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ABSTRACT 

 

LITHOLOGIC DISCRIMINATION AND MAPPING BY ASTER THERMAL INFRARED 

IMAGERY 

 

OKYAY, Ünal 

M.Sc, Department of Geological Engineering 

Supervisor: Assoc. Prof. Dr. M. Lütfi Süzen 

Co-Supervisor: Prof. Dr. Nuretdin Kaymakçı 

August 2012, 95 pages 

 

In conventional remote sensing, visible-near infrared (VNIR) and shortwave infrared (SWIR) part of the 

electromagnetic spectrum (EMS) have been utilized for lithological discrimination extensively. 

Additionally, TIR part of the EM spectrum can also be utilized for discrimination of surface materials 

either through emissivity characteristics of materials or through radiance as in VNIR and SWIR. In this 

study, ASTER thermal multispectral infrared data is evaluated in regard to lithological discrimination and 

mapping through emissivity values rather than conventional methods that utilize radiance values. In 

order to reach this goal, Principle Component Analysis (PCA) and Decorrelation Stretch techniques are 

utilized for ASTER VNIR and SWIR data. Furthermore, the spectral indices which directly utilize the 

radiance values in VNIR, SWIR and TIR are also included in the image analysis. The emissivity values are 

obtained through Temperature-Emissivity Separation (TES) algorithm. The results of the image analyses, 

except spectral indices, are displayed in RGB color composite along with the geological map for visual 

interpretation. The results showed that utilizing emissivity values possesses potential for discrimination 

of organic matter bearing surface mixtures which has not been possible through the conventional 

methods. Additionally, PCA of emissivity values may increase the level of discrimination even further. 

Since the emissivity utilization is rather unused throughout in literature and new, further assessment of 

accuracy is highly recommended along with the field validations. 

Keywords: ASTER, Thermal Remote Sensing, TIR, Temperature-Emissivity Separation (TES), Lithologic 

Discrimination  
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ÖZ 

 

ASTER ISIL KIZILÖTESİ GÖRÜNTÜLERİNİ KULLANARAK LİTOLOJİK AYRIM VE 

HARİTALAMA 

 

OKYAY, Ünal 

Yüksek Lisans, Jeoloji Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. M. Lütfi Süzen 

Ortak Tez Yöneticisi: Prof. Dr. Nuretdin Kaymakçı 

Ağustos 2012, 95 sayfa 

 

Geleneksel uzaktan algılamada, litolojik ayrım ve haritalama amacıyla, elektromanyetik tayfın görülebilir-

yakın kızılötesi ve kısa dalga kızılötesi verileri geniş bir biçimde kullanılmaktadır. Buna ek olarak 

elektromanyetik tayfın ısıl kızılötesi bölümü de; hem yayımlılık değerleri, hem de görülebilir-yakın 

kızılötesi ve kısa dalga kızılötesi bölgelerinde olduğu gibi ışınılık değerleri kullanılarak litolojik ayırım ve 

haritalamada kullanılabilmektedir. Bu çalışmada, çok bantlı ASTER ısıl kızılötesi verileri, litolojik ayırım ve 

haritalama bakımından değerlendirilmiştir. Bu değerlendirmede litolojik ayırım ve haritalamada ışınırlık 

değerlerine bağlı geleneksel yöntemler yerine yayımlılık değerlerinin kullanımına yer verilmiştir. Bu 

bağlamda, görülebilir-yakın kızılötesi ve kısa dalga kızılötesi verileri için temel bileşen analizi ve ilişkisiz 

gerdirme teknikleri kullanılmıştır. Buna ek olarak, görülebilir-yakın kızılötesi, kısa dalga kızılötesi ve ısıl 

kızılötesi ışınırlık değerlerinin direkt olarak kullanıldığı tayfsal indislerde görüntü analizinde kullanılmıştır 

Isıl kızılötesi verilerinde yayımlılık değerleri, sıcaklık-yayımlılık ayırma tekniği kullanılarak elde edilmiştir. 

Tayfsal indisler dışında elde edilen sonuçlar RGB temel renk birleşiminde gösterilmiştir. Tüm görüntüler 

görsel yorumlama için çalışma alanının jeolojik haritasını da içermektedir. Sonuçlar, yayımlılık 

değerlerinin kullanımının organik madde ihtiva eden yüzey malzemeleri ayrımında potansiyele sahip 

olduğunu göstermektedir. Buna ek olarak,, yayımlılık değerlerinin temel bileşen analizi litolojik ayırım 

seviyesini artırabilmektedir. Yayımlılık değerlerinin kullanımı alışagelmemiş ve yeni bir yöntem 

olduğundan ilave inceleme ve arazi doğrulaması yüksek derecede önerilmektedir.  

Anahtar Kelimeler: Isıl Uzaktan Algılama, TIR, Sıcaklık-Yayımlılık Ayırımı, TES, ASTER, Litolojik Ayırım  
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

Remote Sensing techniques including analog aerial photographs and digital airborne or 

spaceborne images have been utilized for over half a century for geological purposes. One of 

the most widespread uses of remote sensing in geology is detection and identification of 

surface materials and structures. The spatial and spectral resolutions of the images have been 

the key factors for discrimination of surface materials.  

Multispectral imaging systems provide information regarding from the surface materials and 

utilizes wide range on the electromagnetic spectrum from visible part to thermal region. In 

other words, multispectral imaging systems provide information from the range of the 

electromagnetic spectrum (EMS) that is visible to human eye to non-visible range extending 

from near-infrared, shortwave infrared to thermal and microwave region. Therefore, they can 

be used to discriminate materials which may have exactly same color within the visible range 

while having different response in non-visible part of the EMS. In such instances they are much 

useful than even human eye in an outcrop.  

Most of the multispectral imaging systems cover the visible-near infrared (VNIR) and shortwave 

infrared (SWIR) region of the spectrum. Additionally, some of them such as LANDSAT and 

ASTER imaging systems cover mid-long wave infrared region also known thermal infrared (TIR) 

region. As in VNIR and SWIR, the TIR radiance values of materials can be used for surface 

material discrimination and mapping. However, the chief purpose of the thermal systems has 

been to recover the land surface temperatures, provided that the emissivity information is 

known a priori. On the other hand, these imaging systems can also be used for recovering 
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emissivity information if the temperature is known or estimated. For this purpose several 

techniques have been developed for recovering emissivity and temperature values of surface 

materials. Emissivity is pertinent to any material and rather than radiances, emissivity values 

can be used for discrimination of surface materials.  

Studies concerning surface material discrimination and mapping, regardless of the approach 

and technique preferred, used either radiance or reflectance values of materials in VNIR, SWIR 

and TIR. In this study, essentially band radiance values have been utilized for image analyses 

which include principal component analysis (PCA), decorrelation stretch and spectral indices for 

material discrimination and mapping. In addition to radiance, band emissivities calculated 

through Temperature-Emissivity Separation (TES) algorithm have also been utilized for 

discrimination and mapping purposes.  

1.1. Purpose and Scope 

The purpose of this study is to evaluate the ASTER thermal multispectral infrared data for 

lithological discrimination and mapping through emissivity; more precisely, to evaluate the 

capacity and usability of emissivity with respect to radiance in regard to level of discrimination 

and mapping  

In this manner the main scope of this study is not only applying temperature-emissivity 

separation in order to recover emissivity values and interpret the results accordingly but also 

applying previously suggested remote sensing techniques for VNIR, SWIR and TIR for surface 

material discrimination and mapping.  

1.2. Research Questions 

 Can the emissivity values of materials be used for surface material discrimination and 

mapping? 

 Does utilization of emissivity for surface material discrimination increase the level of 

discrimination over utilization of radiance? i.e. Can surface material that cannot be 

identified through radiance/reflectance be discriminated through emissivity? 
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1.3. Study Area 

The study area is located within the Çankırı Basin in northern central Anatolia. Essentially, the 

boundaries of the study area is determined by the coverage of the used ASTER scene which 

extends from the area between Çankırı and Süleymanlı settlements in the west, İskilip in the 

northeast; Satıyüzü village in the middle, Dedeköy region in the south; Yapraklı, Ovacık, 

Tatlıpınar, Kayacık and Bayat regions in the north and northwest. 

 

 

Figure 1.1. Location of the study area 
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1.4. Organization of the thesis 

This thesis includes six chapters and the contents of the chapters are as follows: Chapter 1 

defines the purpose and scope of the thesis along with the study area; Chapter 2 includes the 

geology of the study area. In this chapter the stratigraphy of the Çankırı Basin within the study 

area is compiled briefly; Chapter 3 covers the background information about fundamentals of 

thermal radiation, use of thermal remote sensing for surface material discrimination and 

temperature-emissivity separation algorithm; Chapter 4 is the main part of the thesis that 

includes the data analyses; Chapter 5 gives the results of the image analyses; and finally 

Chapter 6 includes the discussion, conclusion, limitations and recommendations for the future 

work. 
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CHAPTER 2 

 

 

GEOLOGY 
 

 

The Çankırı basin straddles the İzmir-Ankara-Erzincan Suture Zone (IAESZ) between Sakarya 

Continent in the north and Kırşehir Block in the south is and one of the largest Tertiary basins in 

Turkey with possible economic hydrocarbon and industrial mineral (mainly evaporatic) reserves. 

It is bounded in the west, north and the east by the North Anatolian Optiolitic Mélange belt 

(Kaymakçı et al., 2000) 

The accumulation on Çankırı Basin happened in 5 different cycles of sedimentation (Kaymakçı 

et al., 2010). These cycles are represented as (1) Upper Cretaceous to Paleocene volcanoclastic 

rocks (Yaylaçayı and Yapraklı formations), regressive shallow marine units and Paleocene mixed 

environment red clastics and carbonates (Dizilitaşlar, Kavak and Badiğin formations; (2) 

Paleocene to Oligocene regressive flysch to molasses sequence (Yoncalı, Karabalçık and 

Osmankahya Formations), Middle Eocene nummulitic limestone (Kocaçay Formation), Middle 

Eocene to Oligocene continental red clastics (İncik formation) and Oligocene evaporites 

(Güvendik Formation); (3) Early to Middle Miocene fluvio-lacustrine clastics (Çandır Formation) 

and Tortonian evaporates Tuğlu Formation; (4) Upper Miocene fluvio-lacustrine deposits 

alternating with evaporites (Süleymanlı and Bozkır formations); (5) Plio-Quaternary alluvial fan 

and recent alluvium deposits. Within the studied portion of the Çankırı Basin, however, not all 

the units mentioned above are exposed. The study area comprises mainly Oligocene, Neogene 

and Quaternary units. Thus, the stratigraphy is compiled accordingly. Figure 2.1 depicts the 

generalized columnar section within the study area. The extent of the study area over the 

Çankırı Basin and exposed units are shown on Figure 2.2. 
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Figure 2.1 Generalized columnar section of the Çankırı Basin within the study area 
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Figure 2.2 Geological map of the Çankırı Basin with the extent of the study area  
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2.1. Stratigraphy 

2.1.1. Pre-Oligocene Units  

Ophiolites and North Anatolian Ophiolitic Mélange (NAOM) 

North Anatolian Ophiolitic Mélange (NAOM) forms the rim of the Çankırı Basin from west to 

east through north and exposed in the north of the study area. NAOM is considered to be 

underlying much of the Çankırı Basin. Tectonic mixture of spilites, pillow lavas, diabease dykes, 

red to purple radiolarian chert, cherty limestone, reddish pelagic mudstone and serpentinized 

ultramafic rocks such as peridotites and pyroxinites forms the lithological composition of the 

NAOM along with gabbros, plagio-granites, basement metamorphic blocks from Sakarya 

Continent and derived limestones from nearby platforms (Koçyiğit et al., 1988; Koçyiğit, 1991; 

Rojay, 1993; Özçelik, 1994). 

Upper Cretaceous Units 

Upper Cretaceous units within the study area are mainly composed of volcano-sedimentary 

sequence and exposed in the north of the study area. Marly pelagic limestone-volcanogenic 

sandstone-tuff alternation, micritic limestone-green shale alternation, sandstone-green shale 

alternation, agglomerate and beige benthic fossil bearing limestone (Yaylaçayı Formation); 

Macrofossil bearing limestone, silty argillaceous limestone, white tuff and agglomerate 

intercalations, yellow-buff volcanogenic conglomerate sandstone, gray, green, reddish shale 

and limy units (Yapraklı Formation) comprise the Upper Cretaceous units (Kaymakçı et al., 

2001). 

Paleocene-Eocene Units 

Paleocene units are exposed in the north-east of the study area. These units are overlain by 

Upper Cretaceous units, Ophiolites and NAOM. Red clastics and carbonates (Kavak Formation); 

Neritic limestones (Badiğin Formation); Turbidites and intercalated limestones (Dizilitaşlar and 

Hacıhalil Formation); Flysch (Yoncalı Formation); Conglomerates and sandstone with coal 

seams (Karabalçık Formation); Clastics from Kırşehir Block (Karagüney Formation); Clastics from 

granitoids (Mahmatlar Formation); Volcanics and volcanoclastics (Bayat Formation); Mixed 

environment clastics and red bends (Osmankahya Formation) and Nummulitic limestone 

(Kocaçay Formation) comprise the Paleocene-Eocene units (Kaymakçı et al., 2010). 
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2.1.2. İncik Formation (Ti, post-Middle Eocene – Oligocene) 

The İncik formation is the most widespread and voluminous unit of the Çankırı Basin. The 

formation is characterized by alternation of very thick bedded red conglomerates with very 

thick bedded red sandstones and purple to brick red thick to very thick bedded mudstones in 

the northern and south-western parts of the basin; by creamy white gypsum which laterally 

and vertically grades into green shale in the eastern part of the basin (Kaymakçı et al., 2000). 

