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ABSTRACT 

 

 

REAL-TIME STEREO TO MULTI-VIEW VIDEO 

CONVERSION 

 

Cevahir Çığla 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

 

July 2012, 179 pages 

 

 

A novel and efficient methodology is presented for the conversion of stereo to multi-view 

video in order to address the 3D content requirements for the next generation 3D-TVs and 

auto-stereoscopic multi-view displays. There are two main algorithmic blocks in such a 

conversion system; stereo matching and virtual view rendering that enable extraction of 3D 

information from stereo video and synthesis of inexistent virtual views, respectively. In the 

intermediate steps of these functional blocks, a novel edge-preserving filter is proposed that 

recursively constructs connected support regions for each pixel among color-wise similar 

neighboring pixels. The proposed recursive update structure eliminates pre-defined window 

dependency of the conventional approaches, providing complete content adaptibility with 

quite low computational complexity. Based on extensive tests, it is observed that the 

proposed filtering technique yields better or competitive results against some leading 

techniques in the literature. The proposed filter is mainly applied for stereo matching to 

aggregate cost functions and also handles occlusions that enable high quality disparity maps 

for the stereo pairs. Similar to box filter paradigm, this novel technique yields matching of 

arbitrary-shaped regions in constant time. Based on Middlebury benchmarking, the proposed 

technique is currently the best local matching technique in the literature in terms of both 
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precision and complexity. Next, virtual view synthesis is conducted through depth image 

based rendering, in which reference color views of left and right pairs are warped to the 

desired virtual view using the estimated disparity maps. A feedback mechanism based on 

disparity error is introduced at this step to remove salient distortions for the sake of visual 

quality. Furthermore, the proposed edge-aware filter is re-utilized to assign proper texture for 

holes and occluded regions during view synthesis. Efficiency of the proposed scheme is 

validated by the real-time implementation on a special graphics card that enables parallel 

computing. Based on extensive experiments on stereo matching and virtual view rendering, 

proposed method yields fast execution, low memory requirement and high quality outputs 

with superior performance compared to most of the state-of-the-art techniques.       

Key Words: Content adaptive filter, stereo matching, virtual view rendering, parallel 

implementation, stereo-to-multi-view conversion 
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ÖZ 

 

 

GERÇEK ZAMANDA STEREODAN ÇOK-GÖRÜNTÜLÜ 

VĠDEOYA DÖNÜġÜM  

 

Cevahir Çığla 

Doktora, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

 

Temmuz 2012, 179 sayfa 

 

Yeni jenerasyon 3B-TV'ler ve oto-stereoskopik çok görüntülü ekranlar için uygun içerik 

sağlamak için etkin ve yenilikçi bir stereodan çok-görüntülü videoya dönüĢüm yöntemi 

sunulmaktadır. Böyle bir dönüĢüm sisteminde, temel olarak, stereo görüntüden 3B bilgisi 

çıkarımını ve varolmayan görüntülerin sentezini amaçlayan, sırasıyla stereo eĢleme ve sanal 

görüntü oluĢturma olmak üzere iki ana algoritma bloğu bulunmaktadır. Bu fonksiyonel 

blokların ara aĢamalarında, her pikel için renk benzerliğine sahip komuĢu pikseler üzerinden 

bağlı destek bölgeleri oluĢturan, yeni bir kenar koruyan filtre önerilmektedir. Sunulan 

döngülü güncelleme, filtrelerdeki geleneksel pencere kullanımını ortadan kaldırmakta ve 

tamamen içeriğe bağlı bir filtrelemeyi, düĢük iĢlem karmaĢıklığıyla gerçeklemektedir. 

Kapsamlı testler sonucunda, önerilen filtrenin literatürdeki öncü yaklaĢımlardan daha iyi 

veya karĢılaĢtırılabilir sonuçlar elde ettiği gözlenmektedir. Önerilen filtre, temel olarak 

stereo eĢleme sırasında yüksek kalitede derinlik haritaları elde edilmesini sağlayan ceza 

fonksiyonlarının biriktirilmesi ve örtük bölgelerin düzeltilmesi için kullanılmaktadır. Bu 

yenilikçi yaklaĢım, integral görüntü paradigmasına benzer bir Ģekilde, her pikselin adaptif 

ağırlıklar ile sabit zamanda eĢlenmesini sağlamaktadır. Middlebury karĢılaĢtırmalı 

değerlendirmesine göre, önerilen teknik, daha az iĢlem karmaĢasıyla daha doğru sonuç 

vermesi açısından literatürdeki en iyi bölgesel stereo eĢleme algoritması olmaktadır. Derinlik 
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kestirimi yapıldıktan sonra, sanal görüntü oluĢturulması, referans görünülerin istenen bakıĢ 

açısına taĢınmasına dayanan derinlik tabanlı sentez ile sağlanmaktadır. Bu aĢamada, dikkat 

çeken bölgelerdeki hataların ortadan kaldırılması için derinlik hata geribildirimi 

mekanizması önerilmektedir. Bunun yanında, kenar-farkında filtre, görüntü sentezleme 

sırasında oluĢan boĢluk ve örtük bölgelere uygun renk atamasının sağlanması için 

değiĢtirilerek kullanılmaktadır. Önerilen sistemin etkinliği, paralel iĢleme olanağı sağlayan 

özel bir ekran kartı üzerinde gerçek zamanlı uyarlama ile kanıtlanmaktadır. Stereo eĢleme ve 

sanal görüntü oluĢturma üzerinde yapılan kapsamlı deneyler sonucunda, önerilen yaklaĢım 

varolan tekniklere göre, iĢlem hızı, hafıza isteri ve çıktı kalitesi açısından daha iyi 

performans sağlamaktadır.  

Anahtar Kelimeler: Kenar-farkında renk filtresi, stereo eĢleme, sanal görüntü oluĢturma, 

parallel uyarlama, stereo-çoklu görüntü dönüĢümü 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 
 
 

The recent advances in video capture and display techniques have pioneered the 

resurgence of 3D mainstream. The intensive attention on 3D movies and sale records of 3D 

market forced TV manufacturers to provide solutions for living rooms via special equipped 

TV systems. As a result, 3D TVs have gained popularity with a share of 20% in 2012 that is 

an alternative technology replacing traditional TVs.  

Display techniques that provide 3D perception can be categorized into four: standard 

displays with a set-up box, stereoscopic displays, auto-stereoscopic displays and multi-view 

displays. In the first case, which actually corresponds to free-view TVs, incoming data 

involve multiple views of a scene at a time instant giving an opportunity to the viewer for 

changing the viewing position. This ability requires 3D structure of a scene to provide views 

from different positions. The second alternative, stereoscopic displays, is the most 

endeavored class for TV companies to present 3D perception. These displays require 

stereoscopic video and special type of glasses, shutter or polarized, to provide two views for 

left and right eyes yielding 3D perception. The glasses have the role of filtering mixed views 

for each eye compatible with display technology. This technology involves two main 

approaches; shutter displays, which provide left and right views alternatively at twice of the 

refresh rate of the panel, are synchronized with shutter glasses. On the other hand, polarized 

panels display mixed images with opposite linear or circular polarization that are filtered 

through polarized glasses by the corresponding polarization directions. Hence, both type of 

displays separate stereo views to be observed for different eyes, which are merged by brain 

to percept 3D. 

In auto-stereoscopic displays, separation of stereo views for each eye is provided by 

lenticular sheets or parallax barriers placed in front of the panel, which refract or split video 

signal into left and right views. The role of polarized display and glasses is replaced by 

lenticular sheets, yielding glass-free 3D perception. Finally, multi-view auto-stereoscopic 

displays are the extensions of auto-stereoscopic displays which support more than two views 
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and increase variety of looking directions. As the viewing direction changes, the refracted 

stereo pair also changes, resulting in 3D perception from different directions; this provides a 

realistic scenario. Therefore, it could be concluded that multi-view displays are the strongest 

candidate for the next generation 3D TVs with improved reality. 

The requirement of only two cameras and no necessity for 3D extraction provide 

conventional stereo video format to be popular among many alternatives [1] [2]. The effect 

of these properties can be clearly observed in film industry by the common trend of 3D films 

introduced with polarized or shutter glasses and broadcast of stereo content in digital 

channels. It is clear that for a certain period of time, conventional stereo video (CSV) and 

polarized/shutter glasses will dominate 3D applications in consumer electronics. As a 

consequence of this new trend, in the next decade, stereo content is expected to be quite 

common, as traditional mono video.  

The simplicity of stereoscopic displays with CSV format comes with the limitations of 

two views and requirement for wearing glasses. These limitations decrease the reality of 3D 

perception, and this is the main obstacle of the current 3D mainstream. On the other hand, 

multi-view auto-stereoscopic displays provide much more realistic 3D perception by 

preserving parallax among different viewing locations without any need of glasses. 

However, this type of displays requires multiple views of a scene at a time instant and this is 

a difficult task to realize due to problems of multiple camera placement, as well as 

synchronized data acquisition. Considering the emergence of stereoscopic content for 3D 

TVs and cinemas, a practical solution for this problem is conversion of stereo video to multi-

view format. 

 

1.1 Problem Definition 

 

In the light of fast emerging 3D applications in consumer electronics, especially in TV 

sets and mobile devices, the requirement of multi-view content for next generation 3D TVs 

is a crucial problem. In this thesis, conversion of stereo content to multi-view that should 

enable driving multi-view auto-stereoscopic displays by current widespread 3D format CSV 

is addressed. Such a solution eliminates several difficulties of multi-view content creation, 

while extending the reality of 3D perception. Moreover, intermediate outcomes of this 
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conversion provide increased functionality of current 3D TV sets enabling depth adjustment 

and depth-based enhancement. 

 Based on the processing platform, stereo to multi-view conversion can be performed on 

TV units or during content creation stage. The first scenario utilizes advantages of the 

infrastructure of current 3D sources such as broadcast or disc media without any 

modifications; while online (real-time) conversion is required to deliver multi-view content 

to the viewer. Once this process is available on TV side, functional flexibility can also be 

provided improving 3D experience. According to the second scenario, conversion can be 

provided with offline processing at the source of content creation. This can be performed 

supervised, semi-supervised or fully automatic manners, requiring various human and 

computer resources. However, delivery of the converted multi-view data cannot be achieved 

directly through the existing technology.  

According to the advantages of current 3D infrastructure, intensive amount of stereo 

content and functional flexibility, conversion on the display side seems to be more practical 

and applicable to provide required 3D content for next generation 3D TVs. Hence, 

computationally efficient conversion of stereo video to multi-view is the main goal of this 

dissertation in order to enhance 3D perception at home. It is also important to note that tools 

developed for online conversion can also be applied for automatic offline conversion with 

further modifications; providing a generic solution to be applicable for various purposes. 

 

1.2 Existing Solutions 

 

A conventional approach for stereo-to-multi-view conversion is generation of necessary 

views from existing views through utilization of 3D information as illustrated in Figure 1.1. 

In such a procedure, there are usually two fundamental steps: extraction of 3D by stereo 

matching and virtual view rendering (VVR). 
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Figure 1.1: Two main steps, stereo matching and virtual view rendering are utilized for 

the conversion of stereo video to multi-view video 

 

1.2.1 Stereo Matching 

 

Stereo matching is the tool to extract parallax between two images captured from 

different camera locations. Parallax extraction provides a strong cue for the depth 

information; when executed for all pixels, dense depth (disparity) maps carrying quite 

extensive 3D information associated with a scene. There are various techniques [4]-[43] to 

perform stereo matching based on different optimization approaches. These techniques make 

use of two basic assumptions, namely the smoothness of depth field and high level of visual 

similarity across pixels in stereo images. Considering the efficiency, which involves low 

computational complexity and memory requirement, matching techniques that only utilize 

local intensity information, namely local methods [5]-[11], are the most endeavored way for 

real-time stereo matching. They perform aggregation among neighbor pixels to fuse 

smoothness by utilization of edge-aware filters [45]-[53] that preserve sharp depth 

discontinuities and yield precise disparity maps. The characteristics of such aggregation 

filters provide a trade-off between complexity and accuracy which is the key issue for local 

stereo matching. 

Apart from stereo matching, edge-aware filters are also popular for wide application 

areas,  involving depth up-sampling, hole completion that are applicable for intermediate 

problems of stereo-to-multi-view conversion. Therefore, complexity and robustness of edge-

aware filters determine limits and adaptability of the developed tools. Edge-aware filters, in 
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general, introduce additional complexity as accuracy increases. Thus, noteworthy research is 

devoted to obtain low complexity edge-aware filters without any sacrifice from precision. 

Proposed solution for the extraction of 3D information from stereo pairs in this thesis 

follows local optimization techniques by introducing a novel edge-aware filter improved for 

geometry related applications. Hence, low computational complexity and high accuracy are 

intended to provide aggregation through connected 2D support regions that is applicable for 

various purposes. The proposed approach exploits a new paradigm, namely separable 

successive weighted summation (SWS) along horizontal and vertical directions, enabling 

constant operational complexity. SWS adaptively accumulates the support data based on 

local characteristics, enabling disparity maps to preserve object boundaries and depth 

discontinuities. The weights for SWS are determined by intensity similarity of pixels within 

four (eight)-neighborhood and utilized to model the information transfer rate, denoted by the 

term permeability, towards the corresponding direction. A similar procedure is also utilized 

for post-processing of disparity maps to fuse consistency along spatial and temporal 

domains.  

 

1.2.2 Virtual View Rendering 

 

The synthesis of inexistent views from a collection of reference images is called virtual 

view rendering. There are mainly three categories for VVR depending on the available 3D 

formats as classified in [77]. For the conversion of stereo vide to multi-view, depth image 

based rendering (DIBR) [82][102] is the most endeavored solution enabling visually pleasing 

results. In this approach, virtual views are generated from the texture of reference views 

according to the 3D structure of the scene. For this purpose, 3D warps are conducted to carry 

texture between source and target cameras.   

In this thesis, the general flow of DIBR methods is improved by a disparity correction 

mechanism that addresses the errors of 3D structure due to imperfect stereo matching. 

Moreover, a novel hole completion approach is presented as an extension of proposed edge-

aware filter, providing proper texture and color assignment for the regions which are not 

visible by any source view.    
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1.2.3 Real-time Implementation 

 

Implementation of the presented algorithms on special hardware such as Graphics 

Processing Unit (GPU) is the most endeavored way for validating its efficiency. In this 

manner, Nvidia CUDA provides an excellent platform to execute stereo matching algorithms 

with real-time performance as presented in various studies [120]-[131]. Activating multiple 

processors by a single instruction is the key point to enable parallelization; however this 

introduces several limitations on algorithm flow. GPU intended constraints encourage 

independent operations while punishing recursive structures. From this point of view, 

presented algorithms for stereo matching and VVR enable fine parallelization providing real-

time execution for specific configurations determined by the algorithm parameters. Hence, 

GPU implementations of the fundamental algorithmic blocks are provided for the sake of 

completeness of the efforts devoted for efficiency.    

 

1.3 Contributions 

 

The presented algorithms are designed along with low complexity and high accuracy 

requirements to obtain efficient stereo-to-multi-view conversion. From this point of view, 

contributions of this thesis to the state-of-the-art can be summarized as follows: 

Edge-Aware Filter: A general-purpose low complexity edge-aware filter (permeability 

filter) is introduced providing connected support regions for each pixel with no pre-defined 

window size that is totally determined by the local color characteristics of the image. Hence, 

proposed filter is adaptive to color changes within the image that preserves edge 

discontinuities during aggregation. Filtering is accomplished by only six addition and four 

multiplication operations for each pixel similar to box filter paradigm with two main 

advantages: Weighted averaging is achieved among large support regions without any 

restriction of pre-defined windows and edge-awareness which prevents over smoothing is 

provided. Based on large number of experiments against the state-of-the-art, efficiency of the 

proposed filter is quite clear, especially for geometry related applications, in terms of 

computational load and accuracy. 

Stereo Matching: As the main application, the proposed edge-aware filter is applied for 

stereo matching to achieve fast execution and high precision. In this manner, two disparity 
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maps are estimated for left and right views, and the same filter is modified to assign 

consistent values for occluded pixels in disparity maps. Extended to temporal domain, 

permeability idea yields robust and smooth disparity maps for stereo video, presenting an 

efficient alternative with superior performance to the existing body of knowledge. 

Virtual View Rendering: Introduced disparity correction feedback mechanism yields 

visually pleasing virtual views especially along salient regions involving text. The presented 

hole completion enables proper texture assignment for occluded pixels without any 

disturbing perception. Supported by various objective quality metrics, highly correlative with 

human perception, presented VVR tool provides competitive rendering for automatic 

conversion of stereo-to-multi-view. 

Real-time Implementation: Parallel implementations of the proposed stereo matching 

and virtual view rendering tools are provided as the evidence of their efficiency. Real-time 

processing capability is met by the proposed GPU implementation through careful 

partitioning of each algorithm block. Moreover, presented stereo matching algorithm is 

implemented in field programmable gate arrays (FPGA) for prototype consumer electronics 

3D TVs, in order to enable functional flexibility for various applications. 

Free-view 3D TV: Different from conventional free-view (2D) TV, as a novel 

application to increase functionality of existing 3D TVs, stereo matching and VVR tools can 

be applied to free-view stereo, where users are able to change their viewpoint while still 

perceiving 3D. For this purpose, depending on the viewpoint, stereo pairs that preserve 3D 

perception are generated. Actually, free-view 3D TV is one step behind multi-view auto-

stereoscopic displays, since it requires polarized/shutter glasses; however, it yields arbitrary 

viewing angles. Hence, as an intermediate outcome of the proposed stereo-to-multi-view 

conversion scheme, stereo-to-floating-stereo conversion provides further flexibility to 

existing 3D TVs. 

 

1.4 Outline of the Thesis 

 

Following the common solution methodology summarized in Section 1.3, Chapter 2 is 

devoted to the paradigm of edge-aware filter which is the fundamental tool for various 

applications throughout this thesis. Giving the literature review of edge-aware filters, 

proposed approach which addresses fundamental disadvantages of the prior-art is detailed. In 
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that chapter, based on the neighboring criteria, two alternatives of the proposed filter are 

presented. Comparative analyses are given in terms of memory requirement and 

computational complexity that are validated by experiments on depth data up-sampling 

under the scope of this thesis.  

In Chapter 3, literature survey of stereo matching is given and the proposed algorithm is 

presented with extensions in temporal domain. Intensive comparisons are conducted over 

well-known stereo pairs with ground truth disparities in order to interpret capability of the 

proposed algorithm. For this purpose, aggregation methods of several edge-aware filters are 

compared in terms of complexity and precision for stereo matching that completes 

comparative tests conducted in the previous chapter. Moreover, a detailed analysis of the 

proposed algorithm for which the reasoning behind parameter selection is given and effects 

of intermediate steps as well as multi-resolution and temporal extensions are discussed.   

Chapter 4 presents the work for development of virtual view rendering. After the 

literature survey, fundamental problems and the motivation behind proper VVR are 

discussed. The proposed method addressing the fundamental needs of visually pleasing 

virtual views is presented. The proposed approach and reference rendering software 

developed for MPEG 3DV/FTV standardization efforts are compared for different rendering 

scenarios. After analyzing the effect of each algorithmic step, typical stereo to multi-view 

conversion examples are given for different scenes. 

Details of the parallel implementation of proposed stereo matching and VVR tools in 

GPU are given in Chapter 5, together with the properties of the implementation platform. 

Reasoning behind parallel process partitioning of each block is explained in detail. 

Improvements due to GPU implementation over CPU is presented in the experiments 

section, including stereo estimation and VVR steps. Finally, the experimental validation of 

this thesis is completed with a comparative analysis against state-of-the-art GPU 

implementations.  

Final chapter is devoted to the summary and conclusive remarks of the presented stereo-

to-multi-view conversion method with future directions of research.  
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CHAPTER 2 

 

 

2 EDGE-AWARE FILTER 

 

 

 
Content adaptive filtering [45]-[48] has been popular in computer vision for various 

applications due to its non-linear edge preserving characteristics. The fundamental idea 

behind this type of filtering is to provide intensity adaptive weights within a pre-defined 

window by highlighting color-wise similar pixels and achieving weighted averaging. Edge 

preserved smoothing characteristics yield great advantages over traditional linear time 

invariant (LTI) smoothing operators, such as Gaussian, Laplacian and Sobel filters which 

are spatially invariant and independent of image content. Therefore, anisotropic diffusion 

was proposed in [49], [50] as a general iterative approach to provide edge-aware smoothing. 

Recently, bilateral filter [45], whose relevance with anisotropic diffusion is illustrated in 

[51], has become the most popular of such filters with its non-iterative structure. During the 

last decade, bilateral filtering is adapted to various applications [52] involving image mating 

[53], denoising [54][55], colorization [56], multi-scale decomposition [57], stereo matching 

[58], tone mapping [59], video abstraction [60], motion estimation [61] and depth data up-

sampling [62]. In most of these approaches, joint (cross) bilateral filter approach is utilized, 

in which an image (data) is filtered according to the color variation of the guidance (another) 

image through which adaptive weights are determined. The filtered image can be non-

flashed view [59], cost data calculated in stereo matching [58] or motion estimation [61], 

low resolution depth map [62] or the data itself as in denoising [54].  

In Figure 2.1, typical adaptive weight distributions of two pixels in the center locations of 

the square regions are illustrated. The neighbor pixels having similar color with the center 

pixel are assigned to some weighting coefficients that are close to “1” (shown by bright 

intensities), while for the dissimilar pixels these coefficients tend to be “0”. It is obvious that 

edge characteristics of the color image are preserved in the weight map, as well. Hence, 

weighted averaging through color similarity preserves edge characteristics in the filtered 

data. This is an important property that further improves the accuracy of the filtering 

operation for various applications.  
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Figure 2.1: Typical examples of color adaptive weight distribution. 

 

Despite the wide application areas, there are certain drawbacks of bilateral filters in terms 

of computational complexity and accuracy. Direct implementation of the bilateral filter 

among NxN support area requires high computation complexity of (O(N
2
)). Therefore, a part 

of the research is focused on complexity reduction, as given in [52], [63]-[68]. In [52] and 

[68], 2D filtering is achieved by performing successive orthogonal 1D filtering along the 

horizontal and vertical axis, as in steerable filters [69]. On the other hand, in [63], multiple 

box filters [70] are fused to obtain weighted averaging with a complexity independent of 

window size. 

 In addition to the efforts on decreasing computational complexity of bilateral filters, 

there is also research focused on reducing artifacts, such as Guided Filter [47], Cosine 

Integral Images [48] which utilize the efficiency of box filters, as well. In [71], Geodesic 

Distance extending color adaptability to connected support regions that enforces color-path 

continuity among neighboring pixels is introduced. The connectedness is vital for 

applications that involve geometric structures, such as depth up-sampling, stereo matching or 

motion flow estimation. This additional requirement increases the computational complexity, 

as well as the performance. On the other hand, in [8], connectedness is guaranteed by 

exploiting box filters through arbitrary support regions.  

Various approaches providing edge-aware filtering are further discussed in the next 

section of this chapter. After pointing the disadvantages of the prior art, a novel filtering 
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approach developed for geometry related applications in the scope of this dissertation is 

introduced. In the following section, a detailed experimental comparison of the state-of-the 

art edge-aware filters with the proposed method is given in terms of the computational 

complexity and memory requirement. The comparisons are justified by the experimental 

results and the final section is devoted to the conclusion and discussions.  

 

2.1 Related Work 

 

In this section, the state-of-the-art edge-aware filters in terms of efficiency and precision 

are summarized by starting with the bilateral filter [45] which introduces a non-iterative 

approach for this purpose. Then, two faster approximations [52][64] of the bilateral filter, 

where [52] is a separable implementation and [64] is its fastest approximation in literature 

are given Guided Filter [47], which is a recent alternative for edge-preserving filters with its 

window independent computational complexity, is also analyzed. This analysis is followed 

by Cosine Integral Image [48] algorithm, extending the well known box filters to weighted 

domain. An alternative Integral Image method is also included which is a slightly modified 

version of the box filter adapted to edge-preserving characteristic is also included. Connected 

support region phenomenon is introduced by the Geodesic Distance Transform [71] in the 

next section; finally, an efficient edge-aware filter [8] which utilizes arbitrary shaped support 

regions with constant weight distribution is explained. 

 

2.1.1 Bilateral Filter 

 

Let x, y 
Z be the pixel indexes among a color image, I, involving integer intensity 

levels. A bilateral filter [45], BF, outputs color adaptive average, IF(x), of a pixel x, among a 

set of pixels, N(x), according to  
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where the range kernel, FR, assigns weights depending on intensity similarities between I(x) 

and I(y) based on a scaling factor σ as 
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On the other hand, spatial kernel, Fs, weights according to the distance between pixel 

locations as follows: 

/
),(

yx
eyxFS


    .    (2.3) 

The weights of the neighboring pixels in an NxN square window are determined by the 

combination of these two kernels, while color-wise similar pixels are assigned higher 

weights. The denominator in (2.1) provides the normalization of the weighted summation in 

the numerator, and corresponds to the total weights utilized during the calculations for pixel 

x. The range functions, FR, can be computed on another type data such as depth, D(x), and 

then the operation turns into joint bilateral filtering which enforces local characteristics of 

D(x). The main objective of the bilateral filter is the replacement of each pixel by the 

weighted average of their neighbors. Hence, intuitive behavior of BF is simple; it should 

smooth an image, remove texture, fine details and noise, while preserving sharp edges 

without any blurring artifact.  

According to the direct implementation of BF, for each pixel N
2
 weight calculations, 

multiplications and additions are required for such a weighted averaging. Such a complex 

computation characteristics requires several approximations to achieve faster filtering. The 

behavior of BF is studied extensively in the literature [52] and many approximations are 

proposed to obtain faster execution times. In this dissertation, the most trivial and the fastest 

approximations are included to make fair comparison among edge-aware filters. 

 

2.1.2 Two pass Bilateral Filter 

 

From the complexity reduction point of view, one of the most common approaches is 

separable horizontal-vertical filtering [52]. Instead of calculating weighted averages among a 

2D NxN window, one dimensional (with length of N) two bilateral filters can be applied 

among rows and columns consecutively. This process results in an effective weighted 

averaging within an NxN window with significantly reduced complexity O(N), instead of 

O(N
2
), where 2N weight calculations, multiplications and additions are required per each 

pixel. Although, BF is not a separable filter due to color similarity terms, it has been proven 



13 
 

in [52] that two-pass approximation yields comparative results as long as the window length 

is below a certain level.   

 

2.1.3 Constant time Bilateral Filter 

 

In [63], constant time computation of BF yielding window size independency via three 

different methods has been presented. In the first approach, accumulated histograms are 

exploited to avoid redundant operations for filtering with box spatial and arbitrary range 

kernels. A direct formula is also proposed as a second approach in which summed area tables 

of image powers are utilized with polynomial range and arbitrary spatial kernels. In the third 

approach, Gaussian range and arbitrary spatial kernels are unified by a Taylor series 

expansion. These approaches have been recently improved [64] in terms of computational 

complexity and memory requirement, providing the fastest approximation of BF in literature. 

In [64], piecewise linear BF in which image intensities are discretized into a number of 

intensity levels is proposed, and linear filters are computed for these levels. These filtered 

levels are defined as principle bilateral filtered image component (PBFIC), and filtered 

values of the pixels are calculated by the linear interpolation of the two closest quantization 

levels to the pixel intensity. 

The actual formulation of BF, i.e., the relation in (2.1), is modified to find the filtered 

values Jk
B
(x) of the specific quantization levels, Lk, as 
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The actual intensity level of I(x) in (2.1) is replaced by a fixed value and afterwards, re-

formulating range kernel, Jk(y) and Wk(y) which depend on only I(y), are obtained as, 
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The averaging operators in Equation (2.5) enable box filter [70] utilization over the 

updated version of I(y) with constant complexity. Hence, fast calculation of PBFIC for pre-

defined intensity levels (such as 8-16) can be achieved.  



