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ABSTRACT 
 

 

 

 
GENERALIZED FINITE DIFFERENCE METHOD IN ELASTODYNAMICS 

USING PERFECTLY MATCHED LAYER 
 

 

 

KORKUT, Fuat 

Ph.D., Engineering Sciences Department 

Supervisor: Prof. Dr. Turgut TOKDEMĐR 

 
 

July 2012, 162 Pages 

 
 
 
This study deals with the use of the generalized finite difference method (GFDM) 

in perfectly matched layer (PML) analysis of the problems in wave mechanics, in 

particular, in elastodynamics. It is known that PML plays the role of an absorbing 

layer, for an unbounded domain, eliminating reflections of waves for all directions 

of incidence and frequencies. The study is initiated for purpose of detecting any 

possible advantages of using GFDM in PML analysis: GFDM is a meshless 

method suitable for any geometry of the domain, handling the boundary 

conditions properly and having an easy implementation for PML analysis. In the 

study, first, a bounded 2D fictitious plane strain problem is solved by GFDM to 

determine its appropriate parameters (weighting function, radius of influence, 

etc.). Then, a 1D semi-infinite rod on elastic foundation is considered to estimate 

PML parameters for GFDM. Finally, the proposed procedure, that is, the use of 

GFDM in PML analysis, is assessed by considering the compliance functions (in 

frequency domain) of surface and embedded rigid strip foundations. The surface 

foundation is assumed to be supported by three types of soil medium: rigid strip 
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foundation on half space (HS), on soil layer overlying rigid bedrock, and on soil 

layer overlying HS. For the embedded rigid strip foundation, the supporting soil 

medium is taken as HS. In addition of frequency space analyses stated above, the 

direct time domain analysis is also performed for the reaction forces of rigid strip 

foundation over HS. The results of GFDM for both frequency and time spaces are 

compared with those of finite element method (FEM) with PML and boundary 

element method (BEM), when possible, also with those of other studies. The 

excellent matches observed in the results show the reliability of the proposed 

procedure in PML analysis (that is, of using GFDM in PML analysis). 

 

Keywords: Generalized finite difference method, perfectly matched layer, 

compliance function, rigid strip foundation.  
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ÖZ 

 

 

 

ELASTODAYNAMİKTE GENELLEŞTİRİLMİŞ SONLU FARKLAR 
METODUNUN MÜKEMMEL UYUMLU TABAKAYLA KULLANILMASI  

 

 

 

KORKUT, Fuat 

Doktora, Mühendislik Bilimleri Bölümü 

Tez Danışmanı: Prof. Dr. Turgut Tokdemir 

 
 

Temmuz 2012, 162 Sayfa 

 
 
 
 
Bu çalışma, dalga mekaniği problemlerinde özellikle elastodinamikte mükemmel  

uyumlu tabaka (MUT) kullanan genelleştirilmiş sonlu farklar metodu (GSFM) ile 

ilgilidir. MUT sınırsız etki alanına sahip problemlerde sönümleyici tabaka olarak 

görev alır ve tüm yönler ve frekanslardaki gelen dalgaların yansımalarını elimine 

eder. Bu çalışma ile MUT analizlerinde GSFM’nin avantajları ortaya 

konulmuştur. Bir ağsız metod olan GSFM’nin başlıca avantajları, herhangi bir 

geometiriye sahip problemin çözümünde kullanılabilmesi, sınır şartlarını uygun 

biçimde sağlaması ve MUT analizlerine kolay uygulanabilmesidir. Bu çalışmada 

öncelikle, GSFM için uygun parametrelerin (ağırlık fonksiyonları ve etki yarıçapı, 

vb.) belirlenmesi amacıyla iki boyutlu sınırlı bir düzlem birim deformasyon 

problemi çözülmüştür. Daha sonra, bir boyutlu yarı sonsuz elastik temele oturmuş 

çubuğun analizi yapılarak MUT parametreleri GSFM için belirlenmiştir. Son 

olarak, GSFM’nin MUT analizlerinde uygulanması için önerilen yöntem, 

yüzeysel ve gömülü şerit temellerin esneklik fonksiyonlarının (frekans uzayında) 

belirlenmesinde kullanılmıştır. Bu analizlerde, yüzeysel temelin yarım uzay (YU) 
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üzerinde, zemin tabakasının rijit kaya üzerinde ve zemin tabakası YU üzerinde 

olması durumları ele alınarak üç farklı zemin ortamı tarafından desteklendiği farz 

edilmiştir. Gömülü temellerde sadece YU zemin ortamı tarafından desteklendiği 

durum ele alınmıştır. Yukarıda belirtilen frekans uzayı analizlerine ek olarak 

sadece YU oturan rijit şerit temelin tepki kuvvetleri için doğrudan zaman etki 

alanı analizleri gerçekleştirilmiştir. Frekans ve zaman uzayında elde edilen 

sonuçlar MUT’lu sonlu elemanlar metodu ve sınır elemanlar metodu ve mümkün 

olan durumlarda başka yöntemlerden elde edilen sonuçlarla karşılaştırılmıştır. 

Sonuçlarda gözlenen mükemmel uyum önerilen yöntemin MUT analizlerinde 

GSFM kullanımının güvenilir olduğunu göstermektedir.   

           

Anahtar Kelimeler: genelleştirilmiş sonlu farklar metodu, mükemmel uyumlu 

tabaka, esneklik fonksiyonu,rijit şerit temel 
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CHAPTER 1 
 
 
 

INTRODUCTION  
 
 
 
 
 
 

1.1 GENERAL DESCRIPTION 
 

Many fields of engineering and physical sciences are interested in the propagation 

of wave in unbounded domain problems. Soil-structure interaction and fluid-

structure interaction problems are typical examples of this type of problems in 

wave mechanics. In addition, propagation of wave in unbounded domain is also 

significant concept in fields of acoustic, electromagnetism, and geophysics. 

Analytical, semi analytical and discrete methods are used to analyze such 

unbounded domain problems. The artificial boundary conditions (ABCs) are 

generally preferred in the analyses of unbounded domain problems using discrete 

methods. The truncation of unbounded domain by some surfaces (called artificial 

boundaries) and performing the analysis in the truncated finite domain by using 

ABCs is needed in the analysis of these problems by discrete methods such as; 

finite element method (FEM) and finite difference method (FDM). ABC’s can 

minimize the reflections on artificial boundaries, however, they are not capable to 

eliminate them completely. Therefore, a method based on putting a perfectly 

matched layer (PML) around truncated domain is proposed to cure this 

shortcoming of ABC’s. In this method, a reflectionless artificial layer which 

absorbs incident waves for all directions of incidence and frequencies is placed to 

the truncation boundary (interface). This study deals with the use of a meshfree 

method called generalized finite difference method (GFDM) in PML analysis of 

the problems in wave mechanics, in particular, in elastodynamics. The advantages 

of using GFDM in PML analysis are summarized as: GFDM is a meshless method 

suitable for any geometry of the domain, handling the boundary conditions 
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properly and having an easy implementation for PML analysis. In this thesis 

work, GFDM formulation in PML analysis at the elastodynamics problems is 

presented. The proper choice at the parameters appearing in GFDM and PML is 

made through the use of parametric studies carried out for some benchmark 

problems. The proposed formulation is appraised by applying it to the compliance 

of surface foundation and embedded rigid strip footing supported by a soil 

foundation. The surface foundation is considered having various configurations: 

uniform HS, soil layer on rigid bedrock and soil layer on uniform HS. The 

embedded foundation is considered only when the supporting soil medium is HS. 

Direct time domain analyses are also performed only for a surface rigid strip 

foundation on uniform HS. 

 

 

1.2 RESEARCH OBJECTIVES AND SCOPE 
 

The aim of this study is to demonstrate the effective use of a meshfree method 

called GFDM in PML to simulate the elastodynamics problems. For this end, 

theoretical formulation of the proposed method is given first. The main objectives 

of this thesis study are; 

 

i. To determine the proper weighting function and radius of influence for GFDM 

algorithm. 

 

ii. To define the appropriate PML parameters which enable to reduce numerical 

reflections and computational cost for GFDM in PML analysis. 

 

iii. To propose a formulation to assess the compliance of surface foundation and 

embedded rigid strip footing supported by a soil foundation  

 

iv. To propose a formulation to perform direct time domain analyses of a surface 

rigid strip foundation on uniform HS using GFDM in PML. 
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1.3 RESEARCH OUTLINE 
 

 The presented thesis study composed of four main parts. The outline of this thesis 

study is summarized as follows; 

 

i. In the first part of this thesis study, an extensive literature review is conducted 

on artificial boundary conditions commonly used to represent unbounded 

domains. Then, a literature review is conducted on GFDM. Next, the information 

acquired from the literature about the determination of a compliance function of 

rigid strip foundation. 

 

ii. In the second part of the research study, a bounded two dimensional fictitious 

plane strain problem is solved to determine the proper weighting function and 

radius of influence for GFDM algorithm. 

 

iii. In the third part of the thesis study, a one dimensional semi-infinite rod on 

elastic foundation problem is solved to determine the appropriate PML 

parameters. 

 

iv. Then, the analyses of the all cases of rigid strip foundation considered in the 

scope of this thesis study are conducted to obtain compliance functions of this 

type of foundation. 

 

v. Furthermore, the direct time domain solution of reaction forces of rigid strip 

foundation are estimated for surface foundation over half space using GFDM in 

PML. 

 

vi. The results of GFDM in PML analysis for both in frequency and time spaces 

are compared with those of FEM in PML and boundary element method (BEM), 

when possible, also with those of other studies. 
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1.4 LITERATURE REVIEW 
 

1.4.1 UNBOUNDED DOMAINS AND ARTIFICIAL BOUNDARY 
CONDITION 
 

During the analyses of unbounded domain problems by using discrete method, the 

unbounded domain should be truncated by some surfaces (artificial boundaries). 

This enables performing the analysis of unbounded domain problem in the 

truncated finite domain using some ABCs. Implementation of absorbing boundary 

conditions in the unbounded domain problem makes the problem solution 

applicable on computer (Lehmann, 2007). Two different procedures are generally 

used to truncate the boundaries in unbounded domain problems. ABC at 

truncation interface is introduced to truncate the unbounded domain or, an 

absorbing layer is located at the truncation domain. Tsynkov (1998) prepared a 

review for numerical solution of problems on unbounded domains. The researcher 

investigated all types of absorbing boundary conditions and divided them into 

three main groups: local boundary, non-local boundary and absorbing layer 

methods (PML). The local boundaries are easy to apply to non-homogenous 

systems and efficient both in time and frequency domain. In addition, local 

boundary conditions may be good energy absorbers, however, they are not 

sufficient to eliminate spurious wave along the boundary. Lysmer and 

Kuhlemeyer (1969) simulated radiation with simple local boundaries and 

developed viscous boundary condition which use viscous damper with constant 

properties connected to boundary. White and Valliappan (1977) added the effect 

of Poisson ratio in viscous boundary condition and so called ‘unified boundary 

condition’ which yields results more accurate than that of standard viscous 

boundary condition. Engquist and Majda (1977) and Clayton and Engquist (1977) 

developed a paraxial approximation. This approximation is used as boundary 

condition which derived for numerical wave simulation that minimizes spurious 

reflection. In addition, this method is computationally inexpensive and simple to 

apply.  
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Non-local boundaries create perfect absorbers of any type of waves so that the 

model can be reduced to minimum size, but they are properly defined only in 

frequency domain. They cannot be used for problems involving material nonlinear 

effects except through the approximate iterative scheme (Kausel and Tassoulas, 

1981). Waas (1972) described first non-local (consistent) boundary for layered 

strata over rigid rock in frequency domain. Givoli and Keller (1989) developed a 

non-local exact absorbing boundary condition for some problem in elasticity and 

Laplace equations. Givoli (1992) improved Dirichlet-to-Neumann maps (DtN) 

boundary conditions to allow for time dependent problems.  

 

The last type of ABCs is absorbing layer. Absorbing layer surrounds area of 

interest by a finite thickness and attenuates incidence wave from the 

computational domain. The boundary between the computational domain and the 

layer causes minimal and ideally zero reflection. This absorbing layer is called 

Perfectly Matched Layer (PML).  

 

Berenger (1994) developed PML for electromagnetic waves in 2D medium. 

Berenger (1994) used finite difference time domain (FDTD) techniques in 

Cartesian coordinates. The field variables of the PML are split into nonphysical 

components to eliminate plane wave reflection for an arbitrary angle of incidence. 

This formulation has proved to be extremely efficient and has become popular. 

Chew and Weedon (1994) reformulated Berenger’s PML and introduced complex 

coordinate stretching for 3D medium. They implemented a code for the PML 

algorithm using the FDTD technique. Sacks et al. (1995) performed an application 

of FEM in PML in frequency domain. Kuzuoğlu and Mittra (1997) applied Sacks’ 

‘anisotropic’ PML to cylindrical coordinates. Collino and Monk (1996) developed 

PML in curvilinear coordinates. Maloney et al. (1997) developed PML in 

cylindrical coordinates for electromagnetic waves. Teixeira and Chew (1997) used 

complex coordinate stretching method for develop PML in the problems having 

cylindrical and spherical domain.  
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The PML method was extended to elasticity problems. Chew and Liu (1996) and 

Hasting (1996) presented the PML method to elastic waves with FDTD technique 

independently. Hasting (1996) performed a research study on 2D elastic medium 

velocity stress finite difference formulation for PML. Chew and Liu (1996) first 

developed a method in elastodynamics half-space which used PML. They used 

complex-valued coordinate stretching to obtain the equations governing the PML. 

In addition, the same problem is also formulated by using FDTD with split field. 

Liu (1999) developed a new approach to PML used it in elastic waves having 

cylindrical and spherical coordinates for the split and unsplit FDTD. Collino and 

Tsogka (2001) presented and analyzed PML model for the velocity-stress 

formulation of elastodynamics. Zeng et al. (2001) applied the split PML to wave 

propagation in poroelastic media using finite difference method. Zheng and 

Huang (2002) developed new numerical anisotropic PML for elastic wave in 

curvilinear coordinates. The new PML are easy to implement for both isotropic 

and anisotropic solid media. Komatitsch and Tromp (2003) developed a second 

order PML system in velocity and stress for seismic wave equation. Festa and 

Nielsen (2003) used three-dimensional finite difference scheme for PML in 

elastodynamics. Basu and Chopra (2002, 2003, 2004) and Basu (2004, 2008) 

performed a study to develop direct time and frequency domain formulations for 

FEM. These formulae were used to elastic and transient waves in 1D, 2D and 3D 

finite element scheme. They also obtained compliance function for rigid strip 

foundation using FEM with unsplit PML. Küçükçoban (2010) and Kang (2010) 

used mixed FEM with unsplit PML for inverse and forward problems in elastic 

media.  

 

 

1.4.2 GENERALIZED FINITE DIFFERENCE METHOD  
 

In many problems of computational mechanics such as crack propagation, large 

deformations etc., the geometry of domain changes continuously. Accordingly, 

the analysis of such problems using classical FEM and FDM are difficult, time 

consuming and expensive task. Therefore, meshless methods can be an alternative 

technique for the analysis of such problems. The basic concept in meshless 
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methods is to eliminate the difficulties which arise from the meshes. Two main 

approximations for meshless methods are available: smooth particle 

hydrodynamics (SPH) and moving least square (MLS). SPH approximation was 

first used by Lucy (1977) to model astrophysical phenomena without boundaries. 

Nayroles et al. (1992) used to MLS approximation in a Galerkin method called 

diffuse element method (DEM). Element-free Galerkin (EFG) method is a 

modified version of the DEM (Belytschko et al., 1994). The other path of 

meshless method is GFDM which was developed by Liszka and Orkisz (1980). 

The basic ideas of this method were proposed in seventies. Jensen (1972) 

employed the fully arbitrary meshes for finite difference method in his studies. 

Perrone and Kaos (1975) formulated a two dimensional finite difference method 

capable of using irregular meshes. Liszka (1977) proposed a local interpolation 

technique which has an irregular mesh of nodal points. This Liszka’s interpolation 

technique which based on a Taylor series expansion of unknown function 

combined with minimization of errors is stable and applicable (Liszka, 1984). 

This technique has also been used as GFDM by Orkisz and Liszka (1980). The 

GFDM are used in applied mechanics problems (Orkisz and Liszka, 1980; 

Tworzydlo, 1987). Tworzydlo (1987) used this method to the analyses of large 

deformations of membrane shell. Benito et al. (2001) investigated the effects of 

weighting function, radius of influence and stability parameter for time dependent 

problems in GFDM. Gavete et al. (2003) compared GFDM with the EFG method. 

