of the target concept after the synchronization process is

finished. Each training data contains samples in the number of visual shots, and for each

sample there is a corresponding feature vector. If the feature selection process is chosen to be

performed, then the document is updated after a feature selection process. Also each sample
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Figure 4.2: Flow diagram of concept learning process
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Figure 4.3: Flow diagram of concept classifying process
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is labeled by 1 or -1 according to the absence or the presence of the target concept in the

corresponding visual shot. In the testing phase, most of the same operations take place except

the feature selection process. Since the features are already determined before the training

phase, the same features are used again in classification. Finally, the training or test data is

transformed to the SVM format and given to the concept learner in training phase and passed

to classifier while testing. Below the main steps of the preprocessing are explained briefly.

4.2.1 Synchronization of Modalities

Most of the concepts are mostly connected to the visual content of the video. Having regard

to this, we choose the main expertise as visual modality and perform a simple alignment at

visual shot-level. For each visual shot, the concept information from other two modalities

which coinciding the visual shot according to the shot boundaries are found. All the concept

scores are taken as they are, we don’t perform a proportional recalculation. For instance; the

visual shot is between 10.2 sec to 16.7 sec. Besides, one of the related audio shot boundary is

8.4-12.8 sec, and the next one is 12.8-17.5 sec. Even these shots cannot match to the visual

shot exactly, some part of the concepts happened in two audio shots are obviously coinciding

with the visual shot. So we kept those scores as they are and use all.

4.2.2 Feature Selection Module

In concept detection problems, the representation of data often uses many features, only a

few of which may be related to the target concept. In this situation, feature selection can be

important both to speed up learning and to improve concept prediction quality. Even SVM

works good with the noisy data, irrelevant features in our case, a feature selection process

can increase the performance significantly. For instance; while modeling the rocket launch

event, the concept information such as sky, rocket, explosion can be very helpful, however tree

information is irrelevant to this event. So under favor of a feature selection process, this kind

of unrelated concepts can be eliminated from feature vector of the target concept. The same

thing can be done by an expert. Our fusion system favors both approach; when the feature set

is defined beforehand by an expert, the given features are used to model the concept. But when

they are unavailable and if we don’t perform the feature selection, all concepts are obliged to

be used as features for the target concept and this leads the training data to be noisy because
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of the unrelated concepts. To prevent this, a feature selection operation is applied on the

feature vector. For this purpose, we choose the Relief algorithm [61]. The Relief algorithm,

an instance based learning feature weighting algorithm that determines the significance of

each feature by giving a weight, is considered one of the most successful algorithms for

feature selection and weighting [62]. We use the Matlab Statistics toolbox implementation

for the algorithm. After the Relief method estimates the qualities of the features, we select

the features having a higher weight value than the threshold which is determined empirically

but also can be changed and given as a parameter to the method. Finally, the feature vector

are updated according to the selected features.

4.3 SVM-based Integration

Each target concept is modeled and tested via SVM-based modules. Primarily, the concept

learner constructs the concept model by carrying out several steps. First, the updated training

data is normalized according to min-max normalization, then the parameters of RBF kernel

is found with going through a cross-validation and grid search phase. After, the optimal pa-

rameter combination is attained, SVM is trained with those parameters and the scaled concept

training data to build up the concept model. For each concept, the same training phase is per-

formed. When the real-world data is passed to the system to test or classify the concepts, first

test data of each concept is normalized according to the scale information obtained during the

training step. Then the normalized test data is given to the concept classifier, and the concept

classifier produces a probability estimate and a decision for each shot information. These

briefly mentioned steps are further explained below.

For SVM, we utilize the libSVM tool [63]. Before applying SVM, normalizing the features is

very important. The main income of this process is to avoid feature values in greater numeric

ranges dominating those in smaller numeric ranges. Even the matching scores, obtained from

different modalities, i.e. the inputs of the fusion operation, are expected to be in the range of

[0, 1], the promised generic fusion system applies normalization just in case of coming across

wider ranged scores. As a result the same normalization method is performed to scale both

training and test feature to the range [0, 1].
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4.3.1 Kernel Function Selection

In SVM formulation, the dual problem involves the inner product of samples, so as the dis-

criminant function which allows replacement of this product with a kernel function in the

linearly non-separable case. The samples can be mapped into a higher dimensional space

which, in this new space samples, can be discriminated linearly when they are not in the

original feature space. Most common kernel functions are:

• Linear: K(xi, x j) = xT
i x j

• Polynomial: K(xi, x j) = (γxT
i x j + r)d, γ > 0

• Sigmoid: K(xi, x j) = tanh(γxT
i x j + r)

• Radial basis function (RBF): K(xi, x j) = exp(−γ ‖ xi − x j ‖
2), γ > 0

In our recommended fusion approach, RBF kernel is chosen as the kernel function, because

it was empirically observed to perform better than the other available kernel functions. More-

over, RBF has a few number of parameters and has fewer numerical challenges. For instance;

kernel values of the polynomial kernel function can go to infinity or zero when the degree,

i.e. d, is too large. On the other hand, there are some clear disadvantages of RBF kernel.

Especially when the dimension of the feature vector grows large, the RBF kernel would work

poorly. However, in our study the dimension of the feature space will not tend to grow large

because we just use matching scores (as features) obtained from multiple modalities. To be

more precise, the number of modalities that produce scores are very low and the number of

concepts predicted in the overall system won’t exceed hundreds. So the number of features

cannot reach to a level where they would be perceived as large (thousands and maybe more).

Moreover, the dimensionality can be reduced by some feature selection algorithms.

4.3.2 Model Selection

The parameters of SVM are well known to have an important impact on classification per-

formance. Accordingly, it may be very sensible to appropriate selection of parameters, so a

parameter selection process which at least checks a range of parameter combinations is vital

for constructing an accurate classifier.
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Since RBF is selected for the kernel function; the parameter search, i.e. model selection,

process is applied on the RBF parameter. Since RBF is selected for the kernel function; we

need to determine the SVM parameters namely: the RBF parameter γ and the soft margin

parameter C, recall optimization problem in Equation 2.3, for making the classifier predict

the newly observed data very accurately. It is important to note that when determining the

parameters, since we are trying to make the classifier modeled as close as to the optimal,

indeed it’s not guaranteed, the overfitting issue should be considered and an important effort

should be put to overcome it. The values can be obtained after a few empirical try but for

each concept detector, this parameter combination can be different according to the nature of

the relation of the target concept and the features. For this reason, in our system each concept

learner follow through this process even it may take long.

In our case, we follow a common strategy and separate the training set into two subsets namely

training set and validation set. The validation accuracy can be obtained by training the clas-

sifier with the training set and testing it with the validation set. An improved version of this

briefly explained procedure is known as cross-validation.

4.3.2.1 Cross-validation Procedure

It is a commonly applied statistical method for trying to guess how successfully a classifier

will work in practice. In a typical cross-validation process two subsets (training and vali-

dation) must change roles for giving each sample a chance of being validated against. The

fundamental type of cross-validation is k-fold cross validation. The other forms are just vari-

ants of this particular type. For instance, leave-one-out cross validation is a special case where

k is the number of total samples. In k-fold cross-validation the data is separated into k equally

sized folds. Iteratively, a single segment is set aside for validation where the remaining folds

are used for training. This process is repeated for every fold. The validation accuracy is the

percentage of samples which are being correctly classified. Our system is able to make k-fold

cross-validation with any values of k. But still in default, the k value is chosen as 10. It forms a

good balance between yielding a better classification and not taking a very long time. Besides

it is taken as 10 in many studies. For instance; in [64], several cross-validation approaches

are compared to estimate accuracy and the study recommends 10-fold cross validation, and it

tends to provide more accurate performance estimation.
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The most important advantage of cross validation is that it can avoid the overfitting problem

that emerges when a prediction model represents a noise rather than underlying relationship.