14 
 

Once, filtered values are calculated for each level (8-16 levels), final output of an 

arbitrary pixel is calculated by linear interpolation of the fixed levels (Lk and Lk+1) closest to 

the current pixel intensity I(x) according to   

    )()()()()( 111 xJLxIxJxILxI B

kk

B

kkF       .  (2.6) 

In this approach, color adaptive filtering is achieved by utilizing box filtering for only the 

specific levels and then performing basic linear interpolation. Moreover, it enables down 

sampling of the original image for PBFIC calculation which further decreases computational 

complexity. It has been shown by the detailed experiments in [64] that eight levels provide 

sufficient accuracy. Thus, the overall computational complexity turns out to be eight box 

filters (each with three additions and two subtractions per pixel) for PBFIC calculation, two 

weight calculations and multiplications for kernel update, and two multiplications with three 

additions for the final linear interpolation per pixel. 

 

2.1.4 Guided Filter 

 

In [47], a general linear translation-variant filtering process, the guided filter, is proposed 

as an alternative to adaptive edge-aware filtering. Guided filter assumes a local linear model 

between the guidance image and the output as  
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where Ak and Bk are the real valued linear coefficients constant within the support window, 

N(x), of the center pixel. Linear transformation preserves edge characteristics of the guided 

image I in the filtered image I
F
. Determination of the linear coefficients for each pixel is the 

most critical step for the Guided Filter. As proposed in [47], this is achieved by minimizing 

the difference between the filtered value and the filter input. The filter input can be the 

intensity (color) image I for traditional filtering, or any data D such as depth or stereo 

matching cost for joint guided filtering. The coefficients (Ak and Bk) for guided filter can 

easily be determined for each pixel as follows: 
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In the explicit solution, µk and σk
2
 are the mean and variance of the intensity image, I, 

among the support window while kD is the mean of the filter input along the same support 

window and N is the number of pixels in the window. In Equation (2.8), ε is a small real 

valued number utilized to prevent division by zero. The edge-preserving characteristic of the 

Guided Filter, which utilizes the linear coefficients calculated in (2.8), has been shown by 

detailed experiments [47].  On the other hand, the determination of the coefficients in (2.8) 

can be performed by use of box filters, since the averaging operator depends on single 

parameter y that provides efficient computation of adaptive filtering. The extension of the 

algorithm to RGB color guidance can be achieved by including a color covariance matrix 

instead of the variance parameter. Once the coefficients are determined, the filtered output is 

achieved by applying (2.7) to each pixel through box filters. The required number of 

operation per pixel in the Guided Filter is 107 additions, 43 multiplications and a single 

(3x3) matrix inversion.  

 

2.1.5 Cosine Integral Images 

 

Integral images [70], which are also known as summed area tables, enable very fast 

convolution (box filter) of an image by uniform kernels. However, color adaptive filtering 

requires non-uniform filtering which cannot be achieved by a single box filter. As mentioned 

previously, all of the fast edge-aware filter implementations exploit multiple box filters to 

provide non-uniform filtering. In [48], this idea is extended to cosine integral images, which 

form orthogonal basis by cosine functions for various frequencies. The filtering through 

cosine integral images is achieved as, 
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where Ik
C
(x) is the filter output, cos(ukx) and sin(ukx) are the kernels corresponding to 

specific frequencies, uk. The filtering can be re-formulated based on the following 

trigonometric identity: cos(α-β) = cos(α)cos(β)+sin(α)sin(β). The summation terms in (2.9) 

can be efficiently calculated by use of box filters. Though, cosine and sine terms, which are 

the scaling coefficients based on frequency and pixel locations, can be calculated initially. 

Then, the filtered values for the k
th
 frequency are obtained by only two box filters.  
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According to [48], the filtered values I
C
(x) are obtained by linear combination of these 

functions as  
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through the Discrete Cosine Transform (DCT) coefficients, αk, which determine the weights 

of the basis frequencies.  

The spatial and range kernel arrangement is achieved by altering the variable in the 

cosine terms of formula given in (2.9). Replacing cos(ukx) terms in (2.9) by cos[ukFR(x)], 

where FR is a range kernel as in (2.2); color similarities can also be included. Hence, 

unifying spatial and range kernels on the target filter input which can be the intensity image, 

I, or any type of data, D, the edge-aware effect can be simulated by cosine filters. In general, 

usage of five to 12 fundamental frequencies is sufficient to approximate BF according to 

experimental results given in [48]. In this approach, the overall computational complexity 

per pixel depends on number of cosine terms, K, where four multiplications and 2K box 

filters (each three additions and two subtractions) are required for operations in (2.9) which 

are followed by K multiplications and additions for the linear combination to obtain the final 

output. 

 

2.1.6 Adaptive Box Filter 

 

Box filters are widely utilized to enable fast processing independent of pre-defined 

window size. So far, the approximations are conducted on fixed window size and unification 

of multiple box filters which are obtained through spatial and range kernels on the filter input 

and guidance image. One trivial approximation to provide edge-aware filtering is utilizing a 

single box filter (uniform filtering) with adaptive window size. This approach is proposed in 

[72] to filter cost data during stereo matching, where window size depends on the local color 

characteristics of individual pixels. Once each pixel is analyzed to determine proper 

horizontal and vertical window bounds, filtering is performed by single box filter that is 

much more efficient in terms of computational complexity compared to the algorithms 

mentioned previously. It is important to note that such an approach may not provide 

sufficient accuracy as those algorithms; however, it is one of the fastest methods worth to 

examine. Among many alternative ways to determine adaptive window size, color 

thresholding in horizontal and vertical axes as proposed in [8] is utilized throughout this 
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chapter. In this approach, the furthest pixels are determined that have RGB values closer to 

the center pixel than a pre-defined threshold (T) (with max distance limit of L) in four 

fundamental directions. These pixels determine the bounds of the window for the center 

pixel, and during the box filter uniform filtering is performed within this window. In 

adaptive box filter, weighted averaging which is the key idea of color adaptive BF is not 

performed, on the other hand uniform averaging is achieved among adaptive windows 

involving similarly colored pixels. The complexity of this approach is 4L additions and 1 

box filter with three additions and two subtractions.             

 

2.1.7 Geodesic Support Filter 

 

The spatial kernel in a bilateral filter and its approximations provides weighting 

according to pixel locations; however, it does not consider connectedness among the support 

pixels, which is important for geometry related applications. As illustrated in Figure 2.2, 

irrelevant pixels, which do not belong to the same surface, can be assigned to higher 

coefficients due to color similarity. Such a weight distribution may cause errors for geometry 

dependent applications, such as segmentation, depth data up-sampling, stereo matching and 

motion estimation, in addition to over-smoothing of sharp edge transitions. This problem can 

be solved by including Geodesic Distance [71] which is a well known reliable distance 

transformation. Enforcing connectedness between the center and the supporting pixels, 

geometrically unrelated regions are prevented from having influence during the calculation 

of weighted averages. This idea is recently applied to many problems [73]-[75] with an 

obvious performance boost-up compared to other edge-aware filters.   

 

Figure 2.2: Non-connected regions (shown by arrows) contribute in bilateral filter 
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The calculation of geodesic distances is achieved by determining color-wise smooth paths 

from each pixel to the center pixel in a pre-defined filtering window; however, this step 

results in excessively high computational complexity. There are two main approaches to 

determine geodesic distances; namely raster-scan [71] and wave-front [76] algorithms. 

Raster-scan approach is based on kernel operations applied sequentially within the window 

in multiple passes (iterations), whereas wave-front algorithm, such as Fast Marching Method 

[76], is based on iterative propagations from the center pixels. Due to limited number of 

iterations, the raster-scan approach is preferred for edge-aware smoothing among regular 

grid structures. In this method, the weight of the center pixel is assigned to “0”, while other 

pixels are assigned larger weights. Then, forward and backward scanning passes are 

performed consecutively within the window as illustrated in Figure 2.3.a and Figure 2.3.b. In 

the forward pass, the weights, W, of the pixels are updated according to  
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where y is a pixel within Kx neighborhood of pixel x according to the scanning direction as 

given in Figure 2.3, FR is the range kernel measuring color-wise similarity between two 

pixels. The weights are updated during the scanning; hence, the effect is transferred 

immediately to the following pixels. Backward scan is performed, after the forward pass is 

finalized by a similar update rule over the modified neighboring set. These passes are 

iterated several times (3-5) and the final weights corresponds to the geodesic distance of the 

pixels in the window to the center pixel. Then, weighted averaging is performed by the 

utilization of the inverse geodesic distance, in which geodesic-wise closer neighboring pixels 

are assigned higher weights.     

 

Figure 2.3: Effective calculation of approximate geodesic distances [75] via two 

reverse scans. 
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Compared to BF, computational complexity in geodesic support is much higher, such that 

for an NxN window with three iterations, for each pixel 24N
2
 weight calculations (each three 

multiplications and six additions) are required for geodesic distance calculation which is 

followed by N
2
 additions and multiplications during weighted averaging. It is clear that 

constraining connectedness among supporting pixels results in a high computational cost.  

 

2.1.8 Arbitrary Shaped Cross Filter 

 

In [8], a cross filter is proposed enabling arbitrary support window by considering 

connected pixel groups having similar intensity characteristics. The aggregation is performed 

by two passes in vertical and horizontal direction over integral images providing constant 

weights within each support region. The most obvious advantage of this approach [8] is the 

constant time filtering independent of window size that enables prompt operation. In this 

approach, for each pixel four bounds are determined in left, right, up and down directions, 

corresponding to the furthest pixels having RGB values within a specific range of the center 

pixel. As illustrated in Figure 2.4, for the pixel with index p, the bounds are given as (h
-
p, 

h
+

p, v
-
p and v

+
p). In this approach, stemming from the box filter idea, first horizontal 

averaging is performed by forming summed area tables among horizontal axis and taking 

differences of the accumulated values corresponding to the determined bounds. In Figure 

2.4, each pixel on the same vertical axis with pixel p is supported among horizontal axis 

specified by the red boundary. Then, performing the same procedure on the updated data 

among vertical axis, effective arbitrary shaped 2D uniform averaging is achieved for pixel p. 

The presented algorithm decomposes 2D box filter into two orthogonal 1-D box filters to 

provide arbitrary shaped averaging window that has the same computational complexity with 

the adaptive box filter algorithm mentioned previously. On the other hand, in adaptive box 

filter rectangular 2D windows (blue support region in Figure 2.4) are utilized depending on 

the same bounds, while in this approach arbitrary shaped windows are exploited.  
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Figure 2.4: Effective support regions of the center pixel, p, for adaptive box and 

arbitrary shaped filters. 

 

The method introduced in [8] seems to be an efficient alternative to the computationally 

complex geodesic support filter; providing connected averaging regions depending on local 

color variation among the images. However, assignment of constant weights within the 

support region does not yield good approximation of Geodesic Filter, since neighboring 

pixels are not weighted depending on the color similarities.  

2.2 Shortcomings of the Prior Art 

 

It is obvious that the problems of stereo matching and depth data up-sampling, being the 

challenges in this dissertation, are geometry related. It has been established by many 

researches [8][11][75] that exploitation of connected support regions improves the accuracy 

for the applications based on object geometry. On the other hand, BF and its approximations 

yield color adaptive edge-aware filtering without any geometric constraints on the supporting 

pixels. This property limits the accuracy to an extent for geometry related applications. 

Moreover, it has been shown [47] that BF has gradient reversal artifact around sharp edge 

transitions, since along edge regions few pixel have similar color distribution resulting in 

limited statistical data which introduces unreliability. This drawback is handled by the 

Guided Filter approach [47] providing better accuracy in various applications. However, 
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Guided Filter also does not exploit geometric consistency and connectedness that leads to 

accuracy decrease for stereo matching and depth data up-sampling. Geodesic Support Filter 

[71], extends color adaptive filtering by enforcing connectivity between supporting pixels, 

while introducing much higher computational complexity compared to traditional BF. 

Finally, the technique in [8] introduces an efficient connected uniform averaging method 

where arbitrary support regions are utilized. Although quite efficient, it cannot provide color 

adaptive averaging among uniform weight distribution that decreases the overall 

performance. In addition to the lack of efficient weighted averaging algorithm among 

connected support regions, the aforementioned methods exploit pre-defined window sizes 

which require special attention to determine. This property decreases adaptability of the 

algorithms for handling regions with various local color distributions. A summary of the 

edge-aware filter characteristics is given in Table 2.1 to provide a complete intuition.  

Table 2.1: Summary of state-of-the-art edge-aware filter characteristics. 

Algorithm
Window Size

Independence

Connected

Support

Regions

Adaptive

Weighted

Averaging

Computational

Efficiency

Bilateral Filter [7]        x x  x

Guided Filter [47]        x x  x

Geodesic Support [71]        x   x

Var. Cross Filter [8]  x  x 

Proposed Approach    
 

 

2.3 Proposed Approach 

 

In this chapter, a novel paradigm, namely information permeability, engaging 

computationally efficient two pass integration approach by weighted and connected support 

regions is introduced. Successive weighted summation (SWS) is applied in horizontal and 

vertical directions, enabling the advantages of separate filtering to achieve 2D support 

regions. Such an approach enables non-iterative diffusion among adaptive support area to 

provide not only reliable filtering, but also to yield constant operation time. Moreover, the 

proposed approach does not utilize any pre-defined window and adjust filter area for each 

pixel according to edge criteria automatically without any explicit processing. The proposed 

method introduces further computational complexity reduction with limited number of 

operations and low latency cache memory utilization at the same time, competing quality 
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with the state of the art techniques. Though, proposed approach is an efficient alternative to 

edge-aware filters in many application areas. 

All the state-of-the-art edge-aware filters have finite impulse responses (FIR) according 

to their pre-defined window sizes. The main motivation behind the proposed approach is to 

calculate the output as a result of infinite impulse response (IIR) type filter in a recursive 

manner. In this manner, proposed approach involves three main steps to; the first step is the 

calculation of permeability coefficients in principal directions recursively. These coefficients 

are analogous to the percentage of the data that is to be propagated through the 

corresponding direction. They are utilized to perform averaging in horizontal and then 

vertical directions. The order of horizontal and vertical aggregation can be interchanged 

optionally (in this study, horizontal scanning is followed by vertical scanning, although a 

similar performance is also observed for the reverse option). The proposed three step 

approach is an extension to the two pass cross based filtering approach introduced in [8], so 

that weighted averaging is achieved within an effective arbitrary shaped window.  

Depending on the number of neighbors and transfer directions, proposed approach is 

classified into 4-neighbor and 8-neighbor permeability. In 4-neighbor case, filtering is 

achieved by a transfer among left-right-up-down directions, as in steerable filters [69]. This 

approach ignores diagonal information transfer; hence, it is extended to 8-neighbor in the 

second scenario to include diagonal axes. Although, both approaches have the same three 

step structure, they have fundamental differences during the horizontal and vertical 

information transfer. Therefore, first the 4-neighbor approach is introduced, which is 

extended to 8- neighbor case in the following section.      

 

2.3.1 4-Neighbor Permeability Filter 

 

In this approach, data transfer is achieved in four main directions that resemble 

decomposition of a 2D filter into two 1D filters. The work flow of the proposed algorithm is 

given in Figure 2.5, where permeability weight calculation, horizontal and vertical transfer 

are the main steps to fuse information from color-wise similar pixels. The normalization step 

is required to map the filtered values within the range of the input data. 
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Figure 2.5: Flowchart of the proposed edge-aware filter scheme 

 

2.3.1.1 Permeability Weight Calculation 

 

“Permeability” is a common term in biomedical engineering, used to derive mathematical 

model of the behaviors of cell membranes by defining percentage of the molecules that can 

pass through. Using this weak analogy, the same idea can be used to model the transfer ratio 

of data through an RGB pixel in an image depending on the application, such as edge-aware 

color filtering. In edge-aware filters, weighted averaging is performed over color-wise 

similar pixels; thus, permeability can be utilized to support data among similarly colored 

regions. For that purpose, a permeability metric should be constructed to set a high transition 

(permeability) ratio across color-wise smooth regions and a low transition ratio for 

discontinuous color regions. 

Among many alternatives, in this study, the exponential function depending on color 

differences is utilized to model data permeability, yx , from pixel x to y as,  
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where ∆R, ∆G and ∆B indicate the absolute difference between the R, G and B values of the 

two spatially neighboring pixels, σ corresponds to the smoothing factor, N4(x) is the 4-

neighborhood of pixel x. Permeability, μ, is assigned by taking minimum data transfer-rate 

among three channels, forcing smooth regions to have similar color values for each channel. 

In order to enable information transfer in a wider range of directions, permeability weights 

are calculated in four directions, as illustrated in Figure 2.6, for each pixel. The absolute 

color differences are calculated between the center pixel and the first neighboring pixel in 

the corresponding direction. At that point, edge operators or median filter can be applied to 

the input images, before the permeability calculation to reduce possible noise and improve 

reliability. As a result, each pixel characteristic is modeled by four different μ weights, 
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yielding values in the range of [0, 1]. The range extends from impermeable (for μ=0) to 

transparent characteristics, as the value approaches to “1”.    

 

Figure 2.6: 4-directional permeability weights 

 

2.3.1.2 Horizontal Transfer 

 

The main idea for horizontal transfer is to relate color-wise similar pixels to each other by 

consecutive propagation of the filtered data, D. It is important to note that, transfer is 

conducted on the data which is desired to be filtered; for color filtering, it is the color view 

itself, whereas, for joint filtering, it is another type of data, such as depth, stereo or motion 

cost.  Therefore, successive weighted summation (SWS) is exploited to fuse information 

from the preceding pixels for the corresponding direction; SWS is a progress and update rule 

to accumulate values along horizontal direction. Horizontal processing is applied for each 

row independently; hence, inter-scan line relations are not considered at that step. This 

approach is similar to one-tap IIR filter with an adaptive update coefficient for each pixel. In 

order to fuse all available information along the horizontal axis, SWS is applied in two 

directions, raster scan (left-to-right) and inverse raster scan (right-to-left) as illustrated in 

Figure 2.7. Then, the corresponding filtered values of each scan are added together to obtain 

final averages in horizontal direction.  

 

Figure 2.7: SWS is performed for two scan orders and the final horizontal support is 

obtained by summation for each pixel.  
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In SWS, the value of a pixel is revised by addition of the updated value of the previous 

pixels that is scaled by related permeability coefficient according to 

)1()1()()(  xDxxDxD LtoRRLtoR        ,   (2.13) 

where D(x) is the real valued filter input for the pixel with horizontal index x (for simplicity 

row index is dropped), D
LtoR

(x) is the updated value in raster scan, µ
R
(x-1) is the permeability 

coefficient of the previous pixel indicating the transfer ratio.  

The data from the previous pixel is transferred to the next pixel by permeability weighted 

cost values. Due to this successive approach, the effect of distant pixels can be transferred by 

successive multiplications of the μ
R 

values. This characteristic can be observed by analyzing 

the update rule given in (2.13) and turning it into a closed form as: 
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where the updated values are written in an explicit form at each step until the leftmost pixel 

is reached in this direction. The effective weight, Weff, between pixels x and y (x>y) can be 

obtained by successively multiplying all the right permeability weights between indices y 

and x. The support of the cost values may extend to large distances as long as high 

permeability weights are observed consecutively. Once an impermeable pixel (i.e. μ0 or 

sharp intensity/color discontinuity) is observed on the left of a pixel, then the data behind the 

impermeable region cannot be propagated to the right. Actually, this property provides 

support regions to be connected, i.e. a pixel is supported by previous pixels on the left as 

long as there is smooth color transition along the path.  

For the inverse raster scan, SWS starts from the last pixel on the right and the update rule 

with its closed form as, 
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where L defines the width of the row, D
LtoR

(x) corresponds to the left accumulated value of 

the pixel with column index x. In this scan order, left permeability coefficients are utilized to 

weight aggregated values during the transfer.  

The update principle of SWS is summarized in Figure 2.8, to clarify the operations along 

a row, where input data, D, is filtered according to the permeability coefficients of the RGB 

image. 
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Figure 2.8: Update rule in left and right scan orders during SWS. 

 

SWS in both scan orders are performed on the original data; thus. They provide 

independent data from the reverse direction, as in Figure 2.7. In order to obtain final 

horizontal weighted average of each pixel, the accumulation values are unified by 

summation as, 

)()()( xDxDxD RtoLLtoRHor    .   (2.16) 
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The edge-preserving property of SWS can be illustrated by an example given in Figure 

2.9, for which intensity values and corresponding permeability weights are presented. For 

simplicity, permeability weights are calculated according to intensity levels rather than RGB 

through an exponential function defined in (2.11). According to the sketch of intensity 

values, two discontinuities which can also be figured out in the distribution of the 

permeability coefficients exist. In Figure 2.9, results of the left-to-right and right-to-left SWS 

results, which are obtained according to the rules in Figure 2.8 are given. It is clear from the 

SWS plots that accumulation of data stops at edge pixels having low permeability weights 

that prevent data transfer from regions with different intensity variation. This behavior is 

exactly the property of edge-preserving filters. Though, the final horizontal accumulation 

which is obtained by addition of values from two scanning directions preserves the edge 

characteristics as well. When the accumulated values are normalized by the accumulation of 

weights obtained through SWS over dummy data consisting of one’s (normalization details 

are given in the following section), the final filtered values are obtained as illustrated in 

Figure 2.9. The result indicates that data (intensity values in this example) is filtered 

according to the intensity distribution among the row that is the desired edge-aware 

characteristic.   

According to the update rule in SWS, constant computational complexity is observed, 

such that for each pixel, horizontal aggregated values are calculated by two multiplications 

and two additions during left and right scan orders and one final addition; resulting in two 

multiplications and three additions per pixel. Hence, all pixels are filtered by two scans 

yielding an efficient calculation. Although limited number of operations is performed for 

each pixel, their resultant affect is weighted averaging along the entire row, as given by the 

closed form representation in (2.14) and (2.15). At that point, effective weight distribution of 

a pixel is determined by consecutive permeability coefficients. Analyzing the effective 

weights, it is obvious that they tend to decrease as the supporting pixels get further from the 

corresponding point. In addition, color (intensity) changes decreases the effective weights 

providing connected and weighted support for each pixel.  Following the example given in 

Figure 2.9, the effective weight distribution for three different pixels at indexes of 4, 12 and 

22 (with red, blue and green dots) are given in Figure 2.10 that are determined by two SWS 

in reverse order. These distributions correspond to the actual weights of the neighboring 

pixels to obtain the same filtered values for these pixels via weighted averaging.    
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Figure 2.9: The edge-preserving characteristics of SWS on 1D signal is clearly 

observed after normalization.  
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Figure 2.10: 1D effective weight distributions for three points for the intensity 

profile in Figure 2.9. 

 

In Figure 2.10, it is obvious that each pixel is supported by neighboring pixels with similar 

intensity characteristics which enable edge-aware filtering. Moreover, connectedness is also 

enforced in such a way that once an impermeable region is encountered, there is no way to 

transfer data through, and since permeability weights reset the previous accumulation values.   

 

2.3.1.3 Vertical Transfer 

 

During horizontal processing, data transfer is performed for each row independently, 

while vertical relation is not considered. However, in order to obtain 2D effective filter, 1D 

horizontal transfer should be extended by use of vertical SWS, as in separable filters. Hence, 

SWS is performed on the horizontally accumulated data, as obtained in the previous section, 

along the vertical axis. In this case, scanning directions are upwards and downwards during 

the calculation of partial weighted accumulation values, which are then unified to obtain the 

final vertical accumulation. The update rule during vertical SWS is similar to its horizontal 

counterpart, having edge-awareness characteristics, by the use of vertical permeability 

coefficients in this case. For clarity, the equations for vertical SWS are given as, 
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where the final filter output DF(y) is obtained by the summation of top-to-bottom, D
TtoB

, and 

bottom-to-top, D
BtoT

, SWS values. It is important to note that horizontally filtered values are 

utilized during these operations.   

 

2.3.1.4 Effective Filter 

 

After the vertical pass, 2D support regions are provided since the vertical SWSs are 

performed on horizontally supported data. In Figure 2.11, final effective support regions of 

two pixels on the same column are illustrated. In Figure 2.11.a, the effective horizontal 

weight distribution of each pixel on the same column, where lighter regions correspond to 

higher weights is given. It is clear that, color-wise smooth regions provide strong supports 

within, and the information transfer is prevented along edge regions. In Figure 2.11.b, 

vertical effective weights of the corresponding pixels that are the result of two pass vertical 

transfer are illustrated. The final 2D effective support weights in Figure 2.11.c are 

constructed by further weighting horizontal support region with vertical weights. The 

presented SWS can be simulated by direct calculation of weighted summation through these 

weights which correspond to contribution of neighboring pixels. However, compared to 

computationally complex direct implementation, proposed approach requires only six 

additions and four multiplications per pixel.  

2.3.1.5 Normalization 

 

Horizontal and vertical SWS operations provide edge-aware weighted accumulation of 

data. In order to obtain the filtered values in range ([0,255] for 8-bit color filtering) with the 

filter input, a normalization step is required as given in (2.1). Though, the accumulated 

values should be normalized by the sum of effective weights for each pixel. These values can 

easily be calculated by applying proposed filtering steps to a dummy data consisting of ones. 

In this way, accumulated values correspond to permeability coefficients due to multiplicative 

ineffectiveness of 1s. Thus, the normalization can be calculated as; 
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Figure 2.11: (a) Horizontal effective weights of the pixels on the same column, (b) 

vertical effective weights for two pixels, (c) 2D effective weights after horizontal and 

vertical SWS (  denotes the convolution operation). 

 

where FPer is the proposed edge-aware filter, D is the filter input and 1 is the data consisting 

of only ones. This step is required for in range filtering such as color filter, de-noising, depth 

up-scaling, flash-no flash joint filter etc. On the other hand, normalization is useless for 

filtering of cost volume during stereo matching or motion vector estimation that only 

increases computational complexity. A typical example of color filtering to observe the 

effect of normalization is illustrated in Figure 2.12, where the intermediate steps of the 

proposed filtering are also given. In Figure 2.12.b, the resultant aggregation after horizontal 

and vertical SWS is illustrated; it is clear that accumulation values of the smooth regions are 

higher due to high transition of RGB. Moreover, object boundaries are also preserved in the 

aggregation data, as a desired property for edge-awareness. After normalization of the 

aggregated data according to the weight distribution given in Figure 2.12.c, the filter output 

with crisp object boundaries is obtained in Figure 2.12.d.   

The proposed 4-neighbor SWS, enables processing of each row and column 

independently with cache friendly data acquisition, due to consecutive processing. Besides, 

this filter does not require any iteration or pre-defined window to fuse data from the 

neighboring pixels. Instead, depending on local characteristics effective regions are 

determined automatically by the permeability coefficients. It is important to note that the 
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order of row and column scans can be interchanged; however, throughout this dissertation; 

row-column order is followed.     

 

Figure 2.12: (a) input color view, (b) permeability filter output without normalization, 

(c) normalization coefficients, (d) final filter output after normalization. 

 

2.3.2 8-Neighbor Permeability Filter 

 

The separable 4-neighbor filtering cannot cover diagonal directions due to orthogonal 

scanning. A trivial way to accomplish this drawback could be to perform SWS along 

diagonal axes in addition to vertical and horizontal directions and enhance filtering 

capability. However, this approach can only cover additional directions with 45º rotation 

according to main two axes that is not sufficient to transfer information from all pixels. 

Instead, 8-direction approach is proposed through similar steps as in the previous section 

with fundamental updates.  
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2.3.2.1 Permeability Weight Calculation 

 

In this case, permeability weights are determined for eight principal directions 

corresponding to all neighbors of the pixels as illustrated in Figure 2.13. The weights are 

calculated according to equation (2.12), for the eight neighbors.   