They obtained more accurate results in the case of GFDM. Benito et al. (2003) 

purposed an h-adaptive method in GFDM to avoid ill-condition. Then, Benito et 

al. (2007) solved parabolic and hyperbolic equations for some randomly 

distributed nodes with GFDM.  

 

1.4.3 ANALYTICAL AND NUMERICAL METHODS FOR RIGID STRIP 
COMPLIANCE FUNCTIONS 
 

In the literature, many research studies are conducted to determine the impedance 

and compliance functions for rigid strip foundations. The problem of vibration of 

rigid foundation on half space (HS) is a mixed value problem. The displacements 

under the foundation are imposed and the rest of the surface of the HS is traction 
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free. Karadushi et al. (1968) conducted a research study on infinitely rigid 

foundation. In this study, an approximate analytical solution for vertical, 

horizontal and rocking vibration of this surface foundation on HS are determined. 

The coupling effects are found to be less significant for surface foundation. Luco 

(1969) and Luco and Westmann (1972) performed the exact analytical solution of 

strip foundation using Green function when the Poisson ratio of the soil is ½. In 

addition, approximate solutions are obtained for other Poisson ratios. Gazetas 

(1975) studied on dynamic stiffness functions of strip foundation in layered 

medium using a semi-analytical method employing the fast Fourier transform. 

Gazetas and Roesset (1979) obtained impedance functions for two-dimensional 

rigid strip foundations supported on a uniform layer over an elastic half-space. 

Hryniewicz (1980) suggested a semi-analytical method to determine vertical, 

horizontal and rocking motion of strip foundation on the surface of the elastic HS. 

Luco and Apsel (1987) obtained impedance function for embedded foundation in 

layered viscoelastic half-space with Green`s function technique. Rajapakse and 

Shah (1988) conducted a research study on embedded rigid strip foundation 

having an arbitrary geometry in homogenous half space. The solution which is 

performed to determine the impedance function of embedded trapezoidal shaped 

foundation reveals that the cross-sectional shape of strip foundation has 

significant effect on the dynamic responses. 

 

Several authors used discrete methods such as FEM, BEM and hybrid method, to 

describe compliance or impedance functions for rigid strip foundation. The FEM 

is started to use in modeling unbounded domains after the first application of 

artificial boundary condition (ABC) by Lysmer and Kuhlemeyer (1969) in FEM 

to obtain the stress distribution under the circular footing. Then, the discrete 

methods are becoming very popular for modeling and analyses of the problems 

having unbounded domain. Kuhlemeyer (1972) conducted a research study on the 

vertical vibration of circular footing layered medium using FEM with ABC. 

Vertical motions of circular region in unbounded domain are also obtained by 

Waas (1972) using FEM with consistent boundary conditions. Liang (1974) 
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conducted a research study to determine the compliance functions of embedded 

strip foundation in layered medium over the bedrock using FEM. 

The BEM based on boundary integral equations are known as very applicable for 

dynamic soil structure interaction (SSI) problems, and this method is widely used 

for the solution of this type of problems. Using BEM, the radiation of waves 

towards the infinity in such a problem is automatically included in the model, 

which is based on an integral representation valid for internal and external regions 

(Hall and Oliveto, 2003). The first BEM application on dynamic SSI problem is 

presented by Dominquez (1978). However, first numerical implementation of 

elastodynamics formulation of BEM is conducted by Cruse and Rizzo (1968). The 

direct formulation of the BEM is generally applied to evaluate dynamic response 

of foundation in frequency domain formulation for foundations supported by 

elastic and viscoelastic half-spaces (HS). Abascal and Dominguez (1984) used 

BEM to find the dynamic compliance of rigid strip foundation on non-

homogenous viscoelastic soil. Von Estorff and Schmid (1984) also performed 

BEM to analyze of the strip foundation on a soil layer. Spyrakos and Beskos 

(1986) conducted a research study to determine the dynamic response of a rigid 

strip foundation using time domain BEM. Ahmad and Israel (1989) and Ahmad 

and Bharadwaj (1991, 1992) investigated the dynamic response of rigid strip 

foundation under vertical, horizontal and rocking excitation in layered medium 

using BEM. Israil and Banerjee (1990) conducted a research study on time 

domain BEM for 2D wave propagation. 

 

Tzong and Penzien (1983) used the hybrid modeling approach to obtain the 

dynamic response of rigid strip foundation layered on HS. The hybrid modeling 

approach splits the entire soil-structure system into a near and far field. The near 

field which includes foundation and surrounding soil is modeled by discrete 

method (FEM). However, analytical method is used to simulate far field 

impedance function. 
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CHAPTER 2 
 
 
 

GENERALIZED FINITE DIFFERENCE METHOD 
 
 
 
 
 
 
2.1 GENERAL 
 

In this section, the GFDM and its solution procedure are discussed. The main 

objective of the GFDM method is to approximate the spatial derivatives for a 

differentiable function in terms of its values at some randomly distributed nodes 

(Li and Liu, 2004).  

 

GFDM is a truly meshless method which requires only the coordinates of the 

nodes. Precision at the GFDM can be controlled by either using higher order 

approximation or by using finer mesh. Physical and geometrical nonlinearity at 

the problem does not make the algorithm more complicated.  

 

The conventional finite difference method, a mesh based method, is more suitable 

when the mesh is regular. The earlier studies reveal that the mesh-free difference 

method yields better results, when compared to conventional finite difference 

method, for uniform node distribution (Li and Lui, 2004 and Liszka and Orkisz, 

1980). 
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2.2 THE METHOD 
 

In this section, GFDM is formulated for two dimensional problems. Taylor’s 

expansion of a function f(x,y) at a point (xi, yi) about a selected (a star) point (x0, 

y0) of a two dimensional region 2D is, when 2D is referred to an x-y rectangular 

coordinate system,  

 

2 2 2 2 2
30 0 0 0 0

0 2 2
( ), 1

2 2
i i

i i i i i

f f h f k f f
f f h k h k i m

x y x y x y
ο

∂ ∂ ∂ ∂ ∂
= + + + + + + ∆ ≤ ≤

∂ ∂ ∂ ∂ ∂ ∂
             

(2.1) 

 

where the function f is assumed to be continuous and adequately differentiable in 

2D, m is number of nodes around the star point and 

 

( )2 2
0 0

1
, , maxi i i i i i

i m
h x x k y y h k
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= − = − ∆ = +                                                 (2.2) 

 

When the error term in O(∆3
) is ignored in Equation 2.1, it approximates the 

function in the neighborhood (i.e., at the points [(xi, yi) ,(i=1-m)] of the star point 

(x0, y0) in terms of the function and its derivative values at (x0, y0)). To simplify 

the notation, the derivatives at (x0, y0) 
2 2

0 02 2

0

( , )
f f

x y
x x

 ∂ ∂
= 

∂ ∂ 
, etc. are designated in 

Equation 2.1 by 
2

0
2

f

x

∂

∂
, etc. 

 

To proceed with the development of GFDM, a weighted square error E in the 

approximation is introduced as: 

 

2
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0 2 2

1 2 2

m
i i

i i i i i i
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f f h f k f f
E f f h k h k w
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where wi is the weighting function. The best approximation can be obtained by 

minimizing the error E, which yields 
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{ }
0

E
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From Equations 2.4 and 2.5, the following system of equations is obtained for 

{Df}: 
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or, in compact form, 

 

ADf b=                                                                                                              (2.7) 
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In view of symmetry of A, the Cholesky method is generally preferred to solve 

this system in Equation 2.7, which eliminates the need for the evaluation of 

inversion of A (Benito et al., 2007). 

 

For computational purposes, the right hand side in Equation 2.7 can be expressed 

in the form 

 

b G f=                                                                                                                (2.8) 

 

where G is a 5*(m+1) dimensional matrix and f is (m+1) dimensional vector 

defined by 
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Equation 2.7, which is to be solved at each star point in 2D, is called the star 

equation. Now the procedure for the solution of a boundary value problem by 

GFDM is in order: 

 

1.Select the nodes in solution region and on its boundary 

 

2.Write the governing differential equations (GDE) at each of the selected nodes 
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3.By treating each node as a star point, approximate the derivatives appearing in 

GDE, through the use of Equation 2.6, in terms of unknown function values at 

nodes 

 

4.Combine the equations written at all nodes and solve them in view of boundary 

conditions. 

 

 

2.3 SELECTION OF PARAMETERS IN STAR EQUATION 
 

The selection of the parameters, such as, the number of points around a star point, 

the form of weighting function and degree of Taylor’s series expansion is crucial 

for obtaining derivatives from star equation. Selection of the number of nodes 

around a star point is investigated by several authors. It is important to avoid ill-

conditioning to improve accuracy of results and reduce the cost of computation. A 

hexagon grid is selected by Jensen (1972), which includes six nodes around a star 

point. Perrone and Kaos (1975) suggest nine control schemes where the domain 

around a star point is divided into eight equal segments and the closest point to the 

star point in each segment is selected (see Figure 2.1). The four quadrant criterion 

(see Figure 2.2) is proposed by Liszka and Orkisz (1980) where the domain 

surrounding a star point is divided into four quadrants and two nodes closest to the 

star point are selected in each quadrant. Godoy (1986) suggested a model which 

includes 12 nodes for bi-harmonic problems. Benito et al. (2003) purposed an h-

adaptive method in GFDM to avoid ill-condition. 

 

In the distance type algorithm, used in this study, all the nodes inside the circle of 

influence of a star point are included in formulation (see Figure 2.3). It is to be 

noted that all the algorithms or criteria used in literature for the selection of nodes 

in meshless methods contain the domain of influence since the weighting 

functions appearing in these algorithms involve the radius dm of the influence 

circle.  
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Figure 2.1: Nine control scheme (Perrone and Kaos, 1975) 

 

 

 

 

Figure 2.2: Four quadrant algorithm (Liszka and Orkisz, 1980). 
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Figure 2.3: Distance type algorithm. 

 

 

In this study, the following four well-known weighting functions are used for two 

dimensional problems: 

 

a) Cubic distance weighting function: 

 

( )
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0
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i
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w
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(2.10) 

 

b) Polynomial weighting function (quartic spline): 
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(2.11) 
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c) Polynomial weighting function (cubic spline): 

 

2 3
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(2.12) 

 

d) Exponential weigthing function: 

 

2
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(2.13) 

 

It is expected that more accurate results may be obtained when the number of 

terms in Taylor’s series is increased. In the following section, whether this 

expectation holds or not is also investigated (among other effects, such as the 

effect of weighting function, on the accuracy) where the results are obtained 

numerically through the use of GFDM. This investigation is done in view of the 

fact that if five and nine terms in Taylor’s series are retained to solve second order 

partial differential equations (PDE), it requires respectively, to avoid singularity, 

at least, five and nine nodes around the star point (excluding the star point). It is to 

be noted that the five and nine term Taylor’s series (TS) for two dimensional (2D) 

case correspond respectively to TS of order two and three which will be 

abbreviated in the study as TS2 and TS3. 
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2.4 AN ASSESSMENT OF GFDM THROUGH A BENCHMARK 
PROBLEM 
 

In this section, a two-dimensional fictitious plane strain problem, defined in a unit 

square region, is considered. The problem is solved using GFDM. Three different 

clouds illustrated in Figures 2.4-2.6 are considered. The first cloud has 144 

regular nodes with 44 point at boundary. The second one has 177 irregular nodes 

having 40 nodes at boundary. The last one contains 232 irregular nodes with 32 

nodes at boundary. The distance (dnodes) between two successive nodes at 

boundary for these three clouds is 1/11, 1/10 and 1/8 respectively.  

 

 

 

 

 

 

Figure 2.4: Cloud 1: regular 144 nodes 
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Figure 2.5: Cloud 2: irregular 177 nodes. 

 

 

 

Figure 2.6: Cloud 3: irregular 232nodes. 

 

 

2D static (equilibrium) equations in Cartesian coordinates (x, y) without body 

forces are 
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(2.14) 

 

where σxx, σyy are normal stresses and τxy is the shear stress. 

 

The elastic stress-strain relation for plane strain case are given below: 
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where E is the elasticity modulus, υ is the Poisson’s ratio, σzz is normal stress in z-

direction and εij are strains which are related to the displacement components u 

and v in x and y directions by  
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(2.16) 

 

The benchmark problem considered here involves the solution of Equations 2.14-

16, which is  
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satisfying the following boundary condition for unit square plate: 
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                                                   (2.18) 

 

where x and y axes of the coordinate system coincide with the lower and left edges 

of the plate respectively. 

 

In error analysis, the following global error expression defined by (Benito et al., 

2001)  

 

2

1

max( )

N appr exactf f
i i

i
N

GlobalError
exact

f

   −∑    = 

=                                                    (2.19) 

 

is used where N is the total number of nodes in the domain and f includes both u 

and v.  

 

Two different types of node selection algorithm are employed to investigate the 

accuracy of the GFDM solutions:  

 

i) Distance type algorithm: All nodes inside the circle of influence around a star 

point (see in Figure 2.3) are included in writing star equation. If the number of 

nodes is less than eight for TS2 (twelve nodes for TS3), then the radius of circle is 

multiplied by two until the eight point criterion for TS2 (twelve nodes for TS3) is 

satisfied. 
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ii) Quadrant type algorithm: The four quadrant criterion which was proposed by 

Liszka and Orkisz (1980) is used (see in Figure 2.2). For TS2, two nodes and for 

TS3, three nodes are considered in each quadrant. If the four quadrants do not 

exist, for example for the points on the boundary, then the closest twelve points to 

the star point for TS2 (sixteen points for TS3) are selected. The radius of circle of 

influence for each star (which is needed for weighting functions) is chosen about 

1.6 times of the longest distance of the selected nodes from the star point.  

 

 

2.4.1 EFFECT OF WEIGHTING FUNCTION 
 

In this section, the effect of weighting function on the global error of distance and 

quadrant type algorithms is studied. For this purpose, four weighting functions, 

cubic distance, quartic spline, cubic spline and exponential, are considered and the 

2D plane strain problem is solved for each weighting function and for three 

different clouds where the radius of influence for the distance type algorithm is 

taken as dm=1/5. The results, which are obtained by using five terms Taylor’s 

series, are presented in Table 2.1 and 2.2. The errors in these tables and in the 

tables which will be presented subsequently are expressed as percent (%).  

 

Through the comparison of the results presented in Tables 2.1 and 2.2, the 

following observations can be made: 

 

1. The global errors for the distance and quadrant type algorithms are generally 

comparable. This implies that the use of quadrant algorithm in the analysis may be 

advantageous over distance type algorithm since the number of nodes in the star 

equation of quadrant algorithm is less than (therefore, its computational cost is 

lower than) that of distance type algorithm. 

 

2. For quadrant algorithms, the best approximation is obtained when the cubic 

distance weighting functions is used while quartic spline weighting function 

works better for distance type algorithm. However, Table 2.1 shows that the cubic 

distance weighting function also yields reasonable results for distance type 
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algorithm; thus, due to its simplicity, the use of cubic distance weighting function 

may be suggested for both quadrant and distance type algorithms. 

 

3. The global error increases with the mesh irregularity; but, this increase is not 

much appreciable for distance type algorithm compared to that of quadrant 

algorithm.  

 

 

Table 2.1: The global error for distance type algorithm for various weighting 

functions (dm=1/5, TS2) 

Cloud Cubic 
distance  

Quartic 
spline 

Cubic spline Exponential 

Cloud1 3.3042e-03 2.6589e-04 2.5744e-03 2.9002e-03 
Cloud 2 6.0271e-03 5.7627e-03 6.1977e-03 6.0236e-03 
Cloud 3 7.4512e-03 5.3060e-03 5.5493e-03 6.0236e-03 

 

 

Table 2.2: The global error for quadrant type algorithm with two nodes in 

each quadrant for various weighting functions (TS2) 

Cloud 
Cubic 

distance 
Quartic 
spline 

Cubic spline Exponential 

Cloud1 7.0113e-05 6.7071e-04 1.7487e-03 2.0919e-03 
Cloud 2 4.9814e-03 7.6678e-03 6.2362e-03 5.8667e-03 
Cloud 3 7.0176e-03 1.2292e-02 1.0252e-02 9.5300e-03 

 
 

2.4.2 EFFECT OF NUMBER OF TERMS IN TAYLOR’S SERIES 
EXPANSION 
 

Here, the effect of the number of terms in Taylor’s series expansion (that is, the 

effect of the order of TS) on the global error of distance and quadrant type 

algorithms is studied. Tables 2.3 and 2.4 give the results obtained by using TS2 

and TS3. To compare TS2 and TS3 results, for quadrant type algorithm, three 

nodes are chosen in each quadrant; for distance type algorithm, minimum twelve 

nodes are chosen around the star point. In the analysis, the radius of circle of 

influence is chosen as dm=1/4 for the distance type algorithm and the three clouds 
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in Figures 2.4-2.6 are considered for both algorithms. The selection of dm for 

quadrant type algorithm is the same as that explained in Section 2.4/ii. 

