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ABSTRACT

FULLY COMPUTABLE CONVERGENCE ANALYSIS OF DISCONTINOUS
GALERKIN FINITE ELEMENT APPROXIMATION WITH AN ARBITRARY NUMBER
OF LEVELS OF HANGING NODES

Ozis1k, Sevtap
Ph.D., Department of Mathematics
Supervisor : Assoc. Prof. Dr. Songiil Kaya Merdan

Co-Supervisor : Assoc. Prof. Dr. Béatrice M. Riviere

February 2012, 108 pages

In this thesis, we analyze an adaptive discontinuous finite element method for symmetric
second order linear elliptic operators. Moreover, we obtain a fully computable convergence
analysis on the broken energy seminorm in first order symmetric interior penalty discontin-
uous Galerkin finite element approximations of this problem. The method is formulated on
nonconforming meshes made of triangular elements with first order polynomial in two di-
mension. We use an estimator which is completely free of unknown constants and provide a
guaranteed numerical bound on the broken energy norm of the error. This estimator is also
shown to provide a lower bound for the broken energy seminorm of the error up to a constant
and higher order data oscillation terms. Consequently, the estimator yields fully reliable,

quantitative error control along with efficiency.

As a second problem, explicit expression for constants of the inverse inequality are given in
1D, 2D and 3D. Increasing mathematical analysis of finite element methods is motivating the

inclusion of mesh dependent terms in new classes of methods for a variety of applications.



Several inequalities of functional analysis are often employed in convergence proofs. Inverse
estimates have been used extensively in the analysis of finite element methods. It is char-
acterized as tools for the error analysis and practical design of finite element methods with
terms that depend on the mesh parameter. Sharp estimates of the constants of this inequality

is provided in this thesis.

Keywords: convergence analysis, Discontinuous Galerkin Method, Finite Element Method,

inverse inequalities, orthogonal polynomials

vi



0z

SUREKSIZ GALERKIN METODU iCIN BILINMEYEN KATSAYILARDAN BAGIMSIZ
YAKINSAKLIK ANALIZI

Ozisik, Sevtap
Doktora, Matematik Bolimii
Tez Yoneticisi : Dog. Dr. Songiil Kaya Merdan

Ortak Tez Yoneticisi : Dog. Dr. Béatrice M. Riviere

Ocak 2012, 108 sayfa

Bu tezde, uyarlanabilir siireksiz Galerkin sonlu elemanlar yonteminin, ikinci dereceden elip-
tik kismi turevlenebilir denklemler icin yakinsaklik analizi yapildi. Tamami hesaplanabilir
yakinsaklik analizinde birinci dereceden simetrik interior penalti siireksiz Galerkin yaklagimi
kullanild1 ve norm olarak enerji normu secildi. Kullanilan bu yontem es olmayan ve iiggen-
lerden olusan ag orgiisii iizerinde uygulandi. Uyarlanabilir biitiin sonlu elemenlar yonteminde
gerekli olan hata tahmincisi olarak su ana kadar hig bir calismada kullanilmamis olan bir tah-
minci se¢ildi. Bu tahminci digerlerinin aksine bilinmeyen katsayilardan bagimsiz oldugu icin
bir indikator degil gercek bir tahminci olarak kullanilabilir. Bu tahminci, hata i¢in alt ve {ist
sinirlari saglamaktadir. Sonug olarak, kullanilan bu tahminci giivenilir ve etkili sayisal hata

kontroliinii miimkiin kilar.

Ikinci bir calisma olarak, ters esitsizliklerde kullanilan katsayilarin gercek degerleri hesap-
landi. Bu degerler 1 boyutlu, 2 boyutlu ve 3 boyutlu uzaylar icin iicgensel elemanlar kul-
lanilarak bulundu. Sonlu elemanlar yonteminin artan matematiksel analizi, ag orgiisiine bagh

terimlerin varlifimi giidiilemektedir. Fonksiyonel analizin bir kag esitsizligide yakinsaklik 1s-

vii



patlarinda sik sik kullanilmaktadir. Ters esitsizlikler, sonlu elemanlar yonteminin analizinde
en yaygin kullanilan esitsizliklerdendir. Bu esitsizlikler, hata analizi ve ag orgiisiine bagimli
sonlu elemanlar yonteminin pratik dizayni icin bir ara¢ olarak karakterize edilir. Bu tezde, bu

esizliklerin katsayilarinin keskin bir tahmini verilmistir.

Anahtar Kelimeler: yakinsaklik analizi, siireksiz galerkin metodu, sonlu elemanlar metodu,

ters esitsizlikler, ortogonal polinomlar
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CHAPTER 1

INTRODUTION

Many physical fundamental phenomena in nature, whether in the domain of fluid dynamics,
electricity, or heat flow, can be described by equations that involve physical quantities together
with their time and space derivatives. Equations involving time and space derivatives (partial
derivatives) are called partial differential equations [43,44,78]. However, it may not always
possible to obtain a closed form of the solution to these partial differential equations. Some-
times even, it is hard to know whether a unique solution exists or not. For these reasons, one
can approach to the solution of these partial differential equations by using some numerical
methods. One of the most widely used numerical methods to solve partial differential equa-
tions is finite element method, which is based on region discretization and each small region
is called elements (often triangles or quadrilaterals in 2D and tetrahedral, or prisms in 3D).
In this way, the original problem is transformed into a discrete problem for a finite number of

unknown coeflicients [24, 35, 78].

Principally, two types of finite element approximations are possible; conforming and non-
conforming. If the approximated solution space is a subspace of weak solution space, the
method is called conforming finite element. If this condition is not satisfied, we obtain a

nonconforming element method [24].

In this thesis, we consider one of the non-conforming method, called discontinuous Galerkin

(DG) and its convergence analysis. Specifically, we focus on:

The problem of convergence analysis of interior penalty DG method for elliptic problems for

a residual type posteriori error estimation.

The second problem is to evaluate accurate constant for inverse inequalities in L, —norm,



which is very important to obtain a reliable error and convergence analysis of the finite ele-

ment method.

1.1 On the Convergence of a Posteriori Error Estimation

One of the most common nonconforming method is Discontinuous Galerkin (DG) finite el-
ement method. It is known that DG finite element approximations are technically noncon-
forming finite element approximations, since an approximate solution is obtained from a fi-
nite dimensional space which is not a subspace of the weak solution space. This method was
first proposed and analyzed in 1973 by Reed and Hill [70] to solve the hyperbolic neutron
transport equation. DG methods for obtaining approximate solutions to elliptic partial differ-
ential equations have been around for several decades [8, 10, 11, 16, 36, 74, 84], and the use
of these methods has become widespread. Some of the major advantage of DG methods are
that they are locally conservative, stable, and high-order accurate methods which can easily
handle complex geometries, irregular meshes with hanging nodes, and also approximations

that have polynomials of different degrees in different elements [36,37,74].

Whether one uses conforming or nonconforming finite element method, error analysis is re-
quired to have confidence in the numerical approximation of the solution. Obviously, since
the error is defined in terms of the unknown weak solution to the partial differential equation
we cannot evaluate the error directly. However, the best one can do is to estimate error. Error
estimators can be categorized as either a priori or a posteriori. A priori error estimation is that
the error is estimated without employing the numerical solution. Indeed, the primary objec-
tive is to derive rates of convergence with respect to the discretization parameters in order to
evaluate the performance of a given numerical method. It means that a priori error estimators
involve the unknown solution to the partial differential equation. Hence it cannot actually be
used to estimate the value of the error. However, they can be used to predict the asymptotic

behavior of the error.

In contrast, a posteriori error estimators [2,3,13,82] do not involve the unknown weak solution
and are given instead in terms of quantities like the known data in the partial differential
equation, the discretization of the domain and the approximate solution. A posteriori error

estimators estimate the value of the error in an appropriate norm. They are important not



only for determining the accuracy of finite element approximations but also for implementing

adaptive refinement strategies.

In addition, a posteriori error estimation plays a key role in the assessment of the accuracy of
finite element simulations and in the control of adaptive refinement algorithms. One of the
most common types of error estimator is residual-based estimators. Residual-based estimators

involve terms which appear in the elementwise and edgewise terms in the residual equation.

Other types of a posteriori error estimators include hierarchical estimators and averaging
based estimators. Hierarchical estimators [14, 15] involve bounding the norm of the error
by the norm of the difference between the finite element approximation and an approximation
to the problem. Averaging based estimators [1,29, 30] make use of a continuous smoothed
function obtained by averaging the approximate solution or its gradient. More precise details
of the above mentioned estimators as well as information on other types of a posteriori error

estimators can be found in [2, 3, 13, 82].

It is desirable for a posteriori estimators to provide two-sided bounds on the error up to un-
known positive constants that are independent of the size of the elements in the mesh. This is
important since it means that the estimator is efficient and reliable. By "reliable" we mean that
the estimator behaves in the same way with the error as the mesh is refined. Efficiency is also
important since it allows the estimator to be used to show that the approximation converges

with respect to an adaptive refinement strategy.

In practice, however it is not always possible to show that the estimator provide lower bound
(i.e.,estimator is less than some positive constant multiple of the norm of the error) since the
data may belong to an infinite dimensional space. Instead we pose for the estimator being
less than a positive constant multiple of the norm of the error plus terms which decrease at a
rate faster than the error, provided that the data is sufficiently smooth, as the mesh is refined.
The most common way of showing that estimators provide lower bounds on the error is to
use bubble function arguments. By this, the quality of an a posteriori error estimator can be
measured by its efficiency index, i.e.; the ratio of the estimated error and of the true error.
These have been first used in [80] and developed in [81] into the way in which they are most

commonly used now.

In order to realize the full flexibility of DG finite element methods, one generally wishes to



perform local refinements of the mesh in the neighborhood of regions where the accuracy is
poor. A posteriori error estimators are often used for this purpose, and to provide a stopping

criterion for an adaptive feedback procedure.

However, because of the presence of unknown constants, none of the a posteriori error esti-
mators provide actual computable upper bounds on the error. This type of estimator can be
found in literature [21,22,29,31-33, 38, 39,51, 55, 68, 76] for nonconforming finite element

approximations and [18,28,32,53,57,59,73,75] for DG finite element approximations.

As stated in [73], the estimators commonly used in the above mentioned literature can only
be used as a error indicator not as estimators of the actual value of the error. It also means that
they cannot be used as a stopping criterion for an adaptive refinement procedure. Neverthe-
less, in practice the value of the unknown constant in the estimator is set equal to unity and
the estimator is used as a stopping criterion. While such error indicators have a role to play, if
one really wants to estimate the value of the error, then a new approach is required. The new

approach should contain a fully computable estimator.

In [5], actual computable bounds were obtained for both the broken energy seminorm and
the DG-norm of the error in the first order symmetric interior penalty DG finite element ap-
proximation of a linear second order elliptic problem with variable permeability on triangles.
While it is more common to obtain error estimates for DG methods in the parameter and mesh
dependent DG-norm it is also shown in [5] that the broken energy seminorm of the error was
in fact equivalent to the DG-norm of the error provided the interior penalty parameter is suffi-
ciently large. Recently, in [7], the approach of [5] is generalized to perform adaptivity with a
constant free fully computable posteriori error estimators which are applicable to symmetric
interior penalty DG, non-symmetric interior penalty DG and incomplete interior penalty DG

finite element approximations of first order on meshes containing hanging nodes

Adaptive procedures for the numerical solution of partial differential equations started in the
late 70’s and are now standard tools in science and engineering. We may refer to [82] on
adaptivity of elliptic partial differential equations. Adaptive finite element methods (AFEM)
are indeed a meaningful approach for handling multiscale phenomena and making realistic

computations feasible, especially in three dimensions.

A posteriori error estimators are an essential ingredient of the adaptivity. The ultimate purpose



of adaptivity is to construct a sequence of meshes that would eventually equidistribute the
approximation errors, and as a consequence the computational effort. To this end, a posteriori
error estimators are split into element indicators which are then employed to make local mesh
modifications by refinement and coarsening. The principal goal of an adaptive algorithm is to
achieve a user specified error level in a finite number of cycles. A typical cycle consists of the

following basic steps:

¢ Solve: For a given mesh, we calculate the approximation solution on this mesh.

o Estimate: Estimate the error of the approximation for each element by using error

estimator.

e Mark: Mark the triangle which is error considerably larger by a specific marking strat-

cgy.

o Refine: Refine the given mesh using the information above to obtain a new refine mesh.

Experience strongly suggests that, starting from a coarse mesh, such an iteration always con-

verges within any prescribed error tolerance in a finite number of steps.

The convergence of adaptive algorithms for elliptic problems started with the work of Babuska
and Vogelius [12] where a detailed treatment of the one-dimensional case was given. A con-
vergence proof is given in [41] for the two-dimensional case for the standard Galerkin method
using linear elements while outlining an extension to quadratic elements. One of the high-
lights of this work is that bounds on the convergence rate were provided, which was not the
case for [12]. Further studied is given in [64-66], whereas the issue of optimal order of con-
vergence has been addressed in [20] and [79]. Non-standard finite element techniques such as
mixed and nonconforming methods and edge element discretization of Maxwell’s equations
have been recently investigated in [25-27]. On the other hand, the initial mesh had to be fine
enough to essentially get the solution. The latter issue is provided the starting point for the
work of [65,66], who introduced the concept of data oscillation. The nagging issue of calcu-
lating this quantity accurately on a coarse mesh is not resolved and should be treated within
the larger and important framework of accounting for the quadrature errors arising from the
implementation of the finite element formulation as well as from the calculation of certain
terms in the a posteriori estimators. More recently, a modification of the algorithm of [66] is

proposed in [20] that incorporates coarsening to prove optimal work for estimates.



In the recent works of [23,52,59], a convergence analysis of symmetric interior penalty DG
finite element methods for elliptic problems have been obtained. They used the same estimator

to analyze convergence of the method.

In [59] regularity conditions for datums were very restrictive. Solution is needed extra regu-
larity conditions. Two successive subdivisions are not too far from each other. A relatively
large amount of new nodes (12 vertices for piecewise linear elements in 2D) must be created
by refining each marked element. Hoppe et al. [52] improved upon [59]: first the refinement
procedure consists of just one bisection per marked element, and second regularity conditions
for datum is more flexible. However, [52] assumes that the ensuing data oscillation con-
tracts relative to itself between consecutive iterates, which is not guaranteed when marking
only by the estimator. Also, the technique used in [52] for the error analysis is based on the
Crouzeix-Raviart element, and thereby applies only to conforming meshes. To enforce the
aforementioned contraction of data oscillation, one would need to mark also by oscillation.
Unfortunately, this would lead to separate marking and, as discussed by [34], to the risk of
getting sub-optimal meshes. However, [23] extended and improved the deficiencies of [52,59]
in several respects. First, the less restrictive data regularity is assumed. Secondly, different
types of nonconforming subdivisions are allowed such as tetrahedral or hexahedral meshes
with hanging nodes. Also, the complexity of refine with fixed level of non-conformity is ex-
amined. Each marked element is refined using only one subdivision, either quad-refinement
for hexahedral meshes, or red-refinement and bisection for tetrahedral meshes. Contraction
property of the adaptive DG finite element method is proved, without further assumptions
on refine, for the sum of energy error and scaled error estimator. Also, it is shown that the
approximation classes consisting of continuous and discontinuous finite elements are equiva-
lent. Quasi-optimal asymptotic rate of convergence for the adaptive DG finite element method
is derived, which seems to be the first result of this type in the literature for DG methods. A
quasi-optimal asymptotic rate of convergence for the continuous Galerkin method on (hex-
ahedral and tetrahedral) nonconforming meshes is obtained. However, in [52, 59], mixed
boundary conditions are considered, while in [23] homogeneous Dirichlet boundary condi-

tion is assumed to simplify given technical presentation.

In this thesis, as different from [23,52,59], we use a new estimator which is introduced in [7].
The aforementioned estimator provides actual computable numerical bounds on the error in

the broken energy seminorm and DG-norm. Using this estimator, we proved convergence



of the adaptive DG method for symmetric second order linear elliptic operators with explicit

fully computable constant.

1.2 On the Inverse Estimation

The process of designing finite element methods has become increasingly dependent in recent
years on understanding the mathematical framework underlying this methodology. This is
evident from the advent of a profusion of new classes of methods which are founded on the
basis of error analysis. In such cases, additional quantities are introduced into the formulation
in order to demonstrate convergence of numerical solutions to the exact solution, usually at

optimal or quasi-optimal rates.

Accurate approximate values for the constants which appear in the convergence analysis are

crucial for the correct derivation of a priori and a posteriori error estimations.

Convergence proofs frequently make use of well known inequalities of functional analysis.
For the purpose of analysis it is sufficient to know that these inequalities hold for positive con-
stants. In addition, for general-purpose definitions of the mesh parameter (e.g., the length of
the longest element side in the mesh) for regular elements (i.e., aspect ratios and distortion are
limited) on quasi-uniform meshes (in which elements are of essentially same size). However,
these restrictions on the mesh are frequently violated in the computation of solutions to engi-
neering problems. In contrast to the perspective of mathematical analysis, when constructing
methods for practical implementation, engineers need to be concerned with precise contex-
tual definitions of the element size and sharp estimation of the constants to determine the
coeflicients of the least-squares terms. Indeed, various techniques employed in estimating the
coeflicients in inverse and trace inequalities and many others. Those quantities are computed

for many cases. In this thesis, we also deal with the coefficients of inverse inequalities.

Inverse inequalities (or Markov inequalities) play an important role in many areas of math-
ematical research. For instance, they are commonly used in the error analysis of variational
methods such as finite element methods and DG methods for solving partial differential equa-

tions. Explicit constants for some inverse inequalities can be found in [46]. The classical



Markov inequality for univariate polynomials states that for any polynomial « total degree N

2N?

H”/”Lx([a,b]) < |b—

p lell 2, (jap))-

A discussion of the exact constant in the univariate Markov inequality is given in [19]. It
is proved that for a polynomial degree at most N with real coefficients that have at most m
distinct complex zeros,

I, =10y < 32-8"Nulp, (1.1

Another discussion of the exact constant in the univariate Markov inequality in Lj-norm is

given in [62]. In [62] it is proved that for a polynomial u total degree N

' | L, =117y < Mllully =117

where My coincides with the largest positive root of the following equation

N+1

< N+ 1+ 2k)!
2(_1)kx_2k22k;k' N+l )2k =0 (1.1
= (N +1—2k)!

where a new simple elementary method is presented for finding My. By using spectral anal-

ysis methods, the special case of the L,-norm has been previously studied in [50]. It is shown

that My is the solution of a certain equation which is equivalent to (1.1).

In [77], it is proved that for a polynomial u total degree N on a finite interval, the following
inequality holds
'] 1 () < 2\/§—HMHL2([a,b])-

N2
b —al

In the last thirty years possible extensions of the above estimations for multivariate polyno-
mials have been widely investigated.

In [40], the following result is proved: for a polynomial u of total degree N and a bounded

for0 < N < oo, % an arbitrary unit directional derivative, and C a constant independent of

convex set K

ou )
= < CN-[uL,
08 1, 0 o

N and u.