Higher up in the eastern part, the formation is characterized by an alternation of brick red to 

purple sandstones, siltstones, shale and greenish gray to bluish shale and very thick bedded red 

to orange gypsum layers (Kaymakçı et al., 2001). 

2.1.3. Güvendik Formation (Tg, Oligocene) 

The Güvendik Formation intensely deformed at the bottom and at the top, however, Kaymakçı 

(2000) recognized three distinct levels: (1) at the bottom and (2) at the top very thick bedded 

finely laminated and intensely deformed gypsum alternating with thin to medium bedded buff 

to creamy white gypsiferous marls; and (3) in the middle greenish gray shales scoured by lenses 

of micro-conglomerate (Kaymakçı et al., 2001). 

2.1.4. Çandır Formation (Tç, Burdigalian(?) – Serravallian) 

The extent of the Çandır Formation is exposed mainly in the SW and southern part of the study 

area. The formation unconformably overlies Pre-Neogene units while it is unconformably 

overlain by Süleymanlı and Bozkır formations (Kaymakçı et al. 2001).  

The formation is characterized by an alternation of red to pink, buff to creamy white pebbly 

mudstone, clayey limestone, siltstone, matrix supported conglomerate intercalated with white 

limy-marl, thin silty-limestone, oolite bearing limestone, clayey limestone and very thin organic 

rich layers at the bottom; alternation of red to pink sandy-silty mudstone, loose matrix 

supported conglomerates, clayey sandstone, siltstone intercalated with caliche limestone, 

paleosol layers with carbonate concretions and cross bedded sandstone and conglomerates 

locally discordant with these layers in the middle; and pink sandy, limy-concretion bearing 

mudstone, clayey porous limestone, siltstone, silty-limestone, white to creamy white marl, 

greenish shale alternations and clayey, pebbly sandstone intercalations at the top (Kaymakçı et 

al, 2001). 
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2.1.5. Tuğlu Formation (Ttu, Tortonian) 

The Tuğlu Formation unconformably overlies Çandır Formation, Güvendik Formation and other 

Pre-Neogene units while it is unconformably overlain by Süleymanlı Formation (Kaymakçı et al., 

2001). 

The formation is characterized by dark gray shale, mudstone, siltstone and sandstone 

alternations at the bottom; alternation of green, pelecypoda bearing stiff bentonitic claystone 

and dark green to gray organic rich mudstone, intercalated with cherty limestone beds and 

lenses of conglomerate along with very thin coal seams in the middle; and at the top it 

gradually becomes marl dominated and grades laterally into alternation of thick-bedded white 

gypsum and thick bedded yellow to pinkish silty mudstone (Kaymakçı et al., 2001) 

2.1.6. Süleymanlı Formation (Ts, Messinian – Pliocene) 

The Süleymanlı Formation laterally and vertically grades into the Bozkır Formation while 

unconformably overlies the Tuğlu Formation along with Çandır formation and older formations 

(Kaymakçı et al., 2001). 

The formation is characterized mainly by an alternation of thin bedded red to buff, brick re 

mudstone, gray marl with small gastropod fragments, buff laminated mudstone, thin bedded 

siltstone, silty and sandy mudstone alternation while at the bottom the formation is dominated 

by conglomerates along western margin of the Çankırı Basin and at the top it becomes finer 

and more shale-mud dominated into the center of the basin (Kaymakçı et al., 2001). Moreover, 

the formation laterally grades into Bozkır Formation which comprises a very thick white 

gypsum alternating with white yellow to buff marl and red mudstone at the top (Kaymakçı et 

al., 2001). 

2.1.7. Bozkır Formation (Tbo, Messinian – Pliocene) 

The Bozkır Formation overlies on the Çandır Formation while is overlain unconformably by 

Deyim Formation (Kaymakçı et al. 2001). The formation grades vertically and laterally into 

Süleymanlı Formation. 

The formation is mainly characterized by alternation of gypsum with marls and thin bedded 

sandstones while the dominant lithology is white to pale gray gypsum (Kaymakçı et al. 2001). In 
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the central part of the basin thick bedded re-crystallized gypsum and thin bedded yellow to 

buff gypsum flakes bearing marl dominate the formation (Kaymakçı et al. 2001). In the area to 

west of Bayat, the formation comprises an alternation of white and pinkish beds where the 

white layers are characterized by an alternation of thin bedded to laminated gypsum with thin 

bedded shale-marl (Kaymakçı et al. 2001). 

2.1.8. Deyim Formation (Tde, Gelasian – Early Quaternary) 

The Deyim Formation is overlain by Quaternary alluvium unconformably while the formation 

unconformably overlies the older units (Kaymakçı et al. 2001).  

The Deyim Formation is characterized mainly by variable sized, poorly sorted, polygenic loose 

conglomerates/gravel and sandstone (loosely compacted coarse clastics) with intercalation of 

minor fine clastics (siltstone and mudstone) (Kaymakçı et al., 2001). 
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CHAPTER 3 

 

 

THERMAL REMOTE SENSING 
 

 

3.1. Fundamentals of Thermal Radiation  

Thermal radiation is the emission of electromagnetic radiation generated by the thermal 

motion of charged particles in matter. All bodies with a temperature greater than the absolute 

zero have thermal energy. Thermal energy results in kinetic energy with the random 

movements of atoms and molecules in matter. These atoms and molecules are composed of 

charged particles i.e. protons and electrons. Interaction of these particles with each other 

creates charge acceleration and dipole oscillation. Subsequently, this results in the emission of 

photons radiating away from the surface of the matter. 

3.1.1. Blackbody Concept 

A black-body is an idealized hypothetical radiator that totally absorbs and re-emits incident 

electromagnetic radiation, regardless of frequency or angle of incidence (Landsberg, 1990). 

Hence, a black-body does not reflect or transmit radiation. As stated, all matter have a 

temperature greater than absolute zero emits electromagnetic radiation, therefore 

electromagnetic radiation emitted from a black-body in thermal equilibrium, i.e. at constant 

temperature, is called black-body radiation. In that sense black-body reemits all the radiation it 

absorbs. 

3.1.1.1 The Planck’s Law 

Black-body radiation has a characteristic, continuous frequency spectrum (radiance curve) that 

depends only on the temperature since a black-body emits radiation in all wavelengths. The 



13 
 

emissive power – energy radiated – of a black-body at any wavelength and temperature is 

explained by Planck’s Law (Eq.3.1) (Planck, 1914). The radiance curve of a black-body is peaked 

at a characteristic frequency, and therefore a characteristic wavelength, that shifts to higher 

frequencies with increasing temperature (Figure 3.1). In other words, the amount of radiation a 

black-body emits increases along with increasing temperature. Conversely, the amount of 

radiation decreases along with increasing wavelength. 
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Figure 3.1 Blackbody Radiation Curves  
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The inferences of Planck’s Law can be summarized as follows: 

1. The emissive power of a black-body at any wavelength can be obtained through 

calculating the area under the radiance curve of the black-body. 

2. The emissive power of a black-body increases along with increasing temperature 

regardless of the wavelength 

3. Black-body emits relatively more energy in shorter wavelengths (high frequencies) 

4. The peak of the black-body radiance curve that represents the maximum emissive 

power shifts to shorter wavelengths 

3.1.1.2. The Stefan – Boltzmann Law 

The total emissive power per unit surface of a black-body per unit time – also known as black-

body irradiance can be explained by Stefan-Boltzmann Law (Eq.3.2). It states that the total 

energy is directly proportional to the fourth power of the black-body’s temperature. The 

Stefan-Boltzmann Law utilizes a constant derived from other known constants of nature – 

Boltzmann constant, Planck’s constant and speed of light in vacuum called Stefan-Boltzmann 

constant. 
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where 
LBB total spectral blackbody radiance [W/m

2
]; 

LBB(λ) spectral blackbody radiance [W/(m
2 

sr µm)]; 
λ wavelength [µm]; 
TBB temperature of blackbody [K]; 
C1 1

st
 fundamental physical constant 3.7415x10

-16
W m

-2
 

C2 2
nd

 fundamental physical constant 0.0143879 m K 
σ Stefan-Boltzmann constant, 5.6697x10

-8
 Wm

-2
K

-4
  

3.1.1.3. The Wien’s Displacement Law 

The wavelength of the maximum emissive power i.e. wavelength of the peak of the black-body 

radiance curve is explained by Wien’s Law. The Wien’s Displacement Law states that the 

wavelength distribution of black-body radiation has essentially the same shape at any 

temperature. From the general law, it follows that there is an inverse relationship between the 

wavelength of the peak of the emission of a black-body and its temperature when it is 
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expressed as a function of wavelength (Eq.3.3). In other words, Wien’s displacement Law 

implies that the hotter an object is the shorter the wavelength at which it will emit most of its 

radiation and also that the wavelength for peak radiation power is found by dividing Wien’s 

constant by the temperature in Kelvin. 

BB

m
T

A


     (Eq.3.3) 

where 
A Wien’s constant 2897.768 µm K 
λm wavelength of maximum spectral radiance [µm]; 
TBB temperature of blackbody [K]; 

3.1.2. Interactions of Thermal Radiation with Terrestrial Materials 

Incident radiation interacts with the surface of the terrestrial materials. This interaction can be 

diversion of the radiation, absorption of the radiation which could be used to increase the 

internal energy or transmission of the radiation. So, the incident radiation (i.e. energy) on the 

surface of any natural terrestrial material can be reflected, transmitted or absorbed unlike a 

black-body where all the energy is absorbed and re-emitted. 

Part of the incident energy is reflected back to atmosphere that is the energy is lost and cannot 

be used by the material. The ratio between the energy reflected and the incident energy is 

called reflectance (ρ) of the material. The reflectance of the material is not constant and 

changes with the wavelength therefore can be further called spectral reflectance, ρ(λ).  

Another part of the energy could be transmitted through the material. A hypothetical 

transparent body can transmit all the incident energy. Opaque bodies, on the other hand do 

not transmit energy and note that most of the terrestrial materials, particularly in remote 

sensing are considered being opaque. The ratio between the energy transmitted and the 

incident energy is called transmittance (τ).Similarly, the transmittance changes with the 

wavelength therefore can be further called spectral transmittance, τ(λ). 

The last part of the incident energy is used by the material itself in order to increase the 

internal energy i.e. heat the body up. This energy is basically absorbed and stored by the 

material and rises the temperature of the body. The ratio between the absorbed energy and 
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the total incident energy is called absorptance (α). Along with reflectance and transmittance, 

absorptance also changes with wavelength and called spectral absorptance, α(λ). 

According to conservation of energy, following equation (Eq.3.4) states the relation between 

the incident energy and its disposition upon interaction with terrestrial materials: 

ATRI EEEE     (Eq.3.4) 

where 
EI incident energy on the surface of the terrestrial material; 
ER component of the incident energy reflected by the terrestrial material; 
ET component of the incident energy transmitted by the terrestrial material; 
EA component of the incident energy absorbed by the terrestrial material 

Furthermore, all the parameters in Eq.3.4 can be divided by the total incident energy. This 

operation essentially normalizes the linear equation of energy conservation (Eq.3.5). The new 

parameters express the reflectance, transmittance and absorptance; respectively (Eq.3.6). 
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  (Eq.3.6) 

Thus, the sum of reflectance, transmittance and absorptance is equal to 1 for any terrestrial 

material. This relation is expressed in the following equation (Eq.3.7). 

1)()()(      (Eq.3.7) 

3.1.3. Emissivity 

Relative ability of a surface to emit energy by radiation is called emissivity, often written as Ɛ. In 

other words, the “emitting ability” of a material compared to that of a black-body is referred as 

emissivity of the body (Eq.3.8). Kirchhoff’s Law states that for the materials in thermal 

equilibrium i.e. at constant temperature the spectral absorptance is equal to the spectral 

emissivity (Kirchhoff, 1860). 
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where 
L(λ) spectral radiance [W/(m

2 
sr µm)]; 

λ wavelength [µm]; 

As a black-body absorbs and re-emits all the incident energy, it has emissivity equals to 1 while 

any terrestrial material would have emissivity less than 1. Emissivity for most of the terrestrial 

materials ranges between 0.7 <Ɛ <1.0 (Prabhakara and Dalu, 1976). Terrestrial material that has 

emissivity less than 1 but constant at all wavelengths similar to a black-body is called as a gray-

body. A selective radiator, on the other hand, has emissivity that varies with wavelength. 

Vegetation, water bodies and snow are examples of near-gray-body while other terrestrial 

materials are selective radiators (Figure 3.2).  

 

 

Figure 3.2 Emissivity changes of Black-body, Gray-body and Selective Radiator (Riedl, 2001) 

 

In most cases, as the terrestrial materials are opaque, they transmit negligible amount of 

radiation if not zero. Therefore the transmittance of terrestrial materials is ignored. Based on 

this information equation (Eq.3.7) is simplified as follows: 

1)()(       (Eq.3.9) 
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Then the Kirchhoff’s Law is introduced into the equation (Eq.3.9) and the following equation 

can be obtained: 

1)()(       (Eq.3.10) 

As each material has characteristic spectral reflectance, each material has a distinctive 

emissivity signature depending on the wavelength. In other words, emissivity is an inherent 

property of a material. Therefore, juxtaposed materials on the surface of the earth that have 

the same temperature will have different emissivities. Based on equation (Eq.3.10) it can be 

inferred that spectral reflectance and emissivity of a material are inversely correlated i.e. the 

higher reflectance a material has, the lower emissivity it has or vice versa. 

