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ABSTRACT

FULLY COMPUTABLE CONVERGENCE ANALYSIS OF DISCONTINOUS
GALERKIN FINITE ELEMENT APPROXIMATION WITH AN ARBITRARY NUMBER

OF LEVELS OF HANGING NODES

Özışık, Sevtap

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Songül Kaya Merdan

Co-Supervisor : Assoc. Prof. Dr. Béatrice M. Rivière

February 2012, 108 pages

In this thesis, we analyze an adaptive discontinuous finite element method for symmetric

second order linear elliptic operators. Moreover, we obtain a fully computable convergence

analysis on the broken energy seminorm in first order symmetric interior penalty discontin-

uous Galerkin finite element approximations of this problem. The method is formulated on

nonconforming meshes made of triangular elements with first order polynomial in two di-

mension. We use an estimator which is completely free of unknown constants and provide a

guaranteed numerical bound on the broken energy norm of the error. This estimator is also

shown to provide a lower bound for the broken energy seminorm of the error up to a constant

and higher order data oscillation terms. Consequently, the estimator yields fully reliable,

quantitative error control along with efficiency.

As a second problem, explicit expression for constants of the inverse inequality are given in

1D, 2D and 3D. Increasing mathematical analysis of finite element methods is motivating the

inclusion of mesh dependent terms in new classes of methods for a variety of applications.
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Several inequalities of functional analysis are often employed in convergence proofs. Inverse

estimates have been used extensively in the analysis of finite element methods. It is char-

acterized as tools for the error analysis and practical design of finite element methods with

terms that depend on the mesh parameter. Sharp estimates of the constants of this inequality

is provided in this thesis.

Keywords: convergence analysis, Discontinuous Galerkin Method, Finite Element Method,

inverse inequalities, orthogonal polynomials
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ÖZ

SÜREKSİZ GALERKİN METODU İÇİN BİLİNMEYEN KATSAYILARDAN BAĞIMSIZ
YAKINSAKLIK ANALİZİ

Özışık, Sevtap

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Songül Kaya Merdan

Ortak Tez Yöneticisi : Doç. Dr. Béatrice M. Rivière

Ocak 2012, 108 sayfa

Bu tezde, uyarlanabilir süreksiz Galerkin sonlu elemanlar yonteminin, ikinci dereceden elip-

tik kısmi turevlenebilir denklemler için yakınsaklık analizi yapıldı. Tamamı hesaplanabilir

yakınsaklık analizinde birinci dereceden simetrik interior penaltı süreksiz Galerkin yaklaşımı

kullanıldı ve norm olarak enerji normu seçildi. Kullanılan bu yöntem eş olmayan ve üçgen-

lerden oluşan ağ örgüsü üzerinde uygulandı. Uyarlanabilir bütün sonlu elemenlar yönteminde

gerekli olan hata tahmincisi olarak şu ana kadar hiç bir calışmada kullanılmamış olan bir tah-

minci seçildi. Bu tahminci diğerlerinin aksine bilinmeyen katsayılardan bağımsız olduğu için

bir indikator değil gerçek bir tahminci olarak kullanılabilir. Bu tahminci, hata için alt ve üst

sınırlari sağlamaktadır. Sonuç olarak, kullanılan bu tahminci güvenilir ve etkili sayısal hata

kontrolünü mümkün kılar.

İkinci bir calışma olarak, ters eşitsizliklerde kullanılan katsayılarin gercek değerleri hesap-

landı. Bu değerler 1 boyutlu, 2 boyutlu ve 3 boyutlu uzaylar için üçgensel elemanlar kul-

lanılarak bulundu. Sonlu elemanlar yönteminin artan matematiksel analizi, ağ örgüsüne bağlı

terimlerin varlığını güdülemektedir. Fonksiyonel analizin bir kaç eşitsizliğide yakınsaklık ıs-
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patlarında sık sık kullanılmaktadır. Ters eşitsizlikler, sonlu elemanlar yönteminin analizinde

en yaygın kullanılan eşitsizliklerdendir. Bu eşitsizlikler, hata analizi ve ağ örgüsüne bağımlı

sonlu elemanlar yönteminin pratik dizaynı için bir araç olarak karakterize edilir. Bu tezde, bu

eşizliklerin katsayılarının keskin bir tahmini verilmiştir.

Anahtar Kelimeler: yakınsaklık analizi, süreksiz galerkin metodu, sonlu elemanlar metodu,

ters eşitsizlikler, ortogonal polinomlar

viii



To my mother and the rest of my lovely family

ix



ACKNOWLEDGMENTS

This thesis arose in part out of years of research that has been done since I came to Middle

East Technical University and right after Rice University. It would not have been possible to

write this doctoral thesis without the help and support of the kind people around me, to only

some of whom it is possible to give particular mention here. It is a pleasure to convey my

gratitude to them all in my humble acknowledgment.

In the first place I would like to record my gratitude to my supervisor Prof. Songul Kaya

Merdan for her good advice, support and friendship. Her supervising has been invaluable on

both an academic and a personal level, for which I am extremely grateful. I could never have

embarked and started all of this without her prior teachings in that area and thus opened up

unknown areas to me. Thank you. I am much indebted to for her valuable advice in science

discussion, using her precious times to read this thesis and gave hers critical comments about

it. I have also benefited by advice and guidance from her who also always kindly grants me

her time even for answering my questions.

This thesis would not have been possible without the help, support and patience of my co-

supervisor Prof. Betarice Riviere, not to mention her supervision, advice, and guidance from

the very early stage of this research as well as giving me extraordinary experiences through

out the work. I was extraordinarily fortunate in having her. Above all and the most needed,

she provided me unflinching encouragement and support in various ways. Hers truly scientist

intuition has made her as a constant oasis of ideas and passions in science, which exceptionally

inspire and enrich my growth as a student, a researcher and a scientist want to be. I am

indebted to her more than she knows.

I gratefully acknowledge Tim Warburton for his advice, oversight, and crucial contribution,

which made him a backbone of this research and so to this thesis. His involvement with

his originality has triggered and nourished my intellectual maturity that I will benefit from,

for a long time to come. I am grateful him in every possible way and hope to keep up our

collaboration in the future.

I would also like to thank to the members of my thesis defense committee, Prof. Dr. Bülent

x



Karasözen, Prof. Dr. Gerhard Wilhelm Weber, Assoc. Prof. Dr. Burak Aksoylu, Assist. Prof.

Dr. Canan Bozkaya for their guidence.

My special thanks go to Prof. Munevver Tezer for her invaluable advise and teaching. Without

having her, I could never stay alive in my PhD life.

I would like to acknowledge the financial support of the Turkish Academia of Science (TUBA)

and its staff as well as The Scientific and Technological Research Council of Turkey (TUBITAK).

I also thank the Mathematics Department of METU for their support and assistance since the

start of my graduate work.

Collective and individual acknowledgments are also owed to my colleagues at METU, Rice,

and friends from high school whose present somehow perpetually refreshed, helpful, and

memorable.

Above all, I would like to thank my parents, brothers and sisters have given me their unequiv-

ocal support throughout, as always, for which my mere expression of thanks likewise does

not suffice. Words fail me to express my appreciation to my family.

Finally, I would like to thank everybody who was important to the successful realization of

thesis, as well as expressing my apology that I could not mention personally one by one

here.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTERS

1 INTRODUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 On the Convergence of a Posteriori Error Estimation . . . . . . . . . 2

1.2 On the Inverse Estimation . . . . . . . . . . . . . . . . . . . . . . . 7

2 NOTATIONS and PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . 11

2.1 The Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The Partitioning of the Domain and Some Standard Notation 12

2.2 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Jumps and Average . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Data Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 DG Finite Element Approximations . . . . . . . . . . . . . . . . . . 14

2.6 The Broken Energy Seminorm and DG-norm of the Error . . . . . . 14

2.7 Trace and Inverse Estimates . . . . . . . . . . . . . . . . . . . . . . 16

3 FULLY COMPUTABLE CONVERGENCE ANALYSIS of DISCONTINOUS
GALERKIN FINITE ELEMENT APPROXIMATION WITH an ARBITRARY
NUMBER of LEVELS of HANGING NODES . . . . . . . . . . . . . . . . 18

3.1 The Convergence Result . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 The Adaptive Algorithm . . . . . . . . . . . . . . . . . . 21

xii



3.2 Proof of Error Reduction : . . . . . . . . . . . . . . . . . . . . . . 62

4 ON the CONSTANTS in INVERSE INEQUALITIES in L2 . . . . . . . . . . 67

4.1 One Dimensional Domain . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Two Dimensional Domain . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Three Dimensional Domain . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 CONCLUSIONS and FUTURE WORK . . . . . . . . . . . . . . . . . . . . 81

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . 82

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

APPENDICES

A SOME USEFUL INEQUALITIES . . . . . . . . . . . . . . . . . . . . . . . 90

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



LIST OF TABLES

TABLES

Table 4.1 Experimentally determined constants in the discrete Markov inequality on

an interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 4.2 Experimentally determined constants in the discrete Markov inequality on a

triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 4.3 Experimentally determined constants in the discrete Markov inequality . . . 79

xiv



LIST OF FIGURES

FIGURES

Figure 3.1 Direction and enumeration of the vertices, edges, unit tangent vectors and

unit normal vectors of triangle K. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.2 The refinement of triangle K into sixteen congruent subtriangles. . . . . . 28

Figure 3.3 Support of ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.4 Height of the triangle K . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.5 An example of initial meshes . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.6 Refinement of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.7 Refinement of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.8 Relation between area and edge . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.1 Mapping from the reference triangle K̂ to the physical triangle K. . . . . . 72

Figure 4.2 Mapping from the reference tetrahedron K̂ to the physical tetrahedron K

where F1, F2 and F3 denote faces of the physical tetrahedron K. . . . . . . . . . 76

Figure A.1 Acute Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure A.2 Right Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure A.3 Obtuse Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure A.4 A triangle with the longest edge hK . . . . . . . . . . . . . . . . . . . . . 94

Figure A.5 Triangle with the height h . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure A.6 Usual Lagrangian Basis function of a triangle K . . . . . . . . . . . . . . 97

xv



CHAPTER 1

INTRODUTION

Many physical fundamental phenomena in nature, whether in the domain of fluid dynamics,

electricity, or heat flow, can be described by equations that involve physical quantities together

with their time and space derivatives. Equations involving time and space derivatives (partial

derivatives) are called partial differential equations [43, 44, 78]. However, it may not always

possible to obtain a closed form of the solution to these partial differential equations. Some-

times even, it is hard to know whether a unique solution exists or not. For these reasons, one

can approach to the solution of these partial differential equations by using some numerical

methods. One of the most widely used numerical methods to solve partial differential equa-

tions is finite element method, which is based on region discretization and each small region

is called elements (often triangles or quadrilaterals in 2D and tetrahedral, or prisms in 3D).

In this way, the original problem is transformed into a discrete problem for a finite number of

unknown coefficients [24, 35, 78].

Principally, two types of finite element approximations are possible; conforming and non-

conforming. If the approximated solution space is a subspace of weak solution space, the

method is called conforming finite element. If this condition is not satisfied, we obtain a

nonconforming element method [24].

In this thesis, we consider one of the non-conforming method, called discontinuous Galerkin

(DG) and its convergence analysis. Specifically, we focus on:

The problem of convergence analysis of interior penalty DG method for elliptic problems for

a residual type posteriori error estimation.

The second problem is to evaluate accurate constant for inverse inequalities in L2�norm,
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which is very important to obtain a reliable error and convergence analysis of the finite ele-

ment method.

1.1 On the Convergence of a Posteriori Error Estimation

One of the most common nonconforming method is Discontinuous Galerkin (DG) finite el-

ement method. It is known that DG finite element approximations are technically noncon-

forming finite element approximations, since an approximate solution is obtained from a fi-

nite dimensional space which is not a subspace of the weak solution space. This method was

first proposed and analyzed in 1973 by Reed and Hill [70] to solve the hyperbolic neutron

transport equation. DG methods for obtaining approximate solutions to elliptic partial differ-

ential equations have been around for several decades [8, 10, 11, 16, 36, 74, 84], and the use

of these methods has become widespread. Some of the major advantage of DG methods are

that they are locally conservative, stable, and high-order accurate methods which can easily

handle complex geometries, irregular meshes with hanging nodes, and also approximations

that have polynomials of different degrees in different elements [36, 37, 74].

Whether one uses conforming or nonconforming finite element method, error analysis is re-

quired to have confidence in the numerical approximation of the solution. Obviously, since

the error is defined in terms of the unknown weak solution to the partial differential equation

we cannot evaluate the error directly. However, the best one can do is to estimate error. Error

estimators can be categorized as either a priori or a posteriori. A priori error estimation is that

the error is estimated without employing the numerical solution. Indeed, the primary objec-

tive is to derive rates of convergence with respect to the discretization parameters in order to

evaluate the performance of a given numerical method. It means that a priori error estimators

involve the unknown solution to the partial differential equation. Hence it cannot actually be

used to estimate the value of the error. However, they can be used to predict the asymptotic

behavior of the error.

In contrast, a posteriori error estimators [2,3,13,82] do not involve the unknown weak solution

and are given instead in terms of quantities like the known data in the partial differential

equation, the discretization of the domain and the approximate solution. A posteriori error

estimators estimate the value of the error in an appropriate norm. They are important not

2



only for determining the accuracy of finite element approximations but also for implementing

adaptive refinement strategies.

In addition, a posteriori error estimation plays a key role in the assessment of the accuracy of

finite element simulations and in the control of adaptive refinement algorithms. One of the

most common types of error estimator is residual-based estimators. Residual-based estimators

involve terms which appear in the elementwise and edgewise terms in the residual equation.

Other types of a posteriori error estimators include hierarchical estimators and averaging

based estimators. Hierarchical estimators [14, 15] involve bounding the norm of the error

by the norm of the difference between the finite element approximation and an approximation

to the problem. Averaging based estimators [1, 29, 30] make use of a continuous smoothed

function obtained by averaging the approximate solution or its gradient. More precise details

of the above mentioned estimators as well as information on other types of a posteriori error

estimators can be found in [2, 3, 13, 82].

It is desirable for a posteriori estimators to provide two-sided bounds on the error up to un-

known positive constants that are independent of the size of the elements in the mesh. This is

important since it means that the estimator is efficient and reliable. By "reliable" we mean that

the estimator behaves in the same way with the error as the mesh is refined. Efficiency is also

important since it allows the estimator to be used to show that the approximation converges

with respect to an adaptive refinement strategy.

In practice, however it is not always possible to show that the estimator provide lower bound

(i.e.,estimator is less than some positive constant multiple of the norm of the error) since the

data may belong to an infinite dimensional space. Instead we pose for the estimator being

less than a positive constant multiple of the norm of the error plus terms which decrease at a

rate faster than the error, provided that the data is sufficiently smooth, as the mesh is refined.

The most common way of showing that estimators provide lower bounds on the error is to

use bubble function arguments. By this, the quality of an a posteriori error estimator can be

measured by its efficiency index, i.e.; the ratio of the estimated error and of the true error.

These have been first used in [80] and developed in [81] into the way in which they are most

commonly used now.

In order to realize the full flexibility of DG finite element methods, one generally wishes to

3



perform local refinements of the mesh in the neighborhood of regions where the accuracy is

poor. A posteriori error estimators are often used for this purpose, and to provide a stopping

criterion for an adaptive feedback procedure.

However, because of the presence of unknown constants, none of the a posteriori error esti-

mators provide actual computable upper bounds on the error. This type of estimator can be

found in literature [21, 22, 29, 31–33, 38, 39, 51, 55, 68, 76] for nonconforming finite element

approximations and [18, 28, 32, 53, 57, 59, 73, 75] for DG finite element approximations.

As stated in [73], the estimators commonly used in the above mentioned literature can only

be used as a error indicator not as estimators of the actual value of the error. It also means that

they cannot be used as a stopping criterion for an adaptive refinement procedure. Neverthe-

less, in practice the value of the unknown constant in the estimator is set equal to unity and

the estimator is used as a stopping criterion. While such error indicators have a role to play, if

one really wants to estimate the value of the error, then a new approach is required. The new

approach should contain a fully computable estimator.

In [5], actual computable bounds were obtained for both the broken energy seminorm and

the DG-norm of the error in the first order symmetric interior penalty DG finite element ap-

proximation of a linear second order elliptic problem with variable permeability on triangles.

While it is more common to obtain error estimates for DG methods in the parameter and mesh

dependent DG-norm it is also shown in [5] that the broken energy seminorm of the error was

in fact equivalent to the DG-norm of the error provided the interior penalty parameter is suffi-

ciently large. Recently, in [7], the approach of [5] is generalized to perform adaptivity with a

constant free fully computable posteriori error estimators which are applicable to symmetric

interior penalty DG, non-symmetric interior penalty DG and incomplete interior penalty DG

finite element approximations of first order on meshes containing hanging nodes

Adaptive procedures for the numerical solution of partial differential equations started in the

late 70’s and are now standard tools in science and engineering. We may refer to [82] on

adaptivity of elliptic partial differential equations. Adaptive finite element methods (AFEM)

are indeed a meaningful approach for handling multiscale phenomena and making realistic

computations feasible, especially in three dimensions.

A posteriori error estimators are an essential ingredient of the adaptivity. The ultimate purpose

4



of adaptivity is to construct a sequence of meshes that would eventually equidistribute the

approximation errors, and as a consequence the computational effort. To this end, a posteriori

error estimators are split into element indicators which are then employed to make local mesh

modifications by refinement and coarsening. The principal goal of an adaptive algorithm is to

achieve a user specified error level in a finite number of cycles. A typical cycle consists of the

following basic steps:


 Solve: For a given mesh, we calculate the approximation solution on this mesh.


 Estimate: Estimate the error of the approximation for each element by using error

estimator.


 Mark: Mark the triangle which is error considerably larger by a specific marking strat-

egy.


 Refine: Refine the given mesh using the information above to obtain a new refine mesh.

Experience strongly suggests that, starting from a coarse mesh, such an iteration always con-

verges within any prescribed error tolerance in a finite number of steps.

The convergence of adaptive algorithms for elliptic problems started with the work of Babuska

and Vogelius [12] where a detailed treatment of the one-dimensional case was given. A con-

vergence proof is given in [41] for the two-dimensional case for the standard Galerkin method

using linear elements while outlining an extension to quadratic elements. One of the high-

lights of this work is that bounds on the convergence rate were provided, which was not the

case for [12]. Further studied is given in [64–66], whereas the issue of optimal order of con-

vergence has been addressed in [20] and [79]. Non-standard finite element techniques such as

mixed and nonconforming methods and edge element discretization of Maxwell’s equations

have been recently investigated in [25–27]. On the other hand, the initial mesh had to be fine

enough to essentially get the solution. The latter issue is provided the starting point for the

work of [65, 66], who introduced the concept of data oscillation. The nagging issue of calcu-

lating this quantity accurately on a coarse mesh is not resolved and should be treated within

the larger and important framework of accounting for the quadrature errors arising from the

implementation of the finite element formulation as well as from the calculation of certain

terms in the a posteriori estimators. More recently, a modification of the algorithm of [66] is

proposed in [20] that incorporates coarsening to prove optimal work for estimates.

5



In the recent works of [23, 52, 59], a convergence analysis of symmetric interior penalty DG

finite element methods for elliptic problems have been obtained. They used the same estimator

to analyze convergence of the method.

In [59] regularity conditions for datums were very restrictive. Solution is needed extra regu-

larity conditions. Two successive subdivisions are not too far from each other. A relatively

large amount of new nodes (12 vertices for piecewise linear elements in 2D) must be created

by refining each marked element. Hoppe et al. [52] improved upon [59]: first the refinement

procedure consists of just one bisection per marked element, and second regularity conditions

for datum is more flexible. However, [52] assumes that the ensuing data oscillation con-

tracts relative to itself between consecutive iterates, which is not guaranteed when marking

only by the estimator. Also, the technique used in [52] for the error analysis is based on the

Crouzeix-Raviart element, and thereby applies only to conforming meshes. To enforce the

aforementioned contraction of data oscillation, one would need to mark also by oscillation.

Unfortunately, this would lead to separate marking and, as discussed by [34], to the risk of

getting sub-optimal meshes. However, [23] extended and improved the deficiencies of [52,59]

in several respects. First, the less restrictive data regularity is assumed. Secondly, different

types of nonconforming subdivisions are allowed such as tetrahedral or hexahedral meshes

with hanging nodes. Also, the complexity of refine with fixed level of non-conformity is ex-

amined. Each marked element is refined using only one subdivision, either quad-refinement

for hexahedral meshes, or red-refinement and bisection for tetrahedral meshes. Contraction

property of the adaptive DG finite element method is proved, without further assumptions

on refine, for the sum of energy error and scaled error estimator. Also, it is shown that the

approximation classes consisting of continuous and discontinuous finite elements are equiva-

lent. Quasi-optimal asymptotic rate of convergence for the adaptive DG finite element method

is derived, which seems to be the first result of this type in the literature for DG methods. A

quasi-optimal asymptotic rate of convergence for the continuous Galerkin method on (hex-

ahedral and tetrahedral) nonconforming meshes is obtained. However, in [52, 59], mixed

boundary conditions are considered, while in [23] homogeneous Dirichlet boundary condi-

tion is assumed to simplify given technical presentation.

In this thesis, as different from [23,52,59], we use a new estimator which is introduced in [7].

The aforementioned estimator provides actual computable numerical bounds on the error in

the broken energy seminorm and DG-norm. Using this estimator, we proved convergence
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of the adaptive DG method for symmetric second order linear elliptic operators with explicit

fully computable constant.

1.2 On the Inverse Estimation

The process of designing finite element methods has become increasingly dependent in recent

years on understanding the mathematical framework underlying this methodology. This is

evident from the advent of a profusion of new classes of methods which are founded on the

basis of error analysis. In such cases, additional quantities are introduced into the formulation

in order to demonstrate convergence of numerical solutions to the exact solution, usually at

optimal or quasi-optimal rates.

