

ENHANCING CONTENT MANAGEMENT SYSTEMS WITH SEMANTIC
CAPABILITIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SUAT GÖNÜL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2012

Approval of the thesis:

ENHANCING CONTENT MANAGEMENT SYSTEMS WITH SEMANTIC

CAPABILITIES

submitted bySUAT GÖNÜL in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department,Computer Engineering

Prof. Dr. Nihan Kesim Çiçekli
Supervisor,Department of Computer Engineering, METU

Prof. Dr. Asuman Dŏgaç
Co-supervisor,SRDC Ltd.

Examining Committee Members:

Prof. Dr. Fazlı Can
Computer Engineering Department, Bilkent University

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Department, METU

Prof. Dr. Özgür Ulusoy
Computer Engineering Department, Bilkent University

Assoc. Prof. Pınar Şenkul
Computer Engineering Department, METU

Assoc Prof. Ahmet Coşar
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: SUAT GÖNÜL

Signature :

iii

ABSTRACT

ENHANCING CONTENT MANAGEMENT SYSTEMS WITH SEMANTIC
CAPABILITIES

Gönül, Suat

M.S, Department of Computer Engineering

Supervisor : Prof. Dr. Nihan Kesim Çiçekli

Co-Supervisor : Prof. Dr. Asuman Doğaç

July 2012, 77 pages

Content Management Systems (CMS) generally store data in a way that the content is dis-

tributed among several relational database tables or stored in files as a whole without any

distinctive characteristics. These storage mechanisms cannot provide the management of se-

mantic information about the data. They lack semantic retrieval, search and browsing of the

stored content. To enhance non-semantic CMSes with advanced semantic features, the se-

mantics within the CMS itself and additional semantic information related with the actual

managed content should also be taken into account. However,extracting implicit knowledge

from the legacy CMSes, lifting to a semantic content management system environment and

providing semantic operations on the content is a challenging task which includes adoption

of several latest advancements in information extraction (IE), information retrieval (IR) and

Semantic Web areas. In this study, we propose an integrativeapproach including automatic

lifting of content from legacy systems, automatic annotation of data with the information

retrieved from the Linked Open Data (LOD) cloud and several semantic operations on the

content in terms of storage and search. We use a simple RDF path language to create custom,

semantic indexes and filter annotations obtained from LOD cloud in a way that is eligible

for specific use cases. Filtered annotations are materialized along with the actual content of

iv

document in dedicated indexes. This semantix indexing infrastructure allows semantically

meaningful search facilities on top of it. We realize our approach in the scope of Apache

Stanbol project, which is a subproject developed in the scope of IKS project, by focusing on

document storage and retrival parts of it. We evaluate our approach in healthcare domain with

different domain ontologies (SNOMED/CT, ART, RXNORM) in addition to DBpedia as parts

of LOD cloud which are used annotate documents and content obtained from different health

portals.

Keywords: Semantic content management, Semantic storage,Semantic search, Semantic

Web

v

ÖZ

DÖKÜMAN YÖNETİM SİSTEMLERİNİ ANLAMSAL YETENEKLERLE GELİŞTİRME

Gönül, Suat

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nihan Kesim Çiçekli

Ortak Tez Yöneticisi : Prof. Dr. Asuman Doğaç

July 2012, 77 sayfa

Döküman yönetim sistemleri içeriği genel olarak birçok veritabanı tablosuna dagıtılmış olarak

veya dosyalarda bir bütün olarak, herhangi bir ayırt edici özellikleri olmadan saklarlar. Bu de-

polama mekanizmaları içerikle ilgili anlamsal bilginin yönetilmesini ve böylece depolanmış

dökümanların üzerinde anlamsal bilgi çekme, arama gibi işlevleri săglayamazlar. Anlam-

sal açıdan yetersiz döküman yönetim sistemlerine gelişmiş anlamsal kabiliyetler kazandır-

mak için bu sistemlerde depolanan içeriğe ek olarak, sistemin içindeki üstü kapalı anlam-

sal bilginin ortaya çıkarılması ve zaten var olan içeriğin harici kaynaklardan toplanan, asıl

içeriğin kendisiyle alakalı ek bilgilerin dikkate alınması gerekir. Ancak, hali hazırda var

olan döküman yönetim sistemlerinden açıkça ifade edilmeyen bilgiyi çıkarmak, bu bilgiyi

bir anlamsal döküman yönetim sistemi ortamına aktarmak ve içeriğin üzerinde anlamsal op-

erasyonlar săglamak; bilgi çıkarma, bilgi çekme ve anlamsal ağ alanlarından bir çok yeni-

liklerin benimsenmesini gerektiren zorlu bir iştir. Bu çalısmada, içerĭgin var olan sistemler-

den otomatik olarak çekilmesini, çekilen içeriğin acık băglantılı veri üzerinden çekilen bil-

gilerle zenginleştirilmesini; ve depolama ve arama bakımınından birçok anlamsal işlevsellik

săglayan metodolojiler geliştirilmektedir. Önerilen yaklaşımda istĕge uyarlanmış, anlamsal

indeks oluşturmak için basit bir RDF yol dili kullanılmaktadır. Bu dil aynı zamanda acık

vi

băglantılı veri üzerinden elde edilen ek bilgilerin özel amaçlı kullanım durumlarına göre fil-

trelenmesi için de kullanılmaktadır. Filtrelenmiş ek bilgiler dökümanların asıl içerikleriyle be-

raber özel kullanım için hazırlanmış indekslerde somutlaştırılır. Bu anlamsal indeks alt yapısı

anlamsal olarak dĕgeri olan arama işlevlerinin sağlanmasına olanak verir. Önerilen metodolo-

jiyi IKS projesinin yazilim ürünlerinden biri olan Apache Stanbol projesi kapsamında hayata

geçirilmektedir. Bu esnada Apache Stanbol’un depolama ve arama kısımlarına ăgırlık ver-

ilmektedir. Çalışmanın son aşamada önerilen metodolojisăglık alanında çeşitli săglık portal-

larından alınan dökümanlarla değerlendirilmektedir. Bu işlem sırasında bağlantılı veri bulu-

tunun bir parçası olan DBPedia ve sağlıkla ilgili üç ontoloji kullanılmaktadır. Bunlar sırasıyla

SNOMED/CT, ART ve RXNORM’dur ve bu üç ontoloji dökümanlara sağlıkla ilgili ek bilgi

iliştirmek için kullanılmaktadır.

Anahtar Kelimeler: Anlamsal döküman yönetimi, anlamsal depolama, anlamsal arama, an-

lamsal ăg

vii

To my dearest brother Samet...

viii

ACKNOWLEDGMENTS

I would like to express my candid gratitude and appreciationto my supervisor, Prof. Dr. Nihan

Kesim Çiçekli, for her encouragement, guidance and supportall throughout my graduate

studies as well as during the preparation of this thesis. I would like to express my gratitude to

my co-supervisor, Prof. Dr. Asuman Doğaç, for her guidance and support.

I am deeply grateful to Dr. Gökçe Banu Laleci Ertürkmen, without whose guidance and

invaluable contribution, this work could not have been accomplished. I am deeply thankful to

Ali Anıl Sınacı for his suggestions and continuous support during the implementation of our

approach.

I am deeply grateful to my wife for her love and support, also to my family albeit the very far

distance. Without them, this work could not have been completed.

I would like to thank the "Interactive Knowledge Stack for small to medium CMS/KMS

providers (IKS)" project for providing the necessary motivation.

I would also thank the Scientific and Technological ResearchCouncil of Turkey (TÜBITAK)

for providing the financial means throughout this study.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

2 APPROACH . 4

2.1 Apache Stanbol . 5

2.1.1 Design Decisions in Stanbol 5

2.1.2 Stanbol functionalities 7

2.2 Semantic Content Management with Stanbol 8

2.2.1 Accessing to Stanbol . 9

2.2.2 Content Enhancement 10

2.2.3 Content Storage . 11

2.2.4 Content Retrieval . 11

2.3 Integration with Content Management Systems 13

3 SEMANTIC INDEXING AND SEARCH 14

3.1 Background . 14

3.1.1 Semantic Web . 14

3.1.1.1 Linked Data 15

3.1.1.2 Resource Description Framework(RDF) . . . 16

3.1.1.3 Web Ontology Language (OWL) 17

x

3.1.2 Data Persistence and Access 17

3.1.2.1 Apache Lucene & Apache Solr 17

3.1.2.2 Triple Stores 19

3.1.2.3 SPARQL . 20

3.1.2.4 Apache Clerezza 21

3.1.2.5 LDPath . 21

3.2 Semantic Indexing . 22

3.2.1 Semantic Index Management 22

3.2.2 Submitting Documents to Semantic Indexes 23

3.3 Semantic Search . 27

3.3.1 Single Document Retrieval 28

3.3.2 SPARQL Search . 28

3.3.3 Solr Search . 29

3.3.4 Faceted Search . 31

3.3.5 Related Keyword Search 32

3.3.6 Featured Search . 35

4 INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS 36

4.1 Background . 36

4.1.1 Content Management Systems 36

4.1.2 Content Repository Standards 37

4.1.2.1 Java Content Repository (JCR) 37

4.1.2.2 Content Management Interoperability Services
(CMIS) . 38

4.2 Contenthub Feed . 39

4.3 Bidirectional Mapping . 40

4.3.1 Populating CMS . 40

4.3.2 Exporting CMS . 44

4.3.3 CMS Vocabulary . 45

5 CASE STUDY IN HEALTHCARE DOMAIN 47

5.1 Preparation of Health Related Indexes 47

5.2 Semantic Indexing of Documents 48

xi

5.3 Semantic Search over the Documents 51

6 RELATED WORK . 55

7 CONCLUSION . 58

REFERENCES . 60

APPENDICES

A A CROSS-SECTION FROM THE RXNORM ONTOLOGY 67

B LDPATH INSTANCE FOR HEALTHCARE DOMAIN 69

C LDPATH RELATED CONFIGURATIONS OF SOLR INDEX 71

D A CROSS-SECTION ENHANCEMENT OF A HEALTH RELATED DOC-
UMENT . 73

E DOMAIN SPECIFIC ENTITY PROPERTIES 76

xii

LIST OF TABLES

TABLES

Table 4.1 Bidirectional RDF Mapping Configurations 41

Table 6.1 Comparison of relevant frameworks with Stanbol 57

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Stanbol components 5

Figure 2.2 Layered OSGi architecture 6

Figure 2.3 CMS - Stanbol interaction 9

Figure 2.4 Semantic content management overview 12

Figure 3.1 Interlinked LOD Datasets 15

Figure 3.2 Representing persons with RDF 16

Figure 3.3 Generic Architecture of an RDF Store 20

Figure 3.4 A field name and corresponding RDF Path of an LDPathprogram 23

Figure 3.5 Solr schema configuration of the LDPath instruction in Figure3.4 23

Figure 3.6 Enhancement representing the CNN Organization 25

Figure 3.7 Querying Entityhub for the recognized named entities 25

Figure 3.8 SPARQL query to retrieve the enhancements of a document 29

Figure 3.9 SPARQL query execution on enhancement graph 30

Figure 3.10 Methods provided by the Solr Search service 30

Figure 3.11 Facets included in the default index of Contenthub 32

Figure 3.12 SPARQL queries to fetch similar terms for the original search query 34

Figure 4.1 Standards-based content repository 38

Figure 4.2 Semantic content management with Stanbol framework 40

Figure 4.3 A sample external RDF to be mapped to the CMS 43

Figure 4.4 RDF mapping configurations 44

Figure 4.5 Intermediate RDF represented with common terms 45

xiv

Figure 5.1 Configuring a Keyword Linking Engine for RxNORM Dataset 48

Figure 5.2 Submitting an LDPath program 49

Figure 5.3 CMS Structure .. . 50

Figure 5.4 Submitting documents to Contenthub 51

Figure 5.5 Search results for the diabetes keyword 52

Figure 5.6 Facets related with datasets used 53

Figure 5.7 Constrained search results for Avandia constraint 53

Figure 5.8 Constrained search results after selecting headache constraint 54

Figure 6.1 Semantic Content Management System Reference Architecture 56

xv

CHAPTER 1

INTRODUCTION

Majority of today’s Content Management Systems (CMSes) lack powerful semantic function-

alities on the managed documents [1, 2]. These legacy systems mostly use relational databases

to store the data through several relational tables. Some ofthe CMS providers try to include

built-in semantic functionalities, however these cannot go beyond simple and domain specific

operations on the stored documents. Considering the diversity and size of available Linked

Open Data cloud [3] on the web, more powerful as well as customizable storage and indexing

mechanisms are required rather than the standard relational database management systems.

While communicating with other people, content authors putadditional, distintictive knowl-

edge into the documents they publish [4]. This annotation process is important considering

the activities that could be carried on on top of the additional annotations. Indeed, most of the

content management activities such as categorization, retrieval, etc are done according to the

semantics of the annotations. Therefore, associating documents with relevant and meaningful

annotations and management of these annotations along withactual documents is very critical

to provide competent content management activities.

As the number of CMS implementations increase, CMS providers have started to employ

some API specifications and standards to increase interoperability between different imple-

mentations. JCR [5] and CMIS [6] are two such efforts. In content repositories which are

compatible with these standards, documents are represented with nodes. Pre-defined prop-

erties are associated to nodes to be populated manually [7].Although, such properties may

give some explicit information about the content, without analyzing the content itself, it is not

possible to provide sophisticated semantic features. Alsomanually annotation of documents

is an error prune and time consuming task [8]. Please note that throughout this thesis, we will

1

use thecontent repositoryterm interchangibly with thecontent management systemterm. So,

they refer to same concept.

In the annotation process of the documents managed in the CMSes the Linked Open Data

cloud should also be took into consideration as it grows day by day thanks to its open nature

[9], yet it has 52 billion+ triples! Considering the existence of such a huge collection of data,

enhancement of documents with semantically related knowledge would be pretty reasonable

and such semantically enhanced content would enable building semantic features on top of

them, which cannot be obtained via straightforward methods.

In this study, we address the semantic incompetence of existing CMSes. We propose a unified

approach which brings several latest advancements in different areas of information extraction

(IE), information retrieval (IR) and semantic web technologies all together. In the open source

community, there are a remarkable number of mature and stable software tools providing

solutions for the advancements in question.