 

 

Figure 2.13: 8-neighbor permeability weights 

 

2.3.2.2 Horizontal Transfer 

 

In this case, a similar progress and update rule (SWS), introduced previously, is exploited 

to fuse data from the preceding pixels for the corresponding direction. As illustrated in 

Figure 2.14, horizontal transfer is performed in two steps with left-to-right and right-to-left 

scanning. During the horizontal scanning operations; for each pixel, information propagation 

is achieved by three neighboring preceding pixels such that the updated data of these pixels 

are added to the current pixel with permeability coefficients given as, 
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where, D
LtoR

 and D
RtoL

 correspond to updated filtered data for left-to-right and right-to-left 

scanning directions, respectively. At that point, the filtered data, D, can be a depth map, a 

color image or another type of data depending on the purpose of filtering.  

The data transfer from the preceding pixels is achieved after the process of the previous 

pixels is finalized. Thus, processing order of pixels have to be column-wise such that once 

the operations over the pixels at a column are finished, the process of pixels at the next 

column starts from the top pixel to the bottom, as illustrated in Figure 2.14. Data from the 

updated pixels (filled circles) is transferred to the un-processed pixels (empty circles). 

Horizontal scan is finalized by the summation of D
LtoR

 and D
RtoL

 to fuse filtered values in 

reverse directions. 

 

Figure 2.14: Data transfer pipe-line for horizontal transfer (a) left-to-right, (b) right-to-

left. 

 

During SWS, it is clear that effect of a pixel on the target pixel is observed through 

multiple paths with combination of related permeability weights and corresponding three 

principle directions. This is the extension of horizontal SWS in 4-neighbor version.  

Moreover, as the distance between pixels is increased, number of possible contributing paths 

increases as illustrated in Figure 2.15. In this figure, number of possible paths is given for 

each effective pixel in left-to-right transfer to the circled pixel. An example is given in 

Figure 2.15.b, illustrating two paths from a pixel, y, to another, x, among 45 alternatives 

according to Figure 2.15.a (five pixels along x-axis and one pixel along y-axis away from the 

circled pixel), where data transfer is considered in left-to-right scan. 
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Figure 2.15: (a) Number of possible contributing paths increases as the distance of the 

target pixel increases. (b) Two possible path configurations among 45 alternative paths 

between x and y. 

 

Each path yields to a transfer ration as a result of different combinations of 

permeabilities. For the two paths given in Figure 2.15, the effective weights are calculated as  
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where given the index numbers of the pixels through which paths continue, the arrows 

correspond to the related transfer direction of the pixel among the specified path. Depending 

on the transfer direction, through each pixel data is transferred by the corresponding 

permeability. For the first path for example, starting from pixel y, pixels with indexes of 1, 2, 

3 and 4 are visited that has influence on the weight by the related permeability coefficients as 

given in (2.21). The scaling by the factor, 1/3, is due to the averaging in (2.19) performed to 

prevent over summation. 

The total effect, µeff, of the pixel y in Figure 2.15.b on the target pixel, x is the determined 

by summation of all effective weights related with all possible paths between two pixels 

(2.21). The effective weight of y over x is symmetric such that the same path is traversed 

from x to y during the data transfer in right-to-left scan order. It is important to note that, 

since the transfer is performed through multiple paths, data penetration continues by 
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consecutive high permeability weights, and is prevented by the impermeable pixels on the 

path as in 4-neighbor horizontal SWS. Hence, the edge-aware characteristic is preserved in 

this case with improved directional information. This property still guarantees the 

connectedness of the effective smoothing region which is bounded by intensity edges. The 

computational complexity of the extended version turns out to be eight multiplication and 

seven addition operations per pixel. 

 

2.3.2.3 Vertical Transfer 

 

The horizontal transfer symmetrically diffuses information from the left and right 

directions as illustrated in Figure 2.16; and should be extended to cover all directions 

including top-bottom axis. For this purpose, vertical transfer is performed over horizontally 

filtered data with similar update and progress rule. This second pass provides a wider 

information transfer area enabling larger smoothing regions depending on color distribution. 

Left to Right Right to Left

Top to Bottom

Bottom to Top

 

Figure 2.16: The space covered by horizontal and vertical transfers. 

 

Vertical filtering is achieved in two steps as illustrated in Figure 2.17, top-to-bottom and 

bottom-to-top directions. In this case, propagation in vertical direction is achieved according 

to  
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where D
TtoB

 and D
BtoT

 correspond to updated filtered data for the top-to-bottom and bottom-

to-top scan orders. In vertical filtering, the process order in horizontal filtering is transposed, 

in such a way that the processing of the next row starts, when all of the pixels in the 

corresponding row are finalized. Although the processing order of pixels is raster scan, the 

data is carried out along the vertical direction by the vertical permeability weights. 

Performing top-to-down and down-to-top propagation, the final filtered values are obtained 

by summation of D
TtoB

 and D
BtoT

, as  

)()()( xDxDxD BtoTTtoB

F   .   (2.24) 

 

 

Figure 2.17: Data transfer pipe-line for vertical transfer (a) top-to-bottom, (b) bottom-

to-top. 
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2.3.2.4 Effective Filter 

 

The D
F
 in (2.24) involves the weighted summation of intensity values of all of the pixels 

in the image, where the effective weights are determined by the consecutive multiplications 

among possible paths. In 8-direction case, all directions are considered without any 

approximation of separate filtering. However, the increase in number of possible 

contributing paths, as illustrated in Figure 2.15, is lower compared to the damping factor of 

the power of 1/3. Therefore, the effect of distant pixels is reduced that may not be desired for 

various applications. On the other hand, 8-neighbor extension can calculate support from 

different directions by use of 16 multiplications and 14 additions per pixel that is three times 

more complex than its 4-neighbor version. 

As mentioned in Section 2.3.1, normalization is also required for this approach that is 

achieved in a similar way by performing the filtering operation on data consisting of 1’s. 

Then, normalization is achieved according to the equation in (2.17).    

 

2.4 Complexity Analysis 

 

In this section, proposed two approaches (4- vs. 8-neighbor filters) are compared against 

the aforementioned state-of-the-art edge-aware filters in terms of computational complexity 

and memory requirement. For this purpose, a joint data-filter scenario is selected, in which 

single channel data (depth map, cost function) is filtered according to RGB color image 

within an NxN support window. This scenario is coherent with the algorithm flow for stereo 

matching and depth up-scaling, which are the main tools in this dissertation. The extension 

of this scenario to color image filtering can be achieved by processing each channel 

independently, and that increases computation almost three times for all analyzed filters. 

Computational complexity is measured by the number of operations including addition 

and multiplication; for the sake of simplicity subtraction and division (inverse multiplication) 

are considered to have the same complexity as that of addition and multiplication. Range 

kernel calculation is a common step in all methods and intensity difference look-up tables 

can be utilized to decrease the number of multiplications. The total number of computations 

is given in Table 2.2; it is clear that Geodesic Filter [71] unifying color adaptability and 

connectedness has the largest complexity that is followed by Bilateral Filter [45]. Constant 

Time Bilateral Filter [64] requires less number of operations compared to Guided Filter [47] 
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and Cosine Integral [48] approach. Adaptive Box Filter [72] and Arbitrary Shaped Cross 

Filter [8] do not have any multiplicative steps, since they utilize standard averaging among 

specified support regions; however, as the window size increases, they require more 

operations than the proposed 4-neighbor algorithm. The 8-neighbor permeability filter has 

much less complexity compared to the bilateral filter and its approximations. On the average, 

4-neighbor permeability filter has the minimum number of operations, yielding weighted 

averages over connected regions. This method enables approximation of Geodesic Distance 

with much less computation. 

 Memory requirement is an important factor that has an influence on the complexity of 

the algorithms. Hence, algorithms are also analyzed based on the required additional 

memory in terms of the image size, WxH, as given in Table 2.3. In Adaptive Box and 

Arbitrary Shaped Cross Filter memory requirement is larger compared to Bilateral Filter, 

since for each pixel window bounds should be stored. The same requirement is valid for 

permeability filters, so that for 4-neighbor case, additional 2 image area (4 image area for 8-

neighbor) is utilized to store permeability coefficients, due to symmetry. It is clear from 

Table 2.3, that apart from Guided Filter, the memory requirement is around acceptable levels 

for all edge-aware filters.   

Table 2.2: Total number of operations per pixel in terms of addition and multiplication.  

Complexity (NxN) Bilateral 2-pass Bilateral O(1) Bilateral Guided Cos. Int.

# of Addition 4N2 8N 66 107 88

# of Multiplication N2 2N 6 43 12

Adapt. Box Geodesic AR Cross Proposed-4 Proposed-8

# of Addition 2N+5 145N2 2N+4 12 26

# of Multiplication - 73N2 - 4 16
 

Table 2.3: Additional memory requirement of edge-aware filters in terms of input 

image size (WxH), (i.e. guided filter requires additional memory of 14 input image size) 

Memory Requirement Bilateral 2-pass Bilateral O(1) Bilateral Guided Cos. Int.

(WxH) 1 1 2 14 4

Adapt. Box Geodesic AR Cross Proposed-4 Proposed-8

(WxH) 5 1 5 3 5
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2.5 Experimental Results 

 

Proposed approach is compared with edge-aware filters in terms of filter characteristics, 

computational speed and accuracy to validate the complexity analysis. It is important to note 

that, all of the filters are implemented on the same platform, for which original 

implementations of Cosine Integral Images [48], Constant Time BF [64] and Guided Filter 

[47] are provided by their authors. In order to observe filter characteristics, weight 

distributions are also given for three different pixels as illustrated in Figure 2.18, Figure 2.19 

and Figure 2.20. The support regions are determined for the blue squared pixels at the center 

of the selected windows. In Figure 2.18, a region with similar color distribution is chosen in 

which certain regions belong to different surfaces. As observed in the first row of the weight 

maps, bilateral filter and its approximations provide high correlation weights for the 

disconnected pixels having the same color variation with the center. The main reason of this 

result is the fact that geometry constraint is not enforced in these methods. On the other 

hand, Geodesic Filter, Cross Filter and proposed approaches provide connected support 

regions for the center pixel, where Cross Filter exploits constant weight and the others yield 

color adaptive weight distribution. Proposed approaches, especially 8-neighbor version, 

model and approximate geodesic distance unifying connected and weighted support regions. 

In Figure 2.19, apart from Guided Filter, all the methods provide crisp filtering area for the 

blue squared pixel. The support provided by the 8-neighbor permeability filter is limited 

compared to the remaining filters that is actually due to the scaling factor of (1/3) during 

propagation. In Figure 2.20, it can be easily observed that the proposed approach yields 

crisper support regions than Geodesic Filter in certain cases. Due to vertical edge directions, 

the filter area is limited for Cross Filter and permeability filter.  Besides, on the first row, 

high weights of unrelated pixels are obvious for BF and its approximations which do not 

constrain geometric connectedness. According to these results, it can be concluded that 

permeability filter approximates Geodesic Filter effect with significantly lower 

computational complexity yielding geometrically consistent and weighted support.  
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Figure 2.18: The weight distribution for the center pixel a) Bilateral Filter, (b) Two-

pass bilateral Filter, (c) Constant time Bilateral Filter, (d) Guided Filter, (e) Cosine 

Integral, (f) Adaptive Box Filter, (g) Geodesic Filter, (h) Arbitrary Region Cross Filter,  

(i) Proposed 4-neighbor, (j) Proposed 8-neighbor. 

 

 

Figure 2.19: The weight distribution for the center pixel a) Bilateral Filter, (b) Two-

pass bilateral Filter, (c) Constant time Bilateral Filter, (d) Guided Filter, (e) Cosine 

Integral, (f) Adaptive Box Filter, (g) Geodesic Filter, (h) Arbitrary Region Cross Filter, 

(i) Proposed 4-neighbor, (j) Proposed 8-neighbor. 
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Figure 2.20: The weight distribution for the center pixel a) Bilateral Filter, (b) Two-

pass bilateral Filter, (c) Constant time Bilateral Filter, (d) Guided Filter, (e) Cosine 

Integral, (f) Adaptive Box Filter, (g) Geodesic Filter, (h) Arbitrary Region Cross Filter, 

(i) Proposed 4-neighbor, (j) Proposed 8-neighbor. 

 

Visual comparison of the effective weight distribution of 4 and 8-neighbor approaches are 

given in Figure 2.21, in which support regions for four different pixels (blue circled) are 

illustrated. In the right column, supporting pixels with high weight factors (>0.1) are 

illustrated to discriminate color variations among the support regions. It is important to note 

that for these methods, the support window area is determined automatically by the 

distribution of permeability coefficients; i.e., window size is not fixed initially. Using the 

same parameters for permeability coefficient determination, it is clear that 4-neighbor 

version enables much wider filter support. Moreover, support area is determined 

automatically based on the local color variations. This is an important property that prevents 

possible over-smoothing and preserves edge characteristics of the guidance image. As 

mentioned previously, 8-neighbor approach enables better directional handling; however, it 

suffers from limited support area due to scaling factor (1/3) during SWS as given in (2.18) 

and (2.19). This property can be critical for filtering of cost functions during stereo matching 

and motion vector estimation that requires larger support area.  

On the other hand, the effect of smoothing factor, σ, which determines the distribution of 

permeability coefficients, is illustrated in Figure 2.22. As this parameter increases, data 
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transfer rates increase, which increase smoothing area as well. The pixels having weights 

larger than 0.1 are given in Figure 2.22 to illustrate edge-preserving property based on 

smoothing factor. It can be observed that effective weight distribution expands to distant 

pixels and support regions lose crispness as well as same color distribution. Throughout this 

study, the range of color similarity scaling factor (σ) is set to [8-16] enabling sufficient edge-

awareness as observed in Figure 2.22.         

 

Figure 2.21: Effective weights and filter are provided by 4-neighbor (above) and 8-

neighbor permeability filter (below). 

 

 

Figure 2.22: As smoothing parameter increases, effective support region area gets 

larger for each pixel that decreases edge-awareness. 
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After analyzing filter characteristics, they are compared in terms of execution times 

through experiments performed on a 3.06GHz Intel Core i7 CPU with 6 GB RAM. As given 

in Table 2.4, joint data filtering (depth up-scaling) is applied for an image resolution of 

(720x576) for 30x30 supporting windows. According to the results, it can be easily argued 

that the proposed method with its two versions has the fastest execution time which is 

compatible with the computational complexity analysis given in Table 2.2. One main reason 

of this result in addition to low number of operation is its cache friendly data access pattern, 

where consecutive processing is exploited during horizontal and vertical successive weighted 

summation in permeability filter. For the remaining techniques, box filter, which is utilized 

intensively, requires multiple jumps on the accumulated data in horizontal and vertical 

directions, increasing latency, as well as execution time to a certain extent.  As expected, 

providing connected support regions with weighted averaging via Geodesic distance is time 

consuming, even compared to traditional BF. Constant Time BF has significant improvement 

in computational complexity with sufficient modeling accuracy as observed in weight 

distribution maps and detailed analysis in [64]. Further computational comparison is 

conducted on stereo matching chapter, which also yields correlated results with Table 2.4.  

Table 2.4: Computation times of edge-aware filters for joint filtering of an image with a 

size of 720x576 

Computation Time
(msec)

Bilateral
2-pass

Bilateral
O(1) Bilateral Guided Cos. Int.

720x576 1.9 104 1480 200 470 2146

Adapt. Box Geodesic Var. Cross Proposed-4 Proposed-8

720x576 426 3.6 105 426 85 193
 

According to the geometry related applications of edge-aware filters throughout this 

dissertation, the experiments on accuracy comparison are conducted in two cases. In the first 

scenario, joint up-scaling performance is measured by using ground truth disparity (depth) 

maps given in Middlebury Stereo Online Benchmark [111]. The actual disparity maps are 

down-sampled by three factors (2, 4 and 8) then up-sampled via well-known linear Bicubic 

filter. This is followed by edge-aware filtering with respect to high resolution color images. 

Then, refined depth maps are compared to the ground truth versions by the common metric 

exploited to evaluate performance of stereo algorithms in the benchmark; the ratio of the 

pixels having depth level difference larger than 1 level. The experiments are conducted on 30 

different scenes to cover various scenes and for each method parameter settings with the best 

performance are exploited. The average error rates are given in Figure 2.23, while the best 
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performance is obtained by Geodesic Filter. The proposed approaches have the second best 

performance for up-sampling level of 2. As the ratio increases, superior performance of 

Geodesic Filter is visible. It is interesting to note that Guided Filter and Cosine Integral 

approaches have worse performance compared to Bicubic interpolation. The main reason of 

this result is the fact that among small support windows, the model proposed by these 

techniques cannot approximate BF. In all cases, the proposed method outperforms Arbitrary 

Cross Filter and Constant Time BF, which are the fastest algorithms after permeability filter. 

Typical up-scaling results (scale by 4) are given for the Dolls image sequence in Figure 2.24.  

The joint comparison of the edge-aware filters is summarized in Figure 2.25, where x-axis 

corresponds to the log of the execution time in Table 2.4, and y-axis is the average error rate 

for three scales. According to this comparison, it can be stated that the proposed approach 

enables much faster processing among all techniques with the second best average 

performance. Therefore, it is an alternative to the state-of-the-art edge-aware filtering 

techniques, while unifying fast operation and high accuracy. Further comparative analyses 

on accuracy and execution time are conducted on the stereo estimation chapter.  

   

 

Figure 2.23: Percentage of erroneous pixels whose disparity error is larger than one 

level compared to ground truth for three different scaling ratios 
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Figure 2.24: First row: color image, ground truth and down-sampled (by 4) disparity 

maps; Second row: filter results of Bilateral Filter, Two-pass bilateral Filter, Constant 

time Bilateral Filter, Guided Filter and  Cosine Integral; Third row: filter results of 

Adaptive Box Filter, Geodesic Filter, Arbitrary Region Cross Filter, Proposed 4-neighbor, 

Proposed 8-neighbor. 

 

 

Figure 2.25: Joint evaluation of accuracy and computational complexity (in logarithmic 

scale) for edge-aware filters 

 

2.6 Conclusion 

 

In this chapter, state-of-the-art edge-aware filtering techniques are examined and an 

efficient content-based data filtering method (permeability filter) is introduced, exploiting 

horizontal and vertical propagation based on local color characteristics. The proposed 
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approach improves traditional edge-preserving approaches in terms of connectivity and 

computational complexity. Moreover, permeability filter simulates Geodesic Support with 

considerable computation reduction, providing connected and weighted averages over 

adaptively determined support area. The separable information propagation via SWS enables 

constant complexity for edge-aware filtering with no specification of window sizes. Hence, 

totally content adaptive filtering is provided depending on color variation. In addition, 

successive information transfer enforces effective support regions for filtering to be 

connected, which prevents contribution of irrelevant pixels that do not belong to same 

surface. This is important for geometry related applications, such as depth up-scaling, stereo 

matching and motion vector estimation, providing pixels on the same surface to involve 

similar geometry (depth, motion) characteristics.  

According to experiments, the permeability filter provides high quality results for 

disparity map up-sampling, competitive with the state-of-the-art. Moreover, the fastest 

execution time is achieved by the proposed algorithm, utilizing cache-friendly data 

acquisition for CPU, as well as high parallelization with row and column independency, 

which makes GPU implementation feasible. Depending on the computational complexity 

analysis, memory requirement and accuracy, proposed filtering method is a strong alternative 

to the leading state-of-the-art edge-aware filters in many application areas with less 

computational complexity and high quality results. In the following chapter, further 

comparison is presented between permeability filter and state-of-the-art techniques for stereo 

matching that validates superior performance of the proposed method on geometry 

dependent applications.         
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CHAPTER 3 

 

 

3 STEREO MATCHING 

 

 

 

Generation of stereo images is achieved by utilizing two horizontally aligned cameras 

separated by a specified baseline. Separation of left and right cameras provides a parallax 

leading horizontal shifts between two images. This capture method resembles human vision 

system in which functionality of the eyes is replaced with horizontally aligned cameras as 

illustrated in Figure 3.1. The perception of binocular depth cues is the result of parallax 

between left and right views that is the most endeavored way to provide 3D perception in 2D 

displays and projectors. The horizontal shifts between images are related to perceived depth 

of the points with three types as illustrated in Figure 3.2. The points are observed behind the 

screen when there is positive disparity between conjugate pairs in left and right images. 

When there is no disparity (zero disparity), points are perceived on the screen as in 2D 

content. On the other hand, objects come closer to the viewer in front of the screen as the 

disparity between left and right pairs increase in negative direction. The relation between 

disparity and depth can be formulated by  

dB

BZ
Depth s


  ,   (3.1) 

where Zs corresponds to the distance between the screen and the observer, B is the baseline 

distance between two cameras (eyes) and d is the pixel disparity between conjugate pairs. Zs 

can also be considered as the distance between the focus point of stereo cameras and the 

center of the baseline. In this manner, the formulation in (3.1) is valid for both stereo capture 

and imaging devices to measure the recorded or perceived depth of a scene. It is also 

important to note that in stereo production or 3D display systems, there is an upper limit for 

the maximum value of the disparity that is the baseline distance between two cameras. This 

is a natural result of human visual system (HVS) where eyes can maximally converge at 

infinity and cannot diverge. 
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Figure 3.1: Observation of a scene through two eyes enables binocular cues for 3D 

perception.  

 

 

Figure 3.2: Three cases for the relation of disparity and perceived depth for stereo 

camera systems. 

 

Depending on the relation formulated in (3.1), depth estimation problem can be reduced 

to finding matching points for each pixel across stereo images, corresponding to specific 

disparities. At that point, horizontal alignment of cameras simplifies matching such that 

conjugate pairs are located on the same vertical coordinates as illustrated in Figure 3.3. In the 

figure, conjugate pairs (the same colored points in left and right images) lie on the horizontal 
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epipolar line with a specific parallax based on the depth structure. In certain cases, stereo 

cameras may not have horizontal alignment due to imperfect calibration; this requires 

rectification which is a pre-processing step that warps one of the stereo views with respect to 

the other in order to align corresponding scan-lines. Hence, stereo matching can be defined 

as the problem of finding parallax of each pixel in left and right images as illustrated in 

Figure 3.3, which provides depth distribution or perceived depth of a scene captured by a 

stereo camera system.  

 

Figure 3.3: Conjugate pixel pairs between stereo views lie on the same vertical 

coordinates (Art stereo sequence [111]).  

 

Stereo matching has attracted many researchers due to its wide application area in 

computer vision, such as 3D object modeling, robot navigation, face recognition, object 

tracking, automatic aviation systems, medical and military applications and consumer 

electronics. The emergence of 3D TVs is also expected to push the research efforts on stereo 

processing further by a demand on real-time systems for extraction of 3D information 

embedded within stereo views. In the next section, a literature survey is given on stereo 

matching that is followed by the motivation behind the development of a stereo matching 

algorithm in the scope of this dissertation. The proposed stereo matching algorithm is 
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presented in Section 3.4 and the experimental results are given in Section 3.5. Finally, this 

chapter concludes in Section 3.6. 

 

3.1 Related Work 

 

During the recent years, many algorithms have been developed for stereo matching and 

an excellent taxonomy for these algorithms is available in [4] where a classification is 

provided according to the matching cost, disparity optimization and disparity refinement 

stages. Actually, diversity of the algorithms mostly relies on the second stage where 

optimization approach determines the main characteristics (complexity, precision) of the 

methods. Hence, estimation algorithms can be analyzed with four fundamental optimization 

approaches, namely local, global, cooperative and semi-global.  

In local methods [5]-[11], disparity map assignment is achieved via “winner-take-all” 

optimization after treating each disparity candidate independently. The matching cost 

function is aggregated through a summation or an averaging over a support region and the 

disparity providing minimum cost is assigned to the corresponding pixel. As stated in the 

previous chapter, support region determines accuracy of this type of algorithms and the most 

common approach is to exploit window-based regions in order to simplify the aggregation. 

The local methods do not involve any iteration steps which provide simplicity and fast 

operations as well as low memory requirement. Thus, these methods are available for real-

time implementations on special platforms such as general purpose graphics processing unit 

(GPGPU). In that manner, efforts on efficient window based algorithms get popularity with 

the requirement of disparity maps on variety of 3D systems. 

The second group involves global optimization algorithms [12]-[20], which are more 

complex and yield more precise estimates compared to the local methods. In this group, 

smoothness assumption of the disparity map is utilized by explicitly enforcing neighboring 

pixels to have similar depth assignments. These methods are formulated in an energy-

minimization framework and the objective is to optimize the global energy for the estimated 

disparity map. Markov Random Field (MRF) modeling is the most common approach for 

global methods, where efficient algorithms such as belief propagation [12] and graph cuts 

[14] have been introduced for the solution. In both of these approaches an iterative 

framework is exploited to provide smooth disparity maps and high visual similarity between 

matched pixels. In general, MRFs are constructed on regular grids and message passing is 
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achieved pixel-wise; however this approach may result in errors at object boundaries. This 

problem is handled by introducing region based MRFs, where each node corresponds to 

similarly color pixel groups, super-pixels, instead of individual pixels. This approach 

requires initial over-segmentation which determines piece-wise smooth units (pixel groups). 

Thus, message passing is achieved through an irregular grid which preserves object 

boundaries. In [17] and [19], the global optimization is performed over pixel groups after an 

initial segmentation process; homogenous pixel groups are supposed to have planar 

characteristics; hence piece-wise smoothness is constrained within the scene. The precision 

of global methods is increased especially at object boundaries and weakly textured regions 

with the initial over-segmentation step. However, utilization of irregular grids (pixels 

groups) instead of regular grids prevents the availability for fast processing due to symmetry 

loss. According to the test bed supplied through [111] where disparity estimation algorithms 

are compared in terms of accuracy, the best methods belong to the class of region based 

belief propagation that is an important evidence for the reliability of these methods. 

Cooperative methods [21]-[24] have been developed to unify advantages of local and 

global methods by handling occlusions, object boundaries and un-textured regions. These 

methods, similar to region based global algorithms, rely on the assumption that scenes are 

composed of non-overlapping planar patches all of which correspond to pixel groups 

involving color-wise similar pixels. Smoothness is enforced within each segment and depth 

distribution is allowed to sharply change among segment boundaries. These methods follow 

an iterative process to assign disparity distribution to segments by constraining pixel 

similarity, smoothness between similar colored neighboring segments, penalizing occlusions 

and overlapping regions. The computational complexity of cooperative methods is relatively 

high due to trial and error of various disparity hypotheses during the iterative processes. 

Thus, precise disparity maps are obtained with some sacrifice on simplicity. 

The final class is the semi-global methods [25]-[28] which involve dynamic programming 

(DP) optimization. These methods are provided to decrease computational complexity of 

global algorithms which are NP-hard in general. From that point of view, global 

optimization is performed for each scan-line (row) independently resulting in a polynomial 

complexity. The main assumption throughout dynamic programming optimization is the 

ordering constraint between neighboring pixels along the same row. The most important 

advantage of DP is that, fast processing can be obtained with globally optimized disparity 

assignment for a scan-line. In that manner, real time implementations can be obtained 

without any requirement on dedicated platforms with less precision. However, lack of inter 
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scan-line consistency breaks smoothness assumption and result in streaking artifacts. There 

are extensions of DP exploiting consistency between scan-lines by vertical support of cost 

function [29], post-processing to reduce streaking artifacts and additional vertical passes. 

 

3.2 Motivation 

 

Rapid execution time, robust disparity estimation and low memory requirement are the 

fundamental constraints of stereo matching algorithms, especially in consumer electronics 

applications. Moreover, for the next generation 3D TVs, robotic applications and 

surveillance systems, stereo estimation algorithms should require less memory, provide less 

computational complexity and less precision loss in the extracted 3D models. In that manner, 

local window-based methods are the strongest candidates for faster disparity calculations 

[29]-[36]. Local methods typically neither involve any iterative steps, nor utilize full cost 

volume and they also require low memory compared to other methods. As a result, these 

methods become available for real-time implementations on special platforms [35] and the 

efforts on efficient window based algorithms gain popularity by the requirement of disparity 

maps on variety of 3D systems.  

