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ABSTRACT

ROAD DETECTION BY MEAN SHIFT SEGMENTATION AND STRUCTURAL
ANALYSIS

Dursun, Mustafa
M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. ur Halici

June 2012, 125 pages

Road extraction from satellite or aerial images is a popular issue in remotageBstracted
road maps or networks can be used in various applications. Normally, rmapsafds are
available in geographic information systems (GIS), however these infonmsadi@ not being
produced automatically. Generally they are formed with the aid of human. &deattion
algorithms are trying to detect the roads from satellite or aerial images with the minimum
teraction of human. Aim of this thesis is to analyze a previously defined algoabout road
extraction and to present alternatives and possible improvements to thighaigorhe base-
line algorithm and proposed alternative algorithm and steps are basedaorsimié segmen-
tation procedure. Proposed alternative methods are generally bastdictral features of
the image. Firstly, fundamental definitions of applied algorithms and methodxlaned,
mathematical definitions and visual examples are given for better unddirgiarthen, the
chosen baseline algorithm and its alternatives are explained in detail. Adtpreksentation
of alternative methods, experimental results and inferences which tamedt during the

implementation and analysis of mentioned algorithms and methods are presented.
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KAYAN ORTALAMA B OLUTLEME VE YAPISAL ANAL IZLERLE YOL TESATI

Dursun, Mustafa
Y iiksek Lisans, Elektrik-Elektronik Mhendislgi Bolumi

Tez Yoneticisi : Prof. Dr. W§ur Halic

Haziran 2012, 125 sayfa

Uydu veya hava@riintilerinden yollarin ¢ikariimasi uzaktan algilamadade olan bir konu-
dur. Cikarilan yol haritalari veyaj#ari ¢eistili uygulamalarda kullanilabilmektedir. Normalde
yol haritalari c@rafi bilgi sistemlerinde (GIS) bulunmaktadir ancak bu bilgiler otomatik olarak
uretiimemektedir. Genelde bu bilgi sistemleri insan yardimiyla olusturulmuslafalicika-

rim algoritmalari, uydu veya havaugintilerinde yollari minimum insan etkilesimiyle tespit
etmeye calismaktadir. Bu tez calismasinin amaci yol ¢cikarmayla ilgili@ateden tanimlan-
mis bir algoritmayi incelemek, bu algoritmaya alternatifler ve muhtemel iyilestirmefer su
maktir. Temel secilen algoritma \@nerilen alternatif algoritma ve adimlar kayan-ortalama
boliitleme proseidri iizerine kuruludur. Onerilen alternatif gntemeler geneldetgiintide
bulunan yapisabzelliklere dayalidir.ilk olarak uygulanan algoritma vedytemlerin temel
tanimlamalari aciklanmis, daha iyi bir anlasilirlik icin matematiksel tanimladksetprnek-

ler verilmisti. Daha sonra, secilen temel algoritma ve bu algoritmanin alterniatite
tayli olarak anlatiimistir. Alternatif gntemlerin anlatiimasindan sonra belirtilen algoritma
ve yontemlerin calistiriimasi ve incelenmesi ile elde edilen deneysel sonuctakaremlar

sunulmustur.
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Anahtar Kelimeler: yol ¢ikarimi, uydudgintileri, kayan-ortalamadiitlemesi, sablon esle-

me filtresi, yapisal analiz
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Importance of road extraction from satellite or aerial images increaseigha in recent
years. There are various application areas where road maps cagddae.usor example, nav-
igation systems that are started to be used commonly in cars, are using raaih iméprm the
driver. Road extraction is not only intended to be used in civil applicatiwasl coordinates
are also crucial information for martial and strategic purposes. Curravidijable road maps
are generally taken from geographic information system(GIS) which isddrwith human
interaction. The road map database of GIS has to be updated if new reactsnatructed or
existing structure of roads are modified. By extracting road maps automatiballyork time
for the update of the GIS database can be decreased. For thesey¢asoopic, detection of

roads in satellite images, is investigated in this thesis.

There are several algorithms in the literature. Generally classificationfisrped by using
spectral and structural features that exist on the image. In order tbl&dcause structural
classification, it is decided to work on an algorithm that includes segment&@iothe other
hand, the algorithm has to béfieient and simple. The algorithm suggested by (Long and
Zhao, 2005) was using mean-shift segmentation method and the perferofahe algorithm
was good for the testimage that authors provided. Also the algorithmfiicisiet and simple.
For this reasons, the algorithm suggested by (Long and Zhao, 200bpsermr as baseline

algorithm.

It has been observed that the performance of the baseline algorithmovg®od enough

for the data sets used in this thesis and it has been noticed that severaldmpris can be



applied to the baseline algorithm. Hence, for the purpose of performancevierpent, an

alternative algorithm, pre-segmentation and post-segmentation methodsarsquro

1.2 Scope of Thesis

The scope of this thesis is to investigate road extraction from 3-band s#aelfisd images
by using mean-shift segmentation procedure. A previous algorithm in whézn-shift seg-
mentation is used, taken as the baseline algorithm and alternative pregingcand post-

processing steps are proposed to improve the overall performance of it.

1.3 Contribution of Thesis

In this thesis, some alternative pre-classification and post-classificationasethe proposed
in order to improve overall performance of the baseline algorithm in whicmrskdt seg-
mentation used. Two of the alternative methods are based on segment nasrgjitinggir aim
is to post-process the output of the mean-shift segmentation procedudeiri@improve the
structural features of the road segments. These methods are appliedtgmthented image

and then output of this steps is used in automatic classification step.

In addition to the segment-merging steps, an automatic classification method @sguiop
In this method, firstly, structural features of segments are analyzed torie¢eseed road
segments. Then spectral features of seed road segments are usedrasiing space of
Gaussian Mixture Model which is constructed by using Expectation Maximizatgorithm.
At the end, the resultant clusters are analyzed and the maximum likelihood testiofidhe

parameters of some clusters are used for spectral modeling of road pixels

Furthermore a rotation invariant multi-scale template matching filter is proposethlyza
the structural features of images. Roads iffedent widths can be selected by this filter
using diferent target road width parameters and the rotation invariability is achigvesirg

rotated versions of the template filter.

Finally, by using experimental results that are obtained during the implemenéaiibimves-

tigation of alternative steps of the baseline algorithm, a resulting road detedgiorthm is

2



proposed. Steps of the proposed algorithm are determined experimentagldating the

best alternative among the others.

1.4 Outline of Thesis

In this thesis, a previously defined road extraction algorithm which is usiranrabift seg-
mentation procedure, is chosen as the baseline algorithm. In chapterkgyduatd infor-
mations on the methods and fundamental operations that are implemented in tisigitbes
provided together with visual examples. In chapter 3, alternative methredsraposed in
order to improve overall performance. In chapter 4, experimentaltsethat are obtained
during the implementation and analysis of the chosen baseline algorithm graspdometh-

ods are given. In chapter 5, the study is concluded.

1.5 Literature Survey

There are a lot of methods, algorithms and softwares in literature whichiraezldo de-
tect roads from satellite or aerial images. Generally it is being tried to extvadt masks

or road networks. About 250 flierent resources on road extraction is reviewed in (Mena,
2003), in which the methods used in reviewed articles are explained biiéflse recently,
Hauptfleisch(2010) made an itemization on road extraction articles and hedligteckplained
several methods and algorithms in detail. In both of these articles, the metlab@selgen-
erally used in road extraction algorithms are presented without a sequedgbathm flow.

In this section, the studies available in literature are examined according tarimguges, pre-
processing, classification and post-processing methods. Firstly, inpge itypes which are
commonly used in road extraction literature are explained. Then genaretustr of road

extraction algorithms and their sub-steps are given.

1.5.1 InputImages

In earlier times of detection of roads from images, resolution of the imagesatas good as

today’s images’ resolution. Also there were generally single band imates than multi-

3



spectral images. Today there are several image sources that ar@ usad detection liter-
ature. In his survey paper, Hauptfleisch(2010) categorized imag#selgensor types that
they are formed. He listed most popular sensor types and gave usag&stati§2 research

groups.(Figure 1.1)

Other

LIDAR

IKONOS
IRS

SPOT

SAR

QuickBird Aerial Imagery

Figure 1.1: Sensor types used by research groups (Hauptfleiskd), 20

Hauptfleisch(2010) mentioned that commercial satellite IKONOS was caphtakiog 1m

resolution panchromatic and 4m resolution 4-band spectral(R, G, B d&dilhges. By us-
ing the combination of panchromatic and multi-spectral images, 1m resolutieshyzeipened
version of the images are obtained. It can be seen from the Figure 1LIK@IHOS images

are the most popular images used in road extraction literature.

Aerial images are the oldest images used in remote sensing and there avesetwor types
used in aerial imaging that coveffidirent wavelengths. It is stated by Hauptfleisch(2010) that
the best resolution used in remote sensing literature was 20cm and usedtgayias et al.,

2004).

SAR images are obtainedftiirently than the other satellite images. SAR is the abbreviation
of Synthetic Aperture Radar and images are obtained by using electroticagaeges rather

than optics.

QUICKBIRD is another commercial satellite and it can take 64cm resolutionlpamatic

and 2.4m resolution multi-spectral images. SPOT is not a single satellite, it idldaesgteup

4



in which five diferent satellites are used.(SPOT-1,2,3,4 and 5). The last satellite SPOT-5 is
capable to take 2.5m-5m resolution panchromatic images and 10m resolution peuattias

images.

LiDAR is used with aircrafts and it uses laser pulses in order to detecttsbjaDAR is gen-
erally used for the measurement of the heiglfiiedence between the roads and surrounding

objects.

1.5.2 Automation of Algorithms

Road extraction algorithms can be categorized to two types as automatic analgematic
algorithms. In both type of algorithms, the main steps of processing are saicteavla pre-
processing step, classification step and post-processing stépreDte between automatic
and semi-automatic algorithms come out whether human interaction or a priomartion is

needed or not.

An algorithm is called automatic if it is not externally guided and called semi-autorifiatic
external informations used for processing. This external input camsbd in any step of
semi-automatic algorithms. For example, Chiang(2008) used a raster mapthatnsatellite
images in order to detect road intersection points. Hence it can be saiddjparéusing an

already pre-processed image as input to their algorithrim poe-processing step

On the other hand most of the semi-automatic algorithms are using externahationin
classification step Generally a seed data set is taken as external information and theme$eatur
of it are analyzed to classify the image. For example Gruen and Li(1988)seed points that
are marked by a user, in order to classify images. Also Song and C@)2ised external

training data to train SVM in order to classify image.

Similar to the external data usage in pre-processing and classification stepes of the al-
gorithms need human interactiam post-processing step For example, Zhao et al.(2002)
defined an algorithm in which external informations that are taken fronparator are used
to combine and post-process the classified binary image. In the same waad &racker
based on profile matching is proposed and applied in (Baumgartner et @2) a0d then

with the aid of an operator, road networks are extracted.

5



1.5.3 Pre-processing Methods

In this section, pre-processing methods that are used in road extracti@tulieeare ex-
plained. Pre-processing operations are used to increase perferofahe classification step.
Smoothing filters, edge detection, segmentation and color-space transformperations
aremostly used before the classification step of algorithms in road extraction literdture.
addition to these operations, seed selection can be also defined asragagsmg operation

since seed data is used in classification step.

1.5.3.1 Smoothing Filters

Smoothing filters are generally used to increase performance of speassification. When
there are spectral noise on an input image, smoothing filters are used teerewiee. For
this purpose, Long and Zhao(2005) used an edge-preserving sngpblier which is called
multi-scale morphological cleaning and strengthening algorithm. In (Senthimnath 2009),
noises on the high resolution input image are filtered before the classifis&jnFirstly they
applied ceiling operation to obtain a binary image and then they applied groampimmasking

operations for the purpose of removal of noises and smoothing the image.

1.5.3.2 Edge Detection

There are several edge detectors defined in literature. Generally adgeetected by investi-
gating local spectral variations of the image. Basically, when there is a eéajrapditerence
between adjacent pixels it is assumed that there is an edge. One of theapoktredge
detector among the others is Canny Detector which is defined by Can®y(¥&ording to
the Hauptfleisch(2010), Sobel(Duda and Hart, 1973), (Marr and étlidd. 980), (Nalwa and
Binford, 1986), (Sarkar and Boyer, 1993) and Laplace(BovilQ®)@re other popular edge

detectors used in road extraction literature.

In (Ruskone and Airault, 1997), edge detection is applied to the input imab#hen parallel
edges are detected. The pixels between parallel edges are considewtl seed. Same

method is also used in (Mei et al., 2003) and (Chen et al., 2004).
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1.5.3.3 Segmentation

In segmentation, image is divided into sub-pieces which are containing alhesimilar
pixels. Several segmentation methods are used in road extraction litefaburexample, in
(Long and Zhao, 2005), mean-shift segmentation method is used bedaassification step.
Hinz and Baumgartner(2003) used textural segmentation in their roadttralgorithm for

several purposes.

Iterative Self-Organizing Data Analysis Technique(ISODATA) which ésatibed in (Hall
and Ball, 1965) is also used in several algorithms. In this algorithm, a clustesevspec-
tral variation is big can be divided into sub-clusters and clusters which $iavilar spectral
properties can be merged in to a single cluster, dynamically. For exampleg@@®4) used

ISODATA for the purpose of segmentation and classification.

Xu et al.(2009) extracted initial outline of roads by using watershed duedhiold algorithm
and then used multi-weighted method to extract exact edges of the roaddly Hiey used
morphological operations and shape index parameters in order to rewises and non-road

regions.

Yuan et al.(2009) defined an algorithm which is based on segmentationwdfimpge by
using Locally Excitatory Globally Inhibitory Oscillator Networks(LEGION)atRer than as-
signing weights to all of the image pixels they assigned weights to the locally at&actels.

After segmentation, they investigate medial-axis of segments and selec/rares. Then
again by using LEGION algorithm in the sense of medial-axis alignments, wetlealigeg-

ments are connected and mapped as road.

1.5.3.4 Color Space Transformation

Mostly, gray-level images or RGB color space is used in road extractioatlite. However

alternative color spaces are also being used by transforming RGBsmdoe. In (Zhang,

2004), instead of RGB space, dfdrent space is defined and used. One of the bands is called

as greenness and defined as (F®)R). The other band is chosen as the saturation value of

the HSI space.



Christophe and Inglada(2007) firstly translated input color space tea@rspangle domain.
Number of image bands used with this spectral angle transformation cary bemtber. All
of the band informations are gathering into spectral angle domain value pikels which

are darker in the spectral angle domain are labeled as roads.

1.5.3.5 Seed Point Selection

As it is mentioned automation of an algorithm is related to its need to human interagction.
most of the semi-automatic algorithms, human interaction is used before the ctdisifi

step.

Features that exist in input space are compared with the expected fealtugs and classifi-
cation is realized according to the result of this comparison. In some stedfms;ted feature
values are extracted from seeds. Seeds are the regions that asergjng the characteristics
of roads. While some of the algorithms need human aid in seed selection, sarithalg
automatically select seeds. In first type, a seed region on the image istgitrealgorithm
and the algorithm extracts the features by using the region. Then in classifistep, these
extracted features are used. Some of the algorithms do not need humaatiotefor every
image. Road regions and non-road regions are used as training stiteaalgiorithm uses

features of these regions in the classification.

In automatic algorithms, seed points are determined automatically. There aralsegthods
that are used in seed selection but most popular methods among the othedgeudetection

and segmentation.

1.5.4 Classification

Classification is the most important step of the road detection algorithms. Titecieua dif-
ferent types of classification which are spectral, structural, textuthtantextual. Structural
features are generally extracted by applying edge detection, Hougdfidnamnand segmenta-
tion. Roads are generally long and narrow straight lines. In edge detettteomost popular
usage is to find parallel edges in edge map. These edges are assumedad bdges and
spectral information of the region between that edges is used to specteabify the im-

age. Segmentation is also another powerful method to extract structataiee from the
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image. There are several structural features used to define roadsatuliée By investigating
the structural features of the roads, the segments which are similar in shéqgeroads are

classified as roads.

There might be 2 or more classes in classification step. The simplest and thpapakr
classification is two-class classification where classes named as roadmndad. At the
output of classification a binary image is obtained. On the other hand, nwwhbeisses can
be more than two. For example, in (Mohammedzadeh et al., 2008) specssificktion was
used and five membership functions were defined which were good-upgurobable-road,
down-probable-road, up-bad-road and down-probable-rogdapplying these membership
functions to the RGB space, Mohammedzadeh et al.(2008) obtained fieteni classes.
There are several classifiers used in literature. Atrtificial neural mksyduzzy-classifiers

and statistical classifiers are popularly used classifiers.