 

In view of the results in Tables 2.3 and 2.4, one may observe: 

 

1. The global errors in TS3 are generally less than those in TS2 for all weighting 

functions, except for cubic distance weighting function with quadrant type 

algorithm using regular mesh. But, it is to be noted that this improvement of TS3 

over TS2 is obtained at the expense of the computational cost of the analysis.  

 

2. The global error generally decreases with the amount of mesh irregularity for 

TS3.  

 

 

Table 2.3: Influence of number of terms in TS on the global error for 

distance type algorithm for various weighting functions (dm=1/4) 

Cloud 
Number of 

terms 
in TS 

Cubic 
distance 

Quartic 
spline 

Cubic 
spline 

Exponential 

1 
TS2 0.4214e-02 0.3826e-02 0.2424e-02 0.1815e-02 
TS3 0.2029e-02 0.2400e-02 0.1701e-02 0.0988e-02 

2 
TS2 0.6530e-02 0.5047e-02 0.4127e-02 0.4216e-02 
TS3 0.2343e-02 0.0857e-02 0.1462e-02 0.1700e-02 

3 
TS2 0.8400e-02 0.7147e-02 0.6161e-02 0.6197e-02 
TS3 0.1083e-02 0.0927e-02 0.0883e-02 0.0883e-02 
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Table 2.4: Influence of number of terms in TS on the global error for 

quadrant type algorithm for various weighting functions 

Cloud 
Number of 

terms 
in TS 

Cubic 
distance 

Quartic 
spline 

Cubic 
spline 

Exponential 

1 
TS2 4.5349e-03 1.1532e-02 9.3874e-03 8.1984e-03 
TS3 4.7724e-03 2.5343e-03 1.1909e-03 1.0598e-03 

2 
TS2 6.4441e-03 2.0755e-02 1.6153e-02 1.4361e-02 
TS3 1.7374e-03 3.6682e-03 2.6875e-05 2.3229e-03 

3 
TS2 7.6398-03 1.6682e-02 1.4389e-02 1.3157e-02 
TS3 1.0027e-03 1.6559e-03 1.3734e-03 1.2492e-03 

 

 

2.4.3 EFFECT OF THE RADIUS OF INFLUENCE FOR DISTANCE TYPE 
ALGORITHM 
 

In this section, the effect of radius of influence on the global error of distance type 

algorithm is studied. For this purpose, distance type algorithm with four different 

radii of 1, 1/3, 1/5 and 1/7 is used to solve the 2D plane strain problem for the four 

different weighting functions and for various clouds. The emphasis here is given 

to obtain the optimum value of dm for regular meshes; to this end, two more 

clouds (Cloud4 and Cloud5), in addition to Cloud1, are considered with 121 and 

441 nodes where 40 and 80 points are chosen at boundary. For Cloud4 and 

Cloud5, the distance of boundary nodes (dnodes), between two successive nodes, 

is 1/10 and 1/20 respectively. The results are presented in Table 2.5 and Table 2.6, 

which show that: 

 

1. The optimum value of dm varies with the weighting function used and the mesh 

density chosen. 

 

2. For the regular meshes, the optimum dm for each weighting function is not 

affected much with mesh density. 

 

3. For the regular meshes, the increase in mesh density reduces the global error. 
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Table 2.5: Effect of the radius of influence on the global error for distance 

type algorithm for various weighting functions (TS2) 

Cloud dm 
Cubic 

distance 
Quartic 
spline 

Cubic 
spline 

Exponential 

1 

1 2.2566e-02 3.6029e-01 3.1366e-01 2.2561e-01 
1/3 9.0448e-03 1.0671e-02 7.8339e-03 7.1908e-03 
1/5 3.3042e-03 2.6589e-04 2.5744e-03 2.9002e-03 
1/7 7.0113e-05 8.9690e-03 8.9976e-03 8.3816e-03 

2 

1 2.0068e-02 1.0040 4.2052e-01 3.5759e-01 
1/3 9.0744e-03 1.4612e-02 1.1252e-02 1.0307e-02 
1/5 6.0271e-03 5.7627e-03 6.1977e-03 6.0236e-03 
1/7 5.7426e-03 8.0924e-03 7.5833e-03 6.8501e-03 

3 

1 2.2511e-02 5.8776e-01 3.3286e-01 8.1406e-01 
1/3 1.0715e-02 1.7886e-02 1.3785e-02 1.2691e-02 
1/5 7.4512e-03 5.3060e-03 5.5493e-03 5.6985e-03 
1/7 5.5702e-03 7.0885e-03 7.2429e-03 6.7393e-03 

 

 

2.4.4 EFFECT OF NUMBER OF NODES IN EACH QUADRANT  
 

Here, the effect of number of nodes in each quadrant on the global error of 

quadrant type algorithm is studied. For this purpose, two and three nodes in each 

quadrant are considered. The 2D plane strain problem is solved for various 

weighting functions and the clouds 1, 2 and 3. The global errors are given in 

Table 2.7, showing that, against one’s expectations, the error increases with 

number of nodes. In view of the results presented in Table 2.7, one may state that 

the best performance is obtained, for solving 2D plane strain problems by GFDM 

using irregular node distribution, when the quadrant type algorithm with two 

nodes in each quadrant together with cubic distance weighting function is 

employed. 
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Table 2.6: Optimum value of radius of influence minimizing the global error 

(TS2) 

Cloud 
Weighting 
Function 

dm 

Ave. number 
of nodes 

(including 
star point) 

Global Error 

1 

Cubic 
distance 

1.2-2*dnodes 9 7.0113e-05 

Quartic spline 2.2160*dnodes 13 4.3469e-05 
Cubic spline 2.4200*dnodes 21 6.8161e-05 
Exponential 2.4970*dnodes 21 2.7873e-04 

2 

Cubic 
distance 

1.6650*dnodes 12 4.7067e-03 

Quartic spline 2.3100*dnodes 24 4.0844e-03 
Cubic spline 2.4750*dnodes 28 4.1139e-03 
Exponential 2.5050*dnodes 24 4.2154e-03 

3 

Cubic 
distance 

1.1560*dnodes 11 5.4164e-03 

Quartic spline 1.6360*dnodes 25 5.2882e-03 
Cubic spline 1.7280*dnodes 30 5.4024e-03 
Exponential 1.7360*dnodes 30 5.6013e-03 

4 

Cubic 
distance 

1.4-2*dnodes 9 1.1087e-04 

Quartic spline 2.2163*dnodes 13 6.2082-05 
Cubic spline 2.4200*dnodes 21 9.5267e-05 
Exponential 2.4995*dnodes 21 3.7540e-04 

5 

Cubic 
distance 

0.14-2*dnodes 9 3.8400e-06 

quartic spline 2.2160*dnodes 13 2.6610e-06 
cubic spline 2.4200*dnodes 21 7.7200e-05 
exponential 2.5120*dnodes 21 3.8141e-05 

 

 

Table 2.7: Influence of the number of nodes in each quadrant on the global 

error for quadrant type algorithm (TS2) 

Cloud 

Number of 
nodes 
Each 

quadrant 

Cubic 
distance 

Quartic 
spline 

Cubic 
spline 

Exponential 

1 
Two nodes 7.0113e-05 6.7071e-04 1.7487e-05 2.0919e-03 

Three nodes 4.5349e-03 1.1532e-02 9.3874e-03 8.1984e-03 

2 
Two nodes 4.9814e-03 7.6678e-03 6.2362e-03 5.8667e-03 

Three nodes 6.4441e-03 2.0755e-02 1.6153e-02 1.4361e-02 

3 
Two nodes 7.0176e-03 1.2292e-02 1.0252e-02 0.9530e-02 

Three nodes 7.6398e-03 1.6682e-02 1.4389e-02 1.3157e-02 
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CHAPTER 3 
 

 
 

PERFECTLY MATCHED LAYER (PML) METHOD 
 

 

 

 

 

 

The artificial boundary conditions (ABC’s), also called transmitting boundary 

conditions, are generally used in the analysis of unbounded domain problems 

which arise, for example, from the problems related to modeling of soil-structure 

interaction (SSI), foundation vibrations, acoustics, electromagnetic waves, etc. 

The computational analysis of these types of problems by finite element (FE) 

method or finite difference (FD) method requires the truncation of unbounded 

domain by some surfaces (called artificial boundaries (AB’s)) and performing the 

analysis in the truncated finite domain by using some special boundary conditions 

(BC’s) on AB’s, called ABC’s. To predict correctly the dynamic response of 

unbounded domain from the analysis performed in truncated finite 

(computational) domain, ABC’s should be capable to eliminate, at least, to 

minimize the reflections on AB’s. Various ABC’s are already proposed in 

literature: viscous BC’s, paraxial BC’s, transmitting BC’s for waves propagating 

in horizontal direction in a layered medium, etc. Extensive list of references for 

these ABC’s may be found in Kausel and Tassoulas (1981), Wolf (1985), Givoli 

(1991) and Tsynkov (1998). It should be noted that the above mentioned ABC’s 

can only minimize the reflections on AB, not capable to eliminate them 

completely. For example, viscous BC’s can transmit completely, through AB, 

only the waves of normal incidence and cause some reflections for inclined 

waves. To cure this shortcoming of ABC’s, a method based on putting a perfectly 

matched layer (PML) around truncated domain is proposed in literature (Berenger 

1994, Berenger 1996, Chew and Weedon 1994, Chew and Liu 1996, Hasting et al. 

1996, Chew et al. 1997, Collino and Monk 1998). Berenger in his pioneer work in 



 
 

29 
 

1994 developed the PML for electromagnetic waves. The PML has a remarkable 

property: almost zero reflection from this absorbing layer for all directions of 

incidence and frequencies. The PML decays out the waves exponentially in 

magnitude, when the wave propagates in the layer (see Figure 3.1).  

 

 

 

 

Figure 3.1: Figurative representation of attenuation of waves in a PML region. 

 

 

Chew and Weedon (1994) reformulated Berenger’s PML and introduced complex 

coordinate stretching for 3D medium. Chew and Liu (1996) used the complex 

coordinate stretching in elastodynamics. They implemented a code for the PML 

algorithm using the finite difference time domain (FDTD) technique.  

 

In the PML application, a normal coordinate x (which is perpendicular to 

truncation boundary, see Figure 3.1) is replaced in frequency space by the 

stretching coordinate	��, which is related to x by  
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where λ is a complex valued stretching function. Taking the derivative of the 

above equation one obtains 

 

1

( )x x xλ

∂ ∂
=

∂ ∂ɶ
                                                                                                       

(3.2) 

 

To express the governing equations after stretching (in frequency space) in terms 

of original coordinates, 
�
���

 appearing in them is to be replaced by
�

	(�)
�
��
	. 

 

When the truncated region is combined with PML, it becomes inhomogeneous; 

this would be so even in the case of homogenous medium, due to the 

replacements of the type of 
�

	(�)
�
��

 in PML region. However, the continuity 

conditions for the variables appearing in the governing equations would be 

satisfied at the interface between PML and truncated regions, implying that the 

interface would be invisible for the waves passing across the interface. Thus, if 

PML attenuates the waves entering it properly, the dynamic response of the 

truncated region would not be affected much by the waves reflected at a fixed 

boundary of PML, in other words, the response of truncated region obtained 

through PML analysis would represent adequately that of unbounded domain. 

 

Various forms of stretching functions are suggested in literature (Chew and 

Weedon 1994, Mittra and Kuzuoğlu 1996, Fang and Wu 1996). Chew and 

Weedon (1994) proposed a simple stretching function as  

 

( )
( ) 1

f s
s

i
λ

ω
= +

                                                                                                    

(3.3) 

 

where i is an imaginary number, ω is frequency and f is an attenuation function 

satisfying 
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0

0

0

0

f for s x

f for s x

= ≤

> >                                                                                               
(3.4) 

 

with x0 being a coordinate of the point on the truncation boundary (see Figure 

3.1).  

 

When Equation 3.3 is inserted into Equation 3.1, one gets 

 

0

( ) 1
1 ( )

x

x

f s
x ds x F x

i iω ω

 
= + = + 

 
∫ɶ

                                                                         

(3.5) 

 

where 

 

0

( ) ( )
x

x

F x f s ds= ∫                                                                                                           (3.6) 

 

Equation 3.5 holds for the whole domain (for PML and truncated domains) and 

reduces to �� = � for � ≤ �� in truncated domain. 

 

For a harmonic wave entering PML, 

 

( )( )expu A i t kxω= −                                                                                                      (3.7) 

 

one can write in PML, when the exp(iωt) factor is disregarded, 

 

1
( ) exp( ) exp( ) exp( ( ))u x A ikx A ikx F x

v
= − = − −ɶ

                                                    

(3.8) 

 

where 

 

k
v

ω
=                                                                                                                              (3.9) 
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is the wave number, v denotes the wave velocity and A is the amplitude of wave. 

The attenuation is independent of frequency as observed in Equation 3.8. 

 

The simple stretching function in Equation 3.3 is found to be ineffective to absorb 

evanescent waves which are standing waves with exponential decaying amplitude 

and imaginary wave number. To overcome this shortcoming of the stretching 

function in Equation 3.3, various alternative forms are proposed in literature. One 

of these forms is due to Basu (2004): 

 

( ) ( )
( ) 1

e p
f s f s

s
i

λ
ω ω

= + +

                                                                                    

(3.10) 

 

where �� and �� are attenuation functions with the properties in Equation 3.4. �� 

in Equation 3.10 attenuates the harmonic waves in PML (which is obvious in view 

of discussion given for f in Equation 3.3) whereas �� does that for evanescent 

waves. In fact, for an evanescent wave, entering PML 

 

( )expu A i t kxω= −                                                                                              (3.11) 

 

one can write in PML, when the exp(iωt) part is disregarded in Equation 3.11, 

 

( )expu A kx= − ɶ                                                                                                             (3.12) 

 

This, in view of Equation 3.10, becomes 

 

1 1
( ) exp( ( ( ))exp( ( ))p e

u x A kx F x F x
iv v

= − + −
                                                     

(3.13) 

 

where 

 

0 0

( ) ( ) , ( ) ( )
x x

p p e e

x x

F x f s ds F x f s ds= =∫ ∫
                                                        

(3.14) 
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Equation 3.13 shows that �� is responsible for the attenuation of evanescent 

waves in PML. It is worth to note that the attenuation implied by the stretching 

function in Equation 3.10 is frequency independent. 

 

As stated previously, the stretching functions are being used in frequency 

(Fourier) space. To perform the analysis in the time domain, the governing 

equation in frequency domain is to be inverted into time space. But, the form of 

stretching function in Equation 3.10 causes some difficulties in this inversion. For 

this reason, Basu (2004) suggested a modification to Equation 3.10: 

 

( )
( ) 1 ( )

p
e f s

s f s
i

λ
ω

= + +

                                                                                     

(3.15) 

 

which implies that the attenuation of evanescent waves in PML is given by the 

factor ( )exp e
F x

v

ω 
− 
 

 which, in turn, indicates that the stretching function in 

Equation 3.15 does not perform the attenuation properly for low frequency 

evanescent waves. However, Basu (2004) indicated that reasonable results may be 

obtained in spite of using the form given in Equation 3.15 for the stretching 

function. 

 

In the literature, the polynomial attenuation functions are suggested, which may 

be expressed as 

 

0
0( )

m

PML

x x
f x f

L

 −
=  

                                                                                             
(3.16) 

 

where m is the order of attenuation function, LPML is the thickness of PML and f0 

is a constant denoting the attenuation strength. Attenuation function plays 

significant role for better performance of PML algorithm. The aforementioned 

parameters (f0, m and LPML) are to be chosen carefully to mitigate reflections. Basu 
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(2004) used a linear attenuation function (m=1) in his finite element analysis. 