Our study introduces two different software components: theCMS Adapterfor the semantic

lifting of JCR/CMIS compliant content repositories, and theContenthubfor powerful se-

mantic indexing and search of the documents considering their metadata and enhancements

coming from several different external RDF [10] datasets such as DBpedia [11]. We provide

a mechanism for automatic semantic lifting of JCR and CMIS compliant content repositories.

We directly communicate with the underlying data model and extract semantic relations, and

generate RDF based semantic data to be processed in the semantic search process. The com-

munication is bidirectional, thus conveniently structured RDF data can be pushed back to the

content repositories.

Apart from the semantic lifting, one of the salient benefits offered by the features devel-

oped in our approach is the opportunity for creating custom,semantically meaningful indexes

tuned with specific use cases, needs. By exploiting such a semantically enhanced indexing

mechanism, we build a search machinery providing various ways to search for documents

by keyword or structured queries or navigate on them using faceted search or related query

terms.

Moreover, the aforementioned semantic indexing machineryenables users to use of the linked

data according to their specific needs. Linked Open Data cloud already includes lots of

2

datasets for many different domains. Using such datasets which have reached a substantial

maturity provide high-quality annotations, storage and search on documents.

This work has been conducted in the scope of "Interactive Knowledge Stack for small to

medium CMS/KMS providers (IKS) project funded by the EC (FP7-ICT-2007-3). Apache

Stanbol project [12] is one of the software products developed in the scope of IKS project.

The CMS Adapter and Contenthub components introduced earlier are two of the components

of the Stanbol, which will be explained in detail in the next sections of this study.

The rest of this thesis is organized as follows: We will give the overall definition of our ap-

proach in Section 2, then in Section 3, we elaborate the Contenthub component by explaining

the semantic indexing and search functionalities in detail. Then in Section 4, functionali-

ties provided by the CMS Adapter component will be presented. A case study in healthcare

domain of our study will be given in Section 5. Before concluding, we will mention about

the related works regarding our study Section 6 and finally the thesis will be concluded in

Section 7.

3

CHAPTER 2

APPROACH

The ultimate aim of this study is to provide reusable services and components to enhance

CMSes with semantic capabilities. As stated earlier most ofthe CMSes do not have the

capability of mananagement of semantic information related with the documents contained

in the system, therefore they cannot provide semantic content management activities such as

retrival, navigation, etc. In our approach, we explicate two main components, which tries

to overcome the semantic incompetence of existing CMSes. The proposed components are

Contenthub [13] and CMS Adapter [14], respectively. Contenthub and CMS Adapter are two

of the main components of Apache Stanbol. Although the focusis on those two, it is important

to say that they make use of other components of Stanbol. Therefore, the other components

that take place in this approach will also be mentioned in a high level manner. By utilising

several components of Stanbol, we propose an approach through the integration of several

techniques and tools from information extraction, semantic web mining, information storage

and information retrieval areas.

In this chapter, the overall approach of our study is given bygoing through the several parts

of the Stanbol framework. Some of the technologies and techniques related with the general

approach are given in a moderate detail so that the study would be understood clearly. Also,

not to leave the approach in a very abstract state, we mentionabout some other technologies in

a very superficial way. Detailed background for these technologies and techniques are given

in Chapter 3 and Chapter 4.

As the base framework for the proposed approach, we start with the Stanbol:

4

Figure 2.1: Stanbol components [15]

2.1 Apache Stanbol

Apache Stanbol is an open source modular software stack and reusable set of components for

semantic content management as presented in Figure 2.1. As its name indicates, for the time

being, it is being developed in the scope Apache Software Foundtion (ASF)1. In addition to

the fact that each component of Stanbol provides both independent functionalities to be used

by the CMS providers/developers, integrated services can also be procured by composing of

several components of Stanbol.

2.1.1 Design Decisions in Stanbol

Stanbol has been being developed according to a number of design decisions. First of all, it

is mainly implemented with Java [16] programming language,although some parts of it is

implemented with other programming languages. For example, HTML interfaces of Stanbol

are drew using the Java Script and Freemarker [17] templating language.

The second design decision is that Stanbol components should be implemented compliant

with Open Services Gateway initiative (OSGi) [19] component framework. Units of resources

which can be installed to an OSGi environment are entitled asbundles. Once an OSGi en-

vironment e.g Equinox runs, any code piece wrapped as an OSGibundle can be installed to

1 http://www.apache.org/

5

Figure 2.2: Layered OSGi architecture [18]

that environment as well as any bundle already installed to the environment can be updated,

stopped or removed from the environment at the application runtime without rebooting the

whole system. Figure 2.2 depicts the layered architecture of the OSGi and how bundles op-

erate in several layers. One of the most important features of the OSGi is the service registry

concept. In reference to service registry mechanism, each bundle can register one or more

services to the OSGi environment and each bundle can detect addition, removal of services

and continue to execution according the new state of services. Following this design deci-

sion, every component of Stanbol is being developed in a modular manner and they register

their own services so that the other components and externalclients can make use of them.

Also, most of the components require other components to be able to execute. Thanks to the

Apache Felix [20] which is the OSGi container implementation used in Stanbol, components

are able to listen other components that they need to executein a proper way. Once all of the

listened components are registered to the environment, listener component starts to run and

its services become available to be exploited.

The third design decision is the Representational state transfer (REST) [21] architecture. Ac-

cording to this, functionalities provided by components ofStanbol would be accessible as

RESTful services. Stanbol uses the JAX-RS [22] which is a Java programming language

API that provides support in creating web services in line with the REST architecture. More

specifically, Jersey [23] implementation of JAX-RS API is used. In this context, Stanbol be-

comes a server offering various services and clients can make use of the provided services

6

through Hyper-text Transfer Protocol (HTTP) [24] methods such asGET, POST, DELETE,

etc.

For the compilation step of the Stanbol, the Maven framework[25] is being used. It makes

possible to compile several Java projects with a command. Maven als offers purpose spe-

cific plugins and allows compilation specific adjustments. For instance, thanks to the Sling

Launchpad Plugin [26], the executable programs of all compiled Java projects are aggregated

within a single executable Jar file according to their OSGi specific start levels. Afterwards,

running the Jar file with the single "java -jar" command is sufficient to launch all OSGi envi-

ronment.

The Stanbol project is built by several committers. So, it ismanaged with an version control

framework. The Subversion (SVN) framework is being used to keep track of the source code

of Stanbol. The online repository is accessible at2.

2.1.2 Stanbol functionalities

Functionalities provided by Stanbol can be categorized under four main groups:

• Content Enhancement:

Enhancer component [27] of Stanbol enhances a given contentby gathering additional

semantic metadata. It takes the content and relays it to a setof enhancement engines.

Each enhancement engine has a specific purpose. For instance, one of the engines con-

verts the initial content into a processable format, another one extracts the language

of the given text. Other engines are able to extract named entities such as organiza-

tions and places from the given textual content. Further semantic information about the

recognized entities is retrieved from Linked Open Data cloud by some other engines.

• Reasoning:

Reasoning services offered by Reasoners component [28] of Stanbol provides extract-

ing implicit knowledge from the semantic information obtained for the documents via

the content enhancement process. Reasoning functionalities are composed of a set of

services which make use of automatic inference engines suchas Hermit [29], Jena

RDFS reasoner [30], etc.

2 http://svn.apache.org/repos/asf/incubator/stanbol/

7

• Ontology Management:

Ontology Manager component [31] of Stanbol offers a controlled environment where

users can access, modify the ontologies managed in the scopeof Stanbol. It provides

ontology networks and sessions to work on certain parts of complex models which are

comprised of several ontologies.

• Persistence:

The Contenthub component of Stanbol is a document repository which provides seman-

tic storage for the content items and semantic search services on top of them. Text-based

documents can be submitted, semantically indexed and searched through the services

of Contenthub. CMS Adapter is another component which aims to ease integration of

semantic functionalities provided by Contenthub with legacy content repositories com-

pliant with JCR/CMIS specifications.

The work carried out in this thesis corresponds with the functionalities grouped under the

Persistencelayer of Stanbol. However, without using the enhancement capabilities of Stanbol

on the documents, Persistence layer does not make sense per se. In the following section, how

different techniques are combined to provide semantic indexingand search will be given in

general terms.

2.2 Semantic Content Management with Stanbol

Initially there are the CMS and Stanbol on the scene. To benefit from the semantic function-

alities provided by Stanbol, the CMS should submit its content to the Stanbol. It is possible

to get only enhancements as the result of content enhancement process, however through this

interaction pattern all semantic data flows in the runtime and the CMS would have nothing

stored persistently at the end. However, in this study we focus on the interaction pattern in

which the submitted content is store persistently so that sophisticated search functionalities

would be provided on the persisted content.

8

Figure 2.3: CMS - Stanbol interaction

2.2.1 Accessing to Stanbol

To persist submitted content within the Stanbol framework,any CMS can use the RESTful

services of Contenthub as the easiest way. Thanks to the RESTapproach, a CMS can make

use of Contenthub services with minimum change to CMS code. Serving the internal capa-

bilities in a RESTful manner provides covering a broad target audience to Stanbol, because

REST is a technology independent approach which requires nothing more than accessing to

the services through HTTP methods.

The second way to use Contenthub services is the Java interfaces. However, this requires

deployment of Stanbol instance into the same OSGi environment in which the CMS itself

resides. That is to say, the CMS should have already been running in an OSGi environment

and Stanbol modules should be located within the same environment. Once these conditions

are satisfied, the CMS can retrieve services using the OSGi platform features e.g it can register

for specific services or traverse the existing ones, even it can adapt its own modules such that

those modules would be active if and only if the referenced Stanbol modules are already

active and ready to use. Sling-stanbol [32] is an integratedframework which can be given as

an example to CMSes which benefit from Stanbol services through Java API. Sling-stanbol

is composed of union of Stanbol and Apache Sling [33] projectwhich is a JCR based CMS.

In the scope of Sling-stanbol the original Sling framework is enhanced with the semantic

functionalities provided by Stanbol. For instance, Sling-stanbol provides faceted search over

the documents which cannot provided by the Sling itself. Figure 2.3 shows the interaction

between a traditional CMS and the Stanbol through RESTful services and CMS Adapter.

2http://incubator.apache.org/stanbol/images/stanbol-cms-scenario.png

9

An alternative way to submit documents from the CMS into the Contenthub could be the

usage of CMS Adapter component. However, only JCR or CMIS compliant repositories can

make use of CMS Adapter. In this interaction pattern, the CMSes manage their documents

within the Contenthub by allowing CMS Adapter to pull the documents from the CMSes

themselves and submit to the Contenthub using the standard accessing ways defined in JCR

and CMIS specifications.

2.2.2 Content Enhancement

Once the content arrives in the Contenthub, it is directly delegated to the Enhancer component

of Stanbol to obtain semantic enhancements belonging to thecontent itself before any storage

and indexing operation performed. Depending on the configuration of Stanbol components i.e

the Entityhub and Enhancer, enhancements might include various types of additional knowl-

edge relevant with the content. As introduced earlier, different kinds of enhancement engines

contribute different kinds of enhancements. The content enhancement step is the first step

where sophisticated techniques are used and in the next paragraphs, the enhancement engines

that take part in our approach will be mentioned.

Two of the enhancement engines that are used in our approach are related with Natural Lan-

guage Processing (NLP). One of them, namely the Named EntityRecognition Engine [34],

uses the Apache OpenNLP [35] to extract named entities from the the textual content which

is passed as the input. This engine is able to extractPerson, PlaceandOrganizationtyped

entities. Another NLP-related enhancement engine is the Keyword Linking Engine [36]. This

engines aims to extract occurences of entities which are already a part of a controlled vocab-

ulary. By controlled vocabulary we mean a dataset which is a collection of terms or phrases

that are related with a specific domain or subject [37]. An example can be the terms regard-

ing the animal kingdom e.g kinds or other distinctive characteristics of animals, etc. The

terms or phrases defined in the controlled vocabularies are used to tag the documents and

then the tags are used during the retrieval process of documents. Considering the definition

of controlled vocabularies, it can be said that Keyword Linking Engine provides recognition

of named entities related with a specific concept or domain, which is represented with a con-

trolled vocabulary.

The last enhancement engine which we are interested in is theNamed Entity Tagging Engine

10

[38]. This engine makes use of the Entityhub component to getdetailed semantic information

for the named entities recognized within the given text content. Any data source can be

bundled in the scope of Entityhub component to retrieve details regarding an entity.

2.2.3 Content Storage

Contenthub is the responsible component from content storage, indexing and retrieval. It man-

ages several semantic indexes which are configured according to specific use cases. Managed

indexes differs from each other in terms of the index fields and index field configurations.

Index fields and their configurations are specified by means ofa simple RDF path language,

LDPath, which is described in detail in Section 3.

Once the content enhancement process is completed, Contenthub realizes one last additional

semantic knowledge gathering. In this activity, Contenthub uses the named entities recognized

during the content enhancement process. It requests additional knowledge for each named

entity by querying the Entityhub. However, the most important point of this query operation

is that Contenthub queries the Entityhub using the same LDPath instance which was used to

create the target index into which the documents are submitted. As a result, only relevant

information for specific use cases is obtained. As a result, the acquired information is fully

compatible with the target index which is dedicated to the use case.

In addition to the storage of actual content and additional knowledge, enhancements of doc-

uments are also stored as a whole. Since the enhancements arein RDF format, triple stores,

which are specialized storage frameworks, are used to storethe RDF data.

2.2.4 Content Retrieval

On top of the stored content and knowledge i.e the additional, semantic information about

the content itself, various types of search operations are provided in the approach carried out

in the scope of this thesis. Recent, advanced search techniques such as semantic search and

faceted search are combined and a sophisticated content retrieval feature is offered.

The basic search functionility provided is the keyword/full-text search. The full-text search

is not only done on the actual content but also considering the additional knowledge about

11

Figure 2.4: Semantic content management overview

the content itself. So this makes possible to get documents in the search results even if the

original query term would not be contained in the actual content of the documents.

Another option to retrieve documents is via structured queries. Both the indexes keeping the

documents and their purpose specific properties can be queried with structured queries and

also the triple stores can be queried with the SPARQL [39] language. Ability to query the

stored documents with already available query languages provide users with the opportunity

of benefiting from the advanced features of those languages,which have been invented by the

immense know-how.

Figure 2.4 shows the workflow of semantic content managementin our approach. The flow

starts with the submission of documents to the Contenthub through the RESTful API or Java

API provided by the Stanbol framework. Using several information retrieval techniques, ex-

tra information about the content (e.g language, containednamed entities etc...) are extracted.

