

A METHOD FOR PRODUCT DEFECTIVENESS PREDICTION WITH PROCESS

ENACTMENT DATA IN A SMALL SOFTWARE ORGANIZATION

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

DAMLA SĠVRĠOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

 JUNE 2012

A METHOD FOR PRODUCT DEFECTIVENESS PREDICTION WITH PROCESS

ENACTMENT DATA IN A SMALL SOFTWARE ORGANIZATION

Submitted by DAMLA SĠVRĠOĞLU in partial fulfillment of the requirements for the degree

of Master of Science in Information Systems, Middle East Technical University by,

Prof. Dr. Nazife Baykal ___________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin ___________________

Head of Department, Information Systems

Prof. Dr. Onur DEMĠRÖRS ___________________

Supervisor, Information Systems,METU

Dr. Ayça TARHAN ___________________

Co-Supervisor, Computer Engineering, Hacettepe University

Examining Committee Members:

Prof. Dr. Semih BĠLGEN ___________________

Electrical and Electronics Engineering, METU

Prof. Dr. Onur DEMĠRÖRS ___________________

Information Systems, METU

Dr. Ayça TARHAN ___________________

Computer Engineering, Hacettepe University

Assist. Prof. Dr. Aysu BETĠN CAN ___________________

Information Systems, METU

Assoc. Prof. Dr. Altan KOÇYĠĞĠT ___________________

Information Systems, METU

 Date: 28.06.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name : D a m l a S i v r i o ğ l u

Signature :

iv

ABSTRACT

A METHOD FOR PRODUCT DEFECTIVENESS PREDICTION BY USING PROCESS

ENACTMENTT DATA IN A SMALL SOFTWARE ORGANIZATION

 Sivrioğlu, Damla

 M.Sc., Department of Information Systems

 Supervisor: Prof. Dr. Onur Demirörs

Co-Supervisor: Dr. Ayça Tarhan

June 2012, 170 pages

As a part of the quality management, product defectiveness prediction is vital for small software

organizations as for instutional ones. Although for defect prediction there have been conducted a

lot of studies, process enactment data cannot be used because of the difficulty of collection.

Additionally, there is no proposed approach known in general for the analysis of process

enactment data in software engineering.

In this study, we developed a method to show the applicability of process enactment data for

defect prediction and answered “Is process enactment data beneficial for defect prediction?”,

“How can we use process enactment data?” and “Which approaches and analysis methods can our

method support?” questions. We used multiple case study design and conducted case studies

including with and without process enactment data in a small software development company. We

preferred machine learning approaches rather than statistical ones, in order to cluster the data

which includes process enactment informationsince we believed that they are convenient with the

pattern oriented nature of the data.

By the case studies performed, we obtained promising results. We evaluated performance values

v

of prediction models to demonstrate the advantage of using process enactment data for the

prediction of defect open duration value. When we have enough data points to apply machine

learning methods and the data can be clusteredhomogeneously, we observed approximately 3%

(ranging from -10% to %17) more accurate results from analyses including with process enactment

data than the without ones.

Keywords: software defect prediction, machine learning, software measurement, defectiveness,

software process enactment.

vi

 Ö Z

KÜÇÜK BĠR KURUMDA ÜRÜN HATALILIK TAHMĠNĠ ĠÇĠN SÜREÇ

ĠġLETME VERĠSĠNĠN KULLANILDIĞI BĠR METOT

 Sivrioğlu, Damla

 Yüksek Lisans, BiliĢim Sistemleri Bölümü

 Tez Yöneticisi: Prof. Dr. Onur Demirörs

 Ortak Tez Yöneticisi: Dr. Ayça Tarhan

 Haziran 2012, 170 sayfa

Kalite yönetiminin bir parçası olarak ürün hatalılığı tahmini kurumsal Ģirketlerde olduğu kadar

küçük yazılım kurumları için de hayati önem taĢır. Hata tahmini ile ilgili pek çok çalıĢma

yürütülmüĢ olmasına rağmen süreç iĢletme verisi, toplama zorluğu nedeniyle kullanılamamaktadır.

Buna ek olarak süreç iĢletme verisinin yazılım mühendisliğinde analizi için önerilen ve genel

olarak bilinen herhangi bir yaklaĢım yoktur.

Biz bu çalıĢmada, süreç iĢletme verisinin hata tahmini için uygulanabilirliğini gösteren bir metot

geliĢtirdik ve “Süreç iĢletme verisinin kullanımı hata tahmini için yararlı mıdır?”, “Süreç iĢletme

verisini nasıl kullanabiliriz?” ve “Bizim geliĢtirdiğimiz metot hangi analiz metotlarını

destekleyebilir?” sorularını cevapladık. Çoklu durum çalıĢması tasarımını kullandık ve küçük bir

yazılım Ģirketinde süreç iĢletme verisinin kullanıldığı ve kullanılmadığı durumlar dahil olmak

üzere dört durum çalıĢması için analizler gerçekleĢtirdik. Süreç iĢletme bilgisini içeren verinin

gruplaması için istatistiksel yaklaĢımlar yerine makine öğrenmesi yaklaĢımlarını tercih ettik.

Çünkü örüntü tanıma amaçlı olan makine öğrenmesi yöntemlerinin, örüntüye yönelik doğası

gereği süreç iĢletme verisi için elveriĢli olduğunu değerlendirdik.

vii

Yaptığımız durum çalıĢmaları ile ümit verici sonuçlar elde ettik. Hata açık kalma süresi değerinin

tahmini için süreç iĢletme verisinin kullanımının avantajını göstermek için tahmin modellerinin

performanslarını değerlendirdik. Makine öğrenmesi metotlarını uygulamak için yeterli veri

noktamız olduğunda ve veri homojen olarak gruplanabildiğinde, süreç iĢletme verisinin dahil

edildiği analiz sonuçlarının, dahil edilmemiĢ olanlara göre yaklaĢık 3% (-10% ile 17% aralığında)

daha doğru olduğunu gözlemledik.

Anahtar Kelimeler: yazılım hata tahmini, makine öğrenmesi, yazılım ölçümü, hatalılık, yazılım

süreç iĢletme.

viii

To my family, my friends and my life coach…

ix

ACKNOWLEDGEMENTS

Special thanks should be given to Dr. Ayça Tarhan, my co-supervisor for her

professional guidance, dedication and valuable support and to Prof. Onur

Demirörs for his useful and constructive recommendations on this study.

I would like to express my very great appreciation to Assoc. Prof. Veysi ĠĢler for

his support in providing environment for scientific analyses. I wish to thank

various people for their contribution to this study; ġafak Burak ÇevikbaĢ, Dr.

Aydın Okutanoğlu and Ahmet Birdal for their valuable technical support on this

study; Gökhan Yılmaz, Emine Akman, Caner Kara, Behlül Kuran, Nurbanu

Kından and AyĢegül Ünal, staff of Simsoft company, for their help in collecting

the raw data. Their all assistance encouraged me to complete this study.

I send my deep thanks to my family and Muhammet Eren Aslan for their trust,

patience and support.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES ... xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS .. xviii

CHAPTER .. 1

1. INTRODUCTION ... 1

1.1 Importance of Defect Data and Process Enactment Information Analysis 2

1.2 Difficulty of Collecting Defect Data With Process Enactment 3

1.3 Aims of This Study .. 4

1.4 Approaches Used in This Study ... 5

1.5 Roadmap .. 6

2. BACKGROUND ... 7

2.1 Defect Prediction Basics .. 7

2.2 Quantitative Analysis Methods Utilized for Defect Prediction 11

2.2.1 Statistical Methods .. 11

2.2.1.1 Reliability Models .. 11

2.2.1.2 Hypothesis tests ... 12

2.2.1.3 Univariate analysis ... 13

2.2.1.4 Bivariate Analysis .. 14

2.2.1.5 Multivariate Analysis: Regression Models, PCA, DA, CA 15

Linear Regression Analysis ... 15

xi

Principal Component Analysis (PCA) ... 15

Discriminant Analysis (DA) .. 15

Correlation Analysis (CA) ... 16

2.2.2 Machine Learning Methods .. 16

2.2.2.1 K Nearest Neighbor (kNN) .. 16

2.2.2.2 C4.5 Decision Tree .. 17

2.2.2.3 Multilayer Perceptron (MLP) .. 18

2.2.2.4 Bayesian Belief Networks.. 19

2.2.2.5 Apriori .. 20

2.3 Defect Prediction Studies ... 20

2.3.1 Prediction Models without Process Data by Statistical Analysis Methods .. 20

2.3.2 Prediction Models without Process Data by Machine Learning Methods 21

2.3.3 Prediction Models with Process Data by Statistical Analysis Methods 23

2.3.4 Prediction Models with Process Data by Machine Learning Methods 24

2.4 Methods to Collect Process Enactment Data ... 26

3. DESIGN OF CASE STUDIES .. 29

3.1 Goal-Question-Metric (GQM) Tree Approach .. 32

3.2 Metric Usability Questionnaire (MUQ) ... 33

3.3 Data Collection .. 38

3.3.1 Defect and Product Size Data Collection.. 39

3.3.2 Process Enactment Data Collection .. 41

3.3.2.1 Process Execution Record (PER) Asset ... 42

3.3.2.2 Process Similarity Matrix (PSM) Asset ... 43

3.4 Data Cleaning and Preprocessing .. 45

3.5 Clustering According to Process Enactment Data Approach 46

3.6 Analysis.. 46

xii

4. CASE STUDIES .. 48

4.1 Case Study 1 (Project-1 Data) .. 48

4.1.1 Case Study 1A (Project-1) .. 48

4.1.2 Case Study 1B (Project-1) .. 51

4.1.3 Results Comparison for Case Study 1 (Project-1) .. 58

4.2 Case Study 2 (Project-2 Data) .. 62

4.2.1 Case Study 2A (Project-2) .. 62

4.2.2 Case Study 2B (Project-2) .. 65

4.2.3 Results Comparison for Case Study 2 (Project-2) .. 71

5. CONCLUSION AND FUTURE WORK .. 75

REFERENCES .. 80

APPENDICES ... 87

A. CASE STUDY PLAN .. 87

B. DETAILS OF CASE STUDY 1A .. 89

C. DETAILS OF CASE STUDY 1B .. 104

D. DETAILS OF CASE STUDY 2A .. 128

E. DETAILS OF CASE STUDY 2B .. 144

xiii

LIST OF TABLES

Table 3.1 GQM for This Study ... 33

Table 3.2 Defect and Product Related Metric Descriptions 41

Table 4.1 GQM for Case Study 1A .. 48

Table 4.2 Defect and Product Related Metric Descriptions for Case Study 1A 49

Table 4.3 GQM for Case Study 1B .. 52

Table 4.4 Process Enactment Metric Descriptions for Case Study 1B 55

Table 4.5 Process Attributes Patterns for Case Study 1B Clusters 56

Table 4.6 Results Comparison for Case Study 1 .. 60

Table 4.7 GQM for Case Study 2A .. 62

Table 4.8 Defect and Product Related Metric Descriptions for Case Study 2A 63

Table 4.9 GQM for Case Study 2B .. 65

Table 4.10 Process Enactment Metric Descriptions for Case Study 2B 68

Table 4.11 Process Attributes Patterns for Case Study 2B Clusters 69

Table 4.12 Results Comparison for Case Study 2 .. 72

Table A.1 Tasks of Study ... 88

Table A.2 Study Calendar .. 88

xiv

LIST OF FIGURES

Figure 3.1 Proposed Method .. 32

Figure 3.2 The Goal-Question-Metric Hierarchy [14] ... 33

Figure 3.3 Metric Usability Questionnaire and Rating for Basic Metrics 36

Figure 3.4 Metric Usability Questionnaire and Rating for Derived Metrics 38

Figure 3.5 Process Execution Record (PER) .. 42

Figure 3.6 Process Similarity Matrix (PSM) In Literature 43

Figure 3.7 Process Similarity Matrix (PSM) In This Study 44

Figure 4.1 PER for Case Study 1B ... 53

Figure 4.2 PSM for Case Study 1B .. 54

Figure 4.3 Clustered Metric Files for Case Study 1B .. 57

Figure 4.4 PER for Case Study 2B ... 66

Figure 4.5 PSM for Case Study 2B .. 67

Figure B.1 MUQ for “Source component” Basic Metric of Project-1 89

Figure B.2 MUQ for “Created Date” Basic Metric of Project-1 90

Figure B.3 MUQ for “Closed Date” Basic Metric of Project-1 91

Figure B.4 MUQ for “Test Type” Basic Metric of Project-1 92

Figure B.5 MUQ for “Product Version” Basic Metric of Project-1 93

Figure B.6 MUQ for “Product SLOC” Basic Metric of Project-1 94

Figure B.7 MUQ for “Product Complexity” Basic Metric of Project-1 95

Figure B.8 MUQ for “Reproducibility” Basic Metric of Project-1 96

Figure B.9 MUQ for “Project Phase” Basic Metric of Project-1 97

Figure B.10 MUQ for “Remaining Open Duration” Derived Metric of Project-1 98

Figure B.11 Weka View of Case Study 1A .. 99

Figure B.12 Multilayer Perceptron Results of Case Study 1A 100

Figure B.13 BayesNet Results of Case Study 1A .. 101

Figure B.14 Logistic Results of Case Study 1A ... 102

xv

Figure B.15 J48 Results of Case Study 1A .. 103

Figure C.1 SimpleKMeans Clustering of Case Study 1B 104

Figure C.2 Weka View of Case Study 1B Cluster 0 .. 105

Figure C.3 Multilayer Perceptron Results of Case Study 1B Cluster 0 106

Figure C.4 BayesNet Results of Case Study 1B Cluster 0 107

Figure C.5 Logistic Results of Case Study 1B Cluster 0 108

Figure C.6 J48 Results of Case Study 1B Cluster 0 ... 109

Figure C.7 Weka View Results of Case Study 1B Cluster 1................................ 110

Figure C.8 Multilayer Perceptron Results of Case Study 1B Cluster 1 111

Figure C.9 BayesNet Results of Case Study 1B Cluster 1 112

Figure C.10 Logistic Results of Case Study 1B Cluster 1 113

Figure C.11 J48 Results of Case Study 1B Cluster 1 ... 114

Figure C.12 Weka View of Case Study 1B Cluster 2 .. 115

Figure C.13 Multilayer Perceptron Results of Case Study 1B Cluster 2 116

Figure C.14 BayesNet Results of Case Study 1B Cluster 2 117

Figure C.15 Logistic Results of Case Study 1B Cluster 2 118

Figure C.16 J48 Results of Case Study 1B Cluster 2 ... 119

Figure C.17 Weka View of Case Study 1B Cluster 3 .. 120

Figure C.18 Weka View of Case Study 1B Cluster 4 .. 121

Figure C.19 Weka View of Case Study 1B Cluster 5 .. 122

Figure C.20 Weka View of Case Study 1B Cluster 6 .. 123

Figure C.21 Multilayer Perceptron Results of Case Study 1B Cluster 6 124

Figure C.22 BayesNet Results of Case Study 1B Cluster 6 125

Figure C.23 Logistic Results of Case Study 1B Cluster 6 126

Figure C.24 J48 Results of Case Study 1B Cluster 6 ... 127

Figure D.1 MUQ for “Detected SCU Name” Basic Metric of Project-2 128

Figure D.2 MUQ for “Source Component” Basic Metric of Project-2 129

Figure D.3 MUQ for “Created Date” Basic Metric of Project-2 130

Figure D.4 MUQ for “Closed Date” Basic Metric of Project-2 131

Figure D.5 MUQ for “Test Type” Basic Metric of Project-2............................... 132

Figure D.6 MUQ for “Product Version” Basic Metric of Project-2..................... 133

xvi

Figure D.7 MUQ for “Product SLOC” Basic Metric of Project-2 134

Figure D.8 MUQ for “Product Complexity” Basic Metric of Project-2 135

Figure D.9 MUQ for “Reproducibility” Basic Metric of Project-2 136

Figure D.10 MUQ for “Project Phase” Basic Metric of Project-2 137

Figure D.11 MUQ for “Remaining Open Duration” Derived Metric of Project-2

 .. 138

Figure D.12 Weka View of Case Study 2A ... 139

Figure D.13 Decision Table Results of Case Study 2A 140

Figure D.14 BayesNet Table Results of Case Study 2A 141

Figure D.15 SimpleLogistic Table Results of Case Study 2A 142

Figure D.16 J48 Results of Case Study 2A .. 143

Figure E.1 SimpleKMeans Clustering of Case Study 2B..................................... 144

Figure E.2 Weka View of Case Study 2B Cluster 0... 145

Figure E.3 DecisionTable Results of Case Study 2B Cluster 0 146

Figure E.4 BayesNet Results of Case Study 2B Cluster 0 147

Figure E.5 SimpleLogistic Results of Case Study 2B Cluster 0 148

Figure E.6 J48 Results of Case Study 2B Cluster 0 ... 149

Figure E.7 Weka View of Case Study 2B Cluster 1... 150

Figure E.8 DecisionTable Results of Case Study 2B Cluster 1 151

Figure E.9 BayesNet Results of Case Study 2B Cluster 1 152

Figure E.10 Simple Logistic Results of Case Study 2B Cluster 1 153

Figure E.11 J48 Results of Case Study 2B Cluster 1 ... 154

Figure E.12 Weka View of Case Study 2B Cluster 2... 155

Figure E.13 DecisionTable Results of Case Study 2B Cluster 2 156

Figure E.14 BayesNet Results of Case Study 2B Cluster 2 157

Figure E.15 SimpleLogistic Results of Case Study 2B Cluster 2 158

Figure E.16 J48 Results of Case Study 2B Cluster 2 ... 159

Figure E.17 Weka View of Case Study 2B Cluster 3... 160

Figure E.18 DecisionTable Results of Case Study 2B Cluster 3 161

Figure E.19 BayesNet Results of Case Study 2B Cluster 3 162

Figure E.20 SimpleLogistic Results of Case Study 2B Cluster 3 163

xvii

Figure E.21 J48 Results of Case Study 2B Cluster 3 ... 164

Figure E.22 Weka View of Case Study 2B Cluster 4... 165

Figure E.23 DecisionTable Results of Case Study 2B Cluster 4 166

Figure E.24 BayesNet Results of Case Study 2B Cluster 4 167

Figure E.25 SimpleLogistic Results of Case Study 2B Cluster 4 168

Figure E.26 J48 Results of Case Study 2B Cluster 4 ... 169

xviii

LIST OF ABBREVIATIONS

ACC: Accuracy

AUC: Area Under the ROC Curve

BBN: Bayesian Belief Networks

CA: Correlation Model

CMMI: Capability Maturity Model Integrated

DA: Discriminant Analysis

FPR: False Positive Rate

GM: Gokhale and Mullen

GQM: Goal-Question-Metric

ISO/IEC:International Organisation for Standardization and International

Electrotechnical Commission

kNN: k Nearest Neighbor

KLOC: Kilo Lines of Code

MAE: Mean Absolute Error

xix

MLP: Multilayer Perceptron

MMRE: Mean Magnitude of Relative Error

MUA: Metric Usability Attribute

MUF: Metric Usability Factor

MUQ: Metric Usability Questionnaire

ODC: Orthogonal Defect Classification

PAP: Process Attribute Pattern

PCA: Principal Component Analysis

PER: Process Execution Record

PREC: Precision

PSM: Process Similarity Matrix

RMSE: Root Mean Square Error

ROC: Receiver Operating Characteristic

RRSE: Root Relative Square Error

S: Schneidewind

xx

SCU: Software Configuration Unit

SLOC: Source Lines of Code

SVM: Support Vector Machines

TPR: True Positive Rate

1

CHAPTER 1

INTRODUCTION

As stated in Weinberg’s definition “Software quality is conformance to customer

requirements.”. Neverthless, software quality is a very crucial feature of a product

to gain acceptance from the customer. In this viewpoint, software quality needs

continuous monitoring and controlling through the software project. The

defectiveness of software is an important quality measure to interpret the status of

the product quality. Therefore, software defectiveness should be focus point of

researches and quality models. For example, process reference models such as

CMMI [1] proposes defect metrics for measurement and analysis activities to

achieve multiple process areas.