In [47], it is shown that certain directional derivatives of polynomials in two variables have
a unit bound at the Chebyshev nodes. A Markov-type estimate for an arbitrary convex body

K < R™ is given in [85]. For a convex body K — R™, the minimal distance between two



parallel supporting hyperplanes for K is denoted by w(K). Then, in [85], for a polynomial of
total degree N, it holds:

4N*
Vel k) < WH"HL-[ (K)-

In [67], the above inequality is verified in the special case when K is a triangle in R?. A

similar result was shown in [63] improving the constant as 4N> — 2N instead of 4N>.

In addition, in [77], it is proved that for a polynomial u total degree N, Markov inequality

holds for a triangle K or quadrilateral Q with an unknown constant C in L, and L -norm,
2
IVullz, (k) < CN~||ullL., k),

|Vatly) < OVl y(x)-

In conclusion, using the above inequalities, one may get an exact constant for univariate
Markov inequality in Ly,-norm and Ly-norm. Moreover, one can estimate the exact constant
for multivariate Markov inequalities in L.,-norm. We emphasize that by using these results,
constants for univariate and multivariate Markov inequalities in Ly-norm for several dimen-

sions can be obtained.

To summarize; obtaining efficient and reliable analysis is very important task in the numerical
approximation of partial differential equations. The accomplishments of this thesis can be

summarized as follows:

1. Fully computable convergence analysis is obtained to get error reduction property. One
can realize that how large interior penalty parameter, one needs to get convergence

result in adaptive strategy.

2. Inverse inequality constants which are very important in correct derivation of conver-
gence analysis of the partial differential equations are given up to polynomial degree 10

for 1D, 2D and 3D problem:s.

The remainder of this thesis is organized as follows.

Chapter 2 of thesis defines some notations and preliminaries used through this thesis. We
also discuss some ways of partitioning the domain over which the problem is posed. Chapter
2 is concluded with an important result which allows us to decompose the broken energy

seminorm of the error into conforming and nonconforming components [4].



In Chapter 3, we consider fully computable convergence analysis, in which the error does not
contain any unknown constants. Specifically, DG finite element approximation of first order

on meshes is given with an arbitrary number of hanging nodes.

We then go on to give an exact constant for inverse estimates which is used in mathematical
analysis frequently, in Chapter 4. For 1D, 2D and 3D problems, inverse estimates constant is

given up to polynomial degree 10.

Summary and a novel contributions of our established results are discussed in Chapter 5.

10



CHAPTER 2

NOTATIONS and PRELIMINARIES

2.1 The Model Problem

Assume that Q ¢ R? is a bounded domain with a polygonal boundary denoted by I'. Let Q
denote the closure of a region Q. Let x = (x, y)T denote the position vector of a point on
Q where the superscript 7 denotes the transpose. Also, the L, inner product over a region Q

denoted by (-, -)g and its norm is given with

1/2
Illa = (g
where the Ly-inner product space

L(Q) = {‘“ Wllza) < OO}-

The Sobolev spaces are

H'Y(Q) {vive LL(Q),Vve L,(Q) x L,(Q)} and
HL(Q) = {v:iveH'(Q),v=00nTp}

with the operator V being such that

o

Also, we use the following space:

SRS
2>
N——

~

H(div; Q) = {v:v € L,(Q) x L(Q),divw € L,(Q)}
with the operator div being such that

0 0
divy = —v; + —w for v = (vq, vz)T

ox oy

11



Then, consider the following model problem
—div(AVu) = f in Q,
u = ¢q on the Dirichlet boundary I'p,

AVu-nr, = g, onthe Neumann boundary I'y,

where the disjoint sets ['p and I'y form a partitioning of the boundary I' of the domain Q and
nr,, is the outward unit normal vector to I'y. The data satisfy f € L,(Q), g € L,(I'y) and
g € Ly(T'p), and A is symmetric and positive definite and satisfies the condition that we can
decompose Q into polygons such that A € R>*? on each of these polygons, i.e., if we start

with a coarse mesh called $}, o, then A is constant on that mesh only.

The standard weak formulation of problem (2.1) is: Find u € H'(Q) such that

(AVu, V) = (f,v) + (g:V)ry  Vve HH(Q). (2.1)

2.1.1 The Partitioning of the Domain and Some Standard Notation

Let #, be a partition of a domain Q and K denotes an individual triangle. The boundary of

triangle K is denoted by 0K.

The set containing the individual edges of triangle K is denoted by Ek. Likewise, 82, 85 and

Sg stand for the sets of edges defined by

g = {y;yzaKmaK’,K,K’ 650;,},
85 = {ycﬁ:ye&(forsome Ke?h},
g = {ycm:ye&(forsomel(e?h},

and let 0P, = & L &P UE). We use |K| and |y| to refer the area of triangle K and the length
of edge v, respectively. The size and shape of an element K of $;, are measured in terms of

two quantities, hg and pg, defined as:

hk

Longest edge of an element K,

pk = sup{diam(B);B is a ball contained in K}.

Definition 2.1.1 A family of partitions Py, is said to be shape regular if there exists a number

o > 0, independent of hx and K such that

— <o, VK € Py. 2.2)



We assume all partitions #), are shape regular in this thesis.

2.2 Projection Operators

For m € Ny, P,,(K) signifies the space of polynomials on K € P}, of total degree at most m.
Similarly, P, (y) denotes the space of polynomials on y € 0%, of total degree at most m, with
respect to the arc length parameter on edge .
Forv € L(K), let H;m)v € P,,(K) be the function satisfying

(v— H%m)v,p)l( =0 forall p e P,(K).
Similarly, for v € L,(y) and y € 0%y, let Hgm)v € P,,(y) be the function satisfying

(v— ™y, p)y =0 forall p e P,(y).

Y

2.3 Jumps and Average

For each element K € Py, let VK refer the restriction of v to K € #,. Let n, be a fixed unit
normal vector for each edge y € 8{1 shared by two adjacent elements K and K’. For a function

v such that vix € H?(K) for all K € Py, average and jumps are defined by

% (ny -AgVvig + ny - AK/VV|K/) ony = 0K n oK',

(n-AVv), =
I’ly-AKVV|K onyESKmShD;
. vk — Vg ondK ndK' v,
v]y =
ViK onye & nEY;
n, - AgVvig —ny - Ag'Vvigr on 0K n 0K’ Sy,
[n-AVV], = ny-AKVv‘K—Hgo)g onye&(m(o)zv;
0 onye &k nEY;

where Ag = A g € R>2,

2.4 Data Oscillation

The oscillation of the datum f on an element K € %}, is defined to be

osc(f, K,m) = |K|['"?|f =14 | x. (2.3)

13



Likewise, the oscillation of the Neumann datum g on an edge y € ShN N Eg is defined to be

osc(g.y.m) = |y"2|g — 11"g] . (2.4)
The oscillation of the Dirichlet data g on an edge y € &g N ShD is defined to be
(0) 99

0
— |12 24 g0 %4 2
osc(q,y) = [y~ a5, g [ (2.5)

where s, is the arc length parameter on edge .

2.5 DG Finite Element Approximations

We assume that, the solution of this problem is a first order DG finite element approximation
obtained on a mesh where there is an arbitrary, but bounded, number of hanging nodes. The

DG finite element space on P, is defined by
X, = {V:Q—>R:V‘K6P1(K) VKEP;,}.
Let 7 € {—1, 1} be fixed and, for w,v € X}, define the bilinear form By, : X, x X; — R by

By(w,v) = Z(AVW,VV)K— Z (<"'AVW>7’[V]7)y

Kep), ye& uEp
K
— v ) ([Wh<n- AVV),), + > (H[W]y, [v]y) (2.6)
ye&uEy ye&l uEP Y Y
and linear form L : X, — R by
L) = D, (Avk+ D, (gv)y
Kepy 7582’
K
+ 2 (ﬂq,v) -7 Z (q,(n-AVv%,)y,
768,? Y Y ye&f

where the « > 0 are the usual interior penalty parameters. We can obtain the DG finite element

approximation of the solution by finding u;, € Xj, such that

By (up,v) = L(v) Vv € Xj. (2.7)

2.6 The Broken Energy Seminorm and DG-norm of the Error

For functions v such that vjx € H'(K) for all K € $, the operator Vg, is defined by
(Vgohv)‘K = (VV)‘K for K € Py,

14



We also define the curl operator with

curl = i - i '
S \dy’ ox)
The broken energy seminorm over a region w is denoted by

Il = (AVp,-, Vi, )2 (2.8)

w

where we omit the subscript in the case where w = Q. We shall decompose the broken
energy seminorm of the error into conforming and nonconforming components. This is done
by using a generalization of the Helmholtz decomposition of the space L,(Q) x Ly(Q) into

the gradient of a function in the space H Il)(Q) plus the curl of a function in the space
H={weH(Q): (w,1)og =0 and tr,, - Vw = Oon Ty}, (2.9)

where fr, is a tangent vector to I'y. We shall use the result proved in [4] to decompose the
broken energy seminorm of the error e in discontinuous Galerkin finite element approxima-

tions of the solution to problem (2.1) as follows.

Theorem 2.6.1 The error ey, defined by e, = u — u, may be decomposed into the form
AVp, e, = AV + curlyy,
where the conforming error ¢, € H),(Q) satisfies
(AVéy, Vv) = (AVp,en, Vv) Vv e Hp(Q), (2.10)
and the nonconforming error yr, € H satisfies
(A Yeurlyy, curlw) = (Vp,ep, curlw) Ywe H. (2.11)
Moreover,

lleall® = lignll* + (A" curlyy, curlyy,). (2.12)

The importance of this theorem is that it allows us to write ||e|? as the sum of a conform-
ing part ||¢x]|* and a nonconforming part (A~ !curlyy, curly;,), which reduces the task of
obtaining an estimator for [|e;|| to that of obtaining separate estimators for each of the two
terms in this decomposition. Let the DG-norm over a region w be denoted by
I oo =115+ X ool
&b

1
Y€€, VE;,
yCw

2
b
Y

with ||| - [ipg = I - [ pg.c-

15



2.7 Trace and Inverse Estimates

We shall make frequent use of the following trace and inverse inequalities

Theorem 2.7.1 For an interval K = |a, b| the following result holds :

Vu € P (K) lu(a)| < 2]a — b|~"?|ulk. (2.13)

Proof. It was proved in [83], Theorem 2. |

Theorem 2.7.2 For a planar triangle, K, the following result holds :

Vi € Py(K) ulox < 2+/30hg " ulk
and
Vi € Po(K) lullox < 2 v/@hg'ul k.
Proof. The proof is given in [83], Theorem 3. u

Theorem 2.7.3 Let K is a planar triangle. For all u € P;(K), the following multivariate

Markov inequality holds

[Vul < Cit'ulx (2.14)
with C; = 4+/60.
Proof. Proof is given in Chapter 4. |

Using the above results for trace and inverse inequalities, we get the following estimates, for

: /.
u € Xy, andy € 0Ky n 0Ky withy € &;:

1
[<n- AV, = Slny - (AVU) g, + 1y - (AVU) i, ]
1 1
< glny - AV iy + 5y - (AV) K [y

—1/2 —1/2
< VohiP|AVU|k, + oh | AVul|x, (2.15)
and fory € 8P U &Y and y € Eg
In- AVu|l, < 2+/ohe > |AVu| (2.16)

16



1
and fory € 0K} n 0Ky and y € &,

lulyly = N, = wily

N

g,y + i ly

—1/2 —1/2
2/3ohg ullk, +2/3oh |ullk,. (2.17)

N

where hg, and A, are the lengths of the longest edge of the elements K and K>, respectively.
By using (2.14), for all u € P (K)
|AVulx < |Alx|Vulx < 4v60p(Ax)h" |u|x = Cip(Ax)hy" |ulk- (2.18)
It is known that for symmetric and positive definite matrices
|Allx = p(Ak). (2.19)

where p(-) denotes spectral radius of a matrix.
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CHAPTER 3

FULLY COMPUTABLE CONVERGENCE ANALYSIS of
DISCONTINOUS GALERKIN FINITE ELEMENT
APPROXIMATION WITH an ARBITRARY NUMBER of
LEVELS of HANGING NODES

We obtain a fully computable convergence analysis on the broken energy seminorm in first
order symmetric interior penalty DG finite element approximations of a linear second or-
der elliptic problem. Our mesh contain an arbitrary number of levels of hanging nodes and
is comprised of triangular elements. We use an estimator which is completely free of un-
known constants and provide a guaranteed numerical bound on the broken energy norm of
the error. This residual-type a posteriori error estimator is introduced and analyzed for a DG
formulation of a model second-order elliptic problem with Dirichlet-Neumann-type boundary
conditions in [69]. An adaptive algorithm using this estimator together with specific marking
and refinement strategies is constructed and shown to achieve any specified error level in the
energy norm in a finite number of cycles. The convergence rate is linear with a guaranteed

error reduction at every cycle.

3.1 The Convergence Result

Rankin’s fully computable upper bound on broken energy seminorm of the error e, in the first

order DG finite element approximation [69] can be summarized as follows:

Let V index the set of the vertices of the elements in ;. For K € P, let V(K) index the set

of the vertices of element K and, for y € 0%, let V() index the vertices at the endpoints of

18



V.

For any element K € $), let Tk be a sub-partitioning of K which is created by performing
uniform refinements of K such that every vertex in V which lies on 0K is located at a vertex
of a triangle in 7. We shall use 07k to denote the set of the edges of the triangles in 7.

Upper Bound for Conforming Part : Let @k be conforming part error estimator defined as

follow:
_ 2 0 0
Ok = (A 'or, o) + Q:KHf - HS()fHK + Y glg -1, (3.1)
yESKmShN
where o7, is fully computable and bounded by
(A7 'or. o) <€ D) D IRy k2 (3.2)
7’661{ ’yEﬁPh
y<y'

where

K
Ry x = —[n- AVuyl, — (W, [uh]y)
Y

ony € 0P such that y < y' € Eg. The constants €k, €, and €, are the fully computable

constants defined as follows:

Ck = —p(Ah)'". (3.3)
For y € & m(‘}hN, let
ol hie ¢ 1/2
Y| Nk (hk ! —1\1/2
& =—=—(— A 3.4
y <|K|ﬂ(ﬂ+;}glﬂ)> p(Ag’) (3.4)
Yy
and
3 —1
Cr = S0p(Ag)

where /g is the length of the longest edge of element K, o is the shape regularity parameter
defined in (2.2) and p(AEl) and p(Ak) are the spectral radius of the matrices A;l and Ag
respectively, defined in (2.19). Then, it was proved in [69] that

lgnll® < >, % (3.5)

KeP),

An explicit expression for (A~ o, o7 )k

An explicit formula was given in [69] for (A~ 'or,, 07, )k which can be used in the cases
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when there are no hanging nodes per edge of element K or at most one hanging node per edge
of element K and at most two levels of refinement per edge of element K. Here, we give the

result for the case when there are no hanging nodes per edge of element K.

Theorem 3.1.1 Let K € P, be an element without any hanging nodes on its edges and sup-

pose the vertices and edges of element K € Py, are labeled as following,

i3

g

Lo tl ln ILq
n

Figure 3.1: Direction and enumeration of the vertices, edges, unit tangent vectors and unit
normal vectors of triangle K.

For R € R? define discrete norm |R|g, by the rule
IRl = RR&R"

with Rg being a 3 x 3 matrix with entries

_ il Ivjl
4K

[Rklij Al (x - x;)dx

Then

(Ailo-TK’o-TK)K = [[Ry, ks Ry, k. Rys,K]H%eK-

Upper Bound for Nonconforming Part : For a point x,,, © Q, let Q,, denote the set of elements

in 5, whose closure contains the point x,, and 0€,, denote the set of edges in 0%, which lie
on the boundary of Q,,. Also, #€,,, denotes the number of elements of ), contained within

the set €,,,.
For K € P, and y € Ex n EP, we define the space

H;,(K) = {v:ve HY(K),v =0 on dK\y}.
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Let K € #;, be given. Let V(7k) index the set of position vectors x,, of the vertices of the
triangles in 7k and let Vg (T k) denote the restriction of this set to the vertices which lie on
the boundary of element K. Similarly, Vp(7k) denotes the restriction of Vg (7k) to the
vertices which lie on the closure of the Dirichlet boundary I'p. We can define the function gy,

be such that g, € P (y) forall y € ShD and gy (xm) = q(x) forall m € Vp(Tk).

Let S(uy,) be a continuous function on Q satisfying S(uy)|x € P1(K) for all K € Tk for all
K € Py, such that

qI,h(xm) ifme (VD(TK)
S(up) = uh|K(xm) ifme V(Tk)\ Vox(Tk)
7 xreq, Uk (Xm) AEm eV A Vo (Tk)\ Vo(Tk).

m

The estimator Wk of the nonconforming part of the error is defined as follows,

Yx = |lup, — S(u + inf y
o=l =S+ Y it vl

eExNE
YEOROG, Viy=4—4q1

Then, it was proved in [69]

(A_lcurllph,curlwh) < Z ‘Pf( (3.6)
KePy,

Then by (2.12), (3.5)and (3.6), the broken energy seminorm of the total error e, = u — uy, can

be bounded as

lleal® < ). (@ +¥%)-
KePy,

3.1.1 The Adaptive Algorithm

An adaptive finite element method for the DG consists of the successive loops of the following

sequence:

1. Solve: Given a mesh £, a DG approximation uy is constructed by solving the equation

By (um,v) = L(v) Vv e Xy.

2. Estimate: A posteriori error estimation of the error ey is obtained by calculating

(@2 +W2) forall K € Py .
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3. Mark: Based on the information supplied by the a posteriori error estimate certain

triangles of Py are marked for refinement.
4. Refine: The triangles marked for refinement in step 3 are refined in a specific way. This
refinement strategy defines the new mesh $,.

By using the above adaptive strategy, our main goal is to show following inequality

By(en,en) < nBu(en,en) 3.7

where 0 < i < 1 is a fully computable constant and uy and u;, are the DG solutions in Xg

and Xj, respectively.
The following orthogonality relation is essential in the proof of (3.7).

