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As a part of the quality management, product defectiveness prediction is vital for small software 

organizations as for instutional ones. Although for defect prediction there have been conducted a 

lot of studies, process enactment data cannot be used because of the difficulty of collection. 

Additionally, there is no proposed approach known in general for the analysis of process 

enactment data in software engineering.  

 

In this study, we developed a method to show the applicability of process enactment data for 

defect prediction and answered “Is process enactment data beneficial for defect prediction?”, 

“How can we use process enactment data?” and “Which approaches and analysis methods can our 

method support?” questions. We used multiple case study design and conducted case studies 

including with and without process enactment data in a small software development company. We 

preferred machine learning approaches rather than statistical ones, in order to cluster the data 

which includes process enactment informationsince we believed that they are convenient with the 

pattern oriented nature of the data. 

 

By the case studies performed, we obtained promising results. We evaluated performance values 
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of prediction models to demonstrate the advantage of using process enactment data for the 

prediction of defect open duration value. When we have enough data points to apply machine 

learning methods and the data can be clusteredhomogeneously, we observed approximately 3% 

(ranging from -10% to %17) more accurate results from analyses including with process enactment 

data than the without ones.  

 

Keywords: software defect prediction, machine learning, software measurement, defectiveness, 

software process enactment. 
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Kalite yönetiminin bir parçası olarak ürün hatalılığı tahmini kurumsal Ģirketlerde olduğu kadar 

küçük yazılım kurumları için de hayati önem taĢır. Hata tahmini ile ilgili pek çok çalıĢma 

yürütülmüĢ olmasına rağmen süreç iĢletme verisi, toplama zorluğu nedeniyle kullanılamamaktadır. 

Buna ek olarak süreç iĢletme verisinin yazılım mühendisliğinde analizi için önerilen ve genel 

olarak bilinen herhangi bir yaklaĢım yoktur.  

 

Biz bu çalıĢmada, süreç iĢletme verisinin hata tahmini için uygulanabilirliğini gösteren bir metot 

geliĢtirdik ve “Süreç iĢletme verisinin kullanımı hata tahmini için yararlı mıdır?”, “Süreç iĢletme 

verisini nasıl kullanabiliriz?” ve “Bizim geliĢtirdiğimiz metot hangi analiz metotlarını 

destekleyebilir?” sorularını cevapladık. Çoklu durum çalıĢması tasarımını kullandık ve küçük bir 

yazılım Ģirketinde süreç iĢletme verisinin kullanıldığı ve kullanılmadığı durumlar dahil olmak 

üzere dört durum çalıĢması için analizler gerçekleĢtirdik. Süreç iĢletme bilgisini içeren verinin 

gruplaması için istatistiksel yaklaĢımlar yerine makine öğrenmesi yaklaĢımlarını tercih ettik. 

Çünkü örüntü tanıma amaçlı olan makine öğrenmesi yöntemlerinin, örüntüye yönelik doğası 

gereği süreç iĢletme verisi için elveriĢli olduğunu değerlendirdik. 
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Yaptığımız durum çalıĢmaları ile ümit verici sonuçlar elde ettik. Hata açık kalma süresi değerinin 

tahmini için süreç iĢletme verisinin kullanımının avantajını göstermek için tahmin modellerinin 

performanslarını değerlendirdik. Makine öğrenmesi metotlarını uygulamak için yeterli veri 

noktamız olduğunda ve veri homojen olarak gruplanabildiğinde, süreç iĢletme verisinin dahil 

edildiği analiz sonuçlarının, dahil edilmemiĢ olanlara göre yaklaĢık 3% (-10% ile 17% aralığında)  

daha doğru olduğunu gözlemledik.   

 

Anahtar Kelimeler: yazılım hata tahmini, makine öğrenmesi, yazılım ölçümü, hatalılık, yazılım 

süreç iĢletme. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

As stated in Weinberg’s definition “Software quality is conformance to customer 

requirements.”. Neverthless, software quality is a very crucial feature of a product 

to gain acceptance from the customer. In this viewpoint, software quality needs 

continuous monitoring and controlling through the software project. The 

defectiveness of software is an important quality measure to interpret the status of 

the product quality. Therefore, software defectiveness should be focus point of 

researches and quality models. For example, process reference models such as 

CMMI [1] proposes defect metrics for measurement and analysis activities to 

achieve multiple process areas.  

 

In this context, we first performed a case study for searching for analysis 

techniques to understand product defectiveness and affecting factors in a small 

organization [2]. We applied various statistical and machine learning analysis 

methods to our product data. By doing this, we collected defect related and 

product related metrics in different data sets. At the end, we presented our 

inferences in three categories based on their confidence. According to our 

evaluation findings, the statistical analysis used for product data results could be 

considered as confident if supported by new studies. In addition, Apriori machine 

learning analysis used for defect data results could also be considered as 

confident, since we observed 90% “correctly classified instances” value in Weka 

tool. In contrary to this, C4.5 decision tree and logistic regression machine 

learning analyses used for defect data results had approximately 50% “incorrectly 

classified instances” value.  
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We have argued as one of the reasons of this low accurateness rate, process 

enactment information had not been used for analysis. The CMMI mentioned 

above suggest after second maturity level the mapping between the product and 

process data and also suggest to take into account this mapping for process 

improvement.  

 

Since obtaining process traces and combining them with defect data are not easy, 

the analyses together with defect and process enactment data are not applied. 

Machine learning techniques are commonly used for prediction purposes, whereas 

process enactment data is slightly used. Our proposal is that machine learning 

approach can interpret more accurate performance results when the process 

enactment data is used together with product data.  

 

To validate this proposal, we used a method for defect prediction by using 

machine learning classification [3]. The method clusters the data by using defect 

data with the context of defect management process before building the prediction 

model. The data of a small software company, Simsoft, was used for validation. 

This thesis explains the method in detail and provides its results from four case 

studies in two different projects. 

 

1.1 Importance of Defect Data and Process Enactment Information 

Analysis 

 

In all software projects correcting of detected software errors in an attentive and 

timely manner is vital. If defect correction cannot be completed on time and as it 

should be, it causes some risks such as giving poor quality products to the 

customer and / or exceeding the project budget due to error correction labor costs 

called as rework effort in literature. To minimize these risks, analysis of defect 

data is required. Besides defect data investigation provides quality improvement 

and prevents injection of new defects by application of preventive actions to the 

quality [4]. CMMI’s Causal Analysis and Resolution support process area at 

maturity level 5 suggests selecting defect data for cause analysis [1, 5]. Percentage 

of defects removed, defect escape rates and number, and density of defects are 
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suggested to be used as process-performance attributes in CMMI’s Organizational 

Process Performance process area at maturity level 4. Historical defect data is 

suggested to be used for estimation of project planning parameters in CMMI’s 

Integrated Project Management process area at maturity level 3. And finally, 

defect density derived measure is suggested to be used to address quality 

measurement objectives in CMMI’s Measurement and Analysis process area at 

maturity level 2. On the other hand, percentage of defects is suggested to express 

process performance objectives in ISO/IEC 15504’s performance management 

attribute [6]. Using defect density is suggested as process measurement attribute in 

ISO/IEC 15504’s process measurement attribute. 

 

Since software is different from other engineering disciplines, the information 

about executed software process during development constitutes importance for 

the quality and defectiveness of output product. What is the difference from other 

disciplines? Software production processes are not in a regular and static format as 

in a fabric production. For software development there are many ways for the 

production of process artifacts. And the results of applied processes show 

differences in different environment circumstances. Because of these reasons, 

evaluation of process knowledge with defect data might be so beneficial. In other 

words, without knowledge about the processes executed during developing the 

product, analyzing only defect data may not be sufficient to make decision and 

take preventive action. Process reference models like CMMI and assessment 

models like ISO 15504 address this issue over the concept of organizational 

maturity and process capability, and recommend applying prediction models at 

higher maturity/capability levels. But, we believe this should not be the only way 

to use such models. 

 

1.2 Difficulty of Collecting Defect Data With Process Enactment 

 

In recent years software defect data analysis has been a common research area [7, 

8, 9]. But analysis and interpretation of software development process data are 

hard since software engineering is an area which is affected from multiple factors. 

For example, in some prediction studies [7, 10], authors suffer from the difficulty 
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of collecting process-related data and taking into account all relevant evidences to 

generate a prediction model.  

 

In order to understand the context of the product development traces, the traces 

throughout process practices must be recorded and the analysis of these tracks is 

required. However, since the nature of software process is abstract and dynamic, 

and there are too many variables which affect software process directly or 

indirectly, the measurement of software process is not easy especially in emergent 

contexts. This difficulty has supported the assessment insight by measuring the 

performance of software process using the characteristics of the developed 

product [11].  

 

Since the process related data (e.g. the activities performed, the roles taken, the 

experience of the process performers) is not stored in the same tools with defect 

data, the accessibility to the product data and the mapping of process enactment 

are difficult. The collection of data from a tool’s database is categorized as a third 

degree data collection technique since collection by extracting data from database 

is independent of real development time [12]. Since this situation causes some 

issues in mapping product data into process data which will be analyzed to 

understand the software development process, the most of the organizations can 

not use these data for prediction models. The organizations which use models or 

not, need guiding and methods about defectiveness evaluation and prediction. 

1.3 Aims of This Study 

The data of some process factors such as test type and project phase are stored in 

the defect tracking tool databases and analyzed by companies [2]. But the data of 

process enactment can not be provided in most of the cases. We aim to analyze 

product data with process enactment and show the benefits, if any, of this way in 

our study. 

 

To do that we investigated the difference in machine learning prediction results 

with process enactment data and without enacment data. We chose machine 

learning analysis because of its pattern oriented nature. We believe that the 
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patterns between software processes executed during development and related 

defect data from a product can be recognized with machine learning techniques. 

 

1.4 Approaches Used in This Study 

 

In this study, we intended to answer the questions; “Is process enactment data 

beneficial for defect prediction?”, “How can we use process enactment data?” and 

“Which approaches and analysis methods can our method support?”.  

 

We used defect open duration metric as dependent variable in our analyses since 

defect open duration metric could easily be calculated according to the created 

date and closed date information of the defect obtained from the issue tracking 

tool. That is to say, we set open duration attribute as class attribute in Weka Tool 

[13] during machine learning classification operation.  

 

To answer the questions, we first decided which indicators and metrics would be 

useful for this study. Therefore, the Goal-Question-Metric (GQM) [14] method 

was applied. The GQM goal was set as follows: to understand the effect of 

process enactment on software product defectiveness. 

 

We used data of two completed projects in an emergent organization. We grouped 

defect data used in three categories. 

 

1. Defect data detected during test activities: This data set was obtained from issue 

tracking tool database. 

2. Product version and product size data: This data was obtained from 

configuration management tool and combined with the defect data. After 

combination, we had one data set that shows which defect is detected in which 

product version and how much size the product version has. 

3. Process enactment data of defect management process: This data shows the 

features of each execution of the defect management process. In other words, 

inputs, outputs, performed process steps (activities) from the start to the end of the 

process, personnel roles which work for the process, and tools 
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andtechniquesinformation for each detected defect in software during tests and 

created in issue trackin tool is process enactment data of defect management 

process. This data set was manually obtained by using Process Execution Record 

(PER) and Process Similarity Matrix (PSM) assets. 

 

PER (Process Execution Record) forms [16] was filled by interviewing with 

process experts. PSM (Process Similarity Matrix) was filled by 

manuallyreviewing issue tracking tool. 

 

WEKA tool's [13] clustering facility (on cluster tab) was used to cluster the whole 

dataset obtained by combination of two categorized datasets, and classification 

facility (on classify tab) was used to conduct machine learning prediction.   

 

We evaluated and compared the accuracy of the analysis results from the data sets 

with process enactment and without process enactment in the case study A and 

case study B separately.  

 

1.5 Roadmap 

The remainder of this thesis is organized as follows. Section two provides an 

overview of studies about the techniques used for software defect analysis and 

prediction, and explains the most known analysis methods. Section three gives the 

organization of the case studies and their results. Section four discusses the effect 

of process enactment in defect management process by comparing the 

performance results of the case studies with process enactment data and without 

process enactment data. Section five provides overall conclusions and future 

work. 
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CHAPTER 2 

 

BACKGROUND 

 

 

 

Defect prediction models do not only predict how many latent defects the software 

contains, but also in which parts of the software they are. In addition to that, they 

give clues on how to improve the quality of software development processes such 

as design and implementation. In other words, they aim to show project attributes 

that are related to better quality or reliability. 

 

According to process reference models defect prediction can be used as an 

indicator of cause prevention. Therefore, the detection of cause and its place are 

visualized for process stakeholders. 

 

2.1 Defect Prediction Basics 

 

A "mistake" or "fault" can be committed to the software at any stage during 

development [15]. When it cannot be detected, it causes unintended work of the 

software product. 

 

Defect is a stage of the “mistake” cycle. In most cases defects cause fault and 

failures but this is not a must. 

 

Defects are crucial for the quality of the product since it shows the 

nonconformance to the customer requirements [17, 18]. Less defective software is 

more reliable and reliability is an attribute of quality. 
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Defect detection, correction and verification have cost in the project, because 

some effort is spent to find, resolve and verify detected defects. These activities 

are required for quality management. The cost of defect correction and re-testing 

has positive relation with the latency of the detection [19]. In other words, how 

much late the defect is detected, that much more defect correction and re-testing 

cost is. Therefore, defect prevention and the analysis of remaining defects are two 

important terms for software quality management.   

 

For the defects, open duration metric is important because it gives information 

about the cost of the defect and makes us understand the trend in process with 

respect to time. Defect prevention is important to take actions before a flaw does 

not occur. That not only decreases rework effort, but also establishes an improved 

quality management system.   

 

One of the defect prevention methods is defect prediction [5]. Defect prediction 

provides estimating number, type of the defects and their place in the software. In 

software development projects, planning of quality assurance and test activities, 

personnel allocating and training, process improvement can be done according to 

defect prediction results.  

 

In this study we chose to answer our questions in a way that we try to predict 

defect open duration by using it as a class attribute in machine learning 

classification techniques for defect prevention. 

 

The meanings of the terms mentioned in this study are below; 

 

Case study: A research strategy, an empirical investigation technique that 

investigates a phenomenon within its real-life context [20]. This research 

technique is commonly used in software related studies. 

 

Class attribute:Dependent variable in statistics that is used for classification, you 

have to select one of your attributes manually before executing classification 
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analysis. Your data is classified according to your dependent variable and the tool 

gives you a model to be used for the prediction purpose with its performance 

evaluation values. Class attribute is called as classifier in some studies (i.e. [21]). 

 

Defect:Software bug that causes an incorrect or unexpected result, or causes 

product to behave in unintended ways. 

 

Defect open duration: The period that elapses from the detection and recording 

of the defect to the closure of it. It is in number of day unit.  

 

Defect prediction: The analysis to forecast the behaviour of the defects in 

software product in future by various quantitative methods.  

 

Defect prevention:The approach that avoids the defects from injection to the 

software. Defect prediction is only one of the activities that provide defect 

prevention [5]. 

 

Failure:The inability of software that does not perform its required functions 

within specified performance limits [18, 22].  

 

Fault:An incorrect step, process, or data definition in a computer program which 

causes the program to perform in an unintended or unanticipated manner [23]. 

 

Machine learning:A scientific data mining discipline that concerns with the 

design and development of algorithms that allow computers to evolve behaviors 

based on empirical data, such as from sensor data or databases [24]. Machine 

learning aims to recognize patterns and learn. Then, make intelligent decisions 

based on data after learning. For this purpose some part of whole data is separated 

as training data and remaining data is kept for test.  

 

Machine learning classification: The techniques that are called as supervised. A 

classifier is identified for classification. 

 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor
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Machine learning clustering: The techniques that are called as unsupervised. A 

classifier is not identified for clustering. 

 

McCabe cyclomatic complexity:A software product complexity size measure 

computed with the number of decision nodes in software product. 

 

Metric: The quantitative indicator of the measurement. In software engineering 

we can categorize the metrics in three classes: product metrics, process metrics 

and project metrics [17]. Product metrics are directly measured from software 

such as size, complexity and defect density. Process metrics are measure of 

performance of software processes such as testing time, and reviewing time. 

Project metrics give information about project characteristics such as earned 

value, and number of skilled project personnel.   

 

Nonconformance: Lack of meeting specified requirements.  