Accurate approximate values for the constants which appear in the convergence analysis are

crucial for the correct derivation of a priori and a posteriori error estimations.

Convergence proofs frequently make use of well known inequalities of functional analysis.

For the purpose of analysis it is sufficient to know that these inequalities hold for positive con-

stants. In addition, for general-purpose definitions of the mesh parameter (e.g., the length of

the longest element side in the mesh) for regular elements (i.e., aspect ratios and distortion are

limited) on quasi-uniform meshes (in which elements are of essentially same size). However,

these restrictions on the mesh are frequently violated in the computation of solutions to engi-

neering problems. In contrast to the perspective of mathematical analysis, when constructing

methods for practical implementation, engineers need to be concerned with precise contex-

tual definitions of the element size and sharp estimation of the constants to determine the

coefficients of the least-squares terms. Indeed, various techniques employed in estimating the

coefficients in inverse and trace inequalities and many others. Those quantities are computed

for many cases. In this thesis, we also deal with the coefficients of inverse inequalities.

Inverse inequalities (or Markov inequalities) play an important role in many areas of math-

ematical research. For instance, they are commonly used in the error analysis of variational

methods such as finite element methods and DG methods for solving partial differential equa-

tions. Explicit constants for some inverse inequalities can be found in [46]. The classical
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Markov inequality for univariate polynomials states that for any polynomial u total degree N

}u1}L8pra,bsq ¤
2N2

|b � a| }u}L8pra,bsq.

A discussion of the exact constant in the univariate Markov inequality is given in [19]. It

is proved that for a polynomial degree at most N with real coefficients that have at most m

distinct complex zeros,

}u1}L8r�1,1s ¤ 32 � 8mN}u}L8r�1,1s.

Another discussion of the exact constant in the univariate Markov inequality in L2-norm is

given in [62]. In [62] it is proved that for a polynomial u total degree N

}u1}L2pr�1,1sq ¤ MN}u}L2pr�1,1sq,

where MN coincides with the largest positive root of the following equation

N�1
2̧

k�0

p�1qkx�2k pN � 1 � 2kq!
22k2k!pN � 1 � 2kq! � 0 , (1.1)

where a new simple elementary method is presented for finding MN . By using spectral anal-

ysis methods, the special case of the L2-norm has been previously studied in [50]. It is shown

that MN is the solution of a certain equation which is equivalent to (1.1).

In [77], it is proved that for a polynomial u total degree N on a finite interval, the following

inequality holds

}u1}L2pra,bsq ¤ 2
?

3
N2

|b � a| }u}L2pra,bsq.

In the last thirty years possible extensions of the above estimations for multivariate polyno-

mials have been widely investigated.

In [40], the following result is proved: for a polynomial u of total degree N and a bounded

convex set K ����Bu
Bξ

����
LppKq

¤ CN2}u}LppKq

for 0   N ¤ 8, B
Bξ an arbitrary unit directional derivative, and C a constant independent of

N and u.

In [47], it is shown that certain directional derivatives of polynomials in two variables have

a unit bound at the Chebyshev nodes. A Markov-type estimate for an arbitrary convex body

K � Rm is given in [85]. For a convex body K � Rm, the minimal distance between two
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parallel supporting hyperplanes for K is denoted by wpKq. Then, in [85], for a polynomial of

total degree N, it holds:

}∇u}L8pKq ¤
4N2

wpKq}u}L8pKq.

In [67], the above inequality is verified in the special case when K is a triangle in R2. A

similar result was shown in [63] improving the constant as 4N2 � 2N instead of 4N2.

In addition, in [77], it is proved that for a polynomial u total degree N, Markov inequality

holds for a triangle K or quadrilateral Q with an unknown constant C in L2 and L8-norm,

}∇u}L8pKq ¤ CN2}u}L8pKq,

}∇u}L2pKq ¤ CN2}u}L2pKq.

In conclusion, using the above inequalities, one may get an exact constant for univariate

Markov inequality in L8-norm and L2-norm. Moreover, one can estimate the exact constant

for multivariate Markov inequalities in L8-norm. We emphasize that by using these results,

constants for univariate and multivariate Markov inequalities in L2-norm for several dimen-

sions can be obtained.

To summarize; obtaining efficient and reliable analysis is very important task in the numerical

approximation of partial differential equations. The accomplishments of this thesis can be

summarized as follows:

1. Fully computable convergence analysis is obtained to get error reduction property. One

can realize that how large interior penalty parameter, one needs to get convergence

result in adaptive strategy.

2. Inverse inequality constants which are very important in correct derivation of conver-

gence analysis of the partial differential equations are given up to polynomial degree 10

for 1D, 2D and 3D problems.

The remainder of this thesis is organized as follows.

Chapter 2 of thesis defines some notations and preliminaries used through this thesis. We

also discuss some ways of partitioning the domain over which the problem is posed. Chapter

2 is concluded with an important result which allows us to decompose the broken energy

seminorm of the error into conforming and nonconforming components [4].
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In Chapter 3, we consider fully computable convergence analysis, in which the error does not

contain any unknown constants. Specifically, DG finite element approximation of first order

on meshes is given with an arbitrary number of hanging nodes.

We then go on to give an exact constant for inverse estimates which is used in mathematical

analysis frequently, in Chapter 4. For 1D, 2D and 3D problems, inverse estimates constant is

given up to polynomial degree 10.

Summary and a novel contributions of our established results are discussed in Chapter 5.
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CHAPTER 2

NOTATIONS and PRELIMINARIES

2.1 The Model Problem

Assume that Ω � R2 is a bounded domain with a polygonal boundary denoted by Γ. Let Ω

denote the closure of a region Ω. Let x � px , yqT denote the position vector of a point on

Ω where the superscript T denotes the transpose. Also, the L2 inner product over a region Ω

denoted by p�, �qΩ and its norm is given with

} � }Ω � p�, �q1{2
Ω
,

where the L2-inner product space

L2pΩq �
 

v : }v}L2pΩq   8(
.

The Sobolev spaces are

H1pΩq � tv : v P L2pΩq,∇v P L2pΩq � L2pΩqu and

H1
DpΩq � tv : v P H1pΩq, v � 0 on ΓDu

with the operator ∇ being such that

∇ �
� B
Bx

B
By


T

.

Also, we use the following space:

Hpdiv; Ωq � tv : v P L2pΩq � L2pΩq, divv P L2pΩqu

with the operator div being such that

div v � B
Bx

v1 � B
By

v2 for v � pv1 , v2qT .
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Then, consider the following model problem

�divpA∇uq � f in Ω,

u � q on the Dirichlet boundary ΓD,

A∇u � nΓN � g, on the Neumann boundary ΓN ,

where the disjoint sets ΓD and ΓN form a partitioning of the boundary Γ of the domain Ω and

nΓN is the outward unit normal vector to ΓN . The data satisfy f P L2pΩq, g P L2pΓNq and

q P L2pΓDq, and A is symmetric and positive definite and satisfies the condition that we can

decompose Ω into polygons such that A P R2�2 on each of these polygons, i.e., if we start

with a coarse mesh called Ph,0, then A is constant on that mesh only.

The standard weak formulation of problem (2.1) is: Find u P H1pΩq such that

pA∇u,∇vq � p f , vq � pg, vqΓN @v P H1
DpΩq. (2.1)

2.1.1 The Partitioning of the Domain and Some Standard Notation

Let Ph be a partition of a domain Ω and K denotes an individual triangle. The boundary of

triangle K is denoted by BK.

The set containing the individual edges of triangle K is denoted by EK . Likewise, EI
h, ED

h and

EN
h stand for the sets of edges defined by

EI
h �

!
γ : γ � BK X BK

1

,K,K
1 P Ph

)
,

ED
h �

!
γ � ΓD : γ P EK for some K P Ph

)
,

EN
h �

!
γ � ΓN : γ P EK for some K P Ph

)
,

and let BPh � EI
hYED

h YEN
h . We use |K| and |γ| to refer the area of triangle K and the length

of edge γ, respectively. The size and shape of an element K of Ph are measured in terms of

two quantities, hK and ρK , defined as:

hK :� Longest edge of an element K,

ρK :� suptdiampBq; B is a ball contained in Ku.

Definition 2.1.1 A family of partitions Ph is said to be shape regular if there exists a number

% ¡ 0, independent of hK and K such that

hK

ρK
¤ %, @K P Ph. (2.2)
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We assume all partitions Ph are shape regular in this thesis.

2.2 Projection Operators

For m P N0, PmpKq signifies the space of polynomials on K P Ph of total degree at most m.

Similarly, Pmpγq denotes the space of polynomials on γ P BPh of total degree at most m, with

respect to the arc length parameter on edge γ.

For v P L2pKq, let Π
pmq
K v P PmpKq be the function satisfying

pv � Π
pmq
K v, pqK � 0 for all p P PmpKq.

Similarly, for v P L2pγq and γ P BPh, let Π
pmq
γ v P Pmpγq be the function satisfying

pv � Π
pmq
γ v, pqγ � 0 for all p P Pmpγq.

2.3 Jumps and Average

For each element K P Ph, let v|K refer the restriction of v to K P Ph. Let nγ be a fixed unit

normal vector for each edge γ P EI
h shared by two adjacent elements K and K1. For a function

v such that v|K P H2pKq for all K P Ph, average and jumps are defined by

xn � A∇vyγ �
$&
%

1
2

�
nγ � AK∇v|K � nγ � AK1∇v|K1

�
on γ � BK X BK1,

nγ � AK∇v|K on γ P EK X ED
h ;

rvsγ �
$&
% v|K � v|K1 on BK X BK1 � γ,

v|K on γ P EK X ED
h ;

rn � A∇vsγ �

$'''&
'''%

nγ � AK∇v|K � nγ � AK1∇v|K1 on BK X BK1 � γ,

nγ � AK∇v|K � Π
p0q
γ g on γ P EK X EN

h ;

0 on γ P EK X ED
h ;

where AK � A|K P R2�2.

2.4 Data Oscillation

The oscillation of the datum f on an element K P Ph is defined to be

oscp f ,K,mq � |K|1{2} f � Π
pmq
K f }K . (2.3)
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Likewise, the oscillation of the Neumann datum g on an edge γ P EN
h X EK is defined to be

oscpg, γ,mq � |γ|1{2}g � Π
pmq
γ g}γ. (2.4)

The oscillation of the Dirichlet data q on an edge γ P EK X ED
h is defined to be

oscpq, γq � |γ|1{2} Bq
Bsγ

� Π
p0q
γ

Bq
Bsγ

}γ, (2.5)

where sγ is the arc length parameter on edge γ.

2.5 DG Finite Element Approximations

We assume that, the solution of this problem is a first order DG finite element approximation

obtained on a mesh where there is an arbitrary, but bounded, number of hanging nodes. The

DG finite element space on Ph is defined by

Xh � tv : Ω ÝÑ R : v|K P P1pKq @K P Phu.

Let τ P t�1, 1u be fixed and, for w, v P Xh, define the bilinear form Bh : Xh � Xh ÝÑ R by

Bhpw, vq �
¸

KPPh

pA∇w,∇vqK �
¸

γPEI
hYED

h

�xn � A∇wyγ, rvsγ
�
γ

� τ
¸

γPEIYED
h

�rwsγ, xn � A∇vyγ
�
γ
�

¸
γPEI

hYED
h

�
κ

|γ| rwsγ, rvsγ


γ

(2.6)

and linear form L : Xh ÝÑ R by

Lpvq �
¸

KPPh

p f , vqK �
¸
γPEN

h

pg, vqγ

�
¸
γPED

h

�
κ

|γ|q, v


γ

� τ
¸
γPED

h

�
q, xn � A∇vyγ

�
γ
,

where the κ ¡ 0 are the usual interior penalty parameters. We can obtain the DG finite element

approximation of the solution by finding uh P Xh such that

Bhpuh, vq � Lpvq @v P Xh. (2.7)

2.6 The Broken Energy Seminorm and DG-norm of the Error

For functions v such that v|K P H1pKq for all K P Ph, the operator ∇Ph is defined by

p∇Phvq|K � p∇vq|K for K P Ph.
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We also define the curl operator with

curl �
� B
By

, � B
Bx


T

.

The broken energy seminorm over a region w is denoted by

~.~w � pA∇Ph �,∇Ph �q1{2
w (2.8)

where we omit the subscript in the case where w � Ω. We shall decompose the broken

energy seminorm of the error into conforming and nonconforming components. This is done

by using a generalization of the Helmholtz decomposition of the space L2pΩq � L2pΩq into

the gradient of a function in the space H1
DpΩq plus the curl of a function in the space

H � tw P H1pΩq : pw, 1qΩ � 0 and tΓN � ∇w � 0 on ΓNu, (2.9)

where tΓN is a tangent vector to ΓN . We shall use the result proved in [4] to decompose the

broken energy seminorm of the error eh in discontinuous Galerkin finite element approxima-

tions of the solution to problem (2.1) as follows.

Theorem 2.6.1 The error eh defined by eh � u � uh may be decomposed into the form

A∇Pheh � A∇φh � curlψh,

where the conforming error φh P H1
DpΩq satisfies

pA∇φh,∇vq � pA∇Pheh,∇vq @v P H1
DpΩq, (2.10)

and the nonconforming error ψh P H satisfies

pA�1curlψh, curlwq � p∇Pheh, curlwq @w P H . (2.11)

Moreover,

~eh~2 � ~φh~2 � pA�1curlψh, curlψhq. (2.12)

The importance of this theorem is that it allows us to write ~eh~2 as the sum of a conform-

ing part ~φh~2 and a nonconforming part pA�1curlψh, curlψhq, which reduces the task of

obtaining an estimator for ~eh~ to that of obtaining separate estimators for each of the two

terms in this decomposition. Let the DG-norm over a region ω be denoted by

~ � ~2
DG,ω � ~ � ~2

ω �
¸

γPEI
hYED

h
γ�ω

κ

|γ|
���r�sγ���2

γ
,

with ~ � ~DG � ~ � ~DG,Ω.
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2.7 Trace and Inverse Estimates

We shall make frequent use of the following trace and inverse inequalities

Theorem 2.7.1 For an interval K � ra, bs the following result holds :

@u P P1pKq |upaq| ¤ 2|a � b|�1{2}u}K . (2.13)

Proof. It was proved in [83], Theorem 2. �

Theorem 2.7.2 For a planar triangle, K, the following result holds :

@u P P1pKq }u}BK ¤ 2
a

3%h�1{2
K }u}K

and

@u P P0pKq }u}BK ¤ 2
?
%h�1{2

K }u}K .

Proof. The proof is given in [83], Theorem 3. �

Theorem 2.7.3 Let K is a planar triangle. For all u P P1pKq, the following multivariate

Markov inequality holds

}∇u}K ¤ Cih�1
K }u}K (2.14)

with Ci � 4
?

6%.

Proof. Proof is given in Chapter 4. �

Using the above results for trace and inverse inequalities, we get the following estimates, for

u P Xh, and γ P BK1 X BK2 with γ P EI
h:

}xn � A∇uyγ}γ � 1
2
}nγ � pA∇uq|K1 � nγ � pA∇uq|K2}γ

¤ 1
2
}nγ � pA∇uq|K1}γ �

1
2
}nγ � pA∇uq|K2}γ

¤ ?
%h�1{2

K1
}A∇u}K1 �

?
%h�1{2

K2
}A∇u}K2 (2.15)

and for γ P ED
h Y EN

h and γ P EK

}n � A∇u}γ ¤ 2
?
%h�1{2

K }A∇u}K (2.16)
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and for γ P BK1 X BK2 and γ P EI
h

}rusγ}γ � }u|K1 � u|K2}γ
¤ }u|K1}γ � }u|K2}γ
¤ 2

a
3%h�1{2

K1
}u}K1 � 2

a
3%h�1{2

K2
}u}K2 , (2.17)

where hK1 and hK2 are the lengths of the longest edge of the elements K1 and K2, respectively.

By using (2.14), for all u P P1pKq

}A∇u}K ¤ }A}K}∇u}K ¤ 4
?

6%ρpAKqh�1
K }u}K � CiρpAKqh�1

K }u}K . (2.18)

It is known that for symmetric and positive definite matrices

}A}K � ρpAKq, (2.19)

where ρp�q denotes spectral radius of a matrix.
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CHAPTER 3

FULLY COMPUTABLE CONVERGENCE ANALYSIS of

DISCONTINOUS GALERKIN FINITE ELEMENT

APPROXIMATION WITH an ARBITRARY NUMBER of

LEVELS of HANGING NODES

We obtain a fully computable convergence analysis on the broken energy seminorm in first

order symmetric interior penalty DG finite element approximations of a linear second or-

der elliptic problem. Our mesh contain an arbitrary number of levels of hanging nodes and

is comprised of triangular elements. We use an estimator which is completely free of un-

known constants and provide a guaranteed numerical bound on the broken energy norm of

the error. This residual-type a posteriori error estimator is introduced and analyzed for a DG

formulation of a model second-order elliptic problem with Dirichlet-Neumann-type boundary

conditions in [69]. An adaptive algorithm using this estimator together with specific marking

and refinement strategies is constructed and shown to achieve any specified error level in the

energy norm in a finite number of cycles. The convergence rate is linear with a guaranteed

error reduction at every cycle.

3.1 The Convergence Result

Rankin’s fully computable upper bound on broken energy seminorm of the error eh in the first

order DG finite element approximation [69] can be summarized as follows:

LetV index the set of the vertices of the elements in Ph. For K P Ph, letVpKq index the set

of the vertices of element K and, for γ P BPh, letVpγq index the vertices at the endpoints of
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γ.

For any element K P Ph, let TK be a sub-partitioning of K which is created by performing

uniform refinements of K such that every vertex inV which lies on BK is located at a vertex

of a triangle in TK . We shall use BTK to denote the set of the edges of the triangles in TK .

Upper Bound for Conforming Part : Let ΦK be conforming part error estimator defined as

follow:

ΦK � pA�1σTK ,σTK q1{2
K � CK

��� f � Π
p0q
K f

���
K
�

¸
γPEKXEN

h

Cγ}g � Π
p0q
γ g}γ, (3.1)

where σTK is fully computable and bounded by

�
A�1σTK ,σTK

�
K ¤ Cσ

¸
γ1PEK

¸
γPBPh
γ�γ1

|γ|}Rγ1,K}2
γ, (3.2)

where

Rγ1,K � �rn � A∇uhsγ �
�

κ

|γ|2 , ruhsγ


γ

on γ P BPh such that γ � γ1 P EK . The constants CK , Cγ and Cσ are the fully computable

constants defined as follows:

CK � hK

π
ρpA�1

K q1{2. (3.3)

For γ P EK X EN
h , let

Cγ �
�
|γ|
|K|

hK

π

�hK

π
� max

γ1PEK
γ1�γ

|γ1|
	�1{2

ρpA�1
K q1{2 (3.4)

and

Cσ � 3
2
%ρpA�1

K q

where hK is the length of the longest edge of element K, % is the shape regularity parameter

defined in (2.2) and ρpA�1
K q and ρpAKq are the spectral radius of the matrices A�1

K and AK

respectively, defined in (2.19). Then, it was proved in [69] that

~φh~2 ¤
¸

KPPh

Φ2
K . (3.5)

An explicit expression for pA�1σTK ,σTKqK

An explicit formula was given in [69] for pA�1σTK ,σTK qK which can be used in the cases
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when there are no hanging nodes per edge of element K or at most one hanging node per edge

of element K and at most two levels of refinement per edge of element K. Here, we give the

result for the case when there are no hanging nodes per edge of element K.

Theorem 3.1.1 Let K P Ph be an element without any hanging nodes on its edges and sup-

pose the vertices and edges of element K P Ph are labeled as following,

Figure 3.1: Direction and enumeration of the vertices, edges, unit tangent vectors and unit
normal vectors of triangle K.

For ~R P R3 define discrete norm }~R}RK by the rule

}~R}2
RK

� ~RRK ~RT

with RK being a 3 � 3 matrix with entries

rRKsi j �
|γi| |γ j|
4|K|2

»
K
px � xiqT A�1px � x jqdx

Then

pA�1σTK ,σTK qK � }rRγ1,K , Rγ2,K , Rγ3,Ks}2
RK
.

Upper Bound for Nonconforming Part : For a point xm � Ω , let Ωm denote the set of elements

in Ph whose closure contains the point xm and BΩm denote the set of edges in BPh which lie

on the boundary of Ωm. Also, #Ωm denotes the number of elements of Ph contained within

the set Ωm.

For K P Ph and γ P EK X ED
h , we define the space

H1
γpKq � tv : v P H1pKq, v � 0 on BKzγu.

20



Let K P Ph be given. Let VpTKq index the set of position vectors xm of the vertices of the

triangles in TK and letVBKpTKq denote the restriction of this set to the vertices which lie on

the boundary of element K. Similarly, VDpTKq denotes the restriction of VBKpTKq to the

vertices which lie on the closure of the Dirichlet boundary ΓD. We can define the function qI,h

be such that qI,h|γ P P1pγq for all γ P ED
h and qI,hpxmq � qpxmq for all m P VDpTKq.

Let Spuhq be a continuous function on Ω satisfying Spuhq|K P P1pKq for all K P TK for all

K P Ph, such that

Spuhq �

$'''&
'''%

qI,hpxmq if m P VDpTKq
uh|Kpxmq if m P VpTKq zVBKpTKq

1
#Ωm

°
K1PΩm

uh|K1pxmq if m P V XVBKpTKq zVDpTKq.

