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ABSTRACT

ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION
DOMINATED OPTIMAL CONTROL PROBLEMS

Yücel, Hamdullah

Ph. D., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

July 2012, 156 pages

Many real-life applications such as the shape optimization of technological devices, the iden-

tification of parameters in environmental processes and flow control problems lead to opti-

mization problems governed by systems of convection diffusion partial differential equations

(PDEs). When convection dominates diffusion, the solutions of these PDEs typically exhibit

layers on small regions where the solution has large gradients. Hence, it requires special nu-

merical techniques, which take into account the structure of the convection. The integration

of discretization and optimization is important for the overall efficiency of the solution pro-

cess. Discontinuous Galerkin (DG) methods became recently as an alternative to the finite

difference, finite volume and continuous finite element methods for solving wave dominated

problems like convection diffusion equations since they possess higher accuracy.

This thesis will focus on analysis and application of DG methods for linear-quadratic convec-

tion dominated optimal control problems. Because of the inconsistencies of the standard sta-

bilized methods such as streamline upwind Petrov Galerkin (SUPG) on convection diffusion

optimal control problems, the discretize-then-optimize and the optimize-then-discretize do not
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commute. However, the upwind symmetric interior penalty Galerkin (SIPG) method leads to

the same discrete optimality systems. The other DG methods such as nonsymmetric interior

penalty Galerkin (NIPG) and incomplete interior penalty Galerkin (IIPG) method also yield

the same discrete optimality systems when penalization constant is taken large enough. We

will study a posteriori error estimates of the upwind SIPG method for the distributed uncon-

strained and control constrained optimal control problems. In convection dominated optimal

control problems with boundary and/or interior layers, the oscillations are propagated down-

wind and upwind direction in the interior domain, due the opposite sign of convection terms in

state and adjoint equations. Hence, we will use residual based a posteriori error estimators to

reduce these oscillations around the boundary and/or interior layers. Finally, theoretical anal-

ysis will be confirmed by several numerical examples with and without control constraints.

Keywords: Optimal control problems, discontinuous Galerkin Method, convection dominated

problems, adaptive mesh refinement, a posteriori estimates
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ÖZ

KONVEKSİYON AĞIRLIKLI ENİYİLEMELİ KONTROL PROBLEMLERİNİN
UYARLAMALI KESİNTİLİ GALERKİN YÖNTEMLERİYLE ÇÖZÜMÜ

Yücel, Hamdullah

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Temmuz 2012, 156 sayfa

Gerçek yaşamda karşılaşılan, teknolojik sistemlerin eniyileme yöntemleriyle kontrolü, çevresel

süreç içindeki parametrelerin belirlenmesi, akışkan kontrol problemleri gibi çok sayıda prob-

lem, konveksiyon difüzyon terimleri içeren kısmi türevli denklem sistemlerinden oluşan eniy-

ileme modelleri şeklindedir. Konveksiyon terimlerinin difüzyon terimlerinden çok daha büyük

olduğu durumlarda, bu tür denklemlerin çözümleri, çözümün yüksek eğime sahip olduğu

bölgelerde katmanlar oluşturmaktadır. Bu tür kısmi türevli denklemlerin sayısal çözümleri

genelde istenmeyen salınımlar ürettiğinden, konveksiyon teriminin yapısı göz önüne alınarak,

uygun yöntemlerin uygulanması gerekmektedir. Problemdeki uzay değişkenlerinin ayrıklaştırılması

ve eniyileme yöntemlerinin entegrasyonu, problemin çözümünün elde edilmesi sürecinin ver-

imliligi açısından da önemlidir. Son yıllarda, sınır ya da iç bölgelerde salınımlar gösteren

konveksiyon ağırlıklı denklemlerin sayısal çözümlerinde, süreksiz Galerkin sonlu eleman-

lar yöntemi, yüksek mertebeden kesinliklikte iyi sonuçlar verdiğinden sonlu farklar, sonlu

hacimler ve sürekli sonlu elemanlar yöntemlerine bir seçenek olarak ortaya çıkmıştır.

Bu tez, konveksiyon ağırlıklı ikinci dereceden doğrusal eniyileme kontrol problemleri için
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süreksiz Galerkin yöntemlerinin çözülmesini ve analizini içermektedir. Konveksiyon ağırlıklı

eniyileme problemlerinin kararlaştırılmasında kullanılan standart sonlu elemanlar yöntemleri

eniyileme problemleri için tutarsızlıklar oluşturduğundan, eniyilemeli kontrol probleminin

doğrudan ayrıklaştırılmasıyla elde edilen sonuçlarla, eniyileme koşullarından elde edilen sis-

teminin ayrıklaştırılması sonucu elde edilen sonuçlar birbirinden farklılıklar göstermektedir.

Buna karşın, simetrik süreksiz Galerkin yöntemleri aynı ayrık eniyileme koşullarını vermek-

tedir. Simetrik olmayan, süreksiz Galerkin yöntemleri ise ancak cezalandırma sabiti yeterince

büyük alındığnda benzer ayrık eniyileme koşullarını oluşturmaktadır. Sayısal sonuçları içeren

sonradan hata tahminleri kısıtsız ve kontrol kısıtlı eniyileme kontrol problemleri üzerinde

simetrik kesintili Galerkin yöntemi kullanılarak elde edilmiştir. Sınır ya da iç katmanlara

sahip konveksiyon ağırlıklı eniyileme problemleri, durum ve eşlenik kısmi türevli denklem-

lerinin zıt yönlü konveksiyon terimi içermesinden dolayı hem konveksiyon teriminin yönünde

hem de onun ters yönünde salınımlar yapar. Sınır ya da iç katmanlar üzerindeki bu salınımları

azaltmak için uyarlamalı ağ daraltma yöntemi kullanıldı. Son olarak, kısıtsız ve kontrol kısıtlı

eniyileme örneklerinden elde edilen sayısal sonuçlar teorik analizden elde edilen sonuçları

doğrulamaktadır. Bu da kesintili Galerkin yöntemlerinin eniyileme kontrol problemleri üzerindeki

etkinliğini göstermektedir.

Anahtar Kelimeler: Eniyilemeli kontrol problemleri, kesintili Galerkin yöntemleri, konvek-

siyon ağırlıklı problemler, uyarlamalı ağ yöntemleri, sonradan hata tahminleri

vii



To my family

viii



ACKNOWLEDGMENTS

It is a great pleasure to have opportunity to express my thankfulness to all those people who

have helped in the presentation of this thesis.

First of all, I would like to thank my supervisor Prof. Dr. Bülent Karasözen for invaluable
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DISCONTINUOUS GALERKIN METHODS . . . . . . . . . . . . . . . . . 7

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Trace Theorems . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Cauchy-Schwarz’s and Young’s Inequalities . . . . . . . . 10

2.2 Discontinuous Galerkin Methods for Elliptic Problems . . . . . . . . 10

2.2.1 The Primal Formulation of DG Methods and Their Properties 10

2.2.2 Examples of DG Methods . . . . . . . . . . . . . . . . . 14

2.2.2.1 Interior penalty method . . . . . . . . . . . . 14

2.2.2.2 The local discontinuous Galerkin method . . . 15

2.2.2.3 The compact discontinuous Galerkin method . 16

2.3 Discontinuous Galerkin Methods for Convection Diffusion Problems 18

2.3.1 Discontinuous Galerkin scheme . . . . . . . . . . . . . . 19

2.3.2 Finite Element Spaces . . . . . . . . . . . . . . . . . . . 21

xi



2.3.3 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Derivative Transformations . . . . . . . . . . . . . . . . . 24

2.3.5 Numerical Quadrature . . . . . . . . . . . . . . . . . . . 25

2.3.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . 25

3 DISTRIBUTED OPTIMAL CONTROL PROBLEMS . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Discretize-then-Optimize Approach . . . . . . . . . . . . . . . . . . 35

3.3 Optimize-then-Discretize Approach . . . . . . . . . . . . . . . . . . 39

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 DISTRIBUTED OPTIMAL CONTROL PROBLEMS WITH ADAPTIVITY 48

4.1 The Adaptive Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A Posteriori Error Estimation . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Auxiliary Forms and Their Properties . . . . . . . . . . . 55

4.2.2 Approximation Operators . . . . . . . . . . . . . . . . . . 57

4.2.3 Reliability and Efficiency of a Posteriori Error Estimator . 58

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 DISTRIBUTED OPTIMAL CONTROL PROBLEMS WITH CONTROL CON-
STRAINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Prime-Dual Active Set (PDAS) Strategy . . . . . . . . . . . . . . . 99

5.2 A Posteriori Error Analysis . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Unilateral Control Constraint . . . . . . . . . . . . . . . . 104

5.2.2 Bilateral Control Constraints . . . . . . . . . . . . . . . . 108

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 124

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A MATLAB Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Sparse Matrix in MATLAB . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Multiprod Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 The Mesh Data Structure . . . . . . . . . . . . . . . . . . . . . . . 134

A.4 Optimal Control Problems . . . . . . . . . . . . . . . . . . . . . . . 137

xii



A.5 Global Matrices and Right-Hand Side Vector . . . . . . . . . . . . . 139

A.5.1 Volume Contributions . . . . . . . . . . . . . . . . . . . . 140

A.5.1.1 Local matrices on volume . . . . . . . . . . . 141

A.5.2 Face Contributions . . . . . . . . . . . . . . . . . . . . . 142

A.5.2.1 Local matrices on faces . . . . . . . . . . . . 144

A.6 Adaptivity Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.6.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.6.2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.6.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 151

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiii



LIST OF TABLES

TABLES

Table 2.1 Some DG methods with their numerical fluxes . . . . . . . . . . . . . . . . 13

Table 2.2 Properties of the DG methods . . . . . . . . . . . . . . . . . . . . . . . . . 14

Table 4.1 Evolution of values of the cost functional J(yh, uh) for a sequence of uni-

formly refined meshes with ε = 10−3 in Example 4.3.5. . . . . . . . . . . . . . . 92

Table 4.2 Evolution of values of the cost functional J(yh, uh) for a sequence of uni-

formly refined meshes with ε = 10−5 in Example 4.3.5. . . . . . . . . . . . . . . 93

Table 4.3 Evolution of values of the cost functional J(yh, uh) for a sequence of uni-

formly refined meshes with ε = 10−7 in Example 4.3.5. . . . . . . . . . . . . . . 93

Table 5.1 Convergence results on uniform mesh in Example 5.3.1. . . . . . . . . . . . 111

Table 5.2 Comparison of the error on L2 norm of y, p and u on uniform and adaptive

meshes for ε = 10−4 in Example 5.3.2. . . . . . . . . . . . . . . . . . . . . . . . 114

Table 5.3 Evolution of values of the cost functional J(yh, uh) for a sequence of uni-

formly refined meshes in Example 5.3.3. . . . . . . . . . . . . . . . . . . . . . . 118

Table 5.4 Evolution of values of the cost functional J(yh, uh) for a sequence of adap-

tively refined meshes in Example 5.3.3. . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



LIST OF FIGURES

FIGURES

Figure 2.1 Affine transformation from Reference triangular element Ê to physical el-
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CHAPTER 1

INTRODUCTION

Many real-life applications such as the optimization of technological devices [80], the op-

timal control of systems [47], the identification of parameters in environmental process and

flow control problems [37, 44, 83] lead to optimization problems governed by systems of con-

vection diffusion partial differential equations (PDEs). In these systems, the convection term

dominates the diffusion term, in general; boundary and/or interior layers occur on a small

region with large derivatives of the solution. Boundary layers stem out since the interior

solution having strong convection suddenly has to match the Dirichlet boundary conditions

on the outflow boundary, whereas interior layers arise a discontinuity at the inflow boundary

data. Hence, the special numerical techniques considering the structure of the convection are

needed to solve these PDEs numerically. It is well known that the standard Galerkin finite

element method is not suitable for the solution of convection diffusion equations. To enhance

the stability and the accuracy of solution of the convection dominated problems, several sta-

bilization techniques have been proposed and analyzed such as the streamline upwind Petrov

Galerkin (SUPG) [61], edge stabilization Galerkin method [27]. However, to find a suitable

stabilization parameter depending on convection term is not always easy while using the stabi-

lization techniques. Hence, discontinuous Galerkin (DG) methods having free parameters are

introduced in [5, 102]. DG methods have recently become popular to solve wave dominated

problems like convection diffusion equations. They have higher accuracy and work better in

complex geometries with respect to standard continuous Galerkin methods. Additionally, DG

methods have greater flexibilities to locally adapt the mesh or the polynomial degree of the

basis functions and can capture possible discontinuous in the solution due to the discontinu-

ous approximation spaces. The other interesting property of DG methods is conservation of

mass on each mesh element. This local mass conservation property of DG methods makes
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them to be a good candidate to solve in flow and transport problems. Further, DG methods

have a compact formulation since the solution within each element is not reconstructed by

looking to neighboring elements. Its compact formulation can be applied near boundaries

without special treatment, which greatly increases the robustness and accuracy of any bound-

ary condition implementation. The compact form of the DG method also makes them well

suited for parallel computer platforms. Because of that, DG methods have become popular

for convection dominated equations [7, 59].

In this thesis, we consider the linear-quadratic optimal control problems

minimize J(y, u) :=
1
2

∫
Ω

(y(x) − yd(x))2dx +
ω

2

∫
Ω

u(x)2dx (1.1)

governed by convection diffusion equations

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f (x) + u(x), x ∈ Ω, (1.2a)

y(x) = gD(x), x ∈ Γ, (1.2b)

where Ω be a bounded open, convex domain in R2 with boundary Γ = ∇Ω. Let f , yd ∈

L2(Ω), gD ∈ H3/2(Γ), β ∈ (W1,∞(Ω))d and r ∈ L∞(Ω) be given functions with r − 1
2∇ · β ≥ 0

a.e. in Ω, and let ε, ω > 0 be given scalars.

The main aim of an optimal control problem is that a state denoted by y should be approxi-

mated a given desired state yd as well as possible by using a control variable u. The objective

function J(y, u), which should be minimized, consists of the measure of approximate state

to the desired state and a term penalizing the high cost of control. In this thesis, the con-

straint of the optimization problem is the partial differential equations, such as convection

diffusion equations. Additionally, there can be constraints on the control and/or the state, like

a lower and/or an upper bounds, i.e., ua ≤ u ≤ ub with constant ua and ub. Such an additional

constraints change the structure of optimal control problems. The optimality conditions of

unconstrained optimal control problems consists of a system of partial differential equations,

whereas variational inequalities additionally appear in the system for control and/or state con-

strained optimal control problems.

The numerical solution of the optimization problems governed by convection diffusion PDEs

(1.1)-(1.2) require additional challenges, unlike the single convection diffusion equations

(1.2). One reason why the solution of the optimization problems governed by convection

diffusion PDEs (also referred to as the state PDEs) provides additional challenges is that the
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optimality conditions of such problems also involve another convection diffusion PDE, the

so-called adjoint PDE (1.3) with the negative convection term.

−ε∆p(x) − β(x) · ∇y(x) + (r(x) − ∇ · β(x))y(x) = −(y(x) − yd(x)), x ∈ Ω, (1.3a)

p(x) = 0, x ∈ Γ. (1.3b)

In optimal control context, the following question arises whether it is better to formulate the

control problem on the continuous level and then discretize, ”optimize-discretize” or to dis-

cretize the control problem and derive optimality system, ”discretize-optimize”. It is known

that both approaches lead to same discretization schemes when pure Galerkin finite element

discretization is used. The standard stabilized methods such as SUPG [61] are not well suited

for the optimal control problems governed by convection diffusion equations. It has been

shown in [35] that the optimality system of the SUPG discretized optimal control problem

is not equivalent to the SUPG discretization of the optimality system, i.e., optimization and

discretization do not commute. To overcome this shortcoming, several symmetric stabiliza-

tion methods have been recently developed leading the same discrete optimality system, such

as local projection stabilization [18] and edge stabilization [54, 104] to solve unconstrained

and control constrained problems governed by convection diffusion equations. For convec-

tion dominated optimal control problems, Leykekhman and Heinkenschloss [48] have shown

that the local error of the SUPG discretized optimal control problem is not optimal even if

the error is computed locally in region away from the boundary layer. Then, this problem

has been overcome by using the symmetric interior penalty Galerkin (SIPG) method in [73].

The reason why the SIPG method gives an optimal convergence is the weak treatment of

DG methods for boundary conditions, whereas SUPG methods have strongly imposition of

boundary conditions. While solving control constrained optimal control problems governed

by elliptic equations, different approaches have been proposed and applied: fully discretiza-

tion [4, 28, 29, 90] and variational discretization [52], i.e., the control is not discretized, post-

processing [79]. For optimal control problems governed by convection diffusion equations, it

has been shown in [18, 104] that the priori convergence rate of control is O(h3/2) by using the

piecewise linear discretization of the control, whereas it is improved to O(h2) by using vari-

ational discretization in [54]. Furthermore, mixed finite elements [55] and Raviart-Thomas

mixed FEM/DG [105] are applied to optimal control problems governed by convection diffu-

sion equations.

The optimal control problems governed by convection dominated PDEs have boundary and/or
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interior layers generated in the state PDE as well as in the adjoint PDE. Errors caused by

spurious oscillations are propagated up- and downwind from the layers due to the coupling

of convection diffusion PDEs having the opposite convection. This motives the use of mesh

adaption for the solution of convection dominated optimal control problems. With the help

of adaptive finite element methods (AFEMs), the regions can be found where the solution is

hard to approximate with a less degrees of freedom and as less computational time. AFEMs

and the a posteriori error analysis of finite elements methods became a standard approach in

the finite element literature in solving single equations and optimal control problems. There

exist mainly two approaches in mesh adaptivity, the one with residual based [3, 8, 97] and

goal-oriented [17, 23, 69] estimators. Explicit a posteriori estimators of DG methods applied

to pure diffusion problems have been studied in [2, 14, 20, 57, 64, 66, 88]. The convection

diffusion case has been studied in [43, 59, 91]. In [91] Schötzau and Zhu have extended the

results in [99] to SIPG discretization for the convection diffusion problems by developing a

robust estimator with respect to the ratio of diffusion and convection coefficients.

The a posteriori error analysis of AFEM for elliptic optimal control problems are studied in

[74] for residual-type a posteriori error estimators and for goal-oriented dual weighted estima-

tors in [10, 49]. There are few works using AFEM for convection dominated optimal control

problems. In [38], Dedè and Quarteroni have used a posteriori error estimates with a stabi-

lization method applied to the Lagrangian functional for optimal control problems governed

by convection diffusion equations. Nederkoorn in [81] has combined adaptive finite element

methods with SUPG stabilization introduced in [35], to linear-quadratic convection domi-

nated elliptic optimal control problems. For control constrained optimal control problems

governed by convection diffusion equations, a posteriori error estimates have been used with

the edge stabilization [54, 104] and with RT mixed FEM/DG [105]. For DG discretization

case, there are a few work for the solution of optimal control problems governed by convection

diffusion equations. A priori error estimator has been derived in [106] using the local discon-

tinuous Galerkin (LDG) method, whereas both a priori and a posteriori error estimates have

been given in [103] using nonsymmetric interior penalty Galerkin (NIPG) method. However,

to our knowledge there is any numerical results to illustrate the performance of theoretical

results in literature.

The goal of this thesis is the development, analysis and application of discontinuous Galerkin

(DG) methods for linear-quadratic elliptic convection dominated optimal control problems.
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We have investigated basic questions related to the issue whether a DG discretization of the

optimal control problem leads to the same result as the same DG discretization applied to the

optimality system. In addition, we have applied AFEM to SIPG discretized convection dom-

inated optimal control problems (1.1)-(1.2) for both unconstrained and control constrained

case. We have analyzed the reliability and the efficiency of the error estimator using data

approximation errors for the discretized optimal control problem. We use the upper and lower

bounds given in terms of energy norm and a semi-norm associated with the convective terms

for the state, adjoint variables as in [91] and [99]. For the control, we use the error estimators

in L2 norm, which were introduced [74, 103].

This thesis first describes the DG methods for a single partial differential equations and op-

timal control problems governed by partial differential equations, and then applies the adap-

tive finite element method to solve unconstrained and control constrained optimal control

problems governed by convection diffusion equations. The rest of the thesis is organized as

follows:

In Chapter 2, we firstly describes the DG methods for elliptic problems. The derivation of

some DG methods using numerical fluxes and comparison of DG methods in terms of con-

sistency, adjoint consistency, rate of convergence are surveyed. Then, convection diffusion

problems with DG methods are introduced by giving error analysis in energy norm. In Chap-

ter 3, the unconstrained optimal control problems are described and analyzed by the finite

element discretization and DG discretization. The diffusion term is discretized by symmetric

interior penalty Galerkin (SIPG), the nonsymmetric interior penalty Galerkin (NIPG) or in-

complete interior penalty Galerkin (IIPG) method, whereas the convection term is discretized

by upwind discretization. Then, two numerical approaches, the discretize-then-optimize and

the optimize-then-discretize, to solve the optimal control problems governed by convection

diffusion equations are presented and compared by using DG methods.

In Chapter 4, the unconstrained convection dominated optimal control problems are solved

using AFEM with upwind SIPG discretization. Each step of the adaptive loop is described.

We give a robust posteriori error estimator by showing the reliability and efficiency of it.

Numerical examples are also presented to illustrate the performance of the DG estimator. In

Chapter 5, we solve control constrained optimal control problems governed by convection

diffusion equations using upwind SIPG discretization. The a posteriori error estimator given
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in Chapter 4 is extended to control constrained case. Similar to the works in Chapter 4,

the reliability and the efficiency of the error estimator is analyzed using data approximations

errors for the discretized optimal control problem. Furthermore, we present the numerical

results to illustrate the performance of the adaptive method on convection dominated control

constrained optimal control problems.

In Appendix A, the MATLAB routines used for solving the optimal control problems using

DG and AFEM are explained.

6



CHAPTER 2

DISCONTINUOUS GALERKIN METHODS

The discontinuous Galerkin method was firstly introduced for first-order linear hyperbolic

problems by Reed and Hill [86] in 1973. Independently of this work, Dougles, Dupont and

Wheeler [40, 102] and Arnold [5] introduced the discontinuous Galerkin methods for elliptic

and parabolic equations in seventies. In time, advanced versions of discontinuous Galerkin

methods have been presented and studied for elliptic problems in [9, 12, 26, 84, 89] and for

convection diffusion problems in [7, 13, 34, 46, 59].

One reason of why DG methods have been so popular is their flexibility with respect to mesh

and the local polynomial degree of the basis functions. Then, DG methods can handle com-

plicated geometries by the use of unstructured grids or hanging nodes. In addition, different

orders of approximations can be used with DG discretization on each element. Hence, hp-

methods [95] combining adaptively elements with variable size h and polynomial degree p

are especially suitable with DG methods. The other interesting property of DG methods is

conservation of mass on each mesh element. This local mass conservation property of DG

methods makes them to be a good candidate to solve in flow and transport problems. Further,

DG methods have a compact formulation since the solution within each element is not re-

constructed by looking to neighboring elements. Its compact formulation can be applied near

boundaries without special treatment, which greatly increases the robustness and accuracy of

any boundary condition implementation. The compact form of the DG method also makes

them well suited for parallel computer platforms. However, drawbacks of the DG methods

are the large number of degrees of freedom compared to standard finite element methods and

ill-conditioning of the matrices with increasing degree of the basis polynomials.

In this chapter, we firstly give information about the discontinuous Galerkin methods for el-
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liptic problems. We survey the derivation of some discontinuous Galerkin methods using

numerical fluxes and compare DG methods in terms of consistency, adjoint consistency, rate

of convergence. In the second part of this chapter, convection diffusion problems are intro-

duced by giving error analysis in energy norm, based on DG discretization.

2.1 Preliminaries

2.1.1 Sobolev Spaces

Let Ω be a bounded polygonal domain in Rd. For 1 ≤ p ≤ ∞ the vector spaces Lp(Ω) are

defined

Lp(Ω) =
{
υ Lebesgue measurable : ‖υ‖Lp(Ω) < ∞

}
with the norms

‖υ‖Lp(Ω) =

(∫
Ω

|υ(x)|p
)1/p

and

‖υ‖L∞(Ω) = ess sup{|υ(x)| : x ∈ Ω}.

We define

Lp
loc(Ω) = {υ Lebesgue meausurable : υ ∈ Lp(K) for all K ⊂ Ω compact},

C∞c (Ω) = {υ ∈ C∞(Ω̄) : supp(υ) ⊂ Ω compact}.

Definition 2.1.1 Let u ∈ L1
loc(Ω). If there exits a function w ∈ L1

loc(Ω) such that∫
Ω

wϕdx = (−1)|α|
∫

Ω

υDαϕdx, ∀ϕ ∈ C∞c (Ω),

then Dαu := w is called the α-th weak partial derivative of u.

Now, we introduce the Sobolev space Wk,p(Ω) by

W s,p(Ω) = {υ ∈ Lp(Ω) : υ has weak derivatives Dαυ ∈ Lp(Ω) for all |α| ≤ s}

with the norm

‖υ‖W s,p(Ω) =

∑
|α|≤s

‖Dαυ‖
p
Lp

1/p

, p ∈ [1,∞),

‖υ‖W s,∞(Ω) =
∑
|α|≤s

‖Dαυ‖L∞ .
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Remark 2.1.2 In the case p = 2, Hs(Ω)
de f
= W s,2(Ω). Then, we can write

Hs(Ω) = {υ ∈ L2(Ω) : ∀ 0 ≤ |α| ≤ s, Dαυ ∈ L2(Ω)},

associated with the Sobolev norm and the Sobolev seminorm, respectively, defined by

‖υ‖Hs(Ω) =

∑
|α|≤s

‖Dαu‖2Lp

1/2

,

‖υ‖Hs(Ω) = ‖∇sυ‖L2(Ω) =

∑
|α|=s

‖Dαυ‖2L2(Ω)

1/2

.

By using the subdivision domain ξh obtained by dividing the polygonal domain Ω into triangle

elements E, we define the broken Sobolev space by

Hs(ξh) = {υ ∈ L2(Ω) : ∀E ∈ ξh, υ|E ∈ Hs(E)},

associated with broken Sobolev norm and broken gradient seminorm, respectively, defined by

‖υ‖Hs(ξh) =

∑
E∈ξh

‖υ‖2Hs(E)


1/2

,

‖∇υ‖H0(ξh) =

∑
E∈ξh

‖∇υ‖2L2(E)


1/2

.

2.1.2 Trace Theorems

Theorem 2.1.3 [87, Theorem 2.5] Trace operators γ0 : Hs(Ω) → Hs−1/2(∂Ω) for s > 1/2

and γ1 : Hs(Ω) → Hs−3/2(∂Ω) for s > 3/2 which are extensions of the boundary values

and boundary normal derivatives, respectively, can be defined on the bounded domain Ω with

polygonal boundary ∂Ω. In addition, under the condition υ ∈ C1(Ω̄), these operators satisfy

the following conditions:

γ0υ = υ|∂Ω, γ1υ = ∇υ · n|∂Ω.

We need some trace inequalities that are used in analysis of the DG methods. These trace

inequalities are given by

||υ‖L2(e) ≤ Cth
−1/2
E ‖υ‖L2(E), (2.1a)

‖∇υ · n‖L2(e) ≤ Cth
−1/2
E ‖∇υ‖L2(E), (2.1b)

where the positive constant Ct is independent of diameter of E, hE .
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2.1.3 Cauchy-Schwarz’s and Young’s Inequalities

Both inequalities are the most used inequalities in analysis part of numerical methods. We

will use them at several places in this thesis also.

• Cauchy-Schwarz’s inequality:

|( f , g)Ω| ≤ ‖ f ‖L2(Ω)‖g‖L2(Ω), ∀ f , g ∈ L2(Ω). (2.2)

• Young’s inequality:

ab ≤
γ

2
a2 +

1
2γ

b2, ∀γ > 0, ∀a, b ∈ R. (2.3)

2.2 Discontinuous Galerkin Methods for Elliptic Problems

This section shows the derivation of discontinuous Galerkin methods for elliptic problems us-

ing numerical fluxes. Additionally, some properties of DG methods, i.e., consistency, adjoint

consistency, stability and convergence rates are presented and compared. Furthermore, we

explain the differences between interior penalty (symmetric interior penalty Galerkin (SIPG))

method, local discontinuous Galerkin (LDG) method [34] and its modified form, i.e., compact

discontinuous Galerkin (CDG) method [84].

2.2.1 The Primal Formulation of DG Methods and Their Properties

We consider the purely elliptic problem as a model problem:

−∇ · (ε∇y) = f , in Ω,

y = gD, on ΓD, (2.4)

ε
∂y
∂n

= gN , on ΓN ,

where Ω is a bounded domain in Rd with a boundary Γ = ΓD ∪ ΓN and d=1, 2 or 3 as the

dimension. In addition, f ∈ L2(Ω) and ε ∈ Rd.
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The problem (2.4) can be rewritten as a first order system of equations

−∇ · σ = f , in Ω, (2.5a)

σ = ε∇y, in Ω, (2.5b)

y = gD, on ΓD, (2.5c)

σ · n = gN , on ΓN , (2.5d)

where n is the outward unit normal to the boundary of Ω.

To obtain the weak formulation, we multiply (2.5a) and (2.5b) by test functions τ and υ,

respectively, and apply integration by parts on a subset of E of Ω.∫
E
σ · τ dx = −

∫
E

y∇ · τ dx +

∫
∂E

ynE · τ ds,∫
E
σ · ∇υ dx =

∫
E

fυ dx +

∫
∂E
σ · nEυ ds,

where nE is the outward unit normal to ∂E.

The broken Sobolev spaces given in Section 2.1.1 are natural spaces to work with the DG

methods since they depend strongly on the partition of domain. Then, the broken spaces

V(ξh) and Σ(ξh) associated with the triangulation ξh = {E} of Ω are introduced such as

V = {υ ∈ L2(Ω) | υ|E ∈ H1(E), ∀E ∈ ξh}, (2.6)

Σ = {τ ∈ [L2(Ω)]d | τ|E ∈ [H1(E)]d, ∀E ∈ ξh}. (2.7)

Then, the finite element subspaces Vh ⊂ V and Σh ⊂ Σ are

Vh = {υ ∈ L2(Ω) | υ|E ∈ Pk(E), ∀E ∈ ξh}, (2.8)

Σh = {τ ∈ [L2(Ω)]d | τ|E ∈ [Pk(E)]d, ∀E ∈ ξh}, (2.9)

where Pk(E) is the space of polynomial functions of degree at most k ≥ 1 on E.

Then, the DG formulation is such that: find yh ∈ Vh and σh ∈ Σh such that for all E ∈ ξh we

have ∫
E
σh · τdx = −

∫
E

yh∇ · (ετ)dx +

∫
∂E

ŷετ · nEds, ∀τ ∈ [Pk(E)]d, (2.10)∫
E
σh · ∇υdx = −

∫
E

fυdx +

∫
∂E
σ̂ · nEυds, ∀υ ∈ Pk(E), (2.11)

where σ̂ and ŷ are called the numerical fluxes which are approximations to σ = ε∇y and to

y, respectively. These fluxes can be thought as the local quantities depending on the traces
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of the edge e of functions yh|E1,E2 ,σh|E1,E2 and/or ε∇y|E1,E2 , where e ∈ E1 ∩ E2. To satisfy

conservation property in numerical methods, these functions require some basic properties

such as consistency, that is, ŷh = y|e and σ̂h = ∇y|e, for a smooth function y. In addition,

numerical fluxes, σ̂ and ŷ are called conservative if they are single-valued on e, that is ŷh|E1 =

ŷh|E2 and σ̂h|E1 = σ̂h|E2 , where e ∈ E1 ∩ E2. Thus, the conservative property of the numerical

fluxes implies adjoint consistency which is the consistency property of the adjoint problem of

(2.4).

