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ABSTRACT

JOINT UTILIZATION OF LOCAL APPEARANCE DESCRIPTORS AND SEMI-LOCAL

GEOMETRY FOR MULTI-VIEW OBJECT RECOGNITION

Soysal, Medeni

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

May 2012, 195 pages

Novel methods of object recognition that form a bridge between today’s local feature frame-

works and previous decade’s strong but deserted geometric invariance field are presented in

this dissertation. The rationale behind this effort is to complement the lowered discriminative

capacity of local features, by the invariant geometric descriptions. Similar to our predeces-

sors, we first start with constrained cases and then extend the applicability of our methods to

more general scenarios. Local features approach, on which our methods are established, is

reviewed in three parts; namely, detectors, descriptors and the methods of object recognition

that employ them. Next, a novel planar object recognition framework that lifts the require-

ment for exact appearance-based local feature matching is presented. This method enables

matching of groups of features by utilizing both appearance information and group geomet-

ric descriptions. An under investigated area, scene logo recognition, is selected for real life

application of this method. Finally, we present a novel method for three-dimensional (3D) ob-

ject recognition, which utilizes well-known local features in a more efficient way without any

reliance on partial or global planarity. Geometrically consistent local features, which form

the crucial basis for object recognition, are identified using affine 3D geometric invariants.
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The utilization of 3D geometric invariants replaces the classical 2D affine transform estima-

tion/verification step, and provides the ability to directly verify 3D geometric consistency.

The accuracy and robustness of the proposed method in highly cluttered scenes with no prior

segmentation or post 3D reconstruction requirements, are presented during the experiments.

Keywords: local features, geometrical descriptors, geometrical invariants, planar object recog-

nition, multi-view object recognition
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ÖZ

ÇOK AÇILI OBJE TANIMA İÇİN YEREL GÖRSEL TANIMLAYICILARIN VE

YARI-YEREL GEOMETRİNİN BİRLİKTE KULLANIMI

Soysal, Medeni

Doktora, Elektrik Elektronik Mühendisliğ Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Mayıs 2012, 195 sayfa

Bu tez kapsamında obje tanıma için günümüzün yaygınlaşmış yerel görsel öznitelik tabanlı

altyapıları ile geçen on yılın güçlü ama arka planda kalmış geometrik değişmezlik alanı

arasında köprü kuran özgün metodlar sunulmaktadır. Yerel görsel özniteliklerin sınırlı ayırıcılık

potansiyelinden dolayı ortaya çıkan zayıflığı, değişmez geometrik tanımlayıcılar kullanarak

tamamlamak bu çabanın arkasındaki mantığı oluşturmaktadır. Daha önceki çalışmalarda

olduğu gibi bu çalışmada da önce daha kontrollü durumlarla başlanmış ve daha sonra metod-

ların uygulanabilirliği daha az kontrollü durumlara genişletilmiştir. İlk aşamada önerilen

metodların dayandığı yerel görsel öznitelikler tabanlı yaklaşım, algılayıcılar, tanımlayıcılar

ve bunları obje tanıma için kullanan literatürdeki metodlar olmak üzere üç farklı kısımda

incelenmiştir. Daha sonra, yerel görsel özelliklere göre kesin eşleştirmeler yapma gerekliliğini

ortadan kaldıran ve böylece özniteliklerin gruplar halinde ve geometrik tanımlayıcılar kulla-

narak eşlenmesine izin veren özgün bir düzlemsel obje tanıma metodu sunulmuştur. Bu meto-

dun gerçek hayata uygulaması olarak bu güne kadar şaşırtıcı derecede az incelenmiş bir alan

olan sahne logo tesbiti seçilmiştir. Son olarak, yerel öznitelikleri daha verimli şekilde kul-

lanan ve düzlemsellik varsayımına ihtiyaç duymayan bir üç boyutlu (3B) obje tanıma metodu
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sunulmuştur. Obje tanıma için kritik olan geometrik olarak uyumlu yerel öznitelik grupları,

bu kapsamda, 3B ilgin geometrik değişmezler kullanılarak belirlenmektedir. 3B ilgin ge-

ometrik değişmezlerin kullanımı, klasik 2B ilgin dönüşüm kestirimi/doğrulaması adımının

yerini alarak, 3B geometrik uyumluluğun direkt olarak denetlenbilmesine imkan sağlamaktadır.

Önerilen metodun, herhangi bir ön bölütleme ya da ek 3B oluşturma adımına ihtiytaç duy-

madan, içerek açısından kalabalık sahnelerdeki başarılı performansı deneylerle ortaya konulmuştur.

Anahtar Kelimeler: yerel öznitelikler, geometrik tanımlayıcılar, geometrik değişmezler, düzlemsel

nesne tanıma, çok açılı nesne tanıma
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CHAPTER 1

INTRODUCTION

Recognition of objects has been the focus of computer vision systems for almost half a cen-

tury. However, despite decades of intensive research, real life object recognition systems still

has many constraints for successful recognition. At the heart of this fact lies the difficulty

of adapting the optimization boundary between discriminative power and invariance against

a broad spectrum of real life attacks that effect the appearance of objects. Today, utilization

of local features and appearance methods, is the widespread approach for this problem. The

solution, however, lies in the integration of local features with geometric constraints [1]. Ge-

ometry has played a central role within object recognition systems for a long time and still

has much to offer in the context of appearance based recognition system for a few important

reasons. These reasons can be listed as follows [1]:

• Invariance to viewpoint

• Invariance to illumination

• Solid theoretical framework

In order to realize the place of geometric invariants in the literature, and the evolution from

formal geometry and prior models towards the use of today’s appearance based statistical

learning methods, it is necessary to review the research conducted on geometric recognition

over the past decades.

Pioneering object recognition systems were focused on 2D pattern classification applications,

such as character recognition, fingerprint analysis and microscopic cell classification. In the

context of these research, geometric descriptions were used consistently, although the classi-
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fication schemes vary from statistical pattern recognizers to classifiers that utilize parametric

learning [2].

During those days, when geometry was a popular tool for solving recognition problems, a new

approach based on the definition of the real world in terms of simplified geometrical primitives

has arisen. The aim was to solve the recognition problems theoretically in a constrained world,

before attacking to more realistic problems. Such a simplified environment is composed of

polyhedral shapes living in a uniform environment which forms their background. Despite

the simplicity that is artificially induced to this world, which is called the blocks world, and

the geometrical convenience allowing many useful assumptions, the problem of recognizing

general polyhedral shapes were not completely solved. Even so, these efforts lead to some

successful applications as well as a foundation for modern geometrical systems [3, 4, 5, 6].

The blocks world representation was followed by an approach that aims to model the real

world objects more closely by lifting some constraints. This representation was the general-

ized cylinders [7]. In this representation, curved objects were expressed in terms of a variable

radius circular cross section fitted to their main axes as well as their extremities. In its evolved

versions, this method’s applicability was extended from simple curved shapes, such as ham-

mer to more complex shapes, like teapot [8] and submarine [9]. These extended systems have

found application in various U.S. military projects of under the names ACRONYM, SCOR-

PIUS, SUCCESSOR and RADIUS [1, 9, 10].

The common ground in these two prominent recognition systems and their contemporaries

has been the heavy reliance on 3D structure of the objects for their detection and recognition.

It was assumed that knowing this structure enables a recognition system to handle the appear-

ance modifying effects, such as viewpoint changes. This class of approaches, which embrace

the idea that outlines and intensity boundaries of objects can be recovered without the need

for deeper understanding of reflectance and image intensity formation, is called object-centred

representation [1].

An alternative to the object-centered representation was first proposed by [11], in which a

network of 2D views of a polyhedral shape was constructed. Almost a decade later, a com-

plementary method, developed around the idea of pre-processing 2D views of an object in

order to link common parts and form an efficient recognition plan was proposed [12]. This

approach, and the underlying graph of linked object views, is called an Aspect Graph (Figure
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Figure 1.1: A polyhedral solid viewed from two viewpoints. Upper row: First View, Lower

row: Second View, Left column: Segmented faces, Right column: Corresponding face adja-

cency graphs (Aspect Graphs) [14].

1.1). Object views that are adjacent to each other in terms of viewing directions, but differ

significantly are the nodes of this graph. The Aspect Graph methods, however, had critical de-

pendencies on two factors: viewpoint invariant robust segmentation and feasible connectivity

complexity of segmented parts. Unfortunately, analysis of complexity showed that in the ex-

treme conditions, the computational complexity of aspect graphs can reach n9 for polyhedral

objects with n faces and d18 for algebraic curved surfaces where curve degree is d [59,60].

This combinatorial explosion problem is best illustrated by a golf ball example [13], where

identical groups of parts renders the model generation infeasible (Figure 1.2).

Systems of the early geometric period, independent of object-centred or viewer centred rep-

resentation selection, suffered from the same presumption: Boundary descriptions defining

repeatable parts of objects could be formed reliably from 2D images. This presumption was

bound to collapse in typical real life cases of low contrast boundaries, background clutter with

many edges and occlusion by objects with significant texture. Unveiling of this long ignored

fact triggered the development of a new class of systems, which operate under the assumption

that no perfect or even reliable segmentation is possible [15, 16, 17, 14]. Embracing the idea

of Goad [12] that the search for features can be planned beforehand, and accepting the limited

performance of segmentation lead to an efficient path of object recognition research. Lowe’s
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Figure 1.2: Combinatorial explosion problem. A golf ball observed at different detail or scale

levels. Recursive, indiscriminative connectivity leading to an infinite aspect graph [1].

SCERPO [15], presented the first successful implementation of a recognition system based

on independent local features that can be segmented reliably(edges and their intersections).

In contrast to the previous systems, in this system feature perceptual grouping and linking is

not required in advance of the recognition stage. Instead, model constraints were imposed on

the image during the recognition step, in order to constrain the viewpoint [18, 16, 17, 14]. An

illustration of recognition steps in [18] is given in Figure 1.3.

Systems that rely on minimal feature organization and strong model constraints first used

based on the constrained problem of recognizing 2D planar shapes. Their rationale was as

follows: Before attacking to the harder and realistic problem of 3D object recognition, it is

an obvious preliminary step to solve the 2D planar object recognition problem more robustly.

One of these systems exploited an interpretation tree for matching features based on their

orientation information [14] (Figure 1.4). Another 2D approach, called Geometric Hashing

[19], proposed a solution based on hashing of 2D point coordinates in a basis formed by

three points. This approach is highly dependent on the discovery and initial matching of basis

triplet for a successful recognition. In order to achieve this goal, during the pre-processing

step, coordinates of all model points are repeatedly calculated according to an exhaustive

set of possible triplets. This way, repeated calculation during the testing phase is prevented.

This approach was later extended to recognition of 3D objects [20]. In a parallel strand of

research, Ikeuchi and Kanade [21] proposed a formal definition of a recognition planning

system utilizing 3D orientation constraints based on photometric stereo. Their recognition

system, which takes into account both the shape and its self-occlusion model, enumerates

various aspects of a recognition problem from both object and detector side exhaustively and
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(a)

(b)

Figure 1.3: Steps of a model recognition algorithm based on oriented edge segments [18].
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Figure 1.4: Another recognition algorithm based on oriented edge segments [1].

presents it as computer program. Such a presentation comprises an exhaustive list of sensors

in object recognition, ranging from 2D edge detectors to 3D range sensors.

As soon as 2D object recognition techniques has evolved into a more mature state and after

their error statistics were extensively studied [22], 3D object recognition became the focus

of attention once more. This time, however, constraints were on image formation. Instead

of a more general and realistic full-perspective model, projection from 3D to 2D is assumed

to be behaving according to the affine projection models. One of a series of research un-

der this category is based on edge features and their relative positioning [23]. In this work,

object recognition problem is posed as an alignment problem. Alignment is performed via

point triplets that are formed exhaustively resulting in a complexity of m f 3, for a comparison

involving m model triplets and f feature points in a 2D image. Another research converted

the model matching problem to a hypothesis testing problem, in which tests were performed

by pose clustering [24]. Pose clustering is performed in a way similar to the Hough Trans-

form [25, 26], but this time in the affine transformation parameter space. This method was

then applied extensively to airplane detection problem from aerial images and reported im-

pressively high performance results on a realistic dataset [27]. These methods, which are

appropriately called viewpoint consistency approaches in the literature, have reported suc-
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(a) (b)

Figure 1.5: Recognition results of a viewpoint consistency based method [1]

cessful results on non-complex backgrounds (Figure 1.5. This lead to their widespread use,

even though their reliance on a detailed 3D model for object recognition limited their usage

[28, 29, 30].

Since the beginning of 1990s, interest in geometric invariance, which has its roots in the

research around ”The Blocks World” of 1960s, has started to increase again. Properties of

objects that are invariant against viewpoint changes were revisited by the hope of explor-

ing new ways to utilize geometric constraints. These developments bring constraints, such

as collinear segment lengths and cross ratios that are invariant under affine and perspective

viewing conditions respectively, into focus. Projective geometry, which was initially relevant

to the area of computer graphics, became the main focus of the computer vision research [1].

Again, the problem was to be tackled starting from some simpler to more complex situations,

and planar shapes were attacked first [31, 32, 33, 34]. This decision was mainly due to the

completeness of the mathematical background explaining the theoretical foundations of affine

and perspective projection phenomenon [35]. In the meanwhile, developing and extending the

geometrical theory to 3D objects was also a common hope. Extending the utilization of geo-

metric invariants to 3D objects faced two main problems during this period. The first was the

irrefutable proof by Weiss that no viewpoint invariants exist for general 3D shapes [36]. The

second barrier in front of the usage of geometric invariants was the grouping problem which

had been the curse of the early geometric methods. For 3D case, this problem is actually much

more serious due to the number of points required as the support for the invariants. Despite
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these fact, methods targeting a number of constrained classes of objects, such as surfaces of

rotation and polyhedra, were successfully developed [32, 37]. These methods, however, avoid

dealing with the problem of grouping in order to concentrate on discovering new invariants

that can be integrated to representations used in recognition systems. Later, the domain of 3D

objects and image formation conditions that can be recognized using geometric invariants was

extended by [38], although grouping problem was still not solved. Inevitably, the progress in

geometric invariant based object recognition was hampered by the lack of invariantly repeat-

able features that can be detected in numbers that are high enough for invariance computation

and have proper grouping constraints.

Successful research on modeling the appearance variations in images [39, 40] draw focus to

this field. Geometric invariance methods were quickly abandoned in favour of appearance

based methods. As the intensity appearance research deepened, methods for solving prob-

lems, such as invariance against illumination changes, were developed [41]. However, the

real revolution in appearance-based methods were yet to come. In 1994, development of

scale-space theory triggered this revolution that lead to a brand new approach to appearance

definition [42]. This new paradigm was called ”local features” and it is still dominating to-

day’s research. These local interest regions that constitute basis for the selection of important

details in an image. Their effectiveness is evaluated according to their repeatability perfor-

mances under various image formation attacks, such as scale change and viewpoint change

[43, 44, 45]. Additionally, development of local detectors quickly lead to the development

of local region descriptors. These region descriptors are evaluated according to two metrics:

Distinctiveness and invariance [46, 45].

1.1 Scope of Thesis

In this dissertation, novel methods that combine geometric invariants and invariant local de-

scriptions for instance-level object recognition are investigated. The problem is first addressed

in a subset of the problem domain, namely planar object recognition. A novel planar object

recognition method that utilizes barycentric coordinates in tandem with local invariant feature

descriptions is iteratively developed during the initial phase of this research. Building upon

the experience and insight gained during this initial phase, the problem domain is extended to

general 3D object recognition, which requires a higher level of invariance against photometric
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and geometric transformations.

1.2 Contributions

In this dissertation, we present novel methods of object recognition that form a bridge be-

tween today’s local features framework and previous decade’s mature geometric invariance

field. The rationale behind this effort is to complement the lowered discriminative capacity of

local features, by the invariant geometric descriptions. In Chapter 4, as the result of the first

phase of the conducted research, a novel specific object recognition framework that delays

exact local feature matching, enabling matching groups of features at the recognition step

utilizing both appearance information and group geometric descriptors is presented. Experi-

mental results proved the success of the proposed method in realistic datasets. Following the

insight gained from the experimental results of this phase, and utilizing the geometric invari-

ants of 3D transformations, a novel 3D object recognition method is presented in Chapter 5.

Proposed 3D object recognition method performs geometric verification of local appearance-

based ambiguous matches by using constraining relations between 3D and 2D invariants.

Experimental results that are obtained on a well known object recognition dataset revealed

the robustness of the algorithm against common attacks in this problem domain.

1.3 Outline of Thesis

The rationale behind using local feature descriptions and geometric invariants is discussed in

Chapter 2. In this chapter, local features approach is reviewed in three subsections, namely,

detectors (Section 2.1), descriptors (Section 2.2) and the methods of object recognition that

employ them (Section 2.3). In addition, weaknesses and limitations of these methods will

be reviewed briefly. Chapter 3 introduces geometric invariants (Section 3.3) along with the

transformation models (Section 3.1.2) and approximations (Section 3.2) that form the appro-

priate basis for their derivation. Chapter 4 revisits the shortcomings of local feature-based

methods and present a novel specific object recognition framework that delays exact local

feature matching, enabling matching groups of features at the recognition step utilizing both

appearance information and group geometric descriptors. Along with three extensions of this

framework, in Chapter 4, the problem of scene logo recognition is selected for real life appli-
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cation of our recognition method (Section 4.2.3). This time, considering the harsh appearance

variations in real life scenarios, the recognition framework presented in Section 4.1 is adapted

to work with vector quantized appearance descriptions. In the light of the simulation results,

a new method that aims to solve the famous ”grouping” problem is proposed in Section 4.3.

This new method is applied as a plug-in within the context of the basic algorithm and the

modified algorithm is tested on an extended data set (Section 4.3.3). Chapter 5 presents gen-

eralization of geometric invariant-based approach from planar objects to 3D objects. In the

presented approach, geometrically consistent local feature groups, which form the crucial ba-

sis for object recognition, are identified by exploiting the relations between affine 3D and

2D geometric invariants. The main contribution of the proposed approach lies in this ability

of incorporating highly discriminative affine 3D information much earlier in the process of

matching in comparison with its counterparts. The performance of the method is evaluated

in highly cluttered scenes, without any prior segmentation or post 3D reconstruction require-

ments. These evaluations provided strong clues that suggest the promise of the proposed

method. Finally, Chapter 6 closes the dissertation with a summary of our contributions and

discussion of possible extensions and future research directions. The work described in this

dissertation has been previously published in [47, 48, 49] and submitted for publication to

[50, 51, 52].
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CHAPTER 2

LOCAL FEATURES APPROACH

Local features can be defined as image patterns that differ from their neighborhood. This

difference may be the result of a change of a single image property (e.g. intensity) or multiple

properties simultaneously (e.g. color, texture). These local features can be points, edges or

small image patches (blobs). They are typically described in terms of the properties of the

region around them. The low-level descriptions extracted from each of these regions along

with the spatial properties of the region (location, scale, orientation, shape, etc.) are then used

for a broad spectrum of systems and applications [44].

Alternatives to local features can be broadly categorized as global features, image segments

or sampled features. Global features have been used in image retrieval field for a long time.

Many global features are defined in order to represent the image content in terms of color and

its variations that are frequently called texture. These features perform quite successfully in

applications where the overall composition of the image is of utmost importance. However,

global features while considering the image as a whole, uses the background and foreground

information without distinguishing them. Despite this fact, global features have been used in

object recognition field and obtained surprisingly well results. These results actually drive the

appearance based object recognition trend, leaving the previous popular trend of purely geom-

etry based approaches [39]. However, due to major problems of image clutter and occlusions,

applicability of these methods are limited to cases with bland backgrounds [53, 54, 55, 56].

Segmentation can be used to solve the problems experienced with global features. This term

can be defined as dividing the image into a limited number regions depending on a consistency

constraint. The goal is to perform this operation so as to obtain segments corresponding to

the semantic parts or single objects. Despite some advanced applications that are found in
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the literature, such as the Blobworld [57] that employs both color and texture consistency

to divide the image to semantically meaningful segments, image segmentation is still a very

challenging and complex task. This difficulty leads to the common opinion that segmentation

is part of a chicken-egg problem, and in some situations the end result of high-level image

understanding becomes much practical than a complete segmentation.

In order to avoid segmentation, but still stay less prone to the clutter and occlusion effects that

are experienced in the global case, densely sampled features can be used. This approach de-

pends on exhaustive sampling on different parts of the image at many scales and orientations.

Descriptors extracted from each of these parts are then compared. This approach is called

as the sliding window in the literature, and is very popular in face detection and pedestrian

detection applications after the popular work of Viola and Jones [58]. These methods can be

considered as brute force, since they analyze each and every sub window in the image. Such

an approach brings the requirement that only extremely efficient implementations can be used

in real life situations. As an alternative to sliding window approaches, fixed grid approach is

introduced. In this approach, image is sampled sparsely from a fixed grid of locations. They

are robust against occlusions and scale changes up to some extent, rendering them useful in

scene classification or texture recognition applications [59]. On the other hand, they do not

possess the required localization power for being useful in applications that require precise

location information. Another similar approach is using random sample patches, which is

actually a random generated list of location, scale and shape triplets. Similar to the fixed grid

methods, these achieved good scene classification results due to their dense coverage of the

images [60, 61]. These random patches, however, also lack the proper location information

that is repeatable and therefore essential to more complex applications.

Local features raise among these approaches with some properties that render them well suited

to more complex recognition applications, such as instance level object recognition. Their sig-

nificance is twofold: First, they provide a robust way to represent the images in terms of parts

without a requirement for an explicit segmentation. Second, they provide a computationally

feasible number of well localized and individually identifiable anchor points. Although these

features do not necessarily correspond to human friendly semantics with a plausible verbal

interpretation, they provide reliable cues whose location and other spatial descriptions remain

stable under a wide range of attacks. Obviously, local features that correspond directly to

semantically meaningful object parts would be preferable ideally. But then, this goal would
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be similar to the segmentation problem and require high-level interpretation of the image con-

tent. It is important to define a good local feature, which can be obtained directly from the

intensity patterns without the need for any high-level information, in an objective way. A

preferable local feature can be identified by the following properties:

• Repeatability

• Distinctiveness

• Locality

• Quantity

• Accuracy

• Efficiency

Repeatability is the observability rate of features detected at similar locations at images with

similar content. It is a prerequisite for any application that use local features. Invariance

to large deformations or robustness to small deformations is required in order to obtain an

adequate number of repeatable features.