In this context, we first performed a case study for searching for analysis

techniques to understand product defectiveness and affecting factors in a small

organization [2]. We applied various statistical and machine learning analysis

methods to our product data. By doing this, we collected defect related and

product related metrics in different data sets. At the end, we presented our

inferences in three categories based on their confidence. According to our

evaluation findings, the statistical analysis used for product data results could be

considered as confident if supported by new studies. In addition, Apriori machine

learning analysis used for defect data results could also be considered as

confident, since we observed 90% “correctly classified instances” value in Weka

tool. In contrary to this, C4.5 decision tree and logistic regression machine

learning analyses used for defect data results had approximately 50% “incorrectly

classified instances” value.

2

We have argued as one of the reasons of this low accurateness rate, process

enactment information had not been used for analysis. The CMMI mentioned

above suggest after second maturity level the mapping between the product and

process data and also suggest to take into account this mapping for process

improvement.

Since obtaining process traces and combining them with defect data are not easy,

the analyses together with defect and process enactment data are not applied.

Machine learning techniques are commonly used for prediction purposes, whereas

process enactment data is slightly used. Our proposal is that machine learning

approach can interpret more accurate performance results when the process

enactment data is used together with product data.

To validate this proposal, we used a method for defect prediction by using

machine learning classification [3]. The method clusters the data by using defect

data with the context of defect management process before building the prediction

model. The data of a small software company, Simsoft, was used for validation.

This thesis explains the method in detail and provides its results from four case

studies in two different projects.

1.1 Importance of Defect Data and Process Enactment Information

Analysis

In all software projects correcting of detected software errors in an attentive and

timely manner is vital. If defect correction cannot be completed on time and as it

should be, it causes some risks such as giving poor quality products to the

customer and / or exceeding the project budget due to error correction labor costs

called as rework effort in literature. To minimize these risks, analysis of defect

data is required. Besides defect data investigation provides quality improvement

and prevents injection of new defects by application of preventive actions to the

quality [4]. CMMI’s Causal Analysis and Resolution support process area at

maturity level 5 suggests selecting defect data for cause analysis [1, 5]. Percentage

of defects removed, defect escape rates and number, and density of defects are

3

suggested to be used as process-performance attributes in CMMI’s Organizational

Process Performance process area at maturity level 4. Historical defect data is

suggested to be used for estimation of project planning parameters in CMMI’s

Integrated Project Management process area at maturity level 3. And finally,

defect density derived measure is suggested to be used to address quality

measurement objectives in CMMI’s Measurement and Analysis process area at

maturity level 2. On the other hand, percentage of defects is suggested to express

process performance objectives in ISO/IEC 15504’s performance management

attribute [6]. Using defect density is suggested as process measurement attribute in

ISO/IEC 15504’s process measurement attribute.

Since software is different from other engineering disciplines, the information

about executed software process during development constitutes importance for

the quality and defectiveness of output product. What is the difference from other

disciplines? Software production processes are not in a regular and static format as

in a fabric production. For software development there are many ways for the

production of process artifacts. And the results of applied processes show

differences in different environment circumstances. Because of these reasons,

evaluation of process knowledge with defect data might be so beneficial. In other

words, without knowledge about the processes executed during developing the

product, analyzing only defect data may not be sufficient to make decision and

take preventive action. Process reference models like CMMI and assessment

models like ISO 15504 address this issue over the concept of organizational

maturity and process capability, and recommend applying prediction models at

higher maturity/capability levels. But, we believe this should not be the only way

to use such models.

1.2 Difficulty of Collecting Defect Data With Process Enactment

In recent years software defect data analysis has been a common research area [7,

8, 9]. But analysis and interpretation of software development process data are

hard since software engineering is an area which is affected from multiple factors.

For example, in some prediction studies [7, 10], authors suffer from the difficulty

4

of collecting process-related data and taking into account all relevant evidences to

generate a prediction model.

In order to understand the context of the product development traces, the traces

throughout process practices must be recorded and the analysis of these tracks is

required. However, since the nature of software process is abstract and dynamic,

and there are too many variables which affect software process directly or

indirectly, the measurement of software process is not easy especially in emergent

contexts. This difficulty has supported the assessment insight by measuring the

performance of software process using the characteristics of the developed

product [11].

Since the process related data (e.g. the activities performed, the roles taken, the

experience of the process performers) is not stored in the same tools with defect

data, the accessibility to the product data and the mapping of process enactment

are difficult. The collection of data from a tool’s database is categorized as a third

degree data collection technique since collection by extracting data from database

is independent of real development time [12]. Since this situation causes some

issues in mapping product data into process data which will be analyzed to

understand the software development process, the most of the organizations can

not use these data for prediction models. The organizations which use models or

not, need guiding and methods about defectiveness evaluation and prediction.

1.3 Aims of This Study

The data of some process factors such as test type and project phase are stored in

the defect tracking tool databases and analyzed by companies [2]. But the data of

process enactment can not be provided in most of the cases. We aim to analyze

product data with process enactment and show the benefits, if any, of this way in

our study.

To do that we investigated the difference in machine learning prediction results

with process enactment data and without enacment data. We chose machine

learning analysis because of its pattern oriented nature. We believe that the

5

patterns between software processes executed during development and related

defect data from a product can be recognized with machine learning techniques.

1.4 Approaches Used in This Study

In this study, we intended to answer the questions; “Is process enactment data

beneficial for defect prediction?”, “How can we use process enactment data?” and

“Which approaches and analysis methods can our method support?”.

We used defect open duration metric as dependent variable in our analyses since

defect open duration metric could easily be calculated according to the created

date and closed date information of the defect obtained from the issue tracking

tool. That is to say, we set open duration attribute as class attribute in Weka Tool

[13] during machine learning classification operation.

To answer the questions, we first decided which indicators and metrics would be

useful for this study. Therefore, the Goal-Question-Metric (GQM) [14] method

was applied. The GQM goal was set as follows: to understand the effect of

process enactment on software product defectiveness.

We used data of two completed projects in an emergent organization. We grouped

defect data used in three categories.

1. Defect data detected during test activities: This data set was obtained from issue

tracking tool database.

2. Product version and product size data: This data was obtained from

configuration management tool and combined with the defect data. After

combination, we had one data set that shows which defect is detected in which

product version and how much size the product version has.

3. Process enactment data of defect management process: This data shows the

features of each execution of the defect management process. In other words,

inputs, outputs, performed process steps (activities) from the start to the end of the

process, personnel roles which work for the process, and tools

6

andtechniquesinformation for each detected defect in software during tests and

created in issue trackin tool is process enactment data of defect management

process. This data set was manually obtained by using Process Execution Record

(PER) and Process Similarity Matrix (PSM) assets.

PER (Process Execution Record) forms [16] was filled by interviewing with

process experts. PSM (Process Similarity Matrix) was filled by

manuallyreviewing issue tracking tool.

WEKA tool's [13] clustering facility (on cluster tab) was used to cluster the whole

dataset obtained by combination of two categorized datasets, and classification

facility (on classify tab) was used to conduct machine learning prediction.

We evaluated and compared the accuracy of the analysis results from the data sets

with process enactment and without process enactment in the case study A and

case study B separately.

1.5 Roadmap

The remainder of this thesis is organized as follows. Section two provides an

overview of studies about the techniques used for software defect analysis and

prediction, and explains the most known analysis methods. Section three gives the

organization of the case studies and their results. Section four discusses the effect

of process enactment in defect management process by comparing the

performance results of the case studies with process enactment data and without

process enactment data. Section five provides overall conclusions and future

work.

7

CHAPTER 2

BACKGROUND

Defect prediction models do not only predict how many latent defects the software

contains, but also in which parts of the software they are. In addition to that, they

give clues on how to improve the quality of software development processes such

as design and implementation. In other words, they aim to show project attributes

that are related to better quality or reliability.

According to process reference models defect prediction can be used as an

indicator of cause prevention. Therefore, the detection of cause and its place are

visualized for process stakeholders.

2.1 Defect Prediction Basics

A "mistake" or "fault" can be committed to the software at any stage during

development [15]. When it cannot be detected, it causes unintended work of the

software product.

Defect is a stage of the “mistake” cycle. In most cases defects cause fault and

failures but this is not a must.

Defects are crucial for the quality of the product since it shows the

nonconformance to the customer requirements [17, 18]. Less defective software is

more reliable and reliability is an attribute of quality.

8

Defect detection, correction and verification have cost in the project, because

some effort is spent to find, resolve and verify detected defects. These activities

are required for quality management. The cost of defect correction and re-testing

has positive relation with the latency of the detection [19]. In other words, how

much late the defect is detected, that much more defect correction and re-testing

cost is. Therefore, defect prevention and the analysis of remaining defects are two

important terms for software quality management.

For the defects, open duration metric is important because it gives information

about the cost of the defect and makes us understand the trend in process with

respect to time. Defect prevention is important to take actions before a flaw does

not occur. That not only decreases rework effort, but also establishes an improved

quality management system.

One of the defect prevention methods is defect prediction [5]. Defect prediction

provides estimating number, type of the defects and their place in the software. In

software development projects, planning of quality assurance and test activities,

personnel allocating and training, process improvement can be done according to

defect prediction results.

In this study we chose to answer our questions in a way that we try to predict

defect open duration by using it as a class attribute in machine learning

classification techniques for defect prevention.

The meanings of the terms mentioned in this study are below;

Case study: A research strategy, an empirical investigation technique that

investigates a phenomenon within its real-life context [20]. This research

technique is commonly used in software related studies.

Class attribute:Dependent variable in statistics that is used for classification, you

have to select one of your attributes manually before executing classification

9

analysis. Your data is classified according to your dependent variable and the tool

gives you a model to be used for the prediction purpose with its performance

evaluation values. Class attribute is called as classifier in some studies (i.e. [21]).

Defect:Software bug that causes an incorrect or unexpected result, or causes

product to behave in unintended ways.

Defect open duration: The period that elapses from the detection and recording

of the defect to the closure of it. It is in number of day unit.

Defect prediction: The analysis to forecast the behaviour of the defects in

software product in future by various quantitative methods.

Defect prevention:The approach that avoids the defects from injection to the

software. Defect prediction is only one of the activities that provide defect

prevention [5].

Failure:The inability of software that does not perform its required functions

within specified performance limits [18, 22].

Fault:An incorrect step, process, or data definition in a computer program which

causes the program to perform in an unintended or unanticipated manner [23].

Machine learning:A scientific data mining discipline that concerns with the

design and development of algorithms that allow computers to evolve behaviors

based on empirical data, such as from sensor data or databases [24]. Machine

learning aims to recognize patterns and learn. Then, make intelligent decisions

based on data after learning. For this purpose some part of whole data is separated

as training data and remaining data is kept for test.

Machine learning classification: The techniques that are called as supervised. A

classifier is identified for classification.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor

10

Machine learning clustering: The techniques that are called as unsupervised. A

classifier is not identified for clustering.

McCabe cyclomatic complexity:A software product complexity size measure

computed with the number of decision nodes in software product.

Metric: The quantitative indicator of the measurement. In software engineering

we can categorize the metrics in three classes: product metrics, process metrics

and project metrics [17]. Product metrics are directly measured from software

such as size, complexity and defect density. Process metrics are measure of

performance of software processes such as testing time, and reviewing time.

Project metrics give information about project characteristics such as earned

value, and number of skilled project personnel.

Nonconformance: Lack of meeting specified requirements.

Performance evaluation values: The values evaluated in order to determine the

accuracy and reliability of a technique.

Process: The series of activities to transform inputs to outputs. In software

engineering, processes constitute software development life-cycle.

Process Enactment Data:The workflow of activities that are performed during

process execution. The elements of the workflow are inputs, outputs, activities,

roles, and tools and techniques.

Source lines of code (SLOC):A measure that shows the lenght of the software

product which is computed by counting of the code lines.

Software configuration unit (SCU): The each part of the software product

identified in order to to provide management easiness.

11

Software reliability: The probability of successful operation ofa computer

program for a specified time in a specified environment.

Quality assurance: Systematic activities that are performed to determine whether

product meets customer requirements.

Test:The software quality assurance activity that evaluates by running the code

whether product meets customer requirements. This activity provides dynamic

verification and validation of the software product.

2.2 Quantitative Analysis Methods Utilized for Defect Prediction

Both statistical and machine learning methods are used for the purpose of defect

analysis and prediction. In addition to these studies there are reviews that assess

the features and the technical characteristics of defect related measurement studies

in literature. Before giving information about these previously performed studies,

the analysis method commonly used in these researches are given in this section.

2.2.1 Statistical Methods

Before the discovery of data mining techniques, statistical methods are commonly

used in software measurement and analysis like every other science. However, it

is thought that statistical methods are insufficient to resolve complex patterns in

high number of datasets. Common statistical methods used for defect analysis and

prediction are given in the subsections below.

2.2.1.1 Reliability Models

Software reliability is a commonly used attribute of software quality for defect

prediction. Software reliability models are based on defect data and the time

between defect detected and resolved. They might be categorized in two types.

One is called Rayleigh model which depicts the software development process

12

beginning from project initiation to the end of maintenance phase. Second is

called software reliability growth models and given with Jelinski-Moranda,

Littlewood, Goel-Okumoto, Musa-Okumoto and S models in literature [17]. These

second type models are based on exponential distribution approach.

 Reliability models deal with several assumptions given below;

1. There are N unknown software faults at the start of testing.

2. Failures occur randomly (times between failures are independent).

3. All faults contribute equally to cause a failure.

4. Fix time is negligible.

5. Fix is perfect for each failure; there are no new faults introduced during

collection.

6. Testing intervals are independent of each other.

7. Testing during intervals is reasonably homogeneous.

8. Numbers of defects detected during nonoverlapping intervals are independent

of each other.

9. Test process is effective.

The accuracy of method is assessed according to the good-of-fit test results[25].

 After data collection, below steps are performed.

Step 1: A model is selected.

Step 2: The parameters of the model are estimated.

Step 3: Fitted model is obtained by substituting the estimates of the parameters

into the chosen model.

Step 4: A goodness-of-fit test is performed.

2.2.1.2 Hypothesis tests

The statistical method compares distribution characteristics such as mean and

variance of two samples. Besides, whether there is the impact of an attribute on

another attribute are searched with this analysis. According to the characteristics

13

of our data set, t-test, Z-test, Chi-square, ANOVA tests are some of the applied

statistical techniques [26].

 During analysis, below steps are performed [26];

Step 1: Null hypothesis and alternative hypotheses are stated.

Step 2: Significance level is set.

Step 3: The probability value are obtained by using a statistical package program.

Step 4: The probability value is compared with significance level. If probability

value is higher that significance level, null hypothesis is accepted.

2.2.1.3 Univariate analysis

With this analysis technique, defect classification and defect count understanding

is easy. By analyzing representations, defect progress in future can be predicted,

decision making are performed, and defect prevention is achieved [27].

Univariate analysis is carried out with the description of a single variable and its

attributes of the applicable unit of analysis. If the variable defect data was the

subject of the analysis, the researcher would look at how many subjects fall into a

given defect data attribute categories. This analysis provides understanding with

examined attribute of an object. Therefore, it is used for descriptive purposes.

Variables could be either categorical or numerical.

A basic way of presenting univariate data is to create a frequency table which

involves presenting the number of attributes of the variable studied for each case

observed in the sample. Furthermore, graphical representation can be used to

visualize data. Some of the mostly used graph types for defect data are Pareto

Diagram, Histogram, Scatter Diagram and Control Chart.

Moreover, some quantitative measures called central tendency (mean, mode,

median and dispersion) range, variance, max, min, quartiles, and standard

deviation give information about the distribution of the attribute.

http://en.wikipedia.org/wiki/Variable_(mathematics)#Applied_statistics
http://en.wikipedia.org/wiki/Unit_of_analysis
http://en.wikipedia.org/wiki/Sample_(statistics)

14

2.2.1.4 Bivariate Analysis

Bivariate analysis involves the analysis of two variables in order to determine the

empirical relationship between them [27].

Bivariate analysis can be helpful in testing

simple hypotheses of association and causality (checking to what extent it

becomes easier to know and predict a value for the dependent variable if we know

a case's value on the independent variable).Whereas the purpose of univariate

analysis is describing, the purpose of bivariate analysis is explaining. It looks for

the correlations, comparisons, relationships and causes between two variables.

 During bivariate analysis, the steps given below are applied [28];

Step 1: The nature of the relationship whether the values of the independent

variables relate to the values of the dependent variable or not is defined.

Step 2: The type and direction, if applicable, of the relationship are identified.

Step 3: It is determined if the relationship is statistically significant and

generalizable to the population.

Step 4: The strength of the relationship is identified, i.e. the degree to which the

values of the independent variable explain the variation in the dependent variable.

According to the measurement scales of our variables, statistical techniques that

should be used are given below to understand the relationships between pairs of

variables in a data set. When we called two variables as X and Y;

 If measurement scales of X and Y are interval and interval, and they are

independently distributed, Pearson’s correlation is used.

 If measurement scales of X and Y are ordinal and ordinal, and they are

independently distributed, Kendall’s Tau Spearman’s Rho Wilcoxon Signed Test

or Mann-Whittney Test are performed.

http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Hypotheses
http://en.wikipedia.org/wiki/Association_(statistics)
http://en.wikipedia.org/wiki/Causality
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Independent_variable

15

 If measurement scales of X and Y are nominal and nominal, and they are

independently distributed, Chi- square Lambda Test is performed.