 

Performance evaluation values: The values evaluated in order to determine the 

accuracy and reliability of a technique. 

 

Process: The series of activities to transform inputs to outputs. In software 

engineering, processes constitute software development life-cycle.  

 

Process Enactment Data:The workflow of activities that are performed during 

process execution. The elements of the workflow are inputs, outputs, activities, 

roles, and tools and techniques. 

 

Source lines of code (SLOC):A measure that shows the lenght of the software 

product which is computed by counting of the code lines. 

 

Software configuration unit (SCU): The each part of the software product 

identified in order to to provide management easiness. 
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Software reliability: The probability of successful operation ofa computer 

program for a specified time in a specified environment. 

 

Quality assurance: Systematic activities that are performed to determine whether 

product meets customer requirements. 

 

Test:The software quality assurance activity that evaluates by running the code 

whether product meets customer requirements. This activity provides dynamic 

verification and validation of the software product.   

 

2.2 Quantitative Analysis Methods Utilized for Defect Prediction 

 

Both statistical and machine learning methods are used for the purpose of defect 

analysis and prediction. In addition to these studies there are reviews that assess 

the features and the technical characteristics of defect related measurement studies 

in literature. Before giving information about these previously performed studies, 

the analysis method commonly used in these researches are given in this section. 

 

2.2.1 Statistical Methods 

 

Before the discovery of data mining techniques, statistical methods are commonly 

used in software measurement and analysis like every other science. However, it 

is thought that statistical methods are insufficient to resolve complex patterns in 

high number of datasets. Common statistical methods used for defect analysis and 

prediction are given in the subsections below. 

 

2.2.1.1 Reliability Models 

 

Software reliability is a commonly used attribute of software quality for defect 

prediction. Software reliability models are based on defect data and the time 

between defect detected and resolved. They might be categorized in two types. 

One is called Rayleigh model which depicts the software development process 
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beginning from project initiation to the end of maintenance phase. Second is 

called software reliability growth models and given with Jelinski-Moranda, 

Littlewood, Goel-Okumoto, Musa-Okumoto and S models in literature [17]. These 

second type models are based on exponential distribution approach. 

 

          Reliability models deal with several assumptions given below; 

1. There are N unknown software faults at the start of testing. 

2. Failures occur randomly (times between failures are independent). 

3. All faults contribute equally to cause a failure. 

4. Fix time is negligible. 

5. Fix is perfect for each failure; there are no new faults introduced during 

collection. 

6. Testing intervals are independent of each other. 

7. Testing during intervals is reasonably homogeneous. 

8. Numbers of defects detected during nonoverlapping intervals are independent 

of each other. 

9. Test process is effective. 

 

The accuracy of method is assessed according to the good-of-fit test results[25].  

 

          After data collection, below steps are performed. 

Step 1: A model is selected. 

Step 2: The parameters of the model are estimated. 

Step 3: Fitted model is obtained by substituting the estimates of the parameters 

into the chosen model. 

Step 4: A goodness-of-fit test is performed. 

 

2.2.1.2 Hypothesis tests 

 

The statistical method compares distribution characteristics such as mean and 

variance of two samples. Besides, whether there is the impact of an attribute on 

another attribute are searched with this analysis. According to the characteristics 
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of our data set, t-test, Z-test, Chi-square, ANOVA tests are some of the applied 

statistical techniques [26]. 

 

          During analysis, below steps are performed [26]; 

Step 1: Null hypothesis and alternative hypotheses are stated. 

Step 2: Significance level is set. 

Step 3: The probability value are obtained by using a statistical package program. 

Step 4: The probability value is compared with significance level. If probability 

value is higher that significance level, null hypothesis is accepted.  

 

2.2.1.3 Univariate analysis 

 

With this analysis technique, defect classification and defect count understanding 

is easy. By analyzing representations, defect progress in future can be predicted, 

decision making are performed, and defect prevention is achieved [27]. 

 

Univariate analysis is carried out with the description of a single variable and its 

attributes of the applicable unit of analysis. If the variable defect data was the 

subject of the analysis, the researcher would look at how many subjects fall into a 

given defect data attribute categories. This analysis provides understanding with 

examined attribute of an object. Therefore, it is used for descriptive purposes. 

Variables could be either categorical or numerical. 

 

A basic way of presenting univariate data is to create a frequency table which 

involves presenting the number of attributes of the variable studied for each case 

observed in the sample. Furthermore, graphical representation can be used to 

visualize data. Some of the mostly used graph types for defect data are Pareto 

Diagram, Histogram, Scatter Diagram and Control Chart. 

Moreover, some quantitative measures called central tendency (mean, mode, 

median and dispersion) range, variance, max, min, quartiles, and standard 

deviation give information about the distribution of the attribute. 

http://en.wikipedia.org/wiki/Variable_(mathematics)#Applied_statistics
http://en.wikipedia.org/wiki/Unit_of_analysis
http://en.wikipedia.org/wiki/Sample_(statistics)
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2.2.1.4 Bivariate Analysis 

 

Bivariate analysis involves the analysis of two variables in order to determine the 

empirical relationship between them [27].  

 

Bivariate analysis can be helpful in testing 

simple hypotheses of association and causality  (checking to what extent it 

becomes easier to know and predict a value for the dependent variable if we know 

a case's value on the independent variable).Whereas the purpose of univariate 

analysis is describing, the purpose of bivariate analysis is explaining. It looks for 

the correlations, comparisons, relationships and causes between two variables. 

 

          During bivariate analysis, the steps given below are applied [28]; 

Step 1: The nature of the relationship whether the values of the independent 

variables relate to the values of the dependent variable or not is defined. 

Step 2: The type and direction, if applicable, of the relationship are identified. 

Step 3: It is determined if the relationship is statistically significant and 

generalizable to the population. 

Step 4: The strength of the relationship is identified, i.e. the degree to which the 

values of the independent variable explain the variation in the dependent variable. 

 

According to the measurement scales of our variables, statistical techniques that 

should be used are given below to understand the relationships between pairs of 

variables in a data set. When we called two variables as X and Y; 

 If measurement scales of X and Y are interval and interval, and they are 

independently distributed, Pearson’s correlation is used. 

 If measurement scales of X and Y are ordinal and ordinal, and they are 

independently distributed, Kendall’s Tau Spearman’s Rho Wilcoxon Signed Test 

or Mann-Whittney Test are performed. 

http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Hypotheses
http://en.wikipedia.org/wiki/Association_(statistics)
http://en.wikipedia.org/wiki/Causality
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Independent_variable
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 If measurement scales of X and Y are nominal and nominal, and they are 

independently distributed, Chi- square Lambda Test is performed. 

 If measurement scales of X and Y are interval and interval, and one of them is 

dependent, simple linear regression is used. 

 If measurement scales of X and Y are nominal and interval, and Y is 

independent, regression with dummy 

variables and one way analysis of variance are used. 

2.2.1.5 Multivariate Analysis: Regression Models, PCA, DA, CA 

 

Multivariate analysis involves observation and analysis of more than two 

statistical variables at a time.  

 

          Several mostly used multivariate analysis approaches are given below.  

Linear Regression Analysis 

 

In multivariate linear regression, several independent variables are used to predict 

one dependent variable. The relationship between dependent variable and 

independent variables are investigated [29]. 

Principal Component Analysis (PCA) 

 

PCA decomposes a data table with correlated measurements into a new set of 

uncorrelated variables [30]. The importance of each component is expressed by 

the variance (i.e., eigenvalue) of its projections or by the proportion of the 

variance explained.  

Discriminant Analysis (DA) 

 

DA is used to predicting a nominal variable. The prediction of dependent variable 

is performed by looking for the relationships with the independent variables [29].  

http://en.wikipedia.org/wiki/Variable_(research)
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Correlation Analysis (CA) 

 

Correlation analysis combines dependent variables to find pairs of new variables 

which have the highest correlation. However, new variables, even when highly 

correlated, do not necessarily explain a large portion of the variance of the original 

tables. This makes the interpretation of the new variable sometimes difficult [29]. 

 

2.2.2 Machine Learning Methods 

 

Commonly used machine learning methods for defect prediction are given below. 

 

2.2.2.1 K Nearest Neighbor (kNN) 

 

There is no explicit training phase. K nearest neighbor algorithm searches for 

minimum distance from the query instance to the training samples to determine 

the K-nearest neighbors [31].  

 

There is no assumption with data distribution [32]. kNN assumes that the data is 

in a feature space and the data points are in a metric space. The data can be scalars 

or possibly even multidimensional vectors. Since the points are in feature space, 

they have a notion of distance. This need not necessarily be Euclidean distance 

although it is the one commonly used. 

 

          During analysis, the steps given below are applied [33]; 

Step 1: Euclidean or Mahalanobis distance from target plot to those that were 

sampled is computed. 

Step 2: Samples taking for account calculated distances are ordered. 

Step 3: Optimal k-nearest neighbor according to performance value done by cross 

validation technique is heuristically chosen. 

http://en.wikipedia.org/wiki/Mahalanobis_distance
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Step 4: An inverse distance weighted average with the k-nearest multivariate 

neighbors is calculated. 

Its advantages arerobustness to noisy training data and effectiveness if the training 

data is large. 

Its disadvantages areneed to determine value of parameter k (number of nearest 

neighbors), distance based learning is not clear which type of distance to use and 

which attribute to use to produce the best results, computation cost is quite high 

because of the need to compute distance of each query instance to all training 

samples.  

2.2.2.2 C4.5 Decision Tree 

 

Given a set S of cases, C4.5 first grows an initial tree using the divide-and-

conquer algorithm as follows [34]: 

• If all the cases in S belong to the same class or S is small, the tree is a leaf 

labeled withthe most frequent class in S. 

• Otherwise, choose a test based on a single attribute with two or more outcomes. 

Makethis test the root of the tree with one branch for each outcome of the test, 

partition S intocorresponding subsets S1, S2, . . . according to the outcome for 

each case, and apply thesame procedure recursively to each subset. 

1. Check for base cases for each attribute a, 

2. Find the normalized information gain (difference in entropy) from splitting 

on a, 

3. Let a_best be the attribute with the highest normalized information gain, 

4. Create a decision node that splits on a_best, 

5. Recurse on the sublists obtained by splitting on a_best, and add those nodes as 

children of node. 

Its advantages are creating decision trees need no tuning parameters [35], no 

assumptions about distribution of attribute values or independence of attributes, 

http://people.revoledu.com/kardi/tutorial/Similarity/index.html
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no need for transformation of variables (any monotonic transformation of the 

variable will result in the same trees), the method automatically finds a subset of 

the features that are relevant to the classification, decision trees are robust to 

outliers as the choices of a split depends on the ordering of feature values and not 

on the absolute magnitudes of these values, and it can easily be extended to handle 

samples with missing values. 

Its disadvantages are the need to construct a good classifier is proportional to the 

number of regions, complex view, and not a solution for all problems. 

 

2.2.2.3 Multilayer Perceptron (MLP) 

 

A learning rule is applied in order to improve the value of the MLP weights over a 

training set T according to a given criterion function [36]. 

  

This network has aninput layer(on the left) with three neurons, onehidden layer(in 

the middle) with three neurons and anoutput layer(on the right) with three 

neurons. There is one neuron in the input layer for each predictor variable. In the 

case of categorical variables,N-1 neurons are used to represent the N categories of 

the variable. 

 

Step 1: The number of hidden layers to use in the network is selected. 

Step 2: The number of neurons to use in each hidden layer is decided. 

Step 3: A globally optimal solution that avoids local minima is found. 

Step 4: It is converged to an optimal solution in a reasonable period of time. 

Step 5: The neural network is validated to test for overfitting. 

 

          Its advantages are generalization and fault tolerance.  

 

Its disadvantages are being computationally expensive learning process, giving no 

guaranteed solution, not scaling up well from small research systems to larger real 

systems. 
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2.2.2.4 Bayesian Belief Networks 

A Bayesian belief network is a model that represents the possible states of a given 

domain. A Bayesian belief network also contains probabilistic relationships 

among some of the states of the domain [37]. 

 

          Its steps are; 

1. Gather information regarding the way in which the topic under discussion is 

influenced by conducting interviews  

2. Identify the factors (i.e. nodes) that influence the topic, by analyzing and coding 

the interviews  

3. Define the variables by identifying the different possible states (state-space) of 

the variables through coding and direct conversation with experts   

4. Characterize the relationships between the different nodes using the idioms 

through analysis and coding of the interviews  

5. Control the number of conditional probabilities that has to be elicited using the 

definitional/synthesis idiom [38] 

6. Evaluate the Bayesian belief network, possibly leading to a repetition of (a 

number of) the first 5 steps    

7. Identify and define the conditional probability tables that define the 

relationships in the Bayesian belief network   

8. Fill in the conditional probability tables, in order to define the relationships in 

the Bayesian belief network   

9. Evaluate the Bayesian belief network, possibly leading to a repetition of (a 

number of) earlier steps 

 

Its advantages are providing knowledge in the form of causal structures [39], 

understandable and extensible network, used easily with missing data. 

 

Its disadvantages are fixed sized hypothesis space [40], underfit or overfit of the 

data that may not contain any good classifiers if prior knowledge is wrong. 
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2.2.2.5 Apriori 

 

          Apriori mines for associations among items in a large database [41]. 

 

          Its steps are; 

Step 1: It mines a set of execution traces where each has a support value greater 

than the minimum support threshold [42].  

Step 2: It extracts the traces which are a superset of all generator traces. 

Step 3: It filters the non-generator traces away, leaving behind a set of generator 

traces. 

 

Its advantages are usage of large itemset property, easily parallelization, easiness 

of implementation. 

 

Its disadvantages are assuming transaction database is memory resident, requiring 

many database scans.   

 

2.3 Defect Prediction Studies 

We categorized studies in five categories as using process enactment data or not, 

using statistical methods or machine learning ones, using assets to collect process 

enactment data. 

 

2.3.1 Prediction Models without Process Data by Statistical Analysis Methods 

 

Koru and Tian [43] have validated the relationship between complexity and defect 

count metrics by using statistical hypothesis tests. They have investigated in their 

study how high complexity affects defect count.   

 

Salman [44] has presented a measurement framework for component oriented 

software systems as his PhD thesis. He has generated statistical regression models 

to predict size and effort metrics. The independent variables of his models are 
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component oriented metrics such as number of components, number of 

connectors, and number of interfaces. 

 

Sivrioğlu and Tarhan [2] have prepared a case study by analyzing same dataset 

with both statistical and machine learning techniques but dataset has not included 

process enactment data. The dataset is the data of a completed software project. At 

the end of the study they have suggested to use contextual data for more accurate 

results.  

 

Manzoor [45] has tried code metric to estimate defect fix time. But the estimation 

results have not been found promising. Manzoor has explained the reasons of this 

inaccurate estimation. He has given 14 factors which affect badly parametric 

estimation methods performed by using size metrics such as SLOC and FP 

(function points). His factors are pointed out to the dependence of analysis results 

to development environment and applied processes.  

 

Ohlsson et al [46] have built prediction models by using Principal Component 

Analysis (PCA) and Discriminant Analysis (DA) methods. They have used 

product design metrics for prediction. And they have divided software modules 

into two categories called as fault-prone and not-fault-prone. 

 

This type studies ignore process related data while analyzing software defect and 

product data, and their generated models have no process knowledge scraps. 

Because development environment has high impact on these models,they are 

specific to the examined project. 

 

2.3.2 Prediction Models without Process Data by Machine Learning Methods 

 

Boetticher [47] has suggested nearest neighbor machine learning method to group 

data. He has used product related metric data to predict the class in terms of its 

defectiveness status in the software.  
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Sivrioğlu and Tarhan [2] have analyzed defect data with both statistical and 

machine learning methods. They have mentioned that the results of machine 

learning techniques are more accurate than the ones of statistical techniques, 

because machine learning gives better results when number of data is high than 

statistical hypothesis tests when sufficient data is supplied. 

 

Sandhu et al [48] have recommended genetic algorithm technique to predict fault 

proneness of software modules. He has used requirements and code metrics called 

as product related metrics for his research.   

 

Çatal and Diri [49] have reviewed software defect prediction studies in a 

systematical way. They have separated the studies to categories before review. 

The review states that the studies with using class-level, process-level and 

component-level measures are not sufficient. Besides, machine learning methods 

are suggested because they give better results than statistical analysis and expert 

view methods. 