Detected features are most useful, if they are located on informative local patterns. This is

called as the distinctiveness property. Since local features have a small supporting region,

their characteristic properties are limited. Therefore, the regions that stand out are highly

valuable.

The localization of the detected features should be good enough to allow for extraction of de-

scriptions that are unaffected by occlusion. Besides, as the size of the interest region increases

it becomes hard to stay robust against geometric and photometric deformations, resulting in

the loss of repeatability.

Although the optimum number of required local features is highly dependent on the applica-

tion, it is necessary to be detectable even on small objects. The number of features detected

should reflect the density of the image information.

The features should be detected at almost the same location and scale (and sometimes shape)

in order to offer possible correspondences.
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Lastly, they should not be computationally too complex in order not to hamper time-critical

applications.

In this section, we will first provide a summary of a selected subset of local feature detection

methods which are particularly important in the object recognition field. In the context of

this summary, favorable properties, such as repeatability under a set of transformations will

be stressed out whenever possible. Next, we will analyze low-level feature descriptions that

are used to represent the appearance characteristics of local features, and to compare them for

finding correspondences. Again, invariance properties that are important from the recognition

point of view will be examined briefly. Lastly, we will summarize methods in the literature

that utilize local features in the context of object recognition.

2.1 Local Feature Detection

The first step of an approach based on local features is detection. Local feature detection

research dates back to around fifty years from today. Many methods were proposed in this

period for extracting repeatable, robust and precise local features automatically from images.

The beginning of the research on primitive local structures, which are considered as inter-

esting by the human visual system, was marked by a psychological analysis [62]. In this

analysis, corners and junctions stand out as important cues for visual recognition. This result

was later generalized as contours with high curvature, extending the target local structures to

intersections and junctions that have a high ratio of unit tangent vector change per arc length.

On the other hand, there has been another strand of research which concentrated directly on

image intensities and high variances in them as indicated by derivative calculations. Har-

ris [63], Hessian [64] and Smallest Univalue Segment Assimilating Nucleus (SUSAN) [65]

corner detectors are a result of this strand of research.

Another research with a significantly different motivation was based on modeling the human

visual system by discovering biologically plausible methods for feature extraction. The pio-

neer of this type of approach was Marr through his influential work [66] where he provides

a deeper understanding of biological visual perception. Laplacian of Gaussian (LoG) and

Gabor filter response based detectors are famous representatives of this approach.
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In parallel, analytical study of corner detection, which can be represented under model based

local feature detection, was conducted. This research resulted in detectors that function either

by fitting masks [67] to match the underlying intensity structure or by fitting a parametrized

model using novel techniques, like Hough Transform [68].

Introduction of Scale-Space Theory [42] provided a theoretical foundation for the detection

of scale for local features that are otherwise defined only by their location. Following the

development of this theory, many local feature detectors were modified to perform automatic

scale selection [43].

Even segmentation techniques have also been applied to local feature extraction problem. De-

spite the well known fact that optimal segmentation is intractable in general, several systems

for segmentation-based local features were developed for recognition purposes. Maximally

Stable Extremal Regions (MSER) [69] that utilize a watershed-like segmentation algorithm

and Intensity based Regions (IBR) [70] that are formed by detecting the boundaries of the

region around a local intensity by sweeping the neighborhood with a 1-D intensity sampling

ray are two prominent examples of segmentation based techniques.

In this section, we will provide a brief summary of the local feature detection research via

presenting its most prominent products, which have significant and widespread influence on

the object recognition field. These methods can be broadly presented in three main categories

which are designed to group the detectors based on the types of local features detected by

them, namely corners/edges, blobs and regions [71].

2.1.1 Corner / Edge Detectors

Harris Corner Detector [63] is one of the most reliable local feature detectors [44]. It is based

on the second moment matrix in Equation (2.1), which is formed of the first degree terms in

the Taylor series expansion of the image intensity I(x, y)
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Harris detector operation essentially corresponds to measuring the local changes of an image

via shifting patches around the position under consideration by a small amount in different
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(a) (b) (c)

Figure 2.1: Autocorrelation matrix responses around different types of points. (a) Both

eigenvalues are small, the windowed image region is of approximately constant intensity (b)

One eigenvalue is high and the other is low, the windowed region is considered to contain an

edge (c) Both of the eigenvalues of the auto-correlation function are high, variance high in all

directions.

directions. The relation between the two eigenvalues of the matrix in Equation (2.1), which

is computed during this operation, categorizes the image structure under consideration as

belonging to one of three classes given in Figure 2.1. Harris Cornerness Measure, which

is defined as |M| − α · Tr(M), discriminates these structures by selecting the third one, in

which local neighborhood under consideration is highly variant in any possible direction.

This metric is considered as an accurate clue for marking the region under consideration to

contain a corner.

Harris corners are highly repeatable under photometric transformation affecting the appear-

ance of local patches. Since only the derivatives are used during the computation of the cor-

nerness measure, it is invariant even under harsh affine intensity changes. On the other hand,

Harris corners are also robust against geometric translation due to the autocorrelation func-

tion approximation it adheres. In addition, utilization of eigenvector magnitudes, renders the

cornerness output invariant under geometric rotation operation (component of the Euclidean

Transformation that is illustrated in Figure 3.3). Hence, in its basic form, one can say that Har-

ris corner detector results are quite repeatable. Geometric scale and affine changes, however,

are beyond the scope of the invariance scheme of the basic Harris detector and needs special

treatment. A visual list of the transformations mentioned above are given in Figure 3.3.

Harris corner detector only gives location information for the detected local features. In order

to deal with scale changes, an automatic scale selection method proposed by Lindeberg can be

adopted [43]. This method is appropriately called Harris-Laplace, since it involves the search
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Figure 2.2: Edges detected by SUSAN detector [71]. Red areas are pixels that are similar to

the nucleus and blue ones are different.

for a characteristic scale of the local structure using the Laplacian function. Characteristic

scale is identified by the scale-space extremum of the scale adapted Laplacian function, which

is defined as [43]:

▽2
norm I(x, y;σ2) = σ2(Ixx + Iyy) (2.2)

where I(x, y;σ2) represents the image convolved with a 2D Gaussian function of standart

deviation σ. Local features found using this detector are repeatable under similarity transfor-

mations.

Affine transformation is the common type of transformation for small planar patches viewed

from a distance much larger than the size of the patch. Since Harris-Laplace regions fall into

this category, it is an important property to be invariant under this type of transformation.

Harris-Affine detector achieves exactly this goal through local affine adaptation [44]. This

adaptation is achieved on initial points extracted along with their characteristic scales. Ellip-

tical shape of the region under consideration is estimated iteratively using the eigenvalues of

the second moment matrix given in Equation (2.1).

The Smallest Univalue Value Segment Assimilating Nucleus (SUSAN) detector uses a morpho-

logical approach to detect corners [65]. Basically, on each pixel in the image, a fixed radius

circular operator is applied. This operator compares each pixel in the radius with the center

pixel which is called nucleus in terms of intensity. SUSAN corner detector finds the corner

locations where the ratio of pixels similar to nucleus to the pixels different from it drops be-

low a certain threshold (Figure 2.2). This detector is also used for edge detection and noise

suppression in the literature. Recently, new low complexity techniques, such as FAST [72]

and ORB [73] are also proposed, all of which have similar approaches to SUSAN.
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Figure 2.3: Edge-based regions detected at two different scales [71]

A prominent example of edge based techniques is the Edge-based Regions (EBR) that is

developed by Tuytelaars and Van Gool. In this technique, edges are searched around Harris

corners by the Canny edge detector. Local features are then defined as parallelogram regions

whose two main axis are determined according to the speed of divergence of edge from the

corner point (Figure 2.3).

Edge-Laplace features are obtained based on edges detected by Canny edge detector. Each of

the detected edge pixels are then considered as a candidate for being a local feature and their

Laplacian is computed at multiple scales. The edge pixel locations which has a distinctive

Laplacian extremum in scale domain (Equation 2.2) is selected as Edge-Laplace features.

2.1.2 Blob Detectors

Similar to corners, homogeneous regions that “pop-out” are known to be detected in the pre-

attentive stage of the human visual system. Detectors that imitate this sensitivity of our system

are called as blob detectors. Blobs are defined as points or regions in the image that are either

brighter or darker than their surrounding. Although there are other categories of local feature

detectors, blob detectors are the first that are called as interest point detectors or interest region

detectors. The rationale behind the development of blob detectors is to provide information

about regions, which can not be extracted by edge or corner detectors. This information

complements the information from corner/edge detectors (Section 2.1.1).

A prominent example of derivative based method, similar to the Harris corner detector (see
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Figure 2.4: Illustration of elliptic, parabolic and hyperbolic regions.

Equation 2.1), but reacts to the presence of blobs is the Hessian detector, that utilizes the

Hessian matrix.

H =
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where I represents the image intensity function and the elements of the matrix are the sec-

ond order derivatives of this function. Hessian detector [64] response function is defined as

IxxIyy − I2
xy. This function is also proportional to the product of principal curvatures given in

Equation (2.4),

K = KminKmax =
IxxIyy − I2

xy
(

1 + I2
x + I2

y

)2
(2.4)

and is interpreted as illustrated in Figure 2.4. Hessian detector always detects an elliptic

maximum inside the corner area independently of the local image contrast. However, the

distance of the maxima from the corner depends on the sharpness of the angle.

Hessian-Laplace and Hessian-Affine detectors are scale invariant and affine invariant exten-

sions of the basic Hessian detector. In terms of the extension method, they are very similar

to Harris-Laplace and Harris-Affine extensions that are described in Section 2.1.1. The only

difference between the Harris and Hessian extensions is that Hessian extensions utilize the

determinant of the Hessian matrix as the initial location detector rather than the Harris corner

detector. Hessian-Laplace and Hessian-Affine detectors have been proposed as appropriate

counterparts of the Harris-based viewpoint invariant detectors in the literature [74, 44].

Laplacian-of-Gaussian (LoG) is a powerful multi-scale local feature detection tool that was

first used by Lindeberg for scale-invariant blob detection [43, 42]. Lindeberg represented

blobs as maxima of LoG, which is defined as:
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(a) (b)

Figure 2.5: Laplacian-of-Gaussian (LoG) function (a) 3D visualization of the LoG function,

(b) 2D visualization of the LoG magnitude.

LoG =
∂2G(x, y)

∂x2
+
∂2G(x, y)

∂y2
(2.5)

where G(x, y) is the well-known Gaussian function with variance σ2. Maxima of the LoG

magnitude are searched in both spatial (Equation 2.5) and scale domain, and therefore, Equa-

tion (2.5) should be normalized in order to perform a fair comparison among responses of

different scales. This comparison is achieved by:

LoG = σ2

(

∂2G(x, y)

∂x2
+
∂2G(x, y)

∂y2

)

(2.6)

This simple operator above, which is visualized in Figure 2.5, constitute the heart of Linde-

berg’s famous scale-space theory, which forms the theoretical foundations of today’s success-

ful local feature detection and scale selection algorithms by showing a standard mathematical

way of relating image structures between different scales.

Difference-of-Gaussian [75] is a close approximation to scale-normalized LoG, which is de-

signed in order to speed up the detection process. Instead of the second derivative of the

Gaussian function, DoG convolves the image with Gaussians at different scales and subtracts

them to obtain a DoG scale-space. DoG feature points are then selected as maxima detected

in the 3D scale-spatial space.

Speeded Up Robust Features (SURF) [76] is a detector optimized for speeding up the ex-

traction process. SURF constructs a scale space similar to the DoG, but approximates the
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Figure 2.6: Difference-of-Gaussian (LoG) function [75]

determinant of the Hessian matrix, instead of the LoG function. Local feature locations are

selected as Hessian determinant maxima in both spatial and scale domain.

Salient Regions [77] represents a novel approach to local feature detection. This detector is

not based on the derivative information in the image as the other detectors. Instead, it adheres

an information theoretic approach. In the context of this detector, saliency is defined as local

complexity or in other words, unpredictability of the patterns in a region. This property is

measured by the entropy of the probability distribution function of the intensity values within

a local image region. In order to select the scale of the salient regions, magnitude of the

first degree derivative of the intensity probability distribution function with respect to scale

is calculated at entropy maxima. The scale-adapted saliency value for each region is then

computed as the product of the entropy and this scale space derivative. ,

2.1.3 Region Detectors

Unlike the previous two categories of local feature detectors, region detectors are used to

group those algorithms which are concerned with extraction of image regions. These methods

initially extract complex boundaries. These complex boundaries are later approximated with

a simple parametrized shape, namely ellipse, for efficiency in representation.

Intensity-based Regions (IBR) detect affine invariant regions around multi-scale intensity ex-

tremas [70, 78]. The region boundaries are then searched radially using rays emanating from

this center point. This search is guided with a function that is evaluated along the ray:
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Figure 2.7: Intensity-based Regions (IBR) Extraction [44]: I(t) is the image intensity along

rays, f (t) is the function whose extrema indicate boundary points (Equation 2.7).
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where t is the ray parameter and I(t) the image intensity at ray position t, I0 the intensity value

at the extremum, and d a small number which has been added to prevent division by zero. The

points along the rays are evaluated using this function and points where an extremum occurs

are selected as boundary points (Figure 2.7). The regions boundary is obtained by connecting

these points, where an extremum of function f (t) occurs. The resulting irregular region shape

is then replaced by an ellipse fitted to this random boundary.

Maximally Stable Extremal Regions (MSER) can be defined, in simple terms, as components,

which maintain their connectedness in the course of a series of thresholding operations [69].

The extremal term refers to another important property: All pixels that are inside a MSER

have either higher or lower intensity than all the pixels on its boundary. This property also

explains the determination of the region boundaries: Boundaries are selected in such a way

that the area of the MSER region is the least affected from changes of the image thresholding

parameter. Examples of regions obtained during this process is given in Figure 2.8

Some of the major automatic local feature detection methods that are widely used in the lit-

erature were presented in this section. According to the reported evaluation results [79, 46,

74, 71, 44, 62, 45, 80], local feature detectors which are only invariant against rotation and

translation (Harris, SUSAN, EBR) has the highest localization accuracy. However, these cor-

ner/edge detectors has a lower accuracy in scale estimation (Harris-Laplace, Edge-Laplace)
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Figure 2.8: Maximally Stable Extremal Regions (MSER) Example Detections [71]

due to the multi-scale nature of corners and edges. On the other hand, blob detectors have a

lower localization accuracy, but compensate this property by a higher scale estimation accu-

racy. Again, this is a direct consequence of the underlying blob pattern which is better local-

ized in scale space. Region detectors, such as MSER and IBR, are known for their robustness

under harsh viewpoint transformations over an angle of 30◦ that lead to affine distortions.

Under these types of extreme geometric deformations, affine invariant detectors are manda-

tory. However, under more constrained transformations their scale-invariant counterparts are

known to provide a better representation.

Local features are defined by both location and a related patch. Appearance descriptors that

are widely used in the literature for representing these patches are introduced in the next

section.

2.2 Local Feature Description and Comparison

The simplest way of describing local features that are represented by a small patch which is

defined by a position and scale is of course, directly using a vector of image intensities. These

vectors can then be compared by summing the squared differences (SSD) of descriptor vector

elements of the compared patches:
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S S D =
1

(2N + 1)2

N
∑

i=−N

N
∑

j=−N

(I1(x1 + i, y1 + j) − I2(x2 + i, y2 + j))2 (2.8)

where I1(x1, y1) and I2(x2, y2) represent the corresponding pixel locations in the compared

patches belonging to images I1 and I2, respectively. Patches are of size N by N for both

images. Small differences in SSD signals highly similar patches. However, the above com-

parison would fail to capture similarities between the projections of the same patch under

basic photometric transformations, such as simple lighting changes (I → I + b). This ef-

fect can be compansated by performing a normalized comparison using the mean of patch

intensity values via Mean Normalized SSD (NSSD):

NS S D =
1

(2N + 1)2

N
∑

i=−N

N
∑

j=−N

((I1(x1 + i, y1 + j) − µ1) − (I2(x2 + i, y2 + j) − µ2))2 (2.9)

where µ1 and µ2 are mean intensity values of the two patches. More complex photomet-

ric effects like affine photometric transformation (I → aI + b), requires more sophisticated

comparison normalized with both mean and variance of intensity values of patch pixels, cor-

responding to zero normalized sum of squared differences (ZNSSD):

ZNS S D =
1

(2N + 1)2

N
∑

i=−N

N
∑

j=−N

(

I1(x1 + i, y1 + j) − µ1

σ1

−
I2(x2 + i, y2 + j) − µ2

σ2

)2

(2.10)

where σ1 and σ2 are standard deviations of intensity values inside the two patches. These

comparison methods cope well with photometric transformations, when two patches are viewed

with exactly the same camera geometry. However, in real life, local features undergo a much

wider spectrum of transformations that lead to a drastic change in both appearance and geom-

etry of the local feature regions. In order to handle these transformations, various descriptors

possessing invariance against different subsets of photometric and geometric transformations

are proposed in the literature. This section is dedicated to a brief review of these description

methods.

The most common way of robustly describing the appearance characteristics of a local feature

is using a distribution based approach utilizing local histograms. The most prominent of these
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Figure 2.9: Scale Invariant Feature Transform (SIFT) (Left) Spatial Histogram of Gradients,

(Middle) Dynamically Scaled Histogram Spatial Grid, (Right) Gaussian Weighted Histogram

Support [81].

descriptions is the Scale Invariant Feature Transform (SIFT) [75]. It extracts a 3D spatial his-

togram of the image gradients. Gradients computed at each pixel is considered as a triplet

defined by its spatial location and orientation. These sampled triplets are then weighted by

the norm of their gradients and accumulated in the 3D histogram. During this accumulation,

location is quantized into a 4x4, grid while orientation is quantized into 8 orientation bins. In

order to provide invariance against translation, scaling and rotation, the location, spatial bin

size and grid orientation of the 3D histogram is determined dynamically according to local

feature location, detection scale and the dominant orientation of the local patch, respectively

(Figure 2.9). Its histogram-based nature, together with scale and orientation adaptation prop-

erties renders this descriptor robust against small geometric distortions and small localization

errors in the local feature detection step.

Geometric Histogram [82] and Shape Context [83] are two other histogram-based description

methods that are very similar to SIFT, except minor differences. They both compute equally

weighted 3D histograms of gradients based on edge points inside the patch region.

Gradient Location and Orientation Histogram (GLOH), as implied by the name, is another

gradient histogram based descriptor [46]. This descriptor extracts the gradient histogram

from a circular grid whose size is determined by the local feature scale. In addition, the

description quantizes orientation in a way slightly different than the SIFT descriptor. As

a final step, original 272-dimensional descriptor is projected to a 64-dimensional space via

Principal Component Analysis (PCA).

Histogram of Oriented Gradients (HoG) is among the modified variants of SIFT and is mainly

used in densely sampled grid of locations. It is known to perform well on pedestrian recogni-
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tion problem [84].

A rotation invariant extension of SIFT is called Rotation Invariant Feature Transform (RIFT).

This descriptor is equipped with invariance against rotation, instead of its rotation covariant

ancestor SIFT. As a result, the cost for dominant orientation calculation is subtracted from

extraction complexity, in the expense of reduced discriminative power.

Speeded Up Robust Features (SURF), is an optimized detector-descriptor pair, whose detector

is introduced in Section 2.1. SURF description is an approximation of SIFT description with

significant computational efficiency improvements. These improvements are achieved by us-

ing integral images for computing derivatives and using a lower number of spatial histogram

bins for gradients.

In contrast with the above approaches, spin images [85] adapted to 2D, provide a histogram

representation indexed based on intensity values and relative distances of the patch pixels from

the patch center [86]. The original 3D version of this descriptor is developed for recognition

of distinctive points inside range (depth) data.

Local Binary Patterns (LBP) is another method describing the local appearance using a dis-

tribution, with the difference representing binary relations between intensities of neighboring

pixels [87]. It computes an histogram based on binary ordering and relative comparisons of

pixel intensities. In this descriptor, relations extracted from predefined pixel locations inside

the local patch are encoded as a binary string. As expected, the reliability and distinctiveness

is proportional with the complexity and therefore dimension of the descriptor.

As an alternative to distribution-based local feature representations, techniques that describe

local frequency content can be utilized. However, capturing the small changes in frequency

and orientation inside typically small local feature regions requires a large number of basis

functions. Gabor filters and wavelets are prominent examples of frequency-based approaches

and mostly used in the area of texture recognition [88, 89].

Local feature neighborhoods can also be represented by a set of image derivatives computed

up to a predefined order. Local Jets [90], Steerable filters [91] and complex filters [92] are ex-

amples of methods in this category. These methods combine different derivative components

in order to achieve invariance against various transformations. Most of these methods employ

Gaussian approximations during their derivative computation step.
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Figure 2.10: Correspondence relation between two images of a 3D scene point [95].

Generalized Moment Invariants is another local feature description method, which is signif-

icantly different from histogram-based methods [93]. This description adapts the moment

invariants that are computed from binary images for shape recognition to the local feature

description area by defining the central moments as:

Ma
pq =

∫ ∫

Ω

xpyq[I(x, y)]adxdy (2.11)

where I(x, y) is the image intensity at position (x,y). This central moment defined by this

equation is computed on local region Ω, and with an order p + q and degree a.

According to the reported results [46, 94, 71, 62, 79], histogram-based descriptors that are

similar to the SIFT descriptor generally perform best on object recognition problems. This

performance is shown to be relatively independent from the variations in the prior local feature

detection step. Utilization of the local features and their descriptions in the context of object

recognition is investigated in the next section.

2.3 Local Feature Based Methods for Object Recognition

The goal of image matching ve recognition with local features is establishing correspondences

between two or more images. Correspondence is used in this context to represent the relation

between two image projections of the same 3D scene point (Figure 2.10).

The most basic and maybe influential application area of local feature-based correspondences

is wide-baseline matching. Utilization of local features matching in camera calibration, 3D

reconstruction, structure and motion estimation are all prominent examples belonging to this

area. The most distinctive character of the problems in this area is the confident prior knowl-
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Figure 2.11: A set of typical multi-view images that are used in wide baseline matching [98]

edge that the targeted semantic content, i.e. object, coexist in both images. This in turn,

means availability of true correspondences in large numbers. In addition, correspondences

and objects in typical images to be matched undergo only a limited set of transformations

and most of the content coexist in both of the images (Figure 2.11). Still, local feature-based

matching of images under these constraints is a valuable tool for commercial applications,

namely AutoStitch [96], and 3D modeling applications, such as [97].