In other words, overfitting occurs when our SVM model characterizes too much detail and

possibly gives bad accuracy in testing. Hence, performing a cross-validation is important for

not overfitting the training data.

4.3.2.2 Grid Search

During cross-validation, a parameter search, i.e. model selection, technique must be applied

to find the optimal values of C and γ. There are some advanced techniques such as approxi-

mating the cross-validation rate and other techniques relatively simpler like grid search. All

of these parameter search methods are a little bit time consuming but sophisticated methods

take computationally much more time than the simpler ones. Since grid search gives feasible

results and since we cannot ignore the expensiveness of the sophisticated methods in terms

of time, the grid search technique is chosen for this procedure. This method simply performs

an exhaustive search through a subset of the parameter space to find the best combination of

parameters for the dataset.

Optimal values for C and γ are selected through grid-search approach with exponentially

growing series of these parameters. The technique must be supervised by a performance

metric which is measured by the cross validation. The cross-validation first checks for the

performance of the classifier constructed with each value pair of parameter choices and then

chooses the values giving the best performance according to the specified metric.

Normally, libSVM supports just accuracy as the performance criteria and a tool which sup-

plies other evaluation metrics and supports probability estimations at the same time has not

been encountered during the literature search. So we developed an extension to libSVM

which enables to perform cross-validation under different evaluation metrics. This extension

is further explained in Section 4.3.2.3.

After the optimal parameters are selected according to the specified performance criteria, the

target concept is then trained again on the whole training set using the chosen values of the

parameters to generate the final model which will be used for classifying the test data for the

target concept.
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4.3.2.3 Alternative Performance Metrics for Model Evaluation

Mostly, the criteria chosen for cross-validation procedure is the accuracy metric which shows

how well a binary classification test correctly predicts the class of a sample. However, it may

not be a good performance metric for evaluating a model in certain cases. First of all, one

must decide what is the most appropriate performance measurement of the system, i.e. are we

trying to maximize the accuracy of the system, or are we just interested in predicting the target

classes correctly during classification. Furthermore, the ratio of the positive and negative

samples can be important for the criteria selection. Specifically, for some unbalanced data

sets, accuracy may not be a good evaluation metric. For instance; assume that the positive

samples are very low, and negative samples occupy most of the training set, the model may

have difficulties in predicting the true samples and even it predicts almost all of the samples as

negative, the accuracy will still be high because of the negative samples matched correctly. So

the resultant parameter combination may not be the optimal one. To prevent this, an extension

is developed which enables libSVM to conduct cross-validation and prediction with respect to

different performance metrics which are accuracy, precision, recall, i.e. sensitivity, f-measure,

balanced accuracy (BAC). Below the formulations of these metrics are given:

accuracy =
tp + tn

tp + tn + fp + fn

precision =
tp

tp + fp

recall =
tp

tp + fn

f − measure =
2 × precision × recall

precision + recall

BAC =
recall + speci f icity

2
,

where speci f icity =
tn

tn + fp

(4.1)

From the above parameters; tp corresponds to true positive which is the true result, tn refers

to true negative which is the correct absence of the result, fp is false positive in other words

the unexpected result and finally fn, i.e. false negative, refers to the missing result. Certain

cases where accuracy may not be the perfect selection as a performance metric have already

been discussed. Also the precision or recall as the criteria may not be a good choice for

cross validation because 100% precision or recall can be easily reached by predicting all data
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in one class. In situations where the minority class is more important, F-measure may be

more appropriate, especially in situations with very skewed class imbalance. An alternate

performance measure that treats both classes with equal importance is balanced accuracy.

If we use all the samples in our data set in each training sets of the concept learners, the

proportion of positive samples of the target concept will be very low. In this case, f-measure

can be a good evaluation metric. Or even the positive samples are low, one can use a subset

of the negative samples with equal number of positive samples. However, since we want to

use all the information as much as possible, f-measure is set as default performance metric.

Actually, balanced accuracy would work well in almost all cases, but after some empirical

trials, we see that f-measure performs a little bit better than BAC. But still another metric can

be passed to the parameter selection function for cross-validation.

4.3.3 Testing

This phase is the simplest part of the fusion system. First, test data of each concept is normal-

ized with the stored scaling information. Then the updated test data is passed to the concept

classifier. This module predicts the concept existence in each sample, and calculates the pos-

terior probabilities according distance of the current support vector, i.e. current sample, to the

separating hyperplane of the concept model. In short, the SVM outputs are converted to prob-

ability estimates using Platt’s method [65] to acquire a measure in the form of a probability

score.
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CHAPTER 5

EMPIRICAL STUDY

The most challenging part of this work is to test the fusion system because it is completely

dependent on the results of other systems. In literature, there is no dataset which provides

concept scores obtained from textual, visual and auditory modalities. On the other hand, there

are some research groups such as Columbia374 and VIREO374 [66] who released concept

scores obtained from the visual modality but they are not adequate to show the fusion system

abilities fully.

In order to show the success and results of the system, several experiments are conducted via

several scenarios. In the below sections, the evaluation metrics used to measure the perfor-

mance of various runs are shown. Also, the datasets used in the experiments are explained

in detail and the results of single modality and fusion runs are listed in detail. Besides, the

performance comparison of our fusion strategy against other fusion methods such as basic

aggregation methods (i.e. MAX, MIN, AVG), weighted linear combination are given.

5.1 Evaluation Metrics

The evaluation metrics used in this study are accuracy, precision, recall, f-measure, balanced

accuracy (BAC), average precision (AP), mean average precision (MAP). The formulations of

accuracy, precision, recall, f-measure and BAC are given in Equation 4.1. Apart from these

metrics AP and MAP metrics are also very popular in evaluating similar systems, especially

in TRECVID evaluations.

Average precision is the sum of the precision at each relevant hit in the retrieved list, divided
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by the number of relevant documents. The AP can be formulated as follows:

AP =

n∑
k=1

P(k)4r(k), (5.1)

where k is the rank in the sequence of retrieved documents, and n is the number of retrieved

documents, P(k) is the precision at cut-off k in the list and 4r(k) is the change in recall from

items k − 1 to k. MAP is the mean of AP scores for each query, in our case for each concept

classes. Below, the formulation of MAP is given, where Q is the number of classes, i.e.

queries.

MAP =

∑Q
q=1 AP(q)

Q
. (5.2)

5.2 Experimental Setup 1

In this section, we give a proof-of-concept experiment to show the success of the fusion sys-

tem. The proposed fusion system is evaluated in terms of event detection accuracy. Also we

show how the interaction between concepts affects the performance. Moreover, the contribu-

tion of the automatic feature selection procedure is compared with no selection and a human

expert selection.