 If measurement scales of X and Y are interval and interval, and one of them is

dependent, simple linear regression is used.

 If measurement scales of X and Y are nominal and interval, and Y is

independent, regression with dummy

variables and one way analysis of variance are used.

2.2.1.5 Multivariate Analysis: Regression Models, PCA, DA, CA

Multivariate analysis involves observation and analysis of more than two

statistical variables at a time.

 Several mostly used multivariate analysis approaches are given below.

Linear Regression Analysis

In multivariate linear regression, several independent variables are used to predict

one dependent variable. The relationship between dependent variable and

independent variables are investigated [29].

Principal Component Analysis (PCA)

PCA decomposes a data table with correlated measurements into a new set of

uncorrelated variables [30]. The importance of each component is expressed by

the variance (i.e., eigenvalue) of its projections or by the proportion of the

variance explained.

Discriminant Analysis (DA)

DA is used to predicting a nominal variable. The prediction of dependent variable

is performed by looking for the relationships with the independent variables [29].

http://en.wikipedia.org/wiki/Variable_(research)

16

Correlation Analysis (CA)

Correlation analysis combines dependent variables to find pairs of new variables

which have the highest correlation. However, new variables, even when highly

correlated, do not necessarily explain a large portion of the variance of the original

tables. This makes the interpretation of the new variable sometimes difficult [29].

2.2.2 Machine Learning Methods

Commonly used machine learning methods for defect prediction are given below.

2.2.2.1 K Nearest Neighbor (kNN)

There is no explicit training phase. K nearest neighbor algorithm searches for

minimum distance from the query instance to the training samples to determine

the K-nearest neighbors [31].

There is no assumption with data distribution [32]. kNN assumes that the data is

in a feature space and the data points are in a metric space. The data can be scalars

or possibly even multidimensional vectors. Since the points are in feature space,

they have a notion of distance. This need not necessarily be Euclidean distance

although it is the one commonly used.

 During analysis, the steps given below are applied [33];

Step 1: Euclidean or Mahalanobis distance from target plot to those that were

sampled is computed.

Step 2: Samples taking for account calculated distances are ordered.

Step 3: Optimal k-nearest neighbor according to performance value done by cross

validation technique is heuristically chosen.

http://en.wikipedia.org/wiki/Mahalanobis_distance

17

Step 4: An inverse distance weighted average with the k-nearest multivariate

neighbors is calculated.

Its advantages arerobustness to noisy training data and effectiveness if the training

data is large.

Its disadvantages areneed to determine value of parameter k (number of nearest

neighbors), distance based learning is not clear which type of distance to use and

which attribute to use to produce the best results, computation cost is quite high

because of the need to compute distance of each query instance to all training

samples.

2.2.2.2 C4.5 Decision Tree

Given a set S of cases, C4.5 first grows an initial tree using the divide-and-

conquer algorithm as follows [34]:

• If all the cases in S belong to the same class or S is small, the tree is a leaf

labeled withthe most frequent class in S.

• Otherwise, choose a test based on a single attribute with two or more outcomes.

Makethis test the root of the tree with one branch for each outcome of the test,

partition S intocorresponding subsets S1, S2, . . . according to the outcome for

each case, and apply thesame procedure recursively to each subset.

1. Check for base cases for each attribute a,

2. Find the normalized information gain (difference in entropy) from splitting

on a,

3. Let a_best be the attribute with the highest normalized information gain,

4. Create a decision node that splits on a_best,

5. Recurse on the sublists obtained by splitting on a_best, and add those nodes as

children of node.

Its advantages are creating decision trees need no tuning parameters [35], no

assumptions about distribution of attribute values or independence of attributes,

http://people.revoledu.com/kardi/tutorial/Similarity/index.html

18

no need for transformation of variables (any monotonic transformation of the

variable will result in the same trees), the method automatically finds a subset of

the features that are relevant to the classification, decision trees are robust to

outliers as the choices of a split depends on the ordering of feature values and not

on the absolute magnitudes of these values, and it can easily be extended to handle

samples with missing values.

Its disadvantages are the need to construct a good classifier is proportional to the

number of regions, complex view, and not a solution for all problems.

2.2.2.3 Multilayer Perceptron (MLP)

A learning rule is applied in order to improve the value of the MLP weights over a

training set T according to a given criterion function [36].

This network has aninput layer(on the left) with three neurons, onehidden layer(in

the middle) with three neurons and anoutput layer(on the right) with three

neurons. There is one neuron in the input layer for each predictor variable. In the

case of categorical variables,N-1 neurons are used to represent the N categories of

the variable.

Step 1: The number of hidden layers to use in the network is selected.

Step 2: The number of neurons to use in each hidden layer is decided.

Step 3: A globally optimal solution that avoids local minima is found.

Step 4: It is converged to an optimal solution in a reasonable period of time.

Step 5: The neural network is validated to test for overfitting.

 Its advantages are generalization and fault tolerance.

Its disadvantages are being computationally expensive learning process, giving no

guaranteed solution, not scaling up well from small research systems to larger real

systems.

19

2.2.2.4 Bayesian Belief Networks

A Bayesian belief network is a model that represents the possible states of a given

domain. A Bayesian belief network also contains probabilistic relationships

among some of the states of the domain [37].

 Its steps are;

1. Gather information regarding the way in which the topic under discussion is

influenced by conducting interviews

2. Identify the factors (i.e. nodes) that influence the topic, by analyzing and coding

the interviews

3. Define the variables by identifying the different possible states (state-space) of

the variables through coding and direct conversation with experts

4. Characterize the relationships between the different nodes using the idioms

through analysis and coding of the interviews

5. Control the number of conditional probabilities that has to be elicited using the

definitional/synthesis idiom [38]

6. Evaluate the Bayesian belief network, possibly leading to a repetition of (a

number of) the first 5 steps

7. Identify and define the conditional probability tables that define the

relationships in the Bayesian belief network

8. Fill in the conditional probability tables, in order to define the relationships in

the Bayesian belief network

9. Evaluate the Bayesian belief network, possibly leading to a repetition of (a

number of) earlier steps

Its advantages are providing knowledge in the form of causal structures [39],

understandable and extensible network, used easily with missing data.

Its disadvantages are fixed sized hypothesis space [40], underfit or overfit of the

data that may not contain any good classifiers if prior knowledge is wrong.

20

2.2.2.5 Apriori

 Apriori mines for associations among items in a large database [41].

 Its steps are;

Step 1: It mines a set of execution traces where each has a support value greater

than the minimum support threshold [42].

Step 2: It extracts the traces which are a superset of all generator traces.

Step 3: It filters the non-generator traces away, leaving behind a set of generator

traces.

Its advantages are usage of large itemset property, easily parallelization, easiness

of implementation.

Its disadvantages are assuming transaction database is memory resident, requiring

many database scans.

2.3 Defect Prediction Studies

We categorized studies in five categories as using process enactment data or not,

using statistical methods or machine learning ones, using assets to collect process

enactment data.

2.3.1 Prediction Models without Process Data by Statistical Analysis Methods

Koru and Tian [43] have validated the relationship between complexity and defect

count metrics by using statistical hypothesis tests. They have investigated in their

study how high complexity affects defect count.

Salman [44] has presented a measurement framework for component oriented

software systems as his PhD thesis. He has generated statistical regression models

to predict size and effort metrics. The independent variables of his models are

21

component oriented metrics such as number of components, number of

connectors, and number of interfaces.

Sivrioğlu and Tarhan [2] have prepared a case study by analyzing same dataset

with both statistical and machine learning techniques but dataset has not included

process enactment data. The dataset is the data of a completed software project. At

the end of the study they have suggested to use contextual data for more accurate

results.

Manzoor [45] has tried code metric to estimate defect fix time. But the estimation

results have not been found promising. Manzoor has explained the reasons of this

inaccurate estimation. He has given 14 factors which affect badly parametric

estimation methods performed by using size metrics such as SLOC and FP

(function points). His factors are pointed out to the dependence of analysis results

to development environment and applied processes.

Ohlsson et al [46] have built prediction models by using Principal Component

Analysis (PCA) and Discriminant Analysis (DA) methods. They have used

product design metrics for prediction. And they have divided software modules

into two categories called as fault-prone and not-fault-prone.

This type studies ignore process related data while analyzing software defect and

product data, and their generated models have no process knowledge scraps.

Because development environment has high impact on these models,they are

specific to the examined project.

2.3.2 Prediction Models without Process Data by Machine Learning Methods

Boetticher [47] has suggested nearest neighbor machine learning method to group

data. He has used product related metric data to predict the class in terms of its

defectiveness status in the software.

22

Sivrioğlu and Tarhan [2] have analyzed defect data with both statistical and

machine learning methods. They have mentioned that the results of machine

learning techniques are more accurate than the ones of statistical techniques,

because machine learning gives better results when number of data is high than

statistical hypothesis tests when sufficient data is supplied.

Sandhu et al [48] have recommended genetic algorithm technique to predict fault

proneness of software modules. He has used requirements and code metrics called

as product related metrics for his research.

Çatal and Diri [49] have reviewed software defect prediction studies in a

systematical way. They have separated the studies to categories before review.

The review states that the studies with using class-level, process-level and

component-level measures are not sufficient. Besides, machine learning methods

are suggested because they give better results than statistical analysis and expert

view methods.

Ahsan et al [50] have conducted a study to estimate bug fix effort. R (Pearson

correlation coefficient), MAE (Mean Absolute Error), RMSE (Root Mean Square

Error), MMRE (Mean Magnitude of Relative Error) and RRSE (Root Relative

Square Error) performance values of five machine learning methods are compared

at the end of the study. Because the defect fix effort data are not available, defect

fix days metric is used as independent variable for prediction. Product metrics

such as number of functions, number of changed operators, SLOC and complexity

are included in analysis as input attributes.

When number of data is high, machine learning techniques can give promising

results for prediction. But without process enactment obtained, models can not be

used for other projects or other development teams of same project.

23

2.3.3 Prediction Models with Process Data by Statistical Analysis Methods

It is slightly possible to find studies by using process data in literature. Jalote et al

[51] have explained a defect prediction approach by performing quantitative

quality management and statistical process charts.

Wahyudin et al [9] have presented a defect prediction model by using statistical

hypothesis with a combination of product and process measures.

Dhiauddin [8] has generated a prediction model for testing phase in his master

thesis. With this model he discovers the strong factors that contribute to the

number of testing defects by using statistical methods such as regression analysis.

Gokhale and Mullen [52] have hypothesized a Laplace Transform of the

Lognormal distribution model with defect repair times data in day unit. At the

same time, they give several factors which are considered affecting defect repair

time and causing a lognormal distribution in repair rates because of the factors’

multiplicativeness.

Schneidewind [53] has explained the delay between fault detection and fault

correction times with exponential distribution. To obtain this statistical empirical

result, MSE (Mean Square Error) values of three operational increments have

observed in a project. Failure rate, test time parameters are used as input attributes

in model.

As mentioned in introduction section, process measures can not be used in most

cases because of the collection difficulty. However, the studies which includes

process related metrics and analyzed product metrics together with process

metrics gave more reliable results for software projects.

If we use process enactment by taking a step forward of process related metrics,

the models are going to give more reliable results and predictions can be used for

similar projects or development teams with similar environment.

24

2.3.4 Prediction Models with Process Data by Machine Learning Methods

Fenton and Neil [54] have evaluated defect oriented software metrics and

statistical models. They have specified that reliability can not be computed by

using defect density because the defects which cause not working of software (its

fault) can not be parsed and user oriented defects cannot be chosen. They have

stated some inconsistent results that while there is positive correlation between

number of defects and other metrics such as software size, in some studies there

are negative regression. Regression models provide information only about the

past and it does not indicate a prediction model for new data. To analyze average

values in data does not explain raw data; therefore it does not give realistic results.

The relationship between size and defect is so complex that simple models are

insufficient to present these complicated relations. They suggest probabilistic

methods such as Bayesian Belief Network (BBN) to present complicated relations

between defect and the factors which affect it.

Leey et al [7] have developed a prediction model with micro interaction metrics

which are supposed as process-related metrics. In this study, they have made

comparisons between the accuracy results of the model of code metrics, the model

of history metrics, and the combination of them. They use machine learning

classification and regression techniques.

Fenton et al [55] have suggested Bayesian Belief Networks machine learning

technique as prediction model. Process data is given for this model, again.

He et al [56] have generated models with J48 (C4.5), Naïve Bayes and SVM

(Support Vector Machines) by using same metrics with previously mentioned two

studies. The performance of the models has been evaluated by MAE, MMRE and

comparison between minimum MAE and median values of data groups.

25

Song et al [57] have suggested association rule mining for defect correction effort

prediction. Apriori accuracy values such as mean, median and standard deviation

have compared with the ones of PART, C4.5 and Naïve Bayes approaches. Defect

type metric has been used as input data. Also, false negative rate, false positive

rate performance values have been reviewed for evaluation.

Zeng and Rine [58] have estimated defect fix effort by using dissimilarity matrix

and Self Organizing Maps (Kohonen Networks) which is a type of Neural

Networks method. With this data mining technique the data have been clustered

for prediction. Model performance has been evaluated by magnitude of relative

error (MRE) values of 6 grouped data sets. The input attributes of the model are

defect fix time in hour unit, defect severity, the activity during which the defect is

detected, system mode, defect category and SLOC (source lines of code) changed.

Defect severity, detection activity, system mode and defect category attributes can

be considered as contextual metrics.

Thaw et al [59] have performed a similar study with Zeng and Rine. They have

concluded their study that prediction model gives accurate results for the projects

which have same software development processes like product line projects.

Menzies et al [60] have presented a case study that compares defect analysis

results between machine learning and manual analysis used human expertise.

ODC (Orthogonal Defect Classification) technique has been used. They have

found that manual domain expertise gives more accurate results than treatment

learning. But manual analysis is insufficient when we have a complex and large

dataset. They have specified that the application of both manual and machine

learning analysis gives the most accurate results.

Weiss et al [61] have used the defects life-time phases gone through issue tracking

tool as the attributes for defect fix effort prediction. They compared two types of

Nearest Neighbor approaches called as with (α-kNN) and without thresholds

(kNN). They used text mining for grouping the data before kNN analysis.

26

Hassouna and Tahvildari [62] have improved Weiss’ study by adding 1. data

enrichment to infuse additional issue information into the similarity-scoring

procedure, 2. majority voting to exploit many of the similar historical issues

repeating effort values, 3. adaptive threshold to automatically adjust the similarity

threshold to ensure that they obtain only the most similar matches and 4. binary

clustering to form clusters when the similarity scores are very low phases.

Hewett and Kijsanayothin [63] have penned down a comprehensive study

regarding defect repair time prediction. Firstly, they have applied five different

empirical machine learning approaches to two individual data sets with and

without attribute selection. AUC (Area Under the ROC Curve), TPR (True

Positive Rate, Recall, Sensitivity, Hit Rate), PREC (Precision), FPR (False

Positive Rate, False Alarm Rate), ACC (Accuracy) and RMSE (Root Mean

Square Error) values have been evaluated for performance. Secondly, they have

applied three analytical models: S (Schneidewind) model [53], GM (Gokhale and

Mullen) [52] model, their own proposed model and compared the results. Defect

detected testing phase, defect severity, defect state and defect state update dates

have been used as input attributes for prediction models.

Menzies et al [64] have pointed the importance of the models of similar regions

than global ones in empirical studies. Two tools called WHERE to cluster

algorithm that divides the data and WHICH learner to find treatments in clusters

used to compare the treatments learned from global or local contexts.

It is seen that researchers’ insight has been changing as clustering data before

modeling. Therefore, we can obtain more local (specialized) results and accurate

models for prediction. We will provide this clustering by using process enactment

data in our study before applying machine learning techniques. The performance

results of clustered dataset and not clustered will be compared.

2.4 Methods to Collect Process Enactment Data

Tarhan and Demirörs [65, 66] have emphasized the importance of process

differences in software projects. They have defined and applied some assets such

27

as Metric Usability Questionaire (MUQ), Process Execution Record (PER), and

Process Similarity Matrix (PSM) for data collection.They used MUQ for the

decision of usable metrics, PER and PSM for collection and verification of

process enactment data.

It is seen that researchers claim the benefits of process measures, machine

learning methods, some data collection and grouping methods for defect

prediction models one by one. However, none of them use several of these

methods together for empirical studies. Combining defect data with process

enactment and generating a model from combined data by using above

quantitative measurement techniques, we believe, is a promising research topic.

2.5 Validation Methods in Machine Learning and Weka Tool

Machine learning validation methods provide assessing the performance of the

models by estimating their accuracies. In other words, it can be evaluated how

well the mining models perform against real data.

The descriptions of commonly used validation methods are given below.

Training and Testing Data Sets

In this method, the data set are separated into two sets for training and test.

Mostly, training data set is bigger than the portion of the test set. After a model

has been processed by using the training set, the model is tested by making

predictions against the test set. Since, the data in the testing set already contains

known values for the attribute that you want to predict, it is easy to determine

whether the model's guesses are correct [72]. The splitting 66% of the data set for

training set and remaining for test is a commonly used technique.

Cross Validation

The original data set is randomly partitioned into k sets. Of the k sets, a single set

is retained as the validation data for testing the model, and the remaining k − 1

sets are used as training data. The cross-validation process is then repeated k times

28

(the folds), with each of the k sets used exactly once as the validation data.

The k results from the folds then can be averaged (or otherwise combined) to

produce a single estimation. The advantage of this method over repeated random

sub-sampling is that all observations are used for both training and validation, and

each observation is used for validation exactly once [72]. 10-fold cross-validation

is commonly used type of cross validation.

In Weka tool, the models are validated by selecting one of the three options given

below;

 Using all data set file classified as training set,

 Using another supplied data set file from classified data set as test data,

 k-fold cross validation,

 66% percentage split.

At the end of classification and clustering executions some performance values

are given as output in Weka. These performance values are “correctly classified

instances”, “incorrectly classified instances”, kappa statistic, mean absolute error,

root mean squared error, relative absolute error, root relative squared error, TPR,

FPR, recall, precision, F-measure and ROC area.

29

CHAPTER3

DESIGN OF CASE STUDIES

As seen from literature search, previous studies generally do not include process

metrics. Even though number of them is low, process metrics which measure test

performance, defect resolution timeliness and reliability are analyzed in several

studies. But, in this study we do not focus on process metrics directly. Instead of

this, we assume that process enactment data give detailed information about

process tracks. Therefore, we can investigate the advantages of process related

data usage for analysis and prediction. Our motivations to choose process

enactment to understand and predict defect data are detailed below;

1. Since the nature of the metric is subsequent, process metrics can be collected

only after application of the process. They are performance values. In other words

you cannot collect test effectiveness metric, before running any test. This situation

causes late feedback in most cases. It means that we are late to prevention; we can

only apply corrective action items. However, enactment data can be collected

before process execution according to our planning, by taking into consideration

previous similar project process applications or company process assets.