However, the quadratic form of attenuation is generally preferred by others.  

 

To facilitate the selection of the attenuation strength f0, some expressions are 

suggested in literature, expressing it in terms of some physical quantities. For a 

1D wave propagation problem, Collino and Tsogka (2001) proposed the following 

expression for f0:  

 

0

( 1) 1
log( )

2
pp

PML

m v
f

L R

+
=

                                                                                      

(3.17) 

 

where 

 

( )2
exp

p

PML

p

F L
R

v

 −
=   

 
                                                                                   (3.18) 

 

is the reflection coefficient in PML and vp is P-wave velocity. The reflection 

coefficient represents the ratio of the amplitude of the reflected wave from the 

fixed boundary of PML to the amplitude of incident wave (see Figure 3.1). For the 

evanescent waves, the following expression is used for f0, in conjunction with the 

stretching function in Equation 3.15,  

 

0

( 1) 1
log( )

2
e

PML

m b
f

L R

+
=

                                                                                        

(3.19) 

 

with 

 

( )2
exp

e

PMLF L
R

b

 −
=  

 
                                                                                  (3.20) 

 

where b is a characteristic length of the domain. 
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3.1 PARAMETRIC STUDY 
 

A parametric study is conducted to select the parameters (f0, m and LPML) 

appropriately for GFDM. For this purpose, a semi-infinite rod on elastic 

foundation is considered (see Figure 3.2), which simulates a pile penetrating into 

soil. The left end of the rod is subjected to an axial displacement u0. This problem 

was considered by Wolf (1985 and 1996) to investigate the effect ABC’s on the 

response of unbounded domains. The proper selection of the parameters (f0, m and 

LPML) is investigated through the comparison of PML solution (with GFDM) with 

the analytical. Comparisons will be presented in both frequency and time spaces 

in the following sections.  

 

 

 

 

Figure 3.2: Semi-infinite rod on elastic foundation. 

 

 

3.1.1 PROBLEM DEFINITION  
 

An infinitesimal element from the rod on elastic foundation and the forces acting 

on it are illustrated in Figure 3.3. As stated previously, the rod is subjected to a 

dynamic displacement u0(t) at x=0. The waves arising from this displacement 

excitation radiate to the right. In the Figure 3.3: mass density, static spring 

stiffness per unit length of the rod, axial force, axial displacement and cross-

sectional area are represented by ρ, kg, N, u, and A, respectively. 
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Figure 3.3: Infinitesimal element from the rod on elastic foundation 

 
 
The equilibrium equation for the infinitesimal element is: 

 

, 0
x g

N dx k u dx A u dxρ− − =ɺɺ                                                                                   (3.21) 

 

Substituting the force-displacement relationship � = ���,�		(E: elasticity 

modulus) into the above equation, one obtains 

 

2 2
0

1 1
, 0

xx

l

u u u
r c

− − =ɺɺ                                                                                         (3.22) 

 

where r0 is a characteristic length and cl is the longitudinal wave velocity defined 

by 

 

0 , l

g

EA E
r c

k ρ
= =                                                                                      (3.23) 

 

In the frequency domain, the equation of motion is expressed as  

 

2

2 2
0

1 1
, 0xx

l

u u u
r c

ω− + =                                                                                            (3.24) 
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where the over-bar (	.̅	) denotes the Fourier transform of (.). To simplify the 

notation, from now on, the over- bars will be dropped in the equations written 

frequency space. 

 

The solution of the equation of motion in frequency space (of Equation 3.24) may 

be written as, in view of the BC u=u0(a0) at x=0, 

 

( )2
0 0 0 0

0

( ) ( ) exp( 1 )
x

u a u a i a
r

= − −                                                                          (3.25) 

 

where 0
0

l

r
a

c

ω
=  is a nondimensional frequency and u0(a0) is Fourier transform of 

the displacement at x=0. The reaction force R at x=0 in frequency space can be 

obtained as, using the force-displacement relation  � = ���,�	 , 

 

2
0 0 0 0 0 0 0( ) ( 1) ( ) ( ) ( )gR a k EA i a u a S a u a∞= − =                                            (3.26) 

 

which may be considered as the impedance equation relating the force R to the 

displacement u0 at x=0. 

 

Here S∞ is the dynamic stiffness (impedance) coefficient. In view of the Equation 

3.26, it is obvious that the static stiffness coefficient of the rod on elastic 

foundation (K∞) is	�����. Thus, the dynamic stiffness normalized with respect to 

K∞ becomes  

 

2
0 0( ) (1 )S a a= −                                                                                                       (3.27) 

 

which is a complex valued quantity with real part being the spring coefficient (k) 

and the imaginary part, damping coefficient (c), that is 

 

0 0 0 0( ) ( ) ( )S a k a ia c a= +                                                                                             (3.28) 
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Here, a0=1 is cut-off frequency and 

 

2
0 0

0

0

( ) ( 1)
1

( ) 0

k a a
for a

c a

= −
≤ →

=
                                                   (3.29a) 

0

2
0 0

0 2
0

( ) 0

1 1
( )

k a

for a a
c a

a

=

≥ → −
=

                                                                        (3.29b) 

 

The Fourier inversion of Equation 3.26 gives the impedance relation (at x=0) in 

the time space (see Wolf (1988)): 

 

0 0
10

1
( ) ( ) ( )

t

l l

r ru
R t K J t u d

c t t c
τ τ τ

τ
∞
  ∂

= + −  
∂ −   

∫                                             (3.30) 

 

where J1 is the first order Bessel function of first kind. 

 

 

3.1.2 SELECTION OF ATTENUATION FUNCTION’S PARAMETERS 
 

The use of the PML in the analysis requires the selection of attenuation function’s 

parameters. This section investigates how one may choose them properly. For this 

purpose, the impedance functions k and c are calculated by PML together with 

GFDM having regular mesh and using cubic spline weighting function with 

distance type algorithm; and they are compared with analytical results. The effects 

of mesh density, attenuation strength (f0), order of attenuation function (m) and 

thickness of PML (LPML) on the accuracy of the PML results are investigated in 

the following sections. 

 

In the PML analysis of the rod, carried out in frequency space, the form of 

stretching function λ is chosen as that in Equation 3.10 with	�� = �� = �: 
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0 0

( ) ( )
( ) 1

f s f s
s

a ia
λ = + +

                                                                                       
(3.31) 

 

PML equations of the rod in frequency space can be obtained from Equation 3.24 

as, in view of discussions presented previously, 

 

2

2 2
0

1 1 1
0

( ) l

d
u u

x dx r c

ε
ω

λ
− + =                                                                            (3.32) 

 

with 

 

1
,

( )

du
E

x dx
σ ε ε

λ
= =                                                                                  (3.33) 

 

where ε: axial strain and σ: axial stress. Spacewise integration of Equations 3.32 

and 3.33 may be performed by FEM or FDM or GFDM, which gives an equation 

of the form, in view of the BC at x=0, 

 

Ku P=                                                                                                              (3.34) 

 

whose solution for u determines the response of the rod in frequency space. In 

Equation 3.34: K, P and u are respectively frequency dependent stiffness matrix, 

load and nodal point displacement vectors. In the present study, for spacewise 

integrations in Equations 3.32 and 3.33, GFDM is employed. 

 

 

3.1.2.1 EFFECT OF MESH DENSITY 
 

Here, the effect of mesh density on GFDM prediction of the impedance function 

of the rod on elastic foundation is investigated. In PML analysis, the model shown 

in Figure 3.4 is employed and parameters (other than mesh density) are chosen as

0
0 065, 4, , 2PML

r
f m L r L= = = = . 
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The results are given in Figures 3.5 and 3.6. Figure 3.5 gives the variation of the 

relative errors for the spring and damping coefficient k and c (for various 

frequencies) with the number of nodes (Nnod) used in GFDM, where the errors Ek 

for the coefficient k and Ec for c are defined by 

 

0 0

0

0 0

0

( ) ( )
( )

( ) ( )
( )

max

exact appr

k

exact appr

c exact

k a k a
E a

K

c a c a
E a

c

∞

−
=

−
=

                                                                         (3.35) 

 

On the other hand, Figure 3.6 compares the frequency variations of the PML 

predictions for coefficients k and c with the exact, for various number of nodes 

employed in GFDM. Examination of the figures may lead to following 

observations. 

 

1) The results obtained from PML analysis improve with the number of nodes in 

GFDM. 

 

2) PML results are very sensitive to low frequencies. As already stated in Basu, 

(2004), the performance of PML is not good in near-zero frequency range, where 

the use of extrapolation may be suggested from the values in stable frequency 

zone. 

 

3) The impedance function of the rod on elastic foundation may be estimated 

properly when the number of nodes are chosen as Nnod=61-121. 
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Figure 3.4: PML model of semi-infinite rod. 
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Figure 3.5: Error versus number of nodes for (a) spring, (b) damping coefficient 

(obtained from GFDM for various normalized frequencies and for m=4, f0=65, 

L=0.5r0, LPML=r0, and r0=1) 
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Figure 3.6: Frequency variation of (a) spring, (b) damping coefficient obtained 

from GFDM with various number of nodes for m=4, f0=65, L=0.5r0, LPML=r0, and 

r0=1. 

(a) 

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

normalized frequency-a
0

k
(a

0
)

 

 

Exact Solution

16 Nodes GFDM Solution

31 Nodes GFDM Solution

61 Nodes GFDM Solution

121Nodes GFDM Solution

(b) 

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

normalized frequency-a
0

c
(a

0
)

 

 

Exact Solution

16 Nodes GFDM Solution

31 Nodes GFDM Solution

61 Nodes GFDM Solution

121 nodes GFDM Solution



 
 

44 
 

3.1.2.2 EFFECTS OF THE ORDER OF ATTENUATION FUNCTION (m) 
AND ATTENUATION STRENGTH (f0) 
 

Effects of the attenuation strength (f0) and order of attenuation function (m) on the 

accuracy of GFDM results are studied in this section. For this purpose, five 

different value of m (1-5) and 100 different value of f0 (1-100) are selected and all 

possible combination of these two parameters are considered in the GFDM. This 

leads to 500 different analyses cases for each mesh. In the analyses, the number of 

nodes (Nnod) takes the values 31, 61, 81, 121 and 151, LPML is taken as r0 and 

truncation rod length is chosen as 0.5r0. Then, the results of the analysis are used, 

for a selected m value and mesh (Nnod), to determine the optimum value of f0 

which minimizes the combined error E defined by  

 

2 2
k cE E E= +                                                                                                 (3.36) 

 

in an average sense, where the errors Ek and Ec for the coefficients k and c were 

defined in Equation 3.35. This optimization procedure is explained below more 

clearly. By fixing m and Nnod and varying f0, one determines, for each f0, k(a0) and 

c(a0) at the points of the frequency range considered in the analysis, and evaluates 

the error in Equation 3.36 averaged over frequency points. Then, the f0 value 

which minimizes the average error establishes the optimum value of f0 at the 

considered (fixed) values of m and Nnod.  

 

By varying the fixed values of m and Nnod, Table 3.1 can be set up for the rod 

problem under consideration, where each value in f0 column gives the optimum 

value of f0 at corresponding values of m and Nnod. The values of average errors not 

given here indicate that the best results are obtained when m is equal to four 

which is evident in Figure 3.7. The figure also suggests that the use of linear 

attenuation function (m=1) is not good choice in PML analysis with GFDM. 
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Table 3.1: Optimum value of the attenuation strength f0 for various orders of 

attenuation parameter m and for various numbers of nodes (31, 61, 81, 121 

and 151), LPML=r0, L=0.5r0, and r0=1. 

 

m 
f0  

number of 
nodes=31 

f0  
number of 
nodes=61 

f0  
number of 
nodes=81 

f0  
number of 
nodes=121 

f0  
number of 
nodes=151 

1 4 4 6 5 5 
2 12 18 22 26 29 
3 27 38 48 56 61 
4 34 53 65 72 78 
5 41 63 78 86 94 
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Figure 3.7: Normalized frequency variation of (a) spring, (b) damping coefficient 

obtained from GFDM with the optimum value of attenuation strength f0 

corresponding to Nnod=81 and m=(1,2,3,4,5) with LPML=r0, L=0.5r0, and r0=1. 
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3.1.2.3 EFFECT OF THICKNESS OF PML (LPML) 
 

Here, the effect of thickness of PML on impedance functions (k and c) of the rod 

on elastic foundation is studied. For that, 16 different values of LPML ranging from 

0.25r0 to 4r0 are considered. The other parameters are selected to be (f0=65, m=4, 

L=0.5r0 and dnodes=0.0125r0). As observed from Figure 3.8, the impedance 

functions are estimated quite accurately when the LPML ≥ r0. However, it is to be 

noted the larger LPML requires increasing the number of nodes to be used in PML 

region, which obviously increases the computational cost. Figure 3.8 suggests that 

acceptable results may be obtained with reasonable computational cost when r0< 

LPML<2r0, or, in terms of the truncation length L of the rod, when 2L< LPML<4L. 
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Figure 3.8: The variation of error with LPML for (a) spring, (b) damping 

coefficient for various frequencies and m=4, f0=65, L=0.5r0, dnodes=0.0125r0, 

and r0=1. 

 

(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-4

10
-2

10
0

10
2

10
4

normalized thickness of PML (L
PML

/r
0
) 

T
h

e
 E

rr
o

r 
(%

) 
in

 S
p

ri
n

g
 C

o
e

ff
ic

ie
n

t

 

 

a
0
=  30

a
0
=   8

a
0
=0.5

a
0
=0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-8

10
-6

10
-4

10
-2

10
0

10
2

normalized thickness of PML (L
PML

/r
0
)

T
h

e
 E

rr
o

r 
(%

) 
in

 D
a

m
p

in
g

 C
o

e
ff

ic
ie

n
t

 

 

a
0
=  30

a
0
=   8

a
0
=0.5

a
0
=0.01

(b) 



 
 

49 
 

3.2 TIME DOMAIN PML FORMULATION OF ROD ON ELASTIC 
FOUNDATION PROBLEM 
 

To carry out the PML analysis of the rod directly in the time domain, its PML 

equations written in frequency space in Equations 3.32 and 3.33 are to be inverted 

into time space. For that Equation 3.32 is multiplied by the stretching function λ; 

then, the inverse Fourier transform is applied to it, which gives (Basu, 2004), 

 

2 3 2
0 0 00

(1 ) (1 )
( ) 0

tpe e p

l

l l

f cf f f
u u d u u

x r r c c r

ε
ξ ξ

∂ + +
− − − − =

∂ ∫ ɺɺ ɺ                                      (3.37) 

 

where the stress-strain relationship is 

 

Eσ ε=                                                                                                              (3.38) 

 

and the stretching function is taken as 

 

0

( )
( ) 1 ( )

p
e f s

s f s
ia

λ = + +                                                                                      (3.39) 

 

Finally, the strain-displacement relationship in Equation 3.33 is multiplied by 

iωλ(x), which gives (Basu, 2004), after inversion  

 

0

(1 )e p l
c u

f f
r x

ε ε
∂

+ + =
∂

ɺ
ɺ                                                                                             (3.40) 

 

Equations 3.37and 3.40 constitute the governing PML equations of the rod written 

in time space. Applying the finite difference formula to the Equation 3.40 for the 

strain rate, one gets 

 

1 1
1
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1 1e n e
n p nlcf u f

f
t r x t

ε ε

−
+

+    + ∂ +
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ɺ
                                                        (3.41) 
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where ∆t is time increment and superscript n denotes the value of a quantity at the 

time step “n”, that is, at t=n∆t. 

 

Time integration of u in Equation 3.37 may be calculated as  

 

1

1 1 1

0 0

( ) ( )
n nt t

n n n nU u d u d u t U u tξ ξ ξ ξ
+

+ + += ≅ + ∆ ≅ + ∆∫ ∫                                             (3.42) 

 

where U
n is the total displacement from initial time to n

th time step. The 

displacement is zero at initial time.  