1.5.4.1 Spectral Classification

In spectral classification, pixels are classified according to their spésatares. In most of
the satellite or aerial images there are some non-road regions that spesitraléy to the
roads so these regions are also classified as road when only speatina¢$ are used. For this
reason spectral classification is generally used as an initial step in clatssificThere are a
lot of spectral classifiers used in literature. Hauptfleisch(2010) sta#atidssical statistics,

artificial neural networks and fuzzy classifiers are the most popularadgth

In some of the studies that are based on classical statistics, probability themed in or-
der to obtain information. Oddo et al.(2000) used a maximum likelihood claswaifierthe
assumption that roads have uniform spectral features. They defirmtdand variance as the
parameters and calculated the distance of the patterns to the probability €hareusing a
threshold they classified the pixels as road or non-road. Chen et &)(268d a histogram
Bayesian classification approach. Firstly, they choose a set of roal gird a set of non-
road pixels. Then by using the spectral distribution of these sets, they andelgsion on a

pixel if it is belong to a road or not.

Artificial neural networks(ANN) are also used in spectral classificattep of the algorithms.

In (Fiset et al., 1998), it is aimed to update a road map database. For tpizsspuhey try
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to match the existing roads on the map with the satellite image precisely. They realized
this matching by using a multi-layer neural network which is trained to detedsroa the
satellite image. In (Li et al., 2003), a neural network based spectraifitmss used with
pixel-based knowledge post-processing method, for the purposetractan of road and
water informations. In (Mokhtarzade and Zoej, 2007), it is examined thsillesusage of
ANNSs in road detection algorithms. They compared several neural nestroicture and they
concluded that instead of using spectral features of a single pixel, sigetjral features of a

pixel with its neighbors as input to the neurons can increase the perfoeman

In (Shackelford and Davis, 2003), a hierarchical pixel-basedyfgiassification method is
used to spectrally classify the image. Outputs of this classification step atelnaiding,

water, grass, tree, bare, soil and shadow. After this classificationts®papplied object-
based analysis for further processing. In (Mohammadzadeh et a#),280uzzy process
developed in which a matrix of membership degrees is obtained for eaclapikéthen a rule

is used to form fuzzy outputs. Finally, features are extracted by usiefuazification step.

1.5.4.2 Structural Classification

In structural classification, generally input image is firstly pre-prock$sethe purpose of
extraction of structural features. Then these structural featuresdadljects in the image
are used to classify the objects. In (Jin and Davis, 2003), firstly, segii@mnis applied to
the image and then by using structural features, road centerlines aaetedtr On the other
hand, a multi-scale curvilinear structure detector is used as a secortdisttatassifier. Then
outputs of these blocks are combined using optimum path search algorithkiu Bn¢l Tao,
2005), firstly, in order to identify road candidates, a binary template matchinged on
perpendicular profiles along the road direction. Then by using the reguhis analysis, the
width, centerline and lateral sides of the roads are extracted. In (Zra@h@ouloigner, 2006),
firstly, k-means clustering method is used to convert input image to a segnimatgel. Then
several shape descriptors are defined and used in classification taricprecisely identify

roads. Doucette et al.(2004) detected centerline of parallel edges emdishng The Self-
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Organized Mapping algorithm extracted a low-level road map. Also Baae:Mayer(2005)
used the regions between the parallel edges where spectral distributiniiasn on gray

values. These regions are added to the training set.

1.5.4.3 Textural Classification

In textural classification, textural features of the image are usdterBit regions in the image
have diferent textural features. Definitions of 14 textural features are dpyétaralick(1979).
In (Ohanian and Dubes, 1992) it is stated that only three of Haralick re=satare enough
for the purpose of textural classification (cited by Hauptfleisch(2010hese features are
contrast, entropy and angular second-moment. In (Mao and Jain,, 18a)lti-resolution
simultaneous autoregressive (MR-SAR) model used for the purpds&tafal classification
and segmentation. It is stated by Hauptfleisch(2010) that this method is atbinugleang
and Couloigner(2006)and (Hui et al., 2006).

1.5.4.4 Contextual classification

Contextual classification is also a method used in classification step in liter&ivoelifferent
contextual feature classes which are global features and localdeadte defined by Hinz
et al.(1999). According to the features of region of interestet®nt road detection routines
are used. This is determined with global features such as spectral antlsdl features.
There might be some objects around the roads whose shape or positioméicaor of a

road. Road signs, cars or tree lines are some examples to the local cahigdumation.

Baumgartner et al.(1997) used fivefdrent local contextual objects which are parallel fea-
tures, shadows, vehicles, rural driveways and driveways upilditgs. Also they used three
global contextual objects which are forested region, urban regioaral region. After the
decision of global contextual feature, they used local contextualresafor the purpose of

classification.

In (Yang and Wang, 2007), four global contextual information definkith are rural, urban,
montane and hybrids of suburban and rural regions. By using an aslggty histogram

model, sub-parts of the image are classified.
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1.5.5 Post-Processing Methods

In post-processing operations features of input image are not dignesed. Pixels or regions
are determined as road or non-road without looking at their features d€termination pro-
cess is independent from the features of input image, it is based on ty fiimal image.
For this reason, these operations are called post-processing operatioer than classifica-
tion. For example, assuming that there is a tunnel on a roadway. Spedsiaiater structural
features at the location of tunnel will not be similar to the features of roatieespart of road-
way with the tunnel will be classified as non-road. However in post-f@iog operations, by

applying edge linking method, this discontinuity can be removed.

Generally, there are some regions or pixels on the classified image whictisactassified by
the classifier, namely, false positives and false negatives. Thesasegipixels which were
not classified truly by the classifiers, can be corrected by using posegsing operations. In
addition to this, post-processing operations are also used for the puspotaining more

good and meaningful final images.

1.5.5.1 Morphological Operations

On the other hand, there exists a lot of cavities, zig-zaged edges agxisdeh the binary
classified image. These kind of factors can be removed by applying mogital operations
on the binary classified image. For example, in (Long and Zhao, 2005},ahtige cavities
are removed by applying convex hull algorithm and morphological operisp zig-zaged
edges are smoothed by using contour tracing algorithm. In (Xu et al., 20@®}the classifi-
cation step, by using morphological operations, holes and non-roexhsegye removed from

the classified image.

Shi and Zhu(2002) converted RGB image to gray level then used degyralyeonstant thresh-
old filter to obtain a binary image. Then in next step, they detected lines fronbitiasy
image. As a result of pixel-by-pixel classification of the gray-level thoés filter, a lot of
lines appears on the image. By using binary opening, closing, thinningeamalving splinter

lines, they obtain the road network.
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1.5.5.2 Edge Linking

In (Zhao et al., 2002), after the spectral classification step, discontimoitithe road map are
removed by using edge linking method. Although the performance of thefidass these
regions was poor,fiect of this problem was removed by using post-processing operations on

the binary classified image.
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CHAPTER 2

BACKGROUND

In this chapter, background information about the methods used in this Hrespovided
and examples are given for a better understanding. Color spacemubésithesis are de-
fined briefly in section 2.1. Then commonly used morphological operationisdgpurpose of
post-processing such as opening and closing are described in setidn 2ection 2.3, two
different enhancement filters are described in which the input image is smboittibe edges
of the image are preserved. These filters are bilateral filtering and mulki-gegy-level mor-
phological cleaning and strengthening(MMCSA). Then mean-shift se@tien procedure
is explained in section 2.4. In section 2.5 Hough transform is explainedllysimasection

2.6 edge linking method is explained.

2.1 Color Spaces

Itis stated in (Singlia and Hemacllandran, 2011) that a color space is a foodgpresenting
color in terms of intensity values. There are a lot of color space repsds®rs. In this
section, color spaces that are used in this thesis, which are RGB, XX#Zyt.and L*a*b,

are explained. Color spaces other than RGB space, are derivecpblyyngplinear or non-

linear transformations to RGB space as stated in (Cheng et al., 2001).

2.1.1 RGB Color Space

Red, green, and blue are three primary colors that used in RGB rapatgee of images. A
digital image is two dimensional in spatial domain and every pixel of it has andityeralue.

In RGB images, every pixel has three intensity values which are comdsmpto the inten-
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sity of red, green and blue color in that pixel. According to Singlia and Héararan(2011),
RGB color space is the most popular color representation and is used isitgievand cam-
eras but Comaniciu and Meer(2002) stated that it is non-linear and igliteble for segmen-

tation procedures.

2.1.2 CIE Color Spaces: XYZ, L*u*v and L*a*b*

CIE (Commission International de I'Eclairage) color system has threenedeas which are
X, Y and Z and it was developed to represent perceptual uniformity. ades are linearly

obtained from RGB values as given below.

X| 10.607 Q174 Q200|(R
Y|=10299 0587 Q114{|G (2.1)
Z| 10000 Q066 1116||B

Comaniciu and Meer(2002) mentions that CIE L*u*v* and CIE L*a*b spaare obtained
by applying non-linear transformation to XYZ* is same in both while last two terms are

different through chromatic coordinates. Definition of these spaces are loglow.

L = 116f () - 16
u* = 13L*(u —uy)
Vi =13L5(V - V) (2.2)

whereu,’, i, Xn, Yn andz, are equal to the value of reference white point where meaning

of the subscriph is normalized.f(t), U andv used in equation 2.2 are given below.

1 1
f(t) { . =
= 2
1(29 4 1
§(B)t+a t<iy 2.3)
U = o2X '
X+15Y+3Z
f_ oy
V' = X 5v+3z
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2.2 Morphological Operations

Morphological operations are crucial techniques used in image pingedslorphological
operators are used to diminisfiects of noisy features on binary and gray-level images. For
example, they are used to fill small-black holes in a big white region, or vicavaiso they

can be used to smooth the zig-zags at the edges of binary images. Tdhesyaral studies
that focused on morphological operations. In this section, four fundehmorphological
operators are explained. These are erosion, dilation, opening amagcl@enerally a struc-
turing element(SE) is used to apply these morphological operations. Shdpsza of the
structuring elementféect the output image. One of the popular binary structuring element is

a disk which is showed in Figure 2.1.

Figure 2.1: A disk-shaped binary structuring element with radius 3

2.2.1 Erosion

Erosion which is represented wighterm, is defined as given in equation 2.4.

(xeSB(,j) = m

mn)iens X +m o+ n) (2.4)

Erosion can be applied to both gray-level and binary images. In gr&ydage, new value of
a pixel is chosen as the minimum pixel value within the neighborhood of the glixederest

where neighborhood is chosen according to the shape and size otittestg element(SE).
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Binary case can be thought as a sub-space of gray-level case thleee are only two gray-
levels which are one(1) and zero(0). In binary case, if there is awign the neighborhood
then value of the pixel will be equal to zero after erosion. In Figure 2tR bimary and gray-

level erosion operation are illustrated where a square-shaped singatlement is used.

1111
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Figure 2.2: Erosion Operation

2.2.2 Dilation

Dilation which is represented with term, is defined as given in equation 2.5.

(xeSBH(.]) = (mnr])%E{X(i -m j-n) (2.5)

In gray-level case, new value of a pixel is chosen as the maximum piket véithin the
neighborhood of the pixel of interest in which neighborhood is chosearding to the shape
and size of the structuring element(SE). Binary case can be thoughtuasspace of gray-
level case in which there are only ones and zeros. In binary caseyéfitha 1 within the
neighborhood of pixel of interest, then new value of the pixel will be etuda. In Figure
2.3 both gray-level and binary case erosion operations are illustratetarsquare-shaped

structuring element is used.
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Figure 2.3: Dilation Operation

2.2.3 Opening

Opening is defined in two steps. Firstly erosion applied to the input image andlithgon
applied to the eroded image. Mathematically opening represented withsymbol and is

defined as given below.

(xeSB(,]) =((xeSHeSH(,]) (2.6)

Erosion operation removes noisy featypeels whose size is smaller than structuring ele-
ment from the input image. In binary case erosion removes 1's. Inlgra@y-case erosion
removes brighter pixels. In erosion, features that are bigger tharigingelements size do
not disappear as small features do, but they shrink. So when dilatitieéppthe eroded im-
age, the features that are narrowed by erosion operation are expagdin. Hence a feature
is removed if its size is smaller than the structuring element. In Figure 2.4 belawagyb
input image and corresponding output image are given for the opengrgtam with disk-
shaped structuring element whose radius is equal to 3. As it can bereeethk Figure 2.4,
the upper right object is removed as a result of opening operationubethaere were noise

in that object.
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(a) Input Image (b) Output Image

Figure 2.4: Opening Operation

2.2.4 Closing

Closing is defined in two steps. Firstly dilation applied to the input image and theioero
applied to the dilated image. Mathematically closing represented with #yenbol and is

defined as given below.

(xeSB(.]) = (xeSHeSH(.]) (2.7)

Dilation operation causes to removal of black holes that are smaller than ticéusing el-
ement. Black features that are bigger than structuring element shrinlodtddisappear.
Second step of closing is erosion. When erosion applied, big foladier features expands
but removed small features do not exist anymore. As a result, blackdrdiesker pixels that
are smaller than structuring element are removed from the image. An examplke amegs
corresponding output is given in Figure 2.5 below. An example image andritssponding

output is given in Figure 2.5 below.

(a) Input Image (b) Output Image

Figure 2.5: Closing Operation

As it can be seen from the upper left object of the image that black hole® iobject are

filled when closing operation is applied. And also it can be seen from therumt object
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of the image that black cavities which are smaller than structuring element anealsved,

therefore some zig-zags of input image are removed.

2.3 Edge Preserving Smoothing Filters

Spectral distribution of pixels of a road can vary locally due to the sevactbrs such as
different ages, road materials, angle of incidence of sun-light etc. Asith oéthese &ects,
a road is being divided into sub-parts, so classification performancertsscworse. In order
to overcome this problem, smoothing filters can be used to decrease spadahllity that
exist on a road. However as implied by Long and Zhao(2005), commonthmgdilters
such as Gauss Filter or Wavelet Filter generally smooths every color éeaitan input im-
age. Because of smoothing operation, edges or sharp transitions on tfeedamsaalso being
smoothed or blurred. Nevertheless, there are also edge-preseltg@rgyfinich are developed
in the literature. Two of these filters that are used in this thesis are explaitiee fiollowing

sub-sections.

2.3.1 Bilateral Filtering

Bilateral filter is proposed by Tomasi and Manduchi(1998) and it preseedges while re-
moving small-noisy color variations in the image. This is achieved by determinefijcgents
of an NxN filter by two features which are spatial closeness and rgmggi(al) closeness.
Traditional smoothing filters only use spatial closeness as the decreasiogdf codicients
while going through outside from the center of the filter. As a result eddpsvare distin-

guished by their spectralftierences are being softened without any preserving.

Bilateral filtering can be applied to both gray-level and color images. Irr ¢olages, firstly
RGB to L*a*b* transformation is used and then bilateral filter is applied to thesfaamed
image. The bilateral filter which is given as an example of bilateral filtering am@si and
Manduchi, 1998), is used in this thesis study. In this filter, two 2D Gaussiaped filters are
used together in order to filter the input. The form of the Gaussian-stapetions is given

below.
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1 dd, J))

c(, j) = e2( (2.8)

where—N < i < Nand-N < j < N. o is the bandwidth for the related feature space and
d(i, j) is the distance of the interested point from the center point of the filterewedse will

be determined according to the filter output. One of the Gaussian-shapeslifilapplied

in spatial domain. Namely, the distance is considered as the distance in Sgecether
Gaussian-shaped filter is applied in the spectral domain. Namely, the distacaesidered

as the diference of the gray-level values of the compared pixels. An NxN filter wsifieN?
codTicients. Every cofficient of the bilateral filter has two multipliers which are in the form

as given below.

-1 ds(i,j)

o (=37
Cspacdl, J) = e’ 4 (2.9)
Tl(dC(iéj))
Cspecfi, j) =€" 7t (2.10)
f(i, J) = Cspacdi, J) X Cspecfi, ]) (2.11)

If x(i, j) is sub-image part related to the point of interest, new vgjuef( the filtered pixel

will be in the form as given below.

Y= 5 >0 D 16 )% X ) (212)
i

It can be seen from the equation 2.12 that the output value of the pointevést is equal to
weighted average of to the pixels that are within the neighborhood of it. \téefdh j) are
determined by both spatial and spectral distances. If one of the distahmswf a neighbor
point is big, its weight coicient will be small. As a result, new value of the pixel-of-interest
will be less dfected by this pixel. Since the spectral distance at the edges is big, neighbor
pixel that fall in to the other side of an edge will be leskeetive on the new value of the
point-of-interest when compared with the neighbor pixels that are in the saimavith the
point-of-interest. In Figure 2.6, result of the bilateral filtering can b& sg@en a noisy step-
function(a) is used as the input to the bilateral filter. Filterfioients are shown at (b) and

output of the filter is shown at (c).
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(a) Input Image (b) Bilateral Filter (c) Output Image

Figure 2.6: Bilateral Filtering (Tomasi and Manduchi, 1998)

As it can be seen from the Figure 2.6-(b) that at the edge of the input ifilégrecodticients
are being decreased considerably because, spectral distancaneighkor pixels is too big.
Hence co#icient of the filter at those pixels become too small. By this way, edges are being

preserved.

2.3.2 Multi-scale Gray-Level Morphological Cleaning and Strengthenig

Multi-scale gray-level morphological cleaning and strengthening algorMvGSA) is based

on gray-level opening and closing operations, hence it is more complebilageral filtering.