5.2.1 Dataset

We constructed a synthetic dataset for detecting an event, i.e. person speaking at the camera,

which is strongly tied to auditory and visual cues. The training data is constituted to involve

238 shots and 110 of them include the event. The test data contains 230 shots and the event

is present in 100 of them. The shots are assumed to have the following concepts; visual

concepts (face, person, indoor), auditory concepts (silence, speech), textual concepts (news,

president). The feature selection part in the proposed system selects face, silence, speech as

the significant features affecting the target event. On the other hand, the human expert selects

face, person, silence, speech as the relevant concepts, (silence is chosen because the presence

of it gives clues of the absence of speech).
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5.2.2 Results

In Table 5.1, the detection performances of the person speaking at the camera event are com-

pared between single modality based approaches and fusion with different feature selections.

It is shown that the proposed fusion with relief-based feature selection performs better than

other cases. It shows a 3.4% improvement over no feature selection and 6% improvement

over human expert in terms of accuracy. However, even there is a slight increase, the selec-

tion procedure must be experimented on a real data as well. Moreover, when the event is tried

to be extracted from single modalities, visual or auditory, the results are much more lower

than the proposed fusion approach.

Table 5.1: Evaluation results of different runs on detecting the person speaking at the camera
event

Fusion Fusion Fusion Visual Auditory
all features features selected features selected Modality Modality

automatically by human

Precision 85.71% 90.20% 92.68% 70.75% 79.82%
Recall 90.00% 92.00% 76.00% 75.00% 91.00%
F-measure 87.80% 91.09% 83.52% 72.82% 85.05%
BAC 89.23% 92.15% 85.69% 75.58% 86.65%
Accuracy 89.13% 92.17% 86.96% 75.65% 86.09%
MAP (all shots) 94.73% 95.75% 92.19% 68.28% 74.45%

Table 5.2: Relationship influence on detecting the person object

Just Person Using Additional
Information Face Information

Precision 99.42% 99.44%
Recall 95.03% 97.79%
F-measure 97.18% 98.61%
BAC 96.49% 97.87%
Accuracy 95.65% 97.83%

One of our motivation is that the relationships between concepts can provide an increase in

performance. In order to experiment this, the interaction between face and person objects is

used. Since face is most likely occur on a person object, we can expect that a person is present

when face object is detected. So this information can help us to more accurately detect the

person object, especially when the person object is captured with low detection score even it

exists in the related shot. In Table 5.2, the evaluation results for detecting person object by
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using just person prediction scores and using an additional face information along with the

person information are shown. Results indicate that 5 more shots are truly classified using the

correlation between face and person objects.

5.3 Experimental Setup 2

In this experiment, the multimodal fusion system is evaluated on a real dataset. The detection

performance of single modality-based and fusion baselines are shown and discussed in detail.

Additionally, the fusion results are compared with some basic fusion methods (AVG, MAX,

etc.), linear weighted fusion and Naive Bayes.

5.3.1 Dataset

The experiments are conducted on Columbia Consumer Video (CCV) Database [57], i.e., a

benchmark for consumer video analysis. The dataset contains 20 target concept class and it

is composed of 9,317 Youtube videos. The dataset is equally portioned into two to construct

the training and test data. In addition to the ground-truth annotations and the training and test

sets, the researchers share out three auditory/visual feature representations which are auditory

(MFCC), visual (SIFT), and motion (STIP). The STIP features can also be seen as visual

features. More details about the benchmark and the features can be found in [57].

The concept models are built based on the outputs of these three modalities, i.e. SIFT, STIP

and MFCC. The detection scores, coming from three individual modalities based on the re-

leased feature representations, are procured from the study of Yilmaz et al. in [58]. These

scores serve as inputs for the integration process.

5.3.2 Results

As one test, for each concept, the matching scores obtained from the two visual modalities

are fused. Then the scores taken from the auditory modality also go into the fusion process

along with the results of two visual modalities. The purpose here is to analyze the impact

of combining structurally different types of modalities on the detection performance of the

concepts. In addition to the multimodal fusion, for detection purpose of each concept, other
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concept information is fed into the fusion to examine the effect of concept interactions on the

performance. To that end, for each concept, the target concept scores obtained from the three

major modalities and the scores of the remaining 19 concepts are combined.

Table 5.3: Evaluation results of single and combined modalities for detecting CCV Database
concepts

Unimodal Baselines Fusion Baselines
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Basketball 66.95% 63.37% 45.10% 72.18% 75.10% 75.34%
Bird 17.39% 14.12% 17.63% 20.93% 28.57% 28.86%
Graduation 31.58% 22.09% 12.44% 35.88% 38.12% 38.85%
Birthday 33.32% 15.38% 35.94% 34.79% 51.20% 51.90%
WeddingReception 18.65% 22.54% 12.41% 24.60% 24.57% 26.37%
WeddingCeremony 35.20% 32.88% 35.04% 43.67% 45.71% 53.24%
WeddingDance 56.67% 47.61% 28.00% 60.82% 63.14% 63.68%
MusicPerformance 48.19% 37.75% 56.71% 51.03% 67.70% 68.09%
NonMusicPerformance 45.21% 53.23% 29.79% 58.92% 61.58% 62.06%
Parade 48.71% 39.19% 25.62% 55.72% 60.79% 61.23%
Beach 69.99% 47.50% 37.34% 70.44% 73.40% 73.60%
Baseball 40.29% 18.38% 9.17% 43.86% 45.13% 45.72%
Playground 44.59% 30.27% 23.83% 47.76% 53.25% 53.80%
Soccer 49.27% 39.17% 17.59% 54.40% 55.67% 56.07%
IceSkating 81.18% 65.82% 16.18% 81.94% 83.33% 83.62%
Skiing 76.85% 60.26% 29.74% 76.90% 76.25% 76.56%
Swimming 68.84% 53.80% 15.35% 70.83% 70.86% 71.13%
Biking 36.84% 23.52% 11.36% 39.78% 41.47% 41.88%
Cat 34.24% 23.82% 17.47% 38.40% 41.33% 41.51%
Dog 25.48% 27.64% 22.10% 34.28% 39.75% 40.33%
MAP 46.47% 36.92% 24.94% 50.85% 54.85% 55.69%
# Of Best Ranks 0 0 0 0 1 19
MAP Rank 4 5 6 3 2 1

In Table 5.3, the evaluation results of single modality-based runs and fusion runs are given.

The MAP and AP values are measured at a depth of 4658 (all shots). When we analyze the

results of individual visual modalities and the visual fusion, we can see that the visual fu-

sion performance is better than the performance of each visual modalities for all 20 concepts.

These results indicate that both visual modalities hold complementary information and this

affects fusion performance resplendently. As a result, the visual fusion shows a 9.4% perfor-

mance gain over the best visual modality baseline (SIFT) in overall. Note that, the unimodal

baselines represents the three modalities which are built respectively on the SIFT low-level

visual feature, STIP low-level visual feature and the MFCC low-level auditory feature. We
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can simply call these modalities as SIFT, STIP, MFCC by referring the used low-level feature

in each modality.