The estimator ΨK of the nonconforming part of the error is defined as follows,

ΨK � ~uh � Spuhq~K �
¸

γPEKXED
h

inf
vPH1

γpKq:
v|γ�q�qI,h

~v~K

Then, it was proved in [69]

pA�1curlψh, curlψhq ¤
¸

KPPh

Ψ2
K (3.6)

Then by (2.12), (3.5)and (3.6), the broken energy seminorm of the total error eh � u� uh can

be bounded as

~eh~2 ¤
¸

KPPh

�
Φ2

K � Ψ2
K

�
.

3.1.1 The Adaptive Algorithm

An adaptive finite element method for the DG consists of the successive loops of the following

sequence:

1. Solve: Given a meshPH , a DG approximation uH is constructed by solving the equation

BHpuH , vq � Lpvq @v P XH .

2. Estimate: A posteriori error estimation of the error eH is obtained by calculating�
Φ2

K � Ψ2
K

�
for all K P PH .
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3. Mark: Based on the information supplied by the a posteriori error estimate certain

triangles of PH are marked for refinement.

4. Refine: The triangles marked for refinement in step 3 are refined in a specific way. This

refinement strategy defines the new mesh Ph.

By using the above adaptive strategy, our main goal is to show following inequality

Bhpeh, ehq ¤ ηBHpeH , eHq (3.7)

where 0   η   1 is a fully computable constant and uH and uh are the DG solutions in XH

and Xh, respectively.

The following orthogonality relation is essential in the proof of (3.7).

Lemma 3.1.2 Let Ph be a local refinement of PH , such that XH � Xh with the DG solutions

uH and uh, then the following relation holds for symmetric DG,

BhpeH , eHq � Bhpeh, ehq � Bhpuh � uH , uh � uHq. (3.8)

Proof. By Galerkin orthogonality Bhpeh, vq � 0 for all v P Xh. Hence uh � uH P Xh is

perpendicular to u � uh. Therefore

Bhpu � uh, uh � uHq � Bhpeh, uh � uHq � 0.

Since, bilinear form is symmetric, one can rewrite as

Bhpuh � uH , ehq � Bhpeh, uh � uHq � 0.

The decomposition u � uH � pu � uhq � puh � uHq yields

BhpeH , eHq � Bhpeh � puh � uHq, eh � puh � uHqq
� Bhpeh, ehq � Bhpeh, uh � uHqloooooooomoooooooon

�0

� Bhpuh � uH , ehqloooooooomoooooooon
�0

�Bhpuh � uH , uh � uHq

� Bhpeh, ehq � Bhpuh � uH , uh � uHq.

�

Before engaging in the proof of the Theorem 3.7, we immediately notice a difficulty pre-

sented by the fact that we have BhpeH , eHq on the left-hand side of the last equality instead

of BHpeH , eHq. However we can tackle this difficulty by using the fact that BhpeH , eHq is

bounded by BHpeH , eHq, following the argument in [59],
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Lemma 3.1.3 (Karakashian, Pascal, 2007) Suppose Ph be a local refinement of PH . Then

BhpeH , eHq ¤ BHpeH , eHq � κ
¸
γPEI

H

pδpγq � 1q|γ|�1}ruHsγ}2
γ

� κ
¸
γPED

H

pδpγq � 1q|γ|�1}q � uH}2
γ (3.9)

where δpγq � maxt |γ||γ1| | γ1 P Eh Y ED
h , γ

1 P γu.

Proof. By (2.6) we have

BhpeH , eHq �
¸

K1PPh

~eH~2
K1 � p1 � τq

¸
γ1PEI

hYED
h

�xn � A∇eHyγ1 , reHsγ1
�
γ1
�

¸
γ1PEI

hYED
h

κ

|γ1| }reHsγ1}2
γ1

Since u P H1pΩq and uH is a polynomial on each K P PH , we have

¸
K1PPh

~eH~2
K1 �

¸
KPPH

~eH~2
K .

If γ1 P EI
h is a completely new edge in other words if γ1 P EI

h X K̊ where K̊ refers the interior

edge of some K P PH , then reHsγ1 � 0. Also, the edges γ1 P ED
h are parts of edges in ED

H , then

¸
γ1PED

h

�xn � A∇eHyγ1 , reHsγ1
�
γ1
�

¸
γ1PED

h

pn � A∇eH , eHqγ1 �
¸
γPED

H

pn � A∇eH , eHqγ .

So,one obtains

¸
γ1PEI

hYED
h

�xn � A∇eHyγ1 , reHsγ1
�
γ1
�

¸
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
.

For the term
°
γ1PEI

hYED
h

κ
|γ1|}reHsγ1}2

γ1
, we can define δpγq � maxt |γ||γ1| | γ1 P Eh Y ED

h , γ
1 P γu

which is a finite number. Then, it can be written that

¸
γ1PEI

hYED
h

κ

|γ1| }reHsγ1}2
γ1 ¤

¸
γPEI

HYED
H

δpγq κ
|γ| }reHsγ}2

γ.

We conclude,

BhpeH , eHq ¤
¸

KPPH

~eH~2
K � p1 � τq

¸
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
�

¸
γPEI

HYED
H

δpγq κ
|γ| }reHsγ}2

γ

� BHpeH , eHq �
¸

γPEI
HYED

H

pδpγq � 1qκ|γ|�1}reHsγ}2
γ.

Since }reHsγ}γ � }ruHsγ}γ for all γ P EI
H and }reHsγ}γ � }q � uH}γ for all γ P ED

H , we get

the desired result. �

To prove(3.7), we use the following key identity
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Lemma 3.1.4 Let uH and uh denote the DG solutions in XH and Xh. Then,¸
KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇uHsγ, xvyγ
�� ¸

γPEN
h

pg � n � A∇uH , vqγ

� Bhpuh � uH , vq � τ
¸
γPEI

h

�ruHsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uH , n � A∇vqγ

�
¸

KPPh

pA∇puh � uHq,∇vqK � τ
¸
γPEI

h

�ruhsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uh, n � A∇vqγ(3.10)

for all v P Xh X H1
0pΩq

Proof.: For the proof, apply the integration by parts to¸
KPPh

pA∇eH ,∇vqK .

Then,¸
KPPh

»
K

A∇eH � ∇v � �
¸

KPPh

»
K

divpA∇eHqv �
¸

KPPh

»
BK
pn � A∇eHq v

� �
¸

KPPh

»
K

divpA∇pu � uHqqv �
¸

KPPh

»
BK
pn � A∇eHq v

�
¸

KPPh

»
K
p f � divpA∇uHqqv �

¸
KPPh

»
BK
pn � A∇eHq v, @v P Xh.

We observe that the boundary integrals are defined on each element boundary as:¸
KPPh

»
BK
pn � A∇eHq v �

¸
γPED

h

»
γ

n � A∇eHv �
¸
γPEN

h

»
γ

n � A∇eHv

�
¸
γPEI

h

»
γ
pn � A∇eHq|Kv|K � pn � A∇eHq|K1v|K1 .

Moreover, the treatment of the interior boundary integrals is as follows: Given an edge γ P EI
h

shared by two adjacent elements K and K1, for a fixed unit normal vector nγ for each edge γ,

it can be written that

pn � A∇eHq|Kv|K � pn � A∇eHq|K1v|K1 � nγ � pA∇eHq|Kv|K � nγ � pA∇eHq|K1v|K1 .

By analogy with the formula below:

ac � bd � 1
2
pa � bqpc � dq � 1

2
pa � bqpc � dq,

we can write the integrand as

n � pA∇eHq|Kv|K � n � pA∇eHq|K1v|K1 � 1
2

�
n � pA∇eHq|K � n � pA∇eHq|K1

� pv|K � v|K1q

� 1
2

�
n � pA∇eHq|K � n � pA∇eHq|K1

� pv|K � v|K1q
� xnγ � A∇eHyγrvsγ � rnγ � A∇eHsγxvyγ.
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Note that ¸
γPEN

h

»
γ

n � A∇eHv �
¸
γPEN

h

»
γ
pg � n � A∇uHqv,

so we get

¸
KPPh

»
K

A∇eH � ∇v �
¸

KPPh

»
K
p f � divpA∇uHqqv �

¸
γPEI

h

»
γ
xn � A∇eHyγrvsγ

�
¸
γPEI

h

»
γ
rn � A∇eHsγxvyγ �

¸
γPED

h

»
γ

n � A∇eHv

�
¸
γPEN

h

»
γ
pg � n � A∇uHqv. (3.11)

From the definition of Bhp., .q, we have

BhpeH , vq �
¸

KPPh

pA∇eH ,∇vqK �
¸

γPEI
hYED

h

�xn � A∇eHyγ, rvsγ
�
γ

� τ
¸

γPEI
hYED

h

�reHsγ, xn � A∇vyγ
�
γ

�
¸

γPEI
hYED

h

�
κ

|γ| reHsγ, rvsγ


γ

@v P Xh. (3.12)

Inserting (3.11) into (3.12) yields

BhpeH , vq �
¸

KPPh

»
K
p f � divpA∇uHqq v �

¸
γPEI

h

»
γ
xn � A∇eHyγ rvsγ

�
¸
γPEI

h

»
γ
rn � A∇eHsγ xvyγ �

¸
γPED

h

»
γ

pn � A∇eHq v (3.13)

�
¸
γPEN

h

»
γ

pg � n � A∇uHq v �
¸

γPEh
IYED

h

�xn � A∇eHyγ, rvsγ
�
γ

�τ
¸

γPEI
hYED

h

�reHsγ, xn � A∇vyγ
�
γ
�

¸
γPEI

hYED
h

�
κ

|γ| reHsγ, rvsγ


γ

.

In the right hand side of (3.13), second, fourth and sixth terms cancel each other. Then, one

obtains

BhpeH , vq �
¸

KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇eHsγ, xvyγ
�
γ

�
¸
γPEN

h

pg � n � A∇uH , vqγ � τ
¸

γPEI
hYED

h

�reHsγ, xn � A∇vyγ
�
γ

�
¸

γPEI
hYED

h

�
κ

|γ| reHsγ, rvsγ


γ

.
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Rewriting the last equality and letting

rn � A∇eHsγ � rn � A∇pu � uHqsγ � �rn � A∇uHsγ,

gives us following equality

¸
KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇uHsγ, xvyγ
�� ¸

γPEN
h

pg � n � A∇uH , vqγ

� BhpeH , vq � τ
¸

γPEI
hYED

h

�reHsγ, xn � A∇vyγ
�
γ
�

¸
γPEI

hYED
h

�
κ

|γ| reHsγ, rvsγ


γ

.

If we write EI
h Y ED

h separately and observe that reHsγ � eH , xn � A∇vyγ � n � A∇v, rvs � v

on Dirichlet boundary, we obtain:

¸
KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇uHsγ, xvyγ
�� ¸

γPEN
h

pg � n � A∇uH , vqγ

� BhpeH , vq � τ
¸
γPEI

h

�reHsγ, xn � A∇vyγ
�
γ
�

¸
γPEI

h

�
κ

|γ| reHsγ, rvsγ


γ

� τ
¸
γPED

h

peH , n � A∇vqγ �
¸
γPED

h

�
κ

|γ|eH , v


γ

@v P Xh.

Now, in the convergence analysis, the terms containing κ make trouble. So it is important to

eliminate these term. If we use test function from the subspaces Xh X H1
0pΩq, then we can

tackle with this trouble. Then, the last inequality becomes

¸
KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇uHsγ, xvyγ
�� ¸

γPEN
h

pg � n � A∇uH , vqγ

� BhpeH , vq � τ
¸
γPEI

h

�reHsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

peH , n � A∇vqγ @v P Xh X H1
0pΩq.

Also we can write BhpeH , vq � Bhpuh � uH , vq � Bhpu � uh, vq and note that Bhpu � uh, vq �
0 @v P Xh.

Note that reHsγ � �ruHsγ on EI
h and eH � q � uH on ED

h . This yields

¸
KPPh

p f � divpA∇uHq, vqK �
¸
γPEI

h

�rn � A∇uHsγ, xvyγ
�� ¸

γPEN
h

pg � n � A∇uH , vqγ

� Bhpuh � uH , vq � τ
¸
γPEI

h

�ruHsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uH , n � A∇vqγ (3.14)

for all v P Xh X H1
0pΩq.
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On the other hand from (2.6), one can conclude that

Bhpuh � uH , vq �
¸

KPPh

pA∇puh � uHq,∇vqK � τ
¸
γPEI

h

�ruh � uHsγ, xn � A∇vyγ
�
γ

� τ
¸
γPED

h

puh � uH , n � A∇vqγ �
¸
γPEI

h

pxn � A∇puh � uHqyγ, rvsγqγ

�
¸
γPEI

h

κ

|γ| pruh � uHsγ, rvsγqγ �
¸
γPED

h

pn � A∇puh � uHq, vqγ

�
¸
γPED

h

κ

|γ| puh � uH , vqγ @v P Xh. (3.15)

Moreover, since our test function space is Xh X H1
0pΩq, (3.15) becomes

Bhpuh � uH , vq �
¸

KPPh

pA∇puh � uHq,∇vqK � τ
¸
γPEI

h

�ruh � uHsγ, xn � A∇vyγ
�
γ

� τ
¸
γPED

h

puh � uH , n � A∇vqγ @v P Xh X H1
0pΩq.

This implies

Bhpuh � uH , vq � τ
¸
γPEI

h

�ruHsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uH , n � A∇vqγ

�
¸

KPPh

pA∇puh � uHq,∇vqK � τ
¸
γPEI

h

�ruh � uHsγ, xn � A∇vyγ
�
γ

� τ
¸
γPED

h

puh � uH , n � A∇vqγ � τ
¸
γPEI

h

�ruHsγ, xn � A∇vyγ
�
γ

� τ
¸
γPED

h

pq � uH , n � A∇vqγ @v P Xh X H1
0pΩq.

In the above identity, in the right-hand side of the equality the terms uH vanish and the rest of

the terms give

Bhpuh � uH , vq � τ
¸
γPEI

h

�ruHsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uH , n � A∇vqγ (3.16)

�
¸

KPPh

pA∇puh � uHq,∇vqK � τ
¸
γPEI

h

�ruhsγ, xn � A∇vyγ
�
γ
� τ

¸
γPED

h

pq � uh, n � A∇vqγ

(3.14)and (3.16) implies the key identity (3.10). �

MARKING STRATEGY:

For some number θ P p0, 1q, letMH be any subset ofPH such that the following bulk criterion

is satisfied:

¸
KPMH

�
Φ2

K � Ψ2
K

� ¥ θ
¸

KPPH

�
Φ2

K � Ψ2
K

�
. (3.17)
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REFINEMENT STRATEGY:

A marked triangle K P PH will be cut into sixteen congruent sub-triangles.

Figure 3.2: The refinement of triangle K into sixteen congruent subtriangles.

Estimation of the Conforming Part:

Theorem 3.1.5 Let u P H1pΩq such that u � q on ΓD be the solution of (2.1). Moreover,

uH P XH , uh P Xh denote the solution of (2.7) with respect to PH and Ph, respectively. Then,

sufficiently large κ, the following inequality holds

¸
KPMH

Φ2
K ¤ 288λ�1 %

2 �27102C2
i � 2232C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 288λ�1 %
2 �27102%C2

i λ
2 � 2232%C2

i λ
2� ¸

γ1PEI
h

|γ1|�1}ruhsγ1}2
γ1

� 288λ�1 %
2 �29102%C2

i λ
2 � 2432%C2

i λ
2� ¸

γ1PED
h

|γ1|�1}q � uh}2
γ1

� 64p1 � %qλ�1%δmax
�
29102C2

i � 368%
�
27102C2

i � 36C2
i

�� ¸
K1PPh

}A∇puh � uHq}2
K1

� 64p1 � %qλ�1%δmax
�
211102%C2

i λ
2 � 368%

�
29102%C2

i λ
2 � 2432%C2

i λ
2�� ¸

γ1PEI
hYED

h

|γ1|�1}ruhsγ1}2
γ1

� 64p1 � %qλ�1%δmax
�
2232%� 26102%� 368%p32%� 24102%q� ¸

KPPH

osc2p f ,K, 1q

� 64p1 � %qλ�19%δmaxp240%� 1q
¸
γPEN

H

osc2pg, γ, 0q

� 288λ�1 %
2 p32%� 24102%q

¸
KPPH

osc2p f ,K, 1q � 2160λ�1%
3
¸
γPEN

H

osc2pg, γ, 0q

� 6%
π2 λ�1

¸
KPPH

osc2p f ,K, 0q � 24%
π
λ�1

¸
γPEN

H

osc2pg, γ, 0q (3.18)

where γ P EK define δmax � maxtδpγq|γ P EK ,K P PHu where δpγq � maxt |γ||γ1| | γ1 P
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EI
hYED

h , γ
1 P γu which is a finite number. Also, we can define λ�1 � maxtρpA�1

K q|K P PH,0u
and λ � max t ρpAKq|K P PH,0u where PH,0 is initial mesh.

The proof of (3.18) follows from the subsequent series of following lemmas.

Lemma 3.1.6 Fix K PMH . For γ1 P EK , define δpγ1q � maxt |γ1||γ| | γ P BPH , γ � γ1u which

is a finite number. Then the following inequality holds

Φ2
K ¤ 9ρpA�1

K q %
¸
γ1PEK

�
|γ1|}rn � A∇uHsγ1}2

γ1 � δpγ1qκ2|γ1|�1}ruHsγ1}2
γ1

	

� 6%
π2 ρpA�1

K qosc2p f ,K, 0q � 24%
π
ρpA�1

K q
¸

γPEKXEN
H

osc2pg, γ, 0q (3.19)

where % is defined by (2.2) and ρpAKq, ρpA�1
K q denote the spectral radius of the matrices AK

and A�1
K respectively, defined in (2.19).

Proof. We recall (3.2):

pA�1σTK ,σTK qK ¤ Cσ
¸
γ1PEK

¸
γPBPH
γ�γ1

|γ|}Rγ1,K}2
γ,

where Rγ1,K � �rn�A∇uHsγ�
�

κ
|γ|2 , ruHsγ

	
γ

and Cσ � 3
2%ρpA�1

K q. Inserting those definitions

in the above inequality gives

pA�1σTK ,σTK qK ¤ 3
2
%ρpA�1

K q
¸
γ1PEK

¸
γPBPH
γ�γ1

|γ|} � rn � A∇uHsγ �
�

κ

|γ|2 , ruHsγ


γ

}2
γ.

By triangle inequality, we get

pA�1σTK ,σTK qK ¤ 3%ρpA�1
K q

¸
γ1PEK

¸
γPBPH
γ�γ1

|γ|
�
}rn � A∇uHsγ}2

γ � }
�

κ

|γ|2 , ruHsγ


γ

}2
γ

�
(3.20)

and also

}
�

κ

|γ|2 , ruHsγ


γ

}2
γ �

»
γ

�»
γ

κ

|γ|2 ruHsγ

2

� κ2

|γ|4
»
γ

�»
γ
ruHsγ


2

.

Cauchy-Schwarz’s inequality implies that�»
γ
ruHsγ


2

¤
»
γ

12
»
γ
ruHs2γ � |γ|

»
γ
ruHs2γ.

Thus

}
�

κ

|γ|2 , ruHsγ


γ

}2
γ ¤

κ2

|γ|4 |γ|
»
γ

�»
γ
ruHs2γ



� κ2

|γ|2
»
γ
ruHs2γ �

κ2

|γ|2 }ruHsγ}2
γ.
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Moreover, fineness parameter δpγ1q allows us to write the following inequality,

3%ρpA�1
K q

¸
γ1PEK

¸
γPBPH
γ�γ1

|γ| κ
2

|γ|2 }ruHsγ}2
γ ¤ 3%ρpA�1

K q
¸
γ1PEK

δpγ1qκ2|γ1|�1}ruHsγ1}2
γ1 . (3.21)

Now, since |γ| ¤ |γ1|, we have:

3%ρpA�1
K q

¸
γ1PEK

¸
γPBPH
γ�γ1

|γ|}rn � A∇uHsγ}2
γ ¤ 3%ρpA�1

K q
¸
γ1PEK

|γ1|
¸

γPBPH
γ�γ1

}rn � A∇uHsγ}2
γ

� 3%ρpA�1
K q

¸
γ1PEK

|γ1|}rn � A∇uHsγ1}2
γ1 . (3.22)

Using the inequalities (3.21) and (3.22) into (3.20) gives

pA�1σTK ,σTK qK ¤ 3%ρpA�1
K q

¸
γ1PEK

�
|γ1|}rn � A∇uHsγ1}2

γ1 � δpγ1qκ2|γ1|�1}ruHsγ1}2
γ1

	
.(3.23)

Definition (3.1) and inequality (3.23) imply

Φ2
K ¤ 9%ρpA�1

K q
¸
γ1PEK

�
|γ1|}rn � A∇uHsγ1}2

γ1 � δpγ1qκ2|γ1|�1}ruHsγ1}2
γ1

	

� 3C2
K} f � Π

p0q
K f }2

K �
¸

γPEKXEN
H

6C2
γ}g � Π

p0q
γ g}2

γ. (3.24)

Now note that by Lemma A.0.2, we have h2
K
|K| ¤ 2% and using the definitions (2.3) and (3.3),

then

3C2
K} f � Π

p0q
K f }2

K � 3
h2

K

π2 ρpA�1
K q} f � Π

p0q
K f }2

K

¤ 6%
π2 ρpA�1

K q|K|} f � Π
p0q
K f }2

K

� 6%
π2 ρpA�1

K qosc2p f ,K, 0q. (3.25)

Similarly Lemma A.0.2, definitions (2.4) and (3.4) imply,

6C2
γ}g � Π

p0q
γ g}2

γ � 6
|γ|
|K|

hK

π

�hK

π
� max

γ1PEK
γ1�γ

|γ1|
	
ρpA�1

K q}g � Π
p0q
γ g}2

γ

� 6
� h2

K

|K|π2 �
hK

|K|π max
γ1PEK
γ1�γ

|γ1|
	
ρpA�1

K q|γ|}g � Π
p0q
γ g}2

γ

¤ 6
�2%
π2 �

2%
π

	
ρpA�1

K qosc2pg, γ, 0q

¤ 24%
π
ρpA�1

K qosc2pg, γ, 0q (3.26)
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Using (3.25) and (3.26) into (3.24), we get

Φ2
K ¤ 9%ρpA�1

K q
¸
γ1PEK

�
|γ1|}rn � A∇uHsγ1}2

γ1 � δpγ1qκ2|γ1|�1}ruHsγ1}2
γ1

	

� 6%
π2 ρpA�1

K qosc2p f ,K, 0q � 24%
π
ρpA�1

K q
¸

γPEKXEN
H

osc2pg, γ, 0q.