To write the expressions (2.10) and (2.11) on the whole domain, we define an additional

notation as used in [6]. We split the set of all edges Γh into the set and Γ0
h of interior edges

of ξh and the set Γ∂h of boundary edges so that Γh = Γ∂h ∪ Γ0
h. With each edge e, we associate

a unit normal vector ne. If e is on the boundary Γ∂h, then ne is taken to be unit outward vector

normal to Γ∂h. If two elements Ee
1 and Ee

2 are neighbors and share one common side e, there

are two traces of υ and τ along e. Assume that the normal vector ne is oriented from Ee
1 to Ee

2,

then jump and average operators can be defined as

[τ] = (τ|Ee
1
− τ|Ee

2
) · ne, [υ] = (υ|Ee

1
− υ|Ee

2
) · ne,

{τ} = (τ|Ee
1

+ τ|Ee
2
)/2, {υ} = (υ|Ee

1
+ υ|Ee

2
)/2. (2.12)

Now, by summing (2.10) and (2.11) over all elements, the following expression is obtained:

find yh ∈ Vh and σh ∈ Σh such that∫
Ω

σh · τdx = −

∫
Ω

yh∇h · (ετ)dx +

∫
Γ0

h

ŷ[ετ]ds +

∫
Γ∂h

ŷετ · neds, ∀τ ∈ Σh, (2.13)∫
Ω

σh · ∇hυdx =

∫
Ω

fυdx +

∫
Γ0

h

σ̂ · [υ]ds +

∫
Γ∂h

υσ̂ · neds, ∀υ ∈ Vh.(2.14)

Note that, ∇h denotes the broken gradient operator, i.e., ∇hυ and ∇h · τ are functions whose

restriction to E is equal to ∇υ and ∇ · τ, respectively.

By using the following expression obtained integration by parts,

−

∫
Ω

υ∇h · τdx =

∫
Ω

τ · ∇hυdx −
∫

Γ0
h

([υ] · {τ} + {υ}[τ])ds −
∫

Γ∂h

υτ · neds.

Then, (2.13) can be rewritten as∫
Ω

σh · τdx =

∫
Ω

τ · (ε∇hyh)dx −
∫

Γ0
h

([yh] · {ετ} − {ŷ − yh}[ετ])ds (2.15)

+

∫
Γ∂h

(ŷ − yh)ετ · neds, ∀τ ∈ Σh.
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Finally, the DG formulation can be completed by defining the numerical fluxes σ̂ and ŷ in

terms of σh and uh. Different numerical fluxes yield different types of discontinuous Galerkin

methods. Some of them are summarized in Table 2.1 [6].

Table 2.1: Some DG methods with their numerical fluxes

Method ŷ σ̂

Bassi-Rebay [12] {yh} {σh}

Brezzi et al. [26] {yh} {σh} −C3{re([yh])}
LDG [34] {yh} −C2 · [yh] {σh} + C2[σh] −C1[yh]
CDG [84] {yh} −C2 · [yh] {σe

h} + C2[σe
h] −C1[yh]

IP [40] {yh} {∇hyh} −C1[yh]
Bassi et al. [12] {yh} {∇hyh} −C3{re([yh])}
Baumann-Oden [13] {yh} + nE · [yh] {∇hyh}

NIPG [89] {yh} + nE · [yh] {∇hyh} −C1[yh]
Babuška-Zlámal [9] (yh|E)|∂E −C1[yh]
Brezzi et al. [26] (yh|E)|∂E −C3{re([yh])}

Although the vector numerical flux σ̂ is conservative for all methods, the scalar flux ŷ is con-

servative for the first six methods listed in Table (2.1), so they are adjoint consistent because

of the conservative property of fluxes. However, the other DG methods in Table (2.1) are not

adjoint consistent. In fact, the Baumann-Oden method [13] and its stabilized version, the non-

symmetric interior penalty Galerkin method (NIPG) [89], have not even a symmetric primal

form. On the other hand, in spite of the symmetric primal forms of Babuška-Zlámal [9] and

Brezzi et al. [26], they are not adjoint consistent since they are not consistent.

The DG methods that are completely consistent and stable, i.e., LDG, CDG, IP, converge

with optimal order with respect to L2 norm and H1 norm. However, the inconsistent pure

penalty methods, i.e., Babuška-Zlámal [9], Brezzi et al. [26], do not achieve optimal order

convergence in L2. The methods having a lack of adjoint consistency, i.e., the method of

Baumann-Oden (k ≥ 2) [13] and its stabilized form, NIPG [89], has a suboptimal rate of con-

vergence in the L2 norm. The suboptimal rate is recovered when the superpenalized version

of NIPG method is used [87]. Although this superpenalty approach overcomes the subopti-

mality of NIPG method, it increases the condition number of the stiffness matrix (see Castillo

[30]). The results including consistency, adjoint consistency, stability and rate of convergence

in H1 and L2 for various DG methods are shown in Table 2.2.
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Table 2.2: Properties of the DG methods

Method Cons. A.C. Stab. H1 L2

Brezzi et al. [26] X X X hk hk+1

LDG [34] X X X hk hk+1

CDG [84] X X X hk hk+1

IP [40] X X X hk hk+1

Bassi et al. [12] X X X hk hk+1

NIPG [89] X × X hk hk

Babuška-Zlámal [9] × × X hk hk+1

Brezzi et al. [26] × × X hk hk+1

Baumann-Oden (k = 1) [13] X × × × ×

Baumann-Oden (k ≥ 2) [13] X × × hk hk

Bassi-Rebay [12] X X × [hk] [hk+1]

2.2.2 Examples of DG Methods

Now, we introduce some DG methods, i.e., interior penalty (symmetric interior penalty Galerkin

(SIPG)) method [5, 102], local discontinuous Galerkin (LDG) method [34] and compact dis-

continuous Galerkin (CDG) method [84] by numerical fluxes σ̂, ŷ.

2.2.2.1 Interior penalty method

The interior penalty method (also called symmetric interior penalty Galerkin (SIPG) method)

was introduced in the late 1970s by Arnold and Wheeler [5, 102]. The numerical fluxes (σ̂, ŷ)

in (2.14) and (2.15) are chosen as

σ̂ = {∇hyh} −C1[yh], ŷ = {yh},

for the interior faces, and

σ̂ = ∇hyh −C1(yh − gD), ŷ = gD on ΓD,

σ̂ = gNn, ŷ = yh on ΓN ,

for the boundary faces. Here, C1 is a penalty weighting function given by σeεh−1
e on each

e ∈ Γh with σe being a positive number.

To obtain the primal form of the SIPG method, we need the following lifting operators [6]
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r : [L2(Γ0
h)]d → Σh, l : L2(Γ0

h)→ Σh, and rD : L2(ΓD)→ Σh :∫
Ω

r(φ) · τdx = −

∫
Γ0

h

φ · {τ}ds, ∀τ ∈ Σh,∫
Ω

l(q) · τdx = −

∫
Γ0

h

q[τ]ds, ∀τ ∈ Σh, (2.16)∫
Ω

rD(q) · τdx = −

∫
ΓD

h

qτ · nds, ∀τ ∈ Σh.

By using the numerical fluxes in the equations (2.14) and (2.15) with τ = ∇hυ and lifting

operators introduced in (2.16), the following system is obtained:

aS IPG
h (yh, υ) = lS IPG

h (υ), ∀υ ∈ Vh, (2.17)

where the bilinear form aS IPG
h : Vh × Vh → R is given by

aS IPG
h (y, υ) =

∑
E∈ξh

(ε∇y,∇υ)E −
∑

e∈Γ0
h∪ΓD

h

({ε∇υ · ne}, [y])e

−
∑

e∈Γ0
h∪ΓD

h

({ε∇y · ne}, [υ])e +
∑

e∈Γ0
h∪ΓD

h

σeε

he
([y], [υ])e (2.18)

and the linear form lS IPG
h : Vh → R is given by

lS IPG
h (υ) =

∑
E∈ξh

( f , υ)E +
∑
e∈ΓD

h

(gD,−ε∇υ · ne +
σeε

he
υ)e +

∫
ΓN

h

υgNds. (2.19)

Numerical fluxes (σ̂, ŷ) of SIPG method are consistent and conservative. Then, the method is

symmetric and achieves optimal rates of convergence for both L2 and H1 norms. In addition,

the penalty parameter σe must be chosen large to make the bilinear form coercive and to

satisfy the convergence of the method.

2.2.2.2 The local discontinuous Galerkin method

The LDG method was introduced in [34]. For the LDG method, the numerical fluxes (σ̂, ŷ)

in (2.14) and (2.15) are given by

σ̂ = {σh} −C1[yh] + C2[σh],

ŷ = {yh} −C2 · [yh],

for the interior faces, and

σ̂ = σh −C1(yh − gD)n, ŷ = gD on ΓD,

σ̂ = gNn, ŷ = yh on ΓN ,
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for the boundary faces. Here, C1 is a positive constant and C2 is a vector which is defined for

each interior face according to

C2 =
1
2

(S E2
e

E1
e
− S E1

e

E2
e
)ne,

where S E2
e

E1
e
∈ {0, 1} is a switch which is defined for each element face. The switches always

satisfy that

S E2
e

E1
e

+ S E1
e

E2
e

= 1.

By using the numerical fluxes in the equations (2.14) and (2.15) with τ = ∇hυ and lifting

operators introduced in (2.16), the following system is obtained:

aLDG
h (yh, υ) = lLDG

h (υ), ∀υ ∈ Vh, (2.20)

where the bilinear form aLDG
h : Vh × Vh → R is given by

aLDG
h (y, υ) =

∫
Ω

∇hυ · (ε∇hy)dx −
∫

Γ0
h

([y] · {ε∇hυ} + {ε∇hy} · [υ])ds

−

∫
Γ0

h

(C2 · [y][ε∇hυ] + [ε∇hy]C2 · [υ])ds +

∫
Γ0

h

C1[y] · [υ]ds

+

∫
Ω

ε(r([y]) + l(C2 · [y]) + rD(y)) · (r([υ]) + l(C2 · [υ]) + rD(υ))dx

−

∫
ΓD

h

(ε∇hy · nυ + yε∇hυ · n)ds +

∫
ΓD

h

C1yυds (2.21)

and the linear form lLDG
h : Vh → R is given by

lLDG
h (υ) =

∫
Ω

fυdx −
∫

ΓD
h

gD(ε∇hυ + r([υ] + l(C2 · [υ])) · nds

−

∫
ΓD

h

ευrD(gD) · nds +

∫
ΓD

h

C1gDυds +

∫
ΓN

h

υgNds, ∀υ ∈ Vh. (2.22)

The LDG scheme is conservative, adjoint consistent and optimal convergence for L2 and H1

norms. However, the discretization is not compact in multiple dimensions in the sense of the

connection of the nonneighboring elements. These connections are caused by the product of

lifting operators in (2.21).

2.2.2.3 The compact discontinuous Galerkin method

The compact discontinuous Galerkin method was introduced in [84] by Peraire and Persson.

This method is designed to overcome the compactness problem of the LDG method. Here, the
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lifting operators in (2.16) are introduced slightly different. For all e ∈ Γ0
h, re : [L2(e)]d → Σh,

le : L2(e)→ Σh, and for each e ∈ ΓD, re
D : L2(e)→ Σh,∫

Ω

re(φ) · τdx = −

∫
e
φ · {τ}ds, ∀τ ∈ Σh,∫

Ω

le(q) · τdx = −

∫
e

q[τ]ds, ∀τ ∈ Σh, (2.23)∫
Ω

re
D(q) · τdx = −

∫
e

qτ · nds, ∀τ ∈ Σh.

Then, we will have

r(φ) =
∑
e∈Γ0

h

re(φ), l(q) =
∑
e∈Γ0

h

le(q), rD(q) =
∑
e∈Γ∂h

re
D(q).

The numerical fluxes (σ̂, ŷ) are chosen such that

σ̂ = {σe
h} −C1[yh] + C2[σe

h],

ŷ = {yh} −C2 · [yh],

for the interior faces, and

σ̂ = σe
h −C1(yh − gD)n, ŷ = gD on ΓD,

σ̂ = gNn, ŷ = yh on ΓN ,

for the boundary faces. By using the numerical fluxes in the equations (2.14) and (2.15) with

τ = ∇hυ and lifting operators introduced in (2.23), the following system is obtained:

aCDG
h (yh, υ) = lCDG

h (υ), ∀υ ∈ Vh, (2.24)

where the bilinear form aLDG
h : Vh × Vh → R is given by

aCDG
h (y, υ) =

∫
Ω

∇hυ · (ε∇hy)dx −
∫

Γ0
h

([y] · {ε∇hυ} + {ε∇hy} · [υ])ds

−

∫
Γ0

h

(C2 · [y][ε∇hυ] + [ε∇hy]C2 · [υ])ds +

∫
Γ0

h

C1[y] · [υ]ds

+
∑
e∈Γ0

h

∫
Ω

ε(re([y]) + le(C2 · [y]) + re
D(y)) · (re([υ]) + le(C2 · [υ]) + re

D(υ))dx

−

∫
ΓD

h

(ε∇hy · nυ + yε∇hυ · n)ds +

∫
ΓD

h

C1yυds (2.25)

and the linear form lCDG : Vh → R is the same as lLDG given in (2.22).

The only difference between the LDG and CDG schemes is the stabilization term involving

the product of the lifting functions. In spite of this difference, the CDG method inherits all the
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attractive features of the LDG method. In addition, the numerical experiments in [84] indicate

that the CDG scheme is slightly more stable than the LDG method and is less sensitive to the

element or interface orientation.

2.3 Discontinuous Galerkin Methods for Convection Diffusion Problems

In this section, we present the discontinuous Galerkin methods for convection diffusion equa-

tions. DG scheme is given by using SIPG [5, 102], NIPG [89] and IIPG [36] methods for the

diffusion term and upwind discretization [70, 86] for the convection term. Additionally, the

discontinuous finite element spaces, transformations between physical elements and reference

elements and basis functions are explained. Furthermore, we give error estimation of SIPG

method using energy norm.

We consider the following convection diffusion problem:

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f (x), x ∈ Ω,

y(x) = gD(x), x ∈ ΓD, (2.26)

where Ω is a bounded open, convex domain in R2 with boundary Γ = ∂Ω = ΓD.

Let us assume that

f ∈ L2(Ω), gD ∈ H3/2(ΓD), 0 < ε, β(x) ∈ W1,∞(Ω)2, and r ∈ L∞(Ω). (2.27a)

Further, we have following assumptions for r0 ≥ 0 and c∗ ≥ 0 :

r(x) −
1
2
∇ · β(x) ≥ r0 ≥ 0, x ∈ Ω, (2.27b)

|| − ∇ · β(x) + r(x)||L∞(Ω) ≤ c∗r0. (2.27c)

For the finite element discretization we consider a family ξh, h > 0, of partitions of Ω into

triangulations. We have two conditions for triangulations. The first one is a topological prop-

erty called as conforming property or compatibility of a triangulation ξh. If the intersection

of any two triangle E and E
′

in ξh is either consists of a common vertex, edge or empty. The

second requirement is the geometric structure. A triangulation ξh is called shape regular if

there exists a constant c0 such that

max
E∈ξh

h2
E

|E|
≤ c0,
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where hE is the diameter of E and |E| is the area of E.

The boundary edges are decomposed into edges Γ−h and Γ+
h corresponding to the inflow and

outflow boundaries, respectively:

Γ−h = {x ∈ ∂Ω : β(x) · n < 0}, Γ+
h = {x ∈ ∂Ω : β(x) · n ≥ 0},

where n is the outward normal to boundary of Ω at x ∈ ∂Ω.

Similarly, the inflow and outflow boundaries of an element E are defined by

∂E−h = {x ∈ ∂E : β(x) · nE < 0}, ∂E+
h = {x ∈ ∂E : β(x) · nE ≥ 0},

respectively, where nE denotes the unit outward vector to ∂E at x ∈ ∂E.

If two elements Ee
1 and Ee

2 are neighbors and share one common side e, there are two traces

of υ along e. Then assuming that the normal vector ne is oriented from Ee
1 to Ee

2, the jump

and average operators for the diffusion term are given by

[υ] = (υ|Ee
1
− υ|Ee

2
), {υ} = (υ|Ee

1
+ υ|Ee

2
)/2 ∀e ∈ ∂Ee

1 ∩ ∂Ee
2. (2.28)

The upwind discretization [70, 86] is used to discretize the convection term. Hence, we define

y±(x) = limδ→0+ y(x ± δβ). Here, y+ and y− are called the interior trace and exterior trace of y

on ∂E, respectively.

2.3.1 Discontinuous Galerkin scheme

In literature, different types of discontinuous Galerkin schemes have been introduced. Some

of them are shown in Table 2.1. In this thesis, we will only consider SIPG [5, 102], NIPG [89]

and IIPG [36] to discretize the diffusion term and the original upwind discretization [70, 86]

for the convection term.

The DG scheme for convection diffusion equations is constructed by using the fact that the

solution y of (2.26) belongs to Hs(Ω) for s > 3/2. Then, the solution y satisfies

aκ(y, υ) + b(y, υ) = lκ(υ), ∀υ ∈ Vh, (2.29)
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where

aκ(y, υ) =
∑
E∈ξh

(ε∇y,∇υ)E +
∑
E∈ξh

(ry, υ)E

+
∑

e∈Γ0
h∪ΓD

h

κ({ε∇υ · ne}, [y])e −
∑

e∈Γ0
h∪ΓD

h

({ε∇y · ne}, [υ])e

+
∑

e∈Γ0
h∪ΓD

h

σε

he
([y], [υ])e, (2.30a)

b(y, υ) =
∑
E∈ξh

(β · ∇y, υ)E +
∑
e∈Γ0

h

(y+ − y−, |n · β|υ+)e +
∑
e∈Γ−h

(y+, υ+|n · β|)e, (2.30b)

lκ(υ) =
∑
E∈ξh

( f , υ)E +
∑
e∈ΓD

h

κ(gD, ε∇υ · ne +
σε

|e|β0
υ)e

+
∑
e∈Γ−h

(gD, |β · n|υ+)e, (2.30c)

with σ called penalty parameter being a nonnegative real number and β0 being a positive

number which depends on the dimension d. Depending on the choice of parameter κ in aκ,

one obtains:

• If κ = −1, the resulting DG method is called the symmetric interior penalty Galerkin

(SIPG) method, introduced in the late 1970s by Wheeler and Arnold [5, 102]. When

the penalty parameter σ is large enough, the method converges.

• If κ = 1 and σ is nonnegative, the resulting method is called nonsymmetric interior

penalty Galerkin (NIPG) method, introduced by Rivière, Wheeler and Girault [89].

The method converges for any nonnegative values of the penalty parameter σ. The

case where σ = 0 is called as Baumann-Oden method [13]. Baumann-Oden method is

convergent when a higher degree (k ≥ 2) basis are used.

• If κ = 0, the resulting method is called the incomplete interior penalty Galerkin (IIPG)

method, introduced by Dawson, Sun and Wheeler [36]. This method converges under

same condition as SIPG method.

Remark 2.3.1 In standard penalization β0 = (d−1)−1, NIPG and IIPG methods have subop-

timal convergence rates if the polynomial degree is even, but the convergence rate is optimal

for odd polynomial degrees. By using superpenalization β0 ≥ 3(d − 1)−1, this shortcoming

can be solved [87].

20



2.3.2 Finite Element Spaces

By considering the finite dimensional subspaces of broken Sobolev space Hs(ξh) for s > 3/2,

we introduce the discontinuous finite element subspaces as in (2.8):

Vh = {υ ∈ L2(Ω) | υ|E ∈ Pk(E), ∀E ∈ ξh}. (2.31)

Here, any υ ∈ Vh is called as test function and it is discontinuous along the faces of the mesh.

In finite element methods, the computation on the physical elements may be more difficult

and costly since the elements can be very small triangles. The standard technique in FEM is

to use a reference element instead of the physical elements.

We choose the reference triangle Ê with vertices Â1(0, 0), Â2(1, 0), Â3(0, 1) and the physical

element E is given with vertices Ai(xi, yi) for i = 1, 2, 3. The invertible affine mapping FE :

Ê → E is of the form

FE

 x̂

ŷ

 =

 x

y

 , x =
3∑

i=1
xiφ̂i(x̂, ŷ), y =

3∑
i=1

xiφ̂i(x̂, ŷ),

where

φ̂1(x̂, ŷ) = 1 − x̂ − ŷ, φ̂2(x̂, ŷ) = x̂, φ̂2(x̂, ŷ) = ŷ.

Rewriting the mapping  x

y

 = FE

 x̂

ŷ

 = BE

 x̂

ŷ

 + bE ,

where BE is an invertible matrix and bE is a translation vector

BE =

 aE
11 aE

12

aE
21 aE

22

 =

 x2 − x1 x3 − x1

y2 − y1 y3 − y1

 , bE =

 x1

y1

 .
Now, we can write the explicit representation of F−1

E : E → Ê by

F−1
E (x) = B−1

E (x − bE) = x̂,

where

B−1
E =

1
det BK

 aE
22 −aE

12

−aE
21 aE

11

 =
1

2|E|

 âE
11 âE

12

âE
21 âE

22

 =
1

2|E|
B̂E .
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Figure 2.1: Affine transformation from Reference triangular element Ê to physical element
E.

Then, we have

υ̂(x̂, ŷ) = υ(x, y),

∇̂υ̂(x̂, ŷ) = BT
E∇υ(x, y). (2.32)

2.3.3 Basis Functions

The choice of the approximation basis functions is important issue in the implementation of

DG methods. The basis functions in discontinuous finite element subspace Vh have a support

in a single element E since there is a lack of continuity between mesh elements. Then the

subspace Vh can be written in terms of the basis functions φE
i for each element:

Vh = span{φE
i : 1 ≤ i ≤ Nloc, E ∈ ξh} (2.33)

with

φE
i (x) =

 φ̂i ◦ FE(x), if x ∈ E,

0, if x < E.

where the local basis functions (φ̂i)1≤i≤Nloc and the local dimension Nloc =
(k+1)(k+2)

2 with k is

total polynomial degree are defined on the reference element Ê.

The flexibility of DG methods allows to easily change basis functions. Therefore, we use two

different basis functions satisfying a desired orthogonality, i.e., monomial polynomial basis,

and Dubiner polynomial basis [39]. The latter one is more accurate for higher order basis

functions whereas the implementation of former ones is easy.
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Monomial Polynomial Basis

We use monomial polynomial basis due to the easy implementation. In two dimension, we

have

φ̂i(x̂, ŷ) = x̂I ŷJ , I + J = i, 0 ≤ i ≤ k.

For instance, we have the following:

• Piecewise linear:

φ̂0(x̂, ŷ) = 1, φ̂1(x̂, ŷ) = x̂, φ̂2(x̂, ŷ) = ŷ.

• Piecewise quadratics:

φ̂0(x̂, ŷ) = 1, φ̂1(x̂, ŷ) = x̂, φ̂2(x̂, ŷ) = ŷ.

φ̂0(x̂, ŷ) = x̂2, φ̂1(x̂, ŷ) = x̂ŷ, φ̂2(x̂, ŷ) = ŷ2.

Dubiner polynomial basis

We can also use Dubiner basis [39] to compute the integrals on the reference elements since

they yield more accurate for higher order basis function. By transforming the Jacobi polyno-

mials defined on intervals to form polynomials on triangles, the Dubiner basis on triangles are

obtained.

-

6

(-1,-1) (1,-1)

(1,-1) (1,1)

R0

b

a
-

@
@
@

@
@
@

@
@
@

(0,0) (1,0)

(0,1)
6

-

T0

s

r

Figure 2.2: The mapping between the square R0 and the triangle T0.

To construct an orthogonal basis on the triangle T0 whose vertices are (0,0), (1,0) and (0,1),

we follow the idea in [94] and consider the transformation in Figure 2.2 between the reference
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square R0 whose vertices (-1,-1), (1,-1), (1,1), (-1,1) and the reference triangle T0 defined by

r =
(1 + a)(1 − b)

4
, s =

1 + b
2

or a =
2r

1 − s
− 1, b = 2s − 1.

Then, by using a generalized tensor product of the Jacobi polynomials on the interval [−1, 1]

to form a basis on the square R0, which is then transformed by the above collapsing mapping

to a basis on the triangle T0, the Dubiner basis are constructed. The Dubiner basis on the

triangle T0 can be defined as

gmn(r, s) = P0,0
m (a)(1 − b)mP2m+1,0

n (b)

= 2mP0,0
m (

2r
1 − s

− 1)(1 − s)mP2m+1,0
n (2s − 1) 0 ≤ m, n,m + n ≤ Nloc.

The first six un-normalized Dubiner basis functions on the triangle T0 are

g00(r, s) = 1,

g10(r, s) = 4r + 2s − 2,

g01(r, s) = 3s − 1,

g20(r, s) = 24r2 + 24rs + 4s2 − 24r − 8s + 4,

g11(r, s) = 20rs + 10s2 − 4r − 12s + 2,

g02(r, s) = 10s2 − 8s + 1.

2.3.4 Derivative Transformations

We also need to express the partial derivatives on Ê instead of E since the quadrature is

performed over the reference element Ê. Now, we will express the first and second order

partial derivatives using the basis defined on the reference element Ê.

First-Order Partial Derivatives

∂φ j

∂x
=
∂φ̂ j

∂x̂
∂x̂
∂x

+
∂φ̂ j

∂ŷ
∂ŷ
∂x

=
1

2|E|
(
∂φ̂ j

∂x̂
âE

11 +
∂φ̂ j

∂ŷ
âE

21)

and
∂φ j

∂y
=
∂φ̂ j

∂x̂
∂x̂
∂y

+
∂φ̂ j

∂ŷ
∂ŷ
∂y

=
1

2|E|
(
∂φ̂ j

∂x̂
âE

12 +
∂φ̂ j

∂ŷ
âE

22).

Then, we obtain

∂nφ j =
1

2|E|
[(
∂φ̂ j

∂x̂
âE

11 +
∂φ̂ j

∂ŷ
âE

21)nx + (
∂φ̂ j

∂x̂
âE

12 +
∂φ̂ j

∂ŷ
âE

22)ny].

24



Second-Order Partial Derivatives

∂2φ j

∂x2 =
∂

∂x
(
∂φ̂ j

∂x
) =

∂

∂x̂
(
∂φ̂ j

∂x
)
∂x̂
∂x

+
∂

∂ŷ
(
∂φ̂ j

∂x
)
∂ŷ
∂x

=

(
1

2|E|

)2

[â2
11
∂2φ̂ j

∂x̂2 + 2â11â12
∂2φ̂ j

∂x̂∂ŷ
+ â2

21
∂2φ̂ j

∂ŷ2 ]

and

∂2φ j

∂y2 =
∂

∂y
(
∂φ̂ j

∂y
) =

∂

∂x̂
(
∂φ̂ j

∂y
)
∂x̂
∂y

+
∂

∂ŷ
(
∂φ̂ j

∂y
)
∂ŷ
∂y

=

(
1

2|E|

)2

[â2
12
∂2φ̂ j

∂x̂2 + 2â12â22
∂2φ̂ j

∂x̂∂ŷ
+ â2

22
∂2φ̂ j

∂ŷ2 ].

Hence, the Laplacian is defined by

∆φ j =
∂2φ j

∂x2 +
∂2φ j

∂y2

=

(
1

2|E|

)2

[(â2
11 + â2

12)
∂2φ̂ j

∂x̂2 + 2(â11â12 + â12â22)
∂2φ̂ j

∂x̂∂ŷ
+ (â2

21 + â2
22)
∂2φ̂ j

∂ŷ2 ].

2.3.5 Numerical Quadrature

It is important to have high order quadrature rules since DG methods easily allow for high

order approximations. Hence, we use the numerical quadrature [42] to approximate the inte-

grals: ∫
Ê
υ̂ ≈

QD∑
j=1

w jυ̂(sx, j, sy, j),

where the set of weights w j and nodes (sx, j, sy, j) ∈ Ê. By using the affine transformation FE ,

we obtain ∫
E
υ =

∫
Ê
υ ◦ FE det(BE) = 2|E|

∫
Ê
υ̂ ≈ 2|E|

QD∑
j=1

w jυ̂(sx, j, sy, j),

∫
E
∇υ · w ≈ 2|E|

QD∑
j=1

w j(BT
E)−1∇̂υ̂(sx, j, sy, j) · ŵ(sx, j, sy, j),

∫
E
∇υ · ∇w ≈ 2|E|

QD∑
j=1

w j(BT
E)−1∇̂υ̂(sx, j, sy, j) · (BT

E)−1∇̂ŵ(sx, j, sy, j).

2.3.6 Error Analysis

In this section, we give a convergence analysis of the SIPG method for convection diffusion

equations (2.26). See [7, 63, 87, 89] for other DG methods. We first show the coercivity of
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the bilinear form aκ(y, υ) + b(y, υ). Then, error estimation is given in Theorem 3.1.1 for the

constant convection coefficient β as in [46].

Coercivity is shown separately for a−1(υ, υ) and b(υ, υ). We define the diffusion norm such

that

‖υ‖2di f f =
∑
E∈ξh

(ε‖∇y‖2E + r0‖y‖2E) +
∑
e∈Γh

ε

he
σ‖[y]‖2e

and a−1(υ, υ) is given such that

a−1(υ, υ) =
∑
E∈ξh

∫
E
ε(∇υ)2 + rυ2 − 2

∑
e∈Γ0

h∪ΓD
h

∫
e
{ε∇υ · ne}[υ] +

σε

he
[υ]2.

By using Cauchy-Schwarz inequality, we obtain an upper bound for
∑

e∈Γ0
h∪ΓD

h

∫
e{ε∇υ · ne}[υ]:

∑
e∈Γ0

h∪ΓD
h

∫
e
{ε∇υ · ne}[υ] ≤

∑
e∈Γ0

h∪ΓD
h

‖{ε∇υ · ne}‖L2(e)‖[υ]‖L2(e)

≤
∑

e∈Γ0
h∪ΓD

h

‖{ε∇υ · ne}‖L2(e)

(
1
|e|β0

)1/2−1/2

‖[υ]‖L2(e).

The average of fluxes for e ∈ Γ0
h and trace inequality (2.1b) give us

‖{ε∇υ · ne}‖L2(e) ≤
1
2
‖(ε∇υ · ne)|Ee

1
‖L2(e) +

1
2
‖(ε∇υ · ne)|Ee

2
‖L2(e)

≤
Ctε

2
h−1/2

Ee
1
‖∇υ‖L2(Ee

1) +
Ctε

2
h−1/2

Ee
2
‖∇υ‖L2(Ee

2).

Assuming h be maximum element diameter, h = max(hE), we have |e| ≤ hd−1
E ≤ hd−1. Then,

we obtain

∫
e
{ε∇υ · ne}[υ] ≤

Ctε

2
|e|β0/2

(
h−1/2

Ee
1
‖∇υ‖L2(Ee

1) + h−1/2
Ee

2
‖∇υ‖L2(Ee

2)

) ( 1
|e|β0

)1/2

‖[υ]‖L2(e)

≤
Ctε

2

(
h
β0
2 (d−1)− 1

2
Ee

1
+ h

β0
2 (d−1)− 1

2
Ee

2

) (
‖∇υ‖2L2(Ee

1) + ‖∇υ‖2L2(Ee
2)

)1/2
(

1
|e|β0

)1/2

‖[υ]‖L2(e)

≤ Ctε
(
‖∇υ‖2L2(Ee

1) + ‖∇υ‖2L2(Ee
2)

)1/2
(

1
|e|β0

)1/2

‖[υ]‖L2(e)

if β0 satisfies the condition β0(d − 1) ≥ 1. A similar bound can be obtained for boundary

edges. With the maximum number of neighbors of a triangle element in a conforming mesh
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which equals to 3, we obtain

∑
e∈Γ0

h∪ΓD
h

∫
e
{ε∇υ · ne}[υ] ≤ Ctε

 ∑
e∈Γ0

h∪ΓD
h

1
|e|β0
‖[υ]‖2L2(e)


1/2

×

∑
e∈Γ0

h

‖∇υ‖2L2(Ee
1) + ‖∇υ‖2L2(Ee

2) +
∑
e∈ΓD

h

‖∇υ‖2L2(Ee
1)


1/2

≤ Ctε
√

3

 ∑
e∈Γ0

h∪ΓD
h

1
|e|β0
‖[υ]‖2L2(e)


1/2 ∑

E∈ξh

‖∇υ‖2L2(E)


1/2

.