Lemma 3.1.2 Let Py, be a local refinement of Py, such that Xg < Xy, with the DG solutions

uy and uy, then the following relation holds for symmetric DG,

Bi(en, en) = Bulen, en) + Bn(un — ug, un — ug). (3.8)
Proof. By Galerkin orthogonality Bj(es,v) = O for all v € Xj,. Hence up, — uy € Xj is
perpendicular to u# — uy,. Therefore

Bp(u — up,up, — uy) = By(ep, up — uy) = 0.
Since, bilinear form is symmetric, one can rewrite as
By (up — ug, en) = Bp(ep,up —ugy) = 0.
The decomposition u — uy = (u — up) + (up — up) yields
Bn(en,en) = Bulen + (up —ug),en + (upn — up))

= By(en.en) + ?h(eh, up — MHZ + ?h(uh — ug, ep) +Bp(up — up, up — ug)

v

" v~

=0 =0
= By(en en) + Bp(up — up, up — up).

|
Before engaging in the proof of the Theorem 3.7, we immediately notice a difficulty pre-
sented by the fact that we have Bj(eq, ey) on the left-hand side of the last equality instead

of By(en,en). However we can tackle this difficulty by using the fact that By(ey,ey) is

bounded by By (e, ex), following the argument in [59],
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Lemma 3.1.3 (Karakashian, Pascal, 2007) Suppose Py, be a local refinement of Py. Then

Bu(ew,en) < Bu(ew,en)+« 2 (6(y) — 1)|7’|_1H[MH]7H$
76851

+ & > (6() = Dy g — unl? (3.9)
7682

Il

where 6(y) = max{ i

|y €& v 8,?,)/’ €y}
Proof. By (2.6) we have

Bi(emoen) = D) llenllp —(1+7) >, ((n-AVemyy.lenly), + ), ﬁ\l[@]y'\li

K'ePy, y'e&luep ye&luep

Since u € H'(Q) and uy is a polynomial on each K € Py, we have

>, lleallz = D llenll%-

K'ePy, KePy
Ify e 82 is a completely new edge in other words if y’ € 82 ~ K where K refers the interior

edge of some K € Py, then [ex],, = 0. Also, the edges ¥’ € 8}? are parts of edges in &2, then

2 (<n-AVeH>y/,[eH]yr)y, = Z (n-AVeH,eH)y, = Z (n-AVeH,eH)y.
vy 68,? v ES,? 7682

So,one obtains

2 (<n-AV€H>y’,[eH]y’)y/: Z (<"'AV€H>%[€H]7)¢

7’682 uﬁf? yeSZuSZ

ird8

For the term Zy'eafluaf ‘7—’(,‘ |ler]y Hi,, we can define 6(y) = max{ T

|y € &n UShD,y’ €y}
which is a finite number. Then, it can be written that

. 501) »
2 pllently < 3 =Ellenb

v 68,’1 U(S/? ye&}_l USZ

‘We conclude,

o(y)
Buemen) < 3 lealli=(147) 3 ((n-Vewy.fenl), + 3 ZT5Ifenlyl
KePy 'yESlILluSg yeSfL,uSg y
= Bulewen)+ Y, (6(r) = Dly| ™ enlyl;-
768;1u82

Since |[en]y|y = |[unly|y, for all y € EL and ||[en],|ly = |g — unl, for all y € EL, we get

the desired result. ]

To prove(3.7), we use the following key identity
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Lemma 3.1.4 Let uy and uy, denote the DG solutions in Xy and X;,. Then,

Z (f + div(AVug),v), — Z ([n- AVugl,, (v)y) + Z (g —n-AVup,v),

KeP), ye&! ye&y
= Bp(up —up,v) — 71 Z ([un]y, {(n- AVv}Y)y +7 Z (g —up,n-AVy),
y€8/’7 768/?
= > AV — ), W)k =7 Y ([wly, (- AVW),) +7 D (g — wpn- AVB)0)
Kepy, ye&, ye&eP

forallv e X, n H}(Q)

Proof.: For the proof, apply the integration by parts to

2 (AVeH, VV)K.
Ke®P),

Then,

Z f AVey - Vv

—ZfdlvAVeHv—i-ZJ n-AVey)v

KePy, KePy, KePy
= —EJdlvAVu—uH v+ZJ (n-AVep)v
KePy, KePy,
= Z J (f +div(AVug))v + 2 J n-AVey)v Vv e Xj,.
Ke®P), Ke®P),

We observe that the boundary integrals are defined on each element boundary as:

Z J n-AVey)v Z Jn AVeyv + Z Jn AVeyv

KePy ye&l Y ye&N

+ Z n AVEH |KV|K + (l’l AVEH)‘K/V‘K/
’)’681 Y

Moreover, the treatment of the interior boundary integrals is as follows: Given an edge y € 82

shared by two adjacent elements K and K’, for a fixed unit normal vector n, for each edge v,

it can be written that
(n- AVen)|gvix + (n- AVey)xvigr = ny - (AVen)gvik — ny - (AVey)xvig-
By analogy with the formula below:
ac—bd = 3(a+ b)(c —d) + 3(a~b)(e +d).
we can write the integrand as

n- (AVeH)|KV|K—n- (AVBH)‘K/V‘K/ = (I’l' (AVBH)‘K—FII' (AVeH)‘K/) (V|K_v‘l(’)

| =N =

(I’l : (AVBH)‘K —-n- (AVeH)‘K/) (V|K + V‘K/)

= (ny - AVep)y[v]y + [n, - AVey|,(v),.
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Note that

Z Jn-AVeHVZ Z (g —n- AVug)v,

ye&y Y ye&y Y

so we get

2 JK AVey - Vv

Z JK(f + div(AVug))v + Z J(n - AVeg)y[v]y

KeP), KePy, 768/]1 Y
+ 2 J[n - AVey|,(v), + Z J n-AVepv
yee, Y ye&? Y
+ D) | (g—n- AVuy)v. 3.11)
yESZV Y

From the definition of By(.,.), we have

Bu(en.v) = > (AVey. W)k — )| ((n- AVer),, [v],),
KePy ye&,’iuaz)

—t Y (lenly.(n-AVY),),

yeafl UShD

+ Y (m[eﬂ]y,my)y W e Xi. (3.12)

1 ,&D
Yeg, s,

Inserting (3.11) into (3.12) yields

Bilewv) = Y L(f+div(AVuH))v+ D f (n- AVer), [v],

KePy, ‘)/ESL Y
+ Z J[n - AVepy], (v), + 2 (n-AVey) v (3.13)
yeS;l Y 768,? Y

+ Z f (g—n-AVuy) v— 2 (<”‘AV€H>w [v])’)y

yeSQ’ Y 768;’ US}?

_r Z ([eH]y,<n-AVv>),)y+ Z (ﬁ[eH]y,[v]y>.

ye& uEP ye&, uEP
In the right hand side of (3.13), second, fourth and sixth terms cancel each other. Then, one

obtains

Bi(en,v) = Y (f +div(AVup),v) + Y, ([n- AVen],, (v),),

KePy, yee,
+ > (g—n-AVupv), =7 Y ([enly.(n-AVV),),
7682’ yeSiqu
K
b X (Elenbabl) -
ye&l uEP Y Y
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Rewriting the last equality and letting
[n-AVey], = [n- AV(u — ug)], = —[n- AVunul,,
gives us following equality

D (f +div(AVug).v)g — D) ([ AVugly, (D)) + D (g — n- AVug,v),

KePy, ye&, ye&y

- Blenntr N (e avy),— N (Slenbbly) -

1 ,eD 1 ,eD
Y€€, VG, €€, VG,

If we write & U &) separately and observe that [ex], = ey, (n- AVv), = n- AVy, [v] = v

on Dirichlet boundary, we obtain:

Z (f + div(AVug),v) e — Z ([n- AVugl,, (v)y) + Z (g —n-AVup,v),

KePy, ye&l ye&l
K
~ Bilen) +7 3 (fenlyotn- 47), = 3 (Efen )
768;, )/68{1 Y Y
+ T Z (eH,n-AVv)y — Z (ﬁeH,v) Yy € Xp,.
ye&? ye&eP Y Y

Now, in the convergence analysis, the terms containing k make trouble. So it is important to
eliminate these term. If we use test function from the subspaces X; N Hé (Q), then we can

tackle with this trouble. Then, the last inequality becomes

DT (f + div(AVug).v)g — > ([ AVugly, y) + Y (g — n- AVuy,v),

KeP), ye&, ye&l

= Buleg,v) +71 Z ([er]y. (n- AVv>7)y +7 Z (en,m- AVv), Vv e X, N Hy(Q).
yeaé 7685

Also we can write By(ep,v) = Bj(up — up, v) + Byp(u — up, v) and note that By (u — up,v) =

0 Vve Xp.

Note that [ex], = —[up], on & and ey = g — uy on E. This yields

Z (f + div(AVug),v) e — Z ([n- AVugl,, (V)y) + Z (g —n-AVup,v),

Kepy, ye&l ye&l

= Bi(up —up,v) =7 ) ([unly (n- AVW),) +7 Y (g —up,m-AV),  (3.14)
yeSé 7685

forall v e X; N H)(Q).
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On the other hand from (2.6), one can conclude that

D (AV(un — up). W)k — 7 . ([un — uply.n- AVY),),

By(up — ug, v)

KePy yeg;l
— T (up—ugn- AV), = > (- AV(up — up))y. [v]y)y
yeSfl) yeSfl
K
+ Z ﬂ([“h —unly, [vly)y — Z (n-AV(up — up),v),
ye&, Y ye&?
+ Y Sl —umv),  WeXa (3.15)
) 1]
Y€E,

Moreover, since our test function space is X N Hé(Q), (3.15) becomes

Bi(up — up,v) = D (AV(up —un), VW) — 7 Y ([ — unly, (- AVY),),
KePy yee!
-7 Z (up — up,n- AVv), Vv e X, n Hy(Q).
yESf
This implies

By(up — up,v) — 7 2 ([ur]y.<{n- AVv>y)y +7 2 (q —up,n- AVv),

7682 yeSfl)
= D (AV(wy —un), VW)k =7 Y ([un — unly, (n- AVW),)
KeP), ye&!
-7 Z (un —up,n-AVv), — 7 Z ([urly.{n- AVv>y)y
ye&p yee,
+ 7 Z (q —up,n-AV), Vv e X, n Hy(Q).

768#
In the above identity, in the right-hand side of the equality the terms uy vanish and the rest of

the terms give

By(up — ug,v) — 7 2 ([uny.<(n- AVv%,)y +7 2 (q—un,n-AVv), (3.16)

yee, ye&?
= 2 (AV(up —ug), Vg — 1 Z ([un]y,<n - AVv>y)y +7 Z (g — un,m- AVv),
KePy ye&l yesP
(3.14)and (3.16) implies the key identity (3.10). |

MARKING STRATEGY:

For some number 6 € (0, 1), let My be any subset of P such that the following bulk criterion

is satisfied:

D1 (0F +¥%) =0 > (0 +¥%). 3.17)
KeMy KePy
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REFINEMENT STRATEGY:

A marked triangle K € Py will be cut into sixteen congruent sub-triangles.

Figure 3.2: The refinement of triangle K into sixteen congruent subtriangles.

Estimation of the Conforming Part:

Theorem 3.1.5 Let u € H'(Q) such that u = q on T'p be the solution of (2.1). Moreover,
uy € Xy, u, € Xy, denote the solution of (2.7) with respect to Py and Py, respectively. Then,

sufficiently large k, the following inequality holds

3 0% <2884 0° (2110°C2 +2°3C2) Y |AV(wy — um) %

KeMy K’EP},
+ 28841 0° (2110%CTA* + 2°FCT %) 3 1|7 [l |2
y’eSi
+ 2881 ¢* (2°10%0C2 42 +243%C2%) 3 1Y |q — wnl?,
7’685
+ 64(1 +0)A—100max (2°10°C7 + 3680 (2710°C} +36C7)) > |AV(up — un)|3
K'eP),
+ 64(1 +0)A_100max (2'110%0C7 A% + 3680 (2°10%0C7 4% + 2*3%CT%)) > 1| [wily I3
y’eSllluShD
+ 64(1 + 0) A 100max (2°3%0 +2°10%0 + 3680(3%0 + 2*10%0)) > osc*(f.K. 1)
KePy
+ 64(1 + 0)1_1900max (2400 + 1) > 05c*(g.7.0)
7GSZ
+ 28811 0% (3%0 +2*10%) 2 osc?(f, K, 1) 4+ 21601_,0° Z o0sc?(g,y,0)
KePy ye&y
6 24
+ —Q/l_l Z oscz(f,K,O) + —Q/l_l Z oscz(g,y,O) (3.18)
2 bis
KePy yeey

where y € Ek define Opmax = max{s(y)|ly € Ek,K € Pu} where 6(y) = max{% |y

" e
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82 u8€, Y’ € y} which is a finite number. Also, we can define 1_; = max {p(A,;1 )K€ Pro}

and A = max { p(Ak)|K € Puo} where Py is initial mesh.

The proof of (3.18) follows from the subsequent series of following lemmas.

Lemma 3.1.6 Fix K € My. Fory' € &g, define §(y') = max{% |y € OPu,y < y'} which
is a finite number. Then the following inequality holds
0% < Ao X (Wlln- AVunly [+ 0/ [ lunly )

Y'eék

6 24 _
+ ﬂgp(A Nosc?(f, K,0) + —Qp(A 1 Z 0sc?(g,y,0) (3.19)
yeé)KﬁSZ

where g is defined by (2.2) and p(Ak), p(AI;I) denote the spectral radius of the matrices Ax
and AI_(] respectively, defined in (2.19).

Proof. We recall (3.2):

(ATl ornor )k <€ D) > IRy,

Y ESK ‘}/E(?PH
y<y'

where Ry x = —[n-AVug],— (#, [un] ) and ¢, = 30p(A"). Inserting those definitions

in the above inequality gives

(A o or)x < So0(4c) Y S Il = [n- AVanl, - (#’[“H”L'i'

y'eEk )’E(??H
7C7

By triangle inequality, we get

(A~ o or)k <3o0(az) YY) <|n AVuH]y|y+|(|

Y 68[( ye@PH

fun] ) |$> (3.20)

| (tens) 5= [ ([ gt ) ﬁ“ﬁ”])

Cauchy-Schwarz’s inequality implies that

(J uH]y) J 12J unl; |7|f unly
Thus
(o) 1 < i ] (1) = e vt = o

29
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Moreover, fineness parameter 6(y’) allows us to write the following inequality,

30p(Ag") D) D Iy | |2 lunly |3 < 30p(A%") D 6| lunly . (321)
Y'eEx yEOPYH Y'eEk
y<y'

Now, since |y| < |y/|, we have:

30p(Ag") D1 DL Wln- AVuul, 5 < 3ep(Ag") D) Y1 D, ln- AVuyl, |3
v eEk yEOPH v'eEx yEOPH
y<y y<y
= 3op(A 2 Y [I[n - AVurly |3, (3.22)
Y'eEk

Using the inequalities (3.21) and (3.22) into (3.20) gives

(oo < o(ag) 3 (WIlin- AVl 2+ 66/l 1w 12) 623
y'e€k

Definition (3.1) and inequality (3.23) imply

0% < 90p(Ag") Y (W1l AVunly 2+ 60/ |y 1)

y'eEk
0 0
+ o3l -nPsE+ Y 62— gl (3.24)
yeSKmSZ

Now note that by Lemma A.0.2, we have ‘h < 20 and using the definitions (2.3) and (3.3),

Kl S
then
(©) hy
3¢x|f - flx = 35p(Ag B =& sz
6@ _
< Sp(AMK|f -T2
- 6§p(A Nosc(f, K, 0). (3.25)
T

Similarly Lemma A.0.2, definitions (2.4) and (3.4) imply,

hi hx
6¢2g — TVg|2 = 6M—(—+ ’) 1
e — 10,7 gy K 7 \x ;,negzlﬂ (Agh)]g - gHy
Y #y
2

h K 0
= (1 * 1 7 1)etai il = 15l

V/AN
(@)}
N

|[\)
Sli[e]
+
|[\)
e}
N—
=
S
=
N>
QS
123}
9}
—~~
oQ
=
=

(3.26)

N
X
2
- A
S
[
(oY
o
=
=2
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Using (3.25) and (3.26) into (3.24), we get

®} < 90p(ar) Y (- AVurly |2 + 66/ 1| Ml )
v €&k

60 _ 240 _
+ ;p(AKl)oscz(f,K,O)—i-Tp(AKl) Z 0sc?(g,,0).

N
YEEKNEY

Remark 3.1.7 An upper bound for |[n - AVuy],|3 is needed. There are three cases:

1. Ify is an interior edge of Py, then we find an upper bound for |||n - AVMH]7H$,.

2. Ify € Ek n EY, then we find an upper bound for |n - AVuy — Hg,o)gH%.

3. Ifye &k n &Y, then [n - AVugl, = 0. This implies we do not have any contribution

from this edge.

The next two lemmas deal with the first two cases.

Lemma 3.1.8 Fix K € My and assume K has been refined using our refinement strategy. De-

fine Prx = {K' € Pp,K' € K} andS{l’K = {y € &,y < K}. Recall §(y) = max{%| Y €

82,)/’ C vy} Then, for any interior edge v € 0Py and for sufficiently small €, such that

18e0 < 1 we have

i AVl B < —— (") + i (avan) 2
n- u < _ v u
7 Hly S e = 18e0) \ 4 )k
+ 4c? Z | AV (up, — urg) |2,
K'ePix
+ 40Cip(Ak)® 2 |7'|71H[Mh]y’|\if
7166{1_1(
+ 160Cip(Ax)* Y, 17 la— il
y’ESth@K

Proof. Let y € Ek is an interior edge of Pp. Let ¥ be the extension of [n - AVuy], to K, let £
be the piecewise linear function which is different from zero inside the shaded region and on
v, zero elsewhere, i.e., is zero on the boundaries a, b and c, as in Figure 3.3. Also we assume

that ¢ takes the value 1 at the midpoint of y and 1/2 at the quarter point of .
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K

|

A\
S,

Figure 3.3: Support of £

Define v = 9¢. Then v € Xj,. Since uy € P(K), for any y’ € 82 ~ K,

[n-AVuyl, = 0.

In addition, since ¢ is zero on the edges a, b and c in Figure 3.3, we have

>, ([n- AVunly, y),, = ([n- AVurly, v),), .

]
Y'eg,

Since vy is an interior edge of Py, v = O on 85 and 85 . Moreover, [v] =0ony' € 82’ x except
the case when y' C 1, then (3.10) is rewritten as

([n- AVunly, (), = (f +div(AVug),v)g - DT (AV(up — up), Vo)
K'ePpx

+7 Z ([un)y,<n- AVv>y/)y, -7 Z (q — up,n- AVy) .
7’,682,1( y’EShD noK

Now recall that £ = 1 at the midpoint of y, £ = 1/2 at the quarter point of y and 0 at the end

points of 1y,
Ll b b n
9 4 4 4
1 2 1 2
([n- AVugl,, <v>y)y = 3 [n- AVuyl,|*¢ = §|[n-AVuH]y| ¢ (3.27)
Y Y
_ vl 1 1 2
= —lln-AVuyl,|” = - | |[n- AVunly|” = Z|[n- AVugly ;.
4 4 ), 4
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Let v,,4. be the height of the triangle K, as in Figure 3.4, since 0 < ¢ < 1, ¥ is constant, then

~N Vma:c

.4

Figure 3.4: Height of the triangle K

Mk = 19tk < lx = L [n - AVuyl,|* = |[n- AVup],P|K]|

= |[n- AVug),|? (—Vmu;|7|)
1 2
= e | |l AVunl,
Y
v

= 2 - AV 2.

Let o be a shape regularity parameter, then by Lemma A.0.5, we have,
Vinax < Q|7|,
then
0
vk < SWllTn - AVurly[3. (3.28)

Now applying Cauchy-Schwarz’s inequality to right-hand side of (3.27) and using (3.27) and
multiplying both sides by |y| yield

1 :
Y7 lln- AVuglyly < WIS + div(AVun) |k Vi + ] D) |AV (s —um)lx Vv

K'ePik
+ vl D Munlylly [Kn- AV |y
7/682,1(
+ Y g —uly |n- AVY],. (3.29)
7’685(‘:5[(

Using the trace and inverse estimates in Chapter 2.7, the following bounds are obtained.
By (2.14), for K € Pj,
IVl < Citig) [vlx.