Definition of gray-level opening and closing operations are given bsalas(1989) and they
were explained in section 2.2. Opening and closing operations include tostiore and di-
lation operations. Multi-scale opening and closing operations are deddént{€handa and

Mukhopadhyay, 2002) as given below:

(xonSB(i, j) = (xenSB @nS B, ) (2.13)

(xenSB(, j) = (xenSBHenSE(, j) (2.14)
Here,n is the scaling factor andS Eis obtained by dilating Erecursivelyn — 1 times with
itself. MathematicallynS Ecan be written as below.

NSE=SE®SE®..®oSE

n-1times

In MMCSA, multi-scale opened and closed images are being used sevesl Atreach scale

for k = 2, 3..n"tophat” and "bothat” images are obtained. A scale SE is dilated with itself
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n times so its radius is increased n times with its initial radius. Value of n can berdesel
by investigating the maximum size of the noise that will be removed. For examptlee in
process of road smoothing, maximum noise size will be equal to the maximunwiddd
"Tophat” and "bothat” images are defined as residual image in (Long &ad,22005) and
these images contain both noise and signal which are smaller than structanreneat scale

k, kS E Tophat{lx) and bothatBy) images are defined as given below:

Tk = Ck — Ck1 (2.15)

By = O_1 — Ok (2.16)

HereCy is k-scale closed image ai@} is k-scale opened imag€g = | andOp = | wherel

is the input image. Tophat images corresponds to bright pixels and botlggsroarresponds
to dark pixels of input image. Output imagyeof the algorithm is being computed as given
below:

1 n n
Y= E(Cn+0n)+ztk><Tk—Zbk>< Bk (2.17)
k=1 k=1

Here, by andty are codicient images whose size are equal to the input image’s size where
k=12, ...,nand their value vary from pixel to pixel. These @id@ent images are calculated
from tophat and bothat images. Calculation of thesdfunents is diferent in MMCSA-LZ

and MMCSA-C. Multiplication in the equation 2.17 is performed as element by elerne
every scale of the MMCSA, there will be tophat and bothat images. Theggswaill have

both noise and signal as mentioned above. All of the tophat and bothat isegesed at the
end of the algorithm as given in equation 2.17. Images in the figures bedintarmediate

images of MMCSA-LZ method.
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(a) 15 Scale Bothat Imag&)

= I : : il

(c) 1% Scale Tophat Imag&() (d) 1%t Scale Tophat Cdicient Imaget;)

Figure 2.7: MMCSA %' Scale Images
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(a) 4" Scale Bothat Imagé&,)

.

(e) Original Imagel() (Long and Zhao, 2005) (f) Filtered ImageY)

Figure 2.8: MMCSA #' Scale Images
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2.3.2.1 MMCSA-C

Chanda and Mukhopadhyay(2002) states that according to theiriegueeal results the best
codficientimages are the ones in which weight of theffioeents decreases as the scale factor
decreases. And they describe fiméent images as the exponential function of 2. Namely,
ty = %n_k andby = %n_k fork=1,2,...n. As a result their ca@icient images are formed by
the exponential terms of 2. At the end, residual image of last scale will bmdise éfective
image on the output image and residual image of first scale will be the fliessivee image
on the output image. The abbreviation MMCSA-C is used throughout thisstHes the
algorithm that is proposed by Chanda and Mukhopadhyay(2002).

2.3.2.2 MMCSA-LZ

Long and Zhao(2005) implements an automatic threshold selection method to fitiefltot-

hat image. Briefly, they compute probability distribution of residual image atelrchine a
threshold value, to filter tophiothat image. Threshold value is calculated from the square
root of the second moment of probability distribution function. After the dataan of thresh-

old value tophabothat image is filtered. Value of every pixel of tophathat image is com-
pared with the threshold value. The pixels that are smaller than the threskaldresidered

as noise and the cfiwient related to that pixel in the cfirient image/by are set to zero. If
value of a pixel is greater than the threshold than relatefficat image pixel is set to one.
Hence the ca@cient imagedy andty used in the equation 2.17 are just formed by zeros and
ones for MMCSA-LZ method. The abbreviation MMCSA-LZ is used thraugtthis thesis,

for the algorithm that is proposed by Long and Zhao(2005).

After giving the fundamental principles of MMCSA now we can explain hois gmoothing
noisy features while preserving edges. Normally opening and closingtiges diminishes
the sharp features in the images, i.e. the edges. However when theyeeagel;, output im-
age will preserve its edge features. On the other hand, filtering tophdiodinat images will
filter noise elements which are smaller than structuring element nSE. Sincealdsidiges

are added to the final image by decreastéeot, smoothing will be done for noisy features.
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2.4 Mean-shift Segmentation

Theoretical background of mean-shift segmentation procedure igraotezl by Fukunaga
and Hostetler(1975). Then Cheng(1995) has analyzed and geedraigan-shift procedure.
Mean-shift segmentation which is used in this thesis and explained in this sestithe
procedure which is described by Comaniciu and Meer(2002). By usinthdoretical results
extracted in (Fukunaga and Hostetler, 1975), they published sevecisabout mean-shift
procedure and related applications. (Comaniciu and Meer, 1997), (@cmand Meer,

1999) and (Comaniciu and Meer, 2001) are some of their study aboutshéaprocedure.

Mean-shift segmentation that is explained by Comaniciu and Meer(200&aliged in four
steps. First of all, image is filtered by using mean-shift procedure. Asudtref filtering
operation, convergence points in a d-dimensional space which are cedbkes are extracted.
Then the mode points which are closer than spatial bandwidthspatial domain and closer
than range bandwidth, in range domain are concatenated. Namely, their basin of attraction
points are concatenated. Then every cluster is assigned with a label. Astfa the regions

that are smaller thall pixels are eliminated.

2.4.1 Mean-shift Filtering Procedure

First step is mean-shift filtering procedure, which is a non-parametrisityegradient esti-
mation method using kernels. Before the definition of the procedure, firgysititable to
define feature space. Dimensions of feature space can be any nitnigant restricted by
mean-shift procedure. It is stated by Comaniciu and Meer(2002) thagimentation based
on mean-shift procedure, feature space is constructed by additigl fmrdinates of the
pixels to the range(color) space of image and this is called joint spatial-clorgain repre-
sentation. There are two dimensions for an image in spatial domaip dingensions in color
space. In gray level cage= 1, while in RGB or L*u*v* casep = 3. In order to obtain a good
segmentation, rangeftitrences on color space should correspond to the Euclidean distances
in color space which represent the pixels. Hence L*u*v* space semitation of image is be-
ing used as color space in feature space. This feature space is asgiptetlability density

function in mean-shift filtering procedure.
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Fukunaga and Hostetler(1975) investigated a non-parametric dengitgmfrastimation met-

hod by using a generalized kernel approach. They stated that theofa peobability density
function or its gradient at a point, can be estimated usiagple observationsvhich are
taken within a small region that surrounds the point-of-interest. Accortitigem gradient
density estimate at a point is essentially a weighted measure obgervationsabout the
point-of-interest. The dierence between each surrounding point and the point-of-interest is
calculated and multiplied by a weighting factor. Then the sample mean of thesbtedig
shifts is taken as the gradient density estimate. Mentioned procedure is asleean-shift

procedure in (Cheng, 1995) and (Comaniciu and Meer, 2002).

When there are data points in d-dimensional spae&, multivariate kernel density estimator

atx point will be as below:

n
00 = £ HIT2K (H2(x - x))) (2.18)
i=1
whereH is adxd dimensional symmetric positive definite bandwidth matrix. For the purpose
of simplicity, the bandwidth matri¥ is chosen as proportional to the identity matrik &€

h?l). As a result, the kernel density estimator can be rewritten as below:

ﬂm:H%E}qﬁﬁﬁ) (2.19)

K(x) is the d-variate kernel that is satisfying following conditions.

fRd K(x)dx = 1

fRd xK(x)dx = 0

fRd xxT K (x)dx = ckl
lim |x|9K(x) = 0

[IXll—>c0

(2.20)

Herecy is constant. KX) is in the form as given below:

K(x) = cak (IIxI?) (2.21)
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and Kk(x) is the profile of the kernel amgq is the normalization constant. Using the profile

notation, kernel density estimator can be rewritten as given below:

k() = deZk(HX %) (2.22)

and the gradient of (x) is V()

Vhnk(X) = Vink () = zhm (x x)k(HX X'H) (2.23)

If we defineg(x) = —Kk (x) for all x € [0, co] except for a finite set of points then kerr@{(x)

that useg(x) profile can be found as below.

G(x) = cgag (IIXII?) (2.24)

wherecg g is normalization constant. If we rewrite the equation 2.23 by substitgi(ixyg

Tk () = W+ZZ(X' -9 g (|| )
- 34 Soll)- <3l

20q Z A1) (1|
-3 3 )—x[izg(uT'n )

(2.25)

XX|2

X=Xj

2

i=1

First term in parenthesis in equation 2.25 is the mean shift and can be middesamy, g (X)

and the remaining term igroportional to the density estimate atcomputed with kernel
n
G and can be defined dgg(x) = %Zg(“%”z) As a result equation 2.25 becomes as

following.

Vi (X) =

20k d —
et o0 o0 (2.26)

and yielding
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Vi
Mhc(X) = Lo Yk ®)

— 2.27
2 fhe(x) (227

From this equation it is seen that the mean-shift vector is computed with K&atgdointx is
proportional to the normalized density gradient estimate obtained with kiérn&s a result,
mean-shift vector always points toward the direction of the maximum incrieagdensity.
From equation 2.27, it can be understood that mean is shifted to the regiocotitains
majority of points. Mean-shift vector is aligned with local gradient estimatafandan-shift
vector is iteratively calculated, it will have a path to a stationary point whichasntiode

point.

Multivariate kernel used for mean-shift procedure in (Comaniciu andrivi2002) is given

below:

XI’
hr

XS

e 2) (2.28)

M

wherex® is the spatial partx” is the range part of a feature vecthg,is spatial kernel band-

C
Khgh (X) = mk(‘
s Ur

width, h, is range kernel bandwidtlg is the corresponding normalization constant &¢q

is the common profile of the kernel used in both domains that is given below:

k(x) = e2* (2.29)

2.4.2 Mode Detection

The second step of mean-shift segmentation is mode detection. Actually motegre the
points Whereﬁfh,K(x) = 0. However because of bigger step sizes, it is impossible to converge
to a mode point in finite number of iteration. Iterations have to be stopped atla Tevs is
determined by looking the magnitude of the mean-shift vector. Iterationd@yped if the
magnitude of the mean-shift vector is smaller than a threshold. All of the pogttsdhverge
to the same mode point are defined as basin of attraction of that mode poibasindof

attraction points can be defined as a cluster.
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2.4.3 Clustering

In third step of mean-shift segmentation, mode points that are closer agnexpébove are

concatenated. In last step, smaller clusters or segments than M pixels aratdomin

2.5 Hough Transform

Concept of Hough Transform was first introduced by Hough(1962afpatent application
and the popular form of the Hough transform, namely transformation to dnesrangle¢—6)
space is proposed by Duda and Hart(1972).

A

S
>

Figure 2.9;0 andd parameters of a line

0 is the angle between the x-axis and the normal vector of a line which osepa®dm

the origin. Range ob is [0,n]. p is the distance of the line to the origin and its range is
[0, VM2 + N2] whereM andN are dimensions of input image. For the digital imageand

0 space is quantized and there are counters for pamihd 6 pair. Value of counter is the
magnitude of that point ip andd space. Defined parameters are shown in Figure 2.9. A line

can be represented as (x,y) pairs satisfying the equation 2.30 givem: belo

p = XcosP) + ysin®) (2.30)

wherex andy are the spatial coordinates of an image pixel. If the equation 2.30 following

conclusions can be extracted.

e A point in p-0 space, corresponds to a linexfy space.
e A point in x-y space, corresponds to a sinusoidghi6 space.
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In Figure 2.10 Hough domain representation of a synthetic image is givezanlbe seen
from the output image that some points are having value higher than othkese Ppoints
mean that there is a line whose parametersoar@nddy. Actually there are a lot of points
whose magnitude is greater than 1 since whatever two point will result to egiemragnitude

2.
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(a) Spatial Domain (b) Hough Domain

Figure 2.10: Hough Transformation

2.5.1 Line Detection

After the Hough transformation, peaks of the Hough domain representagatetected with

a high-pass threshold filter and theanddy are extracted fok = 1, 2, ..., nif n-lines detected.
Detected lines are drawn onto a null image whose sidé isN, and this image is pixel-by-
pixel multiplied with input image. Resulting points will show the lines in that image. Hewe
in most of the applications, generally there will be no ideal lines on the inputan@mythe
contrary, there will be brokenfblines. After the line detection, points that are belonging
to the same line are connected if the distance between them is smaller than atpariaene
‘Fill Gap’ parameter. And also smaller lines that only have a few pixels anoved. As an
optional step, ifoa — ppl < dp and|0; — Gp| < 660, wheredp andsd are the threshold values,
for two linesa andb then these lines are combined. This operation can also be executed in
Hough domain by using a rectangular window whose sizejis+21 and 36 + 1 around a

detected peak point as illustrated in Figure 2.10-b.
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2.6 Edge Linking Method

Edge linking method is explained in (Zhao et al., 2002) and (Christopherayiada, 2007).
In this method, nearby edges are linked to each other if linking conditionts éxiexample
edge linking operation is illustrated in the Figure 2.11. The edge in the Figutes2nhose
end-pointis p, is the analyzed edge and the other edge in the Figure,2 Whdse start-point

is q, is the nearby edge.

(a) Search Region (b) Measurements (c) Linking

Figure 2.11: Edge Linking (Zhao et al., 2002)

First of all, a radial search region is constructed whose centerline is iditbetion of the
end-point of the analyzed edge. The angular width of the radial seegabn is 2 and the
radius isL. Then it is checked if there is an end-point of a nearby edge in the rsetath
region. For each nearby edge end-point g within the radial sear@mnreade cost function
which is given in equation 2.31 is calculated and the edges that result in ministahie

linked.

E(Q) = laa| + |z (2.31)

Herea; is the angle between the line connecting the points p-q and the tangential liree of th
analyzed edge at point joe; is the angle between the line connecting the points p-q and the

tangential line of the nearby edge at point g.
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2.7 Convex Hull Method

In Convex Hull Method, separated regions are converted to conviextshif they are not
in concave shape. By applying this method, zig-zags on the edges ofgibeseare being

removed. The method illustrated in the Figure 2.12 below.

T

(a) Input Image (b) Convex-Hull Method Applied

Figure 2.12: Convex-Hull Method

2.8 Contour Tracing Method

In Contour Tracing Method, edges of the separated regions are textrathe method is

illustrated in the Figure 2.13 below.

T

(a) Input Image (b) Contour Tracing Method Applied

Figure 2.13: Contour Tracing Method
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2.9 Structural Features

In this thesis structural features will be analyzed in order to detect rgmients. Barzohar
and Cooper(1996) stated that the variance of the road width is small, the ofittth roads
changes slowly and the length of the roads is generally big (cited by Zlz¢2802)). Hence

structural features of segments can be used to determine that if a segmméeta road or not.

There are several structural features that can be extracted fams.r8ong and Civco(2004)
had definedoerimeter/area ratio as smoothness similarity and used it in the detection of
road segments. As they stated perimatera ratio of a road will be high so a thresholding
can be applied based on this feature. This ratio is useful to detect lapgdisegments,
however, it is dependent on the width of segment. For a narrow segnienatio is higher
than the ratio of a wide segment where both segments equal in length. Bepavaments
or openings between the double-direction ways are equal in length amdvria width when
compared with their neighbor road segments so instead of road segmeastsaahnesv non-
road segments can be chosen as seed segments. Furthermore segicbragsawtot similar

in shape with road segments but having too much zig-zags on their edgbs cansidered
as seed segments because this kind of segments generally have a bigpatimeter to the

area.

The ratio of major-axis length to the minor-axis length of the segmat is useful to detect
long-shaped segments but dependence on the width of the segment islizladvantage for
this property. On the other hand segments that have zig-zags on theiraeég®ot problem-
atic. One disadvantage of the ratio of major-axis length to the minor-axis leagt@scout in
the case of a curve-shaped road segment. Since axis lengths aretedlaaleording to the
convex shape which is covering the segment, minor-axis length will be bitpes@tio will

be small.

Solidity feature is defined as the ratio of the area of the segment to the area of the convex
area that covers the segment. It can be used in conjunction with the ratigarfamées length

to the minor-axis length.

Area of discrete regions on a image is also used as a structural feature alberiee regions
whose area is smaller than a threshold are removed in post-processiati@yseas performed

in (Long and Zhao, 2005).
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2.10 Gaussian Mixture Model

In Gaussian Mixture Model(GMM) an input space is modeled with multiple Ganistsri-
bution functions. Generally sample data points from a space which is besegwell are used
to obtain the Gaussian Mixture Model of observed space. Input spadeecone-dimensional
or more. For example, when RGB data is used as the input space eadid@aunsture will
be defined in three dimensions. One dimensional illustration of a Gaussianr®&iibtdel is
given in Figure below. In this Figure, the dashed line is the input spacéharsblid lines are

the modeled Gaussian functions.