So what happens when combining both visual and auditory cues? As it is seen in Table 5.3, the

multimodal fusion outperforms the best unimodal baseline (SIFT) as well as the visual fusion

baseline. The integration of the three modalities increase the best unimodal performance from

46.47% to 54.85% which is a 18% performance improvement in overall. Besides it provides

7.9% performance improvement over the visual fusion. When the results are analyzed in

more detail, the auditory modality appears to give more positive impact for the concepts

involving more intense auditory information. Take, for example, the Birthday concept. The

visual fusion detection performance of the concept increases from 34.79% to 51.20% by the

multimodal fusion which points out a 47.2% performance improvement. Another significant

performance gain is obtained in detecting MusicPerformance concept that is 32.7% gain over

the visual fusion performance. These successful improvements are expected since both of

these concepts contains valuable auditory information. Even majority of the concepts benefit

greatly from multimodal fusion over visual fusion, the results show a very slight decrease in

detecting WeddingReception (↓0.1%) and Skiing (↓0.8%). However, since such low decrease

is negligible (1%), we can say that the auditory modality may not contribute in detecting

some concepts or the performance gain may not be obvious as in Swimming concept. The

main reason behind it is that some concepts may not show distinctive properties belonging to

a certain modality, as in this case the auditory modality. Also another obvious but instructive

point here is that the higher the modalities hold complementary information, the higher the

fusion performance gets.

The results of the multimodal fusion using other concept cues along with the three modali-

ties are shown under interaction-based multimodal fusion in Table 5.3. Since CCV Database

concepts don’t have strong interactions, the fusion of all available information, namely the

interaction-based multimodal fusion, does not show a significant performance gain. The over-

all performance improvement over fusing the three modalities is 1.5% and the gain over the

best unimodal baseline is 19.8%. For most of the concepts, concept interactions provides

small improvements over the multimodal fusion (not include the additional cues). On the

other hand, for WeddingCeremony the detection performance shows a substantial increase

(16.4% over multimodal fusion) under favor of useful concept information like WeddingRe-

ception, WeddingDance, etc. This indicates that concept relations show a significant impact
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Figure 5.1: Comparison of various runs on CCV Database

when they hold more interactions. When there aren’t strong interactions between concepts, it

gets harder to improve the detection performance. Nevertheless, the experiments lay bare the

importance and efficiency of utilizing additional concept cues along with other modalities.

Other than showing the results of unimodal and fusion runs, we also conduct experiments

to compare our fusion method against other fusion methods and the results are illustrated in

Figure 5.1. The compared fusion approaches are linear weighted fusion (LWF), Naive Bayes

(NB) approach and some simple aggregation methods, i.e. Average (AVG), Minimum (MIN),

Maximum (MAX). In linear weighted fusion, the weights are calculated according to the

Relief algorithm. The matching scores of the three modalities are used in all compared fusion

methods. The results point out the superiority of our method for most of the concepts. In

overall, both results of proposed fusion system combining the three modalities (multimodal

fusion) and using other concept cues additionally (interaction-based fusion), are higher than

other fusion methods. The combination of visual, auditory modalities along with additional

concept cues provides 4.4% performance gain over AVG (best among other methods) and 5%

over relief-based linear weighted fusion.

The relative improvements of our fusion method (given under Proposed Fusion column) and

a newly developed non-linear weighted averaging (NWA) method proposed by Yilmaz et

al. [58] are compared along with the improvements of some traditional fusion methods on
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Table 5.4: Performance improvements of the proposed fusion, another study, and traditional
fusion methods on CCV Database

Advanced Fusion Approaches Traditional Fusion Approaches
Proposed Fusion Yilmaz et al. [58] AVG MAX MIN LWF

Basketball 12.54% ↑ 13.35% ↑ 9.21% ↑ 4.63% ↑ 1.36% ↑ 12.06% ↑
Bird 63.72% ↑ 63.36% ↑ 50.89% ↑ 30.32% ↑ 29.37% ↑ 2.40% ↓
Graduation 23.02% ↑ 42.31% ↑ 14.72% ↑ 10.44% ↓ 15.99% ↑ 75.61% ↓
Birthday 44.38% ↑ 54.51% ↑ 37.52% ↑ 14.81% ↑ 15.14% ↑ 42.54% ↑
WeddingReception 17.00% ↑ 16.33% ↑ 7.15% ↑ 9.97% ↓ 22.68% ↑ 16.06% ↑
WeddingCeremony 51.24% ↑ 58.04% ↑ 44.29% ↑ 15.99% ↑ 66.44% ↑ 50.29% ↑
WeddingDance 12.38% ↑ 17.54% ↑ 7.98% ↑ 3.02% ↓ 3.79% ↓ 12.60% ↑
MusicPerformance 20.07% ↑ 21.44% ↑ 15.92% ↑ 8.04% ↑ 6.71% ↑ 19.44% ↑
NonMusicPerformance 16.58% ↑ 21.36% ↑ 11.98% ↑ 2.40% ↑ 2.76% ↓ 15.73% ↑
Parade 25.71% ↑ 34.12% ↑ 20.83% ↑ 5.24% ↑ 16.64% ↑ 25.09% ↑
Beach 5.16% ↑ 7.77% ↑ 2.02% ↑ 2.89% ↓ 8.34% ↓ 3.83% ↑
Baseball 13.47% ↑ 21.36% ↑ 12.00% ↑ 3.21% ↓ 22.67% ↓ 12.11% ↑
Playground 20.65% ↑ 29.85% ↑ 15.05% ↑ 1.95% ↓ 11.27% ↑ 16.39% ↑
Soccer 13.81% ↑ 18.20% ↑ 8.96% ↑ 3.36% ↓ 0.69% ↑ 9.24% ↑
IceSkating 3.00% ↑ 5.10% ↑ 0.23% ↑ 1.72% ↓ 12.21% ↓ 1.73% ↑
Skiing 0.37% ↓ 1.73% ↑ 3.30% ↓ 6.27% ↓ 10.90% ↓ 0.86% ↑
Swimming 3.32% ↑ 5.48% ↑ 0.07% ↑ 4.64% ↓ 17.63% ↓ 2.12% ↑
Biking 13.68% ↑ 16.04% ↑ 7.24% ↑ 0.37% ↓ 18.85% ↓ 12.10% ↑
Cat 21.23% ↑ 16.88% ↑ 14.97% ↑ 0.15% ↓ 0.43% ↓ 20.78% ↑
Dog 45.91% ↑ 55.54% ↑ 36.75% ↑ 12.25% ↑ 26.86% ↑ 44.41% ↑

MAP 19.84% ↑ 24.23% ↑ 14.73% ↑ 3.65% ↑ 4.21% ↑ 14.13% ↑

per concept basis in Table 5.4. The performance improvements are calculated according to

the results of fusion and best unimodal baseline (SIFT, STIP or MFCC based baseline). Note

that for each concept the best unimodal baseline can be different. For instance; while the

SIFT-based visual modality gives the best result among unimodal baselines for the Basket-

ball concept, MFCC-based auditory modality is the best for MusicPerformance, see Table

5.3. As also shown in Figure 5.1, the improvements over the performance of the proposed fu-

sion method are far better than the traditional methods such as AVG, MIN, etc. The detailed

comparison of the improvements indicates that our fusion method outperforms the traditional

methods for most of the concepts. On the other hand, it does not give better results than the

naive NWA fusion method described in [58]. For concepts like Cat, Bird, WeddingReception,

the proposed fusion method in this study performs better than non-linear weighted averag-

ing. For the rest, NWA shows higher improvements but our fusion method achieves to give

comparable results for such concepts. Both methods work in a non-linear fashion and theo-

retically, SVM is capable to give better results than NWA because there may be a more fitting

kernel function or a better SVM parameter combination which can more successfully reflect

the characteristics of this dataset. However, we may not find these parameters in our tests

because it may require to make a search through an infinite parameter space. Since we try to

find a feasible solution in a reasonable time, we are obliged to work in a limited interval of
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the parameter space. Therefore, even our fusion method outperforms other fusion approaches

for some datasets, it can fall behind several approaches for some other datasets. Apart from

NWA study, there is another study [57] which reports the overall performance improvement

of fusion on CCV dataset which is 13.8% over the best unimodal baseline (SIFT), see Table

3.2. Since the relative improvements over the best unimodal baseline for each concept are not

shared in their study, we could not make a comparison for each concept. However, the overall

improvement indicates that the performance improvement of our method is higher.