Using Young’s inequality, we obtain for γ > 0

∑
e∈Γ0

h∪ΓD
h

∫
e
{ε∇υ · ne}[υ] ≤

γ

2

∑
E∈ξh

‖
√
ε∇υ‖2L2(E) +

C2
t ε
√

3
2γ

∑
e∈Γ0

h∪ΓD
h

1
|e|β0
‖[υ]‖2L2(e).

Hence, by (2.27b) we obtain,

a−1(υ, υ) ≥ (1 − γ)
∑
E∈ξh

‖
√
ε∇υ‖2L2(E) +

∑
e∈Γ0

h∪ΓD
h

σ −
C2

t ε
√

3
γ

|e|β0
‖[υ]‖2L2(e).

Choosing γ = 1/2 and σ large enough, we have

a−1(υ, υ) ≥
1
2
‖υ‖2di f f . (2.34)

The following equality holds [63]:

b(υ, υ) =
1
2

∑
e∈Γ−h

|ne · β|‖υ
+‖2e +

1
2

∑
e∈Γ+

h

|ne · β|‖υ
−‖2e +

1
2

∑
e∈Γ0

h

|ne · β|‖υ
+ − υ−‖2e . (2.35)

By using (2.34) and (2.35), coercivity is shown

a−1(υ, υ) + b(υ, υ) ≥ ‖υ‖2DG, ∀υ ∈ Vh (2.36)

with the DG norm given by

‖υ‖2DG =
∑
E∈ξh

(ε‖∇y‖2E + r0‖y‖2E) +
∑
e∈Γh

ε

he
σ‖[y]‖2e

+
1
2

∑
e∈Γ−h

|ne · β|‖y+‖2e +
1
2

∑
e∈Γ+

h

|ne · β|‖y−‖2e +
1
2

∑
e∈Γ0

h

|ne · β|‖y+ − y−‖2e . (2.37)

In [59] the error estimate using nonsymmetric interior penalty Galerkin (NIPG) method has

been studied for convection diffusion equations with a similar norm defined in (2.37). How-

ever, this estimate is not strong enough for convection dominated problems. Therefore, to
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control the gradient of error in the direction of β as ε tends to zero, a stronger norm is defined

in [46] for the convection dominated problems such as

‖|υ‖|2 = ‖υ‖2DG +
∑
E∈ξh

hE‖β · ∇υ‖
2
E , υ ∈ Vh. (2.38)

Now, we give the error estimate of the SIPG method using the norm in (2.38) and Lemma

2.3.2.

Lemma 2.3.2 [46, Lemma 6.1] There exist constants C and C1 such that for all υ ∈ Vh

C‖|υ‖|2 ≤ a−1(υ,C1υ + hβ · ∇υ) + b(υ,C1υ + hβ · ∇υ).

Theorem 2.3.3 [46, Theorem 5.1] Let us assume that y and yh are solutions of (2.26) and

(2.29), respectively. Then, the following error estimate holds for y ∈ Hs(Ω) with 3/2 < s:

‖|y − yh‖| ≤ C max(
√
εhs−1, hs−1/2)|y|Hs(Ω),

where a positive constant C is independent of ε and h.

Proof. The continuous interpolant ỹ of y [93] satisfies the following approximation property

‖y − ỹ‖L2(Ω) + h|y − ỹ|H1(Ω) ≤ Chs|y|Hs(Ω). (2.39)

Using the trace inequality, we obtain

‖|y − ỹ‖| ≤ C(
√
εhs−1 + hs−1/2)|y|Hs(Ω). (2.40)

Let Eh = yh − ỹ, then

‖|y − yh‖| ≤ ‖|y − ỹ‖| + ‖|Eh‖|.

We need a bound for Eh similar to that in (2.40). By the orthogonal Galerkin property, we

have

a−1(y − yh,wh) + b(y − yh,wh) = 0, ∀wh ∈ Vh.

Denoting Eβ
h = C1Eh + hβ · ∇Eh and then, by Lemma 2.3.2 and Galerkin orthogonality, we

have

C‖|Eh‖|
2 ≤ a−1(Eh, E

β
h) + b(Eh, E

β
h)

= a−1(y − ỹ, Eβ
h) + b(y − ỹ, Eβ

h). (2.41)
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To estimate the first term on the right hand side of (2.30), we use Cauchy-Schwarz inequalty

and the continuity property of y − ỹ:

a−1(y − ỹ, Eβ
h) ≤ ε|y − ỹ|H1(Ω)

∑
E∈ξh

‖∇Eβ
h‖

2
L2(E)


1/2

+

 ∑
e∈Γ0

h∪ΓD
h

h‖{ε∇(y − ỹ) · ne}‖
2
L2(e) +

∑
eΓ∂h

h−1‖y − ỹ‖2L2(e)


1/2  ∑

e∈Γ0
h∪ΓD

h

h−1‖[Eβ
h]‖2L2(e)


1/2

.

A Bramble-Hilbert argument [25] shows that

h
∑

e∈Γ0
h∪ΓD

h

‖{ε∇(y − ỹ) · ne}‖
2
L2(e) ≤ εh

2s−2|y|2Hs(Ω).

Local inverse inequalities imply∑
E∈ξh

‖∇Eβ
h‖

2
L2(E) ≤ C

∑
E∈ξh

(‖∇Eh‖
2
L2(E) + ‖β · ∇Eh‖

2
L2(E)),∑

e∈Γ0
h∪ΓD

h

h−1‖[Eβ
h]‖2L2(e) ≤ C

∑
e∈Γ0

h∪ΓD
h

h−1‖[Eh]‖2L2(e) + C
∑
E∈ξh

‖β · ∇Eh‖
2
L2(e).

These estimates together with a trace theorem and (2.39) yield

a−1(y − ỹ, Eβ
h) ≤ Cεhs−1|y|Hs(Ω)a−1(Eh, Eh)1/2. (2.42)

Now, we estimate the second term on the right hand side of (2.41). Integration by parts gives

us

b(u, υ) = (u,−β · ∇υ) + (u−, υ− − υ+)Γ0
h

+ (u−, υ+)Γ+
h
.

Then,

b(u,C1υ + hβ · ∇υ) ≤ C

h−1/2‖u‖L2(Ω) + (u−, u−)1/2
Γ0

h
+ (

∑
E∈ξh

h‖β · ∇u‖2)1/2 + b(u, u)1/2

 ‖|υ‖|.
Using u = y − ỹ, υ = Eh, trace inequality (2.1b) and (2.39), we obtain that

b(y − ỹ, Eβ
h) ≤ Chs−1/2|y|Hs(Ω)‖|Eh‖|. (2.43)

Combining (2.42) and (2.43) and using it in (2.41), we have

‖|Eh‖| ≤ C(
√
εhs−1 + hs−1/2)|y|Hs(Ω).

This together with (2.40) proves the theorem. �
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CHAPTER 3

DISTRIBUTED OPTIMAL CONTROL PROBLEMS

Many real-life applications such as shape optimization of technological devices [80], optimal

control of systems [47], identification of parameters in environmental processes, and flow con-

trol problems [37, 44, 83] lead to optimization governed by systems of convection diffusion

partial differential equations (PDEs). An appropriate mathematical treatment of PDE con-

strained optimization problems requires the integrated use of advanced methodologies from

the theory of optimization and optimal control in a functional setting, the theory of PDEs as

well as the development and implementation of powerful algorithmic tools from numerical

mathematics and scientific computing.

To solve the optimal control problems numerically, there exist two different approach, discretize-

then-optimize and optimize-then-discretize. In the former one, the optimal control problem

is first discretized using a suitable numerical method and then the resulting finite dimensional

optimization problem is solved. In the latter one, one first computes the infinite dimensional

optimality system and then the optimality system is discretized. Both approaches were studied

in [1, 18, 21, 22, 35, 38, 54, 104] for optimal control problems.

It is known that when pure Galerkin finite element discretization is used, both approaches lead

to same discretization schemes. When the conventional residual based nonsymmetric stabi-

lized finite element method SUPG (streamline upwind Petrov-Galerkin method) is used on the

discretization of optimal control problems governed by convection diffusion equations as in

[35], the discretize-then-optimize and the optimize-then-discretize lead to different discretiza-

tion schemes. In [35], it was shown that when SUPG discretization is used, optimize-then-

discretize has better asymptotic convergence properties. For both approaches, the difference

in solution is small when piecewise linear polynomials are used for discretization of state,
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adjoint and controls but they can be significant for higher order finite elements. The largest

difference is observed in the adjoint variable. In the discretize-then-optimize approach, al-

though the discretized state equation is strongly consistent, the discrete adjoint and gradient

equations are inconsistent. The reason of this lack of consistency is that the discrete adjoint

equation is not a method of weighted residuals for continuous adjoint problem. However, the

discretized state, adjoint and gradient equations are strongly consistent in the optimize-then-

discretize approach. In addition, optimize-then-discretize approach leads to a nonsymmetric

system.

The approach proposed by Dedè and Quarteroni in [38] is based on a stabilization method

applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations,

separately. If the Lagrangian of the optimal control problem is given in (3.8), then the stabi-

lized Lagrangian is defined as

Lh(y, u, p) = L(y, u, p) + S h(y, u, p),

where

S h(y, u, p) =
∑
E∈ξh

δE

∫
E

Rs(y, u)Ra(p, y).

The terms Rs(y, u) and Ra(p, y) represent the residuals of the state and adjoint equations,

respectively, and δE is a stabilization parameter depending on the Pèclet number. This stabi-

lization method yields a coherence between state and adjoint stabilized equations. However,

the same coherence is not obtained by stabilizing directly the state equation by means of a

strongly consistent method like GLS (Galerkin least squares). In [1], Galerkin/Least-Squares

(GLS) stabilization has been used for the optimal boundary control problems governed by the

Oseen equation but significant differences are observed between both approaches.

Recently, new stabilization techniques like local projection (LPS) and edge-stabilization have

been developed which are symmetric and not residual-based. The method presented in [18]

uses the standard finite element discretization with stabilization based on local projections

(LPS method). The stabilization term in this method has the following form:

S δ
h(yh, υh) = δ(β · ∇yh − πh(β · ∇yh), β · ∇υh − πh(β · ∇υh),

where δ is a positive stabilization parameter and πh is an L2-orthogonal projection operator.

Then, the discrete semilinear form is

ah(yh, υh) = a(yh, υh) + S δ
h(yh, υh).
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Hence,

ah(yh, υh) = ( f + uh, υh).

In [104], Yan and Zhou have used the edge stabilization Galerkin approximation for the nu-

merical solution of constraint optimal control problem governed by convection dominated

problems. Here, least-squares stabilization of the gradient jumps across element edges is

used. The stabilization form S is given as

S (yh, υh) =
∑
e∈Γ0

h

∫
e
γh2

e[ne · ∇yh][ne · ∇υh],

where γ is constant independent of he and [q] denotes the jump of q for all interior edges,

e ∈ Γ0
h.

The LPS method [18] and edge stabilization [104] are symmetric stabilization methods. Then,

both approaches, the discretize-then-optimize and the optimize-then-discretize, lead to same

discrete equations. In addition, Braack in [21] has applied the symmetric stabilization meth-

ods, LPS and edge-stabilization for the optimal control problem governed by Oseen equa-

tion. See also [77] for the numerical analysis of quadratic optimal control problems with

distributed and Robin boundary control governed by an elliptic problem using the local pro-

jection approach (LPS method). A comparison of symmetric stabilization methods (LPS and

edge-stabilization) and residual-based techniques can be found in [22].

The studies have shown that the solution of optimization problems governed by convection

diffusion PDEs (also referred to as the state PDEs) provides an additional challenges since

the optimality conditions for such optimization problems do not only involve the convection

diffusion state equation (3.2), but also another convection diffusion PDE (3.10), the so-called

adjoint PDE. The diffusion part of the adjoint PDE is equal to that of the state PDE, but the

convection in the adjoint PDE is equal to the negative of the convection in the state PDE.

Therefore, it is difficult to find a suitable method to solve the optimal control problems gov-

erned by convection diffusion equations. DG methods have higher accuracy and work better

in complex geometries due to their local nature in constraint to standard continuous Galerkin

methods. In addition, they have a weak treatment for the boundary conditions in contrast to

SUPG. With these properties of DG methods, we examine whether a DG discretization of

the optimal control problem leads to the same result as the same DG discretization applied

to the optimality system of unconstrained optimal control problem governed by convection
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diffusion equations as in [72]. Additionally, we survey the effect of superpenalization form of

nonsymmeteric DG methods on optimal control problems.

This chapter extends DG methods introduced in previous chapter for single convection dif-

fusion equations to the unconstrained optimal control problems. We firstly introduce the

optimal control problems governed by convection diffusion equations. Then, two numerical

approaches, the discretize-then-optimize and the optimize-then-discretize, to solve the optimal

control problem are presented and compared by using DG methods.

3.1 Introduction

Let Ω be a bounded open, convex domain in R2 and Γ = ∂Ω. We consider the following

linear-quadratic optimal control problem:

minimize J(y, u) :=
1
2

∫
Ω

(y(x) − yd(x))2dx +
ω

2

∫
Ω

u(x)2dx (3.1)

subject to

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f (x) + u(x), x ∈ Ω, (3.2a)

y(x) = gD(x), x ∈ Γ, (3.2b)

where f , β, r, yd, gD are given functions, diffusion and regularization parameters ε, ω > 0 are

given scalars.

We define the state and control space

Y = {y ∈ H1(Ω) : y = gD on Γ}, U = L2(Ω), (3.3)

and space of the test functions

V = {υ ∈ H1(Ω) : υ = 0 on Γ}. (3.4)

Then, the weak form of the state equation is

a(y, υ) + b(y, υ) = ( f , υ), ∀υ ∈ V, (3.5)

where

a(y, υ) =

∫
Ω

(ε∇y · ∇υ + β · ∇yυ + ryυ) dx,

b(y, υ) = −

∫
Ω

uυ dx, ( f , υ) =

∫
Ω

fυ dx.
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Then, our problem (3.1)-(3.2) can be written as

minimize J(y, u) :=
1
2
‖y − yd‖

2
Ω +

ω

2
‖u‖2Ω (3.6a)

subject to a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, (3.6b)

(y, u) ∈ Y × U.

In order to show that the optimal control problem (3.1)-(3.2) has an unique solution, we need

the following assumptions:

f , yD ∈ L2(Ω), gD ∈ H3/2(Γ), 0 < ε, β(x) ∈ W1,∞(Ω)2, 0 < ω and r ∈ L∞(Ω). (3.7a)

Further, we have following assumptions for r0 ≥ 0 and c∗ ≥ 0 :

r(x) −
1
2
∇ · β(x) ≥ r0 ≥ 0, x ∈ Ω, (3.7b)

|| − ∇ · β(x) + r(x)||L∞(Ω) ≤ c∗r0. (3.7c)

The conditions (3.7a,3.7b) ensure the well-posedness of the optimal control problem [48, 73].

The condition (3.7c) [91] is needed in next chapters to show efficiency of error estimator in a

posteriori error analysis.

By [76, Sec. II.1], under the assumptions defined in (3.7) the existence of a unique solution

(y, u) ∈ Y × U of (3.1)-(3.2) is guaranteed and necessary and sufficient optimality condi-

tions are provided. The necessary and sufficient optimality conditions are obtained using the

Lagrangian of the optimal control problem:

L(y, u, p) =
1
2
‖y − yd‖

2
L2(Ω) +

ω

2
‖uh‖

2
L2(Ω) + a(y, p) + b(u, p) − ( f , p). (3.8)

By setting the partial derivatives of Lagrangian with respect to state y, control u and adjoint

p equal to zero, we obtain the following optimality system consisting of the adjoint equation,

the gradient equation and the state equation, respectively:

a(ψ, p) = −(y − yd, ψ), ∀ψ ∈ V, (3.9a)

b(w, p) + ω(u,w) = 0, ∀w ∈ U, (3.9b)

a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V. (3.9c)

Equation (3.9a) can be interpreted as the weak form of a convection diffusion equation, but

convection is now given by −β:

−ε∇p(x) − β(x) · ∇p(x) + (r(x) − ∇ · β(x))p(x) = −(y(x) − yd(x)), x ∈ Ω, (3.10)

p(x) = 0, x ∈ Γ,
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and equation (3.9b) corresponds to gradient equation

p(x) = ωu(x). (3.11)

Then, the following Theorem 3.1.1 can be stated by the theory in [76, Sec. II.1].

Theorem 3.1.1 If the assumptions (3.7) are satisfied, then the optimal control problem (3.6)

has a unique solution (y, u) ∈ Y × U. The functions (y, u) ∈ Y × U solve (3.6) if and only if

(y, u, p) ∈ Y × U × Y is unique solution for the following optimality system:

a(ψ, p) + (y, ψ) = (yd, ψ), ∀ψ ∈ Y, (3.12a)

b(w, p) + ω(u,w) = 0, ∀w ∈ U, (3.12b)

a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ Y. (3.12c)

For the numerical solution of the optimal control problem (3.1)-(3.2), there exist two differ-

ent approaches. In the discretize-then-optimize, first the state equation is discretized and then

the optimality conditions for the finite dimensional system are derived. In the optimize-then-

discretize, the optimality conditions are formulated on the continuous level for the state, ad-

joint and gradient equations, then these equations are discretized. Now, we will show whether

the optimality system of DG discretized optimal control problem is equivalent to the DG

discretization of the optimality system, or not.

3.2 Discretize-then-Optimize Approach

In this approach, the optimal control problem is first discretized, using the DG method for the

discretization of the state convection diffusion equation, and then the resulting finite dimen-

sional optimization problem is solved by using a suitable optimization algorithm. Here, the

discretization of the optimal control problem typically follows discretization techniques used

for governing state equations.

We select the following spaces for the discretization of the state and the control, respectively:

Vh = Yh = {yh ∈ L2(Ω) | y|E ∈ Pn(E), ∀E ∈ ξh}, (3.13)

Uh = {uh ∈ L2(Ω) | u|E ∈ Pm(E), ∀E ∈ ξh}. (3.14)
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The orders n,m ∈ N of the finite element approximation can be different for the state and

controls. We can take that the space of test functions Vh are identical to the space of state Yh

due to the weak treatment of the boundary conditions in DG discretizatin.

Then, the discretized optimal control problem is

minimize J(yh, uh) :=
1
2

∑
E∈ξh

‖yh − yd‖
2
E +

ω

2

∑
E∈ξh

‖uh‖
2
E (3.15a)

subject to as
h(yh, υh) + bh(uh, υh) = ls

h(υh), ∀υh ∈ Vh, (3.15b)

(yh, uh) ∈ Yh × Uh.

The Lagrangian of the discretized problem (3.15) is defined by

Lh(yh, uh, ph) =
1
2

∑
E∈ξh

‖yh − yd‖
2
E +

ω

2

∑
E∈ξh

‖uh‖
2
E + as

h(yh, ph) + bh(uh, ph) − ls
h(ph), (3.16)

where yh ∈ Yh, uh ∈ Uh and ph ∈ Λh = Vh. Then, necessary and sufficient optimality con-

ditions for the discretized problem are obtained by setting the partial derivatives of Lagrange

function (3.16) to zero

∇yLh(yh, uh, ph) = 0, (3.17a)

∇uLh(yh, uh, ph) = 0, (3.17b)

∇pLh(yh, uh, ph) = 0. (3.17c)

Then, we obtain the following optimality system consisting of:

the discrete adjoint equation

as
h(ψh, ph) = −(yh − yd, ψh), ∀ψh ∈ Vh, (3.18a)

the discrete gradient equation

bh(wh, ph) + ω(uh,wh) = 0, ∀wh ∈ Uh, (3.18b)

and the discretized state equation

as
h(yh, υh) + bh(uh, υh) = ls

h(υh), ∀υh ∈ Vh. (3.18c)
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where

as
h(yh, υh) =

∑
E∈ξh

(ε∇yh,∇υh)E

+ κ
∑
e∈Γh

({ε∇υh · ne}, [yh])e −
∑
e∈Γh

({ε∇yh · ne}, [υh])e

+
∑
e∈Γh

σε

hβ0
e

([yh], [υh])e +
∑
E∈ξh

(β · ∇yh + ryh, υh)E

+
∑
e∈Γ0

h

(y+
h − y−h , |n · β|υ

+
h )e +

∑
e∈Γ−h

(y+
h , υ

+
h |n · β|)e, (3.19a)

bh(uh, υh) = −
∑
E∈ξh

(uh, υh)E , (3.19b)

ls
h(υh) =

∑
E∈ξh

( f , υh)E +
∑
e∈Γ∂h

σε
hβ0

e

(gD, [υh])e − (εgD,∇υh)e


+

∑
e∈Γ−h

(gD, υ
+
h |n · β|)e. (3.19c)

The superscript s is used to indicate that the DG methods are applied to the state equation.

Here, discrete adjoint equation and discrete gradient equation are referred to the adjoint and

gradient equations for the discretized problem (3.15). However, the discretized state equations

are meant as direct discretization of the state equation (3.2).

Remark 3.2.1 Upon integration by parts of the convection term, we obtain

as
h(yh, υh) =

∑
E∈ξh

(ε∇yh,∇υh)E

+ κ
∑
e∈Γh

({ε∇υh · ne}, [yh])e −
∑
e∈Γh

({ε∇yh · ne}, [υh])e

+
∑
e∈Γh

σε

hβ0
e

([yh], [υh])e +
∑
E∈ξh

(β · ∇yh + (r − ∇ · β)yh, υh)E

+
∑
e∈Γ0

h

(υ+
h − υ

−
h , |n · β|y

+
h )e +

∑
e∈Γ+

h

(y+
h , υ

+
h |n · β|)e.

The state and control spaces can also be rewritten such that

Yh = span{ϕE
i : 1 ≤ i ≤ Nloc, E ∈ ξh},

Uh = span{ψE
i : 1 ≤ i ≤ Nloc, E ∈ ξh},

where ϕi and ψi are bases functions for the state and control spaces, respectively. Then, the
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state y and the control u are functions of the form

y(x) =

N∑
m=1

Nloc∑
j=1

ym
j ϕ

j
m(x), (3.20a)

u(x) =

N∑
m=1

Nloc∑
j=1

um
j ψ

j
m(x). (3.20b)

Set

~y = (y1
1, y

1
2, . . . , y

1
Nloc

, . . . , yN
1 , y

N
2 , . . . , y

N
Nloc)T ,

~u = (u1
1, u

1
2, . . . , u

1
Nloc

, . . . , uN
1 , u

N
2 , . . . , u

N
Nloc)T ,

where N is the number of triangles and Nloc is local dimension.

If we insert (3.20a) and (3.20b) into (3.15), we obtain the following discretized optimization

problem

minimize J(~y, ~u) :=
1
2
~yTM~y − ~bT~y +

ω

2
~uTQ~u +

∫
Ω

1
2

y2
d dx (3.21a)

subject to As~y + B~u = ~f , (3.21b)

where As,M,Q,B ∈ R(Nloc×N)×(Nloc×N) and ~b, ~f ∈ RNloc×N .

As, ~f correspond to the bilinear form as
h(yh, υh) (3.19a) and the linear form ls

h(υh) (3.19c),

respectively. Additionally, the matrices M, B and Q are given by

(M)i j =

∫
E
ϕ jϕi dx, (Q)i j =

∫
E
ψ jψi dx, (B)i j = −

∫
E
ϕ jψi dx,

and the entries of the vector ~b are

(~b)i =

∫
E

ydϕi dx.

The Lagrangian for the discretized problem (3.21) is given by

L(~y, ~u, ~p) =
1
2
~yTM~y − ~bT~y +

ω

2
~uTQ~u +

∫
Ω

1
2

y2
d dx + ~pT (As~y + B~u − ~f ).

By setting the partial derivatives of the Lagrangian equal to zero, the optimality system of the

discretized problem (3.21) written as

∇yL(~y, ~u, ~p) = 0,

∇uL(~y, ~u, ~p) = 0,

∇pL(~y, ~u, ~p) = 0,

⇒

M~y + AT
s ~p = ~b,

ωQ~u + BT ~p = 0,

As~y + B~u = ~f .

then the optimality system can be rewritten such as:
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
M 0 AT

s

0 ωQ BT

As B 0



~y

~u

~p

 =


~b

0

~f

 .

3.3 Optimize-then-Discretize Approach

The alternative approach to the discretize-then-optimize approach is the optimize-then-discretize.

In this approach, one first computes the infinite dimensional optimality system, involving the

state convection diffusion equation as well as the adjoint convection diffusion equation and

then discretizes the optimality system using the DG methods.

We use (3.13) and (3.14) for the state space and the control space, respectively, and the fol-

lowing space:

Λh = {ph ∈ L2(Ω) | p|E ∈ Pl(E), ∀E ∈ ξh} (3.22)

for the discretization of the adjoint. It is possible to choose l , k. By discretizing the ad-

joint equation (3.10), the gradient equation (3.11) and the state equation (3.2) using the DG

methods, we obtain the discretized state, adjoint and gradient equations, respectively:

as
h(yh, υh) + bh(uh, υh) = ls

h(υh), ∀vh ∈ Yh, (3.23a)

aa
h(ph, ψh) + (yh, ψh) = (yd, ψh), ∀ψh ∈ Λh, (3.23b)

bh(wh, ph) + ω(uh,wh) = 0, ∀wh ∈ Uh, (3.23c)

where

aa
h(ph, ψh) =

∑
E∈ξh

(ε∇ph,∇ψh)E

+ κ
∑
e∈Γh

({ε∇ψh · ne}, [ph])e −
∑
e∈Γh

({ε∇ph · ne}, [ψh])e

+
∑
e∈Γh

σε

hβ0
e

([ph], [ψh])e +
∑
E∈ξh

(−β · ∇ph + (r − ∇ · β)ph, ψh)E

+
∑
e∈Γ0

h

(p+
h − p−h , |n · β|ψ

+
h )e +

∑
e∈Γ+

h

(p+
h , ψ

+
h |n · β|)e. (3.24)

The superscript a indicates that the DG methods are applied to the adjoint equation. In addi-

tion, (3.23a) and (3.23c) are identical to (3.19c) and (3.19b), respectively.
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Remark 3.3.1 Γ+
h is inflow boundary for the adjoint equation (3.10)

Γ+
h = {x ∈ ∂Ω : β(x) · n(x) > 0}

= {x ∈ ∂Ω : −β(x) · n(x) < 0}.

We similarly rewrite the adjoint space Λh such that

Λh = span{ϕE
i : 1 ≤ i ≤ Nloc, E ∈ ξh},

where ϕi are basis functions for the adjoint space. Then, the adjoint p is function of the form

p(x) =

N∑
m=1

Nloc∑
j=1

pm
j ϕ

j
m(x). (3.25)

Also, y and u are defined as in (3.20a) and (3.20b), respectively.

In addition, we set

~p = (p1
1, p1

2, . . . , p1
Nloc

, . . . , pN
1 , pN

2 , . . . , pN
Nloc

)T .

If we insert (3.20a), (3.20b) and (3.25) into (3.2), (3.10) and (3.11), respectively, we obtain

the following system

M~y + Aa~p = ~b,

ωQ~u + B~p = 0,

As~y + B~u = ~f ,

where As,Aa,M,Q,B ∈ R(Nloc×N)×(Nloc×N) and ~b, ~f ∈ RNloc×N . Furthermore, Aa corresponds

to the bilinear form aa
h(ph, υ) in (3.24).

Then, the optimality system is written such as:


M 0 Aa

0 ωQ B

As B 0



~y

~u

~p

 =


~b

0

~f

 .

Theorem 3.3.2 The optimality system (3.18) of the DG discretized optimal control problem

(3.15) is equivalent to the DG discretization (3.23) of the optimality system of the optimal

control problem (3.1)-(3.2) for symmetric DG methods, i.e., SIPG. On the other hand, it does

not hold for nonsymmetric DG methods, i.e., NIPG and IIPG.

40



Proof. Let us define

%(yh, υh) =
∑
E∈ξ

∫
E
β · ∇yhυh dx +

∑
e∈Γ0

h

∫
e
(y+

h − y−h )|n · β|υ+
h ds +

∑
e∈Γ−h

∫
e

y+
hυ

+
h |n · β| ds. (3.26)

When we apply integration by parts on the first integrand in (3.26), we obtain

%(yh, υh) =
∑
E∈ξ

∫
E
−β · ∇yhυh dx +

∑
E∈ξ

−∇ · βyhυh dx

+
∑
e∈Γ0

h

∫
e
(υ+

h − υ
−
h )|n · β|y+

h ds +
∑
e∈Γ+

h

∫
e

y+
hυ

+
h |n · β| ds. (3.27)

Writing as
h(ψh, ph) clearly using (3.19a), we get

as
h(ψh, ph) =

∑
E∈ξh

(ε∇ψh,∇ph)E +
∑
E∈ξh

(rψh, ph)E

+ κ
∑
e∈Γh

({ε∇ph · ne}, [ψh])e −
∑
e∈Γh

({ε∇ψh · ne}, [ph])e

+
∑
e∈Γh

σε

hβ0
e

([ψh], [ph])e +
∑
E∈ξh

(β · ∇ψh + rψh, ph)E

+
∑
e∈Γ0

h

(ψ+
h − ψ

−
h , |n · β|p

+
h )e +

∑
e∈Γ−h

(ψ+
h , p+

h |n · β|)e.

Upon integration by parts of convection term as (3.26), we have

as
h(ψh, ph) =

∑
E∈ξh

(ε∇ψh,∇ph)E

+ κ
∑
e∈Γh

({ε∇ph · ne}, [ψh])e −
∑
e∈Γh

({ε∇ψh · ne}, [ph])e

+
∑
e∈Γh

σε

hβ0
e

([ψh], [ph])e +
∑
E∈ξh

(−β · ∇ph + (r − ∇ · β)ph, ψh)E

+
∑
e∈Γ0

h

(p+
h − p−h , |n · β|ψ

+
h )e +

∑
e∈Γ+

h

(p+
h , ψ

+
h |n · β|)e

?
= aa

h(ph, ψh).

Now, when we examine the cases with respect to the parameter κ:

• for κ = −1, i.e., SIPG, as
h(ψh, ph) = aa

h(ph, ψh), ∀ψ ∈ Vh,

• for κ = 1, i.e., NIPG and κ = 0, i.e., IIPG, as
h(ψh, ph) , aa

h(ph, ψh), ∀ψ ∈ Vh.

�

41



min J(y, u)
s.t. c(y, u) = 0 -discretize

?

optimize

?

optimize

-discretize

discretized
optimal problem

optimality
conditions

apply DG
discretization

6 6

compute
optimality conditions

? ?

same : SIPG

different : NIPG, IIPG

Figure 3.1: Discretize-then-optimize versus optimize-then-discretize with DG discretization.

3.4 Numerical Results

In this section, we give several numerical results for optimal control problems governed by

convection diffusion equations using the DG methods. We use piecewise linear (k = 1) and

piecewise quadratic (k = 2) polynomials. The penalty parameter is σ = 1 for all edges for

NIPG. For SIPG and IIPG we set σ = 3k(k + 1) for interior edges and σ = 6k(k + 1) on

boundary edges.

If standard penalization β0 = 1 is used in NIPG and IIPG, we refer to these methods as NIPG1

and IIPG1, respectively. If superpenalization β0 = 3 is used, we refer to these methods as

NIPG3 and IIPG3, respectively.

Remark 3.4.1 The convergence rates are obtained numerically for h sufficiently small by
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applying following formula:

rateL2 =
1
2

ln
(
‖eh‖L2

‖eh/2‖L2

)
.

Example 3.4.2 This following example has been studied by Collis, Heinkenschloss and Leykekhman

[35, 48].