Figure 2.14: lllustration of Gaussian Mixture Model

Number of the mixtures can be defined parametrically. The sample data poindsahesed
in the formation of a mixture called as cluster. Clusters are defined by usinpammeters
which are mean and covariance matrix. These parameters are estimatethdéosammple
data points because it is not known which data point will contribute to the wBaissian
Model. In this thesis, Gaussian Mixture Model is trained (parameters &ireagsd) with
maximum likelihood criterion. In this estimatidixpectation Maximization algorithm is

used. Maximum likelihood estimation of the mixture model is defined as given below

N
P (X, ) = > Wnp (Xun, Zn) (2.32)
n=1

N

where N is the number of the Gaussian mixtuvasis the weight oht" cluster andz:Wn =1,
n=1

un is the mean of the™ cluster andz, is the covariance matrix of the" cluster and d is

the dimension of the sample data points which are represented with(¥un, Z,) is the

representation aft” Gaussian cluster and defined as given below.
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P (X|un, Zn) = gl i €3 () 2 (x-7) (2.33)

(2m)2[2q]2

Expectation Maximization(EM) algorithm is an iterative method in which the objedsito
maximize the likelihoodR (x|u, X)) of sample data pointg, In GMM case, there is a hidden
variable in EM which is describing the membership of the sample points to the i@auss-
tures. By using this hidden variable, a joint auxiliary function which is maximummthe
likelihood of the data is maximum, is defined for all Gaussian mixtures. Maximum ldedih
is obtained by searching the case in which the derivative of this functiogual éo zero.
When it is analyzed, at the end, update of the estimated values of mgavdriance¢,?)

and weight{v,) of Gaussian mixtures will be as given below.

n
D xRz
_ =1
- n
> P snsn)
in:1

(Xi —unj)ZP(i+1|Xa HnZn) (234)

1
n
D Ptz
i=1

n
Whj = %ZP(”Xia/ann)
i=1

Hnj

O_nj =

These iterative calculations are performed until convergence occurs.
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CHAPTER 3

PROPOSED ALTERNATIVE METHODS

In this chapter, the baseline algorithm, the proposed alternative methodbeaattjorithm
proposed as a result of alternatives are explained. The algorithnestegigby Long and
Zhao(2005) is selected as the baseline algorithm and implemented with MATbf\Base.
Some of the steps of the baseline algorithm are replaced with alternative methddhe
results are compared. Firstly, the algorithm proposed by Long and Z0@®s) explained

in section 3.1. Then in section 3.2, alternative methods map is explained. tions8@, a
multi-scale template matching filter which filters the input image according to the its struc
tural features, is explained. Then in section 3.4, twiiedént segment merging methods are
explained. Proposed automatic seed selection and spectral classificatimdnsegiven in
section 3.5. Proposed structural verification method is given in sectiofiBdlly, in section

3.7 proposed post-processing operations are explained.

3.1 Baseline Algorithm

The algorithm proposed by Long and Zhao(2005) in which mean-slgfheatation is used,
is selected as the baseline algorithm. Flow chart of the baseline algorithneisigiigure

3.1 and it is explained below.

It is implied by Long and Zhao(2005) that the spectral variation of roadlpigf satellite
images is large, as a result of material types and aging of roads, shddmwdings, road
signs, all of which can be considered as noisy features. A filter that is diniiy dfect
of noisy features, increases the quality of the image. Hence firstly, inpgeinsafiltered

using multi-scale gray-level morphological cleaning and strengtheningithigo(MMCSA-
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LZ). The details of the MMCSA-LZ filter were given previously in section.2.3. The filter
is applied to improve the quality of the image, so further steps of the algorithrk nvore

efficiently. This operation can be thought as a step of pre-processing.

3 Band Image

MMCSA-LZ
Filter

Mean-shift
Segmentation

Spectral Classification
by Using
Fixed Spectral Thresholds

v

( N

Morphological Opening
on Non-road Mask

v

Removal of Small and
Seperated Regions
on Non-road Mask

v

Contour-Tracing Method
Applied to Seperated
kRegions on Non-road Maskj

y

Convex-Hull Method
Applied to Seperated
KRegions on Non-road Mask)

v

Road Mask

Figure 3.1: Chosen baseline algorithm proposed by Long and Zh&s)(200

Secondly, mean-shift segmentation procedure is applied to the filtered irAagexplained
in section 2.4, mean-shift segmentation procedure is applied in the joint spat-domain
and its output is a segmented image, in which segments formed by the pixelsthdtian a

neighborhood and whose spectral properties are similar.

After the segmentation step, a spectral filter is applied to the segmented imagadpahd
Zhao(2005). They chosen the lower and upper limits of the filter accotditigeir experi-
mental results. This step corresponds to the classification of road andadmixels. By

applying this filter, the image is converted to a binary image showing road mabkld) is
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formed by road pixels (zeros) and non-road pixels (ones). It is impidanention that roads

are represented with zero (0) instead of one (1).

Since the binary image obtained at the classification step contains noisy sritalfegions
and black holes a post-processing step is needed. In their study,-tsged post-processing
operations are performed. Firstly, binary opening operation is applie@ tddksified image
in order to remove small connections that exist betwedierint regions. Then using con-
nected components analysis, all of the discrete regions on the image deel faiih different
numbers. Then white regions that are smaller than an area thresholdrexeeck Similar
to the white regions, there are black holes on the classified image. Theseah®lemoved
by using contour-tracing algorithm. Finally, convex hull algorithm is applietthéimage, in
order to remove zig-zag shaped edges. At the end, a road-edgeketwatracted by Long

and Zhao(2005).

3.2 Proposed Alternatives to the Baseline Algorithm

As mentioned in section 3.1, the algorithm that is proposed by Long and Zb@&)(is cho-
sen as the baseline algorithm. There are mainly three main steps in this algoritbimandn
pre-processing(1), classification(2) and post-processing(8)pFrcessing operations include
an edge-preserving smoothing filter and mean-shift segmentation prec&lassification is
performed with a spectral filter using constant thresholds. After theifitzd®n step, several
post-processing operations are performed. Main idea of the postgwiog operations is to
process regions in the classified image. All of the sub-steps of postgsiog operations of
the baseline algorithm are organized to process regions. In the Figutb&lzaseline algo-
rithm is the one which goes through solid arrows. Steps of the resultinggedpalgorithm
which is obtained at the end of the experimental work flow in 4.4, are the atiegrsteps that

have thick frames in the Figure 3.2.
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Figure 3.2: Alternative Methods Map

In order to increase the performance of the baseline algorithm, selteraladive steps are

proposed and performance comparisons are carried out. Altern#&ps ® the baseline

algorithm are the blocks that are in the right-side of the Figure 3.2 whichang ghrough

dashed arrows.
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In the pre-processing, filerent edge-preserving smoothing filters are compared. In some
cases, applying segmentation procedure results in over-segmentatioads rSince the
proposed automatic spectral classification method is based on the analjsisstfuctural
features of the segments, a proper segmentation is needed. In order tisldigigtt of over-
segmentation, two €fierent segment-merging methods are proposed. These methods can be

thought as post-operation of the mean-shift segmentation procedure.

In the classification, an automatic spectral classification method in which ap#éueeshold
values are determined for each image separately by analyzing speattakfeof seed seg-
ments, is proposed instead of the spectral filter whose thresholds ate $eed segments
are selected among all segments by analyzing structural features of thewitiAcale tem-
plate matching filter is used in seed segment selection and structural venifistgjus as it
can be seen in the Figure 3.2. Seed segments are used to train a Gaussima Model
(GMM) in which Expectation Maximization is used. Then weights of resultargtehs of
GMM are compared with a threshold and eliminated if they are smaller than it. Ahthdog
using the mean and standard deviation parameters of passed-clustgrsnage is spectrally

classified.

In the post-processing, there are four sub-steps in baseline algoriiene \all sub-steps are
aimed to process regions on the classified image. Instead of region4pasteprocessing
operations, alternative post-processing operations are proposede are multiple steps in
region-based post-processing operations however all sub-stéps pbst-processing method
are related to each other so breaking the flow from an intermediate steief@ted. Steps

of the post-processing operations are explained in the related sectlons be

3.3 Multi-scale Template Matching Filter

In this section, the structure of the proposed multi-scale template matching filBeF(WF) is
explained. Properties of the used template and multi-scale property arinexplb1S-TMF
can be applied to binary or gray-level images. Normally output of the filtergsag-level
image. However, in this thesis, value of each pixel of the output image is cenhpéth
similarity rate as it can be seen in the Figure 3.4 and a binary image is obtained. MS-TMF

is used for the purpose of structural feature analysis of segmentsyBieesk of a segment
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is filtered with MS-TMF and the binary output image of the filter is compared witlpithary
mask of input segment in order to decide on the segment if it is road or nothé®aother
hand, MS-TMF can be used for other purposes, for example, it casdmbto post-process a

road-mask image in order to obtain more straight edges.

In this thesis, MS-TMF is used to filter segments. Hence, in this section, npiegpef MS-
TMF are explained for the case in which input is a segment rather thal-amwask or another
image. The output is a binary image since each gray-level pixel is codverte or 0 by

comparing the value of that pixel wigimilarity threshold .

3.3.1 Constitution of the Template

In order to detect particular structural features in an image, template mafdténgcan be
used. Aim of the usage of template matching filters is to remove the structurds arkicot
similar to the template, from the input image. In road extraction algorithnfi&ereint road
templates can be used to detect roads. In this thesis a 2-dimensional\griatetaplate is

used.

40" 20

(a) Gray 2-D View (b) Colored 3-D View

Figure 3.3: Cosine-disk template with a target width of 15 pixels

Three parameters are used in the definition of the template. These arer¢adgetidth of
the template, length céiécient and the template typd.ength codficient is the ratio of the

length of the template to the its width. A 2-D cosine-disk template is used in the template
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matching filter structure as given in the Figure 3.3. Therepastive codficients (bright
pixels in the Figure 3.3-a) at the center of the templatersaghtive cofficients (dark pixels
in the Figure 3.3-a) at the sides of the template. Number of the positifEiaerts of the

template in horizontal axis, is set to the target road widih of the template.

3.3.2 Template Matching Filter Structure

Since the orientation of a road (angle between the road and the x-axishea@any value, the
template matching filter has to be rotation invariant. For this purpose, rotatsidonveiof a
single template is used simultaneously. Mentioned filter structure is illustrated ireR3gu

In this figure, the terndd represent the angular resolution that is used in rotation of template

filter. Rotated versions of the filter are produced wiittsteps till to the 180

Candidate Segment

|
v v v
{l xA0 Rotated} {2 x A0 Rotatecﬂ {3 x A0 Rotatecﬂ —_ — = = INxA40 Rotated

Template Filter| |Template Filter| |Template Filter

Maximum Value Selection
(MVp) For Each Image Pixel

Template Filter

Similarity Threshold NO  Non-road
(STe) Pixel

YES
Road Pixel

Figure 3.4: Template Matching Filter Structure

All rotated template filters will produce a value for each pixel. The outputevafihe rotated
template for which the maximum value was obtained is chosen as the new valaé oife.

In other words, the output value of the rotated template which results in the nraxauput

is chosen. Then each pixel value is compared with a threshold which degerfaynusing
similarity rate . The pixels whose value is greater than this threshold are labeled with one

and the others labeled with zero.

As it is known, in filtering, a window is defined around a pixel and that imagelow is

pixel-by-pixel multiplied with the filter coféicients and the sum of the all multiplications is
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assigned to be the new value of that pixel. If the input is binary then the a@dline output
pixel becomes equal to the sum of some of filterfiomnts. In this thesis, binary mask of
segments is filtered with MS-TMF, hence, fli@ents of the filter are used in the decision of

the threshold value which is calculated by ussigilarity rate .

Similarity rate is defined as a ratio which can be betw@amdl. 0 corresponds to the sum

of all codficients in the template anticorresponds to the sum of all positive @aents in

the template. For example, assuming that sum of alffments of the template is25, sum

of all positive codicients of the template is equal to 75 and the similarity rate is chosen as
0.45. Then the threshold will be equal te25) + 75— (—25)x0.45 = 20. A pixel will be

labeled with one if its value greater than 20.

3.3.3 Template Matching Filter - Examples

In this section, outputs of the template matching filter fdfesient input cases, are given and
operation of the filter is explained. In the Figure 3.5 some possible input ségnoethe
proposed template matching filter are given in first column, the output imagesebtes the
output of the proposed template-matching filter vétfi, = 0.25 are given in second column

and final decision foroad likelihood ratio set to 0.30 is given in third column.
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(a) Narrow Road Segment

(b) Optimal Width Road Segment

(c) A Wide Non-road Segment

> X

(d) Road Segment with Cross-point

N\
V4
~

(e) Curve-shaped Road Segment

(f) A Non-road Segment whose Edges have Zig-zags

Figure 3.5: Possible Inputs, Outputs and Final Decision of the Template MatElter
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Narrow Road Segment: When the template is fitted to the centerline of the segment in
Figure 3.5-a, some positive déieients at both side of the template will be multiplied with
zero. Therefore the output value will be smaller than the maximum output géthe filter.

If the template is shifted towards left or right, output value will be smaller thamwtiteut of

the centerline fitted case.

Optimal Width Road Segment: When the templatétted to the centerline of the segment
in Figure 3.5-b whose width is equal to the target width, positivefmments of the template
are multiplied with one and negative dbeients of the template are multiplied with zero.
Therefore value of the output will be equal to the sum of the positiveficants. As a result,
maximum output value of the filter will be obtained since all of the positive dbeients
are summed. When the templatiel not fit to the centerline of the segment in Figure 3.5-b,
namely, if the template is shifted to the left side of the segment, positivéideats of the
template on the left side will be multiplied with zero and negativeficents on the left side
will be multiplied with one. Therefore output value will hess than the maximum output

value of the filter.

A Wide Non-road Segment: When the template is fitted to center of the segment in Figure
3.5-c then the output value of the filter will be equal to the sum of all the tempbafBaients.

Since there are negative dhbieients, the output value will be very smaller.

Road Segment with Cross-point:When the input is the segment in Figure 3.5-d, the filter
will not remove that segment as a non-road segment. This is the advaffthgetemplate-
matching filter when compared with easily calculated structural featuresasutine ratio

of major-axis length to the minor-axis length, the ratio of perimeter to the arearatse
structural features are being used to make decision on a segment if itasl @araot. Since
the segment have a cross-point it can be classified as non-road tuhenrsl features used.
However when template matching filter is used, it will be classified as road seghies

width is equal to the target road width of the template.

Curve-shaped Road Segmen#s in the case of the segment which has cross-point as in
Figure 3.5-e, curve-shaped road segments can also be classifiediaktemplate matching
filter is used. On the other hand, as a result of rotation invariant propéitye template

matching filter, curvature that exists on the segment will fiiat the decision.

a7



A Non-road Segment whose Edges have Zig-zag8erimeter to area ratio of road segments
is usually big. However, as a result of their zig-zag shaped edges, ssgnaents may have
big perimeter to area ratio although they are not belonging to the roads.egheest in the
Figure 3.5-f is an example to this kind of segments. If template matching filter isthead

this segment is being classified as non-road.

In the second column of the Figure 3.5, corresponding outputs of the sggmeolumn 1 of
the Figure 3.5 are given. These outputs are obtained by choosisgiharity rate as 025.

It can be seen that when the segments at Figure 3.5-b,d and e are inpaiffittethoutput

is similar to the input. However when the segments at Figure 3.5-a,c and f artetanine
filter, output is not similar to the input. In the seed selection and structurifice¢ion steps
that are explained in following sections, the area of output is divided tordaed the input.
This ratio is named a®ad likelihood ratio . If this ratio is smaller than a threshold then cor-
responding segment is classified as non-road. For the example segimentsghe Figure
3.5-a,b,c,d,e,f, road likelihood ratios ar®00.49, 018, 058, Q46 and (27, respectively. So

if the road likelihood threshold is chosen a8®@then only the segments b, d and e will be

classified as road.

It is important to mention that examples given above were filtered with only desiampet

road width. NamelyMulti-scale property of MS-TMF is not used.

3.3.4 Multi-scale Property

In multi-scale filter structure several template matching filters havifigréint width are used
simultaneously and outputs of them are combined. By applyifigrdint target road widths,
roads whose widths areftiérent can be detected. Mentioned structure is given in Figure
3.6. The termP represent a pixel and TMF is the abbreviation of template matching filter.
These rectangular blocks are containing the structure that is given ireF3glt In addition

to the similarity rate, road resolution parameter is used in multi-scale template mattieing fi

structure.
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Figure 3.6: Multi-scale Template Matching Filter Structure

As explained in the section 3.3.2, similarity comparison is realized with a threshotdhw
is calculated by usingimilarity rate. Since a rate is chosen as parameter rather than a
threshold, it is possible to use onlysiangle similarity rate value for all TMFs in MS-TMF

structure. There is not any need to calculate a threshold value for ieyryimage.