3.2. Use of Thermal Remote Sensing for Surface Material Discrimination 

and Mapping 

As stated previously, multispectral and hyperspectral imaging systems sense radiation not only 

in visible and reflected infrared portion but also in emitted infrared i.e. thermal infrared 

portion of the electromagnetic spectrum. In order to detect emitted energy, the sensors of 

thermal imaging systems use photo detectors sensitive to direct contact of photons on the 

surface of the sensor. These thermal sensors measure the surface temperature and thermal 

properties of the Earth’s surface. 

The wavelength of thermal radiation, when it is compared to visible or reflected infrared 

radiation, is relatively long which minimizes the atmospheric scattering. However, remote 

sensing of thermal radiation is restricted to specific wavelengths due to total absorption of 

certain wavelengths by the atmospheric gases and water vapor. This is in fact also valid for 

visible and reflected infrared remote sensing. Therefore, two specific regions, called 

atmospheric windows, are used for thermal remote sensing and involve 3 to 5 µm and 8 to 14 

µm ranges. Since the energy decreases with increasing wavelength, sensors of thermal imaging 

systems have large IFOVs in order to capture sufficient energy for reliable measurements which 

makes the spatial resolution of the thermal sensors relatively coarse when compared to that of 

visible and reflected infrared. 

Data collected through airborne and spaceborne systems such as NASA Thermal Infrared 

Multispectral Scanner (TIMS), NASA Atlas Scanner, LANDSAT Thematic Mapper (TM), and NASA 
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Heat Capacity Mapping Mission (HCMM) have been used for geological purposes (Dudley-

Murphy and Nash 2003). Abrams et al. (1984), Kahle et al. (1984), Hook et al. (1998), Price 

(1985) and Allis et al. (1999) have evaluated TIR data for geological mapping and mineral 

exploration. All of these authors concluded that neither the spectral nor the spatial resolution 

of the data gathered is adequate for geological purposes and both spectral and spatial 

resolutions have been the major limiting factors. New hyperspectral and multispectral 

instruments like Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

having higher spatial resolution and increased number of spectral bands that cover TIR increase 

the potential use of TIR for surface material discrimination and mapping. 

Recent hyperspectral and multispectral TIR instruments along with various algorithms have 

been used for surface material discrimination and mapping by several researches. Ninomiya 

and Matsunaga (1997), Chabrillat et al. (2000), Ninomiya (2002, 2003), Ninomiya and Fu (2002), 

Ninomiya et al. (2005), Saldanha et al. (2004), Swayze et al. (2004). Hook et al. (2005), Rowan 

et al. (2005), Gürçay (2010) used hyperspectral and/or multispectral TIR data in order to 

evaluate or identify mafic/ultramafic rocks and related mineralization through absorption and 

emittance interactions in TIR utilizing various algorithms.  

For the multispectral ASTER data TIR spectral indices defined by Ninomiya (2002, 2003) and 

Ninomiya and Fu (2002) are widely used. These indices are using band radiances of ASTER TIR 

data. The spectral index (Mafic Index) defined by Ninomiya (2002, 2003) and Ninomiya and Fu 

(2002) for mafic and ultramafics is basically related with the bulk silica content of the target. 

Apart from mafic index used for mafic and ultramafic discrimination, many other indices for 

quartz, carbonate and evaporate minerals are also defined and used (Ninomiya, 2002, 2003; 

Ninomiya and Fu, 2002; Öztan, 2008; Öztan and Süzen, 2011). Misra et al. (2007) and Corrie et 

al. (2010) also used the indices defined for carbonate, quartz and mafic minerals for surface 

material discrimination. 

It is common practice in TIR remote sensing that the radiance values of the multispectral bands 

are directly used instead of recovering the emissivity values. Regarding the emissivity of the 

surface materials, generally the studies concerned with acquisition of the emissivity values for 

individual materials rather than mapping the materials, which resulted in a collection of values 

which can be considered as a spectral library of emissivities (Salisbury and D’Aria 1992a, 1992b). 
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3.3. Recovering Temperature and Emissivity from TIR Data 

Thermal radiation originated from the surface of a material and depends on the materials 

kinetic energy and its emissivity. The main problem in TIR is that there are more unknowns 

than measurements (radiance values of different bands are known, whereas emissivity values, 

temperature and atmospheric parameters are unknown). The basic purpose of TIR remote 

sensing is to estimate the surface temperature. If the surface emissivity value is known then 

this information makes the problem deterministic and straightforward (Gillespie et al., 1999). 

As Masuda et al. (1988) indicated, the water bodies such as oceans would be suitable targets 

where emissivity is measured independently and same everywhere. 

Several deterministic and non-deterministic approaches have been used for inversion of TIR 

data for temperature and emissivity. The main purpose of TIR, as stated above, has been 

estimating the surface temperature where emissivity is not the main concern. In that sense, TIR 

remote sensing of oceans, snow covers, glaciers and dense vegetation is considered to be 

deterministic. For most of the deterministic approaches, on the other hand, it requires 

atmospheric parameters to be utilized directly in order to correct the measured radiance 

(Gillespie et al., 1999). The correction is not always feasible since the atmospheric parameters 

are not always available. Several ocean- temperature studies utilized AVHRR data which has 

two separate TIR bands. Atmospheric effects can be compensated through the combined 

analysis of these bands – also called “split-windows” (Barton, 1985; McMillan and Crosby, 1984; 

Prabhakara et al., 1974). Brown (1994) developed a version of split-window algorithm for 

EOS/MODIS data. Several other studies utilized split-window technique for land surface. 

However, in those studies it is concluded that unknown emissivity variations cause large errors 

(Price, 1984; Becker, 1987; Vidal 1991). The inaccuracy over land is due to the unknown 

emissivities rather than atmospheric effect such that error caused by inaccuracy of only 0.01 in 

emissivity can be greater than that of atmospheric effects (Wan and Dozier, 1989). Therefore, 

the efficacy of split window on land is limited (Gillespie et al., 1999). Some of the geological 

studies did not attempt to separate temperature and emissivity but rather utilized 

decorrelation stretching through radiance values (Kahle et al., 1980; Abrams et al., 1991). 

Gillespie (1992) used a spectral unmixing approach for temperature and emissivity recovery 

and concluded that the results are imperfect. 
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The methods which include the temperature-independent spectral indices (TISI) (Becker and Li, 

1990), the thermal log residuals and alpha residuals (Hook et al., 1992), the spectral emissivity 

ratios (SER) (Watson, 1992a; Watson et al., 1990), the day-night two channel (DN2C) method 

(Watson, 1992b), the normalized emissivity method (NEM) (Gillespie, 1985; Realmuto, 1990), 

alpha derived emissivity (ADE) (Hook et al., 1992; Kealy and Gabell, 1990; Kealy and Hook, 1993) 

and minimum-maximum difference (MMD) method (Matsunaga, 1994) are some of the 

approaches developed for temperature-and emissivity recovery. Gillespie et al. (1999), 

summarizes the drawback of these methods as follows: 

1. Determine spectral shape but not temperature 

2. Require multiple observations under different conditions 

3. Assume a value for one of the unknowns 

4. Assume a relationship between spectral contrast and emissivity 

5. All require independent atmospheric correction 

3.3.1 Temperature-Emissivity Separation (TES) Algorithm 

The Temperature/Emissivity Separation (TES) algorithm is introduced by Gillespie et al. (1998) 

and basically combines two already existed approaches and added some new features. 

Gillespie et al. (1999) defined this algorithm closely related to MMD method of Matsunaga 

(1994) which is based on ADE method of Kealy and Gabell (1990), Hook et al. (1992) and Kealy 

and Hook (1993).  

TES utilizes atmospherically corrected (land leaving) TIR radiance based on Palluconi et al. 

(1994). This includes correction for atmospheric transmissivity and upwelling atmospheric path 

radiance. The reflected down-welling sky irradiance (reported in ASTER standard product), on 

the other hand, cannot be removed in the absence of emissivity information. Therefore, 

reflected down-welling sky irradiance is removed iteratively. Essentially, TES algorithm has 

three modules: (1) NEM Module, (2) Ratio Module (RAT) and (3) MMD Module all of which are 

summarized below. 

3.3.1.1. NEM Module 

Normalized Emissivity Method (NEM) was first introduced by Gillespie (1985) and is used for 

estimating the initial surface kinetic temperature while subtracting the reflected sky irradiance 
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iteratively. Basically, the maximum emissivity value (Ɛmax) for ASTER bands 10-14 is estimated 

in order to calculate temperature and emissivity values from at-sensor radiance. These 

calculated emissivity values are used for an iterative correction for reflected down-welling sky 

irradiance. A value of 0.99 would be assigned to begin with which represents a near-gray body 

such as water, snow and vegetation. If the NEM emissivity values have low contrast, the initial 

assumptions are likely to be correct and therefore an empirically based process is used for 

refining Ɛmax. On the other hand, if the NEM emissivity values have high contrast, this indicates 

that the surface is probably rock and/or soil. In this case, a lower value for Ɛmax would be 

assumed. The maximum emissivity values for all materials in the ASTER Spectral Library is in the 

range of 0.94 to 1.00, therefore a value of 0.96 could be a realistic estimate for those materials 

and can be assumed for processing.  

As the processing in NEM module starts, the ground-emitted radiance is estimated by a 

simplified linear equation for each band (Eq.3.11). Temperatures of each band, Tb, are 

calculated by utilizing inverse Planck’s function for Ɛmax, Rb and band wavelength, λb. The NEM 

temperature (TNEM), to be used for calculations of band emissivity values, is the maximum 

temperature (Tb) estimated from the radiances (Rb) of different image bands (b=10-14 for 

ASTER) (Eq.3.12). 


 SLR bb )1(' max      (Eq.3.11) 

where 
R ground-emitted radiance; 
L’ at-sensor radiance, 
S↓ down-welling sky irradiance, 
b  band number 
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where 
c1 and c2  constants from Planck’s Law; 
R   ground-emitted radiance; 
λ  band wavelength; 
b  band number 
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Once TNEM is known, interim NEM emissivity values, Ɛb, are calculated based on equation 

(Eq.3.13). NEM emissivity values are used iteratively in order to re-estimate R for each band. 

Essentially, Ɛb replaces Ɛmax in the equation and Rb values are re-calculated accordingly. This 

iterative analysis is repeated until the difference of Rb values are less than a desired threshold 

(t2) or the number of iterations reaches a limited number (N). The default value for t2 is the 

radiance equivalent to Noise Equivalent Delta Temperature (NEΔT) (0.05 W/m2 sr µm) and N = 

12 (Gillespie et al., 1998; Gillespie et al., 1999). As the iterative analysis ends the emissivity 

values, calculated from TNEM and ground-emitted radiance values (Rb), are reported as final 

NEM emissivity values along with TNEM. 

)( NEMTb

b

b
B

R


     (Eq.3.13) 

where 
R ground-emitted radiance; 
B black-body radiance, 

TNEM down-welling sky irradiance, 

b  band number 

3.3.1.2. Ratio Module 

The relative emissivity values (βb) are calculated by normalizing the NEM emissivities of each 

band by the average emissivity of all bands (Eq.3.14) 

1)(*5*  bbb  ; b=10-14   (Eq.3.14) 

In general emissivity values for terrestrial surfaces are restricted to 0.7 <Ɛb <1.0 (Prabhakara 

and Dalu, 1976); therefore the values of relative emissivity is restricted to 0.75 < βb <1.32. It is 

showed that emissivity band ratios are not affected by the errors in temperature estimation 

and this is also true for normalized β spectra i.e. relative emissivity values, βb (Watson et al., 

1990 and Watson, 1992b).It is also stated that β spectrum does not preserve amplitude of the 

actual emissivities but, it does preserve the shape, on the contrary (Gillespie et al., 1999). 
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3.3.1.3. MMD Module 

As mentioned in the previous section β spectrum in Ratio Module does not preserve the 

amplitude. In order to recover amplitude and therefore recover a refined temperature 

estimate the Maximum-Minimum Difference (MMD) is calculated and used to predict minimum 

emissivity (Ɛmin). In order to convert βb into Ɛb, Ɛmin is predicted from MMD through an 

empirical relationship.  

The first step of MMD module is to calculate the spectral contrast of the β spectrum through 

the equation (Eq.3.15). This calculated value of MMD is used to predict minimum emissivity to 

be used for calculation of TES emissivities through equations (Eq.3.16 and 3.17). 

)min()max( bbMMD   ; b=10-14  (Eq.3.15) 

737.0

min *687.0994.0 MMD   (Eq.3.16) 

)
)min(

( min

b

bb



  ; b=10-14   (Eq.3.17) 

The actual emissivity contrast in a scene element is much greater than the apparent contrast. 

This error is due only to measurement errors. Apart from that MMD is claimed to be an 

unbiased estimate. On the other hand, MMD values of gray bodies are dominated by 

measurement errors and cannot be considered as unbiased. It is found that if MMD is smaller 

than a defined threshold (currently set to 0.032) Ɛmin is not found from equation (Eq.3.16) but 

set to a constant value (0.983) appropriate for gray-bodies, such as vegetation and processing 

continues. 

Thus far, the temperature is only calculated in the NEM module. It is stated that NEM 

temperature can have an error up to 3K (Gillespie et al., 1998; Gillespie et al., 1999). This error 

is due to the inaccuracy in assumption of Ɛmax particularly for surface materials. Through 

recalculation of temperature using maximum TES emissivity values and atmospherically 

corrected radiances the inaccuracy in temperature values can be reduced (Eq.3.18). 
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where 
c1 and c2  constants from Planck’s Law; 
R   ground-emitted radiance; 
λ  band wavelength; 
b*  band for which the emissivity is maximum 

3.3.1.4. Final Correction for Sky Irradiance and Bias in β 

When it is compared TES values of temperature and emissivity are more accurate than that of 

NEM. The accuracy of temperature and emissivity can be improved through recalculation. In 

order to do so, maximum of TES emissivity values of each pixel is used as Ɛmax in NEM to make 

a single correction to at-sensor radiance for reflected down-welling sky irradiance in equation 

(Eq.3.11). Instead of NEM temperature, TES temperature is used along with new estimates of R. 