The problem data are given by

Ω = [0, 1]2, θ = 45o, β = (cos θ, sin θ), r = 0 and ω = 1.

The source function f , the desired state yd and Dirichlet boundary conditions gD are chosen

such that the analytical solutions of the state and the adjoint are given by

y(x1, x2) = η(x1)η(x2), p(x1, x2) = µ(x1)µ(x2),

where

η(z) = z −
exp((z − 1)/ε) − exp(−1/ε)

1 − exp(−1/ε)
, µ(z) = 1 − z −

exp(−z/ε) − exp(−1/ε)
1 − exp(−1/ε

.

We have tested this example with different values of diffusion parameter; ε = 1 and ε = 10−2.

In terms of comparison of the discretize-then-optimize and the optimize-then-discretize, we

have obtained the same results for different values of diffusion parameter. However, to reach

optimal convergence rates we need much mesh refinement for the convection dominated case.
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Figure 3.2: L2 error for SIPG with ε = 1.

The discretize-then-optimize and the optimize-then-discretize approaches are equivalent for

SIPG method independent of degree of basis functions. The results in Figure 3.2 show that
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the orders of convergence for state and control variables are optimal for both approaches in

SIPG case. Figure 3.2 reveals that it is O(h2) and O(h3) for linear and quadratic elements,

respectively.
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Figure 3.3: L2 error for NIPG1 and NIPG3 with ε = 1: discretize-then-optimize.
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Figure 3.4: L2 error for NIPG1 and NIPG3 with ε = 1: optimize-then-discretize.

In the nonsymmetric case, i.e., NIPG1 and IIPG1, two approaches to solve the optimal con-

trol problem numerically are not equivalent as shown in Figures 3.3 and 3.4 for the NIPG1

method. The numerical results confirm the Theorem 3.3.2. The convergence rate of the

control obtained from the discretize-then optimize is linear whereas it is quadratic for the

optimize-then-discretize approach. For the convergence order of state in NIPG1, the results in

Figures 3.3 and 3.4 reveal that it is almost the same for linear and quadratic elements.
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Figure 3.5: L2 error for IIPG1 and IIPG3 with ε = 1: discretize-then-optimize.
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Figure 3.6: L2 error for IIPG1 and IIPG3 with ε = 1: optimize-then-discretize.
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To overcome this shortcoming property of the NIPG1 method, superpenalization has been

proposed in [87]. With superpenalization, the lack of adjoint consistency is reduced and

hence, we obtain O(h2) and O(h3) rates for linear and quadratic elements, respectively, for

the state variable in NIPG3 case. In addition, we observe that in Figures 3.3 and 3.4 the

discretize-then-optimize approach and the optimize-then-discretize approach are almost the

same for NIPG3. However, the drawback of superpenalization is to increase the condition

number of the system. See [30] for details. Similar numerical results for IIPG1 and IIPG3 as

NIPG method are shown in Figures 3.5 and 3.6.
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Figure 3.7: L2 error for SIPG with ε = 10−2.

For the convection dominated case (ε = 10−2), we have similar results in terms of comparison

of both approaches to solve the optimal control problem. However, the numerical results in

Figure 3.7, 3.8 and 3.9 reveal that the convergence rates are not achieved at the same number

of mesh refinement as ε = 1. The reason of this situation is that this example has a boundary

layer where x1 = 1 or x2 = 1 for the state equation and x1 = 0 or x2 = 0 for the adjoint

equation, as well as the control. To solve the convection dominated problems having boundary

and/or interior layers with a minimum degree of freedom, we need an adaptive strategy.
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Figure 3.8: L2 error for NIPG1 and NIPG3 with ε = 10−2: discretize-then-optimize.

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

LE
rr

or

State

 

 

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

h

L2  E
rr

or

Control

 

 

NIPG1, k=1
NIPG1, k=2
NIPG3, k=1
NIPG3, k=2

NIPG1, k=1

NIPG1, k=2

NIPG3, k=1

NIPG3, k=2

h3

h2

h3

h2

Figure 3.9: L2 error for NIPG1 and NIPG3 with ε = 10−2: optimize-then-discretize.
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CHAPTER 4

DISTRIBUTED OPTIMAL CONTROL PROBLEMS WITH

ADAPTIVITY

When convection dominates diffusion, the solutions of these PDEs typically exhibit layers on

small regions where the solution has large gradients; we speak of the boundary and/or interior

layers. The standard finite element methods (FEMs) applied to convection dominated diffu-

sion problems lead to strong oscillations when layers are not properly solved. To overcome

this difficulty, we need special numerical techniques, which take into account the structure of

the convection. The adaptive finite element methods are an effective numerical resolution to

overcome the difficulty caused by boundary and/or layers.

Adaptive finite element methods can be summarized such as computation of a numerical

solution on a triangulation, estimation of the local error on each single element, marking of

the elements, and refinement of the selected elements. This iteration is repeated until a desired

accuracy or a maximum number of degree of freedom is reached.

The key part of adaptive finite element methods is a posteriori error estimators that provide in-

formation to select the elements to refine. In the literature, there exist a huge amount of study

related to error estimators. The simple estimator is the Zienkiewicz-Zhu estimator which only

uses the numerical solution and does not need the problem data, has introduced in [108] by

Zienkiewicz and Zhu. This estimation is an averaging technique to obtain a high-order recov-

ery for the gradient of solution. For an extensive study on averaging techniques, see [11]. In

literature, there are two main approaches in the context of mesh adaptivity based on a pos-

teriori error estimates: error estimation with respect to the natural energy norm induced by

the given variational form and goal-oriented error estimation with respect to a preassigned

quantity of interest. The former one has been studied in [3, 8, 97, 98, 99, 100]. Verfürth has
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studied the local Dirichlet (or Neumann) estimator that is based on the solution of auxiliary lo-

cal discrete problems with Dirichlet (or Neumann) boundary conditions and the norm-residual

based estimator that is incorporate the norm of residuals in [97, 98, 99, 100]. Then, Verfürth

has proposed a fully robust error estimator with a dual norm of the convective derivative in

[99]. It has been robust in sense of uniformly boundedness of the upper and lower bounds of

estimators with respect to the size of the convection.

The second main approach called goal-oriented error estimator in finite element approxi-

mations has been developed by Becker and Rannacher [16, 17] and is referred as the dual-

weighted residual (DWR) method. Goal-oriented error estimation consists of the solution of

a problem dual to the original problem and the computation of several global error estimates.

Oden and Prudhomme have used this approach for elliptic problem in [85] and have extended

it in computational mechanics [82]. For convection diffusion problems, it has been studied in

[23, 24, 33, 69].

For the numerical solution of convection diffusion problems DG methods have became pop-

ular because of their stability properties in the around of boundary and/or interior layers.

Different kinds of error estimations with DG methods can also be found in the literature. Ex-

plicit a posteriori estimators for the error in DG approximation measured in mesh-dependent

energy type norms for DG methods applied to pure diffusion problems has been studied in

[14, 20, 57, 65, 66]. Karakashian and Pascal [66] have firstly studied a convergence analysis

of a residual type a posteriori error estimator based on DG discretization. Then, Hoppe et al.

[57] have proven the convergence analysis of the a posterior estimator in [66] by using any

multiple interior nodes for refined elements of triangulation as in [66]. Recently, Bonito and

Nochetto [20] have extended and improved [57, 66] in several respects: allowing discontinu-

ity of diffusion parameter and nonconforming meshes. Ainsworth [2] has derived a posteri-

ori error estimator that is free of any unknown constant. In [64], Kanschat and Rannacher

have proposed a functional error estimation with symmetric interior Galerkin discretization

(SIPG). On the other hand, Rivièra et al. [88] has used the nonsymmetric interior penalty

Galerkin (NIPG) method to introduce a posteriori estimator with L2 norm. For convection

diffusion problems, Ern et al. has proposed a posteriori error estimator with inhomogeneous

and anisotropic diffusion approximated by weighted interior penalty discontinuous Galerkin

methods. Furthermore, Houston et al. [59] has derived a-posteriori estimator using energy

norm for hp-adaptivity and [60] has given a goal-oriented a posteriori error estimation for
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both conforming and DG finite element methods.

In this thesis, our studies with adaptive approach are based on the error estimator proposed

by Schötzau and Zhu in [91]. This estimation is an extensive of [99] to symmetric interior

penalty Galerkin (SIPG) discretization. The upper and lower bounds of this estimator are

measured in terms of the natural energy norm and a semi-norm associated with convective

terms. In addition, it is a robust estimator in sense that the reliability and efficiency bounds

are uniformly bounded with respect to the ratio of convection and diffusion coefficients.

Solving an optimization problems governed by convection diffusion equation is substantially

different from solving a single convection diffusion PDE. One reason why the solution of

optimization problems governed by the convection diffusion PDEs (also referred to as the state

PDEs) provides additional challenges is that the optimality conditions for such optimization

problems do not only involve the original convection diffusion state equation, but also another

convection diffusion PDE, the so-called adjoint PDE. The diffusion part of the adjoint PDE is

equal to that of the state PDE, but the convection in the adjoint PDE is equal to the negative

of the convection in the state PDE (in case of nonlinear state PDEs, the convection in the

adjoint PDE is equal to the linearized state PDE). This has important implications for the

behavior of the solution, as well as for numerical methods for their solution. In the optimal

control context, boundary and/or interior layers are generated in the state PDE as well as in

the adjoint PDE. These layers are determined by the convection as well as by its negative.

This leads to different error propagation properties in the optimization context compared to

what one may expect from studying the solution of a single convection diffusion PDE.

As far as the a posteriori error analysis of adaptive finite element schemes for optimal control

problem is concerned, there is few work for unconstrained case of optimal control problems.

In [10, 15], error and mesh adaptivity has been described for the discretization of optimal

control problems governed by elliptic PDEs. Becker et al. [15] has proposed a residual-based

a-posteriori error estimates called the goal-oriented dual weighted approach derived by dual-

ity arguments employing the cost functional of the optimization problem for controlling the

discretization. In [38], Dedè and Quarteroni have used a posteriori error estimator with a sta-

bilization method applied to the Lagrangian functional for optimal control problems governed

by convection diffusion equations. Their a posteriori estimates stems from splitting the error

on the cost functional into the sum of an iteration error plus a discretization error. Adaptivity
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strategy has been applied on discretization error after reducing the former error below a given

threshold. Nederkoorn in [81] has combined adaptive finite element methods with SUPG

stabilization introduced in [35], to solve linear-quadratic convection dominated elliptic opti-

mal control problems. For convection dominated optimal control problems, Leykekhman and

Heinkenschloss [48] have shown that the local error for the SUPG discretized optimal control

problem is not optimal even if the error is computed locally in a region away from the bound-

ary layer. Then, Leykekhman and Heinkenschloss [73] have overcome this problem by using

the symmetric interior penalty Galerkin (SIPG) method. The reason why the SIPG method

gives an optimal convergence is the weak treatment of boundary conditions which is natural

for DG methods, whereas SUPG methods have the strong imposition of boundary conditions.

In [73], the authors have only solved the convection dominated problems on the region away

from the boundary and/or interior layers. To solve such problems on hull region, the adaptive

strategy can be an effective way. To our knowledge, there is any work related to adaptive

discontinuous Galerkin methods for the convection dominated unconstrained optimal control

problems.

In this chapter, we solve the convection dominated optimal control problems, based on DG

discretization. We firstly propose a posteriori error estimator which are apparently not avail-

able in the literature. Then, we analyze the reliability and the efficiency of the error estimator

using data approximation error. Finally, the numerical results are presented that illustrate the

performance of the proposed error estimator.

4.1 The Adaptive Loop

Adaptive procedure can be summarized such as computation of a numerical solution on a

triangulation, estimation the local error on each single element, marking of the elements, and

refinement of the selected elements. This iteration is repeated until a desired accuracy or a

maximum number of degree of freedom is reached.

SOLVE→ ESTIMATE→MARK→ REFINE.

Here, SOLVE stands for the numerical solution of optimal control problem (3.1)-(3.2) with

respect to the given triangulation ξh using the discontinuous Galerkin methods given in Chap-

ter 2.
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The key part of the adaptive loop is ESTIMATE part since it provides information to mark

the elements to refine. We use a residual-type error estimator to mark the elements which

have a large error caused from state, adjoint and control variables. The error indicators of

the state and the adjoint used here are based on the error estimator given in [91] for a single

convection dominated PDE.

Set

ρE = min{hEε
− 1

2 , r
− 1

2
0 }, ρe = min{heε

− 1
2 , r
− 1

2
0 }.

When r0 = 0, ρE = hEε
− 1

2 and ρe = heε
− 1

2 are taken.

For each element E ∈ ξh, the error indicators of state ηy
E , adjoint ηp

E and control ηu
E are

(ηy
E)2 =

[
(ηy

ER
)2 + (ηy

eD)2 + (ηy
eJ )2

]
,

(ηp
E)2 =

[
(ηp

ER
)2 + (ηp

eD)2 + (ηy
eJ )2

]
,

(ηu
E)2 =

[
(ηu

ER
)2
]
.

Here, ηE stands for the element residual

η
y
ER

= ρE‖ fh + uh + ε∆yh − βh · ∇yh − rhyh‖L2(E), E ∈ ξh,

η
p
ER

= ρE‖ − (yh − (yd)h + ε∆ph + βh · ∇ph − rh ph‖L2(E), E ∈ ξh,

ηu
ER

= ‖ωuh − ph‖L2(E), E ∈ ξh.

where yh, ph, uh be the discontinuous Galerkin approximations. Moreover, fh, (yd)h and βh, rh

denote approximations in Vh to the right-hand sides and the coefficient functions, respectively.

The edge residual is denoted by ηeD and ηeJ comes from the jump of numerical solutions

(ηy
eD)2 =

1
2

∑
Γ0

h

ε−
1
2 ρe‖[ε∇yh]‖2e ,

(ηy
eJ )2 =

1
2

∑
Γ0

h

(
σε

he
+ r0he +

he

ε
)‖[yh]‖2e +

∑
Γ∂h

(
σε

he
+ r0he +

he

ε
)‖[gD − yh]‖2e ,

(ηp
eD)2 =

1
2

∑
Γ0

h

ε−
1
2 ρe‖[ε∇ph]‖2e ,

(ηp
eJ )2 =

1
2

∑
Γ0

h

(
σε

he
+ r0he +

he

ε
)‖[ph]‖2e +

∑
Γ∂h

(
σε

he
+ r0he +

he

ε
)‖[ph]‖2e .

Then, a posteriori error estimators for optimal control problems are

ηy =

∑
E∈ξh

(ηy
E)2


1
2

, ηp =

∑
E∈ξh

(ηp
E)2


1
2

, ηu =

∑
E∈ξh

(ηu
E)2


1
2

. (4.1)
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Additionally, we give data approximation terms by

(θy
E)2 = ρ2

E(‖ f − fh‖2L2(E) + ‖(β − βh) · ∇yh‖
2
L2(E) + ‖(r − rh)yh‖

2
L2(E)),

(θp
E)2 = ρ2

E(‖(yd)h − yd‖
2
L2(E) + ‖(β − βh) · ∇ph‖

2
L2(E) + ‖(r − ∇ · β) − (rh − ∇ · βh)ph‖

2
L2(E)).

Then, the data approximation errors are

θy =

∑
E∈ξh

(θy
E)2


1
2

, θp =

∑
E∈ξh

(θp
E)2


1
2

. (4.2)

Note that y, p and u stand for the state, the adjoint and the control, respectively.

Our a posteriori error indicators (4.1) can defined for r0 ≥ 0. However, for the proof of our

reliability and efficiency estimate we need r0 > 0. We will comment in Remark 4.2.8 below

on how this assumption enters our proof. Our numerical examples in Section 4.3 indicate

that the a posteriori error indicators (4.1) can also be used if r0 = 0. However, no proof is

available for this case yet. We note that the assumption r0 > 0 is also made for the analysis

of discretization schemes for convection dominated elliptic optimal control problems in the

papers [18, 48, 54, 73, 104].

In the MARK step of the adaptive loop, we specify the edges and elements of the triangulation

using the a posteriori error indicator defined in (4.1) that have to be selected for refinement in

order to achieve a reduction of error. Most strategies that are in use are of heuristic type and

realize some sort of equidistribution of the error based on either the maximum or the average

of the local components of the error estimator. We use the bulk criterion firstly proposed by

Döfler [41] since the approximation error is decreased by a fixed factor for each loop and

thus the local refinement will convergence. It can be described such that for a given universal

constant θ, we choose subsets ME ⊂ ξh such that the following bulk criterion is satisfied:

∑
E∈ξh

(ηE)2 ≤ θ
∑

E∈ME

(ηE)2. (4.3)

Bigger θ produce more refinement of triangles in one loop and smaller θ yield more optimal

grid with more refinement loops.

53



�
�
�
�

S
S
S
S

2 3
4

1

r �
�
�
�

S
S
S
S

2 3
4

1

�
�r r

right

�
�
�
�

S
S
S
S

2 3
4

1

S
S rr

left

Figure 4.1: Divide a triangle according to the marked edges.

In the REFINEMENT step, the marked elements are divided using the newest vertex bisec-

tion (see, e.g., [31, 32, 45]). The procedure can be summarized as (see Figure 4.1): given a

shape regular triangulation ξh of Ω, for each triangle E ∈ ξh, we label one vertex of E as a

peak or newest vertex. The opposite edge of the peak is called as base or refinement edge.

This process is called a labeling. Then, we divide a triangle according to the marked edges by

satisfying;

1. a triangle is bisected to two new children triangles by connecting the peak to the mid-

point of the base,

2. the new vertex created at a midpoint of a base is assigned to be the peak of the children.

After the labeling is done for initial triangulation, there is no more need to done it since the

decent triangulation inherit the label by the rule (2). This refinement process conserves the

conformity property and the shape regularity of the triangulation.

4.2 A Posteriori Error Estimation

We use an energy norm and a semi-norm associated with convective terms introduced in [91]

to show the efficiency and the reliability of the error indicators defined in (4.1):

‖|y‖|2 =
∑
E∈ξh

(‖ε∇y‖2L2(E) + r0‖y‖2L2(E)) +
∑
e∈Γh

σε

he
‖[y]‖2L2(e). (4.4)

This norm can be viewed as the energy norm associated with the discontinuous Galerkin

discretization of the convection diffusion.
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The semi-norm |.|A with convective term is described such that

|y|2A = |βy|2∗ +
∑
e∈Γ

(r0he +
he

ε
)‖[y]‖2L2(e), (4.5)

where for q ∈ L2(Ω)2,

|q|∗ = sup
υ∈H1

0 (Ω)\{0}

∫
Ω

q · ∇υdx

‖|υ‖|
. (4.6)

The terms |βy|2∗ and heε
−1‖[y]‖2

L2(e) of the semi-norm |.|A will be used to bound the convective

derivative, similarly as in [99]. The other term r0he‖[y]‖2
L2(e) is related to the reaction term in

the state or the adjoint equation.

We have to show two main properties of a posteriori estimators in (4.1) called as the reliability

and the efficiency of estimator. We firstly give some necessary steps to show the proof of

bounds. The proof is given as in [91] for the problems with homogeneous Dirichlet boundary

conditions (3.2). In addition, the proof is proceeded by using the symmetric interior penalty

Galerkin (SIPG) method (κ = −1 is taken in 3.19).

4.2.1 Auxiliary Forms and Their Properties

To make the discontinuous Galerkin form ah(y, υ) in (3.19) well-define for functions y, υ ∈

H1
0 , we use the following auxiliary forms as in [91]:

Dy
h(y, υ) =

∑
E∈ξh

∫
E

(ε∇y · ∇υ + (r − ∇ · β)yυ) dx,

Dp
h (y, υ) =

∑
E∈ξh

∫
E

(ε∇y · ∇υ + ryυ) dx,

Oy
h(y, υ) = −

∑
E∈ξh

∫
E
βy · ∇υ dx +

∑
e∈Γ0

h

∫
e
|β · n| y+(υ+ − υ−) ds +

∑
e∈Γ+

h

∫
e
|β · n| y+υ+ ds,

Op
h (y, υ) =

∑
E∈ξh

∫
E
βυ · ∇y dx +

∑
e∈Γ0

h

∫
e
|β · n| (y+ − y−)υ+

h ds +
∑
e∈Γ−h

∫
e
|β · n| y+υ+ ds,

Kh(y, υ) = −
∑
e∈Γh

∫
e
{ε∇y}[υ] ds −

∑
e∈Γh

∫
e
{ε∇υ}[y] ds,

Jh(y, υ) =
∑
e∈Γh

εσ

he

∫
e
[y][υ] ds.

The bilinear form ãh(y, υ) is well-defined for all yh, υh ∈ Yh + H1
0(Ω) :

ãh(y, υ) = Dy
h(y, υ) + Oy

h(y, υ) + Jh(y, υ)

= Dp
h (y, υ) + Op

h (y, υ) + Jh(y, υ).
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Then, the discontinuous Galerkin bilinear form ah(y, υ) becomes

ãh(yh, υh) = ah(yh, υh), ∀y, υh ∈ H1
0 , (4.7)

ah(yh, υh) = ãh(yh, υh) + Kh(yh, υh), ∀yh, υh ∈ Yh. (4.8)

Lemma 4.2.1 [91, Lemma 4.1]

ãh(υ, υ) ≥ ‖|υ|‖2, ∀υ ∈ H1
0 .

In this thesis, the symbols > and ? are used to denote bounds that are valid up to positive

constants independent of the local mesh sizes, the diffusion coefficient ε and the penalty pa-

rameter σ, provided that σ ≥ 1.

Lemma 4.2.2 [91, Lemma 4.2] The auxiliary forms have continuity property such that

|Dy
h(y, υ)| > ‖|y|‖ ‖|υ|‖, y, υ ∈ Yh + H1

0 ,

|Dp
h (y, υ)| > ‖|y|‖ ‖|υ|‖, y, υ ∈ Yh + H1

0 ,

|Jh(y, υ)| > ‖|y|‖ ‖|υ|‖, y, υ ∈ Yh + H1
0 ,

|Oy
h(y, υ)| > |βy|∗ ‖|υ|‖, y ∈ Yh + H1

0 , υ ∈ H1
0 ,

|Op
h (y, υ)| > |βυ|∗ ‖|y|‖, υ ∈ Yh + H1

0 , y ∈ H1
0 .

Proof. The first one results from the Cauchy-Schwarz inequality and the bound in (3.7c). The

second and third are straightforward consequence of the Cauchy-Schwarz inequality. The last

two inequalities come from the definition of | · |∗ given in (4.6). �

Lemma 4.2.3 [91, Lemma 4.3] For y ∈ Yh and υ ∈ H1
0 ∩ Yh, we have

K(y, υ) > σ−
1
2

∑
e∈Γh

σε

he
‖[y]‖2L2(e)


1
2

‖|υ|‖.

Lemma 4.2.4 [91, Lemma 4.4] inf-sup condition: There is constant C > 0 such that

inf
y∈H1

0 (Ω)\{0}
sup

υ∈H1
0\{0}

ã(y, υ)
(‖|y|‖ + |βy|∗) ‖|υ|‖

≥ C > 0.
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Proof. The proof of this lemma is analogously to [99]. Let y ∈ H1
0 and θ ∈ (0, 1). Then there

exits wθ ∈ H1
0 such that

‖|wθ|‖ = 1, Oy(y,wθ) = −

∫
Ω

βy · ∇wθ dx ≥ θ|βy|∗.

From the continuity properties in Lemma 4.2.2, we obtain

ã(y,wθ) = Dy(y,wθ) + Oy(y,wθ) + J(y,wθ)

≥ θ|βy|∗ −C‖|y|‖ ‖|wθ|‖

= θ|βy|∗ −C‖|y|‖,

where for a constant C > 0. Let us then define υθ = y +
‖|y|‖
1+C wθ.

By Lemma 4.2.1, a(y, y) ≥ ‖|y|‖2, so that

sup
υ∈H1

0 (Ω)\{0}

ã(y, υ)
‖|υ|‖

≥
ã(y, υθ)
‖|υθ|‖

≥
‖|y|‖2 + (1 + C)−1‖|y|‖(θ|βy|∗ −C‖|y|‖)

(1 + 1/(1 + C))‖|y|‖

=
1

2 + C
(‖|y|‖ + θ|βy|∗).

Since θ ∈ (0, 1) and y ∈ H1
0(Ω) are arbitrary, we obtain the inf-sup condition.

Note that the proof can also be proceeded by using Dp
h and Op

h . �

4.2.2 Approximation Operators

Lemma 4.2.5 For any υ ∈ Vh, the following inequalities hold∑
E∈ξh

‖υ − Ahυ‖
2
L2(E) >

∑
e∈Γh

∫
e

he|[υ]|2 ds,

∑
E∈ξh

‖∇(υ − Ahυ)‖2L2(E) >
∑
e∈Γh

∫
e

h−1
e |[υ]|2 ds,

where the approximation operator Ah : Vh → Vc
h is defined in [58, 65], and Yc

h be the con-

forming subspace of Yh given by Vc
h = Yh ∩ H1

0(Ω).

Lemma 4.2.6 The interpolation operator constructed in [99]

Ih : H1
0(Ω)→ {ϕ ∈ C(Ω̄) : ϕ|E ∈ P1(E), ∀E ∈ ξh, ϕ = 0 on Γ}

57



that satisfies ‖|Ihυ|‖ > ‖|υ|‖ and

∑
E∈ξh

ρ−2
E ‖υ − Ihυ‖

2
L2(E)


1
2

> ‖|υ|‖,

∑
e∈Γ

ε
1
2 ρ−1

e ‖υ − Ihυ‖
2
L2(e)


1
2

> ‖|υ|‖,

where for any υ ∈ H1
0(Ω).

4.2.3 Reliability and Efficiency of a Posteriori Error Estimator

For the proof of the convergence a posteriori error estimation, we follow [74], firstly by es-

tablishing the connection between the control and the adjoint.

Lemma 4.2.7 Let (y, u, p) and (yh, uh, ph) be the solution of (3.12) and (3.18), respectively.

Then

‖u − uh‖
2
L2(Ω) > ‖ph − p[uh]‖2L2(Ω) + (ηu)2, (4.9)

where p[uh] satisfies the following equation:

a(y[uh],w) − (uh,w) = l(w), ∀w ∈ V, (4.10a)

a(w, p[uh]) + (y[uh],w) = k(w), ∀w ∈ V, (4.10b)

where l(w) = ( f ,w) and k(w) = (yd,w).

Proof. Let u be the optimal control, then (y, u, p) = (y[υ], u, p[υ]) is the solution of the system

(4.10). The gradient of the objective function Ĵ(υ) satisfies

(∇Ĵ(υ),w) = −(w, p[υ]) + ω(υ,w), ∀w ∈ U.

Consider the following for any w ∈ U

(∇Ĵ(u) − ∇Ĵ(uh),w) = (∇Ĵ(u),w) − (∇Ĵ(uh),w)

= −(w, p) + ω(u,w) + (w, p[uh]) − ω(uh,w)

= (w, p[uh] − p) + ω(u − uh,w).
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Setting w = u − uh leads to

(∇Ĵ(u) − ∇Ĵ(uh), u − uh) = (u − uh, p[uh] − p) + ω(u − uh, u − uh)

= (u − uh, p[uh] − p) + ω‖u − uh‖
2
L2(Ω). (4.11)

The equations (4.10a) and (4.10b) yield

(u − uh, p[uh] − p) = (u, p[uh] − p) − (uh, p[uh] − p)

= a(y, p[uh] − p) − l(p[uh] − p) − a(y[uh], p[uh] − p) + l(p[uh] − p)

= a(y − y[uh], p[uh] − p)

= a(y − y[uh], p[uh]) − a(y − y[uh], p)

= k(y − y[uh]) − (y[uh], y − y[uh]) − k(y − y[uh]) + (y, y − y[uh])

= (y − y[uh], y − y[uh]) = ‖y − y[uh]‖2 ≥ 0.

The optimality condition of the unconstrained problem, ∇Ĵ(u) = 0, yields

ω‖u − uh‖
2
L2(Ω) ≤ (∇Ĵ(u) − ∇Ĵ(uh), u − uh)

= −(∇Ĵ(uh), u − uh)

= (u − uh, p[uh]) − ω(uh, u − uh)

= (p[uh], u − uh) − ω(uh, u − uh) + (ph, u − uh) − (ph, u − uh)

= (p[uh] − ph, u − uh) + (ph − ωuh, u − uh)

> ‖ph − p[uh]‖2L2(Ω) + ‖u − uh‖
2
L2(Ω) + ‖ph − ωuh‖

2
L2(Ω) + ‖u − uh‖

2
L2(Ω).

Then, we obtain

‖u − uh‖
2
L2(Ω) > ‖ph − p[uh]‖2L2(Ω) + (ηu)2.

�

Now, we need to find a bound for ‖ph − p[uh]‖2
L2(Ω) in order to estimate ‖u − uh‖

2
L2(Ω).

Remark 4.2.8 If r0 = 0, then, since v ∈ V = H1
0(Ω), (g, v) ≤ ‖g‖L2(Ω)‖v‖L2(Ω) >

ε−1‖g‖L2(Ω)‖|v‖|, and therefore the constants in (4.12 and (4.15) would depend on ε−1. The

assumption r0 > 0 makes the constant in the estimate (g, v) ≤ ‖g‖L2(Ω)‖v‖L2(Ω) > ‖g‖L2(Ω)‖|v‖|

independent of ε, as desired. In the following we will use the bound ‖v‖L2(Ω) > ‖|v‖| a few

times, which is possible because of r0 > 0.
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Lemma 4.2.9 It holds

‖|p[uh] − ph‖| + |p[uh] − ph|A > ηp + θp + ‖yh − y[uh]‖L2(Ω). (4.12)

Proof. Firstly, we rewrite the discontinuous Galerkin solution ph in terms of a conforming

part and a remainder as in [91]:

ph = pc
h + pr

h,

where pc
h = Ah ph ∈ Yc

h with Ah as the operator from Lemma 4.2.5. The triangle inequality

yields

‖|p[uh] − ph‖| + |p[uh] − ph|A ≤ ‖|p[uh] − pc
h‖| + |p[uh] − pc

h|A + ‖|pr
h‖| + |p

r
h|A.

Similarly as in [91, Lemma 4.7], we can find a bound for the rest term pr
h such that

‖|pr
h|‖ + |pr

h|A > ηp. (4.13)

Now, we will find a bound for the continuous error p[uh] − pc
h in terms of the adjoint error

estimator, ηp in (4.1).

Since p[uh]− pc
h is continuous, by definition of | · |A in (4.5), we have |p[uh]− pc

h|A = |β(p[uh]−

pc
h)|∗.

The inf-sup condition in Lemma 4.2.4 gives

‖|p[uh] − pc
h|‖ + |β(p[uh] − pc

h)|∗ > sup
q∈H1

0\{0}

ãh(q, p[uh] − pc
h)

‖|q‖|
.

For q ∈ H1
0 ,

ãh(q, p[uh] − pc
h) = ãh(q, p[uh]) − ãh(q, pc

h)

= k(q) − (y[uh], q) − ãh(q, pc
h)

= k(q) − (y[uh], q) − Dp
h (q, pc

h) − Jh(q, pc
h) − Op

h (q, pc
h)

= k(q) − (y[uh], q) − ãh(q, ph) + Dp
h (q, pr

h) + Jh(q, pr
h) + Op

h (q, pr
h)

=

∫
Ω

ydq dx − (y[uh], q) − ãh(q, ph) + Dp
h (q, pr

h) + Jh(q, pr
h) + Op

h (q, pr
h).

By using (4.10b) and the operator Ih introduced in Lemma 4.2.6, we have∫
Ω

ydIhq dx = ah(Ihq, ph) + (yh, Ihq)

= ãh(Ihq, ph) + Kh(Ihq, ph) + (yh, Ihq).
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ãh(q, p[uh] − pc
h) =

∫
Ω

yd(q − Ihq) dx − ãh(q − Ihq, ph) + Dp
h (q, pr

h) + Jh(q, pr
h) + Op

h (q, pr
h)

+ Kh(Ihq, ph) − (y[uh], q) + (yh, Ihq) + (yh, q) − (yh, q)

=

∫
Ω

(yd − yh)(q − Ihq) dx − ãh(q − Ihq, ph) + Dp
h (q, pr

h) + Jh(q, pr
h) + Op

h (q, pr
h)

+ Kh(Ihq, ph) + (yh − y[uh], q)

= T1 + T2 + T3 + T4.