 

Ahsan et al [50] have conducted a study to estimate bug fix effort. R (Pearson 

correlation coefficient), MAE (Mean Absolute Error), RMSE (Root Mean Square 

Error), MMRE (Mean Magnitude of Relative Error) and RRSE (Root Relative 

Square Error) performance values of five machine learning methods are compared 

at the end of the study. Because the defect fix effort data are not available, defect 

fix days metric is used as independent variable for prediction. Product metrics 

such as number of functions, number of changed operators, SLOC and complexity 

are included in analysis as input attributes.    

 

When number of data is high, machine learning techniques can give promising 

results for prediction. But without process enactment obtained, models can not be 

used for other projects or other development teams of same project. 
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2.3.3 Prediction Models with Process Data by Statistical Analysis Methods 

 

It is slightly possible to find studies by using process data in literature. Jalote et al 

[51] have explained a defect prediction approach by performing quantitative 

quality management and statistical process charts. 

 

Wahyudin et al [9] have presented a defect prediction model by using statistical 

hypothesis with a combination of product and process measures. 

 

Dhiauddin [8] has generated a prediction model for testing phase in his master 

thesis. With this model he discovers the strong factors that contribute to the 

number of testing defects by using statistical methods such as regression analysis. 

 

Gokhale and Mullen [52] have hypothesized a Laplace Transform of the 

Lognormal distribution model with defect repair times data in day unit. At the 

same time, they give several factors which are considered affecting defect repair 

time and causing a lognormal distribution in repair rates because of the factors’ 

multiplicativeness.  

 

Schneidewind [53] has explained the delay between fault detection and fault 

correction times with exponential distribution. To obtain this statistical empirical 

result, MSE (Mean Square Error) values of three operational increments have 

observed in a project. Failure rate, test time parameters are used as input attributes 

in model. 

 

As mentioned in introduction section, process measures can not be used in most 

cases because of the collection difficulty. However, the studies which includes 

process related metrics and analyzed product metrics together with process 

metrics gave more reliable results for software projects.  

 

If we use process enactment by taking a step forward of process related metrics, 

the models are going to give more reliable results and predictions can be used for 

similar projects or development teams with similar environment.   
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2.3.4 Prediction Models with Process Data by Machine Learning Methods 

 

Fenton and Neil [54] have evaluated defect oriented software metrics and 

statistical models. They have specified that reliability can not be computed by 

using defect density because the defects which cause not working of software (its 

fault) can not be parsed and user oriented defects cannot be chosen. They have 

stated some inconsistent results that while there is positive correlation between 

number of defects and other metrics such as software size, in some studies there 

are negative regression. Regression models provide information only about the 

past and it does not indicate a prediction model for new data. To analyze average 

values in data does not explain raw data; therefore it does not give realistic results. 

The relationship between size and defect is so complex that simple models are 

insufficient to present these complicated relations.  They suggest probabilistic 

methods such as Bayesian Belief Network (BBN) to present complicated relations 

between defect and the factors which affect it. 

 

Leey et al [7] have developed a prediction model with micro interaction metrics 

which are supposed as process-related metrics. In this study, they have made 

comparisons between the accuracy results of the model of code metrics, the model 

of history metrics, and the combination of them. They use machine learning 

classification and regression techniques. 

 

Fenton et al [55] have suggested Bayesian Belief Networks machine learning 

technique as prediction model. Process data is given for this model, again.  

 

He et al [56] have generated models with J48 (C4.5), Naïve Bayes and SVM 

(Support Vector Machines) by using same metrics with previously mentioned two 

studies. The performance of the models has been evaluated by MAE, MMRE and 

comparison between minimum MAE and median values of data groups. 
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Song et al [57] have suggested association rule mining for defect correction effort 

prediction. Apriori accuracy values such as mean, median and standard deviation 

have compared with the ones of PART, C4.5 and Naïve Bayes approaches. Defect 

type metric has been used as input data. Also, false negative rate, false positive 

rate performance values have been reviewed for evaluation. 

 

Zeng and Rine [58] have estimated defect fix effort by using dissimilarity matrix 

and Self Organizing Maps (Kohonen Networks) which is a type of Neural 

Networks method. With this data mining technique the data have been clustered 

for prediction. Model performance has been evaluated by magnitude of relative 

error (MRE) values of 6 grouped data sets. The input attributes of the model are 

defect fix time in hour unit, defect severity, the activity during which the defect is 

detected, system mode, defect category and SLOC (source lines of code) changed. 

Defect severity, detection activity, system mode and defect category attributes can 

be considered as contextual metrics. 

 

Thaw et al [59] have performed a similar study with Zeng and Rine. They have 

concluded their study that prediction model gives accurate results for the projects 

which have same software development processes like product line projects.  

 

Menzies et al [60] have presented a case study that compares defect analysis 

results between machine learning and manual analysis used human expertise. 

ODC (Orthogonal Defect Classification) technique has been used. They have 

found that manual domain expertise gives more accurate results than treatment 

learning. But manual analysis is insufficient when we have a complex and large 

dataset. They have specified that the application of both manual and machine 

learning analysis gives the most accurate results. 

 

Weiss et al [61] have used the defects life-time phases gone through issue tracking 

tool as the attributes for defect fix effort prediction. They compared two types of 

Nearest Neighbor approaches called as with (α-kNN) and without thresholds 

(kNN). They used text mining for grouping the data before kNN analysis. 
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Hassouna and Tahvildari [62] have improved Weiss’ study by adding 1. data 

enrichment to infuse additional issue information into the similarity-scoring 

procedure, 2. majority voting to exploit many of the similar historical issues 

repeating effort values, 3. adaptive threshold to automatically adjust the similarity 

threshold to ensure that they obtain only the most similar matches and 4. binary 

clustering to form clusters when the similarity scores are very low phases.  

 

Hewett and Kijsanayothin [63] have penned down a comprehensive study 

regarding defect repair time prediction. Firstly, they have applied five different 

empirical machine learning approaches to two individual data sets with and 

without attribute selection. AUC (Area Under the ROC Curve), TPR (True 

Positive Rate, Recall, Sensitivity, Hit Rate), PREC (Precision), FPR (False 

Positive Rate, False Alarm Rate), ACC (Accuracy) and RMSE (Root Mean 

Square Error) values have been evaluated for performance. Secondly, they have 

applied three analytical models: S (Schneidewind) model [53], GM (Gokhale and 

Mullen) [52] model, their own proposed model and compared the results. Defect 

detected testing phase, defect severity, defect state and defect state update dates 

have been used as input attributes for prediction models. 

 

Menzies et al [64] have pointed the importance of the models of similar regions 

than global ones in empirical studies. Two tools called WHERE to cluster 

algorithm that divides the data and WHICH learner to find treatments in clusters 

used to compare the treatments learned from global or local contexts. 

 

It is seen that researchers’ insight has been changing as clustering data before 

modeling. Therefore, we can obtain more local (specialized) results and accurate 

models for prediction. We will provide this clustering by using process enactment 

data in our study before applying machine learning techniques. The performance 

results of clustered dataset and not clustered will be compared. 

2.4 Methods to Collect Process Enactment Data 

Tarhan and Demirörs [65, 66] have emphasized the importance of process 

differences in software projects. They have defined and applied some assets such 
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as Metric Usability Questionaire (MUQ), Process Execution Record (PER), and 

Process Similarity Matrix (PSM) for data collection.They used MUQ for the 

decision of usable metrics, PER and PSM for collection and verification of 

process enactment data. 

 

It is seen that researchers claim the benefits of process measures, machine 

learning methods, some data collection and grouping methods for defect 

prediction models one by one. However, none of them use several of these 

methods together for empirical studies. Combining defect data with process 

enactment and generating a model from combined data by using above 

quantitative measurement techniques, we believe, is a promising research topic. 

2.5 Validation Methods in Machine Learning and Weka Tool 

Machine learning validation methods provide assessing the performance of the 

models by estimating their accuracies. In other words, it can be evaluated how 

well the mining models perform against real data. 

 

The descriptions of commonly used validation methods are given below. 

 

Training and Testing Data Sets 

In this method, the data set are separated into two sets for training and test. 

Mostly, training data set is bigger than the portion of the test set. After a model 

has been processed by using the training set, the model is tested by making 

predictions against the test set. Since, the data in the testing set already contains 

known values for the attribute that you want to predict, it is easy to determine 

whether the model's guesses are correct [72]. The splitting 66% of the data set for 

training set and remaining for test is a commonly used technique. 

 

Cross Validation 

The original data set is randomly partitioned into k sets. Of the k sets, a single set 

is retained as the validation data for testing the model, and the remaining k − 1 

sets are used as training data. The cross-validation process is then repeated k times 
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(the folds), with each of the k sets used exactly once as the validation data. 

The k results from the folds then can be averaged (or otherwise combined) to 

produce a single estimation. The advantage of this method over repeated random 

sub-sampling is that all observations are used for both training and validation, and 

each observation is used for validation exactly once [72]. 10-fold cross-validation 

is commonly used type of cross validation. 

 

In Weka tool, the models are validated by selecting one of the three options given 

below; 

 Using all data set file classified as training set, 

 Using another supplied data set file from classified data set as test data, 

 k-fold cross validation, 

 66% percentage split. 

 

At the end of classification and clustering executions some performance values 

are given as output in Weka. These performance values are “correctly classified 

instances”, “incorrectly classified instances”, kappa statistic, mean absolute error,  

root mean squared error, relative absolute error, root relative squared error, TPR, 

FPR, recall, precision, F-measure and ROC area. 
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CHAPTER3 

 

DESIGN OF CASE STUDIES 

 

 

 

As seen from literature search, previous studies generally do not include process 

metrics. Even though number of them is low, process metrics which measure test 

performance, defect resolution timeliness and reliability are analyzed in several 

studies. But, in this study we do not focus on process metrics directly. Instead of 

this, we assume that process enactment data give detailed information about 

process tracks. Therefore, we can investigate the advantages of process related 

data usage for analysis and prediction. Our motivations to choose process 

enactment to understand and predict defect data are detailed below;  

 

1. Since the nature of the metric is subsequent, process metrics can be collected 

only after application of the process. They are performance values. In other words 

you cannot collect test effectiveness metric, before running any test. This situation 

causes late feedback in most cases. It means that we are late to prevention; we can 

only apply corrective action items. However, enactment data can be collected 

before process execution according to our planning, by taking into consideration 

previous similar project process applications or company process assets. 

 

2. Process performance metric results are specific to product and project, because 

they are affected from many factors. These factors can be skills of the project 

staff, customer experience in domain area, programming language, number of 

personnel, suitable tool usage etc. On the other hand, process enactment data is 

more usable to generalize the analysis results. We can use the analysis results of 

one project for the prediction of other projects that apply same process attribute 
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patterns.  

 

3. Process metrics cannot be collected and recorded automatically by tools. We 

need manual calculations after process implementations even though we gather 

data from databases. But enactment data that is used by this study had been 

recorded in real time while process was being implemented. 

 

Our base questions waiting to be answered in our study are “Is process enactment 

data beneficial for defect prediction?”, “How can we use process enactment data?” 

and “Which approaches and analysis methods can our method support?”. 

 

We applied case study method from empirical investigation techniques. There are 

four types of case studies according to objective aspect [12]: exploratory, 

descriptive, explanatory, or improving. Other categorization related with case 

study attributes are: 1) Single-case vs. multiple-case, and 2) Holistic vs. 

embedded. 

 

In these case studies we have four cases and we do not have multiple units within 

a case since we can say that our case study design is compatible with multiple-

case and holistic one. The purpose is descriptive in Case Study 1A and Case Study 

2A since we give machine learning analysis results with the only defect data 

metrics’ analysis results as is. On the other hand, the purposes of Case Study 1B 

and Case Study 2B are “exploratory” since we investigate what will happen when 

we use process enactmentmetrics together with defect metric. All four case studies 

are performed for an improving purpose. We intend to improve machine learning 

defect prediction aspect. 

 

According to data collection aspect there are three categories of methods [12]: 

Direct (e.g. interviews), indirect (e.g. tool instrumentation) and independent (e.g. 

documentation analysis). 

 

We used all of the three data collection approaches. Fully structured interviews 

were performed with process experts by filling Process Executions Records 
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(PER). Issue tracking tool and configuration management tool were used as third 

degree archival data.  The data had already stored in tools while the process was 

being executed. The quality of the data has improved by the support from expert 

opinions. 

 

We analyzed data quantitatively with machine learning classification techniques. 

We interpreted results on comparative basis. We compared the validity results of 

the project data with process enactmentwith the one without process enactment. 

Also, the performance values which show classification model prediction 

accuracy in Weka output were evaluated for validation. 

 

          The variations between four case studies are listed below; 

Case Study 1A: Project-1 data was collected based on defined metrics. We 

ignored process enactmentdata in this case study concept. 

 

Case Study 1B: Project-1 data wascollected based on defined metrics. We took 

into account process enactmentdata in this case study concept and we included it 

in the analysis. 

 

Case Study 2A: Project-2 data wascollected based on defined metrics. We 

ignored process enactmentdata in this case study. 

 

Case Study 2B: Project-2 data wascollected based on defined metrics. We took 

into account process enactmentdata in this case study and we included it inthe 

analysis. 

 

          Our proposed method consists of the sequential steps below(Figure 3.1); 
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Apply GQM and 
Determine on 

Metrics

Fill MUQ and 
Evaluate Usability of 

Metric Data

GQM Tree

MUQ Forms

Collect Data
Collect Defect 
and Product 
Related Data

Data Spreadsheet

Collect Process 
Context Data

Data Spreadsheet

PER, PSM, Expert 
Opinion

Data Cleaning and 
Preprocessing

Cluster Data

Issue Tracking Tool, 
Configuration 

Management Tool

Prediction Method 
Started

WEKA Tool

Spreadsheets of 
Data Clusters

Separate Clustered 
Data

Classify Data For 
Prediction WEKA Tool

Use Generated 
Prediction Models

 

Figure 3.1 Proposed Method 

 

3.1 Goal-Question-Metric (GQM) Tree Approach 

GQM [14] approach proposes a top-down measurement definition. The approach 

states that a goal-based measurement way provides opportunity to the 

organizations for specifying themselves and their project’s goals, tracing the goals 

to the questions that ask what they should wonder for that goal and finally 

specifying the interpretation of metrics collected for those questions. 
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Figure 3.2 The Goal-Question-Metric Hierarchy [14] 

 

In this study before analysis phase, to make analyses in terms of our goals, Goal-

Question-Metric (GQM) method was applied. Firstly, our aims wereset; secondly 

the questionsweredefined for each goal; thirdly to answer the question, related 

metrics and analysis methods werespecified (Table 3.1). 

 

Table 3.1 GQM for This Study 

 

GOAL 

QUESTION 

NO QUESTION 

ANALYSIS 

METHOD 

DERIVED 

METRIC 

BASIC 

METRIC 

NO BASIC METRIC 

CASE STUDY 

NO 

To 

understand if 

there is effect 

of process 

enactment on 

software 

product 

defectiveness. 

3.1 

How much 

impact has 

process 

enactment on 

defect open 

duration 

prediction?  

Bayesnet, 

Logistic, 

C4.5 Tree, 

Multilayer 

Perceptron 

Machine 

Learning 

Techniques 

Defect 

Data: open 

duration  

(closed 

date-created 

date) 

3.1.1 

Defect and Product 

Data: detected 

module name, closed 

date, created date, 

detected test type, 

product version, 

product SLOC, 

product complexity, 

reproducibility, 

detected project phase 

Case Study 1A 

(Project-1),  

Case Study 2A 

(Project-2) 

Defect 

Data: open 

duration  

(closed 

date-created 

date) 

3.1.2 

Defectand Product 

Data: detected 

module name, closed 

date, created date, 

detected test type, 

product version, 

product SLOC, 

product complexity, 

reproducibility, 

detected project phase 

Process Enactment 

Data: defect 

management process 

attributes 

Case Study 1B 

(Project-1),  

Case Study 2B 

(Project-2) 

3.2 Metric Usability Questionnaire (MUQ) 

MUQ is a form filled according to metric usability attributes [16]. Each form is 

filled for one metric. The questions and ratings are different for basic metrics 

(Figure 3.3) and derived metrics (Figure 3.4).  Rating is quantitatively calculated 

according to metric usability factors (MUF) by dividing “Yes” answers to the all 
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number of questions. Obtained percentage value is qualitatively categorized 

according to the rules below.  