Then improved TES emissivity and temperature values are calculated following the same steps 

as explained above. Gillespie et al. (1998) and Gillespie et al. (1999) stated that if this process is 

repeated more than once there is a little gain observed. It is also stated that refined TES 

emissivity values changed as high as 0.01, therefore, this final correction is worth doing 

(Gillespie et al., 1998; Gillespie et al., 1999). 
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CHAPTER 4 

 

 

DATA ANALYSES 
 

 

In this chapter, detailed information regarding the data used and methods followed throughout 

the study is addressed. This chapter is roughly divided into two sections. The first section 

summarizes information about ASTER Multispectral Imaging System and preprocessing steps 

taken before the image analyses and the second section discusses the methods of the image 

analyses. The results of the image analyses will be provided separately in the following chapter. 

4.1. ASTER Data Specifications 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an advanced 

multispectral imager which is one of five remote sensory devices on board Terra satellite 

launched in December, 1999. The instrument had been collecting data with its entire 14 bands 

form surface of the Earth since February, 2000. However, starting in 2007 due to operational 

problems of SWIR detector cooler system the temperature of the detector started rising which 

caused degradation of the data quality. The ASTER SWIR data acquired since May 2008 are 

announced to have no good data quality with saturation of values and severe striping. 

According to the notice on ASTER Science web site on March 13th, 2010 SWIR detectors are 

providing data no more. It is also stated that if ASTER SWIR data are to be used, data acquired 

before April 2007 is recommended (ASTER GDS, 2010). 

ASTER provides high spatial, spectral and radiometric resolution in Visible and Near Infrared 

(VNIR), Short Wave Infrared (SWIR) and Thermal Infrared (TIR) subsystems with 14 bands 

(Figure 4.1). The VNIR subsystem has 3 bands and it also includes an additional back-looking 
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near-infrared band which provides stereoscopic capability; the SWIR subsystem has 6 bands 

and TIR has 5 bands. The spatial resolution varies between the subsystems; 15m in VNIR, 30m 

in SWIR and 90m in TIR (Table 4.1). Regardless of the subsystem each ASTER scene covers an 

area of 60x60 km.  

The Terra satellite system on which ASTER is boarded is a sun-synchronous satellite that follows 

a circular, near-polar orbit at an altitude of 705 km. The equatorial crossing of the satellite is at 

10:30 a.m. local time and the satellite returns to the same orbit every 16 days (ASTER User’s 

Handbook v2.0). A summary of the instrument can be found on Figure 4.2. 

 

Figure 4.1 Distribution of ASTER bands on Electromagnetic Spectrum 

 

Table 4.1 ASTER Product Description 

  
Data Field 

Spectral Range 
[µm] 

Units Data Type 
Valid 

Range 
Spatial 

Resolution 

V
N

IR
 

Band 1  0,52 - 0,60 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 15m 

Band 2 0,63 - 0,69 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 15m 

Band 3N 0,78 - 0,86 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 15m 

Band 3B 0,78 - 0,86 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 15m 

SW
IR

 

Band 4 1,600 - 1,700 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

Band 5 2,145 - 2,185 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

Band 6 2,185 - 2,225 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

Band 7 2,235 - 2,285 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

Band 8 2,295 - 2,365 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

Band 9 2,360 - 2,430 W/(m
2
srµm) 8-bit unsigned integer 0 - 255 30m 

TI
R

 

Band 10 8,125 - 8,475 W/(m
2
srµm) 16-bit unsigned integer 0 - 65535 90m 

Band 11 8,475 - 8,825 W/(m
2
srµm) 16-bit unsigned integer 0 - 65535 90m 

Band 12 8,925 - 9,275 W/(m
2
srµm) 16-bit unsigned integer 0 - 65535 90m 

Band 13 10,25 - 10,95 W/(m
2
srµm) 16-bit unsigned integer 0 - 65535 90m 

Band 14 10,95 - 11,65 W/(m
2
srµm) 16-bit unsigned integer 0 - 65535 90m 
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Figure 4.2 Summary of ASTER Instrument 

 

Throughout the study ASTER image with granule ID of AST3A1 0211170839210603310605 is 

utilized. ASTER Level-3 data is the orthorectified image product which includes Level-1B 

radiometrically and geometrically calibrated radiance for every bands including Band3B. Note 

that an orthorectified image is similar to a map with near-vertical views in every location. 

Therefore no further geometric correction has been done. Detailed information about the 

ASTER image utilized can be found in Table 4.2. 

 

Table 4.2 Detailed information on the ASTER image used 

Granule ID AST3A1 0211170839210603310605 

Processing Level 3 

Acquisition Date Nov 17, 2002 

Source Data Product ASTL1A 0211170839210212050221 

Scene Center 40.626988, 34.101804 

Scene Upper Left 40.954567, 33.656972 

Scene Upper Right 40.945966, 34.553932 

Scene Lower Right 40.297682, 34.538977 

Scene Lower Left 40.306090, 33.650647 

Solar Direction 166.626389, 29.409205 

Map Projection Universal Transverse Mercator 

Ellipsoid and Datum WGS 84, WGS 84 

UTM Zone 36 N 
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4.1.1. Preprocessing 

ASTER image requires preprocessing prior to the image analyses. This procedure comprises 

calibration of ASTER VNIR, SWIR and TIR bands; recalibration of ASTER TIR bands; preparation 

of Normalized Difference Vegetation Index (NDVI) and vegetation mask; and resampling of 

ASTER SWIR bands along with vegetation masks (Figure 4.3). The steps of the preprocessing are 

discussed below. 

 

 

Figure 4.3 The flowchart of the ASTER image preprocessing 
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4.1.1.1. Calibration of ASTER VNIR, SWIR and TIR Images 

Calibration consists of converting the raw “digital number” values recorded by the sensor into 

at-sensor radiance which better represents the surface features. In order to convert the raw 

data a standard unit conversion method is used (Smith, 2012; Yüksel et al., 2008). This standard 

unit conversion method corrects the raw digital number for sensor gain and offset by applying 

the following equation. 

UCCDNL *)1('        (Eq.4.1) 

where 
L’ at-sensor radiance, 
DN digital number in the original ASTER image; 
UCC unit conversion coefficient 

Note that unit conversion coefficients are dependent not only on the band of ASTER image but 

also on the gain setting of the band which was used in image acquisition. In order to figure out 

gain and offset setting of the bands in an ASTER image metadata file accompanies the raster 

should be consulted. Detailed information regarding the unit conversion coefficients can be 

found in Table 4.3. 

 

Table 4.3 The Unit Conversion Coefficient of each ASTER bands 

 
Band Number 

Coefficient [W/(m
2
 sr µm)] 

High Gain Normal Gain Low Gain 1 Low Gain 2 

V
N

IR
 

1 0,6760 1,6880 2,2500 

N/A 
2 0,7080 1,4150 1,8900 

3N 0,4230 0,8620 1,1500 

3B 0,4230 0,8620 1,1500 

SW
IR

 

4 0,1087 0,2174 0,2900 0,2900 

5 0,0348 0,6960 0,0925 0,4090 

6 0,0313 0,0625 0,0830 0,3900 

7 0,0299 0,0597 0,0795 0,3320 

8 0,0209 0,0417 0,0556 0,2450 

9 0,0159 0,0318 0,0424 0,2650 

TI
R

 

10 

N/A 

0,006882 

N/A N/A 

11 0,00678 

12 0,00659 

13 0,005693 

14 0,005225 
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4.1.1.2. Recalibration of ASTER TIR Images 

It is also known that ASTER TIR products processed before Feb 8, 2006 include an error due to 

delay in Radiometric Calibration Coefficient (RCC) updating. It is also stated that error is 

reduced for RCC version 2.09 or later, the products observed after October 2002. However, for 

the RCC versions before 2.09 the error is large. Therefore, TIR images processed before the 

date stated requires recalibration before any further analysis. Recalibration coefficients can be 

obtained online from Tonooka Laboratory at Ibaraki University, Japan (Tonooka, 2012). It only 

requires observation date (UTC) and the RCC version of the image both of which can be found 

in metadata file. These recalibration coefficients generated by a modified version of Tonooka’s 

method (Tonooka et al., 2003; Sakuma et al., 2005) can be used for Level-1A, 1B and 3A. Along 

with the coefficients estimated calibrated errors are also provided. The Tonooka’s modified 

method follows a linear approach based on Eq.4.2.  

BRadianceOriginalARadiancecalibrated  )_*(_Re    (Eq.4.2) 

where 
Original_Radiance  calibrated at-sensor radiance 
A   first constant of RCC, 
B   second constant of RCC 

4.1.1.3. Preparation of NDVI Mask 

For image analysis of the satellite data it is necessary to reduce or remove irrelevant data such 

as water bodies and vegetation not only for ease of the analysis but also for the accuracy of the 

analysis especially that uses global statistics like PCA. Since the main focus of this study is on 

lithology i.e. rock units; vegetation and/or water bodies should be masked. On the image 

utilized for this study it is visually observed that no significant water body is present therefore 

the only irrelevant data is the vegetation. Vegetated pixels on the image can be identified using 

Normalized Difference Vegetation Index (NDVI) which uses NIR and RED wavelength responses. 

Essentially, vegetation is expected to show high NIR response along with low RED (Eq. 4.3.)  

23

23

BandNBand

BandNBand

REDNIR

REDNIR









   (Eq.4.3) 
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4.1.1.4. Resampling 

As mentioned in the data specifications part ASTER VNIR, SWIR and TIR subsystems have 

different spatial resolutions; 15m, 30m and 90m respectively. For VNIR and SWIR subsystems 

to be utilized together in the image analyses the spatial resolutions should be the same which 

requires resampling. Rather than down-sampling VNIR data (15m) to SWIR resolution (30m) 

which reduces the level of detail up-sampling SWIR data (30m) to VNIR resolution which 

practically does not change the level of detail, has been preferred. All the SWIR bands (Band 4-

9) resampled according to affine model and nearest neighbor resampling method to 15m 

where VNIR Band1 is used to match reference and ensure the pixels are superimposed 

correctly. Since the NDVI mask already has 15m spatial resolution no resampling is required 

and can be utilized in the image analyses along with VNIR and resampled SWIR data. On the 

other hand, for TIR, NDVI mask requires resampling in order to match the spatial resolution of 

TIR (90m). Same parameters are used for resampling (affine model and nearest neighbor 

method while TIR Band10 is used to match reference and pixel superimposition). 

 

4.2. Image Analyses 

Image analyses include two of the most widespread methods used for lithological mapping; 

Principle Component Analysis (PCA) and Decorrelation Stretch that covers ASTER VNIR and 

SWIR bands. Additionally, Temperature-Emissivity Separation technique is used for ASTER TIR 

bands, in order to recover the band emissivities of surface materials for lithological 

discrimination. Along with the methods mentioned above the spectral indices based on the 

band ratios specified in the literature are also used (Figure 4.4). 
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Figure 4.4 The flowchart of image analyses 
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4.2.1. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA), also known as principal-component transformation or 

Karhunen-Loeve transformation was first introduced by Pearson (1901). This statistical 

approach is basically a mathematical procedure that utilizes an orthogonal linear 

transformation through which observations of possibly correlated variables are converted into 

linearly uncorrelated variables (principal components). The idea behind this approach is to 

compress multispectral data sets by calculating a new different coordinate system (Sabins, 

1987). Through principal component analysis the dimensionality of the data set is reduced such 

that the number of principal components is less than or equal to the number of original 

variables. The transformation is defined such a way that the first principal component accounts 

for as much of the variability in the data as possible. In other words, the first principal 

component has the largest possible variance. 

Solar illumination and albedo effects at the surface govern the variation of radiant flux 

measured by a sensor. Spectral reflectance features of surface minerals have a very little effect 

of this variation (Öztan, 2008). Sabine (1999) stated that through principal component analysis 

irradiance effects that dominate the sensor bands can be suppressed and therefore the 

spectral reflectance features of surface materials can be examined. Yamaguchi and Naito (2003) 

stated that color composite of major principal components may enhance the visual 

interpretation for surface material discrimination and mapping. 

4.2.2. Decorrelation Stretch  

Soha and Schwartz (1978), was the first to introduce decorrelation stretch through improving 

the work Taylor (1973) had done earlier. The technique relies upon a principal component 

transformation of the original data. In general the resultant images of the transformation are 

stretched according to statistical distribution of the values in order to increase the contrast and 

remove the correlation. Then these images are assigned to primary colors to be displayed in 

RGB color composite. The essential difference of decorrelation stretch is that following the 

enhancement of contrast through transformation statistically independent principal 

components are retransformed into their original coordinates. Therefore the distortion due to 

enhancement in perceived color would be minimal (Gillespie et al., 1986). 
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As mentioned before principal component transformation removes the correlation between 

the multispectral images and therefore reduces the dimensionality of the multispectral images. 

The main problem with principal component transformation is that the color assignments are 

arbitrary and not related to any physical property. Taylor (1973) stated that once the multi 

spectral data is decorrelated through rotation of the coordinate system and the variances 

equalized in the new coordinate space, additional rotations of the coordinate system would not 

introduce any correlation. Soha and Schwartz (1978) proposed that the most suitable rotation 

for remotely sensed image interpretation is a simple inverse rotation of the image to the 

original color space. This technique then named “decorrelation stretch” technique although 

principal component transformation also produce uncorrelated images. 