Under the limited transformations of the wide-baseline matching area, generalization of un-

derlying object characteristics is of limited concern. On the other hand, for the area of object

class recognition or category detection, generalization of object characteristics constitutes the

core of the problem. Category level generalization need to account for variances resulting

from both intra class variance (Figure 2.12) and imaging condition variances (Figure 2.13) as

well as occlusion, truncations and background clutter (Figure 2.14).

Representing objects with a pictorial structure diagram is adopted as an intuitive approach to

the category detection problem, since it deals with all the variance issues that are mentioned
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Figure 2.12: Example images of “chair” object category [99]

Set of 

images

Figure 2.13: Imaging condition variations

29



Figure 2.14: Typical images of motorcycle category with occlusion and clutter [99]

above directly. Pictorial structure approach dates back to the research conducted in 1973 by

Fischler [100]. In this research, objects are modeled as having two separable components;

parts and structure (Figure 2.15). The term “parts” is used to represent 2D image fragments

defined by distinctive visual features. These visual features are presumably informative parts

that can be robustly extracted from images containing translated, rotated and scaled versions

of objects. “Structure”, on the other hand, is used to represent the complementary informa-

tion of collective part configuration. Approaches following the spring-like model of Fischler

[100], can be grouped under two main representations. These representations, namely fully

connected shape model and star shape model, differ in the way parts are related to each other

in defining the structure of the object category (Figure 2.16). Constellation model and implicit

shape model are famous examples of these categories.

Constellation model assumes a fully connected configuration of parts, which lead to a proba-

bilistic model of joint spatial distribution of parts [101]. This explicit structure model is com-

plemented with appearance based part detectors that determine position and scale of parts.

The training phase utilizes images alone using EM algorithm [103] for simultaneous learning

of parts and structure. Constellation model provides an abundance of elasticity that renders

the models adaptable to any object category, independent of the priority order between ap-

pearance and shape. However, constellation model contains many parameters that need to be

estimated and therefore, model complexity increases swiftly by the number of object parts

(O(NP)) where N is the number of parameters for s single part model and P is the number of

parts). As a result, this theoretically compelling model has practical issues hindering its wide

30



Figure 2.15: A Pictorial Structure Diagram illustration where springs represent the relations

between parts [100].

Figure 2.16: Comparison of Pictorial Models: (Left) Fully connected shape model (e.g.

Constellation model [101]), (Right) Star shape model (e.g. Implicit Shape Model [102])
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applicability to object categorization [100, 104, 105, 101].

On the other hand, Implicit Shape Model (ISM) is a simpler pictorial structure representation

that resembles a star-topology. In this model, the parts are modeled independently instead

of a complex joint distribution. They are connected to each other indirectly or implicitly

through the object center [102]. In the training phase, as the first step, a class specific local

feature appearance vocabulary is created in order to model the appearance variation among

the same object part instances. In the basic version of the implicit shape model method,

the next step is accumulating votes for a histogram of object position hypothesis in order

to utilize generalized Hough transform. The modes are searched in the hypothesis space and

verification of the hypothesis is performed by backprojection of maximum for final evaluation

[102]. In later versions of the model, as an intermediate step, object parts are defined as

frequent co-occurrences of similar local patches at close locations in order to generate less

ambiguous hypothesis. The model utilized in this approach is much more simpler to learn

and test, and still it works well for many object categories with some useful extensions [106,

107, 108].

The common part in the constellation and ISM approaches mentioned above is the detailed

utilization of spatial information.

There is another strand of research which decreases the priority of spatial information in order

to stay robust against configuration variances. On the other hand, robustness against variance

in imaging conditions is achieved via quantization of local appearance information in a way

similar to the ISM. An illustration of appearance quantization is given in Figure 2.17(a).

The widespread term for the list of quantized descriptors that are used to represent local

appearance is the visual codebook. Each member of the codebook is called a visual codeword.

These codewords, despite being illustrated in Figure 2.17(b) as being related to a prominent

semantic part, need not necessarily have a human understandable meaning. These codewords

are most often just a mere generalization of local appearance patterns that does not possess

a meaning by themselves. In order to map these local appearance patterns to a higher level

semantic entity like an object category, other generalizations are required.
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(a)

(b)

Figure 2.17: Codeword Examples [109]. (a) Patches corresponding to the same codeword

in a face detection problem, (b) Four groups of patches each corresponding to a seperate

codeword in a generic image set.

The vanguard of local feature based category detection approaches, which prioritize appear-

ance, is the Bag-of-Words paradigm. Bag-of-words (BoW) approach, in its most general form,

represents images by a word frequency histogram [110], which has its roots in text document

classification [111]. This frequency histogram is an accumulation of appearance statistics of

visual words in the image (Figure 2.18). In the literature, this method has been utilized with

variations in the appearance quantization, as well as the codeword assignment and histogram

calculation methods [112]. For creating the appearance codebook, K-Means is the most com-
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Figure 2.18: Visual Word (i.e. Codeword) Frequency Histogram [109].

mon approach with a lot of implementation variations [113]. Another widespread codebook

creation method is Gaussian Mixture Model (GMM), which enables additionally enables the

calculation of cluster membership likelihood for appearance descriptors [114]. After the cre-

ation of a visual codebook during the training stage, each local feature descriptor can be

assigned a single codeword, as in the hard assignment case [115, 116], or can be a weighted

member to multiple clusters, as in the soft assignment [117] The frequency histogram vector

is obtained by one of these clustering and assignment combinations, and is used as the image

representation for the following high level classification stage. In this stage, image represen-

tation vector is coupled with one of the histogram distance metrics, and used as input to a

classifier for training and classification [118, 119, 120]. SVMs are widely accepted as the

discriminative learning algorithm for histograms, due to the typical high dimensionality and

sparsity of the descriptions [108, 120].

BoW methods are robust against position and orientation of object in image, since they discard

the spatial information that is coupled with local features. They also have fixed description

length irrespective of the number of local features, which is a favorable property when work-

ing with classifiers. As a summary, BoW approach is quite successful in classifying images

according to the objects they contain. On the other hand, the lack of spatial information in

BoW hinders it from localizing objects within the image, as well as from exploiting configu-

ration of local features for reaching more specific categories of objects.

BoW model can be extended for better localization and dealing with the clutter problem, in

a way similar to the sliding window approach to object recognition [58]. This extension in-
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volves utilization of training data, in which the region of interest (ROI) of the object under

consideration is known. BoW histograms of training data is extracted specifically from these

ROIs, instead of the whole image. This approach, however, brings the requirement of ex-

tracting BoW descriptions of test images from the ROI of the objects to be detected. This

chicken-egg problem is solved by a multi-scale sliding windows approach. BoW histograms

are extracted from rectangular regions of varying sizes and positions in an image. Each of

these ROI based description vectors are then fed to the classifier trained by the ROI-based

training data [121]. Despite this ROI extension, the description still misses spatial informa-

tion that is existent in the configuration of local features.

Spatial information can be incorporated into BoW approach at a moderate level by utilizing

grid based approach for computing BoW histograms. In this approach, training images are

utilized in the same way as in the previous ROI based approach. Additionally, ROI is di-

vided into tiles using a spatial grid with an application specific resolution. Then, the BoW

histogram is additionally indexed using the tile index (Figure 2.19) or in other words, con-

catenate histograms of tiles [122]. As the resolution of the grid increases, the length of the

descriptor vector also increases. For instance, in case of a 2x2 grid, instead of a single length

D histogram, four length D histograms with a total descriptor length of 4D is extracted. Grid-

based descriptions of various resolutions can also be concatenated to obtain a representation

similar to the spatial pyramid approach (Figure 2.20) utilized in the area of scene classifica-

tion [123, 124]. It is also possible to assign larger weights to relatively complex, finer grid

spatial BoW histograms during the histogram comparison step. Local features brings an ad-

ditional invariance into the representation of objects by objectively and repeatably detecting

interesting regions. For an approach resembling sliding windows, however, extracting multi-

scale visual words on an overlapping dense grid also results in a plausible representation. The

only difference here, is the utilization of BoW histograms obtained from dense local descrip-

tors instead of sparse image fragments detected by local feature detectors. This extension of

BoWs, which increases sampling detail in the expense of invariance, is utilized frequently in

the literature [125, 115, 60, 122].

Object categorization methods were until recently only considering object region of interest

for modeling, and therefore, detection. However, some common detection errors in stan-

dard methods are considered as symptoms of not using contextual information (Figure 2.21).

Today, modern category detection methods are utilizing contextual information via scene de-
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Figure 2.19: Grid-based Bag-of-Words Approach [109]: First compute bag-of-words his-

tograms for each element of the spatial grid. Then, concatenate these independent histograms

into a single feature vector to form the representation.

Figure 2.20: Spatial Pyramid Representation [124, 126]
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Figure 2.21: Example object detector results without context: 1. chair, 2. table, 3. road, 4.

road, 5. table, 6. car, 7. keyboard [99].

scriptions, such as GIST [127], as a complementary information to local feature based models.

As an alternative to common supervised training approach, Malik introduced a different ap-

proach which involves utilization of low-level manually selected local features in a scheme

called Poselets [128, 129]. The aim of this approach is to alleviate the flawless generalization

problem by using strong supervision. Although, automatic local features are replaced with

manually marked keypoint locations, this approach stands out as a novel research direction

that may also be applied in the local features domain.

Between the two opposite poles of the local feature based object recognition application cat-

egories, namely wide-baseline matching and object category detection, stands the instance

level recognition area. The term instance level is used in the sense that images are searched

using a visual model database composed of instances (of object or scenes). Establishing cor-

respondences is a necessity similar to the wide baseline matching case, however, here this

goal is much more difficult to achieve due to the wider range of transformations that must be

coped with. In Figure 2.22, large changes in scale, viewpoint and lighting along with partial

occlusion are exemplified in a landmark recognition context.

At the current state of the art, most of the modern local feature-based methods that are devel-
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(a)

(b)

(c)

(d)

Figure 2.22: Common transformations in instance level recognition area (e.g. Landmark

recognition) [126]. (a) Scale, (b) Viewpoint, (c) Lighting, (d) Occlusion.
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Table 2.1: Time and memory requirements of nearest neighbor search for SIFT descriptors on

a typical PC with 2.0 GHz CPU

Number of images CPU Time Memory Requirement

N = 1 0.4 second 128 kB

N = 1000 7 min 100 MB

N = 10000 1 hour 7 min 1 GB

N = 107 115 days 1 TB

N = 1010 300 years 1 PB

oped for instance level recognition borrow a lot from wide baseline matching. In this match-

ing approach, after the local feature detection and description steps, tentative correspondences

based on the local descriptions of features are established individually (Figure 2.23), and then

they are verified using geometric constraints. In order to establish tentative correspondences,

one needs to solve a variant of the nearest neighbor search problem for all feature descriptor

vectors x j in the query image, among all the feature descriptors xi in model images, which

can be stated mathematically as

∀ j NN( j) = arg min
i
‖xi − x j‖ (2.12)

Figure 2.23: Tentative correspondence detection step using nearest neighbor search in the

representative SIFT descriptor space [126].

Solving this problem might be easy for a limited number of target images; however, as the

number of target images increase, time and memory requirements renders the task infeasible.

This fact is illustrated in Table 2.1, where time requirements for nearest neighbor comparison

of a query image with 1000 SIFT descriptors to another image on a single standart PC is used

as a reference for projection.

As it can be seen from Table 2.1, nearest-neighbor matching constitutes a significant com-
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Figure 2.24: Angle-based geometric consistency constraints. (Left) A database entry and its

p closest features, (Right) a match. Semi-local constraints: neighbors of the point have to

match and angles have to correspond [41].

putational bottleneck. The complexity of a single linear nearest neighbor search for a local

descriptor is O(K2ND) for a database with N images, each having K descriptors with a di-

mension of D. In the case of M model images this complexity becomes O(MK2ND). For

typical values of D, the complexity problem can only be mitigated by approximate methods

at the cost of an increase in failure rate. For approximate nearest neighbor search, hashing

or tree based indexing approaches, such as kd-tree [130] can be utilized. Modern implemen-

tations of these approaches include optimizations for speed, as well as reduced failure rate.

These implementations can be exemplified as Best-Bin First (BBF) [131], Approximate near-

est neighbor kd-tree [132], randomized kd-tree [133] and Locality-Sensitive Hashing [134].

Comparison of modern versions of these methods can be found in [133].

For recognition methods adopting the philosophy of wide baseline matching, the next step in

recognition is the verification of the tentative matches that are established in the previous step.

This is achieved via a variety of methods using semi-local and/or global geometric constraints.

Semi-local constraints are based on matches that are located in a limited spatial neighbor-

hood, while global geometry tries to fit a consistent relation between all of the matches. A

prominent example to semi-local constraints is based on consistency of angles between the

lines connecting a local feature to its nearest neighbors and their counterparts in the matched

image [41, 135]. This constraint is visually illustrated in Figure 2.24. Surface contiguity filter

[136] is another semi-local constraint, which is used to evaluate tentative local matches based

on their consistency as a spatially continuous group (Figure 2.25).

Global constraints can also be used to evaluate the tentative matches which are the result of
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Figure 2.25: Surface contiguity filter. The pattern of intersection between neighboring correct

region matches is preserved by transformations between the model and test images, since the

surface is contiguous and smooth. The filter evaluates this property by testing the conservation

of the area ratios [136].
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(a)

(b)

(c)

Figure 2.26: Transformation models for 2D Objects [126]. (a) Similarity Transformation

(Translation, rotation. scale), (b) Affine Transformation, (c) Projective Transformation.

the local descriptor based independent similarity search step. Methods adopting this approach

require the matches to be consistent with a single global geometric transformation. This

transformation, however should also be estimated from the tentative matches. This example

of the chicken-egg problem is generally solved by iterative methods. The type of the transform

depends on the geometry of the queried entity as well as the assumed viewing conditions. For

example, for a 2D entity, one of the three transformation models that are given in Figure 2.26

in increasing order of complexity, can be adopted. Note that each of these models can be

represented by a 3x3 matrix called homography in homogeneous coordinates. In more general

cases, where objects have 3D details, a more complex model can be used to define the one-way

relationship between the real objects and their projections (Figure 2.27). Methods designed

for 3D objects vary from that utilizing estimated 3D transformations for constructing 3D

models [97] to ones using epipolar lines [137] induced by the transformation.

Estimating the transformation between two projections of an object with a set of tentative

matches does not have a straightforward solution. This is due to the typically high ratio of
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Figure 2.27: Generic 3D Projection Model [126]

Figure 2.28: Line search in a point set using RANSAC [126]

erroneous matches (e.g. 90%) [75]. There are two main approaches to this problem, namely

Random Sample Consensus (RANSAC) and Hough Transform. RANSAC is a robust esti-

mation method [138] developed to deal with estimation problems in the presence of outliers.

It depends on a characteristic loop that first selects a random seed group of matches. Next,

a transformation is computed for this random group and then additional consistent matches,

namely inliers, are searched. At each turn of the loop, a new transformation is estimated and if

a transformation has enough inliers, it is refined via least squares estimation on its inliers. The

transformation that has the highest number of inliers is selected as the final one. This process

is illustrated in Figure 2.28. The most important parameter for RANSAC is the number of

random samples, and analysis related to this issue can be found in [139]. Various extensions

of this method for visual recognition applications also exist in the literature [140, 141].

The other widely accepted solution to global transform estimation problem is Generalized
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Hough Transform [142]. Original version of Hough Transform is developed for detecting

lines in a point cloud by searching for maxima in a line parameter voting space. Today, how-

ever, Hough transform is used at its generalized form where search space can be constructed

from any parametrized entity. Global transformation estimation is an example to parametrized

search spaces, where Hough transform is applicable. In the local feature based recognition

area, Hough transforms most famous application is for estimating consistent matches among

matches established using SIFT descriptor [75]. In this application, a planar affine transfor-

mation with six parameters is assumed between the matched images. Four parameters of

this transformation, namely, scale, rotation, x and y translations are used as quantized di-

mensions of the voting space. Each tentative matching pair of scale and rotation invariant

local features indicates an alignment hypothesis represented in these four parameters. These

hypothesis are each allowed to cast votes to its eight closest bins in this coarsely quantized

4-dimensional voting space. Modes, or in other words, highly voted bins in the voting space,

are then used for estimation of an affine transformation with six unknowns. These transforma-

tion estimates, which are further refined using inliers, constitute candidates for groups of final

consistent matches. Hough transform and its extensions are utilized in many object recogni-

tion applications [75, 143, 102, 106, 144, 145], for extracting groupings from clutter in linear

time.

Local features are equipped with different levels of invariance as explained in Section 2.1.

Additionally, in most of the time, level of invariance is increased in the description phase via

using appropriate descriptors (Section 2.2). The methods that adopt the classical approach,

highly depend on the success of the initial matching of local descriptions. This matching

operation, however, can be unacceptably expensive for target archives containing colossal

numbers of description vectors (Table 2.1). Additionally, even this expensive operation can

generate only tentative and mostly erroneous matches in typical cases [75]. This is due to the

level of invariance incorporated into the descriptions, which already have reduced amounts of

discriminative power due to the small sizes of their support regions. These methods, then try

to filter the contaminated matching data using methods, like RANSAC or Hough Transform.

The methods that can utilize spatial information in the early matching phase of the local

features have a significant advantage over brute force NN methods. They can avoid losing true

matches during the early and unreliable NN matching phase, and they can utilize quantized

descriptors for appearance consistency. One of the scarce methods, which incorporate spatial
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information to the matching phase of local descriptions that is implemented by Quack et al

sets a good example for novel methods of this kind [146, 147]. This method utilizes quantized

appearance descriptors of local features by assigning them to a visual codebook. Next, each

local feature is described in terms of the codewords of its neighbors. The novelty in this

method is the addition of coarse relative location information to the codeword. Each local

feature is described by a grid of predefined structure and size adaptive to its detected scale.

The visual codewords of local features detected in this grid contribute to the binary codeword

existence vector of the corresponding tile (Figure 2.29).

Binary descriptions of training data are analyzed using the apriori method [148], which is

originally applied in the market basket analysis for finding associations among items. This

way, frequent itemset configurations that are highly correlated with the concept under analysis

are mined in the training set. These frequent itemset are then used in a weighted manner as

cues of object presence in test images.

In this thesis, our approach to the object recognition problem is similar. Instead of trying to

tweak the parameters and details of the current classical methods or using clever NN search

and quantization methods, we try to incorporate the geometric invariance literature to the

recent object recognition research that makes widespread use of local features. In this errand,

we keep in mind that new methods need some time for becoming mature enough for practical

large scale applications and hold on to the saying by Jitendra Malik [126]:

We can’t go to the moon building larger and larger ladders. And we will have to

live with the fact that new methods work less good in the beginning.

We strongly believe that geometric invariants of local feature configurations that we will in-

troduce in the next chapter can be used in mining strong cues of object presence in clutter.

However, in order to exploit them, their integration with local appearance descriptions in a

plausible way is required. This way, we may avoid solving the problem of correctly matching

patches of objects and therefore finding correspondences based solely on local appearance

information. In fact, this problem is much harder than the higher level problem of matching

an object as a whole.

Our method utilizes some geometric invariants [149, 38, 150] to define groups of local fea-

tures geometrically. Local appearance descriptions are also utilized in their basic forms along

45



(a)

(b)

Figure 2.29: Frequent Itemsets in object recognition [146, 147] (a) (Left) An example neigh-

borhood with 9 tiles and 10 appearance clusters. Circles represent local features, and num-

bersindicate the appearance cluster(s) they are assigned to, (Center) Activation vector, (Right)

Transaction, (b) Example of mined rules: (Left) A frequent configuration that is used to infer

background, (Right) A configuration that is used to infer the object motorbike.
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with simple quantization methods. The detailed optimization of quantization process is de-

liberately left out in order to assess the power of the proposed methods. In this manner, ge-

ometric descriptions are combined with appearance descriptions that are only suboptimal in

terms of discriminative power between local patches. Detailed descriptions of these methods

are examined in the following chapters and the results of simulations are also presented.
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CHAPTER 3

INVARIANT GEOMETRIC RELATIONS AMONG LOCAL

FEATURES

In this chapter, representation of 3D and 2D point coordinates in terms of homogeneous co-

ordinates are first introduced. Next, hierarchies of 3D to 3D and 2D to 2D transformations

related to this representations are analyzed. Camera models for approximating the 3D to 2D

projection phenomenon and their relation to the transformations introduced in Section 3.1.2

are explained in Section 3.2. Geometric invariants of two types of representations, namely

perspective and weak-perspective models, and related transformations, namely projective and

affine space/transformations are introduced in the last section.

3.1 Elements of Geometric Coordinate Representations

In this chapter, the hierarchies of transformations (Section 3.1.2) and their relations to cam-

era projection models (Section 3.2) are explained. In order to establish these relations, a

consistent interpretation for measuring image coordinates and the position and orientation

of geometric entities in an arbitrary coordinate system is required. This requirement is ful-

filled in Section 3.1.1 by constructing a consistent set of coordinate representations for point

coordinates in 3D and 2D.

In Section 3.3, invariants of transformations that take place in and between these coordinate

systems are analyzed in detail. These invariants construct the basis for geometric descriptions

that are proposed in Chapter 4.

48



Figure 3.1: Right-handed Coordinate Frame Orientation [95]

(a) (b)

Figure 3.2: Coordinates of a point P in Cartesian coordinates [95]. (a) 2D Cartesian coordi-

nates, (b) 3D Cartesian coordinates.

3.1.1 Homogeneous Coordinates

A three-dimensional orthonormal coordinate frame (F) can be defined by a point O in the

physical three-dimensional Euclidean space E3 and three unit vectors i, j, and k that are

orthogonal to each other to be interpreted as origin and basis vectors respectively. Although,

there are different conventions, the most common is the right-handed coordinate system which

is illustrated in Figure 3.1.