2. Process performance metric results are specific to product and project, because

they are affected from many factors. These factors can be skills of the project

staff, customer experience in domain area, programming language, number of

personnel, suitable tool usage etc. On the other hand, process enactment data is

more usable to generalize the analysis results. We can use the analysis results of

one project for the prediction of other projects that apply same process attribute

30

patterns.

3. Process metrics cannot be collected and recorded automatically by tools. We

need manual calculations after process implementations even though we gather

data from databases. But enactment data that is used by this study had been

recorded in real time while process was being implemented.

Our base questions waiting to be answered in our study are “Is process enactment

data beneficial for defect prediction?”, “How can we use process enactment data?”

and “Which approaches and analysis methods can our method support?”.

We applied case study method from empirical investigation techniques. There are

four types of case studies according to objective aspect [12]: exploratory,

descriptive, explanatory, or improving. Other categorization related with case

study attributes are: 1) Single-case vs. multiple-case, and 2) Holistic vs.

embedded.

In these case studies we have four cases and we do not have multiple units within

a case since we can say that our case study design is compatible with multiple-

case and holistic one. The purpose is descriptive in Case Study 1A and Case Study

2A since we give machine learning analysis results with the only defect data

metrics’ analysis results as is. On the other hand, the purposes of Case Study 1B

and Case Study 2B are “exploratory” since we investigate what will happen when

we use process enactmentmetrics together with defect metric. All four case studies

are performed for an improving purpose. We intend to improve machine learning

defect prediction aspect.

According to data collection aspect there are three categories of methods [12]:

Direct (e.g. interviews), indirect (e.g. tool instrumentation) and independent (e.g.

documentation analysis).

We used all of the three data collection approaches. Fully structured interviews

were performed with process experts by filling Process Executions Records

31

(PER). Issue tracking tool and configuration management tool were used as third

degree archival data. The data had already stored in tools while the process was

being executed. The quality of the data has improved by the support from expert

opinions.

We analyzed data quantitatively with machine learning classification techniques.

We interpreted results on comparative basis. We compared the validity results of

the project data with process enactmentwith the one without process enactment.

Also, the performance values which show classification model prediction

accuracy in Weka output were evaluated for validation.

 The variations between four case studies are listed below;

Case Study 1A: Project-1 data was collected based on defined metrics. We

ignored process enactmentdata in this case study concept.

Case Study 1B: Project-1 data wascollected based on defined metrics. We took

into account process enactmentdata in this case study concept and we included it

in the analysis.

Case Study 2A: Project-2 data wascollected based on defined metrics. We

ignored process enactmentdata in this case study.

Case Study 2B: Project-2 data wascollected based on defined metrics. We took

into account process enactmentdata in this case study and we included it inthe

analysis.

 Our proposed method consists of the sequential steps below(Figure 3.1);

32

Apply GQM and
Determine on

Metrics

Fill MUQ and
Evaluate Usability of

Metric Data

GQM Tree

MUQ Forms

Collect Data
Collect Defect
and Product
Related Data

Data Spreadsheet

Collect Process
Context Data

Data Spreadsheet

PER, PSM, Expert
Opinion

Data Cleaning and
Preprocessing

Cluster Data

Issue Tracking Tool,
Configuration

Management Tool

Prediction Method
Started

WEKA Tool

Spreadsheets of
Data Clusters

Separate Clustered
Data

Classify Data For
Prediction WEKA Tool

Use Generated
Prediction Models

Figure 3.1 Proposed Method

3.1 Goal-Question-Metric (GQM) Tree Approach

GQM [14] approach proposes a top-down measurement definition. The approach

states that a goal-based measurement way provides opportunity to the

organizations for specifying themselves and their project’s goals, tracing the goals

to the questions that ask what they should wonder for that goal and finally

specifying the interpretation of metrics collected for those questions.

33

Figure 3.2 The Goal-Question-Metric Hierarchy [14]

In this study before analysis phase, to make analyses in terms of our goals, Goal-

Question-Metric (GQM) method was applied. Firstly, our aims wereset; secondly

the questionsweredefined for each goal; thirdly to answer the question, related

metrics and analysis methods werespecified (Table 3.1).

Table 3.1 GQM for This Study

GOAL

QUESTION

NO QUESTION

ANALYSIS

METHOD

DERIVED

METRIC

BASIC

METRIC

NO BASIC METRIC

CASE STUDY

NO

To

understand if

there is effect

of process

enactment on

software

product

defectiveness.

3.1

How much

impact has

process

enactment on

defect open

duration

prediction?

Bayesnet,

Logistic,

C4.5 Tree,

Multilayer

Perceptron

Machine

Learning

Techniques

Defect

Data: open

duration

(closed

date-created

date)

3.1.1

Defect and Product

Data: detected

module name, closed

date, created date,

detected test type,

product version,

product SLOC,

product complexity,

reproducibility,

detected project phase

Case Study 1A

(Project-1),

Case Study 2A

(Project-2)

Defect

Data: open

duration

(closed

date-created

date)

3.1.2

Defectand Product

Data: detected

module name, closed

date, created date,

detected test type,

product version,

product SLOC,

product complexity,

reproducibility,

detected project phase

Process Enactment

Data: defect

management process

attributes

Case Study 1B

(Project-1),

Case Study 2B

(Project-2)

3.2 Metric Usability Questionnaire (MUQ)

MUQ is a form filled according to metric usability attributes [16]. Each form is

filled for one metric. The questions and ratings are different for basic metrics

(Figure 3.3) and derived metrics (Figure 3.4). Rating is quantitatively calculated

according to metric usability factors (MUF) by dividing “Yes” answers to the all

34

number of questions. Obtained percentage value is qualitatively categorized

according to the rules below.

 If the percentage value of factor is between %86-100, MUF is qualitatively

categorized as fully statisfied (F).

 If the percentage value of factor is between %51-85, MUF is qualitatively

categorized as largely statisfied (L).

 If the percentage value of factor is between %16-50, MUF is qualitatively

categorized as partially statisfied (P).

 If the percentage value of factor is between %16-50, MUF is qualitatively

categorized as not statisfied (N).

In rating phase, metric usability attributes (MUA) are ordered sequential to their

criticality: 1) data metric identity, 2) data existence, 3) data verifiability, and 4)

data dependability. If the regarding values of MUA-1 and MUA-2 are F and F; and

MUA-3 and MUA-4 are F or L, the basic metric is “usable”.

35

 Please rate each attribute in four
scales, based on answers to
questions as indicators:

Metric
Name:

F: Indicators of the attribute are fully
satisfied (%86-100)

Conceptual
Definition:

L: Indicators of the attribute are largely
satisfied (%51-85)

Assessed
On:

P: Indicators of the attribute are
partially satisfied (%16-50)

Assessed
By:

N: Indicators of the attribute are not
satisfied (%0-15)

Attributes Answers Rating Expected
Answers

 Indicators

Measure Identity MUF-1 F

 Q1 Which entity does the measure measure?

 Q2 Which attribute of the entity does the measure measure?

 Q3 What is the scale of the measurement data? (nominal,
ordinal, interval, ratio, absolute)

 Ratio,
Absolute

 Q4 What is the unit of the measurement data?

 Q5 What is the type of the measurement data? (integer, real,
etc.)

 Q6 What is the range of the measurement data?

Data Existence MUF-2 F

 Q7 Is measurement data existent? Available >
20

 Q8 What is the amount of overall observations?

 Q9 What is the amount of missing data points?

 Q10 Are data points missing in periods? (If yes, please state
observation numbers for missing periods)

 Q11 Is measurement data time sequenced? (If no, please
state how measurement data is sequenced)

Data Verifiability MUF-3 F

 Q12 When is measurement data recorded in the process? (at
start, middle, end, later, etc.)

 Q13 Is all measurement data recorded at the same place in
the process? (at start, middle, end, later, etc.)

 Yes

 Q14 Who is responsible for recording measurement data?

 Q15 Is all measurement data recorded by the responsible
body?

 Yes

 Q16 How is measurement data recorded? (on a form, report,
tool, etc.)

 Q17 Is all measurement data recorded the same way? (on a
form, report, tool, etc.)

 Yes

 Q18 Where is measurement data stored? (in a file, database,
etc.)

 Q19 Is all measurement data stored in the same place? (in a
file, database, etc.)

 Yes

Data Dependability MUF-4 F

 Q20 What is the frequency of generating measurement data?
(asynchronously, daily, weekly, monthly, etc.)

 Q21 What is the frequency of recording measurement data?
(asynchronously, daily, weekly, monthly, etc.)

 Q22 What is the frequency of storing measurement data?
(asynchronously, daily, weekly, monthly, etc.)

 Q23 Are the frequencies for data generation, recording, and
storing different?

 No

 Q24 Is measurement data recorded precisely? Yes

 Q25 Is measurement data collected for a specific purpose? Yes

 Q26 Is the purpose of measurement data collection known by
process performers?

 Yes

 Q27 Is measurement data analyzed and reported? Yes

 Q28 Is measurement data analysis results communicated to
process performers?

 Yes

 Q29 Is measurement data analysis results communicated to
management?

 Yes

 Q30 Is measurement data analysis results used as a basis for
decision making?

 Yes

Data
Normalizability

 Q31 Can measurement data be normalized by parameters or
measures? (If yes, please specify them)

Data Integrability

 Q32 Is measurement data integrable at project level?

 Q33 Is measurement data integrable at organization level?

(a) Metric Usability Questionnaire

36

Metric Name:

Conceptual Definition:

Assessed On:

Assessed By:

Metric Usability Attributes Rating Expected Rating

Metric Identity (MUA-1) F F

Data Existence (MUA-2) F F

Data Verifiability (MUA-3) F L or F

Data Dependability (MUA-4) F L or F

Metric Usability Result F L or F (Usable) -- Not Usable otherwise

(b) Metric Usability Rating

Figure 3.3 Metric Usability Questionnaire and Rating for Basic Metrics

The difference of the derived metric rating from basic metric one is that MUF

3&4 values of the basic metrics should be F or L for a derived metric to be an

“usable” derived metric.

37

 Please rate each attribute in four
scales, based on answers to
questions as indicators:

Metric
Name:

F: Indicators of the attribute are fully
satisfied (%86-100)

Conceptual
Definition:

L: Indicators of the attribute are largely
satisfied (%51-85)

Assessed
On:

P: Indicators of the attribute are partially
satisfied (%16-50)

Assessed
By:

N: Indicators of the attribute are not
satisfied (%0-15)

Attributes Answers Rating Expected
Answers

 Indicators

Measure Identity MUF-1 F

 Q1 Which entity does the measure measure?

 Q2 Which attribute of the entity does the measure
measure?

 Q3 What is the scale of the measurement data? (nominal,
ordinal, interval, ratio, absolute)

 Ratio, Absolute

 Q4 What is the unit of the measurement data?

 Q5 What is the type of the measurement data? (integer,

real, etc.)

 Q6 What is the range of the measurement data?

Data Existence MUF-2 F

 Q7 Is measurement data existent? Available > 20

 Q8 What is the amount of overall observations?

 Q9 What is the amount of missing data points?

 Q10 Are data points missing in periods? (If yes, please
state observation numbers for missing periods)

 Q11 Is measurement data time sequenced? (If no, please
state how measurement data is sequenced)

Data Verifiability MUF-3 F

 Q12 When is measurement data recorded in the process?
(at start, middle, end, later, etc.)

 Q13 Is all measurement data recorded at the same place in
the process? (at start, middle, end, later, etc.)

 Yes

 Q14 Who is responsible for recording measurement data?

 Q15 Is all measurement data recorded by the responsible
body?

 Yes

 Q16 How is measurement data recorded? (on a form,
report, tool, etc.)

 Q17 Is all measurement data recorded the same way? (on
a form, report, tool, etc.)

 Yes

 Q18 Where is measurement data stored? (in a file,
database, etc.)

 Q19 Is all measurement data stored in the same place? (in
a file, database, etc.)

 Yes

Data
Dependability

 MUF-4 F

 Q20 What is the frequency of generating measurement
data? (asynchronously, daily, weekly, monthly, etc.)

 Q21 What is the frequency of recording measurement
data? (asynchronously, daily, weekly, monthly, etc.)

 Q22 What is the frequency of storing measurement data?
(asynchronously, daily, weekly, monthly, etc.)

 Q23 Are the frequencies for data generation, recording, and
storing different?

 No

 Q24 Is measurement data recorded precisely? Yes

 Q25 Is measurement data collected for a specific purpose? Yes

 Q26 Is the purpose of measurement data collection known
by process performers?

 Yes

 Q27 Is measurement data analyzed and reported? Yes

 Q28 Is measurement data analysis results communicated
to process performers?

 Yes

 Q29 Is measurement data analysis results communicated
to management?

 Yes

 Q30 Is measurement data analysis results used as a basis
for decision making?

 Yes

Data
Normalizability

 Q31 Can measurement data be normalized by parameters
or measures? (If yes, please specify them)

Data Integrability

 Q32 Is measurement data integrable at project level?

 Q33 Is measurement data integrable at organization level?

(a) Metric Usability Questionnaire

38

Metric Usability Attributes Rating Expected Rating

Metric Identity (MUA-1) F F

Data Existence (MUA-2) F F

Data Verifiability (MUA-3) F L or F

Data Dependability (MUA-4) F L or F

MUF-3&4 for basic metric-1 F L or F

MUF-3&4 for basic metric-2 F L or F

MUF-3&4 for basic metric-n F L or F

Metric Usability Result F L or F (Usable) -- Not Usable otherwise

(b) Metric Usability Rating

Figure 3.4 Metric Usability Questionnaire and Rating for Derived Metrics

In this study after defining the metrics, metric usability analysis for each basic

metric has been performed to determine if the metric is applicable and available

for our study. MUQ form was filled for each basic metric and the derived metric

“defect open duration”. During the examination of filled MUQ forms it was

determined not to use number of requirements based on product version metric.

Because “number of requirements” metric was collected on monthly basis instead

of product version basis, this period was not applicable for our analysis goal.

3.3 Data Collection

In this study the two projects’ data of Simsoft company is used. Simsoft Computer

Technologies Co., Ltd. is a software development company established in 2006. It

is especially experienced in simulation systems. Simsoft is conducting business as

a university - industry Cooperation Company in Technology Development Center

at Middle East Technical University Technopolis in METU Campus. It has 30

personnel, including Software Engineers, Modeling and Graphics Designers, and

Quality Assurance Supporters. The company has developed software projects for

a large number of institutes especially for defense industry by now. The

organization has already ISO 9001 [67] certificate and executes documented

process assets in compatible with CMMI Level 3. The company has a specific

measurement process, in this concept obeying policies for analyzing the monthly

data and reporting the results to high level management.

39

 The projects whose defect data is used are listed below;

Project-1: The software product developed in the project has 2 Software

Configuration Units (SCU) with 4 module types, and 6 personnel worked for 7

months project duration. At the end of the development, C++ source lines of code

are 23 KLOC, number of requirements is 955, and the number of defects detected

during tests is 296. This project’s development phase was completed in January

2012.

Project-2: The product has 14 Software Configuration Units (SCU), and 15

personnel worked for 8 months project duration. At the end of the development

C# source lines of code is 188 KLOC, number of requirements is 1492, and the

number of defects detected during tests is 425. This project’s development phase

was completed in June 2011.

3.3.1 Defect and Product Size Data Collection

Since software testing is a must and a part of development, resolution of detected

defects is a necessity. With this aspect for the tracking of defects in software, a

tracking tool is used by lots of institutions contemporarily.With these tools a

detected defect during any quality activity can be recorded and assigned to related

personnel for resolution. After assignment; monitoring, verifying and closing

activities are tracked over these tools. In addition to the tracking of defect status,

the detailed information regarding the defect such as software module, product

version where the defect is detected, test type and source project phase during

which the defect is detected can be accessed at any time since defect information

is stored with its history in the database. These tools store descriptions of the

defects detected on software, detection dates and resolution status of defects.

While using issue tracking tool for the monitoring of the status of the defects

detected in software product, in order to perform the updates on product in a

controlled manner, organizations need configuration management tool.

Configuration management tools provide a common environment to the

40

developers to track the modifications in product. These tools do not allow multiple

personnel to modify the product at the same time. The personnel can access whole

update information beginning from first creation of the product in the tool. With

the aid of configuration management tool, the important information about

software product can be obtained historically since it stores all product versions in

a historical manner and anyone can access versioned product at any time.

The defect related basic metrics’ data;detected software configuration unit (SCU)

name, created date, closed date, test type, product version and reproducibility

were extractedfrom issue tracking tool database. Besides, the defect related

derived metric called as“defect open duration” was manually calculated as the

difference between the closed and the created dates.

The project phase process metric data is manually collected by filling “Project

Phase” column in Excel sheet while directly interviewing with the process expert.

The product size basic metrics’ data; product version size (logical source lines of

code) and complexity (McCabe cyclomatic complexity), however, are obtained

indirectly from the tool. We say “indirectly” because these metrics are calculated

with LOCMetrics tool [71] by using the product version where the defect is

detected from the information recorded in the tool. In other words, to collect

SLOC and McCabe cyclomaticcomplexity, configuration management tool was

used together with the product version information in issue tracking tool, and the

total SLOC was counted by LOCMetrics and recorded manually. Metric

descriptions are given in Table 3.2.

41

Table 3.2 Defect and Product Related Metric Descriptions

Metrics Metric Description

Measurement

Scale

Remaining

Open Duration

The time starting with the creation of the

defect and finishing with the closure of the

defect. Calculated by the difference of defect

closed date and defect created date. Unit is

number of days. Absolute

Detected SCU

Name

The name of the software configuration unit

(SCU) where the defect is detected. Entered by

developer to the issue tracking tool. Nominal

Created Date

The date when the defect is detected. Filled by

the issue tracking tool automatically when the

tester record the defect. Interval

Closed Date

The date when the defect is closed. Filled by

the issue tracking tool automatically when the

project manager change the status of the defect

as "Closed". Interval

Test Type

The name of test type during which the defect

is detected. Entered by tester to the issue

tracking tool. Nominal

Product

Version

The version of the software product which the

defect is detected. Entered by tester to the

issue tracking tool. Ordinal

SLOC

(Source Lines

of Code)

The size of the product version where the

defect is detected. Collected from

configuration tool by using Locmetrics tool. Absolute

Complexity

The McCabe complexity of the product

version where the defcet is detected. Collected

from configuration tool by using Locmetrics

tool. Absolute

Reproducibility
The repetability of the defect detected. Entered

by tester to the issue tracking tool. Nominal

Project Phase
The project phase where the defect detected.