 

Finally, writing Equation 3.37 at t=(n+1)∆t and substituting Equations 3.41 and 

3.42 into it, the following equation can be obtained: 
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where 
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4
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1 edf
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(3.44e) 
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(3.44f) 

 

It is obvious that Equation 3.43 involves both time and space integrations; its 

time integrations can be performed by the usual methods, such as Newmark’s 

direct integration methods, Runge Kutta’s methods, etc.; on the other hand, its 

space integration can be carried out by FEM or FDM or GFDM. The space 

integration of Equation 3.43 leads to a matrix equation of the form  

 

1 1 1 1n n n n
Mu Cu Ku P

+ + + ++ + =ɺɺ ɺ                                                                                    (3.45) 

 

where the vector u contains the nodal point displacements; M, C and K and Pn+1 

are respectively mass, damping, stiffness matrices, and a load vector which are 

generated by the coefficients appearing in Equation 3.43as 
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3.2.1 NUMERICAL RESULTS FROM TIME DOMAIN ANALYSIS 
 

In this part, the response of the rod on elastic foundation (see Figure 3.2) 

subjected to two different prescribed displacements u0(t) is determined by the time 

domain PML analysis and compared with the exact solution. PML solution of 

governing equation in Equation 3.43 is obtained by Newmark’s method (for 

details, see Appendix A) together with GFDM with distance type algorithm 

having cubic spline weighting function. Two different regular meshes with 61 and 

81 nodes are used. The truncation length L of the rod is taken as 0.5r0 and LPML as 

2L. The order of attenuation function m is chosen four, and its strength as f0=53 

for Nnod=61 and f0=65 for Nnod=81. PML results for the reaction for R at x=0 (that 

is, at the left end of the semi-infinite rod) are then computed and compared with 

the exact in Figures 3.9 and 3.10. 

 

The time variation of two types of the imposed displacement u0(t) at x=0, 

considered in the analyses, are 

 

Type 1 (prescribed displacement employed by Wolf (1988)): 
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                                                             (3.47) 

 

where t0 is chosen as 2. 
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Type 2 (prescribed displacement used by Basu (2004)): 
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                                          (3.48) 

 

where nc denotes the number of cycles, td is the duration of time and 

 

2
f

f

T
π

ω
=                                                                                                            (3.49) 

 

is dominant forcing period, with ωf being the dominant forcing frequency. 

 

Time histories of applied displacement u0(t) of types 1 and 2 at the left end of the 

rod together with the corresponding reaction forces there are displayed in Figures 

3.9 and 3.10. The excellent match of the numerical results with the exact solution 

indicates how well the PML functions absorb the incoming waves; it also shows 

the effectiveness of the use GFDM in PML analysis for the space wise integration 

of the governing equations. 
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Figure 3.9: (a) Prescribed displacement (type 1), (b) the corresponding response 

of the rod on elastic foundation (m=4, f0 =65, L=0.5r0, and LPML= r0 for Nnod =81), 

(m=4, f0=53, L=0.5r0, LPML= r0, and r0=1 for Nnod =61). 
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Figure 3.10: (a) Prescribed displacement (type 2) (nc=4, td=20, ωf=1.5), (b) the 

corresponding response of the rod on elastic foundation, (m=4, f0 =65, L=0.5r0, 

and LPML= r0 for Nnod =81), (m=4, f0=53, L=0.5r0, LPML= r0, and r0=1 for Nnod 

=61). 
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CHAPTER 4 
 
 
 

DYNAMIC COMPLIANCE FUNCTIONS OF RIGID STRIP 
FOUNDATION 

 
 
 
 
 
 

4.1 INTRODUCTION 
 

During the earthquakes, the waves arising from the seismic excitation propagate 

through the soil medium from the fault rupture to the structure of interest. 

Naturally, a dynamic interaction occurs between the foundation of the structure 

and its surrounding soil medium. This interaction is called “soil-foundation-

superstructure interaction” or “soil-structure interaction (SSI)” (Wong, 1975). 

 

The SSI problems are generally modeled using direct (complete) method or 

substructure method. The direct method models the soil medium and structure 

together. This method has significant computational cost and requires large 

computer storage space. On the other hand, in substructure method, the soil 

medium and structure are modeled separately. First, the soil medium is modeled, 

mostly as a half space (HS) or layered medium, and analyzed generally in 

frequency space, and the scattering and impedance properties at the soil structure 

interface are determined. In the second step, the analysis of the structure is 

performed by including the influence of soil on its behavior through the use of 

impedance and scattering relations (Lysmer, 1978). 

 

The impedance relation relates the forces (or moments) to displacements (or 

rotations) at structure-soil interface and can be written as,  
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( ) ( ) ( )i ij j

summation over the
P K u

repeated index j
ω ω ω

 
=  

                                                           
(4.1) 

 

where P is interaction force (or moment) and u is displacement (or rotation) and K 

is frequency (ω) dependent complex stiffness (impedance) coefficient, which 

depends on the shape of foundation, material properties of soil medium and 

amount of embedment (Lysmer, 1978). 

 

The real part of complex impedance coefficient denotes the stiffness and inertia of 

the soil. On the other hand, the imaginary part represents the radiation and 

material damping of the soil (Gazetas, 1983). Physically, the impedance function 

may be described by a spring and dashpot representing its real and imaginary 

components, respectively, that is 

 

( )K k i cω ω= +                                                                                                     (4.2) 

 

where k and c are stiffness and damping coefficients, respectively. 

 

The dynamic compliance is the ratio of the response of foundation (in the terms of 

displacements or rotations) and the exciting force (Liang, 1974). The compliance 

matrix is the inverse of the impedance matrix and satisfies the relation 

 

( ) ( ) ( )i ij ju F Pω ω ω=                                                                                              (4.3) 

 

where F is complex compliance coefficient. Equation 4.3 takes the form, for a 

rigid strip foundation in Cartesian coordinates, 

 

0 0
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0 /

V VV V

H HH HR H

R RH RR R

u F P

u F F P

bu F F P b

     
    =    
         

                                                                      (4.4) 
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where PV, PH and PR are (vertical, horizontal) forces and moment; uV, uH and uR 

denote (vertical, horizontal) displacements and rotation of the strip foundation; 

and b is half-width of the foundation (see Figure 4.1). Equation 4.4 shows that the 

horizontal (swaying) uH and rotational motion uR of strip foundation are coupled 

while its vertical motion uV is uncoupled (Liang, 1974). 

 

 

 

 

Figure 4.1: Surface rigid strip foundation on HS (G, υ, ρ and ζ represent 

respectively shear modulus, Poisson’s ratio, mass density and damping ratio, 

respectively)  

 

 

In this chapter of the thesis, the dynamic compliance functions of a rigid strip 

foundation are evaluated using GFD method together with PML modeling, and to 

assess the use of GFD method in PML analysis, the results are then compared 

with those obtained by other methods. Both surface and embedded rigid strip 

foundation are considered. In the case of surface foundation, various 

configurations of the soil foundation are investigated: HS, layer overlying bedrock 

x
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y

PV

PR
 PH

Half-Space: 

G, υ, ρ and ζ 



 
 

59 
 

and layer on HS. The embedded foundation is considered only when the 

supporting soil medium is HS. Direct time domain analysis is performed only for 

a rigid strip foundation on HS. 

 

The soil medium is represented by a homogenous, isotropic and elastic or visco-

elastic material. In simulating visco-elastic behavior of soil, the complex elastic 

modulus Eɶ  and shear modulus Gɶ  are expressed as, in frequency space, 

 

( )
( )
1 2

1 2

E E i

G G i

ζ

ζ

= +

= +

ɶ

ɶ
                                                                                                    

(4.5) 

 

where ζ is damping ratio. E and 
( )2 1

E
G

υ
=

+
 are respectively elastic and shear 

moduli at zero frequency, that is, at equilibrium state. 

 

 

4.2 PML EQUATIONS OF ELASTODYNAMICS FOR PLANE STRAIN 
CASE (IN FOURIER SPACE) 
 

These equations are needed for determining the compliance or impedance 

functions for strip foundations by PML method and can be obtained through the 

steps: 

 

1. Write the equations of elastodynamics for plane strain case and express them in 

Fourier space. 

 

2. Apply stretching to the coordinates of the equations written in step 1, which 

establishes the equations (for elastic case) in PML region. 

 
3. If desired, viscoelasticity can be introduced by using the correspondence 

principle, that is, E and G in the governing equations in the Fourier space are 

replaced with �	  and !" defined Equation 4.5. 
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Below, first the elastic plane strain equations in Cartesian coordinates x and y will 

be presented. 

 

The stress equations of motion in the absence of body forces become 

 

2

2

2

2

xyxx

yx yy

u

x y t

v

x y t

τσ
ρ

τ σ
ρ
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+ =

∂ ∂ ∂

∂ ∂ ∂
+ =

∂ ∂ ∂                                                                                       

(4.6) 

 

where “t” stands for time. 

 
 

The elastic strain- stress equation for 2D case can be expressed as  

 

, , , 1 2ij ijmn mn

summation over the
c i j m n

repated indices m and n
σ ε

 
= = −  

                                      
(4.7) 

 

where c is fourth-order elastic or stiffness tensor and ε is strain tensor. For the 

plane strain case under consideration, Equation 4.7 becomes, for isotropic 

material and in matrix form, 

 

Dσ ε=
                                                                                                                

(4.8) 

 

or, in expanded form,  
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where D is plane strain stiffness matrix. Strains are related to the displacement 

components u and v in x and y direction by 

 

xx

u

x
ε

∂
=

∂
                                                                                                          (4.10a) 

yy

v

y
ε
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∂
                                                                                                          (4.10b) 

1

2
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y x
ε

 ∂ ∂
= + ∂ ∂ 

                                                                                           (4.10c) 

 

The Fourier transforms of the stress equations of motion, stress-strain and strain-

displacement relations give 

 

stress equations of motion: 
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                                                                               (4.11) 

 

stress-strain relation: 

Dσ ε=
                                                                                                             

(4.12) 

 

strain displacement relations: 
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∂
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(4.13) 

 

where, as mentioned previously, the over-bar denotes the Fourier transform.  
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In the PML application, its assumed that the truncation boundary is either parallel 

to x axis or parallel to y axis; x and y coordinates of a point in PML region are 

replaced by the stretching coordinates 	�� and #	$ , defined by 

 

0 0

( ) , ( )
yx

x yx s ds y s dsλ λ= =∫ ∫ɶ ɶ

                                                                              

(4.14) 

 

where s is normal axis to truncation boundary and 

 

for PML normal to x axis: 

0 0

( ) ( )
( ) 1 , 1

e p

x y

f x f x
x

a ia
λ λ= + + =                                                                  (4.15a) 

 

for PML normal to y axis: 

 

0 0

( ) ( )
1 , ( ) 1

e p

x y

f y f y
y

a ia
λ λ= = + +

                                                                   

(4.15b) 

 

Here, λx and λy are stretching functions, 0

s

b
a

v

ω
=  is a nondimensional frequency; b 

denotes a characteristic length which will be taken in this study as half-length of 

foundation width, vs is shear (S) wave velocity. 

 

�� and ��	 in Equation 4.15 denote the attenuation functions for evanescent and 

propagating waves, respectively, which satisfy: 

 

1. They are zero in truncated region and on truncation boundary 

 

2. Positive real valued and increasing function of normal axis in PML region. 

 

The first condition implies that λx=λy=1 in truncated region, which in turn shows 

that, in view of Equation 4.15, the stretching functions λx and λy are continuous 
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across the truncation boundary. Equation 4.15 indicates further that the stretching 

functions are nonzero and complex valued in PML region. 

 

In the present study, the attenuation functions for propagating and evanescent 

waves will be chosen the same, that is, �� = �� = � with f being given in 

polynomial form as 

 

for PML normal to x axis: 

0
0( )

m

PML

x x
f x f

L

 − 
=  

 
                                                                                        (4.16a) 

 

for PML normal to y axis: 

0
0( )

m

PML

y y
f y f

L

 − 
=  

 
                                                                                     (4.16b)

 

 

where m is the order of attenuation function, LPML is the thickness of PML, f0 is a 

constant denoting the attenuation strength, and x0 and y0 are the coordinates of the 

points on the truncation boundary (see Figure 4.2). 

 

In the view of Equation 4.14, it is obvious that the derivatives with respect to 

stretching coordinates of a point in the analysis region are related to those with 

respect to its actual coordinates by 

 

1

1
x

y

x x

y y

λ

λ

∂ ∂
=

∂ ∂

∂ ∂
=
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ɶ

ɶ
                                                                                                        

(4.17)

 

 

To obtain PML equations of elastodynamics for plane strain case (in Fourier 

space), first, the derivatives 
x

∂

∂
 and 

y

∂

∂
 appearing in Equations 4.11-4.13 should 
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be replaced by 
x

∂

∂ɶ
 and 

y

∂

∂ɶ
, then, the expressions in Equation 4.17 should be used 

for 
x

∂

∂ɶ
 and 

y

∂

∂ɶ
. Thus, one can determine the PML equation as 

 

stress equations of motion: 
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∂ ∂

                                                                     (4.18) 

 

stress-strain relation: 

Dσ ε=                                                                                                              (4.19) 

 

strain displacement relations: 

1

1

1 1 1

2

xx

x

yy

y

xy

y x

u

x

v

y

u v

y x

ε
λ

ε
λ

ε
λ λ

∂
=

∂

∂
=

∂

 ∂ ∂
= + 

∂ ∂  

                                                                                  (4.20) 

 

The displacement equations of motion are determined by substituting first, the 

strain-displacement equations into the stress-strain relations and then, the resulting 

equations into the stress equations of motion. Multiplying the equations obtained 

in the last step by λxλy, one gets the final form of the displacement equations of 

motion as 
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(4.21) 

 

where  
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Figure 4.2: Reflections of incident P wave at fixed boundary of PML region. 

 

 

4.2.1 WAVE REFLECTION COEFFICIENTS FOR PML 
 

Here, the analysis will be performed by referring to Figure 4.2, showing the 

reflection of an incident P wave of the inclination angle θ0 from the fixed 

boundary of PML. The inclination angles of reflected P and S waves are 

designated respectively by θ1 and θ2 in the figure. It is known that θ1 and θ2 are 

related to θ0 by 

 

1 0 2 0, sin sins

p

v

v
θ θ θ θ= =                                                                                   (4.23) 

 

where vp and vs are P and S wave velocities defined by (see, e.g., Achenbach, 

1973) 
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( )
( )

1
,

(1 ) 1 2 2(1 )
p s

E E
v v

υ

υ υ ρ υ ρ

−
= =

+ − +
                                                       (4.24) 

 

For the displacement fields induced by incident and reflected waves, one has 

(Achenbach, 1973): 

 

for incident P wave: 

( )( )( )0 0 0 0expinc

j p j p x yu A n i t k n x n yω= − +ɶ ɶ                                                              (4.25a) 

 

for reflected P wave: 

( )( )( )1 1 1 1expref

j p j p x yu A n i t k n x n yω= − +ɶ ɶ                                                              (4.25b) 

 

for reflected S wave: 

( )( )( )2 2 2 2expref

j s j s x yu A d i t k n x n yω= − +ɶ ɶ                                                              (4.25c) 

 

where index “j” stands for x and y, ux and uy correspond respectively to the 

displacements u and v; n0, n1 and n2 are respectively unit vectors in the directions 

of incident P wave, reflected P and S waves, for which one can write 
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1 1 1
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2 2 2
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( , ) ( cos , sin )

x y

x y
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n n n
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θ θ
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θ θ

= =

= = −

= = −

                                                                         (4.26) 

 

d
2 in Equation 4.25c is orthogonal to n2 and given by 

 

2 2 2
2 2( , ) (sin , cos )

x y
d d d θ θ= =                                                                          (4.27) 

 

kp and ks in Equation 4.25 are wave numbers for P and S waves, respectively, 

defined by 

 



 
 

68 
 

,p s

p s

k k
v v

ω ω
= =                                                                                               (4.28) 

 

and Ap
inc, Ap

ref and As
ref are the amplitudes of incident P wave, reflected P and S 

waves; xɶ and yɶ are stretching coordinates for the PML considered in Figure 4.2 

(normal to x axis) and are given by, in view of Equation 4.14, 4.15a and 4.16a, 

 

0 0

( ) ( )
,

e p
F x F x

x x y y
a ia

= + + =ɶ ɶ                                                                         (4.29) 

 

where 

 

0 0

( ) ( ) , ( ) ( )
x x

e e p p

x x

F x f s ds F x f s ds= =∫ ∫                                                               (4.30) 

 

and 

0 s

s

b
a k b

v

ω
= =                                                                                                    (4.31) 

 

At the right end of the PML normal to x axis in Figure 4.2, the total displacement 

induced by incident P wave, reflected P and S waves should vanish, that is, one 

should have 

 

0 1 2
0j j j j PML

u u u u at x x L= + + = +                                                                      (4.32) 

 

From this condition, one obtains, after some manipulations and in view of 

Equations 4.23-4.32, 
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  
= = − +    −   

                        (4.33) 

 

where Rpp and Rps are reflection coefficients for reflected P and S waves caused by 

the incident P wave. 