3.4 Segment Merging

In earlier studies, it has been observed that mean-shift segmentate®sdpre generally re-
sults in over-segmentation, that is dividing road segments into sub-segnreaidition to

this drawback, long structures such as buildings which are similar in shape toads can
lead to incorrect seed detection. In order to overcome these issuesiffarent segment-
merging methods which are segment-edge based segment merging and dgedeseed

segment merging are proposed.

3.4.1 Segment-Edge Based Segment Merging

In the segment-edge based segment merging method which is shown in theJigdirstly,
lines on the edges of each segment are extracted by using line detectiough ldpace
which was explained in section 2.5. After the line detection step, the side iniomvehich
is the position of a line, with respect to the selected segment is determined.séteents
that are forming a continuous structure with almost identical spectral &saane merged
by considering the angle, the start-point coordinate, the end-pointicabe and the side
information of the lines detected on their edges. Mentioned steps are shdviguie 3.7

below.
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Figure 3.7: Segment-Edge Based Merging Operations of a Segment

3.4.1.1 Determination of Lines on a Segment

First step of segment merging operation is to determine the lines on the bmsnalea seg-
ment. For this purpose, boundaries of the segment are extracted byngpgdge detection
on binary mask of the segment. Then Hough transform is applied to the edskeaintne
segment and straight lines on the edges are detected with the method explaseetion

2.5.1.

3.4.1.2 Segment Merging

In this section, segment merging operations are explained. For a betestardling, merg-
ing operations are explained for the blue segment given in Figure 3.8n&. of analyzed
segment is shown with black arrow. Interested neighbor segments arenfitfeglellow and

their lines are shown with gray arrows in Figure 3.8.

After the lines of the analyzed segment are determined, the neighbor sdtnehich is the
list of the segments that are adjacent to the analyzed segment is extrawtadom each line
of analyzed segment, properties of each line of each neighbor segntemjpgred with the
properties of the line of the analyzed segment. As mentioned previouspenies of a line

are the start-point and end-point coordinates, the angle and the sidaatian.

50



T (e Qe

(a) Analyzed Segment (b) A Line on Analyzed Segment (c) Suitable Merging Case
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(d) Incorrect Segment Merging Case(e) Continuity Analysis Regions (f) Incorrect Segment Merging Case
prevented by side information analy- prevented by continuity analysis
sis

Figure 3.8: Segment-Edge Based Segment Merging

Then four diferent analysis performed on the features of lines(black and graysimd-igure
3.8-c,d,f) in order to decide on segment merging. These are angular simalaaitysis, conti-
nuity analysis, side information analysis and spectral similarity analysis eTdredysis’s are

performed for each line of each neighbor segment.

Angular Similarity Analysis: In this analysis it is checked whether thdfeience of the
angles of two lines is smaller than the,s threshold or not. If it is not, segment merging is

not applied.

Side Information Analysis: In this analysis, it is checked whether compared lines are in the
same side of their segments or not. Side information of the lines is used in onoievent
incorrect segment merging case which is illustrated in Figure 3.8-d. In thes segments
are not forming a continuous shape however angles of lines are eqgait cAn be seen
from the Figure 3.8-d, the black line is located on the bottom side of the blueesggvhile

the gray line is located on the top side of the yellow segment. Their side inforraadien
different, hence segment-merging is not performed for the case Figure Si@ednformation

is obtained by calculating the outer product between the line of interest andritgal line

where lines are treated as vectors.

Continuity Analysis: In this analysis, a region in the direction of the line-of-interest is ex-
tracted and it is checked whether the start-point or the end-point of theflitie neighbor
segment, is in this region or not. This region is the green region in Figure 3f8keés con-
dition is satisfied then it is checked if the start-point or the end-point of theolimeighbor

segment is not included in the forbidden region which is illustrated with red iar€ig§.8-
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e. If this condition is also satisfied then it is decided that these two segmeritsraiag a
continuous shape. Here, forbidden region information is used in ord@et@nt the incor-
rect segment merging case which is illustrated in Figure 3.8-f. By using citytianalysis,

incorrect segment merging case that is illustrated in the Figure 3.7-f isriesie

Spectral Similarity Analysis: In this analysis, it is checked whether segments are spectrally

similar or not. If they are not, segment-merging is canceled.

If the result of four analysis’s ardfiemative than segments are merged.

3.4.2 Image-Edge Based Segment Merging

In the image-edge based segment merging, firstly edge detection is petfomtbe gray-

level input image. Then extracted edge map is processed with a seriesrafiops.

3.4.2.1 Edge Processing

A post processing after edge detection is required before segmernhmepgeration because,
edge detection result contains a lot of small edge pieces, curve-skdged, intersection
points on the edges and broken smooth road edges etc. which are useles® some
drawbacks. In order to remove these drawbacks, a series of edgesping operations are
performed. Similar edge processing operations are performed in (Zt#g 2002) for the
purpose of road extraction where long and straight edge lines arerchoslecide on road
seeds. There are smallfidirences and additional steps in the edge processing method that
is proposed in this thesis than the method used in (Zhao et al., 2002). Stiespobposed

edge-processing method are given in Figure 3.9.
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Figure 3.9: Edge Processing Operations

Removal of Small Edges

There is not any need to detect segments around small edges and thereakiable infor-
mation for this kind of edges. Hencefidirently than the method used in (Zhao et al., 2002),
the edges that are smaller thalelagth threshold valueare removed iseveral stepof edge
processing. In (Zhao et al., 2002), only noisy edge-points are redretvibie initial steps. In
Figure 3.10 an edge map and the edges that are remained after the rehsovall@dges are

shown.

(a) Edge Map Image (b) Small Edges Removed

Figure 3.10: Removal of Small Edges
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Removal of Intersection Points

Intersection points are problematic because these points are complicatingtehmidation

of list of the neighbor segments and extraction of ordered pixel list of dge® Therefore
intersection points on the edges are removéi@dintly than the method used in (Zhao et al.,
2002). This is performed by analyzing neighborhood of each edgé fdikere can be three
types of pixels on an edge which are intersection pixel, end-point pixetegular pixel. A
pixel is an intersection pixel if there are more than two neighbor edge piselsd it (Figure
3.11-a). If there is only one neighbor edge pixel around a pixel (Ei§ut1-b) then it is an
end-point pixel. If there are two neighbor edge pixels around a pixgu(e 3.11-c) then itis

E.l....

(a) Intersection Pixel (b) End-point Pixel (c) Regular Pixel

a regular pixel.

Figure 3.11: Edge Pixel Types

By analyzing the neighbor pixels of each pixel of an edge, intersecticisgpon the edges
are detected and removed. In Figure 3.12, removal of the intersectiots mmaration is
illustrated. After the removal of the intersection points, small edges that catres @ result

of this operation, are also removed from the edge map.

(a) Example Edges (b) Intersections Removed

Figure 3.12: Removal of the Intersection Points - Example

In the Figure 3.13, removal of intersection points is shown for the test image.
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(a) Before Intersection Removal (b) Intersection Points Removed

Figure 3.13: Removal of the Intersection Points

Partitioning Sharp Edges

After the removal of intersection points together with the following small edgeveal, all

of the discrete edges are labeled witffelient numbers. For each edge, an ordered pixel list
is extracted by starting from one of end-point pixel of the edge andtinge¥ach pixel on the
line to the list one by one. Then as applied in (Zhao et al., 2002), edgearthabntaining

sharp transition are broken from the pixel where sharp transition sccur

Forward-Backward Angle Analysis: Sharpness detection is performed by analyzing edge-
points. For each analyzed pixel of the edge, two vectors defined. 2adlgixel is the
end-point of the first vector (red arrows in Figure 3.14-b) and thd-ptaint of the second
vector (blue arrows in Figure 3.14-b). Other end-points of the vecterS-pixel away from

the analyzed pixel. In this analysis, the angle between these two vectorgRdid-c) is
calculated and if there is an angulaffdience greater than an angle threshold value then
analyzed pixel is assumed to be the point where a sharp transition oddussis the same
analysis with one of the two sharpness detection rules were used in (Zako2602) which

was called aglobal case The other sharpness detection rule (called as local) which was used
in (Zhao et al., 2002), is not used in this thesis. After the partitioning of thesdgmall

edges are discarded that came out as a result of the partitioning.
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Figure 3.14: Sharpness Detection

In the Figure 3.15, partitioning of sharp points is shown for the test image.
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(a) Before Division of Sharp Edges (b) Sharp Edges Divided

Figure 3.15: Division of Sharp Edges

Edge Linking

As a result of trees, shadows, crossroads and etc. smooth roasl @dggenerally broken
into sub-pieces in unprocessed edge maps. In order to overcome tlas eéstges that are
forming a continuous edge are connected to each other. This method is {Z&adnet al.,
2002) and (Christophe and Inglada, 2007). In edge linking, Then a siméthod to the edge
linking method that is explained in section 2.6 is used to connect the edgesdHatraing
a continuous smooth edge. In next step, the intersection points that egesmause of the
edge linking are removed. Finally, the small edges that are came out adtaféise removal
of the intersection points are discarded from the edge map. Consequentgssed edge

map of the image is obtained.
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In the Figure 3.16, edge linking operation is shown for the test image.
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Figure 3.16: Edge Linking

Finally, in the Figure 3.17, final removal of intersection points and smalledgeshown for

the test image.
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Figure 3.17: Final Operations

3.4.2.2 Determination of Neighbor Segments

For the purpose of the segment merging, segments that are located withé@ighlkearhood of
each edge are determined. Neighborhood analysis region is deterministhgythe shifted
versions of the edge. As mentioned before edges are not in the formetadight line so it
is not possible to find the mathematical function of an edge with a short analpsisder
to overcome this problem, curve-shaped edges (Figure 3.18-a) argzatkcaPixels of the

edge are sampled with a sample interval and lines that are connecting thigde paints are

57



used to represent curve-shaped edges (Figure 3.18-b,c). Thamabssis region ok-pixel
width (gray regions in Figure 3.18-d) is formed around these small linesaulBe there is an
ambiguity between the position of the edge and positions of the segmentspexpaitly k=7
chosen for 1m resolution images. These analysis regions are contegg#ter and segments
which are overlapped by this region are assumed to be the neighbors efigeat Then this
analysis region is shifted towards one side of the edge and is widenkepigels and a
segment is approved to be a neighbor segment of that side of the edgegifiran half of its
area is covered by neighborhood analysis region(gray regions imeFgyli8-e). Width of a
single lane of a road can be thought as 3-meters and if the resolution of the isma-meter,
a lane of a road will occupy 3-pixels. By widening the width of the neighbodchanalysis
region to the 20-pixels, roads whose widths up to 20-pixels(meters) arg bevered. In
other words, it is assumed that roads can not have more than 6-7 lagighbbrhood analysis
is performed for both sides of the edge and the segments which are natldddy neighbor

segment list of the edge are removed from side neighbor segment lists.

SN || TN S

(a) An Example Edge (b) Sampled edge points (c) Extraction of Sub-lines

Nﬁi‘

(d) Neighbor segment dete(e) Side-neighbor segment
tion region(k=7) analysis region(k20)

Figure 3.18: Extraction of a Neighborhood Analysis Regions

After the determination of the neighbor segment lists for each side of the bigarchical
top-down clustering method is applied separately on each side segmentligis. decision
of clustering, spectral features of the segments are used. Then theiidgeater number
of merged segments is chosen as the merging side for that edge and meappged only
for that side. Mentioned merging decision is illustrated in Figure 3.19 beloweXxample,
in this figure lower-side segments are chosen as to be merged since ther mimimrged

segments is bigger than the upper-sides. The red segment in the FigueiS A& selected
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as a neighbor segment since more than half of its area is not covered bgitjidorhood

analysis region.

.___vw
(a) An Example Edge (b) Neighbor segments  (c) Upper Side Neighborhood
Analysis Region
(d) Upper Side Segments (e) Lower Side Segments (f) Merged Segments

Figure 3.19: Image-Edge Based Segment Merging Decision

3.5 Automatic Spectral Classification

Instead of using constant spectral threshold values to classify the seghimage, an auto-
matic spectral threshold selection method is proposed. This method is applied $tefygo
Firstly, seed road segments are determined by analyzing structuralefeatuall segments

and using multi-scale template matching filter.

At the end of the structural feature analysis, a number of segments @serchs seed seg-
ments. Spectral characteristic of these seed segments is extracted ame#meand standard
deviation of spectral variation are calculated by using Gaussian MixtugeMa\ window
whose width is proportional to the standard deviation is centered at the mddaveer and

upper limit of spectral filter are calculated.

3.5.1 Determination of Seed Segments

In road detection algorithms, classification is realized by comparing inpoedpatures with
pre-defined features. These pre-defined features canflieeedit for classification methods
and types. For example, if the classifier is a neural network than a trainougqlure is

performed. In training, sample data from input space is given to the Ineemsork to learn
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the features of input space. In automatic classification, input spaceess have to be
recognized automatically. If there exist some features that roads ¢jgmenee then by using
this features seed segments can be determined. Seed data is used tdesttrees of roads
when the aim is road detection. In literature, generally spectral featlird® seeds are
analyzed and the image is classified by performing comparison with theseaspeatures.
Briefly, seeds are the most critical part of classification step, so séattise is crucial in
automatic classification. By using general features of roads, seedisesgraa be determined.
Then by using spectral features of seed segments classification carftvergd. When it is
analyzed it can be seen roads have recognizable structural fe&imes segmentation is used
in this thesis, structural features of segments can be used in seed sel€btom are several
structural features for a segment such as area, perif@egarratio, major-axis lengthinor-
axis length ratio, solidity, similarity rate and etc. In order to select road setgnasnseed

segments, one or more of these structural features can be used.

3.5.1.1 Structural Features for Discriminating Road Segments

In order to determine seed segments, a priority based analysis is perfogmeathlyzing
structural features of all segments. The area of the segments, the rdkie nfajor-axis
length to the minor-axis length of the segments and multi-scale template matching &lter ar

used in priority-based analysis which is performed in three-steps.

In first step, segments are sorted according to thiatio of the major-axis length to the
minor-axis length. This ratio ensures that segments that are not similar to the roads, are not

listed at the top of the sorted list.

Then in second stepfrom top of this sorted list, the first 100 segments that have the biggest
area are chosemumber of chosen segmentis defined as an input parameter to the method.
Pavements, shadow of buildings and opening between the double-dingetjsrare similar in
shape with narrow roads so there can be erroneous seed detectigsinByhearea feature,
choosing narrow road-shaped non-road segments as seed istpdeVaaditionally, choosing
large-scaled segments as seed will give more realistic spectral chestazterhich will be

useful in classification step.
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In the last step of the determination of seeds, binary mask of chosen segments are filtered
with the multi-scale template matching filter(see section 3.3 for details) and the filtered
segments whose road likelihood feature bigger than a threshold valuetarethed as seed
segments of the roads. There are two parameters used with MS-TMF wkishralarity

rate androad likelihood ratio .

The analysis that explained above is used in selection of seed segmergenGbed segments
are used in the decision of thresholds of automatic spectral classifiezelt@road segments
will be classified as road in classification step, if their spectral features sitoilkhe seed

segments even though their shape is not similar to the roads.

3.5.2 Classification by Using Spectral Properties of Seed Segments

All of the pixel values of seed segments are assumed as road pixels asdi@&aMixture
Model is trained by using Expectation Maximization algorithm by considerimgtsal fea-
tures of these pixels. Then spectral threshold values are determinesihigyniean and stan-
dard deviation of the spectral distribution of the clusters. If number of itkedspin a cluster

is a small piece of all seed pixels then that cluster is ignored. One-dimehsas®of men-
tioned spectral filter for a single cluster is illustrated in the Figure 3.20. Madrstandard
deviation of each cluster are calculated and a window whose width is equattthe stan-
dard deviationf1) multiplied with aspectral window size cofficient parameter which is
illustrated as; in the Figure 3.20, is centered at the mean-point in spectral range. The sta

point and end-point of window are chosen as lower and upper tHssbbspectral filter.

ko, Hh+ko,
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Figure 3.20: Spectral Filter for One Cluster

After the determination of all of the spectral windows of all clusters, imagdtesdd and

a binary image classifying road (white) and non-road (black) regiondtsireed. When
obtaining binary image result of each cluster is analyzed separately. larthigsis spatial
coverage limit parameter which is a threshold is defined. If the ratio of the number of

resultant road pixels is greater than the number of all image pixelssghestral window size
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codficient is made small 10% of its value. This operation consecutively performed uatil th
spatial coverage limit is not exceeded. In order to not loose any spéadtare that exists

in the original image, filtering is performed on the smoothed image rather than segine
image. After the classification step, segment information is reused to furtbeegs the
classified image. Pixels which are classified as road are counted fosegetent and this
value is divided to the area of the segment. If this ratio is greater than a ¢kdeshich is
defined asegment pass ratiadhen all of the pixels of that segment are considered as road

pixel.

It is important to say that, if there are more than one clusteffgrdint clusters can be related
to different road types such as earth road, asphalt road etc or subtythessafme road types.
So there will can be two or moreftirent filter window on spectral range. Briefly increasing

the cluster number can aid to classifyfdrent road types simultaneously.