Collected manually by domain expert. Nominal

 The raw data of regarding metrics are gathered in an Excel sheet.

3.3.2 Process EnactmentData Collection

Process Execution Record (PER) and Process Similarity Matrix (PSM) assets are

utilized to gather process traces [16]. First, you decide on which process data is

needed for your analysis. Then, PER is filled out for your regarding process and

process attributes such as inputs, outputs, activities and tools. This knowledge

42

isthen entered to PSM Excel sheet for each process executions. For example,

process execution might be each product version release for a configuration

management process.

3.3.2.1 Process Execution Record (PER) Asset

PER is a form in Word file format (Figure 3.5) used to define all actual process

values in process attributes basis. Inputs, outputs, roles, tools and techniques all

are process attributes and with the help of PER form, all alternative values of them

for process executions are recorded. Prepared list in PER are used to fill PSM.

Figure 3.5 Process Execution Record (PER)

In this study the collection of defect management process enactment data was

aimed in order to capture the traces of defect management process and combine it

43

with defect related process data and product data for prediction analysis. PER

forms were collected with expert opinions by interviewing.

3.3.2.2 Process Similarity Matrix (PSM) Asset

PSM is a spreadsheet in Excel file format (Figure 3.6) used to gather process

attribute values for all process executions. Horizontally there are process attributes

specified in PER before, vertically there are numbered process executions. The

cells in matrix is filled by entering a circle sign if the process attribute is

applicable for regarding process execution. After PSM is completed, the

differences in columns are examined and clustering is manually performed.

 Process Executions

Process
Attributes

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

PE
8

PE
9

PE
10

PE
11

PE
12

PE
13

PE
14

PE
15

PE
16

PE
17

PE
18

PE
19

PE
20

PE
21

PE
22

…
….

1
1.1 <Input 1> o o

…
…

1.2 <Input 2> o o
…
…

2
2.1 <Output 1> o o

…
…

2.2 <Output 2> o
…
…

3

3.1 <Activity 1> o o
…
…

3.2 <Activity 2> o o
…
…

3.3 <Activity 3> o o
…
…

3.4 <Activity 4> o
…
…

4
4.1 <Role 1> o o

…
…

4.2 <Role 2> o o
…
…

5

5.1 <Tools and
Techniques 1> o o

…
…

5.2 <Tools and
Techniques 2> o

…
…

Figure 3.6 Process Similarity Matrix (PSM) In Literature

In this study we used PSM a little bit different from the utilization in literature

(Figure 3.7). We transposed the matrix vectors. The process executions were

horizontally collected since this structure was more convenient to combine with

collected defect and product data. In other words, this way provided

44

straightforwardness since also in the spreadsheet that consisted of the defect and

product data, the metric attributes were in column vector against which regarding

process executions exist. Besides, we entered “1” or “0” instead of “o” or “ ”.

Thus, “1” and “0” scaling could be identified in numeric measurement scale by

Weka tool. Process enactment data identified as numeric could be clustered by

machine learning clustering technique. PSM sheets were collected from issue

tracking tool by extracting historical defect management process data such as

defect status updates and the roles of the personnel who had updated the defect

status.

 Process Attributes

 1 Inputs 2 Outputs 3 Activities 4 Roles
5 Tools and
Techniques

Proce
ss

Execu
tions

1.1
<Input

1>

1.2
<Input

2>

2.1
<Output

1>

2.2
<Output

2>

3.1
<Activity

1>

3.2
<Activity

2>

3.3
<Activity

3>

3.4
<Activi
ty 4>

4.1
<Role

1>

4.2
<Role

2>

5.1
<Tools

and
Techniqu

es 1>

5.2
<Tools

and
Techniqu

es 2>

PE1 1 1 1 0 1 1 1 0 1 1 1 0

PE2 1 1 1 1 1 1 1 1 1 1 1 1

PE3 …… …… …… …… …… …… …… …… …… …… …… ……

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

PE17

PE18

PE19

PE20

PE21

PE22

…….

Figure 3.7 Process Similarity Matrix (PSM) In This Study

45

3.4 Data Cleaning and Preprocessing

In this phase the redundant data and attributes whether there are in data set are

removed from data set to avoid from overfitting and multicollinearity during

machine learning analysis techniques. The redundant data might be the rows that

have missing values or attribute columns that give same information. Removing of

redundant attributes is called as data reduction. Some approaches such as Principal

Component Analysis (PCA) can be used for data reduction too [68]. By using

PCA, redundant attributes are composed and attribute number decreases by

providing new attributes, andat the end more meaningful and explanatory

attributes can be obtained. Otherwise overfitting [69] problem is common in

machine learning techniques.

In numeric scale, attribute data should be discretized before analysis to obtain

more meaningful analysis results. Some machine learning classification

approaches such as C4.5 decision tree does not accept a numeric scaled attribute

as class attribute for classification analysis. There are several techniques used for

discretization such as equal-width or equal-frequency [68] in Weka. Applying

clustering before discretization is another way to determine discretized bin

number. Because of these reasons data cleaning and preprocessing phase is

important for machine learning techniques.

Since in this study we needed only data in “Defect” category for prediction model,

the issues recorded as “Change” were removed from data set.

All defects detected during test activities are recorded to issue tracking tool

although all defects detected during review activities are not stored in tool.

Therefore, the detected defects except during test activities were removed from

data set. Only defect data detected during tests was taken into account after data

cleaning.

We had to discretize defect open duration attribute to set as class attribute in

machine learning classification. We discretized this attribute by using equal-width

46

method before (i.e. 0-5, 5-10, 10-15). Before discretization operation, we clustered

open duration data by using K-Means with Euclidean distance technique to

display how many clusters would be better to contain. Screenshots of analysis

views are provided in Appendix-C and Appendix-E.

3.5 Clustering According to Process EnactmentData Approach

In machine learning if the user has no idea about data set, s/he should use

unsupervised methods for grouping of data. Since s/he does not know which

attribute can be considered as independent variable to set as class attribute. One

example of unsupervised methods is clustering. In clustering method, the user do

not have to set an attribute as class attribute.

In this study the process enactment data was examined in Weka and by clustering,

similar process attribute columns were removed. With Weka tool the row data

regarding process executions that had same process attributes was separated in

different clusters.SimpleKMeans approach was used and the difference between

process executions was obtained. According to cluster number automatically

given by Weka, the separate Excel sheets were manually prepared for each cluster.

Clustering according to process enactment approach was applied only in case

studies 1B and 2B since they were the only case studies that contain process

enactment data for analysis. Screenshots of analysis views are provided in

Appendix-C and Appendix-E.

3.6 Analysis

When evaluated with the presence of high volume data stored in software

engineering tools, it has been observed that data mining applications over the

software data are being increased especially in recent years [12].

Machine learning classification approaches are utilized for the purposes of

generating prediction models. Mostly used techniques are Bayesian Belief

Networks (BBN), Multilayer Perceptron, Logistics Regression and Decision

Trees. Despite the fact that there are a lot number of divergent studies related with

47

using machine learning techniques for building prediction models, there is not any

model technique defined as the best prediction approach or any way to apply in

sequential manner described as the best method. Therefore, the studies in

literature can be successful only by comparing their selected techniques among

themselves and assuming the one that has the most accurate results as the best

model.

Weka gives performance evaluation values for model validation. In addition, there

are other validation methods such as using cross-validation or separating the data

into training and test data sets [68].

In this study we chose defect open duration metric as dependent variable for

classification analysis since this metric was directly related with defect

management process and product quality status.

Bayesnet, Multilayer Perceptron, Logistic and C4.5 Tree machine learning

analysis approaches [68] were performed by keeping defect open duration metric

as class attribute (dependent variable). By selecting these approaches for analysis,

we paid attention to apply machine learning techniques from different categories.

48

CHAPTER4

CASE STUDIES

4.1 Case Study 1 (Project-1 Data)

Case Study 1A was conducted with the data of Project-1 (for the characteristics of

Project-1 please refer to Section 3.3). In this case study firstly, only defect and

product data were used for analysis. After case study 1A had been completed, we

performed case study 1B with applying same analysis approaches but this time we

used both defect and product data, and process enactmentdata of Project-1.

4.1.1 Case Study 1A (Project-1)

GQM Tree was prepared as shown in Table 4.1 after the data fields which the

basic metrics were tracing to our goal in issue tracking tool database had been

examined. The metric descriptions are provided in Table 4.2.

Table 4.1 GQM for Case Study 1A

GOAL

QUESTION

NO QUESTION

ANALYSIS

METHOD

DERIVED

METRIC

BASIC

METRIC

NO BASIC METRIC

To

understand if

there is effect

of enactment

context on

software

product

defectiveness.

4.1

What is software

product

defectiveness

prediction accuracy

without using

process enactment

data?

Bayesnet, Logistic,

C4.5 Tree,

Multilayer

Perceptron

Machine Learning

Techniques

Defect Data:

open duration

(closed date-

created date)

4.1.1

Defect and Product Data:

source component, closed

date, created date, detected

test type, product version,

product SLOC, product

complexity, reproducibility,

project phase

49

Table 4.2 Defectand Product Related Metric Descriptions for Case Study 1A

Metrics Metric Description

Measurement

Scale

Remaining Open

Duration

The time starting with the creation of the

defect and finishing with the closure of the

defect. Calculated by the difference of

defect closed date and defect created date.

Unit is number of days. Absolute

Source Component

The component name of the defect detected.

Component name can be component-A,

component-B, component-C, component-D

or component-E. Filled by the issue

tracking tool automatically when the tester

record the defect. Nominal

Created Date

The date when the defect is detected. Filled

by the issue tracking tool automatically

when the tester record the defect. Interval

Closed Date

The date when the defect is closed. Filled

by the issue tracking tool automatically

when the project manager change the status

of the defect as "Closed". Interval

Test Type

The name of test type during which the

defect is detected. Entered by tester to the

issue tracking tool. Nominal

Product Version

The version of the software product which

the defect is detected. Entered by tester to

the issue tracking tool. Ordinal

SLOC

(Source Lines of

Code)

The size of the product version where the

defect is detected. Collected from

configuration tool by using Locmetrics tool. Absolute

Complexity

The McCabe complexity of the product

version where the defect is detected.

Collected from configuration tool by using

Locmetrics tool. Absolute

Reproducibility
The repeatability of the defect detected.

Entered by tester to the issue tracking tool. Nominal

Project Phase

The project phase where the defect

detected. Collected manually by domain

expert. Nominal

We filled MUQ shown in Figure 3.3 and 3.4 for basic and derived metrics (filled

questionnaires are provided in Appendix-B). Afterrating results, we had idea

about the usability of the metric. According to MUQ results, all basic metrics and

50

derived metrics of Project-1 were classified as “partially usable”. Since MUA-1 is

N, MUA-2 and MUA-3 are F, and MUA-4 is P.

Detected project phase data manually collected by using project’s archival data

such as project meeting minutes, and expert opinions. Source component, closed

date, created date, test type, product version and reproducibility metrics’ data had

already been stored in issue tracking tool. These data directly extracted from tool

database. Source lines of code (SLOC) and complexity metrics’ data are

calculated by LocMetrics and manually entered into spreadsheet that includes

defect data. Open duration metric data was calculated in the one column of the

spreadsheet. All defect and product data were recorded in an Excel file

(Appendix-B).

Data Excel file converted to .csv file format to be analyzed in Weka.

Open duration attribute had to be discretized, in other words the continuous scale

of this attribute had to be transformed to discrete scale to identify as class attribute

(classifier). Before discretization operation, we clustered open duration data with

K-Means technique to display how many clusters it contains. After trials with 3, 4,

5 and 6 number of clusters, we observed that the 5-clustered data set denotes the

most frequency equivalent within clusters than others. Therefore, we discretized

open duration data to five equal-width clusters as “0-27”, “27-54”, “54-81”, “81-

108”, and “108-135” days. Screen views of the operation implemented in Weka

are provided in Appendix-B.

After we transformed class attribute to nominal scale by discretization, we used

Weka classification techniques by choosing defect open duration attribute as

dependent attribute (class attribute). We applied Multilayer Perceptron, Bayesian

Belief Networks, Logistic Regression and C4.5 Decision Tree (J48) machine

learning techniques. We used 10-folds validation technique because of its high

accurateness rate. Screen views of the operation implemented in Weka are

provided in Appendix-B.

51

Findings from the study:

We observed that 296 data points are sufficient to obtain confident prediction

results. Since Project-1 is newly completed and all personnel who had developed

the project software still exist in company, expert opinions increased the reliability

of the data and results.

Correctly classification performance values of the generated models are given

below. The other performance values of the models are provided in Appendix-B.

Multilayer perceptron gave the best performance values compared with other

machine learning approaches.

 Multilayer perceptron machine learning technique validated with 10-folds gives

95% correctly classified instances value.

 Bayesian networks machine learning technique validated with 10-folds gives

85% correctly classified instances value.

 Logistic machine learning technique validated with 10-folds gives 82% correctly

classified instances value.

 J48 decision tree machine learning technique validated with 10-folds gives 92%

correctly classified instances value.

To complete this case study, we spent 5 person-days. The effort includes applying

the approach, performing the analyses, and interpreting the results. If the product

size and complexity metrics had previously been collected in the same Excel sheet

with defect data and project phase metric had been recorded in real time during

creating defect in issue tracking tool, spent effort for this case study could have

been lower than now. The complete set of Weka outputs are provided in

Appendix-B.

4.1.2 Case Study 1B (Project-1)

GQM Tree was prepared shown in Table 4.3.

52

Table 4.3 GQM for Case Study 1B

GOAL

QUESTION

NO QUESTION

ANALYSIS

METHOD

DERIVED

METRIC

BASIC

METRIC

NO BASIC METRIC

To

understand if

there is effect

of process

enactment on

software

product

defectiveness.

4.1

What is software

product defectiveness

prediction accuracy

with using process

enactment data?

Bayesnet, Logistic,

C4.5 Tree,

Multilayer

Perceptron

Machine Learning

Techniques

Defect Data:

open

duration

(closed date-

created date)

4.1.2

Defect and Product Data:

source component, closed date,

created date, detected test type,

product version, product

SLOC, product complexity,

reproducibility, project phase

Process Enactment Data:

defect management process

attributes

We filled out PER to identify all alternative process attributes of the process

executions (shown in Figure 3.5). PER form was filled by interviewing with

Configuration Management Responsible personnel of the company. Defect

management process is performed by issue tracking tool and with the monitoring

and control of Configuration Management Responsible personnel in company.

53

Figure 4.1 PER for Case Study 1B

After completing PER form, same process attributes were entered into PSM

columns and process execution values were filled in PSM shown in Figure 3.7 for

each defect. Process attributes were given with abbreviations starting with “dm”

phrase, which means “defect management”, in PSM in order to ease reading of

data file when opened in Weka. Because of place constraint, only 21 of the 296

data points could be shown in Figure 4.2.

54

 Process Attributes

 1 Inputs

2
Outp
uts 3 Activities 4 Roles

5 Tools and
Techniques

1.1
<In
put
1>

1.2
<In
put
2>

2.1
<Outp
ut 1>

3.1
<Acti
vity
1>

3.2
<Acti
vity
2>

3.3
<Acti
vity
3>

3.4
<Acti
vity
4>

3.5
<Acti
vity
5>

4.1
<R
ole
1>

4.2
<R
ole
2>

4.3
<R
ole
3>

4.4
<R
ole
4>

4.5
<R
ole
5>

5.1
<Tools

and
Techni
ques

1>

5.2
<Tools

and
Techni
ques

2>

5.3
<Tools

and
Techni
ques

3>

Proce
ss

Execu
tions

Def
ect
No

dmI
1

dmI
2 dmO1

dmA
1

dmA
2

dmA
3

dmA
4

dmA
5

dm
R1

dm
R2

dm
R3

dm
R4

dm
R5 dmT1 dmT2 dmT3

PE1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE2 2 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1

PE3 3 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE4 4 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE5 5 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1

PE6 6 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE7 7 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE8 8 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE9 9 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1

PE10 10 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE11 11 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE12 12 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1

PE13 13 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE14 14 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE15 15 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE16 16 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1

PE17 17 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE18 18 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE19 19 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE20 20 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE21 21 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

PE22 22 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1

……. 23 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1

Figure 4.2 PSM for Case Study 1B

To prevent multicollinearity during the analysis in Weka, we should remove

redundant process attributes, if exists, from spreadsheet. When we examined

PSM, we observed that dmA1, dmA5, dmR1, dmR3 and dmR5 had displayed

same behaviors. In other words, assigning personnel and closing defect activities

had been implemented for all 296 process executions, and project manager,

developer and tester personnel had performed their roles in all 296 process

executions. Since dmR3 had alone fulfilled the characteristics (differences among

executions) of these process attributes, we kept only dmR3 from these

55

sixattributes for the analysis. Additionally, dmI1 and dmI2 do not give any

information for analysis. Since, they do not differ in values among executions. In

other words, since process input called “defect” was only input category that we

had taken into account for our study, we had ignored the process input execution

data categorized as “change” request. Therefore, we do not include dmI2 for our

analyses. After data cleaning, we had an Excel file that consists of dmO1, dmA2,

dmA3, dmA4, dmR2, dmR3 and dmR4 process attributes described in Figure 4.1.

Table 4.4 Process Enactment Metric Descriptions for Case Study 1B

Metrics Metric Description

Measurement

Scale

dmO1
New software version is the output of defect

management process. Nominal

dmA2

Developer response is one of the activities of defect

management process. It means that developer has

resolved the defect. Nominal

dmA3

Not verified is one of the activities of defect

management process. It means that tester has tested

resolved defect but can not verified for second time. Nominal

dmA4

Defect verification is one of the activities of defect

management process. It means that tester has tested

resolved defect and verified. Nominal

dmR2

Configuration manager personnel is one of the roles

of defect management process. This personnel is

responsible of configuration control of software

product versions. Nominal

dmR3

Developer personnel is one of the roles of defect

management process. This personnel is responsible

of develop software product and fix the defects. Nominal

dmR4

Graphic designer is one of the roles of defect

management process. This personnel is responsible

of developing graphics of software product and fix

the defects. Nominal

We combined collected defect, product and process enactment data in an Excel

file spreadsheet.

We used K-Means and Euclidean Distance clustering technique and clustered the

data. We obtained seven clusters which were called as c0, c1, c2, c3, c4, c5 and c6

56

in the rest of the case study. The differences of clusters are provided in Table 4.5.

Implemented clustering steps are provided in Appendix-C.