 

The reflection coefficients Rss and Rsp (for reflected S and P waves) of the incident 

S wave can be obtained by using a similar procedure. They are 
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+  
= = − 
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                         (4.34) 

 

where θ0 is the inclination angle of incident S wave and θ1 is that of the reflected P 

wave satisfying 

 

1 0sin sinp

s

v

v
θ θ=                                                                                                 (4.35) 

 

It is to be noted that the inclination angle θ2 of the reflected S wave is equal to that 

of the incident S wave. 

 

The reflection coefficients have significant effects on the strength f0 of attenuation 

function. The following expression for f0 (for θ0=0) may be determined from the 

Equation 4.33. 

 

0

( 1) 1
log( )

2
p

PML s pp

m v b
f

L v R

+
=

                                                                                   

(4.36) 
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Equations 4.33 and 4.34 show that the attenuation function f p is responsible for 

PML to absorb propagating waves. The performance of PML increases as the 

inclination angle of incident wave decreases, that is, as the entrance angle of the 

wave into PML gets closer to the normal of PML. 

 

It can be shown that the attenuation function f 
e causes the absorption of the 

evanescent waves entering PML, as opposed to the role played by f p for 

propagating waves. 

 

 

4.3 NUMERICAL RESULTS FOR SURFACE RIGID STRIP 
FOUNDATIONS 
 

In this section, the displacement equations of motion defined in Equation 4.21 are 

integrated using GFDM together with PML modeling for a rigid strip foundation. 

The results are presented in terms of vertical, horizontal and rocking compliances 

obtained for three different configurations of soil medium: HS (Figure 4.1), soil 

layer on a rigid bedrock (Figure 4.3), and soil layer overlying a HS (Figure 4.4), 

The PML models for these three cases are shown in Figures 4.5 to 4.7. In the 

modeling of the computational domain, its symmetry is considered, that is, half of 

the domain is modeled. Four node quadrilateral elements are used in the 

formulation by FEM and distance type algorithm is employed with cubic spline 

weighting function in GFDM. In the FEM and GFDM analyses, the same node 

distribution is used to compare the predictions of these two methods properly. The 

mass of the rigid strip foundation is disregarded (it is generally taken into account 

when superstructure is analyzed). 

 

In the case of a rigid strip foundation over HS, the depth (h) and length (L) of the 

truncated domain is chosen as 0.5b and 1.5b, respectively, where b, as mentioned 

previously, is the half width of the foundation. Thickness of the PML is taken as b 

in both orthogonal directions. Attenuation function parameters are assumed to be 

m=1, f0
e
=10 and f0

p
=10 for FEM and m=4, f0

e
=25 and f0

p
=25 for GFDM  
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For the rigid strip foundation on soil layer overlying bedrock, the depth of the soil 

layer is assumed to be 2b, the thickness of PML is chosen as b. Attenuation 

function parameters are taken as m=1, f0
e=20 and f0

p=20 for FEM and the same as 

those of HS case for GFDM.  

 

For the rigid strip foundation on soil layer overlying the HS, the depth h1 of the 

layer is assumed to be 2b and the depth of the horizontal truncation line in HS 

from layer–HS interface is taken as h2=0.5b (see Figure 4.7). In both orthogonal 

directions, the thickness of PML is chosen as b. In the calculation of the 

nondimensional frequency (a0) for this case, the S wave velocity of the layer is 

used. Attenuation function parameters are assumed to be the same of those of HS 

case. 

 

In three situations described above, a damping ratio of 5% is used for viscoelastic 

case. 

 

 

 

Figure 4.3: Rigid strip foundation overlying rigid bedrock (G, υ, ρ and ζ. 

represent shear modulus, Poisson’s ratio, mass density and damping ratio, 

respectively). 
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Figure 4.4: Rigid strip foundation over soil layer overlying HS. 

 

 

 

 

Figure 4.5: PML model for rigid strip foundation overlying HS. 
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Figure 4.6: PML model for rigid strip foundation on a layer overlying rigid 

bedrock. 

 

 

 

Figure 4.7: PML model for rigid strip foundation on a layer overlying HS.  
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4.3.1 ASSESMENT OF THE RESULTS OF GFDM FOR HS CASE 
 

In this section, the dynamic compliances for a rigid strip foundations on HS are 

calculated by GFDM and they are compared with those of FEM, BEM, and also, 

when possible, with those obtained by Hryniewicz (1980) using a semi analytical 

method. The results obtained from these methods are displayed in Figures. 4.8-

4.13. In these figures, the compliances are presented as a function of the 

nondimensional frequencies a0 which change in the range from 0-6. In the 

analyses of all considered methods, the soil properties are chosen as G=1, υ=0.25, 

ρ=1, ζ=5%, in some suitable units.  

 

Figures 4.8-4.13 indicate that the compliances calculated using GFDM with PML 

are generally in good agreement with those obtained from the other methods, 

although some small differences are observed for very small frequencies.  
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Figure 4.8: Dynamic vertical compliance coefficients of rigid strip foundation on 

elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, b=1, 

G=1, ρ=1 and υ=0.25)  
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Figure 4.9: Dynamic horizontal compliance coefficients of rigid strip foundation 

on elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, b=1, 

G=1, ρ=1 and υ=0.25). 
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Figure 4.10: Dynamic rocking compliance coefficients of rigid strip foundation 

on elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, b=1,  

G=1, ρ=1 and υ=0.25). 
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Figure 4.11: Dynamic vertical compliance coefficients of rigid strip foundation 

on visco-elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, 

b=1, G=1, ρ=1, υ=0.25 and ζ=5%). 
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Figure 4.12: Dynamic horizontal compliance coefficients of rigid strip foundation 

on visco-elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, 

b=1, G=1, ρ=1, υ=0.25 and ζ=5%). 
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Figure 4.13: Dynamic rocking compliance coefficients of rigid strip foundation 

on visco-elastic HS for (a) real and (b) imaginary parts (L=3b/2, h=b/2, LPML=b, 

b=1, G=1, ρ=1, υ=0.25 and ζ=5%). 
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4.3.2 EFFECT OF POISSON AND DAMPING RATIO ON THE 
COMPLIANCES FOR RIGID STRIP FOUNDATION  
 

In this section, the effect of Poisson ratio and damping ratio of HS on the dynamic 

compliances of rigid strip foundation is studied (see Figures. 4.14-19). In the 

Figures 4.14-16, vertical, horizontal and rocking compliances obtained from 

GFDM with PML are presented as a function of nondimensional frequency for 

various Poisson ratios. As observed from the Figure 4.14 and 4.16, variation of 

Poisson ratio has somewhat significant effects on the vertical and rocking 

compliances. In the case of larger value of Poisson ratio, smaller vertical and 

rocking compliances are generally obtained. This is mainly due to the fact that the 

soil material becomes incompressible as Poisson ratio increases, reaching 

perfectly incompressible state of υ=0.5. It is known that the incompressibility 

increases the soil stiffness against volumetric deformations. This explains why the 

vertical and rocking compliance values which are governed mainly by volumetric 

soil behavior get smaller as Poisson ratio increases. However, the effect of 

Poisson ratio is found to be negligible for horizontal compliances (see Figure 

4.15). This obviously results from the fact that the soil behavior in this case is 

governed by shear, not volumetric deformations.  

 

During the vibration of foundations, some energy is dissipated due to the internal 

friction between soil particles (called material dissipation) and also due to 

radiation of waves propagating away from foundation (called radiation damping). 

The studies reveal that the material dissipation does not depend on frequency in 

the case of small amplitude of vibration. Accordingly, a linear hysteretic material 

damping model in Equation 4.5 is used in this study. Figures 4.17-19 investigate 

the effect of damping ratio on the vertical, horizontal and rocking compliances. As 

observed from these figures, larger damping ratio generally decreases the real part 

of compliances, however, increases their imaginary parts, in particular, for lower 

frequencies. The increase in the imaginary part with the damping should be 

expected since this part of compliances represents the dissipated energy in soil 

medium during vibrations of foundation. Figures 4.17-19 also show that the 
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vertical, horizontal and rocking compliances are insensitive to changing damping 

ratio for higher frequencies.  

 

 

 

 

 

Figure 4.14: Dynamic vertical compliance coefficients of rigid strip foundation 

on the elastic HS for (a) real and (b) imaginary parts for various Poisson ratios 

(L=3b/2, h=b/2, LPML=b, b=1, and E=1). 
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Figure 4.15: Dynamic horizontal compliance coefficients of rigid strip foundation 

on the elastic HS for (a) real and (b) imaginary parts for various Poisson ratios 

(L=3b/2, h=b/2, LPML=b, b=1,and E=1). 
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Figure 4.16: Dynamic rocking compliance coefficients of rigid strip foundation 

on the elastic HS for (a) real and (b) imaginary parts for various Poisson ratios 

(L=3b/2, h=b/2, LPML=b, b=1, and E=1). 
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Figure 4.17: Dynamic vertical compliance coefficients of rigid strip foundation 

on visco-elastic HS for (a) real and (b) imaginary parts for various damping ratios 

(L=3b/2, h=b/2, LPML=b, b=1, G=1,and υ=0.25). 
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Figure 4.18: Dynamic horizontal compliance coefficients of rigid strip foundation 

on  visco-elastic HS for (a) real and (b) imaginary parts for various damping ratios 

(L=3b/2, h=b/2, LPML=b, b=1, G=1,and υ=0.25). 
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Figure 4.19: Dynamic rocking compliance coefficients of rigid strip foundation 

on visco-elastic HS for (a) real and (b) imaginary parts for various damping ratios 

(L=3b/2, h=b/2, LPML=b, b=1, G=1,and υ=0.25). 
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4.3.3 COMPARISON OF DYNAMIC COMPLIANCES FOR RIGID STRIP 
FOUNDATION ON THE SOIL LAYER OVERLYING THE BEDROCK 
 

In this section, the dynamic compliances are calculated using GFDM for rigid 

strip foundation on the soil layer overlying bedrock and they are compared to 

those obtained from FEM. The results are given in Figs. 4.20-4.22, where the 

compliances are presented as functions of nondimensional frequencies ranging 

between 0 and 6. In the analyses, the Poisson ratio (υ) of the soil layer is assumed 

to be 0.4 and the shear modulus is chosen as 1. The damping ratio is taken as 5% 

for viscoelastic soil layer, which reduces the resonance amplitudes considerably.  

 

As seen from figures, the dynamic compliances calculated using GFDM and FEM 

are generally in good agreement.  
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Figure 4.20: Dynamic vertical compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying bedrock for (a) real and (b) imaginary parts 

(L=3b/2, d=2b, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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Figure 4.21: Dynamic horizontal compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying bedrock for (a) real and (b) imaginary parts 

(L=3b/2, d=2b, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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Figure 4.22: Dynamic rocking compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying bedrock for (a) real and (b) imaginary parts 

(L=3b/2, d=2b, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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4.3.4 EFFECT OF DEPTH OF LAYER OVERLYING BEDROCK ON 
COMPLIANCES FOR RIGID STRIP FOUNDATION 
 
Here, the dynamic compliances obtained from GFDM for various depths of layer 

are compared in Figures 4.23-4.25. In the figures, the compliances are presented 

as functions of nondimensional frequencies ranging between 0 and 6. In the 

analyses, the Poisson ratio (υ) of the soil layer is assumed to be 0.4 and the shear 

modulus is chosen as 1. The damping ratio is taken as 5% for viscoelastic soil 

layer.  

 

Compliance curves of soil layer in the figures are not smooth as observed for HS 

case. Instead, the compliance functions for layer case exhibit some peaks and 

valleys. This is mainly due to that the body waves generated by vibrations of 

foundation are reflected when they reach the bedrock and return back to the 

foundation at the surface. As a result, when the frequencies are close to natural 

frequencies of the soil layer, larger amplitude of the foundation motion occurs due 

to resonance (Gazetas 1983). Resonant nondimensional frequencies for uniform 

single layered are give by, for vertical P and SV waves,  

 

0

0

(2 1)
2

(2 1) ( 1, 2,3...)
2

pp

s

s

vb
a n

d v

b
a n n

d

π

π

= −

= − =
                                                                    (4.37) 

 

where a0
p and a0

s are nondimensional resonant frequencies for P and S waves 

respectively and n is the mode number. 

 

Even though, these formulas were developed for one dimensional wave 

propagation, the studies in literature reveal that these formulas are also 

appropriate for 3D problems (Gazetas 1983). The resonant frequencies a0
p in 

Equation 4.37 govern approximately the location of peak values of vertical and 

rocking compliances in Figures 4.23 and 4.25, while a0
s does that for horizontal 

compliances in Figure 4.24. This is natural consequence of the fact that the 
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vertical and rocking compliances are mainly influenced by P waves, whereas the 

horizontal compliance, by S waves. 

 

The figures indicate further that 

• The layer depth has more influence on vertical and rocking compliances 

compared to horizontal compliance 

• As the layer depth increases, the compliance curves become smoother for 

high frequencies. 
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Figure 4.23: Dynamic vertical compliance coefficients of rigid strip foundation 

on viscoelastic layer with various depths overlying bedrock (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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Figure 4.24: Dynamic horizontal compliance coefficients of rigid strip foundation 

on viscoelastic layer with various depths overlying bedrock (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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Figure 4.25: Dynamic rocking compliance coefficients of rigid strip foundation 

on viscoelastic layer with various depths overlying bedrock (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G=1, υ=0.4, and ζ=5%) 
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4.3.5 COMPARISON OF DYNAMIC COMPLIANCES FOR RIGID STRIP 
FOUNDATION ON THE VISCOELASTIC LAYER OVER 
VISCOELASTIC HS 

 
In this section, the dynamic compliances obtained using GFDM are compared to 

those calculated from FEM and BEM in Figures. 4.26-28 for the nondimensional 

frequency range between 0 and 6. In the analyses, the Poisson ratio, damping 

ratio, mass density and shear modulus of viscoelastic layer are taken as 0.4, 5%, 1 

and 1 respectively. The properties of HS are the same as those of the layer, except 

that its shear modulus is assumed as four.  

 

The figures indicate that the compliances calculated using GFDM with PML 

compare well with those obtained from FEM and BEM. 

 

It may be noted that the compliance curves in Figures 4.26-28 are rather smooth 

and contain no noticeable irregularities induced by resonant frequencies as in the 

case of layer over rigid bedrock. This is mainly due to the fact that the HS below 

layer permits partially the radiation of the waves generated by vibrations of 

foundation. 
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Figure 4.26: Dynamic vertical compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying HS for (a) real and (b) imaginary parts (L=3b/2, 

h1=2b, h2=0.5b, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 

 

 

 

(a) 

(b) 

0 1 2 3 4 5 6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

a
0

R
e

(F
V

V
)

 

 

GFDM

BEM

FEM

0 1 2 3 4 5 6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

a
0

-I
m

(F
V

V
)

 

 

GFDM

FEM

BEM



 
 

99 
 

 

 

 

 

Figure 4.27: Dynamic horizontal compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying HS for (a) real and (b) imaginary parts (L=3b/2, 

h1=2b, h2=0.5b, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 
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Figure 4.28: Dynamic rocking compliance coefficients of rigid strip foundation 

on visco-elastic layer overlying HS for (a) real and (b) imaginary parts (L=3b/2, 

h1=2b, h2=0.5b, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 
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4.3.6 EFFECT OF DEPTH OF LAYER OVERLYING HS ON THE 
COMPLIANCES FOR RIGID STRIP FOUNDATION 
 

Previous studies reveal that the depth of layer and the ratio of the shear modulus 

of soil layer and HS are the main parameters which affect the compliances of rigid 

strip foundation (Gazetas 1983). Accordingly, the effect of the depth of layer 

overlying HS on dynamic compliances for rigid strip foundation is investigated in 

this part of the study. The results obtained by GFDM for various depths of the 

layer are presented in Figures 4.29-31. In the analysis, the properties of the layer 

and HS are taken as the same as those of the previous section. 

 

The results in figures exhibit larger peak values for deeper top layer on HS. 