4.2.3. Spectral Indices 

Spectral index approach is similar to that of PCA such that both of the techniques use 

orthogonal transformation of multispectral data. The essential difference between two 

methods is the determination of the transform axes. In PCA the axes are determined 

mathematically in order to maximize the variance of the multispectral data. On the other hand, 

in spectral index method the transform axes is determined in order to represent a specific 

pattern. Additionally, through PCA dimensionality of the multispectral data is reduced. In 

general PCA enhances contrast between surface materials that helps in visual interpretation 

and discrimination. The transformed results however do not include a physical meaning as the 

color composite is selected arbitrarily. On the other hand, spectral indices use pre-defined 

coefficients and therefore make it possible to know the physical meaning of the transformed 

results to some degree (Crist and Cicone, 1984). Yamaguchi and Naito (2003) stated that 

spectral indices for surface material discrimination make the resultant spectral index images 

easy to interpret in geological point of view.  

Different researchers calculated several indices for surface material discrimination based on 

ASTER SWIR and TIR data. Yamaguchi and Naito (2003) defined alunite, kaolinite, calcite and 

brightness indices for SWIR data; Ninomiya (2004) defined calcite index, OH bearing altered 

mineral index and alunite index. For TIR, on the other hand, Ninomiya (2002) and Ninomiya and 

Fu (2002) defined quartz, carbonate and mafic indices. Additionally, for TIR, Öztan and Süzen 

(2011) proposed sulfate index for evaporate mineral mapping. The approaches of the 
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researchers to spectral indices are quite different. For instance, the quartz, carbonate and 

mafic indices defined by Ninomiya (2002) and Ninomiya and Fu (2002) utilize spectral radiance 

values of TIR bands; sulfate index defined by Öztan and Süzen (2011) also utilizes spectral 

radiance values of TIR bands; calcite, OH bearing altered mineral and alunite indices defined by 

Ninomiya (2004) utilizes spectral radiance values of SWIR bands while brightness, alunite, 

kaolinite, calcite and montmorillonite indices defined by Yamaguchi and Naito (2003) utilize 

surface reflectance values of SWIR bands. 

4.2.4. Temperature – Emissivity Separation 

In this study, essentially, TES algorithm approach as discussed previously is followed (Figure 

4.5). Some modifications, however, has been applied for convenience of the analysis. These 

modifications are explained in detail below  

 

 

Figure 4.5 Temperature- Emissivity separation flowchart 
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Essentially, atmospheric correction in TES algorithm is applied in NEM module. The reflected 

down-welling sky irradiance is utilized along with the at-sensor radiance and its effect is 

removed iteratively. The result of the iterative analysis is considered being land-leaving 

radiance. In this study, however, instead of the iterative approach explained in the algorithm 

description, In-scene Atmospheric Compensation (ISAC) method was used. The atmospheric 

compensation generates land-leaving radiance which can be further utilized in temperature-

emissivity separation algorithms (DiStasio and Resmini, 2010). The  

The In-Scene Atmospheric Compensation (ISAC) algorithm uses only remotely-sensed at-sensor 

radiance data. Basically, the algorithm captures true state of the atmosphere along with the 

occurring radiative processes at the time of the data collection. The algorithm requires 

identification and estimation of input parameters along with the input radiance data correctly 

which is the main difficulty of the algorithm. The main convenience regarding the algorithm, on 

the other hand, is that radiative transfer model is not needed for the correction. The ISAC 

algorithm was described by Young et al. (2002). As explained briefly in DiStasio and Resmini 

(2010) ISAC uses the brightness temperature of each pixel for land-leaving radiance estimation. 

Then a scatter plot is generated for each band between the observed radiance and result of the 

Planck function. A straight line is fit to the top of the scatter plot which corresponds to the 

pixels having emissivity closest to 1. From this fit atmospheric transmission and upwelling path 

radiance are estimated. These parameters are used to estimate land-leaving radiance for each 

pixel. 

ENVI (Environment for Visualizing Images) software includes a version of ISAC implemented as 

“Thermal Atm Correction”. Therefore, in this study, the atmospheric compensation needed 

before TES algorithm was conducted in ENVI Software. ISAC as implemented in ENVI is 

considered to be a robust, effective, convenient atmospheric compensation tool for TIR for 

remote sensing user community (DiStasio and Resmini, 2010). 

In-Scene atmospheric compensation in ENVI estimated the land-leaving radiance at once. 

Therefore, atmospherically compensated radiances were directly utilized in order to calculate 

NEM temperature and emissivities. ENVI software also includes an implementation of 

Normalized Emissivity Method (NEM). An emissivity value (0.96) which roughly represents the 
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terrestrial materials is selected as initial emissivity. The output batch from ENVI includes five 

emissivity layers (one for each ASTER TIR band) and one temperature layer. 

Essentially, no modification has been done in the ratio or in MMD modules. In ratio module, 

through ratioing the NEM emissivities to their average the relative emissivities (βb) were 

calculated on TNTmips. Then the relative values of emissivities were scaled to their actual 

values in MMD module. The output batch of the MMD module comprises band emissivities and 

temperature. 

Although the temperature is not the main concern of this study, since the TES temperature will 

be used for recalculation of TES emissivity and temperature in order to improve the accuracy 

further TES temperatures were calculated as described in Section 3.3.1.4. Atmospherically 

compensated radiance values were used along with TES emissivities and temperature for 

calculation of new NEM emissivities to be used in ratio module. From this point on the 

calculations were the same as described before. The outputs of MMD module are the final 

refined TES temperature and band emissivities. 
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CHAPTER 5 

 

 

RESULTS 
 

 

In this chapter the results of the data analyses is presented. This includes the preprocessing, 

principal component analysis, decorrelation stretch, spectral indices and temperature-

emissivity separation. The resultant images are interpreted visually from the RGB color 

composites. On the other hand, some of the resultant images such as the spectral indices are 

displayed gray-scale single image. 

The image processing and enhancements are conducted mainly conducted in MicroImages 

TNTmips software and for mapping purposes ESRI ArcGIS 9.3 is used. 

5.1. Preprocessing 

As mentioned earlier ASTER L3 data need preprocessing in order to be utilized in the image 

analyses. In other words, raw digital numbers need to be converted into meaningful radiance 

values. In order to perform this operation, first, gain and offset setting of the ASTER data is 

identified through consulting the metadata file. It is found that in VNIR only Band 1 and Band 2 

have “High Gain” settings while Band 3N and Band 3B have “Normal Gain” settings. For SWIR 

and TIR all the bands have “Normal Gain” settings. Then, unit conversion coefficients (UCC) are 

selected for all 14 ASTER bands accordingly. Unit Conversion Coefficients for ASTER bands and 

detailed information about the process can be found in Chapter 4 (Section 4.1.1). Following the 

calibration of the ASTER bands, TIR bands go through recalibration in order to compensate the 

delay in radiometric calibration coefficient (RCC) updating. As explained before, (Section 4.1.1.2) 

the recalibration coefficients obtained online from Tonooka Laboratory at Ibaraki University, 
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Japan web site based on the RCC version and the date of the acquisition (UTC) both of which is 

obtained through metadata file. Detailed information regarding the coefficients and estimated 

errors of radiance and temperature are presented in the following table (Table 5.1) 

Table 5.1 ASTER TIR Recalibration coefficients used and estimated errors 

Band A B 

Estimated Changes 

(Upper: Radiance, Lower: Temperature) 

@ 270 K @ 300 K @ 320 K @ 340 K 

10 1,008392 -0,0414 
-0,000 +0,037 +0,072 +0,115 

-0,00 K +0,20 K +0,31 K +0,41 K 

11 1,016543 -0,0861 
+0,000 +0,074 +0,140 +0,222 

+0,00 K +0,41 K +0,62 K +0,82 K 

12 1,029099 -0,1595 
+0,000 +0,128 +0,240 +0,377 

+0,00 K +0,73 K +1,12 K +1,47 K 

13 1,014767 0,0867 
-0,000 +0,057 +0,105 +0,161 

-0,00 K +0,39 K +0,61 K +0,81 K 

14 1,018525 -0,1082 
+0,000 +0,066 +0,120 +0,182 

+0,00 K +0,49 K +0,77 K +1,03 K 

 

Preliminary visual interpretations of the data are performed on the RGB color composites of 

preprocessed ASTER VNIR and SWIR bands. Obviously, the first color composite image is the 

false color composite using VNIR bands (RGB: 3N, 2, 1) (Figure 5.1). Following the false color 

composite of VNIR band, two additional color composites using SWIR and VNIR bands are also 

produced. The first color composite is produced through utilizing only SWIR bands (RGB: 9, 6, 4) 

(Figure 5.2) and the second color composite is produced through utilizing two SWIR bands 

along with one VNIR band (RGB: 9, 4, 1) (Figure 5.3). In order to use VNIR and SWIR data in the 

same color composite the spatial resolutions need to be the same. Therefore, before producing 

any color composite out of VNIR and SWIR bands, SWIR bands are resampled to same 

resolution as the VNIR bands which have 15m spatial resolution. Note that the color 

composites produced using SWIR bands pursue a goal to visualize the response of surface 

materials in SWIR that is not visible to human eye. Essentially, this response is related to the 

chemical properties of the material and not related with the physical properties of the 

materials such as color.  
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Figure 5.1 RGB false color composite of ASTER VNIR Bands (R: Band-3N, G: Band-2, B: Band-1). See Figure 2.2 for 
legend of the inset map. 
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Figure 5.2 RGB color composite of ASTER SWIR Bands (R: Band-9, G: Band-6, B: Band-4). See Figure 2.2 for legend of 
the inset map. 
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Figure 5.3 RGB color composite of ASTER SWIR Bands and a visible band (R: Band-9, G: Band-4, B: Band-1). See Figure 
2.2 for legend of the inset map. 

 

 

 

 

 



44 
 

Preprocessing also includes the preparation of Normalized Vegetation Index (NDVI) to be used 

for vegetation masking. The NDVI image is produced using ASTER bands 2 and 3N as explained 

before where Band 2 represents red wavelength and Band 3N represents near-infrared 

wavelength at nadir (Figure 5.4). In the red wavelength vegetation is expected to show low 

response while in the near-infrared wavelength high response. Therefore, as the density of the 

vegetation increases the NDVI also known as the greenness index also increases. As the name 

implies vegetation response is normalized in a range between -1 and 1 for the sake of 

comparison. However, there is no absolute global threshold for NDVI. In other words, there is 

no absolute value that gives the vegetation in the image. Through combination of values of 

NDVI and visual interpretation on the false color composite a local threshold is defined as 0.21 

for this study.  

NDVI mask is used for masking VNIR, SWIR and TIR data separately. Since the NDVI is produced 

using VNIR bands, the spatial resolution of the NDVI exactly matches the resolution of 

resampled SWIR bands and VNIR bands (Figure 5.5). On other hand, for TIR bands, NDVI needs 

to be resampled in order to match the spatial resolution of 90m. Therefore, produced NDVI is 

resampled to match the spatial resolution of TIR bands.  

Moreover, due to the parallax error in ASTER SWIR bands the extents of the bands in SWIR are 

not the same. For analysis such as principal component analysis and decorrelation stretch the 

extents of the input data need to be the same along with the size of the pixel. Therefore, VNIR, 

SWIR bands and NDVI mask for 15m are clipped according to the SWIR band that has the 

minimum extent. Even though there is no parallax error in TIR due to resampling the extent of 

the TIR bands and NDVI mask for 90m do not match therefore NDVI mask for 90 m is also 

clipped for perfect match with TIR bands. 
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Figure 5.4 Normalized Difference Vegetation Index (NDVI) 
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Figure 5.5 Vegetation mask prepared for 15m spatial resolution. Note that the green area on the figure represents 
the vegetation. 
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5.2. Principal Component Analysis 

The principal component analysis is conducted in MicroImages TNTmips software for 

preprocessed ASTER VNIR and SWIR bands (Bands 1-9). NDVI mask is used to mask out 

vegetation for higher accuracy as the vegetation is out of concern in the first place. Therefore, 

the values of vegetated pixels are not included in statistical analysis. The resulting principal 

components are displayed in RGB color composites for better visualization and interpretation. 

The transformation parameters are provided as an output of the software and presented 

accordingly. 

The PCA is conducted for VNIR and SWIR bands of ASTER (Bands 1-9). As explained previously, 

the bands used for the analysis are the preprocessed ASTER bands and clipped in order to 

match the extent of all the input layers. The transformation parameter of the PCA is depicted in 

Tables 5.2 and 5.3. The results of the principal component analysis – namely the principal 

components – are visualized in RGB color composites. For the first RGB color composite, the 

first three principal components are selected (RGB: PC1, PC2, PC3) which represents around 

99.5% of the data (Figure 5.6). 