3.6 Structural Verification

Generally, there are non-road regions that are spectrally similar to tds smawhen spec-
tral classification is performed, these non-road regions are also ddss#firoad. In order to
remove these non-road regions, structural verification can be usedad extraction litera-
ture, it is an agreeable assumption that roads generally have recdgrsizalstural features.
As it is explained in section 2.9, structural features can be used in rdadtida. In the

proposed automatic spectral classification step (section 3.5), a binalymask image is
obtained but segment informations are also preserved by investigatingubeage rate of

segments. Hence structural feature analysis can be performed osdgasents.

In baseline algorithm, there is not any structural verification after thetigpetassification
step. Instead post-processing operations are performed on clabsiiegimage without the
usage of segments that were obtained in segmentation step. The possjimgaperations
used in the baseline algorithm are morphological opening operation @pagpation of post-
processing), removal of small regions (to make smaller false-positive ypzontour-tracing
algorithm (to fill black holes) and convex hull algorithm(to remove zig-zagmfthe edges
of roads). Before applying post-processing operations, binary imdgkeedted by using con-

nected component analysis in (Long and Zhao, 2005) and then pasisging operations are
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applied to the labeled regions. It means that although segment propenteeavadable, they

are not being used.

In structural verification step that is proposed in this thesis, segmentdeaite being used.
Firstly, the rate of the major axis length to the minor-axis length is calculated fof tile
segments. As mentioned previously that the miajaror ratio is small if segment is in a form
that is not similar to straight line. In order to take into account this drawbéttkedfeature,
solidity feature is also used in calculations. If solidity feature is big enoughmaajoyminor
ratio feature is small for a segment then it is removed. In next step, multi-sralgate
matching filter(MS-TMF)(see section 3.3 for details) is applied to the segm&tssTMF

is not applied to all segments because of zig-zags on the edges of theegraénts. It is
revealed that MS-TMF is removing some of the road segments that are satlycsimilar to
the roads because of zig-zags. In order to prevent this drawbasKIWF is applied only
to the segments whose mdgjoinor ratio is smaller than a threshold value. Namely, it is
assumed that if a segment have a big myajaror ratio than it is considered as road. After the
usage of MS-TMF, road likelihood feature is calculated by comparingsarkthe segments
and their outputs. Finally, the segments with small road likelihood feature rmie/ezl. Road
likelihood feature is the measure that if a segment structurally similar to roaastolt is

defined as given in below equation.

Areaof MS—TMF Output

Road Likelihood=
oad Likelinoo Areaof Segment

(3.1)

3.7 Proposed Post-Processing Operations

Discontinuity removing and small and separated region removing methodseatdaipost-
process the classified image. Discontinuity removing method proposed in s ithsimilar
to the edge linking method that is used in (Zhao et al., 2002) but not the saheze a&re
different definitions and decision rules than the method used in (Zhao et &), Z0all and
separated region removing is not a proposed method. It is being dekbiibe, since it is
used in proposed post-processing operations. Here, area removisggigafter the removal
of discontinuities so it is aimed to prevent removal of small road parts thateg@rate from

the road mask.
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3.7.1 Discontinuity Removing

There may spectral or structural reasons that result in discontinuitieexisa on classified
road-masks. Shadows, cars and trees are spectréiyaiit than roads so if these objects
are on a road, there will be a discontinuity on the classified image. On thet@hdr some
roads are similar spectrally to their environment so in segmentation procedateart of
the road is grouped with its environment pixels. As a result, discontinuityred@cstructural

verification step at that region.

In order to remove discontinuities, segment informations are used. Similar segimeent-
edge based segment merging method, for each segment, the list of bearmt(adjacent)
segments is extracted. Then edges of binary mask of the analyzed segmenrtracted and
Hough transform is applied to this edge map image. For each line on the bguidae
analyzed segment, continuity analysis is performed with each line of eadhyrssgment.

In this analysis, three vectors used to determine if there is a continuity or nst. vEitor

is the line of analyzed segment, second vector is the line of nearby segnuetiied is

the vector which links the first vector with second vector. In order to magistbn on a
continuity, three comparison realized for three measuremEeimt.measureis the length of
discontinuity(4). This measure is the length of second vector and gives the length ofahterv
that will be removed for the case of continuous segme8econd measuras the angular
difference of first and second vect] andthird measure is the angular dference of first
and third vectord¢). These measures are illustrated in the Figure 3.21. Comparisons for

these measurements is as below.

~ 1. Vector
S—). 2. Vector

3. Vector

(@) Nearby Segments and Their (b) Defined Vectors (c) Defined Measurements
Lines

Figure 3.21: Discontinuity Removing

A¢ : Itis checked whethekg is smaller than 90or not.
Af : ltis checked whethetd is smaller than an angular threshold or not.
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Lq : Itis checked ifLq is smaller than the length threshold which is defined as below:

Ld = LmaxX (COSAd’)kad (3.2)

HerelLmaxis the maximum discontinuity that can be removed kpds a codficient which is

preventing the sharp connections.

If these three measurements are smaller than the defined thresholds thergments are
linked to each other. The width of the link is assigned as the average @fgeveridths of

analyzed segment and neighbor segment.

3.7.2 Small and Separated Region Removing

In this step, the image in which discontinuities are removed, is labeled by usimgcted

component analysis. It is assumed that roads are connected to eaclBothinere are also
some regions that are spectrally and structurally similar to the roads, sadgyéses are not
removed in classification step. In this step, area feature of all sepaegiieds(not segments)

is calculated and the regions which are smaller than an area thresholdharesce

3.8 Resulting Proposed Algorithm

In the next chapter, results of experimental analysis will be presentedori flow is per-
formed in experimental analysis. At the end of the work flow, an improvesime of the
baseline algorithm is obtained. Since the details of the proposed algorithbeeoening

clear after the experiments, the proposed algorithm will be defined at thef &me chapter 4.
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CHAPTER 4

EXPERIMENTAL ANALYSIS

In this chapter, experimental results that were revealed by implementing trittatgs and
methods in this thesis are presented. In order to measure the perfornidinealgorithms,
a data set of satellite images is used where images are 1m resolution 3-baed.inmgge
sizes vary between 1024x1024 pixels and 2048x2048 pixels. Pixettlgmeund truth data of

all test images is extracted manually.

In section 4.1, performance criteria that are common in performance messrare pre-
sented and the ones used in this study are mentioned. In section 4.2, fisdigenative
color spaces is presented. In section 4.4, experimental work flow thatfisrmed during
experimental analysis is explained. In the following sections, performaeesurements and
parameter tuning results for the steps of the experimental work flow asergeal. Finally, in
section 4.17, alternative algorithm that is proposed as an improvement tasbéne algo-

rithm is given.

4.1 The Performance Criteria

There are several measures to evaluate the performance of pr@gsgthms in literature.
All of these measures are calculated with the usage of well-known compdesns: true
positive, true negative, false positive and false negative. In this sedtiese terms and the

performance criteria that are used in the performance measurements axjllaened.

An input image can be thought as an input spagewhich is formed by the road sub-space

(I)) and non-road sub-spade,), wherel, U I, = Isandl, Nl = @. Similarly, an algorithm
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that tries to extract roads from an input image, generally gives a bingpubimage Qs)
which is formed by output road sub-spa¢g Y and output non-road sub-spa®@,() where

Or U Onr = OS andOr N Onr =0Q.

Elements of these spaces can be pixels, segments, lines etc. Performasceement is
realized by comparing output spaces with input spaces where input spaapresented with
ground truth image. When the elements of spaces are chogareds ground truth image
will be a binary image in which road pixels are filled with 1(one) and non-quadls are
filled with O(zero). When the elements of spaces are chosae@®ent input image has
to be segmented and roads have to be classified as road segments aodcheegments in
order to form a ground truth. When the elements of spaces are chodieesasnput and
output road-spaces can be defined but definition of non-road $paleth input and output
can be complex because it igltult to assign lines to non-road pixels. There can be infinite
number of non-road lines. Hence, performance measurements thatiagetwe negative
space can not be evaluated. As mentioned above in the pixel case, al gffdbes can be
defined easily by just marking the pixels as road or non-road. Disadyanfdahe pixel based
space definition is the extraction of ground truth data because it is a timeroorgsprocess.
In this thesis, pixel based road and non-road spaces are used tatevéle performance.
Ground truth images of test images are extracted manually for the purppsefofmance

evaluation.

Number of elements in both input space and output space are equal totbache, equal

to the number of pixels of input imagels = nOs. In a fully successful road extraction
algorithm,Op, = I,y andO; = I,. Generally, there will be misclassified pixels therefore these
equalities will not be true for all algorithms. If input space and output speeenerged pixel-
by-pixel then there will be four sub-spaces in non-ideal extractioa.cBis is illustrated in

Figure 4.1.
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(a) Input Space (b) Output Space (c) Comparison Space

Figure 4.1: lllustration of Spaces

If a pixel p;j is extracted as a road pixel by the proposed algorithm € Or) and it is in

the ground truthf; ; € I;) then it is calledTrue Positive(TP). If that pixel (i.ep;j € Or) is

not included by the ground trutlp(; € In) then it is calledralse Positive(FP) Similarly if

a pixel is not extracted as a road pixel by the proposed algorifhime Oyr) and it is not in

the ground truth(f ; € In) then it is calledTrue Negative(TN). If that pixel (i.epij € Onr)

is included by the ground truthp(; € I;) then it is calledFalse Negative(FN) Number of
elements in output spacé®, TN, FP andFN are counted and performance evaluations are
realized according to these numbers. Mathematically, number of elementsispce are

given for anM x N image in Equation 4.1.

Mz

Te-3

i=1]

Pi.j Y(pijel) and (pijeOr)

1l
=

nTN

INgE

P  Y(pij€ln) and (pij € Onr)

1l
=

&MZ EMZ .

i=1]

As mentioned above, there are several performance measurement sniethiogl literature.

4.1)

FP Pi,j Y(pi,j € Inr) and (pij € Or)

V(pijelr) and (pij€ Onr)

Popular performance measurement methods are explained below.

Precision which is also called as correctness, is the measure of how much the raael-sp

which is extracted by an algorithm is correct. Its mathematical definition is digtw:

. nTP
Precision= m (42)
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Recall which is also called a€ompletenessis the measure of how much the road-space
which is extracted by an algorithm is matching with the ground truth. Its mathemdétal

nition is given below:

nTP
Recall= TPTTEN (4.3)

Specificity which is also called a$rue Negative Rateis the measure of how much the non-
road space which is extracted by an algorithm is really non-road spasenathematical

definition is given below:

nTN

S peCi f |C|ty= m

(4.4)

Precision and recall evaluations individually can not represent th@ee@rmance of an al-
gorithm. They are related to each other. For example, if every pixel on ageiara classified
as road Q; = O;) then recall will be equal to 1 since false positive space is not usedaii rec
evaluation. On the other hand, precision will be equal to the ratio of the nushbead pixels

to the number of image pixeléﬁso. Similarly, if False Positive space is empty, namely, if all
the extracted road pixels are included by the ground truth but if they doawvetr all of the
ground truth O, c I, andO; # I;), then precision will be equal to 1. However in this case,
recall will be equal to the ratio of the number of pixels that are found a$ t@éhe number
of pixels of ground truth%). Briefly, by considering only one of the precision-recall evalua-
tions, the real performance of an algorithm can not be shown. For #gsme more complex

measurement criteria are also defined for performance evaluation.

Accuracy is the measure of how the pixels in an image are classified truly. In other wbrds
measures correctness of both output road s@a@nd non-road spade,,. Its mathematical

definition is given below:

NTP+nTN
NTP+nTN+nEN+nFP

Accuracy= (4.5)

Quality factor measures how much the classified road-sgacand non-road spade,, are
matching to the ground truth in which false positive space is taken into acasamt addition

to the recall criteria. Its mathematical definition is given below:
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nTP

nTP+nFN+nFP (4.6)

Quality =

F-measureis the harmonic mean of precision and recall. Its mathematical definition is given

below:

Precisionx Recall
Precision+ Recall

4.7)

I:measure=

Note that generally, these measures are given as percentage ratiescafcelated measure
is multiplied by 100. In this thesis, all of the explained performance criteriaaloellated for
all test images. However precision, recall and quality factor measureméhk® given in

results.

4.2 Color Space Selection Alternatives

In this section, color space selection foffdient steps of the algorithms will be explained.

Alternative map of color spaces used fofteient steps are given in Figure 4.2.

r L*u*v* Bypassed —| M

Edge-Preserving RGB-> L*u*v* Meanshift

Smoothing Filter “| Transformation “|Segmentation
FalseRGB-> L*u*v*

Transformation

Input

y
y

Classification

Image

First Step Second Step Third Step

Figure 4.2: Alternative Map for Color Space Selection During Processing

4.2.1 Color Space Selection for Pre-processing Step

For the first color space selection, there are fotfiedent color space types as given in Figure
4.2 that are chosen as candidate for applying edge-preserving snepéittein A specific

color information is not mentioned in baseline algorithm but it is mentioned that #te te
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image used in it, is the red band of an IKONOS multi-spectral image. For thisrreas
band is chosen as an alternative color space for first selection. Othigrehand, RGB data
is available for the used test images so second color space alternatiuestfeelection is

selected as RGB.

In order to use multi-band images in filtering operations conversion to Cléespare used
in literature. In the articles that describing bilateral filter (Tomasi and Mahigl998) and
mean-shift filter (Comaniciu and Meer, 2002), transformation to CIELAEELUV color

spaces is proposed. If R, G and B bands are processed sepdtatrialurring occurs on
the edges of the image as stated by Tomasi and Manduchi(1998). Thentme results for
bilateral filtering using both RGB and L*a*b* and remarked the blurrifiges on the result
of RGB processing, which does not exist on the result of L*a*b* pssing. Beside this,
Comaniciu and Meer(2002) stated that CIE spaces are more suitable ésaepEuclidean
distance within their three dimensional space. Hence, two CIE space &ltesna‘u*v and

L*a*b* are added to to first step of alternative color space map. Notd_thety and L*a*b*

spaces are obtained by applying mathematical transformations to the RGB spac

4.2.2 Color Space Selection for Segmentation Step

As mentioned in 2.4, mean-shift segmentation procedure that is used in thssighibe one
which is developed by Comaniciu and Meer(2002). They proposed tb*u%e color space
as input to the mean-shift segmentation. Hence all of the pre-processgekimi@ converted
to the L*u*v* color space in the second step of color space alternative mauldition to this,
it is mentioned by Long and Zhao(2005) that L*u*v* transformation is usesegmentation
step of baseline algorithm, however they presented results of a red bagel ikmmentioned
above, L*u*v* space is obtained from RGB space by using mathematicafoemations.

Hence itis understood that RGB data is used in the baseline algorithm for dreshét step.
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4.2.3 Color Space Selection for Classification Step

Another color space selection is performed after the segmentation precediassification
can be performed onflierent color spaces. Three-band color space RGB is used in classifica
tion step. In addition to it, in order to represent the baseline algorithm, redlibgumesented

as an another alternative.

4.3 Analysis of Baseline Algorithm

The first step of the baseline algorithm is edge-preserving smoothing fitiehvinas three
input parameters. (See section 2.3.2.2 for details.) Long and Zhao(2Q8) that only
disk (circle)-shaped structuring element (SE) was used in MMCSA-Ll&yTdid not give
any information about the final scale parameter (n) of the SE. In the iexgets that are
performed in this thesis, final scale is initially chosen as 4 before the panaimeirey steps.
It means that SE is dilated with itself 4 times at the fourth scale. Second paramdter
threshold values that are used to remove small cofderdinces from the residual tophat and
bothat images. According to their experimental results, Long and Zh@b)Xated that
the best results are obtained with the threshold values that are in the fafig@jo They
used red band of an multi-spectral satellite image as the input to the algorithrecdnds
step of the baseline algorithm, mean-shift segmentation is used with the pasaspzgal
resolution(hS), range resolution(hR) and minimum region(MR). Spatiatamgk resolution
parameters are given in (Long and Zhao, 2005). Minimum region parametigosen as 150
initially. After the segmentation step, Long and Zhao(2005) applied spedassification
with the constant spectral threshold values that are [21-54]. Theydtaiethese spectral
threshold values are determined as a result of their experiments. Finallystippocessing
step, they use binary opening operation with disk radius 3. Then at theegidns that are
smaller than a threshold are removed. They did not give the value of th¢taeshold hence

it is chosen 1100 after parameter tuning.
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4.4 Experimental Work Flow

Several experiments and implementations were done during studies. Atdhareaxperi-

mental work flow is established as given in the Figure 4.3.