Coordinates of a point P in 3D is then defined in this coordinate frame as x,y, and z, which

correspond to the lengths of orthogonal projections of the vector ~OP onto the vectors i, j, and

k, respectively. This fact is illustrated in Figure 3.2 for both 2D and 3D cases. The coordinates
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of a point 3D can be represented as:
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
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Similarly, coordinates p of a point in 2D can be defined as illustrated in Figure 3.2:
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Homogeneous coordinates, on the other hand, represent points in a way that is especially

useful in projective geometry which will be further discussed in the following sections. In ho-

mogeneous coordinates, the coordinate vector of a 3D point P in the same coordinate system

(F) that is used above can be written as:

~P =
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(3.3)

by adding a fourth coordinate equal to 1 to the ordinary coordinate vector of P given in

Equation (3.1). In homogeneous coordinates, a point P can only be defined up to scale since

multiplying the coordinate vector in Equation (3.3) by a non-zero constant does not change

the physical point that is referred by the coordinates (i.e. P). In order to go back from

homogeneous coordinates to inhomogeneous coordinates, it is only required to divide the

elements of the homogeneous coordinate vector by the fourth element and therefore normalize

the fourth coordinate to one. In two-dimensional space, point coordinates can be represented

in homogeneous coordinates similarly:

~p =
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(3.4)

Although, the need for the homogeneous representation may not be clear at this point, it

becomes vivid clear as soon as one needs to discriminate between affine and projective sub-

spaces. This case is explained in the following sections.
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3.1.2 Hierarchies of Transformations

Transformation models introduced in this section are characterized by their degree of free-

dom. These transformations are introduced by starting from the most constrained one and

moving towards higher degrees of freedom. This variance in the degree of freedom, changes

the properties that characterize the underlying transformations and subspaces. These charac-

teristic properties remain unchanged under the related transformations and are closely related

to the geometrical invariants that will be analytically derived in Section 3.3.

3.1.2.1 Transformation Models in Planar Case

The first subset of transformations of interest are transformations that take place in two-

dimensions, namely, a plane. In two-dimensional space, a point P can be represented by a

pair of coordinates (Equation 3.2), or alternatively, in homogeneous coordinates (Equation

3.4). The most general case of transformations in 2D, which is also called a projectivity can

be defined as follows [95]:

Theorem 3.1.1 A mapping h : P
2 → P

2 is a projectivity, if and only if there exists a non-

singular 3 × 3 matrix H such that for any point in P
2 represented by a vector ~x it is true that

h(~x) = H~x, where P
2 represents 2D projective space.

This relation interprets the homogeneous vector ~x as any point in P
2 and H~x as a linear

mapping of homogeneous coordinates. The proof of this theorem can be found in [95] and

will not be provided here. However, its results enable an alternative definition of the projective

transformation as follows [95].

Definition 3.1.2 A planar projective transformation is a linear transformation on homoge-

neous 3-vectors represented by a non-singular 3 × 3 matrix:
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or more briefly, ~x′ = H~x.
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The most important thing about this definition is that the matrix H in Equation (3.5) may be

changed by scaled by an arbitrary non-zero constant without changing the function of the pro-

jective transformation on the homogeneous coordinate vectors. As a result, one can say that H

is a homogeneous matrix, since as in the representation of points in homogeneous coordinates

(Equation 3.4), only the ratio of the matrix elements is important. There are eight independent

ratios relating the elements of matrix H, and therefore, a projective transformation in 2D has

eight degrees of freedom. A projective transformation in 2D, maps points from one plane to

the other. However, it is useful to describe some specializations of projective transformation

that model important phenomenon in the planar geometry.

There are four important categories of planar projective transformations, namely Euclidean,

similarity, affine and the general projective transformations. Human language interpretations

of the invariant properties valid for each of these categories are also important for a better

understanding of these transformations. An Euclidean transformation can be represented as:
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where θ represents the angle of rotation and (tx, ty) represent translations in two axis direc-

tions. In a more easily interpretable way, Euclidean transformation can be rewritten as:
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(3.7)

where R is a 2×2 rotation matrix and~t represents the translation on the plane. The most impor-

tant property of transformations in the Euclidean category is their preservation of Euclidean

distance. As a result, the Euclidean distance between two points transformed by a transfor-

mation of this category is invariant, and therefore, preserved in the transformed coordinate

system.

A more general category of transformations in planar geometry is similarity transformation.

It is an Euclidean transformation extended by scaling. This can be easily illustrated using the

simplified notation in Equation (3.7):

52



(

~x′
)

=





















sR ~t

~0T 1





















(

~x

)

(3.8)

where the scalar s represents the scaling. A planar similarity transformation preserves the

shape. In other words, similarity transformation preserves the ratios between the distances

amongst points, although it changes the distance itself.

The categories of transformations that we have analyzed so far represent physical transfor-

mations that can be applied to entities without distorting their shapes like rotation, translation

and scaling. The following two transformations, however, represent distortions that arise from

more complex and hard-to-interpret operations.

Affine transformations, or in short affinities, can be represented by a more general block

matrix form:
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(3.9)

where the only requirement on A is being a non-singular 2 × 2 matrix. Distortions arising

from an affine transformation can be better understood by a more intuitive representation:

A = R(θ)R(−φ)DR(φ) (3.10)

where R(θ) and R(φ) represent rotations and D represent a diagonal matrix which performs

scaling with respect to an intermediate orthogonal coordinate frame. The effect of an affine

transformation is illustrated in Figure 3.3.

The geometrical properties that remain invariant under affine transformation are parallelism,

ratio of lengths of parallel line segments and ratio of areas. The latter invariant property is

closely related to the invariant algebraic descriptions in Section 3.3.

In its most general form, or with highest degrees of freedom, projective transformations can

be represented as:
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The most important property of projective transformations is that they do not preserve par-

allelism, i.e. two parallel lines represented in one planar projective coordinate frame may

be intersecting in the transformed frame. In fact, in the projective space, two lines that are

parallel are assumed to intersect at points called ideal points. These points represent points

at infinity and are used to illustrate the abstract fact that in projective space every line pair in-

tersects at least one point. With this augmented definition, we can say that general projective

transform preserves incidence relations like the order of intersection between lines.

The general unconstrained projective transformations, as previously stated, has eight degrees

of freedom. The other categories of transformations namely, affine, similarity and Euclidean

have six, four and three degrees of freedom, respectively. The number of degrees of freedom

is directly related to the number of numerical invariants of a transformation. The hierarchy of

planar transformations are illustrated visually in Figure 3.3.

3.1.2.2 Transformation Models in 3D Case

Points in 3D space are represented in homogeneous coordinates using a four dimensional

vector as previously stated in Section 3.1.1. Similar to the planar case (Equation 3.5), a

projective transformation in P
3 can be represented as a linear transformation on homogeneous

four dimensional vectors, which is defined by a 4 × 4 matrix:
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This definition can be simplified as, ~x′ = H~x where H is a 4 × 4 non-singular matrix. This

matrix acting on 4-vectors is homogeneous, as the vectors it acts upon, and therefore, has 15

degrees of freedom corresponding to the number of independent ratios amongst its elements.

There are four important categories of projective transformation of 3-space or 3D points.
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Figure 3.3: Hierarchy of Planar (2D) Transformations. Bottom-to-top: Euclidean, Similarity,

Affine, Projective.
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These are analogous to their planar counterparts, and therefore, can be represented by similar

characteristic matrices. An Euclidean transformation in 3D is represented by the following

equation:

(

~x′
)

=


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where R represents a 3 × 3 rotation matrix, and ~t represents a 3 × 1 translation vector.

Similarity transform that is a scale augmented version of Euclidean is represented by:
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where s represents a constant scalar for uniform scaling.

Non-uniform scaling characterizes the affine transform, which can be represented as:
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where A represents any 3 × 3 non-singular matrix without any other constraints.

Lastly, the superset of all the preceding transformations, general projective transformation is

represented by:

(
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(3.16)

where ~v is a 3 × 1 vector representing perspective distortion effects that characterizes this

category.

The effects of the four categories of transformations are illustrated visually in Figure 3.4
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(a) (b)

(c) (d)

Figure 3.4: Hierarchy of 3D Transformations. (a) Projective, (b) Affine, (c) Similarity, (d)

Euclidean [95].

3.2 Geometric Camera Models and Constraints on Approximations

Camera models are used to represent the mapping from 3D space to its 2D image. Although

3D world is assumed to stay the same during projection, each set of camera parameters rep-

resenting various aspects of projection, such as position, principal axis direction and angle

between the imaging plane axis results in a different 2D image. Since our major goal is to

use invariants of a subset of transformations, we assume the camera model that suits our

assumptions.

3.2.1 Perspective Camera Model

The most simple camera model is the pinhole camera, which is illustrated visually in Figure

3.5.

According to the pinhole camera model a general perspective camera model can be repre-

sented mathematically as:

~x = P~X (3.17)

where P represents the 3 × 4 camera projection matrix from a world point represented by a

homogeneous 4-vector ~X = (X, Y, Z, 1)T , to an image point represented by a homogeneous

3-vector ~x.

In a simplified pinhole camera model (Figure 3.5), where the camera center is assumed to be
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Figure 3.5: The Pinhole Camera Model. C is the camera center and p is the principal point.

The camera center and the coordinate system origin coincide. Image plane is placed in front

of the camera [95].

located at a distance f from the origin of the image plane, whose axis correspond with the

camera coordinate frame and the principal axis of the camera aligned with the z-axis can be

defined as:

P =
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In order to stress camera projection model assumptions the projection matrix P can be ex-

pressed in a more intuitive form that is:

P = K
[

I | ~0
]

(3.19)

where K is called the camera calibration matrix representing the internal parameters of the

camera, and I is a 3 × 3 identity matrix. Camera calibration matrix here is defined as:
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In a typical finite projective camera, this matrix is defined as follows [95]:
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where αx and αy represent the Charge Coupled Device (CCD) pixel sizes, s represent the

skew parameter modeling non-orthogonality of the camera axis, and (x0, y0) represents the

offset between the principal point and the origin of the imaging plane. In addition, this matrix

should be non-singular in order for the camera to be finite.

External parameters of a camera are represented by a matrix that substitutes the augmented

matrix
[

I | ~0
]

in Equation (3.19). This matrix represents the coordinate system change be-

tween the world coordinate frame and the camera coordinate frame; in other words, the view-

point of the camera. Including this matrix, the finite projection matrix is defined as:

P = K
[

R | ~t
]

(3.22)

where R represents the world coordinate frame orientation with respect to the camera coordi-

nate frame and ~t represents the world coordinate frame origin in the camera coordinate frame

as ~t = −R ~̃C.

In a finite camera projection, perspective effects that are modeled by a projective transfor-

mation in 3D (Section 3.1.2.2) and 2D (Section 3.1.2.1) are typically observed. The most

common effect is the mapping of parallel world lines to converging lines in the image (Figure

3.6).
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H3P (3.23)

where H2P and H3P are 3× 3 and 4× 4 projective transformation matrices representing trans-

formations in 2D and 3D, respectively.

The most prominent effect of a finite projection camera is the perspective effect. Imaging

process under the conditions, where the distance of world points from the camera creates

dominant effects on the resultant images are therefore frequently called as perspective projec-

tion.
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(a) (b)

Figure 3.6: Effects of perspective distortion. (a) Orthogonal view of floor tiles, (b) Floor tiles

image obtained with perspective projection [95].

3.2.2 Weak-Perspective Camera Model

The finite projective camera model, which models the typical projection process without any

assumptions is defined in Section 3.2.1. Although this model is useful with a wider variety of

imaging conditions, there are some significant simplifications that may be applied in special

cases. One of the most useful of these simplifications is the weak-perspective camera model.

As its name indicates, weak-perspective camera model approximates the subset of projection

conditions under which perspective effects diminish. An example of imaging conditions,

where the weak-perpective model provides a good approximation, is illustrated in Figure 3.7.

Weak-perspective model approximation errors diminish, and the model gives results that are

close to the finite projective model under these 3 factors:

• Increasing focal length f of the camera

• Negligible depth relief (δ) in the scene when compared to the average distance of the

scene from the camera (d0)

• Smaller distance of the imaged point from the image center

The error experienced when using a weak-perspective camera can be best illustrated visually

as in Figure 3.8.

The weak-perspective projection model is represented by the following projection matrix

which is to be substituted in Equation (3.17):
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perspective weak perspective
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Figure 3.7: Imaging conditions where weak-perspective model is valid. From left to right,

camera focal length and average scene distance from the camera increases. Note the re-

emergence of parallelism [95].

C

X

df 0

∆

perspective
weak

perspective

Figure 3.8: Error experienced when using a weak-perspective camera. d0 is the average scene

depth, C is the camera center, f is the focal length, X is the projected point, and ∆ represents

the depth relief of point X from the average scene depth [95].

61



P =





































αx

αy

1









































































~r1
T

t1

~r2
T

t2

~0T 1





































(3.24)

Weak-perspective projection is a special case of the abstract affine projection model and can

be represented in terms of its affine components. This can be performed by rewriting the

weak-perspective projection matrix in terms of a 2D to 2D affine transformation, a projection

from 3D to 2D and a 3D to 3D affine transformation:

P = H2A
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where H2A and H3A are 3 × 3 and 4 × 4 affine transformation matrices representing transfor-

mation in 2D and 3D, respectively.

The main difference between the weak-perspective and perspective projection models is the

relative insensitivity of the former model to the intra-scene depth differences as illustrated in

Figure 3.8.

3.3 Geometric Invariants of Local Feature Groups

Geometric invariants are properties that are specific to the underlying structure of an object

or scene in the real world, and therefore, can be measured invariably under different viewing

conditions. The invariants are characterized by two properties [149]. The first property is the

dimensionality of the underlying object structure. 2D (or planar) objects can be characterized

by 2D invariants, while 3D objects can be represented by 3D invariants. The second property

is the level of invariance. Invariants are designed according to the requirements of the prob-

lem they are designed to solve. For instance, objects that undergo projective transformations

need to be defined in terms of projective invariants, while for the objects that undergo affine

transformations, affine invariants suffice.

Although invariants of more general types of transformations are also invariant under subsets

of these transformations (i.e. Projective invariants are also invariant against affine transforma-

62



tions), considering the right level of invariance is still important. This is due to the increasing

complexity and support size of the invariant calculations. Invariants that are robust against

more generic types of transformations are defined in higher degree terms, and therefore, more

fragile in the presence of errors in these terms. In addition, higher level of invariance is

achieved only by increasing the support size, in other words, the amount of data required to

compute the invariant.

This chapter first introduces invariants of 2D structures under affine and projective trans-

formations in Section 3.3.1. Next, invariants of 3D structures under affine and projective

transformations are introduced in Section 3.3.2. These invariants constitute the basis for local

feature based geometric descriptions that are developed in Chapter 4 and Chapter 5.

3.3.1 Invariants of 2D to 2D Transformations

In this section, invariants representing geometric characteristics of 2D or planar objects are

explained. Two types of invariance, namely affine and projective are analyzed, due to their

frequent occurrence in common problems.

3.3.1.1 Affine 2D Invariants - Barycentric Coordinates

In order to explain affine invariants, it is a prerequisite to explain the vector space in which

they exist. In this context, we are interested in objects that exist on a plane. A plane is a

subspace, which can be defined in terms of three noncollinear points. For instance, consider

three points A, B and C in R3 affine space. These points define the plane S (A, B,C), in

which any point can be uniquely defined in terms of the coordinates of points A, B and C.

The coordinates of these points can be defined in terms of two vectors ~u1 and ~u2, which

correspond to ~AB and ~AC, respectively. These affine coordinates are actually a generalization

of Euclidean coordinates where basis vectors ~u1 and ~u2 must be orthonormal [151]. Affine

coordinates are also called barycentric coordinates in the literature [151].

Barycentric coordinates can also be interpreted in a more intuitive way using invariance of

area ratios under affine transformation (Section 3.1.2.1). In this interpretation, Barycentric

coordinates are represented in terms of a triangular representation (Figure 3.9)
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Figure 3.9: Barycentric coordinates visualization. P : the point whose Barycentric coordi-

nates are computed; A, B,C : the basis points

α =
△PBC

△ABC
β =
△PCA

△ABC
γ =
△PAB

△ABC
(3.26)

where δ denotes the area of the triangle. The number of degrees of freedom in 2D affine

transformation is six (Section 3.1.2.1), and therefore the number of invariants that can be

obtained by the four points (P, A, B,C) can be computed as:

Number o f Invariants = 2 × 4 − 6 = 2 (3.27)

Indeed, barycentric coordinates of a 3-point basis in 2D actually has 2 independent compo-

nents due to the constraint that α+ β+ γ = 1, which is obvious from the intuitive triangle area

ratio example in Figure 3.9.

Distance between two barycentric coordinates, ~x and ~y of dimension 3 can be computed by

the following metric, whose result is normalized to [0.0, 2.0]:

d =

∣

∣

∣~x − ~y
∣

∣

∣

max(|~x|, |~y|)
(3.28)

where | · | represents Euclidean (L2) norm.

Change in barycentric coordinates for a typical four point configuration is given in Fig. 3.10.

Simulation coordinates of the 2D points, A, B, C and P that are previously illustrated in

Fig. 3.9 are given in Table 3.1. In order to analyze the change of the barycentric coordinate

distance with respect to the error in point coordinates, x and y coordinates of point P are

simultaneously perturbed in the range [−1.0, 1.0].
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Figure 3.10: Effect of 2D coordinate error on barycentric coordinates for a typical four point

configuration A, B, C and P, whose coordinates are given in Table 3.1. x and y coordinates of

point P is perturbed in the range [−1.0,+1.0] and barycentric distance of the new configura-

tion to the original one is computed.
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Table 3.1: Coordinates of four 2D points used for barycentric coordinate distance simulation

2D Coordinates of Simulation Points

A B C P ∆P

x 0 -1 1 0 [-1.0, +1.0]

y 1 0 0 0.5 [-1.0, +1.0]

3.3.1.2 Projective 2D Invariants

Projective invariants are an extended version of affine invariants, which is robust against a

larger category of transformations, that have 8 degrees of freedom. Therefore, their definition

requires more than four points, which is the requirement for 2D affine invariants. Indeed 2D

projective invariants require a 4 point basis to define invariant coordinates of the fifth point in

terms of them to obtain 2 × 5 − 8 = 2 invariants.

Determinants are relative invariants of both projective and affine transformations. Using this

fact, we define invariants in terms of the cross ratios of these determinants. Affine invariants

that are derived in the previous section (Section 3.3.1.1) can also be defined in a similar

manner, but using ratios of determinants instead of their cross ratios.

Any three of five points in 2D space that are represented in homogeneous coordinates can form

a determinant. In addition, determinant of a matrix multiplication also have the following

algebraic property (see Appendix A):

|T M| = |T | |M| (3.29)

Using the above algebraic property, we can prove that cross ratios of determinants formed

by five points a, b, c, d, e and their transformed versions A, B,C,D, E, which are obtained by

applying a 3 × 3 projective transformation T , are invariant. In Equation (3.30), determinants

|ACD| , |ADE| , |ABD| and |ACE| are computed from matrices formed by three transformed

points, while |acd| , |ade| , |abd| and |ace| are computed from the matrices formed by original

2D points.

|ACD| |ADE|

|ABD| |ACE|
=
|acd| |ade|

|abd| |ace|
(3.30)

There are other arrangements of determinants, from which a total of two are independent for
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a set of five points. These invariants exist only for five points, no two of which are the same

and no three of which are collinear [151].

3.3.2 Invariants of 3D to 3D Transformations

Any point in 3D coordinates represented by a 4-vector can be defined as a linear combination

of four other points as [149]:

~X5 = a ~X1 + b ~X2 + c ~X3 + d ~X4 (3.31)

In this representation, the coefficients (a, b, c, d) are unique for affine space, while they can

be multiplied by an arbitrary factor in the projective space. Invariants under two different

categories of transformations in 3D are therefore obtained using different formulations.

3.3.2.1 Affine 3D Invariants

Any point in 3D coordinates represented by a 4-vector can be defined uniquely as a linear

combination of four other points as in Equation (3.31). Similarly, determinants that are rela-

tive invariants of affine and projective transformations are utilized to obtain affine invariants.

It is proved in [149] that three of these affine invariants are independent, and they can be

computed using determinants, which are also relative invariants of projective transformations.

In order to do so, denote determinant of the 4 × 4 matrix formed by an ordered quadruple of

3D point coordinates, as Mi. For instance, determinant of the matrix formed by the first four

points, ( ~X1, ~X2, ~X3, ~X4), can be defined as:

M5 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(3.32)

Using this determinant definition, 3D affine invariants of five points can be obtained as:

I1 =
M1

M5

, I2 =
M2

M5

, I3 =
M3

M5

(3.33)

Proof of these invariant definitions can be found in Appendix A.
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3.3.2.2 Projective 3D Invariants

Points in projective 3-space, which are represented by homogeneous coordinates can not be

uniquely defined by Equation (3.31). Instead, the coordinates (a, b, c, d) can be multiplied by

an arbitrary non-zero factor, still satisfying the equation. Therefore, this factor need to be

eliminated in order to obtain projective 3D invariants.

In order to obtain invariants, at least six points are needed according to the number of invari-

ants calculation (3×6−15 = 3). Invariants of six points are derived following the calculations

in Equation (3.33) for points ~X5 and ~X6 and using cross ratios to eliminate the constant factors.

Points ~X5 and ~X6 are defined in the same way as affine case:

λ5
~X5 = aλ1

~X1 + bλ2
~X2 + cλ3

~X3 + dλ4
~X4 (3.34)

λ6
~X6 = a′λ1

~X1 + b′λ2
~X2 + c′λ3

~X3 + d′λ4
~X4 (3.35)

Two sets of unknowns a
λ1

λ5
, · · · d λ4

λ5
and a′

λ1

λ6
, · · · d′ λ4

λ6
exist in two sets of four equations. We

can eliminate the λi in the equations above by using cross ratios of determinants Mi, and

obtain three projective invariants using coordinates of points ~X5 and ~X6 as:

I1 =
ab′

a′b
=

M1M′
2

M′
1
M2

, I2 =
ac′

a′c
=

M1M′
3

M′
1
M3

, I3 =
ad′

a′d
=

M1M′
4

M′
1
M4

(3.36)

M′
i

terms (based on the definition in Equation (3.32) in the above equation represent determi-

nants of quadruples from the point set ( ~X1, ~X2, ~X3, ~X4, ~X6), instead of ( ~X1, ~X2, ~X3, ~X4, ~X5) [149].

3.3.3 Invariants of 3D to 2D Transformations

This type of transformation is also known as projection, and is already analyzed in Section

3.2. In projection from 3D to 2D, the depth information is lost. This loss of information

inhibits the development of invariants of a projection, even though 3D to 3D invariants and

2D to 2D invariants do not have this problem. The fact that no geometric invariants exist for

a projection from 3D to 2D has been proved by Burns et. al in [36].
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CHAPTER 4

JOINT UTILIZATION OF APPEARANCE AND GEOMETRY

FOR PLANAR OBJECT RECOGNITION

In this chapter, a novel approach that is based on utilizing the competence of interest point de-

tectors to capture primitives and the capability of geometric invariants to discriminate between

spatial configurations of these primitives is presented. In the proposed approach, geometric

constraints are enforced by means of 2D affine geometric invariants. These invariants are

utilized as a geometric description of a group of interest points. Using this description, local

appearance descriptor based potential matches are filtered and evaluated according to their

geometric description as a group. All three novel methods that are introduced in this chapter

share this common philosophy.