Additional RGB color composites are also produced for comparison and better visual 

interpretation. The second color composite produced includes PC1, PC3 and PC5 triplet (RGB: 

PC1, PC3, PC5) (Figure 5.7). This composite represents 96% of whole data; because PC1 

represents 95% of the data by itself while other principal component bands contain 1% extra 

information. The RGB color composite produced from PC2, PC3 and PC4 (RGB: PC2, PC3, PC4) 

represents only 5% of the whole data (Figure 5.8) and the RGB color composite produced from 

PC2, PC4 and PC6 (RGB: PC2, PC4, PC6) represents only 4% of the data (Figure 5.9). By these 

produced color composites using different combinations of principal component bands, whole 

data is analyzed and compared visually.  
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Table 5.2 Parameters of PCA of ASTER VNIR and SWIR bands 

MEAN RASTER VALUES 
       

RASTER   MEAN 
       

BAND1 
 

39,8 
       

BAND2 
 

33,0 
       

BAND3N 
 

31,6 
       

BAND4 
 

8,3 
       

BAND5 
 

2,4 
       

BAND6 
 

2,2 
       

BAND7 
 

1,8 
       

BAND8 
 

1,3 
       

BAND9 
 

0,9 
       

  VARIANCE/COVARIANCE MATRIX           

RASTER BAND1 BAND2 BAND3N BAND4 BAND5 BAND6 BAND7 BAND8 BAND9 

BAND1 102,7988 102,5739 76,7259 22,0241 5,5488 5,5410 4,6278 3,2979 2,0080 
BAND2 102,5739 109,7970 82,1563 22,9383 5,8134 5,8509 4,8803 3,5012 2,1459 
BAND3N 76,7259 82,1563 75,1384 18,5381 4,3363 4,5035 3,6702 2,6552 1,6365 
BAND4 22,0241 22,9383 18,5381 6,0673 1,4664 1,4882 1,2177 0,8708 0,5356 
BAND5 5,5488 5,8134 4,3363 1,4664 0,3989 0,3946 0,3245 0,2317 0,1443 
BAND6 5,5410 5,8509 4,5035 1,4882 0,3946 0,4080 0,3273 0,2343 0,1461 
BAND7 4,6278 4,8803 3,6702 1,2177 0,3245 0,3273 0,2799 0,1969 0,1215 
BAND8 3,2979 3,5012 2,6552 0,8708 0,2317 0,2343 0,1969 0,1438 0,0878 
BAND9 2,0080 2,1459 1,6365 0,5356 0,1443 0,1461 0,1215 0,0878 0,0565 

  CORRELATION MATRIX           

RASTER BAND1 BAND2 BAND3N BAND4 BAND5 BAND6 BAND7 BAND8 BAND9 

BAND1 1,0000 0,9655 0,8730 0,8819 0,8665 0,8556 0,8627 0,8578 0,8329 
BAND2 0,9655 1,0000 0,9045 0,8887 0,8784 0,8742 0,8803 0,8812 0,8612 
BAND3N 0,8730 0,9045 1,0000 0,8682 0,7920 0,8134 0,8003 0,8078 0,7939 
BAND4 0,8819 0,8887 0,8682 1,0000 0,9426 0,9458 0,9344 0,9323 0,9144 
BAND5 0,8665 0,8784 0,7920 0,9426 1,0000 0,9780 0,9712 0,9674 0,9606 
BAND6 0,8556 0,8742 0,8134 0,9458 0,9780 1,0000 0,9686 0,9673 0,9620 
BAND7 0,8627 0,8803 0,8003 0,9344 0,9712 0,9686 1,0000 0,9813 0,9659 
BAND8 0,8578 0,8812 0,8078 0,9323 0,9674 0,9673 0,9813 1,0000 0,9741 
BAND9 0,8329 0,8612 0,7939 0,9144 0,9606 0,9620 0,9659 0,9741 1,0000 

  EIGENVALUES AND ASSOCIATED PRECENTAGES   
   

AXIS EIGENVALUES PERCENTAGES CUMULATIVE 
   

1 
 

278,8133 
 

94,4846 
 

94,4846 
   

2 
 

11,6089 
 

3,9340 
 

98,4186 
   

3 
 

3,3172 
 

1,1241 
 

99,5428 
   

4 
 

1,2384 
 

0,4197 
 

99,9624 
   

5 
 

0,0853 
 

0,0289 
 

99,9913 
   

6 
 

0,0118 
 

0,0040 
 

99,9953 
   

7 
 

0,0080 
 

0,0027 
 

99,9980 
   

8 
 

0,0039 
 

0,0013 
 

99,9994 
   

9 
 

0,0019 
 

0,0006 
 

100,0000 
   

  EIGENVECTORS           

RASTER BAND1 BAND2 BAND3N BAND4 BAND5 BAND6 BAND7 BAND8 BAND9 

BAND1 0,5950 0,6207 0,4890 0,1341 0,0332 0,0336 0,0279 0,0200 0,0122 
BAND2 -0,4864 -0,2075 0,8478 0,0353 -0,0164 -0,0045 -0,0103 -0,0049 -0,0018 
BAND3N 0,6331 -0,7516 0,1768 0,0406 -0,0165 -0,0174 -0,0182 -0,0161 -0,0120 
BAND4 -0,0910 -0,0689 -0,0984 0,9090 0,2212 0,2248 0,1745 0,1224 0,0778 
BAND5 0,0147 -0,0445 0,0335 -0,3899 0,4850 0,5158 0,4405 0,3147 0,2243 
BAND6 -0,0015 0,0044 -0,0001 -0,0216 0,3447 0,5221 -0,6590 -0,3947 -0,1342 
BAND7 0,0046 0,0017 -0,0077 0,0088 -0,7683 0,6338 0,0584 0,0640 0,0158 
BAND8 0,0036 -0,0022 -0,0022 0,0088 -0,0405 -0,0751 -0,5741 0,6623 0,4736 
BAND9 0,0015 0,0000 -0,0013 0,0100 -0,0585 -0,0456 0,0831 -0,5355 0,8371 

TOTAL VARIANCE 295,0887 
      

DETERMINANT 0,0000 
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Table 5.3 Transformation Parameters of PCA of ASTER VNIR and SWIR bands 

TRANSLATION VECTOR             
 

61,0181 0,8062 6,1839 0,0928 0,6526 0,0492 -0,1385 0,0413 0,1208 
 

  TRANSFORMATION MATRIX           

RASTER BAND1 BAND2 BAND3N BAND4 BAND5 BAND6 BAND7 BAND8 BAND9 

BAND1 0,3027 0,3157 0,2488 0,0682 0,0169 0,0171 0,0142 0,0102 0,0062 
BAND2 -0,3012 -0,1285 0,5250 0,0218 -0,0102 -0,0028 -0,0064 -0,0030 -0,0011 
BAND3N 0,3763 -0,4467 0,1051 0,0242 -0,0098 -0,0104 -0,0108 -0,0096 -0,0071 
BAND4 -0,0458 -0,0346 -0,0495 0,4573 0,1112 0,1131 0,0878 0,0616 0,0391 
BAND5 0,0060 -0,0181 0,0136 -0,1583 0,1969 0,2094 0,1789 0,1278 0,0911 
BAND6 -0,0007 0,0021 0,0000 -0,0104 0,1655 0,2507 -0,3165 -0,1895 -0,0645 
BAND7 0,0029 0,0011 -0,0050 0,0056 -0,4915 0,4055 0,0374 0,0410 0,0101 
BAND8 0,0019 -0,0012 -0,0012 0,0048 -0,0220 -0,0407 -0,3116 0,3594 0,2571 
BAND9 0,0009 0,0000 -0,0008 0,0064 -0,0372 -0,0290 0,0529 -0,3405 0,5323 

  CORRELATION BETWEEN INPUT RASTERS AND PRINCIPAL COMPONENT   

RASTER BAND1 BAND2 BAND3N BAND4 BAND5 BAND6 BAND7 BAND8 BAND9 

BAND1 0,9799 0,9891 0,9420 0,9088 0,8789 0,8788 0,8802 0,8806 0,8599 
BAND2 -0,1634 -0,0675 0,3332 0,0488 -0,0885 -0,0238 -0,0666 -0,0438 -0,0254 
BAND3N 0,1137 -0,1306 0,0371 0,0300 -0,0477 -0,0497 -0,0628 -0,0776 -0,0917 
BAND4 -0,0100 -0,0073 -0,0126 0,4107 0,3897 0,3916 0,3671 0,3593 0,3641 
BAND5 0,0004 -0,0012 0,0011 -0,0462 0,2242 0,2358 0,2431 0,2423 0,2754 
BAND6 0,0000 0,0000 0,0000 -0,0010 0,0593 0,0888 -0,1353 -0,1131 -0,0613 
BAND7 0,0000 0,0000 -0,0001 0,0003 -0,1086 0,0885 0,0099 0,0151 0,0059 
BAND8 0,0000 0,0000 0,0000 0,0002 -0,0040 -0,0073 -0,0678 0,1092 0,1245 
BAND9 0,0000 0,0000 0,0000 0,0002 -0,0041 -0,0031 0,0069 -0,0618 0,1542 
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Figure 5.6 RGB color composite of principal components (R: PC1, G: PC2, B: PC3). Note that the white area on the 
figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

On the Figure 5.6 mainly three units stand out; brownish green unit in the middle of the image, 

pale pinkish unit in the west and east of the image and bright pink unit in the south east of the 

image. As the results are compared with the geological map, the green units corresponds to the 

continental red clastics (İncik Formation), bright pink unit corresponds to evaporites (Bozkır 

Formation) and pale pink unit corresponds to evaporates and shale/marl (Tuğlu Formation). 
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Figure 5.7 RGB color composite of principal components (R: PC1, G: PC3, B: PC5). Note that the white area on the 
figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

As on the previous image on Figure 5.7 three distinct units stand out; continental red clastics 

(İncik formation) is represented by blue-navy color in the middle, north-west and south-east of 

the image, Paleocene-Eocene units are represented by light green-turquoise color in the north-

east of the image and evaporites (Tuğlu and Bozkır Formations) represented by greenish-

yellowish color. Note that the evaporitic units were not recognized as separate units as in the 

previous image. 
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Figure 5.8 RGB color composite of principal components (R: PC2, G: PC3, B: PC4). Note that the white area on the 
figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

On Figure 5.8 only continental red clastics (İncik Formation) stands out by blue-navy color while 

the rest of the image has not so different color composition. On Figure 5.9, on the other hand, 

no distinct unit stands out and the whole image has quite same color composition. Therefore, 

Figure 5.9 and the principal component used for RGB composite would not be efficient for 

surface material discrimination. 
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Figure 5.9 RGB color composite of principal components (R: PC2, G: PC4, B: PC6). Note that the white area on the 
figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

The results of the principal component analysis showed that through interpretation RGB color 

composites produced using principal component is capable to discriminate surface materials 

based on the variance between the materials. Based on the selection of the principal 

components the materials delineated may change. Essentially, starting with the PC1 through 

PC9 the components show the abundance of the information embedded. In other words, PC1 

represents the information abundant and mediocre for the image while the mediocrity 

decreases gradually for latter principal components.  
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5.3. Decorrelation Stretch  

Decorrelation Stretch is performed using MicroImages TNTmips software like most of the other 

image processing operations.. The Decorrelation Stretch is utilized for ASTER VNIR and SWIR 

bands (Bands 1-9. For spatial coherence, the spatial resolution of SWIR bands resampled to 

15m to match them with the VNIR bands. In this data set, vegetation mask is also applied as 

explained previously. Therefore, the vegetation pixels are not included in analysis.  

Essentially, the combination of the RGB color composites produced are the same as the ones 

produced for preprocessed ASTER VNIR and SWIR data (Figure 5.1, Figure 5.2 and Figure 5.3). 

The main difference, however, here is that on the same bands decorrelation contrast 

enhancement is applied. Following the contrast enhancement through principal component 

transformation decorrelated (statistically independent) bands are then retransformed into 

their original coordinates so that the distortion of hues due to decorrelation transformation is 

limited.  

The first RGB color composite is the false color composite produced from decorrelated VNIR 

bands 3N, 2 and 1 (RGB: 3N, 2, 1) (Figure 5.10). As seen on the figure the contrast of the image 

increased discernibly when it is compared to the first false color composite produced. The 

additional RGB color composites can be seen in Figures 5.11 and 5.12. It can easily be seen that 

surface materials showing different responses in SWIR and VNIR can be discriminated through 

contrast enhanced images. Note that unlike principal component analysis the meaning of the 

colors and relation between the bands and the materials are known in decorrelation stretch. 
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Figure 5.10 RGB color composite of decorrelated bands (R: Band-3N, G: Band-2, B: Band-1). Note that the white area 
on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

Several units stands out on Figure 5.10; continental red clastics (İncik Formation) represented 

by brownish-green color, evaporites (Bozkır Formation) represented by bluish gray, evaporites 

and shale/marl (Tuğlu Formation) represented by pale greenish-gray.  



56 
 

 

Figure 5.11 RGB color composite of decorrelated bands (R: Band-9, G: Band-6, B: Band-4). Note that the white area 
on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 

 

On Figures 5.11 and 5.12, basically, two distinct units stand out: (1) the continental red clastics 

(İncik Formation) and (2) evaporitic units (Tuğlu and Bozkır Formations). On Figure 5.11, 

continental red clastics are represented by yellow-orange color where evaporitic units are 

represented by pinkish-purple color. On Figure 5.12, red-orange color shows continental red 

clastics and greenish color shows evaporitic units. 
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Figure 5.12 RGB color composite of decorrelated bands (R: Band-9, G: Band-4, B: Band-1). Note that the white area 
on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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5.4. Spectral Indices 

In this study, quartz (QI), carbonate (CI), mafic (MI) indices defined by Ninomiya (2002) and 

sulfate (SI) index defined by and Öztan and Süzen (2011) for TIR data along with calcite (CISWIR), 

OH bearing altered mineral (OHIa and OHIb) and alunite (ALI) indices defined for SWIR by 

Ninomiya (2004) are used. The results of the spectral indices are displayed in linear gray-scale 

as the resultant image is a single layer. Additionally, in order to facilitate visual interpretation, 

the resultant layers are subjected to contrast enhancement through linear stretching. 

Primarily, the spectral indices for SWIR bands are calculated starting with alunite index (ALI) 

(Eq.5.1). Although most of the hydroxyl bearing minerals is silicates, alunite is sulfate mineral 

which has a unique spectral feature. In 2.295 – 2.365 µm wavelength region which corresponds 

to ASTER SWIR Band-8, alunite has a sharp absorption feature unlike the other hydroxyl bearing 

minerals. The resultant image is linearly stretched for better contrast and interpretation (Figure 

5.13). 