5.4 Experimental Setup 3

In order to fully understand the nature of the semantic video content and show the whole

capabilities of the fusion system, in this experiment, we work on a very big and popular dataset

which involves information from all modalities, i.e. auditory, textual, visual. We evaluate the

proposed fusion system in terms of concept detection performance and also investigate the

contribution of the feature selection procedure in more detail. More importantly, the effect of

the concept associations on the fusion process is thoroughly shown and discussed.

5.4.1 Dataset

The most popular benchmarking workshop in content based retrieval of video is TRECVID,

organized by NIST. At each year, a workshop on a list of different information retrieval re-

search tasks is organized and a large test collection is released. In this experiment, we work on

the TRECVID 2007 [67] videos, which include approximately 100 hours of videos composed

of news magazine, science news, news reports, documentaries, etc.

The experiments are carried out on 20 of the TRECVID 2007 concepts ( Airplane, Boat ship,

Car, Meeting, People Marching, Weather, etc.) with 21532 reference shots as training data

and 18142 shots as test data in total. However, all of these shots are not used in all concept

learners or classifiers because of lacking annotations of concepts. For each concept, the anno-

tations are about 5000 shots in training data and roughly 4500 shots in test data. Since there

are 120 concept learners (20 concepts * 6 modalities) in total, the learning process would take

too long if all of the shots were used. So we use 2500 training shots for each concept learner,

and 4,500 shots in testing. For each concept, the number of positive samples are a lot fewer
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than the negative samples. That’s why, we include all the shots having the target concept, i.e.

positive samples, in training set. The rest of the samples are chosen randomly among negative

samples until the total number of samples reach up to 2500.

The concept learner is based on six modalities which are grouped into six categories in re-

gard to the information type they contain. These modalities are color-based visual modality

(features are Color Layout, Color Structure, Dominant Color and Scalable Color features

of MPEG-7), shape-based visual modality (Contour Shape and Region Shape features of

MPEG-7), texture-based visual modality (Edge Histogram and Homogeneous Texture fea-

tures of MPEG-7), MFCC-based auditory modality (13 dimensional mel frequency cepstral

coefficients), a complex auditory modality (containing Zero Crossing Rate, Energy, linear

Predictor Coefficients features), and textual modality (TF-IDF features). The visual features

are extracted from eXperimentation Model (XM) Software and the auditory features are ob-

tained from Yaafe toolbox [68]. The textual features are extracted from the automatic speech

recognition (ASR) and Machine Translation (MT) texts by calculating the term-frequency-

inverse document frequency (TF-IDF) weights. Since the feature dimension is too broad, we

apply a dimensionality reduction method, i.e. Diffusion Maps, in order to decrease the feature

dimensions. For Diffusion Maps implementation, a matlab toolbox [69] is used. Later on,

after extracting the features, 6 SVM models based on the previously mentioned modalities

are constructed separately, for each concept, and 120 in total. For each concept, automatic

relief-based feature selection procedure selects the appropriate modalities. Then, the outputs

of each selected modalities are fused to obtain the fusion result.

According to the experiments conducted with the previous dataset (CCV Database), the con-

cept interactions provide a slight performance improvement. Considering the concept rela-

tions in CCV Database, from the perspective of a human expert, the TRECVID 2007 concepts

are much more unrelated to each other than the CCV concepts, so they can fail at yielding

valuable semantic information. Therefore, to make better prediction of the concepts and see

the influence of concept interactions more clearly, we decided to use matching scores of a

larger set of concepts which probably has more relations. For this purpose, two popular

benchmarks, Columbia374 and VIREO374, are adopted. As additional concept information,

we use the released averaging fusion scores, on the lexicon of 374 semantic LSCOM con-

cepts. See the study in [66] for further information. For each concept, we make benefit from

the matching scores of concepts other than the target concept. The main cause for choosing
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this lexicon is that it includes many concepts related to the TRECVID 2007 concepts. There

is, for instance, Smoke concept in the lexicon which can be helpful to detect Explosion Fire

concept more accurately. More, concepts like Crowd, Protesters can be useful for the People-

Marching concept.

5.4.2 Results

In this section, results of unimodal and fusion runs are given, also several fusion techniques

are compared. Moreover, for four of the concepts (Airplane, Maps, Meeting, WaterScape

Waterfront), the impact of the feature selection procedure is further investigated. Besides, the

influence of using additional concepts cues on the fusion performance is discussed.

In Table 5.5, the AP and MAP results are given. Since AP is measured at 2000 according

to the evaluation rules of TRECVID, we take 2000 as well for the number of retrieved shots.

The results of other systems are given in [67]; the top MAP value is 0.13 and the average of

the participants is around 0.046. The overall MAP we reach is 0.1076. Since the individual

modality based concept learners are developed in a simple manner, we can say that the result

is quite satisfying. Moreover, the proposed SVM-based multimodal fusion method shows an

10.97% improvement over the best single modality (texture-based visual modality). Further-

more, exploiting additional concept scores improves the performance of best unimodal run by

16.7% and the performance of multimodal fusion (fusion of six modalities) run by 5.2%. So,

we can conclude that when there are concepts related to each other, they can contribute to the

fusion process significantly. As it appears, proposed fusion method outperforms any unimodal

approaches and it provides an important increase in the performance for most of the concepts

(12 of 20 concepts) as well as the overall evaluation. Even there are cases where it doesn’t

give higher results for some concepts, it is important that it gives close and comparable results

to the best baseline.

When the results are examined we see that combining the six modalities by the proposed fu-

sion method shows success for a significant number of concepts. For instance; the detection

performance of Waterscape Waterfront increases from 17.54% for best unimodal run (visual

texture) to 22.48% for multimodal fusion. In another example; the integration of six modal-

ities provides a 16.2% performance gain over the best single modality dependent approach
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Table 5.5: Evaluation results of single and combined modalities for detecting TRECVID 2007
concepts