 If the percentage value of factor is between %86-100, MUF is qualitatively 

categorized as fully statisfied (F).  

 If the percentage value of factor is between %51-85, MUF is qualitatively 

categorized as largely statisfied (L).  

 If the percentage value of factor is between %16-50, MUF is qualitatively 

categorized as partially statisfied (P).  

 If the percentage value of factor is between %16-50, MUF is qualitatively 

categorized as not statisfied (N).  

 

In rating phase, metric usability attributes (MUA) are ordered sequential to their 

criticality: 1) data metric identity, 2) data existence, 3) data verifiability, and 4) 

data dependability. If the regarding values of MUA-1 and MUA-2 are F and F; and 

MUA-3 and MUA-4 are F or L, the basic metric is “usable”. 
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   Please rate each attribute in four 
scales, based on answers to 
questions as indicators: 

Metric 
Name: 

  
  

F: Indicators of the attribute are fully 
satisfied (%86-100) 

Conceptual 
Definition: 

  
  

L: Indicators of the attribute are largely 
satisfied (%51-85) 

Assessed 
On: 

  
  

P: Indicators of the attribute are 
partially satisfied (%16-50) 

Assessed 
By: 

  
  

N: Indicators of the attribute are not 
satisfied (%0-15)  

      

Attributes   Answers Rating Expected 
Answers 

  Indicators       

Measure Identity    MUF-1 F   

  Q1 Which entity does the measure measure?       

  Q2 Which attribute of the entity does the measure measure?       

  Q3 What is the scale of the measurement data? (nominal, 
ordinal, interval, ratio, absolute) 

    Ratio, 
Absolute 

  Q4 What is the unit of the measurement data?       

  Q5 What is the type of the measurement data? (integer, real, 
etc.) 

      

  Q6 What is the range of the measurement data?       

Data Existence     MUF-2 F   

  Q7 Is measurement data existent?     Available > 
20 

  Q8 What is the amount of overall observations?       

  Q9 What is the amount of missing data points?       

  Q10 Are data points missing in periods? (If yes, please state 
observation numbers for missing periods) 

      

  Q11 Is measurement data time sequenced? (If no, please 
state how measurement data is sequenced) 

      

Data Verifiability     MUF-3 F   

  Q12 When is measurement data recorded in the process? (at 
start, middle, end, later, etc.) 

      

  Q13 Is all measurement data recorded at the same place in 
the process? (at start, middle, end, later, etc.) 

  Yes 

  Q14 Who is responsible for recording measurement data?       

  Q15 Is all measurement data recorded by the responsible 
body? 

  Yes 

  Q16 How is measurement data recorded? (on a form, report, 
tool, etc.) 

      

  Q17 Is all measurement data recorded the same way? (on a 
form, report, tool, etc.) 

  Yes 

  Q18 Where is measurement data stored? (in a file, database, 
etc.) 

      

  Q19 Is all measurement data stored in the same place? (in a 
file, database, etc.) 

  Yes 

Data Dependability     MUF-4 F   

  Q20 What is the frequency of generating measurement data? 
(asynchronously, daily, weekly, monthly, etc.) 

      

  Q21 What is the frequency of recording measurement data? 
(asynchronously, daily, weekly, monthly, etc.) 

      

  Q22 What is the frequency of storing measurement data? 
(asynchronously, daily, weekly, monthly, etc.) 

      

  Q23 Are the frequencies for data generation, recording, and 
storing different? 

  No 

  Q24 Is measurement data recorded precisely?   Yes 

  Q25 Is measurement data collected for a specific purpose?   Yes 

  Q26 Is the purpose of measurement data collection known by 
process performers? 

  Yes 

  Q27 Is measurement data analyzed and reported?     Yes 

  Q28 Is measurement data analysis results communicated to 
process performers? 

    Yes 

  Q29 Is measurement data analysis results communicated to 
management? 

    Yes 

  Q30 Is measurement data analysis results used as a basis for 
decision making? 

    Yes 

Data 
Normalizability 

          

  Q31 Can measurement data be normalized by parameters or 
measures? (If yes, please specify them) 

      

Data Integrability           

  Q32 Is measurement data integrable at project level?       

  Q33 Is measurement data integrable at organization level?       

(a) Metric Usability Questionnaire 
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Metric Name:     

Conceptual Definition:     

Assessed On:     

Assessed By:     

   

Metric Usability Attributes Rating Expected Rating 

Metric Identity (MUA-1) F F 

Data Existence (MUA-2) F F 

Data Verifiability (MUA-3) F L or F 

Data Dependability (MUA-4) F L or F 

      

Metric Usability Result F L or F (Usable) -- Not Usable otherwise  

 

(b) Metric Usability Rating 

 

Figure 3.3 Metric Usability Questionnaire and Rating for Basic Metrics 

 

The difference of the derived metric rating from basic metric one is that MUF 

3&4 values of the basic metrics should be F or L for a derived metric to be an 

“usable” derived metric.   
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   Please rate each attribute in four 
scales, based on answers to 
questions as indicators: 

Metric 
Name: 

  
  

F: Indicators of the attribute are fully 
satisfied (%86-100) 

Conceptual 
Definition: 

  
  

L: Indicators of the attribute are largely 
satisfied (%51-85) 

Assessed 
On: 

  
  

P: Indicators of the attribute are partially 
satisfied (%16-50) 

Assessed 
By: 

  
  

N: Indicators of the attribute are not 
satisfied (%0-15)  

      

Attributes   Answers Rating Expected 
Answers 

  Indicators       

Measure Identity    MUF-1 F   

  Q1 Which entity does the measure measure?       

  Q2 Which attribute of the entity does the measure 
measure? 

      

  Q3 What is the scale of the measurement data? (nominal, 
ordinal, interval, ratio, absolute) 

    Ratio, Absolute 

  Q4 What is the unit of the measurement data?       

  Q5 What is the type of the measurement data? (integer, 

real, etc.) 

      

  Q6 What is the range of the measurement data?       

Data Existence     MUF-2 F   

  Q7 Is measurement data existent?     Available > 20 

  Q8 What is the amount of overall observations?       

  Q9 What is the amount of missing data points?       

  Q10 Are data points missing in periods? (If yes, please 
state observation numbers for missing periods) 

      

  Q11 Is measurement data time sequenced? (If no, please 
state how measurement data is sequenced) 

      

Data Verifiability     MUF-3 F   

  Q12 When is measurement data recorded in the process? 
(at start, middle, end, later, etc.) 

      

  Q13 Is all measurement data recorded at the same place in 
the process? (at start, middle, end, later, etc.) 

  Yes 

  Q14 Who is responsible for recording measurement data?       

  Q15 Is all measurement data recorded by the responsible 
body? 

  Yes 

  Q16 How is measurement data recorded? (on a form, 
report, tool, etc.) 

      

  Q17 Is all measurement data recorded the same way? (on 
a form, report, tool, etc.) 

  Yes 

  Q18 Where is measurement data stored? (in a file, 
database, etc.) 

      

  Q19 Is all measurement data stored in the same place? (in 
a file, database, etc.) 

  Yes 

Data 
Dependability 

    MUF-4 F   

  Q20 What is the frequency of generating measurement 
data? (asynchronously, daily, weekly, monthly, etc.) 

      

  Q21 What is the frequency of recording measurement 
data? (asynchronously, daily, weekly, monthly, etc.) 

      

  Q22 What is the frequency of storing measurement data? 
(asynchronously, daily, weekly, monthly, etc.) 

      

  Q23 Are the frequencies for data generation, recording, and 
storing different? 

  No 

  Q24 Is measurement data recorded precisely?   Yes 

  Q25 Is measurement data collected for a specific purpose?   Yes 

  Q26 Is the purpose of measurement data collection known 
by process performers? 

  Yes 

  Q27 Is measurement data analyzed and reported?     Yes 

  Q28 Is measurement data analysis results communicated 
to process performers? 

    Yes 

  Q29 Is measurement data analysis results communicated 
to management? 

    Yes 

  Q30 Is measurement data analysis results used as a basis 
for decision making? 

    Yes 

Data 
Normalizability 

          

  Q31 Can measurement data be normalized by parameters 
or measures? (If yes, please specify them) 

      

Data Integrability           

  Q32 Is measurement data integrable at project level?       

  Q33 Is measurement data integrable at organization level?       

(a) Metric Usability Questionnaire 
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Metric Usability Attributes Rating Expected Rating 

Metric Identity (MUA-1) F F 

Data Existence (MUA-2) F F 

Data Verifiability (MUA-3) F L or F 

Data Dependability (MUA-4) F L or F 

      

MUF-3&4 for basic metric-1 F L or F 

MUF-3&4 for basic metric-2 F L or F 

MUF-3&4 for basic metric-n F L or F 

      

Metric Usability Result F L or F (Usable) -- Not Usable otherwise  

 

(b) Metric Usability Rating 

 

Figure 3.4 Metric Usability Questionnaire and Rating for Derived Metrics 

 

In this study after defining the metrics, metric usability analysis for each basic 

metric has been performed to determine if the metric is applicable and available 

for our study. MUQ form was filled for each basic metric and the derived metric 

“defect open duration”. During the examination of filled MUQ forms it was 

determined not to use number of requirements based on product version metric. 

Because “number of requirements” metric was collected on monthly basis instead 

of product version basis, this period was not applicable for our analysis goal. 

3.3 Data Collection 

In this study the two projects’ data of Simsoft company is used. Simsoft Computer 

Technologies Co., Ltd. is a software development company established in 2006. It 

is especially experienced in simulation systems. Simsoft is conducting business as 

a university - industry Cooperation Company in Technology Development Center 

at Middle East Technical University Technopolis in METU Campus. It has 30 

personnel, including Software Engineers, Modeling and Graphics Designers, and 

Quality Assurance Supporters. The company has developed software projects for 

a large number of institutes especially for defense industry by now.  The 

organization has already ISO 9001 [67] certificate and executes documented 

process assets in compatible with CMMI Level 3. The company has a specific 

measurement process, in this concept obeying policies for analyzing the monthly 

data and reporting the results to high level management.  
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          The projects whose defect data is used are listed below; 

Project-1: The software product developed in the project has 2 Software 

Configuration Units (SCU) with 4 module types, and 6 personnel worked for 7 

months project duration. At the end of the development, C++ source lines of code 

are 23 KLOC, number of requirements is 955, and the number of defects detected 

during tests is 296. This project’s development phase was completed in January 

2012.  

 

Project-2: The product has 14 Software Configuration Units (SCU), and 15 

personnel worked for 8 months project duration. At the end of the development 

C# source lines of code is 188 KLOC, number of requirements is 1492, and the 

number of defects detected during tests is 425. This project’s development phase 

was completed in June 2011.   

 

3.3.1 Defect and Product Size Data Collection 

 

Since software testing is a must and a part of development, resolution of detected 

defects is a necessity. With this aspect for the tracking of defects in software, a 

tracking tool is used by lots of institutions contemporarily.With these tools a 

detected defect during any quality activity can be recorded and assigned to related 

personnel for resolution. After assignment; monitoring, verifying and closing 

activities are tracked over these tools. In addition to the tracking of defect status, 

the detailed information regarding the defect such as software module, product 

version where the defect is detected, test type and source project phase during 

which the defect is detected can be accessed at any time since defect information 

is stored with its history in the database. These tools store descriptions of the 

defects detected on software, detection dates and resolution status of defects.  

 

While using issue tracking tool for the monitoring of the status of the defects 

detected in software product, in order to perform the updates on product in a 

controlled manner, organizations need configuration management tool. 

Configuration management tools provide a common environment to the 
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developers to track the modifications in product. These tools do not allow multiple 

personnel to modify the product at the same time. The personnel can access whole 

update information beginning from first creation of the product in the tool. With 

the aid of configuration management tool, the important information about 

software product can be obtained historically since it stores all product versions in 

a historical manner and anyone can access versioned product at any time. 

 

The defect related basic metrics’ data;detected software configuration unit (SCU) 

name, created date, closed date, test type, product version and reproducibility 

were extractedfrom issue tracking tool database. Besides, the defect related 

derived metric called as“defect open duration” was manually calculated as the 

difference between the closed and the created dates. 

 

The project phase process metric data is manually collected by filling “Project 

Phase” column in Excel sheet while directly interviewing with the process expert.  

 

The product size basic metrics’ data; product version size (logical source lines of 

code) and complexity (McCabe cyclomatic complexity), however, are obtained 

indirectly from the tool. We say “indirectly” because these metrics are calculated 

with LOCMetrics tool [71] by using the product version where the defect is 

detected from the information recorded in the tool. In other words, to collect 

SLOC and McCabe cyclomaticcomplexity, configuration management tool was 

used together with the product version information in issue tracking tool, and the 

total SLOC was counted by LOCMetrics and recorded manually. Metric 

descriptions are given in Table 3.2. 
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Table 3.2 Defect and Product Related Metric Descriptions 

 

Metrics Metric Description 

Measurement 

Scale 

Remaining 

Open Duration 

The time starting with the creation of the 

defect and finishing with the closure of the 

defect. Calculated by the difference of defect 

closed date and defect created date. Unit is 

number of days. Absolute 

Detected SCU 

Name 

The name of the software configuration unit 

(SCU) where the defect is detected. Entered by 

developer to the issue tracking tool.  Nominal 

Created Date 

The date when the defect is detected. Filled by 

the issue tracking tool automatically when the 

tester record the defect.  Interval 

Closed Date 

The date when the defect is closed. Filled by 

the issue tracking tool automatically when the 

project manager change the status of the defect 

as "Closed".  Interval 

Test Type 

The name of test type during which the defect 

is detected. Entered by tester to the issue 

tracking tool.  Nominal 

Product 

Version 

The version of the software product which the 

defect is detected. Entered by tester to the 

issue tracking tool.  Ordinal 

SLOC  

(Source Lines 

of Code) 

The size of the product version where the 

defect is detected. Collected from 

configuration tool by using Locmetrics tool.  Absolute 

Complexity 

The McCabe complexity of the product 

version where the defcet is detected. Collected 

from configuration tool by using Locmetrics 

tool.  Absolute 

Reproducibility 
The repetability of the defect detected. Entered 

by tester to the issue tracking tool.  Nominal 

Project Phase 
The project phase where the defect detected. 

Collected manually by domain expert. Nominal 

 

          The raw data of regarding metrics are gathered in an Excel sheet.  

 

3.3.2 Process EnactmentData Collection 

 

Process Execution Record (PER) and Process Similarity Matrix (PSM) assets are 

utilized to gather process traces [16]. First, you decide on which process data is 

needed for your analysis. Then, PER is filled out for your regarding process and 

process attributes such as inputs, outputs, activities and tools. This knowledge 
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isthen entered to PSM Excel sheet for each process executions. For example, 

process execution might be each product version release for a configuration 

management process.  

 

3.3.2.1 Process Execution Record (PER) Asset 

 

PER is a form in Word file format (Figure 3.5) used to define all actual process 

values in process attributes basis. Inputs, outputs, roles, tools and techniques all 

are process attributes and with the help of PER form, all alternative values of them 

for process executions are recorded. Prepared list in PER are used to fill PSM.   

 

 

Figure 3.5 Process Execution Record (PER) 

 

In this study the collection of defect management process enactment data was 

aimed in order to capture the traces of defect management process and combine it 
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with defect related process data and product data for prediction analysis. PER 

forms were collected with expert opinions by interviewing. 

 

3.3.2.2 Process Similarity Matrix (PSM) Asset 

 

PSM is a spreadsheet in Excel file format (Figure 3.6) used to gather process 

attribute values for all process executions. Horizontally there are process attributes 

specified in PER before, vertically there are numbered process executions. The 

cells in matrix is filled by entering a circle sign if the process attribute is 

applicable for regarding process execution. After PSM is completed, the 

differences in columns are examined and clustering is manually performed.  

 

   Process Executions 

Process 
Attributes 

PE
1 

PE
2 

PE
3 

PE
4 

PE
5 

PE
6 

PE
7 

PE
8 

PE
9 

PE 
10 

PE 
11 

PE 
12 

PE 
13 

PE 
14 

PE 
15 

PE 
16 

PE 
17 

PE 
18 

PE 
19 

PE 
20 

PE 
21 

PE 
22 

…
…. 