Later on, the extracted information is expanded with the related semantic knowledge retrieved

from Linked Open Data cloud. All additional semantic knowledge related with the initial con-

tent (retrieved as enhancements) is stored along with the initial content in custom, specialized

indexes and it is used during the search process afterwards.

12

2.3 Integration with Content Management Systems

Apart from the RESTful and Java access to the Stanbol, CMS Adapter is the bridge be-

tween the CMSes and Contenthub as stated in Section 2.2.1. While interacting with the CMS

Adapter, the CMSes provide the CMS Adapter with some of the distinctive properties of the

documents to be submitted to or deleted from the Contenthub e.g paths or identifiers. Thanks

to the provided distinctive properties of documents, CMS Adapter would be able to access the

CMS and retrieves the specified documents. By doing so, the CMS Adapter component aims

to ease integration of semantic storage functionalities provided by Contenthub with CMSes

considering the structure of CMS itself. During the submission process, together with the

actual content of the documents, their additional properties are also fetched from the CMS

submitted to the Contenthub along with the actual content tobe used as additional knowledge

in the subsequent operations such as search.

In addition to the Contenthub feed facility, CMS Adapter provides transforming the structure

of the CMS into RDF format, which can be processed by the Contenthub component during

the storage and retrieval activities. Therefore, not only the additional knowledge through

the content enhancement process but also the semantics concealed within the structure of the

CMS itself. With the same mapping feature, CMS Adapter is also able to update the CMS

itself with a given external RDF data. This makes it possibleto exploit Linked Open Data

which is already available on the web, within the CMSes. By mapping external RDF data,

existing documents in the CMS can be updated or new ones can becreated. Thanks to this

feature, already existing RDF datasets from various domains in the Linked Open Data cloud

can be exploited to provide qualified classification/categorization for documents.

13

CHAPTER 3

SEMANTIC INDEXING AND SEARCH

In this chapter, the Contenthub, which is the core componentproviding the semantic, cus-

tomizable storage and search functionality, is being described. To provide better understand-

ing of the study, we first provide a background on the enablingtools, technologies and stan-

dards in Section 3.1. After giving the background information, semantix indexing and search

approach will be explicated.

3.1 Background

3.1.1 Semantic Web

According to its creator Tim Berners Lee, semantic web is an extension of the original web

with better methodologies to express the meaning of things,representing knowledge in stan-

dardized ways i.e by defining ontologies [40]. The entities represented as a knowledge piece

within the semantic web and relationships between the entities are represented with URIs

[41]. Since, the properties of entities and relationship are designed in a way that they would

be recognized by machines instead of human beings, semanticweb focuses on single entities

rather the web pages. The common practice for representing the knowledge in the seman-

tic web is to use well-known vocabularies as much as possible. Vocabularies are dedicated

collections including the concept and possible relationship definitions between the concepts

related with a specific domain. For instance FOAF [42] is a popular vocabulary which mostly

contains concepts, terms related with people. Terms from various vocabularies can also be

mixed to make the knowledge representation more understandable by machines [43].

14

Figure 3.1: Interlinked LOD Datasets1

3.1.1.1 Linked Data

From the concept definition perpective, the standardization effort while defining the data

within the semantic web necessitates vocabularies to be linked with other vocabularies to

able to represent the terms corresponding to the same concept with common, well-known

terms. Apart from the concept definitions, to realize the webof data approach, data repre-

senting actual entities are defined in an interlinked mannerby connecting different pieces of

entities with each other. In this way, explicit links between entities are formed and semantic

web applications are able to traverse among the entities linked each other [44].

Linked Open Data [3] project aims to extend the original web with data sets which are con-

nected with each other in line with the linked data approach.For the time being, a lot of

organizations have already been published their data by associating with other data sets. Fig-

ure 3.1 shows the state of links between different datasets from various domains by September

2011.

1http://richard.cyganiak.de/2007/10/lod/lod-datasets_2011-09-19_colored.html

15

Figure 3.2: Representing persons with RDF [47]

3.1.1.2 Resource Description Framework(RDF)

RDF [10] is the base building blocks of data forming the semantic web. It is the defacto web

resource representation language [45]. Although the initial intention to represent metadata

about web resources, such as author or modification data of page, RDF is used to represent

anything which is referenced through a URI [46]. The actual data regarding the resources in

the semantic web can also be dereferenced i.e retrieved through the URIs of resources. The

reason to choose to represent the web resources with RDF is not to display data the users, on

the contrary to make data understanble by computers.

Representing web resources with RDF is convenient in terms of linked data approach, be-

cause RDF provides knowledge representation through RDF statements called astriples and

each triple represents a property and value of the property for a resource. Mostly a triple is

represented as (subject (s), predicate (p), object (o)) where s has a property with valueo. In

this structures andp must be represented with URIs. However,o can be either a URI or a

literal value. Figure 3.2 represents three people where theperson named asElizabeth of York

andKing Henry VIIare the creators of the person namedKing Henry VIII. The same figure

also shows the linked data approach where several vocabularies have been used to represent a

single web resource e.gKing Henry VIII.

16

3.1.1.3 Web Ontology Language (OWL)

With its most generic definition, OWL is a generic knowledge represantation language hav-

ing different more specific implementations such as OWL Lite, OWL DL and OWL Full.

This language is designed to machine readability of the information published rather than just

showing to the users. OWL language is used to explicitly represent the meaning of terms in

vocabularies and the relationships between those terms. This representation of terms and the

relationships between them is called an ontology [48]. OWL is an extension over RDF, XML

and their schema definitions such that it offers an improved vocabulary for describing classes,

individual, properties, relations between classes, relations between classes and individuals,

typing of properties, etc. The sophisticated structure of this language also allows reasoning

on the knowledge annotated with this language. Through a reasoning process, the implicit in-

formation hidden in the actual knowledge is extracted by making use of the relations between

information items. Since design of the OWL language is notably suitable for the reasoning

process, the prevalent reasoners are ones those work on OWL annotated data such as HermiT

[29], Fact++ [49].

3.1.2 Data Persistence and Access

When it is considered from the perspective of document levelpersistence and access in the

CMSes, the most common feature is the keyword search over theactual content of documents

and their metadata [50]. There are also attitudes towards toenriching the full-text search with

structured search methodologies [51, 52, 53]. In this section, we will give background infor-

mation about different storage and search methodologies, which takes place in the approach

proposed in this study, in different granularities.

3.1.2.1 Apache Lucene& Apache Solr

Apache Lucene [54] is an open source full-text search enginelibrary written in Java program-

ming language. However, it is being ported several other languages such as Delphi, Perl, C#,

C++, Phyton, Ruby, PHP, etc. The indexing unit of the Lucene is textual documents with

additional metadata fields to be indexed alongside the actual documents. Lucene has the flex-

ibility to extract textual content from different formats of files such as PDF, HTML, Microsoft

17

Word, Open Document documents, etc.

Apache Solr [55] is an open source enterprise search platform which is set up on the full-

text indexing and search capabilities of Lucene. Solr offers a high scalability thanks to its

distributed search and index replication features. It can also be used as a standalone full-

text search server within a servlet container such as ApacheTomcat [56], Glassfish [57], etc.

Clients can access to Solr server through HTTP protocol [24]sending queries in XML [58]

or JSON [59] formats. This removes any dependency to a specific programming langugage.

Easy index configuration options and programming language independent features allows

applications to use the Solr as an underlying indexing and search framework and offer faceted

search features over the indexed content.

Faceted search is a search paradigm which guides the users for navigating on the multidi-

mentional data [60]. It allows gradually constraining or expanding the documents or search

results in an intuitive way. Constriction and expansion operations are realized by the facets

and their associated values which match with the presented results. As long as users choose

more facets to constrain documents, available facets and their associated values decrease vice

versa as long as already chosen facets are deselected more and more possible facet and facet

values appears.

Search Ranking with Apache Lucene

For the documents whose textual content can be extracted, Lucene provides scalable and high

performancing indexing features. Lucene provides a rankedsearch over the indexed content.

Ranking is done according totf*idf (term frequency-inverse document frequency) weight.

This weight is a numerical statistics indicating the importance of the word within a document

contained in a collection or corpus [61]. Lucene also supports powerful query types such as

wildcard queries, range queries, etc.

In detail, the following mathematical formula is used by theLucene to calculate ranks of the

resultant documents in a search process.

score_d = sum_t (tf_q * idf_t / norm_q * tf_d * idf_t / norm_d_t * boost_t)

* coord_q_d

18

This formula used for ranking also applies for the search mechanism proposed in our study.

The meaning of the terms in the formula are as follows:

• score_d:Score for document d.

• sum_t: Sum for all terms t.

• tf_q: The square root of the frequency of t in the query.

• tf_d: The square root of the frequency of t in d.

• idf_t:

log(numDocs / docFreq_t + 1) + 1.0

• numDocs: Number of documents in the index.

• docFreq_t: Number of documents containing t.

• norm_q:

sqrt(sum_t((tf_q * idf_t)^2))

• norm_d_t: Square root of number of tokens in d in the same field as t.

• boost_t: The user-specified boost term for term t.

• coord_q_d: Number of terms in both query and document/ number of terms in query.

This can be summarized as the scoring is based on term frequency and term density in the

document.

3.1.2.2 Triple Stores

Considering the massive amount of linked data represented with RDF, there is a need to

store and access to RDF data considering the nature of the RDF. Triple stores are dedicated

databases to store RD [62] such that basic functionalities expected from a database such ex-

port, import, querying, etc are specialized for RDF representation in triple stores. Triple stores

also provide inference (reasoning) services on the managedknowledge, resulting in extraction

of implicit knowledge which is not originally contained in the initial knowledge.

19

Figure 3.3: Generic Architecture of an RDF Store(Sesame) [64]

There are different approaches while building the triple stores. While some of the are imple-

mented from scratch, some others are built on top of existingrelational database engines [63].

Triple stores are mostly composed of two layers which are therepository and middleware

layers [64]. As triple stores can use different mediums e.g files, databases, main memory for

storage, repository layer capabilities are offered via unified interface which is independent

from the underlying storage medium. Apart from the storage API, inference services also

resides in the middleware layer. Sesame [65], one of the popular triple stores, applying this

approach as seen in the Figure 3.3. The picture depicts also some of the middleware layer

modules, which are not focused in this study.

For querying the RDF data, triple stores offer various ways such as implementing a proprietary

API such as SeRQL [66], KAON Query [67] or implementing a query language such as

SPARQL [39], RQL [68], etc. We focus only on SPARQL since it isthe only RDF querying

language used in our approach.

3.1.2.3 SPARQL

SPARQL is the abbreviation of the statementSPARQL Protocol and RDF Query Language.

SPARQL is the W3C recommended query language for the semantic web which is formed by

20

interlinked RDF data. Since RDF is a directed graph data format, SPARQL would be a graph-

matching query language consisting of triple patterns, conjunctions, disjunctions and optional

query patterns. According to [69], a SPARQL query is composed of three parts: The first part

is thepattern matchingpart where the constraints reside in triple forms. The constraints can

be used together with the advanced features of SPARQL such asoptional parts, unions, etc.

The second part issolution modifierspart which is used to postprocess the raw output of the

query with operators like distinct, order, limit, offset, etc. The last part of a SPARQL query

is the actualoutput part which can be of different types such as yes/no queries, selections

of values of the variables which match the patterns, construction of new triples from these

values, and descriptions of resources.

3.1.2.4 Apache Clerezza

Apache Clerezza is an OSGi based framework aiming to providea set of functionalities as

RESTful services to manage the semantically linked data [70]. Clerezza’s Smart Content

Binding (SCB) layer allows storage of the RDF content in a compatible way with the W3C

RDF specification [46]. Clerezza is able to use different triple stores such as Jena [71] or

Sesame [65] as the underlying framework storing the content. Underlying triple stores are

abstracted with the graph data model, which is the part establishing the compatibility with

the W3C RDF specification. SCB layer also provides different facades to directly use Jena or

Sesame APIs during the RDF graph processing. The RDF graph manipulating API choice is

independent from the underlying storage mechanism. In other words, while using the Jena as

underlying triple store, Sesame API can be used to manipulate RDF graphs.

3.1.2.5 LDPath

LDPath is an RDF query language which is a valuable side-product of Linked Media Frame-

work (LMF) [72] project. It allows querying RDF as querying XML with XPath [73] and

it provides advanced features well-suited for querying andretrieving resources from Linked

Open Data cloud [74]. LDPath offers a high level querying layer over the RDF data abstracted

as RDF backends. By default, it provides three different RDF backend implementations which

are Linked Open Data cloud, Sesame triple store and generic RDF file backends. Besides,

LDPath can be used as a query language to work on any triple store or RDF data set by im-

21

plementing the RDF backend interface and it is also being used as a configuration template

to create semantic Solr indexes as in LMF or Stanbol, which will be explained in detail in the

following sections of this chapter.

3.2 Semantic Indexing

Before going into the details of what kind of indexing mechanism is proposed in this study, we

first explain what we mean bysemantic indexing. In the context of full-text database systems,

indexes per se are units that provides efficient retrieval of documents satisfying the given

query, efficiently addition of new records and rank the results with respect to the given query

such that users retrieve the the records of interest first [75]. Semantic indexes introduced in

this study are indexes which are configured according to specific needs so that they are built

on certain fields of documents that are inserted to the index.

3.2.1 Semantic Index Management

As stated earlier in this document, Contenthub is the component which is in charge of the

semantic index management. It can manage multiple indexes and allows conveying of storage

and search requests to a certain index. In the background, ituses the Apache Solr [55] as

the underlying framework providing the actual indexes and realizing the indexing and search

operations. In one more level deep, Solr uses Lucene framework and Lucene use inverted

index file structure where each term extracted from documents points to a list of documents

in which that term occurs [76].

Creation of new semantically meaningful indexes for certain use cases is realized thanks to the

LDPath [74] language. An LDPath instance is called as an LDPath program, so from now on

we will use this denomination. LDPath programs are composedof a<field_name:rdf_path>

pairs. While the field name only indicates the name of an indexfield, the RDF path piece may

specify properties about the field to be created such as its data type, language, etc. It is

even possible to set advanced configurations for the index fields within the RDF path section.

Contenthub provides services to create custom indexes based on a given LDPath program.

That means once a user submits an LDPath program to Contenthub, a corresponding Solr

index is created in the background.