8*5

7*7

BandBand

BandBand
ALI     (E.q.5.1) 

The second index calculated for SWIR is the calcite index (CISWIR) (Eq.5.2). Calcite shows 

featured spectral response in SWIR, that is, in 2.295 – 2.365 µm wavelength region (ASTER 

SWIR Band-8) calcite has a deep and wide absorption while showing rather high reflectance in 

2.185 – 2.225 µm wavelength region (ASTER SWIR Band-6) and in 2.360 – 2.430 µm wavelength 

regions (ASTER SWIR Band-9). The resultant image can be seen on Figure 5.14. 

8*8

9*6

BandBand

BandBand
CI SWIR     (E.q.5.2) 

Two other indices calculated for SWIR are hydroxyl bearing altered minerals indices (Eq.5.3) 

Note that for hydroxyl bearing altered minerals two different indices are defined. The first 

index designated by OHIa is mainly used for montmorillonite and mica both of which have 

similar deep and sharp absorption feature in 2.185 – 2.225 µm wavelength region (ASTER SWIR 

Band-6). The latter index designated by OHb is used for pyrophillite which has a deep and sharp 
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absorption feature in 2.145 – 2.185 µm wavelength region (ASTER SWIR Band-5). The results of 

the spectral indices are depicted in Figures 5.15 and 5.16. 

6*6

7*4

BandBand

BandBand
OHIa  ; 

5*5

7*4

BandBand

BandBand
OHIb    (E.q.5.3) 

 

Figure 5.13 Alunite Index (ALI). Brighter pixels are expected to show higher alunite composition. Note that the green 
area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.14 Calcite Index (CISWIR). Brighter pixels are expected to show higher calcite composition Note that the 

green area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.15 Hydroxyl Bearing Altered Minerals Index (OHIa). Brighter pixels are expected to show higher OH bearing 

altered mineral (particularly, montmorillonite and mica) composition Note that the green area on the figure 
represents the vegetation. See Figure 2.2 for legend of the inset map. 



62 
 

 

Figure 5.16 Hydroxyl Bearing Altered Minerals Index (OHIb). Brighter pixels are expected to show higher OH bearing 

altered mineral (particularly, pyrophillite) composition Note that the green area on the figure represents the 
vegetation. See Figure 2.2 for legend of the inset map. 
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Following the indices defined for SWIR bands, indices defined for TIR bands are also calculated. 

From the spectral absorption property of quartz, the index is defined as in Eq.5.4. Essentially, 

quartz show high emissivity in 8.475 – 8.825 µm wavelength region (ASTER TIR Band-11) while 

showing high absorption in 8.125 – 8.475 µm wavelength region (ASTER TIR Band-10) and 8.925 

– 9.275 µm wavelength regions (ASTER TIR Band-12). The applied result of QI index can be seen 

in Figure 5.17. 

12*10

11*11

BandBand

BandBand
QI      (Eq.5.4) 

The second index calculated for TIR is the carbonate index (CI) which is mainly used for 

carbonate rocks composed of calcite and dolomite two major carbonate minerals on the earth. 

The essential difference from the calcite index for SWIR (CISWIR) is that CI index uses emissivity 

and absorption property of the carbonate minerals in TIR and defined as in Eq.5.5. The result of 

the calculation of the CI index is depicted in Figure 5.18. 

14

13

Band

Band
CI       (Eq.5.5) 

The mafic index (MI) which is essentially based on the bulk silica content of the target materials 

is defined by the Eq.5.6 based on the spectral emissivity and absorption property of silica. 

13

12

Band

Band
MI      (Eq.5.6) 

However it is also sensitive to carbonate rocks. In order to reduce the effect of carbonates in 

mafic index Ninomiya (2002) separated MI from carbonates through (E.q.5.7) and it is observed 

that the best separation would be in MI3. Therefore mafic index is refined as follows: 

4

3

31 13

14*12

13

14*12

*13

12

Band

BandBand
MI

Band

BandBand

CIBand

Band
MI

n

n

nn 


 (E.q.5.7) 

The applied results of both MI and MI3 can be seen in Figures 5.19 and 5.20 respectively. 
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The last index calculated for TIR is the sulfate index (SI) (Öztan and Süzen 2011) which is 

essentially the inverse of the quartz index (QI). The spectral property of the sulfate minerals 

such as gypsum is almost opposite of quartz i.e. high emissivity in ASTER band-10 and band-12 

region and high absorption in ASTER band-10 region (Eq.5.8). The applied result of SI can be 

seen in Figure 5.21. 

11*11

12*10

BandBand

BandBand
SI      (Eq.5.8) 

 

Figure 5.17 Quartz Index (QI). Brighter pixels are expected to show higher quartz composition. Note that the green 
area on the figure represents the vegetation 
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Figure 5.18 Carbonate Index (CI). Brighter pixels are expected to show higher carbonate composition. Note that the 
green area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.19 Mafic Index (MI). Brighter pixels are expected to show higher mafic composition. Note that the green 
area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.20 Mafic Index refined (MIn=3). Brighter pixels are expected to show higher mafic composition with reduced 

effect of carbonates. Note that the green area on the figure represents the vegetation. See Figure 2.2 for legend of 
the inset map. 
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Figure 5.21 Sulfate Index (SI). Brighter pixels are expected to show higher sulfate mineral composition Note that the 
green area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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5.5. Temperature – Emissivity Separation 

Through TES algorithm emissivity values of five TIR bands (Band 10-14) is retained along with 

the surface temperature. The NDVI mask is not used through the temperature- emissivity 

separation since vegetation is a near-gray body and has representative emissivity and 

temperature values. However, in the algorithm the near-gray bodies (vegetation and water 

bodies) and selective radiators (surface materials) are treated separately. Thus, for vegetation 

and water bodies, a constant emissivity value (0.983), appropriate for near-gray bodies, is 

assigned while the rest is calculated as explained previously in the algorithm description. 

The emissivity values from different bands are represented in RGB color composites for visual 

interpretation. Essentially, the discrimination of the surface materials is through identification 

of emissivity anomalies of the surface materials. Note that no quantitative approach is used for 

surface material classification through emissivity which is discussed in the next chapter.  

Even though the surface temperature retained from the TES algorithm is not the primary 

concern of the study and does not bear any explicit meaning regarding the surface material 

discrimination, it is also provided so that the emissivity and temperature relationship could be 

well understood (Figure 5.22). 

The first color composite is produced using TES emissivities of Band-13, Band-12 and Band-10 

(RGB: 13, 12, 10) (Figure 5.23). The second RGB color composite comprises TES emissivities of 

Band-12, Band-11 and Band-10 (RGB: 12, 11, 10) (Figure 5.24) and the last RGB color composite 

is produced using TES emissivities of Band-14, Band-12 and Band-10 (RGB: 14, 12, 10) (Figure 

5.25). 

Note that the RGB color composites show almost the same pattern due to the fact that 

regardless of the band the emissivity values are not different greatly. 
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Figure 5.22 Surface kinetic temperature 
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Figure 5.23 Emissivity color composite (R: Band-13 G: Band-12 B: Band-10). See Figure 2.2 for legend of the inset map. 
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Figure 5.24 Emissivity color composite (R: Band-12 G: Band-11 B: Band-10). See Figure 2.2 for legend of the inset map. 
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Figure 5.25 Emissivity color composite (R: Band-14 G: Band-12 B: Band-10). See Figure 2.2 for legend of the inset map. 

 

Some regions showed quite different emissivity responses than their surroundings on the RGB 

color composites. The geographical and physical properties of these regions are quite similar to 

those of their surroundings, such that the aspect, elevation and color of these regions are not 

greatly different than their immediate vicinity. Furthermore, these regions are not considered 

to be different lithological units but mapped together with their surroundings. So, despite the 

similar geographical, physical properties the regions that have diversified emissivity responses 
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than their immediate vicinity are considered being anomalous regions which require further 

inspection. Note that these anomalous regions were not recognized in the previous methods. 

Regardless of the band combination used for the RGB color composites anomalous regions are 

presented in the same localities on the images. These anomalous regions can be delineated 

from surroundings however identification of these regions is not possible and requires field 

validation. On Figure 5.26 the anomalous regions are highlighted and these regions are 

examined in the field.  

 

Figure 5.26 RGB color composite of emissivity values showing anomalous regions (R: Band-14, G: Band-12, B: Band-
10). White circles indicate the anomalous regions examined in the field.  

4 

5 

1 

3 

2 



75 
 

The first locality is the largest anomaly region that stands out near Satıyüzü. Field observations 

show that there is no distinct lithology or single surface material is presented however the 

anomaly represents a distinct property of a mixture of surface materials. The brownish region 

characterized by a sharp border is agricultural area where fragments of gypsum is collected and 

emplaced randomly by farmers (Figures 5.27 and 5.28).  

 

Figure 5.27 General view of gypsum fragments accumulated by the farmers on the sides of fields in the first locality  

 

 

Figure 5.28 Gypsum fragments collected and emplaced nearby the agricultural fields in the first locality 
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The area also comprises several points where dissolved sub-terrestrial gypsum is transported 

and recrystallized on the surface (Figure 5.29). The soil in the area that causes the anomaly is 

plowed every season by the farmers. The plowing of the surficial material creates a mixture 

mainly comprises clay, and gypsum. Note that gypsum may be presented either directly in the 

agricultural soil or as rock fragments emplaced nearby the agricultural area. The spectral 

response of this mixture is happened to be quite different from nearby areas. Therefore, it can 

be claimed that the main reason for the anomaly would is the mixture of surface materials 

presented in the area. 

 

Figure 5.29 Recrystallization of dissolved sub-terrestrial gypsum on the surface in the first locality 

 

The second and third localities are quite close to each other. These localities together show the 

second largest anomaly that stands out in the study area. The field observations show that the 

locations with emissivity anomalies corresponds the areas where organic matter is presented 

with various amounts (Figures 5.30 and 5.31). 

The field observations cover only the first three localities highlighted on Figure 5.16. Although 

two additional localities highlighted on the image, due to the accessibility problems the last 

two localities were excluded from field observation. 
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Figure 5.30 General view from the third locality: surface materials that bear organic matter  

 

 

 

Figure 5.31 Close-up view of the organic matter bearing surface material in the second locality 
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Figure 5.32 A view of Süleymanlı Formation: (a) and (b) sections free from organic matter and (c) organic matter 
bearing section  

 

5.5.1. Principal Component Analysis of TES Emissivities 

An additional PCA is conducted for the emissivities retained from TES algorithm. Even though 

the vegetated pixels are treated separately in TES algorithm and an appropriate emissivity 

value is assigned to those pixels, for better accuracy in PCA, NDVI mask is also used.  

The transformation parameters of PCA are provided in detail in Table 5.4. The principal 

components of TES emissivities are also displayed in RGB color composite for interpretation. 

Similarly, the first RGB color composite is produced from the first three principal components 

(RGB: PC1, PC2, PC3) in order to represent as much data as possible (Figure 5.26). The first 

three principal components represent 94% of the data; 78.5%, 10.6% and 4.8% respectively. 

Additional RGB color composites are also produced from PC2, PC3 and PC4 (RGB: PC2, PC3, PC4) 

(Figure 5.27). PC2 represents 10.6% of the data and together with PC3 and PC4, the 
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represented data increases only to 16%. The last RGB color composite produced from PC3, PC4 

and PC5 (RGB: PC3, PC4, PC5) represents 11% of the data (Figure 5.28).  