For (q − Ihq) ∈ H1
0 and using integration by part, we obtain

T1 =

∫
Ω

(yd − yh)(q − Ihq) dx − ãh(q − Ihq, ph)

=
∑
E∈ξh

∫
E

(yd − yh)(q − Ihq) dx −

∑
E∈ξh

∫
E

(ε∇(q − Ihq)∇ph + r(q − Ihq)ph) dx


−

∑
E∈ξh

∫
E
β · ∇(q − Ihq)ph dx −

∑
e∈Γ0

h

∫
e
|β · ne|((q − Ihq)+ − q − Ihq)−)p+

h ds

=
∑
E∈ξh

∫
E

[
(yd − yh) + ε∆ph + β · ∇ph − (r − ∇ · β)ph

]
(q − Ihq) dx︸                                                                               ︷︷                                                                               ︸

M1

−
∑
e∈Γh

∫
e
ε∇ph · ne(q − Ihq) ds︸                              ︷︷                              ︸

M2

−
∑
e∈Γ0

h

∫
e
|β · ne|(q − Ihq)+(p+

h − p−h ) ds

︸                                          ︷︷                                          ︸
M3

.

In the term M1, we add and subtract the data approximation. This gives us

M1 =
∑
E∈ξh

∫
E

[
(yd − yh) + ε∆ph + β · ∇ph − (r − ∇ · β)ph

]
(q − Ihq) dx

=
∑
E∈ξh

∫
E

[
(yd)h − yh + ε∆ph + βh · ∇ph − (rh − ∇ · βh)ph

]
(q − Ihq) dx

+
∑
E∈ξh

∫
E

[
(yd − (yd)h) − (βh − β)∇ph − ((r − ∇ · β) − (rh − ∇ · βh))ph

]
(q − Ihq) dx.

Using the Cauchy-Schwarz inequality and Lemma 4.2.6, we obtain

M1 >

∑
E∈ξh

(ηp
RE

)2


1
2
∑

E∈ξh

ρ−2
E ‖q − Ihq‖2L2(E)


1
2

+

∑
E∈ξh

(θp
E)2


1
2
∑

E∈ξh

ρ−2
E ‖q − Ihq‖2L2(E)


1
2

>

∑
E∈ξh

(ηp
R)2 + (θp

E)2


1
2

‖|q‖|.
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The term M2 can be written in terms of the jump of ε∇ph; then we obtain

M2 = −
∑
e∈Γh

∫
e
ε∇ph · ne(q − Ihq) ds = −

∑
e∈Γ0

h

∫
e
[ε∇ph](q − Ihq) ds

>

∑
e∈Γ0

h

ε−
1
2 ρe‖[ε∇ph]‖2L2(e)


1
2
∑

e∈Γ0
h

ε
1
2 ρ−1

e ‖q − Ihq‖2L2(e)


1
2

>

∑
E∈ξh

(ηp
eD)2


1
2

‖|q‖|.

By using the Cauchy-Schwarz inequality and Lemma 4.2.6 with the fact that ρe ≤ hEε
− 1

2 , we

obtain a bound for M3 such that

M3 = −
∑
e∈Γ0

h

∫
e
|β · ne|(q − Ihq)+(p+

h − p−h ) ds >

∑
e∈Γ0

h

ε−
1
2 ρe‖[ph]‖2L2(e)


1
2
∑

e∈Γ0
h

ε
1
2 ρ−1

e ‖q − Ihq‖2L2(e)


1
2

>

∑
E∈ξh

(ηp
eJ )2


1
2

‖|q‖|.

Combination of M1,M2,M3 gives

T1 > (ηp + θp)‖|q‖|.

By the continuity result in Lemma 4.2.2 and the approximation property in (4.13), we obtain

T2 = Dp
h (q, pr

h) + Jh(q, pr
h) + Op

h (q, pr
h)

> ‖|q‖|‖|pr
h‖| + ‖|q‖|‖|p

r
h‖| + |βpr

h|∗‖|q‖|

= (‖|pr
h‖| + |βpr

h|∗)‖|q‖| ≤ η
p‖|q‖|.

To bound T3, use Lemma 4.2.3 with the ‖| · ‖|-stability of the operator Ih defined in Lemma

4.2.6

T3 = K(Ihq, ph) > σ−
1
2

∑
e∈Γh

εσ

he
‖[ph]‖2L2(e)


1
2

‖Ihq‖ > σ−
1
2

∑
E∈ξh

(ηp
eJ )2


1
2

‖|q‖|.

Finally, we obtain a bound for T4 by the Cauchy-Schwarz inequality and the definition of the

norm ‖| · ‖| defined in (4.4):

T4 = (yh − y[uh], q) >
∑
E∈ξh

‖yh − y[uh]‖L2(Ω)‖|q‖|.

Taking all bounds together for T1,T2,T3,T4, we obtain

‖|p[uh] − pc
h|‖ + |p[uh] − pc

h|A > ηp + θp + ‖yh − y[uh]‖L2(Ω). (4.14)
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Hence, combining (4.13) and (4.14), the proof is completed.

‖|p[uh] − ph‖| + |p[uh] − ph|A > ηp + θp + ‖yh − y[uh]‖L2(Ω).

�

Now, we apply same procedure as adjoint case to find a bound for ‖yh − y[uh]‖L2(Ω).

Lemma 4.2.10 The following inequality

‖|y[uh] − yh|‖ + |y[uh] − yh|A > ηy + θy (4.15)

holds.

Proof. Similarly, we decompose yh into the conforming part and the remainder,

yh = yc
h + yr

h.

Using the triangle inequality we obtain

‖|y[uh] − yh|‖ + |y[uh] − yh|A ≤ ‖|y[uh] − yc
h|‖ + |y[uh] − yc

h|A + ‖|yr
h|‖ + |yr

h|A.

The rest term yr
h is bounded by state error estimator as shown in [91, Lemma 4.7]:

‖|yr
h|‖ + |yr

h|A > ηy. (4.16)

Now, we will prove that the continuous error y[uh]−yc
h is bounded by the state error estimator,

ηy given in (4.1).

Since y[uh]− yc
h is continuous, by definition of | · |A in (4.5), we have |y[uh]− yc

h|A = |β(y[uh]−

yc
h)|∗.

Then, we obtain using the inf-sup condition (Lemma 4.2.4),

‖|y[uh] − yc
h|‖ + |β(y[uh] − yc

h)|∗ > sup
υ∈H1

0\{0}

ãh(y[uh] − yc
h, υ)

‖|υ‖|
.

For υ ∈ H1
0 ,

ãh(y[uh] − yc
h, υ) = ãh(y[uh], υ) − ãh(yc

h, υ)

= l(υ) + (uh, υ) − ãh(yc
h, υ)

= l(υ) + (uh, υ) − Dy
h(yc

h, υ) − Jh(yc
h, υ) − Oy

h(yc
h, υ)

= l(υ) + (uh, υ) − ãh(yh, υ) + Dy
h(yr

h, υ) + Jh(yr
h, υ) + Oy

h(yr
h, υ)

=

∫
Ω

fυ dx + (uh, υ) − ãh(yh, υ) + Dy
h(yr

h, υ) + Jh(yr
h, υ) + Oy

h(yr
hυ).
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By using (4.10a) and the operator Ih introduced in Lemma 4.2.6, we have∫
Ω

f Ihυ dx = ah(yh, Ihυ) − (u, Ihυ)

= ãh(yh, Ihυ) + Kh(yh, Ihυ) − (uh, Ihυ).

ãh(y[uh] − yc
h, υ) =

∫
Ω

( f + uh)(υ − Ihυ) dx − ãh(yh, υ − Ihυ)

+ Dy
h(yr

h, υ) + Jh(yr
h, υ) + Oy

h(yr
h, υ) + Kh(yh, Ihυ)

= T1 + T2 + T3.

For υ − Ihυ ∈ H1
0 and using integration by parts, we obtain

T1 =

∫
Ω

( f + uh)(υ − Ihυ) dx − ãh(yh, υ − Ihυ)

=
∑
E∈ξh

∫
E

( f + uh)(υ − Ihυ) dx −

∑
E∈ξh

∫
E

(ε∇yh∇(υ − Ihυ) + (r − ∇ · β)yh(υ − Ihυ)) dx


+

∑
E∈ξh

∫
E
βyh∇(υ − Ihυ) dx −

∑
e∈Γ0

h

∫
e
|β · ne|y+

h ((υ − Ihυ)+ − (υ − Ihυ)−) ds

=
∑
E∈ξh

∫
E

( f + uh + ε∆yh − β · ∇yh − ryh)(υ − Ihυ) dx︸                                                             ︷︷                                                             ︸
M1

−
∑
e∈Γh

∫
e
ε∇yh · ne(υ − Ihυ) ds︸                              ︷︷                              ︸

M2

+
∑
e∈Γ0

h

|β · ne|(y+
h − y−h )(υ − Ihυ)+ ds

︸                                     ︷︷                                     ︸
M3

.

In the term M1, we add and subtract the data approximation terms. This gives us

M1 =
∑
E∈ξh

∫
E

( f + uh + ε∆yh − β · ∇yh − ryh)(υ − Ihυ) dx

=
∑
E∈ξh

∫
E

( fh + uh + ε∆yh − βh∇yh − rhyh)(υ − Ihυ) dx

+
∑
E∈ξh

∫
E

[
( f − fh) − (β − βh)∇yh − (r − rh)yh

]
(υ − Ihυ) dx.

Using the Cauchy-Schwarz inequality and Lemma 4.2.6, we obtain

M1 >

∑
E∈ξh

(ηy
RE

)2


1
2
∑

E∈ξh

ρ−2
e ‖υ − Ihυ‖

2
L2(E)


1
2

+

∑
E∈ξh

(θy
E)2


1
2
∑

E∈ξh

ρ−2
e ‖υ − Ihυ‖

2
L2(E)


1
2

>

∑
E∈ξh

(ηy
R)2 + (θy

E)2


1
2

‖|υ‖|.
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Now, we write ε∇yh in terms of the jump to obtain

M2 = −
∑
e∈Γh

∫
e
ε∇yh · ne(υ − Ihυ) ds = −

∑
e∈Γ0

h

∫
e
[ε∇yh](υ − Ihυ) ds

>

∑
e∈Γ0

h

ε−
1
2 ρe‖[ε∇yh]‖2L2(e)


1
2
∑

e∈Γ0
h

ε
1
2 ρ−1

e ‖υ − Ihυ‖
2
L2(e)


1
2

>

∑
E∈ξh

(ηy
eD)2


1
2

‖|υ‖|.

By using the Cauchy-Schwarz inequality and Lemma 4.2.6 with the fact that ρe ≤ hEε
− 1

2 , we

obtain a bound for M3 such that

M3 =
∑
e∈Γ0

h

∫
e
|β · ne|(y+

h − y−h )(υ − Ihυ)+ ds >

∑
e∈Γ0

h

ε−
1
2 ρe‖[yh]‖2L2(e)


1
2
∑

e∈Γ0
h

ε
1
2 ρ−1

e ‖υ − Ihυ‖
2
L2(e)


1
2

>

∑
E∈ξh

(ηy
eJ )2


1
2

‖|υ‖|.

Now, combining M1,M2,M3 to obtain

T1 > (ηy + θy)‖|υ‖|.

The continuity result defined in Lemma 4.2.2 and the approximation property in (4.16) yield

T2 = Dy
h(yr

h, υ) + Jh(yr
h, υ) + Oy

h(yr
h, υ)

> ‖|υ‖|‖|yr
h‖| + ‖|υ‖|‖|y

r
h‖| + |βyr

h|∗‖|υ‖|

> (‖|yr
h‖| + |βyr

h|∗)‖|υ‖| ≤ η
y‖|υ‖|.

Lemma 4.2.3 and the ‖| · ‖|-stability of the operator Ih defined in Lemma 4.2.6 give us

T3 = K(yh, Ihυ) > σ−
1
2

∑
e∈Γh

εσ

he
‖[yh]‖2L2(e)


1
2

‖Ihυ‖ > σ−
1
2

∑
E∈ξh

(ηy
eJ )2


1
2

‖|υ‖|.

Combining the three bounds T1,T2,T3, we obtain

‖|y[uh] − yc
h|‖ + |y[uh] − yc

h|A > ηy + θy. (4.17)

Hence, from (4.16) and (4.17) we obtain

‖|y[uh] − yh|‖ + |y[uh] − yh|A > ηy + θy.

�
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Theorem 4.2.11 Let (y, u, p) and (yh, uh, ph) be the solutions of (3.12) and (3.18), respec-

tively. Let the error estimators ηy, ηp, ηu be defined by (4.1) and the data approximation

errors θy, θp by (4.2). Then we have the a posteriori error bound

‖u − uh‖L2(Ω) + ‖|y − yh‖| + |y − yh|A + ‖|p − ph‖| + |p − ph|A > ηu + ηy + θy + ηp + θp.

Proof. From (4.10a)-(4.10b) and (3.9), we have

a(y − y[uh], υ) = (u − uh, υ), ∀υ ∈ Vh, (4.18)

a(w, p − p[uh]) = −(y − y[uh],w), ∀w ∈ Vh. (4.19)

Note that |y − y[uh]|A = |β(y − y[uh])|∗, by the continuity of y and y[uh]. By using inf-sup

condition defined in Lemma 4.2.4 and taking υ = y − y[uh], we obtain

(‖|y − y[uh]‖| + |y − y[uh]|A) ‖|y − y[uh]‖| = (‖|y − y[uh]‖| + |β(y − y[uh])|∗) ‖|y − y[uh]‖|

> ãh(y − y[uh], y − y[uh])

> ah(y − y[uh], y − y[uh])

= (u − uh, y − y[uh])

> ‖u − uh‖L2(Ω)‖|y − y[uh]‖|.

Then,

‖|y − y[uh]‖| + |y − y[uh]|A > ‖u − uh‖L2(Ω). (4.20)

Using the same procedure for adjoint case, we obtain

‖|p − p[uh]‖| + |p − p[uh]|A > ‖y − y[uh]‖L2(Ω) > ‖u − uh‖L2(Ω). (4.21)

Using the triangular inequality and the inequalities (4.20)-(4.21), we obtain

‖|yh − y|‖ + |yh − y|A ≤ ‖|yh − y[uh]|‖ + |yh − y[uh])|A + ‖|y[uh] − y|‖ + |y[uh] − y|A

> ‖|yh − y[uh]|‖ + |yh − y[uh]|A + ‖u − uh‖L2(Ω). (4.22)

‖|ph − p|‖ + |ph − p|A ≤ ‖|ph − p[uh]|‖ + |ph − p[uh]|A + ‖|p[uh] − p|‖ + |p[uh] − p|A

> ‖|ph − p(uh)|‖ + |ph − p(uh)|A + ‖u − uh‖L2(Ω). (4.23)

From Lemma 4.2.7 and the definition energy norm associated with DG defined in (4.4), we

have

‖u − uh‖L2(Ω) > ηu + ‖|ph − p[uh]|‖. (4.24)
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Combining the inequalities (4.12)-(4.15) and (4.20-4.24), we have

‖u − uh‖L2(Ω) + ‖|y − yh|‖ + |y − yh|A + ‖|p − ph|‖ + |p − ph|A > ηu + ηy + θy + ηp + θp. (4.25)

�

For any interior edge e ∈ Γ0
h, denote by ωe the union of two elements that share it. We use

element and edge bubble functions defined in [99] to derive the lower error bounds.

‖ψE‖L∞(E) = 1, ∀ψE ∈ H1
0(E) and ‖ψe‖L∞(e) = 1, ∀ψe ∈ H1

0(we). (4.26)

The local energy norm ‖| · |‖D for a set of elements D is

‖|y|‖2D =
∑
E∈D

(ε‖∇u‖2L2(E) + r0‖y‖2L2(E)).

Lemma 4.2.12 [99, Lemma 3.6] The following estimates hold for any element E, edge e, and

polynomials υ and σ defined on elements and edges, respectively,

‖υ‖2L2(E) > (υ, ψEυ)E , (4.27)

‖|ψEυ|‖E > ρ−1
E ‖υ‖L2(E), (4.28)

‖σ‖2L2(e) > (σ, ψeσ)e, (4.29)

‖ψeσ‖L2(we) > ε1/4ρ1/2
e ‖σ‖L2(e), (4.30)

‖ψeσ‖we > ε1/4ρ−1/2
e ‖σ‖L2(e). (4.31)

In the last two inequalities, the polynomials σ defined on e is extended to R2 in a canonical

fashion.

Lemma 4.2.13 The following inequality

ηy > ‖|y − yh‖| + |y − yh|A + θy + ‖u − uh‖L2(Ω)

holds.

Proof. By continuity of y, [y] = 0 then we obtain∑
E∈ξh

(ηy
eJ )2 > ‖|y − yh|‖ + |y − yh|A. (4.32)

Hence, we only need to show the efficiency of the indicators ηy
R and ηy

eD , respectively.

67



Define RE = ( fh + uh + ε∆yh − βh · ∇yh − rhyh)|E , and set W |E = ρ2
ERψE .

By inequality (4.27), we obtain∑
E∈ξh

(ηy
E)2 =

∑
E∈ξh

ρ2
E‖R‖

2
L2(E) >

∑
E∈ξh

(R, ρ2
EψER)E

=
∑
E∈ξh

(R,W)E =
∑
E∈ξh

( fh + uh + ε∆yh − βh · ∇yh − rhyh,W)E .

The exact solution satisfies ( f + u + ε∆y − β · ∇y − ry)|E = 0. Then, using integration by parts

and addition and substraction of the exact data,∑
E∈ξh

(ηy
E)2 >

∑
E∈ξh

( fh + uh + ε∆yh − βh · ∇yh − rhyh,W)E +
∑
E∈ξh

(β · ∇yh + ryh,W)

−
∑
E∈ξh

(β · ∇yh + ryh,W) −
∑
E∈ξh

( f + u + ε∆y − β · ∇y − ry,W)E

>
∑
E∈ξh

(ε(∇(y − yh),∇W)|E − (β(y − yh),∇W)E) +
∑
E∈ξh

((r − ∇ · β)(y − yh),W)E

+
∑
E∈ξh

(( fh − f ) + (uh − u) + (β − βh) · ∇yh + (r − rh)yh,W)E .

Here, W |∂E = 0 since ψE ∈ H1
0(E). Then, by the Cauchy-Schwarz inequality, the bound in

(3.7c), the definition of | · |A in (4.5) and the data approximation error θy
E given in (4.2), we

obtain

∑
E∈ξh

(ηy
RE

)2 > (‖|y − yh|‖ + |y − yh|A + θA + ‖u − uh‖L2(Ω))

∑
E∈ξh

‖|W |‖2E + ρ−2
E ‖W‖

2
L2(E)


1
2

.

By using the inequality (4.28) and (4.26), we obtain

‖|W |‖2E > ρ2
E‖R‖

2
L2(E) and ρ−2

E ‖|W |‖
2
L2(E) > ρ2

E‖R‖
2
L2(E).

Then ∑
E∈ξh

(ηy
R)2 > (‖|y − yh|‖ + |y − yh|A + θy + ‖u − uh‖L2(Ω))

∑
E∈ξh

(ηy
R)2


1
2

.

Hence, we obtain∑
E∈ξh

(ηy
E)2


1
2

> (‖|y − yh|‖ + |y − yh|A + θy + ‖u − uh‖L2(Ω)). (4.33)

Now, we will give a bound related to ηy
eD . Set

κ =
∑
e∈Γ0

h

ε−
1
2 ρe‖ε∇yh‖ψe.
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Using the inequality defined in (4.29) and the property of y, saying that [ε∇y] = 0 on interior

edges, Γ0
h, we obtain

∑
E∈ξh

(ηy
eD)2 >

∑
e∈Γ0

h

([ε∇yh], κ)e =
∑
e∈Γ0

h

([ε∇(yh − y)], κ)e.

To apply integration by parts over each of the two elements of we yields

∑
e∈Γ0

h

([ε∇(yh − y)], κ)e =
∑
e∈Γ0

h

∫
we

(ε(∆yh − ∆y)κ + ε(∇yh − ∇y) · ∇κ) dx.

By the differential equation −ε∆y = f + u − β · ∇y − ry and addition and substraction of

approximate data, we obtain

∑
E∈ξh

(ηy
eD)2 >

∑
e∈Γ0

h

∫
we

( fh + uh + ε∆yh − βh · ∇yh − rhyh)κ dx

+
∑
e∈Γ0

h

∫
we

((β · ∇(yh − y) + r(yh − y))κ + ε(∇yh − ∇y) · ∇κ) dx

+
∑
e∈Γ0

h

∫
we

(( f − fh) + (u − uh) + (βh − β) · ∇yh + (rh − r)yh)κ dx.

Integration by parts over we of the convection term β · ∇(yh − y) yields

∑
E∈ξh

(ηy
eD)2 > T1 + T2 + T3 + T4 + T5,

where

T1 =
∑
e∈Γ0

h

∫
we

( fh + uh + ε∆yh − βh · ∇yh − rhyh)κ dx,

T2 =
∑
e∈Γ0

h

∫
we

(r(yh − y)κ + ε(∇yh − ∇y) · ∇κ) dx,

T3 = −
∑
e∈Γ0

h

∫
we

β(yh − y) · ∇κ dx,

T4 =
∑
e∈Γ0

h

∫
e
β · [yh]κ ds,

T5 =
∑
e∈Γ0

h

∫
we

(( f − fh) + (u − uh) + (βh − β) · ∇yh + (rh − r)yh)κ dx.
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For T1,T2,T3,T4 terms, we obtain following upper bounds as shown in [91, Lemma 4.12]

T1 > (‖|y − yh|‖ + |y − yh|A + θy)

∑
E∈ξh

(ηy
eD)2


1
2

,

T2 > ‖|y − yh|‖

∑
E∈ξh

(ηy
eD)2


1
2

,

T3 > |y − yh|A

∑
E∈ξh

(ηy
eD)2


1
2

,

T4 > |y − yh|A

∑
E∈ξh

(ηy
eD)2


1
2

.

Finally, the last term T5 can be bounded using the Cauchy-Schwarz inequality:

T5 > (θy + ‖u − uh‖L2(Ω))

∑
E∈ξh

ρ−2
e ‖κ‖

2
L2(E)

 > (θy + ‖u − uh‖L2(Ω))

∑
E∈ξh

(ηy
eD)2


1
2

.

By combining the bounds of T1 − T5, we obtain∑
E∈ξh

(ηy
eD)2


1
2

> ‖|y − yh|‖ + |y − yh|A + θy + ‖u − uh‖L2(Ω). (4.34)

Combining (4.32-4.34), the proof is completed.

�

Lemma 4.2.14 The following inequality holds:

ηp > ‖|p − ph‖| + |p − ph|A + θp + ‖y − yh‖L2(Ω).

Proof. We follow the same procedure in Lemma 4.2.13 to show the inequality.

By continuity of p, we have [p] = 0. Then, we obtain∑
E∈ξh

(ηp
eJ )2 > ‖|p − ph|‖ + |p − ph|A. (4.35)

Define RE = (−(yh − (yd)h) + ε∆ph + βh · ∇ph − (rh − ∇ · βh)ph)|E , and set W |E = ρ2
ERψE .

By inequality (4.27), we obtain∑
E∈ξh

(ηp
E)2 =

∑
E∈ξh

ρ2
E‖R‖

2
L2(E) >

∑
E∈ξh

(R, ρ2
EψER)E

=
∑
E∈ξh

(R,W)E =
∑
E∈ξh

(−(yh − (yd)h) + ε∆ph + βh · ∇ph − (rh − ∇ · βh)ph,WE .
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The exact solution satisfies (−(y − yd) + ε∆p + β · ∇p − (r − ∇ · β)p)|E = 0. Then, using the

integration by parts and addition and substraction of the exact data,

∑
E∈ξh

(ηp
E)2 >

∑
E∈ξh

(−(yh − (yd)h) + ε∆ph + βh · ∇ph − (rh − ∇ · βh)ph,W)E

+
∑
E∈ξh

(β · ∇ph + rph,W) −
∑
E∈ξh

(β · ∇ph + (r − ∇ · β)ph,W)

−
∑
E∈ξh

(−(y − yD) + ε∆p + β · ∇p − (r − ∇ · β)p,W)E

>
∑
E∈ξ

(ε(∇(p − ph),∇W)E + (β(p − ph),∇W)E +
∑
E∈ξ

((r − ∇ · β)(p − ph),W)E

+
∑
E∈ξ

(((yd)h − yd) + (y − yh) + (βh − β) · ∇ph + ((r − ∇β) − (rh − ∇ · βh))ph,W)E .

Here, W |∂E = 0, since ψE ∈ H1
0(E). Then, by the Cauchy-Schwarz inequality, the bound in

(3.7c), the definition of | · |A in (4.5) and the data approximation error θy
E in (4.2), we obtain

∑
E∈ξh

(ηp
E)2 > (‖|p − ph|‖ + |p − ph|A + θp + ‖y − yh‖L2(Ω))

∑
E∈ξh

‖|W |‖2E + ρ−2
E ‖|W |‖

2
L2(E)


1
2

.

By using the inequality (4.28) and (4.26), we obtain

‖|W |‖2E > ρ2
E‖R‖

2
L2(E) and ρ−2

E ‖|W |‖
2
L2(E) > ρ2

E‖R‖
2
L2(E).

This gives

∑
E∈ξh

(ηp
E)2 > (‖|p − ph|‖ + |p − ph|A + θp + ‖y − yh‖L2(Ω))

∑
E∈ξh

(ηp
E)2


1
2

.

Hence, we obtain∑
E∈ξh

(ηp
E)2


1
2

> (‖|p − ph|‖ + |p − ph|A + θp + ‖y − yh‖L2(Ω)). (4.36)

Finally, using the same procedure as previous Lemma 4.2.13 for ηp
eD as ηy

eD , we obtain∑
E∈ξh

(ηp
eD)2


1
2

> ‖|p − ph|‖ + |p − ph|A + θp + ‖y − yh‖L2(Ω). (4.37)

Combining (4.35)-(4.37), we obtain

ηp > ‖|p − ph‖| + |p − ph|A + θp + ‖y − yh‖L2(Ω).

�
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Theorem 4.2.15 Let (y, u, p) and (yh, uh, ph) be the solution of (3.12) and (3.18). Let the error

estimators ηy, ηp, ηu be defined by (4.1) and the data approximation errors θy, θp be defined

by (4.2). Then we have such a lower bound:

ηy + ηp + ηu > ‖u − uh‖L2(Ω) + ‖|y − yh‖| + |y − yh|A + ‖|p − ph‖| + |p − ph|A + θy + θp.

Proof. In the discretized optimality condition, we haveωuh = ph. Hence, the element residual

of control indicator is ηu
E = 0. This implies that ηu = 0. Then, by using Lemma 4.2.13,

Lemma 4.2.14 and the definition of ‖| · ‖| defined in (4.4), the proof is completed. �

4.3 Numerical Results

In this section, we give several numerical results for convection dominated problems with

boundary and/or interior layers: boundary layer in Example 4.3.1, a circular and a straight

interior layers in Example 4.3.2, a single straight interior layer in Example 4.3.3, boundary

layer and interior layer in Example 4.3.4 and, finally, boundary layer in Example 4.3.5. When

the analytical solutions of the state and the adjoint are given, the Dirichlet boundary condition

gD, the source function f and the desired state yd are computed from (3.2) and (3.10) using

the exact state, adjoint and control. In all the examples, we use the SIPG method [5, 102] to

discretize the diffusion term and the original upwind discretization [70, 86] for the convection

term. At some examples, we have also tested other DG methods, i.e., NIPG1 (standard pe-

nalization), NIPG3 (superpenalized) and IIPG. Additionally, the marking parameter θ varies

between 0.3-0.6.

Example 4.3.1 Boundary layer

This following example has been studied by Collis, Heinkenschloss and Leykekhman [35, 48].

The problem data are given by

Ω = [0, 1]2, θ = 45o, β = (cos θ, sin θ)T , r = 0 and ω = 1.

The analytical solutions of the state and the adjoint given by

y(x1, x2) = η(x1)η(x2),

p(x1, x2) = µ(x1)µ(x2),
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where

η(z) = z −
exp((z − 1)/ε) − exp(−1/ε)

1 − exp(−1/ε)
,

µ(z) = 1 − z −
exp(−z/ε) − exp(−1/ε)

1 − exp(−1/ε
.

Figure 4.2: Surfaces of the exact state (top row) and the exact control (bottom row) for ε =

10−1, 10−2, 10−3 (fixed ε for each column) in Example 4.3.1.

For various diffusion parameters, the exact solutions of the state and the control are given in

Figure 4.2. The solution of the state has a boundary layer on x1 = 1 or x2 = 1, whereas the

control variable exhibits a boundary layer on on x1 = 0 or x2 = 0 as ε becomes smaller.

The initial mesh is generated by starting on uniform square mesh 16 × 16 and then dividing

each square into two triangles. Let ε = 10−3, one can see from Figure 4.3, for uniformly

refined mesh (16641 nodes), the spurious oscillations are present on the boundary layers.

However, due to the weak treatment of the boundary conditions in DG methods, these oscil-

lations do not propagate into the interior region in contrast to the SUPG method. See [48, 73]

for details.

The reason why the spurious oscillations are present on uniformly refined mesh is that the

boundary layers are not picked out well and, hence, are not solved properly. By applying

an adaptive refinement procedure introduced in Section 4.1, we can select these boundary

layers and make a refinement around these layers. However, the boundary layer in the state

and the adjoint/control need to be resolved together, unlike in case of the single convection

dominated PDEs. For example, when the boundary layer in the state is not solved properly,
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Figure 4.3: Computed solutions of the state (left) and the control (right) on uniformly refined
mesh (16641 nodes) using linear elements for ε = 10−3 in Example 4.3.1.

the error on the state propagates through in the domain of adjoint. In adaptive procedure,

the boundary layers in the state and the adjoint/control are resolved properly and then the

spurious oscillations disappear. Figure 4.4 shows the computed state and control variables on

adaptively refined mesh (15032 nodes) using linear elements.

Figure 4.4: Computed solutions of the state (left) and the control (right) on adaptively refined
mesh (15032 nodes) using linear elements for ε = 10−3 in Example 4.3.1.

Figure 4.5 shows the locally refined mesh by using the error indicator in (4.1). All refinements

is done around the boundary layers of the state and the adjoint/control. Hence, this shows that

the error indicator pick up the right elements to refine.
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[level,nodes]=[14,15032]

Figure 4.5: Adaptive mesh for ε = 10−3 in Example 4.3.1.

Figure 4.6 shows the global L2 error for the state and the control with linear and quadratic el-

ements for adaptively and uniformly refined meshes. Since the error indicator in (4.1) mostly

picks out the boundary layers for refinement, the error decreases for the adaptive refinement

more rapidly than for the uniform refinement. The error reduction for quadratic elements on

adaptively refined mesh is visible with increasing number of nodes. The same example is

examined with various error indicators, i.e., Zienkiewicz-Zhu estimation, the norm-residual

based and the local Neumann problem estimator, in [81] using the SUPG method introduced

in [35] for linear elements. The errors in Figure 4.6 decrease monotonically, whereas for

SUPG in [81], the errors initially oscillate, after layers are sufficiently resolved they decrease

monotonically.