Main components of these methods are comparatively summarized in Table 4.1. A prominent

and widespread approach by Lowe [75] that is also included in this table, is implemented and

utilized as a reference for experimental evaluation of the proposed methods of this chapter.

This baseline method is explained in detail in Algorithm 4.1.

The first part of this chapter, Section 4.1, describes the application of this hybrid local feature

configuration representation scheme to one-to-one image matching. This method combines

local feature appearances described by SIFT descriptor with the geometric invariants of 2D

affine transformation, also known as barycentric coordinates (Section 3.3.1.1). The main aim

of the method is to achieve correspondences between different views of semantically relevant

partially planar objects and assess the performance of the overall approach in a constrained

environment. The details of this one-to-one matching method is given in Section 4.1.2. Sim-

ulations of this method are performed on a constrained dataset containing partially planar

objects. Experimental results presented in Section 4.1.3 show the robustness of the joint rep-
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Table 4.1: Main Components of Planar Object Recognition Methods

Appearance Matching Geometric Verification Applicability

Hough-based DoG & SIFT Hough Trans. Clust. Planar Objects

(Alg. 4.1) [75] (Section 2.1.2 & 2.2) 2D Aff. Trans. Est. Single instance only

Best Match Only (Algorithm 4.1) Limited appearance

distortion

Proposed SURF & SIFT Barycentric Coords. Planar Objects

Method 1 (Section 2.1.2 & 2.2) (Section 3.3.1.1) Multiple instances

(Sec. 4.1) Potential Match Moderate appearance

List distortion

Limited scale

changes

Proposed DoG & SIFT Barycentric Coords. Planar Objects

Method 2 (Section 2.1.2 & 2.2) (Section 3.3.1.1) Multiple instances

(Sec. 4.2) Quant. Appearance. Significant appearance

(Visual Codebook) distortion

Limited scale

changes

Proposed DoG & SIFT Barycentric Coords. Planar Objects

Method 3 (Section 2.1.2 & 2.2) (Section 3.3.1.1) Multiple instances

(Sec. 4.3) Quant. Appearance Significance-based Significant appearance

(Visual Codebook) Grouping . distortion

via BG Density Est. Significant scale

(Section 4.3.2.2) changes

resentation and the matching method against appearance variations, which severely degrade

the performance of local appearance descriptions extracted from small patches. This one-to-

one matching approach has been published in [47].

The second part of this chapter, Section 4.2, presents another method, which extends the pre-

liminary work described in Section 4.1 in various ways. First, we replace the initial full de-

scriptor vector-based appearance description stage with vector quantized visual words. Next,

geometrical descriptions that are based on multiple small groups of points, quads, are intro-

duced. Third, the extended method is applied to a realistic unconstrained dataset that is created

for natural scene logo detection. The components of this template based detection method is

explained in Section 4.2.2. In the light of the experiments presented in Section 4.2.3, it is ob-

served that the proposed method provides a robust way to achieve template matching within

datasets with harsh appearance variations. This method and its experimental evaluations has

appeared in [48].
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In Section 4.3, an evolved version of the method described in Section 4.2 is presented. This

method, while inheriting most of the strengths of the previous, introduces a novel scheme

for ameliorating the grouping problem in high clutter and large changes in scale. Detailed

description of this method is introduced in Section 4.3.2. Additionally, this method is eval-

uated on a much larger dataset that is formed using data from another experimental dataset

[152]. Experimental results presented in Section 4.3.3, supported the positive effect of the

novel extension on the previous sections robust method, while generalizing the results to a

more challenging dataset.
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Algorithm 4.1 2D Affine Transform Estimation based Baseline Algorithm [75]

• thra: Appearance distance ratio threshold

• sx : x difference bin size

• sy : y difference bin size

• thre : Projection error threshold for estimated affine transform (Step C)

• Nc : Number of maximum iterations for transform verification (Step C)

• thrc : Error change threshold for estimated affine transform (Step C)

• thrr : Minimum size of a geometrically compatible group for recognition (Step D)

A. Appearance-based Potential Match Selection [75]

(1) Let spatial parameters location, scale and orientation (x, y, σ, θ) for ith image feature

be represented by fmi and fqi for model and query images, respectively.

(2) Let appearance description for ith image feature be represented by dmi and dqi for

model and query images, respectively.

(3) Let number of local features in model and query image be Nm and Nq, respectively.

(4) M =

{

(i, j) : j = arg min
k

‖dmi − dqk‖ ∧
‖dmi−dqn‖

‖dmi−dq j‖
> thra, ∀n ∈

[

1,Nq

]

\ j

}

B. Transform Parameter Clustering using Hough Transform [142, 75]

(1) Let fmr = (xmr, ymr, σmr, θmr) and fqs = (xqs, yqs, σqs, θqs) represent the spatial param-

eters of matching feature pair Mp = (r, s), where p ∈ [1,NM] and NM = |M|.

(2) Let V(i, j, k, l) be a four dimensional, sparse transform parameter histogram that quan-

tizes the parameter space for x, y, σ and θ, respectively.

(3) V(i, j, k, l)← 0,∀(i, j, k, l)

(4) for p = 1→ NM do

∆x←
|xmr−xqs |

sx

∆y←
|ymr−yqs |

sy

∆σ← log2
σmr

σqs

∆θ ←
((θmr−θqs) mod 2π)×12

2π

V(i, j, k, l)← V(i, j, k, l) + 1,∀(i, j, k, l) ∈ Zp, where

Zp = {(a, b, c, d) : a ∈ {⌊∆x⌋ , ⌈∆x⌉} ∧ b ∈ {⌊∆y⌋ , ⌈∆y⌉} ∧

c ∈ {⌊∆σ⌋ , ⌈∆σ⌉} ∧ d ∈ {⌊∆θ⌋ , ⌈∆θ⌉}}

end for
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Algorithm 4.1 2D Affine Transform Estimation based Baseline Algorithm [75] (cont’d)

C. 2D Affine Transformation Estimation/Verification [75]

(1) Let 2D affine transformation (A) of a model point
[

x y
]T

to an image point [u v]T be

modeled as:
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(2) S (i, j, k, l)← 0,∀(i, j, k, l), S ′(i, j, k, l)← 0,∀(i, j, k, l)

(3) for all V(i, j, k, l) > 3 do

Estimate m1,m2,m3,m4, tx, ty using all pairs in M that voted for V(i, j, k, l)

for count = 1→ Nc do

Project all model points in M using estimated affine transformation A.

Calculate projection error (Ep) for all pairs in M.

S (i, j, k, l)←
{

Mp : Ep < thre

}

, Mp ∈ M.

if |S (i, j, k, l)| < 3 ∨
(

S (i, j, k, l) = S ′(i, j, k, l) ∧
∣

∣

∣E′p − Ep

∣

∣

∣ < thrc

)

then

Break and process next V(i, j, k, l).

end if

S ′(i, j, k, l) = S (i, j, k, l), E′p = Ep

Re-estimate m1,m2,m3,m4, tx, ty using all pairs in S (i, j, k, l).

end for

end for

D. Final Detection Decision [75]

(1) Merge and remove overlapping groups among S (i, j, k, l).

(2) Declare positive detection if:

∃(a, b, c, d) : |S (a, b, c, d)| > thrr

⋆ It is reported that the last stage of the baseline algorithm contains a probabilistic step

for involving the total number of local features in the decision process. However, the

provided implementation of the algorithm does not include this step.
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4.1 A Hybrid Method for Robust Correspondence Search Between Partially

Planar Objects

A novel approach, which is based on combining the competence of interest point detectors

to capture primitives and the capability of geometric constraints to discriminate between spa-

tial configurations of these primitives is presented. In the proposed approach, the geometric

constraints are enforced by means of barycentric coordinates (Section 3.3.1.1), a mathemat-

ical tool that has been utilized in the relevant literature as a neighborhood constraint. In the

context of our research, however, these coordinates are utilized as a geometric description of

a group of interest points. Using this description, local appearance descriptor based potential

matches are intended to be filtered and evaluated according to their geometric consistency.

This method is applicable to one-to-one image matching in its current form, and to classifi-

cation tasks after extensions for appearance generalization. This work has been published in

[47].

4.1.1 Motivation

Matching image regions between pairs of images is a common preliminary step in applica-

tions, such as 3D object modeling, object recognition, texture recognition and image retrieval

[97, 153, 154, 155, 107, 156, 58, 157, 158]. The first strand of research in this area chooses

regions to be matched by using segmentation, regular image grids or a randomized region lo-

cation and scale selection method. The second strand of research [97, 153, 154, 155, 107, 156]

focuses on detecting regions that fit into a predefined generic local pattern, namely interest

points. There are many variations of interest point detection approaches [63, 64, 43, 159, 76],

but all of them aim to locate covariant regions which can automatically adapt to the underlying

image intensities in terms of location, scale and even affine shape. In this context, evaluation

of interest point detectors [74, 44], along with various local descriptions to represent image

regions [46] have also been presented.

Interest point detectors provide regions that are more repeatable with respect to their global

and semi-global counterparts. On the other hand, since interest points are generally repre-

sented by relatively small regions, the local descriptions extracted from these regions have

limited discriminative power. In addition, due to photometric and geometric transformations,
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corresponding interest point regions might have significant descriptor distances. Under these

circumstances, selecting the correct matches among many false counterparts, endures as an

unsolved and challenging problem. In [75], a dynamic threshold is introduced in terms of the

descriptor distance ratios. Matches filtered in this way then undergo a geometric consistency

evaluation step, which involves quantization of the change in location, scale and orientation

from one interest point region to its match in the other image. In the literature, there are alter-

natives to this approach, which consider the possibility of not being able to retrieve the correct

matches of interest point regions as the nearest neighbor based on descriptor similarity as a

common problematic situation [97, 153, 155, 107, 159].

The aforementioned methods have various solutions to interest point region matching that can

be summarized roughly as follows: The methods in the first group [75] perform interest point

matching based on local descriptor similarity leading to a strict decision before any other con-

sistency check based on geometry. The second group of methods [155, 107], clusters interest

point descriptors in training images and each interest point is allowed to match multiple clus-

ters. Each match is assumed equally correct and contributes to statistical data that is fed to a

higher level probabilistic model. The third class of approaches [97, 153] utilizes each poten-

tial match pair as a starting point for an iterative transform estimation and validation process

and removes any inconsistent matches as part of this complex iteration process.

A preliminary step that can reduce the number of potential correspondences involves evalu-

ating the potential match list of each interest point in terms of its geometric consistency with

respect to its neighbors. Such a step should contribute to the solution of the intractable com-

binatorial problem of finding correspondences in the context of all of these approaches. This

contribution would be twofold: First of all, descriptor-based similarity should then only be

high enough to insert the right match to the potential match list. Secondly, the number and

error ratio of correspondences input to any other higher-level analysis, such as probabilistic

model construction or iterative transform estimation/validation, would be much lower.

In this section, we propose a method for filtering potential match lists based on coarse affine

geometric consistency of a match with its neighbors. For this purpose, barycentric coordinates

(Section 3.3.1.1) that are invariant under affine transformations are utilized. Presentation is

organized as follows: In Section 4.1.2, we introduce our method (Algorithm 4.2) along with

the approaches that inspired its development. Next, experimental results presented in Section
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4.1.3 are followed by conclusive remarks in Section 4.1.4.

4.1.2 Components of the Method

In the proposed approach, geometric constraints are enforced by means of barycentric coordi-

nates (Section 3.3.1.1). Using these coordinates as a geometric description, local appearance

descriptor based potential matches are intended to be filtered and evaluated according to their

geometric consistency. This method is applicable to one-to-one image matching by itself but

can also be a preliminary part of training and classification phases of high-level inference

frameworks. In this research, the method is explained through its use during one-to-one im-

age matching. In this context, the term query image represents the image for whose interest

points potential matches are searched in the model image.

4.1.2.1 Scale Invariant Interest Point Detection and Local Descriptor Extraction

There are two widespread categories of interest point detectors, namely corner and blob de-

tectors (Section 2.1). Although, both categories are applicable in this preliminary step of the

algorithm, a representative of the second category, SURF detector [76] is utilized for experi-

ments that are presented in this paper.

In order to select potential matches for interest points, the proposed method relies on local

descriptors. Among many alternatives (Section 2.2), the SIFT descriptor [75] is selected as a

prominent one and utilized throughout the experiments.

4.1.2.2 Appearance Similarity-based Potential Match List Generation

Region descriptor of each interest point in the query image is compared to the interest points

in the model image. After this comparison, a predefined number of interest points that have a

descriptor distance smaller than a predefined threshold insert their interest point labels to the

potential match list of the interest point under consideration. This step corresponds to Step A

of Algorithm 4.2.

In the experiments, maximum length of potential match list is set to the value 5. The threshold

here is determined by experimentation and depends on the utilized descriptor.
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Figure 4.1: Example grouping according to euclidean distance. The neighbors of interest

point 1 are 2, 3, 4, 5 & 6. One of such triple combinations (2, 3, 4) is illustrated.

4.1.2.3 Local Affine-Invariant Geometric Definition

Barycentric coordinates (Section 3.3.1.1) are computed for each interest point in terms of

its neighbors. Each unique triple combination of neighbors (Figure 4.1) of an interest point

along with its own coordinates generate a barycentric coordinate using Equation (3.26). This

process is explained in Step B of Algorithm 4.2. This process should be considered as the

geometric definition of each interest point by the relative positions of its neighbors. A sample

partial result for the output of the process is given in Figure 4.2.

Both query and model image interest points are defined geometrically in terms of their neigh-

bors, respectively. Model image geometric definitions in terms of interest point indexes and

barycentric coordinates is called Geometric Knowledge Base for clarity in further references.

4.1.2.4 Extending Local Affine-Invariant Geometric Definitions of Query Image Inter-

est Points using Potential Match Lists

At this point, two types of information are ready for the query image, namely the potential

match list (Figure 4.3a) and the previously extracted barycentric coordinates for each interest

point (Figure 4.3b).

In order to combine descriptor-based potential list and interest point based barycentric co-

ordinates for the evaluation of potential matches in terms of geometry, interest point-based
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Figure 4.2: Example geometric definitions for a point and its neighbors. Each triple com-

bination of neighbor interest points generate a barycentric coordinate for point 1. For the

neighbors 2, 3, 4, 5 & 6, all 10 triple combinations and coordinates are listed.

Figure 4.3: Joint matching of point groups in terms of geometry and appearance. For clarity,

query interest points are represented by numbers (1, 2, 3, . . .), while model interest points are

represented by capital letters (A, B,C, . . .). (a) Example potential match list, (b) interest point

based barycentric coordinates, (c) Assignment based barycentric coordinates for the first triple

combination in (b).
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barycentric coordinates should be transformed into assignment-based barycentric coordinates.

This step is performed for each possible assignment combination for each group of four neigh-

boring interest points. The barycentric coordinates need not be recalculated, since they have

already been calculated in the previous step. This process is explained in Step C of Algo-

rithm 4.2. At the illustrative example of Figure 4.3, the center interest point (represented by

1) has 3 potential matches, while its neighbors each have one potential match. The resultant

assignment based barycentric coordinates are given in Figure 4.3.c.

4.1.2.5 Accumulating Votes for Geometrically Consistent Groups

The output of the previous step is a set of barycentric coordinates in terms of potential

matches, or in other words, assignments. This output is completely connected to the un-

derlying query interest point indexes. This means that during data structure implementation,

any four assignments (within model image interest point indexes) that generate a barycentric

coordinate can be inversely mapped to the interest point indexes in the query image that gave

rise to them. Each assignment based barycentric coordinate in the query image is now com-

pared to the Geometric Knowledge Base of the model to find “consistent” geometric groups.

Consistency is defined as follows:

• Overlapping neighbor interest points such as in A
BCD
−−−−→ (x1, y1, z1) and A

BCD
−−−−→ (x2, y2, z2)

• Distance between Barycentric Coordinates (i.e. (x1, y1, z1) and (x2, y2, z2)) < Thresh-

old (thrb)

As an example, in Figure 4.3, each consistent group increases the votes of the underlying

interest points forming it (1, 2, 3, 4) to be assigned to model interest points (A,D, E, F) rep-

resenting it. The voting process is illustrated in Figure 4.4, for these example interest point

indexes. Illustrated process is explained in detail in Step D of Algorithm 4.2.

4.1.2.6 Vote-based Iterative Match Assignment

Iterative match assignment between query and model features is explained in Step E of Al-

gorithm 4.2. Votes that are input to this step are accumulated in the previous step for a list
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Figure 4.4: Voting process guided by joint description. Assignment-based barycentric coor-

dinates consistent with geometric knowledge base cast votes.

of potential assignments which are generated earlier in the process (Section 4.1.2.2). An

example vote list that will be used for following illustrative examples is given in Figure 4.5.

This input vote list is parsed to find the highest vote and the assignment with the highest vote

(Figure 4.4, 1 = B) is executed. Execution of an assignment triggers a chain reaction in the

vote list and the assignment based barycentric coordinates list. All assignment-based coordi-

nates that have voted for assignments conflicting with the executed assignment are invalidated

(Figure 4.6). Votes cast by these invalidated groups are also invalidated. The invalidation is

performed by decreasing the votes of the assignments induced by these groups (Figure 4.7).

The chain of triggered events concludes by the removal of all assignments of type X = Y from

the vote list, where X is the index of the query interest point that has just been assigned to

a model interest point. Repeating the above steps, the vote list is processed iteratively until

no query interest points that qualify for an assignment to a model interest point is left. An

interest point can be left unassigned in three cases:

• Potential Match List is empty due to vast appearance difference with the descriptions

in the model.

• None of its neighbor based barycentric coordinates are consistent with the Geometric

Knowledge Base of the model image.

• None of the potential assignments of the interest point may have votes above the thresh-

old.
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Figure 4.5: Example result for the voting process

Figure 4.6: Examples of combinations that depend on assignments, which are invalidated

due to execution of the assignment 1 = B.

4.1.2.7 Vote Normalization and Filtering of Assigned Matches

The iterative nature of the assignment algorithm leads to a biased vote distribution in which

interest points assigned in later steps lose more of their votes during the invalidation opera-

tions than the ones assigned in former steps. Therefore, for votes to become comparable, they

should be normalized. This normalization is performed by reprocessing the assignments that

are executed in later steps to let them invalidate the combinations inconsistent with them, but

have cast vote for assignment executions before them. This forms the last step (Step F) of the

method given in Algorithm 4.2.
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Figure 4.7: Votes decreased due to the invalidation of the first combination in Figure 4.6.

The combination contains the assignment 1 = A that conflicts with the executed assignment

1 = B.
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Algorithm 4.2 Proposed Hybrid Robust Correspondence Search Method

• Na: Appearance-based potential match list size

• Ns : Number of nearest spatial neighbors used for geometric description

• g : R2 × R
2 × R

2 × R
2 −→ R

3 : Mapping from four image coordinates to Barycentric

coordinates

• d : R
3 × R

3 −→ R+ : Mapping from two Barycentric coordinates to the distance

between them

• thrb : Barycentric distance threshold for compatibility

A. Appearance-based Potential Match List Population

(1) Let ith image feature be represented by fmi and fqi for model and query images, re-

spectively.

(2) Let number of local features in model and query image be Nm and Nq, respectively.

(3) Let Potential Match List Pi = {A, B,C, . . . , }, where Pi ⊂
{

fm1, fm2, . . . , fmNm

}

, and

members of Pi are the Na nearest neighbors of fqi in the model image in terms of

appearance description.

B. Local Affine Invariant Geometric Definition For Query Images

(1) Let Nearest Neighbor List of fqi be NNqi, where NNqi ⊂
{

fq1, fq2, . . . , fqNq

}

\ fqi, and

members of NNqi are the Ns spatial nearest neighbors of fqi in the query image in

terms of L2 distance.

(2) for i = 1→ Nq do

Cqi ← All triplet combinations of elements in NNqi

(∣

∣

∣Cqi

∣

∣

∣ =
(

Ns

3

))

.

for j = 1→
(

Ns

3

)

do

Bi( j)← g( fqi,Cqi( j))

end for

end for

Step B is illustrated in Figures 4.1 & 4.2 by the following notational conventions:

• Query features fqi are represented by integer literals i ∈
{

1, . . . ,Nq

}

.

• Barycentric coordinates B1( j) are represented by (x j, y j, z j).
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Algorithm 4.2 Proposed Hybrid Robust Correspondence Search Method (cont’d)

C. Extending Local Affine-Invariant Geometry

(1) Appearance similarity information of Step A is utilized to extend the geometric defi-

nition in Step B to a Geometric Knowledge Base represented by Q as follows:

for i = 1→ Nq do

for j = 1→
(

Ns

3

)

do

Eqi( j)← Pi × Pa × Pb × Pc, where Pi, Pa, Pb and Pc are potential match

lists of query features fqi, fqa, fqb and fqc in the quadruplet ( fqi,Cqi( j))

defined in Step B.

Query feature indexes for fqi, fqa, fqb and fqc are also saved in each Eqi( j)

to be used in Step D.

Q← Q ∪ Eqi( j) × Bi( j), where Bi( j) represents the quadruplet barycentric

coordinates for jth neighbor triplet (Cqi( j)) of query feature fqi.

end for

end for

Step C is illustrated in Figure 4.3 with the following notational conventions:

• Model features fmi are represented by capital letters in the set MF = {A, B,C, . . . }),

where |MF| = Nm.

• Query features fqi are represented by integer literals i ∈
{

1, . . . ,Nq

}

.

• Barycentric coordinates B1( j) are represented by (x j, y j, z j).
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Algorithm 4.2 Proposed Hybrid Robust Correspondence Search Method (cont’d)

D. Accumulating Votes for Geometrically Consistent Groups

(1) Model image geometric knowledge base constructed using Nearest Neighbor List

NNmi, nearest neighbor combinations Cmi and barycentric coordinates of quadruplets

( fmi,Cmi( j)), ∀ j ∈
{

1, . . . ,
(

Ns

3

)}

in the model image is represented by M.