Table 5.4 PCA parameters ASTER band emissivities 

MEAN RASTER VALUES 
    

RASTER   MEAN 
    

TES EMISS 10 
 

0,90 
    

TES EMISS 11 
 

0,90 
    

TES EMISS 12 
 

0,90 
    

TES EMISS 13 
 

1,00 
    

TES EMISS 14 
 

1,00 
    

  VARIANCE/COVARIANCE MATRIX   
 

RASTER TES EMISS 10 TES EMISS 11 TES EMISS 12 TES EMISS 13 TES EMISS 14 
 

TES EMISS 10 0,0006 0,0004 0,0003 0,0002 0,0001 
 

TES EMISS 11 0,0004 0,0005 0,0003 0,0002 0,0001 
 

TES EMISS 12 0,0003 0,0003 0,0003 0,0002 0,0001 
 

TES EMISS 13 0,0002 0,0002 0,0002 0,0001 0,0001 
 

TES EMISS 14 0,0001 0,0001 0,0001 0,0001 0,0001 
 

  CORRELATION MATRIX   
 

RASTER TES EMISS 10 TES EMISS 11 TES EMISS 12 TES EMISS 13 TES EMISS 14 
 

TES EMISS 10 1,0000 0,7726 0,6552 0,5908 0,5668 
 

TES EMISS 11 0,7726 1,0000 0,8105 0,6882 0,5997 
 

TES EMISS 12 0,6552 0,8105 1,0000 0,7122 0,6724 
 

TES EMISS 13 0,5908 0,6882 0,7122 1,0000 0,6375 
 

TES EMISS 14 0,5668 0,5997 0,6724 0,6375 1,0000 
 

  EIGENVALUES AND ASSOCIATED PRECENTAGES   

AXIS EIGENVALUES PERCENTAGES CUMULATIVE 

1 
 

0,0013 
 

78,5693 
 

78,5693 
2 

 
0,0002 

 
10,6226 

 
89,1919 

3 
 

0,0001 
 

4,8576 
 

94,0495 
4 

 
0,0001 

 
3,4429 

 
97,4924 

5 
 

0,0000 
 

2,5076 
 

100,0000 

  EIGENVECTORS   
 

RASTER TES EMISS 10 TES EMISS 11 TES EMISS 12 TES EMISS 13 TES EMISS 14 
 

TES EMISS 10 0,6187 0,5569 0,4494 0,2553 0,1998 
 

TES EMISS 11 -0,7505 0,2181 0,5456 0,2539 0,1643 
 

TES EMISS 12 0,1831 -0,7305 0,2172 0,3883 0,4846 
 

TES EMISS 13 -0,1134 0,2592 -0,6333 0,7038 0,1536 
 

TES EMISS 14 -0,0872 0,2034 -0,2282 -0,4736 0,8214 
 

TOTAL VARIANCE 0,0016 
   

DETERMINANT 0,0000 
   

TRANSLATION VECTOR     
  

1,9318 0,4198 0,5356 0,3749 0,2333 
  

  TRANSFORMATION MATRIX   
 

RASTER TES EMISS 10 TES EMISS 11 TES EMISS 12 TES EMISS 13 TES EMISS 14 
 

TES EMISS 10 0,2974 0,2677 0,2160 0,1227 0,0961 
 

TES EMISS 11 -0,3884 0,1129 0,2823 0,1314 0,0850 
 

TES EMISS 12 0,0914 -0,3646 0,1084 0,1938 0,2418 
 

TES EMISS 13 -0,0608 0,1391 -0,3399 0,3777 0,0824 
 

TES EMISS 14 -0,0481 0,1122 -0,1258 -0,2611 0,4529 
 

CORRELATION BETWEEN INPUT RASTERS AND PRINCIPAL COMPONENT 
 

RASTER TES EMISS 10 TES EMISS 11 TES EMISS 12 TES EMISS 13 TES EMISS 14 
 

TES EMISS 10 0,9104 0,9362 0,8740 0,7626 0,7036 
 

TES EMISS 11 -0,4061 0,1348 0,3902 0,2789 0,2127 
 

TES EMISS 12 0,0670 -0,3054 0,1050 0,2884 0,4242 
 

TES EMISS 13 -0,0349 0,0912 -0,2578 0,4400 0,1132 
 

TES EMISS 14 -0,0229 0,0611 -0,0793 -0,2527 0,5167 
 

 



80 
 

 

Figure 5.33 RGB color composite of principal components of band emissivities (R: PC1, G: PC2, B: PC3). Note that the 
white area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.34 RGB color composite of principal components of band emissivities (R: PC2, G: PC3, B: PC4). Note that the 
white area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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Figure 5.35 RGB color composite of principal components of band emissivities (R: PC3, G: PC4, B: PC5). Note that the 
white area on the figure represents the vegetation. See Figure 2.2 for legend of the inset map. 
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSION 
 

 

The purpose of this study was to evaluate the ASTER multispectral data for lithological 

discrimination and mapping; more precisely, to evaluate the capacity and usability of emissivity 

with respect to conventional remote sensing techniques such as PCA, decorrelation stretch and 

spectral indices. This chapter includes discussions on the findings in this study, limitations, 

recommendations for future studies and conclusion. 

6.1. Discussions 

The RGB color composites images produced using preprocessed ASTER VNIR and SWIR data is 

used only for preliminary interpretation which is mainly based on known physico-chemical 

properties of the materials. Based only on these color composites surface material 

discrimination and mapping is not feasible since the information embedded in the images is not 

greatly different in immediate vicinity. 

The results of the principal component analysis showed that through interpretation of RGB 

color composites produced using principal components is capable to discriminate surface 

materials based on the variance between the materials. Based on the selection of the principal 

components the materials delineated may change. In this study, the combinations of principal 

components led mainly discrimination of continental red clastics (İncik Formation) and 

evaporites (Tuğlu and Bozkır Formations). Discrimination of two evaporitic units separately, 

however, is not explicit. Only one of the RGB color composite was capable to discriminate 

Bozkır and Tuğlu formations tentatively. Another RGB color composite was capable to 
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discriminate Paleocene-Eocene units in the north-east of the image. The principal component 

analysis has an intrinsic identification problem of the materials. This can be considered being 

the main drawback of the PCA that is the principal components are defined mathematically so 

that the maximum variance in the image is guaranteed however what does an individual 

component represent is not certain. Identification of principal components needs either 

additional data such as geological map and/or land-cover map or direct field observations. In 

this study, the geological map of the study area is utilized for identification of the principal 

components.  

Decorrelation stretch eliminates this draw-back through retransformation of the component to 

their original coordinate system such that the resultant components exactly match the input 

data but the contrast is enhanced. Therefore, the corresponding ASTER band of each color is 

known and as long as the spectral response of materials is known it can be used for surface 

material discrimination and also identification. The results of the decorrelation stretch was 

capable of discriminating clastics (İncik Formation) and evaporites (Tuğlu and Bozkır Formation), 

however, discrimination of evaporitic units separately was not possible.  

Spectral indices are defined based on empirical analysis along with the spectral responses of 

the surface materials. Essentially, the idea behind spectral indices is not to discriminate first 

and identify the material but rather to discriminate the material through identification. In other 

words, spectral indices focus on specific materials and identifies on the image. Since the 

number of the indices is limited it can only be utilized for limited minerals. The main drawback 

of utilizing spectral indices is that even though it relies on numerical calculation there are no 

absolute values that would show the presence of the material and these results of calculations 

are not reproducible. In other words, the indices are scene dependent and as are not 

normalized it is not possible to compare between scenes. In that manner it also requires visual 

interpretation either on image or through field validation. 

When it is compared to the previous methods used, using emissivity for surface discrimination 

is quite unused and needs more inspection and evaluation. The results obtained in this study 

are rather peculiar. Regardless of the band combination used for the RGB color composites 

anomaly regions are presented in the same localities on images. These anomalous regions can 

be delineated from surroundings however identification of these regions is not possible and 
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requires field observation. The field observations showed that the anomalous regions 

correspond to the areas bearing organic matter at various amounts. Note that discrimination of 

the organic matter bearing surface material has not been possible through utilizing only VNIR 

and SWIR bands due to the fact that the organic matter in surface materials dominates the 

spectral response of the materials. Clark (1983) stated that intimate mixtures of clay and 

organic matter cause non-linear aspects on reflectance spectra. Organic matter as low as 2.5% 

in clay flattens the reflection and absorption features while not changing the rest of the 

reflectance spectra (Clark, 1999). This feature makes discrimination and identification of the 

materials that bears organic matter impossible. In that regard, utilizing emissivity for surface 

material discrimination shows potential and needs further assessment.  

On the other hand, visual interpretation of RGB color composites of band emissivities is not 

capable of discriminating surface materials as in the previous materials. In other words, except 

the anomalous regions no distinct unit stands out on the RGB color composites of band 

emissivities. The results of the principal component analysis of emissivities, however, 

highlighted several features of surface materials. It can be said that along with the PCA the 

level of discrimination has increased. In other words, PCA of TIR band emissivities was capable 

to discriminate surface materials than PCA of VNIR and SWIR band radiances. Having said that 

PCA still has its intrinsic draw back that is it is not possible to identify what is highlighted and 

need field validation. Nonetheless, it provides spatial information for mapping purposes. When 

the results of PCA compared with the visual interpretation of RGB color composite the same 

localities that have organic matter content stand out as one of the principal components and 

highlighted as very light green. It can be said that utilizing TIR emissivity values characteristic 

for materials would be more efficient rather than utilizing radiance values particularly in PCA. 

For spectral indices method, however, utilizing TIR radiances or TIR emissivities would not 

change the final output. Although the quantitative values are changed the pattern and the 

brighter regions that show the locations of the minerals stay the same. Therefore, utilizing 

emissivity values for spectral indices is not worth, unless the target is large and homogenous 

enough to create a particular spectral character. Note that the process including but not limited 

to temperature-emissivity separation is not straightforward and user-friendly.  
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6.1.1. Discussion on Research Questions 

1. The results show that utilizing emissivity has potential for surface material 

discrimination and mapping. Through anomalous regions and pixels different units that 

have distinct spectral responses can be delineated visually. Furthermore, principal 

component analysis of emissivities also showed that emissivities bear representative 

information regarding the surface materials. The main draw-back here is that distinct 

units can be discriminated but not identified without additional data such as geological 

map and/or field observation. 

2. The anomalous pixels or regions detected through visual interpretation of emissivities 

and PCA of emissivities could not be discriminated through previously used techniques. 

Therefore, it can be said that using emissivitities can increase the discrimination level 

to some extend at least for some of the specific materials. In this study, as mentioned 

before the field validations showed that the anomalous regions detected contains 

organic matter which could not be discriminated by any of the previous methods.  

6.1.2. Limitations 

1. The atmospheric effect in the thermal bands of ASTER is compensated through ISAC 

(In-scene Atmospheric Compensation) which provides ground-leaving radiance as 

explained before. The ISAC uses merely in-scene parameters for atmospheric 

compensation while the local atmospheric parameters and conditions on the 

acquisition date are not known explicitly. Since the atmospheric parameters are not the 

main concern for this study utilizing ISAC for atmospheric compensation is considered 

being sufficient. However, should the atmospheric parameters are in question a 

radiative transfer model could be used for recovering these parameters quantitatively. 

Moderate Resolution Atmospheric Transmission (MODTRAN) a computer program 

designated to model the atmospheric propagation of radiation. Using MODTRAN for 

recovering atmospheric parameters and using them for atmospheric correction may 

refine the land-leaving radiance since local parameters are utilized. Note that removal 

of the reflected down-welling sky irradiance in NEM module of TES algorithm is 

iterative. A reflection factor (1-Ɛ) accompanies the down-welling sky irradiance. Since 

the maximum emissivity value is selected for NEM is greater than 0.9 (mostly 0.96 for 



87 
 

surface material) the effect of the down-welling sky irradiance on the land-leaving 

radiance would not be significant. 

2. The spatial resolution of TIR bands of ASTER (90m) is quite coarse for reflecting detailed 

information about surface materials. Spectral mixing is one of the main draw-back of 

TIR. In other words, one ASTER TIR pixel covers 8100 meter-square (8.1 decare) on the 

Earth’s surface which likely to comprise different surface materials in its extent. 

Therefore, unless the materials have broad extent it is highly possible to be missed by 

ASTER TIR pixels or near homogenously mixed materials having broad extent clay, 

organic matter and gypsum for our case can show a surface anomaly and be seen as a 

distinct unit through visual interpretation of emissivity images. Note that without field 

validation identification of such cases would not be possible. 

3. Quantitative comparison and/or classification of surface materials through emissivity 

values are not seem to be feasible. Two reasons govern this argument: (1) Laboratory 

spectrum results which are used for emissivity extraction represents the materials 

under constant temperature. Note that emissivity of a material will change with change 

in its temperature and this change is not straightforward to be predicted. Moreover, as 

stated before the emissivity values of surface material vary 0.9 and 1.0 which is quite 

narrow for detection of changes. This change in emissivity values is thought to be order 

of thousandth to ten-thousandth which requires sensitive calculation and classification 

procedure. (2) Emissivity values of surface materials would be affected by physical 

and/or slight chemical weathering, thin acute vegetation and again thin acute dust/soil 

cover on the material.  

4. In the TES algorithm due to its intrinsic mathematical approach some of the resultant 

pixels are saturated and have emissivity values greater than 1.0 which is obviously not 

possible in the nature. These pixels create noise on the data and identified with salt-

pepper pattern. Apart from that emissivity images inherit the systematic noise 

presented in ASTER TIR data which affect the image quality. 

5. The radiance readings of pixels are affected by the insolation therefore based on 

topography the incident radiation may vary which will affect the calculations and 

interpretations of both temperature and emissivity. For instance, while foot slopes are 
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illuminated back slopes would remain in shadow which will directly affect the 

calculation of surface brightness temperature and therefore surface material emissivity. 

6.1.3. Recommendations for Future Studies 

1. As stated in the limitations MODTRAN can be used for atmospheric correction and 

recovering atmospheric parameters if those parameters are in question. Moreover, 

using these parameters through NEM module while reflected sky irradiance is removed 

iteratively, the maximum emissivity values can also be refined for better NEM outputs. 

2. The effect of insolation discussed in the previous section would be compensated in 

order to have more homogenous distribution of temperature and emissivity. The 

insolation parameters can be calculated through software such as ArcGIS which provide 

direct and diffuse insolation images separately. Accordingly, the dimly illuminated 

pixels such as back slopes would be illuminated artificially or more precisely the 

illumination would be increased artificially in order to have homogenous distribution 

on the original image. 

3. Instead of multispectral spaceborne data having low spatial and spectral resolution, 

hyperspectral airborne data would be utilized. Airborne hyperspectral data for TIR can 

be obtained from HyMap, EPS-H (Environmental Protection System), DAIS 21115 and 

DAIS 7915 (Digital Airborne Imaging Spectrometer) sensors. One of the advantages of 

using airborne data would be acquisition of data in different spatial resolutions. 

6.2. Conclusion 

Utilizing emissivity values possesses significant potential for surface material discrimination and 

mapping since it shows diversified properties of materials. Particularly, for surface materials 

bearing organic matter that has not been possible through utilizing VNIR and SWIR radiances. 

Furthermore, utilizing emissivity values in PCA increase the level of discrimination for the 

surface materials even further. Despite its potential since the utilization of emissivity values are 

rather unused throughout in literature and new, further accuracy assessment and field 

validation are also needed. Emissivity utilization for discrimination of organic matter bearing 

surface materials should be tested on different and preferably well-known areas that have 

diversified environmental (vegetation, temperature, atmospheric parameters etc.) and 

observational (date and time of the observation, azimuth and solar angle) settings.  
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