All numerical results above are obtained with symmetric interior penalty Galerkin (SIPG)

method. Although the error indicator in (4.1) is given for the SIPG method we want to observe

the numerical results obtained from other DG methods, i.e., NIPG1 (standard NIPG method),

IIPG and NIPG3 (superpenalized NIPG method) with the error indicator in (4.1). Figure 4.7

and Figure 4.8 exhibit L2 error of various DG method with linear elements for the state and

the control, respectively. Similar to SIPG case, the global errors on adaptively refined mesh

do not exhibit any oscillation and, hence, decrease monotonically for all DG methods. The

IIPG method gives more similar results with respect to SIPG method. The other interesting

result is that the rate of convergence of the NIPG3 method is better than the one of the NIPG1

method on both uniformly and adaptively refined meshes. This supports the numerical results

obtained in Chapter 3.
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Figure 4.6: Errors in L2 norm of the state (left) and the control (right) with linear and quadratic
elements for ε = 10−3 in Example 4.3.1.
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Figure 4.7: Errors in L2 norm of the state with linear elements using various DG methods for
ε = 10−3 in Example 4.3.1.
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Figure 4.8: Errors in L2 norm of the control with linear elements using various DG methods
for ε = 10−3 in Example 4.3.1.

Example 4.3.2 Circular and straight interior layer

This example has been studied by Hinze, Yan and Zhou [54] using the norm-residual based

estimator with an edge stabilization technique for control constrained optimal control prob-

lems. Let

Ω = [0, 1]2, β = (2, 3)T , r = 1 and ω = 0.1.

The analytical solution of state is given by

y(x1, x2) =
2
π

arctan
(

1
√
ε

[
−

1
2

x1 + x2 −
1
4

])
,

which is a function with a straight interior layer. The corresponding adjoint is

p(x1, x2) = 16x1(1 − x1)x2(1 − x2)

×

1
2

+
1
π

arctan

 2
√
ε

 1
16
−

(
x1 −

1
2

)2

−

(
x2 −

1
2

)2 ,
which is a function with a circular interior layer.

Figure 4.9 shows the optimal state and control for ε = 10−2, 10−4, 10−6. As ε becomes smaller,

the state exhibits a straight interior layer and the control exhibits a circular interior layer.

Figure 4.10 shows the numerical solutions of state and control on the uniform mesh (289

nodes) with linear elements for various values of ε. The propagations on the interior layer in

the direction ±β are visible for ε = 10−6.
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Figure 4.9: Surfaces of the exact state (top row) and the exact control (bottom row) for ε =

10−2, 10−4, 10−6 (fixed ε for each column) in Example 4.3.2.

Figure 4.10: Computed state (top row) and control (bottom row) on uniform mesh (129 nodes)
for ε = 10−2, 10−4, 10−6 with linear elements (fixed ε per column) in Example 4.3.2.
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The initial mesh is generated by starting on a uniform square mesh 8 × 8 and then dividing

each square into two triangles. When the numerical solutions of the state and the control are

computed on uniformly refined mesh (16641 nodes) with linear elements for various values

of ε, Figure 4.11 shows that oscillations are more visible for ε = 10−6 case. By applying

adaptive procedure, we reduce these oscillations; see Figure 4.12.

Figure 4.11: Computed state (top row) and control (bottom row) on uniform mesh (16641
nodes) with linear elements for ε = 10−2, 10−4, 10−6 in Example 4.3.2.

Figure 4.13 shows that the locally refined meshes generated by the error indicator in (4.1) for

various values of ε. Our indicator picks out the layers reasonably well especially for small

values of ε = 10−6. Same example has been studied in [81] using SUPG method with five

generated error estimators. None of error estimators in [81] pick out the layers for ε = 10−6

as the error estimator in (4.1).

In Figure 4.14(a) and Figure 4.14(b), the errors in L2 norm are given on adaptively and uni-

formly refined meshes using linear and quadratic elements and ε = 10−2, 10−4, 10−6 for the

state and the control, respectively. For high values of ε, we do not see any effect of the error

estimator (4.1) in Figure 4.14, but the numerical results on adaptively refined mesh are more

accurate for small values of ε. Additionally, Figure 4.14 reveals that the difference of solu-

tions between linear and quadratic elements decreases as ε becomes smaller on a uniformly

refined mesh, since quadratic elements are not so effective when the right region of domain

is not resolved. However, the more accurate results are obtained when quadratic elements are

used in adaptive loop. Similar to the previous example, the errors decrease monotonically at
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Figure 4.12: Computed state (left) and control (right) on an adaptive refinement mesh with
linear elements for ε = 10−6 in Example 4.3.2.

Figure 4.13: Adaptively refined meshes with linear elements for ε = 10−2, 10−4, 10−6 in
Example 4.3.2.
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Figure 4.14: Errors in L2 norm of state (top row) and control (bottom row) with linear and
quadratic elements for ε = 10−2, 10−4, 10−6 in Example 4.3.2.
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all cases in Figure 4.14, whereas the global errors in [81] have oscillations for the convection

dominated case (ε = 10−6).

We have also studied the extremely convection dominated case, ε = 10−8, to see how the

adaptivity resolves the layers. Figure 4.16 reveals the locally refined meshes at the different

levels using linear elements. We observe that firstly the straight interior layer is refined then

the circular interior layer is refined. Hence, we can expect more accurate results for the state

with respect to the control. Figure 4.15 reveals that large oscillations occur when initial mesh

is refined uniformly. However, picking out the layers by using the error indicator given in

(4.1), the oscillations are reduced by adaptive procedure.

In Figure 4.17, the global errors with L2 norm of the state and the control using linear elements

are given. As being the case in previous example, we do not obtain a monotonically decrease

for the error of adaptive refinement since ε is so small.

Example 4.3.3 Single straight interior layer

The following example has firstly been studied by Heinkenschloss and Leykekhman in [48].

The problem data are given by

Ω = [0, 1]2, ε = 10−7, β = (1, 2)T , r = 0 and ω = 10−2.

The true state and adjoint are defined by

y(x1, y1) = (1 − x1)3 arctan
(

x2 − 0.5
ε

)
,

p(x1, x2) = x1(1 − x1)x2(1 − x2).

Figure 4.18 shows the exact state and control for ε = 10−7. The state exhibits a sharp interior

layer along the line x2 = 0.5, whereas the control is very smooth. Because of the coupling of

state and adjoint (or control), the control is not solved well on x2 = 0.5, despite the fact that

the exact control is smooth. This can be observed in Figure 4.19. The errors on a uniformly

refined mesh (16641 nodes) are larger than the ones on adaptively refined mesh (9252 nodes).

The initial mesh is constructed by beginning with a uniform square mesh 16 × 16 and, then,

dividing each square into two triangles. Figure 5.12 shows the meshes generated by the error

estimator in (4.1). The left one in Figure 5.12 is obtained by using linear elements, whereas
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Figure 4.15: The top plot shows exact state and control. The middle plot exhibits solutions of
the state (left) and the control (right) on uniformly refined mesh (16641 nodes) and the bottom
plot shows on adaptively refined mesh (12257 nodes) with linear elements for ε = 10−8 in
Example 4.3.2.
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[level, nodes]=[17,1908] [level, nodes]=[21,5309] [level,nodes]=[24,12257]

Figure 4.16: Generated locally refined meshes with linear elements at various refinement
levels for ε = 10−8 in Example 4.3.2.
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Figure 4.17: Errors in L2 norm of state (left) and control (right) with linear elements for
ε = 10−8 in Example 4.3.2.
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Figure 4.18: Surfaces of the exact state (left) and the exact control (right) for ε = 10−7 in
4.3.3.

Figure 4.19: Error between the exact solution and the numerical solution on uniformly refined
mesh (16641 nodes) and adaptively refined mesh (9252 nodes) using linear elements for ε =

10−7 in Example 4.3.3: state (top row), control (bottom row).
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the right ones is obtained from quadratic elements. The error indicator mark the elements on

x2 = 0.5 where the state has a sharp interior layer.

[level,nodes]=[14,9252] [level,nodes]=[20,1000]

Figure 4.20: Adaptively refined meshes with linear elements (left,9252 nodes) and quadratic
elements (right, 1000 nodes) for ε = 10−7 in Example 4.3.3.
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Figure 4.21: Errors in L2 norm of state (left) and control (right) on uniformly and adaptively
refined mesh for ε = 10−7 in Example 4.3.3.

The L2 global error of the computed state and control are given in Figure 4.21. When the

adaptive procedure is combined with quadratic elements, the more accurate results are ob-

tained. Comparing the results in Figure 4.21 with in [81] using SUPG, it turns out that the

estimators in [81] do not work for the control. In addition, in [81] the error of state is almost

10−2 using linear elements for approximately 12000 nodes, whereas it is much less than 10−2
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using linear elements with 9252 nodes at our case.

Example 4.3.4 Interior and boundary layer with unknown solutions

This example is taken from [48]. Let

Ω = [0, 1]2, ε = 10−4, β = (cos θ, sin θ)T , θ = 47.3o, r = 0 and f = 0.

The Dirichlet boundary conditions are defined by

gD(x1, x2) =


1, if x1 = 0 and x2 = 0.25,

1, if x2 = 0,

0, else.

The desired state is given by

yd(x1, x2) = 1.

The control variable u is controlled by the the regularization parameter ω. Since the control

u can be seen as the sole forcing term in the system, it enables to study the effect of the

regularization parameter ω on adaptivity.

The exact solutions of the state, the adjoint and the control for this problem are not known.

The computed solutions on the uniform refined mesh (289 nodes) using linear elements for

ω = 1, 10−2, 10−4 are shown in Figure 4.22 and 4.23. The state exhibits a sharp boundary

layer and a straight interior layer. The interior layer in the state disappears as ω becomes

smaller.

The initial mesh is constructed by beginning with a uniform square mesh 4 × 4 and then

dividing each square into two triangles. Figures 4.24, 4.26 and 4.28 show the refined meshes

at various refined levels forω = 1, 10−2 and 10−4, respectively. For largeω, the error indicator

in (4.1) firstly marks the elements on the boundary layer, then the straight inner layer is

resolved.

Figures 4.25, 4.27 and 4.29 reveal the computed solutions of the state and the control using

linear and quadratic elements for ω = 1, 10−2 and 10−4, respectively. The oscillations are

reduced by using quadratic elements.
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Figure 4.22: Computed state on uniform mesh (289 nodes) with linear elements for ω =

1, 10−2, 10−4 in Example 4.3.4.

Figure 4.23: Computed control on uniform mesh (289 nodes) with linear elements for ω =

1, 10−2, 10−4 in Example 4.3.4.
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[level,nodes]=[12, 1622] [level,nodes]=[17, 7163] [level,nodes]=[19, 14469]

Figure 4.24: Adaptively refined meshes with linear elements at various refinement levels for
ω = 1 in Example 4.3.4.

Figure 4.25: Computed solutions of state (left) and control (right) on adaptively refined mesh
with linear elements (top row, 14469 nodes) and with quadratic elements (bottom row, 13892
nodes) for ω = 1 in Example 4.3.4.
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[level,nodes]=[11,1562] [level,nodes]=[16,7389] [level,nodes]=[18,14868]

Figure 4.26: Adaptively refined meshes with linear elements at various refinement levels for
ω = 10−2 in Example 4.3.4.

Figure 4.27: Computed solutions of state (left) and control (right) on adaptively refined mesh
with linear elements (top row, 14868 nodes) and with quadratic elements (bottom row, 10702
nodes) for ω = 10−2 in Example 4.3.4.
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[level,nodes]=[10,1564] [level,nodes]=[14,5596] [level,nodes]=[16,13024]

Figure 4.28: Adaptively refined meshes with linear elements at various refinement levels for
ω = 10−4 in Example 4.3.4.

Figure 4.29: Computed solutions of state (left) and control (right) on adaptively refined mesh
with linear elements (top row, 13024 nodes) and with quadratic elements (bottom row, 10791
nodes) for ω = 10−4 in Example 4.3.4.
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Example 4.3.5 Boundary layers with unknown solutions

The following example with unknown solutions has been studied in [77] and in [18] with

control constraints. The problem data are given by

Ω = (0, 1)2, β = (−1,−2)T , r = 1 and ω = 0.1.

The Dirichlet boundary condition gD, the source function f and the desired state yd are de-

fined by

gD = 0 on ∂Ω, f = 1 and yd = 1.

Since the exact solution of the optimal control problem is not known, we examine the value

of the cost function

J(y, u) :=
1
2

∫
Ω

(y(x) − yd(x))2dx +
ω

2

∫
Ω

u(x)2dx.

for the various values of the diffusion parameter ε = 10−3, 10−5, 10−7. The approximate order

of convergence is computed using the following formula:

order = log2(
J(yh, uh) − J(y2h, u2h)

J(y2h, u2h) − J(y4h, u4h)
).

h Nodes J(yh, uh) J(yh, uh) − J(y2h, u2h) order
2.50e-001 25 0.259842439 - -
1.25e-001 81 0.260011380 1.689408e-004 -
6.25e-002 289 0.259954555 -5.682475e-005 4.80
3.13e-002 1089 0.259892666 -6.188863e-005 0.12
1.56e-002 4225 0.259855658 -3.700797e-005 0.74
7.81e-003 16641 0.259840366 -1.529209e-005 1.28

Table 4.1: Evolution of values of the cost functional J(yh, uh) for a sequence of uniformly
refined meshes with ε = 10−3 in Example 4.3.5.

The evolution of the values of the cost functional J(yh, uh) on a sequence of uniformly refined

meshes for ε = 10−3, 10−5, 10−7 are given in the Figures 4.1, 4.2 and 4.3, respectively.

Boris and Vexler [18] have also solved this example for ε = 10−3 with control constraints

by local projection stabilization (LPS). We will survey the control constrained case at next

Chapter. However, the unconstrained case for ε = 10−5 has been studied in [77] by using

LPS method. Comparing the results in Table 4.2 and the results obtained in [77], the order of

convergence in Table 4.2 is much higher.
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h Nodes J(yh, uh) J(yh, uh) − J(y2h, u2h) order
2.50e-001 25 0.258736669 - -
1.25e-001 81 0.258736669 2.970944e-004 -
6.25e-002 289 0.259088388 5.462482e-005 2.44
3.13e-002 1089 0.259098154 9.765670e-006 2.48
1.56e-002 4225 0.259099788 1.634528e-006 2.58
7.81e-003 16641 0.259099982 1.935335e-007 3.08

Table 4.2: Evolution of values of the cost functional J(yh, uh) for a sequence of uniformly
refined meshes with ε = 10−5 in Example 4.3.5.

h Nodes J(yh, uh) J(yh, uh) − J(y2h, u2h) order
2.50e-001 25 0.258725441 - -
1.25e-001 81 0.259023696 2.982547e-004 -
6.25e-002 289 0.259079347 5.565064e-005 2.42
3.13e-002 1089 0.259089772 1.042580e-005 2.42
1.56e-002 4225 0.259091782 2.009823e-006 2.38
7.81e-003 16641 0.259092181 3.985889e-007 3.33

Table 4.3: Evolution of values of the cost functional J(yh, uh) for a sequence of uniformly
refined meshes with ε = 10−7 in Example 4.3.5.

[level,nodes]=[17,11543] [level,nodes]=[13,1461][level,nodes]=[13,1461] [level,nodes]=[13,1459]

Figure 4.30: Adaptively refined meshes using linear elements for ε = 10−3, ε = 10−5, ε =

10−7, respectively, in Example 4.3.5.
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The computed solutions on the uniform refined meshes (16641 nodes) are shown in Figure

4.31. We need an adaptive approach to reduce the oscillations in Figure 4.31. Figure 4.30

displays the adaptively refined mesh on a course mesh constructed by beginning a uniform

square mesh 4×4 and then dividing each triangle into two triangles. Figure 4.30 shows that the

problem exhibits boundary layers. By resolving the boundary layers, the oscillations in Figure

4.32 are reduced. Thus, it is evident that the adaptive meshes save substantial computing time.
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Figure 4.31: The computed solutions of the state (left) and the control (right) on uniformly
refined meshes (16641 nodes) for ε = 10−3 (top plot), ε = 10−5 (middle plot) and ε = 10−7

(bottom plot) using linear elements in Example 4.3.5.
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Figure 4.32: The computed solutions of the state (left) and the control (right) on adaptively
refined meshes for ε = 10−3 (11543 nodes, top plot), ε = 10−5 (1461 nodes, middle plot) and
ε = 10−7 (1459 nodes, bottom plot) using linear elements in Example 4.3.5.
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CHAPTER 5

DISTRIBUTED OPTIMAL CONTROL PROBLEMS WITH

CONTROL CONSTRAINTS

The control constrained optimal control problems governed by elliptic PDEs have been stud-

ied in [4, 28, 29, 52, 56, 79, 90, 96]. In literature, the common concept for solving the control

constrained optimal control problem numerically is based on discretization of the set of con-

trol u. The authors [4] have proved that the convergence rate of the form ‖u−uh‖L2 = O(h) for

piecewise constant control approximations. It has extended to piecewise linear in [90] and the

form of convergence rate is ‖u − uh‖L2 = O(h3/2) due to the regularity of u. The control u is

not regular, where it switches between activity and inactivity. In [52], Hinze has proposed the

variational discretization concept for control constrained optimal control problems where the

control u is not discretized. Since there is only finite element approximation for control u, the

order of the finite element approximation O(h2) is obtained in [52, 53] for the convergence

of control. The other interesting study related to convergence of optimal control problem

has been a post-processing in [79] by Meyer and Rösch. In [79], the control u is calculated

by projection of the adjoint ph in a post-processing step after the optimal control problem is

solved by a fully discretization. Post-processing step improves the convergence order from

O(h) to O(h2) when piecewise constant functions are used for approximation of control.

For control constrained optimal control problems governed by convection diffusion equations,

stabilized finite element methods have been applied in [18, 104]. Stabilization in [18] is based

on symmetry penalty terms, where local projections (the so called LPS method), whereas the

edge stabilization is used in [104]. Due to the symmetry property of stabilization in [18, 104],

the formulating of control problem on the continuous level and then discretizing the optimal-

ity conditions are equivalent to discrete control problem. It has been shown in [18, 104] that
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the optimal control u only has O(h3/2) convergent rate for the piecewise linear discretization

of the control space since u is in general not in H2(Ω). Additionally, variational dicretiza-

tion [52] and the edge stabilization Galerkin method have been combined in [54] to solve

optimal control problems governed by convection diffusion equations. Recently mixed finite

elements [55] and RT mixed FEM/DG [105] have been applied to optimal control problems

governed by convection diffusion equations. In [55], the authors have proved a second order

convergence results for state y, adjoint p and control u for piecewise linear polynomial ap-

proximations provided some assumptions on the regularity and mesh. RT mixed FEM/DG

[105] is a combination of Raviart-Thomas mixed finite element methods reducing the second-

order equation to a system of the first order equations and discontinuous Galerkin method

having good properties for first order hyperbolic equations.

A residual-type a posteriori error estimators in the control constrained case have been derived

and analyzed in [50, 67, 74, 75]. In [74] the authors have proposed a posteriori error estimators

for an optimal control problem governed by a linear elliptic boundary value problem with

convex differentiable objective and box constraints on the control. In contrast to the approach

in [74, 75], the error analysis in [50] is related to the error in the state, the adjoint state, the

control, and the adjoint control and incorporates in terms of the data of the problem. The

goal-oriented dual weighted approach has been applied in [49, 101] for control constrained

optimal control problems governed by elliptic PDEs. For control constrained optimal control

problems governed by convection diffusion equations, a posteriori error estimate using edge

stabilization is given in [54, 104]. In [104] a fully discretization of the state, adjoint and

control is used, whereas variational discretization is used in [54]. The error estimator [54]

only contains contributions from local residuals in the state and the adjoint equations due to

not discretization of control. For discontinuous Galerkin methods, there are a few work to

solve optimal control problems [103, 106]. In [103], a posteriori and a priori error estimates

have been derived for optimal control problem governed by convection diffusion equations

using nonsymmetric interior Galerkin penalty (NIPG) method [88]. Zhou et al. [106] has

analyzed the local discontinuous Galerkin (LDG) method for the constrained optimal control

problem governed by convection diffusion equations. For the discretization of the control,

the authors [106] have discussed two different approaches: variational discretization and full

discretization. However, to our knowledge any numerical results has been presented for the

solution of control constrained optimal control problems using DG discretization.
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In this chapter, we solve control constrained optimal control problems governed by convec-

tion diffusion equations using upwind SIPG discretization. We extend the a posteriori error

estimator of unconstrained case in previous chapter to control constrained case. The reliabil-

ity and the efficiency of the error estimator will be analyzed using data approximations errors

for the discretized optimal control problem. Lastly, the numerical results are presented to

illustrate performance of the adaptive method.

5.1 Prime-Dual Active Set (PDAS) Strategy

In this section, we consider the following constrained optimal control problem governed by

convection diffusion equation

min
u∈Uad⊂U

J(y, u) :=
1
2

∫
Ω

(y(x) − yd(x))2dx +
ω

2

∫
Ω

(u(x) − ud(x))2dx (5.1)

subject to

−ε∆y(x) + β(x) · ∇y(x) + r(x)y(x) = f (x) + u(x), x ∈ Ω, (5.2a)

y(x) = gD(x), x ∈ Γ, (5.2b)

where ω > 0 is a constant, Ω is a bounded open, convex domain in R2 and Γ = ∂Ω, Uad ⊂

U = L2(Ω) denotes a closed convex set. We use

Uad = {u ∈ U : ua ≤ u ≤ ub a.e in Ω}, (5.3)

where ua < ub denote constants. In addition, the desired control is denoted by ud(x) ∈ L2(Ω).

Then, the variational formulation corresponding to (5.1)-(5.2) can be rewritten as

min
u∈Uad

J(y, u) :=
1
2
‖y − yd‖

2
Ω +

ω

2
‖u − ud‖

2
Ω (5.4a)

subject to a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, (5.4b)

(y, u) ∈ Y × Uad.

Due to the convex optimal control problem (5.4) (see [76]), the optimal control problem (5.4)

has a unique solution (y, u) ∈ Y × Uad provided that the assumptions (3.7) are satisfied. The

functions (y, u) ∈ Y × Uad solve (5.4) if and only if (y, u, p) ∈ Y × Uad × Y is unique solution
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for the following optimality system:

a(y, υ) + b(u, υ) = ( f , υ), ∀υ ∈ V, (5.5a)

a(ψ, p) + (y, ψ) = (yd, ψ), ∀ψ ∈ V, (5.5b)

(ω(u − ud) − p,w − u) ≥ 0, ∀w ∈ Uad. (5.5c)

By introducing the Lagrange multipliers, λa, λb ∈ L2(Ω), we obtain the following optimality

system of the problem (5.1)-(5.2):

−ε∆y + β · ∇y + ry = f + u in Ω, y = gD on Γ,

−ε∆p − β · ∇p + (r − ∇ · β)p = −(y − yd) in Ω, p = 0 on Γ,

ω(u − ud) − p − λa + λb = 0 a.e in Ω, (5.6)

λa ≥ 0, ua − u ≤ 0, λa(u − ua) = 0 a.e. in Ω,

λb ≥ 0, u − ub ≤ 0, λb(ub − u) = 0 a.e. in Ω.

We follow Bergounioux, Ito and Kunisch [19], who developed PDAS strategy for control

constraints in elliptic control problem. The PDAS strategy has been also studied in [51, 62,

68]. Then, the PDAS method has been interpreted as a semismooth Newton method in [51].

In this section, we will derive the system of optimality condition using the PDAS method as

a semismooth Newton method.

With the help of the solution operators, S : L2(Ω) → L2(Ω) and S ∗ : L2(Ω) → L2(Ω) for

the state and adjoint equation, one obtains y = S u and p = S ∗(y − yd) so that the optimality

system can be written in compact form:

−S ∗(S u − yd) + ω(u − ud) − λa + λb = 0 a.e in Ω,

λa ≥ 0, ua − u ≤ 0, λa(u − ua) = 0 a.e. in Ω, (5.7)

λb ≥ 0, u − ub ≤ 0, λb(ub − u) = 0 a.e. in Ω.

The system (5.7) containing inequalities can be solved by combining PDAS strategy with

Newton method as in [51, 78].

Definition 5.1.1 A function Ψ : R2 → R with the property

Ψ(a, b) = 0⇐⇒ a ≤ 0, b ≤ 0, ab = 0

is called complementary function.
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By using the complimentary function Ψ(a, b) = max{a, cb} with λ = λb − λa, we obtain

−S ∗(S u − yd) + ω(u − ud) + λ = 0 a.e. in Ω,

λ −min{0, λ − c(ua − u)} −max{0, λ + c(u − ub)} = 0 a.e. in Ω. (5.8)

We use Newton-differentiability [78] to solve this nonlinear system of equations for (u, λ) ∈

L2(Ω) × L2(Ω).

Definition 5.1.2 [78, Definition 16.2] (Newton-differentiability)

F : U → V is called Newton-differentiable at the point u ∈ U if an open neighborhood U0 of

u and G : U0 → L(U,V) exists, such that:

‖F(u + h) − F(u) −G(u + h)h‖V
‖h‖U

→ 0 as ‖h‖ → 0.

G is called a generalized derivation or Newton derivation of F.

Newton’s derivation G(u) is not pointwise derivative concept as the Frèchet-differentiability.

G is a whole family of linear operators in the vicinity of u. With the help of the Newton-

derivative, a generalized Newton method for solving F (u) = 0 can be formulated:

un+1 = un −G−1(un)F(un) =⇒ G(un)un+1 = G(un)un − F(un). (5.9)

Let us write the system (5.8) together, then we obtain

F(u) := −S ∗(S u − yd) + ω(u − ud) + min{0, S ∗(S u − yd) − ω(u − ud) − c(ua − u)}

+ max{0, S ∗(S u − yd) − ω(u − ud) − c(u − ub)} = 0.

(5.10)

Let us choose c = ω,

F(u) := −S ∗(S u − yd) + ω(u − ud) + min{0, S ∗(S u − yd) + ω(ud − ua)}

+ max{0, S ∗(S u − yd) + ω(ud − ub)} = 0. (5.11)

Then, the Newton derivative of F(u) is

G(u)h = −S ∗S h + ωh + (χA−(u) + χA+(u))S ∗S h

= −χI(u)S ∗S h + ωh, (5.12)
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with active sets

A−(u) = {x ∈ Ω : S ∗(S u − yd) + ω(ud − ua) < 0}, (5.13)

A+(u) = {x ∈ Ω : S ∗(S u − yd) + ω(ud − ub) > 0} (5.14)

and the inactive set I(u) = Ω\(A+(u) ∪ A−(u)). By Newton method in (5.9),

G(un)un+1 = G(un)un − F(un)

⇐⇒

−χI(u)S ∗S un+1 + ωun+1 = −χI(u)S ∗S un + ωun − ωun + ωud + S ∗S un − S ∗yd (5.15)

− min{0, S ∗(S u − yd) + ω(ud − ua)} −max{0, S ∗(S u − yd) + ω(ud − ub)}.

By the definitions in (5.13) and (5.14),

min{0, S ∗(S un − yd) + ω(ud − ua)} = χA−n (S ∗(S un − yd) + ω(ud − ua)),

max{0, S ∗(S un − yd) + ω(ud − ub)} = χA+
n
(S ∗(S un − yd) + ω(ud − ub)).

For the right side of (5.15) one obtains

(χA−n + χA+
n
)S ∗(S un − yd) − χInS ∗yd + ωud

− χA−n (S ∗(S un − yd) + ω(ud − ua)) − χA+
n
(S ∗(S un − yd) + ω(ud − ub))

= χA−nωua + χA+
n
ωub − χInS ∗yd + χInud.

Then, (5.15) equals to

ωun+1 − χInS ∗(S un+1 − yd) = χA−nωua + χA+
n
ωub + χInud. (5.16)

Hence, the optimality system (5.6) is equivalent to

−ε∆yn+1 + β · ∇yn+1 + ryn+1 = f + un+1 in Ω, y = gD on Γ,

−ε∆pn+1 − β · ∇pn+1 + (r − ∇ · β)pn+1 = −(yn+1 − yd) in Ω, p = 0 on Γ,

ωun+1 − χInS ∗(S un+1 − yd) = χA−nωua + χA+
n
ωub + χInud. (5.17)

Then, we can write the DG approximation of the optimal control problem (5.4) as follows:

min
uh∈Uad

h

J(yh, uh) :=
1
2
‖yh − yd‖

2
Ω +

ω

2
‖uh − ud‖

2
Ω (5.18a)
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subject to a(yh, υh) + b(uh, υh) = ( f , υh), ∀υh ∈ Vh, (5.18b)

(yh, uh) ∈ Yh × Uad
h ,

with the spaces

Vh = Yh = {yh ∈ L2(Ω) | y|E ∈ Pn(E), ∀E ∈ ξh},

Uad
h = {uh ∈ L2(Ω) | u|E ∈ Pm(E), ∀E ∈ ξh}.

The DG dicretized optimal control problem (5.18) has a unique solution (yh, uh) ∈ Yh × Uad
h .

The functions (yh, uh) ∈ Yh × Uad
h solve (5.18) if and only if (yh, uh, ph) ∈ Yh × Uad

h × Yh is

unique solution for the following optimality system:

a(yh, υh) + b(uh, υh) = ( f , υh), ∀υh ∈ Vh, (5.19a)

a(ψh, ph) + (yh, ψh) = (yd, ψh), ∀ψh ∈ Vh, (5.19b)

(ω(uh − (ud)h) − ph,wh − uh) ≥ 0, ∀wh ∈ Uad
h . (5.19c)

Applying upwind SIPG discretization to the optimality system (5.17), we obtain the following

system

M~y + Aa~p = ~b,

As~y + B~u = ~f ,

ωQ~u + diag(χI)B~p = ωQ(χA−ua + χA+ub + χIud),

where As,Aa,M,Q,B ∈ R(Nloc×N)×(Nloc×N) and ~b, ~f ∈ RNloc×N , see Section 3.2 and 3.3 for

details.

Then, the optimality system is written such as:


M 0 Aa

0 ωQ diag(χI)B

As B 0



~y

~u

~p

 =


~b

ωQ(χA−ua + χA+ub + χIud)

~f

 .

5.2 A Posteriori Error Analysis

Different posteriori error estimates were used for convection dominated control constrained

optimal control problems. In [104], the residual-type a posteriori error estimates have been
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presented using the edge stabilization Galerkin method to solve unilateral control constrained

optimal control problems governed by convection diffusion equations. The estimators of the

state and adjoint variables are similar to in [74] for elliptic problems, except that they contains

an extra term coming from edge stabilization term in weak formulation of state equation (or

adjoint). However, the residual of variational inequality in optimality system is computed

on non-contact set without approximation of integral averaging operator as in [74]. In [54],

residual type a posteriori error estimators contain only contributions from the residuals of

state and adjoint equations, because the control is not discretized. The contributions coming

from the state and adjoint equation is the same as in [104] due to the same discretization on

the state and adjoint equations. In [103], a posteriori error estimates are obtained convection-

diffusion equations for the nonsymmetric interior penalty Galerkin (NIPG) method using the

technique in [74].

Here, we use the residual-type a posteriori error estimators for the state and the adjoint, in

[99] for standard finite element and in [91] for the SIPG method. They consist of the element

residuals such as in [74] and of the edge residuals similar to those in [54, 104]. For the SIPG

method, they contain extra terms measuring the jumps of approximate solutions. We use the

a posteriori error estimator introduced in [74] for the variational inequality arising from the

control constraints.

The error estimator consists of three parts; state, adjoint and variational inequality in (5.5).

Since the error estimators of state and adjoint are as given in (4.1), our purpose is to introduce

an estimator contributed from the approximation error of the variational inequality using the

DG discretization. We consider first the unilateral control constraints

Uad = {u ∈ U : u ≥ ua a.e. in Ω},

and, then, we will extend it to bilateral control constraints.