(2) Members of M are represented by Mi =
[

(MiA,MiB,MiC,MiD), (xmi, ymi, zmi)
]

, where

{MiA,MiB,MiC ,MiD} ⊂
{

fm1, fm2, . . . , fmNm

}

, and (xmi, ymi, zmi) are barycentric coor-

dinates of the quadruplet.

(3) Query image geometric knowledge base constructed using Nearest Neighbor List

NNqi, nearest neighbor combinations Cqi and barycentric coordinates of quadruplets

( fqi,Cqi( j)), ∀ j ∈
{

1, . . . ,
(

Ns

3

)}

in the query image is represented by G.

(4) Members of Q are represented by Qi =
[

(QiA,QiB,QiC ,QiD), (xqi, yqi, zqi)
]

, where

{QiA,QiB,QiC ,QiD} ⊂
{

fm1, fm2, . . . , fmNm

}

, and (xqi, yqi, zqi) are barycentric coordi-

nates of the quadruplet.

(5) V(q,m)← 0, ∀q ∈
{

fq1, fq2, . . . , fqNq

}

, ∀m ∈
{

fm1, fm2, . . . , fmNm

}

for all Qi ∈ Q do

Aq ← (QiA,QiB,QiC ,QiD) , Gq ← (xqi, yqi, zqi)

F ← ( fqa, fqb, fqc, fqd) represents query features that match to model features

in Aq respectively.

for all Mi ∈ M do

Am ← (MiA,MiB,MiC,MiD) , Gm ← (xmi, ymi, zmi)

if Aq = Am then

db ← d(Gq,Gm)

if db < thrb then

V( fqa,QiA)← V( fqa,QiA) + 1 , V( fqb,QiB)← V( fqb,QiB) + 1

V( fqc,QiC)← V( fqc,QiC) + 1 , V( fqd,QiD)← V( fqd,QiD) + 1

end if

end if

end for

end for

V̂ = | {(a, b) : V(a, b) > 0} |
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Algorithm 4.2 Proposed Hybrid Robust Correspondence Search Method (cont’d)

Step D is illustrated in Figure 4.4 with the following notational conventions:

• Model features in model and query geometric knowledge base are represented by capi-

tal letters (A, B,C, . . . ).

• Barycentric coordinates of query image and model image are represented by (x1, y1, z1)

and (x2, y2, z2) respectively.

E. Vote-based Iterative Match Assignment

(1) Qinv ← ∅ , Vexe ← ∅

while True do

(q̂, m̂)← arg max
i∈V̂

V(q,m)

vote← V(q̂, m̂)

if vote > 0 then

Vexe ← Vexe ∪ (qi,mi)

end if

for all Qi ∈ Q do

Aq ← (QiA,QiB,QiC ,QiD)

P←
{

( fqa,QiA), ( fqb,QiB), ( fqc,QiC), ( fqd,QiD)
}

, where fqa, fqb, fqc and fqd

are query features that match to model features in Aq, respectively.

Fint ← {(q,m1,m2) : q ∈ {q1 : (q1,m1) ∈ P} ∩ {q2 : (q2,m2) ∈ Vexe}

∧(q,m1) ∈ P ∧ (q,m2) ∈ Vexe}

for all (q,m1,m2)inFint do

if m1 , m2 then

V(q,m1)← V(q,m1) − 1

Qinv ← Qinv ∪ Qi

end if

end for

end for

Q← Q \ Qinv

end while

86



Algorithm 4.2 Proposed Hybrid Robust Correspondence Search Method (cont’d)

Step E is illustrated in Figures 4.5, 4.6 and 4.7 with the following notational conventions:

• Query features fqa, fqb, fqc and fqd are represented by integers.

• Model features in query geometric knowledge base are represented by capital letters

(A, B,C, . . . ).

• Barycentric coordinates of query image are represented by (x1, y1, z1) respectively.

F. Vote Normalization and Filtering of Assigned Matches

(1) V is recalculated using the modified query geometric knowledge base Q.

(2) V̂exe = | {(a, b) : V(a, b) > 0} |

4.1.3 Evaluation: Multi-view Partially Planar Object Recognition in a Constrained

Environment

The experimental results are presented for three specific analysis cases that are aimed to as-

sess applicability of the algorithm under different conditions. The proposed method (Algo-

rithm 4.2) is compared against Lowe’s Hough Transform-based matching scheme, which is

considered as a prominent baseline method. Lowe’s method is already explained in detail

in Algorithm 4.1. For each specific analysis case, quantitative performance evaluations are

performed. In addition, quality of the results is presented via visual examples. Experiments

are conducted on car image data from ETH-80 [160] and Pascal VOC 2007 [161] data sets.

The number of images used in the performance comparison is limited due to the requirement

of manual evaluation of the match results. Automatic interest point detection is performed by

SURF [76] and local regions are represented by the SIFT descriptor [75].

4.1.3.1 Manually Selected Repeatable Locations

One of the most important problems about interest points is their varying re-detection perfor-

mance. Since the proposed algorithm is applicable only for interest points that are reliably
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Figure 4.8: Manually selected repeatable location

re-detected, a special analysis case is artificially created to isolate matching performance from

repeatability performance of the interest point detector. In different views of the same object

12 feature locations are manually marked and at each of these locations, local scale is de-

termined by LoG scale detector Section 2.1. Manually marked feature locations for original

image is given in Figure 4.8. In this example, the proposed method is able to match all of

the points accurately, while the baseline method can only match four of the possible twelve

pairs. Quantitative comparison for matching results among 22◦, 45◦, 68◦ rotated and original

views of the car object are presented in Table 4.2. Even though the interest point locations

are accurately determined by manual intervention, descriptor distance harshly increases by

view change. Therefore, the baseline approach considering only the nearest descriptor-wise

neighbor fails in most of the cases. Matching results for four experimental pairs are given in

Figures 4.9a-d.

4.1.3.2 Automatically Detected Interest Points in Different Views

Matching different views of the same object is the objective of this part of simulations, where

rotated views (22-45 degree rotation in two different axis) of an object are matched to the orig-

inal. Automatically detected interest points in the model image is given in Figure 4.10. Due to

multiple visually identical appearances of visually identical parts (e.g. wheel), cross matches
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(a) (b)

(c) (d)

Figure 4.9: Matches found by proposed algorithm for rotated pairs. (a) 22◦ rotated - Original

pair, (b) 45◦ rotated - Original pair, (c) 45◦ rotated - 22◦ rotated, (d) 68◦ rotated - 45◦ rotated
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Table 4.2: Number of accurate matches that are found in manually selected locations with the

proposed method

Matched Pairs

(ETH-80 Car-1)

Number of Accurate (True) Matches Found

Proposed Method Hough-based

Method [75]

22◦ rotated - Original 12 4

45◦ rotated - Original 7 0

45◦ rotated - 22◦ rotated 8 0

68◦ rotated - 45◦ rotated 4 0

Figure 4.10: Automatically detected interest points of the model image

among the appearances of the same part are considered as accurate in performance evaluation.

Quantitative results in Table 4.3 illustrate the superior performance of the proposed method

when it is compared to the baseline method (Algorithm 4.1), in terms of finding correspon-

dences between different views of the same object. Matching results for four experimental

pairs are given in Figures 4.11.a-d.

4.1.3.3 Automatically Detected Interest Points in Images of Different Objects

In the last part of simulations, the matching performance of the proposed method under se-

vere appearance variations is investigated. Although, the method is not specifically designed

and enhanced for classification of semantically related objects (cars), promising results are

obtained as it can be observed in Figure 4.12.a-d.
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(a) (b)

(c) (d)

Figure 4.11: SURF detected interest point matches found by proposed algorithm for the

rotated pairs. (a) 22◦ rotated (vertical) - Original pair, (b) 45◦ rotated (vertical) - Original

pair, (c) 22◦ rotated (horizontal) - Original pair, (d) −22◦ rotated (vertical)- Original pair
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(a) (b)

(c) (d)

Figure 4.12: SURF detected interest point matches found by proposed algorithm for different

objects. (a) ETH-80 Car6 - Car1 pair, (b) ETH-80 Car9 - Car1 pair, (c) Pascal 001576 -

ETH-80 Car1 pair, (d) Pascal 003790 - ETH-80 Car1 pair
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Table 4.3: Number of accurate matches that are found between different views of the same

object

Matched Pairs

(ETH-80 Car-1)

Number of Accurate (True) Matches Found

Proposed Method Hough-based Method [75]

22◦ rot.(vert) - Original 15 12

45◦ rot.(vert) - Original 11 7

22◦ rot.(horz) - Original 29 15

−22◦ rot.(vert) - Original 21 18

Table 4.4: Number of accurate matches that are found between different car objects

Matched Pairs
Number of Accurate (True) Matches Found

Proposed Method Hough-based Method [75]

ETH-80 Car6 - Car1 21 0

ETH-80 Car9 - Car1 6 0

Pascal 001576 - ETH-80 Car1 7 0

Pascal 003790 - ETH-80 Car1 4 0

These results suggest the applicability of the method for object classification tasks, after

proper modifications for appearance and geometry generalization. Quantitative results and

comparison to the baseline method is given in Table 4.4.

4.1.4 Conclusions

A method for detecting geometrically consistent interest point groups between different views

of an object has been presented. Besides, the method has been tested on visually different but

semantically and geometrically related objects. The experimental evaluations have shown

the robustness of the method against appearance variations which severely degrade the per-

formance of the baseline method (Algorithm 4.1). Therefore, the proposed method is more

applicable for the tasks where geometrically consistent and reliable interest point groups are

searched between different images of an object. On the other hand, due to naive neighbor-

hood selection method (i.e. five nearest neighbors independent of an interest point scale-based

dynamic constraint), for the test data many parts other than the wheels are lost. This result

is due to the fact that in regions where interest points are dense, a neighborhood definition

that is more advanced than N-nearest neighbors, should be utilized to cover larger potentially

repeating configurations. This will be the next step in this research. Still, the performance
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of the method on matching geometrically consistent parts of different semantically related

objects (cars), unless it is affected by the neighborhood limitation, suggested its use in object

classification tasks. Future work includes the enhancement of the method with appropriate

generalization tools and its adaptation for the task of object classification.

4.2 A Framework for Joint Utilization of Vector Quantized Appearance and

Geometry

A novel framework, involving the comparison of appearance and geometrical similarity of

local patterns simultaneously via a combined description is presented. This method extends

the preliminary work that is explained in Section 4.1 in various ways. First, the proposed

description utilizes quantized appearance descriptors of interest points to avoid the necessity

of matching each test descriptor to each template descriptor. Second, geometrical descrip-

tions that are based on multiple small groups of points, quads, are introduced. This way, the

geometric descriptions are based on multiple small groups of points, namely quads, instead of

a single large group that is susceptible to partial transformations. Additionally, the extended

method is applied to a realistic unconstrained dataset that is created for natural scene logo

detection.

The introduced method renders one-to-many matching possible in contrast to its counterparts

in the literature. Utilized geometrical descriptions are the same 2D affine transform invari-

ants (Section 3.3.1.1) that are used in the previous method (Section 4.1). Its local nature and

invariant based description utilization ability render the proposed algorithm robust to signifi-

cant appearance changes, while being resistant to random false matches through simultaneous

utilization of geometrical part of the descriptor. This generic, robust template matching tech-

nique is evaluated in an application of scene logo retrieval. The proposed algorithm proved

itself in scene logo retrieval domain, where significant appearance changes, especially due to

affine transformations take place [48].

4.2.1 Motivation

Detecting instances of a specific logo in images and video is of great importance for various

applications. Logos can serve as an important cue for the presence of many semantic concepts,
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such as political parties, companies and even illegal organizations.

In the literature, many methods have been proposed for logo detection [162, 163, 164, 165,

152]. However, the research has been mostly on the detection side within some constrained

environments [162, 163, 164]. In contrast to logo detection in constrained environments, there

are only a few algorithms proposed for the natural scene logo detection domain. An important

research [165], which aims at detecting scene logos in frames of sport videos, utilizes edges,

shapes and color composition. More recent work by Joly et al. [152] addresses the problem

by using local interest point features. In their work, SIFT [75] descriptors extracted from

template and test images are matched using L2 distance and then matches are filtered by a

geometric consistency checking step.

In this paper, a novel approach involving the evaluation of appearance and geometry via a

combined description is presented. This description utilizes quantized appearance descrip-

tors of SIFT points to avoid comparing a test descriptor to all template descriptors in contrast

with [152] and [75]. Geometrical descriptions are based on multiple small groups of points,

namely quads, instead of a single large group. These advantages render the proposed algo-

rithm robust to significant appearance changes, while being robust to random false matches

through simultaneous utilization of geometrical description. The experimental results show-

ing the robustness of the method by comparing it against a baseline algorithm (Algorithm 4.1)

are provided in Section 4.2.3, which is followed by Conclusions Section (4.2.4).

4.2.2 Components of the Framework

In the proposed approach, appearance is represented by a codebook generated via cluster-

ing of local descriptions of interest point regions. Geometric constraints, on the other hand,

are enforced on position information of interest points by means of barycentric coordinates

(Section 3.3.1.1). Using these coordinates as a geometric description, quadruplet groups of

codeword based potential matches are intended to be filtered and evaluated according to their

geometric consistency. In this paper, we propose to solve the robust appearance representation

problem by the help of clustered local descriptors, while filtering the side effect of decreased

discriminative power using geometrical constraints. This way, we also avoid using all visual

feature descriptions in an image and define images by codewords and their positions.
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4.2.2.1 Scale Invariant Interest Point Detection and Local Descriptor Extraction

There are many examples of interest point detectors that can match to various distinctive

parts of images (Section 2.1). DoG detector [75] is selected as a prominent one and utilized

throughout the experiments, although it can be argued that other interest point detectors might

also be exploited. It is noteworthy that the performance of some affine-invariant interest point

detectors (Section 2.1) did not yield satisfactory results during simulations; hence, DoG is

selected for the proposed algorithm.

Local feature description is performed by using SIFT [75]. This description is selected as a

representative and prominent example of many local feature descriptor (Section 2.2).

4.2.2.2 Visual Codebook Creation and Usage

In order to avoid using all visual descriptions for the template and test images, and incorporate

robustness to noise, an appearance codebook (or visual vocabulary) is obtained by using K-

means algorithm [166]. The selection of a codebook representation has become widespread

in image retrieval applications [167], due to its generalizing nature that allows efficient match-

ing by capturing the variability of a particular feature type. Codeword assignment for each

descriptor is performed by hard assignment of a single codeword. Appearance of each inter-

est point used in the comparison is therefore represented by a codeword from the predefined

codebook, instead of its original SIFT descriptor.

4.2.2.3 Local Affine-Invariant Geometric Definition by Barycentric Coordinates

Geometry of local feature groups are defined using the same geometric invariants, namely

Barycentric coordinates. Barycentric coordinates are computed for each interest point in terms

of its neighbors (Section 3.3.1.1). Each unique triple combination of neighbors (Figure 4.13)

of an interest point generates a single barycentric coordinate. Throughout this section, a

group of 4 interest points that are defined by a barycentric coordinate is denoted as quad. The

extraction process of barycentric coordinates is explained in Section 4.1.2.3. This process

should be considered as the geometric definition of each interest point by the relative positions

of its neighbors. For each interest point, 10 spatially closest neighbors are used during the
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Figure 4.13: Example grouping according to Euclidean distance. Neighbors of interest point

1 are 2, 3, 4, 5 & 6. One of the triple combinations (2, 3, 4) is illustrated.

experiments. A sample partial result for the output of the process has already been illustrated

in Figure 4.2. An important detail here needs special treatment; any negative barycentric

coordinate means that the center interest point is out of the triangular region defined by the

positions of the selected neighbors. Therefore, quads with negative barycentric coordinates

are considered invalid and not included in the retrieval.

4.2.2.4 Combined Description of Local Features using Appearance and Geometry

As already mentioned in the previous sections, visual descriptor of each interest point (i.e.

SIFT) is transformed into a codeword and each quad formed around an interest point is defined

geometrically via barycentric coordinates. These two representations are two independent

dimensions of describing interest points, namely appearance and geometry.

In order to combine these two equally informative sources systematically, one needs to rep-

resent the components of quads by using their appearance. In our case appearance is rep-

resented by visual codewords. This operation is illustrated by an example in Figure 4.14.

Interest points indexed by numbers 1 to 6, are each represented in terms of appearance by

their respective codewords (Figure 4.14a). For this specific example, 1 is the center point and

it has other point as neighbors around it. Each triplet of these neighbors is combined with

the center point to form a quad (Figure 4.14b) and each of the interest points are represented

by their codewords. As a result, each quad is represented by the codewords it is constructed

from and the barycentric coordinates that define the positioning of these codewords. Com-

bined representations of first and last quads in Figure 4.14b are given in Figure 4.14c. Two

other properties, namely scale and dominant orientation of each interest point, are stored as

additional information.
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Figure 4.14: Joint representation of geometry and appearance of local feature groups: (a)

Example codeword assignments; interest point 1 is assigned to codeword A, interest point

2 is assigned to codeword B, etc., (b) interest point based barycentric coordinates; quad

(1, 2, 3, 4) has barycentric coordinates (x1, y1, z1), quad (1, 2, 5, 6) has barycentric coordi-

nates (x10, y10, z10), etc., (c) Assignment-based barycentric coordinates for two quads in (b);

quad (1, 2, 3, 4) corresponds to codeword-based quad (A, B,C,D) after assignment retain-

ing the same barycentric coordinates, quad (1, 2, 5, 6) corresponds to codeword-based quad

(A, B, E, F), etc.

Interest points for both template and test images undergo this combined definition process

and comparison is based on these definitions. Combined definitions of template images in

terms of codewords, barycentric coordinates and interest point spatial properties (i.e. scale,

orientation) are together denoted as Combined Visual Knowledge Base (CVKB) for clarity in

further references.

4.2.2.5 Comparison of Combined Visual Descriptions

The developed system searches patterns with a specific local appearance and geometry that are

input to the system prior to retrieval process. These patterns are automatically extracted from

the template images and converted into a database of patterns, i.e. CVKB. CVKB consists of

information collected from representations of patterns that are observed in template images.

The structure of each of these representations is given in Equation (4.1). Let CVKB consist of

N quads qi, i ∈ 1, 2, · · · ,N. Each quad has four elements, i.e. interest points qi j, with corre-

sponding codewords cwi j, scales σi j, and dominant orientations θi j for j ∈ 1, ..., 4. Barycentric
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coordinates of each quad qi are represented by bik, where i ∈ 1, · · · ,N and k ∈ 1, · · · , 3.

qi : ( ~cwi, ~σi, ~θi, ~bi) (4.1)

Quads within test images are compared with the CVKB by this representation. The compar-

ison is performed for each field of the representation separately. Let qt be the test quad to be

compared to CVKB. The first metric to be compared is the codewords of the two quads, if

they do not match then there is no need to compare other fields. If the codewords match then

remaining three fields are compared. Let qi be defined as in Equation (4.1) and qt be defined

by ( ~cwt, ~σt, ~θt, ~bt). Compatibility of these two quads is assessed as follows:

1. If ∀ j ∈ 1, · · · , 4, cwi j = cwt j, then continue; else quads are incompatible.

2. Compute ∆σ = (∆σ1,∆σ2,∆σ3,∆σ4) and ∆θ = (∆θ1,∆θ2,∆θ3,∆θ4), where,

∆σ j =

⌊

log2

σt j

σi j

⌋

(4.2)
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

(4.3)

3. Compute barycentric coordinate distance db by using Equation (3.28).

4. qi is compatible with qt, if and only if:

(a) db < thrb

(b) max(∆σ j) −min(∆σ j) < thrσ

(c) max(∆θ j) −min(∆θ j) < thrθ

∆σ is the quantized scale ratio vector between two quads. Quantization is performed in

log 2 scale. Similarly ∆θ is the quantized orientation difference vector with a bin size of

π/6 radians. These three threshold parameters are used to precisely control the geometrical

consistency for different metrics. The first parameter, which is probably the most dominant

among all, is the threshold on barycentric distances, thrb. This parameter controls the overall

geometrical consistency of two quads and is applied on the distance values directly without

quantization. The second and third threshold parameters are applied on coarsely quantized

difference values. The second parameter, thrσ, is used to limit the heterogeneity in scale

99



Figure 4.15: Sample positive and negative images from the dataset are given in first and

second rows respectively.

change due to the affine transformation that part of the logo undergoes. The third parameter,

thrθ, provides the means to limit the heterogeneity of change in local orientation of patches

that construct a quad.

4.2.3 Evaluation: Joint Utilization of Appearance and Geometry for Scene Logo Re-

trieval

In order to evaluate the performance of the proposed algorithm, A well-known and frequently

encountered brand logo is selected as a typical example (Coca-Cola). From many images

automatically downloaded as a result of Google queries, “coca cola billboard”, “coca cola

truck”, “coca cola car”, “coca cola truck”, “coca cola building”, “coca cola table”, only 136

with significant amount of geometrical and appearance distortions were selected as the pos-

itive set subjectively. Next, 150 negative images are selected from the images that were re-

turned as the result of the query “logo” and “billboard”. The aim of these selections were to

test the algorithms on data which is realistic in terms of both positive and negative samples

(Figure 4.15). Two of the collected brand logos are selected as template images (Figure 4.16).

The visual codebook created for assigning appearance descriptors of test and template images

consists of 128 codewords, and it is constructed from a different dataset of images that contain

5000 randomly selected retrieved images. 50% of these images are downloaded from web

queries by using “logo” and the other 50% using “photo” keyword. During the experiments,

constraints on barycentric distance, scale changes and orientation changes, that are explained

in the previous section are applied and their performances are measured separately. Next,

performance of these constraints in combination are observed.

In addition to the previously explained parameters, a straightforward extension to the tem-

plate images is also evaluated. This extension, which is denoted as Artificial Template Ex-

tension (ATE) throughout the text, consists of artificially applying a number of (six for these
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Figure 4.16: Template logos that are selected to be used as query in the experiments.

experiments) viewpoint changes and some (four during these simulations) scale transforms

on template images. These newly created images are then used in the same manner as the

original template images. Performance obtained by parameters at different values are mea-

sured in terms of true positive and false positive rates. Any match to quads of any of the

template images are counted as a positive. The result of these measurements are presented

via Receiver-Operating Characteristic (ROC) curves. At the end, the performance of the pro-

posed algorithm is compared against a baseline algorithm, that is prominent in the literature.

The baseline algorithm is selected as the most recommended matching method for SIFT [75].