By (2.15) and (2.18), fory/ = 0K| n 0K; :

—3/2 —3/2
[<n- AV Ly < Cip(Ax) Ve (e PV, + hi VI, ) -
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By (2.16) and (2.18), for ' € &P n 0K:
—3/2
In- Ay < Cip(Ax)2 o, V]k.
Then (3.29) becomes,

1 : -
Yz lln- AVuglyly < WIS + div(AVug) |k [vix + Y, Cilylhg | AV (un —um)le V]

K'ePik
—3/2 —3/2
Y veCoAr iy ly (he Wik + ki)
71682.1(
Y =0K|n3K;
—-3/2
+ Y 240Co(AR) g — unly b V]
yegPnok
y'coK’

If the initial mesh is one of the following three meshes, then the ratio % is bounded by
2

following constants. Moreover, if we have a finer refinement than above examples on the

Figure 3.5: An example of initial meshes

edge y, we can bound the ratio by §(7y) which is a finite number that measures the fineness of

v with respect to y'. We can write that % < % < 6(y) where y/ = y n 0K,.
2

Now in Figure 3.6 let K’ be an arbitrary triangle in P}, x and hgs denotes the length of the

longest edge of element K'.
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|2

>
SR>

|2

\

Figure 3.6: Refinement of K

Therefore we can easily write that % < hg = |7|h1;f1 < 4. Also it is obvious that if 7/
is an arbitrary edge of a triangle K’ then |y/| < hgs, so by elementary computation we have
|y|h;,3 2 |y|h;,1h;,1/ ’ < 4]y'|~1/2. Consequently, using those above relation between the

edges, we have

1 :
Y7 ln- AVuyly[3 < hi|f + div(AVun)|k vk + D 4CIAY(up —um)l |v]x

K'EP;,,K
D AveCi(AY | lyly (IVlk + Vk.)
YeEx
v =0K|ndK;
2 8veCp(AON T g — willy Iv]k (330)
YeEPnoK
Y oK’

By Young’s inequality for € > 0

1 2 2 h%( : 2
YIZln - AVunlyly, < eyl + 2 1f + div(AVun)|i

4
S W R e VAR
K’EP}LI(

4 _
;¥ <e<|v|1<l+|v|K2>2+;gc?p<AK>2|y’| ‘|[uh]yf|5,>

Ye&l ¢
7’=5K| ﬂaKz

16 _
bS (el CeC A g i)

vy eé‘fl) NOK

Now note that (|[v|x, + |[V|x,)? < 2HVH%<] + 2Hv|\%(2 and also K; and K interior element.

So, for each edge of a triangle we have this sum. Since we have three edges in total we get
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6Hv|\%{l + 6Hv|\%(2. Finally we have

1 1 ( Iy .
Iz lln- AVugly; < 9elvlk + p <TK|f +div(AVup)[x + Y, 4C7 AV (up — un)|
K'EPh’K

+ Y 4CHo(AR) Y| [ualy |1,

1
Y'EE,

+ D, 160CTp(AK) YT g — wil,
y'€EP oK

By using (3.28) it can be written

1 9 1 {1 .
gl AVunl, 2 < eyl i AVl + - (fw + div(A V) [}

+ 4C7 Y |AV(w, — un)|k
K'ePik

+ 40Co(Ax)* Y Y Mlunly [

]
7168;.,1(

+ 160C/p(Ax)* . IV'Illq—uh@)
y’eSfl’mt?K

For sufficiently small €, i.e. if 1 — 18€ > 0, we arrive at
i AVl < (R 4 aivav 2
n- < — (= iv
4 “Hlylly e(1— 18¢0) \ 4 “H)lk

+ 4C? Z AV (us, — up)||
K’EP/LK

+ 40Cio(Ak)* X, 1Y lunly [

1
y! eSh’ X

+ 160CTp(Ax)* Y, Y17 g — il
y’eSfmaK

Corollary 3.1.9 In Lemma 3.1.8, take € = (360)~'. Then we have

h2
Yllln- AVugl,|; < 2880 (flf + div(AVug)|x

+ 4C7 Y AV (wy — um)lk
K'EPh,K

40Cp(Ax)® D3 Y1 lundy 5

7
Y'EE, k

+

+ 160Cip(Ax)* ), |7’|1|q—uh|§,>. (3.31)

¥ eEP oK
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Lemma 3.1.10 Let K € Mpy. Define Prx = {K' € Py, K' < K} and 8{2’1( ={yeé&l,yc

h’
K}. Then, for any y € 0Py N SZ and for sufficiently small €, such that 10ep < 1 we have

2 Iy
2 < — (K| + div(AVup)|
< S oe U f + (ATl

£aC? S AV — ) B+ 40CPp(Ax)? S Y lunly
K'ePpx V€&, «

+160Cp(A) Y, Y17 g — w2 + 300scX(8,7.0)).
y’eS,‘l)mﬁK

y|lm - AVuz — 1

Proof. We construct a test function v € X, as follows. Let ¥ be the extension of n- AVuy —
HSYO) g to K and let £ be the piecewise linear function which is different from zero inside the
shaded region as in Figure 3.3 and on vy, zero elsewhere, i.e., it is zero on the boundaries a, b
and ¢, in Figure 3.3. Also we assume that ¢ takes the value 1 at the midpoint of y and 1/2 at

the quarter point of y. Take v = 7€, then v € Xj,. It can be written that,
0 0
(n- AVuy —T1g,v), = (n- AVuy — g,v), + (g — 1\ g, v),. (3.32)

Note that, the test function v have following properties:

e v = 0 outside of element K,
e v = 0 on interior and Dirichlet edges of P,

o [n-AVuy] =0onally € &\oPy.

Using this v in (3.10) allow us to write

(§—n-AVup,v), = —(f+div(AVuy),v)x + Z (AV(up — ug), Vv) g
K'EPh,K

—7 > ([ly.(n-AVV),),,

]
y’e&hyK

+ 1 > (g—upn- AV, (3.33)

D
Y'€&; noK

Equations (3.32) and (3.33) imply

(n-AVuy —11gv), = (f +div(AVup), )k — Y. (AV(uy — ug), Vo)
K’EP},’K
+7 Z ([u]1]7"<n ' AVV>7’)),/ -7 Z (q —up,n- AVV)Y’
Ye&, x y'€EP NoK
+ (g~ g, v), (3.34)
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Since ¢ = 1 at the midpoint of y, £ = 1/2 at the quarter point of y and O at the end points of

v, we obtain similar to (3.27)

(n - AVuy — 1%, v) f - AVuy — Vg0 = [n- AVuy — H§°)g|2f ¢
Y Y

Y

1
= %m - AVuy — l'[§,0)g|2 =5 J |n- AVuy — l_Ig,O)g|2
Y
1
= Sln- AVuy - 2. (3.35)

Now applying Cauchy-Schwarz’s inequality to right-hand side of (3.34) and using (3.35) and
multiplying both sides by |y| give

1 0 .
Y5 - AV — V2 < ylIf + div(AVug)| Vx + vl Y. AV — un) g [IV] &
K'ePpx

+ Y [lyly IKn- AV, (3.36)

y
V€S, k

0
+ bl Y la—unlyln- AV + llg — T gl v,
y’eSthﬁK

Using the trace and inverse inequalities (2.14)-(2.18) in the right-hand side of (3.36), we

obtain,

1 0 .
I3 In- AVuy — 108l < IS + div(AVur) & ||«

+ Gyl Y, g 1AV — um) e V]

K’G?D;,,K
—3/2 —3/2
+VeCp(All Y Myl (h Wk + kg 1vik,)
7/682’,(
y’=6K]m(3K2
—-3/2
+ 230Co(AR Y g —wlyhg vk
y'eglnok
vy coK’

—1/2 0
+ 2+3olylhg e - gl [v] k-

Moreover, as in the previous proof, using the relation between the edges of a triangle, we see

that |y| < hg and VK’ € Pk % < hgr and |y|h[;,3/2 < 4|y'|~V/? for any edge ' of K. So
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we finally have:

1 .
15 In - AVuy — 1085 < hillf + div(AVun) |k Il +4C; Y AV Gy — )i [Vl

K'ePpx
+ 4./0Cip(Ak) Z Y [ 21l y |y (V& + k)
7/68111,K
v =0K|noK;
+ 8y0Cip(Ax) D, W1 la — wily vk
yegPnok
vy coK

0
+ 24/30ly2e = 1g], v«

By Young’s inequality for € > 0

1 0 Iy .
I3 ln- AVuy — 17 < el + K17 + divATun)l

4
+ el + 2 AV — ua) )

KIEP/LK
4 _
S (e<|v|z<l+|v|K2>2+;gc%p<AK>2|y'| 1|[uh]yf|§,)
7’68;”(
2 16 2 21.0n—1 2
S (el LoCoan I g - wl)
y’e&fmﬁK

3 0
+ el + Zolyllg —17gl5-

Note that (HVH%(I + [v]x,)? < 2Hv|\f(1 + 2|v|lk,)? and for each edge of a triangle we have this

sum. Totally, we have three edges for each triangle, we have 6Hv\|§<I + 6|v|k,)*. Then we get

1 0 1 ,
I3 In- AVuy 0785 < 10€|v + (fv + div(AVur) [

+4CF > AV —up)

K'ePpx
+40Cip(Ak)* D, W17 uly
VIESL,K
+160C7p(Ax)* >, I la— il
'y’eS,?rwﬁK

0
+3oly||g — I )gli)
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Similarly as in (3.28), using the height v,,,, defined in Figure 3.4 and using Lemma A.0.5, we

get following upper bound for the function v in Lp-norm:

2 ~pl2 =112
Wik = 19k < [¥lk

L - AVuy — g2 = |n- AVuy — 17 [K|

_ ©) 2 Vimax|Y|
= |n-AVuy — 11, g| (T

1
= —vmaxj |n- AVupy — Hg,o)g|2
2 Y
= %Hn -AVuy — Hg,o)gH%
< §|y|Hn - AV — g 2. (3.37)

(3.37) yield

1 0 100 0 1 {1 ,
izl AVuy TV} < SFely| - AVug — 78]} + - <f|f + div(AVug) [}

+ 4C7 Y |AV(wn — um)fo +40Cip(Ak) D 11 I ualy |y
K'ePp i V€& x

_ 0
+ 160C20(AK)? D I g — unl? + 3elyllg — 18 )g|§>
y'eEPnoK

We now require an assumption on €. If € satisfies 1 — 10e > 0 we obtain:

For sufficiently small € and by (2.4), we arrive at

2 h2
AV, -T2 < —(—K div(AVug)|2
il AVay 10813 < o (A + div(aTun) [}
+4C7 Z |AV (up — up)| 7, + 40C7p(Ak)? 2 |71|71H[”h]7’|‘;2/
K'ePix Y GSZ’K
+160Cp(A) Y, Y17 g — w2 + 30053 (3.7,0)).
y’e@fmﬁK

Corollary 3.1.11 In Lemma 3.1.10, take € = (200)~". Then

hZ
0 .
yllm- AV —T0gl3 < 800( K| + div(AVun) [}

+4C7 Y |AV(wy — un)} +40Cip(Ak)* D 1Y unly |

i ]
K'ePpx Y'€8)

+160Cp(Ax)? Y, Y17 g — w2 + 00scX(8,7.0)). (338)
y'eEPnoK

40



Lemma 3.1.12 Let K € My and Prx = {K' € Py, K' < K} and 8,11’1( = {yeé&l,y c K}.

For sufficiently small €, such that 20e < 1 we have

640C?2
RS+ v aVanli < oes 3 1AV — ),
K K €(9 — 180¢) K,;):]LK K
6400C;p(Ak)* ~1 2
~o—1800 2 Mkl
YOk
2560QC1.2p(AK)2 B
o0~ 2 el
}/ESh noK
800 5
Yo+ 9 1500 LK, 1).
+ (Q+E(9_1806))0sc (f )

Proof. For K € My consider the following refinement denoted by P, k:

/\
AVA
VAVA'

v /3

Figure 3.7: Refinement of K

We introduce the finite dimensional space
Sk ={ve C°(K), vixr € P1(K) VK’ € Pyk, v = 0on 0K}.

If we extend functions in S ¢ by 0 outside of K, then it can be said that Sk is a subset of
Xjp,. Also, it is easily seen that a function in S ¢ is uniquely determined by its values at the
nodes vy, va, v3 shown in Figure 3.7. Thus dim(Sg) = 3 = dim(P{(K)). Furthermore, a
basis {@1, 2, 3} for S g can be constructed by "gluing" together Lagrangian-type functions

corresponding to the individual triangles in P, k.

Now letting {¢/1,¥2,¥3} be the usual Lagrangian basis for P;(K), we form the "Gramian"

matrix G given by Gij = (¢.,-, Uik, i, j = 1,2,3. We next show that G is nonsingular.

Showing that G is nonsingular: Let vy, v, v3 denote the three nodes shown in Figure 3.7. Let

v: = (v%,v%), v = (v%,v%) be the vectors starting from v; and terminating at v, and vs,
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respectively. Let ¢, ¢2, ¢3 be the basis functions corresponding to the nodes v, v,, v3 and

denote their supports by S!, 52,53, Clearly,

¢ (x,y) = ¢i(x—vi,y—13) V(x,y) € §? and

¢3(x,) pr(x—vi.y—vi)  V(xy)es’.

Suppose there exists ¥/(x,y) = ax+by+c € P1(K)such that(¢;,¢) = 0, j = 1,2,3. Showing

that a = b = ¢ = 0, implies the linear independence of the rows of G.

0= (s = | wley) daleddy = | wlx) (3= iy =y

X U(x +vi,y +v3) ¢1(x, y)dxdy

L] w(x,) ¢1(x,y)dxdy + (av? + bv3) Ll ¢1(x,y)dxdy.

Now §¢i ¥(x,y) ¢1(x,y)dxdy = (¥,¢1) = 0. On the other hand, ¢; is nonnegative and
nonzero; thus we conclude from the above that av% + bv% = 0. In a similar way, we obtain

2

av? + bvg = 0. Since the vectors v, v3 are linearly independent, it follows that a = b = 0.

Now that this has been shown, the fact that ¢ = 0 readily follows from (¢, ¢1)x = 0.

Showing norm equivalence: Let Tk : P1(K) — S g denotes the operator given by (Txv, x)kx =

(v, x)k Yx € Sk. Then ||Tk - ||k is a norm equivalent to | - |x on P;(K) with constants that

are independent of #g because of Lemma A.0.8.

In Lemma A.0.8, it is proved that |7k - ||k is a norm and equivalent to | - ||x such that

3
Vv e Pi1(K) zmHVH[( < |Txvlk < |v|k- (3.39)
‘We also remark that
HTKVH%{ = (TKV, TKV)K = (V, TKV)K. (340)

Now we can start the estimation of h% || f + div(AVug)|%.

To estimate f+div(AVug) we take v = TK(Hg)f—i—diV(AVuH)) that is extended by 0 outside
of K.

Note that since our test function v = 0 on 0K, we do not have any contribution from boundary

terms in (3.10). Also uy € P (K), then for any y € & K,
[n- AVuyl, = 0.
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In addition since v € C°(K), for any y € & N K, [v], = 0. Therefore, by (3.40) and the key

identity (3.10) we get,

ITk (M8 £ + div(AVug))|% (M8 £ + div(AVuy), T (MY £ + div(AVug)))x

= (f +div(AVup), Te(MY f + div(AVug)))x
+ (M f — £ T f + div(AVug)))k

= > (AV(up — ug), VTx(Y) £ + div(AVug)))x

K/EP/LK
— 7 ([unly n - AVTR(IL) £ + div(AVur))),),
768/’;,1(
_ . (1) i
+ 1 > (q—upn- AVTR(IL f + div(AVug)))y
768?(\61(

+ MY — £ T f + div(AVug))).
Using (3.39), it can be written that

9 ) )
I F +div(AVun) i < Y (AV(uy — un). VTR + div(AVun))) g

K'ePik

— v Y ([unly (n - AVTR(IY £+ div(AVug))),),
768/’;,1(

+ ot > (g upn- AVTR(IL) f + div(AVug))),
768,,”(\61(

+ MY — £ 1M f + div(AVug)))x. (3.41)

To complete the proof, each component of (3.41) will be handled separately. Before engag-

ing the proof we immediately notice that VK’ € Py, g, hx = 4hg and Vy € 82’ K

vl <
hgr = }% = hl_j/z = 8h;3/2 where y € 0K’. Now using Cauchy-Schwarz’s, (2.14), Young’s

inequalities for any € > 0 and (3.39) yield

Ykep, (AV(un —un), VIk(II £ + div(AVug))) g

< Y AV — un)| | VTR f + div(AVun)
K'ePpx
-1 () :
<D G AV Gy — ) |k | Tk (TS -+ div(AVug)) |
K’E'Ph,K

2

€ . C; _
STk (I F + div(AVum))[§ + 55 3 Il AV — ),
K'GP;,,K

/N
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N

2

€ . C,‘ _
EHHQ)f + div(AVug)|% + o D1 B IAY(uy — up)|3
K’EP/,,K

€ (1 : 16C7
= SIS+ div(AVun) [z + —th’ Y AV —un)lz (B42)

2€
K'ePpx

Similarly using Cauchy-Schwarz’s, (2.15), (2.18), and Young’s inequalities for any € > 0,

respectively

2768{1’1(

<

N

/A

Note that

yeé&!

([unlys (n - AVTR (T £ + div(AVug))),),

ST MunlylyIn - AVTR (T £ + div(AVuz))y |,

h,K

> Uyl vo (ki PIAVTKTY £ + div(AVun)) Ik

yESh K

Y= 6K1 ﬁaKz

i) PIAVTR(IT £ + div(AVun)) |,

2, H[uh]ynyc,-pmmf( i PITR (N £+ div(AVun)) I,

1
yesll,l(

y=0K| N 0K,

4/2HT (IT (1)f+div(AVuH))HKz)

>0 w1y Ci(Ak) Vo (8 ITk (1 + div(AVun)) Ik,

YEE) ¢

y=0K;noK,
+ 8T (T £ + div(AVu)) |,
640C?p(Ak)* _ € 1 :
2. <2—€h;|[uh]y|$ + 5 (I s + div(4Vu) i
’}/GShK
y=0K| " 0K,

(1) . 2
s s anavani)’ )

(1 . (1) . 2
HTK(HK f+ d1V(AVuH))HK, + HTK(HK f+ le(AVuH))HK2

< 2 Tk( £ + div(AVug)) |3, + 2| Tk (T £ + div(AVug)) |3,

Since vy is an interior edges, for each triangle we get three times above sum.
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So, we have 6 (HTK(HE;) £+ div(AVug)) |2 + [T f + div(Aqu))H;Q). Then using
(3.39),

S ([unlys n - AVT(IY £ + div(AVun)))y )y

7682,1{
. 4QC p
< 3e|Tx(MY) £ + div(AVug))|% + Z hig a2
yeS
. 64QC P (Ag)?
< 3¢ £ + div(AVug) % + S h3 [y - (3.43)
768/11(

In (3.43) consider the edge y € 8271( where v = 0K; n 0K,. If this y € 0K then one
of the triangles, write K, will be out of the element K. Then from the definition of v =
TK(HS(I) f +div(AVug)), we have that v = 0 on 0K and out of the element K. This implies
|k (MY £ + div(AVug))|x, = 0 in that case.