1  
1.1 <Input 1> o o 

…
…                                         

1.2 <Input 2> o o 
…
…                                         

2 
2.1 <Output 1> o o 

…
…                                         

2.2 <Output 2>   o 
…
…                                         

3 

3.1 <Activity 1> o o 
…
…                                         

3.2 <Activity 2> o o 
…
…                                         

3.3 <Activity 3> o o 
…
…                                         

3.4 <Activity 4>   o 
…
…                                         

4 
4.1 <Role 1> o o 

…
…                                         

4.2 <Role 2> o o 
…
…                                         

5  

5.1 <Tools and 
Techniques 1> o o 

…
…                                         

5.2 <Tools and 
Techniques 2>   o 

…
…                                         

 

Figure 3.6 Process Similarity Matrix (PSM) In Literature 

 

In this study we used PSM a little bit different from the utilization in literature 

(Figure 3.7). We transposed the matrix vectors. The process executions were 

horizontally collected since this structure was more convenient to combine with 

collected defect and product data. In other words, this way provided 



 

44 

 

straightforwardness since also in the spreadsheet that consisted of the defect and 

product data, the metric attributes were in column vector against which regarding 

process executions exist. Besides, we entered “1” or “0” instead of “o” or “ ”. 

Thus, “1” and “0” scaling could be identified in numeric measurement scale by 

Weka tool. Process enactment data identified as numeric could be clustered by 

machine learning clustering technique. PSM sheets were collected from issue 

tracking tool by extracting historical defect management process data such as 

defect status updates and the roles of the personnel who had updated the defect 

status. 

 

  Process Attributes 

  1 Inputs 2 Outputs 3 Activities 4 Roles 
5 Tools and 
Techniques 

Proce
ss 

Execu
tions 

1.1 
<Input 

1> 

1.2 
<Input 

2> 

2.1 
<Output 

1> 

2.2 
<Output 

2> 

3.1 
<Activity 

1> 

3.2 
<Activity 

2> 

3.3 
<Activity 

3> 

3.4 
<Activi
ty 4> 

4.1 
<Role 

1> 

4.2 
<Role 

2> 

5.1 
<Tools 

and 
Techniqu

es 1> 

5.2 
<Tools 

and 
Techniqu

es 2> 

PE1 1 1 1 0 1 1 1 0 1 1 1 0 

PE2 1 1 1 1 1 1 1 1 1 1 1 1 

PE3 …… …… …… …… …… …… …… …… …… …… …… …… 

PE4                         

PE5                         

PE6                         

PE7                         

PE8                         

PE9                         

PE10                         

PE11                         

PE12                         

PE13                         

PE14                         

PE15                         

PE16                         

PE17                         

PE18                         

PE19                         

PE20                         

PE21                         

PE22                       
 
  

…….                       
 
  

 

Figure 3.7 Process Similarity Matrix (PSM) In This Study 
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3.4 Data Cleaning and Preprocessing 

In this phase the redundant data and attributes whether there are in data set are 

removed from data set to avoid from overfitting and multicollinearity during 

machine learning analysis techniques. The redundant data might be the rows that 

have missing values or attribute columns that give same information. Removing of 

redundant attributes is called as data reduction. Some approaches such as Principal 

Component Analysis (PCA) can be used for data reduction too [68]. By using 

PCA, redundant attributes are composed and attribute number decreases by 

providing new attributes, andat the end more meaningful and explanatory 

attributes can be obtained. Otherwise overfitting [69] problem is common in 

machine learning techniques.  

 

In numeric scale, attribute data should be discretized before analysis to obtain 

more meaningful analysis results. Some machine learning classification 

approaches such as C4.5 decision tree does not accept a numeric scaled attribute 

as class attribute for classification analysis. There are several techniques used for 

discretization such as equal-width or equal-frequency [68] in Weka. Applying 

clustering before discretization is another way to determine discretized bin 

number. Because of these reasons data cleaning and preprocessing phase is 

important for machine learning techniques.  

 

Since in this study we needed only data in “Defect” category for prediction model, 

the issues recorded as “Change” were removed from data set.  

 

All defects detected during test activities are recorded to issue tracking tool 

although all defects detected during review activities are not stored in tool. 

Therefore, the detected defects except during test activities were removed from 

data set. Only defect data detected during tests was taken into account after data 

cleaning.  

 

We had to discretize defect open duration attribute to set as class attribute in 

machine learning classification. We discretized this attribute by using equal-width 
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method before (i.e. 0-5, 5-10, 10-15). Before discretization operation, we clustered 

open duration data by using K-Means with Euclidean distance technique to 

display how many clusters would be better to contain. Screenshots of analysis 

views are provided in Appendix-C and Appendix-E. 

3.5 Clustering According to Process EnactmentData Approach 

In machine learning if the user has no idea about data set, s/he should use 

unsupervised methods for grouping of data. Since s/he does not know which 

attribute can be considered as independent variable to set as class attribute. One 

example of unsupervised methods is clustering. In clustering method, the user do 

not have to set an attribute as class attribute. 

 

In this study the process enactment data was examined in Weka and by clustering, 

similar process attribute columns were removed. With Weka tool the row data 

regarding process executions that had same process attributes was separated in 

different clusters.SimpleKMeans approach was used and the difference between 

process executions was obtained. According to cluster number automatically 

given by Weka, the separate Excel sheets were manually prepared for each cluster. 

Clustering according to process enactment approach was applied only in case 

studies 1B and 2B since they were the only case studies that contain process 

enactment data for analysis. Screenshots of analysis views are provided in 

Appendix-C and Appendix-E. 

3.6 Analysis 

When evaluated with the presence of high volume data stored in software 

engineering tools, it has been observed that data mining applications over the 

software data are being increased especially in recent years [12].  

 

Machine learning classification approaches are utilized for the purposes of 

generating prediction models. Mostly used techniques are Bayesian Belief 

Networks (BBN), Multilayer Perceptron, Logistics Regression and Decision 

Trees. Despite the fact that there are a lot number of divergent studies related with 
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using machine learning techniques for building prediction models, there is not any 

model technique defined as the best prediction approach or any way to apply in 

sequential manner described as the best method. Therefore, the studies in 

literature can be successful only by comparing their selected techniques among 

themselves and assuming the one that has the most accurate results as the best 

model. 

 

Weka gives performance evaluation values for model validation. In addition, there 

are other validation methods such as using cross-validation or separating the data 

into training and test data sets [68].  

 

In this study we chose defect open duration metric as dependent variable for 

classification analysis since this metric was directly related with defect 

management process and product quality status. 

 

Bayesnet, Multilayer Perceptron, Logistic and C4.5 Tree machine learning 

analysis approaches [68] were performed by keeping defect open duration metric 

as class attribute (dependent variable). By selecting these approaches for analysis, 

we paid attention to apply machine learning techniques from different categories.  
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CHAPTER4 

 

CASE STUDIES 

 

 

4.1 Case Study 1 (Project-1 Data) 

 

Case Study 1A was conducted with the data of Project-1 (for the characteristics of 

Project-1 please refer to Section 3.3). In this case study firstly, only defect and 

product data were used for analysis. After case study 1A had been completed, we 

performed case study 1B with applying same analysis approaches but this time we 

used both defect and product data, and process enactmentdata of Project-1. 

 

4.1.1 Case Study 1A (Project-1) 

 

GQM Tree was prepared as shown in Table 4.1 after the data fields which the 

basic metrics were tracing to our goal in issue tracking tool database had been 

examined. The metric descriptions are provided in Table 4.2. 

 

Table 4.1 GQM for Case Study 1A 

 

GOAL 

QUESTION 

NO QUESTION 

ANALYSIS 

METHOD 

DERIVED 

METRIC 

BASIC 

METRIC 

NO BASIC METRIC 

To 

understand if 

there is effect 

of enactment 

context on 

software 

product 

defectiveness. 

4.1 

What is software 

product 

defectiveness 

prediction accuracy 

without using 

process enactment 

data? 

Bayesnet, Logistic, 

C4.5 Tree, 

Multilayer 

Perceptron 

Machine Learning 

Techniques 

Defect Data: 

open duration 

(closed date-

created date) 

4.1.1 

Defect and Product Data: 

source component, closed 

date, created date, detected 

test type, product version, 

product SLOC, product 

complexity, reproducibility, 

project phase 
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Table 4.2 Defectand Product Related Metric Descriptions for Case Study 1A 

 

Metrics Metric Description 

Measurement 

Scale 

Remaining Open 

Duration 

The time starting with the creation of the 

defect and finishing with the closure of the 

defect. Calculated by the difference of 

defect closed date and defect created date. 

Unit is number of days. Absolute 

Source Component 

The component name of the defect detected. 

Component name can be component-A, 

component-B, component-C, component-D 

or component-E. Filled by the issue 

tracking tool automatically when the tester 

record the defect.  Nominal 

Created Date 

The date when the defect is detected. Filled 

by the issue tracking tool automatically 

when the tester record the defect.  Interval 

Closed Date 

The date when the defect is closed. Filled 

by the issue tracking tool automatically 

when the project manager change the status 

of the defect as "Closed".  Interval 

Test Type 

The name of test type during which the 

defect is detected. Entered by tester to the 

issue tracking tool.  Nominal 

Product Version 

The version of the software product which 

the defect is detected. Entered by tester to 

the issue tracking tool.  Ordinal 

SLOC  

(Source Lines of 

Code) 

The size of the product version where the 

defect is detected. Collected from 

configuration tool by using Locmetrics tool.  Absolute 

Complexity 

The McCabe complexity of the product 

version where the defect is detected. 

Collected from configuration tool by using 

Locmetrics tool.  Absolute 

Reproducibility 
The repeatability of the defect detected. 

Entered by tester to the issue tracking tool.  Nominal 

Project Phase 

The project phase where the defect 

detected. Collected manually by domain 

expert. Nominal 

 

We filled MUQ shown in Figure 3.3 and 3.4 for basic and derived metrics (filled 

questionnaires are provided in Appendix-B). Afterrating results, we had idea 

about the usability of the metric. According to MUQ results, all basic metrics and 



 

50 

 

derived metrics of Project-1 were classified as “partially usable”. Since MUA-1 is 

N, MUA-2 and MUA-3 are F, and MUA-4 is P. 

 

Detected project phase data manually collected by using project’s archival data 

such as project meeting minutes, and expert opinions. Source component, closed 

date, created date, test type, product version and reproducibility metrics’ data had 

already been stored in issue tracking tool. These data directly extracted from tool 

database. Source lines of code (SLOC) and complexity metrics’ data are 

calculated by LocMetrics and manually entered into spreadsheet that includes 

defect data. Open duration metric data was calculated in the one column of the 

spreadsheet. All defect and product data were recorded in an Excel file 

(Appendix-B). 

 

Data Excel file converted to .csv file format to be analyzed in Weka. 

 

Open duration attribute had to be discretized, in other words the continuous scale 

of this attribute had to be transformed to discrete scale to identify as class attribute 

(classifier). Before discretization operation, we clustered open duration data with 

K-Means technique to display how many clusters it contains. After trials with 3, 4, 

5 and 6 number of clusters, we observed that the 5-clustered data set denotes the 

most frequency equivalent within clusters than others. Therefore, we discretized 

open duration data to five equal-width clusters as “0-27”, “27-54”, “54-81”, “81-

108”, and “108-135” days. Screen views of the operation implemented in Weka 

are provided in Appendix-B. 

 

After we transformed class attribute to nominal scale by discretization, we used 

Weka classification techniques by choosing defect open duration attribute as 

dependent attribute (class attribute). We applied Multilayer Perceptron, Bayesian 

Belief Networks, Logistic Regression and C4.5 Decision Tree (J48) machine 

learning techniques. We used 10-folds validation technique because of its high 

accurateness rate. Screen views of the operation implemented in Weka are 

provided in Appendix-B. 
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Findings from the study: 

We observed that 296 data points are sufficient to obtain confident prediction 

results. Since Project-1 is newly completed and all personnel who had developed 

the project software still exist in company, expert opinions increased the reliability 

of the data and results.  

 

Correctly classification performance values of the generated models are given 

below. The other performance values of the models are provided in Appendix-B. 

Multilayer perceptron gave the best performance values compared with other 

machine learning approaches. 

 Multilayer perceptron machine learning technique validated with 10-folds gives 

95% correctly classified instances value. 

 Bayesian networks machine learning technique validated with 10-folds gives 

85% correctly classified instances value. 

 Logistic machine learning technique validated with 10-folds gives 82% correctly 

classified instances value. 

 J48 decision tree machine learning technique validated with 10-folds gives 92% 

correctly classified instances value. 

 

To complete this case study, we spent 5 person-days. The effort includes applying 

the approach, performing the analyses, and interpreting the results. If the product 

size and complexity metrics had previously been collected in the same Excel sheet 

with defect data and project phase metric had been recorded in real time during 

creating defect in issue tracking tool, spent effort for this case study could have 

been lower than now. The complete set of Weka outputs are provided in 

Appendix-B. 

 

4.1.2 Case Study 1B (Project-1) 

 

GQM Tree was prepared shown in Table 4.3.  
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Table 4.3 GQM for Case Study 1B 

 

GOAL 

QUESTION 

NO QUESTION 

ANALYSIS 

METHOD 

DERIVED 

METRIC 

BASIC 

METRIC 

NO BASIC METRIC 

To 

understand if 

there is effect 

of process 

enactment on 

software 

product 

defectiveness. 

4.1 

What is software 

product defectiveness 

prediction accuracy 

with using process 

enactment data? 

Bayesnet, Logistic, 

C4.5 Tree, 

Multilayer 

Perceptron 

Machine Learning 

Techniques 

Defect Data: 

open 

duration  

(closed date-

created date) 

4.1.2 

Defect and Product Data: 

source component, closed date, 

created date, detected test type, 

product version, product 

SLOC, product complexity, 

reproducibility, project phase 

Process Enactment Data: 

defect management process 

attributes 

 

 

We filled out PER to identify all alternative process attributes of the process 

executions (shown in Figure 3.5). PER form was filled by interviewing with 

Configuration Management Responsible personnel of the company. Defect 

management process is performed by issue tracking tool and with the monitoring 

and control of Configuration Management Responsible personnel in company.   
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Figure 4.1 PER for Case Study 1B 

 

After completing PER form, same process attributes were entered into PSM 

columns and process execution values were filled in PSM shown in Figure 3.7 for 

each defect. Process attributes were given with abbreviations starting with “dm” 

phrase, which means “defect management”, in PSM in order to ease reading of 

data file when opened in Weka. Because of place constraint, only 21 of the 296 

data points could be shown in Figure 4.2. 
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   Process Attributes 

   1 Inputs 

2 
Outp
uts 3 Activities 4 Roles 

5 Tools and 
Techniques 

  

1.1  
<In
put 
1> 

1.2  
<In
put 
2> 

2.1  
<Outp
ut 1> 

3.1 
<Acti
vity 
1> 

3.2 
<Acti
vity 
2> 

3.3  
<Acti
vity 
3> 

3.4  
<Acti
vity 
4> 

3.5  
<Acti
vity 
5> 

4.1  
<R
ole 
1> 

4.2  
<R
ole 
2> 

4.3  
<R
ole 
3> 

4.4  
<R
ole 
4> 

4.5  
<R
ole 
5> 

5.1 
<Tools 

and 
Techni
ques 

1> 

5.2 
<Tools 

and 
Techni
ques 

2> 

5.3 
<Tools 

and 
Techni
ques 

3> 

Proce
ss 

Execu
tions 

Def
ect 
No 

dmI
1 

dmI
2 dmO1 

dmA
1 

dmA
2 

dmA
3 

dmA
4 

dmA
5 

dm
R1 

dm
R2 

dm
R3 

dm
R4 

dm
R5 dmT1 dmT2 dmT3 

PE1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE2 2 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 

PE3 3 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE4 4 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE5 5 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

PE6 6 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE7 7 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE8 8 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE9 9 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

PE10 10 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE11 11 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE12 12 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 

PE13 13 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE14 14 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE15 15 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE16 16 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 

PE17 17 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE18 18 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE19 19 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE20 20 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE21 21 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

PE22 22 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 

……. 23 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 

 

Figure 4.2 PSM for Case Study 1B 

 

To prevent multicollinearity during the analysis in Weka, we should remove 

redundant process attributes, if exists, from spreadsheet. When we examined 

PSM, we observed that dmA1, dmA5, dmR1, dmR3 and dmR5 had displayed 

same behaviors. In other words, assigning personnel and closing defect activities 

had been implemented for all 296 process executions, and project manager, 

developer and tester personnel had performed their roles in all 296 process 

executions. Since dmR3 had alone fulfilled the characteristics (differences among 

executions) of these process attributes, we kept only dmR3 from these 
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sixattributes for the analysis. Additionally, dmI1 and dmI2 do not give any 

information for analysis. Since, they do not differ in values among executions. In 

other words, since process input called “defect” was only input category that we 

had taken into account for our study, we had ignored the process input execution 

data categorized as “change” request. Therefore, we do not include dmI2 for our 

analyses. After data cleaning, we had an Excel file that consists of dmO1, dmA2, 

dmA3, dmA4, dmR2, dmR3 and dmR4 process attributes described in Figure 4.1. 