This algorithm also has a geometric compatibility checking stage to compensate for affine

changes, and due to its nature directly compares SIFT descriptors without quantization. This

method is explained in detail in Algorithm 4.1. There are two parameters that are varied to

analyze the performance of the baseline algorithm. The first of these parameters is the ratio of

first nearest matches descriptor distance (thra) to the second. Any match having a ratio higher

than the threshold is rejected. Three threshold values, 0.6, 0.7 and 0.8 are used during the

experiments. The other parameter used to evaluate the performance of the baseline algorithm

is a lower limit on the number of matches (thrr) that survived at the end of the geometric

compatibility process. A much wider range of [0, 250] is used for this parameter.

During the first part of the experiments, three constraints, namely barycentric distance, scale

change heterogeneity and orientation change heterogeneity are applied in isolation by using

threshold parameters thrb, thrσ and thrθ, respectively. This is performed by changing one
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Figure 4.17: Effect of thrb, thrσ and thrθ parameters on performance in isolation for single

template case for the proposed algorithm.

of the threshold parameters in its predefined range (Table 4.5) and relaxing the other two

in order to remove their influence on the performance. Parameters thrσ and thrθ are set to

infinity, when relaxed. Effects of these parameters on performance are presented both for

single template (Figure 4.17) and ATE cases (Figure 4.18).

In the second part of the experiments, parameters, whose effects were analyzed in isolation

in the previous part, are combined. Performance of the proposed algorithm considering the

joint effect of the parameters thrb, thrσ and thrθ are compared against the baseline algorithm

(Algorithm 4.1) for both single template and ATE cases (Figure 4.19). These comparisons are

presented via ROC curves that are obtained by searching the highest possible true positive rate

for various limits on the false positive rate. The parameter combinations that lead to highest

true positive rates for some informative points of the ROC curve are presented in a separate

figure (Figure 4.20). Representative successful recognition instances for the algorithm are

given in Figure 4.21. Similarly, some representative cases where the proposed algorithm fails

are provided in Figure 4.22.
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Figure 4.18: Effect of thrb, thrσ and thrθ parameters on performance in isolation for ATE

case for the proposed algorithm.
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Figure 4.19: Performance comparison of the proposed algorithm, i.e. Combined Visual

Knowledge Base (KB) with the baseline (Algorithm 4.1) for single template and ATE cases.
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Figure 4.20: Performance of the proposed algorithm, i.e. Combined Visual Knowledge Base

(KB) with ATE. Parameters, (thrb, thrσ, thrθ) that lead to the results shown are displayed on

the curve at informative points.
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Table 4.5: Simulation parameters for the proposed and the baseline (Algorithm 4.1) methods

Parameters Min. Value Max. Value Step Size

P
ro

p
o
se

d thrb 0.11 0.19 0.02

thrσ 2 4 1

thrθ 2 4 1

B
a
se

li
n

e
Distance Ratio 0.6 0.8 0.1

# Pt. Matches 0 250 1

Some points need to be clarified in order to ensure accurate interpretation of Figure 4.19

and 4.20. First of all, the steady start of the proposed algorithm with ATE until a non-zero

false positive rate is due to some negative images that are falsely retrieved in all parameter

combinations. Next, there are also steady regions at other parts of the curves, especially

towards high false positive rate. This result is due to the fact that with the parameter ranges

defined for our experiments, it is not possible to achieve the retrieval of some positive data. As

previously explained, the curves show the highest true positive rate with respect to upper limit

on the false positive rate. Therefore, if true positive rate does not increase, as one increases

the upper limit on false positive rate, then horizontal steady regions are observed on the curve.

Experiments performed also include utilization of the stop-list approach [168] that is fre-

quently applied in text retrieval. In a separate strand of experiments, very frequent codewords

and quads are detected and dismissed before applying the proposed algorithm. Despite its suc-

cess in text retrieval domain, this approach does not enhance the performance of the proposed

algorithm in this domain based on the conducted experiments. Therefore, the experimental

results related to these experiments are not included in this text. Sample results showing

the strength of the proposed method and respective interest point matches are given in Fig-

ure 4.21. The representative colors of the interest points (other than yellow) are deliberately

selected to aid in identifying pairs of quad centers that are matched by the algorithm. The

interest points that are shown with yellow color are neighbors of the centers of the matched

quads.
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Figure 4.21: Examples of successful recognition results. Template interest points are shown

in the upper row, test interest points and images are given below them.

4.2.4 Conclusions

A template-based matching approach for matching distinctive groups of interest points has

been presented. In this approach, robustness of appearance representation is enhanced by

using clustered local descriptors, while compensating the side-effect of the diminishing indi-

vidual discriminative power by the help of group-based geometrical constraints. The first part

of the experiments presents the individual effect of each of the three constraints that constitute

the geometrical power of the approach. In these experiments, it is observed that each of these

constraints have similar effects on filtering false positives and none of them can individually

be considered superior to the others (Figure 4.17). On the other hand, for the ATE case, it

can be observed that each of these parameters prove robust against a radical increase in the

number of templates (Figure 4.18). It can be seen that utilizing any of these parameters, in-

crease in false positive rate can be successfully controlled, while increasing the true positive

rate significantly.

The results obtained from individual assessment of the parameters of the proposed algorithm

led us repeating the experiments to assess combined effects of the parameters. The results

of these experiments have demonstrated that these parameters reinforce each other’s perfor-
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Figure 4.22: Examples of cases where recognition fails. In most of the cases, logo region

undergoes harsh photometric effects.
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mance in filtering false positives, and especially for the ATE case profited significantly from

the increase in the number of templates (Figure 4.19). The baseline method (Algorithm 4.1),

on the other hand, could not profit from the increase in the number of templates and since

it does not limit the increase in false positive rate, even with a reasonable parameter search.

This is coherent with the previous research [152], which aim to model the false positive dis-

tributions and properties, in order to profit from larger template sets.

As an additional benefit, these experiments helped us gain insights about the nature of trans-

formations that planar logos undergo in real life. The parameters that led to various perfor-

mance results (Figure 4.20) have shown that support region size or scale of interest points

that lie close together can vary significantly (threshold thrσ needs to be increased to at least 2

-meaning a scale ratio of 4- in order to obtain a true positive rate of around 0.55) . In addition,

affine distortion that govern the geometrical change in a planar logos, also changes the local

description of the interest point regions significantly. This fact can be directly observed from

the heterogeneity of dominant orientation change in positive images (threshold thrθ needs to

be increased to at least 2 -meaning an orientation difference of π/3 radians- in order to obtain

a true positive rate of around 0.55).

In the cases where ATE is not applied, the performance of the proposed algorithm is lower

than the baseline algorithm. This is considered as a direct consequence of the fact that repeat-

able neighborhoods are an integral part of the proposed approach. Therefore, scale change

that changes the neighborhood of local features by increasing or decreasing the total number

of interest points significantly, degrades the performance of the CVKB method. For the time

being, ATE seems to ease this effect, but this seems to be the soft spot of the method and

need to be addressed in the future. The proposed method, in the light of the experiments,

provides a robust way to achieve template matching with large template sets and using much

less discriminative yet repeatable local features. The approach is open to improvements, such

as generalization on template generation step, using the common repeatable quads among the

template images and generalizing them. After this kind of modifications, the approach can be

adapted to classification and other high-level problems as an intermediate layer.
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4.3 An Extended Framework for Joint Utilization of Vector Quantized Appear-

ance, Geometry and Significance-based Grouping

The experimental results obtained and the conclusions that are drawn led to the develop-

ment of an evolved version of the method described in Section 4.2. This method inherits the

strengths of the previous method, which are the utilization of generalized local appearance

descriptors and semi-local geometric definitions based on geometric invariants. As stated in

Section 4.2.4, despite the utilization of scale invariant local descriptions and affine invari-

ant geometric descriptors, the invariance of the method against scale change as a whole is

threatened under significant scale changes. In addition, presence of extreme clutter creates a

similar effect on the neighborhoods of local features. In order to be able to select the same

local feature groups that form the quads, it is necessary to introduce a grouping constraint that

is robust to scale change and extreme clutter. In this section, an evolved method that intro-

duces a novel scheme for ameliorating the grouping problem in high clutter and large changes

in scale. Detailed description of this method is introduced in Section 4.3.2. Additionally, this

method is evaluated on a much larger dataset that is formed using data from another experi-

mental dataset [152]. Experimental results presented in Section 4.3.3, supported the positive

effect of the novel extension on the previous method (4.2) [49].

4.3.1 Motivation

Instance-level recognition of a specific logo in images and video is of great importance for

various applications. The areas that mostly benefit from the statistics of the appearance of

logos are advertisement, marketing and sponsoring sectors. Sponsors can project the effect

of their sponsoring contracts by measuring the appearance frequency of their logos. Another

application of logo detection is information retrieval in large image and video databases.

In the literature, many methods have been proposed for logo detection [169, 170, 162, 163,

171, 172, 173, 174, 164, 165, 152]. However, the research has been mostly on the detec-

tion side within some constrained environments. The most constrained case is detection and

classification in text documents [169, 170, 162], where logos are located on a homogeneous

background, with no occlusions, or 3D transformations. Another common application is TV

channel logo detection [163, 171, 172, 173, 174, 164], whereas in this domain, logos are lo-
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cated on heterogeneous backgrounds and most of the time subject to only minor appearance

changes related to broadcast quality. The methods in this domain have the advantage of using

the temporal dimension in addition to the 2D image frames. Some of these methods han-

dle the cases, in which the logos being searched are transparent [173, 174] or even animated

[164]. On the other hand, none of these methods are designed to cope with natural and re-

alistic scenes, in which the logos are an integral part of the scene. This realistic case needs

a special treatment, such as handling occlusions, 3D transformations, and radical appearance

changes, which is beyond the reach of the methods that have been discussed until now.

In contrast to logo detection in constrained environments, there are only a few algorithms pro-

posed for the natural scene logo detection domain. An important research [165], which aims

at detecting scene logos in frames of sport videos, utilizes edges, shapes and color composi-

tion. More recent work by Joly et al [152] addresses the problem by using local interest point

features. In this work, SIFT [75] descriptors that are extracted from template and test images

are matched using L2 distance and then these matches are filtered by a geometric consistency

checking step. This last step is based on iterative estimation of an affine transformation from

a group of points that are already matched using appearance description, and filtering of in-

consistent one from the matched point list. This approach considers matching appearance and

geometry as two different steps, and uses plain SIFT descriptors, which are based on small

local patches that are not discriminative enough on their own, for matching as the first step.

Only after the next step of iterative transform estimation, these matches are filtered accord-

ing to their geometrical consistency as a group. In the first step, since local descriptions are

not discriminative enough, and only the nearest L2 neighbors in terms of the SIFT descriptor

are eligible for the geometric consistency check, false SIFT matches might easily eliminate

the true correspondences. In addition, estimating a single transformation for an image is not

enough for many cases. Since logos are frequently printed on non-rigid or non-flat supports

different parts of them may undergo different transformations.

For addressing these challenges, a novel approach involving the evaluation of appearance

and geometry via a combined description is presented in this paper. This description utilizes

quantized appearance descriptors of SIFT points to avoid matching each test descriptor to

each template descriptor. In order to filter out keypoints that do not belong to any mean-

ingful matching group, as a preliminary step, a probabilistic approach is utilized. Proposed

method renders one-to-many matching possible in contrast to [152] and [75]. Geometrical
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descriptions of keypoints that belong to promising match groups are based on multiple small

groups of points, quads, instead of a single large group. These advantages render the pro-

posed algorithm robust to significant appearance changes, while being robust to random false

matches through simultaneous utilization of geometrical description. This method, which has

its roots at an earlier approach [47], is explained in detail in Section 4.3.2. The experimental

results showing the robustness of the method by comparing it against a baseline algorithm

(Algorithm 4.1) is given in Section 4.3.3. In the last section, Section 4.3.4, experimental evi-

dence is combined with some remarks in order to reach some very important conclusions and

identify possible research directions.

4.3.2 Components of the Framework

In the proposed approach, appearance is represented by a codebook generated via clustering

of local descriptions of interest point regions. Geometric constraints, on the other hand, are

enforced on the position information of interest points by means of barycentric coordinates

(Section 3.3.1.1). Using these coordinates as a geometric description, quadruplet groups of

codeword based potential matches are intended to be filtered and evaluated according to their

geometric consistency. In this paper, we propose to solve the robust appearance representation

problem by the help of clustered local descriptors, while filtering the side effect of decreased

discriminative power using geometrical constraints. In this way, we also avoid using all visual

feature descriptions in an image and define images by codewords and their positions.

An overview of the proposed method is given in Figure 4.23. Training and detection stages are

illustrated in two separate flowcharts. Training stage (Figure 4.23a) consists of two main parts.

The first one is the preprocess of extracting local features and then quantizing their descriptors

using a codebook. This preprocess is applied to both logo templates and negative training.

Next, these negative images are matched to each logo template and a transform parameter

instance (∆σ,∆θ) is recorded for each pair. Finally, a joint probability density of scale and

orientation change is estimated to represent the matching statistics of the background. This

density is called the Background Model, and will be further elaborated in Section 4.3.2.2.

Detection stage (Figure 4.23b), similar to the training stage, consists of a preprocess applied

on each test image followed by a codeword-based appearance match. These matches con-

tribute to the transform parameter density estimation of the test image. In this density, regions
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(a)

(b)

Figure 4.23: Algorithm Flow Diagram (a) Training Phase, (b) Detection Phase. T1, T2 and

T3 stages of the training phase are explained in Sections 4.3.2.1, 4.3.2.1 and 4.3.2.2. D1,

D2,D3,D4 and D5 stages of the detection phase are explained in Sections 4.3.2.1, 4.3.2.1,

4.3.2.3, 4.3.2.3 and 4.3.2.3.
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that are highly unlikely according to the background density are identified. These regions

then undergo detailed analysis based on a combined representation called Combined Visual

Knowledge Base, which has already been defined in Section 4.2.

4.3.2.1 Local Feature Detection, Description and Appearance Quantization

Preliminary stages of the extended method introduced in this section, utilizes the same algo-

rithms for local feature detection and description as the initial version, DoG detector (Section

2.1) and SIFT descriptor [75]. Appearance of local features are also quantized using the same

codebooks used in Section 4.2.

4.3.2.2 Background Model Estimation

The aim of this step is to model the distribution of transform parameters, scale and orien-

tation change among images that contain no common properties. In order to achieve this,

template image is compared to a database of background images. The comparison involves

the following steps:

1. Accept each background keypoint to each template keypoint, if they have the same

codewords.

2. Compute the difference between scale and orientation of these matching pairs.

3. Estimate the joint probability density of scale and orientation changes in each of the

background images.

4. Average and normalize these densities to obtain the background model, pbg(σ, θ).

The function of background density estimation from negative training images is to model bias

in matching process of ideally scale invariant and orientation covariant local descriptors. In

the ideal case, comparison of logo templates with random images is expected to result in a

uniform 2D density of scale and orientation changes. However, in real case, this background

density is biased (Figure 4.24a), since interest points tend to match to correspondences with

similar scales.
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Figure 4.24: Example joint transform densities of random (Left) and true match (Right)

cases.

4.3.2.3 Matching Groups of Keypoints

Groups of keypoints between two images one being the template is achieved in two steps. In

the first step, matches are obtained by comparing merely quantized codewords of keypoints.

Most of the matches at this point is erroneous, and need to be carefully filtered before delving

into computationally complex steps. This is performed by the a contrario technique [175].

The second step processes each of the meaningful groups of keypoints using affine-invariant

methods and increases the level of confidence.

Transform Density Estimation and A Contrario Group Identification In this step, simi-

lar to Section 4.3.2.2, joint probability density of scale and orientation difference is estimated

between a test image and a template image whose background model has already been ob-

tained. This density, ptest(σ, θ), estimated from the scale and orientation change (∆σ and ∆θ)

coarsely shows the grouping of these transform parameters. Although not very frequent, in

ideal cases looking to this density is enough to discriminate a true match from a false one

(Figure 4.24). However, most of the time, transform density is somewhere in between these

two extremes that are given in Figure 4.24. It is worth mentioning that this distribution, in

fact, is used to identify significant groups of keypoints that undergo similar scale and ori-

entation changes. In addition, local features that are on the background of the object under

consideration will also contribute to this distribution. Therefore, in cases, where a substantial

amount of background is overlapping between images, peaks of the transform density will be
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dominated by the background. This fact is alleviated in our method by modeling the query

object using uncluttered ideal images.

In a non-ideal world, we have to identify the highly meaningful clusters (peaks) of transform

density between two images. In order to achieve this, first we contrast these densities:

pdi f f (σ, θ) = ptest(σ, θ) − pbg(σ, θ) (4.4)

where pbg is the background transform density estimated as in Section 4.3.2.2.

Prominent peaks of pdi f f shows the positions (i.e. parameter pairs) around which test image

matches exhibit clustering behavior that is highly unlikely for background matches. These

positions are interpreted as possible centers of highly meaningful clusters. Around each of

these cluster centers, for regions with various sizes, Number of Expected False Alarms (NFA)

[175] is computed using the background density and the number of test image matches, whose

transform parameters are in the corresponding region:

NFA (X,R) = NR · M · B
(

M,K(X,R), Pbg(R)
)

(4.5)

X is the cluster center coordinate (∆σc,∆θc), R is the region around center, K(X,R) is the

number of test image match transform parameter instances (∆σ,∆θ) that fall into region R, M

is the number of all (∆σ,∆θ) instances, and B(·) is the tail of the binomial law defined by:

B(M, k, P) =
∑

j≥k
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P j (1 − P)M− j (4.6)

The highest of the NFA values computed for regions around a cluster center is assigned to

it and the corresponding radius. All clusters are then evaluated according to their NFA val-

ues, and clusters that have a value over the threshold are filtered out. This way, a contrario

elimination of insignificant clusters randomly is achieved.

Combined Appearance and Affine Geometry Description of Keypoints Clusters that

have significantly low NFA value are accepted as candidates for consistent groups of matching
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keypoints. These groups, however, are still highly ambiguous and should be further evaluated

at a lower level. In order to achieve this aim, a combined representation involving affine in-

variant geometrical descriptors and quantized appearance descriptors is utilized. The details

of this representation has already been presented in Sections 4.2.2.3 and 4.2.2.4.

Decision based on Combined Visual Knowledge Base A test keypoint is accepted as a

match to a template keypoint, if its CVKB consisting of highly discriminative quads show re-

semblance to its template counterpart. The comparison of CVKB is explained in this section.

The structure of each of these representations can be clearly explained as follows: Let CVKB

consist of N quads, qi, i ∈ 1, · · · ,N. Each quad has two elements, ~cwi and ~bi. ~cwi is the

vector of codewords cwi j corresponding to interest points qi j, where j ∈ 1, · · · , 4. Barycentric

coordinates ~bi of each quad is a 3-dimensional vector composed of bik, where k ∈ 1, · · · , 3.

This leads to the following representation for a quad:

qi :
(

~cwi, ~bi

)

(4.7)

Quads within test keypoint CVKB are compared to the template CVKB by this representation.

The comparison is performed for each field of the representation separately. Let qt be the test

quad to be compared to CVKB. The first thing to be compared is the codewords of the two

quads, if they do not match, then there is no need to compare other fields. If the codewords

match then barycentric coordinates are compared. Let qi be defined as in Equation (4.7) and

qt be defined as ( ~cwt, ~bt). Compatibility of these two quads is assessed as follows:

1. If ∀ j ∈ 1, · · · , 4, cwi j = cwt j, then continue; else quads are incompatible.

2. Compute barycentric coordinate distance db by using Equation (3.28).

3. qi is compatible with qt, if and only if db < thrb

Two CVKB are accepted as compatible, if a predefined number of their quads (i.e. thrquad)

are compatible. Two keypoints need to have compatible CVKB’s in order to be accepted as

matches.
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Table 4.6: Simulation parameters for the proposed and the baseline (Algorithm 4.1) methods

Parameters Min. Value Max. Value Step Size

P
ro

p
o
se

d thrNFA -1 15 1

thrbary 0.01 0.5 0.01

thrquad 0 50 1

B
a
se

li
n

e
Distance Ratio 0.6 0.8 0.1

# Pt. Matches 0 250 1

4.3.3 Evaluation: Joint Utilization of Appearance, Geometry and Significance-based

Grouping for Scene Logo Retrieval

In order to perform the preliminary evaluation of the proposed algorithm the dataset that

is used for evaluation of the previous method is utilized. The visual codebook created for

assigning appearance descriptors of test and template images consists of 128 codewords, and

it is the same as the one used in Section 4.2.

Performance values are measured in terms of true positive and false positive rates. The result

of these measurements are presented via Receiver-Operating Characteristic(ROC) curves. A

test image is identified as a match, if it has a meaningful transformation cluster which has an

NFA value lower than thrNFA, and at least one keypoint with a matching CVKB according to

the two parameters thrbary and thrquad. The range of the parameter search space is given in

Table 4.6.

In addition to the simulation case using two different template logos (Figure 4.25), a second

simulation for observing the performance of the proposed method with an excessive number

of templates (Figure 4.26) is performed. This extension, which is denoted as Artificial Tem-

plate Extension (ATE) throughout the text, consists of artificially applying a number of view-

point changes and scale transforms (six and four, respectively) on template images. These

newly created images are then used in the same manner as the original template images.

In both simulations performance of the proposed algorithm is also compared with a baseline

method (Algorithm 4.1), that is prominent in the literature. The baseline algorithm is the

most recommended matching method for SIFT [75]. This algorithm also has a geometric

compatibility checking stage to compansate for affine changes, and due to its nature directly

118



Figure 4.25: Performance results of preliminary simulations using original templates (without

ATE)

Figure 4.26: Performance results of preliminary simulations using ATE with the proposed

algorithm and comparison to baseline (Algorithm 4.1)
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Figure 4.27: Sample images from the Belga Logos Dataset [152].

compares SIFT descriptors without quantization (Section 2.2). There are two parameters that

are varied to analyze the performance of the baseline algorithm. The first of these parameters

is the ratio of the first nearest matches descriptor distance to the second. Any match having

a ratio higher than the threshold is rejected. Three threshold values, 0.6, 0.7 and 0.8 are used

during the experiments. The other parameter used to evaluate the performance of the baseline

algorithm is a lower limit on the number of matches that survived at the end of the geometric

compatibility process. A much wider range of [0, 250] is used for this parameter.

Experiments performed also include utilization of the stop-list approach [168] that is fre-

quently applied in text retrieval. In a seperate strand of experiments, very frequent codewords

and quads are detected and dismissed before applying the proposed algorithm. Despite its suc-

cess in text retrieval domain, this approach does not enhance the performance of the proposed

algorithm in this domain based on the conducted experiments. Therefore, the experimental

results related to these experiments are not included in this thesis.