22

Figure 3.4: A field name and corresponding RDF Path of an LDPath program

Figure 3.5: Solr schema configuration of the LDPath instruction in Figure3.4

In the Figure 3.4, a simple<field_name:rdf_path> pair is seen. Assume that this defini-

tion is one of the pairs defined in a complete LDPath program. This line indicates thattitle

will be one of the fields in the index to be created. Its RDF pathpart (foaf:name[@en]|

fn:concat(foaf:givenname[@en]," ",foaf:surname[@en])is related with document submis-

sion, so it will be explained later on in Section 3.2.2. However, the type assigned to the RDF

path determines the field type to be created within the index.Furthermore,(stored="false",

multivalued="false") is a part specifying Solr specific configurations. Accordingto this in-

struction, index field will not be stored but only be indexed also it will not be possible to pass

multiple values to this field. All Solr specific field options can be found at [77]. Once a Solr

index is created based on an LDPath program including the<field_name:rdf_path>definition

depicted in the Figure 3.4, the corresponding index configuration, which can be seen in Fig-

ure 3.5, is created for thetitle field.

Contenthub provides both RESTful and Java API to manage the underlying solr index. In-

deed, the real job is done by the services implemented in different OSGi bundles composing

the Contenthub component and the core services are wrapped as RESTful services so that they

would be accessed and called in a technology independent waythrough the HTTP protocol

from various environments.

3.2.2 Submitting Documents to Semantic Indexes

After creation of an index with an LDPath program, documentscan be submitted into it.

However, in addition to indexing the content, additional knowledge related with the content

is extracted by Enhancer component of Stanbol. Enhancements are returned in RDF format

and they include various information about the content of the document such as language,

23

named entities, possible references to resources corresponding to detected named entities in

the Linked Data cloud and several other information about enhancements themselves. En-

hancements of content items are stored in a triple store, abstracted by Apache Clerezza [70].

Afterwards, it would be possible to execute SPARQL queries on the enhancements. The

Figure 3.6 shows an example enhancement in RDF/XML format corresponding with an or-

ganization typed named entity which was recognized in a textual content. It contains various

information about the named entity as described below:

• extracted-from: This property is a reference to the owner document which thisen-

hancement belongs to. It links to the ID of the content item asassigned by Stanbol.

• confidence:This is a numeric value indicating the relevance degree of external entity

referenced in this enhancement with the named entity mentioned in the text where this

enhancement is extracted from.

• entity-type: Indicates the type of the external entity referenced in thisenhancement.

In this example, the entity have the types ofOrganizationandBroadcast. Thing is a

general base type which can be used for all entities.

• rdf:type: This property indicates the type of the enhancement itself such asText Anno-

tation, Entity Annotation, etc. Text Annotationtyped entities are the ones representing

the named entities in the given textual content. The exampleenhancement is anEntity

Annotationmeaning that unlike theText Annotations, this enhancement does not repre-

sent the named entity itself recognized in the text. Rather,it is a reference to an external

entity representing the corresponding named entity havingText Annotationtype.

• entity-label: Label of the represented external entity.

• created: Indicates the time when this enhancement was created.

• creator: This is a reference to anEnhancement Engineof Stanbol Enhancer.

• entity-reference: This property is a reference to external entity itself whichis defined

in an external data set included in the Linked Open Data cloud.

• relation: This property is a reference to the enhancement havingText Annotationtype

and the enhancement having this property is a candidate external entity in Linked Open

Data cloud for the named entity recognized from the textual content.

24

Figure 3.6: Enhancement representing the CNN Organization

Figure 3.7: Querying Entityhub for the recognized named entities

In the next step of indexing process, further details about the named entities contained in the

document are obtained from the Linked Data Cloud through Entityhub component of Stanbol.

Entityhub is queried with the LDPath instance, which was previously used to create the target

index, in order to get detailed information about the entities. To express this process clearly,

we go over the corresponding source code depicted in Figure 3.7.

The code snipped included in the Figure 3.7 is written in Javaprogramming language. In the

line 413, the variable namedsci represent a document submitted to the Contenthub. In the

same line, its enhancements are obtained in an RDF graph bygetMetadata()method. Again

in the same line, the triples havingentity-referenceproperty is requested from the graph. One

entity-referenceproperty must be included in each ofEntity Annotationtyped enhancements.

So, by requesting triples havingentity-referenceproperty, we automatically obtain references

to external entities corresponding with the named entitiesrecognized in textual content. Be-

tween the lines 414 and 420, all references to external entities are collected in aSetobject.

After that in the line 421,Semantic Index Managerof Contenthub is used to execute the

25

LDPath program on the Entityhub. Through theexecuteProgrammethod ofSemantic Index

Manager, the LDPath program identified with the given parameterldProgramNameis exe-

cuted on the entities passed in thecontextsset. It can be understood from this code that the

document submitted to the index which was already created with the same LDPath program

identified with theldProgramName. In the same line, results are obtained in aMap instance.

The keys of the map are formed by the names of the index fields e.g title as seen in the figure

above. The corresponding value of keys is aCollectionof values for the field specified in the

key. A collection can include any type of values such string,integer, date, etc. In the rest of

the code snippet, the values obtained from the Entityhub arepassed to the variabledocwhich

is the Solr representation of the document to be indexed. As seen in the line 423, keys of the

result map are added as fields and collection of corresponding values are added as the values

of the fields to Solr representation of document.

While querying the Entityhub with an LDPath program for an external entity, the effective

parts of an LDPath program are RDF paths of the<field_name:rdf_path> pairs composing the

LDPath program itself. Starting from the given context URI [41] which is the identifier of an

external entity, all of the RDF paths in an LDPath program areexecuted over the Linked Open

Data cloud. This would make possible to obtain knowledge from various datasets by follow-

ing the links defined in the RDF path. For the querying process, LDPath provides advanced

features as well such asWildcard Selections, Unions, Functions, etc. The RDF path part of the

LDPath program depicted in the Figure 3.4 contains aUnion function which has two operands.

The first operand isfoaf:name[@en]and the second one isfn:concat(foaf:givenname[@en],

" ", foaf:surname[@en]). The result of this RDF path is obtained by either the first or the

second operand. The first operand states that the result willbe obtained by obtaining the

Englishvalue of thefoaf:nameproperty of the external entity identified by the given context

URI. On the other hand, the second operand is composed by aConcatenationfunction which

takes three parameters. As a result of this function the English value of thefoaf:givenname

property and the English value of thefoaf:surnameproperty of the specified entity will be

concatenated with a space character in between.

As a result of the additional knowledge gathering process, meaningful details of entities are

obtained from the Linked Open Data cloud. This increases thequality of the annotations

with respect to the context information given with the LDPath program. Another effort which

may increase the annotation quality is the configuration of Entityhub and Enhancer compo-

26

nents. Entityhub component provides configuration of specific datasets from Linked Open

Data cloud. Those datasets can be associated withKeyword Linking Enginesso that they can

be used during the content enhancement process. The configuration step is an optional one,

but if it is done once in the beginning, named entities are detected using the domain specific

datasets and details of the entities are obtained from them.After the initial configuration, the

annotation and indexing process is fully automatic. It is enough to specify the name of the

index (Solr core) during document submission. Based on the specified index, documents will

be annotated according to the LDPath instance and indexed accordingly.

During the document submission process, it is also possibleto provide optional metadata in

the form of<field:value> pairs. If the passed field value is not defined in the target index,

a dynamic field is created and it can still be used in the searchprocess, because it will be

automatically indexed. In the default index of Contenthub three such dynamic fields are

created by default. These areplace, organizationandpersonfields. Since Stanbol Enhancer

produces enhancements of person, place and organization types in default configuration, we

provide these index fields with the values parsed from the enhancements of documents.

As a conclusion, the crucial point of the proposed semantic indexing mechanism is the materi-

alization of all related knowledge i.e knowledge retrievedfrom Linked Data cloud or manually

provided metadata along with the initial content. Having this valuable knowledge allows us

to provide advanced search functionalities on top of them, which are described in Section 3.3.

3.3 Semantic Search

The semantic search machinery of our approach is mainly built on the additional semantic

knowledge indexed along with the original content. We also benefit from the Linked Open

Data during some of the provided search features. Throughout the search machinery the

following search functionalities are available:

• simple keyword search,

• document retrieval via structured queries e.g. SPARQL [39], Solr Query [78],

• document filtering with faceted search,

• document exploration with related keywords suggested for the original query term.

27

To realize the search methods, the Contenthub provides following services:

• SPARQL Search,

• Solr Search,

• Related Keyword Search,

• Featured Search

Before going to into the details of various search mechanisms, we first explain how an indexed

document with a known identifier is retrieved in the scope of Contenthub in the Section 3.3.1.

3.3.1 Single Document Retrieval

Documents are retrieved according to their identifiers which are returned to the users just

after the document is stored. As the documents are stored within two main storage modules,

which are namely Solr indexes and triple stores, once a document is requested through its

identifier the two aforementioned storage modules are queried with the given identifier. The

content itself, additional knowledge obtained through theLDPath program execution on the

Entityhub and manually provided additional knowledge about the content are obtained from

the Solr indexes. On the other hand, enhancement of content items are obtained from the RDF

graph containing the enhancements of all documents, by executing a SPARQL query which

is shown in the Figure 3.8.

The SPARQL query depicted in the Figure 3.8 is the query used for retrieving the document

enhancements. Thanks to this query, union of triples havingthe identifier of the document, i.e

the URI of the document as the object; and triples which are typed asEntity Annotationand

belonging to the document specified with the given identifier.

3.3.2 SPARQL Search

Stanbol framework is able to serve RDF graphs through a SPARQL endpoint so that they

can be accessed through HTTP. The Contenthub uses this facility of Stanbol and serves the

enhancement graph which keeps the RDF enhancements of all documents submitted to the

28

Figure 3.8: SPARQL query to retrieve the enhancements of a document

Contenthub. Through this SPARQL endpoint, documents can bequeried; navigated by means

of their enhancements. The enhancement graph also includesthe resources representing the

external entities located within external data sources. Therefore, it is possible to execute

SPARQL queries considering those external entities. However further entities linked by the

first level external entities cannot be included, unless they are detected as external entities

from the submitted documents as well. By executing the SPARQL query depicted in the

Figure 3.9, the identifiers of content items are requested such that the content items would

have one or more enhancements pointing external entity. Thereferenced external entities are

expected to be cities of Japan and have population more than 10000000.

In Section 3.3.1, we have already exemplified a SPARQL query execution in a different way.

The difference is that while pulling out a single document, Contenthub uses the Java API of

Clerezza to execute the query on the enhancement graph. On the other hand, the example we

have given in this section demonstrates the dedicated endpoint of Stanbol to execute SPARQL

queries on any registered graph through the RESTful services.

3.3.3 Solr Search

Solr indexes are the fundamental parts of the Contenthub’s search infrastructure. This service

makes it possible to query underlying Solr indexes directly. It provides keyword search over

the indexes and in keyword search documents are retrieved not only considering their actual

content, but also the related knowledge indexed along with the content. Thus, it would be pos-

sible to retrieve documents with a query term which is not contained in the actual document

content but in additional knowledge regarding the originalcontent. For instance, assume that

a document contains theDennis Ritchieentity. At the end of the indexing process,C Pro-

29

Figure 3.9: SPARQL query execution on enhancement graph

Figure 3.10: Methods provided by the Solr Search service

grammingconcept is indexed within thedbpedia:knownForproperty of the document along

with the document itself. Afterwards, when a keyword searchis done with theC Program-

ming term, the document containing theDennis Ritchieentity would be in results even if it

does not contain the query term itself.

Thanks to the Solr Search service, executing Solr specific queries is also an option. Solr

query syntax provides very advanced and flexible document retrieval facilities. SolrJ [79]

API is used as the client to access underlying Solr indexes. The Figure 3.10 represents the

methods that can be used by external clients. As can be seen inthe figure, it is possible to

send the query as aString object or as a Solr query within aSolrParamsinstance. Also, for

both cases it is possible to specify a different Solr index. In all cases results are returned in

30

a QueryResponseinstance. BothSolrParamsandQueryResponseare classes defined in the

SolrJ API.

Considering that most of the CMS providers are familiar withSolr framework, opportunity

to direct usage of Solr indexes eases the integration of services. All Solr indexes can also be

used through HTTP protocol.

3.3.4 Faceted Search

Solr framework offers the opportunity for faceted search over the managed indexes as a built-

in capability. This search paradigm allows users to navigate over the search space in multiple

dimensions. For such a navigation, documents contained in the search space should be clas-

sified along multiple categories. In our approach, the search space corresponds to the Solr

indexes created for different use cases, different domains, different needs, etc. The documents

lie within those Solr indexes and the document classification is done according to the fields

defined in certain Solr indexes. In the course of faceted search in our approach, facets are

constructed from the fields defined in Solr indexes.

Providing a set of intuitive facet regarding the stored documents is usually a challenging task

[80]. While in some approaches, like ours, facets are constructed using the metadata fields

or terms in the vocabularies [81, 82, 83], other uses logicalrules are defined so that the more

meaningful and easily comprehensible facets are presentedto the users [80, 84]. Even though

the facets are directly constructed based on the index fieldsin our approach, since users are

able to define the index fields according to their needs and they are even able to associate cus-

tom RDF paths to populate the fields, throughout the system anadjustable facet construction

mechanism is offered. In terms of the comparison with the classical best-first search approach,

faceted search paradigm seems to provide more effective information-seeking support [85].

It is also popular among many popular online information access systems such e-commerce

sites.

Default index of Contenthub does not include any index field originating from an LDPath

program. Nevertheless, we create three dynamic index fieldsfor theplace, organizationand

persontyped enhancements of documents and they would result in three corresponding facets.

Values of the facets include the names of the external entities obtained from the DBPedia

31

Figure 3.11: Facets included in the default index of Contenthub

[11]. In the Figure 3.11, aforementioned three facets can beseen. Possible facet values are

obtained from all documents and the numbers on the right handside of a facet value indicates

the number of documents matching with that value of the facet.

3.3.5 Related Keyword Search

In addition to the document search over semantic indexes, the Contenthub provides a related

keyword suggestion mechanism for the given initial query term. These services accept single

keywords or tokens and return related keywords/tokens. This can be considered as a search

functionality which returns new keywords instead of documents. The aim of this approach

is to catch the intention of the users and offer them document navigation options with new

keywords of interest in terms of specific domains or related keywords defined in standard

vocabularies, datasets, etc.

Currently, three different related keyword suggestion services exist:

32

• Ontology Resource Search:This service looks for the specified keyword in the re-

sources of the ontology which is given as an external ontology to the search operation.