The increase in processing speeds supported by special platforms providing parallel 

processing, such as GPGPU and Nvidia Compute Unified Device Architecture (CUDA), 

real-time implementation of disparity estimation algorithms gained attention. Therefore, 

there is a trend to develop algorithms, which are prone to be implemented in parallel, whose 

examples are given in [27]-[36]. Most of the real-time methods [30]-[35] exploit local 

optimization strategy yielding most efficient results with low complexity. An evaluation 

between real-time local methods is given in [10], illustrating the variety of highly efficient 

window based methods.  Pixel based belief propagation is also an alternative for real-time 

methods [36] to achieve global optimization on a regular grid. In [26] it is proven that 

dynamic programming can also be implemented in parallel to achieve real-time performance. 

When the variety of real-time approaches is considered, it can be argued that local 

optimization is the most visited technique (especially edge-aware filters) providing similar 

precision compared to its global and semi-global alternatives. Therefore, local methods are 

expected to be the strongest candidates for 3D TV systems due to their algorithmic variety 

and simplicity to provide satisfactory results. 
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It is important to note that edge adaptive local methods [6]-[11] with constant complexity 

exploit box filters which require scanning of the entire image. Two pass weighted integration 

approach introduced in the previous chapter resembles summed area tables phenomenon in 

terms of horizontal and vertical scanning, where aggregation is achieved adaptively during 

passes in four directions, instead of box filters. The horizontal scanning idea has also some 

similarities with dynamic programming [25]-[28] optimization due to scan line directions; 

however, there are fundamental differences. DP algorithms operate on full matching costs, 

requiring cost values for each disparity candidate at a certain time; on the other hand, the 

proposed method operates on image space, where each disparity candidate are considered, 

independently, as a consequence of local winner-take-all optimization. Moreover, additional 

vertical scan in the proposed approach extends aggregation in 2D. In [37], arbitrary support 

region [8] and scan line optimization ideas are unified with additional refinement stage to 

obtain high quality disparity maps with additional computational complexity. The diffusion 

based approaches [38]-[39], utilize 4-neighborhood color similarities to update cost values 

related to the idea introduced in this study; however, they require high number of iterations 

to enlarge support regions. Hence, the proposed algorithm eliminates iteration and support 

area dependency, while aggregates cost values effectively among large regions by single four 

passes, which saves computation and memory.    

Another important issue for stereo applications is the smooth variation of disparity 

assignments along time axis, as long as there is smooth motion. Hence, temporal information 

should also be considered to handle possible flickers due to noise, motion and lighting 

changes.  

 

3.3 Proposed Approach 

 

In general, local stereo matching methods involve similar steps consisting of cost 

calculation, cost aggregation, minimization and occlusion handling [9] as illustrated in 

Figure 3.4. The cost values are calculated for each disparity candidate based on color 

similarities between stereo pairs, and then aggregation of the cost values is provided by 

averaging or summation over various support regions. Initial disparity maps are obtained by 

assigning disparity values having minimum supported cost values. The simplicity of the 

minimization approach, winner-take-all (WTA), is one of the most important properties of 

local methods providing ease for implementation on different platforms. In the final step, the 
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occluded and unreliable regions are detected among initial disparity maps and handled by 

post processing.  

 

Figure 3.4: The flowchart of the local stereo matching approaches.  

 

Cost aggregation and occlusion handling steps are the most discriminative steps that 

determine performance of these algorithms in terms of computational complexity and 

accuracy. In the proposed method, the conventional approach of local stereo matching 

algorithms is followed with some innovative steps for cost aggregation, occlusion handling 

as well as temporal consistency. The key idea behind most of these innovative steps in this 

study is to obtain weighted averaging over support regions within constant time. Although, 

applications of the box filter to vision problems have led size-independent complexity for 

any matching or searching step, obtaining a weighted sum for the same regions requires 

additional iterations, further decreasing efficiency of box filter. For this purpose, 

permeability filtering (PF), introduced in the previous chapter, is exploited for the cost 

aggregation step that involves intensity-dependent two-pass integration over some cost data. 

The same filtering structure is further exploited with minor modifications for the occlusion 

handling and temporal filtering to finalize the stereo disparity estimation.  

 

3.3.1 Cost Calculation 

 

There are various metrics to calculate visual similarity of pixels between stereo images. 

In [39], an excellent analysis of the common endeavored cost functions is given in terms of 

computational complexity and matching reliability. According to that analysis Census 

Transform [40] is one of the best performing cost functions providing robust pixel matching. 

Census Transform, CT(x,y,n), of a pixel (x,y),  is the bit stream obtained through comparison 

of intensity levels between neighboring pixels according to 
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where n corresponds to the clock-wise (or counter clock-wise) order of neighboring pixel (xn, 

yn) in the bit stream. Hence, within a specified window (kxk), the pixel is represented by a 

binary codeword of length k
2
-1, forming the transformed image. During matching stage, 

Hamming distances [40] between the corresponding bit streams are calculated as a cost 

function. The superior performance of Census Transform comes with some increase in 

computational complexity, especially due to Hamming distance calculation. On the other 

hand, sum of absolute difference (SAD) is one of the most endeavored metrics due to its 

computational simplicity. Hence, in this study these two metrics are exploited to provide a 

trade-off between accuracy and complexity, as recently proposed in [37]. Assuming that the 

stereo pair is horizontally aligned, the cost values corresponding to a candidate disparity d 

are calculated by shifting pixels in one image onto the other image along horizontal direction 

as, 
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where Cd
SAD

(x,y) corresponds to the SAD cost value of the pixel (x,y) in the left image for 

disparity d, Ileft and Iright are three-channel (RGB) left and right images. During SAD cost 

calculation, occluded or overlapped regions cannot be handled in a different way, since 3D 

structure is not known; hence, truncation of the cost values is performed to keep maximum 

SAD below a level (T) for enabling disparity values to be assignable depending on local 

neighboring support. For the census measure Cd
CENSUS

(x,y), Hamming distance, Ham{.}, 

between the bit streams of the correspondences in the census transformed images, CT, is 

calculated. In this study, for the census transform a (5x5) window is exploited. Once the SAD 

and CENSUS cost measures are obtained, the cost function Cd(x,y) is set as the linear 

combination of both. 

 

3.3.2 Cost Aggregation 

 

Cost aggregation is the most important step reflecting the general performance of the 

proposed and all other local stereo matching algorithms. In general, for each disparity 

candidate aggregation is performed between spatial relations independently, and then the 

aggregated cost values are compared in order to determine the best disparity candidate. In 
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this step, aggregation is provided by the permeability filter which is introduced in the 

previous chapter. The proposed aggregation approach involves three main steps; first, for 

each pixel depending on color similarity between neighboring pixels, permeability weights 

are calculated based on the filter type (4 or 8-neighbor). These weights correspond to the 

ration of data that is to be carried through the corresponding direction. Then, these 

permeability weights are utilized to perform aggregation in horizontal and then in vertical 

direction. The order of horizontal and vertical aggregation can be interchanged optionally; in 

this study horizontal scanning is followed by vertical scan. It is important to note that during 

the cost aggregation, normalization step of the permeability filter is not required since, for 

each disparity candidate, the same normalization coefficient is exploited. Thus, relative order 

of the cost values is not changed by the normalization which seems to be additional 

computational burden. Though, the total complexity of the proposed aggregation is 6D 

additions and 4D multiplications per pixel without any normalization step, where D is the 

number of disparity candidates.  

The effect of the proposed filtering (4-neighbor) on the cost function can be observed in 

Figure 3.5, for which cost functions for four pixels are illustrated on Teddy [111] stereo 

image. In the figure, “blue” colored functions correspond to pixel-wise evaluated cost values 

and “red” colored functions correspond to the filtered data. The filtering approach provides 

smoother and reliable cost functions, while decreasing the effect of noise and fluctuation that 

may cause errors in the disparity assignment. Given the ground truth disparity values of the 

points by the vertical lines, it is clear that the proposed approach provides cost functions to 

be minimized at actual disparities.   

As discussed in the previous chapter, support area provided by the proposed method can 

be limited due to orthogonal scanning which may result in some precision loss especially 

along thin and tilted objects with non-vertical and non-horizontal structures. On the other 

hand, depending on local characteristics, such as smoothness, larger support regions can be 

provided through the proposed method since there is no constraint on support area limited by 

any pre-defined window size unlike all state-of-the-art edge-aware filters. Hence, 

permeability filtering extends support areas in certain cases, while loses precision along thin 

and tilted objects with much lower computation complexity. 
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Figure 3.5: The effect of the proposed filtering on the cost function for selected four 

pixels on Teddy stereo image. 

 

3.3.3 Minimization 

 

As a common procedure to most of the stereo algorithms, minimization procedure is 

performed by a winner-take-all (WTA) approach. For this aim, aggregation of cost values are 

calculated for each disparity candidate independently and the candidate with minimum cost 

is assigned to the corresponding pixel. The computational complexity of the aggregation step 

is 4D multiplication and 6D summation for each pixel, where D is the total number of 

candidate disparities. It should be noted that, most of the execution is spent for the 

aggregation step and less effort is required for the minimization compared to some other 

complex optimization methods, such as belief propagation [18] and graph cuts [20].  

 

3.3.4 Occlusion Handling 

 

The cost calculation, aggregation and minimization steps are performed for both of the 

images, and at the end of these steps two initial disparity maps are obtained for the stereo 

pair. As illustrated in Figure 3.6, the initial disparity maps involve errors at occluded regions 

in which the true correspondences cannot be obtained due to invisibility. Those regions 

should be handled by post-processing in such a way that reliable information is diffused to 

assign geometrically consistent disparity values. Hence, as a first step, reliable and occluded 

region detection is performed by a cross-check between two disparity maps.  
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The results of the occluded region detection between the initial disparity maps given in 

Figure 3.6 for the Teddy stereo image are illustrated in Figure 3.7, where unreliable and 

occluded regions are colored in red. It is obvious that occluded regions are observed along 

the image boundaries (leftmost edge regions of the left image and vice-versa for the right 

image) and depth discontinuities where there are large disparity differences between the 

local foreground and background.    

 

 

Figure 3.6: The initial disparity map estimates for the Teddy stereo pair [111], bright 

regions correspond to large disparities (i.e. closer to camera). 

 

 

Figure 3.7: The detection of occluded and unreliable disparity estimates (red color) for 

the Teddy stereo pair. 
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Although, there could be different ways to compensate for the occlusions, handling of 

those regions is performed by a novel two-pass filtering approach that is based on the 

proposed permeability paradigm, as it is utilized in the cost aggregation step. Permeability-

based filtering is performed over the disparity map, taking the reliability of the regions into 

account and the filtered disparities are assigned to the occluded regions. Such an approach 

provides data diffusion over the occluded pixels based on color-wise similar and reliable 

pixels. In general, occluded regions are located at the local background, since foreground 

region is always visible in both of the images. Therefore, most of the occlusion handling 

algorithms [16] diffuse information from background to the occluded regions in various 

ways. In the proposed approach, diffusion of background information is further supported by 

color-wise similarity between pixels. 

 Considering the reliability and the foreground-background characteristics of the pixels, a 

confidence map, Conf(x,y), is generated in such a way that the occluded regions are assigned 

to the value zero, whereas the reliable regions are assigned to a range of values between 

[ф,1] depending on the disparity values, as, 
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where d is the disparity value of the pixel (x, y), fconf is the confidence mapping function and 

ф is a constant (set to 0.1 throughout the whole experiments). In this work, a linear mapping 

function is proposed to map reliable regions, as presented in Figure 3.8.a, so that pixels at 

local background are favored during occlusion handling. As illustrated in Figure 3.8.b, the 

confidence map is obtained for each image, while the occluded regions are assigned zero 

confidence. According to the resulting confidence map, it is clear that local background 

regions are favored with higher weights compared to foreground regions.  

Once the confidence maps are obtained for left and right images, the disparity maps are 

weighted by these maps as, 
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The next step of occlusion handling is determination of appropriate disparity values for 

the occluded regions that is achieved by permeability based filtering of the weighted 

disparity and the confidence maps. At that step, normalization is required to assign disparity 
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values in the range of minimum and maximum disparities. The permeable filtering provides 

weighted summation over disparity values, possibly resulting in larger values than the 

disparity values. 

 

Figure 3.8: (a) Confidence mapping function for reliable pixels based on disparities, (b) 

the resultant confidence map for the left image. 

 

In order to provide range-filtered results, the filtered data should be normalized by the 

total effective weights calculated for each pixel, as, 
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where D
Norm

 is the normalized disparity map at the filter output. The permeable filtering of 

confidence data provides total effective support weights exploited during the filtering of the 

weighted disparity map; hence, normalization with these values enables filtered data to 

remain within the range of the disparity map. It is important to note that during disparity data 

filtering, the same permeable weights of the cost aggregation step are utilized.  

The filtered and normalized disparity values, D
Norm

, in (3.6) are assigned to the unreliable 

or occluded pixels detected in cross-check. As the final step of occlusion handling, a median 

filter with window size of (3x3) is applied to the estimated disparity maps to remove possible 

noisy assignments.  In Figure 3.9, the resultant disparity maps are illustrated after occlusion 

handling with and without background favoring. It is obvious that, occlusion handling is a 

critical step to increase the reliability, as some corrected regions (shown by green circles) are 

observed. In Figure 3.9.b; some leakage (circled in red) from the foreground object is 

observed when background favoring is not performed, due to color-wise similarity between 

foreground and background pixels; whereas, the proposed approach (with background 

favoring) handles these cases as illustrated in Figure 3.9.c. The method assigns geometrically 
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consistent disparity values to the large occluded regions, i.e., the leftmost circle in Figure 

3.9.c, as well. Hence, unification of background favoring and color adaptive filters for the 

occlusion handling enable crisp and edge-preserved disparity maps which is important for 

high accuracy.    

 

Figure 3.9: (a) Initial disparity map, (b) occlusion handling with no background 

favoring, (c) the proposed occlusion handling. 

 

3.3.5 Temporal Consistency 

 

In stereo video, estimated disparity maps may fluctuate between different disparity 

hypotheses in time due to noise, change in lighting conditions or motion. These fluctuations 

result with the flickering of disparity maps that is an important visual artifact reducing 

quality of any process which is based on disparity, such as depth based enhancement or 

virtual view synthesis. Thus, as proposed in [43], the disparity maps should be linked in 

temporal domain to obtain temporal consistency. In that manner, the proposed algorithm is 

extended for temporal consistency of static backgrounds, where flickers cause disturbance 

more than the moving regions. Modifications are performed in two stages, cost calculation 

step and a final filtering step with the disparity map of the previous frame.   

During the cost calculation step, the RGB-based cost function is updated by using a 

temporal consistency term based on the color similarity of the corresponding pixel with its 

correspondence at same coordinates in the previous frame. Ideally, the support in temporal 

direction should be provided by the motion information; however, such an approach 

increases the computation drastically. In the proposed approach, a temporal model is 

provided by color change of pixels in time. Hence, for each pixel, the permeability along the 

temporal direction is calculated by comparing RGB differences as follows: 
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where I
t
 and I

t-1
 correspond to the current and previous images of the RGB channels, and μt(x, 

y) corresponds to the temporal permeability for the pixel, (x, y). The temporal permeability 

determines the information ratio that is to be transferred from the previous frame for each 

individual pixel; hence, provides high rate of data transfer from the previous frame for the 

pixels in which RGB change is low. The extension of the initial cost function in (3.3) is 

given by the relation, 
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where D
t-1

(x,y) is the disparity map of the previous frame and ),( yxC t

d is the updated cost 

function of the current frame. The disparity map of the previous frame is constrained during 

the process of the current frame in such a way that disparity candidates which are different 

than the previous disparity values are penalized according to temporal similarity. Therefore, 

for the pixels with high temporal permeability, the disparity in the previous frame is favored 

in the cost function. For the regions, whose temporal similarity is low, none of the disparity 

values are favored. Hence, a temporal change adapted temporal data transfer is provided, 

enabling smooth disparity variations among non-moving regions and instant variations for 

moving regions. The updated cost function is utilized in the aggregation and minimization 

steps, providing temporal consistent disparity assignments.    

A second extension in the temporal domain is provided by a weighted filtering at the final 

step. The weighted filtering is performed between the disparity maps of the previous frame 

and the current frame such that the weight coefficients are determined according to the 

temporal permeability values for each pixel, as 
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Thus, for the temporally smooth regions, disparity map of the previous frame is more 

weighted, and vice versa for regions in which temporal change is observed. This step 

corrects possible errors due to sudden changes in lighting conditions that might not be 

handled by updating cost function with temporal constraints as in (3.8).   
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3.4 Experimental Results 

 

The test bench [111] provides an environment to evaluate and compare stereo disparity 

map estimation algorithms based on four different stereo images whose ground truth 

disparity maps are provided. Although the test bench lacks the comparison of algorithms in 

terms of computational complexity and temporal constraints, it gives an idea about the visual 

quality of the estimated disparity maps on static images. In order to evaluate the robustness 

of a stereo matching algorithm, further experiments that include various stereo scenes and 

consider temporal reliability should also be required. Hence, the presented experiments in 

this work are performed in three categories, for which in the first category the performance 

tests are conducted on extended static stereo images via test bench provided by [111]. 

Moreover, computational complexities are also compared for the proposed algorithm against 

the well known edge-aware filters discussed in the previous chapter. In the second category, 

the effect of temporal information transfer is analyzed for stereo videos where dynamic 

scenes are dominant. In the final category, detailed analyses of the proposed scheme are 

given in terms of complexity distribution of algorithmic blocks, effect of resolution and 

occlusion handling. Moreover, the reasoning behind the parameter selection is discussed in 

the final section for the sake of completeness.    

 

3.4.1 Static Scenes 

 

The experiments on the static scenes are divided into two sections; in the first section, the 

performance evaluation is conducted on the extended Middlebury stereo data whose ground 

truth disparity maps are available. In the second section, a detailed computational complexity 

comparison is presented against state-of-the-art local methods. 

 

3.4.2 Accuracy 

 

In this sub-section, aforementioned edge-aware filters are exploited for aggregation 

during disparity estimation and compared with the proposed approaches. The experiments 

are conducted on the extended stereo images on different scenes provided by [111] as given 

in Figure 3.10 and the corresponding ground truth disparity maps in Figure 3.11. The 

resolution of the stereo images is around 550x650 (scaled to 720x576 pixels for 
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computational tests) and the valid range between stereo pairs is around 100 disparity levels. 

As observed in Figure 3.10, there are various scenes with different characteristics having 

textured, non-textured, repetitive, highly occluded and non-occluded regions with different 

scene brightness. In this manner, experiments on this data set give a general intuition on the 

general performance of a stereo matching algorithm.      

During the comparative tests, the same cost function and occlusion handling techniques 

are utilized in order to be fair against all aggregation methods. Hence, disparity maps are 

calculated by only alternating the aggregation step and fixing the number of disparity 

candidates at 100 levels independent of stereo pair. At that point it is important to note that a 

well known background copying approach is exploited for occlusion handling, rather than 

the proposed approach, in order to provide a fair comparison. Accuracy of the disparity maps 

is calculated by two criteria, similar to the evaluation in Middlebury stereo benchmark, the 

percentage of erroneous pixels having 1 or 2 disparity level difference with respect to ground 

truth. The error percentage is measured for visible pixels (excluding occluded regions) and 

all pixels to analyze in detail. During experiments, proposed approach is compared in terms 

of stereo matching performance against bilateral filter [45], two-pass bilateral filter [52], 

constant time bilateral filter [64], guided filter [47], cosine integral images [48], adaptive 

box filter [72], geodesic support filter [11] and arbitrary shaped cross filter [8]which are all 

state-of-the-art edge-aware filtering techniques. During the accuracy comparison, optimum 

parameter settings are determined for each technique by trial and error (fixing the 

aggregation window at 30x30), reflecting the best precision they can achieve for the given 

configuration.  

The percentages of erroneous pixels are given in Table 3.1 for two different error criteria. 

According to these results, the proposed approach with 4-neighbor permeability has the best 

accuracy that is followed by the 8-neighbor version for all scenarios. Guided filter has the 

second best performance for the higher sensitive error metric with one disparity level 

difference; while for two level disparity differences, geodesic filter has the best performance 

after the proposed technique.  
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Figure 3.10: The extended stereo scenes provided by Middlebury online stereo test bed 

[111]. 
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Figure 3.11: The provided ground truth disparity maps [111] where darker pixels 

correspond to background regions. 
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Table 3.1: The percentage of erroneous pixels for two disparity difference thresholds 

during stereo matching for state-of-the-art edge-aware filters.  

% Error Visible Pixels All Pixels Visible Pixels All Pixels

Proposed-4 7.9 14.2 6.4 10.3

Proposed-8 8.1 15.2 6.3 10.6

Guided [47] 8.4 15.1 6.8 11.8

Geodesic [11] 9.9 17.5 8.0 12.7

Bilateral [45] 9.5 16.9 7.4 13.1

Var. Cross [8] 8.8 17.1 7.0 12.6

2-pass Bilateral [52] 9.7 17.2 8.1 13.0

Adapt. Box [72] 9.1 18.2 7.3 13.5

O(1) Bilateral [64] 11.3 18.4 9.9 14.1

Cos. Int. [48] 9.1 19.4 7.2 14.0

No Aggregation 19.1 34.5 17.4 30.9

d>1 d>2

 

 

The results for the non-aggregation scenario are also included in Table 3.1 for better 

understanding of the importance of edge-aware filtering. It can be clearly observed that 

erroneous pixel ratio is decreased by 66% through the utilization of proposed permeability 

filter compared to no aggregation case. The proposed approach outperforms state-of-the-art 

filtering techniques with an almost 10% increase in precision for one disparity level error 

metric, this improvement reaches up to 15%, when precision is sacrificed with additional one 

level difference. In Figure 3.12, estimated disparity maps for five scenes with different 

characteristics are illustrated for visual interpretation of the results given in Table 3.1. 

According to Figure 3.12, all methods perform quite well for the textured regions, such as 

the Dolls stereo pair in the middle; however, as the regions become un-textured, Monopoly 

and Midd1 pairs, the methods yield erroneous estimates except for the proposed approaches. 

This is due to the specific window size definition of the state-of-the-art filters which limits 

diffusion of information from large areas. On the other hand, the proposed techniques do not 

exploit any window size definition and aggregate cost values depending on the texture 

characteristics as discussed in the previous chapter. Therefore, for the un-textured surfaces, 

support regions tend to increase and that provides much more reliable estimates.    
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Figure 3.12: Top-to-bottom: color views (Aloe, Art, Dolls, Monopoly, Midd1 [111]), 

disparity maps via bilateral, 2-pass bilateral, O(1) bilateral, guided, cosine integral 

images, adaptive box, geodesic, arbitrary shaped cross filter, proposed 4-neighbor and 

proposed 8-neighbor correspondingly.  
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Apart from the comparative results for the extended stereo set, proposed 4-neighborhood 

approach is also tested on the online stereo benchmark [111] for four fundamental 

Middlebury pairs, Tsukuba, Teddy, Cones and Venus as given in the first row of Figure 3.13. 

In this benchmark, a ranking is given for the estimation results provided by the published 

studies. The resultant disparity maps of the proposed algorithm are illustrated in the third 

row of Figure 3.13. According to the error maps between the estimated and ground truth 

disparities given in the last row, the proposed approach preserves disparity transitions at 

object boundaries and provides crisp maps. 

In Table 3.2, quantitative results taken from the online Middlebury stereo database are 

illustrated for top local methods. The quality of disparity maps in Table 3.2, are calculated 

after comparison with the ground truth over non-occluded, visible, pixels. According to these 

results, the proposed method ranks 18 among 140 submissions involving complex global 

optimization methods (such as segment based Belief Propagation [18]); while it takes the 1
st
 

rank among local-based methods without any post-processing stage. Moreover, the proposed 

method provides the highest quality disparity maps for Tsukuba, Teddy and Cones stereo 

images compared to the other local methods that is another promising result. The rankings 

provided in Table 3.1 and Table 3.2 are compatible with each other. CostFilter [134], 

GeoSup [11], AdaptWeight [7] and VarCross [8] utilize guided, geodesic, bilateral and 

arbitrary cross shaped filters correspondingly and they have the same relative rankings in 

both of these tables. The remaining methods in Table 3.2, utilize variations of bilateral filter 

with specific additional refinement and approximation stages.  It is also important to note 

that, the error ratios in Table 3.2 are smaller than the results presented in Table 3.1; this is 

due to the narrower baseline between left and right cameras which limits the number of 

disparity candidates as well as increase precision. 

On the other hand, proposed approach also out-performs algorithms based on Dynamic 

Programming optimization [25]-[27] which share some similarities in terms of scan line 

processing. The approach presented in [36] has the best accuracy (Rank 1) due to unification 

of multi-directional scan line optimization and arbitrary shaped support regions with 

additional post processing. Proposed approach outperforms arbitrary shaped cross filter 

which is included for aggregation structure in [37], according to the detailed experiments 

given in Table 3.1. Therefore, more precise disparity map estimates can be provided by the 

permeability filter with additional refinement steps and increased complexity. 
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Figure 3.13: First row: images (Tsukuba, Venus, Teddy, Cones) from Middlebury stereo 

database [111], Second row: ground truth disparity maps, Third row: disparity maps 

by the proposed algorithm using SAD+CENSUS, Fifth Row: disparity errors for 

(SAD+CENSUS) larger than 1 disparity level where gray corresponds to errors at 

occluded regions and black is for non-occluded regions. 

 

Table 3.2: Rankings of the selected local methods in Middlebury online benchmark 

Algorithm Rank
Avg. Error

[%] Tsukuba Venus Teddy Cones

Proposed

(SAD+Census) 18 5.50 1.06 0.32 5.60 2.65

CostFilter[134] 19 5.55 1.51 0.20 6.16 2.71

GeoSup [11] 25 5.80 1.45 0.14 6.88 2.94

GeoDif [137] 31 5.49 1.88 0.38 5.99 2.84

AdaptDisp [128] 34 6.10 1.19 0.23 7.80 3.62

DistinctSM [132] 46 6.14 1.21 0.35 7.45 3.91

Proposed (SAD) 48 6.33 1.06 1.00 5.86 4.06

SegSupport [23] 50 6.44 1.25 0.25 8.43 3.77

CostAgg + Occ [133] 54 6.20 1.38 0.44 6.80 3.60

AdaptWeight [7] 62 6.67 1.38 0.71 7.88 3.97

Fast bilateral [135] 68 7.31 2.38 0.34 9.83 3.10

HistoAggr [136] 69 7.33 2.47 0.74 8.31 3.86

Var.Cross [8] 75 7.60 1.99 0.62 9.75 6.28

Error non-occluded pixels [%]
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According the comparative results, it is clear that proposed scheme corresponds to the 

best performing local aggregation method dedicated for stereo matching. Some additional 

results of the proposed 4-neighbor approach are also given in Figure 3.14 for visual 

interpretation. In the last column of Figure 3.14, error maps are illustrated for (Δd >1) 

criteria in black and gray for occluded and non-occluded regions. The estimated disparity 

maps for all of scenes by the proposed 4-neighborhood approach are illustrated in Figure 

3.15.  

 

Figure 3.14: First column: color views, second column: estimated disparity maps, last 

column: erroneous pixels along occluded (black) and non-occluded regions (gray).  
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Figure 3.15: Estimated disparity maps through the proposed 4-neighbor permeability 

filter. 
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For the sake of completeness, visual comparison of the proposed approach is also 

provided with Depth Estimation Reference Software (DERS) [44] which is utilized for 

MPEG multi-view video standardization efforts. DERS performs graph cut optimization for 

the estimation of disparity maps from stereo or multi-view videos. In this study, DERS is 

applied for stereo matching with decreased baseline, which yield much more reliable 

estimates compared to a larger baseline. In Figure 3.16, the estimation results of proposed 

method (second row) and DERS (third row) are illustrated. According to the visual 

interpretation, there is a clear indication that the proposed method results in better precision 

along object boundaries and yields crisper disparity maps. On the other hand, DERS 

introduces foreground enlargement with insufficient occlusion handling capability. Further 

comparison is conducted in the next chapter, including the effect of these approaches for 

virtual view rendering which is the ultimate target of this dissertation. 