5.2.1 Unilateral Control Constraint

We divide the domain as in [74]

Ω− = {x ∈ Ω : u(x) = ua}, Ω+ = {x ∈ Ω : u(x) > ua},

Ω−h = {∪Ē : E ⊂ Ω−}, Ω+
h = {∪Ē : E ⊂ Ω+},

Ωα
h = Ω\(Ω−h ∪Ω+

h ), Ω+α
h = Ωα

h ∪Ω+
h , Ω−αh = Ωα

h ∪Ω−h .
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It can be seen that the inequality in (5.5c) is equivalent to the following:

ω(u − ud) − p ≥ 0, u ≥ ua, (ω(u − ud) − p)(u − ua) = 0, a.e. in Ω. (5.20)

Lemma 5.2.1 [74, Lemma 3.4] Let πh : L1(K) → Kh be the integral averaging defined in

such that πhu = 1
|E|

∫
E udx, then for m=0, 1 and 1 ≤ q ≤ ∞,

‖υ − πhυ‖0,q,E ≤ Chm
E |υ|m,q,E , ∀υ ∈ Wm,q(K). (5.21)

We follow here [74] to establish a connection between the control and the adjoint variables

in order to find the a posteriori error bounds. The a posteriori estimators in [74] for the

control constrained optimal control problem are derived from the residual of the state and

adjoint as a single partial differential equation [3]. For the variational inequality, the residual

is computed on the region except for the non-coincidence set (non-contact set) to enable sharp

error estimates.

Remark 5.2.2 As unconstrained case in Chapter 4, the proof of reliability and efficiency of

our error indicator for control constrained optimal control problem is valid provided that

r0 ≥ 0.

Lemma 5.2.3 Let (y, u, p) and (yh, uh, ph) be the solutions of (5.5) and (5.19), respectively.

Then

‖u − uh‖
2
L2(Ω) > (ηu

1)2 + (θu)2 + ‖ph − p[uh]‖2L2(Ω), (5.22)

where p[uh] satisfies the following equation:

a(y[uh],w) − (uh,w) = l(w), ∀w ∈ V, (5.23a)

a(w, p[uh]) + (y[uh],w) = (yd,w), ∀w ∈ V, (5.23b)

and

ηu
1 =

∑
E∈ξh

hE‖∇(ω(uh − (ud)h) − ph)χΩ+α
h
‖L2(Ω). (5.24)

θu = ω‖ud − (ud)h‖L2(Ω). (5.25)
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Proof. It follows from the inequalities (5.5c) and (5.19c) that, for any υh ∈ Uad
h ,

ω‖u − uh‖
2
L2 = (ω(u − ud), u − uh) − (ω(uh − (ud)h), u − uh) + (ω(ud − (ud)h), u − uh),

≤ (p, u − uh) − (ω(uh − (ud)h), u − uh) + (ω(uh − (ud)h) − ph, υh − uh)

+ (ω(ud − (ud)h), u − uh),

= (p − ph, u − uh) + (ω(uh − (ud)h) − ph, υh − u) + (ω(ud − (ud)h), u − uh).

(5.26)

The equations (5.23a) and (5.23b) yield

(u − uh, p[uh] − p) = (u, p[uh] − p) − (uh, p[uh] − p),

= a(y, p[uh] − p) − l(p[uh] − p) − a(y[uh], p[uh] − p) + l(p[uh] − p),

= a(y − y[uh], p[uh] − p),

= a(y − y[uh], p[uh]) − a(y − y[uh], p),

= (yd, y − y[uh]) − (y[uh], y − y[uh]) − (yd, y − y[uh]) + (y, y − y[uh]),

= (y − y[uh], y − y[uh]) = ‖y − y[uh]‖2 ≥ 0. (5.27)

Then, (5.27) gives us

(p − ph, u − uh) ≤ (p − p[uh], u − uh) + (p[uh] − ph, u − uh),

≤ (p[uh] − ph, u − uh),

> ‖p[uh] − ph‖
2
L2(Ω) + ‖u − uh‖

2
L2(Ω). (5.28)

By using the expressions in (5.20) we obtain

(
ω(uh − (ud)h) − ph, υh − u

)
≤

(
ω(uh − (ud)h − ph, υh − u

)
Ω+α

h

Let us take υh = πhu defined in Lemma 5.2.1. Then, we have

(
ω(uh − (ud)h) − ph, υh − u

)
Ω+α

h
=

(
(I − πh)(ω(uh − (ud)h) − ph), (πh − I)(u − uh)

)
Ω+α

h
,

≤ ChK‖∇(ω(uh − (ud)h) − ph)‖L2(Ω+α
h )‖u − uh‖L2(Ω+α

h ),

≤ Ch2
K‖∇(ω(uh − (ud)h) − ph)‖2L2(Ω+α

h ) +
C
4
‖u − uh‖

2
L2(Ω+α

h ),

≤ Ch2
K‖∇(ω(uh − (ud)h) − ph)‖2L2(Ω+α

h ) +
C
4
‖u − uh‖

2
L2(Ω).

(5.29)
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Finally, we give a bound for the third term of (5.26)

(ω(ud − (ud)h), u − uh) > ω‖ud − (ud)h‖
2 + ‖u − uh‖

2. (5.30)

Combining the inequalities (5.28-5.30) above, we obtain the desired inequality. �

From Lemma 4.2.9 and Lemma 4.2.10, we have

‖|p[uh] − ph‖| + |p[uh] − ph|A > ηp + θp + ‖yh − y[uh]‖L2(Ω),

‖|y[uh] − yh|‖ + |y[uh] − yh|A > ηy + θy.

Theorem 5.2.4 Let (y, u, p) and (yh, uh, ph) be the solutions of (5.5) and (5.19), respectively.

Let the error estimators ηy, ηp and ηu
1 be defined by (4.1) and (5.25), respectively, and the data

approximation errors θy, θp by (4.2) and θu by (5.25). Then, we have the a posteriori error

bound

‖u−uh‖L2(Ω) + ‖|y− yh‖|+ |y− yh|A + ‖|p− ph‖|+ |p− ph|A > ηu
1 + θu +ηy + θy +ηp + θp. (5.31)

Proof. The proof is the same as that in Theorem 4.2.11. �

Now, we wish to demonstrate the efficiency of the error estimator by establishing lower error

bound for the DG approximation.

Theorem 5.2.5 Let (y, u, p) and (yh, uh, ph) be the solutions of (5.5) and (5.19), respectively.

Let the error estimators ηy, ηp and ηu
1 be defined by (4.1) and (5.25), respectively, and the data

approximation errors θy, θp by (4.2) and θu by (5.25). Then, we have

ηu
1 + ηy + ηp > ‖u − uh‖L2(Ω) + ‖|y − yh|‖ + |y − yh|A + ‖|p − ph|‖ + |p − ph|A

+ θy + θp + θu +
∑
E∈ξh

h2
E‖∇(ω(uh − (ud)h) − ph)χΩα

h
‖2L2 . (5.32)
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Proof. We deduce that (ω(u − ud) − p)|Ω+ = 0 from the optimality conditions in (5.5). It

follows from the inverse property that

(ηu)2 =
∑

K∈Th

hK‖∇(ω(uh − (ud)h) − ph)χΩ+α
h
‖L2(Ω),

=
∑

K∈Th

hK‖∇(ω(uh − (ud)h) − ph)χΩ+
h
‖L2(Ω) +

∑
K∈Th

hK‖∇(ω(uh − (ud)h) − ph)χΩα
h
‖L2(Ω),

> ‖ω(uh − (ud)h) − ph − ω(u − ud) + p‖2L2(Ω+
h ) +

∑
K∈Th

hK‖∇(ω(uh − (ud)h) − ph)χΩα
h
‖L2(Ω),

> ω‖u − uh‖L2(Ω) + ω‖ud − (ud)h‖L2(Ω) + ‖p − ph‖L2(Ω) +
∑

K∈Th

hK‖∇(ω(uh − (ud)h) − ph)χΩα
h
‖L2(Ω).

We use Lemma 4.2.13 and Lemma 4.2.14, respectively, to bound ηy and ηp :

ηy > ‖|y − yh‖| + |y − yh|A + θy + ‖u − uh‖L2(Ω),

ηp > ‖|p − ph‖| + |p − ph|A + θp + ‖y − yh‖L2(Ω).

Thus, we have proved the desirable result. �

Because the position of the free boundary is not known, the characteristic function χΩ+α
h

is not

a posteriori. It was approximated in [74] by the finite element solution with the a posteriori

quantity χh
Ω+α

h
for α > 0

χh
Ω+α

h
=

uh − ua

hα + uh − ua
.

5.2.2 Bilateral Control Constraints

We now consider the control problem (5.1)-(5.2) with bilateral constrained case: ua < ub. Let

Uad = {υ ∈ U : ua ≤ υ ≤ ub},

Uad
h = {υh ∈ Uh : uh

a ≤ υh ≤ uh
b},

where uh
a, u

h
b ∈ Uh are approximations of ua, ub, respectively. To generalize the ideas used in

Lemma 5.2.3 to this case, we define for i = a, b, as in [74]

Ω−ui
= {x ∈ Ω : u(x) = ui}, Ω−u = Ω−ua

∪Ω−ub
, Ω+

u = Ω\Ω−u ,

Ω−ui,h = {∪Ē : E ⊂ Ω−ui
, E ∈ ξh}, Ω−u,h = Ω−ua,h ∪Ω−ub,h, Ω+α

u,h = Ω\Ω−u,h,

Ω−αui,h = {∪Ē : Ē ∩Ω−ui,h , Ø, E ∈ ξh}.
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Theorem 5.2.6 Let (y, u, p) and (yh, uh, ph) be the solutions of (5.5) and (5.19), respectively.

Let the error estimators ηy and ηp be defined by (4.1) and the data approximation errors θy, θp

by (4.2) and θu by (5.25). Then, we have the a-posteriori error bound

‖u−uh‖L2(Ω) + ‖|y− yh‖|+ |y− yh|A + ‖|p− ph‖|+ |p− ph|A > ηu + θu +ηy + θy +ηp + θp, (5.33)

where

ηu =
∑
E∈ξh

hE‖∇(ω(uh − (ud)h) − ph)χΩ+α
u,h
‖L2(Ω). (5.34)

Proof. In this case, we have

(ω(u − ud) − p)χΩ−ua
≥ 0, (ω(u − ud) − p)χΩ−ub

≤ 0, (ω(u − ud) − p)χΩ+
u

= 0. (5.35)

It follows from the inequalities (5.5c) and (5.19c) that, for any υh ∈ Uad
h ,

ω‖u − uh‖
2
L2 = (ω(u − ud), u − uh) − (ω(uh − (ud)h), u − uh) + (ω(ud − (ud)h), u − uh),

≤ (p, u − uh) − (ω(uh − (ud)h), u − uh) + (ω(uh − (ud)h) − ph, υh − uh)

+ (ω(ud − (ud)h), u − uh),

= (p − ph, u − uh) + (ω(uh − (ud)h) − ph, υh − u) + (ω(ud − (ud)h), u − uh).

(5.36)

From Lemma 5.2.3, we have

(u − uh, p[uh] − p) = (y − y[uh], y − y[uh]) = ‖y − y[uh]‖2 ≥ 0.

(p − ph, u − uh) ≤ (p − p[uh], u − uh) + (p[uh] − ph, u − uh),

≤ (p[uh] − ph, u − uh),

> ‖p[uh] − ph‖
2
L2(Ω) + ‖u − uh‖

2
L2(Ω). (5.37)

By using the expressions (5.35), we obtain(
ω(uh − (ud)h) − ph, υh − u

)
≤

(
ω(uh − (ud)h − ph, υh − u

)
Ω+α

u,h

Let us take υh = πhu defined in Lemma 5.2.1. Then, we have(
ω(uh − (ud)h) − ph, υh − u

)
Ω+α

u,h
=

(
(I − πh)(ω(uh − (ud)h) − ph), (πh − I)(u − uh)

)
Ω+α

u,h
,

≤ ChK‖∇(ω(uh − (ud)h) − ph)‖L2(Ω+α
u,h)‖u − uh‖L2(Ω+α

u,h),

≤ Ch2
K‖∇(ω(uh − (ud)h) − ph)‖2L2(Ω+α

u,h) +
C
4
‖u − uh‖

2
L2(Ω+α

u,h),

≤ Ch2
K‖∇(ω(uh − (ud)h) − ph)‖2L2(Ω+α

u,h) +
C
4
‖u − uh‖

2
L2(Ω).

(5.38)
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The rest of the proof is the same as that of Theorem 5.2.4. �

Theorem 5.2.5 can also be generalized to the bilateral constrained case in the same way. Thus,

we obtain the following result.

Theorem 5.2.7 Let (y, u, p) and (yh, uh, ph) be the solutions of (5.5) and (5.19), respectively.

Let the error estimators ηy, ηp and ηu be defined by (4.1) and (5.34), respectively, and the data

approximation errors θy, θp by (4.2)and θu by (5.25). Then we have

ηu + ηy + ηp > ‖u − uh‖L2(Ω) + ‖|y − yh|‖ + |y − yh|A + ‖|p − ph|‖ + |p − ph|A

+ θy + θp + θu +
∑
E∈ξh

h2
E‖∇(ω(uh − (ud)h) − ph)χΩα

u,h
‖2L2(Ω). (5.39)

The characteristic function χΩ+α
u,h

for the bilateral control constraints is approximated in [74]

similar to the unilateral case. For α > 0, we have

χh
Ω+α

u,h
=

(uh − uh
a)(uh

b − uh)

hα + (uh − uh
a)(uh

b − uh)
.

5.3 Numerical Results

In this section, we give several numerical results for optimal control problems governed by

convection diffusion equation. When the analytical solutions of the state and the adjoint are

given, the Dirichlet boundary condition gD, the source function f , the desired state yd and

the desired control ud are computed from (5.6) using the exact state, adjoint and control. The

linear discontinuous finite elements are used with the basis functions (x, y, 1 − x − y).

Example 5.3.1 This example has been studied in optimal control setting by Hinze, Yan and

Zhou [54]. The problem data are given by

Ω = [0, 1]2, ε = 10−3, β = (2, 3)T , r = 2, ω = 0.1 and ud = 0.

The admissible set Uad = {υ ∈ U : υ ≥ 0}.

The true state, adjoint and control defined by

y(x1, x2) = 100(1 − x1)2x2
1x2(1 − 2x2)(1 − x2),

p(x1, x2) = 50(1 − x1)2x2
1x2(1 − 2x2)(1 − x2),

u(x1, x2) = max{0,−
1
ω

p(x1, x2)}.
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Figure 5.1: Surfaces of the exact state, adjoint, control, respectively, in Example 5.3.1.

Figure 5.1 shows the exact solutions of the state, adjoint, control respectively. In this example,

the initial mesh is constructed by beginning with a uniform square mesh 4×4 and then dividing

each square into two triangles. The numerical solutions are computed on a series of triangular

meshes which are created from uniform refinement of an initial mesh. At each refinement,

every triangle is divided into four congruent triangles. Table 5.1 shows the numerical errors

and convergence orders for various uniform refinements.

Nodes ‖y − yh‖L2 order ‖p − ph‖L2 order ‖u − uh‖L2 order
25 4.68e-2 - 2.82e-2 - 1.70e-1 -
81 1.24e-2 1.92 6.10e-3 1.90 4.84e-2 1.82
289 3.10e-3 2.00 1.54e-3 1.99 1.20e-2 2.02
1089 7.62e-4 2.02 3.80e-4 2.02 2.86e-3 2.06
4225 1.87e-4 2.02 9.38e-5 2.02 6.92e-4 2.05

Table 5.1: Convergence results on uniform mesh in Example 5.3.1.

Let us recall that it has been proved that ‖u − uh‖L2 = O(h3/2) for piecewise linear approx-

imations of the control by the fully discrete approaches in [18, 104]. Hinze [52] improved

the convergence rate to O(h2) by variational discretization. The reason of the convergence

rate O(h3/2) instead of the optimal order O(h2) in fully discrete approach is that u may not

be smooth near the boundary even if y and p are smooth there. When we use SIPG method,

we do not have any problem related the smoothness of u near the boundary due to the weak
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treatment of DG methods for the boundary conditions. Hence, we have obtained O(h2) for the

convergence rate of ‖u − uh‖L2 , as given in Table 5.1.

Figure 5.2: Computed state, adjoint, control, respectively on uniform mesh (4225 nodes)
using linear elements in Example 5.3.1.

The same example has been solved in [54] by using variational discretization for constrained

optimal control problem governed by convection diffusion equations, where the state equation

is approximated by the edge stabilization Galerkin method. Comparing the results in Table

5.1 with the results obtained in [54], it turns out that the errors L2 errors for the control in

Table 5.1 are smaller than in [54] for approximately the same number of nodes.

Figure 5.2 displays the computed state, adjoint, control, respectively on uniform mesh (4225

nodes).

Example 5.3.2 This example is taken from [54] to illustrate the efficiency of the adaptivity.

Let

Ω = [0, 1]2, β = (2, 3)T , r = 1, ω = 0.1 and ud = 0.

The analytical solution of state is given by

y(x1, x2) =
2
π

arctan
(

1
√
ε

[
−

1
2

x1 + x2 −
1
4

])
,

which is a function with a straight interior layer. The corresponding adjoint is

p(x1, x2) = 16x1(1 − x1)x2(1 − x2)

×

1
2

+
1
π

arctan

 2
√
ε

 1
16
−

(
x1 −

1
2

)2

−

(
x2 −

1
2

)2 ,
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which is a function with a circular interior layer. The optimal control is given by

u(x1, x2) = max{−5,min{−1,−
1
ω

p(x1, x2)}}.

Figure 5.3 shows the exact solutions of the state, adjoint, control, respectively, using linear

elements for ε = 10−4. The state exhibits a straight interior layer, whereas the adjoint exhibits

a circular interior layer. Hence, these inner layers need to be resolved to obtain more accurate

solutions.

The initial mesh is constructed by beginning on uniform square 16×16, and then dividing each

square into two triangles. By applying the adaptive procedure on the initial mesh, the locally

generated meshes are displayed for various level in Figure 5.4. The Figure 5.4 shows that

our error indicator mostly picks out the circular interior layer. Hence, the difference between

uniformly refined mesh and adaptively refined mesh is not so much for the L2 error of state.

The global L2 errors of the state, the adjoint and the control are also exhibited in Figure 5.5.

Figure 5.3: Surfaces of the exact state, adjoint, control, respectively, using linear elements for
ε = 10−4 in Example 5.3.2.

This example has also been studied by Hinze, Yan and Zhou [54] using norm-residual based

estimator with an edge stabilization technique. The estimator in [54] especially picks out the

straight layer well with respect to ours. Hence, authors [54] obtain visually better meshes for

ε = 10−4. However, comparing the results in Table 5.2 with in [54], it turns out that our error

indicator gives more accurate results, especially, for the adjoint and control.
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[level,nodes]=[5,1055] [level,nodes]=[7,2186] [level,nodes]=[9,5245]

Figure 5.4: Adaptively refined meshes with linear elements for ε = 10−4 in Example 5.3.2.
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Figure 5.5: Errors in L2 norm of state, adjoint and control using linear elements for ε = 10−4

in Example 5.3.2.

uniform mesh, nodes=1089 adaptive mesh, nodes 1055
‖y − yh‖L2 1.429e-002 1.326e-002
‖p − ph‖L2 9.581e-003 4.379e-003
‖u − uh‖L2 1.504e-001 6.351e-002

Table 5.2: Comparison of the error on L2 norm of y, p and u on uniform and adaptive meshes
for ε = 10−4 in Example 5.3.2.

114



Figure 5.6: Exact solutions of the state, the adjoint and the control for ε = 10−6 in Example
5.3.2: Top row are surface plots, bottom row are top-down views.

Figure 5.7: Computed state, adjoint, control, respectively on a uniform mesh (4225 nodes)
using linear elements for ε = 10−6 in Example 5.3.2.
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We have also tested this example for more convection-dominated case. Let ε = 10−6, Figure

5.6 displays the exact solutions of the state, the adjoint and the control.

Figure 5.7 shows that large oscillations occur on the straight interior layer for the state and on

the circular interior layer for the adjoint when the initial mesh is refined uniformly. However,

picking out the layers by using the error estimators given in (4.1), the oscillations are reduced

in Figure 5.8. This proves the performance of the AFEM over the uniform refinement.

Figure 5.8: Computed state, adjoint, control, respectively on adaptively refined mesh (4135
nodes) using linear elements for ε = 10−6 in Example 5.3.2.

[level,nodes]=[11,1204] [level,nodes]=[13,2271] [level,nodes]=[15,4135]

Figure 5.9: Adaptively refined meshes with linear elements at various refinement levels for
ε = 10−6 in Example 5.3.2.
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In Figure 5.9, the process of the adaptive procedure at the different refinement steps is shown

with the estimators in (4.1) and (5.34). For the last ones, we observe that our indicator mark

the elements on straight interior layer much better than ε = 10−4. Hence, we can say that

the error estimators yield much accurate results for the convection-dominated cases. The L2

errors of the state, adjoint and control are decreasing faster for AFEM than for the uniformly

refined meshes in Figure 5.10.
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Figure 5.10: Errors in L2 norm of the state, the adjoint and the control with linear elements
and ε = 10−6 in Example 5.3.2.

Example 5.3.3 The following example with unknown solutions is taken from Becker and

Vexler [18]. The problem data are given by

Ω = (0, 1)2, ε = 10−3, β = (−1,−2)T , r = 1, ua = 0.5, ub = 10, ω = 0.1 and ud = 0.

The Dirichlet boundary condition gD, the source function f and the desired state yd are de-

fined by

gD = 0 on ∂Ω, f = 1 and yd = 1.

Since the exact solution of the optimal control problem is not known, we examine the value

of the cost function

J(y, u) :=
1
2

∫
Ω

(y(x) − yd(x))2dx +
ω

2

∫
Ω

u(x)2dx.

Table 5.3 reveals evolution of values of the cost functional J(yh, uh) for a sequence of uni-

formly refined meshes.
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h Nodes J(yh, uh) J(yh, uh) − J(y2h, u2h) order
2.50e-001 25 0.261645013 - -
1.25e-001 81 0.261576704 -6.830944e-005 -
6.25e-002 289 0.261439227 -1.374771e-004 1.01
3.13e-002 1089 0.261379228 -5.999907e-005 1.20
1.56e-002 4225 0.261346837 -3.239089e-005 0.89
7.81e-003 16641 0.261334714 -1.212264e-005 1.42

Table 5.3: Evolution of values of the cost functional J(yh, uh) for a sequence of uniformly
refined meshes in Example 5.3.3.

Figure 5.11: Computed state, adjoint, control, respectively on a uniform mesh (16641 nodes)
using linear elements in Example 5.3.3.
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Becker and Vexler [18] has also solved this example by local projection stabilization (LPS).

Comparing the results in Table 5.3 and in [18], it turns out that they have obtained J(yh, uh) =

0.261346 if h = 2−9
√

2 (approximately 2.76e−3), but we have obtained J(yh, uh) = 0.261335

for h = 7.81e − 3.

The computed solutions on the uniform refined mesh (16641 nodes) are shown in Figure

5.11. Since the numerical solutions exhibit oscillations, we need to resolve the some part of

the domain.

Figure 5.12 displays the adaptively refined mesh on a coarse mesh constructed by beginning

a uniform square mesh 4 × 4 and then dividing each triangle into two triangles. Figure 5.12

shows that the problem has boundary layers. By resolving the boundary layers, the oscilla-

tions in Figure 5.11 are reduced, as given in 5.13.

Evolution of values of the cost functional J(yh, uh) for a sequence of adaptively refined meshes

are given in Table 5.4.

Nodes J(yh, uh)
25 0.261645013
55 0.261420389
101 0.261420389
190 0.261379396
359 0.261361976
619 0.261342357
863 0.261308953

1264 0.261298238
1928 0.261295682

Table 5.4: Evolution of values of the cost functional J(yh, uh) for a sequence of adaptively
refined meshes in Example 5.3.3.

The oscillations in the computed solutions using uniform meshes with 16641 nodes in Figure

5.11 are reduced in Figure 5.13 using adaptive mesh refinement with 1928 nodes. Thus, it is

evident that the adaptive meshes save substantial computing time.
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[level,nodes]=[9,1928]

Figure 5.12: Adaptively refined mesh with linear elements in Example 5.3.3.

Figure 5.13: Computed state, adjoint, control, respectively on a adaptively refined mesh (1928
nodes) using linear elements in Example 5.3.3.

Example 5.3.4 This example has been taken from [104]. The problem data are given by

Ω = [0, 1]2, ε = 10−4, β = (1, 0), r = 1 and ω = 1.

The analytical solutions of the state, adjoint and control are given by

y(x1, x2) = 4e(−((x1−1/2)2+3(x2−0.5)2)/
√
ε) sin(πx1) sin(πx2),

p(x1, x2) = e(−((x1−1/2)2+3(x2−0.5)2)/
√
ε) sin(πx1) sin(πx2),

u(x1, x2) = max{0, 2 cos(πx1) cos(πx2) − 1}.
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At the previous examples, the layers caused from the state and adjoint equations are dominant

and hence the effect of the control estimator ηu (5.34) is not seen well. By defining ud different

from zero in this example, our estimator ηu for the control picks out the layers on the boundary

of the control. See Figure 5.14.

[level,vertices]=[15,2867]

Figure 5.14: Adaptively refined mesh for Example 5.3.4
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Figure 5.15: Example 5.3.4: L2 errors in the state, the adjoint and the control.

When the uniform refinement is used, especially, the computed control exhibit spurious oscil-

lations on the boundary of the control. See the plots in the middle row in Figure 5.16. If the

adaptive refinement is used, the spurious oscillations are reduced in computed control. See

the plots in the bottom row in Figure 5.16.
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Figure 5.15 reveals the L2 error for the state, the adjoint and the control for the computa-

tions using linear elements on adaptively and uniformly refined meshes. The errors decrease

monotonically as the number of vertices is increased.
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Figure 5.16: Example 5.3.2. The plots in the top row show the exact the state, adjoint and
control. The plots in the middle show the computed state, adjoint and control using piecewise
linear polynomials on a uniformly refined mesh with 4225 vertices; The plots in the bottom
row show the computed state, adjoint and control using piecewise linear polynomials on an
adaptively refinement mesh with 2867 vertices.

123



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have studied the effect of the discontinuous Galerkin methods on the dis-

cretization of optimal control problems governed by linear convection diffusion equations.

Moreover, we have discussed adaptive finite element method (AFEM) procedure, driven by a

posteriori error estimates, for the numerical solution of unconstrained and control constrained

optimal control problems governed by convection dominated equations, based on the upwind

SIPG discretization.

We have shown theoretically and numerically in Chapter 3 that DG discretization of the op-

timal control problem leads to the same result as the DG discretization applied to optimality

system for SIPG method, whereas not for nonsymmetric DG methods, i.e., NIPG, IIPG. The

difference between both approaches can be reduced by superpenalization for NIPG and IIPG

methods thanks to reduction on the lack of adjoint consistency. We have also studied the con-

vergence properties of the convection dominated unconstrained optimal control problems in

Chapter 4, based on the upwind SIPG discretization. The boundary and/or interior layers are

resolved by applying AFEM, driven by a posteriori error estimator. Then, these results have

been extended to control constraint optimal control problems in Chapter 5. Our numerical

results have shown that the estimator picks out the boundary and/or interior layers effectively

for both unconstrained and control constrained cases. Additionally, while solving control con-

strained optimal control problem, O(h2) convergence rate has been obtained for the control

variable by using SIPG method at the numerical examples due to the weak treatment of SIPG

method on the boundary of control.

In this thesis, we have used the conforming meshes which are implemented easily. How-

ever, there are other approaches such as nonconforming meshes which are very suitable for
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DG discretization. Although there are many works for the single PDEs in this area, but not

for optimal control problems. Hence, the advantages and disadvantages of nonconforming

meshes should be explored in optimal control context. The elliptic DG approach in [20] al-

lowing discontinuity of diffusion parameter ε and nonconforming meshes can be extended

convection dominated optimal control problems. We have applied here h-adaptivity, which

gives algebraic convergence rate. However, another possibility hp-adaptivity [92] applied to

convection dominated single PDEs by using DG discretization in [107] can be extended to

optimal control problems to obtain exponential rates of convergence.

In this thesis, we use same mesh to refine the marked elements with respect to error estimator

of the state, adjoint and control although they display layers in different parts of the domain.

Therefore, different meshes for each solution component, state, adjoint and control, can be

alternatively used. Furthermore, the studies in here could be extended to distributed state

constrained and boundary control problems.
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[9] I. Babus̆ka, and M. Zlámal, Nonconforming elements in the finite element method with
penalty, SIAM J. Numer. Anal., 10:45-59, 1973.

[10] W. Bangerth, and R. Rannacher, Adaptive Finite Element Methods for Differential Equa-
tions, Lectures in Mathematics, ETH-Zürich, Birkhäuser, Basel, 2003.
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Appendix A

MATLAB Routine

In this Appendix, the MATLAB routines used for solving the optimal control problems us-

ing DG and AFEM will be explained. In all programmes, the sparse matrix structure is used

with coding style ”vectorization”. In the setting of MATLAB programming, vectorization can

be understood as a way to replace for loops by matrix operations or other fast built in func-

tions. In addition, we use Multiple matrix multiplications [71] ”MULTIPROD” to decrease

the number of ”for” loops which affect the performance of MATLAB programme.

A.1 Sparse Matrix in MATLAB

Sparse matrix algorithms require less computational time by avoiding operations on zero en-

tries and sparse matrix data structures require less computer memory by not storing many

zero entries. A natural storage scheme has a basic idea: use a single array to store all nonzero

entries and two additional integer arrays to store the indices of nonzero entries. Assuming

A be a m × n matrix containing only p nonzero elements let us look at the following simple

example:

A =


8 0 0

0 4 6

0 0 0

 , i =


1

2

2

 , j =


1

2

3

 , s =


8

4

6

 .
where i vector stores row indices of non-zeros, j column indices, and s the value of nonzeros.

All three vectors have the same length p. There are several alternative forms to call sparse

matrix using i, j, s as inputs. The most commonly used one is

A = sparse(i,j,s,m,n).
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This call generates an m × n sparse matrix, using [i; j; s] as the coordinate formate. The first

three arguments all have the same length. If a pair of indices occurs more than once in i and

j, sparse adds the corresponding values of s together. This nice summation property is very

useful for finite element computation.

A.2 Multiprod Toolbox

”MULTIPROD” [71] is a powerful, quick and memory efficient generalization for N-D arrays

of the MATLAB matrix multiplication operator (*). While the latter works only with 2-

D arrays, ”MULTIPROD” works also with multidimensional arrays. Besides the element-

wise multiplication operator (.*), MATLAB includes only two functions which can perform

products between multidimensional arrays: ”DOT” and ”CROSS”. However, these functions

can only perform two kinds of products: the dot product and the cross product, respectively.

Conversely, ”MULTIPROD” can perform any kind of multiple scalar-by-matrix or matrix

multiplication:

• Arrays of scalars by arrays of scalars, vectors (*) or matrices.

• Arrays of vectors (*) by arrays of scalars, vectors (*) or matrices.

• Arrays of matrices by arrays of scalars, vectors (*) or matrices.

(*) internally converted by MULTIPROD into row or column matrices.

A.3 The Mesh Data Structure

In this section, we will define the data structure of a triangular mesh on a polygonal domain

in R2. The data structure presented here is based on simple arrays [31, 32] which are stored

in a MATLAB ”struct”. A ”struct” is a data structure that collects two or more data fields in

one object that can then be passed to routines. The mesh ”struct” has the following fields:

• Nodes, Elements, Edges, intEdges, bdEdges, EdgeEls, ElementsE,

• Dirichlet, Neumann, vertices1, vertices2, vertices3.

134



To initialize the mesh, we define firstly the initial nodes, the elements and the Dirichlet and

Neumann conditions.

% Generate the mesh

Nodes = [0,0; 0.5,0; 1,0; 0,0.5; 0.5,0.5; 1,0.5; 0,1; 0.5,1;1,1]; % Nodes

Elements = [4,1,5; 1,2,5; 5,2,6; 2,3,6; 7,4,8; 4,5,8;8,5,9;5,6,9]; % Elements

Dirichlet = [1,2; 2,3; 1,4; 3,6; 4,7; 6,9; 7,8; 8,9]; % Dirichlet

Neumann = []; % Neumann

mesh = getmesh(Nodes,Elements,Dirichlet,Neumann);

In the node array Nodes, the first and second rows contain x- and y- coordinates of the nodes.