Unimodal Baselines Fusion Baselines
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Airplane 6.55% 8.25% 6.35% 7.33% 5.11% 6.09% 9.90% 9.36%
Animal 14.34% 17.18% 5.96% 8.51% 9.36% 7.76% 17.09% 17.65%
Boat Ship 6.40% 12.79% 8.97% 7.26% 8.77% 8.14% 14.50% 16.80%
Car 15.63% 19.75% 14.25% 14.43% 16.18% 10.42% 21.41% 23.30%
Charts 3.37% 5.95% 2.42% 2.51% 1.34% 1.87% 4.53% 4.98%
Computer TV-screen 12.74% 9.60% 7.42% 5.38% 8.13% 8.23% 10.83% 11.15%
Desert 1.92% 2.00% 2.86% 0.78% 1.04% 0.57% 2.03% 2.26%
Explosion Fire 1.96% 2.32% 1.75% 2.47% 1.40% 2.11% 1.66% 2.52%
Flag-US 0.10% 0.42% 0.26% 0.13% 1.61% 0.25% 0.17% 0.31%
Maps 6.36% 10.94% 4.10% 2.61% 4.68% 2.47% 11.20% 11.52%
Meeting 23.69% 24.55% 23.75% 23.76% 29.41% 19.12% 31.16% 31.44%
Military 5.13% 3.14% 1.94% 3.45% 0.96% 0.99% 3.69% 3.87%
Mountain 8.92% 5.90% 3.86% 9.06% 2.70% 2.74% 7.05% 7.59%
Office 8.99% 13.90% 7.09% 5.63% 9.49% 2.66% 13.42% 14.71%
People-Marching 7.00% 7.42% 2.97% 3.37% 3.80% 1.45% 8.36% 9.86%
Police Security 1.64% 4.87% 2.98% 3.14% 2.89% 2.52% 4.96% 4.94%
Sports 11.08% 5.50% 3.36% 3.67% 4.58% 1.75% 7.60% 9.52%
Truck 7.97% 10.90% 5.47% 5.07% 7.51% 5.77% 10.59% 9.24%
Waterscape Waterfront 16.75% 17.54% 16.31% 9.44% 10.57% 8.21% 22.48% 22.22%
Weather 1.62% 1.38% 0.35% 1.80% 0.30% 0.27% 1.82% 1.87%

MAP 8.11% 9.21% 6.12% 5.99% 6.49% 4.67% 10.22% 10.76%
MAP Rank 4 3 6 7 5 8 2 1
# Of Best Ranks 3 2 1 1 1 0 3 9
Average Rank 4.45 3.1 5.8 5.5 5.65 7 2.8 1.7

(visual texture) in detecting Boat Ship. Also as mentioned earlier, most of the concepts bene-

fit from using concept interactions. For example, Boat Ship performance jumps from 14.86%

for multimodal fusion to 16.8% for interaction-based multimodal fusion. Similarly, detection

performance of Car increases from 19.7% to 21.4 through multimodal fusion and goes up

to 23.3% by means of the cooperation of additional concept cues along with six modalities.

On the other hand, fusion doesn’t improve the best single modality performance for some

concepts such as Charts, Computer TV-screen, etc. There may be a several possible reasons

for this. First of all, fusion performance relies strongly on the concept structure. Hence, the

concepts involving more varied structures, in other words concepts with having detection cues

in different modalities, can benefit more from the fusion of modalities. However, notice that

each Charts and Computer TV-screen are more likely related to the visual part of the videos.

Since the visual texture has a severe dominance on these concepts, and since they probably

don’t involve any auditory and textual cues, the fusion process may not perform better than

this modality. Secondly, fusion may not be able to improve the performance of some concepts
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Figure 5.2: Comparison of various runs on TRECVID 2007

because they have very little positive sample in the training data. Take, Flag-US example; the

concept has only 12 positive samples among thousands of samples. Therefore, when the total

number of positive samples are very low, the concept model as well as the fusion model may

not be built robust enough.

Additionally, the Figure 5.2 illustrates that the proposed fusion method gives the best results

among other fusion approaches too. The compared methods are AVG, MIN, MAX and relief-

based linear weighted fusion. The detection performance of the proposed fusion approach is

higher for a significant number of concepts and also in overall. It shows a 5.6% gain over the

next best fusion method (AVG).

In Table 5.6, we make a detailed comparison of the performance improvements (over the best

unimodal baseline, see Table 5.5 for unimodal results) of the proposed fusion approach and

the naive linear weighted averaging method proposed by Yilmaz et al. [55] along with the

improvements of some traditional fusion methods on per concept basis. It is already shown in

Figure 5.1 that our fusion method achieves better performance improvement in overall than

the traditional fusion methods. The comparison between our method and the other traditional

methods are analyzed in more detail in Table 5.6 so that the better improvements of our

method can be investigated on each concept. These results show the superiority of our method
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Table 5.6: Performance improvements of the proposed fusion, another study, and traditional
fusion methods on TRECVID 2007 dataset

Advanced Fusion Approaches Traditional Fusion Approaches
Proposed Fusion Yilmaz et al. [55] AVG MAX MIN LWF

Airplane 13.49% ↑ 20.54% ↑ 20.57% ↑ 0.17% ↓ 2.24% ↓ 4.11% ↑
Animal 2.76% ↑ 37.74% ↓ 0.73% ↓ 1.32% ↑ 27.76% ↓ 5.42% ↑
Boat Ship 31.42% ↑ 7.14% ↓ 16.43% ↑ 10.53% ↓ 11.79% ↑ 7.42% ↑
Car 17.99% ↑ 17.35% ↑ 8.38% ↑ 2.36% ↓ 9.94% ↑ 1.35% ↑
Charts 16.38% ↓ 20.69% ↓ 23.91% ↓ 44.92% ↓ 10.43% ↓ 17.92% ↓
Computer TV-screen 12.46% ↓ 7.29% ↓ 14.92% ↓ 21.44% ↓ 21.66% ↓ 12.70% ↓
Desert 21.05% ↓ 53.85% ↓ 28.95% ↓ 43.19% ↓ 29.23% ↓ 29.76% ↓
Explosion Fire 1.85% ↑ 6.67% ↓ 44.28% ↓ 34.02% ↓ 13.58% ↓ 20.78% ↓
Flag US 80.56% ↓ 92.31% ↓ 89.31% ↓ 85.73% ↓ 89.65% ↓ 83.18% ↓
Maps 5.33% ↑ 43.14% ↓ 1.77% ↓ 8.26% ↓ 44.96% ↓ 8.61% ↑
Meeting 6.91% ↑ 6.84% ↑ 5.87% ↑ 11.05% ↓ 4.78% ↓ 78.56% ↓
Military 24.51% ↓ 20.59% ↑ 27.70% ↓ 42.30% ↓ 9.85% ↓ 88.19% ↓
Mountain 16.19% ↓ 0.00% ↑ 27.72% ↓ 36.88% ↓ 44.17% ↓ 28.50% ↓
Office 5.82% ↑ 52.14% ↑ 3.40% ↓ 4.34% ↓ 21.58% ↓ 76.23% ↓
People-Marching 32.88% ↑ 32.84% ↑ 12.96% ↑ 18.55% ↓ 13.22% ↑ 18.30% ↑
Police Security 1.34% ↑ 2.00% ↓ 2.25% ↑ 4.35% ↓ 33.28% ↓ 3.54% ↑
Sports 14.11% ↓ 16.67% ↓ 31.63% ↓ 33.94% ↓ 60.81% ↓ 1.71% ↑
Truck 15.15% ↓ 14.41% ↓ 2.51% ↓ 10.37% ↓ 17.11% ↓ 1.23% ↓
Waterscape Waterfront 26.72% ↑ 7.45% ↑ 28.23% ↑ 4.15% ↓ 6.91% ↑ 74.42% ↓
Weather 4.07% ↑ 94.44% ↑ 1.81% ↑ 14.98% ↓ 150.69% ↑ 81.98% ↓

MAP 16.74% ↑ 15.29% ↑ 10.53% ↑ 3.72% ↓ 2.87% ↓ 18.64% ↓

over the traditional approaches for the majority of concepts and also in overall. Moreover, our

fusion approach accomplishes better performance improvements than the proposed fusion

method explained in [55]. Note that the experiments in [55] are also conducted on TRECVID

2007 dataset and the single modality dependent approaches are also built on the same low-

level features as we did in our experiments. The success of our method may originate from

modeling each concept in a non-linear fashion. Because of the possible non-linear relation

between the concepts and its features, the proposed linear weighted averaging method could

not yield better results than ours for most of the concepts.