 

Table 4.4 Process Enactment Metric Descriptions for Case Study 1B 

 

Metrics Metric Description 

Measurement 

Scale 

dmO1 
New software version is the output of defect 

management process. Nominal 

dmA2 

Developer response is one of the activities of defect 

management process. It means that developer has 

resolved the defect. Nominal 

dmA3 

Not verified is one of the activities of defect 

management process. It means that tester has tested 

resolved defect but can not verified for second time. Nominal 

dmA4 

Defect verification is one of the activities of defect 

management process. It means that tester has tested 

resolved defect and verified. Nominal 

dmR2 

Configuration manager personnel is one of the roles 

of defect management process. This personnel is 

responsible of configuration control of software 

product versions. Nominal 

dmR3 

Developer personnel is one of the roles of defect 

management process. This personnel is responsible 

of develop software product and fix the defects. Nominal 

dmR4 

Graphic designer is one of the roles of defect 

management process. This personnel is responsible 

of developing graphics of software product and fix 

the defects. Nominal 

 

We combined collected defect, product and process enactment data in an Excel 

file spreadsheet. 

 

We used K-Means and Euclidean Distance clustering technique and clustered the 

data. We obtained seven clusters which were called as c0, c1, c2, c3, c4, c5 and c6 
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in the rest of the case study. The differences of clusters are provided in Table 4.5. 

Implemented clustering steps are provided in Appendix-C. 

 

Table 4.5 Process Attributes Patterns for Case Study 1B Clusters 

 

Cluster Name c0 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 1 1 0 1 1 1 0 

PAP2 1 1 1 1 1 1 0 

Cluster Name c1 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 1 1 0 1 1 0 1 

PAP2 1 1 1 1 1 0 1 

PAP3 1 1 1 1 0 0 1 

PAP4 0 0 1 1 1 0 1 

Cluster Name c2 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 1 1 0 1 0 1 0 

Cluster Name c3 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 1 1 0 1 1 0 0 

Cluster Name c4 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 1 1 1 1 1 0 0 

Cluster Name c5 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 0 1 0 0 0 1 0 

Cluster Name c6 

  2 Outputs 3 Activities 4 Roles 

Process 
Attributes 

Pattern (PAP) 

2.1 <Output 
1> 

dmO1 

3.2 <Activity 
2> 

dmA2 

3.3 <Activity 
3> 

dmA3 

3.4 <Activity 
4> 

dmA4 

4.2 <Role 
2> 

dmR2 

4.3 <Role 
3> 

dmR3 

4.4 <Role 
4> 

dmR4 

PAP1 0 0 0 0 0 1 0 

PAP2 0 0 1 0 0 1 0 
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We separated data Excel sheet to clusters and prepared a separate .csv file for each 

cluster. At the end we obtained the files shown in Figure 4.3. Each of these files 

included defect, product and process enactment metrics of the related defects.  

 

 

 

Figure 4.3 Clustered Metric Files for Case Study 1B 

 

After clustering, we applied Multilayer Perceptron, Bayesian Belief Networks, 

Logistic Regression and C4.5 Decision Tree (J48) machine learning techniques 

for each clusterseparately. During these analyses, we identified open duration as 

class attribute. Screen views of the operation implemented in Weka are provided 

in Appendix-C. 

 

Findings from the study: 

We observed that the history data stored by issue tracking tool is beneficial to 

collect process enactment data. We collected process enactment data by firstly 

filling PER to identify process attributes. These process attributes can be 

identified easier by reviewing history data in tool database since all process 

activity alternatives are stored with their dates and the personnel who perform the 

activity. For example, when any personnel updates the defect status as “verified”, 

the tool constitutes a record that “Defect status was updated by <personnel name> 

on <date>.” in database. This process history data is used to fill out PSM for each 

defect record, in other words for each process execution.    

 

Correctly classification performance values of the generated models for cluster-0 

are given below. The other performance values of the models and the clusters are 
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provided in Appendix-C. Bayesian networks gave the best performance values 

compared with other machine learning approaches. 

 Multilayer perceptron machine learning technique validated with 10-folds gives 

96% correctly classified instances value for cluster 0.  

 Bayesian networks machine learning technique validated with 10-folds gives 

97% correctly classified instances value for cluster 0.  

 Logistic machine learning technique validated with 10-folds gives 95% correctly 

classified instances value for cluster 0.  

 J48 decision tree machine learning technique validated with 10-folds gives 96% 

correctly classified instances value for cluster 0.  

 

Since clusters 3, 4 and 5 include low number of data, we could not apply machine 

learning techniques to them. If the cluster number is decreased or we have more 

data points, this issue can be solved.  

 

To complete this case study, we spent 10 person-days. The effort includes 

applying the approach, performing the analyses, and interpreting the results. If the 

process enactmentdata had previously been collected or the process history data 

could automatically be extracted by a query from issue tracking tool, spent effort 

for this case study could have been lower than now. In other words, the most 

important reason of high spent effort is that we have collected process enactment 

data by entering each of 296 defects in tool and recording the history data to Excel 

sheet.  The complete set of Weka outputs are provided in Appendix-C. 

 

4.1.3 Results Comparison for Case Study 1 (Project-1) 

 

According to Table 4.5, the characteristics of clusters can be described as follows 

in terms of process attribute patterns; 

 Cluster 0 includes the metrics of process executions through which an updated 

product version is obtained as output, defect resolution and defect verification 

activities are implemented, and configuration manager and developer perform 

their roles. But, modeling and graphics designer does not perform his role. 



 

59 

 

 Cluster 1 includes the metrics of process executions through which defect 

verification activity is implemented, and modeling and graphics designer 

perform his role. But, developer does not perform his role. 

 Cluster 2 includes the metrics of process executions through which an updated 

product version is obtained as output, defect resolution and defect verification 

activities are implemented, and developer performs hisrole. But, configuration 

manager and modeling and graphics designer do not perform their roles. 

 Cluster 3 includes the metrics of process executions through which an updated 

product version is obtained as output, defect resolution and defect verification 

activities are implemented, and configuration manager performs his role. But, 

developer and modeling and graphics designer do not perform their roles. 

 Cluster 4 includes the metrics of process executions through which an updated 

product version is obtained as output, defect resolution, not verified for second 

time and defect verification activities are implemented, and configuration 

manager performs his role. But, developer and modeling and graphics designer 

do not perform their roles. 

 Cluster 5 includes the metrics of process executions through which defect 

resolution activity is implemented, and developer performs his role. But, 

configuration manager and modeling and graphics designer do not perform their 

roles. 

 Cluster 6 includes the metrics of process executions through which no activities 

documented in PER are implemented, and only developer performs his role. In 

only one of the 425 executions not verified for second time activity is 

implemented. It means that in one defect management process execution the 

defect in resolved status could not be verified during second test repetition by 

test specialist. 

 

We observed that generally the analysis results ofclustered data sets with process 

enactmentare more accurate than data set without process enactmentas shown in 

Table 4.6. 
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Table 4.6 Results Comparison for Case Study 1 

 
Number 
of 
instances 
(data 
points) Data set Method 

Correctly 
Classified 
Instances  

Incorrectly 
Classified 
Instances 

Kappa 
statistic                         

Mean 
absolute 
error                       

Root mean 
squared 
error                   

Relative 
absolute 
error                   

112 

Cluster 0 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron 96,43% 3,57% 94,86% 1,70% 10,37% 6,06% 

Bayesnet 97,32% 2,68% 96,16% 1,40% 10,45% 4,98% 

Logistic 94,64% 5,36% 92,28% 2,14% 14,64% 7,63% 

J48  95,54% 4,46% 93,55% 2,15% 11,47% 7,64% 

71 

Cluster 1 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron 84,51% 15,49% 79,06% 7,35% 24,39% 61,41% 

Bayesnet 80,28% 19,72% 73,61% 8,31% 27,57% 69,87% 

Logistic 81,69% 18,31% 75,58% 7,19% 26,46% 23,84% 

J48  85,92% 14,08% 80,95% 7,41% 21,94% 24,57% 

70 

Cluster 2 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron 95,71% 4,29% 92,13% 3,61% 14,75% 9,76% 

Bayesnet 91,43% 8,57% 83,48% 5,53% 21,94% 14,96% 

Logistic 90,00% 10,00% 81,04% 6,54% 25,37% 17,70% 

J48  82,86% 17,14% 64,87% 17,21% 31,64% 46,55% 

26 

Cluster 3 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron N/A (all 26 are between 81-108) 

Bayesnet N/A (all 26 are between 81-108) 

Logistic N/A (all 26 are between 81-108) 

J48  N/A (all 26 are between 81-108) 

5 

Cluster 4 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron N/A (only 5 data points)     

Bayesnet N/A (only 5 data points)     

Logistic N/A (only 5 data points)     

J48  N/A (only 5 data points)     

1 

Cluster 5 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron N/A (only 1 data point 81-108) 

Bayesnet N/A (only 1 data point 81-108) 

Logistic N/A (only 1 data point 81-108) 

J48  N/A (only 1 data point 81-108) 

11 

Cluster 6 
Data 
(With 

Process 
Enactme

nt) 

Multilayer 
Perceptron 100,00% 0,00% 100,00% 4,02% 7,04% 9,16% 

Bayesnet 100,00% 0,00% 100,00% 0,03% 0,06% 0,07% 

Logistic 100,00% 0,00% 100,00% 0,03% 0,10% 6,58% 

J48  100,00% 0,00% 100,00% 0,00% 0,00% 0,00% 

296 

Data 
Without 
Process 
Enactme

nt 

Multilayer 
Perceptron 94,93% 5,07% 93,38% 2,40% 13,14% 7,80% 

Bayesnet 85,14% 14,86% 80,54% 5,79% 20,81% 18,86% 

Logistic 82,43% 17,57% 76,90% 7,00% 26,16% 22,78% 

J48  91,55% 8,45% 88,87% 5,63% 17,03% 18,35% 

 

The average of correctly classified intances values of the methods applied to 

cluster 0 data is 95,98%. On the other hand the average of correctly classified 

intances values of the methods applied to data without process enactment is 

88,51%. The correctly classified rate is 7,47% higher in cluster 0 than the result of 
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the data set that do not include process enactment. The average of root mean 

squared error values of the methods applied to cluster 0 data is 11,73%. On the 

other hand the average of root mean squared error values of the methods applied 

to data without process enactment is 19,29%. The root mean squared error is 

7,55% lower in cluster 0 than the result of the data set that do not include process 

enactment. 

 

The average of correctly classified intances values of the methods applied to 

cluster 1 data is 83,10%. The correctly classified rate is 5,41% lower in cluster 1 

than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 1 data is 

25,09%. The root mean squared error is 5,81% higher in cluster 1 than the result 

of the data set that do not include process enactment. We could not obtain 

promising results from this cluster, the reason of this is the noise in cluster 

patterns that is seen in Table 4.5. To avoid this noise and achieve more accurate 

prediciton for cluster 1, one more clustering operation can be performed within 

cluster 1 data. 

 

The average of correctly classified intances values of the methods applied to 

cluster 2 data is 90,00%. The correctly classified rate is 1,49% higher in cluster 2 

than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 2 data is 

23,43%. The root mean squared error is 4,14% higher in cluster 2 than the result 

of the data set that do not include process enactment.Although, average correctly 

classified instances is high, we obtained a high average error value. The reason of 

this is the low error rate in J48 (C4.5) decision tree method, since this machine 

learning method needs more data point for a more accurate prediction than the 

other machine learning methods. 

 

The average of correctly classified intances values of the methods applied to 

cluster 6 data is 100,00%. The correctly classified rate is 11,49% higher in cluster 

6 than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 6 data is 
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1,80%. The root mean squared error is 17,49% lower in cluster 6 than the result of 

the data set that do not include process enactment. 

4.2 Case Study 2 (Project-2 Data) 

Case Study 2A conducted with the data of Project-2 (for the characteristics of 

Project-2 please refer to Section 3.3). In this case study firstly only defect and 

product data used for analysis. After case study 2A had been completed, we 

performed case study 2B with applying same analysis approaches but this time we 

used both defect and product data, and process enactmentdata of Project-2. 

 

4.2.1 Case Study 2A (Project-2) 

 

GQM Tree shown in Table 4.7 was prepared after the data fields that were basic 

metrics tracing to our goal in issue tracking tool database had been examined. The 

metric descriptions are provided in Table 4.8. As different from Case Study 1, we 

identified detected software configuration unit (SCU) metric for Case Study-2. 

Since Project-2 includes several SCUs in its developed software product, this data 

might give important information for the patterns in data set. Second difference 

from Case Study 1 is that we selected Decision Table technique rather than 

Multilayer Perceptron. And we included Simple Logistic Regression rather that 

Logistic Regression, since we again wanted to validate our proposed method for 

various machine learning techniques.  

 

Table 4.7 GQM for Case Study 2A 

 

GOAL 

QUESTION 

NO QUESTION 

ANALYSIS 

METHOD 

DERIVED 

METRIC 

BASIC 

METRIC 

NO BASIC METRIC 

To 

understand if 

there is effect 

of process 

enactment on 

software 

product 

defectiveness. 

4.2 

What is software 

product 

defectiveness 

prediction accuracy 

without using 

process enactment 

data? 

Bayesnet, 

SimpleLogistic, C4.5 

Tree, Decision Table, 

Multilayer Perceptron 

Machine Learning 

Techniques 

Defect Data: 

open 

duration  

(closed 

date-created 

date) 

4.2.1 

Defect and Product Data: 

detected SCU name, detected 

module name, closed date, 

created date, detected test 

type, product version, product 

SLOC, product complexity, 

reproducibility, project phase, 

source component 
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Table 4.8 Defect and Product Related Metric Descriptions for Case Study 2A 

 

Metrics Metric Description 

Measurement 

Scale 

Remaining Open 

Duration 

The time starting with the creation of the defect and finishing 

with the closure of the defect. Calculated by the difference of 

defect closed date and defect created date. Unit is number of 

days. Absolute 

Detected SCU 

Name 

The name of the software configuration unit (SCU) where the 

defect is detected. Entered by developer to the issue tracking 

tool.  Nominal 

Created Date 
The date when the defect is detected. Filled by the issue 

tracking tool automatically when the tester record the defect.  Interval 

Closed Date 
The date when the defect is closed. Filled by the issue 

tracking tool automatically when the project manager change 

the status of the defect as "Closed".  Interval 

Test Type 
The name of test type during which the defect is detected. 

Entered by tester to the issue tracking tool.  Nominal 

Product Version 
The version of the software product which the defect is 

detected. Entered by tester to the issue tracking tool.  Ordinal 

SLOC  

(Source Lines of 

Code) 

The size of the product version where the defect is detected. 

Collected from configuration tool by using Locmetrics tool.  Absolute 

Complexity 

The McCabe complexity of the product version where the 

defect is detected. Collected from configuration tool by using 

Locmetrics tool.  Absolute 

Reproducibility 
The repetability of the defect detected. Entered by tester to 

the issue tracking tool.  Nominal 

Project Phase 
The project phase where the defect detected. Collected 

manually by domain expert. Nominal 

Source Component 

The component name of the defect detected. Component 

name can be BusinessManager, Form, GMManager, Report, 

DBManager, Table and Menu-Template. Manually collected 

by domain expert. Nominal 

 

We filled MUQ shown in Figure 3.3 and Figure 3.4 for basic and derived metrics 

(filled questionnaires are provided in Appendix-D). After obtained rating results, 

we had idea about the usability of the metric. According to MUQ results, all basic 

metrics and derived metric of Project-2 were classified as “partially usable”. Since 

MUA-1 is N, MUA-2 and MUA-3 are F, and MUA-4 is P. 