Search API of the Contenthub allows passing an ontology to beincluded in the re-

lated keyword suggestion phase of the search process. As ontology resources whose

names to be compared with the given query term, first of all this engine considers

the ontology individuals and classes defined by using the OWLlanguage [48] anno-

tations. Apart from the OWL classes and individuals, it alsoconsiders the resources

havinghttp://www.apache.org/stanbol/cms#CMSObjectas value of theirrdf:type prop-

erties. Thehttp://www.apache.org/stanbol/cms#CMSObjecttype is the type of resources

of the ontology produced by the CMS Adapter. Such ontologiesrepresent the structure

of the CMSes and by processing these ontologies actual structure of the CMSes are

included in the search process. This topic will be covered inmore detail in Chapter 4.

To provide an efficient search over the ontology, we index the local names of the target

resources using the LARQ [86] framework. This framework exploits the functionalities

of Lucene to provide efficient indexing and search over the given ontologies. By ex-

ploiting the LARQ framework, we execute SPARQL queries directly over the indexed

ontology to retrieve the similar terms considering the initial query term. In Figure 3.12,

three SPARQL queries for the three types of target objects are seen.

After an ontological resource is determined as relevant term with the search query,

this engine considers the other ontology resources residing in the vicinity of the initial

term. The additional ontology terms in the neighborhood of the initial ontology term are

detected through a number of closure properties among the ontological concepts such

as subclass and superclass. Furthermore, the engine allowsspecifying a subsumption

property so that any custom hierarchical structure of the ontology can be exploited.

• Wordnet Search: Looks for related words (such as synonyms, hyponyms, hypernyms,

etc...) from Wordnet dictionary [87] up to a configurable level and returns them as

related keywords. As its name indicates Wordnet is a collection of interlinked mean-

ingfully related words such as noun, verbs, adjectives and adverbs. By using Wordnet,

we aim to provide users with semantically related keyword tobe used to direct the

search process.

• Referenced Site Search:RDF datasets obtained from the Linked Open Data cloud and

managed in the scope of the Stanbol are named asReferenced Sites. As you remember,

33

Figure 3.12: SPARQL queries to fetch similar terms for the original search query

34

Entityhub is responsible from the management ofReferenced Sites. Given a keyword

as input, this search looks into the RDF datasets through theEntityhub component

and returns related entities accessed through specific properties. For example, for a

specific person this service returns related entities whichare obtained from DBPedia

via dbpedia:birthPlace, dbpedia:country, etc... properties of the entity associated with

that specific person. So, based on the specific properties, when the query is term is

Ankara, this service may suggest theTurkeyas a related keyword.

Related keywords are important in terms of theexplorationaspect within the overall search

process. A user may start from a point and instead of restricting the search results, might want

to change direction based on the initial keyword. This provide an intutive navigation facility

over the best-first search approach.

3.3.6 Featured Search

Featured search basically combines the capabilities ofSolr Searchand Related Keyword

Searchso that resultant documents and related keywords can be returned as a result of sin-

gle service call. Thus, the target users i.e the CMS developers, CMS vendors could offer a

complete search framework to their end users. In featured search component, the Contenthub

provides atokenizeservice. It performs a preprocessing on the search query andtries to ex-

tract entities. Entities can be formed of a single word or several words. If an entity has more

than one word, it is searched as a whole. This means that we construct the underlying Solr

query considering the whole name of the entity. For instanceassume that the initial query

term isMichael Jackson New York concert. Before any search operation, this query term is

sent to Enhancer to be analyzed. After that theMichael JacksonandNew Yorkentities are

detected and they are searched as a whole i.e as if the query term was like"Michael Jackson"

"New York" concert.

In the scope of Featured Search service, we also provide an abstraction layer over the faceted

search facilities so that the users who are not familiar withthe Solr framework can benefit

from the faceted search capabilities provided by Contenthub and integrate the services into

their existing system in an smooth, straightforward way.

35

CHAPTER 4

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Semantic services offered by the Contenthub can be accessed through its RESTful orJava

APIs. Besides these APIs, the CMS Adapter acts as a bridge between the content manage-

ment systems and the Contenthub in terms of storage functionalities. The CMS Adapter inter-

acts with the CMSes through the JCR and CMIS specifications. In other words, any content

repository, compliant with JCR or CMIS specifications, can make use of CMS Adapter func-

tionalities. Before diving into the details of CMS Adapter,a background about the CMSes

and standards specifying the model of the data to be stored inthe CMSes and accessing ways

to it will be given. After giving the background information, we will explain how CMSes can

be integrated in the course of indexing and search operations.

4.1 Background

4.1.1 Content Management Systems

A content repository or in other words a content management system is a hierarchical content

store supporting structured and unstructured content, full text search, versioning, transactions,

observation and more[88]. CMSes can be of different types such as Web Content Management

Systems, Digital Asset Management Systems, Enterprise Content Management Systems, etc.

Considering these different types, CMSes are environments used by content managers to man-

age the content items called as digital assets in mostly in a central repository. Apart from the

actual content of digital assets which can be in different types such as text, video, audio, im-

age, etc, CMSes also keep metadata about the content items [89]. For instanceauthor, last

modification date, etc. of a web page. Aside from the storage functionalities,CMSes offer

36

provide the content managers with authoring environment for the assets in which multiple au-

thors are able to work on the same resource. Furthermore, CMSes serves traits for metadata

creation and archiving for the content items together with versioning opportunities.

4.1.2 Content Repository Standards

Ad-hoc implementations of content repository models preclude the code portability, and

hence, the application developers are obliged to work with multiple APIs. Therefore, the con-

tent becomes isolated in repositories which are available for specific applications, designed to

access those specific content repositories [50]. Upon increasing number of implementations

of different content repository models standards have been emerged. There are two aspects

on which these standards propose common ways of usage:

• The structure of the data to be stored in content repositories

• Ways to access to the data stored in content repositories

4.1.2.1 Java Content Repository (JCR)

Java Content Repository (JCR) is a specification defining themodel of data to be stored in

content repositories. The model also proposes a Java API to access and modify the data to

be used by content oriented applications. By providing a standardized model and API, JCR

prevents the data isolated in proprietary repositories. InFigure 4.1, how JCR provides a

common API so that different clients, applications would access to the repositorythrough the

standardized API is seen. Even though there would be more than one repository at the bottom

layer in the figure, it is perceived as a single repository by the external clients. This design

overcomes the problems of data isolation and code portability.

In the content repository model of JCR, the data is organizedin a tree structure. A repository

may have more than one tree and each tree is named asworkspace. As suitable to the conven-

tion, each item on the tree is named asnodeexcept that the leaf nodes in the tree are named

asproperties. The actual content and metadata about the content reside inthe properties. The

non-leaf nodes provide the content managers with the opportunity of creating hierarchical

content structures.

37

Figure 4.1: Standards-based content repository [90]

JCR offers various ways of querying the underlying data. In the firstversion (JCR 1.0) [5],

it enforces the XPath [73] as the default query language. XPath is a language designed for

retrieving the certain elements from an XML document. Considering analogy between an

XML document and the hierarchical structure of the JCR model, XPath is a suitable choice.

Furthermore, to support the content repositories originating from relational databases, first

version of JCR supports SQL queries. To be able to execute SQLqueries on the underlying

content, JCR implementations provide a database view of theunderlying repository. In the

second version of JCR, although the methods in the first version become deprecated, they can

still be used. On top of XPath and SQL, JCR 2.0 proposes anabstract query modelalong with

two default implementations [91]:

• JCR-SQL2: This method offers a query syntax similar to SQL by mapping the abstract

query model to a string serialization based on SQL.

• JCR-LQOM (JCR Java Query Object Model): This model is directly used within the

Java programming language. Queries are constructed with Java objects corresponding

with objects of the abstract query model.

4.1.2.2 Content Management Interoperability Services (CMIS)

Content Management Interoperability Services (CMIS) defines a domain model including

a data model and capabilities for content management. To be used by applications working

38

with one or more content repository, CMIS offers a set of bindings including web services and

AtomPub [6]. The domain model offered by CMIS does not aim to cover all of the content

management related functionalities, instead it tries to extract functionalities common to all

content repository implementations. On the contrary to theJCR specification, CMIS does not

enforce a programming language, therefore it solves the interoperability problem of different

content repository implementations in a larger scale.

The items managed by CMIS are named asobjects. CMIS four types of objects. As in the

case of JCR, all objects can have properties holding about the actual content. Default object

types offered by CMIS is as follows:

• Document Object: Document objects represent the digital assets managed by the

CMIS.

• Folder Object: Folder objects are container objects for other folder or document

objects.

• Relationship Object: Relationship objects indicates between document and folder

objects. Either the target or the source can be both documentor folder objects.

• Policy Object: These objects are associated with the other objects indicating an ad-

ministrative policy e.g access policy, modify policy, etc.about the associated object.

4.2 Contenthub Feed

Contenthub feed feature aims to synchronize the documents managed in JCR/CMIS compliant

CMSes with the Contenthub component. Contenthub provides semantically management of

documents by its indexing and retrieval functionalities. The synchronization process is carried

out by functionalities serving for document submission to/deletion from Contenthub. This

service eases the synchronization process by handling the submission and deletion operations

using the identifiers, or paths of documents pertaining to the content repository. Even the

actual representations of documents within the content repository can be used.

During the submission process, properties of the documentsin the content repository are col-

lected and sent to the Contenthub together with the content itself. Before indexing the content

and its content repository specific properties through Solr, enhancements of the documents are

39

Figure 4.2: Semantic content management with Stanbol framework

also retrieved via Stanbol Enhancer. Eventually, all information is indexed and maintained in

the scope of the Contenthub as explained in detail in Chapter3. Indexing the properties of

the documents allows utilization the metadata regarding documents during the search process.

For instance, document classification would be possible viausing the classification done by

in the content repository. On top of that initial Contenthubbrings more semantic metadata for

the documents and provides more meaningful retrieval operations.

Figure 4.2 shows interactions which occur during the semantic content management process

among the several Stanbol components. We have already covered the Contenthub related part

of this diagram and now will focus on the CMS Adapter part. As seen in the figure, CMSes

can directly use the Contenthub through its RESTful or Java API. As an alternative way,

CMSes can also use the CMS Adapter for managing their documents in the Contenthub.

4.3 Bidirectional Mapping

4.3.1 Populating CMS

From one direction, bidirectional mapping feature makes itpossible to populate content repos-

itory leveraging Linked Open Data. This provides a great easiness while populating ini-

tially content repository with certain hierarchies based on specific use cases. Thanks to this

40

feature, already existing RDF datasets from various domains to provide qualified classifi-

cation/categorization for documents can be used. Considering the fact that more and more

organizations publish their data into the Linked Open Data cloud increases importance of this

feature. Apart from the already available data on the web, any RDF data can be mapped to

the content repository. By mapping external RDF data, existing content repository items can

be updated or new ones can be created.

Populating the CMS with the given RDF data is a process including two steps. To be able

to process differrent kinds of RDF data, in the first step, the given data is transformed into

a common format. The mapping from the original data to commonformat is done by a

number of configuration as described below in the Table 4.1. Please note that some of the

configurations are not used in the both directions of mappingprocess. Chosen resources

from the external data are represented with the standard terms defined in theCMS Vocabulary

which is explained in Section 4.3.3.

Table 4.1: Bidirectional RDF Mapping Configurations

Resource Selector While annotating an external RDF, this configuration provides

selection of resources from an RDF data. For example if this

configuration is set withrdf:type > skos:Concept, resources

having skos:Conceptas theirrdf:type property will be selected

from the RDF data. On the other hand, while adding assertions

to CMS vocabulary annotated RDF, for each resource having

CMS_OBJECT_URI (from theCMS Vocabulary) as its rdf:type,

a statement having predicate rdf:type and value skos:Concept will

be added

41

Resource Name Predi-

cate

While annotating an external RDF, this configuration in-

dicates the predicate which points to the name of con-

tent repository item. A single URI such asrdfs:label or

http: //www.w3.org/2000/01/rdf-schema#labelshould be set for

its value. If an empty configuration is passed, name of the content

repository items will be set as the local name of the URI repre-

senting the content repository object. While adding assertions to

CMS vocabulary annotated RDF, an assertion having the speci-

fied predicate will be added to RDF thanks to this configuration.

Children This configuration specifies the children properties of content

items. Value of this configuration should be likeskos:narrower

> narrowerObject or skos:narrower > rdfs:label. First option

directly specifies the name of the child content repository item. In

the second case, valuerdfs:labelpredicate of resource represent-

ing the child item will be set as the name of the child item. This

option would be useful to create hierarchies. It is also possible

to set only predicate indicating the subsumption relationssuch as

only skos:narrower. In this case name of the child resource will

be obtained from the local name of URI representing this CMS

object.

Default Child Predicate This configuration is used only when generating an RDF from the

repository. If there are more than one child selectors inChildren

configuration, it is not possible to know the predicate that will be

used as the child assertion while adding assertions to CMS vocab-

ulary annotated RDF. In that case, this configuration is usedto set

child assertion between parent and child objects. This configura-

tion is optional. But if there is a case in which this configuration

should be used and if it is not set, this causes missing assertions

in the generated RDF.

42

Figure 4.3: A sample external RDF to be mapped to the CMS

Target Path This is the target path in the CMS. While populating the CMS

with external RDF data, this path is used as the root path. The

hierarchical structure emerging from the RDF is reflected under

this path. On the other hand, while generating RDF from the

CMS, only the content items under this path is considered.

Let’s go over an example to get a clear idea on the bidirectional mapping feature. Assume

that the initial external RDF is the one given in the Figure 4.3

And we have the configurations given in the Figure 4.4.

According to the given input and configurations,skos:Concepttyped resources will be re-

trieved from the input data. As the name of the content items in the CMS, the value of the

rdfs:labelproperty of the selected resources will be used.skos:narrowerproperties of the se-

lected resources will be considered as the property establishing the hierarchical structure. Ac-

cording to these mapping configurations we obtain a common format. This intermediate result

is also an RDF data and it uses the terms defined in theCMS Vocabularyin Section 4.3.3. The

intermediate result can be seen in the Figure 4.5 and they swill be mapped to therdfmaptest

folder of the CMS.

43

Figure 4.4: RDF mapping configurations

As seen in the Figure 4.5, there are three objects havinghttp://www.apache.org/stanbol/cms#CMSObject

as theirrdf:typeproperties, although there are two elements in the initial input. Because, the

Electic_Fishentity in the input has askos:narrowerproperty referencing theStrongly_electric_fish.