 

 

Figure 3.16: First row: color views, second row: disparity maps by proposed 4-

neighborhood approach, last row: disparity maps via DERS [44], which is utilized in 

MPEG activities. 
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3.4.2.1 Complexity 

 

The other important issue for the effectiveness of stereo matching algorithms is the 

computational complexity. In the previous chapter, state-of-the-art edge-aware filters have 

been compared in terms of memory requirement and computational complexity. Such a 

comparison can easily be extended for stereo matching, in which the filters are applied for 

cost aggregation. For the local methods, unless different cost functions and occlusion 

handling approaches are utilized, total run time of the algorithms are mostly determined by 

the cost aggregation step. Hence, a fair comparison in terms of computational complexity is 

given by Table 3.3, where disparity dependent aggregation times are listed for image 

resolution of 720x576. In Table 3.3, D corresponds to the number of disparity candidates that 

are tested for stereo matching.  

Table 3.3: Computational complexity of cost aggregation approaches for stereo 

matching based on the number of disparity candidates, D. 

Computational
Complexity (msec) Bilateral

2-pass
Bilateral

O(1) Bilateral Guided Cos. Int.

720x576 1.7 104 D 1412D 200D 220 + 250D 1143D

Adapt. Box Geodesic Var. Cross Proposed-4 Proposed-8

720x576 385 + 16D 3.4 105 D 385 + 16D 34 + 20D 67 + 59D
 

According to the results given in Table 3.3, the most efficient methods are the proposed 4 

and 8-neighbor, adaptive box [72] and arbitrary shaped cross filters [8] whose rankings alter 

according to the number of disparity candidates. In the complexity of these methods, there 

are disparity independent terms which are related to the extraction of image dependent 

parameters such as permeability weights. These parameters are calculated once and exploited 

for each disparity candidate. On the other hand, for the remaining methods, all of the process 

is performed for each disparity candidate independently. The complexity plot of the 4-

neighbor permeability and the arbitrary shaped cross filter based on the number of disparity 

level is given in Figure 3.17 for further analysis. According to the plot, proposed approach 

requires lower complexity for the number of disparity levels below 90; whereas for higher 

number disparity candidates, arbitrary shaped cross filter has lower complexity. This result is 

due to the difference between the disparity independent and dependent terms. As discussed 

previously, arbitrary shaped cross filter [8] does not exploit weighted averaging as the 

proposed approach; therefore, the disparity dependent complexity is lower.   
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Figure 3.17: Comparative complexity analysis based on number of disparity 

candidates: proposed 4-neighbor method (red) vs. VarCross algorithm (blue) [8]. 

 

The joint comparison of the edge-aware filters for stereo matching is summarized in 

Figure 3.18. Horizontal axis corresponds to the execution time of aggregation for 100 

disparity levels, whereas vertical axis corresponds to the average error rate of erroneous 

pixels with one disparity level difference w.r.t. ground truth. According to this comparison, 

proposed 4-neighbor permeability filter unifies high accuracy and low computational 

complexity in such a way that it enables fast execution that is competitive by the fastest 

state-of-the-art techniques with much higher precision. On the other hand, compared to the 

second best performance of guided filter [47] in terms of accuracy, proposed approach 

almost runs faster by a factor of 20. Utilization of 8-neighbor permeability filter triples 

computational complexity as well as introduces a loss in accuracy compared to 4-neighbor 

case. However, it still provides a competitive alternative to the state-of-the-art as presented 

in Figure 3.18.  

 

Figure 3.18: Joint comparison of accuracy and computational complexity for the edge-

aware filters. 
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3.4.3 Dynamic Scenes 

 

The performance in static stereo frames should be carried into temporal domain by 

providing consistent disparity maps in time. In order to test the performance of the proposed 

method in time domain, disparity values of selected pixels on two different stereo videos are 

illustrated among the time axis. In Figure 3.19, the variation of colored pixels in stereo video 

Kayala [138], which is a Russian short film, is illustrated for disparity maps one of which is 

obtained through temporal constraints and the other is obtained with no temporal constraint. 

According to these plots, proposed temporal information permeability stabilizes the disparity 

variation and almost constant disparity values are observed for the selected non-moving 

regions, as it can also be confirmed by the given video shots and disparity map of the first 

frame. The fluctuation of disparities, when there is no temporal constraint, is quite obvious; 

this may drastically affect the disparity dependent applications. Another stereo video, 

Newspaper [113] is given Figure 3.20, with the disparity distribution of the selected pixels 

among time axis. The stabilization of non-moving pixels (blue and red colored) is provided 

by the proposed algorithm. In addition, as observed for the purple colored pixel along which 

an object transition is observed by the given video shots, disparity variation is preserved 

when sudden disparity changes are observed. Hence, temporal permeability provides actual 

disparity changes to be observed as long as obvious color changes occur at the corresponding 

region while preventing fluctuations or false disparity changes as long as color is constant 

among time. According to the results presented in Figure 3.19 and Figure 3.20, it can be 

concluded that temporal permeability provides computationally inexpensive background 

stability in time. 

 

3.4.4 Analysis of the Algorithm  

 

In order to analyze characteristics of the proposed method for stereo matching, extensive 

tests are provided involving detailed time analysis, the effect of occlusion handling, an 

analysis on use of different resolutions and finally the reasoning behind parameter selection. 
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Figure 3.19: Stereo video Kayala [138] and the variation of disparity values for colored 

pixels along time, exemplar color views are given at the last row. 
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Figure 3.20: Stereo video Newspaper and the variation of disparity values for colored 

pixels along time, exemplar color views are given at the last row. 

 

3.4.4.1 Complexity Analysis 

 

The total computation time for disparity estimation of a stereo pair with resolution of 

720x576 among 100 disparity levels is measured to be around 29 seconds when the proposed 

4-neighbor aggregation approach is utilized. Distribution of the computational time as a chart 

is presented in Figure 3.21, where most of the computation is devoted to cost calculation, 

especially census transform. This is an important observation since for most of the traditional 

local methods, aggregation is the most time consuming step. In this case, however, speeded-

up aggregation provides much efficient computation so that cost calculation remains to be 

the most complex stage.  
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Figure 3.21: The distribution of computation time among algorithm steps 

 

Census transform among 5x5 window through RGB color domain requires 75 additions 

for each disparity candidate, compared to the complexity of the 4-neighbor permeability 

filter (4 multiplications and 6 additions), hence the distribution provided in Figure 3.21 is an 

expected result. On the other hand, utilization of SAD cost metric requires much less 

computation with 5 additions. Minimization and occlusion handling steps have negligible 

effect on the complexity with a share of 2%.   

 

3.4.4.2 Effect of Occlusion Handling 

 

The effect of occlusion handling is already illustrated in Figure 3.22, in which the 

disparity estimates are presented with and without occlusion handling. It is concluded that 

occlusion handling step fixes the errors at depth discontinuities where foreground objects 

occludes background objects and provide crisper maps preserving discontinuities. Apart 

from visual interpretation, the results are also compared with the Middlebury stereo 

benchmark, Table 3.4, and the increase in the accuracy is obvious when the left-right 

consistency is enforced through occlusion handling. The effect of depth favoring is also 

observable in Table 3.4, where the accuracy decreases tremendously as soon as depth 

favoring is not exploited. Hence, it is clear that depth based weighting is critical to handle 

occluded regions.    
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Figure 3.22: First Row: Disparity maps without occlusion handling, second Row: 

disparity maps after occlusion handling 

 

Table 3.4: Effect of occlusion handling on the ratio of erroneous pixels in the estimated 

disparity maps. 

Algorithm Rank
Avg. Error

[%] Tsukuba Venus Teddy Cones

Full method 15 5.5 1.5 0.9 13.1 9.2

Occ. with No depth favor 40 6.5 1.8 1.5 14.9 10.3

No Occ 51 7.3 2.6 1.9 17.0 10.8

Error all pixels [%]

 

The proposed occlusion handling method is further compared with the approach utilized 

in Guided Stereo [134] which has the best performance in state-of-the-art. For this purpose, 

initial disparity estimation is conducted by the proposed aggregation over the extended 

stereo database; then the occlusion handling methods are applied on these same initial 

estimates. The precision of these approaches are evaluated for two cases, in the first scenario 

all pixels are considered during the error calculation. In the second scenario, frame 

boundaries are excluded; as illustrated in Figure 3.23, there is no available information for 

the completion of these large regions (around 50-100 pixel width depending on disparity 

distribution). Moreover, there might be color inconsistencies between the visible and non-

visible parts.    

Therefore, the error rates are recalculated by ignoring the left-most frame boundary which 

is not visible in the other view to observe the occlusion performance within the image. 

According to the results given in Table 3.5 for both cases, the proposed occlusion handling 

approach enables more reliable (20-30%) completion of missing regions compared to the 

method introduced in guided filter. It is expected to observe the decrease of erroneous pixel 
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percentage when the frame boundaries are discarded. Compared to the traditional 

background copy approach, utilized in the previous section, proposed depth favoring edge-

adaptive occlusion handling method has superior performance with approximately 25% 

improvement in accuracy.  

 

Figure 3.23: Left: darkened occlusion frame boundary for the left camera view, right: 

the right view 

 

Table 3.5: Comparison between three occlusion handling methods in terms of average 

percentage of erroneous disparity assignments.  

Avg. Error [%] All Pixels Exclude Frame Boundary

Background Copy 14.2 10.6

Proposed 11.2 7.6

Guided Filter 12.9 9.6
 

 

3.4.4.3 Multi-resolution Effects 

 

The dependency of the proposed approach for different resolution levels is also examined 

to discuss on the scalability of the algorithm in terms of accuracy. In that manner, disparity 

maps are also estimated for the low resolution views which are obtained through down-

sampling by 2 and 4 correspondingly. In order to preserve the disparity resolution, cost 

calculation and occlusion handling steps are conducted on the original scales, while 

aggregation and minimization are provided at the down sampled domain. It is important to 

note that computational complexity of cost calculation is not affected for different 

resolutions due to utilization of original scale images. On the other hand, computational 

burden due to aggregation and minimization are decreased by the decimation ratio. The 

average error rates for the various resolutions are given in Table 3.6; accuracy drops as the 
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color images are down sampled due to detail loss along object and frame boundaries as 

illustrated in Figure 3.24. According to visual comparison, decrease in accuracy is not severe 

for the scale factor of 2, while it is obvious for scale factor of 4 with stair effects along depth 

discontinuities. Hence, down sampling (by 2) could be an option for various applications, 

such as GPU implementation, which strictly require low memory, fast computation and 

acceptable precision.               

Table 3.6: Average erroneous pixel percentage obtained by the proposed approach for 

three different resolutions 

% Error Visible Pixels All Pixels Visible Pixels All Pixels

Original Scale 7.9 14.2 65 10.3

Down Sample by 2 8.8 16.7 7.1 12.5

Down Sample by 4 8.9 17.2 7.2 13.9

d>1 d>2

 

 

Figure 3.24: Disparity maps in (a) full resolution, (b) down sampled by 2, (c) down 

sampled by 4 for Aloe and Art [111]stereo pairs. 

 

3.4.4.4 Parameter Selection 

 

Considering the parameter set of the proposed stereo matching method, the most 

important parameter is the smoothing factor σ that determines permeability weights of each 

pixel as well as aggregation characteristics. The weight (α) between SAD and Census 
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transform costs has also an impact on the precision which has been discussed in some recent 

work [37] [39]. Therefore, only the effect of smoothing factor is examined by fixing the 

truncation value (T) at 15 and setting α to 0.2. In Figure 3.25, the average erroneous pixel 

percentage on the estimated disparity maps with respect to the ground truth disparity maps 

based on the variation of smoothness factor is illustrated. All the stereo pairs illustrated in 

Figure 3.10 are utilized to calculate the bad pixel percentage in order to provide a much 

reliable measure. The effect of smoothness parameter on stereo matching quality can be 

observed in Figure 3.25 for the Art sequence. It is clear that, for high σ values, smoother 

disparity maps are obtained and structural details are lost due to high permeability. On the 

other hand, as σ is decreased, salt-and-pepper type artifacts are observed in the disparity 

maps that reduce smoothness as well as estimation quality. According to the erroneous pixel 

percentages given in Figure 3.25 and visual interpretation, setting σ in the range [4, 16] 

provides a good matching quality that also covers the selected σ=12 value throughout this 

study.    

 

Figure 3.25: Top: average bad pixel percentage plot for all Middlebury stereo pairs 

based on smoothness factor, Bottom: disparity maps for the Art sequence at specific σ 

values. 
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3.5 Conclusion 

 

In this chapter, a novel local stereo matching algorithm which utilize permeability filter 

paradigm during the aggregation of cost values, occlusion handling and temporal consistency 

is presented. Permeability filter combines low memory requirement, fast execution and high 

accuracy, yielding an efficient stereo matching approach. The connected support regions 

provide crisp disparity maps with preserved depth discontinuities along object boundaries. 

Through intensive experiments to check accuracy and complexity, it is clearly observed that 

the proposed stereo matching algorithm outperforms state-of-the-art with significant 

improvements. According to the comparative results in Middlebury online test bench, the 

proposed algorithm has the 1
st
 rank in terms of accuracy among the local based stereo 

matching algorithms. Moreover, the fastest execution time is observed with no specialized 

hardware among top 10 local methods, in CPU. It is important to note that the proposed 

method utilizes only filtering of some cost functions with no additional local-global 

optimizations. Therefore, its performance can be further increased by additional optimization 

steps after the aggregation stage. In its simplest version, the presented stereo matching 

approach is one of the most efficient techniques in the literature with a high precision and a 

fast operation. Cache friendly data acquisition, low operational complexity and high 

parallelization capacity of the permeability filter enable implementation of stereo matching 

on different platforms as well. Hence, GPU implementation of this approach is presented in 

the last chapter that yields real-time processing capability.   

Proposed algorithm is analyzed in terms of multi-resolution scalability and distribution of 

computation among its steps. Moreover, parameter selection is discussed that has influence 

on the accuracy of estimation. Significant improvement is provided for the occluded regions 

by the proposed depth favored occlusion handling method. Besides, extension of 

permeability filter to temporal domain results in flicker-free disparity maps especially within 

stationary background regions that is quite important for various applications of stereo video.  

In the following chapter, performance of the proposed stereo matching algorithm is 

further tested for virtual view rendering application that is the fundamental tool for extension 

of stereo video to multi-view.    
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CHAPTER 4 

 

 

4 VIRTUAL VIEW RENDERING 

 

 

 
Virtual view rendering (VVR) is an important tool for 3D processing that enables 

generation of inexistent views from a collection of images as illustrated in Figure 4.1. This 

tool is utilized in various areas to extend functionality of 3D systems; such as virtual reality, 

depth control on stereoscopic displays, virtual tour among 3D reconstructed scenes and 

increasing number of viewpoints in multi-view and free view TVs. The advances in 3D 

technology accelerated research efforts on VVR to produce various applications for 

consumer electronics, robotics, military and medical technology.  

 

Figure 4.1: Inexistent views can be generated by virtual view rendering from the 

captured views. 

 

Depending on alternative application areas and available 3D data formats, VVR techniques 

can be classified into three categories [77] as image based rendering, rendering with explicit 

geometry and depth image based rendering. In image based rendering, virtual views are 

generated among high number of images through interpolation of light fields or rays that are 

the bases for representing images. The well known methods in this group are light field [78] 

and lumigraph [79] rendering. In [78], virtual views are rendered through interpolation of 
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rays sampling the space uniformly, whereas for lumigraph, sampling of rays is non-uniform. 

These approaches require densely recorded data which is not feasible; hence usage of this 

rendering technique is limited to specific applications such as computational photography 

and microscopy. The second group exploits the existing geometry in terms of camera 

locations; i.e., external calibration parameters of the cameras are available. Then, rendering 

is achieved by linear combination of the source images through epipolar or tri-focal relations 

[80] between the cameras. Similar to image based rendering, this approach is also based on 

the interpolation of limited number of views without any 3D structural information of the 

scene. Due to lower number of cameras, in this approach, rendering performance is low and 

only sufficient for simple applications such as localization in surveillance cameras. In the 

last group, rendering with explicit geometry is achieved by depth image based rendering 

(DIBR) [81]-[102], in which 3D model of the scene is required to map a collection of images 

for a desired camera location. For this purpose, 3D information should be available through 

various formats [2] such as view dependent depth maps, layered depth images or triangular 

mesh models extracted through preprocessing of mono, stereo or multi-view data. VVR is 

achieved by warping 3D model to the desired viewing location. Utilization of 3D 

information in DIBR increases the quality and flexibility of the rendering.  

There are two main constraints during the conversion of stereo video to multi-view video: 

input 3D format has limited number of views (typically only left and right views) and 

visually pleasing VVR is required. As mentioned before, image based rendering methods 

require higher number of images and the precision is limited to the sampling of the scene by 

the cameras. Thus, DIBR can be argued as the best solution among the three aforementioned 

alternatives for the specific problem of stereo to multi-view conversion. In the next section, a 

literature survey is given on VVR techniques that is followed by the motivation behind the 

development of a VVR algorithm in the scope of this dissertation. The proposed rendering 

technique is presented in Section 4.4 whose performance is validated with intensive 

experiments in Section 4.5. Finally, Section 4.6 is devoted to conclusive remarks. 

 

4.1 Related Work 

 

The scenario of DIBR for stereo-to-multi-view conversion problem is illustrated in Figure 

4.2, where Left and Right views are the captured original images by a stereo camera system 

and the remaining is the desired virtual views. There are two cases for VVR depending on 
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the locations of virtual views with respect to original views; if virtual views are within the 

baseline, rendering can be considered as the interpolation of actual views while for the 

virtual views outside baseline, rendering is defined as extrapolation. Thus, for stereo to 

multi-view conversion, interpolation and extrapolation of reference views are utilized to 

synthesize arbitrary views in a stereo camera setup. For this scenario, 3D models are the 

disparity maps of left and right views which can be extracted by stereo matching as 

explained in the previous chapter. Having view dependent disparity maps, there are two 

fundamental approaches for DIBR, namely forward mapping and inverse mapping as shown 

in Figure 4.3.       

In forward mapping [81]-[82], view synthesis is achieved by utilizing depth and texture 

data of only one of the images, left or right view. The texture is projected to the desired 

location through the depth information; which can be found by constructing meshes and 

triangulation [83] or by 3D warping [84]. During such a warping, visibility of regions is also 

considered by depth ordering which depends on the viewing position. Due to the occlusions 

and quantization issues, forward warping does not provide a one-to-one mapping between 

the source and target view; hence, some holes exist in the final output. In order to achieve 

visually pleasing rendering, these holes can be filled through pre-processing [85]-[91] on 

disparity maps or inpainting [92]-[95] methods over the synthesized views. Since the 

synthesis is achieved from one image, there are occluded regions with no available texture. 

Therefore, filling techniques, in general, concentrate on providing consistent and visually 

pleasing completion of those missing regions. In order to minimize amount of occluded 

regions, image source closer to the desired viewing location is selected for rendering. The 

advantage of forward mapping is the constant 3D structure independent of the virtual view 

location; saving computation with a sacrifice of rendering quality especially at occluded 

regions.  

 

Figure 4.2: Virtual view rendering scenario for stereo camera systems. 
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Figure 4.3: Forward warping utilizes single source camera, while both views are 

exploited for inverse warping. 

 

The other approach is inverse mapping for which both views are utilized with their 

disparity maps [96]-[104]. Initially, 3D structure (disparity map) of the virtual view is 

constructed by warping and merging disparity maps of left and right views to the desired 

location. At that point, some post-processing operations can be required on the merged 

disparity map to remove unreliable assignments and fill the occluded regions. Once 3D 

structure of the virtual view is settled, texture data is transferred from the visible regions of 

the stereo view by inverse warping.  

For the interpolation case, in which the rendered view is between two cameras as in 

Figure 4.2, most of the regions are observed by at least one of the cameras. The regions 

which are not observed by any of the cameras are denoted as disoccluded regions and these 

holes should be filled by inpainting methods, commonly utilized for forward mapping. It is 

important to note that during interpolation; disoccluded area is minimal compared to forward 

warping. Hence, completion for inverse mapping is easier and involves fewer artifacts. On 

the other hand, extrapolation, in which rendered views are out of the original stereo baseline, 

is problematic due to occlusions. The area of disoccluded regions increases as the virtual 

camera gets further from the input camera configuration that is a common fact for forward 

warping as well. For this case, the inpainting and hole filling methods become more 

important for improving the visual quality of the rendered views. Therefore, inverse warping 

has an obvious advantage over forward mapping especially for the interpolation case, for 

which stereo data utilization is maximized and superior occlusion handling is observed. For 

the extrapolation case, however, both approaches share the problem of missing data 
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completion. Therefore, inverse warping, which is the most endeavored technique for DIBR 

algorithms with higher visual quality, is the preferred approach in this study.  

The fundamental steps for the inverse warping method are illustrated in Figure 4.4, in 

which the dashed blocks are the post and pre-processing units, and the other blocks are the 

common warping and selection units. During warping, merging and texture selection steps, 

most of the algorithms in literature follow the same instructions. In the warping step, shifting 

of pixels along the epipolar line between source and target camera locations is performed; in 

stereo case, the epipolar line is on the horizontal axis. Once the two disparity maps of left 

and right views are warped to the desired location, merging is performed by depth ordering 

over mapped disparity values for each pixel. Texture selection is also achieved by assigning 

color values of the visible source pixels. Some techniques, such as position dependent 

blending [97] or weighted summation of texture values from stereo pairs, are exploited, as 

long as the regions are observed by both of the cameras. An alternative technique for texture 

selection is to copy all visible pixels from one of the cameras and fill the missing parts from 

the other camera [94].  

    

Figure 4.4: Fundamental steps of virtual view rendering. 
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4.2 Motivation 

 

There are four fundamental problems to be solved for DIBR in order to obtain high 

quality virtual views independent of the warping technique. The first problem is blank pixels 

and holes due to sampling of 3D scene and quantization; such problems can be observed in 

Figure 4.5. In general, holes are one pixel in width that makes the problem easier; and a 

common solution is the texture copying [94] from neighboring available pixels. The second 

problem is the contour artifacts occurring at highly textured depth discontinuities as 

illustrated in Figure 4.6. The foreground texture may be observed as a thin contour at the 

background. The solution to this problem relies on various post-processing operations over 

the synthesized view or pre-processing over the disparity maps. The third problem is the 

occluded and disoccluded regions, as shown in Figure 4.7, and mentioned previously. The 

missing information should be handled somehow, when a region in the rendered view is not 

observed by any original data (left and right views). Inpainting methods might cope with 

disocclusion regions. The final problem is the erroneous rendering due to imperfect disparity 

maps; a typical example is presented in Figure 4.8. 

 

Figure 4.5: A typical rendering result involving holes due to depth discontinuity and 

occlusion.  
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Figure 4.6: Texture copying between foreground and background regions result in 

contours that decrease visual quality [103]. 

 

 

Figure 4.7: The black labeled pixels indicate occluded and disoccluded regions between 

stereo pair. 

 

 

Figure 4.8: Erroneous disparity map and the corresponding rendering result. Note the 

degradation in the overlay text. 
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DIBR methods differentiate depending on post and pre-processing approaches for 

handling the fundamental problems of contour artifacts, occlusion handling and erroneous 

rendering. Thus, there is a variety of methods starting from simplest forms for real-time 

applications to very complex algorithms with off-line processing capability. One of the 

common solutions for contour artifacts and occlusion handling is the pre-filtering of 

disparity maps, such that size of the occluded regions is decreased by smoother disparity 

maps. This aim can simply be achieved by Gaussian filters [82]; however, smoothing the 

entire disparity map introduces geometric distortions. Over-smoothing is handled by edge-

aware filters [85]-[88], while crisp depth transitions are preserved in case of sharp color 

changes; however, an extra occlusion handling step is required after such filters. This 

requirement is overcome by a non-symmetric bilateral filtering technique proposed in [89], 

so that depth discontinuities in opening regions (where new pixels from the background are 

visible) is smoothed to decrease the occlusion area, whereas preserved in the other regions. 

The edge-preserving filters, although decrease occlusion area, still result in geometric 

distortions especially observed as broken and curved vertical lines. Recently in [90], an 

adaptive edge-oriented smoothing is proposed with some non-geometric distortion. This 

method provides visually pleasing virtual views compared to the other filtering approaches 

with decreased geometric distortion. As the baseline distance between the virtual and 

original cameras is increased, synthesis after pre-filtering of disparity maps involves severe 

distortions around occlusion boundaries. When the virtual view is between left and right 

cameras, it is clear that the amount of occlusion is limited and almost each pixel is visible at 

least by one of the reference cameras. Hence, exploiting pre-filtering techniques for 

interpolation is not a good choice; however, such methods are more appropriate for 

extrapolation.   

In recent years, inpainting techniques have been popular to complete missing or 

distorted pixels in the images. The same idea is also extended for occlusion handling in [92] 

and [93] where exemplar-based inpainting is performed for the missing patches through 

compensation from local texture. Although providing high quality completion, these 

methods are quite complex and require off-line processing to match patches among the entire 

image. Actually, inpainting is typically exploited to complete large missing regions and 

remove objects in the images, in which the problem is more complicated than occlusion 

handling. Therefore, they are not applicable to fast processing systems in consumer 

electronics.  In [94] and [95], however, inpainting is adapted to fill the occluded regions by 

utilizing depth priors during local texture averaging with reduced computational complexity.  
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In [96]-[102], contour artifacts due to depth bleeding of boundary pixels are removed by 

local filtering and morphological operations to improve visual quality. This problem is 

solved by separately warping background-foreground pixels. The occlusion handling in 

[103]-[104] is achieved by sprite background modeling of a scene captured from static 

cameras. The background depth and texture model is extended in temporal domain, and for 

an arbitrary view rendering, the occluded regions are filled by the estimated background 

model. This approach provides reliable completion at occluded regions; however static 

camera assumption is not realistic for wide range of stereo content. Considering the problem 

of stereo to multi-view conversion addressed in this dissertation, variation for stereo video is 

quite large, and exploiting model based solutions for occlusion handling covers only limited 

data captured by static cameras. In that manner, the solution should be completion with 

visually pleasing synthesis rather than searching the actual texture. Such a completion and 

occlusion handling is achieved in [105] by a multi-resolution approach for hole filling. The 

initial warped texture is iteratively down-sampled till no holes are observed in the view, then 

at each higher resolution, the holes are filled by interpolation at the lower resolution version. 

This process is iterated until the estimated image has no holes. The method proposed in 

[105] provides occluded regions to be filled by low pass filtering among neighboring pixels 

at different resolutions. The hierarchical hole filling increases robustness of rendering 

method against disparity map errors as well as results in virtual views free of geometric 

distortion. The method is actually applied for forward mapping with one texture and one 

depth map; however the extension to inverse mapping is trivial.       