�

Remark 3.1.7 An upper bound for }rn � A∇uHsγ}2
γ is needed. There are three cases:

1. If γ is an interior edge of PH , then we find an upper bound for }rn � A∇uHsγ}2
γ.

2. If γ P EK X EN
H , then we find an upper bound for }n � A∇uH � Π

p0q
γ g}2

γ.

3. If γ P EK X ED
H , then rn � A∇uHsγ � 0. This implies we do not have any contribution

from this edge.

The next two lemmas deal with the first two cases.

Lemma 3.1.8 Fix K PMH and assume K has been refined using our refinement strategy. De-

fine Ph,K � tK1 P Ph,K1 � Ku and EI
h,K � tγ1 P EI

h, γ
1 � Ku. Recall δpγq � maxt |γ||γ1| | γ1 P

EI
h, γ

1 � γu Then, for any interior edge γ P BPH and for sufficiently small ε, such that

18ε%   1 we have

|γ|}rn � A∇uHsγ}2
γ ¤ 4

εp1 � 18ε%q

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 .

Proof. Let γ P EK is an interior edge of PH . Let ṽ be the extension of rn � A∇uHsγ to K, let `

be the piecewise linear function which is different from zero inside the shaded region and on

γ, zero elsewhere, i.e., is zero on the boundaries a, b and c, as in Figure 3.3. Also we assume

that ` takes the value 1 at the midpoint of γ and 1{2 at the quarter point of γ.
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Figure 3.3: Support of `

Define v � ṽ`. Then v P Xh. Since uH P P1pKq, for any γ1 P EI
h X K̊,

rn � A∇uHsγ1 � 0.

In addition, since ` is zero on the edges a, b and c in Figure 3.3, we have

¸
γ1PEI

h

�rn � A∇uHsγ1 , xvyγ1
�
γ1
� �rn � A∇uHsγ, xvyγ

�
γ
.

Since γ is an interior edge of PH , v � 0 on ED
h and EN

h . Moreover, rvs � 0 on γ1 P EI
h,K except

the case when γ1 � γ, then (3.10) is rewritten as

�rn � A∇uHsγ, xvyγ
�
γ

� p f � divpA∇uHq, vqK �
¸

K1PPh,K

pA∇puh � uHq,∇vqK1

� τ
¸

γ1PEI
h,K

�ruhsγ1 , xn � A∇vyγ1
�
γ1
� τ

¸
γ1PED

h XBK

pq � uh, n � A∇vqγ1 .

Now recall that ` � 1 at the midpoint of γ, ` � 1{2 at the quarter point of γ and 0 at the end

points of γ,

�rn � A∇uHsγ, xvyγ
�
γ

� 1
2

»
γ
|rn � A∇uHsγ|2` � 1

2
|rn � A∇uHsγ|2

»
γ
` (3.27)

� |γ|
4
|rn � A∇uHsγ|2 � 1

4

»
γ
|rn � A∇uHsγ|2 � 1

4
}rn � A∇uHsγ}2

γ.
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Let νmax be the height of the triangle K, as in Figure 3.4, since 0 ¤ ` ¤ 1, ṽ is constant, then

Figure 3.4: Height of the triangle K

}v}2
K � }ṽ`}2

K ¤ }ṽ}2
K �

»
K
|rn � A∇uHsγ|2 � |rn � A∇uHsγ|2|K|

� |rn � A∇uHsγ|2
�
νmax|γ|

2




� 1
2
νmax

»
γ
|rn � A∇uHsγ|2

� νmax

2
}rn � A∇uHsγ}2

γ.

Let % be a shape regularity parameter, then by Lemma A.0.5, we have,

νmax ¤ %|γ|,

then

}v}2
K ¤ %

2
|γ|}rn � A∇uHsγ}2

γ. (3.28)

Now applying Cauchy-Schwarz’s inequality to right-hand side of (3.27) and using (3.27) and

multiplying both sides by |γ| yield

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ |γ|} f � divpA∇uHq}K }v}K � |γ|
¸

K1PPh,K

}A∇puh � uHq}K1 }∇v}K1

� |γ|
¸

γ1PEI
h,K

}ruhsγ1}γ1 }xn � A∇vyγ1}γ1

� |γ|
¸

γ1PED
h XBK

}q � uh}γ1 }n � A∇v}γ1 . (3.29)

Using the trace and inverse estimates in Chapter 2.7, the following bounds are obtained.

By (2.14), for K1 P Ph,K

}∇v}K1 ¤ Cih�1
K1 }v}K1 .

By (2.15) and (2.18), for γ1 � BK1 X BK2 :

}xn � A∇vyγ1}γ1 ¤ CiρpAKq?%
�

h�3{2
K1

}v}K1 � h�3{2
K2

}v}K2

	
.
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By (2.16) and (2.18), for γ1 P ED
h X BK:

}n � A∇v}γ1 ¤ CiρpAKq2?%h�3{2
K1 }v}K1 .

Then (3.29) becomes,

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ |γ|} f � divpA∇uHq}K }v}K �
¸

K1PPh,K

Ci|γ|h�1
K1 }A∇puh � uHq}K1 }v}K1

� |γ|
¸

γ1PEI
h,K

γ1�BK1XBK2

?
%CiρpAKq}ruhsγ1}γ1

�
h�3{2

K1
}v}K1 � h�3{2

K2
}v}K2

	

� |γ|
¸

γ1PED
h XBK

γ1�BK1

2
?
%CiρpAKq}q � uh}γ1 h�3{2

K1 }v}K1

If the initial mesh is one of the following three meshes, then the ratio |γ|
hK2

is bounded by

following constants. Moreover, if we have a finer refinement than above examples on the

Figure 3.5: An example of initial meshes

edge γ, we can bound the ratio by δpγq which is a finite number that measures the fineness of

γ with respect to γ1. We can write that |γ|
hK2

¤ |γ|
|γ1| ¤ δpγq where γ1 � γ X BK2.

Now in Figure 3.6 let K1 be an arbitrary triangle in Ph,K and hK1 denotes the length of the

longest edge of element K1.
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Figure 3.6: Refinement of K

Therefore we can easily write that |γ|
4 ¤ hK1 ñ |γ|h�1

K1 ¤ 4. Also it is obvious that if γ1

is an arbitrary edge of a triangle K1 then |γ1| ¤ hK1 , so by elementary computation we have

|γ|h�3{2
K1 � |γ|h�1

K1 h�1{2
K1 ¤ 4|γ1|�1{2. Consequently, using those above relation between the

edges, we have

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ hK} f � divpA∇uHq}K }v}K �
¸

K1PPh,K

4Ci}A∇puh � uHq}K1 }v}K1

�
¸

γ1PEI
h,K

γ1�BK1XBK2

4
?
%CiρpAKq|γ1|�1{2}ruhsγ1}γ1 p}v}K1 � }v}K2q

�
¸

γ1PED
h XBK

γ1�BK1

8
?
%CiρpAKq|γ1|�1{2}q � uh}γ1}v}K1 (3.30)

By Young’s inequality for ε ¡ 0

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ ε}v}2
K �

h2
K

4ε
} f � divpA∇uHq}2

K

�
¸

K1PPh,K

pε}v}2
K1 � 4

ε
C2

i }A∇puh � uHq}2
K1q

�
¸

γ1PEI
h,K

γ1�BK1XBK2

�
εp}v}K1 � }v}K2q2 � 4

ε
%C2

i ρpAKq2|γ1|�1}ruhsγ1}2
γ1




�
¸

γ1PED
h XBK

�
ε}v}2

K1 � 16
ε
%C2

i ρpAKq2|γ1|�1}q � uh}2
γ1




Now note that p}v}K1 � }v}K2q2 ¤ 2}v}2
K1
� 2}v}2

K2
and also K1 and K2 interior element.

So, for each edge of a triangle we have this sum. Since we have three edges in total we get
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6}v}2
K1
� 6}v}2

K2
. Finally we have

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ 9ε}v}2
K �

1
ε

�
h2

K

4
} f � divpA∇uHq}2

K �
¸

K1PPh,K

4C2
i }A∇puh � uHq}2

K1

�
¸

γ1PEI
h,K

4%C2
i ρpAKq2|γ1|�1}ruhsγ1}2

γ1

�
¸

γ1PED
h XBK

16%C2
i ρpAKq2|γ1|�1}q � uh}2

γ1

By using (3.28) it can be written

|γ|1
4
}rn � A∇uHsγ}2

γ ¤ 9%
2
ε|γ| }rn � A∇uHsγ}2

γ �
1
ε

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

�

For sufficiently small ε, i.e. if 1 � 18ε ¡ 0, we arrive at

|γ|}rn � A∇uHsγ}2
γ ¤ 4

εp1 � 18ε%q

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 .

�

Corollary 3.1.9 In Lemma 3.1.8, take ε � p36%q�1. Then we have

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

�
. (3.31)
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Lemma 3.1.10 Let K PMH . Define Ph,K � tK1 P Ph,K1 � Ku and EI
h,K � tγ1 P EI

h, γ
1 �

Ku. Then, for any γ P BPH X EN
H and for sufficiently small ε, such that 10ε%   1 we have

|γ|}n � A∇uH � Π
p0q
γ g}2

γ ¤ 2
εp1 � 10ε%q

�h2
K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1 � 4%C2

i ρpAKq2
¸

γ1PEI
h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 � 3%osc2pg, γ, 0q

	
.

Proof. We construct a test function v P Xh as follows. Let ṽ be the extension of n � A∇uH �
Π
p0q
γ g to K and let ` be the piecewise linear function which is different from zero inside the

shaded region as in Figure 3.3 and on γ, zero elsewhere, i.e., it is zero on the boundaries a, b

and c, in Figure 3.3. Also we assume that ` takes the value 1 at the midpoint of γ and 1{2 at

the quarter point of γ. Take v � ṽ`, then v P Xh. It can be written that,

pn � A∇uH � Π
p0q
γ g, vqγ � pn � A∇uH � g, vqγ � pg � Π

p0q
γ g, vqγ. (3.32)

Note that, the test function v have following properties:


 v � 0 outside of element K,


 v � 0 on interior and Dirichlet edges of PH ,


 rn � A∇uHs � 0 on all γ1 P EI
hzBPH .

Using this v in (3.10) allow us to write

pg � n � A∇uH , vqγ � �p f � divpA∇uHq, vqK �
¸

K1PPh,K

pA∇puh � uHq,∇vqK1

� τ
¸

γ1PEI
h,K

�ruhsγ1 , xn � A∇vyγ1
�
γ1

� τ
¸

γ1PED
h XBK

pq � uh, n � A∇vqγ1 . (3.33)

Equations (3.32) and (3.33) imply

pn � A∇uH � Π
p0q
γ g, vqγ � p f � divpA∇uHq, vqK �

¸
K1PPh,K

pA∇puh � uHq,∇vqK1

� τ
¸

γ1PEI
h,K

�ruhsγ1 , xn � A∇vyγ1
�
γ1
� τ

¸
γ1PED

h XBK

pq � uh, n � A∇vqγ1

� pg � Π
p0q
γ g, vqγ. (3.34)
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Since ` � 1 at the midpoint of γ, ` � 1{2 at the quarter point of γ and 0 at the end points of

γ, we obtain similar to (3.27)

�
n � A∇uH � Π

p0q
γ g, v

	
γ

�
»
γ
|n � A∇uH � Π

p0q
γ g|2` � |n � A∇uH � Π

p0q
γ g|2

»
γ
`

� |γ|
2
|n � A∇uH � Π

p0q
γ g|2 � 1

2

»
γ
|n � A∇uH � Π

p0q
γ g|2

� 1
2
}n � A∇uH � Π

p0q
γ g}2

γ. (3.35)

Now applying Cauchy-Schwarz’s inequality to right-hand side of (3.34) and using (3.35) and

multiplying both sides by |γ| give

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ |γ|} f � divpA∇uHq}K }v}K � |γ|
¸

K1PPh,K

}A∇puh � uHq}K1 }∇v}K1

� |γ|
¸

γ1PEI
h,K

}ruhsγ1}γ1 }xn � A∇vyγ1}γ1 (3.36)

� |γ|
¸

γ1PED
h XBK

}q � uh}γ1}n � A∇v}γ1 � |γ|}g � Π
p0q
γ g}γ}v}γ.

Using the trace and inverse inequalities (2.14)-(2.18) in the right-hand side of (3.36), we

obtain,

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ |γ|} f � divpA∇uHq}K }v}K

� Ci|γ|
¸

K1PPh,K

h�1
K1 }A∇puh � uHq}K1 }v}K1

� ?
%CiρpAKq|γ|

¸
γ1PEI

h,K
γ1�BK1XBK2

}ruhsγ1}γ1
�

h�3{2
K1

}v}K1 � h�3{2
K2

}v}K2

	

� 2
?
%CiρpAKq|γ|

¸
γ1PED

h XBK
γ1�BK1

}q � uh}γ1h�3{2
K1 }v}K1

� 2
a

3%|γ|h�1{2
K }g � Π

p0q
γ g}γ}v}K .

Moreover, as in the previous proof, using the relation between the edges of a triangle, we see

that |γ| ¤ hK and @K1 P Ph,K
|γ|
4 ¤ hK1 and |γ|h�3{2

K1 ¤ 4|γ1|�1{2 for any edge γ1 of K1. So
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we finally have:

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ hK} f � divpA∇uHq}K }v}K � 4Ci

¸
K1PPh,K

}A∇puh � uHq}K1 }v}K1

� 4
?
%CiρpAKq

¸
γ1PEI

h,K
γ1�BK1XBK2

|γ1|�1{2}ruhsγ1}γ1 p}v}K1 � }v}K2q

� 8
?
%CiρpAKq

¸
γ1PED

h XBK
γ1�BK

|γ1|�1{2}q � uh}γ1}v}K1

� 2
a

3%|γ|1{2}g � Π
p0q
γ g}γ}v}K .

By Young’s inequality for ε ¡ 0

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ ε}v}2
K �

h2
K

4ε
} f � divpA∇uHq}2

K

�
¸

K1PPh,K

pε}v}2
K1 � 4

ε
C2

i }A∇puh � uHq}2
K1q

�
¸

γ1PEI
h,K

�
εp}v}K1 � }v}K2q2 � 4

ε
%C2

i ρpAKq2|γ1|�1}ruhsγ1}2
γ1




�
¸

γ1PED
h XBK

pε}v}2
K1 � 16

ε
%C2

i ρpAKq2|γ1|�1}q � uh}2
γ1q

� ε}v}2
K �

3
ε
%|γ|}g � Π

p0q
γ g}2

γ.

Note that p}v}2
K1
� }v}K2q2 ¤ 2}v}2

K1
� 2}v}K2q2 and for each edge of a triangle we have this

sum. Totally, we have three edges for each triangle, we have 6}v}2
K1
� 6}v}K2q2. Then we get

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ 10ε}v}2
K �

1
ε

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

� 3%|γ|}g � Π
p0q
γ g}2

γ

�
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Similarly as in (3.28), using the height νmax defined in Figure 3.4 and using Lemma A.0.5, we

get following upper bound for the function v in L2-norm:

}v}2
K � }ṽ`}2

K ¤ }ṽ}2
K �

»
K
|n � A∇uH � Π

p0q
γ g|2 � |n � A∇uH � Π

p0q
γ g|2|K|

� |n � A∇uH � Π
p0q
γ g|2

�
νmax|γ|

2




� 1
2
νmax

»
γ
|n � A∇uH � Π

p0q
γ g|2

� νmax

2
}n � A∇uH � Π

p0q
γ g}2

γ

¤ %

2
|γ|}n � A∇uH � Π

p0q
γ g}2

γ. (3.37)

(3.37) yield

|γ|1
2
}n � A∇uH � Π

p0q
γ g}2

γ ¤ 10%
2
ε|γ| }n � A∇uH � Π

p0q
γ g}2

γ �
1
ε

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1 � 4%C2

i ρpAKq2
¸

γ1PEI
h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 � 3%|γ|}g � Π

p0q
γ g}2

γ

�

We now require an assumption on ε. If ε satisfies 1 � 10ε ¡ 0 we obtain:

For sufficiently small ε and by (2.4), we arrive at

|γ|}n � A∇uH � Π
p0q
γ g}2

γ ¤ 2
εp1 � 10ε%q

�h2
K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1 � 4%C2

i ρpAKq2
¸

γ1PEI
h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 � 3% osc2pg, γ, 0q

	
.

�

Corollary 3.1.11 In Lemma 3.1.10, take ε � p20%q�1. Then

|γ|}n � A∇uH � Π
p0q
γ g}2

γ ¤ 80%
�h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1 � 4%C2

i ρpAKq2
¸

γ1PEI
h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 � 3%osc2pg, γ, 0q

	
. (3.38)
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Lemma 3.1.12 Let K P MH and Ph,K � tK1 P Ph,K1 � Ku and EI
h,K � tγ P EI

h, γ � Ku.
For sufficiently small ε, such that 20ε   1 we have

h2
K} f � divpA∇uHq}2

K ¤ 640C2
i

εp9 � 180εq
¸

K1PPh,K

}A∇puh � uHq}2
K1

� 640%C2
i ρpAKq2

εp9 � 180εq
¸

γPEI
h,K

|γ|�1}ruhsγ}2
γ

� 2560%C2
i ρpAKq2

εp9 � 180εq
¸

γPED
h XBK

|γ|�1}q � uh}γ

� p4%� 80%
εp9 � 180εqq osc2p f ,K, 1q.

Proof. For K PMH consider the following refinement denoted by Ph,K :

Figure 3.7: Refinement of K

We introduce the finite dimensional space

S K � tv P C0pKq, v|K1 P P1pK1q @K1 P Ph,K , v � 0 on BKu.

If we extend functions in S K by 0 outside of K, then it can be said that S K is a subset of

Xh. Also, it is easily seen that a function in S K is uniquely determined by its values at the

nodes ν1, ν2, ν3 shown in Figure 3.7. Thus dimpS Kq � 3 � dimpP1pKqq. Furthermore, a

basis tφ1, φ2, φ3u for S K can be constructed by "gluing" together Lagrangian-type functions

corresponding to the individual triangles in Ph,K .

Now letting tψ1, ψ2, ψ3u be the usual Lagrangian basis for P1pKq, we form the "Gramian"

matrix G given by Gi j � pφ j, ψiqK , i, j � 1, 2, 3. We next show that G is nonsingular.

Showing that G is nonsingular: Let ν1, ν2, ν3 denote the three nodes shown in Figure 3.7. Let

v2 � pv2
1, v

2
2q, v3 � pv3

1, v
3
2q be the vectors starting from ν1 and terminating at ν2 and ν3,
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respectively. Let φ1, φ2, φ3 be the basis functions corresponding to the nodes ν1, ν2, ν3 and

denote their supports by S 1, S 2, S 3. Clearly,

φ2px, yq � φ1px � v2
1, y � v2

2q @px, yq P S 2 and

φ3px, yq � φ1px � v3
1, y � v3

2q @px, yq P S 3.

Suppose there exists ψpx, yq � ax�by�c P P1pKqsuch thatpφ j, ψq � 0, j � 1, 2, 3. Showing

that a � b � c � 0, implies the linear independence of the rows of G.

0 � pψ, φ2qK �
»

S 2
ψpx, yq φ2px, yqdxdy �

»
S 2
ψpx, yq φ1px � v2

1, y � v2
2qdxdy

�
»

S 1
ψpx � v2

1, y � v2
2q φ1px, yqdxdy

�
»

S 1
ψpx, yq φ1px, yqdxdy � pav2

1 � bv2
2q
»

S 1
φ1px, yqdxdy.

Now
³

S 1 ψpx, yq φ1px, yqdxdy � pψ, φ1q � 0. On the other hand, φ1 is nonnegative and

nonzero; thus we conclude from the above that av2
1 � bv2

2 � 0. In a similar way, we obtain

av3
1 � bv3

2 � 0. Since the vectors v2, v3 are linearly independent, it follows that a � b � 0.

Now that this has been shown, the fact that c � 0 readily follows from pψ, φ1qK � 0.

Showing norm equivalence: Let TK : P1pKq Ñ S K denotes the operator given by pTKv, χqK �
pv, χqK @χ P S K . Then }TK � }K is a norm equivalent to } � }K on P1pKq with constants that

are independent of hK because of Lemma A.0.8.

In Lemma A.0.8, it is proved that }TK � }K is a norm and equivalent to } � }K such that

@v P P1pKq 3

2
?

10
}v}K ¤ }TKv}K ¤ }v}K . (3.39)

We also remark that

}TKv}2
K � pTKv,TKvqK � pv,TKvqK . (3.40)

Now we can start the estimation of h2
K} f � divpA∇uHq}2

K .

To estimate f�divpA∇uHqwe take v � TKpΠp1q
K f�divpA∇uHqq that is extended by 0 outside

of K.