Table 4.5 Process Attributes Patterns for Case Study 1B Clusters

Cluster Name c0

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 1 1 0 1 1 1 0

PAP2 1 1 1 1 1 1 0

Cluster Name c1

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 1 1 0 1 1 0 1

PAP2 1 1 1 1 1 0 1

PAP3 1 1 1 1 0 0 1

PAP4 0 0 1 1 1 0 1

Cluster Name c2

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 1 1 0 1 0 1 0

Cluster Name c3

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 1 1 0 1 1 0 0

Cluster Name c4

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 1 1 1 1 1 0 0

Cluster Name c5

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 0 1 0 0 0 1 0

Cluster Name c6

 2 Outputs 3 Activities 4 Roles

Process
Attributes

Pattern (PAP)

2.1 <Output
1>

dmO1

3.2 <Activity
2>

dmA2

3.3 <Activity
3>

dmA3

3.4 <Activity
4>

dmA4

4.2 <Role
2>

dmR2

4.3 <Role
3>

dmR3

4.4 <Role
4>

dmR4

PAP1 0 0 0 0 0 1 0

PAP2 0 0 1 0 0 1 0

57

We separated data Excel sheet to clusters and prepared a separate .csv file for each

cluster. At the end we obtained the files shown in Figure 4.3. Each of these files

included defect, product and process enactment metrics of the related defects.

Figure 4.3 Clustered Metric Files for Case Study 1B

After clustering, we applied Multilayer Perceptron, Bayesian Belief Networks,

Logistic Regression and C4.5 Decision Tree (J48) machine learning techniques

for each clusterseparately. During these analyses, we identified open duration as

class attribute. Screen views of the operation implemented in Weka are provided

in Appendix-C.

Findings from the study:

We observed that the history data stored by issue tracking tool is beneficial to

collect process enactment data. We collected process enactment data by firstly

filling PER to identify process attributes. These process attributes can be

identified easier by reviewing history data in tool database since all process

activity alternatives are stored with their dates and the personnel who perform the

activity. For example, when any personnel updates the defect status as “verified”,

the tool constitutes a record that “Defect status was updated by <personnel name>

on <date>.” in database. This process history data is used to fill out PSM for each

defect record, in other words for each process execution.

Correctly classification performance values of the generated models for cluster-0

are given below. The other performance values of the models and the clusters are

58

provided in Appendix-C. Bayesian networks gave the best performance values

compared with other machine learning approaches.

 Multilayer perceptron machine learning technique validated with 10-folds gives

96% correctly classified instances value for cluster 0.

 Bayesian networks machine learning technique validated with 10-folds gives

97% correctly classified instances value for cluster 0.

 Logistic machine learning technique validated with 10-folds gives 95% correctly

classified instances value for cluster 0.

 J48 decision tree machine learning technique validated with 10-folds gives 96%

correctly classified instances value for cluster 0.

Since clusters 3, 4 and 5 include low number of data, we could not apply machine

learning techniques to them. If the cluster number is decreased or we have more

data points, this issue can be solved.

To complete this case study, we spent 10 person-days. The effort includes

applying the approach, performing the analyses, and interpreting the results. If the

process enactmentdata had previously been collected or the process history data

could automatically be extracted by a query from issue tracking tool, spent effort

for this case study could have been lower than now. In other words, the most

important reason of high spent effort is that we have collected process enactment

data by entering each of 296 defects in tool and recording the history data to Excel

sheet. The complete set of Weka outputs are provided in Appendix-C.

4.1.3 Results Comparison for Case Study 1 (Project-1)

According to Table 4.5, the characteristics of clusters can be described as follows

in terms of process attribute patterns;

 Cluster 0 includes the metrics of process executions through which an updated

product version is obtained as output, defect resolution and defect verification

activities are implemented, and configuration manager and developer perform

their roles. But, modeling and graphics designer does not perform his role.

59

 Cluster 1 includes the metrics of process executions through which defect

verification activity is implemented, and modeling and graphics designer

perform his role. But, developer does not perform his role.

 Cluster 2 includes the metrics of process executions through which an updated

product version is obtained as output, defect resolution and defect verification

activities are implemented, and developer performs hisrole. But, configuration

manager and modeling and graphics designer do not perform their roles.

 Cluster 3 includes the metrics of process executions through which an updated

product version is obtained as output, defect resolution and defect verification

activities are implemented, and configuration manager performs his role. But,

developer and modeling and graphics designer do not perform their roles.

 Cluster 4 includes the metrics of process executions through which an updated

product version is obtained as output, defect resolution, not verified for second

time and defect verification activities are implemented, and configuration

manager performs his role. But, developer and modeling and graphics designer

do not perform their roles.

 Cluster 5 includes the metrics of process executions through which defect

resolution activity is implemented, and developer performs his role. But,

configuration manager and modeling and graphics designer do not perform their

roles.

 Cluster 6 includes the metrics of process executions through which no activities

documented in PER are implemented, and only developer performs his role. In

only one of the 425 executions not verified for second time activity is

implemented. It means that in one defect management process execution the

defect in resolved status could not be verified during second test repetition by

test specialist.

We observed that generally the analysis results ofclustered data sets with process

enactmentare more accurate than data set without process enactmentas shown in

Table 4.6.

60

Table 4.6 Results Comparison for Case Study 1

Number
of
instances
(data
points) Data set Method

Correctly
Classified
Instances

Incorrectly
Classified
Instances

Kappa
statistic

Mean
absolute
error

Root mean
squared
error

Relative
absolute
error

112

Cluster 0
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron 96,43% 3,57% 94,86% 1,70% 10,37% 6,06%

Bayesnet 97,32% 2,68% 96,16% 1,40% 10,45% 4,98%

Logistic 94,64% 5,36% 92,28% 2,14% 14,64% 7,63%

J48 95,54% 4,46% 93,55% 2,15% 11,47% 7,64%

71

Cluster 1
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron 84,51% 15,49% 79,06% 7,35% 24,39% 61,41%

Bayesnet 80,28% 19,72% 73,61% 8,31% 27,57% 69,87%

Logistic 81,69% 18,31% 75,58% 7,19% 26,46% 23,84%

J48 85,92% 14,08% 80,95% 7,41% 21,94% 24,57%

70

Cluster 2
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron 95,71% 4,29% 92,13% 3,61% 14,75% 9,76%

Bayesnet 91,43% 8,57% 83,48% 5,53% 21,94% 14,96%

Logistic 90,00% 10,00% 81,04% 6,54% 25,37% 17,70%

J48 82,86% 17,14% 64,87% 17,21% 31,64% 46,55%

26

Cluster 3
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron N/A (all 26 are between 81-108)

Bayesnet N/A (all 26 are between 81-108)

Logistic N/A (all 26 are between 81-108)

J48 N/A (all 26 are between 81-108)

5

Cluster 4
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron N/A (only 5 data points)

Bayesnet N/A (only 5 data points)

Logistic N/A (only 5 data points)

J48 N/A (only 5 data points)

1

Cluster 5
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron N/A (only 1 data point 81-108)

Bayesnet N/A (only 1 data point 81-108)

Logistic N/A (only 1 data point 81-108)

J48 N/A (only 1 data point 81-108)

11

Cluster 6
Data
(With

Process
Enactme

nt)

Multilayer
Perceptron 100,00% 0,00% 100,00% 4,02% 7,04% 9,16%

Bayesnet 100,00% 0,00% 100,00% 0,03% 0,06% 0,07%

Logistic 100,00% 0,00% 100,00% 0,03% 0,10% 6,58%

J48 100,00% 0,00% 100,00% 0,00% 0,00% 0,00%

296

Data
Without
Process
Enactme

nt

Multilayer
Perceptron 94,93% 5,07% 93,38% 2,40% 13,14% 7,80%

Bayesnet 85,14% 14,86% 80,54% 5,79% 20,81% 18,86%

Logistic 82,43% 17,57% 76,90% 7,00% 26,16% 22,78%

J48 91,55% 8,45% 88,87% 5,63% 17,03% 18,35%

The average of correctly classified intances values of the methods applied to

cluster 0 data is 95,98%. On the other hand the average of correctly classified

intances values of the methods applied to data without process enactment is

88,51%. The correctly classified rate is 7,47% higher in cluster 0 than the result of

61

the data set that do not include process enactment. The average of root mean

squared error values of the methods applied to cluster 0 data is 11,73%. On the

other hand the average of root mean squared error values of the methods applied

to data without process enactment is 19,29%. The root mean squared error is

7,55% lower in cluster 0 than the result of the data set that do not include process

enactment.

The average of correctly classified intances values of the methods applied to

cluster 1 data is 83,10%. The correctly classified rate is 5,41% lower in cluster 1

than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 1 data is

25,09%. The root mean squared error is 5,81% higher in cluster 1 than the result

of the data set that do not include process enactment. We could not obtain

promising results from this cluster, the reason of this is the noise in cluster

patterns that is seen in Table 4.5. To avoid this noise and achieve more accurate

prediciton for cluster 1, one more clustering operation can be performed within

cluster 1 data.

The average of correctly classified intances values of the methods applied to

cluster 2 data is 90,00%. The correctly classified rate is 1,49% higher in cluster 2

than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 2 data is

23,43%. The root mean squared error is 4,14% higher in cluster 2 than the result

of the data set that do not include process enactment.Although, average correctly

classified instances is high, we obtained a high average error value. The reason of

this is the low error rate in J48 (C4.5) decision tree method, since this machine

learning method needs more data point for a more accurate prediction than the

other machine learning methods.

The average of correctly classified intances values of the methods applied to

cluster 6 data is 100,00%. The correctly classified rate is 11,49% higher in cluster

6 than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 6 data is

62

1,80%. The root mean squared error is 17,49% lower in cluster 6 than the result of

the data set that do not include process enactment.

4.2 Case Study 2 (Project-2 Data)

Case Study 2A conducted with the data of Project-2 (for the characteristics of

Project-2 please refer to Section 3.3). In this case study firstly only defect and

product data used for analysis. After case study 2A had been completed, we

performed case study 2B with applying same analysis approaches but this time we

used both defect and product data, and process enactmentdata of Project-2.

4.2.1 Case Study 2A (Project-2)

GQM Tree shown in Table 4.7 was prepared after the data fields that were basic

metrics tracing to our goal in issue tracking tool database had been examined. The

metric descriptions are provided in Table 4.8. As different from Case Study 1, we

identified detected software configuration unit (SCU) metric for Case Study-2.

Since Project-2 includes several SCUs in its developed software product, this data

might give important information for the patterns in data set. Second difference

from Case Study 1 is that we selected Decision Table technique rather than

Multilayer Perceptron. And we included Simple Logistic Regression rather that

Logistic Regression, since we again wanted to validate our proposed method for

various machine learning techniques.

Table 4.7 GQM for Case Study 2A

GOAL

QUESTION

NO QUESTION

ANALYSIS

METHOD

DERIVED

METRIC

BASIC

METRIC

NO BASIC METRIC

To

understand if

there is effect

of process

enactment on

software

product

defectiveness.

4.2

What is software

product

defectiveness

prediction accuracy

without using

process enactment

data?

Bayesnet,

SimpleLogistic, C4.5

Tree, Decision Table,

Multilayer Perceptron

Machine Learning

Techniques

Defect Data:

open

duration

(closed

date-created

date)

4.2.1

Defect and Product Data:

detected SCU name, detected

module name, closed date,

created date, detected test

type, product version, product

SLOC, product complexity,

reproducibility, project phase,

source component

63

Table 4.8 Defect and Product Related Metric Descriptions for Case Study 2A

Metrics Metric Description

Measurement

Scale

Remaining Open

Duration

The time starting with the creation of the defect and finishing

with the closure of the defect. Calculated by the difference of

defect closed date and defect created date. Unit is number of

days. Absolute

Detected SCU

Name

The name of the software configuration unit (SCU) where the

defect is detected. Entered by developer to the issue tracking

tool. Nominal

Created Date
The date when the defect is detected. Filled by the issue

tracking tool automatically when the tester record the defect. Interval

Closed Date
The date when the defect is closed. Filled by the issue

tracking tool automatically when the project manager change

the status of the defect as "Closed". Interval

Test Type
The name of test type during which the defect is detected.

Entered by tester to the issue tracking tool. Nominal

Product Version
The version of the software product which the defect is

detected. Entered by tester to the issue tracking tool. Ordinal

SLOC

(Source Lines of

Code)

The size of the product version where the defect is detected.

Collected from configuration tool by using Locmetrics tool. Absolute

Complexity

The McCabe complexity of the product version where the

defect is detected. Collected from configuration tool by using

Locmetrics tool. Absolute

Reproducibility
The repetability of the defect detected. Entered by tester to

the issue tracking tool. Nominal

Project Phase
The project phase where the defect detected. Collected

manually by domain expert. Nominal

Source Component

The component name of the defect detected. Component

name can be BusinessManager, Form, GMManager, Report,

DBManager, Table and Menu-Template. Manually collected

by domain expert. Nominal

We filled MUQ shown in Figure 3.3 and Figure 3.4 for basic and derived metrics

(filled questionnaires are provided in Appendix-D). After obtained rating results,

we had idea about the usability of the metric. According to MUQ results, all basic

metrics and derived metric of Project-2 were classified as “partially usable”. Since

MUA-1 is N, MUA-2 and MUA-3 are F, and MUA-4 is P.

Detected project phase and source component data manually collected by using

project’s archival data such as project meeting minutes, and expert opinions.

Detected module name, closed date, created date, test type, product version and

reproducibility metrics’ data had already been stored in issue tracking tool. These

data directly extracted from tool database. Source lines of code (SLOC) and

complexity metrics’ data are calculated by LocMetrics and manually entered into

64

spreadsheet that includes defect data. Open duration metric data was calculated in

the one column of the spreadsheet. All defect and product data were recorded in

an Excel file (Appendix-D).

Data Excel file was converted to .csv file format to be analyzed in Weka.

We discretized open duration data to seven equal-width clusters as “0-20”, “20-

40”, “40-60”, “60-80”, “80-100”, “100-120” and “120-140” days. Since, there

were not any open duration value in “80-100” range, this cluster had no data.

We applied Decision Table, Bayesian Belief Networks, Simple Logistic

Regression and C4.5 Decision Tree (J48) machine learning techniques by

selecting open duration as class attribute. Screen views of the operation

implemented in Weka are provided in Appendix-D.

Findings from the study:

We observed that 425 data points are sufficient to obtain confident prediction

results. Since Project-2 had been completed a long time ago and several personnel

who had developed the project software do not work for the company anymore,

we believe that the reliability of the data collected by interviews might be lower

than Case Study 1.

Correctly classification performance values of the generated models are given

below. The other performance values of the models are provided in Appendix-D.

Decision Table, Bayesian Networks, Simple Logistic and J48 Decision Tree gave

the best performance values compared with other machine learning approaches.

 Decision Table machine learning technique validated with 10-folds gives 88%

correctly classified instances value.

 Bayesian networks machine learning technique validated with 10-folds gives

89% correctly classified instances value.

 Simple Logistic machine learning technique validated with 10-folds gives 86%

correctly classified instances value.

65

 J48 decision tree machine learning technique validated with 10-folds gives 89%

correctly classified instances value.

To complete this case study, we spent 10 person-days. The effort includes

applying the approach, performing the analyses, and interpreting the results. If the

source component metric had previously been collected in the same Excel sheet

with defect data and project phase metric had been recorded in real time during

creating defect in issue tracking tool, spent effort for this case study could have

been lower than now. The complete set of Weka outputs are provided in

Appendix-D.

4.2.2 Case Study 2B (Project-2)

GQM Tree was prepared shown in Table 4.9.

Table 4.9 GQM for Case Study 2B

GOAL

QUESTION

NO QUESTION

ANALYSIS

METHOD

DERIVED

METRIC

BASIC

METRIC

NO BASIC METRIC

To

understand if

there is effect

of process

enactment on

software

product

defectiveness.

4.2

What is software

product

defectiveness

prediction accuracy

with using process

enactment data?

Bayesnet,

SimpleLogistic, C4.5

Tree, Decision Table,

Multilayer Perceptron

Machine Learning

Techniques

Defect Data:

open

duration

(closed

date-created

date)

4.2.2

Defect and Product Data:

detected SCU name, closed

date, created date, detected

test type, product version,

product SLOC, product

complexity, reproducibility,

project phase, source

component

Process Enactment Data:

defect management process

attributes

We filled out PER to identify all alternative process attributes of the process

executions (shown in Figure 3.5). PER form was filled by interviewing with

Project Manager personnel of the project (Figure 4.4).

66

Figure 4.4 PER for Case Study 2B

After completing PER form, same process attributes were entered into PSM

columns and process execution values were filled in PSM shown in Figure 3.7 for

each defect. Process attributes were given with abbreviations starting with “dm”

(defect management) phrase in PSM in order to ease reading of data file when

opened in Weka. Because of place constraint, only 21 of the 425 data points could

be shown in Figure 4.5.

67

 Process Attributes

1

Inputs

2
Outp
uts 3 Activities

4
Roles

5 Tools and
Techniques

1.1
<In
pu
t

1>

1.2
<In
pu
t

2>

2.1
<Out
put
1>

3.1
<Act
ivity
1>

3.2
<Act
ivity
2>

3.3
<Act
ivity
3>

3.4
<Act
ivity
4>

3.5
<Act
ivity
5>

3.6
<Act
ivity
6>

3.7
<Act
ivity
7>

3.8
<Act
ivity
8>

4.
1

<R
ol
e

1>

4.
2

<R
ol
e

2>

4.
3

<R
ol
e

3>

4.
4

<R
ol
e

4>

5.1
<Tool
s and
Tech
nique
s 1>

5.2
<Tool
s and
Tech
nique
s 2>

5.3
<Tool
s and
Tech
nique
s 3>

Proc
ess

Exec
ution

s

De
fec
t

No

dm
I1

dm
I2

dmO
1

dm
A1

dm
A2

dm
A3

dm
A4

dm
A5

dm
A6

dm
A7

dm
A8

d
m
R1

d
m
R2

d
m
R3

d
m
R4 dmT1 dmT2 dmT3

PE1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1

PE2 2 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE3 3 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE4 4 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE5 5 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE6 6 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE7 7 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE8 8 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1

PE9 9 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE10 10 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

PE11 11 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

PE12 12 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE13 13 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE14 14 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE15 15 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1

PE16 16 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE17 17 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE18 18 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE19 19 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1

PE20 20 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1

PE21 21 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1

PE22 22 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

……. 23 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

Figure 4.5 PSM for Case Study 2B

To prevent multicollinearity during the analysis in Weka, we should remove

redundant process attributes, if exists, from spreadsheet. When we examined

PSM, we observed that I1 and I2 are same in all 425 executions; we have removed

them from analysis.Since O1, R2 and R4 showed same behavior for each defect

and there was little difference when reviewed all rows, we removed them from

analysis. Since A7 and A8 showed same behavior for each defect and these

activities had low impact on defect management process, we removed them from

68

analysis. We specify these activities as having low effect on independent variable,

open duration metric, because changing “subject” field (a field to fill in issue

tracking tool) in defect record or adding additional picture to defect record have

no technical context on the quality of final product and they are executions that

are rarely seen during defect management process of whole project. Since all row

data were same in R1, in other words project manager has role in for all 296

process executions, it is redundant to include it in analysis. Therefore, we

removed R1 process attribute from analysis. Since T1, T2, T3 were used in all

defect management process executions, they did not give additional information

about process change through defect management. Therefore, T1, T2 and T3 were

removed from analysis because of being redundant. After data cleaning, we had an

Excel file that consisted of dmA1, dmA2, dmA3, dmA4, dmA5, dmA6 and dmR3

process attributes described in Figure 4.10.