The disparity maps, as the view dependent 3D representations for DIBR, may involve 

errors due to imperfect passive stereo matching based on color similarities. As a result, VVR 

algorithms could be seriously affected from these errors resulting in visually disturbing 

views, as illustrated in Figure 4.8. So far, the methods summarized above do not consider 

such errors and assume that provided disparity maps are quite reliable. However, there 

should be a feedback mechanism to detect and refine possible erroneous regions. Therefore 

the authors in [106] introduced a simple mechanism to detect errors in the disparity maps and 

refine virtual views through low pass filter and morphological operations. In this technique, 

disparity correction and remapping are not considered; therefore feedback mechanism 

provides incremental improvement over synthesized views with additional post processing.  
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4.3 Proposed Approach 

 

View synthesis algorithms should have all of the steps described previously to achieve 

high quality virtual views. On the other hand, imperfections in disparity maps should also be 

considered by exploiting a feedback mechanism to correct disparities and render visually 

pleasing views. Moreover, real-time capability introduces a great challenge on complex post-

processing methods that provide high quality rendering. The methods should have least data 

dependency (iteration) and be available for scan order processing [99]. Regarding these 

constraints, in this study, the general work flow of DIBR methods is modified by a disparity 

correction mechanism with two texture warps between left and right views, as illustrated in 

Figure 4.9. The possible errors in disparity maps are detected and corrected to feed the 

traditional DIBR flow. The main components exploited in this work can be grouped into five 

categories as; disparity refinement, pre-processing of disparity maps, virtual view depth 

composition, texture selection and hole filling.   

4.3.1 Disparity Map Refinement 

 

Disparity map estimation is a matching procedure between left and right images based on 

color and texture similarities. Hence, the extracted depth maps are not perfect and might 

involve errors due to various reasons such as image noise, reflections, repeated structures, 

foreshortening, left-right color imbalances, etc. During VVR, these errors might yield 

unobservable artifacts as well as serious degradations. Especially errors at overlay text 

regions are clearly visible and decrease perceptual quality as illustrated in Figure 4.8. For 

this type of artifacts, one solution is to detect text regions and apply special filtering to assign 

the same depth variation among the letters; however, this would be a tailored solution 

dedicated to only text regions and not cover general type of errors. Instead, in the proposed 

refinement step, detection of possible erroneous regions is achieved by warping left and right 

pairs to each other by the help of the provided disparity maps. Pixels are shifted by the 

amount of disparity to the other view, and texture of visible pixels is copied to the 

corresponding pixel locations. A typical result is illustrated in the first row of Figure 4.10, 

for the "Moebius" stereo sequence from Middlebury database. The texture of the left image 

is mapped onto right view through disparity map in Figure 4.10.a which has errors around 

the text region. The warped view has black holes due to depth discontinuities and occlusions; 

at that stage these pixels are not taken into consideration. The rendered view is compared to 

the original view and pixels having RGB difference larger than a threshold (TRGB) are 
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detected, Figure 4.10.c. Disparity values of these pixels and their correspondences in the 

other view are labeled as unreliable by assigning “1”. Then, a dilation operation is 

performed on the disparity map to include neighboring pixels that could be missed due to 

utilization of hard threshold in the detection. The result of detection is given in Figure 4.10.d, 

where black pixels indicate erroneous regions. These operations are performed for left and 

right pairs independently.    

 

 

Figure 4.9: Proposed VVR scheme with additional disparity refinement feedback 

mechanism. 
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Figure 4.10: (a) Initial disparity map, (b) warped right view from the left view 

according to (a), (c) the erroneous regions in the reconstructed right image, (d) detected 

erroneous disparity assignments. 

 

The next step is re-calculation of disparity values for the erroneous regions.  This goal is 

achieved by the proposed local stereo matching approach in Chapter 3. The cost values 

corresponding to disparity candidates are calculated for the detected pixels through, 
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where Ileft and IRight are the left and right color images, respectively; E corresponds to the 

error map extracted in the previous step. The motivation behind such a cost function is that 

erroneous pixels should match to the erroneous pixels in the other view with high color 

similarity; in addition, matching to a reliable pixel is penalized. The pixel-wise cost values 

can be aggregated by a simple (NxN) box filter to obtain higher confidence; this is an 

optional step, since the detected regions also restrict possible matches and outliers. It is 

important to note that re-calculation is exploited for the unreliable pixels only; therefore, the 

computational complexity introduced by this approach is quite low. WTA optimization is 

conducted to assign proper disparity values to the corresponding pixels. Finally, left-right 
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consistency of the updated disparities is provided by a simple cross check and an occlusion 

handling methodology. Typical refinement results are illustrated in Figure 4.11; 

improvement over disparity maps after such a feedback mechanism which affects the 

rendering quality is obvious.   

 

Figure 4.11: First row: initial disparity maps, Second row: detected erroneous regions, 

Last row: the refined disparity maps 

 

4.3.2 Pre-process of Disparity Maps 

 

In this study, pre-processing is required to remove ghosting and contour artifacts due to 

disparity leakage from foreground to background as a result of estimation processes. 

Considering the availability of stereo content, especially for interpolation, the occlusion 

problem can be minimized by exploiting both images to compile missing parts. In that 
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manner, edge-aware filters that decrease the occlusion area are not considered since they 

introduce additional geometric distortions. The problem of disparity leakage can be solved 

by extending boundaries of foreground objects. Initially, 3x3 median filtering is performed 

on the disparity maps to remove spike noise and tiny irregularities which could be enhanced 

during foreground enlargement. Then, as illustrated in Figure 4.12, a dilation operation over 

disparity map with privilege of foreground levels according to,  

 ),(max),(
),(),(

jiDyxD
yxNji 

          ,   (4.2) 

provides the desired enlargement. Throughout this study, dilation is executed over 5x5 

support window, N(x,y), in order to prevent possible halo around object boundaries.   

 

Figure 4.12: Foreground enlargement prevents ghosting artifacts. 

 

4.3.3 Virtual View Depth Composition 

 

In inverse mapping, depth map that belongs to the desired virtual view is constructed 

before the texture warping in order to handle occlusions in depth domain that is easier 

compared to the texture domain. The pre-processed disparity maps are warped (shifted) to 

the desired location according to, 
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     , (4.3) 

where Dvir is the disparity map of virtual view, DC is the disparity map of the closer source 

view and x’ is the target pixel index in the virtual view. During the warping, source view 

(left or right) closer to the virtual camera position has the priority, in order to minimize the 

occluded area. At the warping stage, visibility of the pixels is considered by assigning the 
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largest disparity to the target pixel, x’, among alternative mappings according to a Z-buffer. 

After warping of the prior view, there are unassigned, blank pixels, Ex'  due to depth 

discontinuities. These regions are completed by warping the other (secondary) disparity map 

as, 
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where DF is the disparity map of the distant source view, E is the set of blank pixels in the 

virtual view. In certain cases, there may be disoccluded pixels which are not observed by any 

of the left or right camera, hence unassigned to a specific disparity. These cases are handled 

by fusing neighboring background disparities to those regions, assuming that disoccluded 

regions mostly belong to background. When the virtual view is out of the baseline, it is clear 

that the secondary image has limited, almost no, extra information; therefore the area of the 

occluded regions is larger compared to the interpolation case. However, the hole filling 

approach which fuses local background disparity to blank regions is the same for both 

interpolation and extrapolation. Steps of the virtual view disparity map construction during 

interpolation are illustrated in Figure 4.13, where left view is considered to be the primary 

source. The missing pixels after the initial warp are filled by the right view, and the 

disoccluded pixels are assigned to proper disparity values through occlusion handling. 

 

4.3.4 Texture Selection 

 

Once disparity map of the virtual view is obtained, the next step is the assignment of a 

proper texture. As in the previous section, texture selection starts from the primary source 

image which is closer to the virtual camera location. Each pixel in the virtual view is mapped 

to the source according to disparity values, and the corresponding RGB values are gathered 

as long as visibility is provided. Due to occlusions, some pixels are invisible through the 

primary source hence remain unassigned; for those pixels, a mapping to the secondary 

source is performed. Proper RGB values are gathered under visibility constraint. At that 

point, there is an important case as illustrated in Figure 4.14, when there are color 

imbalances between left and right source images; there might be patches with unexpected 

color variation especially over un-textured regions. In Figure 4.14, this effect is observed in 

the sky as indicated by circles. Due to inconsistent contrast levels of the images, unassigned 

regions among the sky during the first mapping are filled by dissimilar blue level in the 
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Figure 4.13: Virtual view disparity map construction from left and right maps. 

 

secondary mapping. Such an effect introduces disturbance and artifacts in the virtual view 

that is not a desired case. Therefore, color equalization of left and right views is required 

before texture selection to handle patch formation with different contrast. Stereo color 

calibration is achieved by a modified version of histogram based equalization introduced in 

[107]. The patch artifacts in the rendered view are totally removed after color calibration, as 

observed in Figure 4.14. Throughout this study, linear interpolation of RGB values gathered 

from left and right views for the pixels visible in both cameras is avoided since such an 

interpolation may decrease sharpness of the object boundaries as well as distort repeated 

structures. Therefore, the preferred scheme is to obtain the texture information from the 

closest view then complete the missing regions from the other view, if possible.   
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Figure 4.14: Color equalization between left-right views is vital for VVR. 

 

4.3.5 Hole Completion 

 

Although, each pixel in virtual view is assigned to a disparity value, there might be 

missing texture, if visibility is not met from either source views. Moreover, considering the 

extrapolation case in which information is transferred from one direction, there will certainly 

be missing texture due to occlusions. As the virtual camera gets further, area of the missing 

region increases almost linearly. For the interpolation scenario, however, the area will be 

limited to a certain extend due to increased visibility. In Figure 4.15, holes are illustrated for 

interpolation and extrapolation of Art image sequence; it is obvious that missing area is 

larger for virtual views out of baseline.  
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Figure 4.15: Interpolation: missing texture is due to disoccluded pixels, extrapolation: 

missing texture is due to occlusion and disocclusion.  

 

Hole filling is the most critical step of VVR as long as disparity maps are accurate 

enough. The importance is higher for extrapolation since missing regions could be very large 

depending on the virtual view location. Hence, these areas should be filled with appropriate 

texture which is actually not available, in order to achieve visually pleasing completion. As 

mentioned previously, there are various inpainting methods [92]-[95]; however they are 

quite complex for real time systems. The hierarchical approach proposed in [105] is efficient 

and fast, on the other hand introduces over smoothing artifacts for the missing regions which 

decreases visual quality.   

In this dissertation, a hole filling strategy based on the modified version of permeability 

filtering [108]-[109], is proposed. In its original form, the filtering provides successive 

texture (RGB) transition along horizontal and vertical directions weighted by edge measure 

of each pixel in the corresponding direction. This idea is applied for texture transfer from 

reliable pixels to missing regions by an updated edge measure. In order to define 

permeability weights, indicating the transfer rates among the corresponding direction, filled-

unfilled condition of pixels and the disparity distribution are utilized in addition to RGB 

similarities. Permeability weight assignment for filled and reliable pixels is performed over 

RGB similarities with neighboring pixels in four fundamental directions as,  
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The unfilled pixels do not have valid RGB values; therefore, the relation in (4.5) cannot be 

applied. On the other hand, these pixels have been assigned to proper disparity values in the 

virtual view depth composition stage. Hence, disparity values can be utilized to determine 

transition rates in four directions. As a result, reliability diffusion is forced to be provided 

from the same disparity levels (depth priority); i.e., missing regions which are actually at 

local backgrounds are completed through neighboring background pixels. The permeability 

weight assigned among disparity maps is achieved according to 
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where D corresponds to disparity map of the virtual view, (x', y') is the closest neighboring 

pixel in the corresponding direction and TD is the disparity similarity threshold. A binary 

operation is utilized to assign permeability weights for the sake of simplicity.
 

Once the weights are calculated for each pixel, the next step is the successive weighted 

summation of RGB values along horizontal and vertical directions independently. In [108]-

[109], the transfer is performed consecutively, such that the vertical pass is applied over 

horizontally aggregated values. For the hole filling however, aggregation is executed 

independently to prevent over smoothing and constant color assignment for the missing 

regions. Filling direction of the holes depends on the location and geometric characteristics 

of the region. In Figure 15, several possibilities are illustrated with various filling directions; 

in Figure15.a and Figure15.c, the red pixel should be filled from right to left according to 

fuse information from background; on the other hand, for Figure15.b, the filling direction 

should be from top to bottom in order to preserve edge continuum. In Figure15.d, the red 

pixel belongs to a disoccluded region; therefore, filling can be performed by fusing 

information from four directions. Thus, to provide filling among proper directions, 

horizontal and vertical filtering should be performed independently. In that manner, update 

rule for successive weighted aggregation among horizontal axis is given as, 

widthxxRGBxxRGBxRGB LtoRRLtoR  1)1().1()()(    (4.7) 

1)1().1()()(  widthxxRGBxxRGBxRGB RtoLLRtoL 
  

(4.8) 
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where two reverse scanning, left-to-right and right-to-left, are conducted to obtain 

aggregated color vectors in the desired directions, RGBLtoR and RGBRtoL. The final horizontal 

aggregation value is obtained by the summation of RGBLtoR and RGBRtoL. SWS is also 

performed independently in vertical direction to provide aggregation of reliable texture. 

Then a normalization step is required to map aggregated values to proper intensity levels, 

i.e., 8-bit. As introduced in Chapter 2, normalization is provided according to, 

 

 
)1(Per

Per

F

RGBF
RGB   ,   (4.9)

 

where FPer is the proposed permeability filter in, 1 is the data consisting of ones for each 

pixel and RGB are the normalized RGB values after permeability filtering. 

 

 

Figure 4.16: The direction of texture transfer depends on local geometry characteristics 

(disparity similarity) of the un-filled pixels.  

  

The successive weighted summation and normalization provide two RGB candidates for 

each unfilled pixel, one from horizontal and one from vertical direction. At that point, there 

are three possible cases for the un-filled pixels, assignment of horizontally transferred 

texture, vertically transferred texture or their linear combination. These possibilities could be 

extended by additional diagonal axes with an increase in computational complexity; however 

throughout this study, this selection remains as an option. Considering the computational 

complexity of hole filling stage so far, it is clear that permeability filtering is an efficient way 
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to determine possible RGB values by two divisions, eight multiplications and 12 additions 

per pixel. Moreover, separate filtering in horizontal and vertical axes enables parallelization 

which is an important feature for GPU implementation within this study.  

The next step of this stage is the determination of trusted direction for the un-filled pixels. 

Each pixel is analyzed in four fundamental directions by checking the first pixel with valid 

texture assignment and same disparity. If the spatial distance between the analyzed and the 

detected pixel is small compared to a threshold, then this direction is assumed to be trustable. 

The idea is illustrated in Figure 4.17, for four different cases the detected directions are given 

with green in the corresponding disparity maps. The blue colored directions are eliminated 

due to two fundamental conditions, the length of that arm is too long or depth discontinuity 

breaks the ray. According to the detection results in Figure 4.17, for (a) and (c) the horizontal 

transfer is proper, whereas for (b) and (d) linear combination of horizontal and vertical 

transfer should be preferred. For the case given in Figure 4.17.b, exploiting only vertical 

transfer would provide visually better filling, since there is a vertical edge continuation. In 

order to handle such cases, edge and texture comparison is required between detected 

neighboring reliable pixels. This option is considered as a future work to further refine 

rendering as long as the current approach has insufficient quality.    

 

Figure 4.17: Trusted direction (green) detection under various cases. 

 

A typical example of hole filling is illustrated in Figure 4.18, in which the missing 

regions are due to extrapolation. The proposed approach provides visually non-disturbing 
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completion and avoids crisp hole filling which could introduce broken lines, unexpected 

edges, etc. In certain cases where background has constant color variation, there could be 

leakage from the foreground that decreases visual quality unless depth constraints in 

equation 4.6 are not utilized. As illustrated in Figure 4.19, depth priors during permeability 

calculation prevent foreground leakage, Figure 4.19.a, during hole filling and provide 

visually pleasing virtual views.  

 

Figure 4.18: (a), (b) Missing regions during extrapolation (c), (d) after hole completion. 

 

 

Figure 4.19: (a) Color based hole filling, (b) color+depth based hole filling 
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4.4 Experimental Results 

 

In this section, the results of the experiments that are conducted in three categories to 

evaluate performance of the proposed VVR methodology are presented. Comparison against 

state of the art under various static and temporal scenes is provided in the first set of 

experiments. The effects of algorithmic steps and parameters are analyzed in the second 

stage involving disparity map quality, hole filling and baseline between stereo views. 

Finally, the results of the overall stereo to multi-view conversion algorithm are given for the 

sake of completeness. 

In order to evaluate the rendering capability of the proposed VVR scheme, multi-view 

dataset from Middlebury online stereo benchmark [111] and multi-view videos (MVV) 

provided by HHI [112], GIST [113] and Nagoya University [114] for MPEG 3DV/FTV 

standardization efforts are utilized. In Middlebury multi-view set, there are around 30 

different scenes with various local-global texture characteristics that are captured by 

horizontally aligned seven cameras. Configuration of the cameras is appropriate for the 

ultimate aim of this study, stereo to multi-view conversion. Hence, two of these cameras are 

considered as the reference, whereas all the other views are considered to be virtual views to 

be rendered; then a comparison between the original and rendered versions of the non-

reference views is provided. Although, ground truth disparity values are available for two 

cameras (1
st
 and 5

th
), throughout this study, estimated disparity maps are also exploited to 

interpret effect of stereo matching quality. On the other hand, for multi-view videos provided 

by [112]-[114], performance on interpolation is further investigated by rendering 

intermediate views between cameras having two baseline distances. For these videos, ground 

truth disparity maps are not available; therefore, disparity maps estimated by MPEG 

3DV/FTV Depth Estimation Reference Software 5.0 (DERS) [44] are exploited to provide a 

fair comparison between VVR tools. In DERS, disparity maps are estimated by matching 

over multiple views through a global optimization which is the common convention for 

MPEG/FTV standardization. In addition to DERS depth maps, the proposed stereo matching 

algorithm in Chapter 3 is also exploited on the corresponding MVV to observe the stereo to 

multi-view conversion quality in the overall proposed system. 

Throughout this dissertation, quality of the rendered views is measured by four different 

metrics, which are peak-signal-to-noise ratio (PSNR), Structure Similarity Index (SSIM) 

[115], Multi-resolution Structure Similarity Index (MSSIM) [116] and Information Weighted 

Structure Similarity Index (IW-SSIM) [117]. It has been demonstrated by [115] that SSIM 
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provides superior human perception modeling for reference based quality measure compared 

to PSNR. The extension of SSIM for scale invariance is provided in [116] by introducing 

MSSIM. The perceptual modeling of SSIM is further improved by IW-SSIM [117], where 

structural similarity is weighted according to saliency map that models visual attention for 

the distorted views. These metrics are designed to measure effect of artifacts on the reference 

view due to coding, noise and illumination (contrast) changes. As stated in [118], artifacts 

introduced during VVR have different characteristics that require special attention. In that 

manner, the method in [118] proposes a novel approach to measure visual quality of 

rendered views, in which a bias is given to erroneous regions and perfectly reconstructed 

surfaces are not considered during visual quality calculation. Hence, as proposed in [118], 

MSSIM and IW-SSIM measures are modified in this study to have higher correlation with 

human perception for VVR. It is also important to note that, publicly available source codes 

(MATLAB) of these metrics are utilized during the evaluation of rendering quality.   

 

4.4.1 Comparison with State-of-the-Art 

 

In this section, proposed approach is compared to View Synthesis Reference Software 3.5 

(VSRS 3.5) [98] which is utilized for MPEG 3DV/FTV experiments and another recent 

study [110] that presents extensive results for interpolation among all Middlebury multi-view 

set. Both approaches exploit DIBR to fuse texture from two reference views through view 

dependent disparity maps. The comparison against VSRS is conducted on the multi-view 

videos with provided configuration setup. On the other hand, the experiments on Middlebury 

data set are devoted to compare the proposed approach with both [110] and VSRS. It is 

worth to mention that, virtual views of state-of-the-art methods are provided by the 

corresponding studies with no additional process that could introduce imperfections. 

Besides, there is free access to VSRS and DERS by the given configuration files that enables 

VVR for various scenarios without any optimization.    

 

4.4.1.1 Multi-view Dynamic Scenes 

 

In this section, detailed comparison is provided over three well known MVV sequences, 

Cafe, Book Arrival and Newspaper, involving 200, 100 and 300, frames respectively. The 

experiments are conducted according to two scenarios as illustrated in Figure 4.20; in the 
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first scenario the center view is synthesized through left and right pairs by interpolation. In 

the second case, center view is rendered through only the left reference view simulating the 

extrapolation scenario where larger occluded regions exist. During the experiments, depth 

maps provided by DERS are utilized and VSRS results are obtained by executing the 

provided software with no additional tuning. The disparity maps are estimated by matching 

over multiple views that is the common convention for MPEG/FTV standardization. In the 

following section, additional experiments are also conducted by changing the disparity 

estimation tool, such that stereo matching is performed instead of multi-view matching 

which is a more realistic scenario for stereo-to-multi-view conversion. It is important to note 

that, ground truth center view is also available for all videos, enabling objective evaluation 

of the VVR tools. The average error measures are listed for the proposed and VSRS VVR 

tools, averaged over all frames in Table 4.1, Table 4.2 and Table 4.3 respectively.  

 

 

Figure 4.20: Interpolation and extrapolation scenarios to compare proposed VVR and 

VSRS. 
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Table 4.1: Rendering quality comparison over Cafe sequence between the proposed 

approach and VSRS.  

CAFE
Interpolation/Extrapolation

VSRS [98] Proposed

PSNR 31.9 / 31.3 32.1 / 31.2

SSIM 0.93 / 0.91 0.92 / 0.92

MSSIM 0.93 / 0.89 0.93 / 0.91

IW-SSIM 0.94 / 0.93 0.94 / 0.94

 

For Café and Book Arrival sequences, both VVR techniques yield comparable results 

with alternating superiority based on the quality metric. In certain metrics, VSRS has slightly 

better performance than the proposed approach, while it is the opposite for the other metrics. 

Especially for IW-SSIM, having high correlation with human perception, the measured 

errors are close to each other with almost % 95-98 perfect reconstruction of the virtual 

views. This indicates the high performance of the proposed approach, being competitive with 

the state-of-the-art. On the other hand, proposed approach yields better visual quality for the 

Newspaper sequence in both interpolation and extrapolation scenarios. This is mainly due to 

the stereo color calibration which balances illumination imperfections between the left and 

right color views. In VSRS, this tool which generate visual quality degradation to a certain 

extend is not exploited. It is also important to note that, SSIM, MSSIM and IW-SSIM are 

illumination independent metrics; however, decrease in these measures are also obvious for 

VVR among color-wise unbalanced stereo video. This proves the importance of color 

calibration step for perceptually pleasing virtual views.  
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Table 4.2: Rendering quality comparison over Book Arrival sequence between the 

proposed approach and VSRS. 

BOOK ARRIVAL
Interpolation/Extrapolation

VSRS [98] Proposed

PSNR 34.7 / 30.8 34.7 / 30.9

SSIM 0.90 / 0.87 0.92 / 0.88

MSSIM 0.97 / 0.95 0.98 / 0.94

IW-SSIM 0.98 / 0.96 0.98 / 0.97

 

Table 4.3: Rendering quality comparison over Newspaper sequence between the 

proposed approach and VSRS. 

NEWSPAPER
Interpolation/Extrapolation

VSRS [98] Proposed

PSNR 28.9 / 26.4 31.7 / 27.8

SSIM 0.90 / 0.89 0.93 / 0.91

MSSIM 0.95 / 0.80 0.97 / 0.85

IW-SSIM 0.95 / 0.93 0.97 / 0.95

 

The frame-wise quality measures of the VVR tools are further illustrated in Figure 4.21 to 

Figure 4.26. Especially, for the extrapolation scenario in Café sequence, the proposed hole 

filling procedure yields slightly better quality compared to VSRS; while VSRS outperforms 

proposed approach for the same scenario in Book Arrival sequence. Apart from objective 

quality measures, typical rendering results and the corresponding errors maps are illustrated 

in Figure 4.27 to Figure 4.32. The error map illustrate pixels having intensity difference 

larger than 10 levels for images with maximum intensity level of 255, ∆I>10. According to 

the visual interpretation, it is obvious that proposed approach has competitive performance.  
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Figure 4.21: Frame-wise quality measures for interpolation among Café sequence.  

 

 

 

Figure 4.22: Frame-wise quality measures for extrapolation among Café sequence. 
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Figure 4.23: Frame-wise quality measures for interpolation among Book Arrival 

sequence. 

 

 

 

Figure 4.24: Frame-wise quality measures for extrapolation among Book Arrival 

sequence. 
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Figure 4.25: Frame-wise quality measures for interpolation among Newspaper 

sequence. 

 

 

 

Figure 4.26: Frame-wise quality measures for extrapolation among Newspaper 

sequence. 
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Figure 4.27: Two virtual frames (3
rd

 and 85
th

) from Cafe sequence rendered by (a) 

VSRS [98] and (b) proposed method 

 

 

 

Figure 4.28: Erroneous regions having intensity difference larger than 10 levels for (a) 

VSRS and (b) proposed rendering.  
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Figure 4.29: Two virtual frames (33
th

 and 86
th

) from Book Arrival sequence rendered by 

(a) VSRS [98] and (b) Proposed methods 

 

 

Figure 4.30: Erroneous regions having intensity difference larger than 10 levels for (a) 

VSRS and (b) proposed rendering 
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Figure 4.31: Two virtual frames (1
st
 and 215

th
) from Newspaper sequence rendered by 

(a) VSRS [98] and (b) Proposed methods 

 

 

Figure 4.32: Erroneous regions having intensity difference larger than 10 levels for (a) 

VSRS and (b) proposed rendering 
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It is a common observation that hole filling requirement for interpolation scenario is 

minimal compared to extrapolation due to effective utilization of both left and right views. 

On the other hand, the area of missing regions is increased for extrapolation scenario that 

influences the role of hole filling. In Figure 4.33 to Figure 4.35, typical examples of the 

extrapolation performance of VSRS and the proposed algorithm are illustrated. In Figure 

4.33.c and Figure 4.33.d, VSRS copies the foreground colors to the missing regions that 

degrade the natural looking, whereas proposed approach ignores foreground texture and 

transfers background information to the missing regions that provide visually pleasing 

completion. In Figure 4.34.c and Figure 4.34.d, both approaches copy some portion of the 

foreground; however, proposed algorithm yields slightly better background copying. The 

superior performance of the proposed VVR is more obvious in Figure 4.35.c and Figure 

4.35.d, in which filling of missing regions is achieved with higher correlation w.r.t the 

ground truth texture. Hence, VSRS extrapolation and hole filling performance is visually 

outperformed by the proposed approach, while competitive quality is provided according to 

the objective metrics. 

 

 

Figure 4.33: Extrapolation results for the Café sequence (a) VSRS, (b) proposed 

algorithm, (c) and (d) enlarged hole filling regions with ground truth, VSRS and 

proposed algorithm respectively. 
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Figure 4.34: Extrapolation results for the Book Arrival sequence (a) VSRS, (b) 

proposed algorithm, (c) and (d) enlarged hole filling regions with ground truth, VSRS 

and proposed algorithm respectively. 

 

 

Figure 4.35: Extrapolation results for the Newspaper sequence (a) VSRS, (b) proposed 

algorithm, (c) and (d) enlarged hole filling regions with ground truth, VSRS and 

proposed algorithm respectively. 



121 
 

4.4.1.2 Multi-view Static Scenes 

 

Apart from comparison with VSRS among well known MVVs, the proposed approach is 

further compared to a recent study [110], while special attention is devoted to the 

Middlebury multi-view data set. Hence, additional comparison through the publicly available 

rendering results of [110] provides a general performance overview for the proposed 

algorithm. For this purpose, the experimental setup illustrated in Figure 4.36 is exploited in 

which, virtual views of the 2
nd

, 3
rd

 and 4
th
 cameras are obtained through ground truth 

disparity maps and color views of the 1
st
 and 5

th
 cameras. The rendering quality measures are 

listed in Table 4.4, where the average values are calculated over 30 different scenes. On the 

average, the proposed approach yields higher average PSNR (around 2 dB), SSIM (0.025), 

MSSIM (0.07) and almost similar IW-SSIM measure compared to [110]. Besides, VSRS is 

also outperformed by the presented approach indicating superiority of the proposed VVR 

technique. Improvement over objective metrics is further verified on the visual results 

illustrated in Figure 4.37. In occluded regions, as circled, proposed approach maximizes the 

utilization of left and right views texture as well as compiles the missing texture with higher 

accuracy. The erroneous regions are also illustrated in Figure 4.38, where dark pixels 

correspond to intensity difference larger than 10 levels for images with maximum intensity 

level of 255. According to the overall performance, proposed approach yields visually 

pleasing rendering results with high MSSIM and IW-SSIM measures that have high 

correlation with the subjective evaluations.   