To estimate the third component of (3.41), use Cauchy-Schwarz’s, (2.16), (2.18), Young’s

inequalities for any € > 0 and (3.39), respectively

S (g unn- AVTR(IY) £ + div(AVug))),

yeEP noK
< _ CAVT (MY £ 1 div(AV
< lg — unlly|n - AVT& (T £ + div(AVug))|,
7682)061(
yedK’
< Y g — w2 voh PIAVTR (I £ + div(AVug)) |k
ye&thﬁK
veoK'
< Y g ulh2veCip(Ar)hy | Tx(MY) £ + div(AVug)) |
yeEP oK
yedK’
—3/2 1 .
= Y g~ uly 16 v2Cip(Ax)h | Tk £ + div(AVur)) |k
yeSfmﬁK
yedK’
¢ . 2560C2p(Ax)*
< Y <§|TK<H§§>f+dw<AwH>>|§(,+2—€h,£|q—uh|i
yeSfmaK
yedK’
¢ . 256ngAK
= ST f + divAVun)) [ + ————= Y, i ’la—wl}
yESDmﬁK
2560C%p(A
< Sy dvavilt + ZEPAT S G
yeSDmaK
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Finally for the term (Hg{l)f - f TK(Hg(l)f + div(AVug)))k, use Cauchy-Schwarz’s, (3.39)

and Young’s inequalities for any € > 0, respectively
W f — AT + div(AVun))k < 0 f = Ikl Tx@E f + div(AVug)) |k
< Qf — fIIN £ + div(AVug)|x - (3.45)
€ . 1
< SIQf + div(AVun) [ + 5|1 f - f13

Now using (3.42), (3.43), (3.44) and (3.45) in (3.41),

9 41 . %€, (1 : _
ol + divAVun)|z < SIS+ div(AVun) [ + == D) =AY — )

___ v
2€

K’EP},,K
64QC p AK
+ D0 i sl
yeS
256QC 0(Ag)?
+ o D hla—wl;
yeSDmﬁK
| Q-
2—€|\n;>f—f\|%<. (3.46)

Multiply both sides of (3.46) by h%, Lemma A.0.2 and the definition (2.3) give

W f — 12 < 20K | f = £13 = 20 053 (£ K, 1).

Also, using the relation |y| < % forall y e 8{1’  for a small € > 0, we get

320C?
2 1D . 2 i 2
h [T f + div(AVug) |3 < 0= 1806) > 1AV (un — up) |
K'ePhk
12800C2p(Ak)?
T 9 - 130¢) 2 i sl

51200C?p(Ak)*

=g — w2
T 9= 180e)¢) DZ x g =l
y€&;, NIK

20 21 ¢ p2
+ 6(9 _ 1806) hK”H[( f fHK

320C?

ittt AV (up — ug) |2
h,K

3200C%p AK .
+ (T Z v [y 13

N

12800C?p(Ak)?

“1y, 2
€€, NoK

400 9
o K1 3.47
T =180 ¢ KD ©47
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Triangle inequality, Lemma (A.0.2) and definition (2.3) imply

W2\ f + div(AVug) % < 202|000 f + div(AVug) |} + 202 | f — 1Y £12
1 . 1
< 20208 £+ div(AVug)|% + 4olK]|| £ — T 1%

< 202N f + div(AVug) |3 + 40 0s(f, K1) (3.48)

Inequalities (3.47) and (3.48) imply that

2 : 2 640Ci2 2
hgllf +div(AVug)|x < m 2 |AV (up — up)| %
K'ePix
64OQC2 AK .
2560@c§p(AK) .
YeE, NIK
80¢ 2
4 - s K5 1
+ ot gigeg) UK
Corollary 3.1.13 In Lemma 3.1.8, pick € = 40, then we have
|
2°10°C?
h|f + div(AVup) g < o Y, 1AV —u)
K'ePhk
2°10%0C?p(Ak)?
+ : > Il il
vEE] &
2'110%C?p(Ak)* _
+ 5 > bl e - wly
yeEP noK
2610%, ,
+ (4o + ) osc”(f, K, 1) (3.49)
Lemma 3.1.14 Fix K € My. Fory € Ek, the following inequality holds
LS S | 7 M
yeSﬁ,uSZ
2°10°C? 2"10°C; 5 5
< 64(1 +0) 5 +368¢ g 4G DAYy — un)
K'ePy,
21110%C7 2? 2°10%C7 A?
+ 64(1+0) (T + 3680 #' + 160C? % 2 ! H[u,,]y,ug,
y’eSiuS?
26107 24102
+ 64(1+0) (49 + 5 € +3680(0 + 5 Q)) > os*(f.K.1)
KePy
+ 64(1+0)(2400 + 1) Z oscz(g, v,0). (3.50)

N
Y€€y
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Proof. By [59] (3.20) we have

Iy~ sy 15

K2 2

! ,eD
yeELWEL

< 64(1+0)
KePy

7681 yeSN

Now from previous chapter remember that by (3.49) we have

W2\ f + div(AVug)|% <

From this inequality we deduce that

D1 lf + div(AVug) [k <

KePy

and by (3.31)

<

Yll[n - AVurl, | <

29102C?
9 ’ Z |AV (up — u) |3
K’Ephﬁk
2°10%0C7p(Ax)?
9’ Z IV'I’IH[uh]y'Hif
y’GSIIl,K
2'"10%C7p(Ak)?
’ ST W g — ually
? y’eS,‘fmﬁK
20102
(40 + —-2) 0sP(f.K, 1)

29 102C2

D 1AV —un)|g,

K'ePy,
21 102902/12

5 X

Y 1~ I Tundy 5

y’eé)éus}?
2610% 5
+ (4o + ) Z osc”(f. K, 1)
9
KePy

Iy
2880 <7|f + div(AVug)|%

4C; Y, AV (un —um)|,

K'ePnx
40Cip(Ak)* Y 1M lwnly I
7’68{1’,(

160C7p(Ak)* ) IV’I_llq—uh|§/>-
y'eEP noK
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For all y € &L, 3.53 becomes

h? .
Z yllln- AVunl,|; < 2880 Z TKHf + div(AVug) %

76851 KePy
+ 28804C2 ) AV (wy — up)|2
K'epP,,
+ 2880160C7A> > Y7 [wly

1 ,&D
Y'eg, g,

> 1AV — w3
K'ePy,
2°10%20C?2?
+ 88o———— D, [Tlmlyl
y’eSéqul’
4102

2710
+ 2880(0 + Q) Z osc®(f, K, 1)
9
KePy

+ 28804C] ) [AV(wr — un) 3
K'ePy,

+ 2880160C7 % > Y7 [ualy |

[ ,eD
Y'eg, v,

27102¢?
= 288@( 5 L —i—4Ci2 Z HAV(M;,—MH)H%(/

K'ePy,
102,222
(2 10%0C2A

210%C?

N

2880

+ 2889 +16@C?A2> > Yl
y’e&lllué‘f
2410% ’

+ 28800+ —5—) > os*(f.K.1) (3.54)

KePy

we deduce following inequality from (3.54)

2710%C?
D) Wlin- AVunly |3 < 288@( 5 +4C7 | ) AV (un — un)|3
7682 K'eP,

2°10%0C?2? B
+ 2889 (T’H@Cﬁz >

1 ,&D
Y'e&, &,

24102
+ 2880(0 + 2

) Y osc*(f.K. 1) (3.55)

KePy

Now note that by triangle inequality

0 0
lyl|n - AVug — g|> < |yl|n - AVur — 8|12 + y]lg — TV g|2
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By using (3.38) and (2.4) it can be written that

2
il A% — gl < 800( K17 + v AV}
Yy = 4 K

+ 4G D) AV~ un) [z +4eCio(Ak)® Y5 Y17 Il I

/ 1
K'ePpyx Ve ¢

+ 1604k Y, W17 g — w2 + 30053 (g.7,0)) + 053 (g.7,0)
y’eSthﬁK

: N
Summing for all y € &), then

h? _
> yllm- AVun =g} < 800( Y K| f +div(AVun)|}
ye&l KePy
+ 4C7 D AV (up — up) |3 + 160C7% )] IV'I’IH[uh]y'Hw
K'eP) yesluep
+ (2400 +1) Z 0sc*(g,7,0)
yES]FV,
2710%C?
< 809( LY AV — um) |
K'ePy,
2°10%0C? 2 B
+ T’ > Wl
y’eSéuSl?
24107
+ 0+ =52 X s (ALK
9
KePy
+ 4C7 DT AV (up — un) |3 + 160C7% )] |7'|’1H[uh]y'\|§f>
K'eP) y'esluep
+ (2400 +1) Z 0sc*(g,7,0)
yeS%
2710%C?
= 80@( 5 l—|—4Ci2 Z HAV(uh—uH)H%(,
K'ePy,
2210%20C? 22
+ 800 <T’+16QC?/12 > I My
y’e(‘);lué)fl)
24107
+ 8000+ —o-2) D os(f.K. 1)
KePy
+ (2400 + 1) Z 0sc?(g,7,0)

N
YEEY
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Then we get

>, Wln- AVuy — gl

N
Y€EEY

N

27102C?
so@< o HACT | D AV — )

K'ePy,
9102 (2 )2
(2 10%0C?A

+

800 + 169Cf/12) ST Ml B

1 ,eD
Y'eg,vé,

24102
5—) 2, s (A1)

KePy

+ (2400 + 1) ) 05c*(3.7.0) (3.56)
ye&fj’,

+ 80p(0 +

Using (3.52), (3.55) and (3.56) in (3.51) we get

N

DY T [ M

ye&l,uEh

2°10°C} )
64(1+0)| —5 2. 1AV — )70

K'ePy,

21110%0C? 2% B
— 5 > W sl 12,

1.,8D
Y'e&g,uE,

) Z oscz(f, K, 1)

KePy

2710%C?
288g< 5 Lract) D AV (un — un)|z

K'eP),

2610%0

(40 +

2°10%0C? 22 B
2880 (T’H@C?ﬁz > W a3

1, eD
Y'€g,uE;

2410%0

2880(0 + ) Y osc*(f.K. 1)

KePy

2710%C?
80Q< 5 +4C7 | Y AV — ug) |

K'ePy,
9102 232
(2 10%0C24

800 + 16QC,-2/12> > W1 lly

[ ,&D
Y'eg, g,

) 2 osc*(f, K, 1)

KePy

24102
800(0 + e

(2400 + l)osc2 (g.7, O))
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2°10%C? 2"10°C; 5 5

= 64(1 + o) 5 + 3680 g +4C; DAV (= up) |
K'ePy,

21110%0C% 22 2°10%0C? 2%

+ 64(1 + o) (+ + 3680 % + 160C? 2 D0 waly
y’eafluc‘if
610° 24102
S 3680(0 + 5 Q)) Z osc*(f, K, 1)
KePy

+ 64(1 +p) (4g+

+ 64(1 +0)(2400 + 1) Z 0sc?(g,7,0)

N
vEEY

Finally we have

2 — 2
S DR 7 [ (7 M1

1 D
yeELWEL

2°10°C? 2710°C? 5 )
64(1 + o) 5 + 3680 g +4C; DAY (up — up) |

K'eP),

21110%0C2 A% 2910%0C?A* -
+ 64(1 +0) (Tl+3689 T’+169Ci2/12 DU My

/., eD
Y'eg, v,

/N

6102 24102
ey 3680(0 + 5 Q)) 2 osc*(f, K, 1)
KePy

+ 64(1 +0) (4g+

+ 64(1 +0)(2400 + 1) Z 0sc*(g,7,0).

N
vESy

2
Now note that in (3.31) we have the term hTKHf + div(AVuy)|%. By using (3.49) we get
following bound for (3.31).

5 2"10°C; s
Yll[n- AVun], |, < 288¢ D AV — w3
K'ePik
2710%0C;p(Ak)? _
- 5 S My 1
7’682‘,(
2%10%0C;p(Ak)? _
+ 5 ST W g - wally
y’eS,?mﬁK
2410%0

+ (o+ ) osc*(f, K, 1)

+4Ct D AV — up)|f
K'EP},,K
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+ 40Co(Ax)* Y Y Nluly |

7/682,/(

+ 160C/p(Ak)* ), IV’I_llq—u/z@)
y’eSth@K

Alsoify € &g N 8%, we have a contributions from Neumann boundary, too. When we look

at (3.38), we see that (3.31) has greater upper bound than (3.38). Also both of the inequalities

include same terms except the data oscillation term. So we have just a data oscillation from

Neumann boundary. Then for all y € 0Py we have following bound for (3.31) ,

2710%C?
2 i 2
Yll[n- AVugl,[;, < 288@( DT AV (= un) |
K’GP;,YK
2710%0C}p(Ak)? _
+ 9’ > W My 2
7168111,1(
2910%0C}p(Ak)? _
+ 5 D W g - ually
y'eEP oK
24 2

+ (o+ 'Q)osc2(f,K,1)

+4C Y0 AV —um) 3

K’EP},,K

+ 40Co(Ax)? Y5 W Nuly |2

1
ylealz.K

+ 160C/p(Ak)* ), IY’I_llq—uh|§/>
y’eSthﬁK

+ 2400%0sc*(g,,0)

If we rearrange the last inequality we get,

2 27102C12 2 2
Yl - AVugly [, < 2880 g T4 Y, 1AV —um)%

K'ePyx

(3.57)

2710%C?p(Ak)*
( 5 +40CTp(Ag)* | D] Y1 unly 15
7’,68;’,1(

2%10%C?p(Ak)*

+ ( 5 +160Cip(Ax)* | >, I ' lg— uly
'y’eS,?maK
24102

+ (o+ Q) 0sc2(f, K, 1)) + 240@20scz(g, 7,0)
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Using (3.57) into (3.19) give ,

B 2"10%C? ) )
9p(A%") 02880 5 +4C; Ay — up)| %

K'ePpk

2"10%0C?p(Ak)? B
( 5 +40Cip(Ax)” | X, Y1 Mlualy ]

71682,1{

2°10%C7p(Ak)?
( 5 +160CTo(Ax)* | >0 17 lg — ually

y! 682’ noK

24102

(o + Q) osc?(f, K, 1)) +9p(A%") 024007 Z 0sc*(g,7,0)

’yESKﬂ(SZ
(A" s Y I~ uuly
vebk

60 _ 240 _
pp(AKl)OSCZ(f,K,O)—i-Tp(AKl) 2 0sc*(g,v.,0) (3.58)

N
YEEKNEY

Above inequality implies that for a marking triangle K, we have given upper bound. For

all marking triangle K, one can reach the following upper bound. Before doing this, let us

introduce some definitions.

Let 1_; = max {p(AI;I)|K € Puo} and let A = max {p(Ax)|K € Puo} where Ppy is initial

mesh. Let Omax

> <

KeMy

= max{6(y) |y € Ek, K € Pu}. Then, from (3.58) we can conclude that,

2710%C?
25921 o (( 5 +4CT | D AV (un — un) |3
K'ePy,
2"10%0C? % _
(T+4QCI~2/12 > T aly |
y’eS{l
2°10%0C?2?
(Tlmgc%ﬂ 3 1 g — iy
y’eShD
9A-108maxk® D, I Tyl + 9d-100man® 3 7" lg — unly
ye&l, ve&)

) Z osc™(f, K, 1) +21601_;0 2 osc(g,v,0)

259211 0% (0 + 5
KePy ye&y

6 24
ﬂ—g/l_l 2 osc*(f,K,0) + TQ/l—l Z 0sc*(g,,0)

KePy yeey
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Consequently, rearranging the above inequality and doing some elementary computation, we

arrive the inequality (3.18).

Doy < 2881 0% (2710°CH +273%CE) | |AV(uy — un)}
KeMy K’EPh
+ 28841 0> (2710%C7 A% + 223%C7 %) > 1| M unly
7’682
+ 28811 07 (210%CT A7 +2'3%CT %) 30 117 g — wall
y’ESQ
+ 9/17196max/<2 Z |7|_1H[MH]VH$/
ye&l,uED
+ 288110 (3% +2'10%) ). os?(f.K.1) +21601_10° . o0sc*(g.7.0)
KePy ye&y
60 2 240 2
A Z osc“(f,K,0) + — A Z osc“(g,7,0) (3.59)
d KePy d yeey

In the above inequality since we have a term which is dependent on the penalty parameter we
should also bound this term with the difference between fine mesh and coarse mesh for the

guarantied error reduction.

Plugging the inequality (3.50) into (3.59) allow us to write

2, %

KeMy

< 28811 0% (2110°CT + 2232C7) D |AV(up — up)|F
K'eP),
+ 2881107 (2110°%C 2 +2°3%CE ) D 117 il I
y’eSi
+ 2881 ¢* (2°10%0C2 42 +243%C2%) 3 1Y |q — wnl?,
y’eSf
+ 64(1 +0)A—100max (2°10°C7 + 3680 (2710°C} +36C7)) >\ |AV(up — up)|3
K'eP),
+ 64(1 +0)A_100max (2'110%0C7 A% + 3680 (2°10%0C7 A% + 2*3%CT%)) > 11 [wily I
y’eSllluShD
+ 64(1 4+ 0)A_106max (2%3%0 + 2°10%0 + 3680(3%0 + 2*10%0)) 2 osc*(f.K, 1)
KePy
+ 64(1 + 0)1_1900max (2400 + 1) > 05c*(g.7.0)
7GSZ
+ 28811 0% (3%0 +2*10%) 2 osc?(f, K, 1) 4+ 21601_,0° Z 0sc?(g,y,0)
KePy ye&y

6 24
+ —Q/l_l Z oscz(f,K,O) + —Q/l_l Z oscz(g,y,O)

2 g

KePy yeey
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Estimation of the Nonconforming Part:

Theorem 3.1.15 Let u € H'(Q) such that u = q on T'p and uy € Xg be the solution of (2.1)

and its DG approximations (2.7) with respect to Pr. Then, there holds

S wr < a2 Y T umly 2 + 42 Y [y g — unl?
KeMy ye&l, ye&d

+ (4C* +6) 2 0sc*(q,y)
7682

(3.60)

where for a given initial mesh Pryp, we define A = max { p(Ag)|K € Puo} and C is an

constant which is independent of the size of the elements in the mesh Pp.