Therefore, for this referenced entity, a nominal representation is created as well. These three

object will be transformed under tordfmaptestnode in the CMS and the hierarchy between

these objects will be processed by using theirhttp://www.apache.org/stanbol/cms#parentRef

properties. Also the names of the CMS objects will be retrieved from thehttp://www.apache.org/stanbol/cms#name

property.

4.3.2 Exporting CMS

Content managers express the semantics they have in mind while defining the content items

and their properties, and forming them into a particular hierarchy. However, there is no au-

tomated way to extract this semantics from the content repository structure, thus the implicit

semantics given by the administrator is not formally expressed. Exporting the structure of

the CMS together with the relations between the documents toRDF makes formalization of

the implicit semantics possible. During this formalization process CMS Adapter does not in-

terfere with the CMS itself and this prevents adapting CMS products internally to utilise the

semantic functionalities provided by CMS Adapter.

44

Figure 4.5: Intermediate RDF represented with common terms

In this direction, this feature enables content managementsystems to represent their content

repository structure in RDF format. This helps building semantic services (e.g reasoning

facilities on top of the existing content management systems) using their RDF representa-

tions. Moreover, that representation can be used in theRelated Keyword Searchfeature of the

Contenthub. Therefore, it would be possible to navigate on the documents, considering the

document hierarchy in the content repository.

This process is also a two-step process. In the first step, thestructure of CMS is directly

transformed into an RDF. As a result, we would have CMS vocabulary annotated RDF. Based

on the configurations explained in the Table 4.1 additional triples are added to the intermediate

result.

4.3.3 CMS Vocabulary

This vocabulary aims to provide a standardized mapping between content repositories and

RDF data. It includes a small number of terms which are used during the bidirectional map-

ping process. As well as general terms that are commonly usedfor both JCR and CMIS

repositories, there are also JCR or CMIS specific terms as follows:

45

General Terms

• CMS_OBJECT: In a CMS vocabulary annotated RDF, if a resource has this URI ref-

erence as value of its rdf:type property, the subject of thatresource represents a content

repository item e.g a node in JCR compliant content repositories or an object in CMIS

compliant content repositories.

• CMS_OBJECT_NAME: This URI reference represents the name of the content repos-

itory item.

• CMS_OBJECT_PATH: This URI reference represents the absolute path of the content

repository item.

• CMS_OBJECT_PARENT_REF: This URI reference represents the item to be cre-

ated as parent of the item having this property.

• CMS_OBJECT_HAS_URI: This URI reference represents the URI which is associ-

ated with the content repository item.

JCR Specific Properties

• JCR_PRIMARY_TYPE: This URI reference represents primary node of the content

repository item associated with the resource within the RDF.

• JCR_MIXIN_TYPES: This URI reference represents the mixin type of the content

repository item associated with the resource within the RDF.

CMIS Specific Properties

• CMIS_BASE_TYPE_ID: This URI reference represents the base type of the content

repository item associated with the resource within the RDF.

46

CHAPTER 5

CASE STUDY IN HEALTHCARE DOMAIN

5.1 Preparation of Health Related Indexes

In the case study of our approach in healthcare domain, we usedifferent health related datasets

for different purposes. Before explaining where those datasets arebeing used, we explain

datasets themselves and how they become ready to be processed by the Stanbol.

The original source of the datasets that we use in the case study is the National Center for

Biomedical Ontology (BioPortal) [92]. From this portal, weuse the following datasets:

• SNOMED/CT[93]: This is a very comprehensive clinical healthcare terminology con-

taining terms about diagnosis, clinical findings, body structures, procedures, etc.

• RxNORM[94]: This dataset is about the generic and branded drugs and it aims to

provide normalized names for those drugs. Also, it links thedrug names to commonly

used vocabularies in pharmacy management.

• Adverse Reaction Terminology (ART) [95]: This is a terminology aiming to provide

a basis for coding of adverse reaction terms. It provides a hierarchical structure starting

from body system/organ level for drug problems.

After transforming these datasets into RDF format, we have used the indexing component of

Entityhub to bundle these datasets as different Solr indexes so that they can be used during

the enhancement and storage operations. In the Appendix A a subsection from the RxNorm

is seen.

47

Figure 5.1: Configuring a Keyword Linking Engine for RxNORM Dataset

Indexing component of Entityhub produces a compressed zip file containing the Solr index

representing the RDF dataset and a jar file which provides installation of the Solr index to

the OSGi environment, where Stanbol runs, as an OSGi bundle which can be used by various

components of Stanbol.

To be able recognize the named entities, which are related with the health domain, from the

documents to be submitted, we need to configure the Enhancer component. This configu-

ration is done by assigning the Solr indexes created for eachRDF dataset with a separate

KeywordLinkingEngine [36]. In the Figure 5.1, configuration of Keyword Linking Engine

associated with the RxNORM dataset is seen. By adding a new enhancement engine for each

dataset, we make Stanbol Enhancer to look up for the entitiesdefined in the health related

datasets during the document enhancement process.

5.2 Semantic Indexing of Documents

As the actual content management system to be enhanced with semantic functionalities, we

have used the CRX product of Adobe [96]. CRX is a JCR compliantcontent management sys-

48

Figure 5.2: Submitting an LDPath program

tem. To simulate a content management environment working on health related documents,

first we populated the system with health related documents having different topics such as

cancer, diabetes, eye related diseases, etc.

The next step after populating the system with health related documents is indexing the doc-

uments in a semantic way in the scope of Stanbol’s Contenthub. To do this, we create a Solr

index using the LDPath [74]. To be able create an index which is compatible with the external

datasets, we have analyzed the possible properties that entities of these datasets can have. Us-

ing those properties, we have created an LDPath and using theLDPath program we created a

Solr index through the semantic index management functionalities of Contenthub. In the Fig-

ure 5.2, the screen for LDPath submission is seen. The index that was created with LDPath is

used to index the documents managed within the CRX. The health related LDPath covering

the three dataset can be seen in the Appendix B. In Appendix C,a cross-section from the

configuration of Solr index, which is the index created aftersubmitting the LDPath program,

is seen. This part of the configurations indicates that each line in the LDPath program leads

to a field definition in the index. Each of these index definitions are copied to thestanbolre-

served_text_allfield which is the field on which search is done. This means thatin case of a

keyword search, the fields created based on the LDPath program will also be considered.

49

Figure 5.3: CMS Structure

After creating the semantic index, we submit the documents from CRX to Contenthub using

the CMS Adapter component. As in the Figure 5.3, the health related articles are collected

under the root ofarticlesnode. So, considering this structure we configure the CMS Adapter

during the document submission process accordingly as in the Figure 5.4. As a result, all of

the documents under the articles path will be submitted to the Solr index named ashealthcare.

During the document submission process, as soon as the content arrives in the Contenthub, be-

fore any indexing operation, it is sent to Stanbol Enhancer and its enhancements are obtained.

Appendix D shows a cross-section from the enhancements of a health related document, it

shows theEntityAnnotationandTextAnnotationtyped enhancements. The enhancements ob-

tained in RDF format are stored in a triple store abstracted by Apache Clerezza. Enhance-

ments of all of the documents are collected in a single RDF graph so that a SPARQL query

can be executed considering all documents.

As soon as the content enhancement process is completed, Contenthub realizes one last ad-

ditional semantic knowledge gathering. In this activity, Contenthub uses the named entities

recognized during the content enhancement process. It requests additional knowledge for

each named entity by querying the Entityhub with same LDPathprogram which was used to

create the healthcare index. As a result, only relevant information of the entities for this use

case is obtained. Appendix E shows the additional information obtained from the RxNorm

50

Figure 5.4: Submitting documents to Contenthub

dataset for the "Aspirin 500 MG/ Caffeine 40 MG Oral Tabletentity. Therefore, the addi-

tional information contains values regarding to the properties that are defined for the RxNorm

dataset.

At the end of the indexing process, the healthcare index, which was created considering the

health specific properties, is filled with semantically meaningful information obtained from

external RDF datasets. The additional information obtained for submitted documents will be

used to provide semantic search functionalities for the documents.

5.3 Semantic Search over the Documents

In our evaluation, by making use of the indexed content and knowledge, we have applied

faceted search for the document retrieval in a semanticallymeaningful way.

First, we initiated the search process by doing a keyword search with the keyworddiabetes

to get all of the documents including the diabetes keyword. As a result we obtained the

results as depicted in the Figure 5.5. In addition to the documents results, on the left hand

side, facets matching the results are presented. Each facetresult has possible values together

with number of documents that match for the corresponding value of the facets. The facets

51

Figure 5.5: Search results for the diabetes keyword

corresponds with the fields defined in the LDPath which was used to create the healthcare

index.

Facets related with all of the three datasets can be seen in the Figure 5.6.

In the next step, we constrain the documents according to finding site of diseases. For this

operation, we use a field related with the SNOMED/CT dataset. Disease entities within the

SNOMED/CT have a property named has_finding_sitewhich indicates the finding site of a

disease within the body structure. We choose thenerveÂ_structurevalue of this facet. The

meaning of this constraining operation is that remaining results, after choosing the facet value,

mention about the nerve structure of the body as finding site of the diabetes or any other related

disease mentioned in the documents.

In the second step of the faceted search, we would like to further constrain the documents

according to a specific drug or medication. Conveniently, weuse a facet related with the

RxNORM dataset. We use therxnorm_labelfacet to filter the results and chooseAvandia

value of this facet. As a result, we get the results depicted in the Figure 5.7.

In the last step of the faceted search, search results are constrained according to a specific

adverse reaction by using a facet related with the adverse reaction terminology dataset. This

time, we choose theart_labelfacet and choose theHeadachevalue. As a result, there remains

52

Figure 5.6: Facets related with datasets used

Figure 5.7: Constrained search results for Avandia constraint

53

Figure 5.8: Constrained search results after selecting headache constraint

only a single document satisfying the chosen facet constraints as seen in the Figure 5.8.

The remaining document in the search results is a diabetes related document which mentions

about the nerve structure of the body as finding site of the diabetes or any related disease;

Avandia as a specific drug/medicament and Headache as an adverse reaction regarding the

Avandia or any related drug.

In this way, we have demonstrated a semantically meaningfulflow of document filtering from

the health domain perspective: First a finding site regarding with a disease, then a specific

drug/medicament for the disease and lastly an adverse reaction about the chosen drug. In this

way, it is also possible to navigate on documents by following a different path while choosing

the facet constraints.

54

CHAPTER 6

RELATED WORK

In this section, we give related studies with the work we present in this thesis. Consider-

ing the way of integration of several defacto and novel technologies, our study differentiates

from existing approaches. The study done in [1] describes a complete reference architecture

for content management systems with semantic capabilities. This is the overall architecture

covering our approach. Contenthub already lies in the "Persistence" layer of this architec-

ture. Nevertheless, as an extension to this architecture, we introduce the CMS Adapter as

component interacting with JCR/CMIS compliant CMSes. This allows interacting with the

"Content" column of reference architecture of a semantic CMS depicted in the Figure 6.1.

Configurable semantic bridges to extract semantics of JCR/CMIS compliant repositories into

an OWL model based ontology are described in the scope of the work done in [7]. This ap-

proach proposes navigation of documents based on the class hierarchy of generated ontology

expressing the semantics of the CMS. However, the study assumes that all terms to clas-

sify/categorize documents should be defined beforehand in a separate hierarchy within the

CMS. Also, this is a one-way approach which only provides extracting semantic information

from a CMS but not feed the CMS with semantically enriched content. In our study, apart

from extracting semantics of a CMS we also update it with external RDF data. Furthermore,

our approach proposes various document retrieval, search and browsing methods. As well

as providing ontology based navigation, our approach also considers semantic annotations

during document retrival operations.

LMF [72] is a framework offering storage and retrival functionalities for media content. LMF

supports annotation of media content using the Linked Open Data and storage of the anno-

tations along with the documents and publishes the stored content and its metadata in an

55

Figure 6.1: Semantic Content Management System Reference Architecture [1]

interlinked manner. Thanks to the Solr field definition language (LDPath), LMF allows cre-

ation of dynamically adaptable indexes for specific use cases. We use this dynamic index

machinery as a base to storage and search capabilities of Contenthub. On top of that we pro-

pose more diverse document navigation features by means of related keywords retrieved from

various sources such as WordNet, DBPedia or any external ontology. Besides, we provide

services which extract content together with its metadata from JCR/CMIS compliant content

repositories and manage them in our system to benefit from semantic indexing and search

features.

The KAON framework which is built in the study [97] uses domain ontologies to expand

original query terms. Once a query term is matched with a concept defined in the domain

ontology, the query term is expanded based on the subconcepts, synonyms and associated

predicates of the initial concept. This approach carries documents including more domain

specific keywords to the upper lines in the search results. However, without materialization of

additional metadata along with the original content, retrival of semantically related documents

is achieved upto a limited extent. The proposed flexible indexing infrastructure overcomes the

56

limitation of dependence to query term by storing semantic metadata together with the initial

content and considering this metadata during different kinds of retrieval operations.

KIM [98] stores documents together with their annotations and provides various ways to

obtain documents. It allows document retrieval based on thecontained named entities within

documents and their attributes, even considering the ontology and knowledge base used for

setting types of named entities and filling their attributes. HealthFinland [80] is a national

semantic publishing network and portal. In this system, documents are provided by various

content producers together with manually added annotations using the concepts defined in the

health domain ontologies. HealthFinland provides facetedsearch by mapping ontology terms

to facets manually considering the target audience. These systems provide index structures

which is compatible with their annotation machinery, however we propose a framework which

is also able to generate custom indexes which are suitable for specific needs of users and offer

various and expandible search features.

We have compared various functionalities provided by various frameworks that are relevant to

our study. As understood from the Table 6.1, there is no otherframework offering a complete

set of services to enhance CMSes with semantic capabilities. Especially, "Integration with

CMSes" and "Dynamic Index Creation" are the features distinguishing the Stanbol from other

frameworks.

Table 6.1: Comparison of relevant frameworks with Stanbol

Named

Entity

Recogni-

tion

Integration

with the

LOD

Domain

Specific

Enhance-

ments

Dynamic

Index

Creation

Search

Query

Contextu-

alizing

Integration

with

CMSes

LMF X X X

KIM X X X X

HealthFinland X X X X

KAON X

Stanbol X X X X X X

57

CHAPTER 7

CONCLUSION

In this thesis, we have proposed a methodology offering semantic storage and retrieval ser-

vices to be exploited by the content management systems which are not capable of managing

documents together with their semantic information. The proposed approach has been real-

ized in two of the components of Apache Stanbol project, which are the Contenthub and the

CMS Adapter, respectively.