Note that since our test function v � 0 on BK, we do not have any contribution from boundary

terms in (3.10). Also uH P P1pKq, then for any γ P EI
h X K̊,

rn � A∇uHsγ � 0.
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In addition since v P C0pKq, for any γ P EI
h X K̊, rvsγ � 0. Therefore, by (3.40) and the key

identity (3.10) we get,

}TKpΠp1q
K f � divpA∇uHqq}2

K � pΠp1q
K f � divpA∇uHq,TKpΠp1q

K f � divpA∇uHqqqK

� p f � divpA∇uHq,TKpΠp1q
K f � divpA∇uHqqqK

� pΠp1q
K f � f ,TKpΠp1q

K f � divpA∇uHqqqK

�
¸

K1PPh,K

pA∇puh � uHq,∇TKpΠp1q
K f � divpA∇uHqqqK1

� τ
¸

γPEI
h,K

pruhsγ, xn � A∇TKpΠp1q
K f � divpA∇uHqqyγqγ

� τ
¸

γPED
h XBK

pq � uh, n � A∇TKpΠp1q
K f � divpA∇uHqqqγ

� pΠp1q
K f � f ,TKpΠp1q

K f � divpA∇uHqqqK .

Using (3.39), it can be written that

9
40
}Πp1q

K f � divpA∇uHq}2
K ¤

¸
K1PPh,K

pA∇puh � uHq,∇TKpΠp1q
K f � divpA∇uHqqqK1

� τ
¸

γPEI
h,K

pruhsγ, xn � A∇TKpΠp1q
K f � divpA∇uHqqyγqγ

� τ
¸

γPED
h XBK

pq � uh, n � A∇TKpΠp1q
K f � divpA∇uHqqqγ

� pΠp1q
K f � f ,TKpΠp1q

K f � divpA∇uHqqqK . (3.41)

To complete the proof, each component of (3.41) will be handled separately. Before engag-

ing the proof we immediately notice that @K1 P Ph,K , hK � 4hK1 and @γ P EI
h,K , |γ| ¤

hK1 � hK
4 ñ h�3{2

K1 � 8h�3{2
K where γ P BK1. Now using Cauchy-Schwarz’s, (2.14), Young’s

inequalities for any ε ¡ 0 and (3.39) yield

°
K1PPh,K

pA∇puh � uHq,∇TKpΠp1q
K f � divpA∇uHqqqK1

¤
¸

K1PPh,K

}A∇puh � uHq}K1}∇TKpΠp1q
K f � divpA∇uHqq}K1

¤
¸

K1PPh,K

Cih�1
K1 }A∇puh � uHq}K1}TKpΠp1q

K f � divpA∇uHqq}K1

¤ ε

2
}TKpΠp1q

K f � divpA∇uHqq}2
K �

C2
i

2ε

¸
K1PPh,K

h�2
K1 }A∇puh � uHq}2

K1
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¤ ε

2
}Πp1q

K f � divpA∇uHq}2
K �

C2
i

2ε

¸
K1PPh,K

h�2
K1 }A∇puh � uHq}2

K1

� ε

2
}Πp1q

K f � divpA∇uHq}2
K �

16C2
i

2ε
h�2

K

¸
K1PPh,K

}A∇puh � uHq}2
K1 . (3.42)

Similarly using Cauchy-Schwarz’s, (2.15), (2.18), and Young’s inequalities for any ε ¡ 0,

respectively

°
γPEI

h,K
pruhsγ, xn � A∇TKpΠp1q

K f � divpA∇uHqqyγqγ
¤

¸
γPEI

h,K

}ruhsγ}γ}xn � A∇TKpΠp1q
K f � divpA∇uHqqyγ}γ

¤
¸

γPEI
h,K

γ�BK1XBK2

}ruhsγ}γ?%
�

h�1{2
K1

}A∇TKpΠp1q
K f � divpA∇uHqq}K1

� h�1{2
K2

}A∇TKpΠp1q
K f � divpA∇uHqq}K2

	
¤

¸
γPEI

h,K
γ�BK1XBK2

}ruhsγ}γCiρpAKq?%
�

h�3{2
K1

}TKpΠp1q
K f � divpA∇uHqq}K1

� h�3{2
K2

}TKpΠp1q
K f � divpA∇uHqq}K2

	
�

¸
γPEI

h,K
γ�BK1XBK2

}ruhsγ}γCiρpAKq?%
�

8h�3{2
K }TKpΠp1q

K f � divpA∇uHqq}K1

� 8h�3{2
K }TKpΠp1q

K f � divpA∇uHqq}K2

	

�
¸

γPEI
h,K

γ�BK1XBK2

�
64%C2

i ρpAKq2

2ε
h�3

K }ruhsγ}2
γ �

ε

2

�
}TKpΠp1q

K f � divpA∇uHqq}K1

� }TKpΠp1q
K f � divpA∇uHqq}K2

	2
�
.

Note that

�
}TKpΠp1q

K f � divpA∇uHqq}K1 � }TKpΠp1q
K f � divpA∇uHqq}K2

	2

¤ 2}TKpΠp1q
K f � divpA∇uHqq}2

K1
� 2}TKpΠp1q

K f � divpA∇uHqq}2
K2
.

Since γ is an interior edges, for each triangle we get three times above sum.
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So, we have 6
�
}TKpΠp1q

K f � divpA∇uHqq}2
K1
� }TKpΠp1q

K f � divpA∇uHqq}2
K2

	
. Then using

(3.39),

¸
γPEI

h,K

pruhsγ, xn � A∇TKpΠp1q
K f � divpA∇uHqqyγqγ

¤ 3ε}TKpΠp1q
K f � divpA∇uHqq}2

K �
64%C2

i ρpAKq2

2ε

¸
γPEI

h,K

h�3
K }ruhsγ}2

γ

¤ 3ε}Πp1q
K f � divpA∇uHq}2

K �
64%C2

i ρpAKq2

2ε

¸
γPEI

h,K

h�3
K }ruhsγ}2

γ. (3.43)

In (3.43) consider the edge γ P EI
h,K where γ � BK1 X BK2. If this γ P BK then one

of the triangles, write K2, will be out of the element K. Then from the definition of v �
TKpΠp1q

K f � divpA∇uHqq, we have that v � 0 on BK and out of the element K. This implies

}TKpΠp1q
K f � divpA∇uHqq}K2 � 0 in that case.

To estimate the third component of (3.41), use Cauchy-Schwarz’s, (2.16), (2.18), Young’s

inequalities for any ε ¡ 0 and (3.39), respectively

¸
γPED

h XBK

pq � uh, n � A∇TKpΠp1q
K f � divpA∇uHqqqγ

¤
¸

γPED
h XBK

γPBK1

}q � uh}γ}n � A∇TKpΠp1q
K f � divpA∇uHqq}γ

¤
¸

γPED
h XBK

γPBK1

}q � uh}γ2
?
%h�1{2

K1 }A∇TKpΠp1q
K f � divpA∇uHqq}K1

¤
¸

γPED
h XBK

γPBK1

}q � uh}γ2
?
%CiρpAKqh�3{2

K1 }TKpΠp1q
K f � divpA∇uHqq}K1

�
¸

γPED
h XBK

γPBK1

}q � uh}γ16
?
%CiρpAKqh�3{2

K }TKpΠp1q
K f � divpA∇uHqq}K1

¤
¸

γPED
h XBK

γPBK1

�
ε

2
}TKpΠp1q

K f � divpA∇uHqq}2
K1 �

256%C2
i ρpAKq2

2ε
h�3

K }q � uh}2
γ

�

� ε

2
}TKpΠp1q

K f � divpA∇uHqq}2
K �

256%C2
i ρpAKq2

2ε

¸
γPED

h XBK

h�3
K }q � uh}2

γ

¤ ε

2
}Πp1q

K f � divpA∇uHq}2
K �

256%C2
i ρpAKq2

2ε

¸
γPED

h XBK

h�3
K }q � uh}2

γ. (3.44)
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Finally for the term pΠp1q
K f � f ,TKpΠp1q

K f � divpA∇uHqqqK , use Cauchy-Schwarz’s, (3.39)

and Young’s inequalities for any ε ¡ 0, respectively

pΠp1q
K f � f ,TKpΠp1q

K f � divpA∇uHqqqK ¤ }Πp1q
K f � f }K}TKpΠp1q

K f � divpA∇uHqq}K

¤ }Πp1q
K f � f }K}Πp1q

K f � divpA∇uHq}K (3.45)

¤ ε

2
}Πp1q

K f � divpA∇uHq}2
K �

1
2ε
}Πp1q

K f � f }2
K .

Now using (3.42), (3.43), (3.44) and (3.45) in (3.41),

9
40
}Πp1q

K f � divpA∇uHq}2
K ¤ 9ε

2
}Πp1q

K f � divpA∇uHq}2
K �

16C2
i

2ε

¸
K1PPh,K

h�2
K }A∇puh � uHq}2

K1

� 64%C2
i ρpAKq2

2ε

¸
γPEI

h,K

h�3
K }ruhsγ}2

γ

� 256%C2
i ρpAKq2

2ε

¸
γPED

h XBK

h�3
K }q � uh}2

γ

� 1
2ε
}Πp1q

K f � f }2
K . (3.46)

Multiply both sides of (3.46) by h2
K , Lemma A.0.2 and the definition (2.3) give

h2
K}Πp1q

K f � f }2
K ¤ 2%|K|}Πp1q

K f � f }2
K � 2% osc2p f ,K, 1q.

Also, using the relation |γ| ¤ hK
4 for all γ P EI

h,K for a small ε ¡ 0, we get

h2
K}Πp1q

K f � divpA∇uHq}2
K ¤ 320C2

i

εp9 � 180εq
¸

K1PPh,K

}A∇puh � uHq}2
K1

� 1280%C2
i ρpAKq2

εp9 � 180εq
¸

γPEI
h,K

h�1
K }ruhsγ}2

γ

� 5120%C2
i ρpAKq2

εp9 � 180εqεq
¸

γPED
h XBK

h�1
K }q � uh}2

γ

� 20
εp9 � 180εqh2

K}Πp1q
K f � f }2

K

¤ 320C2
i

εp9 � 180εq
¸

K1PPh,K

}A∇puh � uHq}2
K1

� 320%C2
i ρpAKq2

εp9 � 180εq
¸

γPEI
h,K

|γ|�1}ruhsγ}2
γ

� 1280%C2
i ρpAKq2

εp9 � 180εq
¸

γPED
h XBK

|γ|�1}q � uh}2
γ

� 40%
εp9 � 180εqosc2p f ,K, 1q (3.47)
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Triangle inequality, Lemma (A.0.2) and definition (2.3) imply

h2
K} f � divpA∇uHq}2

K ¤ 2h2
K}Πp1q

K f � divpA∇uHq}2
K � 2h2

K} f � Π
p1q
K f }2

K

¤ 2h2
K}Πp1q

K f � divpA∇uHq}2
K � 4%|K|} f � Π

p1q
K f }2

K

¤ 2h2
K}Πp1q

K f � divpA∇uHq}2
K � 4% osc2p f ,K, 1q (3.48)

Inequalities (3.47) and (3.48) imply that

h2
K} f � divpA∇uHq}2

K ¤ 640C2
i

εp9 � 180εq
¸

K1PPh,K

}A∇puh � uHq}2
K1

� 640%C2
i ρpAKq2

εp9 � 180εq
¸

γPEI
h,K

|γ|�1}ruhsγ}2
γ

� 2560%C2
i ρpAKq2

εp9 � 180εq
¸

γPED
h XBK

|γ|�1}q � uh}γ

� p4%� 80%
εp9 � 180εqq osc2p f ,K, 1q

�
Corollary 3.1.13 In Lemma 3.1.8, pick ε � 1

40 , then we have

h2
K} f � divpA∇uHq}2

K ¤ 29102C2
i

9

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 29102%C2
i ρpAKq2

9

¸
γPEI

h,K

|γ|�1}ruhsγ}2
γ

� 211102%C2
i ρpAKq2

9

¸
γPED

h XBK

|γ|�1}q � uh}γ

� p4%� 26102%

9
q osc2p f ,K, 1q (3.49)

Lemma 3.1.14 Fix K PMH . For γ P EK , the following inequality holds

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ

¤ 64p1 � %q
�

29102C2
i

9
� 368%

�
27102C2

i

9
� 4C2

i

�� ¸
K1PPh

}A∇puh � uHq}2
K1

� 64p1 � %q
�

211102%C2
i λ

2

9
� 368%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

�� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 64p1 � %q
�

4%� 26102%

9
� 368%p%� 24102%

9
q

 ¸

KPPH

osc2p f ,K, 1q

� 64p1 � %qp240%� 1q
¸
γPEN

H

osc2pg, γ, 0q. (3.50)
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Proof. By [59] (3.20) we have

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ (3.51)

¤ 64p1 � %q
�
� ¸

KPPH

h2
K} f � divpA∇uHq}2

K �
¸
γPEI

H

|γ|}rn � A∇uHsγ}2
γ �

¸
γPEN

H

|γ|}n � A∇uH � g}2
γ

�



Now from previous chapter remember that by (3.49) we have

h2
K} f � divpA∇uHq}2

K ¤ 29102C2
i

9

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 29102%C2
i ρpAKq2

9

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 211102%C2
i ρpAKq2

9

¸
γ1PED

h XBK

|γ1|�1}q � uh}γ1

� p4%� 26102%

9
q osc2p f ,K, 1q

From this inequality we deduce that

¸
KPPH

h2
K} f � divpA∇uHq}2

K ¤ 29102C2
i

9

¸
K1PPh

}A∇puh � uHq}2
K1

� 211102%C2
i λ

2

9

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� p4%� 26102%

9
q

¸
KPPH

osc2p f ,K, 1q (3.52)

and by (3.31)

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

�
h2

K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

�
. (3.53)
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For all γ P EI
H , 3.53 becomes

¸
γPEI

H

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

¸
KPPH

h2
K

4
} f � divpA∇uHq}2

K

� 288%4C2
i

¸
K1PPh

}A∇puh � uHq}2
K1

� 288%16%C2
i λ

2
¸

γ1PEI
hYED

h

|γ1|�1}ruhsγ1}2
γ1

¤ 288%
27102C2

i

9

¸
K1PPh

}A∇puh � uHq}2
K1

� 288%
29102%C2

i λ
2

9

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 288%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� 288%4C2
i

¸
K1PPh

}A∇puh � uHq}2
K1

� 288%16%C2
i λ

2
¸

γ1PEI
hYED

h

|γ1|�1}ruhsγ1}2
γ1

� 288%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 288%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 288%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q (3.54)

we deduce following inequality from (3.54)

¸
γPEI

H

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 288%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 288%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q (3.55)

Now note that by triangle inequality

|γ|}n � A∇uH � g}2
γ ¤ |γ|}n � A∇uH � Π

p0q
γ g}2

γ � |γ|}g � Π
p0q
γ g}2

γ

49



By using (3.38) and (2.4) it can be written that

|γ|}n � A∇uH � g}2
γ ¤ 80%

�h2
K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1 � 4%C2

i ρpAKq2
¸

γ1PEI
h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1 � 3%osc2pg, γ, 0q

	
� osc2pg, γ, 0q

Summing for all γ P EN
H then

¸
γPEN

h

|γ|}n � A∇uH � g}2
γ ¤ 80%

� ¸
KPPH

h2
K

4
} f � divpA∇uHq}2

K

� 4C2
i

¸
K1PPh

}A∇puh � uHq}2
K1 � 16%C2

i λ
2

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

	

� p240%� 1q
¸
γPEN

H

osc2pg, γ, 0q

¤ 80%
�27102C2

i

9

¸
K1PPh

}A∇puh � uHq}2
K1

� 29102%C2
i λ

2

9

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� 4C2
i

¸
K1PPh

}A∇puh � uHq}2
K1 � 16%C2

i λ
2

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

	

� p240%� 1q
¸
γPEN

H

osc2pg, γ, 0q

� 80%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 80%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 80%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� p240%� 1q
¸
γPEN

H

osc2pg, γ, 0q
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Then we get

¸
γPEN

H

|γ|}n � A∇uH � g}2
γ ¤ 80%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 80%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 80%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� p240%� 1q
¸
γPEN

H

osc2pg, γ, 0q (3.56)

Using (3.52), (3.55) and (3.56) in (3.51) we get

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ

¤ 64p1 � %q
�

29102C2
i

9

¸
K1PPh

}A∇puh � uHq}2
K1

� 211102%C2
i λ

2

9

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� p4%� 26102%

9
q
¸

KPPH

osc2p f ,K, 1q

� 288%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 288%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 288%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� 80%

�
27102C2

i

9
� 4C2

i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 80%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 80%p%� 24102%

9
q

¸
KPPH

osc2p f ,K, 1q

� p240%� 1qosc2pg, γ, 0q
�
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� 64p1 � %q
�

29102C2
i

9
� 368%

�
27102C2

i

9
� 4C2

i

�� ¸
K1PPh

}A∇puh � uHq}2
K1

� 64p1 � %q
�

211102%C2
i λ

2

9
� 368%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

�� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 64p1 � %q
�

4%� 26102%

9
� 368%p%� 24102%

9
q

 ¸

KPPH

osc2p f ,K, 1q

� 64p1 � %qp240%� 1q
¸
γPEN

H

osc2pg, γ, 0q

Finally we have

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ

¤ 64p1 � %q
�

29102C2
i

9
� 368%

�
27102C2

i

9
� 4C2

i

�� ¸
K1PPh

}A∇puh � uHq}2
K1

� 64p1 � %q
�

211102%C2
i λ

2

9
� 368%

�
29102%C2

i λ
2

9
� 16%C2

i λ
2

�� ¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� 64p1 � %q
�

4%� 26102%

9
� 368%p%� 24102%

9
q

 ¸

KPPH

osc2p f ,K, 1q

� 64p1 � %qp240%� 1q
¸
γPEN

H

osc2pg, γ, 0q.

�

Now note that in (3.31) we have the term h2
K
4 } f � divpA∇uHq}2

K . By using (3.49) we get

following bound for (3.31).

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

�
27102C2

i

9

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 27102%C2
i ρpAKq2

9

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 29102%C2
i ρpAKq2

9

¸
γ1PED

h XBK

|γ1|�1}q � uh}γ1

� p%� 24102%

9
q osc2p f ,K, 1q

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1
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� 4%C2
i ρpAKq2

¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

�

Also if γ P EK X EN
H , we have a contributions from Neumann boundary, too. When we look

at (3.38), we see that (3.31) has greater upper bound than (3.38). Also both of the inequalities

include same terms except the data oscillation term. So we have just a data oscillation from

Neumann boundary. Then for all γ P BPH we have following bound for (3.31) ,

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

�
27102C2

i

9

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 27102%C2
i ρpAKq2

9
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γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 29102%C2
i ρpAKq2

9

¸
γ1PED

h XBK

|γ1|�1}q � uh}γ1

� p%� 24102%

9
q osc2p f ,K, 1q

� 4C2
i

¸
K1PPh,K

}A∇puh � uHq}2
K1

� 4%C2
i ρpAKq2
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γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

� 16%C2
i ρpAKq2

¸
γ1PED

h XBK

|γ1|�1}q � uh}2
γ1

�

� 240%2osc2pg, γ, 0q

If we rearrange the last inequality we get,

|γ|}rn � A∇uHsγ}2
γ ¤ 288%

��
27102C2

i

9
� 4C2

i

� ¸
K1PPh,K

}A∇puh � uHq}2
K1

�
�

27102%C2
i ρpAKq2

9
� 4%C2

i ρpAKq2

� ¸
γ1PEI

h,K

|γ1|�1}ruhsγ1}2
γ1

�
�

29102%C2
i ρpAKq2

9
� 16%C2

i ρpAKq2

� ¸
γ1PED

h XBK

|γ1|�1}q � uh}γ1

� p%� 24102%

9
q osc2p f ,K, 1q

�
� 240%2osc2pg, γ, 0q (3.57)
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Using (3.57) into (3.19) give ,

Φ2
K ¤ 9ρpA�1

K q % 288%

��
27102C2

i

9
� 4C2

i

� ¸
K1PPh,K

}A∇puh � uHq}2
K1

�
�

27102%C2
i ρpAKq2

9
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h,K
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9
q osc2p f ,K, 1q

�
� 9ρpA�1

K q % 240%2
¸

γPEKXEN
H

osc2pg, γ, 0q

� 9ρpA�1
K q%δpγqκ2

¸
γPEK

|γ|�1}ruHsγ}2
γ

� 6%
π2 ρpA�1

K qosc2p f ,K, 0q � 24%
π
ρpA�1

K q
¸

γPEKXEN
H

osc2pg, γ, 0q (3.58)

Above inequality implies that for a marking triangle K, we have given upper bound. For

all marking triangle K, one can reach the following upper bound. Before doing this, let us

introduce some definitions.

Let λ�1 � max tρpA�1
K q|K P PH,0u and let λ � max tρpAKq|K P PH,0u where PH,0 is initial

mesh. Let δmax � maxtδpγq |γ P EK ,K P PHu. Then, from (3.58) we can conclude that,

¸
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γPEI

H
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2
¸
γPED

H
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γ

� 2592λ�1 %
2 p%� 24102%

9
q
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KPPH

osc2p f ,K, 1q � 2160λ�1%
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H
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KPPH
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γPEN

H

osc2pg, γ, 0q
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Consequently, rearranging the above inequality and doing some elementary computation, we

arrive the inequality (3.18).

¸
KPMH

Φ2
K ¤ 288λ�1 %

2 �27102C2
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γPEN

H

osc2pg, γ, 0q (3.59)

In the above inequality since we have a term which is dependent on the penalty parameter we

should also bound this term with the difference between fine mesh and coarse mesh for the

guarantied error reduction.