However, the change of vertical compliances as a function of frequency is 

relatively smoother in the case of shallower soil layer on HS. The resonance does 

not occur in such layer due to potential energy dissipation of this shallower soil 

layer on HS (Ahmad and Israil, 1988).  
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Figure 4.29: Dynamic vertical compliance coefficients of rigid strip foundation 

on visco-elastic layer with various depths overlying HS for (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 
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Figure 4.30: Dynamic horizontal compliance coefficients of rigid strip foundation 

on visco-elastic layer with various depths overlying HS for (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 
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Figure 4.31: Dynamic rocking compliance coefficients of rigid strip foundation 

on visco-elastic layer with various depths overlying HS for (a) real and (b) 

imaginary parts (L=3b/2, LPML=b, b=1, G1=1, G2=4, υ=0.4, and ζ=5%) 
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4.4 NUMERICAL RESULTS FOR EMBEDDED RIGID STRIP 
FOUNDATION ON VISCO-ELASTIC HS 
 

Here, the dynamic compliances for embedded rigid strip foundation illustrated in 

Figure 4.32 are evaluated by GFDM and compared to those obtained from FEM, 

BEM. The results are displayed in Figures 4.33-35 showing the compliances as a 

function of nondimensional frequency ranging between 0 and 6. In the analyses, 

the Poisson ratio (υ) of the HS is assumed to be 0.25, its shear modulus is chosen 

as 1 and its damping ratio is assumed as 5%.  

 

The comparisons presented in the figures indicate reliability of using GFDM (with 

PML) in wave propagation analysis. 
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Figure 4.32: PML model for embedded rigid strip foundation on HS under 

vertical, horizontal and rocking vibrations.  
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Figure 4.33: Dynamic vertical compliance coefficients of embedded rigid strip 

foundation overlying HS for (a) real and (b) imaginary parts (L=3b/2, H=b, 

h=3b/2, LPML=b, b=1, G=1, υ=0.25 and ζ=5%) 
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Figure 4.34: Dynamic horizontal compliance coefficients of embedded rigid strip 

foundation overlying HS for (a) real and (b) imaginary parts (L=3b/2, H=b, 

h=3b/2, LPML=b, b=1, G=1, υ=0.25 and ζ=5%) 
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Figure 4.35: Dynamic rocking compliance coefficients of embedded rigid strip 

foundation overlying HS for (a) real and (b) imaginary parts (L=3b/2, H=b, 

h=3b/2, LPML=b, b=1, G=1, υ=0.25 and ζ=5%) 
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4.4.1 EFFECT OF DEPTH OF EMBEDMENT ON THE COMPLIANCES 
FOR EMBEDDED RIGID STRIP FOUNDATION 
 
 
In this section, the effect of depth of embedment on dynamic compliances for 

embedded rigid strip foundations is studied. To this end, the compliances for 

embedded rigid strip foundation are obtained from GFDM for various depths of 

embedment and they are compared in Figures 4.36-38. The properties of HS are 

taken as the same as those of the previous section. 

 

The results in the figures reveal that vertical, horizontal and rocking compliances 

for embedded rigid strip foundation decreases when the depth of embedment 

increases. This is because of that the existence of the embedment in the 

foundation system causes relatively stiffer foundation due to the fact that the area 

between foundation and soil becomes larger. 
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Figure 4.36: Dynamic vertical compliance coefficients of embedded rigid strip 

foundation on HS with various depths of embedment for (a) real and (b) 

imaginary parts (L=3b/2, h=3b/2, LPML=b, b=1, G=1, υ=0.25, and ζ=5%) 
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Figure 4.37: Dynamic horizontal compliance coefficients of embedded rigid strip 

foundation on HS with various depths of embedment for (a) real and (b) 

imaginary parts (L=3b/2, h=3b/2, LPML=b, b=1,  G=1, υ=0.25, and ζ=5%) 
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Figure 4.38: Dynamic rocking compliance coefficients of embedded rigid strip 

foundation on the HS with various depths of embedment for (a) real and (b) 

imaginary parts (L=3b/2, h=3b/2, LPML=b, b=1, G=1, υ=0.25, and ζ=5%) 
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4.5 DIRECT TIME DOMAIN PML EQUATIONS OF ELASTODYNAMICS 
FOR PLANE STRAIN PROBLEMS 
 

To carry out the PML analysis of a plane strain problem directly in the time 

domain, its PML equations written in frequency space in Equations 4.18-20 are to 

be inverted into the time space. For that Equation 4.18 is multiplied by the product 

of stretching functions (λxλy); then, the inverse Fourier transform is applied to it,  

which gives (Basu, 2004), 
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where, Σ and Τ are respectively integrated normal and shear stresses defined by  
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The coefficients in Equation 4.38 are defined as  
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where the stretching functions are assumed to have the forms 
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Next, the three strain-displacement relations in Equation 4.20 are multiplied by 

iωλxλx, iωλyλy and iωλxλy, respectively. After the inversion, the strain displacement 

relations become (Basu, 2004), 
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where Eij (i,j = x,y) are integrated  strains defined by 
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Finite difference formulas for strain rates and time integrals of strains are  
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Writing Equations 4.42 at t=tn+1=(n+1)∆t and using Equations 4.44 in them, one 

obtains 
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where, the β coefficients are defined by 
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The soil medium is generally represented by a homogenous, isotropic and elastic 

or visco-elastic material. Two parameter Kelvin model or also called Voigt model 

is usually used to simulate visco-elastic behavior of the soil. For this model, the 

complex elastic modulus Eɶ  and shear modulus Gɶ  are expressed as 
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With use Kelvin model, the stress-strain relation becomes, in frequency space,  
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After the inversion, the stress-strain relation takes the form 
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Time integrations of the above equations, up to the current time t give 
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Writing Equations 4.49-50 at t=tn+1 and using Equations 4.44 in them, one gets  
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ζ ζ
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ζ ζ
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   
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ζ
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ζ
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 

 
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 

 
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 

△
△

△
△

△
△

                                

(4.52) 

 

Finally, inserting Equations 4.45 into Equations 4.51 and 4.52, and substituting 

the resulting equations into Equation 4.38 at t=tn+1, the following equation is 

obtained in matrix form: 

 

	

1 1 1
11 11 12 11 12 1

1 1 1
22 21 22 21 22 2

0

0

n n n

n n n

M C K F

M C C K K Fu u u

M C C K K Fv v v

+ + +

+ + +

            
+ + =            

            

ɺɺ ɺ

ɺɺ ɺ
������������� ����������� �����������

           (4.53) 

 

where 

 

11 m
M fρ=

                                                                                                      

(4.54a) 

22 m
M fρ=                                                                                                       (4.54b)  

2 2

11 1 2 3 42 2c
C f A A A A

x x y y
ρ

∂ ∂ ∂ ∂
= − − − −

∂ ∂ ∂ ∂                                                    (4.54c) 

2 2

12 5 6 7C A A A
x y x y y

∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂                                                                   (4.54d) 

2 2

21 1 2 3C B B B
x y y x y

∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂                                                                     (4.54e) 

2 2

22 4 5 6 72 2c
C f B B B B

x x y y
ρ

∂ ∂ ∂ ∂
= − − − −

∂ ∂ ∂ ∂                                                    (4.54f) 

2 2

11 8 9 10 112 2kK f A A A A
x x y y

ρ
∂ ∂ ∂ ∂

= − − − −
∂ ∂ ∂ ∂                                                 (4.54g) 

 

2 2

12 12 13 14K A A A
x y x x y

∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂                                                               (4.54h) 
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2 2

21 8 9 10K B B B
y x y x y

∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂                                                                  (4.54i) 

2 2

22 11 12 13 142 2kK f B B B B
x x y y

ρ
∂ ∂ ∂ ∂

= − − − −
∂ ∂ ∂ ∂                                               (4.54j) 

22 22
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21 22 21 24 23 21

n n
n n

n n

E
F A A A A E A A

x x x x

A A A A E
y y

ε
ε

ε

∂ ∂∂ ∂   
= + + − + +   

∂ ∂ ∂ ∂   

   ∂ ∂
+ + + −   

∂ ∂                       (4.54k) 

11 11
2 15 16 21 18 17 11 19 20

21 22 22 23 24 21

n n
n n

n n

E
F B B B B E B B

x x y y

B B B B E
y y

ε
ε

ε

∂ ∂∂ ∂   
= + − − + +   

∂ ∂ ∂ ∂   

   ∂ ∂
+ + − −   

∂ ∂                        (4.54l) 

 

The definitions of the coefficients A1 to A24 and B1 to B24 in the above equations 

are presented in Appendix B . 

 

It is obvious that Equation 4.53 involves both time and space integrations; 

therefore its time integrations can be performed by using the usual methods, such 

as Newmark’s direct integration methods (see Appendix A), Runge Kutta’s 

methods (Bogacki and Shampine (1989)), etc.; on the other hand, its space 

integration can be carried out by FEM or FDM or GFDM.  

 

4.5.1 NUMERICAL RESULTS FROM TIME DOMAIN ANALYSIS 
 

In this part, the response of the strip foundation on elastic or viscoelastic HS (see 

Figure 4.1) subjected to two different prescribed displacements u0(t) is determined 

by the time domain PML analysis and the results are compared with those of FEM 

and BEM. To integrate the GFD equations with respect to time MATLAB ode12 

solver is preferred and used (Bogacki and Shampine (1989)) together with 

distance type algorithm having cubic spline weighting function. For the time 

integration of the FEM, Newmark algorithm is used. The order of attenuation 

function m is chosen two, and its strength as f0=8 for GFDM; however, for FEM 
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m and f0 are selected as one and ten respectively. BEM results are first obtained in 

frequency space and then inverted into time space.  

The time variation of two types of the imposed displacement u0(t), considered in 

the analyses, are assumed to be given by Equations 3.47 and 3.48. 

 

The analyses results are used to compare the dynamic reaction forces for a rigid 

strip foundation on HS calculated by GFDM and the other above mentioned 

methods. The results are displayed in Figures. 4.39-4.44. In the analyses of all 

considered methods, the soil properties are chosen as, in some suitable units, G=1, 

υ=0.25, ρ=1, ζ=5%.  

 

Figures 4.39-4.42 indicate that the results calculated using GFDM with PML are 

generally in good agreement with those obtained from other methods. 
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Figure 4.39: Reactions of rigid strip foundation on elastic HS for (a) vertical (b) 

horizontal and (c) rocking due to type 1 (Wolf, 1988) prescribed displacement 

(t0=5) (L=3b/2, h=b/2, LPML=b, b=1, G=1, ρ=1, υ=0.25 and ζ=0%). 
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Figure 4.40: Reactions of rigid strip foundation on elastic HS for (a) vertical (b) 

horizontal and (c) rocking due to type 2 (Basu, 2004) prescribed displacement 

(nc=4, td=20, ωf=1.0), (L=3b/2, h=b/2, LPML=b, b=1, G=1, ρ=1, υ=0.25 and 

ζ=0%). 
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Figure 4.41: Reactions of rigid strip foundation on visco-elastic HS for (a) 

vertical (b) horizontal and (c) rocking due to type 1 (Wolf, 1988) prescribed 

displacement (t0=5) (L=3b/2, h=b/2, LPML=b, b=1, G=1, ρ=1, υ=0.25 and 

ζ=5%). 
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Figure 4.42: Reactions of rigid strip foundation on visco-elastic HS for (a) 

vertical (b) horizontal and (c) rocking due to type 2 (Basu, 2004) prescribed 

displacement (nc=4, td=20, ωf=1.0), (L=3b/2, h=b/2, LPML=b, b=1, G=1, ρ=1, 

υ=0.25 and ζ=5%). 
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CHAPTER 5 
 
 
 

CONCLUSION AND DISCUSSION 
 
 
 
 
 
 
In this thesis work, based on GFDM, a formulation is presented for the PML 

analysis of the problems in wave mechanics. The appropriate choices of the 

parameter appearing in GFDM and PML are made through the use of parametric 

studies carried out for some benchmark problems. The proposed formulation is 

appraised by applying it to the compliance of surface foundation and embedded 

rigid strip footing supported by a soil foundation. The surface foundation is 

considered having various configurations: uniform HS, soil layer on rigid bedrock 

and soil layer on uniform HS. The embedded foundation is considered only when 

the supporting soil medium is HS. Direct time domain analyses are also 

performed only for a surface rigid strip foundation on uniform HS. The findings 

and observations drawn from the study are summarized below. 

 

1. The parametric study which is conducted to determine proper weighting 

function for distance type and quadrant type GFDM algorithms reveals that using 

the quartic spline weighting function in the case of distance type algorithm leads 

to better results. However, using cubic distance weighting function for quadrant 

type algorithm results in less global error.  

 

2. The parametric study is conducted to determine the effective PML parameters. 

The results obtained from PML analyses are found to be improved with the 

increasing number of nodes in GFDM. In addition, PML results are found to be 

very sensitive to low frequencies. Moreover, linear attenuation function (m=1) is 

not recommended for PML analyses with GFDM. The reasonable computational 
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cost is achieved when the thickness of PML is chosen between two and four times 

of the computational length.  

 
3. The compliance functions are found for rigid strip foundation using GFDM 

with unsplit PML in frequency domain. The results obtained from this method are 

compared to those obtained from FEM with unsplit PML and BEM. The 

compliance functions obtained from GFDM with unsplit PML are found to be 

comparable with these methods. 

 

4. The compliance functions are also found for rigid strip foundation using GFDM 

with unsplit PML in time domain. The results obtained from this method are 

compared to those obtained from FEM with unsplit PML and BEM. The 

compliance functions obtained from GFDM with unsplit PML are found to be 

comparable with these methods. 

 

5. GFDM with unsplit PML is generalized in Appendix C for the analyses of 

problems with arbitrary geometry of truncation region (see Figure C.2). This 

generalization is important since choosing a particular geometry for PML suitable 

for the problem under consideration, instead of choosing it as parallel to 

coordinate axes, maybe needed to decrease the size of analysis region, thus, to 

reduce the computational cost of PML analysis (for illustrations, see Figure C.2-

4). 

 

6. A procedure to perform the PML analysis directly in complex domain, instead 

of in real domain, is proposed in Appendix D. This approach of the analysis has 

some advantages over that of real domain analysis: 

 

a) Complex domain PML analysis can be carried out in a homogenous complex 

domain by keeping the original form of the governing equations together with 

their symmetry properties. 

 

b) It handles properly the problems arising from the corner points which may 

appear on truncation boundary. To explain this point, Figure 5.1 will be referred 
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to, which shows a wedge region of PML associated with a corner (discontinuity) 

point on truncation boundary. When real domain PML analysis is used, there 

would be an ambiguity about the selection of the stretching function λx and λy in 

the wedge region. On the other hand, the use of the complex domain approach in 

PML analysis would eliminate this ambiguity; in fact, in the case, the complex 

nodal point coordinates along the radial directions emanating from the corner 

point in wedge region (see Figure 5.1) can be generated by using Equation D.7. 

 
The implementation of complex domain PML analysis will be subject of a future 

work. 

 

 

 

 

Figure 5.1: Description of wedge region for complex domain PML analysis 

 
 

7. In this study, GFDM is compared to other numerical methods. The advantages 

and disadvantages of GFDM are concluded as: 
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a) Implementation of GFDM for unsplit real and complex domain PML analysis is 

straigthforward and simpler compared to FEM. The method is also applicable for 

arbitrary geometry and non-uniform node distribution. Implementation of all type 

BC is easy. The method enables to more accurate results when using higher order 

TS expansion, finer mesh, appropriate weighting function and radius of influence. 

Element transformation, gauss integration and knowledge of connectivity does not 

required in this method. 

 

b) However, the matrices in GFDM is not banded, ill-condition may be observed 

in the case of improper node selection and near boundary points.  
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APPENDIX A 
 
 
 

NEWMARK TIME INTEGRATION METHOD 
 
 
 
 
 
 
Newmark (1959) developed a time integration method for the solution of 

structural dynamic problems. The method and its modified forms have been 

applied to the dynamic analysis for fifty years, especially in the analyses of the 

structures subjected to the ground excitation. This numerical integration method is 

used to solve equilibrium equations expressed in the following form, 

 

1 1 1 1n n n n
Mu Cu Ku P

+ + + ++ + =ɺɺ ɺ                                                                                       (A.1) 

 

where the vector u contains displacements; M, C, K and Pn+1 are respectively 

mass, damping, stiffness matrices, and a load vector. 