The Contenthub is the component providing semantic storageand search. It uses Apache Solr

as the underlying framework. The Contenthub allows creation of semantic Solr indexes which

can be adapted for any specific use case by specifying the fields to be created in the index

and configuring their properties using an RDF path language,namely LDPath. Submitted

documents are enhanced via the Enhancer component of Stanbol. Enhancements include

detailed information about the named entities those contained in the document. Details of

the named entities are retrieved using the LDPath instance from the Linked Data cloud so

that they would be compliant with the custom semantic index.All of the additional, semantic

knowledge is stored along with the document.

The Contenthub provides different kinds of search functionalities on the managed documents

using the additional knowledge. In addition to keyword search, it is possible to perform

search with structured queries. For instance, Solr indexescan be directly queried using the

Solr Query syntax or SPARQL queries can be executed over the RDF graph which keeps

the enhancements of all of the managed documents. The Contenthub also provides a related

keyword search service which retrieves related keywords from various sources such as an

arbitrary ontology, Wordnet and DBPedia (and any other RDF dataset) for the given query

term.

58

The CMS Adapter aims to ease the document management in the Contenthub for JCR/CMIS

compliant content repositories. It allows submission and deletion of documents, processing

their repository specific properties. Another capability of the CMS Adapter is the mapping

facility between the content repository data models and external RDF data. Given any RDF

data, this feature makes it possible to update the documentsresiding in the content repository.

From the other direction, it provides the functionality of representing the structure of the

content repository in RDF format so that actual structure ofcontent repository can be used in

the semantic operations of Contenthub.

In this study, we introduce a framework which makes use of thelatest developments in the in-

formation extraction, information retrieval and semanticweb areas. The objective is to bring

different, stand-alone implementations together and address the semantic requirements of the

CMSes. In accordance with this purpose the Contenthub and CMS Adapter provide an easy

way for the CMS developers to employ powerful semantic services into their implementa-

tions.

59

REFERENCES

[1] Fabian Christ and Benjamin Nagel. A reference architecture for semantic content man-
agement systems. InProceeding of the Enterprise Modelling and Information Systems
Architectures Workshop 2011 (EMISA’11), volume P-190, pages 135–148, Hamburg,
Germany, September 2011.

[2] Hui-Chuan Chu, Ming-Yen Chen, and Yuh-Min Chen. A semantic-based approach to
content abstraction and annotation for content management. Expert Systems with Appli-
cations, 36(2, Part 1):2360 – 2376, 2009.

[3] Linking open data. http://www.w3.org/wiki/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData. W3C. [Online]. [Accessed: Aug. 8,
2012].

[4] Elizabeth Orna. Information Strategy in Practice. Gower Publishing Limited, Alder-
shot, Hants, United Kingdom, 2004.

[5] Jsr 170: Content repository for javatm technology api.http://jcp.org/en/jsr/
detail?id=170.

[6] Content management interoperability services (cmis) version 1.0. http://docs.
oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html, 2009. [Online].
[Accessed: Aug. 8, 2012].

[7] G. B. Laleci, G. Aluc, A. Dogac, A. Sinaci, O. Kilic, and F.Tuncer. A semantic backend
for content management systems.Know.-Based Syst., 23(8):832–843, December 2010.

[8] M. Erdmann, A. Maedche, H.-P. Schnurr, and S. Staab. Frommanual to semi-automatic
semantic annotation: About ontology-based text annotation tools. InProceedings of the
COLING 2000 Workshop on Semantic Annotation and Intelligent Content, August 2000.

[9] Christian Bizer and et al. The linked data – the story so far. Special Issue on Linked
Data, International Journal on Semantic Web and Information Systems (IJSWIS), 2009.

[10] Dave Beckett and Brian McBride. Rdf/xml syntax specification (revised).http://
www.w3.org/TR/rdf-syntax-grammar/. W3C.[Online]. [Accessed: Aug. 8, 2012].

[11] Dbpedia.http://dbpedia.org/About. W3C.[Online]. [Accessed: Aug. 8, 2012].

[12] Apache stanbol. http://incubator.apache.org/stanbol/. Apache Software
Foundation.[Online]. [Accessed: Aug. 8, 2012].

[13] Suat Gönül. Contenthub (5 minutes tutorial).http://incubator.apache.org/
stanbol/docs/trunk/components/contenthub/contenthub5min.

[14] Suat Gönül. 5 minutes documentation for cms adapter.http://incubator.apache.

org/stanbol/docs/trunk/components/cmsadapter/cmsadapter5min.

60

[15] Apache stanbol components.http://incubator.apache.org/stanbol/docs/
trunk/components. Apache Software Foundation.[Online]. [Accessed: Aug. 8,
2012].

[16] Ken Arnold and James Gosling.The Java programming language (2nd ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[17] Freemarker.http://freemarker.sourceforge.net/. [Online]. [Accessed: Aug.
8, 2012].

[18] The osgi architecture.http://www.osgi.org/About/WhatIsOSGi. OSGi Alliance.
[Online]. [Accessed: Aug. 8, 2012].

[19] Osgi Alliance.Osgi Service Platform, Release 3. IOS Press, Inc., 2003.

[20] Apache felix. http://felix.apache.org/site/index.html. Apache Software
Foundation.

[21] Roy Thomas Fielding.Architectural styles and the design of network-based software
architectures. PhD thesis, 2000. AAI9980887.

[22] Bill Burke. RESTful Java with Jax-RS. O’Reilly Media, Inc., 1st edition, 2009.

[23] Jersey.http://jersey.java.net/. [Online]. [Accessed: Aug. 8, 2012].

[24] Roy Thomas Fielding and et al. Hypertext transfer protocol - http/1.1 method def-
initions. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html, 2004.
W3C.[Online]. [Accessed: Aug. 8, 2012].

[25] Apache maven.http://maven.apache.org/. [Online]. [Accessed: Aug. 8, 2012].

[26] Sling launchpad plugin. http://sling.apache.org/site/

maven-launchpad-plugin.html. [Online]. [Accessed: Aug. 8, 2012].

[27] Stanbol enhancer. http://incubator.apache.org/stanbol/docs/trunk/

components/enhancer. Apache Software Foundation.[Online]. [Accessed: Aug. 8,
2012].

[28] Stanbol reasoners. http://incubator.apache.org/stanbol/docs/trunk/

components/reasoner. Apache Software Foundation.[Online]. [Accessed: Aug. 8,
2012].

[29] Hermit owl reasoner.http://www.hermit-reasoner.com/. [Online]. [Accessed:
Aug. 8, 2012].

[30] The rdfs reasoner. http://jena.apache.org/documentation/inference/

index.html\#rdfs. Apache Software Foundation.[Online]. [Accessed: Aug. 8,
2012].

[31] Stanbol ontology manager. http://incubator.apache.org/stanbol/docs/
trunk/components/ontologymanager/. Apache Software Foundation.[Online].
[Accessed: Aug. 8, 2012].

[32] Sling-stanbol. https://github.com/retobg/sling-stanbol. [Online]. [Ac-
cessed: Aug. 8, 2012].

61

[33] Apache sling. http://sling.apache.org/site/index.html. Apache Software
Foundation.

[34] The named entity recognition engine: detect named entities from unstructured text
content. http://incubator.apache.org/stanbol/docs/trunk/components/
enhancer/engines/namedentityextractionengine.html. Apache Software
Foundation.[Online]. [Accessed: Aug. 8, 2012].

[35] Welcome to apache opennlp.http://opennlp.apache.org/. Apache Software
Foundation.[Online]. [Accessed: Aug. 8, 2012].

[36] The keyword linking engine: custom vocabularies and multiple languages.
http://incubator.apache.org/stanbol/docs/trunk/components/

enhancer/engines/keywordlinkingengine.html. Apache Software Founda-
tion. [Online]. [Accessed: Aug. 8, 2012].

[37] Kuang-Hwei (Janet) Lee-Smeltzer. Finding the needle:controlled vocabularies, re-
source discovery, and dublin core.Library Collections, Acquisitions, and Technical
Services, 24(2):205 – 215, 2000.

[38] The named entity tagging engine: linking text annotations to (external) datasets
of entities.http://incubator.apache.org/stanbol/docs/trunk/components/
enhancer/engines/namedentitytaggingengine.html. Apache Software Foun-
dation.[Online]. [Accessed: Aug. 8, 2012].

[39] Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. http:
//www.w3.org/TR/rdf-sparql-query/, 2008. W3C.[Online]. [Accessed: Aug. 8,
2012].

[40] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.IEEE
Intelligent Systems, 21(3):96–101, May 2006.

[41] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. RFC 3986 Uniform Resource
Identifier (URI): Generic Syntax. Technical report, January 2005.

[42] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.98. http://xmlns.
com/foaf/spec/. [Online]. [Accessed: Aug. 8, 2012].

[43] Christian Bizer, Richard Cyganiak, and Tom Heath. How to publish linked data on the
web. Web page, 2007. Revised 2008. Accessed 07/08/2009.

[44] Renato Iannella. Semantic web architectures, 2010.

[45] RDF/XML syntax specification. Available online at http://www.w3.org/TR/2004/REC-
rdf-syntax-grammar-20040210/, February 2004.

[46] Frank Manola and Eric Miller, editors.RDF Primer. W3C Recommendation. World
Wide Web Consortium, February 2004.

[47] Relationship to rdfs/owl ontologies. http://www.w3.org/TR/2005/

WD-swbp-skos-core-guide-20051102/#secmodellingrdf. W3C. [Online].
[Accessed: Aug. 8, 2012].

[48] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language.http:
//www.w3.org/TR/owl-features/, 2004.W3C.[Online]. [Accessed: Aug. 8, 2012].

62

[49] Dmitry Tsarkov. Fact++. http://owl.man.ac.uk/factplusplus/. [Online]. [Ac-
cessed: Aug. 8, 2012].

[50] Güneş Aluç. Design and implementation of an ontology extraction framework and a
semantic search engine over jsr-170 compliant content repositories. Master’s thesis,
Middle East Technical University, June 2009.

[51] Holger Bast, Fabian Suchanek, and Ingmar Weber. Semantic full-text search with ester:
Scalable, easy, fast. InProceedings of the 2008 IEEE International Conference on Data
Mining Workshops, ICDMW ’08, pages 959–962, Washington, DC, USA, 2008. IEEE
Computer Society.

[52] Holger Bast, Alexandru Chitea, Fabian Suchanek, and Ingmar Weber. Ester: efficient
search on text, entities, and relations. InProceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, SIGIR
’07, pages 671–678, New York, NY, USA, 2007. ACM.

[53] John Davies and Richard Weeks. Quizrdf: Search technology for the semantic web. In
Proceedings of the Proceedings of the 37th Annual Hawaii International Conference on
System Sciences (HICSS’04) - Track 4 - Volume 4, HICSS ’04, pages 40112–, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[54] Apache lucene.http://lucene.apache.org/core/. Apache Software Foundation.
[Online].

[55] Apache solr. http://lucene.apache.org/solr/. Apache Software Foundation.
[Online]. [Accessed: Aug. 8, 2012].

[56] Apache tomcat.http://tomcat.apache.org/. Apache Software Foundation.[On-
line]. [Accessed: Aug. 8, 2012].

[57] Glassfish.http://glassfish.java.net/. [Online]. [Accessed: Aug. 8, 2012].

[58] Liam Quin. Extensible markup language (xml).http://www.w3.org/XML/, 2009.
W3C.

[59] Introducing json. http://www.json.org/index.html. [Online]. [Accessed: Aug.
8, 2012].

[60] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neumann,
Shila Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Sznajder, and Sivan
Yogev. Beyond basic faceted search. InProceedings of the international conference
on Web search and web data mining, WSDM ’08, pages 33–44, New York, NY, USA,
2008. ACM.

[61] Gerard Salton. Developments in automatic text retrieval. Science, 253(5023):pp. 974–
980, 1991.

[62] Vladimir Mironov, Nirmala Seethappan, Ward Blondé, Erick Antezana, Bjorn Lindi, and
Martin Kuiper. Benchmarking triple stores with biologicaldata.CoRR, abs/1012.1632,
2010.

[63] DINGLEY ANDREW PETER. Storage and management of semi-structured data, 7
2003.

63

[64] Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt. RDF Storage and Retrieval
Systems.

[65] openrdf.org.http://www.openrdf.org/. [Online]. [Accessed: Aug. 8, 2012].

[66] Jeen Broekstra. Serql : A second generation rdf query language requirements for rdf
querying implementing the requirements : Serql.Most, pages 1–4, 2003.

[67] York Sure Thomas Gabel and Johanna Voelker. Kaon - an overview. Technical report,
Institute AIFB, University of Karlsruhe, 4 2004.

[68] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis,
and Michel Scholl. Rql: a declarative query language for rdf. In Proceedings of the
11th international conference on World Wide Web, WWW ’02, pages 592–603, New
York, NY, USA, 2002. ACM.

[69] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
sparql.ACM Trans. Database Syst., 34(3):16:1–16:45, September 2009.

[70] Welcome to apache clerezza.http://incubator.apache.org/clerezza/. Apache
Software Foundation.

[71] Apache jena.http://jena.apache.org/. Apache Software Foundation.[Online].
[Accessed: Aug. 8, 2012].

[72] T. Kurz, S. Schaffert, and T. Bürger. Lmf: A framework for linked media. InWorkshop
on Multimedia on the Web (MMWeb) at the iSemantics Conf., pages 16 –20, Austria,
sept. 2011.

[73] Xml path language.http://www.w3.org/TR/xpath/. W3C. [Online]. [Accessed:
Aug. 8, 2012].

[74] Ld path - a path-based query language for querying the linked data cloud.http://
code.google.com/p/ldpath/. [Online]. [Accessed: Aug. 8, 2012].

[75] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient indexing technique
for full text databases. InProceedings of the 18th International Conference on Very
Large Data Bases, VLDB ’92, pages 352–362, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[76] Jian Wan and Shengyi Pan. Performance evaluation of compressed inverted index in
lucene. InProceedings of the 2009 International Conference on Research Challenges
in Computer Science, ICRCCS ’09, pages 178–181, Washington, DC, USA, 2009. IEEE
Computer Society.

[77] Common field options. http://wiki.apache.org/solr/SchemaXml#Common_
field_options. Apache Software Foundation.[Online]. [Accessed: Aug. 8, 2012].