Proof. Estimator for the nonconforming part given as following

Yy = [lug — S(u + inf V
o=l =St + 3 nf vl

Ye€k Ny Vly=4—4q1H
where
qr.a(xXm) itme Vp(Tk)
Sur)(xm) = upgyg(xm) it me V(Tk)\ Vox(Tk)

#ﬁm ZK’eQm MH\K'(xm) ifmeVn (VaK(TK) \(VD(TK)

In [4], it was proved that

inf ||v||x < Cosc(q.y).
eH;(K)

Vly=4—4q1

Then it can be written that,
Wi < 2lun = S} +4¢* Y] osc?(@.7))-
ye&xnEL

and by [4], we have

lluzs — SCu)llz < e (xm) — Sutr) (x0m)|*

C2p(A)
P6K Z

meVog (Tk)NV

(3.61)

(3.62)

Proof of (3.62): For every element K € Py, Ax = A € R?*2, there exist positive constant

p(Ak) satisfying
IVllk = (AVv, W)k < JAIk|VV]Z < p(AR)IVVIE  Wve HY(K).
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Using (3.63) and applying the Markov inequality (2.14) give
s = S(um)llz < p(AK)V(urr — S(um) |z < Cro(Ax)hg? |um — S(un)|%

and evaluating this integral, using the following quadrature rule based on edge midpoints

which is exact for quadratic functions, see Lemma A.0.7,

f f= |3£|(f(m71) +f(m71) +f(m73)
K

where m,, i = 1,2,3 refer to midpoints of the edges y; of the triangle K. Applying this

quadrature rule, we have

sy — S = 31KI S g my) — S(a) o)
vebg

The restriction of (uyx — S(ug)) to an edge y < 0K is a linear function of arc length, which
means that the value at the midpoint m, is the average value of the values at the endpoints of

the edge, and therefore,

jan(my) — S(u)om)| = 53 e () — San) (o).
meV(y)

where V(y) index the vertices at the endpoints of y. This implies

janmy) — S om)P < 53 e o) — () ()
meV(y)

Then
D lur(my) = S(um)(m)P < 35 wnj(in) — S(ur) ()
ve&k meV(K)

where V(K) index the set of the vertices of element K. Therefore,

Clp(Ax)

llurr = Sun) I < ==

I |K| Z g g (xm) — S(urr) (2m) (3.64)
meV(K)

and by elementary computation it can be shﬁ}évr& thath%}ﬂl( | is bounded by 1/2 such that for
K] =<K
2

an arbitrary triangle K. Indeed: 27
Then (3.64) becomes,
C;p(Ak)
|||"‘H_S(”H)Hﬁ( S 6 Z |“H\K(xm)_S(MH)(xm)|2
meV(K)
Cip(Ak)
< ZEEE S e Con) — St ()P
mG(V(‘]—K)
Cip(Ak)
= — Do lumk o) — Sum) ()
meVog (Tk)
Cip(Ak)
< D g (xm) — Slug)(xa) - (3.65)
meVox (Tx)V
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B IPJK e

Figure 3.8: Relation between area and edge
Now, one needs to find an upper bound for [uzx (xn) — S(ug) (x)[*. Case (i): First consider
the case when m ¢ Vp(Tk), i.e., x,, is not a vertex lying on the Dirichlet boundary. Upon
observing that
K'eQ,

we can obtain following equality after inserting the definition of S(ug)(x)

0 ifme (V(T[() \(Va[((‘TK)
7 2o,k tak(n) = ugig (xn)) it me VA Vog(Ti) \ Vp(Tk)

m

gy (Xm) =S () (xim) =

Note that we removed K from the set Q,,, because if K € Q,,, then S(uy)(x,,) = up| x(Xm)

so this implies up) g (Xn) — S(up)(xn) = 0. Then,

1
uH|K(xm) — S(up)(xm) = #Q 2 (MH\K(xm) — Un|k (Xm))-
" K'eQ\K
The above equality implies that
1
gk (Xm) — S(um)(xm)| < | (upryic(xXm) — upgir (xm)) |
#, K'eQ,\K

Now, if x,, ¢ Tpisa point of the closure of one element K € Py only then last inequality
implies |up|k (Xn) — S(up)(xm)| = 0. Therefore, let x,, be a common point of the closure of
more than one element in Py. We shall first bound the contribution |ug k (xm) — tg)x (Xm)|
from elements K, K’ € Q,, whose boundaries both contain an edge y € 0Ppy. In this case by

definition of jump and trace inverse estimates which is defined in (2.13) we can write that

|r )k (¥m) = wrjr (Xm) | = umly (on)| < [lunlyllL, o)

< 2y unlyly-

Then

|k (Xm) — ug g (Xm)| < 2|7|_1/2H[”H]7H7'
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This relation is valid for pairs of elements sharing a common edge y. If the closure of elements
K and K’ consists of only the common point x,, then we can then write |tk (Xm) — |k (Xm)]|
as a telescoping sum of the jumps in ug across neighboring edges, from which we can use the

previous inequality to obtain

Jurg i (o) = s Cn) | < 2 3 Iy P ]yl
7682
xl?lC?

Case(ii): If x,, € Vp(Tk). Let x,,, be an endpoint of an edge y € Ex N 82 for an element

K’ € Q,, where it is allowed for the possibility that K’ = K and observe that

|”H\K(xm) — S(un)(xm)| < |“H\K(xm) — UH|K (xm)| + |“H\K'(xm) — qr(xm)|

The first term on the right-hand side of the above inequality can be bounded using previous

step and we can also write that

lumir (Xm) — qr(xm)|] < uw — ail L. )
< 20y P uy - qilly
< 272 (Jlun = qlly + lg — ailly) (3.66)

to bound second term, In [77] by Corollary 3.15, it can be written that

I
la = aily < —zn"ose(q.7).
V2

Form € Vox(Tk) n V for K € Q,,, we can write

i (om) = Sur) (xn)) <23 7Py +2 D5 I Plus —ally + V2 Y oscgy).
76851: 7682 : 7682:
AnCy XnCYy XY

This implies,

Japg i () = SCurr) Can) P <1235 I [ur] |5 +12 D Iy uw — g3 +6 Y 05¢*(q,7) (3.67)
7682: 7682: 7682 :
xmcy xmcy xlllc?

Combining the estimates (3.61), (3.62) and (3.67) gives,

Wi < 4CTp(Ax) Y, T umlylE +4Co(AR) Y vl lua — 4}
yeSK 7E<§Km82

+ (4C2+6) 2 oscz(q,y),

3 D
YEEKNEY
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&k denote the set of edges having any vertex of K as an endpoint such that
Ex={yeoPy:7nK}.

Define A = max {p(Ax)|K € Puo} where Pp is a given initial mesh. Then, for all K € My,
we get (3.60)

2 2 - 2 2 - 2
S wt < 4 S byl My 4C22 Y g —
KeMy ye&l, ye&l

+ (4C? +6) 2 0sc*(q.)

- D
yeEk 08[_]

]
By collecting the estimates (3.18) and (3.60) we have,
>, (@ +¥)
KeMy
< 2881 ¢ (2'10°C7 +273%C7) >\ |AV(up — un)|3
K'eP
+ 28841 0% (2710%0C7 A% + 2°3%C7 %) D" | M[ualy |2
)/’E»Sf1
+ 2881 0* (2°10%0C2 42 +243%C2%) > Y7 |q — il
y’eSf
+4cia Y, Ml
ye&l,uED
+ 64(1 + 0) A 100max (2°10°C7 + 3680 (2710°C7 +36C7)) > [AV(up — un)|%
K'eP
+ 64(1+0)A_100max (2'110%0C7 A% + 3680 (2°10%0C7 4% + 2*3%C%)) > 11 lwaly I3
7’68{1u8/€’
+ 64(1 +0)A_100max (2°3%0 + 2°10% + 3680(3%0 + 2*10%)) ) osc*(f.K.1)
KePy

+ 64(1 + 0)1_1900max (2400 + 1) > 0sc*(g.7.0)

N
YEER

6
+ 2881_; 0% (3%0 + 2*10%0) Z osc®(f,K, 1) + _&23/1_1 Z osc*(f, K, 0)
KePy a KePy

24

+ (—Qﬂ_l +2160/l_193) Z 0sc*(g.7.0)
T 768%

+ (4C2 +6) 2 0sc2(q, Y)

D
Y€€y
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For simplicity let us write last inequality by following way

D @k +¥R) < A Y AV —un)f + A2 D Y1 Iyl

KeMy

where

A =

Az =

Ay =

Ag =
A7 =
Ag =

Ag =

K'ePy, Y€l
_ 2 — 2
S ER S o VY e VR S i | (7 M
7’685 yeSbuSﬁ
+ As Y [AV —un)lf + A Yo Y Tualy
K'epy, v 68111 USf
+ Ay Z osc*(f, K, 1) + Ag 2 0sc*(g,7,0)
KePy ye&y
+ Ay Z osc®(f,K, 1) + Ay Z osc?(f, K, 0)
KePy KePy
c A Y s en0) 4 An S oscay)
yeey ye&d
< (AL+A4s) D) AV — un)|3
K'ePy,
+ (As+46) Y, W7 w3
Y ELUEP
+ Ar >y I ealyl;
yeSZuE)g
+ (A7+A0) D) osc*(f.K.1)
KePy
+ (Ag+A411) ). 0sc*(5.7.0)
yeSZ
+ Aj Z 0sc*(f,K,0) + App 2 0sc*(q,y)
KePy ye&l

2884_; o (2710°C? + 2%32C?)
288/1_1 QZ (271029(;[2/12 + 2232QC12/12)

28811 0% (2°10%0C7 2% + 2*3%0C% %)

4C7a

64(1 + 0)A_100max (2°10°C7 + 3680 (2710°C} + 36C7))

64(1 + 0)A_100max (2'110%0C7 2% + 3680 (2710%0C7 A% + 2*3%0C7 %))
64(1 + 0)A_100max (2%3%0 + 2°10%0 + 3680(3%0 + 2*10%))

64(1 + 0)A_1906max (2400 + 1)

2881_1 0 (3% + 2*10%)
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A = —a

7T

24
Ay = <—Q/l |+ 21604 1g>
A, = (4C? +6)

3.2 Proof of Error Reduction :

Lemma 3.2.1 (Karakashian, Pascal,2007) Following inequality holds for Py for sufficently

large k
2240 Ao _
Bulenen) > 3 3 IVenlly + (25 —x- 222} 51 i a9
KE'PH ye&h,ueh
21022 22 4 2
where C1 = 64(1 + o) (2 1(;2C[./1 + U C"H;‘gc"Hg A> and A = max{ p(Ax)| K € Puo}.
Proof. Proof is given in Lemma A.0.9. |

Before engaging the proof, let

0sc? = Z 0sc®(f,K,0) 4+ osc*(f, K, 1) + Z 0sc*(g,7,0) + Z 0sc*(q,y).

N D
KePy Ke&l Ke&lh

By coercivity of bilinear form in X;, we have

1 _
Bl —un) = 5 O AV —u)lz 45 D) W Mw—wnll G70)
KePh ye&l uED

Proof can be found in [74].

Also by (3.68), it can be written that

2 2 2 /—1 2
D @k +¥R) < (AL+As) D AV —um)|F + (As +4e) > 1Y Iyl

KeMy _A‘ 1 K'ePy, % y 681 USD
+ As D0 Y ualyl3 + (A7 + Ao) osc? . (3.71)
) —
YESHVER —4s

Now by (3.9) we have

Bu(en,en) + k(Omax— 1) Y, 1| unll} = Bulen, en).
yeé)f_luf}g

62



Using (3.8), (3.70), (3.71) and marking strategy (3.17), respectively we get

Bu(emen) + «Omax—1) Y yI7'|[unll} = Bilen,en)

1 ,&eD
YEELVEY

= Bu(en en) + Bp(un — up, up — ug)

1
> Bulenen) + 5 D7 IAY (un — un) |k
KePy
S B RS DL+ Py _ Ay -l 2
> Bp(en en) + °z PCIER ) 7 D ualy
I KeMy y'e&l LEP

1

2
A4 1 2 A
+ A Z 7] ‘|[MH]YHY+ZOSC

1 ye&%ufjg
0 1 A~2 _
> Blenen) + o0 2, (%4 i) =5 <AT >y
! KePu I y’e&iuShD
Ay _ A~3
+ T2 s+ osc2> (3.72)
1 yeSLuSZ 1
By [59] we have,
-1 » _ G 2
koY T Al < ~ > llenllk
ye&lLuED KePu
21022 22 4 2
where C; = 64(1 + o) (2 ](;zci/l + U C"H:gc" 49 /l) . Also by [69] we have
2 2 2
2 Mlenllie < X (9% +¥%).
KePy KePy

So we can write following inequality

c
ko0 Y ualyl3 < 71 D (0% + %) (3.73)

ye&l,uED KePy

Then inequality (3.72) becomes

Ci(Omax — 1 0
BH(EH,ey) + m 2 ((D%( + ‘P%() = Bh(eh,eh) + — Z ((D%( + lP%()
K KePy 1 KePu
(A L 2 A - 2 A
- 3 (z X Wl Y by 5 ose
1 v eSéqu yeSﬁ,uSg 1
Then for x > Mw we have following inequality
0 C1(Omax — 1
Bu(em,en) = Bu(en en) + (— - M) D (@F +9%) (3.74)
2A1 Kk KePy
1 A~2 _ Ay — A~3
- 5 (f PN [ R W Y [P MR )
1 y'e&lLEpP 1 ye&l,uED 1
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By (3.69) (this result holds for a generic mesh), it can be written that

IS 224 -
(-« -52-2) = bl <Butemen) 679
1 7 D
yeE€WEL
and
K 2240 A N
(-« -B2-2) 3 Il < Bitenen, 676
1 ] D
YEES,VEY,
For simplicity let us define (% —K— % — %) =a

Using (3.75) and (3.76) into (3.74) we get

2 (@ + %)

Bulemen) > Bh<eh,eh>+(
KePy

i _ Cl(émax - 1))
2A~1 K

1 A~2 Ay A~3 2
— = | =—Blen,en) + —Byley,ey) + — osc
5 (Ala n(en, en) o H(en,en) i

If we rearrange last inequality

1+ — By(ey,ey) + — osc
( 2 ) nlenen) + 32

1@ 1
A~2 0 Cy (6max - 1)) 2 2
= (1—-— Bulep,en) + | — — ——= O+ 3.77
( 2A1a/) h(€h €h) (ZAl P 2 ( K K) ( )

KePy

Now, by (A.13), we have

5610 _
Bulemen) <2 3 leulk + (22 +a0+3¢) X i~ lual
KePy ye&l,uEh

Using (3.73) in the last inequality and recalling

D llenlli < 5 (@ +¥%)

KePy KePy
one gets,
564, C
Bu(em.en) < 2 ) (®f +¥3) + 2% f o+ 3k ) = D (0f +¥R)
3 K2
KePy KePy
5641 C
= (2+ (TQ+/1Q+3K> —21> D (0F +¥%)
Kk KePy
= B ) (P +¥%) (3.78)
KePy

where § = <2 + (%T/l@ + Ao + 3K> %) . Using the last result into (3.77) we get,

1+ — By(ey,eq) + — osc
( ) e, em) + 2

1
A 1/ 6 Ci(6max —
o (1) e+ (o - Gl )

1)
— — B eH.ey).
- : )H(H )
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Then we have

A 1/ 6 Ci(Omax — 1 A
(1 4+ 24 ( —1( T ))> By(en,en) + ﬁ osc?

2A~1a_,E 2A~1_ K 1
A,
> 1 — — By ey, ep). 3.79
( 2A1a> w(en, en) (3.79)

24,Cy (Simax—1)
0

Recall that we have an assumption on « such that x > . Ultimate goal of the

thesis was that

Bi(en, en) < nBu(en,en)

where 0 < 17 < 1. Then following inequality should be satisfied

Aq 1(9 Cl(émax—1)><1 A,

T+ = — (=~ - =
24 B \24, K 24,

If we rearrange above inequality we get

Ay A, 1C(6max —1) 1 6

— + — < =—
2A1(l’ 2A1a ﬁ K ,8 2A1
Multiply each side 24
Ay Ay 124,C —1
_4 _2 + = 1 1(6max ) < g
a a p K B

Now multiply with g and «a each side

_ 2A4,C1 (Omax — 1
EA4+§A2+g ll(max )<CZ
0 0 K 6

and take all term right hand side

Q2A1C1(5max— 1) B -

O<a—-— ——=A, —=A
P i 2 4
Recall that
K2 2240 Ao
= — —K— —— — —
4C, 3 4

Then it can be written that

Since we have an assumption on « such that x > %‘,‘“”71), then it can be easily seen that

0 < -1 1 2240 Ao

Gk 32 —de <L define this quantity as € :=

A
— «— 32 — 72 So we have
3 K

a = ex* where 0 < € < 1. Then we have

2A1C1(Smax — 1 N
0 < ek’ — ex 1C1(Omax ) —EAz—éA4.
0 0 0
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Divide both side with ¢,

2A1C1(6max — 1 .
0<id— A0 =) B g B,
0 Oe (3

241C1 (Smax—1
0

For simplicity let us define 0 < ) .= £and 0 < i+ LAy =, we get

O<K2—K§—,u.

By solving above second order equation we get

£+ V& +4u

>
K 2

. /€214 . .
Choosing « > H—fﬂl, one can guaranteed convergence in adaptive strategy.

66



CHAPTER 4

ON the CONSTANTS in INVERSE INEQUALITIES in L,

In this chapter we shall present the exact constants in univariate and multivariate Markov
inequality in Ly-norm. Using orthogonal polynomials, we reduce the problem to a simple
eigenvalue problem and we establish bounds with known constants for Markov inequalities
on an arbitrary 1-simplex, 2-simplex and 3-simplex. In [83], a similar technique is used to
obtain the constants in the Ap-trace inequalities. In this thesis, we obtain the same constant

with [77] for a linear polynomial u# and smaller constant for higher order polynomials in 1D.

The remainder of this chapter is organized as follows. In Section 4.1, the Markov inequality is
proved for one dimensional domain and an explicit constant is found in L, norm. Section 4.2
gives us a Markov inequality constant for polynomial in two variables on triangular domain,
while in Section 4.3, we give the result for a tetrahedron. Finally, in Section 4.4 we provide a

brief conclusion.

4.1 One Dimensional Domain

In this section, we state and prove Markov inequality for a polynomial u total degree N on a
finite interval and we give a closed form for the constants up to polynomial degree 4. For the

case 5 < N < 10, we give numerical values for this constant.