 

Detected project phase and source component data manually collected by using 

project’s archival data such as project meeting minutes, and expert opinions. 

Detected module name, closed date, created date, test type, product version and 

reproducibility metrics’ data had already been stored in issue tracking tool. These 

data directly extracted from tool database. Source lines of code (SLOC) and 

complexity metrics’ data are calculated by LocMetrics and manually entered into 
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spreadsheet that includes defect data. Open duration metric data was calculated in 

the one column of the spreadsheet. All defect and product data were recorded in 

an Excel file (Appendix-D).   

 

Data Excel file was converted to .csv file format to be analyzed in Weka. 

 

We discretized open duration data to seven equal-width clusters as  “0-20”, “20-

40”, “40-60”, “60-80”, “80-100”, “100-120” and “120-140” days. Since, there 

were not any open duration value in “80-100” range, this cluster had no data. 

 

We applied Decision Table, Bayesian Belief Networks, Simple Logistic 

Regression and C4.5 Decision Tree (J48) machine learning techniques by 

selecting open duration as class attribute. Screen views of the operation 

implemented in Weka are provided in Appendix-D.   

 

Findings from the study: 

We observed that 425 data points are sufficient to obtain confident prediction 

results. Since Project-2 had been completed a long time ago and several personnel 

who had developed the project software do not work for the company anymore, 

we believe that the reliability of the data collected by interviews might be lower 

than Case Study 1.  

 

Correctly classification performance values of the generated models are given 

below. The other performance values of the models are provided in Appendix-D. 

Decision Table, Bayesian Networks, Simple Logistic and J48 Decision Tree gave 

the best performance values compared with other machine learning approaches. 

 Decision Table machine learning technique validated with 10-folds gives 88% 

correctly classified instances value.  

 Bayesian networks machine learning technique validated with 10-folds gives 

89% correctly classified instances value.  

 Simple Logistic machine learning technique validated with 10-folds gives 86% 

correctly classified instances value. 
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 J48 decision tree machine learning technique validated with 10-folds gives 89% 

correctly classified instances value.  

 

To complete this case study, we spent 10 person-days. The effort includes 

applying the approach, performing the analyses, and interpreting the results. If the 

source component metric had previously been collected in the same Excel sheet 

with defect data and project phase metric had been recorded in real time during 

creating defect in issue tracking tool, spent effort for this case study could have 

been lower than now. The complete set of Weka outputs are provided in 

Appendix-D. 

 

4.2.2 Case Study 2B (Project-2) 

 

GQM Tree was prepared shown in Table 4.9.  

 

Table 4.9 GQM for Case Study 2B 

GOAL 

QUESTION 

NO QUESTION 

ANALYSIS 

METHOD 

DERIVED 

METRIC 

BASIC 

METRIC 

NO BASIC METRIC 

To 

understand if 

there is effect 

of process 

enactment on 

software 

product 

defectiveness. 

4.2 

What is software 

product 

defectiveness 

prediction accuracy 

with using process 

enactment data? 

Bayesnet, 

SimpleLogistic, C4.5 

Tree, Decision Table, 

Multilayer Perceptron 

Machine Learning 

Techniques 

Defect Data: 

open 

duration  

(closed 

date-created 

date) 

4.2.2 

Defect and Product Data: 

detected SCU name, closed 

date, created date, detected 

test type, product version, 

product SLOC, product 

complexity, reproducibility, 

project phase, source 

component 

Process Enactment Data: 

defect management process 

attributes 

 

We filled out PER to identify all alternative process attributes of the process 

executions (shown in Figure 3.5). PER form was filled by interviewing with 

Project Manager personnel of the project (Figure 4.4).    

 



 

66 

 

 

 

Figure 4.4 PER for Case Study 2B 

 

After completing PER form, same process attributes were entered into PSM 

columns and process execution values were filled in PSM shown in Figure 3.7 for 

each defect. Process attributes were given with abbreviations starting with “dm” 

(defect management) phrase in PSM in order to ease reading of data file when 

opened in Weka. Because of place constraint, only 21 of the 425 data points could 

be shown in Figure 4.5. 
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   Process Attributes 

   
1 

Inputs 

2 
Outp
uts 3 Activities 

4 
Roles     

5 Tools and 
Techniques 

  

1.1  
<In
pu
t 

1> 

1.2  
<In
pu
t 

2> 

2.1  
<Out
put 
1> 

3.1 
<Act
ivity 
1> 

3.2 
<Act
ivity 
2> 

3.3  
<Act
ivity 
3> 

3.4  
<Act
ivity 
4> 

3.5  
<Act
ivity 
5> 

3.6  
<Act
ivity 
6> 

3.7  
<Act
ivity 
7> 

3.8  
<Act
ivity 
8> 

4.
1  

<R
ol
e 

1> 

4.
2  

<R
ol
e 

2> 

4.
3  

<R
ol
e 

3> 

4.
4  

<R
ol
e 

4> 

5.1 
<Tool
s and 
Tech
nique
s 1> 

5.2 
<Tool
s and 
Tech
nique
s 2> 

5.3 
<Tool
s and 
Tech
nique
s 3> 

Proc
ess 

Exec
ution

s 

De
fec
t 

No 

dm
I1 

dm
I2 

dmO
1 

dm
A1 

dm
A2 

dm
A3 

dm
A4 

dm
A5 

dm
A6 

dm
A7 

dm
A8 

d
m
R1 

d
m
R2 

d
m
R3 

d
m
R4 dmT1 dmT2 dmT3 

PE1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 

PE2 2 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE3 3 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE4 4 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE5 5 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE6 6 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE7 7 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE8 8 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE9 9 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE10 10 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

PE11 11 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 

PE12 12 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE13 13 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE14 14 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE15 15 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 

PE16 16 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE17 17 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE18 18 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE19 19 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 

PE20 20 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 

PE21 21 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 

PE22 22 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

……. 23 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 

 

Figure 4.5 PSM for Case Study 2B 

 

To prevent multicollinearity during the analysis in Weka, we should remove 

redundant process attributes, if exists, from spreadsheet. When we examined 

PSM, we observed that I1 and I2 are same in all 425 executions; we have removed 

them from analysis.Since O1, R2 and R4 showed same behavior for each defect 

and there was little difference when reviewed all rows, we removed them from 

analysis. Since A7 and A8 showed same behavior for each defect and these 

activities had low impact on defect management process, we removed them from 
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analysis. We specify these activities as having low effect on independent variable, 

open duration metric, because changing “subject” field (a field to fill in issue 

tracking tool) in defect record or adding additional picture to defect record have 

no technical context on the quality of final product and they are executions that 

are rarely seen during defect management process of whole project. Since all row 

data were same in R1, in other words project manager has role in for all 296 

process executions, it is redundant to include it in analysis. Therefore, we 

removed R1 process attribute from analysis. Since T1, T2, T3 were used in all 

defect management process executions, they did not give additional information 

about process change through defect management. Therefore, T1, T2 and T3 were 

removed from analysis because of being redundant. After data cleaning, we had an 

Excel file that consisted of dmA1, dmA2, dmA3, dmA4, dmA5, dmA6 and dmR3 

process attributes described in Figure 4.10. 

 

Table 4.10 Process Enactment Metric Descriptions for Case Study 2B 
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We combined collected defect, product and process enactmentdata in an Excel file 

spreadsheet (Appendix-E). 

 

We used K-Means and Euclidean Distance clustering technique and separated the 

data into five clusters which were called as c0, c1, c2, c3 and c4 in the rest of the 

case study. The differences of clusters are provided in Table 4.11. Implemented 

clustering steps are provided in Appendix-E.  

 

Table 4.11 Process Attributes Patterns for Case Study 2B Clusters 
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After preparing five Excel files for clustered data sets, we applied Decision Table, 

Bayesian Belief Networks, Simple Logistic Regressionand C4.5 Decision Tree 

(J48) machine learning techniques. Screen views of the operation implemented in 

Weka are provided in Appendix-E. 

 

Findings from the study: 

We mentioned that Project-2 had been completed more previously than Project-1, 

and therefore collecting process enactment data was harder than the first project. 

Additionally, we could interview with lower number of personnel who developed 

project’s software product. Besides, this project is an old project, and executed 

processes are so changeable. This is observed with the variety of the process 

attribute patterns provided in Table 4.11. It is seen that the clusters are more noisy 

than the ones of project one. 

 

Correctly classification performance values of the generated models for cluster-0 

are given below. The other performance values of the models and the clusters are 

provided in Appendix-E. Decision Table, Bayesian Networks, Simple Logistic 

and J48 Decision Tree were applied and Bayesian Networks gave the best 

performance values compared with other machine learning approaches. 10-folds 

technique was used for validation. 

 Decision Table machine learning technique validated with 10-folds gives 95% 

correctly classifies instances value for cluster 0.  

 Bayesian Networks machine learning technique validated with 10-folds gives 

97% correctly classifies instances value for cluster 0.  
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 Simple Logistic machine learning technique validated with 72% of all data 

points allocated for training data set gives 96% correctly classifies instances 

value for cluster 0.  

 J48 Decision Tree machine learning technique validated with 10-folds gives 94% 

correctly classifies instances value for cluster 0.  

 

To complete this case study, we spent 10 person-days. The effort includes 

applying the approach, performing the analyses, and interpreting the results. If the 

process enactmentdata had previously been collected or the process history data 

could automatically be extracted by a query from issue tracking tool, spent effort 

for this case study could have been lower than now. In other words, the most 

important reason of high spent effort is that we have collected process 

enactmentdata by entering each of 425 defects in tool and recording the history 

data to Excel sheet.  The complete set of Weka outputs are provided in Appendix-

E. 

 

4.2.3 Results Comparison for Case Study 2 (Project-2) 

 

According to Table 4.11, the characteristics of clusters can be described as follow 

in terms of process attribute patterns; 

 Cluster 0 predominantly includes the metrics of process executions through 

which status changed as “Resolved” by test specialist activity is implemented, 

and developer performs hisrole. But, adding explanation to defect, defect 

rejection and not tried again activities are not implemented.Requesting more 

feedback activity is seen in the 13% some of the executions. 

 Cluster 1 predominantly includes the metrics of process executions through 

which defect rejection is implemented, and developer performs his role. But, 

adding explanation to defect, requesting more feedback, defect resolution, not 

tried again activities, status changed as “Resolved” by test specialist are 

predominantly not implemented.  

 Cluster 2 predominantly includes the metrics of process executions through 

which requesting more feedback and status changed as “Resolved” by test 

specialist activities are implemented, and developer performs his role. But, 
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adding explanation to defect, defect rejection and not tried again activities are 

not implemented.  

 Cluster 3 predominantly includes the metrics of process executions through 

which defect resolution activity are implemented, and developer performs his 

role except 25% executions. 

 Cluster 4 predominantly includes the metrics of process executions through 

which requesting more feedback and status changed as “Resolved” by test 

specialist activities are implemented, and developer performs his role. But, 

adding explanation to defect activity is implemented in 18% of executions.  

 

We observed that generally the analysis results of clustered data sets with process 

enactmentare more accurate than data set without process enactmentshown in 

Table 4.12. However, we can not say the same thing for cluster 4. Although it has 

the highest number of data points, its performance values are lower than the 

analysis without process enactment data.  

 

Table 4.12 Results Comparison for Case Study 2 

 

Number 
of 
instances 
(data 
points) Data set Method 

Correctly 
Classified 
Instances  

Incorrectly 
Classified 
Instances 

Kappa 
statistic                         

Mean 
absolute 
error                       

Root 
mean 
squared 
error                   

Relative 
absolute 
error                   

121 

Cluster 0 
Data 
(With 

Process 
Enactme

nt) 

Decision
Table 95,04% 4,96% 85,03% 8,92% 15,71% 69,02% 

Bayesnet 96,69% 3,31% 90,35% 1,18% 10,37% 9,10% 

Simple 
Logistic 95,87% 4,13% 87,71% 5,90% 12,46% 45,62% 

J48  94,21% 5,79% 82,01% 2,96% 13,04% 22,88% 

26 

Cluster 1 
Data 
(With 

Process 
Enactme

nt) 

Decision
Table 88,46% 11,54% 0,00% 11,35% 20,26% 99,55% 

Bayesnet 96,15% 3,85% 78,33% 1,93% 11,53% 16,95% 

Simple 
Logistic 96,15% 3,85% 78,33% 5,67% 13,07% 49,77% 

J48  88,46% 11,54% 0,00% 5,20% 18,98% 45,58% 

109 

Cluster 2 
Data 
(With 

Process 
Enactme

nt) 

Decision
Table 92,66% 7,34% 80,78% 11,99% 19,54% 91,13% 

Bayesnet 91,74% 8,26% 79,28% 2,98% 15,78% 22,61% 

Simple 
Logistic 90,83% 9,17% 74,16% 3,59% 14,54% 27,27% 

J48  93,58% 6,42% 82,82% 3,29% 13,42% 25,01% 
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32 

Cluster 3 
Data 
(With 

Process 
Enactme

nt) 

Decision
Table 87,50% 12,50% 66,84% 13,07% 21,61% 81,67% 

Bayesnet 93,75% 6,25% 83,42% 3,24% 15,70% 20,27% 

SimpleLo
gistic 81,25% 18,75% 53,62% 6,62% 23,53% 41,39% 

J48  78,13% 21,88% 47,66% 8,30% 24,48% 51,86% 

137 

Cluster 4 
Data 
(With 

Process 
Enactme

nt) 

Decision 
Table 75,18% 24,82% 52,97% 14,22% 24,42% 77,89% 

Bayesnet 72,26% 27,74% 48,45% 10,13% 27,61% 55,47% 

SimpleLo
gistic 70,80% 29,20% 43,91% 12,42% 27,70% 68,03% 

J48  70,80% 29,20% 41,36% 14,13% 26,98% 77,38% 

425 

Data 
Without 
Process 
Enactme

nt 

Decision
Table 88,47% 11,53% 83,26% 10,52% 18,92% 46,34% 

Bayesnet 88,94% 11,06% 84,00% 4,02% 18,36% 17,71% 

SimpleLo
gistic 88,24% 11,76% 82,70% 4,64% 17,95% 20,42% 

J48  88,94% 11,06% 83,03% 4,80% 16,66% 21,12% 

 

The average of correctly classified intances values of the methods applied to 

cluster 0 data is 95,45%. On the other hand the average of correctly classified 

intances values of the methods applied to data without process enactment is 

88,65%. The correctly classified rate is 6,08% higher in cluster 0 than the result of 

the data set that do not include process enactment. The average of root mean 

squared error values of the methods applied to cluster 0 data is 12,90%. On the 

other hand the average of root mean squared error values of the methods applied 

to data without process enactment is 17,97%. The correctly classified rate is 

5,08% lower in cluster 0 than the result of the data set that do not include process 

enactment. 

 

The average of correctly classified intances values of the methods applied to 

cluster 1 data is 92,31%. The correctly classified rate is 3,66% higher in cluster 1 

than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 1 data is 

15,96%. The correctly classified rate is 2,01% lower in cluster 1 than the result of 

the data set that do not include process enactment. 

 

The average of correctly classified intances values of the methods applied to 

cluster 2 data is 92,20%. The correctly classified rate is 3,56% higher in cluster 
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2than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 2 data is 

15,82%. The correctly classified rate is 2,15% lower in cluster 2 than the result of 

the data set that do not include process enactment. 

 

The average of correctly classified intances values of the methods applied to 

cluster 3 data is 85,16%. The correctly classified rate is 3,49% lower in cluster 3 

than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 3 data is 

21,33%. The correctly classified rate is 3,36% higher in cluster 3 than the result of 

the data set that do not include process enactment. We could not obtain promising 

results from this cluster. To investigate the reason of this we reviewed data and 

observed that the cluster noise based on between process attibute patterns and 

defect open duration metric are high in cluster 3, although the number of data 

points is low. 