Baseline Algorithm

l v
- Analysis of
‘ Analysis of ) Structural Classification
Spectral Threshold Selection

Decision on Usage of

o Structural Classification
Decision on Spectral

Threshold Selection Method ‘

Analysis of ‘

A Automatic Spectral Classification
‘ Analysis of ‘

Input Image Band Selection

Decision on Usage of
Automatic Spectral Classification

Decision on v
Input Image Band

‘ Analysis of Discontinuity Removing ‘
A 4

Analysis of Baseline
Post-Process Operations

Decision on Usage of
Discontinuity Removing Method

Decision on Usage of v
Baseline Post Analysis of Separated/Small
Process Operations Region Removing
4
Tuning of Decisi U ]
. . ecision on Usage 0
SmOOthmg Filter Parameters Separated/Small Region Removing
And
Comparison of Smoothing Filters A 4

Comparison of
Segment Merging Methods

Decision on Usage of
Smoothing Filter

Decision on Usage of

A J Segment Merging Methods

Tuning of Segmentation Parameters v
Fine Tuning
Of Parameters

v

Resulting Proposed Algorithm

Figure 4.3: Experimental Work Flow

The baseline algorithm is applied as described in (Long and Zhao, 260y of all, by
investigating the intermediate images and performance results, selectioctébireesholds
of classification step is changed. Then usage of 3-band(RGB) imagasmeced with usage
of 1-band(red) images. In the next step, it is seen that region-baseg@mcessing operations
are decreasing the overall performance of the algorithm, so perfoemmasalt comparison is
done between region-based post-processing operations and pogeeEstsing operation case.

Then parameter tuning is performed for 4feient smoothing filter and a comparison is done
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between those filters. The filter whose performance results are the bebsen as the
new smoothing filter. Then parameter tuning is performed for the paramésmgraentation
operation. After these parameter tuning operations, automatic spectsificé®on operation

is used instead of classification with manually extracted spectral threshidhés dfect of
different segment-merging operations are investigated. Then an analysi$oisnee by
investigating the #ects of structural verification step. Parameter tuning is also performed for
the parameters of this step. And at the enteas of removal of discontinuities and small-

separated regions is investigated.

4.5 Performance of Baseline Algorithm
Ground truth of the test image that is used in baseline algorithm is extractealiyaand the

resulting road mask is extracted from the road edge map that is presenteminand Zhao,

2005). Performance of the baseline algorithm on their test image is giveglrer.4 below.
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(a) Test Image (Log and Zhao, 20) (b) Ground Truth
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(c) Final Road Mask (d) Comparison with  Ground Truth(Re#&N,
Greer=TP, Blue=FP) - Precision= %90.6, Recall=
%84.8, Quality Factoe %77.9

Figure 4.4: Performance of Baseline Algorithm on its Test Image

As it can be seen from the Figure 4.4, performance of the baseline algaithhe test image

that Long and Zhao(2005) used, is very good. Baseline algorithm isaglsied to the test

images by using the parameters that are presented in (Long and Zh&), P@dformance

measurements are given in Figure 4.5 and mean and standard deviatioseofthghics are

given in Table 4.1.
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Figure 4.5: Performance Results for the Baseline Algorithm

Table 4.1: Performance Results for the Baseline Algorithm

Applied Precision Recall Quiality Factor
Algorithm || Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Baseline || 10.25 17.32 15.37 26.73 4.90 7.86

20

It is seen that performance of the baseline algorithm was poor for mdakedest images.

Major reason of poor performance is the constant spectral threshsédsin classification

step. The thresholds that proposed by Long and Zhao(2005) aseitaible for the data set
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used in this thesis. In Figure 4.6, output of the classification step of théirnmségorithm
for the test image-2 and ground truth image(a) are given. It can betlsatethe thresholds
proposed by Long and Zhao(2005) are not suitable for the test imaghiR is the case for

most of the test images.

(a) Ground Truth (b) Classified Image

(c) Comparison with Ground Truth(Re#N,
Greer=TP, Blue=FP)

Figure 4.6: Hect of Constant Spectral Threshold Selection
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4.6 Analysis of Spectral Threshold Selection

As it is explained in previous section, usage of constant spectral tdeghlues in classifi-
cation step is not suitable for the data set. For this reason, instead of osisiguat spectral
threshold values, spectral threshold values of roads in all test imagest@acted manually
and the baseline algorithm is executed using these nefli@deats. In Figure 4.7, comparison
of the performance results of two cases are shown. In Table 4.2 meataanaihrd deviation
of the graphics in the Figure 4.7 are given. It can be seen that usingathaseiected spectral

codficient values is increased the overall performance of the algorithm.
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Figure 4.7: Comparison of Spectral Threshold Selection

Table 4.2: Performance Comparison of Spectral Threshold Selection

Applied Precision Recall Quiality Factor
Thresholds || Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Manual 15.27 | 13.65 46.97 | 33.29 10.16 8.95
Constant || 10.25| 17.32 15.37| 26.73 4.90 7.86

Manual extraction of spectral threshold values is not an approprigtefacient method for
an automated algorithm. However in the following steps of the experimentalflearkliffer-

ent methods will be compared with each other ifiedent steps. Constant spectral threshold
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values suggested in baseline algorithm, are not suitable with the data sat tiéethesis and

if these threshold values are used, then it will not ieient to compare dlierent methods in
following operations since badfect of these thresholds will be dominant in the final image.
For this reason, instead of constant spectral thresholds manually dedpeietral thresholds
will be used in the following steps. Then in the step of automatic spectral ctadiifi, spec-
tral threshold values will be determined automatically. Briefly, manually extlespectral

thresholds will be used temporarily in order to be able to continue on expeeahvenrk flow.

4.7 Analysis of Input Band Selection

Recent satellite images are generally multi-spectral images. For this reasteadinf using
red band of test images as in the baseline algorithm, RGB data can be usedlgottitm.
In Figure 4.8, comparison of the performance results of two cases anshn Table 4.3
mean and standard deviation of the graphics in the Figure 4.8 are givean bie seen that
using three-band data is increased the overall performance of thétlaigomence in the

following steps of experimental work flow RGB data will be used as input image
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Figure 4.8: Comparison of Input Band Selection

Table 4.3: Performance Comparison of Input Band Selection

Applied Precision Recall Quality Factor
Bands || Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
RGB 26.14 | 20.50 36.86| 28.36 14.43 12.28
Red 15.27 13.65 46.97 | 33.29 10.16 8.95
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4.8 Analysis of Baseline Post-Process Operations

There are four steps in the post-process operations that are appliedbagéline algorithm.
These are binary opening, removal of small regions, contour-tracidgenvex hull step. In
this thesis study, these four steps are called as region-based passgingcsince all of the
operations are carried on the separated regions that exist on the ethsaidige. In convex

hull step, separated regions are labeled and concave-shapedragaronverted to convex

shapes.

As it can be seen in the Figure 4.9, non-road regions of test image uskadng &nd Zhao,
2005), are small regions which are not connected to each other adtafegid type structure
of roads in that particular city. In the Figure 4.9, test image, input and bofghe convex

hull step of the baseline algorithm and comparison of the result with groutiddre given.

82



(a) Test Image (Long and Zhao, 2005)

(c) After Convex Hull Step (d) Comparison with  Ground Truth(Re&N,
Greer=TP, Blue=FP)

Figure 4.9: Some Steps of Baseline Algorithm

In that particular city, non-road regions are in rectangular shape wehictve thought as con-
vex, and applying convex hull method removes only zig-zags on the eddlesse regions.
However this is not the case for rural areas and even for everyantga. Although the im-
provements that explained in above two sections, performance resulteftest images 4,
6, 18 and 19, are still too low as it can be seen from the Figure 4.8. It isthaéapplying

region-based convex-hull step to the classified images is the reason ptlbevmance re-
sults. In the Figure 4.10 input and output of the convex hull step of thelibasalgorithm and

comparison with the ground truth for th& 4est image are shown.
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(a) Input to the Convex Hull Step (b) Output of the Convex Hull Step

(c) Comparison with Ground Truth(Re#N,
Greer=TP, Blue=FP)

Figure 4.10: Hect of the Convex Hull Step

Generally roads have curve-shaped structures in some urbaniaretser words, non-road
regions are concave regions rather than convex so applying counilerdthod leads to over-
flow of non-road regions on to the road regions or vice versa. As ibeaseen in the Figure
4.10, non-road regions are connected to each other and are coa#rofgthe spatial do-
main so applying convex hull step is removing all of the road pixels that asérexbetween

non-road regions.

In Figure 4.11, comparison of the performance results of two casesianas In Table 4.4

mean and standard deviation of the graphics in the Figure 4.11 are given.
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Figure 4.11: Hect of Region-based Post Process Operations

Table 4.4: Performance Comparison of Post Process Operations

Used Image Precision Recall Quiality Factor
Bands Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.

No Post Procesg 19.14 12.52 74.75 5.75 17.46 10.21

Region-based || 26.14 20.5 36.86 28.36 14.43 12.28

It is revealed from the results that region-based post processimgtimpes that are used

in (Long and Zhao, 2005), are decreasing the overall performambe. aim of the post-
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processing operations that are used in baseline algorithm, is to propasatseegions on the
binary classified image and four consequent operations that is contamirgx hull step are
all considered together. As a result of the comparison given abovealétided to do not use
the region-based post processing operations. It meandlthRbst-Processing Operations
alternative will be used in the following steps of experimental work-floufe&s of other

post-processing alternatives will be analyzed after the analysis of smgdilters.

4.9 Analysis of Smoothing Filters

Up to this step, image enhancement filter MMCSA-LZ is used with the parametdrarth
suggested by Long and Zhao(2005). In this step, tuning of parametédI€SA-LZ,
MMCSA-C and bilateral filtering is performed. Then performance comparis realized
with tuned parameters. Quality factor is proportional to both precision aradl nd perfor-
mance of a step is optimum at the point where quality factor is maximum so only dfaality
results are given here. In the figure below tuning of parameters of MMICE MMCSA-C

and bilateral filtering are shown.

86



Quality Factor Quality Factor

15. i i i '
0 05 1 15 1 15 2 25 3 35
Noise Threshold Coeff. Final Scale

(&) MMCSA-LZ - Noise Threshold Cdg (b) MMCSA-LZ - Final Scale

Quality Factor Quality Factor

1 2 3 5 6 7

4 4
Final Scale Filter Size

(c) MMCSA-C - Final Scale (d) Bilateral Filter - Filter Size

Quality Factor Quality Factor

171 i i i i i i 164 i i i
1 4 6 7 [ 0.2 0.4 0.6
Spatial Bandwidth

(e) Bilateral Filter - Spatial Bandwidth (f) Bilateral Filter - Range Bandwidth

i i ;
0.8 1 12 14 16
Range Bandwidth

Figure 4.12: Parameter Tuning of Edge Preserving Filters

All possible combinations are used for the parameters in order to decidatiomuon values.
The values that are resulted in maximum performance are chosen as optaiugnofrelated
parameter. These points are marked with a big circle in Figure 4.12. Afterettisioh of
optimum parameters for edge preserving filtefea of four diferent case on overall perfor-
mance compared. In Figure 4.13, comparison of the performance rekiitsr cases are

shown. In Table 4.5 mean and standard deviation of the graphics in theRigug are given.
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Figure 4.13: Comparison of Edge Preserving Filters

Table 4.5: Performance Comparison of Edge Preserving Filters

Used Image Precision Recall Quiality Factor
Bands Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Bilateral 1941 | 12.74 76.83 6.58 18.08 | 11.36
MMCSA-LZ || 19.14| 1252 74.75 5.75 1746 | 10.21
MMCSA-C | 19.15| 12.09 74.26 7.57 17.31 9.58
No Filter 18.88| 12.33 73.36 6.60 17.10 9.84
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It can be seen from the Table 4.5 that bilateral filtering is the best amonghiies0So instead
of MMCSA-LZ; bilateral filtering will be used as enhancement filter in the folltg steps of

the experimental work flow.

The algorithm at the second row of the Table 4.5 is modified version of tledibasigorithm.
These modifications are explained in previous sections. This version lodtiedine algorithm
can be named aBaseline-fitted since modifications are applied in order to fit the baseline

algorithm to the data set used in this thesis.

4.10 Tuning of Segmentation Parameters

In this step, optimum values for the parameters of mean-shift segmentatioarsteleter-
mined by realizing parameter tuning. In the Figure 4.14, parameter tuningdiofuop values
of three parameters of mean-shift segmentation are shown. All possimlirtations are
used for the parameters in order to decide on optimum values. The valtesdmasulted in
maximum performance are chosen as optimum value of related parametse fdiets are

marked with a big circle in Figure 4.14.
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Figure 4.14: Tuning on Segmentation Parameters
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4.11 Analysis of Structural Verification

In some of the test images, although recall measurements were good geitasigeen that
precision measurements were too low. Especially, precision measurentesitiofiages 7, 8,
9,12, 17 and 19 were below 20%. This poor performance is due to tiegapgmilarity of
road pixels with non-road pixels. As a result, most of the pixels of the imagelassified as
road when a spectral classification is applied. In order to decreasepiaditives, structural
verification is performed on the spectrally classified image. As it is explainesdtion

3.6, multi-scale template matching filter(MS-TMF) is used as one of the strudaatalre
extraction tool in structural verification step. In MS-TMF, a cosine-diskped template is
used in this thesis. Howeverftirent templates can also be used in template matching filter.
For this purpose, four fierent templates are compared with each other. 2D and 3D view
of the cosine-disk template is presented in section 3.3.1. Below 2-D and 3aI3 wieother
three alternative templates which are gauss template, rectangle template iapdexoplate

are given.
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Figure 4.15: Alternative Templates for MS-TMF
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4.11.1 Parameter Tuning

In the figure below tuning of the parameters of structural verification metholliding MS-

TMF parameters are given.

Quality Factor Quality Factor

40p

351

301

251

RS

i i i i i i I 325 i i i i i
0 20 30 40 50 60 70 80 90 5 10 25 30
Threshold of Pixel Similarity Rate

15 20
Angular Resolution
(@) TMF - Threshold for Pixel Similarity Rate (b) TMF - Angular Resolution

Quality Factor Quality Factor

20 i i i i i N i i i i i i i i i i
1 5

15 25 35 4 2 3 4 6 7 8 9 10 11 12
Length Coefficient Road Width Resolution
(c) TMF - Length Coéicient (d) TMF - Road Width Resolution
- Quality Factor w02 Quality Factor
301
251
20 ! 295 L . g
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 4 5 6 7 8 9 10
Threshold of Segment Road Likelihood Ratio Threshold for Major/Minor Ratio
(e) Threshold for Segment Road Likelihood Ratio (f) Threshold for MajofMinor Ratio

Figure 4.16: Parameter Tuning of Structural Verification Step
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4.11.2 Performance Evaluation

In Figure 4.17, #ect of tuned structural verification method witHfdrent templates can be

observed. In Table 4.6 mean and standard deviation of the graphics ingire B.17 are

given.
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Figure 4.17: Hect of Structural Verification
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Table 4.6: Hect of Structural Verification

Structural Precision Recall Quality Factor

Verification Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Used with Cosine-Disk| 48.50 12.89 58.97 12.00 35.27 8.86
Used with Gauss 29.20 12.61 72.71 6.58 26.19 10.93
Used with Rectangle || 25.23 12.36 74.85 6.52 23.08 10.86
Used with Cosine 24.82 12.78 74.86 6.52 22.70 11.24
Not used 19.69 12.81 75.92 6.60 18.28 11.45

It can be seen from the Table 4.6 that structural verification is doublingpén®rmance
measurements. Hence structural verification method will be used in the fojjsteps of the
experimental work flow. Also it can be seen from the table 4.6 that the cosskdemplate
is the best template among the alternative templates. Hence cosine-disk templageuséd

as the template of MS-TMF in the following steps of the experimental work flow.

4.12 Analysis of Automatic Spectral Classification

In the first step of experimental work flow, due to the bad performantieeafonstant spectral
thresholds used in baseline algorithm, it was decided to continue with manuatgctex
spectral threshold values temporarily. As it is mentioned previously, maeledt®n of
threshold values is not a practical method, Hence, in this step, automaticaspleeshold
selection method is applied in the spectral classification step of the algorithrametir
tuning is also performed for the parameters of proposed classification anéththe Figure

4.18, parameter tuning results can be observed.

94



Quality Factor Quality Factor

321

2“1 2 3 2 5 s 7 s s 10 % » w4 % m w0 s 10
Number of Seed Segments Threshold of Pixel Similarity Rate
(&) Number of Seed Segments (b) Threshold for Pixel Similarity Rate
20 Quality Factor 33 Quality Factor
32F
31F
30
291
28
27
28.1 0. ‘15 0‘.2 O.‘ZS 0‘.3 0.‘35 0‘.4 O.L&S 0‘.5 0 é l“l é g 1‘0 1‘2 1‘4 1‘6 1‘8
Threshold of Road Likelihood Ratio Number of GMM Clusters
(c) Threshold for Segment Road Likelihood Ratio (d) Number of GMM Clusters
Quality Factor Quality Factor
3051 32.251
30r 32.21
29.51 32151
291
3211
28.51
32,051
281
321
2751
2l 31.951
265 3191
26 1 . 1 . . . . 1 , 31, I I I I I I I I ]
10 20 30 40 50 60 70 80 90 100 08 0.85 0.9 .95 1 11 115 12 125
Spatial Coverage Limit Spectral Window Size Coefficient
(e) Spatial Coverage Limit (f) Spectral Window Size Cdkcient

Quality Factor

5 I I I I I I i ;
0 0.1 0.2 0.3 0.4 .5 0.6 0.7 0.8
Threshold for Segment Pass Ratio

(g) Threshold for Segment Pass Ratio

Figure 4.18: Parameter Tuning of Automatic Classification Step
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All possible combinations are used for the parameters in order to decidatiomum values.
The values that are resulted in maximum performance are chosen as optaiugnofrelated
parameter. These points are marked with a big circle in Figure 4.18. In FHglL®e dfect

of automatic classification after parameter tuning can be observed. In Z&blaean and

standard deviation of the graphics in the Figure 4.19 are given.
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Figure 4.19: Performance Comparison Classification Methods
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Table 4.7: Performance Comparison Classification Methods

Classification Precision Recall Quality Factor
Type Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.