Theorem 4.1.1 (Markov Inequality on a finite interval) For an interval K = [a, b] and for a

polynomial u of total degree N = 1,2, 3,4 the following result holds

24/Cyn

o] sy < 5

where Cy = 3, C = 15, C3 = 214190 g ¢y = 10543VE0
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Proof. Consider the reference interval K = [—1, 1] and associate L,- orthonormal polyno-
mial, the classical Legendre polynomial. The reference interval K = [—1, 1] is mapped to
interval K = [a, b] by following transformation, which send —1toa, 1 to b :

(b—a)r+b+a
2 2

X =

where r € [—1, 1] and x € [a, b]. By chain rule and using a scaling argument

Wy = |dr
Ly(K)
_ |dr|]du
dx||dr L(K)
2 |b—al”|du
b= 2| ar| i
1/2
< ﬁ\@b%“ el i)

2
= ooaV Clullz,x)

where Cy can be determined for a given polynomial order N by solving the following eigen-

value problem for the maximum eigenvalue,

db, b
dr’ dr

>h“m = /l((ﬁm(pm)[%um
K

Here {¢, }Zzllv 1 is an orthonormal basis of the reference interval K = [—1,1]. Einstein

summation is assumed for repeated indices. The L inner product on K is denoted by (-, -) 2

Defining S, = (djr”, ‘%”)f(, M,,;, = (¢n.dm)p and using the orthonormality of the basis
give us M = I where I is the identity matrix. Then, the above problem reduces to a classical

eigenvalue problem

Somttn = Aty

Let Cy be the maximum eigenvalue A, then we can write:

du* <cC 2
E = NHM”LZ(IA()'

Ly(K)

For N = 1 with orthonormal basis function on the reference interval,

b =L, 00
and S = ,
¢ = él’, 0 3

thus C; = 3.
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Note that basis functions are hierarchical. Then, for N = 2 with orthonormal basis function

on the reference interval,

V2

o = -
V6

1 = ="
4/ 10

¢ = ——(3r1 - 1),

4
and
0 0|0
S = 0 3 0 )

0 0 15

and in this case C; = 15. We note that the 2 x 2 submatrix of S is the matrix that we get in

the case of N = 1.

For N = 3, orthonormal basis functions on the reference interval are given,

V2
¢O = T,
V6
n-an
V10
¢y = T(Sr2 - 1),
V14
¢3 = ——(5°° = 3r),
4
and
[0 0 |0 o |
S 0 3 0 | v21
o 0 15| 0 |
i 0 21 O 42
and in this case C3 = ‘LSJFT V1605



Similarly for N = 4 with orthonormal basis function on the reference interval,

V2
¢0:Ta
V6
¢1=Tr5
1
¢ = Q(yz —1),
14
¢3 = \/Ti(Sl’3 — 3r),
3
by = \[(351’ 3072 + 3),
and ~ _
0 0 0 0 0
0 3 0 | v21] 0
S=]10 0 15 0 [9+5 |,
0 421 0 42 0
[0 0 9v5 0 0 |

and in this case C4 = % V805

A closed form bound on the eigenvalues for higher order is not obvious. However, it may be

possible to use Gerschgorin’s theorem to localize these eigenvalues.

Numerical values for Cy were computed as shown in Table 4.1. We remark that for higher
order polynomials, the largest eigenvalues are obtained by using Matlab. We compare Cy
constants with the constants of [77], which are given with the formula N*>(N + 1)(N + 1/2).
The results show that our constant is consistent and smaller than the constant of [77]. Ad-

ditionally, the eigenvalues clearly scale asymptotically as N>(N + 1)(N + 1/2), where § =
Cny NA(Ni+1)(N1+1/2) -
CNz/N2 (N2+1)(N2+1/2) "
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N Cn N*(N+ DN +172) | v | B

1 [ 3.0000 3 1.0000

2 || 15.0000 30 0.5000 ?'22(1)2
3| 425312 126 0.3375 12783
4 | 95.0588 360 0.2641 L1793
5 | 184.7262 825 0.2239 L1045
6 || 326.1508 1638 0.1991 L0914
7 | 5363742 2940 0.1824 10699
8 || 834.8615 4896 0.1705 L0559
9 || 1243.5042 7695 0.1616 L0447
10 || 1786.6229 11550 0.1547 ‘

Table 4.1: Experimentally determined constants in the discrete Markov inequality on an in-
terval

4.2 Two Dimensional Domain

In this section, we discuss the Markov inequality for a 2-simplex and we give a closed form

for the constant for polynomial degree 1 and 2. For 3 < N < 10, numerical values are given.

Theorem 4.2.1 (Markov Inequality for a planar triangle) For a planar triangle K, let |0K|
be the perimeter length of K and |K| be the area of triangle K. Then, for a polynomial u of
total degree N = 1,2, 3,4 the following result holds

|0K]
IVal| k) < \/CTVWH“HM(K)

where C1 = 6, C, = 2, C3 = 56.8879, C4 = 119.8047.

Proof. Let K be the right angle reference triangle with

A

K={(rs)|—-1<rs<lir+s<0}.

The reference triangle K is mapped to triangle K by following transformation, which send

(—1,—1) to (x1,y1), (1, —1) to %xxzz,)iz)x,IS—l, 1())Cgo_()ggl,)y3) :(S(r, s) € {( — (x,y) € K,
r +

2+ X3
X = S
2 2 2
(2 —») vz —=y1) | (y2+3)
= . 4.1
y r 5 + s 5 + > “4.1)
In vector form, the transformation is
x (Xz;m) (x3;x]) , (X242rX3)
= +
y (02 ;yl ) (O ;yl ) s (2 ;)’3)
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(w1,1)

K

(73, y3)

Figure 4.1: Mapping from the reference triangle K to the physical triangle K.

orz=JZ+7z.

The standard formula for a change of variables in a multiple integral gives

J f(x,y)dxdy = |det(J)| J g(r, s)drds
K R

where g is defined by

(x2 + x3) (yz—y1)+s(y3—y1)

(p—x1)  (x3—x1)
glr,s)=f (r +s 3 +

2 > T2 2

The Jacobian factor is constant:

det()] = 3102 — x1)(vs = 1) — (2 = 1) (o3 — 1)

Moreover
[(2 = x1) (33 —y1) = 02 —y) (3 —x)| _ K|
2 9
then
K|
det(J)| = —.
det()] = 5

Chain rule, triangle inequality and standard scaling argument give,

ou ou
Vi) = HV”EJFVSaHLz(K)
< |Vr| @ + | Vs %
0 Ly(K) Js Ly(K)

0

— /] <|det(])|1/2 : 0

< (I9r] + |Vs]) /Crldet(D)]' 2 ul 1, 4
= (VI +1Vs) v Cnllu| k)
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" + Vs | [det()] V2 | &
r Lz(f() 5s

n (2 +y3)).

2

Lz(f())

(4.2)



where |Vr| = 4/(Vr)T(Vr) and same for |Vs|.

Similar to the one dimensional case, utilizing Einstein summation for repeated indices and

using the orthonormality of the basis give us the following eigenvalue problem
Simlm = A

where S, := (%ir”, %) e and {q’)n}ZjNH)(NH)/ ? is an orthonormal basis of the reference

triangle K.
Before giving the proof, we first compute |Vr| + |Vs| in (4.2):
|Vr| 4+ |Vs| = (132( + 1’5)1/2 + (s)zc + sﬁ)l/2

by (4.1) we have

(o=x1) (x—x1)

PEELICI) N I
or.s) Yr s Qay)  Qaoy)
Then
PG N I B T B ws)
o(x,y) S det(J) | _ ()'2;)’1) (X2;X1)

Therefore (4.2) and (4.3) allow us to say,

[(y3 —y1)? + (x3 — xl)z] 12 + [(Y2 —y1)? + (3 — x1)2]1/2

2+ )+ (24 532

2|det(J)]|
_ dist((x1,31), (43,3)) + dist ((x1,y1), (x2.72))
K|
|0K]|
< -
K|

where dist(-, -) denotes the distance between two points. We conclude that

|0K]|
V| + |Vs| < St
K|

We note in particular that as
oK|
K| K
where hg is the longest edge of the element K and also h}l is common constant in Markov

inequality in literature [35, 56].

Now, defining Cy as the maximum eigenvalue A allows us to state:

oul?

or

<Cnlul g, -
Ly(K) La(h)
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and by symmetry, the same constant applies for the norm of the s-derivative of u.

For N = 1 with orthonormal basis functions on the reference triangle K and the matrix S is

given by:
$0,0 = %E 0 00
Po.1 = Lbs and S=10 0 0],
bro = —ﬁ“;zr*” 006
thus C; = 6.

Since basis functions are hierarchical, the first three basis functions are same with the N = 1

case. Then, for N = 2, the orthonormal basis is:

V2

¢0,0 = T,
1+ 3s

o1 = 7
V3(1 +2r +5)

b0 = 2 ,
V6(2s + 55> — 1)

$02 = ) ,
3v2(3 +55)(1 + 2r + 5)

b1 = 2 ,
V30(1 + 6r + 4s + 612 + 615 + 652)

P20 = g ;

and stiffness matrix is given by,
(000 0] 0 0
000 O 0 0
S 00 0 O 0 0

000 6 |26 0|
0002v6e % 0
000 0 0 %]

and in this case Cp = %.
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For N =3

and in this case C3 = 56.8879.

(0000 o 0 0 0
0000 O 0 0 0
0000 O 0 0 0
0000 O 0 0 0
S:000062\£3\@0
0000 2v6 2 [10vV3 0
0 00 0 3v2 10V/3 36 0
0000 O 0 0 L
0000 O 0 0 643
0000 V42 0 0 0

{VOOOOOOO
W

44

0
0
0
0

Nz

[\

0
0
0
0

56

By similar argument, for N = 4 we get the numeric value for C4 = 119.8047 and the eigen-

values scale asymptotically as N* as in one dimensional case. Table 4.2 presents numerical

values for Cy and compares the constants experimentally determined.

N Cy Sy

1 || 6.0000 |6.0000
2 || 225000 | 1.4063
3 || 56.8879 | 0.7023
4 | 119.8047 | 0.4680
5 || 224.1195 | 0.3586
6 || 3852210 | 0.2972
7 || 620.8674 | 0.2586
8 || 951.2557 | 0.2322
9 | 1399.0115 | 0.2132
10 || 1989.1818 | 0.1989

Table 4.2: Experimentally determined constants in the discrete Markov inequality on a trian-

gle

4.3 Three Dimensional Domain

In this section, we consider a tetrahedron and we find the closed form for the constant up to

polynomial degree 3.
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Theorem 4.3.1 (Markov Inequality for a tetrahedron) For a tetrahedral element K, let |0K|
denote the surface area of the K and |K| denote the volume of the K, then for a polynomial u

of total degree N = 1,2,3,4 the following result holds

|90K]
|VlLyk) <2 \/CNWHVHLZ(K)

where C1 = 10, C; = &, C3 = 42 + 12+/7, Cy = 148.4089.

Proof. Let K be standard tetrahedron with
K={(rst)]—-1<rnst<r+s+t<—1}.

The standard tetrahedron K is mapped to the physical tetrahedron K by an affine mapping,
which sends (—1, —1, —1) to (x1,y1,21), (1, =1, —1) to (x2,¥2,22), (—1, 1, —1) to (x3,¥3,23),
(—1,—1,1) to (x4,y4,24) : (1, 5,1) € K — (x,y,2) € K,

(24, Ya,24)

", P |
Ty, Ys, 23

K

Figure 4.2: Mapping from the reference tetrahedron K to the physical tetrahedron K where
F1, F2 and F3 denote faces of the physical tetrahedron K.

(X2—X1) (X3—x1) (X4—X1) (X2+X3+X4—X1)

T 2 T 2 2

y o= o2y Osmy)  Bamv) Dot ystys o) 44)
2 2 2 2

. r(Zz—m) s(za—m) (a—z2) (2+zm+zu—z)
2 2 2 2 '

In vector form, the transformation is

x (xzfxl) (ngxl) ()C47X]) r ()Cz+X3+X4fxl)
2 2 2 2
— O2=y1)  (3—y1)  (a—y1) (On+y3+y4—y1)
Yy 2 3 ) s |t 2
(—21) (—z1) (z—z1) P (z2+z3+z4—21)
z ) ) 3 )
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ork = JlAc—l—kl.

The Jacobian factor is constant:

|det(J)| = %|(x2 —x1)(y3 = y1)(za —z1) + (v2 = y1)(z3 — x1) (x4 — x1)
+ (22 —21) (3 — x1)(ya = y1) — (x4 — x1)(y3 —y1)(z2 — 21)

— (s —y1)(z3 —2)(x2 — x1) — (za — 21) (x5 — x1) (2 — y1))|

Moreover,

%|(x2 —x1)(y3 = y1)(z4 —21) + (2 —y1)(z3 — x1) (x4 — x1) + (22 — 21)(x3 — x1)(v4 — y1)
— (x4 —x1)(v3 —y1)(z2 —21) = (4 —y1)(z3 —21) (X2 — x1) — (22 — 21) (x5 — x1) (y2 — 1)

= |K]
where |K]| is the volume of the tetrahedron K, then
3
|det(J)| = Z|K| 4.5)

Chain rule, the triangle inequality and standard scaling argument give

ou ou ou

4 = Ve Vs TV
H M“Lz(K) ‘ rar+ S6s+ tat Ly(K)
< |vr|‘@ #1935
Or (k) o5 ez " leats
= (i (e 2|5 ) 1wl e | S
or Ly(R) s L2(K)

ou

ot Lz(m)

(IVr] + [Vs| + V1)) /Cwldet(D]"lul L,z

= (V[ +[Vs] + [Vi]) v Cullue]yx)-

+ |V <|det(])|1/2

N

The constant C can be determined by solving the following classical eigenvalue problem for

the maximum eigenvalue.

Opn Odm
s T A = /l ns Pm) g Um »
( or’ or ¢ Un (¢ ¢ )K u
M, =I
Sf’llﬂ
where {qﬁn}ZjNH)(NH)(NH)/ % is an orthonormal basis defined on the reference tetrahedron
K.
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First of all let us compute |Vr| + |Vs| + |V1|:

Vi + |Vs| +[Vi] = (F+r+2) P2+ (2453 +s) P+ @ +0+2)7
by (4.4) we have
X X, X (ngxl) (X3;x1) (x4;x|)
J = M — — | Oy G3y)  Ga—y)
o(r, s,1) Yro Vs Vi 2 2 )
oz (22521) (23521) (24;z1)
Then, inverse of the Jacobian matrix J can be defined following way
[ il Il 1l | [ |oF1] |oF2| |oF3| ]
xl Ayl Tz 2 2 2
o(r, s, 1) 1
J*l — > — i — ‘5F1‘ ‘5F2‘ ‘5F3‘ 46
0 = [ = sl I el | = | Y| @
0F1 0F2 0F3
EREECE Bl
where |0F 1|, |0F2| and |0F3| denote the area of the faces F1, F2, F3 of the element K,
respectively.

Therefore (4.5) and (4.6) allow us to write,

[|0F17 + |oF2 + |oF3P]

|Vr| + |Vs| +|Vi| = 3

2|det(J)]
|0K|
= T IK]
We conclude that
|0K|
|Vr| + |Vs| + |Vt| < 22—
K|
Note that
oK1
K| K

where /g is the longest edge of the element K and it is a common constant in inverse inequal-

ities [35,56].

Let us define Cy as the maximum eigenvalue A allows us to state:

and by symmetry the same constant applies for the norm of the partial derivative of u with

oul?

ar

< Cnluly 4 -
Ly(K) L&)

respect to s and .
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For N = 1 with orthonormal basis functions on the reference tetrahedron K :

$000 =

(2+2r+s+1),

ERENE

$1,0,0

do10 = (2+3r+s)

[\]
s

$0,0,1 (1+421)

and

o
S
S
o

o
=]
]
o

thus C; = 10.

For N = 2,3, 4 using same argument we get C, = %, Cz; =42+ 12 V1, C4 = 148.4089,

respectively.

Numerical values for Cy are computed in Table 4.3. The eigenvalues clearly scale asymptot-

ically as N*. |

N Cy o

1 10.0000 | 10.0000
2 31.5000 1.9688
3 73.7490 0.9105
4 148.4089 | 0.5797
5 269.5513 | 0.4313
6 452.0694 | 0.3488
7 717.7792 | 0.2990
8 || 1085.8205 | 0.2651
9 || 1587.8353 | 0.2420
10 || 2245.8720 | 0.2246

Table 4.3: Experimentally determined constants in the discrete Markov inequality
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4.4 Conclusion

As a conclusion, we have obtained some explicit expressions for the Markov inequality con-
stants on 1-simplex, 2-simplex and 3-simplex in L,-norm. Since we choose the max eigen-

value of the system without losing any data, we could say that our estimates are also sharp.

From this work, computable constants in some inverse inequalities are obtained. One can
effectively utilize these results to give guaranteed computable upper bounds of a priori and

posteriori error estimation of finite element solutions.

80



CHAPTER 5

CONCLUSIONS and FUTURE WORK

In the introduction, I expressed the hope that the work in this thesis could be a "first step”
towards a fully computable convergence analysis. In this final chapter, I will conclude by
describing the progress made towards this goal in terms of my development for convergence
analysis. I will also suggest some future research directions that could provide the next steps

along higher order elements.

5.1 Conclusions

The aim of this thesis has been to express a fully computable convergence analysis for the
first order symmetric DG finite element approximations. In Chapter 2, an introduction and
summary of the method for the given model problem are established. Moreover, some use-
ful result and inequalities are given. In Chapter 3, the convergence of an adaptive Interior
Penalty Discontinuous Galerkin method (IPDG) is studied for a 2D model second order ellip-
tic boundary value problem. Based on a residual type a posteriori error estimator, it is proved
that after each refinement step of the adaptive scheme, we achieve a guaranteed reduction
of the global discretization error in the broken energy seminorm associated with the IPDG
method. In contrast to recent work on convergence of adaptive IPDG methods [23, 52, 59],
the convergence analysis is to free of unknown constants. The main ingredients of the proof
of the error reduction property are the reliability and discrete local efficiency of the estimator,
a special marking strategy which is called Dofler method that takes care of a proper selection
of edges and elements for refinement, and a Galerkin orthogonality property with respect to

the energy inner product.
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In Chapter 4, the explicit bounds for the finite element inverse inequality is derived. This was
accomplished by using orthonormal polynomials on the 1D, 2D and 3D simplex and realizing
that a special ordering makes the associated matrices hierarchical. The results are sharp with
respect to the geometry of the elements, with respect to the polynomial order of the finite

element space, and with respect to the physical dimension of the element.

5.2 Suggestions for Future Work

There are some possible research direction to improve this work. First of all, higher order
DG finite element can be used to get convergence result. Moreover, a relatively large amount
of new nodes must be created by refining each marked element. It was the deficiency of the
refinement strategy. By using new refinement technique, it is possible to decrease number of
the degrees of freedom. By this new refinement strategy, a contraction property of the adaptive
discontinuous Galerkin finite element method can be proved without further assumptions on
refine. Also, there is no study on the convergence of non-symmetric interior penalty DG
(NIPG) method for elliptic problems. Although, in numerical example NIPG convergence
faster, in theoretically it is not easy to prove convergence of the method. One of the reason is

that;

Galerkin orthogonality is essential to show error reduction property. However, for NIPG
method Galerkin orthogonality does not hold. That is one of the difficulty for this problem.
It might be possible to use Quasi-Galerkin orthogonality. So, for future work it would be

interesting study on the convergence of NIPG method.

For the inverse estimates, results was given just for simplices. This work can be extendable

for quadrilaterals elements .

5.3 Summary

In summary, a fully computable convergence result is one of the main contribution of this
thesis. This work is the first in the literature. A posteriori error estimator which is introduced
by [7] is actually is an estimator not indicator. This is also first to use this type of residual

error estimator for convergence analysis.
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Another additive of this thesis in the finite element analysis is inverse inequality constant.