Plugging the inequality (3.50) into (3.59) allow us to write

¸
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Estimation of the Nonconforming Part:

Theorem 3.1.15 Let u P H1pΩq such that u � q on ΓD and uH P XH be the solution of (2.1)

and its DG approximations (2.7) with respect to PH . Then, there holds

¸
KPMH

Ψ2
K ¤ 4C2

i λ
¸
γPEI

H

|γ|�1}ruHsγ}2
γ � 4C2

i λ
¸
γPED

H

|γ|�1}q � uH}2
γ

� p4C2 � 6q
¸
γPED

H

osc2pq, γq (3.60)

where for a given initial mesh PH,0, we define λ � max t ρpAKq|K P PH,0u and C is an

constant which is independent of the size of the elements in the mesh PH .

Proof. Estimator for the nonconforming part given as following

ΨK � ~uH � SpuHq~K �
¸

γPEKXED
H

inf
vPH1

γpKq
v|γ�q�qI,H

~v~K

where

SpuHqpxmq �

$'''&
'''%

qI,Hpxmq if m P VDpTKq
uH|Kpxmq if m P VpTKq zVBKpTKq

1
#Ωm

°
K1PΩm

uH|K1pxmq if m P V XVBKpTKq zVDpTKq

In [4], it was proved that

inf
vPH1

γpKq
v|γ�q�qI

~v~K ¤ Coscpq, γq.

Then it can be written that,

Ψ2
K ¤ 2~uH � SpuHq~2

K � 4C2
¸

γPEKXED
H

osc2pq, γq
	
. (3.61)

and by [4], we have

~uH � SpuHq~2
K ¤ C2

i ρpAKq
6

¸
mPVBKpTKqXV

|uH|Kpxmq � SpuHqpxmq|2 (3.62)

Proof of (3.62): For every element K P PH , AK � A|K P R2�2, there exist positive constant

ρpAKq satisfying

~v~K � pA∇v,∇vqK ¤ }A}K}∇v}2
K ¤ ρpAKq}∇v}2

K @v P H1pKq. (3.63)

56



Using (3.63) and applying the Markov inequality (2.14) give

~uH � SpuHq~2
K ¤ ρpAKq}∇puH � SpuHqq}2

K ¤ C2
i ρpAKqh�2

K }uH � SpuHq}2
K

and evaluating this integral, using the following quadrature rule based on edge midpoints

which is exact for quadratic functions, see Lemma A.0.7,»
K

f � |K|
3
p f pmγ1q � f pmγ1q � f pmγ3q

where mγi i � 1, 2, 3 refer to midpoints of the edges γi of the triangle K. Applying this

quadrature rule, we have

}uH � SpuHq}2
K � 1

3
|K|

¸
γPEK

|uHpmγq � SpuHqpmγq|2.

The restriction of puH|K �SpuHqq to an edge γ � BK is a linear function of arc length, which

means that the value at the midpoint mγ is the average value of the values at the endpoints of

the edge, and therefore,

|uHpmγq � SpuHqpmγq| � 1
2

¸
mPVpγq

|uH|Kpxmq � SpuHqpxmq|.

whereVpγq index the vertices at the endpoints of γ. This implies

|uHpmγq � SpuHqpmγq|2 ¤ 1
2

¸
mPVpγq

|uH|Kpxmq � SpuHqpxmq|2.

Then ¸
γPEK

|uHpmγq � SpuHqpmγq|2 ¤
¸

mPVpKq
uH|Kpxmq � SpuHqpxmq|2

whereVpKq index the set of the vertices of element K. Therefore,

~uH � SpuHq~2
K ¤ C2

i ρpAKq
3

h�2
K |K|

¸
mPVpKq

|uH|Kpxmq � SpuHqpxmq|2 (3.64)

and by elementary computation it can be shown that h�2
K |K| is bounded by 1{2 such that for

an arbitrary triangle K. Indeed:
|K| � hK a

2
¤ h2

K

2
.

Then (3.64) becomes,

~uH � SpuHq~2
K ¤ C2

i ρpAKq
6

¸
mPVpKq

|uH|Kpxmq � SpuHqpxmq|2

¤ C2
i ρpAKq

6

¸
mPVpTKq

|uH|Kpxmq � SpuHqpxmq|2.

� C2
i ρpAKq

6

¸
mPVBKpTKq

|uH|Kpxmq � SpuHqpxmq|2.

¤ C2
i ρpAKq

6

¸
mPVBKpTKqXV

|uH|Kpxmq � SpuHqpxmq|2 (3.65)

57



Figure 3.8: Relation between area and edge

Now, one needs to find an upper bound for |uH|Kpxmq�SpuHqpxmq|2. Case (i): First consider

the case when m R VDpTKq, i.e., xm is not a vertex lying on the Dirichlet boundary. Upon

observing that ¸
K1PΩm

1
#Ωm

� 1,

we can obtain following equality after inserting the definition of SpuHqpxmq

uH|Kpxmq�SpuHqpxmq �
$&
% 0 if m P VpTKq zVBKpTKq

1
#Ωm

°
K1PΩmzKpuH|Kpxmq � uH|K1pxmqq if m P V XVBKpTKq zVDpTKq

.

Note that we removed K from the set Ωm, because if K P Ωm, then SpuHqpxmq � uH|Kpxmq
so this implies uH|Kpxmq � SpuHqpxmq � 0. Then,

uH|Kpxmq � SpuHqpxmq � 1
#Ωm

¸
K1PΩmzK

puH|Kpxmq � uH|K1pxmqq.

The above equality implies that

|uH|Kpxmq � SpuHqpxmq| ¤ 1
#Ωm

¸
K1PΩmzK

| �uH|Kpxmq � uH|K1pxmq
� |.

Now, if xm � ΓD is a point of the closure of one element K P PH only then last inequality

implies |uH|Kpxmq � SpuHqpxmq| � 0. Therefore, let xm be a common point of the closure of

more than one element in PH . We shall first bound the contribution |uH|Kpxmq � uH|K1pxmq|
from elements K,K1 P Ωm whose boundaries both contain an edge γ P BPH . In this case by

definition of jump and trace inverse estimates which is defined in (2.13) we can write that

|uH|Kpxmq � uH|K1pxmq| � |ruHsγpxmq| ¤ }ruHsγ}L8pγq

¤ 2|γ|�1{2}ruHsγ}γ.

Then

|uH|Kpxmq � uH|K1pxmq| ¤ 2|γ|�1{2}ruHsγ}γ.
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This relation is valid for pairs of elements sharing a common edge γ. If the closure of elements

K and K1 consists of only the common point xm then we can then write |uH|Kpxmq�uH|K1pxmq|
as a telescoping sum of the jumps in uH across neighboring edges, from which we can use the

previous inequality to obtain

|uH|Kpxmq � uH|K1pxmq| ¤ 2
¸
γPEI

H
xm�γ

|γ|�1{2}ruHsγ}γ

Case(ii): If xm P VDpTKq. Let xm be an endpoint of an edge γ P EK X ED
H for an element

K1 P Ωm where it is allowed for the possibility that K1 � K and observe that

|uH|Kpxmq � SpuHqpxmq| ¤ |uH|Kpxmq � uH|K1pxmq| � |uH|K1pxmq � qIpxmq|

The first term on the right-hand side of the above inequality can be bounded using previous

step and we can also write that

|uH|K1pxmq � qIpxmq| ¤ }uH � qI}L8pγq

¤ 2|γ|�1{2}uH � qI}γ
¤ 2|γ|�1{2 �}uH � q}γ � }q � qI}γ

�
(3.66)

to bound second term, In [77] by Corollary 3.15, it can be written that

}q � qI}γ ¤ 1?
2
|γ|1{2oscpq, γq.

For m P VBKpTKq XV for K P Ωm, we can write

|uH|Kpxmq � SpuHqpxmq| ¤ 2
¸
γPEI

H :
xm�γ

|γ|�1{2}ruHs}γ � 2
¸
γPED

H :
xm�γ

|γ|�1{2}uH � q}γ �
?

2
¸
γPED

H :
xm�γ

oscpq, γq.

This implies,

|uH|Kpxmq � SpuHqpxmq|2 ¤ 12
¸
γPEI

H :
xm�γ

|γ|�1}ruHs}2
γ � 12

¸
γPED

H :
xm�γ

|γ|�1}uH � q}2
γ � 6

¸
γPED

H :
xm�γ

osc2pq, γq .(3.67)

Combining the estimates (3.61), (3.62) and (3.67) gives,

Ψ2
K ¤ 4C2

i ρpAKq
¸
γPẼK

|γ|�1}ruHsγ}2
γ � 4C2

i ρpAKq
¸

γPẼKXED
H

|γ|�1}uH � q}2
γ

� p4C2 � 6q
¸

γPẼKXED
H

osc2pq, γq,
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ẼK denote the set of edges having any vertex of K as an endpoint such that

ẼK � tγ P BPH : γ X Ku.

Define λ � maxtρpAKq|K P PH,0u where PH,0 is a given initial mesh. Then, for all K PMH ,

we get (3.60)

¸
KPMH

Ψ2
K ¤ 4C2

i λ
¸
γPEI

H

|γ|�1}ruHsγ}2
γ � 4C2

i λ
¸
γPED

H

|γ|�1}q � uH}2
γ

� p4C2 � 6q
¸

γPẼKXED
H

osc2pq, γq

�

By collecting the estimates (3.18) and (3.60) we have,

¸
KPMH

pΦ2
K � Ψ2

Kq

¤ 288λ�1 %
2 �27102C2

i � 2232C2
i

� ¸
K1PPh

}A∇puh � uHq}2
K1

� 288λ�1 %
2 �27102%C2

i λ
2 � 2232%C2

i λ
2� ¸

γ1PEI
h

|γ1|�1}ruhsγ1}2
γ1

� 288λ�1 %
2 �29102%C2

i λ
2 � 2432%C2

i λ
2� ¸

γ1PED
h

|γ1|�1}q � uh}2
γ1

� 4C2
i λ

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� 64p1 � %qλ�1%δmax
�
29102C2

i � 368%
�
27102C2

i � 36C2
i

�� ¸
K1PPh

}A∇puh � uHq}2
K1

� 64p1 � %qλ�1%δmax
�
211102%C2

i λ
2 � 368%

�
29102%C2

i λ
2 � 2432%C2

i λ
2�� ¸

γ1PEI
hYED

h

|γ1|�1}ruhsγ1}2
γ1

� 64p1 � %qλ�1%δmax
�
2232%� 26102%� 368%p32%� 24102%q� ¸

KPPH

osc2p f ,K, 1q

� 64p1 � %qλ�19%δmaxp240%� 1q
¸
γPEN

H

osc2pg, γ, 0q

� 288λ�1 %
2 p32%� 24102%q

¸
KPPH

osc2p f ,K, 1q � 6%
π2 λ�1

¸
KPPH

osc2p f ,K, 0q

�
�

24%
π
λ�1 � 2160λ�1%

3

 ¸

γPEN
H

osc2pg, γ, 0q

� p4C2 � 6q
¸
γPED

H

osc2pq, γq
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For simplicity let us write last inequality by following way

¸
KPMH

pΦ2
K � Ψ2

Kq ¤ A1

¸
K1PPh

}A∇puh � uHq}2
K1 � A2

¸
γ1PEI

h

|γ1|�1}ruhsγ1}2
γ1

� A3

¸
γ1PED

h

|γ1|�1}q � uh}2
γ1 � A4

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� A5

¸
K1PPh

}A∇puh � uHq}2
K1 � A6

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� A7

¸
KPPH

osc2p f ,K, 1q � A8

¸
γPEN

H

osc2pg, γ, 0q

� A9

¸
KPPH

osc2p f ,K, 1q � A10

¸
KPPH

osc2p f ,K, 0q

� A11

¸
γPEN

H

osc2pg, γ, 0q � A12

¸
γPED

H

osc2pq, γq

¤ pA1 � A5q
¸

K1PPh

}A∇puh � uHq}2
K1

� pA3 � A6q
¸

γ1EI
hYED

h

|γ1|�1}ruhsγ1}2
γ1

� A4

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� pA7 � A9q
¸

KPPH

osc2p f ,K, 1q

� pA8 � A11q
¸
γPEN

H

osc2pg, γ, 0q

� A10

¸
KPPH

osc2p f ,K, 0q � A12

¸
γPED

H

osc2pq, γq (3.68)

where

A1 � 288λ�1 %
2 �27102C2

i � 2232C2
i

�
A2 � 288λ�1 %

2 �27102%C2
i λ

2 � 2232%C2
i λ

2�
A3 � 288λ�1 %

2 �29102%C2
i λ

2 � 2432%C2
i λ

2�
A4 � 4C2

i λ

A5 � 64p1 � %qλ�1%δmax
�
29102C2

i � 368%
�
27102C2

i � 36C2
i

��
A6 � 64p1 � %qλ�1%δmax

�
211102%C2

i λ
2 � 368%

�
29102%C2

i λ
2 � 2432%C2

i λ
2��

A7 � 64p1 � %qλ�1%δmax
�
2232%� 26102%� 368%p32%� 24102%q�

A8 � 64p1 � %qλ�19%δmaxp240%� 1q
A9 � 288λ�1 %

2 p32%� 24102%q
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A10 � 6%
π2 λ�1

A11 �
�

24%
π
λ�1 � 2160λ�1%

3



A12 � p4C2 � 6q

3.2 Proof of Error Reduction :

Lemma 3.2.1 (Karakashian, Pascal,2007) Following inequality holds for PH for sufficently

large κ

BHpeH , eHq ¥ 1
2

¸
KPPH

~∇eH~2
K �

�
κ2

4C1
� κ � 224%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ (3.69)

where C1 � 64p1 � %q
�

22102C2
i λ

92 � 112C2
i λ�40C4

i λ�92λ

72

	
and λ � maxt ρpAKq| K P PH,0u.

Proof. Proof is given in Lemma A.0.9. �

Before engaging the proof, let

osc2 :�
¸

KPPH

osc2p f ,K, 0q � osc2p f ,K, 1q �
¸

KPEN
H

osc2pg, γ, 0q �
¸

KPED
H

osc2pq, γq.

By coercivity of bilinear form in Xh we have

Bhpuh � uHq ¥ 1
2

¸
KPPh

}A∇puh � uHq}2
K �

1
2

¸
γPEI

hYED
H

|γ|�1}ruh � uHs}2
γ. (3.70)

Proof can be found in [74].

Also by (3.68), it can be written that

¸
KPMH

pΦ2
K � Ψ2

Kq ¤ pA1 � A5qloooomoooon
�Ã1

¸
K1PPh

}A∇puh � uHq}2
K1 � pA3 � A6qloooomoooon

�Ã2

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� A4

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ � pA7 � A9qloooomoooon

�Ã3

osc2 . (3.71)

Now by (3.9) we have

BHpeH , eHq � κpδmax � 1q
¸

γPEI
HYED

H

|γ|�1}ruHs}2
γ ¥ BhpeH , eHq.
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Using (3.8), (3.70), (3.71) and marking strategy (3.17), respectively we get

BHpeH , eHq � κpδmax � 1q
¸

γPEI
HYED

H

|γ|�1}ruHs}2
γ ¥ BhpeH , eHq

� Bhpeh, ehq � Bhpuh � uH , uh � uHq
¥ Bhpeh, ehq � 1

2

¸
KPPh

}A∇puh � uHq}2
K

¥ Bhpeh, ehq � 1
2Ã1

¸
KPMH

pΦ2
K � Ψ2

Kq �
1
2

�
Ã2

Ã1

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� A4

Ã1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

Ã3

Ã1
osc2

�

¥ Bhpeh, ehq � θ

2Ã1

¸
KPPH

pΦ2
K � Ψ2

Kq �
1
2

�
Ã2

Ã1

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1

� A4

Ã1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

Ã3

Ã1
osc2

�
(3.72)

By [59] we have,

κ
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ ¤

C1

κ

¸
KPPH

~eH~2
K

where C1 � 64p1 � %q
�

22102C2
i λ

92 � 112C2
i λ�40C4

i λ�92λ

72

	
. Also by [69] we have

¸
KPPH

~eH~2
K ¤

¸
KPPH

�
Φ2

K � Ψ2
K

�
.

So we can write following inequality

κ
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ ¤

C1

κ

¸
KPPH

�
Φ2

K � Ψ2
K

�
. (3.73)

Then inequality (3.72) becomes

BHpeH , eHq � C1pδmax � 1q
κ

¸
KPPH

�
Φ2

K � Ψ2
K

� ¥ Bhpeh, ehq � θ

2Ã1

¸
KPPH

pΦ2
K � Ψ2

Kq

� 1
2

�
Ã2

Ã1

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1 �

A4

Ã1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

Ã3

Ã1
osc2

�

Then for κ ¡ 2Ã1C1pδmax�1q
θ we have following inequality

BHpeH , eHq ¥ Bhpeh, ehq �
�

θ

2Ã1
� C1pδmax � 1q

κ


 ¸
KPPH

pΦ2
K � Ψ2

Kq (3.74)

� 1
2

�
Ã2

Ã1

¸
γ1PEI

hYED
h

|γ1|�1}ruhsγ1}2
γ1 �

A4

Ã1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

Ã3

Ã1
osc2

�
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By (3.69) (this result holds for a generic mesh), it can be written that�
κ2

4C1
� κ � 224%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ ¤ BHpeH , eHq (3.75)

and �
κ2

4C1
� κ � 224%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruhsγ}2
γ ¤ Bhpeh, ehq. (3.76)

For simplicity let us define
�

κ2

4C1
� κ � 224%

3 � λ%
4

	
:� α

Using (3.75) and (3.76) into (3.74) we get

BHpeH , eHq ¥ Bhpeh, ehq �
�

θ

2Ã1
� C1pδmax � 1q

κ


 ¸
KPPH

pΦ2
K � Ψ2

Kq

� 1
2

�
Ã2

Ã1α
Bhpeh, ehq � A4

Ã1α
BHpeH , eHq � Ã3

Ã1
osc2

�

If we rearrange last inequality�
1 � A4

2Ã1α



BHpeH , eHq � Ã3

2Ã1
osc2

¥
�

1 � Ã2

2Ã1α



Bhpeh, ehq �

�
θ

2Ã1
� C1pδmax � 1q

κ


 ¸
KPPH

pΦ2
K � Ψ2

Kq (3.77)

Now, by (A.13), we have

BHpeH , eHq ¤ 2
¸

KPPH

~eH~2
K �

�
56λ%

3
� λ%� 3κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

Using (3.73) in the last inequality and recalling

¸
KPPH

~eH~2
K ¤

¸
KPPH

pΦ2
K � Ψ2

Kq

one gets,

BHpeH , eHq ¤ 2
¸

KPPH

pΦ2
K � Ψ2

Kq �
�

56λ%
3

� λ%� 3κ



C1

κ2

¸
KPPH

pΦ2
K � Ψ2

Kq

�
�

2 �
�

56λ%
3

� λ%� 3κ



C1

κ2


 ¸
KPPH

pΦ2
K � Ψ2

Kq

� β
¸

KPPH

pΦ2
K � Ψ2

Kq (3.78)

where β �
�

2 �
�

56λ%
3 � λ%� 3κ

	
C1
κ2

	
. Using the last result into (3.77) we get,�

1 � A4

2Ã1α



BHpeH , eHq � Ã3

2Ã1
osc2

¥
�

1 � Ã2

2Ã1α



Bhpeh, ehq � 1

β

�
θ

2Ã1
� C1pδmax � 1q

κ



BHpeH , eHq.
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Then we have �
1 � A4

2Ã1α
� 1
β

�
θ

2Ã1
� C1pδmax � 1q

κ




BHpeH , eHq � Ã3

2Ã1
osc2

¥
�

1 � Ã2

2Ã1α



Bhpeh, ehq. (3.79)

Recall that we have an assumption on κ such that κ ¡ 2Ã1C1pδmax�1q
θ . Ultimate goal of the

thesis was that

Bhpeh, ehq ¤ ηBHpeH , eHq

where 0   η   1. Then following inequality should be satisfied

1 � A4

2Ã1α
� 1
β

�
θ

2Ã1
� C1pδmax � 1q

κ



  1 � Ã2

2Ã1α

If we rearrange above inequality we get

A4

2Ã1α
� Ã2

2Ã1α
� 1
β

C1pδmax � 1q
κ

  1
β

θ

2Ã1

Multiply each side 2Ã1

A4

α
� Ã2

α
� 1
β

2Ã1C1pδmax � 1q
κ

  θ

β
.

Now multiply with β
θ and α each side

β

θ
A4 � β

θ
Ã2 � α

κ

2Ã1C1pδmax � 1q
θ

  α

and take all term right hand side

0   α� α

κ

2Ã1C1pδmax � 1q
θ

� β

θ
Ã2 � β

θ
A4.

Recall that

α � κ2

4C1
� κ � 224%

3
� λ%

4
.

Then it can be written that

α � κ2
�

1
4C1

� 1
κ
� 224%

3κ2 � λ%

4κ2



.

Since we have an assumption on κ such that κ ¡ 2Ã1C1pδmax�1q
θ , then it can be easily seen that

0   1
4C1

� 1
κ � 224%

3κ2 � λ%

4κ2   1, define this quantity as ε :� 1
4C1

� 1
κ � 224%

3κ2 � λ%

4κ2 . So we have

α � εκ2 where 0   ε   1. Then we have

0   εκ2 � εκ
2Ã1C1pδmax � 1q

θ
� β

θ
Ã2 � β

θ
A4.
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Divide both side with ε,

0   κ2 � κ
2Ã1C1pδmax � 1q

θ
� β

θε
Ã2 � β

θε
A4.

For simplicity let us define 0   2Ã1C1pδmax�1q
θ :� ξ and 0   β

θε Ã2 � β
θε A4 :� µ, we get

0   κ2 � κξ � µ.