 

 

Figure 4.36: Interpolation scenario for Middlebury MVV sequence. 
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Table 4.4: Rendering quality comparison over Middlebury sequences between the 

proposed approach, DIBR [110] and VSRS [98]. 

MIDDLEBURY DIBR [110] VSRS [98] Proposed

PSNR 31.2 31.7 33.5

SSIM 0.92 0.94 0.94

MSSIM 0.89 0.94 0.96

IW-SSIM 0.96 0.96 0.96

 

 

Figure 4.37: (a) Proposed rendering, (b) rendering via [110], (c) VSRS rendering 
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Figure 4.38: The error maps (∆I>10) for the rendered views via (a) proposed, (b) [110] 

and (c) VSRS. 

 

4.4.2 Analysis of Algorithmic Subblocks 

 

In this section, the proposed algorithm is analyzed in detail by observing the performance 

of hole filling and depth refinement steps, effect of disparity estimation on rendering quality 

as well as dependency on baseline between stereo pair and the virtual camera locations. 

During the analysis, multi-view data provided by the Middlebury stereo benchmark [111] is 

utilized with scenes involving various complexities compared to the MVV sequences, Café, 

Book Arrival and Newspaper. Moreover, the scenes in [111] are more challenging with 

multiple objects and more complex background. 

 

4.4.2.1 Hole Filling 

 

In previous section, comparison with VSRS for the extrapolation scenario involves the 

effect of missing region completion. In this section, additional experiments are provided for 

hole filling to compare performance of the proposed algorithm with the well known 
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inpainting technique introduced in [92]. During the experiments, the setup, which is 

illustrated in Figure 4.39 is exploited, where the reconstruction of 3
rd

 camera corresponds to 

two baseline rendering and the reconstruction of 2
nd

 camera corresponds to one baseline 

rendering. Virtual views are obtained through the color view of the 1
st
 camera and its ground 

truth disparity map. Missing regions are filled by the proposed approach with two versions, 

where the effect of depth favoring is also tested, besides the inpainting through [92]. The 

quality measures are given in Table 4.5, in which the proposed depth favoring approach 

outperforms [92] for PSNR, SSIM and IW-SSIM metrics. On the other hand, the compared 

method in [92] has the superior performance for MSSIM metric on the two baseline scenario 

only. Utilization of depth priority during missing region completion improves visual quality 

compared to the case where depth priority is ignored. Typical hole filling results for the Art 

stereo pair are illustrated in Figure 4.40, and the detailed version in Figure 4.40.d. 

Background texture is copied to the unfilled region with high accuracy when depth priority is 

exploited, as shown in the second column of Figure 4.40.d, while there is a leakage from the 

foreground for no depth prior case. On the other hand, [92] yields structured hole filling with 

unpleasing visual quality. In Figure 4.41, two additional results are also illustrated for Aloe 

and Baby stereo pairs to provide visual interpretation. 

 

 

Figure 4.39: The experimental setup for comparison of hole completion.  
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Table 4.5: The visually quality after hole filling. 

MIDDLEBURY
2-baseline / 1-baseline

Inpaint [92] Proposed* Proposed**

PSNR 28.3 / 31.0 29.5 / 32.3 29.8 / 32.5

SSIM 0.91 / 0.93 0.92 / 0.94 0.93 / 0.94

MSSIM 0.80 / 0.93 0.78 / 0.94 0.78 / 0.95

IW-SSIM 0.92 / 0.95 0.94 / 0.96 0.94 / 0.96

* No Depth Prior

** Depth Prior  

 

 

Figure 4.40: The rendered views after hole filling via (a) proposed with depth prior, (b) 

proposed with no depth prior, (c) inpainting [16]; (d) detailed illustration for the 

rectangle region respectively.  
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Figure 4.41: (a) No hole filling, (b) proposed hole completion with depth prior and (c) 

inpainting [16]; 

 

4.4.2.2 Depth Refinement 

 

Depth refinement feedback loop is designed to remove visually disturbing artifacts, 

especially at the regions involving perceptually salient texture, such as text. For this purpose, 

additional experiments are conducted on MVV sequences with and without depth 

refinement. As expected, the effect of this step is visible for scenes involving text region, 

such as the Café sequence, while for the other videos, Newspaper and Book Arrival, the 

refinement is minimal. In Table 4.6, visual quality measurements are given before and after 

the refinement step for Café sequence. Improvement in the accuracy of rendered views is 

visible for both interpolation and extrapolation among all quality metrics. Although, there is 

no drastic increase in metrics, perceptually much more pleasing virtual views are obtained as 

illustrated in Figure 4.42. Regions involving text characters are corrected in the refined 

version increasing visual quality. Hence, this step is crucial to detect possible errors in 

disparity maps and re-assign proper disparity values providing visually pleasing virtual view 

synthesis.           
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Table 4.6: The effect of disparity map refinement on visual quality during VVR. 

CAFE
Stereo

Before Refinement After Refinement

PSNR 30.5 / 29.1 30.8 / 29.4

SSIM 0.91 / 0.88 0.91 / 0.91

MSSIM 0.90 / 0.87 0.91 / 0.91

IW-SSIM 0.93 / 0.90 0.93 / 0.93

 

 

Figure 4.42: VVR results (a) before depth refinement, (b) after depth refinement 

 

4.4.2.3 Effect of Stereo Matching 

 

The accuracy of disparity maps has an influence on the quality of rendering. In this sub-

section, a comparison is provided for the local stereo matching techniques mentioned in the 

previous chapter, based on the VVR quality via the estimated disparity maps. For this aim, 

the experimental setup given in Figure 4.43 is utilized, in which stereo matching is 

conducted between the 1
st
 and 5

th
 cameras. 0

th
, 3

rd
 and 6

th
 views are reconstructed from the 
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reference views compromising interpolation and extrapolation scenarios. It is important to 

note that, ground truth disparity maps of these reference views that enable intuition on the 

performance of stereo matching approaches are also available. During disparity estimation, 

the same cost calculation and occlusion handling schemes are utilized, while cost 

aggregation step is provided by various edge-aware filters, as in the previous chapter.   

 

Figure 4.43: Experimental setup for measuring the effect of disparity estimation. 

 

The average quality of the interpolated and extrapolated virtual views for 30 different 

scenes is given in Table 4.7. According to these results, the best reconstruction is provided 

by the disparity maps estimated through Guided Filter, while the proposed 4-neighborhood 

permeability filter has the 3
rd

 rank. However, quality difference of the proposed approach 

and Guided Filter is almost insignificant (around .05%). It is important to note that, the 

proposed filtering yields the best quality disparity maps with respect to ground truth 

according to the experiments provided in previous chapter. However, in terms of visual 

quality, this superiority does not correspond to best virtual view rendering. This is due to the 

tiny errors along object boundaries that introduce possible artifacts decreasing visual quality. 

Besides, the proposed 4-neighbor permeability filter is still the most efficient technique 

among the local methods for disparity estimation that enables competitive VVR quality with 

much less computational complexity. Compared with the ground truth disparity maps, there 

is a 1-1.5 dB decrease in PSNR, almost similar SSIM ad IW-SSIM measures, and 5% 

decrease in MSSIM for the proposed filter, which is an expected and acceptable degradation 

due to well known imperfections of stereo matching.  
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Table 4.7: Average VVR quality measures for different edge-aware filters during stereo 

matching 

Int. / Ext. PSNR (dB) SSIM MSSIM IW-SSIM

Bilateral 31.2 / 31.7 0.95 / 0.95 0.89 / 0.89 0.95 / 0.96

2-pass Bilateral 31.1 / 31.7 0.94 / 0.94 0.89 / 0.89 0.95 / 0.96

O(1) Bilateral 30.7 / 31.1 0.93 / 0.93 0.87 / 0.86 0.95 / 0.95

Guided 31.8 / 32.0 0.95 / 0.94 0.89 / 0.90 0.96 / 0.96

Cos. Int. 30.9 / 31.4 0.93 / 0.94 0.90 / 0.89 0.95 / 0.95

Adapt. Box 31.2 / 31.7 0.94 / 0.94 0.89 / 0.89 0.96 / 0.96

Geodesic 31.4 / 32.1 0.94 / 0.94 0.88 / 0.92 0.96 / 0.96

Var. Cross 31.3 / 31.7 0.95 / 0.94 0.89 / 0.89 0.96 / 0.96

Proposed-4 31.6 / 31.4 0.94 / 0.94 0.90 / 0.89 0.96 / 0.96

Proposed-8 31.1 / 31.5 0.94 / 0.94 0.88 / 0.88 0.95 / 0.95

Ground Truth 32.9 / 32.5 0.95 / 0.94 0.95 / 0.94 0.97 / 0.96
 

 

4.4.2.4 Effect of Baseline 

 

The baseline between stereo pairs is an important factor that determines stereo matching 

accuracy as well as VVR quality. In the previous section, disparity range between the stereo 

pairs is around 100 levels corresponding to 200% of the width of the images. Such a range 

yields disturbing 3D perception that is typically out of the comfort zone. In this section, 

stereo views providing comfortable 3D perception are exploited to measure the rendering 

quality, which is a more realistic scenario for 3D TVs. For this purpose, 2
nd

 and 4
th
 cameras 

are utilized to render 1
st
, 3

rd
 and 5

th
 views as illustrated in Figure 4.44; and a comparison is 

conducted between large and small baseline cases via the proposed stereo matching and 

VVR tools. The results are given in Table 4.8 over 30 different scenes, and improvement by 

the utilizations of small baseline is obvious. Especially for the interpolation case, VVR 

quality is almost increased by 2 dB for PSNR, 2% for SSIM, 5% for MSSIM and 1% for IW-

SSIM. On the average, reconstruction accuracy is larger than 95% for all of the metrics and 

the PSNR measure is larger than 32 dB, providing visually pleasing virtual views.  
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Figure 4.44: The experimental setup for measuring the effect of baseline. 

 

Table 4.8: VVR quality of the proposed approach for large and small baseline 

scenarios. 

PSNR SSIM MSSIM IW-SSIM

Large Baseline

Interpolate 31.6 0.94 0.89 0.95

Extrapolate 31.4 0.93 0.89  0.95

Small Baseline

Interpolate 34.3 0.95 0.94 0.97

Extrapolate 32.7 0.95 0.90 0.96
 

 

4.4.3 Stereo to Multi-view Conversion 

 

So far, the proposed VVR tool is compared to the state-of-the-art in terms of rendering 

capability, hole completion, the effect of stereo matching and baseline differences between 

stereo pairs. It has been argued that, the proposed technique yields competitive visual quality 

enabling perceptually pleasing VVR. In this section, overall performance of the proposed 

stereo to multi-view conversion is analyzed with some additional experiments. In order to 

interpret capability of the proposed scheme, DERS and VSRS tools are considered as the 

reference techniques for stereo matching and VVR. The resultant rendering quality is 

compared to the virtual views obtained by the proposed stereo matching and rendering 

methodology. 



131 
 

For this purpose, stereo matching is conducted on MVV sequences of Newspaper, Book 

Arrival and Café according to the experimental setup given in Figure 4.20. Hence, multiple 

views are rendered from source stereo color images, as the fundamental achievement of this 

dissertation. The experimental results are given in Table 4.9, Table 4.10 and Table 4.11 

involving four visual quality metrics respectively. Superiority of the proposed conversion 

scheme is obvious for interpolation and extrapolation scenarios. Among Newspaper 

sequence, reference software (DERS + VSRS) is outperformed by the proposed approaches 

for all type of metrics, while this is not valid for Café sequence according to MSSIM and 

IW-SSIM, although there is an obvious improvement (around 2.5-3 dB) for PSNR. The 

proposed approach yield better visual quality for Book Arrival in terms of PSNR, SSIM and 

IW-SSIM, while having MSSIM slightly below reference techniques.  

The proposed approach yields high quality conversion for Middlebury database, 

according to the analysis given in Table 4.8, such that for small or large baseline scenario, 

PSNR is always above 31 dB.  Typical stereo-to-multi-view conversion examples are 

illustrated in Figure 4.45 and Figure 4.46 for Art and Book Arrival sequences pair with 9 

interpolated views between left and right images that yields a compatible content for glasses-

free Multiview displays.  

The improvement over DERS-VSRS for stereo-to-multi-view conversion is more visible 

compared to the improvement of only VVR tool. The main reason behind such a result lies in 

the robustness of the introduced permeability based stereo matching algorithm unified with 

disparity refinement during VVR. In addition to the robustness, the proposed scheme 

requires low computational complexity especially for stereo matching compared to state-of-

the art local methods and the reference software. Thus, in this dissertation an alternative 

approach for stereo-to-multi-view conversion with competitive performance in terms of 

accuracy and complexity is provided, fulfilling the desire of content generation for next 

generation 3D-TVs.             
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Table 4.9: Comparison of stereo-to-multi-view conversion performance for Newspaper 

sequence. 

NEWSPAPER
Stereo

Proposed DERS - MVV

PSNR 28.6 / 26.5 26.7 / 24.4

SSIM 0.89 / 0.89 0.88 / 0.83

MSSIM 0.93 / 0.86 0.92 / 0.86

IW-SSIM 0.94 / 0.93 0.92 / 0.87

 

 

Table 4.10: Comparison of stereo-to-multi-view conversion performance for Cafe 

sequence. 

CAFE
Stereo

Proposed DERS - MVV

PSNR 30.8 / 29.1 28.4 / 26.1

SSIM 0.91 / 0.91 0.91 / 0.88

MSSIM 0.91 / 0.86 0.96 / 0.91

IW-SSIM 0.93 / 0.92 0.95 / 0.90
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Table 4.11: Comparison of stereo-to-multi-view conversion performance for Book 

Arrival sequence. 

BOOK ARRIVAL
Stereo

Proposed DERS - MVV

PSNR 32.2 / 31.6 26.8 / 26.0

SSIM 0.88 / 0.87 0.86 / 0.85

MSSIM 0.94 / 0.93 0.94 / 0.95

IW-SSIM 0.96 / 0.95 0.94 / 0.94

 

 

 

Figure 4.45: A typical example of stereo-to-multi-view conversion (from stereo to nine 

views) for Art stereo pair 
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Figure 4.46: A typical example of stereo-to-multi-view conversion (from stereo to nine 

views) for Book Arrival sequence 

 

4.5 Conclusion 

 

In this chapter, a novel depth image based rendering tool is presented addressing the 

needs for visually pleasing virtual views from stereo content. The traditional algorithm flow 

for VVR is modified by a feedback mechanism that provides a conjunction with stereo 

matching to remove visually disturbing artifacts due to imperfections of matching. Besides, 

edge-aware permeability filter is modified for hole filling that is an important tool to compile 

occluded regions in virtual views that cannot be assigned to valid texture from source 

cameras. In order to evaluate overall performance of the proposed VVR approach, extensive 

experiments was conducted through comparative analyses with state-of-the-art techniques. 

Various multi-views videos and static images have been exploited during experiments 

validating superiority of the proposed approach according to various visual quality metrics. 

Apart from well known PSNR measure, perceptually more robust metrics such as SSIM, 

MSSIM and IW-SSIM that have high correlation with human perception are also included.   
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In addition to comparative experiments on rendering quality, fundamental algorithm 

blocks of the proposed approach are also examined. For this purpose, hole completion step is 

compared to the state-of-the-art hole filling techniques, demonstrating substantial 

improvement. On the other hand, visual artifacts among perceptually salient regions in 

virtual views are obviously decreased by the depth map refinement step.  

The effect of disparity estimation and baseline between stereo cameras are also 

investigated to evaluate overall performance of the proposed stereo matching tool in terms of 

rendering quality. In this manner, for a more realistic scenario, where disparity range is 

around 10% of the horizontal resolution, accurate virtual views are obtained. Finally, stereo 

matching and VVR tools are unified for stereo-to-multi-view conversion, which is the 

ultimate aim of this dissertation, and comparative tests are conducted with MPEG/FTV 

reference software. These experiments indicate efficiency of the proposed methodology with 

competitive performance, yielding a strong alternative to meet the requirement of content 

generation for next generation 3D-TVs. 

 In the following chapter, parallel implementation of the proposed conversion tool, 

involving stereo matching and VVR is given that enables real-time operation for specific 

configurations.  
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CHAPTER 5 

 

 

5 GPU IMPLEMENTATION 

 
 
 

In consumer electronics, real-time processing capability is one of the most crucial 

challenges that limit implementations of algorithms. As popularity of 3D TVs increases, 

there has been a focus on the research efforts devoted to development of efficient algorithms. 

At that point, stereo matching, that is the key tool to extract dense and reliable 3D structure, 

has been popular for various systems exploiting 3D dependent applications such as 3D TVs 

and robotics. It is a well known fact that, stereo matching is computationally expensive and 

requires large amount of hardware resources compared to remaining computer vision 

algorithms that limits real-time processing for CPU systems. Therefore, special platforms are 

required to optimize stereo algorithms and increase operational speeds to the desired frame 

rates.  

Graphics processing units (GPU) that enable use of parallel processors is one of the 

most endeavored platforms to map stereo matching algorithms for real-time applications. 

Among alternative architectures for GPU, Compute Unified Device Architecture (CUDA) 

[119] supported by Nvidia Corporation provides more flexibility to manage multiple 

processors requiring less effort to map CPU intended C codes. As illustrated in Figure 5.1, 

there are many Streaming Multiprocessors, SMi, for a CUDA enabled GPU, where each SMi 

involves a set of Streaming Processors, SPi. SPis share a limited local memory, shared 

memory, which enables fast data acquisition. These processors can also access global 

(device) memory that requires higher computational load compared to access from local 

memory. Thus, in CUDA, separation of the global memory into multiple small independent 

local memories is encouraged. The processing grid is divided into blocks which are executed 

sequentially as illustrated in Figure 5.2. The blocks correspond to SMis, which follow a 

sequential execution order; while each block is processed by threads which are the 

workhorse behind the parallelization of an algorithm. Thread blocks are formed in a stream 

processor and execute in parallel as long as they map physically to the processor. Number of 

threads can exceed number of SPis based on the implementation; in this case threads are split 
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into warps, where only one warp is active at a time executing all operations in parallel. The 

order of operation between warps is sequential such that once operations in a warp is 

finalized the next warp starts. Such an architecture, where parallel operations are performed 

by threads, requires careful attention to split an algorithm into independent blocks.  

 

Figure 5.1: GPU structure of Nvidia Graphics Card [121]. 

 

During the last decade, there has been an attractive trend for GPU implementation of 

stereo matching algorithms to achieve real-time processing capabilities. Considering the 

limitations of parallelization, that prevent recursive structures and encourage independent 

operations, introduction of GPU intended constraints is a natural progress for algorithm 

development. It is a common observation that accurate stereo matching algorithms [18] 

require high computational complexity in general; on the other hand, the algorithms with 

high processing capability [31] yield relatively low matching accuracy. Moreover, GPU 

implementation of most of the high performance stereo algorithms is not efficient since the 

key steps such as cost aggregation, energy minimization and post-processing, are not suitable 

for parallel processing. Therefore, GPU friendly algorithm development has been popular 

[121] in recent years presenting the trade-off between accuracy and complexity. From this 

point of view, development of the proposed stereo-to-multi-view methodology in this 

dissertation has been constrained by GPU implementation which enables real-time 

processing for specific configurations.  
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Figure 5.2: Typical block-thread structure for GPU implementation [121].  

 

In this chapter; literature review for GPU implemented stereo algorithms is given in the 

following section. Then, proposed GPU implementation scheme for stereo matching and 

VVR are presented. In the experiments section, improvement of GPU implementation over 

CPU in terms of computational speed is analyzed and comparative results with state-of-the-

art are provided. Finally, concluding remarks are given with future directions and additional 

comments for this chapter.    

 

5.1 Related Work 

 

Real-time execution capability for stereo matching pioneered a new research area for 

computer vision, with platform dependency. In this manner, GPU implementations dominate 

literature with various alternative techniques. In [121], an analysis is given on parallel 

implementations of several optimization techniques for stereo matching, in terms of running 

times and memory capability. Belief Propagation, which is a common tool to solve Markov 

Random Fields, is implemented for real-time stereo purposes in [33] and [16] with low 
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frame-rates. For global optimization, iterative solutions over full cost volumes require high 

memory utilization as well as sequential operations between iterations which decrease 

parallelization capability. On the other hand, dynamic programming, with its semi-global 

optimization approach, yields more efficient real-time implementations as proposed in [122]-

[123]. Stereo matching which enables high parallelization is conducted along each row 

independently. Semi-global matching introduced in [123] extends row-wise operations to 

multi-directions in order to increase accuracy of estimation with a sacrifice on operation 

speed.  

The most endeavored optimization technique for parallel implementations is WTA 

approach that is exploited by local algorithms [124]-[128]. Low memory requirement and 

non-iterative algorithm flow are the main advantages of these techniques with adaptive 

support weights utilization. In these techniques [124]-[126], each pixel is supported by color-

wise similar neighboring pixels independently, providing edge-awareness and smoothness 

for the estimated disparity maps. Adaptive weights are modeled by constant weights over 

arbitrary support regions in [127] that enable faster processing without violation of edge-

awareness. In [128], however, geometric relations are included in adaptive support weights, 

i.e., geodesic support, to increase accuracy by introducing additional computation. In this 

case, stereo matching is achieved with near real-time capability. In [27] and [129], iterative 

approximations of adaptive weights are presented yielding fast execution with increased 

memory requirement.  

Accuracy of the local based real-time algorithms can be increased by unification of 

dynamic programming as proposed in [23] [34], where aggregated cost values are optimized 

through semi-global matching. Such an approach introduces additional complexity; however, 

real-time capability is still valid under specific configurations. Besides, in [130] and [131], a 

framework is introduced for virtual reality applications including depth image based 

rendering. Hence, real-time implementation of stereo matching and virtual view rendering 

are unified for a complete system, which constitutes main goal of the efforts in this chapter 

as well.      

 

5.2 Proposed Implementation 

 

In this section, implementation of the presented stereo-to-multi-view conversion tool on a 

commercial high end graphics card is detailed. For this purpose, one of the most common 
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graphics card for personal computers, GeForce GTX 480 with Nvidia’s Fermi architecture is 

utilized. Specifications of the card are summarized in Table 5.1. Number of CUDA cores and 

size of the shared memory per SM (block) are the key specifications that affect usage of 

threads during the design of parallel implementation.         

 

Table 5.1: Specifications of the graphics card utilized in this dissertation.  

 

Algorithmic flow and the order of processing of pixels determine the way of thread 

utilization. Therefore, special attention is devoted for each step to improve parallelization 

efficiency. In this manner, stereo matching and virtual view rendering steps require different 

block-thread divisions that are analyzed in the following sub-sections.  It is important to note 

that, for GPU application, standard definition (SD) side-by-side stereo video is considered as 

the input, for which each left and right image have the resolution of 720x576. Stereo 

matching provides disparity maps in SD that are exploited to render virtual views with same 

resolution in the following step as the final output of the whole system.  

 

5.2.1 Stereo Matching 

 

As mentioned in Chapter 3, the proposed stereo matching method involves four main 

steps, cost calculation, aggregation, minimization and occlusion handling. Temporal 

consistency among stereo video is further provided by a post-processing which involves 

temporal filter as the additional algorithm step. Implementation of each step is conducted 

with various block-thread distributions according to the computation structure within each 

block independently. In Figure 5.3, algorithm flow for GPU implementation of stereo 

matching is presented. In order to enable much faster running time as well as exploit shared 
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memory more efficient, aggregation of cost values and minimization are conducted on down-

sampled domain with 360x288 resolution, while cost calculation, occlusion handling and 

temporal filter are executed on the original SD domain. Thus, an additional (2x2) up-

sampling is required to yield SD resolution disparity maps, after minimization. Throughout 

the explanation of parallelization structures, each block is stored in shared memory for 

maximum utilization of fast memory allocation advantages of GPU.   

 

Figure 5.3: Revised algorithm flow of stereo matching for GPU implementation. 

 

5.2.1.1 Permeability Weight Calculation 

 

In this step, for each pixel two weight calculation operations are conducted along 

horizontal and vertical axis, by exploiting the symmetrical property of left-right and top-

down permeability weights. The block and thread distribution for the parallel 

implementation is given in Figure 5.4, where the color image is divided into 40x6 block grids 

with 9x48 resolution. One block is processed through 432 threads each responsible for one 

pixel. RGB comparisons of a pixel with its horizontal, vertical and temporal neighboring 

pixels are executed by one thread independently. During the calculation of spatial weights, 

color values are gathered from the higher resolution views (720x576) with two pixel shifts 

along the corresponding directions, and the weights are stored within decremented 

resolution. For the temporal permeability weight, however, down-sampled views are 

exploited to avoid high memory storage of the previous frame. The presented structure 

enables maximum utilization of parallelization with proper block and thread distribution  
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Figure 5.4: Block and thread distribution for permeability weight calculation. 

 

This step is executed once before the disparity dependent steps, for each frame, and the 

outcomes are utilized in the horizontal and vertical aggregation. In this manner, complexity 

of permeability weight calculation does not depend on the number of disparity candidates 

during stereo estimation. Besides, the operation is conducted for left and right images 

independently. 

 

5.2.1.2 Cost Calculation 

 

Cost calculation is executed for each disparity candidate sequentially, to utilize the 

advantage of low memory requirement. In this manner, cost values are calculated for one 

disparity level that is followed by the aggregation steps. Then, a comparison is conducted for 

minimization. Once the process of a disparity candidate is finalized, process of the next 

candidate starts where previous memory is over-written. During calculation of cost values, 

disparity resolution can be lost as long as the down-sampled views are exploited since 1 

pixel shift in higher resolution cannot be discriminated in low resolution. For this purpose, 

high-resolution views are utilized to calculate cost values for each disparity candidate 

corresponding to original resolution depth range, as illustrated in Figure 5.5.  
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Figure 5.5: Disparity resolution is not lost when cost calculation is conducted among 

high resolution views. 

 

Block and thread distribution of the cost calculation step is given in Figure 5.6, where 

each row is considered as the blocks involving 360 threads within. Image grid is divided 

along vertical direction into blocks with 1 pixel height and 360 pixels width. As discussed, 

each thread executes on 2x2 window in high-res view to calculate cost value for one pixel. In 

this implementation, pixel-wise SAD cost measure is exploited for simplicity.    

 

Figure 5.6: Block and thread distribution for cost calculation. 
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5.2.1.3 Horizontal Aggregation 

 

The most crucial steps of the proposed stereo matching algorithm are the horizontal and 

vertical aggregation. Considering successive weighted summation (SWS) approach 

introduced in Chapter 2, during horizontal aggregation, each row is processed recursively by 

a progress and update rule. For this purpose, image grid is divided into blocks as illustrated 

in Figure 5.7 that is similar to the cost calculation step. The aggregation structure within a 

row is not suitable for efficient parallel implementation, due to the recursive structure of 

SWS enabling only two threads for left-right and right-left scans at a time instant. In this 

manner, an approximation is provided by increasing number of computations as well as 

thread utilization for sake of faster execution capability. Instead of scanning the row in two 

directions to fuse preceding and proceeding information for a pixel, aggregation is performed 

within a pre-defined area for each pixel independently. In Figure 5.8, utilization of partial 

SWS is illustrated, where each arrow corresponds to scan operation of one thread. In original 

SWS, two threads are exploited independently to scan a row, while in the modified version 

the row is divided into partial regions (Lx1) for each pixel and 360 threads can execute 

recursive operations (left-to-right and right-to-left scans) at the same time. This 

approximation, although increases total number of operations per pixel, yields much more 

efficient parallelization due to increased number of threads. 