In another test, the feature selection effect on the fusion process is analyzed. For this purpose,

four concepts are chosen as shown in Table 5.7. The modalities signed with * are the feature

selection results. The feature selection procedure selects all modalities for learning Meeting

and Waterscape Waterfront concepts. On the other hand, it excludes the textual concept for

Airplane and excludes the complex auditory and textual modality for Maps. While analyzing

the results of each modalities, we notice that the weakest modality is the textual modality

and it is eliminated by the feature selection process for half of the concepts. In order to

see whether feature selection makes a good decision by selecting all the modalities for some

concepts, we make tests with the two concepts (Meeting and Waterscape Waterfront) with

removing the textual modality results from the feature vector of the fusion process. As you
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can see, even the performance difference is low, feature selection makes an improvement of

0.75% on Airplane detection performance and 2.38% on Maps detection performance. Also,

it is shown that selecting all features (decision of the feature selection procedure) for the other

two concepts performs slightly better than excluding the textual concept. Furthermore, the

fusion results (with feature selection) are better than the best single modality results.

Table 5.7: Feature selection influence on the detection performance of concepts in terms of
AP

Concepts Modalities Best Single
Modality

SVM-based
Fusion

Airplane
excluding textual modality*

0.0824837
0.0989802

all modalities 0.0982526

Maps
excluding complex auditory
and textual modalities* 0.109365

0.111967

all modalities 0.107192

Meeting
excluding textual modality

0.294068
0.30076

all modalities* 0.31161
Waterscape excluding textual modality

0.175353
0.224784

Waterfront all modalities* 0.224793

A different experiment is examined whether we can detect a new concept from other con-

cept information. In order to reach that goal, a new concept with its ground truth is needed.

Since we just have annotations of TRECVID 2007 concepts, we choose one concept among

them, which is People-Marching concept, and try to detect it from other semantic cues. We

investigated the available 374 LSCOM concepts to find the appropriate concepts which may

be associated to People-Marching. So as a human expert, we choose 3 concepts which may

provide valuable semantic cues about the target concept. These concepts, that are used in

modeling the People-Marching concept, are Crowd, Outdoor and Protesters. The detection

scores of these concepts are again obtained from CU-VIREO374 results and they are fed into

the fusion process to model People-Marching concept. As a result of fusion, People-Marching

is detected by 7.17% in terms of MAP. Two more experiments are also conducted to investi-

gate the performance of detecting the target concept from uncorrelated concept information

and see whether 7.17% is a successful result or not. In the first one, we use House, Sky, and

Talking detection scores. In the second experiment, Birds, Forest, Construction Site concept

scores are fused to predict the People-Marching concept. Again these unrelated concepts are

selected among LSCOM concepts. As expected the performance is very low for both of these

tests. The first test gives 1.36% MAP and the second one gives 1.23% MAP. Recall that
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the interaction based multimodal MAP for People-Marching is 9.86% which considers the

People-Marching score as well. Since 7.17% is close to 9.86% and better by far from the re-

sults obtained from the other two experiments, we can say that a new concept can be obtained

from totally different concept cues with a considerable amount of success.
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CHAPTER 6

CONCLUSION

In this study, we address the multimodal information fusion problem by considering it from

various aspects such as the fusion levels and integration methodologies. Besides, the impor-

tance of the usage of different modalities are explained in detail by referencing many studies.

The thesis especially focuses on semantic concept detection task and the originating point

is the necessity of successful studies which consider the multimodal nature of the videos in

semantic information extraction at shot-level. In order to fulfill this goal, a SVM-based fusion

approach is presented for integrating information obtained from visual, auditory and textual

modalities in an effective manner. Nor is this all, the system also regards the relations between

concepts to more correctly detect semantic concepts. These interactions and the integration

between the modalities help to minimize the effect of deceptive information and noisy data.

Moreover, the system provides extracting new information which is not or cannot be obtained

from any of the modalities. By this specialty, the variety of types of concepts can be increased

along with the detection performance.

The fusion system is designed to be open to expand with new definitions of concepts or more

extensively with new domains, so that the overall semantic video analysis system does not

need to be restricted by a limit of concept definitions. The experiments conducted on various

datasets, provide the content diversity and helps to present properly the generic structure of

the proposed fusion system. Additionally, an optimal fusion approach is approximated by

modeling each concept individually, in other words by handling the characteristics of the con-

cepts separately. More, the strength and success of our fusion approach is corroborated with

the conducted experiments. For most of the concepts, and also in overall, the recommended

fusion system outperforms any single modality dependent approaches as well as other com-

pared integration strategies. Nevertheless, concepts may be strongly one modality dependent
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and other modalities may not contain helpful information of that particular concept. In such

cases, the other modalities may behave as noise and prevent fusion from improving the per-

formance. But nonetheless, a very important fact is that fusion still gives comparable results

in such cases.

In addition to all, the results of the experiments support the raised hypothesis that the concept

interactions would help to improve the performance of the system by being utilized in the

fusion process. So we can conclude that additional semantic information plays an important

role in increasing the performance. However, this process is very concept dependent because

for some target concepts there may be no valuable semantic information belonging to other

concepts. Also, finding a new concept from totally different concept information with a close

performance to the fusion results including the target concept score as well is quite exciting.

Taking these results into account, this research achieves to greatly contribute to the semantic

content analysis research area, most especially by showing the importance of fusing different

modalities in order to extract semantic information more accurately.

Despite of the fact that we try to address the distinctive design issues and challenges of the

fusion problem and design the system accordingly, the research still can be extended in several

areas. We have identified some of them as follows:

Future Directions

• Synchronization between different modalities is still a challenging research problem. To

find the appropriate temporal alignment, more advanced techniques can be explored.

• Temporal relations need to be considered to model more complex event models which

include a temporal structure such as the goal event in soccer games.

• Kernel functions can be analyzed for each concept learner separately and appropriate

kernels can be found and applied for each concept.

• During the construction of each concept model, different evaluation metrics for parame-

ter selection can be observed after a series of trials and the best of them for each concept

detector can be obtained and used in the cross-validation procedure.

• Different strategies for probability estimates can be experimented.

63



REFERENCES

[1] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image
retrieval at the end of the early years,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 22, no. 12, pp. 1349–1380, 2000.

[2] C. Snoek and M. Worring, “Multimodal video indexing: A review of the state-of-the-
art,” Multimedia Tools and Applications, vol. 25, no. 1, pp. 5–35, 2005.

[3] Y. Jiang, X. Zeng, G. Ye, S. Bhattacharya, D. Ellis, M. Shah, and S. Chang, “Columbia-
ucf trecvid2010 multimedia event detection: Combining multiple modalities, contextual
concepts, and temporal matching,” in NIST TRECVID Workshop, 2010.

[4] W. Hsu, L. Kennedy, C. Huang, S. Chang, C. Lin, and G. Iyengar, “News video story
segmentation using fusion of multi-level multi-modal features in trecvid 2003,” in Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, (ICASSP’04), vol. 3, pp. iii–645, IEEE, 2004.