By solving above second order equation we get

κ ¡ ξ �
a
ξ2 � 4µ
2

Choosing κ ¡ ξ�
?
ξ2�4µ
2 , one can guaranteed convergence in adaptive strategy.
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CHAPTER 4

ON the CONSTANTS in INVERSE INEQUALITIES in L2

In this chapter we shall present the exact constants in univariate and multivariate Markov

inequality in L2-norm. Using orthogonal polynomials, we reduce the problem to a simple

eigenvalue problem and we establish bounds with known constants for Markov inequalities

on an arbitrary 1-simplex, 2-simplex and 3-simplex. In [83], a similar technique is used to

obtain the constants in the hp-trace inequalities. In this thesis, we obtain the same constant

with [77] for a linear polynomial u and smaller constant for higher order polynomials in 1D.

The remainder of this chapter is organized as follows. In Section 4.1, the Markov inequality is

proved for one dimensional domain and an explicit constant is found in L2 norm. Section 4.2

gives us a Markov inequality constant for polynomial in two variables on triangular domain,

while in Section 4.3, we give the result for a tetrahedron. Finally, in Section 4.4 we provide a

brief conclusion.

4.1 One Dimensional Domain

In this section, we state and prove Markov inequality for a polynomial u total degree N on a

finite interval and we give a closed form for the constants up to polynomial degree 4. For the

case 5 ¤ N ¤ 10, we give numerical values for this constant.

Theorem 4.1.1 (Markov Inequality on a finite interval) For an interval K � ra, bs and for a

polynomial u of total degree N � 1, 2, 3, 4 the following result holds

}u1}L2pKq ¤
2
?

CN

b � a
}u}L2pKq

where C1 � 3, C2 � 15, C3 � 45�?
1605

2 and C4 � 105�3
?

805
2 .

67



Proof. Consider the reference interval K̂ � r�1, 1s and associate L2- orthonormal polyno-

mial, the classical Legendre polynomial. The reference interval K̂ � r�1, 1s is mapped to

interval K � ra, bs by following transformation, which send �1 to a, 1 to b :

x � pb � aqr
2

� b � a
2

where r P r�1, 1s and x P ra, bs. By chain rule and using a scaling argument

}u1}L2pKq �
����du

dr
dr
dx

����
L2pKq

�
���� dr
dx

����
����du

dr

����
L2pKq

� 2
|b � a|

����b � a
2

����
1{2 ����du

dr

����
L2pK̂q

¤ 2
|b � a|

a
CN

����b � a
2

����
1{2
}u}L2pK̂q

� 2
|b � a|

a
CN}u}L2pKq

where CN can be determined for a given polynomial order N by solving the following eigen-

value problem for the maximum eigenvalue,�
dφn

dr
,

dφm

dr



K̂

um � λpφn, φmqK̂um

Here tφnun�N�1
n�1 is an orthonormal basis of the reference interval K̂ � r�1, 1s. Einstein

summation is assumed for repeated indices. The L2 inner product on K̂ is denoted by p�, �qK̂ .

Defining Snm �
�

dφn
dr ,

dφm
dr

	
K̂

, Mnm � pφn, φmqK̂ and using the orthonormality of the basis

give us M � I where I is the identity matrix. Then, the above problem reduces to a classical

eigenvalue problem

Snmum � λum.

Let CN be the maximum eigenvalue λ, then we can write:����du
dr

����
2

L2pK̂q
¤ CN}u}2

L2pK̂q.

For N � 1 with orthonormal basis function on the reference interval,

φ0 �
?

2
2 ,

φ1 �
?

6
2 r,

and S �
�
�0 0

0 3

�
� ,

thus C1 � 3.
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Note that basis functions are hierarchical. Then, for N � 2 with orthonormal basis function

on the reference interval,

φ0 �
?

2
2
,

φ1 �
?

6
2

r,

φ2 �
?

10
4

p3r2 � 1q,

and

S �

�
����

0 0 0

0 3 0

0 0 15

�
���� ,

and in this case C2 � 15. We note that the 2 � 2 submatrix of S is the matrix that we get in

the case of N � 1.

For N � 3, orthonormal basis functions on the reference interval are given,

φ0 �
?

2
2
,

φ1 �
?

6
2

r,

φ2 �
?

10
4

p3r2 � 1q,

φ3 �
?

14
4

p5r3 � 3rq,

and

S �

�
�������

0 0 0 0

0 3 0
?

21

0 0 15 0

0
?

21 0 42

�
�������
,

and in this case C3 � 45�?
1605

2 .
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Similarly for N � 4 with orthonormal basis function on the reference interval,

φ0 �
?

2
2
,

φ1 �
?

6
2

r,

φ2 �
?

10
4

p3r2 � 1q,

φ3 �
?

14
4

p5r3 � 3rq,

φ4 � 3
?

2
16

p35r4 � 30r2 � 3q,

and

S �

�
����������

0 0 0 0 0

0 3 0
?

21 0

0 0 15 0 9
?

5

0
?

21 0 42 0

0 0 9
?

5 0 0

�
����������
,

and in this case C4 � 105�3
?

805
2 .

A closed form bound on the eigenvalues for higher order is not obvious. However, it may be

possible to use Gerschgörin’s theorem to localize these eigenvalues.

Numerical values for CN were computed as shown in Table 4.1. We remark that for higher

order polynomials, the largest eigenvalues are obtained by using Matlab. We compare CN

constants with the constants of [77], which are given with the formula N2pN � 1qpN � 1{2q.
The results show that our constant is consistent and smaller than the constant of [77]. Ad-

ditionally, the eigenvalues clearly scale asymptotically as N2pN � 1qpN � 1{2q, where β �
CN1
CN2

{N2
1pN1�1qpN1�1{2q

N2
2pN2�1qpN2�1{2q . �
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N CN N2pN � 1qpN � 1{2q CN
N2pN�1qpN�1{2q β

1 3.0000 3 1.0000
2.0000

2 15.0000 30 0.5000
1.4813

3 42.5312 126 0.3375
1.2783

4 95.0588 360 0.2641
1.1793

5 184.7262 825 0.2239
1.1245

6 326.1508 1638 0.1991
1.0914

7 536.3742 2940 0.1824
1.0699

8 834.8615 4896 0.1705
1.0552

9 1243.5042 7695 0.1616
1.0447

10 1786.6229 11550 0.1547

Table 4.1: Experimentally determined constants in the discrete Markov inequality on an in-
terval

4.2 Two Dimensional Domain

In this section, we discuss the Markov inequality for a 2-simplex and we give a closed form

for the constant for polynomial degree 1 and 2. For 3 ¤ N ¤ 10, numerical values are given.

Theorem 4.2.1 (Markov Inequality for a planar triangle) For a planar triangle K, let |BK|
be the perimeter length of K and |K| be the area of triangle K. Then, for a polynomial u of

total degree N � 1, 2, 3, 4 the following result holds

}∇u}L2pKq ¤
a

CN
|BK|
|K| }u}L2pKq

where C1 � 6, C2 � 45
2 , C3 � 56.8879, C4 � 119.8047.

Proof. Let K̂ be the right angle reference triangle with

K̂ � tpr, sq| � 1 ¤ r, s ¤ 1; r � s ¤ 0u.

The reference triangle K̂ is mapped to triangle K by following transformation, which send

p�1,�1q to px1, y1q, p1,�1q to px2, y2q, p�1, 1q to px3, y3q : pr, sq P K̂ ÞÑ px, yq P K,
x � r

px2 � x1q
2

� s
px3 � x1q

2
� px2 � x3q

2

y � r
py2 � y1q

2
� s

py3 � y1q
2

� py2 � y3q
2

. (4.1)

In vector form, the transformation is�
�� x

y

�
�� �

�
��

px2�x1q
2

px3�x1q
2

py2�y1q
2

py3�y1q
2

�
��
�
�� r

s

�
���

�
��

px2�x3q
2

py2�y3q
2

�
��
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Figure 4.1: Mapping from the reference triangle K̂ to the physical triangle K.

or z � Jẑ � z1.

The standard formula for a change of variables in a multiple integral gives»
K

f px, yqdxdy � |detpJq|
»

K̂
gpr, sqdrds

where g is defined by

gpr, sq � f
�

r
px2 � x1q

2
� s

px3 � x1q
2

� px2 � x3q
2

, r
py2 � y1q

2
� s

py3 � y1q
2

� py2 � y3q
2



.

The Jacobian factor is constant:

|detpJq| � 1
4
|px2 � x1qpy3 � y1q � py2 � y1qpx3 � x1q|

Moreover
|px2 � x1qpy3 � y1q � py2 � y1qpx3 � x1q|

2
� |K|,

then

|detpJq| � |K|
2
.

Chain rule, triangle inequality and standard scaling argument give,

}∇u}L2pKq � }∇r
Bu
Br

� ∇s
Bu
Bs
}L2pKq

¤ |∇r|
����Bu
Br

����
L2pKq

� |∇s|
����Bu
Bs

����
L2pKq

� |∇r|
�
|detpJq|1{2

����Bu
Br

����
L2pK̂q

�
� |∇s|

�
|detpJq|1{2

����Bu
Bs

����
L2pK̂q

�

¤ p|∇r| � |∇s|q
a

CN |detpJq|1{2}u}L2pK̂q

� p|∇r| � |∇s|q
a

CN}u}L2pKq (4.2)
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where |∇r| �
a
p∇rqT p∇rq and same for |∇s|.

Similar to the one dimensional case, utilizing Einstein summation for repeated indices and

using the orthonormality of the basis give us the following eigenvalue problem

Snmum � λum

where Snm :�
�
Bφn
Br ,

Bφm
Br

	
K̂

, and tφnun�pN�1qpN�2q{2
n�1 is an orthonormal basis of the reference

triangle K̂.

Before giving the proof, we first compute |∇r| � |∇s| in (4.2):

|∇r| � |∇s| � pr2
x � r2

yq1{2 � ps2
x � s2

yq1{2

by (4.1) we have

J � Bpx, yq
Bpr, sq �

�
� xr xs

yr ys

�
� �

�
� px2�x1q

2
px3�x1q

2
py2�y1q

2
py3�y1q

2

�
�

Then

J�1 � Bpr, sq
Bpx, yq �

�
� rx ry

sx sy

�
� � 1

detpJq

�
� py3�y1q

2 � px3�x1q
2

� py2�y1q
2

px2�x1q
2

�
� (4.3)

Therefore (4.2) and (4.3) allow us to say,

pr2
x � r2

yq1{2 � ps2
x � s2

yq1{2 �
�py3 � y1q2 � px3 � x1q2

�1{2 � �py2 � y1q2 � px2 � x1q2
�1{2

2|detpJq|
� dist ppx1, y1q, px3, y3qq � dist ppx1, y1q, px2, y2qq

|K|
¤ |BK|

|K|
where distp�, �q denotes the distance between two points. We conclude that

|∇r| � |∇s| ¤ |BK|
|K| .

We note in particular that as
|BK|
|K| � h�1

K

where hK is the longest edge of the element K and also h�1
K is common constant in Markov

inequality in literature [35, 56].

Now, defining CN as the maximum eigenvalue λ allows us to state:����Bu
Br

����
2

L2pK̂q
¤ CN}u}2

L2pK̂q ,
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and by symmetry, the same constant applies for the norm of the s-derivative of u.

For N � 1 with orthonormal basis functions on the reference triangle K̂ and the matrix S is

given by:

φ0,0 �
?

2
2 ,

φ0,1 � 1�3s
2 ,

φ1,0 �
?

3p1�2r�sq
2

and S �

�
����

0 0 0

0 0 0

0 0 6

�
���� ,

thus C1 � 6.

Since basis functions are hierarchical, the first three basis functions are same with the N � 1

case. Then, for N � 2, the orthonormal basis is:

φ0,0 �
?

2
2
,

φ0,1 � 1 � 3s
2

,

φ1,0 �
?

3p1 � 2r � sq
2

,

φ0,2 �
?

6p2s � 5s2 � 1q
4

,

φ1,1 � 3
?

2p3 � 5sqp1 � 2r � sq
8

,

φ2,0 �
?

30p1 � 6r � 4s � 6r2 � 6rs � 6s2q
8

,

and stiffness matrix is given by,

S �

�
�������������

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 6 2
?

6 0

0 0 0 2
?

6 33
2 0

0 0 0 0 0 45
2

�
�������������
,

and in this case C2 � 45
2 .
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For N � 3

S �

�
��������������������������

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 6 2
?

6 3
?

2 0 0
?

42

0 0 0 0 2
?

6 33
2 10

?
3 0 0 0

0 0 0 0 3
?

2 10
?

3 36 0 0 0

0 0 0 0 0 0 0 45
2 6

?
3 0

0 0 0 0 0 0 0 6
?

3 44 0

0 0 0 0
?

42 0 0 0 0 56

�
��������������������������

,

and in this case C3 � 56.8879.

By similar argument, for N � 4 we get the numeric value for C4 � 119.8047 and the eigen-

values scale asymptotically as N4 as in one dimensional case. Table 4.2 presents numerical

values for CN and compares the constants experimentally determined. �

N CN
CN
N4

1 6.0000 6.0000
2 22.5000 1.4063
3 56.8879 0.7023
4 119.8047 0.4680
5 224.1195 0.3586
6 385.2210 0.2972
7 620.8674 0.2586
8 951.2557 0.2322
9 1399.0115 0.2132
10 1989.1818 0.1989

Table 4.2: Experimentally determined constants in the discrete Markov inequality on a trian-
gle

4.3 Three Dimensional Domain

In this section, we consider a tetrahedron and we find the closed form for the constant up to

polynomial degree 3.
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Theorem 4.3.1 (Markov Inequality for a tetrahedron) For a tetrahedral element K, let |BK|
denote the surface area of the K and |K| denote the volume of the K, then for a polynomial u

of total degree N � 1, 2, 3, 4 the following result holds

}∇v}L2pKq ¤ 2
a

CN
|BK|
|K| }v}L2pKq

where C1 � 10, C2 � 63
2 , C3 � 42 � 12

?
7, C4 � 148.4089.

Proof. Let K̂ be standard tetrahedron with

K̂ � tpr, s, tq| � 1 ¤ r, s, t ¤ 1; r � s � t ¤ �1u.

The standard tetrahedron K̂ is mapped to the physical tetrahedron K by an affine mapping,

which sends p�1,�1,�1q to px1, y1, z1q, p1,�1,�1q to px2, y2, z2q, p�1, 1,�1q to px3, y3, z3q,
p�1,�1, 1q to px4, y4, z4q : pr, s, tq P K̂ ÞÑ px, y, zq P K,

Figure 4.2: Mapping from the reference tetrahedron K̂ to the physical tetrahedron K where
F1, F2 and F3 denote faces of the physical tetrahedron K.

x � r
px2 � x1q

2
� s

px3 � x1q
2

� t
px4 � x1q

2
� px2 � x3 � x4 � x1q

2

y � r
py2 � y1q

2
� s

py3 � y1q
2

� t
py4 � y1q

2
� py2 � y3 � y4 � y1q

2
(4.4)

z � r
pz2 � z1q

2
� s

pz3 � z1q
2

� t
pz4 � z1q

2
� pz2 � z3 � z4 � z1q

2
.

In vector form, the transformation is�
����

x

y

z

�
���� �

�
����

px2�x1q
2

px3�x1q
2

px4�x1q
2

py2�y1q
2

py3�y1q
2

py4�y1q
2

pz2�z1q
2

pz3�z1q
2

pz4�z1q
2

�
����
�
����

r

s

t

�
�����

�
����

px2�x3�x4�x1q
2

py2�y3�y4�y1q
2

pz2�z3�z4�z1q
2

�
����
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or k � Jk̂ � k1.

The Jacobian factor is constant:

|detpJq| � 1
8
|px2 � x1qpy3 � y1qpz4 � z1q � py2 � y1qpz3 � x1qpx4 � x1q
� pz2 � z1qpx3 � x1qpy4 � y1q � px4 � x1qpy3 � y1qpz2 � z1q
� py4 � y1qpz3 � z1qpx2 � x1q � pz4 � z1qpx3 � x1qpy2 � y1q|

Moreover,

1
6
|px2 � x1qpy3 � y1qpz4 � z1q � py2 � y1qpz3 � x1qpx4 � x1q � pz2 � z1qpx3 � x1qpy4 � y1q
� px4 � x1qpy3 � y1qpz2 � z1q � py4 � y1qpz3 � z1qpx2 � x1q � pz4 � z1qpx3 � x1qpy2 � y1q|
� |K|

where |K| is the volume of the tetrahedron K, then

|detpJq| � 3
4
|K|. (4.5)

Chain rule, the triangle inequality and standard scaling argument give

}∇u}L2pKq �
����∇r

Bu
Br

� ∇s
Bu
Bs

� ∇t
Bu
Bt

����
L2pKq

¤ |∇r|
����Bu
Br

����
L2pKq

� |∇s|
����Bu
Bs

����
L2pKq

� |∇t|
����Bu
Bt

����
L2pKq

� |∇r|
�
|detpJq|1{2

����Bu
Br

����
L2pK̂q

�
� |∇s|

�
|detpJq|1{2

����Bu
Bs

����
L2pK̂q

�

� |∇t|
�
|detpJq|1{2

����Bu
Bt

����
L2pK̂q

�

¤ p|∇r| � |∇s| � |∇t|q
a

CN |detpJq|1{2}u}L2pK̂q

� p|∇r| � |∇s| � |∇t|q
a

CN}u}L2pKq.

The constant CN can be determined by solving the following classical eigenvalue problem for

the maximum eigenvalue. �Bφn

Br
,
Bφm

Br



K̂looooooomooooooon

Snm

um � λ pφn, φmqK̂loooomoooon
Mnm�I

um ,

where tφnun�pN�1qpN�2qpN�3q{6
n�1 is an orthonormal basis defined on the reference tetrahedron

K̂.
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First of all let us compute |∇r| � |∇s| � |∇t|:

|∇r| � |∇s| � |∇t| � pr2
x � r2

y � r2
z q1{2 � ps2

x � s2
y � s2

z q1{2 � pt2
x � t2

y � t2
z q1{2

by (4.4) we have

J � Bpx, y, zq
Bpr, s, tq �

�
����

xr xs xt

yr ys yt

zr zs zt

�
���� �

�
����

px2�x1q
2

px3�x1q
2

px4�x1q
2

py2�y1q
2

py3�y1q
2

py4�y1q
2

pz2�z1q
2

pz3�z1q
2

pz4�z1q
2

�
����

Then, inverse of the Jacobian matrix J can be defined following way

|J�1| �
���� Bpr, s, tqBpx, y, zq

���� �
�
������
|rx| |ry| |rz|

|sx| |sy| |sz|

|tx| |ty| |tz|

�
������ � 1

|detpJq|

�
������

|BF1|
2

|BF2|
2

|BF3|
2

|BF1|
2

|BF2|
2

|BF3|
2

|BF1|
2

|BF2|
2

|BF3|
2

�
������ (4.6)

where |BF1|, |BF2| and |BF3| denote the area of the faces F1, F2, F3 of the element K,

respectively.

Therefore (4.5) and (4.6) allow us to write,

|∇r| � |∇s| � |∇t| � 3

�|BF1|2 � |BF2|2 � |BF3|2�1{2

2|detpJq|
¤ 2

|BK|
|K|

We conclude that

|∇r| � |∇s| � |∇t| ¤ 2
|BK|
|K|

Note that
|BK|
|K| � h�1

K

where hK is the longest edge of the element K and it is a common constant in inverse inequal-

ities [35, 56].

Let us define CN as the maximum eigenvalue λ allows us to state:

����Bu
Br

����
2

L2pK̂q
¤ CN}u}2

L2pK̂q ,

and by symmetry the same constant applies for the norm of the partial derivative of u with

respect to s and t.
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For N � 1 with orthonormal basis functions on the reference tetrahedron K̂ :

φ0,0,0 �
?

3
2
,

φ1,0,0 �
?

30
4

p2 � 2r � s � tq,

φ0,1,0 �
?

10
4

p2 � 3r � sq

φ0,0,1 �
?

5
2
p1 � 2tq

and

S �

�
����������

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

�
����������
,

thus C1 � 10.

For N � 2, 3, 4 using same argument we get C2 � 63
2 , C3 � 42 � 12

?
7, C4 � 148.4089,

respectively.

Numerical values for CN are computed in Table 4.3. The eigenvalues clearly scale asymptot-

ically as N4. �

N CN
CN
N4

1 10.0000 10.0000
2 31.5000 1.9688
3 73.7490 0.9105
4 148.4089 0.5797
5 269.5513 0.4313
6 452.0694 0.3488
7 717.7792 0.2990
8 1085.8205 0.2651
9 1587.8353 0.2420
10 2245.8720 0.2246

Table 4.3: Experimentally determined constants in the discrete Markov inequality
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4.4 Conclusion

As a conclusion, we have obtained some explicit expressions for the Markov inequality con-

stants on 1-simplex, 2-simplex and 3-simplex in L2-norm. Since we choose the max eigen-

value of the system without losing any data, we could say that our estimates are also sharp.

From this work, computable constants in some inverse inequalities are obtained. One can

effectively utilize these results to give guaranteed computable upper bounds of a priori and

posteriori error estimation of finite element solutions.
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CHAPTER 5

CONCLUSIONS and FUTURE WORK

In the introduction, I expressed the hope that the work in this thesis could be a "first step"

towards a fully computable convergence analysis. In this final chapter, I will conclude by

describing the progress made towards this goal in terms of my development for convergence

analysis. I will also suggest some future research directions that could provide the next steps

along higher order elements.