On the other hand, support areas are limited by the pre-defined areas in the modified 

version that could introduce some accuracy loss. However, exploiting (40x40) or (60x60) 

window is sufficient to obtain high quality disparity maps for stereo pairs with 720x576 

resolution. In this manner, L is chosen to be within [40, 60].  

 

Figure 5.7: Block and thread distribution for horizontal aggregation. 
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Figure 5.8: Partial approximation of original SWS to exploit threads efficiently. 

 

5.2.1.4 Vertical Aggregation 

 

During vertical aggregation, each column is processed in top-to-bottom and bottom-to-top 

scans; thus, cost map grid is divided into blocks corresponding to columns as illustrated in 

Figure 5.9. One block involves 288 pixels each of which is assigned to one thread. Similar to 

the discussion given in horizontal aggregation section, SWS is not proper for high efficient 

parallel implementation in vertical domain as well. Therefore, partial SWS approximation is 

provided along vertical domain to accumulate horizontally aggregated cost values with 

effective 2D support regions. 288 threads are executed in parallel performing two scans for 

each pixel within a restricted area (1xL).  

 

Figure 5.9: Block and thread distribution for vertical aggregation. 
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5.2.1.5 Minimization 

 

Cost values of each disparity candidate are compared to minimum values obtained so far 

through sequential processing over disparities. The comparison and update operations are 

conducted according to the block-thread structure provided as in Figure 5.4, where initial 

grid is divided into 40x6 blocks similar to the distribution given in permeability weight 

calculation section. 432 threads are assigned for each block, processing same number of 

pixels as well. This step outputs initial disparity maps for both left and right images, after 

sequential comparison among disparity candidates.  

 

5.2.1.6 Up-Sampling 

 

Initial disparity maps are obtained in low resolution, therefore an additional up-sampling 

is required to have full resolution version. Nearest neighbor interpolation is utilized in this 

step due to simplicity and sufficient precision. The initial grid, image, has a resolution of 

720x576 which is the target resolution of up-sampling for the disparity maps. For this 

purpose, blocks and grids are distributed according to the structure given in Figure 5.10, 

where number of blocks is increased by factor of four, compared to the low-resolution 

scenario as expected. There are 432 threads assigned to each pixel within a block, executing 

in parallel to increase the resolution of the initial disparity maps.  

 

Figure 5.10: Block and thread distribution for up-sampling. 
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5.2.1.7 Occlusion Handling 

 

Occlusion handling involves multiple steps involving cross check to determine un-

reliable pixels, then permeability filter to fuse information to these regions through reliable 

pixels located at background. These operations are conducted on full resolution disparity 

maps by exploiting similar block-thread distributions as in the previous stages, such as 

structure provided in Figure 5.10 is valid for the detection of occluded pixels. Permeability 

filter in horizontal and vertical directions for this step, detailed in Chapter 3, are conducted 

on the enlarged blocks of Figure 5.7 and Figure 5.9, where 720 and 576 threads are assigned 

for each block in horizontal and vertical aggregation respectively. Partial SWS is operated to 

maximally utilize efficiency of parallelization within these blocks.    

 

5.2.1.8 Temporal Filter 

 

Temporal filter is the final step of stereo matching that smoothes estimated disparity maps 

along time axis to remove possible flickers. This step is also performed on the full resolution 

according to the parallelization structure provided in Figure 5.10. Each thread processes one 

pixel by averaging over the disparity map of the previous frame through temporal 

permeability weights.  

5.2.2 Virtual View Rendering 

 

Implementation of virtual view rendering in GPU involves four main stages after several 

simplifications over the original version introduced in Chapter 4. However, feedback 

mechanism to correct erroneous disparity values is removed for sake of real-time capability. 

The flow chart of the modified version is illustrated in Figure 5.11, in which each step is 

conducted on full resolution disparity maps and color views. As in stereo matching case, 

shared memory utilization and large number of threads are the main constraints for the 

design of parallel implementation. In the following sub-sections, block-thread structure of 

each block is explained in detail. 
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Figure 5.11: The algorithm blocks for the GPU implementation of VVR step. 

 

5.2.2.1 Pre-Process of Disparity Maps 

 

In this step, disparity maps of left and right stereo pair are enlarged by favoring 

foreground disparity values, in order to prevent possible background-foreground leakage. 

This process enables highly parallel structure as given in Figure 5.12, where image grid is 

divided into 80x12 blocks each having 432 threads. Each thread processes one pixel within a 

3x3 window to determine the largest disparity among the neighboring pixels.    

 

Figure 5.12: Block and thread distribution for the pre-processing of disparity maps. 

 

5.2.2.2 Virtual View Depth Composition 

 

Virtual view depth composition in GPU is performed according to the structure illustrated 

in Figure 5.13. Each block is assigned to one column, in order to prevent overlapping of 

pixels during the warp operations of disparity values. This step constructs 3D structure of 

virtual camera view by fusing left and right disparity maps. There may be holes after both 

maps are warped to the virtual camera location; hence, hole filling is required for the 

occluded regions. This is handled by copying the background disparity the neighbor pixels 



149 
 

among left and right row scans. For this purpose, the structure given in Figure 5.8 is utilized, 

while the operations are only conducted for the pixels in occluded regions.   

 

Figure 5.13: Block-thread structure for virtual view depth composition. 

5.2.2.3 Texture Copy 

 

Once each pixel in the virtual view is assigned to the proper disparity values, texture 

copying is conducted to gather RGB values from the source images. Depending on the 

location of virtual camera, primary source is determined to follow a sequential order to fuse 

color of both images. Initial RGB values are copied from the primary source, and the missing 

regions are compiled from the other source. Parallel implementation of this step is conducted 

on the same block-thread structure provided for depth composition given in Figure 5.13. 

Each thread is assigned to one pixel along a column block, and gathers RGB values from the 

corresponding location of the source images. This operation is performed twice to compile 

holes through the secondary source that are not visible from the primary source. 

 

5.2.2.4 Hole Completion 

 

Especially, for extrapolation case, the holes cannot be compiled in texture copy step from 

any source view.  Hence, a hole filling is required to provide visually pleasing and complete 

virtual views as the final outcome. This is handled by performing permeability filter along 

RGB values, according to the same structure provided for occlusion handling in Section 

5.2.1.7. Each channel are filtered independently that increases computation almost six times 

compared to the occlusion handling for disparity map. Block-grid structure for this step is the 
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enlarged blocks of Figure 5.7 and Figure 5.9, where 720 and 576 threads are assigned for 

each block in horizontal and vertical aggregation respectively. According to the presented 

structure, this step involves the most time consuming processes for the virtual view 

rendering that is also validated in the experiments section.      

 

5.3 Experimental Results 

 

In this section, the efficiency of the presented GPU implementation scheme is tested 

according to the improvement over CPU version and compared to the state-of-the-art 

techniques to interpret availability for real-time systems. The tests are conducted over 

720x576 stereo videos on 3.06GHz Intel Core i7 with 6 GB RAM CPU and GeForce GTX 

480 graphics card. A screen shot is illustrated in Figure 5.14, with a left view and its 

estimated disparity map. Besides, the user interface of CUDA implementation is also shown, 

where several parameters can be adjusted for flexibility. 

 

5.3.1 Improvement over CPU 

 

Execution time of each step for stereo matching (including both left and right views) is 

presented in  

 

Table 5.2 that summarizes the improvement of GPU performance over CPU. Speed-up 

factors indicate how fast the corresponding step runs in GPU compared to CPU. This factor 

goes up to 90 for highly parallelizable computations, such as cost calculation and 

minimization. The speed-up factors for weight extraction and temporal filter are lower 

compared to steps with similar block-grid structure, since shared memory utilization is 

limited for the presented implementation. As expected, horizontal and vertical aggregation 

speed-up rates are also low due to increased computation to exploit more threads. Occlusion 

handling is the most time consuming algorithm block excluding disparity dependent steps. 

This is also an expected result, since occlusion handling is conducted on full resolution with 

multiple usage of permeability filter. 
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Comparing the overall complexity, disparity independent part for CPU requires 96 msec, 

while it is 2.2 msec for GPU. On the other hand, the most critical steps, executed 

sequentially by number of disparity candidates, (cost calculation, horizontal-vertical 

aggregation and minimization) require 31 msec and 0.6 msec per disparity for CPU and GPU 

respectively. From this analysis, it is concluded that GPU implementation can calculate 64 

disparity candidates for (720x576) stereo pair with real-time capability (24 fps). On a 

common convention, this corresponds to 1312 million disparity estimation (MDE) per 

second. Alternating resolution of the stereo pair, wider range of disparity search can be 

conducted without violation of real-time processing. According to the number of operations 

per second, the overall speed-up factor of GPU implementation is 54 over CPU.  
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Figure 5.14: A screen shot of a video and user interface for CUDA implementation. 

 

Computation times of each algorithm block devoted to render one virtual view are listed 

in Table 5.3. As expected, GPU speed-up factor is quite high for pre-process and texture 

copying, while it is limited for depth composition and hole filling. The most time consuming 

block for both CPU and GPU is the hole filling which requires multiple horizontal and 

vertical passes. Almost 80% of computation in GPU is devoted to this step, while it is 65% 

for CPU. Comparing to the overall computation time, GPU implementation enables 40x 

speed-up with 8.6 msec for rendering one virtual view of size 720x576.    
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On the average, proposed stereo-to-multi-view conversion scheme has the complexity of 

(2.2 + 0.63D + 8.6N msec) on GeForce GTX 480 graphics card, where D is the number of 

disparity candidates and N is the number of rendered virtual views. According to this 

complexity, two virtual views can be rendered through stereo matching among 32 disparity 

candidates within 24 frames per second, meeting the real-time requirement. The provided 

frame rate of disparity range can be increased by utilizing a simpler version of hole filling 

which is the most time consuming step among all processes; such that frame rate goes up to 

50 fps when background copy is utilized for hole completion. 

 On the other hand, it is important to note that more efficient implementations can be 

provided for each step of the presented scheme with additional efforts. However, for the time 

being, further optimization is not required, since real-time capability is obtained for a 

specific configuration that also demonstrates high efficiency of the proposed stereo matching 

and VVR tools.  

 

Table 5.2: Comparsion of CPU and GPU execution times for each block of stereo 

matching algorithm.  

Computation time

(msec)
CPU GPU Speed-up

Weight Extraction 8.50 0.213 40

Cost Calculation 9.85 0.108 91

Horizontal Aggregation 5.66 0.172 33

Vertical Aggregation 8.39 0.281 30

Minimization 6.56 0.071 92

Up Sampling 12 0.153 78

Occlusion Handling 51 1.283 40

Temporal Filter 24 0.552 43

Overall 95.5 + 30.5D 2.2 + 0.63D -

MDE / sec 24 1312 54
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Table 5.3: Comparsion of CPU and GPU execution times for each block of VVR 

algorithm. 

Computation time

(msec)
CPU GPU Speed-up

Pre-Process 47 0.43 90

Depth Composition 31 0.92 34

Texture Copy 16 0.24 65

Hole Filling 219 7.01 31

Overall 344 8.59 40

 
 

5.3.2 Comparison with State-of-the-Art 

 

Apart from improvement over CPU, a comparison with state-of-the-art is required to 

interpret the capability of the developed GPU implementation. For a fair comparison, 

graphics cards should be compatible with each other. In [121], some well known algorithms, 

Block Matching, Belief Propagation, Dynamic Programming [122] and Semi-Global 

Matching [123] are implemented on GeForce GTX 480 which is the same card in this study. 

Besides, implementation of AD-Census in [34] is also conducted on the same graphics card. 

In Table 5.4, measures of million disparity estimations (MDE) per second are given with a 

ranking in terms of execution speed. The block matching implementation, which is the 

simplest and worst performance technique for stereo matching, provided in [121] is almost 

25% faster than our implementation of block matching, achieved by omitting horizontal-

vertical aggregations. Proposed implementation outperforms well known Semi-Global 

Matching and Belief Propagation methods with 5x to 10x improvement. On the other hand, 

Dynamic Programming yields two times much faster execution with row independent 

processing. Compared to AD-Census in [34], which is a hybrid technique fusing local stereo 

and semi-global matching, proposed approach executes almost 12 times faster, which 

demonstrates the efficiency of current implementation. 

For the sake of completeness, additional algorithms are included in Table 5.4, Census-

based [124], Stream Centric [130] and Geodesic Support [128], which are implemented on 
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older versions of GeForce GTX. In that manner, the listed MDEs can be further increased (at 

most by factor of 2) when these methods are implemented on GTX 480. Especially, 

comparison with Geodesic Support [128] is important to interpret capabilities of the 

proposed stereo matching algorithm, since [128] is one of the best performing local stereo 

algorithms. As intensively compared in terms of accuracy in Chapter three, proposed 

permeability filter yields more precise estimation compared to Geodesic Support, with 30 

times faster (after mapped to GTX 480) execution in GPU. On the other hand, Census-based 

[124] and Stream Centric [130] can perform faster than the proposed technique on the same 

environment. It is important to note that accuracy of these algorithms is sub-optimal due to 

approximation of edge-aware filters for stereo matching. 

Table 5.4: MDE capabilities for several stereo matching algorithms in GPU. 

GPU MDE / sec

Block Matching [122] 5696

Block Matching (Proposed) 4597

Dynamic Programming [123] 2952

Proposed 1312

Census-based* [125] 1152

Stream Centric* [131] 1040

Semi-Global Matching [124] 260

Belief Propagation [122] 122

AD-Census [34] 109

Geodesic Support* [129] 20

* Exploit older version of GeForce GTX  
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According to the comparison with state-of-the-art, proposed implementation yields 

comparable execution speed enabling real-time applications for particular specifications. 

Although there is room for further improvement in terms of running time, current 

implementation seems to be efficient for various applications. One important point to 

mention is that, presented stereo matching algorithm has also been implemented on Spartan-

XC6SLX9 FPGA for 3D TV applications, illustrated in Figure 5.15, providing 60 fps for 

stereo video with 480x270 resolution as detailed in [137]. In conclusion, proposed overall 

stereo-to-multi-view conversion system is one of the pioneering studies devoted to develop 

alternative applications for 3D TVs. 

 

Figure 5.15: (a) TV board on which stereo matching is implemented, (b) a screen shot from a 3D 

TV with stereo matching output. 

 

5.4 Conclusion 

 

In this chapter, parallel implementations of the proposed stereo matching and virtual view 

rendering algorithms are presented with detailed block-thread structures. Special attention is 

devoted for each step that involves various characteristics of processing order, to design an 

efficient GPU implementation. Besides, several modifications are given to simplify and 

remove time consuming steps. For this purpose, Nvidia GeForce GTX 480 graphics card is 

exploited that provided speed-up factors of 54 and 40 over CPU implementation for stereo 

estimation and virtual view rendering respectively. The overall speed-up factors enables real-

time capability for both of the tools such that stereo matching can be performed among 32 

disparity candidates as well as two virtual views can be rendered with 24 frames per second. 
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According to the MDE comparison with state-of-the-art, the presented implementation is 

competitive with efficient algorithms, while outperforms methods with high accuracy 

matching capability. Therefore, the proposed approach seems to be an efficient alternative 

engaging high accuracy and fast implementation for stereo matching and VVR that is 

applicable for various applications.  

A final point that deserves attention is that, more efficient GPU implementations of the 

proposed algorithms can be provided with careful efforts on parallelization. This remains as 

a future direction, since current implementation is sufficient to execute in real-time under 

specific conditions that meet the requirements under the scope of this dissertation.          
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CHAPTER 6 

 

 

6 SUMMARY AND CONCLUSION 

 

 

 
In this thesis, a novel and efficient methodology for the conversion of stereo videos to 

multi-view that addresses the requirement of appropriate content creation for next generation 

3D TVs, e.g. multi-view auto-stereoscopic displays, is presented. Such a conversion enables 

recycling of excessive amount of stereo video filmed for 3D cinemas and 3D TVs, for multi-

view displays without dedicated multi-camera (more than two cameras) capture systems. The 

presented approach involves two main blocks, as extraction of 3D information from stereo 

views and generating inexistent views by utilization of 3D structure. For this purpose, depth 

image based rendering is utilized to enable multiple virtual views from stereo content. In 

order to validate efficiency of the presented algorithms, GPU implementation which enables 

real-time operation through advantages of parallelization for specific configurations is also 

provided. A summary and conclusion of the research contributions of this dissertation are 

presented in the next section followed by the directions of future research.     

 

6.1 Summary and Contributions 

 

The idea of supporting each pixel through color-wise similar neighbors enables robust 

semantic models, such as depth, motion, segmentation, preserving object boundaries. 

Besides, they require high complexity due to color adaptive operations that limit fast 

operations for various purposes. Hence, significant amount of research is devoted to develop 

efficient edge-aware filters. As the first and fundamental achievement of this thesis, a multi-

purpose edge-aware filter is proposed with high efficiency that is applicable to intermediate 

problems of stereo-to-multi-view conversion. 

In this thesis, a new paradigm, namely separable successive weighted summation (SWS) 

along horizontal and vertical directions enabling constant operational complexity is 

presented. The weights are determined by 4 (8)-neighbor intensity similarity of pixels and 
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utilized to model information transfer rate, permeability, towards the corresponding 

direction. Aggregation is provided through two reverse scan orders in the corresponding 

directions with no pre-defined support area. Hence, permeability filter provides totally 

adaptive support region for each pixel depending on local color distribution. Information 

transfer is prevented across color edges, while such a transfer allowed over smooth color 

transitions providing 2D connected support regions for each pixel. Moreover, filtering is 

achieved by small number of operations compared to state-of-the-art techniques; for four-

neighbor permeability filter, there are only six additions and four multiplications, while for 

eight-neighbor filter 14 additions and 16 multiplications are required independent of support 

region size.  

Permeability filter is utilized at each step of the presented stereo-to-multi-view 

conversion scheme. In the first step, stereo matching is conducted to extract 3D information 

from left and right color images. Constrained by low computational complexity and high 

accuracy requirements, the proposed approach exploits local optimization through 

permeability aggregation filter. Under the assumptions of smoothness and visual similarity, 

the best matches are estimated for each pixel in both left and right views. Utilization of edge-

aware filter enables supports for each pixel among color-wise similar neighbors yielding 

crisp and smooth disparity maps. The presented filter is applied to aggregate cost values for 

each disparity candidate that is minimized through a winner-take-all optimization to assign 

initial estimates of disparity maps for left and right views. The same idea is also utilized to 

fuse consistency between left-right pair as well as along temporal domain to yield flicker-

free disparity maps of stereo video.  

The second block of the proposed conversion tool is the generation of multiple views 

from stereo view through extracted disparity maps. This step is achieved by depth image 

based rendering. Addressing fundamental requirement of visually pleasing virtual views, the 

general flow of DIBR approaches is improved with a disparity error feedback mechanism in 

which errors along visually salient regions, such as text, are corrected. Once disparity maps 

are refined, a pre-processing is conducted to prevent possible foreground-background texture 

copy by boundary enlargement. The following step is the composition of disparity map of 

desired virtual view that is obtained through 3D warps of left and right disparity data. 

According to the constructed 3D structure, proper RGB values are gathered from source 

cameras through texture copy. During this step, color calibration between left and right 

views is conducted in order to prevent color inconsistencies in the rendered view. Some 

pixels are not assigned to proper texture due to invisibility through reference cameras. As the 
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final step, an efficient hole completion is proposed as an extension of the proposed edge-

aware permeability filter that enables visually pleasing and consistent texture for sake of 

complete virtual views. The proposed virtual view rendering scheme is applied to generate 

multiple views that provides required content for next generation 3D TVs.        

As the final achievement in this dissertation, GPU implementation of the proposed stereo-

to-multi-view conversion scheme is conducted with computation advantage of parallel 

programming. For this purpose, Nvidia CUDA platform where special attention is devoted to 

partition each algorithmic block into independent processing units is exploited. This 

achievement provides real-time capability under specific configurations.  

 

6.2 Conclusions 

 

Extensive experiments are conducted for each algorithm block to compare with state-of-

the-art and interpret algorithm capability. Proposed edge-aware filter, permeability filter, is 

compared against the well known filters in terms of computational speed, memory 

requirement and accuracy. For this purpose, depth data up-sampling and stereo matching are 

considered as the fundamental applications under the scope of stereo-to-multi-view 

conversion.  

According to the detailed experiments, proposed 4-neighbor approach is the most 

efficient technique among various local approaches providing weighted averaging over 

adaptive support regions, with fastest execution for depth up-sampling and stereo matching. 

The main reason behind such a result is utilization of reduced number of operations per 

pixel, corresponding to four multiplications and six additions. Besides, highest performance 

is obtained with 4-neighbor and 8-neighbor permeability filters for stereo matching, with 

almost 15% improvement in accuracy among the state-of-the-art. Proposed approach yields 

competitive performance for depth data up-sampling with almost 2000 times faster execution 

capability compared to geodesic filter which is the best performing technique. On the other 

hand, required memory is low compared to constant complexity approximations of edge-

aware filters. Thus, the presented edge-aware filter is a good alternative for geometry related 

applications with high accuracy, quite fast execution and low memory request. 

The presented stereo matching algorithm has superior performance compared to the state-

of-the-art algorithms. Among all examined local aggregation based methods, highest 
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precision is obtained over various stereo pairs with available ground truth disparity maps. 

The ratio of correctly estimated disparity is over 90%, even for large baseline scenario that 

proves the robustness of the proposed algorithm. It is important to note that this performance 

can be further increased with additional post-processing rather than sole aggregation as 

conducted throughout this thesis. In this manner, the proposed approach is the best 

performing technique that exploits sole edge-aware aggregation and occlusion handling 

without any iterative blocks. Extension of permeability filter in time domain yields 

temporally smooth and consistent disparity maps that boost up overall estimation quality. 

Moreover, presented occlusion handling enforces left and right disparity maps to be 

consistent with each other. Detailed analysis of the presented algorithm indicates the 

importance of occlusion handling and flexibility to exploit multi-resolution for faster 

operations with almost 1-2% loss in precision. On the other hand, orthogonal scanning for 4-

neighbor permeability filter introduces some precision loss along tiled regions. This 

drawback is handled by 8-neighbor permeability filter with a sacrifice on the large support 

regions that decreases overall performance compared to 4-neighbor version. Actually, this 

result could be misleading for scenes involving intensive non-orthogonal structures. On 

average, proposed approaches yield a good alternative for the trade-off between accuracy 

and complexity.      

Virtual view rendering tool is compared to the reference software utilized for MPEG 

3DV/FTV standardization efforts which is one of the most endeavored algorithms in 

literature. Experiments on multi-view video indicate that proposed VVR has competitive or 

even slightly better performance, especially based on visual quality metrics highly correlated 

with human perception. Disparity error feedback mechanism removes salient artifacts 

especially around text regions increasing visual quality. Moreover, the proposed hole filling 

technique provides a visually pleasing completion with a superior performance compared to 

the reference software. It is important to mention that during these experiments, depth maps 

provided by the content owners are utilized for fair comparison of VVR tools. 

As the main goal of stereo-to-multi-view conversion, the proposed algorithms are further 

compared against the reference depth estimation and virtual view rendering software along 

stereo video. In this case, the disparity maps are estimated from stereo pairs; improvement of 

the proposed scheme is more observable due to superiority of the proposed stereo matching 

algorithm. In terms of PSNR, there is almost a 2 dB improvement which is further supported 

by additional visual quality metrics. Moreover, the proposed approach has less complexity 

compared to the reference software as well as the remaining edge-aware filters. On the 
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average, the proposed approach yields IW-SSIM value above 0.95, which is one of the best 

objective visual quality metric modeling human perception for VVR. This result corresponds 

to 95% correct reconstruction calculated among highly erroneous regions that provides 

sufficient quality for the conversion of stereo-to-multi-view.    

In addition to high quality virtual views, efficiency of the presented scheme is another 

important contribution to the state-of-the-art. Parallel implementation on an Nvidia GTX 480 

graphics card is conducted for stereo matching and VVR tools in order to validate the 

efficiency of the algorithms. For this purpose, special attention is given for each block to 

map algorithmic structures on independently executable small processing units. According to 

the current implementation, real-time capability is achieved for SD (720x576) stereo video, 

where 60 disparity calculations and two VVR operations can be performed for 24 frames per 

second. These specifications can be modified to adapt presented conversion tool for various 

resolutions. Compared to the state-of-the-art GPU implementations on the same graphics 

card, the proposed approach yields a competitive processing power with 1312 MDE per 

second. Besides, the proposed stereo matching step has also been implemented on Spartan-

XC6SLX9 FPGA for 3D TV applications providing 60 fps for stereo video with 480x270 

resolutions, which is one of the pioneering attempts for consumer electronics.  

 

6.3 Future Directions 

 

The presented solutions in this dissertation addressing the problem of stereo-to-multi-

view conversion involve generic steps that can be extended for various applications. Possible 

directions for the future research related with this study are given as:  

Permeability Filter: Efficiency of the introduced permeability filter is validated through 

extensive experiments. Hence, this filter can be utilized for various geometry constrained 

problems such as segmentation and optic flow in addition to the presented stereo matching 

solution. Applying permeability filter on RGB channels iteratively, pixel values converge to 

specific values representing characteristics of separate objects which provides some sort of 

segmentation. Besides, extending 1D disparity search idea two 2D, optic flow of each pixel 

can be estimated, as long as two consecutive frames of a video sequence are processed 

through presented stereo matching algorithm blocks. 
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Apart from 2D models, permeability filter can be extended to 3D filtering for voxel 

representations, where successive weighted summation can be performed on three main axes 

(x,y,z) consecutively. This may provide additional applications for volume processing in 

biomedical image processing or holograms. 

The performance of the model estimation can be further increased by giving special 

attention to the permeability weight extraction step. For this purpose, edge detectors can be 

utilized instead of 4-neighbor or 8-neighbor RGB difference only. Utilization of edge 

detectors increases edge-awareness of the filter providing more robust results for disparity 

estimation, occlusion handling, hole completion, segmentation and optic flow estimation. 

Stereo Matching: Proposed stereo matching algorithm is utilized for the conversion of 

present stereo video including 3D movies and documentaries. As they are filmed for theaters, 

imperfections between stereo pairs are limited such that cameras are aligned perfectly, video 

noise is reduced and disparity range is within certain bounds for better 3D perception. On the 

other hand, for various applications, such as robotics, stereo content may involve 

imperfections that require fine tuning and additional modifications to apply proposed stereo 

matching technique. In this manner, each algorithm block can be modified according to 

properties of the input content.  

The extension of the proposed stereo matching algorithm in temporal domain can be 

achieved in a different way by increasing memory requirement as well as complexity such 

that cost volume of the previous frame is transferred to the current frame through temporal 

permeability weights. This approach certainly improves the overall performance of stereo 

matching due to increased information and 3D permeability filter involving temporal axis. 

Permeability idea can be applied for well known stereo matching optimization techniques 

such as Belief Propagation (BP) and Dynamic Programming (DP), to improve their 

performance and decrease their computational complexity. In this manner, instead of 

applying iterative updates for BP over cost volume, horizontal and vertical scans can be 

conducted through permeability weights that carry entire information according to local 

color variations. Thus, edge-awareness of BP can be improved without any specific 

segmentation models which do not require any iteration. The well known striking artifact of 

DP can be removed by utilizing horizontal permeability weights to transfer information 

between consecutive pixels during optimal path calculation along a scan line. Hence, fusion 

of the presented scheme with global and semi-global optimization techniques may yield 

much precise stereo matching with reduced complexity.   
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GPU implementation: As stated in the related chapter, the presented parallel 

implementation of the proposed stereo-to-multi-view conversion tool can be further 

optimized to yield faster execution capability. Moreover, development in graphics card 

technology enables various platforms that lead more computation capacity. Hence, 

adaptation of the present implementation for improved products is always a direction for 

future studies.  
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