In the element array Elements, the three rows contain indices to the vertices of elements in

the anti-clockwise order. The first and second rows of the matrix Edges(1:NE,1:2) contain

indices of the starting and ending points. The column is sorted in the way that for the k-th

edge, Edges(k, 1) < Edges(k, 2). The following code will generate an Edges matrix. The

edge array is obtained as the following:

% Define Edges, Interior Edges and Boundary Edges

totalEdge = sort([Elements(:,[2,3]); Elements(:,[3,1]); Elements(:,[1,2])],2);

[i,j,s] = find(sparse(totalEdge(:,2),totalEdge(:,1),1));

Edges = [j,i];

bdEdges = find(s==1); intEdges=find(s==2);

ElementsE = reshape(j,NT,3);

The first line collects all edges from the set of triangles and sort the column such that totalEdge(k, 1) <

totalEdge(k, 2). The interior edges are repeated twice in totalEdge. We use the summation

property of sparse command to merge the duplicated indices. The nonzero vector s takes val-

ues 1 (for boundary edges) or 2 (for interior edges). We use then s to find the edge number

of boundary edges, bdEdges, and interior edges, intEdges. In the last line, we obtain Ele-
mentsE matrix where each element is represented by edges. Furthermore, an Ne × 2 array

called EdgeEls is used to show connection between edges and elements.

NT=size(Elements,1);

[˜, i2, j] = unique(totalEdge,’rows’);

i1(j(3*NT:-1:1)) = 3*NT:-1:1; i1=i1’;

k1 = ceil(i1/NT); t1 = i1 - NT*(k1-1);

k2 = ceil(i2/NT); t2 = i2 - NT*(k2-1);

EdgeEls = [t1,t2];
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Figure A.1: A mesh with two triangles, Ω = [0, 1] × [0, 1].

If the i’th edge is an interior edge, then EdgeEls(i, 1) = ti,1, EdgeEls(i, 2) = ti,2.

If the i’th edge is an boundary edge, then EdgeEls(i, 1) = ti,1, EdgeEls(i, 2) = ti,1.

If an instance of the mesh ”struct” is given the variable name T , then one can refer to any of

the fields using the syntax T. FieldName (for example, T. Nodes). For example we consider

the mesh shown in Figure A.1 with two triangles, T1 and T2, five edges, e1, e2, e3, e4, e5, and

four nodes, n1, n2, n3, n4.

T.Edges =



1 2

1 3

1 4

2 4

3 4


, T.intEdges =

[
3

]
, T.bdEdges =



1

2

4

5


and

T.Elements =

 3 1 4

1 2 4

 , T.EdgeEls =



2 2

1 1

1 2

2 2

1 1


.

There are also two MATLAB routine related to mesh structure: label(Nodes,Elements) to

label the longest edge of each triangle as the base and uniformrefine(mesh) to refine the

current triangulation by dividing each triangle into four triangles.
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A.4 Optimal Control Problems

In this section, we describe the MATLAB routines to solve the optimal control problems.

When we use the same basis spaces (φi) for the state, adjoint and control, the matrices M,B

and Q defined in Section 3.2 and 3.3 are the same, i.e., M = B = Q.

(ME)i, j =

∫
E
φ j,Eφi,E dx ∀1 ≤ i, j,≤ Nloc.

We compute the integrals on the reference element Ê since the computation of integrals on

physical element E is costly. Then, applying a change of variable with the mapping FE given

in 2.3.2, the integrals can be computed on the reference elements such that:

(ME)i, j = 2|E|
∫

Ê
φ̂ jφ̂i dx ∀1 ≤ i, j,≤ Nloc.

The following script is used to solve unconstrained optimal control problems:

% Compute global matrices and right-hand side for state equation

[diff_s,conv_s,reac_s,mass,f_s]=global_system(mesh,@fdiff,@fadv_state,...

@freact_state,@fsource,@DBC_state,@NBC_state,penalty,eps,degree);

% Compute global matrices and right-hand side for adjoint equation

[diff_a,conv_a,reac_a,˜,f_a]=global_system(mesh,@fdiff,@fadv_adjoint,...

@freact_adjoint,@y_desired,@DBC_adjoint,@NBC_adjoint,penalty,eps,degree);

M=mass; % mass matrix

A= diff_s+conv_s+reac_s; % stiffness matrix for state equation

Adj_A= diff_a+conv_a+reac_a; % stiffness matrix for adjoint equation

rs= f_s; % right-hand side for state equation

g= f_a; % right-hand side for adjoint equation

H=sparse(Nloc*Nel,Nloc*Nel); % zero matrix

HR=sparse(Nloc*Nel,1); % zero vector

switch Equation.controlapp

case 1

% Discretize then optimize

K=[M,H,A’; H, Equation.omega*M, -M’ ; A, -M, H ]; R=[g;HR;rs];

case 2

% Optimize the Discretize

K=[M,H,Adj_A; H, Equation.omega*M, -M ; A, -M, H]; R=[g;HR;rs];

end

% Solve the linear system

[L,U,P,Q]=lu(K);

s = Q*(U\(L\(P*R)));
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For the control contstrained case, we use the above Matlab routine in the PDAS strategy given

in Chapter 5.

% Define coefficients of lower (u_a) and upper (u_b) bound of control

ua=zeros(Nloc*Nel,1); ua(1:Nloc*Nel)=Equation.uA;

ub=zeros(Nloc*Nel,1); ub(1:Nloc*Nel)=Equation.uB;

H=sparse(Nloc*Nel,Nloc*Nel); IP=speye(Nloc*Nel);

% Initialize Active sets

Aaold=sparse(Nloc*Nel,1); Abold=sparse(Nloc*Nel,1);

% Initialize inactive set

Iold=sparse(ones(Nloc*Nel,1));

% Compute global matrices and right-hand side for the state and adjoint

% Active set method

n=0; dnold=Inf; done=0;

while done==0 && n<20

switch Equation.controlapp

case 1

% Discretize then optimize

case 2

% Optimize the Discretize

K=[M,H,Adj_A; H, omega*IP, -diag(Iold) ; A, -M, H];

R=[g;(omega*Aaold.*ua)+(omega*Abold.*ub);r];

end

% Solve the linear system

[L,U,P,Q]=lu(K);

s = Q*(U\(L\(P*R)));

% Extract coefficients of state, adjoint, control

ycoef=s(1:Nloc*Nel);

ucoef=s(Nloc*Nel+1:2*Nloc*Nel);

pcoef=s(2*Nloc*Nel+1:3*Nloc*Nel);

% Update active and inactive sets

Aaold=sparse((pcoef-(omega*ua))<0);

Abold = sparse((pcoef-(omega*ub))>0);

Iold=sparse((ones(Nloc*Nel,1)-Aaold)-Abold);

% Compute tolerans to exit active set loop

dnnew = full(( omega * omega * sum(((ucoef-ua).*Aaold).ˆ2) / (Nloc*Nel) ) + ...

( omega * omega * sum(((ucoef-ub).*Abold).ˆ2) / (Nloc*Nel) ) + ...

( sum(((-pcoef+(omega*ucoef)).*Iold).ˆ2) / (Nloc*Nel)));

if ((dnnew < sqrt(eps)) && (dnold == dnnew))

done = 1;

end
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dnold=dnnew; n=n+1;

end

We use global matrices and vector (for right-hand side) obtained from the state and adjoint

equation to solve the optimality system, see Figure A.2.

A.5 Global Matrices and Right-Hand Side Vector

The routine for assembling of local contributions to global matrix and right-hand sides is

called global system.

[Diff_global,Conv_global,Reac_global,Fglobal]=global_system(mesh,...

fdiff,fadv,freact,fsource,DBCexact,NBCexact,penalty,eps,degree)

This routine takes the structure of mesh, diffusion, convection, reaction, source function,

Dirichlet and Neumann boundary conditions, penalty parameter (penal), degree of polyno-

mials (k), a parameter to decide which DG method will be used (eps) as inputs. We can

solve the system formed by the global matrices and right-hand side vector using sparse LU-

factorization.

?

Optimal Control Problem

?

Global Matrices and RHS Vector

?
Volume

Contributions

?

Local matrices on volume

?
Face

Contributions

?
?

Local matrices
on

interior faces

?
Local matrices

on
boundary faces

Figure A.2: The structure of MATLAB routine to solve optimal control problem.

% Compute global matrices

[Diff_global,Conv_global,Reac_global,Fglobal]=global_system(mesh,...

139



fdiff,fadv,freact,fsource,DBCexact,NBCexact,penalty,eps,degree)

% Solve the linear system

G=Diff_global+Conv_global+Reac_global;

[L,U,P,Q]=lu(G);

y = Q*(U\(L\(P*Fglobal)))

The global matrices Dglobal, Cglobal and Rglobal of diffusion, convection and reaction, respec-

tively are assembled in two steps: volume and face contributions.

A.5.1 Volume Contributions

The local matrices DE , CE and RE of diffusion, convection and reaction terms, respectively,

are added to the block diagonal entries of Dglobal, Cglobal and Rglobal, respectively. Assuming

the mesh elements from 1 to Nel, the local contributions bE can be added to bglobal in the same

algorithm.

Algorithm 1: Volume Contributions [87]

initialize k=0

loop over the elements: for k=1 to Nel do

compute local matrices DEk , CEk , REk and bEk

for i=1 to Nel do

ie=i+k

for j=1 to Nel do

je=j+k

Dglobal(ie, je) = Dglobal(ie, je) + DE (i, j)

Cglobal(ie, je) = Cglobal(ie, je) + CE (i, j)

Rglobal(ie, je) = Rglobal(ie, je) + RE (i, j)

end

bglobal(ie) = bglobal(ie) + bEk (i)

k=k+Nloc

end

end

In Algorithm 1, we compute the local matrices on the element E using the following:

% Compute local volume matrix

[Diff_loc,Floc,Conv_loc,Reac_loc]=localmat_vol(mesh,fdiff,fadv,freact,fsource,degree);

This routine takes the structure of mesh, diffusion, convection, reaction and source functions

and degree of polynomials as inputs.
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A.5.1.1 Local matrices on volume

We compute the matrices DE , CE , RE resulting from the volume integral over a fixed element

E :

(DE)i, j =

∫
E
ε∇φ j,E ·∇φi,E dx, (CE)i, j =

∫
E
β·∇φ j,Eφi,E dx, (RE)i, j =

∫
E

rφ j,Eφi,E dx.

where ∀ 1 ≤ i, j,≤ Nloc. Applying a change of variable with the mapping FE , the integrals

can be computed on the reference elements:

(DE)i, j = 2|E|
∫

Ê
ε(BT

E)−1∇̂φ̂i · (BT
E)−1∇̂φ̂ j dx,

(CE)i, j = 2|E|
∫

Ê
β · (BT

E)−1∇̂φ̂ jφ̂i dx,

(RE)i, j = 2|E|
∫

Ê
(r ◦ FE)φ̂ jφ̂i dx.

The volume contributions to the local right-hand side bE are (bE)i =
∫

E fφi,E dx.

Algorithm 2: Computing local contributions from element E [87]

initialize DE = 0, CE = 0, RE = 0

initialize the quadrature weights w and points s

loop over quadrature points : for k=1 to NG do

compute determinant of BE

for i=1 to Nloc do

compute values of basis functions φi,E(s(k))

compute derivatives of basis functions ∇i,E(s(k))

end

compute global coordinates x of quadrature points s(k)

compute source function f(x)

for i=1 to Nloc do

for j=1 to Nloc do

DE(i, j) = DE(i, j) + w(k)det(BE)ε∇φ j,E(s(k)) · ∇φi,E(s(k))

CE(i, j) = CE(i, j) + w(k)det(BE)β · ∇φ j,E(s(k))φi,E(s(k))

RE(i, j) = RE(i, j) + w(k)det(BE)φi,E(s(k))φ j,E(s(k))

end

bE(i) = bE(i) + w(k)det(BE) f (x)φi,E(s(k))

end

end

A partition of Algorithm 2 is given below MATLAB routine;

%Get quadrature points and weights on reference triangle
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[nodes_ref,wgt]=quadrature(10);

%Compute values and derivatives of basis functions and determinant

%and compute global coordinates of quadarature point

[val_basis,der_basisx,der_basisy,determ,xx]=elem_basis(mesh,degree,nodes_ref);

% weights * determ and compute the transpose

vol=permute(wgt.*determ,[2,1,3]);

for i=1:Nloc

for j=1:Nloc

% Diffusion part

Dloc(i,j,:) =multiprod(vol,(der_basisx(:,j,:).*der_basisx(:,i,:)...

+der_basisy(:,j,:).*der_basisy(:,i,:)).*diff);

% Convection part

Cloc(i,j,:) = multiprod(vol,(adv1.*der_basisx(:,j,:).*val_basis(:,i,:)...

+adv2.*der_basisy(:,j,:).*val_basis(:,i,:)));

% Reaction part

Rloc(i,j,:) =multiprod(vol,(val_basis(:,j,:).*val_basis(:,i,:)).*reac);

end

%Right-side

Floc(i,1,:) =multiprod(vol,(val_basis(:,i,:).*source));

end

The above routine calls other routines such as: quadrature which initializes the arrays

nodes ref and wgt containing the coordinates of the quadrature points and the weights of

the quadrature points, respectively and elem basis which computes the values and global

derivatives of the basis functions and the determinant of transformation matrix between ref-

erence element and physical element, as well as global coordinates of points on the reference

element.

A.5.2 Face Contributions

Assuming the edges from 1 to N f ace and face k ∈ E1
k ∩ E2

k , we assemble the local matrices

Di, j
e and Ci, j

e for 1 ≤ i, j,≤ 2.

Algorithm 3: Face Contributions [87]

loop over the edges: for k=1 to N f ace do

get face neighbors E1
k and E2

k

if face is an interior face do

compute local matrices D11
k , D22

k , D12
k , D21

k
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compute local matrices C11
k , C22

k , C12
k , C21

k

assemble D11
k and C11

k contributions:

for i=1 to Nloc do

ie = i + (E1
k − 1)Nloc

for j=1 to Nloc do

je = j + (E1
k − 1)Nloc

Dglobal(ie, je) = Dglobal(ie, je) + D11
k (i, j)

Cglobal(ie, je) = Cglobal(ie, je) + C11
k (i, j)

end

end

assemble D22
k and C22

k contributions:

assemble D12
k and C12

k contributions:

assemble D21
k and C21

k contributions:

for i=1 to Nloc do

ie = i + (E2
k − 1)Nloc

for j=1 to Nloc do

je = j + (E1
k − 1)Nloc

Dglobal(ie, je) = Dglobal(ie, je) + D21
k (i, j)

Cglobal(ie, je) = Cglobal(ie, je) + C21
k (i, j)

end

end

else if face is a boundary face do

compute local matrices D11
k and C11

k

compute local right-hand side bk

assemble D11
k contributions:

for i=1 to Nloc do

ie = i + (E1
k − 1)Nloc

for j=1 to Nloc do

je = j + (E1
k − 1)Nloc

Dglobal(ie, je) = Dglobal(ie, je) + D11
k (i, j)

Cglobal(ie, je) = Cglobal(ie, je) + C11
k (i, j)

end

bglobal(ie) = bglobal(ie) + bk(i)

end

end

In Algorithm 3, we compute the local matrices on the interior (e ∈ Γ0
h) and boundary edges

(e ∈ Γ∂h) calling the following routines:

% Compute local matrices caused by interior edges

[B11,B22,B12,B21,C11,C22,C12,C21]=localmat_face(mesh,fdiff,fadv,penalty,eps,degree);

% Compute local matrices and right-hand side vector caused by boundary edges
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[B11B,FlocB,C11B]=localmat_bdyface(mesh,fdiff,fadv,fexact,penalty,eps,degree);

A.5.2.1 Local matrices on faces

For the interior edges i.e., e ∈ Γh, the terms involving integrals on e coming from diffusion

term are defined by

TD = −

∫
e
{ε∇uh · ne}[υ] + κ

∫
e
{ε∇υ · ne}[uh] +

σ

|e|β0

∫
e
[uh][υ].

Expanding the averages and jumps, we obtain

T = D11
e + D22

e + D12
e + D21

e ,

where the term d11
e (resp.,E2

e ) corresponds to the interactions of the local basis of the neigh-

boring element E1
e (resp.,E2

e ) with itself and the term d12
e corresponds to the interaction of the

local basis of the neighboring elements E1
e (resp.,E2

e ) with the elements E2
e (resp.,E1

e ).

(D11
e )i, j = −

1
2

∫
e
ε∇φ j,E1

e
· neφi,E1

e
ds +

κ

2

∫
e
ε∇φi,E1

e
· neφ j,E1

e
ds +

σ

|e|β0

∫
e
φ j,E1

e
φi,E1

e
ds,

(D22
e )i, j =

1
2

∫
e
ε∇φ j,E2

e
· neφi,E2

e
ds −

κ

2

∫
e
ε∇φi,E2

e
· neφ j,E2

e
ds +

σ

|e|β0

∫
e
φ j,E2

e
φi,E2

e
ds,

(D12
e )i, j = −

1
2

∫
e
ε∇φ j,E2

e
· neφi,E1

e
ds −

κ

2

∫
e
ε∇φi,E1

e
· neφ j,E2

e
ds −

σ

|e|β0

∫
e
φ j,E2

e
φi,E1

e
ds,

(D21
e )i, j =

1
2

∫
e
ε∇φ j,E1

e
· neφi,E2

e
ds +

κ

2

∫
e
ε∇φi,E2

e
· neφ j,E1

e
ds −

σ

|e|β0

∫
e
φ j,E1

e
φi,E2

e
ds.

For e ∈ Γh, the terms involving integrals on e coming from convection term are defined by

TC =

∫
e
|β · n)| (y+ − y−)υ+ds = c11

e + c22
e + c12

e + c21
e .

We define y+ and y− using the upwind discretization [70, 86] such that:

y+ =

 y|E1 , if β · ne < 0,

y|E2 , if β · ne ≥ 0,
y− =

 y|E2 , if β · ne < 0,

y|E1 , if β · ne ≥ 0.

Then, the terms coming from the convection term are defined such that:

∀e ∈ Γh satisfying β · ne < 0,

(C11
e )i, j =

∫
e
|β · n| φ j,E1

e
φi,E1

e
, (C12

e )i, j = −

∫
e
|β · n| φ j,E2

e
φi,E1

e

and ∀e ∈ Γh satisfying β · ne ≥ 0,

(C22
e )i, j =

∫
e
|β · n| φ j,E2

e
φi,E2

e
, (C21

e )i, j = −

∫
e
|β · n| φ j,E1

e
φi,E2

e
.
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Algorithm 4: Computing local contributions from interior edges [87]

initialize D11
e = D22

e = D12
e = D21

e = 0

initialize C11
e = C22

e = C12
e = C21

e = 0

initialize parameters ε and σ0
e

initialize the quadrature weights w and the points s on [−1, 1]

compute edge length |e|, normal vector ne

get face neighbors E1
e and E2

e

loop over quadrature points: for k=1 to NG do

compute local coordinates ss1 on E1
e and ss2 on E2

e of quadrature point s(k)

for i=1 to Nloc do

compute values of basis functions φi,E1
e
(s(k)) and φi,E2

e
(ss1)

compute derivatives of basis functions ∇φi,E1
e
(s(k)) and ∇φi,E2

e
(ss2)

end

for i=1 to Nloc do

for j=1 to Nloc do

D11
e (i, j) = D11

e (i, j) − 0.5w(k)|e|φi,E1
e
(s(k))(∇φ j,E1

e
(s(k)) · ne)

D11
e (i, j) = D11

e (i, j) + 0.5εw(k)|e|φ j,E1
e
(s(k))(∇φi,E1

e
(s(k)) · ne)

D11
e (i, j) = D11

e (i, j) −
σ0

e

|e|β0
w(k)|e|φi,E1

e
(s(k))φ j,E1

e
(s(k))

· · ·

D21
e (i, j) = D21

e (i, j) + 0.5w(k)|e|φi,E2
e
(s(k))(∇φ j,E1

e
(s(k)) · ne)

D21
e (i, j) = D21

e (i, j) + 0.5εw(k)|e|φ j,E1
e
(s(k))(∇φi,E2

e
(s(k)) · ne)

D21
e (i, j) = D21

e (i, j) −
σ0

e

|e|β0
w(k)|e|φi,E2

e
(s(k))φ j,E1

e
(s(k))

end

end

if face is influx face do

for i=1 to Nloc do

for j=1 to Nloc do

C11
e (i, j) = C11

e (i, j) + w(k)|e| |β · n| φi,E1
e
(s(k))φ j,E1

e
(s(k))

C12
e (i, j) = C12

e (i, j) + w(k)|e| |β · n| φi,E2
e
(s(k))φ j,E1

e
(s(k))
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end

end

else if face is outflux face do

for i=1 to Nloc do

for j=1 to Nloc do

C22
e (i, j) = C22

e (i, j) + w(k)|e| |β · n| φi,E2
e
(s(k))φ j,E2

e
(s(k))

C21
e (i, j) = C21

e (i, j) + w(k)|e| |β · n| φi,E1
e
(s(k))φ j,E2

e
(s(k))

end

end

end

end

This algorithm which computes the local matrices obtained by the integration over interior

edges is implemented at the routine called localmat face. A partition of this Matlab routine

is given below:

%Initialize the quadrature weights and points for edges

Nqu=12; [nodes_ref,wge]=get_quadrature_segment(Nqu);

%Compute normal vector to edges E1

[normal_vec,area]=getNormal(Equation.mesh,E1,iedge);

normal_vec=permute(repmat(normal_vec,[1,1,Nqu]),[3,2,1]);

normal1=normal_vec(:,1,:); normal2=normal_vec(:,2,:);

%Compute values and derivatives of basis functions and determinant

%and compute global coordinates of quadarature point on E1 on E2

[val_basis1,der_basis1x,der_basis1y,˜,xx]=elem_basisf(mesh,degree,E1,s1);

[val_basis2,der_basis2x,der_basis2y,˜,˜]=elem_basisf(mesh,degree,E2,s2);

%Define inflow and outflow edges

c=(adv1.*normal1+adv2.*normal2); a=find(c(1,:,:)<0); b=find(c(1,:,:)>=0);

for i=1:Nloc

for j=1:Nloc

%Compute the entries of local matrix D11

T11=(normal1.*der_basis1x(:,j,:)+normal2.*der_basis1y(:,j,:))

.*val_basis1(:,i,:).*(-0.5*diff)...

+(normal1.*der_basis1x(:,i,:)+normal2.*der_basis1y(:,i,:))

.*val_basis1(:,j,:).*(eps*(0.5)*diff)...

+(penalty.*val_basis1(:,i,:).*val_basis1(:,j,:));

D11(i,j,:) = multiprod(area,T11);
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%Compute the entries of local matrix C11

T1=(abs(c(:,:,a)).*val_basis1(:,j,a).*val_basis1(:,i,a));

C11(i,j,a)=multiprod(area(:,:,a),T1);

end

end

The above routine calls other routines such as: get quadrature segment which initializes

the weights and nodes of the Gauss quadrature nodes on the interval [-1,1], getNormal which

returns the fixed normal vector to the edge and the length of the edge and elem basisf which

computes the values and global derivatives of the basis functions and the determinant of trans-

formation matrix between reference element and physical element, as well as global coordi-

nates of points on edge of the reference element. This routine is different from the routine

elem basis since the quadrature points on the reference edges are different for each edge.

For the Dirichlet boundary edges, i.e., e ∈ ΓD, the following local matrices D11
e and C11

e , of

the diffusion and convection terms, respectively, are created:

(D11
e )i, j = −

∫
e
ε∇φ j,E1

e
· neφi,E1

e
ds + κ

∫
e
ε∇φi,E1

e
· neφ j,E1

e
ds +

σ

|e|β0

∫
e
φ j,E1

e
φi,E1

e
ds,

(C11
e )i, j =

∫
e

y+υ+|n · β| ds

and the local right-hand side be is

(be)i =

∫
e
(κε∇φi,E1

e
· ne +

σ

|e|β0
φi,E1

e
)gD ds +

∫
Γ−
|β · n| gDυ

+ds.

Note that if the edge e ∈ ΓN , no local matrix is created, but the following right-hand side is

defined:

(be)i =

∫
e
φi,E1

e
gN ds.
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Figure A.3: Adaptive procedure.

A.6 Adaptivity Procedure

In this section, we will desribe the MATLAB routines of adaptivity procedure given in Figure

A.3.

A.6.1 Estimation

We have two steps to compute error estimator given in Section 4.1: element and edge residu-

als. The element residual part is given by the following script:

% Compute values of basis functions, their derivatives and determinant

% and compute global coordinates of quadrature point

[val_basis,der_basisx,der_basisy,determ,xx]=elem_basis(mesh,degree,nodes_ref);

% Compute second derivative of basis functions

[der_basisxx,der_basisyy]=SecondDer_basis(mesh,degree,nodes_ref);

% Evaluate yex at the quadrature points
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source=feval(fsource,fdiff,fadv_state,freact_state,xx(:,1,:),xx(:,2,:));

% weights * determ and compute the transpose

vol = permute(wgt.*determ,[2 1 3]);

% Compute the diameter of each triangle

diam=repmat(reshape(getDiameter(mesh),1,1,Nel),[size(nodes_ref,1) 1 1]);

yval=multiprod(val_basis,yy); % value of numerical solution of state

ygradx=multiprod(der_basisx,yy); % value of first derivative wrt x

ygrady=multiprod(der_basisy,yy); % value of first derivative wrt y

ygradxx=multiprod(der_basisxx,yy); % value of second derivative wrt x

ygradyy=multiprod(der_basisyy,yy); % value of second derivative wrt y

uval=multiprod(val_basis,uu); % value of numerical solution of control

% Define the parameter for the triangles

if (tau==0) pa=diff.ˆ(-0.5).*diam;

else pa=min(diff.ˆ(-0.5).*diam, tauˆ(-0.5));

end

% Compute estimator caused by triangles

T= (pa.*(source+uval+diff.*(ygradxx+ygradyy)-adv1.*ygradx-adv2.*ygrady-reac.*yval)).ˆ2;

errInd_tri=squeeze(multiprod(vol,T));

Secondly, we implement the edge residual at the following script:

% ***************Interior Edges...............

iedge=mesh.intEdges; % Get interior edges

Ned=length(iedge); % number of interior edges

% Get neighbors of interior edges

edge=mesh.EdgeEls(iedge,:); E1=edge(:,1); E2=edge(:,2);

% Compute normal vector to edges E1 and length of edges

[normal_vec,area]=getNormal(mesh,E1,iedge);

normal_vec=permute(repmat(normal_vec,[1,1,Nqu]),[3,2,1]);

normal1=normal_vec(:,1,:); normal2=normal_vec(:,2,:);

% Compute local coordinates of quadrature points on E1 and E2

s1=loc_coor_quad(mesh,iedge,E1,nodes_ref);

s2=loc_coor_quad(mesh,iedge,E2,nodes_ref);

% Compute values of basis functions, their derivatives and determinant

% and compute global coordinates of quadarature point on E1 on E2

[val_basis1,der_basis1x,der_basis1y,˜,xx1]=elem_basisf(mesh,degree,E1,s1);

[val_basis2,der_basis2x,der_basis2y,˜,˜]=elem_basisf(mesh,degree,E2,s2);

% Penalty parameter

penalty_int=permute(repmat(penalty*ones(Ned,1),[1,1,Nqu]),[3,2,1]);

% weights * area and compute the transpose

area=permute(0.5*permute(repmat(area,[1,1,Nqu]),[3,2,1]).*wge,[2,1,3]);
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% Compute the values of numerical solution and its derivative on edges of E1

y1=multiprod(val_basis1,yy(:,:,E1));

ygrad1x = multiprod(der_basis1x,yy(:,:,E1));

ygrad1y = multiprod(der_basis1y,yy(:,:,E1));

% Compute the values of numerical solution and its derivative on edges of E2

y2=multiprod(val_basis2,yy(:,:,E2));

ygrad2x = multiprod(der_basis2x,yy(:,:,E2));

ygrad2y = multiprod(der_basis2y,yy(:,:,E2));

% Define the parameter for edges

if (tau==0) pe=diff.ˆ(-0.5).*length_edge;

else pe=min(diff.ˆ(-0.5).*length_edge,tauˆ(-0.5));

end

% Compute error indicator caused by interior edge

T=0.5*(diff.ˆ(-0.5)).*pe.*(diff.*(ygrad1x-ygrad2x).*normal1 + ...

diff.*(ygrad1y-ygrad2y).*normal2 ).ˆ2 ...

+0.5*((penalty_int.*diff./length_edge)+tau*length_edge+length_edge./diff).*(y1-y2).ˆ2;

InteriorEdge_indicator=squeeze(multiprod(area,T));

% ******Boundary edges********************************

Dbedge=mesh.DbdEdges; % get boundary edges

DNedb=length(Dbedge); % number of boundary edges

....................

% Compute error indicator caused by boundary edges

BdyEdge_indicator=multiprod(area,((penalty_bdy.*diff./length_edge)+...

tau*length_edge+length_edge./diff).*(yex-y1).ˆ2);

BdyEdge_indicator=squeeze(BdyEdge_indicator);

The error estimator of control is equal to zero for unconstraint case, whereas it is different

from zero for control constrained case. Then, it is computed such as:

T=omegaˆ2*diam.ˆ2.*((uval-uaval).*(ubval-uval)./(h+(uval-uaval).*...

(ubval-uval))).ˆ2.*((ugradx+pgradx).ˆ2+(ugrady+pgrady).ˆ2);

errInd_tri=multiprod(vol,T);

errInd_tri=squeeze(errInd_tri);

A.6.2 Marking

The Matlab implementation of marking step in adaptive procedure is such that [32]:

function markedElem= mark(mesh,etaT,theta)

NT = size(mesh.Elements,1); isMark = false(NT,1);
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[sortedEta,idx] = sort(etaT,’descend’);

x = cumsum(sortedEta);

isMark(idx(x < theta* x(NT))) = 1;

isMark(idx(1)) = 1;

markedElem = uint32(find(isMark==true));

A.6.3 Refinement

In the REFINEMENT step, the marked elements are refined by longest edge bisection, whereas

the elements of the marked edges are refined by bisection [31, 32]. In a loop for Elements
matrix, we first check if any triangle’s base is marked. If so we divide it and then check the

other two edges. If one of them is marked, we divide children elements with suitable order.

% Refine marked edges for each triangle

numnew = 2*sum(marker˜=0); % number of new Elementsents need to be added

mesh.Elements = [mesh.Elements; zeros(numnew,3)];

inew = NT + 1; % index for current new added right child

for t = 1:NT

base = d2p(mesh.Elements(t,2),mesh.Elements(t,3));

if (marker(base)>0)

p = [mesh.Elements(t,:), marker(base)];

% Case 1: divide the current marked triangle

mesh.Elements(t,:) = [p(4),p(1),p(2)]; % t is always a left child

mesh.Elements(inew,:) = [p(4),p(3),p(1)]; % new is a right child

inew = inew + 1;

% Case 2: divide the right child, different, careful!!!

right = d2p(p(3),p(1));

if (marker(right)>0)

mesh.Elements(inew-1,:) = [marker(right),p(4),p(3)];

mesh.Elements(inew,:) = [marker(right),p(1),p(4)];

inew = inew + 1;

end

% Case 3: divide the left child, similar to the case 1.

left = d2p(p(1),p(2));

if (marker(left)>0)

mesh.Elements(t,:) = [marker(left),p(4),p(1)];

mesh.Elements(inew,:) = [marker(left),p(2),p(4)];

inew = inew + 1;

end

end % end of refinement of one Elementsent
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end % end of for loop on all Elementsents

% delete possible empty entries

mesh.Elements = mesh.Elements(1:inew-1,:);
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