5.1 Conclusions

The aim of this thesis has been to express a fully computable convergence analysis for the

first order symmetric DG finite element approximations. In Chapter 2, an introduction and

summary of the method for the given model problem are established. Moreover, some use-

ful result and inequalities are given. In Chapter 3, the convergence of an adaptive Interior

Penalty Discontinuous Galerkin method (IPDG) is studied for a 2D model second order ellip-

tic boundary value problem. Based on a residual type a posteriori error estimator, it is proved

that after each refinement step of the adaptive scheme, we achieve a guaranteed reduction

of the global discretization error in the broken energy seminorm associated with the IPDG

method. In contrast to recent work on convergence of adaptive IPDG methods [23, 52, 59],

the convergence analysis is to free of unknown constants. The main ingredients of the proof

of the error reduction property are the reliability and discrete local efficiency of the estimator,

a special marking strategy which is called Dofler method that takes care of a proper selection

of edges and elements for refinement, and a Galerkin orthogonality property with respect to

the energy inner product.
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In Chapter 4, the explicit bounds for the finite element inverse inequality is derived. This was

accomplished by using orthonormal polynomials on the 1D, 2D and 3D simplex and realizing

that a special ordering makes the associated matrices hierarchical. The results are sharp with

respect to the geometry of the elements, with respect to the polynomial order of the finite

element space, and with respect to the physical dimension of the element.

5.2 Suggestions for Future Work

There are some possible research direction to improve this work. First of all, higher order

DG finite element can be used to get convergence result. Moreover, a relatively large amount

of new nodes must be created by refining each marked element. It was the deficiency of the

refinement strategy. By using new refinement technique, it is possible to decrease number of

the degrees of freedom. By this new refinement strategy, a contraction property of the adaptive

discontinuous Galerkin finite element method can be proved without further assumptions on

refine. Also, there is no study on the convergence of non-symmetric interior penalty DG

(NIPG) method for elliptic problems. Although, in numerical example NIPG convergence

faster, in theoretically it is not easy to prove convergence of the method. One of the reason is

that;

Galerkin orthogonality is essential to show error reduction property. However, for NIPG

method Galerkin orthogonality does not hold. That is one of the difficulty for this problem.

It might be possible to use Quasi-Galerkin orthogonality. So, for future work it would be

interesting study on the convergence of NIPG method.

For the inverse estimates, results was given just for simplices. This work can be extendable

for quadrilaterals elements .

5.3 Summary

In summary, a fully computable convergence result is one of the main contribution of this

thesis. This work is the first in the literature. A posteriori error estimator which is introduced

by [7] is actually is an estimator not indicator. This is also first to use this type of residual

error estimator for convergence analysis.
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Another additive of this thesis in the finite element analysis is inverse inequality constant.

This is also the most comprehensive work for this inequlaity.
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APPENDIX A

SOME USEFUL INEQUALITIES

Lemma A.0.1 Let ABC is a triangle with the edge a, b, and c. Let the radius of the incircle

triangle be r. If A denote the area of the triangle ABC, then

r � 2A
a � b � c

Proof. The center of the incircle of a triangle is located at the intersection of the angle bisec-

tors of the triangle. Given the side lengths of the triangle, it is possible to determine the radius

of the circle. Use the fact that the sum of the areas of the smaller triangles is equal to the area

of the larger triangle to obtain an expression for the radius.Denote A as a area of a triangle,

1
2

a � r � 1
2

b � r � 1
2

c � r � A

1
2

r � pa � b � cq � A

r � 2A
a � b � c

(A.1)

�

Lemma A.0.2 Let K is an arbitrary triangle with the edges named by γ1, γ, and hK where hK

denotes the longest edge of an triangle K and let |K| denote the area of the triangle K and %

denotes the shape regularity parameter. Then, the ratio between h2
K and K is given,

h2
K

|K| ¤ 2%

Proof. By shape regularity property of the triangle K, we have % ¥ hK
2r where r � 2|K|

|γ|�|γ1|�hK
,

then

% ¥ hK

2r
� hK

2 2|K|
|γ|�|γ1|�hK

� hK

4|K| p|γ| � |γ1| � hKq
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From the triangle inequality, the sum of the lengths of any two sides of a triangle always

exceeds the length of the third side, i.e., |γ| � |γ1| ¥ hK then

hK

4|K| p|γ| � |γ1| � hKq ¥ hK

4|K| p2hKq

� h2
K

2|K| .

So, we get

% ¥ h2
K

2|K| ñ 2% ¥ h2
K

|K| .

Actually, it can be concluded that

2% ¥ hK |γ|
|K|

and

2% ¥ hK |γ1|
|K| .

�

Lemma A.0.3 Let K is an arbitrary triangle with the edges named by γ1, γ, and hK where

hK denotes the longest edge of an triangle K and % is a shape regularity parameter. Then, the

ratio between the edges γ and γ1 is,

|γ|
|γ1| ¤ %.

Proof. Case 1: Assume that ABC is an acute triangle whose angles are all acute (i.e. less

than 90�). if hK is a largest edge of a triangle then π
3 ¤ θ   π

2 . By shape regularity we have

Figure A.1: Acute Triangle

% ¥ hK
2r where r � 2|K|

|γ|�|γ1|�hK
and by triangle inequality |γ1| � hK ¥ |γ| and also hK

|AH| ¥ 1
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then

% ¥ hK

2r
� hK

2 2|K|
|γ|�|γ1|�hK

� hK

4|K| p|γ| � |γ1| � hKq

� hK

4p|γ1||AH|q{2p|γ| � |γ1| � hKq

� hK

2p|γ1||AH|q p|γ| � |γ1| � hKq

¥ hK

2p|γ1||AH|q p2|γ|q

¥ |γ|
|γ1| . (A.2)

Case 2: Assume that ABC is a right triangle (i.e. 90�). If hK is a largest edge of a triangle then

θ � π
2 . By shape regularity we have % ¥ hK

2r where r � 2|K|
|γ|�|γ1|�hK

and by triangle inequality

Figure A.2: Right Triangle

|γ1| � hK ¥ |γ| and also hK
|γ| ¥ 1 then

% ¥ hK

2r
� hK

2 2|K|
|γ|�|γ1|�hK

� hK

4|K| p|γ| � |γ1| � hKq

� hK

4p|γ||γ1|q{2p|γ| � |γ1| � hKq

� hK

2p|γ||γ1|q p|γ| � |γ1| � hKq

¥ hK

2p|γ||γ1|q p2|γ|q

¥ |γ|
|γ1| (A.3)

Case 3: Assume that ABC is an obtuse triangle whose angles are all obtuse (i.e. greater than

90�). If hK is a largest edge of a triangle then π
2   θ   π.
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Figure A.3: Obtuse Triangle

By shape regularity we have % ¥ hK
2r where r � 2|K|

|γ|�|γ1|�hK
and by triangle inequality |γ1| �

hK ¥ |γ| and also hK
|BH| ¥ 1 then

% ¥ hK

2r
� hK

2 2|K|
|γ|�|γ1|�hK

� hK

4|K| p|γ| � |γ1| � hKq

� hK

4p|γ1||BH|q{2p|γ| � |γ1| � hKq

� hK

2p|γ1||BH|q p|γ| � |γ1| � hKq

¥ hK

2p|γ1||BH|q p2|γ|q

¥ |γ|
|γ1| .

�

Lemma A.0.4 Let K is an arbitrary triangle with the edges named by γ1, γ, and hK where

hK denotes the longest edge of an triangle K and % is a shape regularity parameter. Then, the

ratio between the edges hK and γ is,

hK

|γ| ¤ %.

Proof. We want to find a relation between the longest edge and other edge of a triangle,

By shape regularity we have % ¥ hK
2r where r � 2|K|

|γ|�|γ1|�hK
and by triangle inequality
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Figure A.4: A triangle with the longest edge hK

|γ| � |γ1| ¥ |hK | and also |γ| ¥ h then

% ¥ hK

2r
� hK

2 2|K|
|γ|�|γ1|�hK

� hK

4|K| p|γ| � |γ1| � hKq

� hK

4phKhq{2p|γ| � |γ1| � hKq

� hK

2phKhqp|γ| � |γ1| � hKq

¥ hK

2phKhqp2hKq

� hK

h

¥ hK

|γ| .

�

Lemma A.0.5 Let K be an arbitrary triangle with the edges hK , |γ|, |γ1| and hK denote the

longest edge of the triangle K. Let h be the height which belongs the edge γ and, % be shape

regularity parameter. Then
h
|γ| ¤ %

Proof. K is the triangle with the edges hK , |γ|, |γ1|.
By shape regularity we have hK

2r ¤ % where r is the radius of a circle which is inscribed in the

triangle K. By triangle inequality, hK � |γ| ¥ |γ| and hK
h ¥ 1

% ¥ hK

2r
� hKp|γ| � |γ1| � hKq

4|K| � hKp|γ| � |γ1| � hKq
2|γ|h

¥ hKp2|γ1|q
2|γ|h

¥ |γ1|
|γ| . (A.4)
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Figure A.5: Triangle with the height h

Now it can be written that h ¤ |γ1| and h ¤ hK , then we have

2h ¤ |γ1| � hK .

Using Lemma A.0.4 and inequality (A.4) give us

2h ¤ |γ1| � hK ¤ %|γ| � %|γ| � 2%|γ| ñ h
|γ| ¤ %.

�

Lemma A.0.6 Let K be an arbitrary triangle. For a linear polynomial u, the following mul-

tivariate Markov inequality hold on the simplex

}∇v}K ¤ 4
?

6%h�1
K }v}K

Proof. From Chapter 4, one can obtained that if u is a linear polynomial, following Markov

inequality holds in 2D-simplex

}∇v}K ¤ 2hK

|K|
a

CN}v}K

where CN � 6. Lemma A.0.2 yield that,

2hK

|K| ¤ 4%h�1
K

Then @u P P1pKq, we can say that

}∇u}K ¤ 4
?

6%h�1
K }u}K

�

Lemma A.0.7 Let K be an arbitrary triangle with vertices px1, y1q, px2, y2q, px3, y3q. Then,³
K f is estimated by the following rule»

K
f � |K|

3
p f px1, y1q � f px2, y2q � f px3, y3qq
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where

px1, y1q � 1
2
px1, y1q � 1

2
px2, y2q

px2, y2q � 1
2
px2, y2q � 1

2
px3, y3q

px3, y3q � 1
2
px3, y3q � 1

2
px1, y1q.

Proof. The proof can be found in [45]. �

Lemma A.0.8 Let K be an arbitrary triangle in the mesh PH and TK : P1pKq ÞÑ S K denote

the operator given by

pTKvq, χqK � pv, χqK @χ P S K .

Then }TK � }K is a norm equivalent to } � }K on P1pKq such that

@v P PK :
3

2
?

10
}v}K ¤ }TKv}K ¤ }v}K

Proof. Let TK : P1pKq Ñ S K denote the operator given by pTKv, χqK � pv, χqK for all

χ P S K . Then }TK � }K is a norm equivalent to } � }K on P1pKq with constants that are

independent of hK . To show this, we first show }TK � }K is a norm.


 Assume TKv � 0 for some v P P1pKq. It then follows that pv, φq � 0 for all φ P S K .

Since G is nonsingular, it follows that v � 0.


 }αTKv} � |α|}TKv} for all α P R


 }TKpv � wq} � }TKv � TKw} ¤ }TKv} � }TKw}

The equivalence of the norms is a consequence of finite dimensionality.

}TKv}2
K � pTKv,TKvqK � pv,TKvqK ¤

�»
K
|v|2


1{2 �»
K
|TKv|2


1{2
� }v}K}TKv}K .

Thus,

}TKv}K ¤ }v}K . (A.5)
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Figure A.6: Usual Lagrangian Basis function of a triangle K

For the other side, let K be a reference element and determine Tφk P S K where 1 ¤ k ¤ 3:
TφK �

3̧

i�1

βk
jψ j

pTφK , ψiqK �
»

K
TφKψi �

»
K
φKψK ô

3̧

i�1

βk
j

»
K
ψ jψi �

»
K
φKψi

Let βk �

�
����
βk

1

βk
2

βk
3

�
���
and Mψ �

�³
K ψiψ j

�
and pk �

�
����
³

K φkψ1³
K φkψ2³
K φkψ3

�
���


then Mβk � pk where 1 ¤ k ¤ 3.

P � �
p1 p2 p3

�
3x3 matrix and let β � �

β1 β2 β3
�

3x3, then we need to solve the matrix

system:

Mψβ � P or β � M�1
ψ P.

After solving the above system we can compute the matrices,

X �
�»

K
TφiTφ j



1¤i, j¤3

and

Mφ �
�»

K
φiφ j



1¤i, j¤3

.

Therefore, the solution of the eigenvalue problem is

X~v � λMφ~v ô M�1
φ X~v � λ~v,

select λmin � mint?λu and check that the eigenvectors form a basis in R3

Claim: λmin}w}K ¤ }Tw}K @w P P1pKq.
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Proof of Claim : Pick w P P1pKq, write w � °3
i�1 αiφi, let ~α �

�
����
α1

α2

α3

�
���


}w}2
K �

»
K

ww �
¸
i, j

αiα j

»
K
φiφ j � ~αT Mφ~α

where ~αT denotes transpose of ~α.

}Tw}2
K �

»
K
pTwqpTwq, but Tw �

3̧

i�1

αiTφi

so }Tw}K �
¸
i, j

αiα j

»
K

TφiTφ j � ~αT X~α

so C}w}K ¤ }Tw}K ô C2~αT Mφ~α ¤ ~αT X~α.

Let λ be such that λMφ~v � X~v. If ~v � p~v1, ~v2, ~v3q forms a basis then this implies

λMφ~α � X~αñ λ~αT Mφ~α � ~αT X~α

λmin � mint
?
λu ñ λ2

min~α
T Mφ~α ¤ ~αT X~α

which is λ2
min � C2 ô λ � C �

Lemma A.0.9 [Karakashian, Pascal,2007] The following inequality holds for PH for suffi-

cently large κ

BHpeH , eHq ¥ 1
2

¸
KPPH

~∇eH~2
K �

�
κ2

4C1
� κ � 224%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

where C1 � 64p1 � %q
�

22102C2
i λ

92 � 112C2
i λ�40C4

i λ�92λ

72

	
and λ � maxt ρpAKq| K P PH,0u.

Proof. By (2.6) we have

BHpeH , eHq �
¸

KPPH

~eH~2
K � p1 � τq

¸
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
�

¸
γPEI

HYED
H

κ

|γ| }reHsγ}2
γ

(A.6)

We remark that if τ � �1 we have

BHpeH , eHq �
¸

KPPH

~eH~2
K �

¸
γPEI

HYED
H

κ

|γ| }reHsγ}2
γ
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Since }reHsγ}γ � }ruHsγ}γ for all γ P EI
H and }reHsγ}γ � }q � uH}γ for all γ P ED

H , we get

BHpeH , eHq �
¸

KPPH

~eH~2
K � κ

¸
γPEI

H

|γ|�1}ruHsγ}2
γ � κ

¸
γPED

H

|γ|�1}q � uH}2
γ.

If τ � 1 or τ � 0, we obtain an upper bound of the term
°
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
.

We construct a function ṽ P XH X H1pΩq satisfying ṽ|ΓD � q such that by [59], for any

uH P XH we have

¸
KPPH

}∇puH � ṽq}2
K ¤ 8%

3

�
� ¸
γPEI

H

|γ|�1}ruHsγ}2
γ �

¸
γPED

H

|γ|�1}q � uH}2
γ

�

 (A.7)

Moreover,

¸
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
�

¸
γPEI

HYED
H

�xn � A∇eHyγ, rṽ � uHsγ
�
γ

(A.8)

By Galerkin orthogonality we have,

0 � BHpeH , ṽ � uHq �
¸

KPPH

pA∇eH ,∇pṽ � uHqqK �
¸

γPEI
HYED

H

�xn � A∇eHyγ, rṽ � uHsγ
�
γ

� τ
¸

γPEI
HYED

H

�xn � A∇pṽ � uHqyγ, reHsγ
�
γ
�

¸
γPEI

HYED
H

κ|γ|�1}reHsγ}2
γ

(A.9)

By (A.8) and (A.9), it can be written that

¸
γPEI

HYED
H

�xn � A∇eHyγ, reHsγ
�
γ
�

¸
KPPH

pA∇eH ,∇pṽ � uHqqK

� τ
¸

γPEI
HYED

H

�xn � A∇pṽ � uHqyγ, ruHsγ
�
γ

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ.

By Cauchy-Schwarz’s inequality we get������
¸

γPEI
HYED

H

�xn � A∇eHyγ, reHsγ
�
γ

������ ¤
¸

KPPH

}A∇eH}K}∇pṽ � uHq}K

�
¸

γPEI
HYED

H

}xn � A∇pṽ � uHqyγ}γ}ruHsγ}γ

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ. (A.10)
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By (2.15) for γ � BK1 X BK2, we have

}xn � A∇pṽ � uHqyγ}γ ¤ ?
%h�1{2

K1
}A∇pṽ � uHq}K1 �

?
%h�1{2

K2
}A∇pṽ � uHq}K2

¤ ?
%|γ|�1{2 p}A∇pṽ � uHq}K1 � }A∇pṽ � uHq}K2q .

Using last inequality into (A.10) we have

������
¸

γPEI
HYED

H

�xn � A∇eHyγ, reHsγ
�
γ

������ ¤
¸

KPPH

}A∇eH}K}∇pṽ � uHq}K

�
¸

γPEI
HYED

H
γ�BK1XBK2

?
%|γ|�1{2 p}A∇pṽ � uHq}K1 � }A∇pṽ � uHq}K2q }ruHsγ}γ

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ

¤
¸

KPPH

ρpAKq1{2~eH~K}∇pṽ � uHq}K

�
¸

γPEI
HYED

H
γ�BK1XBK2

ρpAKq?%|γ|�1{2 p}∇pṽ � uHq}K1 � }∇pṽ � uHq}K2q }ruHsγ}γ

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ.

the use of Young’s inequality implies

������
¸

γPEI
HYED

H

�xn � A∇eHyγ, reHsγ
�
γ

������ ¤
ε

2

¸
KPPH

ρpAKq~eH~2
K �

1
2ε

¸
KPPH

}∇pṽ � uHq}2
K

� ε

2

¸
γPEI

HYED
H

ρpAKq2%|γ|�1}ruHsγ}2
γ �

3
ε

¸
KPPH

}∇pṽ � uHq}2
K

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ

¤ ελ

2

¸
KPPH

~eH~2
K �

1
2ε

¸
KPPH

}∇pṽ � uHq}2
K

� ελ2

2

¸
γPEI

HYED
H

%|γ|�1}ruHsγ}2
γ �

3
ε

¸
KPPH

}∇pṽ � uHq}2
K

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ.
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Now we choose ṽ as in (A.7),������
¸

γPEI
HYED

H

�xn � A∇eHyγ, reHsγ
�
γ

������ ¤
ελ

2

¸
KPPH

~eH~2
K �

4%
3ε

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� ελ2%

2

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

8%
ε

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

�
¸

γPEI
HYED

H

κ|γ|�1}ruHsγ}2
γ

� ελ

2

¸
KPPH

~eH~2
K

�
�

28%
3ε

� ελ2%

2
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

Using this in (A.6) we obtain

BHpeH , eHq ¥
¸

KPPH

~eH~2
K � p1 � τqελ

2

¸
KPPH

~∇eH~2
K

� p1 � τq
�

28%
3ε

� ελ2%

2
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ �

¸
γPEI

HYED
H

κ|γ|�1}ruHsγ}2
γ

if τ � 0 we have

BHpeH , eHq ¥ p1 � ελ

2
q
¸

KPPH

~∇eH~2
K

�
�

28%
3ε

� ελ2%

2


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

Choose ε � 1
2λ then one gets

BHpeH , eHq ¥ 3
4

¸
KPPH

~∇eH~2
K

�
�

56%
3

� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� 1
2

¸
KPPH

~∇eH~2
K �

1
4

¸
KPPH

~∇eH~2
K

�
�

56%
3

� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ (A.11)

By [59],

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ ¤ C1

¸
KPPH

~eH~2
K
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where C1 � 64p1� %q
�

22102C2
i λ

92 � 112C2
i λ�40C4

i λ�92λ

72

	
Using this inequality in (A.11) we get,

BHpeH , eHq ¥ 1
2

¸
KPPH

~∇eH~2
K �

κ2

4C1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

�
�

56%
3

� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� 1
2

¸
KPPH

~∇eH~2
K �

�
κ2

4C1
� 56%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

if τ � 1 we have

BHpeH , eHq ¥ p1 � ελq
¸

KPPH

~∇eH~2
K

�
�

56%
3ε

� ελ2%� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

Choose ε � 1
4λ then one gets

BHpeH , eHq ¥ 3
4

¸
KPPH

~∇eH~2
K

�
�

224%
3

� λ%

4
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� 1
2

¸
KPPH

~∇eH~2
K �

1
4

¸
KPPH

~∇eH~2
K

�
�

224%
3

� λ%

4
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ (A.12)

By [59],

κ2
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ ¤ C1

¸
KPPH

~eH~2
K

where C1 � 64p1 � %q
�

22102C2
i λ

92 � 112C2
i λ�40C4

i λ�92λ

72

	
.

Using this inequality in (A.12) we get the desired result,

BHpeH , eHq ¥ 1
2

¸
KPPH

~∇eH~2
K �

κ2

4C1

¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

�
�

224%
3

� λ%

4
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� 1
2

¸
KPPH

~∇eH~2
K �

�
κ2

4C1
� κ � 224%

3
� λ%

4


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ
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From that proof, we can also deduce that

BHpeH , eHq ¤
¸

KPPH

~∇eH~2
K � p1 � τqελ

2

¸
KPPH

~eH~2
K

� p1 � τq
�

28%
3ε

� ελ2%

2
� κ


 ¸
γPEI

HYED
H

|γ|�1}ruHsγ}2
γ

� κ
¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ.

Pick τ � 1

BHpeH , eHq ¤
¸

KPPH

~∇eH~2
K � ελ

¸
KPPH

~eH~2
K

�
�

56%
3ε

� ελ2%� 3κ

 ¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ

Choose ε � 1
λ , then we get

BHpeH , eHq ¤ 2
¸

KPPH

~∇eH~2
K

�
�

56λ%
3

� λ%� 3κ

 ¸

γPEI
HYED

H

|γ|�1}ruHsγ}2
γ. (A.13)
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