[78] Solr query syntax. http://wiki.apache.org/solr/SolrQuerySyntax. Apache
Software Foundation.[Online]. [Accessed: Aug. 8, 2012].

[79] Solrj. http://wiki.apache.org/solr/Solrj. Apache Software Foundation.[On-
line]. [Accessed: Aug. 8, 2012].

64

[80] Osma Suominen, Eero Hyvönen, Kim Viljanen, and Eija Hukka. Healthfinland-a na-
tional semantic publishing network and portal for health information. Web Semant.,
7(4):287–297, December 2009.

[81] M.C. Schraefel, Maria Karam, and Shengdong Zhao. mSpace: Interaction design for
user-determined, adaptable domain exploration in hypermedia. In AH 2003: Workshop
on Adaptive Hypermedia and Adaptive Web Based Systems, August 2003.

[82] A. Steven Pollitt. The key role of classification and indexing in view-based searching.
In Proceedings of the 63rd International Federation of Library Associations and Insti-
tutions General Conference (IFLA’97), 1997.

[83] Marti Hearst, Ame Elliott, Jennifer English, Rashmi Sinha, Kirsten Swearingen, and Ka-
Ping Yee. Finding the flow in web site search.Commun. ACM, 45(9):42–49, September
2002.

[84] Eero Hyvönen, Eetu Mäkelä, Mirva Salminen, Arttu Valo,Kim Viljanen, Samppa
Saarela, Miikka Junnila, and Suvi Kettula. Museumfinland-finnish museums on the
semantic web.Web Semant., 3(2-3):224–241, October 2005.

[85] Daniel Tunkelang.Faceted Search. Morgan & Claypool, 1st edition, 2009.

[86] Larq - free text indexing for sparql. http://jena.sourceforge.net/ARQ/
lucene-arq.html. Apache Software Foundation.[Online]. [Accessed: Aug. 8, 2012].

[87] Christiane Fellbaum. Wordnet and wordnets. In Keith Brown, editor,Encyclopedia of
Language and Linguistics, pages 665–670, Oxford, 2005. Elsevier.

[88] Welcome to apache jackrabbit.http://jackrabbit.apache.org/. Apache Soft-
ware Foundation.[Online]. [Accessed: Aug. 8, 2012].

[89] Alice Grant. Content management systems.http://www.ukoln.ac.uk/nof/
support/help/papers/cms/. UKOLN. [Online]. [Accessed: Aug. 8, 2012].

[90] Introduction to jcr. http://www.slideshare.net/uncled/

introduction-to-jcr. [Online]. [Accessed: Aug. 8, 2012].

[91] Jsr 283: Content repository for javatm technology api version 2.0.http://jcp.org/
en/jsr/detail?id=283.

[92] Bioportal. http://bioportal.bioontology.org/. [Online]. [Accessed: Aug. 8,
2012].

[93] Snomed clinical terms.http://bioportal.bioontology.org/ontologies/1353.
[Online]. [Accessed: Aug. 8, 2012].

[94] Rxnorm. http://bioportal.bioontology.org/ontologies/1423. [Online].
[Accessed: Aug. 8, 2012].

[95] Who adverse reaction terminology. http://bioportal.bioontology.org/
ontologies/1354. [Online]. [Accessed: Aug. 8, 2012].

[96] Crx - content application platform.http://www.day.com/day/en/products/crx.
html. Adobe.[Online]. [Accessed: Aug. 8, 2012].

65

[97] Wallace Anacleto Pinheiro and Ana Maria de C. Moura. An ontology based-approach
for semantic search in portals. InProceedings of the Database and Expert Systems
Applications, 15th International Workshop, DEXA ’04, pages 127–131, Washington,
DC, USA, 2004. IEEE Computer Society.

[98] Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan Ognyanoff,
and Miroslav Goranov. KIM - Semantic Annotation Platform.Journal of Natural Lan-
guage Engineering, 10(3-4):375–392, September 2004.

66

APPENDIX A

A CROSS-SECTION FROM THE RXNORM ONTOLOGY

<rdf:Description rdf:about=

"http://purl.bioontology.org/ontology/RXNORM/Ins_106075">

<umls-skos:UMLS_CUI>C0357752</umls-skos:UMLS_CUI>

<semanticType>Clinical Drug</semanticType>

<skos:altlabel>ALUMINUM ACETATE @ 13% @ DROPS</skos:altlabel>

<skos:altlabel>ALUMINUM ACETATE 13% DROPS</skos:altlabel>

<umls-skos:doseForm>Otic Solution</umls-skos:doseForm>

<umls-skos:TUI>T200</umls-skos:TUI>

<label>aluminum acetate 130 MG/ML Otic Solution</label>

<skos:notation>106075</skos:notation>

<rdf:type rdf:resource=

"http://purl.bioontology.org/ontology/RXNORM/106075"/>

</rdf:Description>

<rdf:Description rdf:about=

"http://purl.bioontology.org/ontology/RXNORM/Ins_1091144">

<umls-skos:UMLS_CUI>C2682501</umls-skos:UMLS_CUI>

<semanticType>Clinical Drug</semanticType>

<umls-skos:doseForm>Extended Release Capsule</umls-skos:doseForm>

<umls-skos:TUI>T200</umls-skos:TUI>

<label>

Methylphenidate Hydrochloride 10 MG Extended Release Capsule [Ritalin]

</label>

<skos:notation>1091144</skos:notation>

<rdf:type rdf:resource=

67

"http://purl.bioontology.org/ontology/RXNORM/1091144"/>

</rdf:Description>

<rdf:Description rdf:about=

"http://purl.bioontology.org/ontology/RXNORM/Ins_108382">

<umls-skos:UMLS_CUI>C0361046</umls-skos:UMLS_CUI>

<semanticType>Clinical Drug</semanticType>

<umls-skos:doseForm>Extended Release Tablet</umls-skos:doseForm>

<umls-skos:TUI>T200</umls-skos:TUI>

<label>

Aspirin 500 MG Extended Release Tablet [Anadin All-Night]

</label>

<skos:notation>108382</skos:notation>

<rdf:type rdf:resource=

"http://purl.bioontology.org/ontology/RXNORM/108382"/>

</rdf:Description>

68

APPENDIX B

LDPATH INSTANCE FOR HEALTHCARE DOMAIN

@prefix rdfs : <http://www.w3.org/2000/01/rdf-schema#>;

@prefix umls-skos : <http://purl.bioontology.org/ontology/umls-skos/>;

@prefix rxnorm : <http://purl.bioontology.org/ontology/RXNORM/>;

@prefix snomed : <http://purl.bioontology.org/ontology/SNOMEDCT/>;

@prefix art : <http://purl.bioontology.org/ontology/WHO/>;

health_notation = skos:notation :: xsd:string;

umls_cui = umls-skos:UMLS_CUI :: xsd:string;

tui = umls-skos:TUI :: xsd:string;

snomed_semantic_type = snomed:semanticType :: xsd:string;

snomed_label = snomed:label :: xsd:string;

snomed_isa = umls-skos:isa :: xsd:string;

snomed_ctv3id = umls-skos:ctv3id :: xsd:string;

snomed_has_specimen_substance =

umls-skos:has_specimen_substance :: xsd:string;

snomed_has_specimen = umls-skos:has_specimen :: xsd:string;

snomed_causative_agent_of = umls-skos:causative_agent_of :: xsd:string;

snomed_specimen_substance_of =

umls-skos:specimen_substance_of :: xsd:string;

snomed_has_component = umls-skos:has_component :: xsd:string;

snomed_active_ingredient_of =

umls-skos:active_ingredient_of :: xsd:string;

snomed_replaces = umls-skos:replaces :: xsd:string;

69

snomed_replaced_by = umls-skos:replaced_by :: xsd:string;

snomed_has_finding_site = umls-skos:has_finding_site :: xsd:string;

snomed_indirect_procedure_of =

umls-skos:indirect_procedure_of :: xsd:string;

snomed_procedure_site_of = umls-skos:procedure_site_of :: xsd:string;

snomed_part_of = umls-skos:part_of :: xsd:string;

snomed_finding_site_of = umls-skos:finding_site_of :: xsd:string;

snomed_direct_procedure_site_of =

umls-skos:direct_procedure_site_of :: xsd:string;

snomed_has_assoicated_morphology =

umls-skos:has_associated_morphology :: xsd:string;

snomed_has_causative_agent =

umls-skos:has_causative_agent :: xsd:string;

snomed_direct_substance_of =

umls-skos:direct_substance_of :: xsd:string;

rxnorm_semantic_type = rxnorm:semanticType :: xsd:string;

rxnorm_label = rxnorm:label :: xsd:string;

rxnorm_dose_form = umls-skos:doseForm :: xsd:string;

rxnorm_trade_Name = umls-skos:tradeName :: xsd:string;

art_semantic_type = art:semanticType :: xsd:string;

art_label = art:label :: xsd:string;

art_rb = umls-skos:rb :: xsd:string;

art_rn = umls-skos:rn :: xsd:string;

art_par = umls-skos:par :: xsd:string;

70

APPENDIX C

LDPATH RELATED CONFIGURATIONS OF SOLR INDEX

<schema>

...

<fields>

...

<field indexed="true" multiValued="true"

name="snomed_ctv3id" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="snomed_active_ingredient_of" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="snomed_causative_agent_of" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="snomed_has_finding_site" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="art_par" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="snomed_has_component" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="rxnorm_label" stored="true" type="string"/>

<field indexed="true" multiValued="true"

name="snomed_has_specimen" stored="true" type="string"/>

...

</fields>

...

71

<copyField dest="stanbolreserved_text_all" source="snomed_ctv3id"/>

<copyField dest="stanbolreserved_text_all"

source="snomed_active_ingredient_of"/>

<copyField dest="stanbolreserved_text_all"

source="snomed_causative_agent_of"/>

<copyField dest="stanbolreserved_text_all"

source="snomed_has_finding_site"/>

<copyField dest="stanbolreserved_text_all" source="art_par"/>

<copyField dest="stanbolreserved_text_all" source="snomed_has_component"/>

<copyField dest="stanbolreserved_text_all" source="rxnorm_label"/>

<copyField dest="stanbolreserved_text_all" source="snomed_has_specimen"/>

...

</schema>

72

APPENDIX D

A CROSS-SECTION ENHANCEMENT OF A HEALTH

RELATED DOCUMENT

<rdf:Description rdf:about=

"urn:enhancement-d956c7ff-c193-4e95-3a42-477fbc81ec9f">

<rdf:type rdf:resource=

"http://fise.iks-project.eu/ontology/Enhancement"/>

<rdf:type rdf:resource=

"http://fise.iks-project.eu/ontology/TextAnnotation"/>

<j.10:extracted-from rdf:resource=

"urn:content-item-12fb1d64-c5f4-4e6f-9f63-d9cfc87a3fd2"/>

<j.7:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2012-05-17T17:46:30.753Z

</j.7:created>

<j.7:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

org.apache.stanbol.enhancer.engines.keywordextraction.engine.

KeywordLinkingEngine

</j.7:creator>

<j.10:start rdf:datatype=

"http://www.w3.org/2001/XMLSchema#integer">3993</j.10:start>

<j.10:end rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">

4012

</j.10:end>

<j.10:selection-context xml:lang="en">)

Computed tomography (CT) scan Ultrasound Biopsy Surgery.

73

</j.10:selection-context>

<j.10:selected-text xml:lang="en">scan Ultrasound</j.10:selected-text>

<j.10:confidence rdf:datatype="http://www.w3.org/2001/XMLSchema#double">

0.722500040531159

</j.10:confidence>

</rdf:Description>

<rdf:Description rdf:about=

"urn:enhancement-3ff4502a-f622-9a21-67be-cdf8d7313e47">

<rdf:type rdf:resource="http://fise.iks-project.eu/ontology/Enhancement"/>

<rdf:type rdf:resource=

"http://fise.iks-project.eu/ontology/EntityAnnotation"/>

<j.10:extracted-from rdf:resource=

"urn:content-item-12fb1d64-c5f4-4e6f-9f63-d9cfc87a3fd2"/>

<j.7:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2012-05-17T17:46:30.753Z

</j.7:created>

<j.7:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

org.apache.stanbol.enhancer.engines.keywordextraction.engine.

KeywordLinkingEngine

</j.7:creator>

<j.10:confidence rdf:datatype="http://www.w3.org/2001/XMLSchema#double">

0.722500040531159

</j.10:confidence>

<j.7:relation rdf:resource=

"urn:enhancement-d956c7ff-c193-4e95-3a42-477fbc81ec9f"/>

<j.10:entity-reference rdf:resource=

"http://purl.bioontology.org/ontology/SNOMEDCT/Ins_146511005"/>

<j.10:entity-label>Ultrasound scan</j.10:entity-label>

</rdf:Description>

<rdf:Description rdf:about=

"urn:enhancement-96846c41-6f28-5274-45d3-7d7b3745a620">

<rdf:type rdf:resource="http://fise.iks-project.eu/ontology/Enhancement"/>

<rdf:type rdf:resource=

74

"http://fise.iks-project.eu/ontology/TextAnnotation"/>

<j.10:extracted-from rdf:resource=

"urn:content-item-12fb1d64-c5f4-4e6f-9f63-d9cfc87a3fd2"/>

<j.7:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2012-05-17T17:46:26.063Z

</j.7:created>

<j.7:creator rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

org.apache.stanbol.enhancer.engines.langid.LangIdEnhancementEngine

</j.7:creator>

<j.7:language>en</j.7:language>

</rdf:Description>

75

APPENDIX E

DOMAIN SPECIFIC ENTITY PROPERTIES

{

"id": "http:\/\/purl.bioontology.org\/ontology\/RXNORM\/Ins_248628",

"rxnorm_semantic_type": [{

"type": "text",

"value": "Clinical Drug"

}],

"health_notation": [{

"type": "text",

"value": "248628"

}],

"umls_cui": [{

"type": "text",

"value": "C0790292"

}],

"tui": [{

"type": "text",

"value": "T200"

}],

"http:\/\/stanbol.apache.org\/ontology\/entityhub\/query#score": [{

"type": "value",

"xsd:datatype": "xsd:double",

"value": 1

}],

"rxnorm_dose_form": [{

76

"type": "text",

"value": "Oral Tablet"

}],

"rxnorm_label": [{

"type": "text",

"value": "Aspirin 500 MG \/ Caffeine 40 MG Oral Tablet"

}]

}

77