 

The average of correctly classified intances values of the methods applied to 

cluster 4 data is 72,26%. The correctly classified rate is 16,39% lower in cluster 4 

than the result of the data set that do not include process enactment. The average 

of root mean squared error values of the methods applied to cluster 4 data is 

26,68%. The correctly classified rate is 8,71% higher in cluster 4 than the result of 

the data set that do not include process enactment. We could not obtain promising 

results from this cluster. To investigate the reason of this we reviewed data and 

observed that the cluster noise based on between process attibute patterns and 

defect open duration metric are high in cluster 4. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

 

Defect data gives information related to the software quality. The accessibility to 

defect data is easy in most cases, since a detailed view of detected defect is 

recorded to issue tracking tools and all thedata is stored from the initiation of the 

project to the end of maintenance phase. When the defect data is analyzed by 

researchers, the understanding of the product environment and process execution 

is provided.  

 

Quality models such as CMMI enforces in Level 5 that defect prevention is vital 

for mature process and product. When the cost effectiveness is considered, 

achieving defect prevention for emergent enterprises is as beneficial as for the 

institutional ones. One of the activities used for defect prevention is defect data 

analysis or defect prediction. In order to point out the usable techniques for the 

understanding of product defectiveness and the factors that have impact on it, we 

applied various statistical and machine learning analysis methods to our data in 

our first study. By doing this, we collected defect related and product related 

metrics in different data sets. At the end, we presented our inferences in three 

categories based on their confidence [2].  

 

We aimed to understand the effect of process enactment on product defectiveness 

prediction. After literature search, we decided to use machine learning algorithms 

for prediction, since these algorithms are suitable for recognizing the patterns in 

process enactment data. In this context, we performed case studies by using two 
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different software projects. Before conducting case studies, we needed a method 

in order to systematically plan and analyze case studies.Therefore, we developed a 

method shown in Figure 3.1. By this method, we achieved the collection of 

process enactment data, data preprocessing and machine learning analysis. 

 

The method applied in this thesisuses GQM, MUQ, PER, PSM, clustering and 

classification approaches. Goal-Question-Metric was used to determine the 

metrics that should be collected. Metric Usability Questionnaires were used to 

determine usable metrics data. Process Execution Record and Process Similarity 

Matrix were used to capture process traces and collect process enactment data. 

Attribute discretization and data reduction were performed in data cleaning and 

preprocessing phase of the case studies. 

 

To validate the method, we performed four case studies which are conducted on 

the data of completed two software projects in a small company. In the first case 

study (case study-1A), product size metrics and defect related metrics data of 

Project-1 was classified with machine learning approaches. In second case study 

(case study-1B), same metrics in Project-1 were combined with defect 

management process enactment attributes and machine learning approaches were 

repeated. After case-study-1, we observed that the performance values of 

prediction models with process enactment data are better than the ones without 

process enactment data. The implementation of case study-1 was repeated with the 

data of Project-2 in case study-2. We observed similar results in case study 2 with 

case study 1 except a roughness. The roughness is that two of the clustered data 

sets with process enactment data gave lower performance values than the analysis 

results of the data set without process enactment data.  

 

Defect open duration metric was the classifier for all case studies. In other words, 

it was identified as dependent variable for prediction models. Clustering was 

applied only in case study 1B and 2B. Clustered defect data was split to separate 

data sets. 

 

In case study 1 (when compared case studies 1A and 1B) we observed that the 
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data clustered according to process enactmentpatterns gives approximately3% 

more accurate results when the cluster has a low number of noisy process patterns 

(low number of pattern difference) and has sufficient data points to apply machine 

learning methods. The correctly classified instance values that are the 

performance evaluation value in machine learning approachesare ranging from -

10 to 17%. 

 

In case study 2 (when compared case studies 2A and 2B) we observed that the 

data clustered according to process enactment patterns gives 3% more 

accurateresults in terms of defect open duration metric (ranging from -7% to 8%) 

when the cluster has a low number of noisy process patterns.The cause of this 

high noise is implementation of different activities during process execution. 

Since the project-2 data is so old that the development processes applied might 

have not been stablein organization in these days. To decrease the noise several 

more clustering operations can be performed. 

 

Another reason of the inconsistent result in case study-2 is that the data used for 

case study-2 might be retrospective, although the project in case study 1 is a 

newly completed one. This circumstance causes to collect unreliable data 

especially for process enactment in case study 2. The MUQs were filled via 

interviews with current data providers. However,since the providers of data have 

changed for Project-2 (most of the staffproviding data for the project does not 

work in the company anymore), theanswers to the questions in MUQ might not 

have reflected the realsituation for already stored data. Therefore a new part 

questioning thecharacteristics of the providers of data under evaluation might be 

good toadd to the MUQ. 

 

While conducting case studies, we paid attention to take help from process experts 

by interviewing. But since several personnel of Project-2 were not working for the 

company anymore, we had to fill PER with the experts who knew only the second 

half of the development phase.On the other hand, for Project-1 we could easily 

collect data by using suggested assets.   
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We can say that GQM provides a systematic way to determine the data that will 

be collected and the analysis methods. MUQ provides to obtain more accurate 

results by using more accurate data.  PER and PSM provides to collect process 

enactment attributes. Especially the newly proposed usage ways for these assets 

provides more practical solutions to collect process enactment data.Aside from 

interviewing approach to fill PER, the usage of the historical process data in issue 

tracking tool was advantageous to fill PSM during or after process executions. 

Multilayer Perceptron and Bayesian Networks methods gave more accurate results 

than the other applied machine learning techniques in this study.  

 

In conclusion, multiple case study implementations showed us that our method 

can be used if we access reliable PER data in emergent organizations. Our first 

question was“Is process enactmentdata beneficial for defect prediction?”. To 

answer this, we assessed case study 1 and case study 2 results and the answer is 

yes. Thesecond question was “How can we use process enactmentdata?”. For this 

question we applied several assets called PER, PSM [16] and clustering in Weka. 

The third question was “Which approaches or analysis methods can our method 

support?”,and we explained the approaches applied in Section 3 in detail. 

 

When we think of cost of quality [70], performing defect prediction approach 

costs 10 person-days for a project that shows similar features with the project of 

the case study 1B that has 296 defects detected. After applying the generated 

prediction models in new projects, we can calculate the decrease in defect 

management costs. Therefore, our proposed methodcan support and might be 

beneficial for the quality system of the organization. 

 

We suggest using process enactmentpatterns for defect prediction operation and 

also we recommend methods to extract process enactmentdata. In other words, 

regardless of the analysis method applied, defect and product data must be tracked 

and assessed with its context to understand the product quality and process 

performance in turn.Since machine learning is a pattern oriented domain area, 

process enactmentdata is very convenient for pattern recognition.However, more 

studies should be performed for more evidence as a future work. Besides, we 
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suggest coding a script to automatically extract historical process data from issue 

tracking tool, since manual collection of process enactment data for each defect 

management execution is costly. 

 

The prediction model of defect open duration generated with the proposed way 

provides a basis for the estimation of the open period of a defectthat has been 

detected in software. If the distribution of the defects isdisplayed, the trend of 

open duration for detected defects can beestimated within a project. However, this 

assumption is not verified inthis thesis and might be subject to future work. 

 

The factors that have impact on software product defectiveness can be considered 

in two categories:Environmental factors and internal process execution. The 

process enactmentdata which we have gathered for this study contains only inner 

processes. However, there are some outer factors, such as environmental impacts 

like personnel skills that affect the results.  These outer process factors can be 

investigated and different collection methods might be discovered for the data. 

Additionally one more idea for future work is using of classification results to 

improve processes in organization. By observing the process patterns which give 

lower open duration values in PSM, organizational processes can be updated 

according to realized process attributes patterns that show better performance. 
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APPENDICES 

 

A. CASE STUDY PLAN 

 

 

 

Table A.1 Tasks of Study 

 

Design of Study Purpose 

Preparation of GQM tree Define goals, metrics and statistical analysis 

methods. 

Data collection from tools Defect density and other factors data will be 

available to start analysis. 

Data verification Verify data before using for analysis and to 

decide on applicability for our analysis, 

Metric Usability Questionnaire Forms are 

filled for each basic and derived metrics. (A 

Sample Form given in Attachment-1) 

Process data collection Obtain Process Data. PER (Process Execution 

Report), PSM (Process Similarity Matrix) will 

be used. 

Conduct interviews with 

domain experts 

Obtain Process Data. PER and  PSM will be 

used. 

Data Analysis Statistical and Machine Learning data 

analysis methods will be applied to data after 

data cleaning. 

Presentation Preparation, 

Reporting 

Analysis results will be documented. 

Observed interesting patterns will be shared, 

suggestions will be discussed. 
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Table A.2 Study Calendar 

Tasks Start Date Finish Date Duration 

Preparation of GQM tree 14.03.2012 31.03.2012 17 days 

Data collection from tools 14.03.2012 29.03.2012 17 days 

Data verification 30.03.2012 31.03.2012 2 days 

Process data collection 01.04.2012 15.04.2012 14 days 

Conduct interviews with 

domain experts 01.04.2012 15.04.2012 14 days 

Data Analysis 16.04.2012 30.04.2012 14 days 

Presentation Preparation, Make 

Corrections according to 

Review Items, Reporting 01.05.2012 28.05.2012 27 days 
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B. DETAILS OF CASE STUDY 1A 

 

 

 

 

 

Figure B.1 MUQ for “Source component” Basic Metric of Project-1 
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Figure B.2 MUQ for “Created Date” Basic Metric of Project-1 
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Figure B.3 MUQ for “Closed Date” Basic Metric of Project-1 
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Figure B.4 MUQ for “Test Type” Basic Metric of Project-1 
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Figure B.5 MUQ for “Product Version” Basic Metric of Project-1 
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Figure B.6 MUQ for “Product SLOC” Basic Metric of Project-1 
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Figure B.7 MUQ for “Product Complexity” Basic Metric of Project-1 
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Figure B.8 MUQ for “Reproducibility” Basic Metric of Project-1 
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Figure B.9 MUQ for “Project Phase” Basic Metric of Project-1 
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Figure B.10 MUQ for “Defect Open Duration” Derived Metric of Project-1 
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Figure B.11 Weka View of Case Study 1A 
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Figure B.12 Multilayer Perceptron Results of Case Study 1A 
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Figure B.13 BayesNet Results of Case Study 1A 
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Figure B.14 Logistic Results of Case Study 1A 
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Figure B.15 J48 Results of Case Study 1A 
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C. DETAILS OF CASE STUDY 1B 

 

 

 

 

Figure C.1SimpleKMeans Clustering of Case Study 1B 
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Figure C.2 Weka View of Case Study 1BCluster 0 
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Figure C.3 Multilayer Perceptron Results of Case Study 1BCluster 0 
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Figure C.4 BayesNet Results of Case Study 1BCluster 0 
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Figure C.5 Logistic Results of Case Study 1BCluster 0 

 



 

109 

 

 

Figure C.6 J48 Results of Case Study 1BCluster 0 
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Figure C.7 Weka View Results of Case Study 1BCluster 1 
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Figure C.8 Multilayer Perceptron Results of Case Study 1BCluster 1 
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Figure C.9 BayesNet Results of Case Study 1BCluster 1 
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Figure C.10 Logistic Results of Case Study 1BCluster 1 
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Figure C.11 J48 Results of Case Study 1BCluster 1 
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Figure C.12 Weka View of Case Study 1BCluster 2 
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Figure C.13 Multilayer Perceptron Results of Case Study 1BCluster 2 
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Figure C.14 BayesNet Results of Case Study 1BCluster 2 
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Figure C.15 Logistic Results of Case Study 1BCluster 2 
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Figure C.16 J48 Results of Case Study 1BCluster 2 

 



 

120 

 

 

Figure C.17 Weka View of Case Study 1BCluster 3 
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Figure C.18 Weka View of Case Study 1BCluster 4 
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Figure C.19 Weka View of Case Study 1BCluster 5 
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Figure C.20 Weka View of Case Study 1BCluster 6 
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Figure C.21 Multilayer Perceptron Results of Case Study 1BCluster 6 
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Figure C.22 BayesNet Results of Case Study 1BCluster 6 
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Figure C.23 Logistic Results of Case Study 1BCluster 6 
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Figure C.24 J48 Results of Case Study 1BCluster 6 
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D. DETAILS OF CASE STUDY 2A 

 

 

 

 

Figure D.1 MUQ for “Detected SCU Name” Basic Metric of Project-2 
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Figure D.2 MUQ for “Source Component” Basic Metric of Project-2 
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Figure D.3 MUQ for “Created Date” Basic Metric of Project-2 
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Figure D.4 MUQ for “Closed Date” Basic Metric of Project-2 
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Figure D.5 MUQ for “Test Type” Basic Metric of Project-2 
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Figure D.6 MUQ for “Product Version” Basic Metric of Project-2 
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Figure D.7 MUQ for “Product SLOC” Basic Metric of Project-2 

 



 

135 

 

 

Figure D.8 MUQ for “Product Complexity” Basic Metric of Project-2 
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Figure D.9 MUQ for “Reproducibility” Basic Metric of Project-2 
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Figure D.10 MUQ for “Project Phase” Basic Metric of Project-2 
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Figure D.11 MUQ for “Defect Open Duration” Derived Metric of Project-2 
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Figure D.12 Weka View of Case Study 2A 
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Figure D.13 Decision Table Results of Case Study 2A 
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Figure D.14 BayesNet Table Results of Case Study 2A 
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Figure D.15 SimpleLogistic Table Results of Case Study 2A 
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Figure D.16 J48Results of Case Study 2A 
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E. DETAILS OF CASE STUDY 2B 

 

 

 

 

Figure E.1 SimpleKMeans Clustering of Case Study 2B 
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Figure E.2 Weka View of Case Study 2B Cluster 0 
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Figure E.3 DecisionTable Results of Case Study 2B Cluster 0 

 



 

147 

 

 

Figure E.4 BayesNet Results of Case Study 2B Cluster 0 
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Figure E.5 SimpleLogistic Results of Case Study 2B Cluster 0 

 



 

149 

 

 

Figure E.6 J48 Results of Case Study 2B Cluster 0 
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Figure E.7 Weka View of Case Study 2B Cluster 1 
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Figure E.8 DecisionTable Results of Case Study 2B Cluster 1 
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Figure E.9 BayesNet Results of Case Study 2B Cluster 1 
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Figure E.10 Simple Logistic Results of Case Study 2B Cluster 1 
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Figure E.11 J48 Results of Case Study 2B Cluster 1 
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Figure E.12 Weka View of Case Study 2B Cluster 2 
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Figure E.13 DecisionTable Results of Case Study 2B Cluster 2 
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Figure E.14 BayesNet Results of Case Study 2B Cluster 2 
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Figure E.15 SimpleLogistic Results of Case Study 2B Cluster 2 
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Figure E.16 J48 Results of Case Study 2B Cluster 2 
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Figure E.17 Weka View of Case Study 2B Cluster 3 
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Figure E.18 DecisionTable Results of Case Study 2B Cluster 3 
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Figure E.19 BayesNet Results of Case Study 2B Cluster 3 
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Figure E.20 SimpleLogistic Results of Case Study 2B Cluster 3 
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Figure E.21 J48 Results of Case Study 2B Cluster 3 
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Figure E.22 Weka View of Case Study 2B Cluster 4 
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Figure E.23 DecisionTable Results of Case Study 2B Cluster 4 
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Figure E.24 BayesNet Results of Case Study 2B Cluster 4 
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Figure E.25 SimpleLogistic Results of Case Study 2B Cluster 4 
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Figure E.26 J48 Results of Case Study 2B Cluster 4 

 

 

 

 

 

 

 



 

170 

 

                  TEZ FOTOKOPİ İZİN FORMU 
 

 
ENSTİTÜ 

Fen Bilimleri Enstitüsü  

 
Sosyal Bilimler Enstitüsü    

 
Uygulamalı Matematik Enstitüsü     

 
Enformatik Enstitüsü 

 
Deniz Bilimleri Enstitüsü       

 
 

YAZARIN 
 

Soyadı : ................................................................................................................... 
Adı     : ..................................................................................................................... 
Bölümü : ................................................................................................................. 

 
TEZİN ADI (İngilizce) : ............................................................................................. 
................................................................................................................................. 
................................................................................................................................. 
................................................................................................................................. 
................................................................................................................................. 

 
 

TEZİN TÜRÜ :   Yüksek Lisans                                        Doktora   
 

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla 
tezimin bir kısmı veya tamamının fotokopisi alınsın. 

 
2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine 

açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik kopyası Kütüphane 
aracılığı ile ODTÜ dışına dağıtılmayacaktır.) 

 
3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin fotokopisi 

ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.) 
 
 

Yazarın imzası     ............................                    Tarih .............................          