This is also the most comprehensive work for this inequlaity.
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APPENDIX A

SOME USEFUL INEQUALITIES

Lemma A.0.1 Let ABC is a triangle with the edge a, b, and c. Let the radius of the incircle

triangle be r. If A denote the area of the triangle ABC, then

2A
a+b+c

Proof. The center of the incircle of a triangle is located at the intersection of the angle bisec-
tors of the triangle. Given the side lengths of the triangle, it is possible to determine the radius
of the circle. Use the fact that the sum of the areas of the smaller triangles is equal to the area

of the larger triangle to obtain an expression for the radius.Denote A as a area of a triangle,

1 1 1
za-r+zb-r+-c-r A

2 2 2
1
Er-(a—i-b—i-c) = A

2A
= - A.l
a+b+c (A.)

Lemma A.0.2 Let K is an arbitrary triangle with the edges named by ', v, and hg where hi
denotes the longest edge of an triangle K and let |K| denote the area of the triangle K and o

denotes the shape regularity parameter. Then, the ratio between hﬁ( and K is given,

h2
K|
Proof. By shape regularity property of the triangle K, we have o > % where r = %,
then
T
2r 7 2K]
I+ [+hk
hx ,
= — + +h
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From the triangle inequality, the sum of the lengths of any two sides of a triangle always

exceeds the length of the third side, i.e.,

¥l + |¥/| = hk then

hk , hk
—_— h = —(2h
4|K|(|7|+|7|+ K) 4|K|( K)
2
_ M
21K|
So, we get
2 2
I S 4
2|K| K|
Actually, it can be concluded that
hily|
20 =
K|
and
hk|y'|
20>
K|

Lemma A.0.3 Let K is an arbitrary triangle with the edges named by y', y, and hg where
hg denotes the longest edge of an triangle K and o is a shape regularity parameter. Then, the

ratio between the edges y and y' is,

Proof. Case I: Assume that ABC is an acute triangle whose angles are all acute (i.e. less

than 90°). if hg is a largest edge of a triangle then £ < 6§ < 5. By shape regularity we have

Figure A.1: ‘Acute Triangle

EET f‘yl,{‘ e and by triangle inequality |y'| + hx > |y| and also he o~

hx _
0= 3 where r = AH =
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then

hx hx
>k _ K
Q=5 20K]
[y|+|y' | +hk
h
= h
hk
= —————(ly| + Y| + &)
ayamnz M
hk
= ————(ly| + V| + hx)
2(]y'[|AH|)
hg
o D)
2(ly'||AH()
ipdl
']

\Y

> (A2)

Case 2: Assume that ABC is aright triangle (i.e. 90°). If hg is a largest edge of a triangle then

6 = 5. By shape regularity we have n > B where » — 2'{,{” e and by triangle inequality

C

h K
Figure A.2: Right Triangle

lY'| + hg = |y| and also ﬁ 1 then

2r ) 2K]
[y|+|y'|+hk
= K+ ]+ )
MK (ly] + Y] + )
= — Y| + hx
(|7|| Y'1)/2
= ————(ly|+ Y| + hx)
2(ly || Y'])
hg
> = (2Jy])
2(lyIly'1)
S| (A3)
1Y

Case 3: Assume that ABC is an obtuse triangle whose angles are all obtuse (i.e. greater than

90°). If hg is a largest edge of a triangle then 7 < 6 < 7.
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.IIK

Figure A.3: Obtuse Triangle

By shape regularity we have o > g—’; where r = m and by triangle inequality |y/| +

hg = |y| and also ‘g—l’;‘ > 1 then

oK _ PR
2r h_ 20Kl
Y|4y |+hk
hx ,
= K h
hk

= W(M + | + h)

K /
—2(|y’||BH|)(|Y| + [ + hk)
hg
2(ly'l|BH|)
I
Y

\Y%

2ly])

\%

Lemma A.0.4 Let K is an arbitrary triangle with the edges named by V', y, and hg where
hg denotes the longest edge of an triangle K and o is a shape regularity parameter. Then, the

ratio between the edges hx and vy is,

hg

— <o.
b4

Proof. We want to find a relation between the longest edge and other edge of a triangle,
K

By shape regularity we have o > % where r = 2|‘K|

BT 1 Fhe and by triangle inequality
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Figure A.4: A triangle with the longest edge hg

ly| + |y'| = |hk| and also |y| = h then

S ok
©Z % T S K
PR
hg

_ !

= T+ )

i hK !
hk
=z —(2
2(/1,(/1)( hk)

hg

h
hg

Iyl

Lemma A.0.5 Let K be an arbitrary triangle with the edges hg,

¥, [¥| and hi denote the

>

longest edge of the triangle K. Let h be the height which belongs the edge 'y and, o be shape

regularity parameter. Then

— <o
vl

Proof. K is the triangle with the edges kg, |y|, [Y/|-

By shape regularity we have % < o where r is the radius of a circle which is inscribed in the

triangle K. By triangle inequality, hx + |y| > |y| and %K > 1

e eyl + Y1 +he) by + Y]+ B
~2r 4|K]| 2ly|h
hx (21Y'))
2[y|n
/
Ly (A.4)
[l
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h;\'

|y
Figure A.5: Triangle with the height &
Now it can be written that 2 < |y/| and h < hg, then we have
h <|y'|+ hg.
Using Lemma A.0.4 and inequality (A.4) give us
, h
h < Y| +hg <olyl+olyl = 2oly| = P

Lemma A.0.6 Let K be an arbitrary triangle. For a linear polynomial u, the following mul-

tivariate Markov inequality hold on the simplex

[9v]x < 460k vk

Proof. From Chapter 4, one can obtained that if u is a linear polynomial, following Markov

inequality holds in 2D-simplex

|VWlk < |K| = /Ol

where Cy = 6. Lemma A.0.2 yield that,

Then Vu € P (K), we can say that
|Vulk < 460k |ulk

Lemma A.0.7 Let K be an arbitrary triangle with vertices (x1,y1), (x2,y2), (x3,¥3). Then,

SK f is estimated by the following rule

[ r=Bloes+ s + 5
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where

_ 1 1
(x1,y1) = E(xlayl) + E(Xz,yz)
_ 1 1
(%2,¥,) = E(xz,yz) + §(x3,y3)
_ 1 1
(®3,73) = F(x3,33) + 50 ).
Proof. The proof can be found in [45]. |

Lemma A.0.8 Let K be an arbitrary triangle in the mesh Py and Tk : P1(K) — S g denote

the operator given by

(Tkv).x)k = (v,x)k Yx € Sk.

Then |Tk - ||k is a norm equivalent to | - ||k on P\ (K) such that

3

Vv e Pk :
K 24/10

Ivix < Txvlix < [V«

Proof. Let Tx : P;(K) — Sk denote the operator given by (Txv,x)xk = (v,x)k for all
x € Sk. Then ||Tk - |k is a norm equivalent to || - [x on P;(K) with constants that are

independent of . To show this, we first show ||Tk - |k is a norm.

e Assume Tgv = 0 for some v € P;(K). It then follows that (v,¢) = O for all ¢ € Sk.

Since G is nonsingular, it follows that v = 0.
o ||aTkv| = |@|||Tkv| for all @ € R

o [Tx(v+w)ll = |Txv + Txw| < |Tgv| + [ Txw]

The equivalence of the norms is a consequence of finite dimensionality.

1/2 1/2
|TKv|%<=<TKv,TKv>K=<v,TKv>K<(j |v|2) (f |TKv|2) _ Ilxl Tl
K K
Thus,
ITevlx < Ivlik. (A5)
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Figure A.6: Usual Lagrangian Basis function of a triangle K

3
Tox =) Bivj

For the other side, let K be a reference element=ahd determine 7¢y € S x where 1 < k < 3:

3
(Tox. i)k = J Toxyi = J PxYk < Z,BI;J Y = J PV
K K =k K

Bl]{ SK dr
Let gt = ﬁé and My = (SK '7'/’in) and p* = SK i
B Sk s

then MB* = pX where 1 < k < 3.

P = [pl p? p3]3x3 matrix and let 8 = [ﬂl B? ﬁ3]3x3, then we need to solve the matrix
system:

MyB=Por B=M,'P.

After solving the above system we can compute the matrices,
X = <J T¢,‘T¢j) and
K 1<i,j<3

we(foo),,
K 1<i,j<3

Therefore, the solution of the eigenvalue problem is

XV = AMyV & M X7 = A%,

select Amin = min{+/A} and check that the eigenvectors form a basis in R?
Claim: Amin|w|x < |Tw|k Vw e P (K).
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a
Proof of Claim : Pick w € P (K), write w = Zi3=l aigi, letd = | ay

a3

HWH%( = f ww = ZaiajJ ¢i¢j = C?TM(p(?

where @' denotes transpose of @.

ITw|% = f (Tw)(Tw), but Tw = Za,Tqﬁ,

i=1

SO HTWHK = Zaiajf T¢,‘T¢j = ﬁTXd’)
K

i.J

so Cllw|x < |Tw||x & C*@" Myad < @' Xa.

Let A be such that AM4V = XV. If ¥ = (v1,v3,v3) forms a basis then this implies
M@ = X@ = 13" Myd = @' Xa

Amin = min{ VA} = 2. @ Myd < @' Xa

min

whichis 2. =C? < 1=C [ |

min

Lemma A.0.9 [Karakashian, Pascal,2007] The following inequality holds for Py for suffi-

cently large

2240 A0 _
Bulemen) > 5 Y [Venlli + (—— T‘Z) > Tl

K EPn ye&l,ueh

22102C% 112C224+40C*1+9%2
where C; = 64(1 + ) ( i -

o T -t ) and A = max{ p(Ak)| K € Puo}.

Proof. By (2.6) we have

H(en, en) Z llenllz — (1 +7) 2 (<"'AV€H>7’[€H]7)7+ 2 ﬁH[eH]VH*?

KePu ye&huEY ye&LuED
(A.6)
We remark that if r = —1 we have
K 2
wemen) = D, llenllz + D HH[EH])’H)/
KePy yeSZuSﬁ Y
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since |[enl, Iy = I[unl, I, forall y € &} and | [es], |y = g — unl, forall y € &5, we get

Bu(en,en) = Y llenllx +« X5 b= unlyly +« X I~ g — unls-
KePy 'yeS;_I 7681[_)1

If T = 1 or 7 = 0, we obtain an upper bound of the term Zyeaguag ((n- AVep),, [eH]y)y.
We construct a function ¥ € Xy n H'(Q) satisfying ir, = ¢ such that by [59], for any

uy € Xy we have

- 8o _ _
D Vs - )k < 3 D 1 77 M e O o i T (A7)
KePy yeé&l, ye&h
Moreover,

Y, ((n-AVew),[enl,), = >, ((n-AVew), [P —unl,), (A8

yESIIL, USQI yGSIIL, USQ

By Galerkin orthogonality we have,

0=Bp(en.?—un) = Y, (AVer, Vi —up))k — >, ((n-AVen)y. [V — unly)

Y
KePy yeé‘;{u&g
7 ) (- AVG —um)yfenly), + Y, k7 lenlyl;
yeSZuSZ 768;1\)82
(A9)
By (A.8) and (A.9), it can be written that
Y, (n-AVen),[enly), = D, (AVen, V(¥ — un))x
ye&l,uEh KePy
7 Y (- AV = un)yy [unly),
yeé)ﬁ_[uf}g
+ > KT [wal -
768;1\)8,’31
By Cauchy-Schwarz’s inequality we get
Y, (n-AVen)y[enly),| < D) |AVen|x| V(5 — um)|x
ye&l,ueh KePy
+ D [ AVE = um)y | [ualy |y
yeS}_IuSg
+ D T s 5 (A.10)
yeSZuSZ
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By (2.15) for y = 0K; n 0K,, we have

. - - -1/2 -
[n- AVE —un)yyly < Vol PIAVE = um) |k, + vohie PIAV(E — un)|x,

< Vel (IAVE = um) |k, + |AV(E — un)| k)

Using last inequality into (A.10) we have

Y, ((n-AVen)y[enly),| < D) |AVen|x|V(F — um)|x

ye&L,uEh KePu

+ > el P AVE —um)|k + AV — un) k) | [wnlylly
yeagu?}g
y=0K|noK>

+ >« ualy

1 ,&eD
YEELVEY

< > p(AK) Pllenl|x V(P — un)|k

KePy

+ > p(AR) VeV = um) |k, + IV — w) k) Myl
yESLIUSZ
y=0K|n0K,

D S o | 7% M

7681 USD

the use of Young’s inequality implies

Z (<n-AVeH>y, [eH]'y),y <z Z (Ak) |||eH|||K+2_ 2 (4 V_”H)HK

768;1 USg KE?’H KePy

€ _ 3 .
+5 Do p(Ax) ol unlyl; + p DTIVE —un)lk

ye&l,uEh KePu

+ 2 kb eyl

)/681 USD

<SS lenlly + 52 D 190 - un)li

KEPH KGPH
e’

_ 3 -
+ S o B+ 2 Y VG - un)l

ye&l,uEh KePu

D S o | 7% M

yeS’ USD
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Now we choose ¥ as in (A.7),

S (e AVewylenly), <S5 X lenlly 452 X Il a2

ye&l, uED KePy ye&l,uED

e/lzg _ 8o _
O T My 5+ —~ O T My 3
)/681 USD yeSi,uSg

— 2
+ > kel

yeS’ USD

Z llenlk

KG?H
— 2
+K> D0 sl

280 €A’
+ <—Q +
ye(‘)guag

3e

Using this in (A.6) we obtain

wlenen) = Y llenlx — Z Vel

KePy KGPH
280 edo

—OH%T%T+)ZIWWmW-ZMWWmﬁ

76851 u82 76851 USZ

if T = 0 we have

By(en,en) = 1— 5 Z IVen|l%
KePy
280 €A’o _
—(22422) Sy 2
36 2 1 D
YEELWEL

1
Choose € = 5 then one gets

Bulemen) >3 ) Venlk
KGPH
560 Ao B
—(3—+z) > Al
ye&l,uEh
=2 S IVenlli+ 53 D Ivenlly
KGPH KGPH
560 Ao B
~(E+E) D b (A1)
ye&l, uED

By [59],

2 — 2 2
S0 T uslly < € Y llenll

ye&lL uED KePy
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22102C22 112C2A+40C* 14922
where C; = 64(1 + o) ( ’ ‘ ’

w ) ) Using this inequality in (A.11) we get,

Bp(en,en) = Z |||V8HH‘K+E > v ualy
KGPH ! ye&l,ueh

560 Ao _
() S

768’ USD

560 Ao _
L S wenli+ (-2 %) S i

KGPH yeelueh

if T = 1 we have

Bu(en,enm) = (1 —€d) ) ||Ven]|k

KEPH
560 _
(FEretorn) T bl
yeSquuSg
Choose € = ﬁ then one gets
3 2
Bu(ensen) = 7 ), |[Venllk
KePy
2240 Ao -
(B2 L) T ol
’yESl uEp
1
=5 2 \\\V6H|||K+— > Iven|k
KePy KEPH
2240 Ao _
(B L) D pl (a12)
yeSﬁ,uSg
By [59],
0 Wl 2 < € D) llenllk
ye&f_lué‘g KePu
210202 22 4 2
where C = 64(1 + o) (2 1(;2cl./1 L u Ci/1+z7tgci/1+9 /1)‘

Using this inequality in (A.12) we get the desired result,

Bu(en.en) Z IVer|l& + D 7% 1
KGPH ye&fiuag
2240 Ao _
—(S=+T+c) X bl
3 4 — b
YES,VEE,
2240 Ao _
L S venli+ (o ) S
KePH ye&l,uEh



From that proof, we can also deduce that

nien. en) Z |||V€H\HK 2 |||€H\HK

KePy KEPH
280 €0 _
L4 (3—+—2 ve) D A
yESQIUSZ

— 2
S I P [ 7% M

1 ,eD
YEELVEL

Pickt =1

By(en,en) Z IVer ||k + e Z llez %

KGPH KGPH
560 2 -1 2
+ ¥ + el"o0 + 3k Z |7| H[MH])’H)/
yeSllrluSZ

Choose € = /ll, then we get

By(en,en) <2 ), [|Ven| %
KePy

564 )
+< 394”1 +3K) >0 T ual - (A.13)

[, ,eD
yeEWEL
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nodes". Submitted 2012.

3. Kaya Merdan, S., and Ozisik, S., and Riviere, B. "A fully computable Posteriori Error

Estimation of Oseen Problem" in preparation.

Presentations
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1. On The Constant in Inverse Estimates in L,. On The Constant in Inverse Estimates in L,.

Finite Element Rodeo 2011 at Texas A and M University, TX, 25-26 February 2011.

2. Fully Computable Convergence Analysis of DGMs with an arbitrary number of levels of
hanging nodes. IMA Special Event: Finite Element Circus Featuring a Scientific Celebration

of Falk, Pasciak, and Wahlbin, Minnesota, November 5-6, 2010.

3. Fully Computable Convergence Analysis of DGMs with an arbitrary number of levels of

hanging nodes. VIGRE Seminar Scienti
¢ Computation and Numerical Analysis, Rice University, October, 2010

4. Discontinuous Galerkin Methods and A Posteriori Error Estimation, Graduate Seminar,

Rice Univesity, November, 2009.

5. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-

Order Elliptic Problems, Numerical Analysis Seminar, Rice University, September, 2009.

6. Priori and A Posteriori Error Analysis, Numerical Analysis Seminar, Middle East Tecnical

University, December, 2008.

Attended Workshops and Conferences

1. International Conference on Applied Analysis and Algebra, Istanbul, Turkey, 2011
2. Finite Element Rodeo 2011, College Station, TX. February 25-26, 2011.

3. IMA Special Event: Finite Element Circus Featuring a Scientific Celebration of Falk,
Workshops and Conferences Pasciak, and Wahlbin, Minneapolis, MN. November 5-6, 2010

4. IMA Workshop: Numerical Solutions of Partial Differential Equations: Novel Discretiza-

tion Techniques, Minneapolis, MN. November 1-5, 2010
5. 2010 Joint Mathematics Meetings, San Francisco, CA. January 13-16, 2010

6. 2009 CBMS Conference on Adaptive Finite Element Methods for Partial Differential Equa-
tions, Texas A and M University, College Station, TX. May 18-22, 2009

7. Workshop on Differential Equations and Applications , Yeditepe University, Istanbul,
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TURKEY. June 18-23, 2009

8. Workshop in Memory of Professor Hayri Korezlioglu, Middle East Technical University
(METU), Ankara, TURKEY. April 25-26,2008.

9. 6th ISAAC(International Society for Analysis, its Applications and Computation), Middle
East Technical University (METU), Ankara, TURKEY. August 13-18, 2007

10. Ankara Differential Equations Seminars(ADES), Atilim University, Ankara, TURKEY.
June 9, 2006

Academic Memberships

Society for Industrial and Applied Mathematics
American Mathematical Society

Association for Women in Mathematics
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Prof. Beatrice Riviere, Computational and Applied Mathematics Department, Rice Univ.
Prof. Songul Kaya Merdan, Department of Mathematics, Middle East Technical University

Prof. Bulent Karasozen, Department of Mathematics, Middle East Technical University
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