Table 4.10 Process Enactment Metric Descriptions for Case Study 2B

69

We combined collected defect, product and process enactmentdata in an Excel file

spreadsheet (Appendix-E).

We used K-Means and Euclidean Distance clustering technique and separated the

data into five clusters which were called as c0, c1, c2, c3 and c4 in the rest of the

case study. The differences of clusters are provided in Table 4.11. Implemented

clustering steps are provided in Appendix-E.

Table 4.11 Process Attributes Patterns for Case Study 2B Clusters

70

After preparing five Excel files for clustered data sets, we applied Decision Table,

Bayesian Belief Networks, Simple Logistic Regressionand C4.5 Decision Tree

(J48) machine learning techniques. Screen views of the operation implemented in

Weka are provided in Appendix-E.

Findings from the study:

We mentioned that Project-2 had been completed more previously than Project-1,

and therefore collecting process enactment data was harder than the first project.

Additionally, we could interview with lower number of personnel who developed

project’s software product. Besides, this project is an old project, and executed

processes are so changeable. This is observed with the variety of the process

attribute patterns provided in Table 4.11. It is seen that the clusters are more noisy

than the ones of project one.

Correctly classification performance values of the generated models for cluster-0

are given below. The other performance values of the models and the clusters are

provided in Appendix-E. Decision Table, Bayesian Networks, Simple Logistic

and J48 Decision Tree were applied and Bayesian Networks gave the best

performance values compared with other machine learning approaches. 10-folds

technique was used for validation.

 Decision Table machine learning technique validated with 10-folds gives 95%

correctly classifies instances value for cluster 0.

 Bayesian Networks machine learning technique validated with 10-folds gives

97% correctly classifies instances value for cluster 0.

71

 Simple Logistic machine learning technique validated with 72% of all data

points allocated for training data set gives 96% correctly classifies instances

value for cluster 0.

 J48 Decision Tree machine learning technique validated with 10-folds gives 94%

correctly classifies instances value for cluster 0.

To complete this case study, we spent 10 person-days. The effort includes

applying the approach, performing the analyses, and interpreting the results. If the

process enactmentdata had previously been collected or the process history data

could automatically be extracted by a query from issue tracking tool, spent effort

for this case study could have been lower than now. In other words, the most

important reason of high spent effort is that we have collected process

enactmentdata by entering each of 425 defects in tool and recording the history

data to Excel sheet. The complete set of Weka outputs are provided in Appendix-

E.

4.2.3 Results Comparison for Case Study 2 (Project-2)

According to Table 4.11, the characteristics of clusters can be described as follow

in terms of process attribute patterns;

 Cluster 0 predominantly includes the metrics of process executions through

which status changed as “Resolved” by test specialist activity is implemented,

and developer performs hisrole. But, adding explanation to defect, defect

rejection and not tried again activities are not implemented.Requesting more

feedback activity is seen in the 13% some of the executions.

 Cluster 1 predominantly includes the metrics of process executions through

which defect rejection is implemented, and developer performs his role. But,

adding explanation to defect, requesting more feedback, defect resolution, not

tried again activities, status changed as “Resolved” by test specialist are

predominantly not implemented.

 Cluster 2 predominantly includes the metrics of process executions through

which requesting more feedback and status changed as “Resolved” by test

specialist activities are implemented, and developer performs his role. But,

72

adding explanation to defect, defect rejection and not tried again activities are

not implemented.

 Cluster 3 predominantly includes the metrics of process executions through

which defect resolution activity are implemented, and developer performs his

role except 25% executions.

 Cluster 4 predominantly includes the metrics of process executions through

which requesting more feedback and status changed as “Resolved” by test

specialist activities are implemented, and developer performs his role. But,

adding explanation to defect activity is implemented in 18% of executions.

We observed that generally the analysis results of clustered data sets with process

enactmentare more accurate than data set without process enactmentshown in

Table 4.12. However, we can not say the same thing for cluster 4. Although it has

the highest number of data points, its performance values are lower than the

analysis without process enactment data.

Table 4.12 Results Comparison for Case Study 2

Number
of
instances
(data
points) Data set Method

Correctly
Classified
Instances

Incorrectly
Classified
Instances

Kappa
statistic

Mean
absolute
error

Root
mean
squared
error

Relative
absolute
error

121

Cluster 0
Data
(With

Process
Enactme

nt)

Decision
Table 95,04% 4,96% 85,03% 8,92% 15,71% 69,02%

Bayesnet 96,69% 3,31% 90,35% 1,18% 10,37% 9,10%

Simple
Logistic 95,87% 4,13% 87,71% 5,90% 12,46% 45,62%

J48 94,21% 5,79% 82,01% 2,96% 13,04% 22,88%

26

Cluster 1
Data
(With

Process
Enactme

nt)

Decision
Table 88,46% 11,54% 0,00% 11,35% 20,26% 99,55%

Bayesnet 96,15% 3,85% 78,33% 1,93% 11,53% 16,95%

Simple
Logistic 96,15% 3,85% 78,33% 5,67% 13,07% 49,77%

J48 88,46% 11,54% 0,00% 5,20% 18,98% 45,58%

109

Cluster 2
Data
(With

Process
Enactme

nt)

Decision
Table 92,66% 7,34% 80,78% 11,99% 19,54% 91,13%

Bayesnet 91,74% 8,26% 79,28% 2,98% 15,78% 22,61%

Simple
Logistic 90,83% 9,17% 74,16% 3,59% 14,54% 27,27%

J48 93,58% 6,42% 82,82% 3,29% 13,42% 25,01%

73

32

Cluster 3
Data
(With

Process
Enactme

nt)

Decision
Table 87,50% 12,50% 66,84% 13,07% 21,61% 81,67%

Bayesnet 93,75% 6,25% 83,42% 3,24% 15,70% 20,27%

SimpleLo
gistic 81,25% 18,75% 53,62% 6,62% 23,53% 41,39%

J48 78,13% 21,88% 47,66% 8,30% 24,48% 51,86%

137

Cluster 4
Data
(With

Process
Enactme

nt)

Decision
Table 75,18% 24,82% 52,97% 14,22% 24,42% 77,89%

Bayesnet 72,26% 27,74% 48,45% 10,13% 27,61% 55,47%

SimpleLo
gistic 70,80% 29,20% 43,91% 12,42% 27,70% 68,03%

J48 70,80% 29,20% 41,36% 14,13% 26,98% 77,38%

425

Data
Without
Process
Enactme

nt

Decision
Table 88,47% 11,53% 83,26% 10,52% 18,92% 46,34%

Bayesnet 88,94% 11,06% 84,00% 4,02% 18,36% 17,71%

SimpleLo
gistic 88,24% 11,76% 82,70% 4,64% 17,95% 20,42%

J48 88,94% 11,06% 83,03% 4,80% 16,66% 21,12%

The average of correctly classified intances values of the methods applied to

cluster 0 data is 95,45%. On the other hand the average of correctly classified

intances values of the methods applied to data without process enactment is

88,65%. The correctly classified rate is 6,08% higher in cluster 0 than the result of

the data set that do not include process enactment. The average of root mean

squared error values of the methods applied to cluster 0 data is 12,90%. On the

other hand the average of root mean squared error values of the methods applied

to data without process enactment is 17,97%. The correctly classified rate is

5,08% lower in cluster 0 than the result of the data set that do not include process

enactment.

The average of correctly classified intances values of the methods applied to

cluster 1 data is 92,31%. The correctly classified rate is 3,66% higher in cluster 1

than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 1 data is

15,96%. The correctly classified rate is 2,01% lower in cluster 1 than the result of

the data set that do not include process enactment.

The average of correctly classified intances values of the methods applied to

cluster 2 data is 92,20%. The correctly classified rate is 3,56% higher in cluster

74

2than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 2 data is

15,82%. The correctly classified rate is 2,15% lower in cluster 2 than the result of

the data set that do not include process enactment.

The average of correctly classified intances values of the methods applied to

cluster 3 data is 85,16%. The correctly classified rate is 3,49% lower in cluster 3

than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 3 data is

21,33%. The correctly classified rate is 3,36% higher in cluster 3 than the result of

the data set that do not include process enactment. We could not obtain promising

results from this cluster. To investigate the reason of this we reviewed data and

observed that the cluster noise based on between process attibute patterns and

defect open duration metric are high in cluster 3, although the number of data

points is low.

The average of correctly classified intances values of the methods applied to

cluster 4 data is 72,26%. The correctly classified rate is 16,39% lower in cluster 4

than the result of the data set that do not include process enactment. The average

of root mean squared error values of the methods applied to cluster 4 data is

26,68%. The correctly classified rate is 8,71% higher in cluster 4 than the result of

the data set that do not include process enactment. We could not obtain promising

results from this cluster. To investigate the reason of this we reviewed data and

observed that the cluster noise based on between process attibute patterns and

defect open duration metric are high in cluster 4.

75

CHAPTER 5

CONCLUSION AND FUTURE WORK

Defect data gives information related to the software quality. The accessibility to

defect data is easy in most cases, since a detailed view of detected defect is

recorded to issue tracking tools and all thedata is stored from the initiation of the

project to the end of maintenance phase. When the defect data is analyzed by

researchers, the understanding of the product environment and process execution

is provided.

Quality models such as CMMI enforces in Level 5 that defect prevention is vital

for mature process and product. When the cost effectiveness is considered,

achieving defect prevention for emergent enterprises is as beneficial as for the

institutional ones. One of the activities used for defect prevention is defect data

analysis or defect prediction. In order to point out the usable techniques for the

understanding of product defectiveness and the factors that have impact on it, we

applied various statistical and machine learning analysis methods to our data in

our first study. By doing this, we collected defect related and product related

metrics in different data sets. At the end, we presented our inferences in three

categories based on their confidence [2].

We aimed to understand the effect of process enactment on product defectiveness

prediction. After literature search, we decided to use machine learning algorithms

for prediction, since these algorithms are suitable for recognizing the patterns in

process enactment data. In this context, we performed case studies by using two

76

different software projects. Before conducting case studies, we needed a method

in order to systematically plan and analyze case studies.Therefore, we developed a

method shown in Figure 3.1. By this method, we achieved the collection of

process enactment data, data preprocessing and machine learning analysis.

The method applied in this thesisuses GQM, MUQ, PER, PSM, clustering and

classification approaches. Goal-Question-Metric was used to determine the

metrics that should be collected. Metric Usability Questionnaires were used to

determine usable metrics data. Process Execution Record and Process Similarity

Matrix were used to capture process traces and collect process enactment data.

Attribute discretization and data reduction were performed in data cleaning and

preprocessing phase of the case studies.

To validate the method, we performed four case studies which are conducted on

the data of completed two software projects in a small company. In the first case

study (case study-1A), product size metrics and defect related metrics data of

Project-1 was classified with machine learning approaches. In second case study

(case study-1B), same metrics in Project-1 were combined with defect

management process enactment attributes and machine learning approaches were

repeated. After case-study-1, we observed that the performance values of

prediction models with process enactment data are better than the ones without

process enactment data. The implementation of case study-1 was repeated with the

data of Project-2 in case study-2. We observed similar results in case study 2 with

case study 1 except a roughness. The roughness is that two of the clustered data

sets with process enactment data gave lower performance values than the analysis

results of the data set without process enactment data.

Defect open duration metric was the classifier for all case studies. In other words,

it was identified as dependent variable for prediction models. Clustering was

applied only in case study 1B and 2B. Clustered defect data was split to separate

data sets.

In case study 1 (when compared case studies 1A and 1B) we observed that the

77

data clustered according to process enactmentpatterns gives approximately3%

more accurate results when the cluster has a low number of noisy process patterns

(low number of pattern difference) and has sufficient data points to apply machine

learning methods. The correctly classified instance values that are the

performance evaluation value in machine learning approachesare ranging from -

10 to 17%.

In case study 2 (when compared case studies 2A and 2B) we observed that the

data clustered according to process enactment patterns gives 3% more

accurateresults in terms of defect open duration metric (ranging from -7% to 8%)

when the cluster has a low number of noisy process patterns.The cause of this

high noise is implementation of different activities during process execution.

Since the project-2 data is so old that the development processes applied might

have not been stablein organization in these days. To decrease the noise several

more clustering operations can be performed.

Another reason of the inconsistent result in case study-2 is that the data used for

case study-2 might be retrospective, although the project in case study 1 is a

newly completed one. This circumstance causes to collect unreliable data

especially for process enactment in case study 2. The MUQs were filled via

interviews with current data providers. However,since the providers of data have

changed for Project-2 (most of the staffproviding data for the project does not

work in the company anymore), theanswers to the questions in MUQ might not

have reflected the realsituation for already stored data. Therefore a new part

questioning thecharacteristics of the providers of data under evaluation might be

good toadd to the MUQ.

While conducting case studies, we paid attention to take help from process experts

by interviewing. But since several personnel of Project-2 were not working for the

company anymore, we had to fill PER with the experts who knew only the second

half of the development phase.On the other hand, for Project-1 we could easily

collect data by using suggested assets.

78

We can say that GQM provides a systematic way to determine the data that will

be collected and the analysis methods. MUQ provides to obtain more accurate

results by using more accurate data. PER and PSM provides to collect process

enactment attributes. Especially the newly proposed usage ways for these assets

provides more practical solutions to collect process enactment data.Aside from

interviewing approach to fill PER, the usage of the historical process data in issue

tracking tool was advantageous to fill PSM during or after process executions.

Multilayer Perceptron and Bayesian Networks methods gave more accurate results

than the other applied machine learning techniques in this study.

In conclusion, multiple case study implementations showed us that our method

can be used if we access reliable PER data in emergent organizations. Our first

question was“Is process enactmentdata beneficial for defect prediction?”. To

answer this, we assessed case study 1 and case study 2 results and the answer is

yes. Thesecond question was “How can we use process enactmentdata?”. For this

question we applied several assets called PER, PSM [16] and clustering in Weka.

The third question was “Which approaches or analysis methods can our method

support?”,and we explained the approaches applied in Section 3 in detail.

When we think of cost of quality [70], performing defect prediction approach

costs 10 person-days for a project that shows similar features with the project of

the case study 1B that has 296 defects detected. After applying the generated

prediction models in new projects, we can calculate the decrease in defect

management costs. Therefore, our proposed methodcan support and might be

beneficial for the quality system of the organization.

We suggest using process enactmentpatterns for defect prediction operation and

also we recommend methods to extract process enactmentdata. In other words,

regardless of the analysis method applied, defect and product data must be tracked

and assessed with its context to understand the product quality and process

performance in turn.Since machine learning is a pattern oriented domain area,

process enactmentdata is very convenient for pattern recognition.However, more

studies should be performed for more evidence as a future work. Besides, we

79

suggest coding a script to automatically extract historical process data from issue

tracking tool, since manual collection of process enactment data for each defect

management execution is costly.

The prediction model of defect open duration generated with the proposed way

provides a basis for the estimation of the open period of a defectthat has been

detected in software. If the distribution of the defects isdisplayed, the trend of

open duration for detected defects can beestimated within a project. However, this

assumption is not verified inthis thesis and might be subject to future work.

The factors that have impact on software product defectiveness can be considered

in two categories:Environmental factors and internal process execution. The

process enactmentdata which we have gathered for this study contains only inner

processes. However, there are some outer factors, such as environmental impacts

like personnel skills that affect the results. These outer process factors can be

investigated and different collection methods might be discovered for the data.

Additionally one more idea for future work is using of classification results to

improve processes in organization. By observing the process patterns which give

lower open duration values in PSM, organizational processes can be updated

according to realized process attributes patterns that show better performance.

80

REFERENCES

[1] CMMI Product Team, “CMMI for Development, Version 1.3, Technical

Report, SEI, 2010.

[2] Sivrioğlu, D. and Tarhan A., “Yazılım Modül Özelliklerine Göre

Hatalılık Analizi: Bir Durum ÇalıĢması”, UYMS Bildiri Kitabı, February 2012.

[3] Sivrioğlu, D., Tarhan A. and Demirörs O., “An Analysis of Product

Defectiveness and Affecting Factors In A Small Software Organization”, under

review by Euromicro Conference on Software Engineering and Advanced

Applications (SEAA) Committee, April 2012.

[4] Jalote, P. and Agrawal, N., “Using Defect Analysis Feedback For

Improving Quality and Productivity in Iterative Software Development”,

Information and Communications Technology, Enabling Technologies for the

New Knowledge Society: ITI 3rd International Conference, p. 703 – 713, 2005.

[5] Chrissis, M.B., Konrad, M. and Shrum, S., “CMMI Second Edition

Guidelines for Process Integration and Product Improvement”, CMMI for

Development, Version 1.2, SEI Series in Software Engineering, 2006.

[6] International Organisation for Standardization and International

Electrotechnical Commission, “ISO/IEC 15504 Software Process Improvement

and Capability Determination Model (SPICE)”, 2004.

[7] Leey, T., Namx, J., Hanx D., Kimx S. and Iny H. P., “Micro Interaction

Metrics for Defect Prediction”, ESEC/FSE '11 Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on Foundations of

Software Engineering, 2011.

[8] Dhiauddin, M., “Defect Prediction Model For Testing Phase”, Master

Thesis, Universiti Teknologi Malaysia, Faculty of Computer Science and

Information System, May 2009.

http://seaa2012.ii.metu.edu.tr/
http://seaa2012.ii.metu.edu.tr/

81

[9] Wahyudin, D., Schatten, A., Winkler, D., Tjoa, A. M. And Biffl S.,

“Defect Prediction using Combined Product and Project Metrics A Case Study

from the Open Source “Apache” MyFaces Project Family”, Software Engineering

and Advanced Applications, 2008. SEAA '08. 34th Euromicro Conference, p.207-

215, 3-5 Sept. 2008.

[10] Koru, A. G. and Liu, H., “Building Effective Defect-Prediction Models in

Practice”, IEEE Software, Vol. 22, No. 6, November/December 2005.