Manual 48.50 | 12.89 58.97 | 12.00 35.27 8.86

Automatic 4590 | 17.97 59.80 | 17.13 32.96| 11.83

It can be seen from the Figure 4.19 and the Table 4.7 that automatic cldgsifianot
increasing overall performance but it's performance is around tHerpggnce of the manual
classification. As it is mentioned previously, manual extraction of spectresiiold values

is not an appropriate andfieient method for an automated algorithm. Hence automatic
classification will be used in the following steps of the experimental work flitoagh it's

performance is not as good as manual classification.

4.13 Analysis of Gaussian Mixture Model Parameters

In Gaussian Mixture Model expectation maximization algorithm is used. Initiatpof the
algorithm are selected randomly. According to the selection of initial poiffiesrdint mixture
of clusters can be obtained. For this purpose, GMM is trained several dinteslassification
is performed for each case. Then it is checked whether overall rpeafae of the road
detection algorithm is beingfected or not. In the Figure 4.20, horizontal axis represents
the training count. For example when training count is 5, it means that GMMiretteb
times. Resulting clusters of each training are used for classification selgafassification
is performed for all of the test images. Then mean of performance rdstkse 5 diferent
case are averaged. In Figure 4.20 these average values are edaxl ihes on the graphics
are representing the standard deviation of calculated mean parametan deseen from
the figure that, as the training count increases standard-deviatioradesrelhere is a small
difference between the case when training count equal to 1 and 9. Heacebieé said that

training the Gaussian Mixture Model only for one time is acceptable.
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Figure 4.20: Gaussian Mixture Model Training Performance

4.14 Analysis of Discontinuity Removing Method
In most of the classified images it is seen that there are discontinuities oratite o order

to remove these discontinuities, discontinuity removing method that is propossttion

3.7.1, is used. In Figure 4.21ffect of discontinuity removing on a test image is shown.
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(a) Ground Truth

(b) Classified Image (c) Comparison with Ground Truth(Re#N,
Greer=TP, Blue=FP)

(d) Discontinuities Removed (e) Comparison with Ground Truth after Disconti-
nuity Removal(RedFN, Greera-TP, Blue=FP)

Figure 4.21: Hect of Discontinuity Removing
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In Figure 4.22, tuning of the parameters of discontinuity removing methodan.g
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Figure 4.22: Parameter Tuning of Discontinuity Removing Step

All possible combinations are used for the parameters in order to decidetioruon values.
The values that are resulted in maximum performance are chosen as optaiugofrelated
parameter. These points are marked with a big circle in Figure 4.22. In FHigBe dfect

of discontinuity removing after parameter tuning can be observed. In Fa8lenean and

standard deviation of the graphics in the Figure 4.23 are given.
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Figure 4.23: Hect of Discontinuity Removing on Overall Performance

Table 4.8: Performance Comparison of Discontinuity Removing

Discontinuity Precision Recall Quiality Factor
Removing Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Applied 54.12 | 14.40 51.94| 18.02 34.64| 10.50
Not applied || 45.90 | 17.97 59.80 | 17.13 3296 | 11.83

It can be seen from the Figure 4.23 and the Table 4.8 that discontinuity iregrievncreasing

overall performance. Hence it will be used in the following steps of erpartal work flow.
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4.15 Analysis of SeparatefSmall Region Removing

In most of the classified images it is seen that there are separated andegjicaiswhich are
not road but classified as road since they are spectrally and structsirallgr to the roads.
In order to remove these regions, small and separated region removirig applied. Hect

of small and separated region removing step can be seen in the Figure 4.24.
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(a) Ground Truth

(b) Input Image (c) Comparison with Ground Truth(Re#N,
Greer=TP, Blue=FP)

(d) Separate@®mall Regions Removed  (e) Comparison with Ground Truth(ReBEN,
Greer=TP, Blue=FP)

Figure 4.24: Hect of Separatg@mall Region Removing
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In Figure 4.22, tuning of the threshold for minimum region area of sepdsatedl area re-
moving method is given. The value that is resulted in maximum performance sewclas

optimum value of the parameter. These point is marked with a big circle in Fig2se 4
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I I I I I I I I I |
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(a) Threshold for Minimum Region Area

Figure 4.25: Parameter Tuning of Separgsadall Area Removing Step

In Figure 4.26, &ect of separat¢gdmall area removing after parameter tuning can be ob-

served. In Table 4.9 mean and standard deviation of the graphics in thre Bi@6 are given.
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Figure 4.26: Hect of Separat¢g@mall Area Removing on Overall Performance

Table 4.9: Performance Comparison of Separ&ell Area Removing

Area Precision Recall Quiality Factor
Removing || Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Applied 55.82 | 14.77 50.74| 19.04 3469 | 11.32
Not applied|| 54.12 | 14.40 51.94 | 18.02 34.64| 10.50
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It can be seen from the Figure 4.26 and 4.9 that sepdsatedl area removing is increasing
overall performance. Hence it will be used in the following steps of theexental work

flow.

4.16 Analysis of Segment Merging Methods

In automatic spectral classification step, seed segments are chosembgiegatructural
features of all segments. By using segment merging techniques before seed sesgteen
tion, it is aimed to increase road likelihood ratio of road segments. In Figuie dt2ct of
segment merging methods can be observed. In Table 4.10 mean andétiawdation of the
graphics in the Figure 4.27 are given. Although segment merging opesatiene increasing
the performance in earlier studies, at the end, it is observed that thessiops are not in-
creasing overall performance. There are two reasons for this réqsltly, in earlier studies,
instead of Gaussian Mixture Model(GMM), &fdirent spectral classification method was be-
ing used. On the other hand, parameters of all steps were not tunedién stadies. In the
earlier classification method, a few segments were being chosen to belagssdenean and
standard deviation parametersadch seed segmentere being used to classify the image
where selection of seed segments were critical. However in GMM, instazgraf the mean
and standard deviation parametersath seed segmenall of the pixel values are consid-
ered together and Expectation Maximization algorithm is applied in order to ofitesters
which are diferent tharseed segmentdMoreover the clusters whose weight is smaller than a
threshold are not used in classification. Briefly, by the use of GMM anddusf parameters,
seed selection problem is resolved. As a result, segment merging opgtattonot applied

since they are not increasing the overall performance.
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Figure 4.27: Hect of Segment Merging Methods on Overall Performance

Table 4.10: Performance Comparison of Segment Merging Methods

Merging Precision Recall Quiality Factor
Method Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
No Merge 55.82 | 14.77 50.74| 19.04 34.69| 11.32

Segment-Edge Based 46.05 12.56 56.36 17.12 33.06 10.86
Image-Edge Based|| 53.78 | 14.63 48.01| 21.50 32.21| 13.77
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4.17 Resulting Proposed Algorithm

In this section, improved version of the baseline algorithm is proposed piidmosed algo-
rithm is obtained by a series of experimental analysis as given in preveatiess. At the
end of experimental work flow proposed algorithm is obtained. The atieenaethod that is
increased the performance is chosen as the method used for relateldestafting proposed

algorithm is given in Figure 4.28 below.
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Figure 4.28: Resulting Proposed Algorithm

In this algorithm, first of all bilateral filtering is used for the purpose of reimg small spec-
tral variations on the roads. Then mean-shift segmentation is used to gpeajally similar
pixels and to be able to analysis of structural features. Then seed gsgrhesen by investi-

gating all of the segments according to their structural features. In sésdien, multi-scale
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template matching filter and some structural feature measurements are uséddoigis the
most road likelihood segments from the others. Then by using spectralctéastics of seed
segments, spectral classification is performed by determining spectrsthdidlevalues with
Gaussian Mixture Model. As a result of classification a binary raw mapaifgds obtained.
Then using MS-TMF and structural feature measurements, structuiti¢aton is applied.
After this step, discontinuity removing method is applied in order to connekebrat roads.

At the end, small and separated regions are removed from the image.

In the Figure 4.29, performance comparison of the proposed algorittrtharbaseline algo-
rithm is given and in Table 4.11, mean and standard deviation of perfoemmeasurements
of the proposed algorithm and the baseline algorithm are given. Thefvarditerent re-

sults for the baseline algorithm in the Figure 4.29 and Table 4.11. In sectipmédified

version of the baseline algorithm is definedBaseline-fittedin which spectral classification
parameters are fitted to the data set that is used in this thesis and possingoperations
are not used since the data set is not appropriate for these operati@se. modifications are
performed because, the image that was used by Long and Zhao(2@08jfarent spectral
and structural features than the data set used in this thesis. Despite tlibSeatians, it can

be observed from the results that the performance of the resultinggedpdgorithm is better

than both versions of baseline algorithm.
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Figure 4.29: Performance Comparison of Alternative Algorithms

Table 4.11: Performance Comparison of Alternative Algorithms

Applied Precision Recall Quiality Factor
Algorithm Mean | Std. Dev. || Mean | Std. Dev. || Mean | Std. Dev.
Proposed 55.82 | 14.77 50.74| 19.04 34.69| 11.32
Baseline-fitted|| 19.14 | 12.52 74.75 5.75 1746 | 10.21
Baseline 10.25| 17.32 15.37| 26.73 4898 | 7.858
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4.17.1 Step Details of the Proposed Algorithm

In this section, images that are obtained at several steps of the pragdgseithm are given

in figures below. In classification step, 9 clusters are formed with the GMdenter only

(a) Ground Truth (b) Segmented Image

/
/
\

(c) Chosen Seed Segments

Figure 4.30: Proposed Algorithm - Pre-Processing and Seed Selection

6 clusters are used to classify image as it can be seen from the followimgdigRemaining
3 clusters are not used since their weights are smaller than a thresholdt édsdbe aseen

that, each cluster is adding additional information to the classified image.
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(e) Classification Result - Cluster 5 (f) Classification Result - All Clusters Together

Figure 4.31: Proposed Algorithm - Spectral Classification
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(a) Classification Result Converted to Segme(iiy Segments that have small Majdinor Ratio
Removed

(c) Multi-scale Template Matching Filter Output (d) Output of Structural Verification Step

(e) Output of Discontinuity Removing Step (f) Small and Separated Regions Removed

Figure 4.32: Proposed Algorithm - Post-Processing
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(a) Ground Truth (b) Comparison with Ground Truth(Re&N,
Greer=TP, Blue=FP)

Figure 4.33: Proposed Algorithm - Final Result

The performance results and comparison of 20 test images are giverHigthe 4.29. It can
be seen that performance of the proposed algorithm is varying amongsthiemséges. For
example, performance on the test image 3 is very bad because seed sétedtiat image
was not successful. As a result, performance became worse. On énénatid, performance

of the algorithm is good for the testimages 8, 11, 15 and 18.
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CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis, a previously defined road extraction algorithm using maéirsespmentation
procedure is chosen as the baseline algorithm. An experimental work floen&ructed
and improvements on the baseline algorithm are presented by applying e pracessing
steps. Using the alternative steps which gave the best performance, ant extraction
algorithm is proposed. Finally, experimental results that are obtained dinénighplemen-
tation and analysis of the proposed alternative methods and resultingsprbalgorithm are

given.

5.2 Discussion

In this section the results obtained by the analysis of the baseline algorithailtantative

processing steps are discussed.

5.2.1 Edge Preserving Smoothing Filters

It is observed from the comparison results that using edge-presesmingthing filters in-
creasing the overall performance of the algorithm. Although performasmdts are close
to each other for the filters used which are MMCSA-LZ filter, MMCSA-C fihed bilateral

filter, bilateral filter is the best among these filters.
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5.2.2 Segment Merging Operations

Two different segment merging methods which are segment-edge based segngeng mer
method(SEBSMM) and image-edge based segment merging method(IEBS#Iprpposed
and compared in this thesis. They have some benefits and drawbaclkB &M/, detected
lines on the edges can become shorter than the expected length. And aldetéogon
performance on curve-shaped edges is poor. As a result, mentioneddnietiot €fective

on curve-shaped segments.

Disadvantage of IEBSMM is, dependence of it on edge detection. Desjgteprocessing is
applied after the edge detection, it is seen that road edges that ara brtukeub-edges could
not be corrected. Hence road segments around these edges aregext.nhe addition to the
broken edges, merging side selection is another disadvantage. Beceugang is applied
on the side in which there are more segments to be merged and it is common tha&rnumb
of non-road segments within the neighborhood of an edge is more thasegatents. As a

result road segments are not merged.

SEBSMM is a local method since only neighbor segments are analyzed ageldnklowever
IEBSMM is not as local as SEBSMM. Because, all of the segments thatedg@bor to the
analyzed edge are included in analysis. Hence, to make a decision of gheitiibe more
complicated and will be more global than the decision of SEBSMM. Briefly it loausaid
that SEBSMM is more useful than IEBSMM.

It is observed from the experimental results that using segment-mergingasetnot in-
creasing the overall performance of the algorithm. So there is no need te megments.
However segment merging operations can be useful for other applieagas. For example,

segment merging methods can reduce thects of over-segmentation case.

5.2.3 Spectral Classification

Itis seen for some of the test images that most of the image pixels were cthasifiead when
predefined fixed spectral thresholds are used. Especially whenishengide-range of test
images, spectral features of roads cafedifrom image to image. For example, as it can be

seen from the images in appendix, there are several type of imageseatihbpharacteristic
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of images are diering form image to image. Hence, it is not possible to determine fixed
threshold values that will give best performance for all images. Brigfig,observed from
the experimental results that automatic calculation of spectral threshold¥aheach image

separately must be performed in order to obtain better performance results

5.2.4 Structural Verification

It is observed from the experimental results that structural verificati@very important
step. When it is used, the performance of the algorithm is approximateljletbubhere are
some non-road regions such as buildings, pavements, parking lots dth avh spectrally
similar to the roads. When only spectral classification is performed, theseoadregions
will be also classified as road. Hence extra classification steps mustfoenped to remove
these non-road regions. It is seen that performing structural veigiices removing most of

these non-road regions, because generally their shapes are not girfiroads.

5.2.5 Post-processing operations

It is observed from the experimental results that using discontinuity remavid separated

area removing methods increasing the overall performance.

5.2.6 Resulting Proposed Algorithm

Itis observed that resulting proposed algorithm is more convenient tedratieline algorithm
especially when the data set is including wide range of images. On the otidrdsait can
be seen from the results that are presented in appendix, performfaheg@sulting proposed
algorithm is better for the rural or semi-urban regions. Especially, maoisroamost of the

test images are detected with the resulting proposed algorithm.

117



5.3 Future Work

5.3.1 Segmentation Procedure

Mean-shift segmentation procedure is definegoint spatial-range domain of input im-
age and segments are formed with the pixels that are in the basin of attractolocl
mode in joint spatial-range domain. Mean-shift segmentation procedureéaily used
in object tracking systems, raw segmentation of regular images etc. In thpkeations,
segmented objects are compact but this is not the case for the roadséeaads generally
spread over the entire image so they are not compact objects. Howeseszatial domain
informations are used in mean-shift segmentation procedure, roads are beingddinide
sub-segments (over-segmentation). If spatial domain informations avsewmtroads may be
detected as a single segment or as a few segments since road pixels areirsirailge do-
main. Hfects of mentioned modification of mean-shift segmentation procedure dtirrgsu

segments can be analyzed in future.

5.3.2 Segment Merging Methods

Instead of using SEBSMM or IEBSMM, a mixed alternative of them can heldped. In
this alternative method, segments to be merged are selected as it is perforBEBSMM
however edge processing operations that described in IEBSMM casdukin line detection
instead of Hough transform. In this alternative method, long sides of tldesezaments can be
used in merging decision. By this way, merging of curve-shaped roadesdg can be easier
and there can be no dependence to the Hough transform. This method mayldraemied

and analyzed in the future.
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5.3.3 Structural Feature Enhancement

It is observed from the experimental results that some of the structatairés, such as ma-
jor/minor ratio, are not useful when they applied alone. Because therelatrefaconcave-
shaped segments. As it is explained in section 3.5.1.1, yn@joor ratio of concave-shaped
road segments is small. This issue may be solved by dividing segments to tekegubnts
from their edge points at which sharp transitions occur. By this way, ynajoor ratio may

be used alone for the purpose of structural verification or classification

5.3.4 Classification Features

There are dierent features on an image that can be used in classification which ateagpe
structural, textural and contextual features. In this thesis, only spaagisstructural features
are used. If textural or contextual features are used in some steps ofagsification then

performance of the resulting proposed algorithm may be increased.
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