 

In Newmark’s method truncated Taylor series expansions are used for 

displacement and velocity and they are given below; 

 

2
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n n n n

n n n

t
u u tu u t u

u u tu t u

β
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+

∆
= +∆ + + ∆
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ɺ ɺɺ ɺɺɺ

ɺ ɺɺ ɺɺɺ

                                                                            (A.2) 

 

where the coefficient γ is assumed to be 1/2 in linear and average acceleration 

methods. However, the coefficient β is taken as 1/6 in linear, but 1/4 in average 

acceleration methods. 

 

Time derivative of acceleration is obtained using finite difference expression; 
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1n nu u
u

t

+ −
=
ɺɺ ɺɺ

ɺɺɺ
△

                                                                                                      (A.3) 

 

Substituting the above equation into Equations A.2 following equations are 

obtained 
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where 
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( )
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n n n n

n n n

A u tu t u

B u tu

β

γ

= + ∆ + − ∆

= + − ∆

ɺ ɺɺ

ɺ ɺɺ

                                                                                   (A.5) 

 

The Equations (A.4) are then inserted into the equilibrium equations, to obtain the 

following formula 

 

1n n
Ku P

+ =ɺɺ                                                                                                         (A.6) 

 

K and nP are effective stiffness matrix and effective load vector, respectively. 

 

where  

 

2

1 1n n n n

K M C t K t

P P CB KA

γ β
+ +

= + ∆ + ∆

= − −
                                                                                    (A.7) 

 

Following procedure is used in Newmark method for the calculation of 

acceleration, velocity and displacement for each time step: 

 

1. First, the effective stiffness matrix is determined from Equations A.7a for initial 

calculation. 
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2. Then, the coefficients of An and B
n are calculated by using Equations A.5. 

 

3. Next, the effective load vector is determined from Equations A.7b. 

 

4. In the next step, the acceleration is evaluated from Equation A.6. 

 

5) Finally, displacement and velocity vectors are calculated with using Equations 

A.4. The procedure between steps 2 and 5 is then repeated for each time step. 
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APPENDIX B 
 
 
 

THE COEFFICIENTS OF EQUATIONS 4.54 
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APPENDIX C 
 
 
 

THE USE OF THE STRETCHING FUNCTIONS FOR A PML HAVING 
ARBITRARY GEOMETRY 

 

 

 
 
 
 
Here, a general situation involving a PML region of arbitrary geometry is studied. 

For simplicity, 2D case is considered in the discussions (see Figure C.1). It is 

worth to note that choosing a particular geometry for PML suitable for the 

problem under consideration, instead of choosing it as parallel to coordinate axes, 

may be needed to decrease the size of analysis region, thus, to reduce the 

computational cost of PML analysis (for illustrations, see Figures C.2-4).  

 

The discussions will be presented by referring to Figure C.1, where the shape of 

the truncation boundary (interface) is simulated through its subdivision by some 

straigth line (SL) segments. Based on each SL segment, a PML element is 

generated as shown in the Figure C.1. The PML elements are separated by the 

lines bisecting the angle between the normals of two adjacent SL segments.  

 

In the discussions two types of coordinate axes are used: x1x2 global coordinate 

system, and n-s local coordinate system (see Figure C.1). In the latter coordinate 

system, to which a PML element is referred, n denotes the normal axis directed 

outwards from interior (truncated) region and s is the tangential axis directed in α 

direction as the PML element is viewed from interior region, with α being the 

rotational direction from x1 to x2 axis. For the unit vector n̂ in the n direction, one 

can write 

 

( ) ( )1 2
ˆ ˆcos , sinn nθ θ= =                                                                                  (C.1)  
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where θ is the angle of n axis from x1 measured in α direction. On the other hand, 

for unit vector ŝ  of the tangential axis, one has 

 

( ) ( )1 2
ˆ ˆsin , coss sθ θ= − =                                                                                (C.2) 

 

In view of Equation C.2 and Figure C.1 (b), one can write for cosθ and sinθ, in 

terms of the coordinates of the end points of the line segment (LS) 12%%%%, 
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                                                                                (C.3) 

 

where L is the length of the LS 12%%%% : 

 

( ) ( )
2 2(2) (1) (2) (1)

1 1 2 2L x x x x= − + −   

 

and ( (1) (1)
1 2,x x ) and ( (2) (2)

1 2,x x ) are ( 1 2,x x ) coordinates of the end points (1) and 

(2). 

 

The stretching functions for a PML are given by, when the simplest form of 

stretching function given in Equation 3.3 is used, 
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n
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f
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β
λ β

ω
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=                                                                                                 
(C.4)

 

 

where fn is the attenuation function (associated with n-direction), and λn and λs are 

stretching functions for n and s directions of the PML element. For the stretching 

coordinates (&�, '̃) of a point in PML element, one can write, in local coordinates,  
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where 
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The stretching coordinates (���, ��)	)	of a point in PML element in x1x2 global 

coordinate system are related to its local stretching coordinates (&�, '̃) by 
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where (x1
0
, x2

0) are (x1, x2) coordinates of the midpoint of the LS 12%%%% (see Figure 

C.1). 

 

When Equation C.5 is inserted into Equation C.7, one gets the stretching 

coordinates	(���, ��)	), 
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with n being the normal coordinate of a point in PML element which is related to 

its (x1, x2) coordinates by 

 

0 0
1 1 1 2 2 2
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1 1 2 2
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It is known that, to obtain the stretch equations in PML analysis, one makes the 

following replacements in the original differential equations: 

 

1 1 2 2

,
x x x x

∂ ∂ ∂ ∂
→ →

∂ ∂ ∂ ∂ɶ ɶ
                                                                                 (C.10) 

 

Thus, to establish the stretch equations in terms of the actual coordinates (x1, x2), 

one should express 
1x

∂

∂ɶ
 and 

2x

∂

∂ɶ
in terms of 

1x

∂

∂
 and 

2x

∂

∂
. For this purpose, one 

writes, first, 

 

1 2

1 1 1 2 1

1 2

2 1 2 2 2

x x

x x x x x

x x

x x x x x

∂ ∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

ɶ ɶ ɶ

ɶ ɶ ɶ
 

 

or, in matrix form, 

 

1 2

1 1 1 1

1 2

2 22 2

x x

x x x x

x x

x xx x

A

∂ ∂∂ ∂    
    ∂ ∂ ∂ ∂
    =

∂ ∂ ∂ ∂    
    ∂ ∂∂ ∂    

ɶ ɶ ɶ

ɶ ɶ ɶ
�����������

                                                                              (C.11) 

 

To evaluate the coefficient matrix A in Equation C.11, one may consider the 

identity, written in indicial form, 

 

2

1

( , 1,2)i i k
ij

kj k j

x x x
i j

x x x
δ

=

∂ ∂ ∂
= = =

∂ ∂ ∂
∑

ɶ ɶ

ɶ ɶ
                                                                 (C.12) 

 

where 
ijδ is the usual Kronecker’s delta (

ijδ =1 for i=j; 
ijδ =0 for i≠j). Equation 

C.12 shows that the coefficient matrix A appearing in Equation C.11 is the inverse 

of the matrix B defined by 
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1 2

1 1

1 2

2 2

x x

x x
B

x x

x x

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
 ∂ ∂ 

ɶ ɶ

ɶ ɶ

 

 

which becomes, in view of Equations C.8 and C.9 

 

2

2

( ) ( )
1 cos sin cos

( ) ( )
sin cos 1 sin

n n

n n

f n f n

i i
B

f n f n

i i

θ θ θ
ω ω

θ θ θ
ω ω

 
+ 

=  
 +
  

                                                       (C.13) 

 

With the use of Equation C.13, inserting A=B
-1 into Equation C.11, one gets 

 

2

1 1

2

2 2

( ) ( )
1 sin sin cos

1

( ) ( ) ( )
1 sin cos 1 cos

n n

n n n

f n f n

x xi i

f n f n f n

ix xi i

θ θ θ
ω ω

θ θ θ
ω ω ω

∂ ∂    
+ −    ∂ ∂

   =  
∂ ∂      + − +     ∂ ∂     

ɶ

ɶ

             (C.14) 

 

where, it may be noted, n coordinate of a point in PML element is related to its 

(x1, x2) coordinates by Equation C.9. Below Equation C.14 is presented for some 

special cases. 

 

Special case 1: 

 

For a vertical truncation boundary (interface) with the normal in x1 direction (see 

Figure C.1), one has θ=0, which reduces Equation C.14, as expected, to 

 

11 1 1 1

2 2

1 1

( ) ( )
1

f rx x r x

i

x x

λ

ω

∂ ∂ ∂
= =

∂ ∂ ∂ 
+ 

 

∂ ∂
=

∂ ∂

ɶ

ɶ
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with r=x1-x1
0. 

 

Special case 2: 

 

For a horizontal truncation boundary (interface) with the normal in x2 direction 

(see Figure C.1), one has	* = +
2, , which reduces Equation C.14, as expected, to 

 

1 1

22 2 2 2

1 1

( ) ( )
1

x x

f rx x r x

i

λ

ω

∂ ∂
=

∂ ∂

∂ ∂ ∂
= =

∂ ∂ ∂ 
+ 

 

ɶ

ɶ

 

 

with r=x2-x2
0. 
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Figure C.1: (a) Discretization of PML region of arbitrary geometry (b) typical 

PML element (s is in α direction as the PML element is viewed from interior 

(truncated) region; -.%%%% is directed in s direction). 
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Figure C.2: PML modeling of a tunnel problem (a) when the geometry of PML is 

chosen as fitted to the shape of tunnel, (b) when it is selected as parallel as to 

coordinate axes. 
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Figure C.3: (a) Trapezoidal strip foundation under vertical, horizontal and 

rocking vibrations, (b) its PML modeling when the interface is fitted to the shape 

of the foundation, (c) when it is chosen as parallel to coordinate axes.  
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Figure C.4: (a) An impedance problem and its PML modeling with the interface 

chosen (b) as circle (c) as parallel to coordinate axes. 
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APPENDIX D 
 
 
 

COMPLEX DOMAIN APPROACH IN PML ANALYSIS 
 
 
 
 
 
 
The purpose of this approach is to perform the PML analysis directly in complex 

domain, instead of, in real domain. The main advantage of this approach would 

be: PML analysis can be carried out in a homogenous complex domain by 

keeping the original form of the governing equations together with their symmetry 

properties. It is to be noted that performing PML analysis in real domain requires 

modifying the form of governing equations and integrating them in real, but, 

inhomogeneous and anisotropic domain. 

 

It goes without saying that the proposed approach could be used only in frequency 

space. The discussions below are presented for 2D case and it is assumed that the 

spacewise integrations are performed by GFDM. 

 

To explain the complex domain approach, Figure D.1 will be referred to; where 

the first figure (a) shows the description of a point P in PML. In view of this 

figure, it is obvious that the coordinates xj of P are given by 

 

0 ˆ ( 1, 2)j j jx x rn j= + =
                                                                                 

(D.1) 

 

where 0
jx  are coordinates of a point P0 on the interface Γ, n̂ is unit normal of Γ at 

P0 and r is the distance of point P from P0. 

 

The unit normal n̂  of point P0 can be determined in terms the parametric 

equations of the interface Γ. 



 
 

156 
 

( )0 0 ( 1,2)j jx x jα= =
                                                                                   

(D.2) 

 

where α is the line parameter. In view of discussions in Appendix C, for n̂  one 

can write 

 

1 2

2 1

ˆ ˆ

ˆ ˆ

n s

n s

=

= −
                                                                                                             (D.3) 

 

where ŝ  is unit tangent vector at P0, which can be determined as, using the 

parametric equations of Γ,  

 

0

2 20 0
1 2

1
ˆ ( 1,2)j

j

dx
s j

d
dx dx

d d

α

α α

= =
   

+   
   

                                                        
(D.4) 

 

It should be noted that, in view of Equation C.3, ŝ  can also be determined 

approximately by  

 

(2) (1)
0 0

ˆ ( 1,2)j j

j

x x
s j

L

−
= =                                                                                    (D.5) 

 

where 
(1)

0
jx and 

(2)
0
jx  are two points along Γ enclosing point P0 closely and L is the 

length of the distance between these points, that is, 

 

2 2(2) (1) (2) (1)
0 0 0 0
1 1 2 2L x x x x

   
= − + −   

   
                                                                             (D.6) 

 

The stretching coordinates of point P in Equation D.1 is given by  
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0 0 ˆ ( 1,2)j j jx x rn j= + =ɶ
                                                                                

(D.7) 

 

where rɶ is given by, when the simplest form of the stretching function in Equation 

3.3 is used, 

 

( )F r
r

iω
=ɶ                                                                                                             (D.8) 

 

with F(r) being defined by 

 

0
( ) ( )

r

F r f dα α= ∫                                                                                              (D.9) 

 

If the attenuation function f is assumed to have the form given in Equation 3.16, 

that is, 

0( )

m

PML

r
f r f

L

 
=  

 
                                                                                           (D.10) 

 

then, for F(r) in Equation D.9, one has 

 

1

0( )
1

m

PML

PML

L r
F r f

m L

+
  

=   
+  

                                                                            (D.11) 

 

Equation D.7 maps a point P in actual (real) PML region to a point Pɶ  in complex 

PML region. 

 

The complex domain approach proposes performing PML analysis directly in 

complex PML region and has the following steps when the spacewise integrations 

are carried out by GFDM. 

 

1) Select some points 0
iP  (i=1,2,…) along the interface Γ of PML with truncated 

region (see Figure D.1 (b)). 
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2) Associated with each 0
iP  generate some points along its normal ˆ in  using 

Equation D.1; these points constitute the nodal points in PML region to be used in 

GFDM. 

 

3) Using Equation D.7, determine the complex stretching coordinates of the nodal 

points generated in PML region. 

 

4) Write the governing equations at nodal points in terms of their stretching 

coordinates; it is to be noted that the form of governing equations in terms of 

stretching coordinates in PML region would be the same as that of the original 

equations. For example, for the plane strain problem whose actual governing 

equations are given in Equations 4.11-13, PML equations in terms of stretching 

coordinates would be the same formwise with these equations, that is, they would 

be  

 

stress equations of motion: 

2

2

0

0

xyxx

yx yy

u
x y

v
x y

τσ
ρω

τ σ
ρω

∂∂
+ + =

∂ ∂

∂ ∂
+ + =

∂ ∂

ɶ ɶ

ɶ ɶ

 

 

stress-strain relation: 

Dσ ε=  

 

strain displacement relations: 

xx

yy

u

x

v

y

ε

ε

∂
=

∂

∂
=

∂

ɶ

ɶ

 

1

2
xy

u v

y x
ε

 ∂ ∂
= + ∂ ∂ ɶ ɶ
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5) Express the derivative values (with respect to stretching coordinates) at a nodal 

point in terms of function values at some points around that nodal (star) point 

using the star equation of GFDM. The TS2 star equation in terms of stretching 

coordinates can be obtained through a modification of Equation 2.6 (which was 

given in terms of real coordinates). It is 

 

2 2 2 2 3 2 2 2 2

2 2 2 2 2 2 3 2 2

2 3 2 2 2 4 2 2 2 2 3

2 2 2 3 2 2 2 2 4 2 3

2 2

1 1

2 2
1 1

2 2
1 1 1 1 1

2 2 4 4 2
1 1 1 1 1

2 2 4 4 2
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w h w h k w h w h k w h k

w h k w k w k h w k w k h
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∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
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2 *2 2 2 3 2 3 2 2 21 1

2 2i i i i i i i i i i i i

f

x

f

y

f

x

f

y

fw k h w h k w h k w h k

x y

 ∂
   ∂   
   ∂
   ∂   
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                                                              (D.12) 

 

where wi is weighting function and 

 

* *,i i i ih x x k y y= − = −ɶ ɶ ɶ ɶ                                                                                  (D.13) 

 

with * *( , )x yɶ ɶ  being the star point. In view of discussion presented in Chapter 2, 

the use of cubic distance weighting function may be suggested in the analysis. In 

terms of stretching coordinates, this weighting function should modified as 
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( )
2 23

1/

0

i i i i i
i

i i

d with d h k for d dm
w

w for d dm


= + ≤

= 
 = >

                                    
(D.14) 

 

where dm is the radius of circle of influence; it should be a real value and 

positive, and satisfy 

 

max 1idm d i m> ≤ ≤
                                                                                    

(D.15) 

 

with m being the number of points around the star point. 

 

6) Combine the governing equations written at nodal points and solve them in 

view of boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

161 
 

 

 

 

 

Figure D.1: (a) Description of a point in PML (b) generation of nodal points in 

PML for GFDM analysis 
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