[5] W. Lie and C. Su, “News video classification based on multi-modal information fusion,”
in IEEE International Conference on Image Processing, ICIP 2005, vol. 1, pp. I–1213,
IEEE, 2005.

[6] H. Xu, Integrated analysis of audiovisual signals and external information sources for
event detection in team sports video. PhD thesis, NATIONAL UNIVERSITY OF SIN-
GAPORE, 2007.

[7] J. Huang, Z. Liu, Y. Wang, Y. Chen, and E. Wong, “Integration of multimodal features
for video scene classification based on hmm,” in 1999 IEEE 3rd Workshop on Multime-
dia Signal Processing, pp. 53–58, IEEE, 1999.

[8] C. Ramachandran, R. Malik, X. Jin, J. Gao, K. Nahrstedt, and J. Han, “Videomule:
a consensus learning approach to multi-label classification from noisy user-generated
videos,” in Proceedings of the seventeen ACM international conference on Multimedia,
pp. 721–724, ACM, 2009.

[9] Q. Zhu, M. Yeh, and K. Cheng, “Multimodal fusion using learned text concepts for
image categorization,” in Proceedings of the 14th annual ACM international conference
on Multimedia, pp. 211–220, ACM, 2006.

[10] P. Atrey, M. Hossain, A. El Saddik, and M. Kankanhalli, “Multimodal fusion for multi-
media analysis: a survey,” Multimedia Systems, vol. 16, no. 6, pp. 345–379, 2010.

[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[12] K. Peker, A. Alatan, and A. Akansu, “Low-level motion activity features for semantic
characterization of video,” in IEEE International Conference on Multimedia and Expo,
ICME 2000, vol. 2, pp. 801–804, IEEE, 2000.

64



[13] B. Truong and C. Dorai, “Automatic genre identification for content-based video cat-
egorization,” in Proceedings of 15th International Conference on Pattern Recognition,
vol. 4, pp. 230–233, IEEE, 2000.

[14] W. Zhou, A. Vellaikal, and C. Kuo, “Rule-based video classification system for bas-
ketball video indexing,” in Proceedings of the 2000 ACM workshops on Multimedia,
pp. 213–216, ACM, 2000.

[15] D. Sadlier, S. Marlow, N. O’Connor, and N. Murphy, “Mpeg audio bitstream processing
towards the automatic generation of sports programme summaries,” in Proceedings of
2002 IEEE International Conference on Multimedia and Expo, ICME’02, vol. 2, pp. 77–
80, IEEE, 2002.

[16] S. Moncrieff, C. Dorai, and S. Venkatesh, “Detecting indexical signs in film audio for
scene interpretation,” 2001.

[17] K. Minami, A. Akutsu, H. Hamada, and Y. Tonomura, “Video handling with music and
speech detection,” Multimedia, IEEE, vol. 5, no. 3, pp. 17–25, 1998.

[18] W. Zhu, C. Toklu, and S. Liou, “Automatic news video segmentation and categorization
based on closed-captioned text,” in IEEE International Conference on Multimedia and
Expo, ICME 2001, pp. 829–832, IEEE, 2001.

[19] D. Zhang and S. Chang, “Event detection in baseball video using superimposed caption
recognition,” in Proceedings of the tenth ACM international conference on Multimedia,
pp. 315–318, ACM, 2002.

[20] Y. Wang, Z. Liu, and J. Huang, “Multimedia content analysis-using both audio and
visual clues,” Signal Processing Magazine, IEEE, vol. 17, no. 6, pp. 12–36, 2000.

[21] N. Babaguchi, Y. Kawai, and T. Kitahashi, “Event based indexing of broadcasted sports
video by intermodal collaboration,” IEEE Transactions on Multimedia, vol. 4, no. 1,
pp. 68–75, 2002.

[22] C. Snoek, M. Worring, and A. Smeulders, “Early versus late fusion in semantic video
analysis,” in Proceedings of the 13th annual ACM international conference on Multime-
dia, pp. 399–402, ACM, 2005.

[23] C. G. M. Snoek, M. Worring, J. M. Geusebroek, D. C. Koelma, and F. J. Seinstra, “The
mediamill trecvid 2004 semantic video search engine,” in In TREC Video Retrieval Eval-
uation Online Proceedings, 2004.

[24] W. Adams, G. Iyengar, C. Lin, M. Naphade, C. Neti, H. Nock, and J. Smith, “Semantic
indexing of multimedia content using visual, audio, and text cues,” EURASIP Journal
on Applied Signal Processing, vol. 2, pp. 170–185, 2003.

[25] G. Iyengar, H. Nock, and C. Neti, “Audio-visual synchrony for detection of monologues
in video archives,” in Proceedings of 2003 International Conference on Multimedia and
Expo, ICME’03, vol. 1, pp. I–329, IEEE, 2003.

[26] R. Troncy, B. Huet, and S. Schenk, Multimedia Semantics, Desktop Edition (XML):
Metadata, Analysis and Interaction. Wiley-Blackwell, 2011.

65



[27] S. Tsekeridou and I. Pitas, “Content-based video parsing and indexing based on audio-
visual interaction,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 4, pp. 522–535, 2001.

[28] S. Satoh, Y. Nakamura, and T. Kanade, “Name-it: Naming and detecting faces in news
videos,” Multimedia, IEEE, vol. 6, no. 1, pp. 22–35, 1999.

[29] A. Alatan, A. Akansu, and W. Wolf, “Multi-modal dialog scene detection using hidden
markov models for content-based multimedia indexing,” Multimedia Tools and Applica-
tions, vol. 14, no. 2, pp. 137–151, 2001.

[30] M. Naphade and T. Huang, “Detecting semantic concepts using context and audiovisual
features,” in Proceedings of IEEE Workshop on Detection and Recognition of Events in
Video, pp. 92–98, IEEE, 2001.

[31] J. Yang and A. Hauptmann, “Multi-modal analysis for person type classification in news
video,” SPIE, 2005.

[32] Y. Wu, E. Chang, K. Chang, and J. Smith, “Optimal multimodal fusion for multime-
dia data analysis,” in Proceedings of the 12th annual ACM international conference on
Multimedia, pp. 572–579, ACM, 2004.

[33] D. Sadlier and N. O’Connor, “Event detection in field sports video using audio-visual
features and a support vector machine,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15, no. 10, pp. 1225–1233, 2005.

[34] L. Hua-Yong, H. Tingting, and Z. Hui, “Event detection in sports video based on mul-
tiple feature fusion,” in Fourth International Conference on Fuzzy Systems and Knowl-
edge Discovery, FSKD 2007, vol. 2, pp. 446–450, IEEE, 2007.

[35] S. Ping and Y. Xiao-qing, “Goal event detection in soccer videos using multi-clues detec-
tion rules,” in International Conference on Management and Service Science, MASS’09,
pp. 1–4, IEEE, 2009.

[36] Z. Xiong, “Audio-visual sports highlights extraction using coupled hidden markov mod-
els,” Pattern Analysis & Applications, vol. 8, no. 1, pp. 62–71, 2005.

[37] G. Iyengar and H. Nock, “Discriminative model fusion for semantic concept detection
and annotation in video,” in Proceedings of the eleventh ACM international conference
on Multimedia, pp. 255–258, ACM, 2003.
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