[11] Florac, A.W., Park, R.E., and Carleton A.D., Practical Software

Measurement: Measuring for Process Management and Improvement. Guidebook:

CMU/SEI-97-HB-003, 1997.

[12] Runeson, P. and Höst, M., “Guidelines for conducting and reporting case

study research in software Engineering”, Empir Software Eng (2009) 14:131–164.

[13] http://www.cs.waikato.ac.nz/~ml/weka/, last access date: 11th April

2012.

[14] Basili, V. R., Caldiera, G. ve Rombach, H. D., “Goal Question Metric

Paradigm”, Encyclopedia of Software Engineering – 2 Volume Set, ISBN#1-

54004-8, 1994.

[15] http://en.wikipedia.org/wiki/Software_bug, last access date: 16th May

2012.

[16] Tarhan, A., “An Assessment Model For The Applicability of Statistical

Process Control For Software Processes”, PhD Thesis, Informatics Institute,

Middle East Technical University, Turkey, 2006.

[17] Kan, S. H., “Metrics and Models in Software Quality Engineering”, 2nd

Edition, Pearson Education Inc, 2003.

[18] Department of Defense, “Military Standard Quality Assurance Terms and

Definitions”, MIL-STD-109C, 1994.

[19] Boehm, B., “Software Engineering Economics”, Prentice Hall, 1981.

82

[20] Schell, C., "The Value of the Case Study as a Research Strategy",

 Manchester Business School, 1992.

[21] Challagulla, V. U. B., Bastani, F. B., Yen, I. and Paul, R. A., “Empirical

Assessment of Machine Learning based Software Defect Prediction Techniques”,

WORDS '05 Proceedings of the 10th IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems, USA, 2005.

[22] International Organisation for Standardization and International

Electrotechnical Commission, “ISO/IEC JTC 1/SC 7 - Software and Systems

Engineering", 2009.

[23] International Organisation for Standardization and International

Electrotechnical Commission, “ISO/IEC 24765 - Systems and software

engineering - Vocabulary", 2010.

[24] http://en.wikipedia.org/wiki/Machine_learning#cite_ref-0, last access

date: 17th May 2012.

[25] http://en.wikipedia.org/wiki/Goodness_of_fit, last access date: 17th May

2012.

[26] Freund, J., E., “Modern Elementary Statistics”, 11th Edition, Pearson,

2004.

[27] Babbie, E., R., The Practice of Social Research", 12th edition,

Wadsworth Publishing, 2009.

[28] http://en.wikipedia.org/wiki/Bivariate_analysis, last access date: 5th June

2012.

[29] Abdi, H., “Multivariate Analysis”, The University of Texas at Dallas,

2003.

[30] http://support.sas.com/publishing/pubcat/chaps/56903.pdf, last access

date: 17th May 2012.

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Earl_R._Babbie
http://books.google.com/books?id=QySynvetGQIC&pg=PA425
http://en.wikipedia.org/wiki/Bivariate_analysis

83

[31] http://people.revoledu.com/kardi/tutorial/KNN/HowTo_KNN.html, last

access date: 17th May 2012.

[32] http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-

detailed-introduction-to-k-nearest-neighbor-knn-algorithm/, last access date: 17th

May 2012.

[33] http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm, last access

date: 5th June 2012.

[34] Malik, J., S., Goyal, P., Sharma, A., K., “Data Mining Problem Solving

Algorithms & Their Comparative Study”, Pioneer Journal, 12th National

Conference,2011.

[35] http://cis.poly.edu/~mleung/FRE7851/f07/decisionTrees.pdf, last access

date: 17th May 2012.

[36] http://www.uow.edu.au/~markus/teaching/CSCI323/Lecture_MLP.pdf,

last access date: 17th May 2012.

[37] https://www.cra.com/pdf/bnetbuilderbackground.pdf, last access date:

17th May 2012.

[38] Neil, M., Fenton, N., Nielson, L, “Building large-scale Bayesian

Networks”, The Knowledge Engineering Review, Vol. 15, No. 3, pp. 257-284,

2000.

[39] http://www.aiai.ed.ac.uk/links/bn.html, last access date: 17th May 2012.

[40] http://www-scf.usc.edu/~csci567/11-12-Bayesian-Learning.pdf], last

access date: 17th May 2012.

[41] http://css.engineering.uiowa.edu/~comp/Public/Apriori.pdf, last access

date: 17th May 2012.

[42] http://ijrte.academypublisher.com/vol02/no03/ijrte02037377.pdf, last

access date: 17th May 2012.

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://pioneerjournal.in/conferences/tech-knowledge/12th-national-conference/index.1.html
http://pioneerjournal.in/conferences/tech-knowledge/12th-national-conference/index.1.html

84

[43] Koru, A. G. and Tian, J., “An Empirical Comparison and

Characterization of High Defect and High Complexity Modules, The Journal of

Systems and Software, 67 (2003) 153–163, 2003.

[44] Salman, N., “A Measurement Framework for Component Oriented

Software Systems”, PhD Thesis, Computer Engineering, Middle East Technical

University, Turkey, 2006.

[45] Manzoor, K., “A Practical Approach to Estimating Defect-Fix Time”,

http://homepages.com.pk/kashman/defectsEstimation.htm, last access date: 19th

May 2012.

[46] Ohlsson, N., Zhao, M. and Helander, M., “Application of multivariate

analysis for software fault prediction, Software Quality Journal 7,(1998) 51–66,

1996.

[47] Boetticher, G., D., “Nearest Neighbor Sampling for Better Defect

Prediction”, PROMISE '05 Proceedings of the 2005 workshop on Predictor

models in software engineering, p. 1-6, USA, 2005.

[48] Sandhu, P. S., Khullar, S., Singh, S., Bains S. K., Kaur, M. and Singh, G.,

“A Study on Early Prediction of Fault Proneness in Software Modules using

Genetic Algorithm”, World Academy of Science, Engineering and Technology

72, 2010.

[49] Çatal, Ç. ve Diri, B., “A Systematic Review of Software Fault Prediction

Studies”, Expert Systems with Applications, 36 (2009) 7346-7354, 2009.

[50] Ahsan, S. N., Ferzund, J. and Wotawa, F., “Program File Bug Fix Effort

Estimation UsingMachine Learning Methods for Open SourceSoftware Projects”,

IST-TR-2009-04-24, IST Technical Report, Institut für Softwaretechnologie,

Australia, 2009.

[51] Jalote, P., Dinesh, K., Raghavan, S., Bhashyam R. and Ramakrishnan M.,

“Quantitative Quality Management through Defect Prediction and Statistical

Process Control”, http://www.iiitd.edu.in/~jalote/papers/2WCSQPaper.pdf, last

access date: 19th May 2012.

[52] Gokhale, S. S., Mullen, R. E., “Software Defect Repair Times: A

Multiplicative Model”, PROMISE '08 Proceedings of the 4th international

workshop on Predictor models in software engineering, p. 93-100, USA, 2008.

http://icse08.upb.de/

85

[53] Schneidewind, N. F., “Modelling the Fault Correction Process”, ISSRE

'01 Proceedings of the 12th International Symposium on Software Reliability

Engineering, p. 185, USA, 2001.

[54] Fenton, N. and Neil, M., “A Critique of Software Defect Prediction

Models, IEEE Transactions on Software Engineering, Vol. 25, No 3, p. 675-689,

1999.

[55] Fenton, N., Krause, M., Neil P., “A Probabilistic Model for Software

Defect Prediction”, For submission to IEEE Transactions in Software

Engineering.

[56] He, Z., Shu F., Yang Y., Zhang, W. and Wang, Q., “Data

Unpredictability in Software Defect-Fixing Effort Prediction”, 2010 10th

International Conference on Quality Software, 2010.

[57] Song, Q., Shepperd, M., Cartwright, M. and Mair, C., “Software Defect

Association Mining and Defect Correction Effort Prediction”, IEEE Transactions

on Software Engineering, Vol. 32, NO. 2, 2006.

[58] Zeng, H. and Rine D., “Estimation of Software Defects Fix Effort Using

Neural Networks”, COMPSAC '04 Proceedings of the 28th Annual International

Computer Software and Applications Conference - Workshops and Fast Abstracts

– Vol. 02, p. 20-21, USA, 2004.

[59] Thaw, T., Aung, M. P., Wah, N. L., Nyein, S. S., Phyo, Z. L., K. Z., and

Htun, K. Z., “Comparison for the Accuracy of Defect Fix Effort Estimation”

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05485813, last access date:

20th May 2012.

[60] Menzies, T., Lutz, R., Mikulski, C., “Better Analysis of Defect Data at

NASA”, Proceedings of the 15th International Conference on Software

Engineering and Knowledge Engineering (SEKE’03), 2003.

[61] Weiss, C., Premraj, R., Zimmermann, T. and Zeller, A.,“ How Long will

it Take to Fix This Bug?”, MSR '07 Proceedings of the Fourth International

Workshop on Mining Software Repositories, p. 1, USA, 2007.

86

[62] Hassouna, A. and Tahvildari, T., “An Effort Prediction Framework for

Software Defect Correction “, Information and Software Technology 52 (2010)

197–209, 2010.

[63] Hewett, R. and Kijsanayothin, P., “On Modeling Software Defect Repair

Time”, Empir Software Eng (2009) 14:165–186, 2008.

[64] Menzies, T., Butcher, A., Marcus, A., Zimmermann, T. and Cok,

C.,“Local vs. Global Models for Effort Estimation and Defect Prediction”, ASE

'11 Proceedings of the 2011 26th IEEE/ACM International Conference on

Automated Software Engineering, p.

343-351, USA, 2011.

[65] Tarhan, A. and Demirörs, O., “Investigating the Effect of Variations in

Test Development Process: A Case from a Safety-Critical System”, Software

Quality Journal, DOI: 10.1007/s11219-011-9129-8.

[66] Tarhan, A. and Demirörs, O., “Assessment of Software Process and

Metrics to Support Quantitative Understanding: Experience from an Undefined

Task Management Process”, “Apply Quantitative Management Now”, IEEE

Software, DOI: 10.1109/MS.2011.91, 2011.

[67] ISO, ISO 9001: 2000: Quality Management Systems – Requirements.

[68] Witten, I. H. and Frank E., “Data Mining Practical Machine Learning

Tools and Techniques”, 2nd Edition, Elsevier, 2005.

[69] Langford, J., “Clever Methods of Overfitting“, Machine Learning

(Theory), http://hunch.net/?p=22, last access date: 20th May 2012 , 2005.

[70] Demirörs, O., Yıldız, Ö. and Güceğlioğlu, A. S., “Using Cost of Software

Quality for a Process Improvement Initiative”, METU, 26th EUROMICRO

Conference (EUROMICRO'00)-Volume 2, 2007.

[71] http://www.locmetrics.com/, last access date: 11th April 2012.

[72] http://msdn.microsoft.com/en-us/library/ms174493, last access date: 15th

July2012.

http://hunch.net/?p=22
http://hunch.net/?p=22
http://msdn.microsoft.com/en-us/library/ms174493

87

APPENDICES

A. CASE STUDY PLAN

Table A.1 Tasks of Study

Design of Study Purpose

Preparation of GQM tree Define goals, metrics and statistical analysis

methods.

Data collection from tools Defect density and other factors data will be

available to start analysis.

Data verification Verify data before using for analysis and to

decide on applicability for our analysis,

Metric Usability Questionnaire Forms are

filled for each basic and derived metrics. (A

Sample Form given in Attachment-1)

Process data collection Obtain Process Data. PER (Process Execution

Report), PSM (Process Similarity Matrix) will

be used.

Conduct interviews with

domain experts

Obtain Process Data. PER and PSM will be

used.

Data Analysis Statistical and Machine Learning data

analysis methods will be applied to data after

data cleaning.

Presentation Preparation,

Reporting

Analysis results will be documented.

Observed interesting patterns will be shared,

suggestions will be discussed.

88

Table A.2 Study Calendar

Tasks Start Date Finish Date Duration

Preparation of GQM tree 14.03.2012 31.03.2012 17 days

Data collection from tools 14.03.2012 29.03.2012 17 days

Data verification 30.03.2012 31.03.2012 2 days

Process data collection 01.04.2012 15.04.2012 14 days

Conduct interviews with

domain experts 01.04.2012 15.04.2012 14 days

Data Analysis 16.04.2012 30.04.2012 14 days

Presentation Preparation, Make

Corrections according to

Review Items, Reporting 01.05.2012 28.05.2012 27 days

89

B. DETAILS OF CASE STUDY 1A

Figure B.1 MUQ for “Source component” Basic Metric of Project-1

90

Figure B.2 MUQ for “Created Date” Basic Metric of Project-1

91

Figure B.3 MUQ for “Closed Date” Basic Metric of Project-1

92

Figure B.4 MUQ for “Test Type” Basic Metric of Project-1

93

Figure B.5 MUQ for “Product Version” Basic Metric of Project-1

94

Figure B.6 MUQ for “Product SLOC” Basic Metric of Project-1

95

Figure B.7 MUQ for “Product Complexity” Basic Metric of Project-1

96

Figure B.8 MUQ for “Reproducibility” Basic Metric of Project-1

97

Figure B.9 MUQ for “Project Phase” Basic Metric of Project-1

98

Figure B.10 MUQ for “Defect Open Duration” Derived Metric of Project-1

99

Figure B.11 Weka View of Case Study 1A

100

Figure B.12 Multilayer Perceptron Results of Case Study 1A

101

Figure B.13 BayesNet Results of Case Study 1A

102

Figure B.14 Logistic Results of Case Study 1A

103

Figure B.15 J48 Results of Case Study 1A

104

C. DETAILS OF CASE STUDY 1B

Figure C.1SimpleKMeans Clustering of Case Study 1B

105

Figure C.2 Weka View of Case Study 1BCluster 0

106

Figure C.3 Multilayer Perceptron Results of Case Study 1BCluster 0

107

Figure C.4 BayesNet Results of Case Study 1BCluster 0

108

Figure C.5 Logistic Results of Case Study 1BCluster 0

109

Figure C.6 J48 Results of Case Study 1BCluster 0

110

Figure C.7 Weka View Results of Case Study 1BCluster 1

111

Figure C.8 Multilayer Perceptron Results of Case Study 1BCluster 1

112

Figure C.9 BayesNet Results of Case Study 1BCluster 1

113

Figure C.10 Logistic Results of Case Study 1BCluster 1

114

Figure C.11 J48 Results of Case Study 1BCluster 1

115

Figure C.12 Weka View of Case Study 1BCluster 2

116

Figure C.13 Multilayer Perceptron Results of Case Study 1BCluster 2

117

Figure C.14 BayesNet Results of Case Study 1BCluster 2

118

Figure C.15 Logistic Results of Case Study 1BCluster 2

119

Figure C.16 J48 Results of Case Study 1BCluster 2

120

Figure C.17 Weka View of Case Study 1BCluster 3

121

Figure C.18 Weka View of Case Study 1BCluster 4

122

Figure C.19 Weka View of Case Study 1BCluster 5

123

Figure C.20 Weka View of Case Study 1BCluster 6

124

Figure C.21 Multilayer Perceptron Results of Case Study 1BCluster 6

125

Figure C.22 BayesNet Results of Case Study 1BCluster 6

126

Figure C.23 Logistic Results of Case Study 1BCluster 6

127

Figure C.24 J48 Results of Case Study 1BCluster 6

128

D. DETAILS OF CASE STUDY 2A

Figure D.1 MUQ for “Detected SCU Name” Basic Metric of Project-2

129

Figure D.2 MUQ for “Source Component” Basic Metric of Project-2

130

Figure D.3 MUQ for “Created Date” Basic Metric of Project-2

131

Figure D.4 MUQ for “Closed Date” Basic Metric of Project-2

132

Figure D.5 MUQ for “Test Type” Basic Metric of Project-2

133

Figure D.6 MUQ for “Product Version” Basic Metric of Project-2

134

Figure D.7 MUQ for “Product SLOC” Basic Metric of Project-2

135

Figure D.8 MUQ for “Product Complexity” Basic Metric of Project-2

136

Figure D.9 MUQ for “Reproducibility” Basic Metric of Project-2

137

Figure D.10 MUQ for “Project Phase” Basic Metric of Project-2

138

Figure D.11 MUQ for “Defect Open Duration” Derived Metric of Project-2

139

Figure D.12 Weka View of Case Study 2A

140

Figure D.13 Decision Table Results of Case Study 2A

141

Figure D.14 BayesNet Table Results of Case Study 2A

142

Figure D.15 SimpleLogistic Table Results of Case Study 2A

143

Figure D.16 J48Results of Case Study 2A

144

E. DETAILS OF CASE STUDY 2B

Figure E.1 SimpleKMeans Clustering of Case Study 2B

145

Figure E.2 Weka View of Case Study 2B Cluster 0

146

Figure E.3 DecisionTable Results of Case Study 2B Cluster 0

147

Figure E.4 BayesNet Results of Case Study 2B Cluster 0

148

Figure E.5 SimpleLogistic Results of Case Study 2B Cluster 0

149

Figure E.6 J48 Results of Case Study 2B Cluster 0

150

Figure E.7 Weka View of Case Study 2B Cluster 1

151

Figure E.8 DecisionTable Results of Case Study 2B Cluster 1

152

Figure E.9 BayesNet Results of Case Study 2B Cluster 1

153

Figure E.10 Simple Logistic Results of Case Study 2B Cluster 1

154

Figure E.11 J48 Results of Case Study 2B Cluster 1

155

Figure E.12 Weka View of Case Study 2B Cluster 2

156

Figure E.13 DecisionTable Results of Case Study 2B Cluster 2

157

Figure E.14 BayesNet Results of Case Study 2B Cluster 2

158

Figure E.15 SimpleLogistic Results of Case Study 2B Cluster 2

159

Figure E.16 J48 Results of Case Study 2B Cluster 2

160

Figure E.17 Weka View of Case Study 2B Cluster 3

161

Figure E.18 DecisionTable Results of Case Study 2B Cluster 3

162

Figure E.19 BayesNet Results of Case Study 2B Cluster 3

163

Figure E.20 SimpleLogistic Results of Case Study 2B Cluster 3

164

Figure E.21 J48 Results of Case Study 2B Cluster 3

165

Figure E.22 Weka View of Case Study 2B Cluster 4

166

Figure E.23 DecisionTable Results of Case Study 2B Cluster 4

167

Figure E.24 BayesNet Results of Case Study 2B Cluster 4

168

Figure E.25 SimpleLogistic Results of Case Study 2B Cluster 4

169

Figure E.26 J48 Results of Case Study 2B Cluster 4

170

 TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : ...
Adı : ...
Bölümü : ...

TEZİN ADI (İngilizce) : ...
...
...
...
...

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla
tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine

açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane
aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi

ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

Yazarın imzası Tarih