In the light of the preliminary evaluation of the algorithm and the ATE extension, a second

set of experiments is conducted. Belga Logos [152], a recently introduced dataset, is used for

testing the algorithm on logos of three more brands, namely “Kia”, “Citroen” and “Base”, in

addition to the previous “Coca-Cola”. For a controlled evaluation, instead of all the database,

a subset of size 500 is created (Figure 4.27). Experimental data consists of non-overlapping

positive images (only one of the searched logos is present) of the four brands, and negative

images having context similar to these images. The number of positive images for “Coca-

Cola”, “Kia”, “Citroen” and “Base” logos are 32, 82, 46 and 136, respectively.

In this second stage of experiments, two methods that have excelled in the previous exper-

iments, baseline with single template and proposed method with ATE are compared. ATE

extended version of the baseline method, and the single template version of the proposed

method is not included in the performance visualizations for simplicity, since they performed
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Figure 4.28: Performances of the CVKB ATE (with 128 and 256 codebook sizes) and base-

line algorithm (non-ATE) on four logos of the Belga Logos Dataset. (Upper Left) Coca-Cola,

(Upper Right) Kia, (Lower Left) Citroen, (Lower Right) Base.

similar to the previous experiments and provided no additional information. Instead, in or-

der to evaluate the effect of increasing the codebook size, a second version of the proposed

algorithm working on a codebook of size 256 is included.

The number of artificial templates created for each logo in this experiment is set to six (orig-

inal and five different viewpoints), since template logos provided by the Belga Logos have

relatively small sizes. This decision is based on the detailed analysis of previous experiments,

where it is observed that templates below a given size do not provide any useful information.

The results of this second set of experiments are given in Figure 4.28 as separate RoC curves

for each logo.

4.3.4 Conclusions

A template-based matching approach for matching distinctive groups of interest points has

been presented. Distinctiveness is modeled in a probabilistic way in terms of transformation
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parameters, and compatible groups of true keypoint matches are identified. This is achieved

by utilization of the expected number of false alarms metric for a given group of interest

points. This approach adds a low level matching stage to a contrario decision method and

enhances the robustness of appearance representation by using clustered local descriptors,

while compensating the side effect of decreased individual discriminative power by the help

of group-based geometrical constraints.

The a contrario decision method, which is previously applied to level line shape descriptors,

gave promising results in that context. Applying it to the keypoint domain is also straightfor-

ward. In this context, however, we have applied this method in the domain of keypoints whose

appearance is represented by generic quantized codewords. This is an alternative to the clas-

sical methods which should handle the burden to compare every query keypoint appearance

descriptor with the whole database of descriptors.

In the first stage of experiments, two different scenarios are demonstrated. The first one

presents the performance of the approach using only the two original template images. Except

for a small part, proposed approach is superior than the widely accepted and adhered baseline

method (Algorithm 4.1). It should be noted that the baseline algorithm compares the keypoint

appearances using far more detail, while our approach uses only 128 codewords. Due to the

harsh transformations in the deliberately selected challenging positive set, the performance

of the algorithms using only perfect templates is limited. An obvious improvement is to

extend the search using multiple versions of the sought image. Although this approach puts

a great burden on the baseline algorithm and its derivatives in terms of computational power,

the resulting improvement in true positive rate is mostly overshadowed by the skyrocketing

false positive rate. Artificially transformed templates included in the search, in addition to

the original does not affect the internals of the search mechanism. Each of these extended

query images is searched in the database independently, only affecting the final decision on

the test image. Therefore, the uncontrollable surge in the false positive rate indicates the lack

of scalability, i.e., ability to increase recall performance via increasing training (template)

data. This is an obvious consequence of increased chance of match to an increased size of

query set and common for methods relying on nearest descriptor search.

On the other hand, in the proposed algorithm, the increase in true positive rate with the in-

troduction of new query samples is not accompanied by an unacceptable increase in false
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positive rate. Scalability of the compared algorithms is best observed at the second stage of

experiments that are conducted on the Belga Logos Dataset. In this dataset, context (clutter,

background texture, reflectance, etc.), quality (illumination, focus, etc.) and viewpoint have a

much higher variance than the dataset used for the first stage experiments. Under these con-

ditions, matching a keypoint on a logo instance (for example on a textured non-rigid T-shirt

viewed with an angle), to an ideal logo template with a descriptor distance significantly lower

than any other keypoint, may not be possible. This is due to the limits of invariance/covariance

of local descriptors under changes in viewpoint, illumination, etc. In order to ameliorate the

recall performance in these situations, one should add more training instances or queries rep-

resenting as much variance as possible. This phenomenon can be best observed in the perfor-

mance results of Coca-Cola logo (Figure 4.28). Since baseline algorithm can not benefit from

ATE, similar to the proposed algorithm, its recall has a much lower limit.

Another important problem with the methods, which rely on an initial set of precise appear-

ance matches for detecting geometrically significant group of keypoints, can also be observed

in the second dataset. During the analysis of the Coca-Cola and Citroen logo detection results,

many examples of “miss” have been observed in images where multiple instances of these

logos exist. This is a direct result of primitive nearest neighbor-based descriptor matching

algorithm. Nearest distance descriptor matching aims at reaching precise one-to-one matches

between template and test images before considering any collective geometrical property.

This in turn leads to many match groups with inadequate populations, sparsely distributed on

different instances of the same logo, in test images containing multiple instances of the query

logo.

During the experiments, it is observed that miss-detections arise mostly in images, where

searched logo undergoes significant affine transformations. For those cases, detailed analysis

shows that the initial quantized appearance matching fails due to extreme deformations in the

local appearance pattern. This fact degrades the performance of the algorithm significantly,

since the method is based on the assumption that initial correspondences exist between model

and query images. Therefore, the appearance matching component of the proposed method

is open to improvement in increasing its robustness against geometric transformations. In

order to achieve this, a promising alternative is the utilization of affine adaptation methods

[159, 176] that allow for more accurate descriptor extraction via incorporating a preliminary

local patch adaptation step.
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The proposed method, in the light of the experiments, provides a robust way to achieve tem-

plate matching with large template sets and using much less discriminative yet repeatable

local features. The approach has some obvious points of improvement such as the usage

of multiple templates. Currently, every template is searched on its own, although these can

easily be linked together, enabling keypoints from multiple template images be matched as

a group [177]. Another point is the opportunity to utilize background modeling approach at

the quad matching point to objectively decide barycentric distance threshold for each tem-

plate separately. Improvements in the lower levels may include empirical estimation of the

optimal codebook size using a systematical procedure and a reasonable search space, which

is an issue deliberately omitted in this thesis. Last, but not the least, the performance of the

method can profit significantly from the improvement of the appearance matching step with

affine adaptation methods. In the light of experiments, the proposed approach, despite having

various points that require improvement, provides an efficient method of local logo-like tem-

plate search without the need for computationally intensive detailed appearance comparison.

This property is crucial for todays large databases such as the one used in TRECVID [167],

which are most of the time indexed using codeword based descriptions.
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CHAPTER 5

JOINT UTILIZATION OF APPEARANCE AND GEOMETRY

FOR 3D OBJECT RECOGNITION

In this chapter the problem of 3D object recognition from visual content is considered. As

a possible solution to this problem, we propose a novel method for 3D object recognition,

which utilizes well-known local features in an efficient way, without any reliance on par-

tial or global planarity. Geometrically consistent local features, which form the crucial basis

for object recognition, are initially identified by using affine 3D geometric invariants [149].

The utilization of 3D geometric invariants replaces the classical 2D affine transform estima-

tion/verification step [176, 178, 75, 179, 49], and provides the ability to directly verify 3D

geometric consistency. The main contribution of the proposed approach lies in this ability of

incorporating highly discriminative affine invariant 3D information much earlier in the pro-

cess of matching in comparison with its counterparts. The accuracy and robustness of the

method in highly cluttered scenes, without any prior segmentation or post 3D reconstruction

requirements, are presented in the experiments.

5.1 Motivation

The method presented in this chapter addresses the problem of general object recognition

from 2D images in a novel approach. In doing so, it differentiates itself from the traditional

methods in the literature with its approach to geometric verification of low-level matches that

are based on local appearance descriptions Table 5.1. The proposed method exploits 3D and

2D geometric invariants, which has its roots in the previous decade, in a simple setting without

resorting to complex computations of 3D model estimation.
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Table 5.1: Main Components of Some Representative 3D Object Recognition Methods

Appearance Matching Geometric Verification Applicability

Rothganger DoG, Harris-Laplace Local Patch Geometry Partially planar

et. al. [176] Affine Adaptation Projection Matrix Est. objects viewed

NCC, SIFT, Color Chaining under weak

Potential Match List Bundle Adjustment perspective

Neighboring Matches Euclidean Upgrade conditions

Weiss None 3D & 2D Invariants 3D Objects with

et. al. [149] distinctive

intersecting edges

Hough-based DoG & SIFT Hough Trans. Clust. Planar Objects

(Alg. 4.1) [75] (Section 2.1.2 & 2.2) 2D Aff. Trans. Est. Single instance only

Best Match Only (Algorithm 4.1) Limited appearance

distortion

Proposed DoG, Harris-Affine 3D & 2D Affine Generic 3D objects

Method SIFT Invariants viewed under

weak perspective

conditions

Recognition of objects has been the focus of computer vision systems for almost half a cen-

tury. However, despite decades of intensive research, real life object recognition systems still

has many constraints for successful recognition [1]. At the heart of this fact, lies the difficulty

of adapting the optimization boundary between discriminative power and invariance against

a broad spectrum of real life attacks that effect the appearance of objects [180]. Today, uti-

lization of local features and local appearance based methods, is the widespread approach to

this problem [176, 178, 75, 179, 49]. Local features dominate other approaches with some

properties that render them well suited to complex recognition applications, such as object

recognition. Their significance is twofold: First, they provide a robust way to represent the

images in terms of parts without the need for segmentation. Second, they provide a computa-

tionally feasible number of well localized and individually identifiable anchor points. Local

features depend on the common assumption that sufficiently small patches on 3D scenes can

be treated as being comprised of planar points [176]. This assumption is valid for patches

of small sizes and local features that are detected by current state-of-the-art detectors mostly

comply with this size restriction. Local features are, therefore, directly applicable to planar

object recognition without extra restrictions [44, 45].
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Recognizing 3D objects from 2D images, however, is a more difficult task when compared to

planar object recognition in 2D images. In addition to the obvious self occlusion problem, 3D

objects undergo a more complex transformation during the imaging process. Due to the loss

of 3D information during this complex process, which is broadly called 3D to 2D projection,

general 3D objects has no invariants that may enable direct recognition of feature groups

from their 2D images [36]. This fact is widely accepted in modern methods and, therefore,

geometric verification/recognition is conveniently handled by imposing some restrictions on

the viewing conditions. Under particular cases, where objects are viewed from a distance

much larger than the relief of the object, planarity assumption is extended to groups of small

patches. In methods embracing this idea [176, 178, 75], special groups, which are compatible

with the planarity assumption, are detected between model and test images using a 2D affine

transform estimation/verification step. This step is followed by addition of extra matches

that are compatible with the estimated transform [176]. The performance of these methods,

which are dependent on these restrictions, are inherently limited at the initial feature grouping

process in unconstrained cases where 3D characteristics of the object can not be neglected.

The shortcomings of the grouping process, are typically solved in later steps of recognition,

which involve utilization of 3D reconstruction methods, such as pose estimation and addition

of new matches based on reprojection [176]. In more recent approaches [181], 3D information

is directly incorporated into the feature extraction process via using depth maps as an extra

information source.

Despite the difficulties that today’s systems experience in the process of 3D object recognition

in the absence of an extra modality, such as depth maps, the inspiring human visual system

experiences minimum, if any, problem in recognizing 3D objects from their 2D photographs.

This success had once been the driving force behind the efforts in the strand of geometric ob-

ject recognition and eventually resulted in creation of a strong mathematical background on

the subject geometric invariants [1]. Despite the discouraging fact that there are no geomet-

ric invariants of 3D to 2D projection [36], the resulting research, which is based on previous

decade’s strong but deserted geometric invariance field, has proved fruitful in finding alter-

native approaches. A novel example of these methods [149] utilizes invariant information in

matching 3D object models to their projections in images.

Our research, aims to bridge the gap between geometric information conveyed through useful

relations among 3D-3D and 2D-2D geometric invariants (Section 5.2) and robust appear-
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ance information conveyed through covariant local feature descriptions. In doing so, the pro-

posed method builds on the foundations constructed by the work of Weiss and Ray [149] and

presents a novel method for 3D object recognition, which utilizes well-known local features

in a less restricted, and therefore more efficient, way. In the presented approach, geomet-

rically consistent local feature groups, which form the crucial basis for object recognition,

are identified using affine 3D geometric invariants. Utilization of 3D geometric invariants re-

places the aforementioned traditional 2D and then 3D affine transform estimation/verification

step (Table 5.1), and provides the ability to directly verify 3D geometric consistency. The

main contribution of the proposed approach lies in this ability of incorporating highly dis-

criminative affine 3D information much earlier in the process of matching in comparison with

its counterparts. This way, complex 3D model extraction stages can be replaced with a much

simpler geometric consistency step. The accuracy and robustness of the method in highly

cluttered scenes, without any prior segmentation or post 3D reconstruction requirements, are

presented in the experiments.

This research aims to bridge the gap by deriving invariant relations between geometric invari-

ants of 3D-3D (Section 3.3.2) and 2D-2D (Section 3.3.1) invariants [149]. These invariant

relations that exist between invariants are developed depending on specific projection as-

sumptions in Section 5.2. Next, in Section 5.3, preliminary simulations for assessing the per-

formance of these invariant relations on controlled datasets are presented [50]. The proposed

novel 3D object modeling and recognition framework, which builds upon the conclusions

drawn from the preliminary simulations, is described in Section 5.4. Section 5.4.3 following

the method description demonstrates utilization of the proposed method for recognition in

cluttered scenes making use of experimental results obtained on a prominent dataset [50, 51].

In the last section (Section 5.5), performance of the proposed method is reviewed in the con-

text of the experimental results and significant details that may shed light on future research

are discussed.

5.2 Invariant Geometric Relations of 3D to 2D Projection

In this section, the results of a previous research [149] on deriving invariant relations be-

tween 3D and 2D invariants are reproduced. These results include relations constructed under

two different camera projection approximations, namely, perspective and weak-perspective.
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Perspective and weak-perspective camera approximations are shown to be composed of pro-

jective and affine components respectively in Section 3.2. Therefore, the perspective camera

assumption and projective case are used interchangeably in the following text. The same

duality is used when referring to the weak-perspective camera model and affine case.

5.2.1 Invariant Relations of 3D and 2D Invariants under Perspective Camera Projec-

tion

Invariants of 3D to 3D and 2D to 2D projective transformation have been derived in Section

3.3. In this section, the constraining relations between invariants of 3D and 2D projective

transformations are derived, briefly reproducing the work of Weiss and Ray [149] (see also

Appendix A). Although 2D projective invariants exist for point sets of size 5 (Section 3.3.1.2),

due to the requirement of having at least 6 points for 3D invariants, these relations are derived

for 6 pairs of points in homogeneous coordinates.

In Section 3.3.2, points ~X5 and ~X6 have been expressed as a weighted sum of the first 4 points

~X1, ~X2, ~X3, ~X4:

λ5
~X5 = aλ1

~X1 + bλ2
~X2 + cλ3

~X3 + dλ4
~X4 (5.1)

λ6
~X6 = a′λ1

~X1 + b′λ2
~X2 + c′λ3

~X3 + d′λ4
~X4 (5.2)

The unknowns λi in the above equations, which appear in the form a
λ1

λ5
, · · · d λ4

λ5
and a′

λ1

λ6
, · · · d′ λ4

λ6

in two sets of four equations organized for defining ~X5 and ~X6 can be eliminated using the

cross ratios of determinants. In order to achieve this aim, let us denote determinant of the

4 × 4 matrix formed by an ordered quadruple of 3D point coordinates, as Mi. For instance,

determinant of the matrix formed by the first 4 points, ( ~X1, ~X2, ~X3, ~X4), can be defined as:

M5 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(5.3)

Using this convention, the 3D projective invariants I1, I2 and I3 of points ( ~X1, ~X2, ~X3, ~X4, ~X5, ~X6)

are defined by using coordinates of points ~X5 and ~X6, i.e. (a, b, c, d) and (a′, b′, c′, d′) in Equa-

tions (5.1) and (5.2) as:
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I1 =
ab′

a′b
=

M1M′
2

M′
1
M2

, I2 =
ac′

a′c
=

M1M′
3

M′
1
M3

, I3 =
ad′

a′d
=

M1M′
4

M′
1
M4

(5.4)

M′
i

terms in the above equation represent a determinant of the 4 × 4 matrix formed by an

ordered quadruple of 3D point coordinates ( ~X1, ~X2, ~X3, ~X4, ~X6), instead of ( ~X1, ~X2, ~X3, ~X4, ~X5).

Now, we need to derive 2D-2D projective invariants of 6 points ~x1, ~x2, ~x3, ~x4, ~x5 and ~x6 that are

homogeneous representations of projections of 3D points ~X1, ~X2, ~X3, ~X4, ~X5 and ~X6. Following

the convention defined in [149], square matrices that are of size 3 × 3 can be defined using

a triplet of ordered point coordinates in 2D space selected from a group of 5 points. The

determinant of this matrix, is then named using the indexes of the remaining two points. For

example, the determinant of the matrix formed using 2D coordinates of points ~x3, ~x4 and ~x5,

selected from the 5 point group ( ~x1, ~x2, ~x3, ~x4, ~x5) is defined as:

m12 =
∣

∣

∣ ~x3, ~x4, ~x5

∣

∣

∣ (5.5)

Using this convention, it is proved in Appendix A.3 that four 2D projective invariants of the a

point set ( ~x1, ~x2, ~x3, ~x4, ~x5, ~x6) are defined as:

i1 =
m′

12
m14

m12m′
14

, i2 =
m′

12
m35

m25m′
13

, i3 =
m′

12
m13

m12m′
13

, i4 =
m′

12
m45

m25m′
14

(5.6)

In the above equations, m′
i j

is defined exactly the same as mi j, except for replacing point ~x5

in the 5 point set by ~x6 and define the point set as ( ~x1, ~x2, ~x3, ~x4, ~x6). The relation between

3D and 2D projective invariants, namely (I1, I2, I3) and (i1, i2, i3, i4) can be obtained through

a series of substitutions [149] as:

I3(I2 − 1)i1i2 − I3(I1 − 1)i1 − I1(I2 − 1)i2 = I2(I3 − 1)i3i4 − I2(I1 − 1)i3 − I1(I3 − 1)i4 (5.7)

Details of the derivations in this section are given in Appendix A.3.

130



5.2.2 Invariant Relations of 3D and 2D Invariants under Weak-Perspective Camera

Model

The invariants of affine transformation in 3D space (12 degrees of freedom) requires at least 5

non-degenerate points for computation (Section 3.3.2). Computing 2D affine invariants, how-

ever, is possible with only 4 points, since the corresponding transformation has only 6 degrees

of freedom (Section 3.3.1). In order to construct the relations between 3D and 2D invariants,

we should meet the minimum requirements for calculating both sets of invariants. For this

reason, the formulated relations involve 5 3D scene point coordinates ( ~X1, ~X2, ~X3, ~X4, ~X5) and

respective coordinates of their 2D projections ( ~x1, ~x2, ~x3, ~x4, ~x5). In Section 3.3.2, point ~X5

have been expressed as a weighted sum of the first 4 points ~X1, ~X2, ~X3, ~X4:

~X5 = a ~X1 + b ~X2 + c ~X3 + d ~X4 (5.8)

Coefficients (a, b, c, d) in this representation are invariants, which satisfy the equation a + b +

c + d = 1 and stay unchanged under 3D affine transformations. As shown in [149], three of

these invariants are independent, and they can be computed using determinants, which are also

relative invariants of projective transformations. The determinant of the 4 × 4 matrix formed

by an ordered quadruple of 3D point coordinates is denoted as Mi, similar to the projective

case (Section 5.2.1). Definition of M5 is given in Equation (5.3) as an example. Using this

convention, 3D affine invariants can be expressed in terms of determinants as given in Section

3.3.2:

I1 =
M1

M5

, I2 =
M2

M5

, I3 =
M3

M5

Following the convention in Equation (5.5) in Section 5.2.1, square matrices that are of size

3 × 3 can be defined using a triplet of ordered point coordinates in 2D space. Using these

definitions, 2D affine geometric invariants, i1, i2, i3 and i4 of points ( ~x1, ~x2, ~x3, ~x4, ~x5) can be

represented as ratios of determinants as [149]:

i1 =
m12

m15

, i2 =
m13

m15

, i3 =
m25

m15

, i4 =
m35

m15

(5.9)
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The relation given in Equation (5.8) between 3D scene points, also holds among their 2D

projected coordinates. In order for this to be true, the only requirement is that 3D to 2D

projection should take place in conditions where weak perspective (affine) camera model

assumption holds. Under these constraints, 5 2D image points, ( ~x1, ~x2, ~x3, ~x4, ~x5) which are

projections of scene points ( ~X1, ~X2, ~X3, ~X4, ~X5), are related through Equation (5.10):

~x5 = a ~x1 + b ~x2 + c ~x3 + d ~x4 (5.10)

The 3D and 2D invariants obtained from the 3D and 2D homogeneous point coordinates,

respectively, are connected to each other through Equations (5.8) and (5.10). Under weak-

perspective projection assumption, the coefficients (a, b, c, d) remain the same for both 3D

and 2D projected coordinates of world points. Using this fact, and performing a series of sub-

stitutions and simplifications, one can obtain the relation between 3D and 2D affine invariants:

i1 + I1i3 − I2 = 0 (5.11)

i2 + I1i4 − I3 = 0 (5.12)

The derivation and proof of these relations are given in Appendix A.2. Utilization of these two

equations for accomplishing the task of matching images of 3D objects, on the other hand, is

explained in the following sections.

The implications of these equations are better understood by analyzing their geometrical

meaning in the domain of 3D geometric invariants. Equations (5.11) and (5.12), each by

itself represent a plane in 3D invariant space (I1, I2, I3). The geometric entity that satisfy

these two plane equations in a typical degenerate case is a line, which defines their intersec-

tion. In other words, each 5 point combination in an affine projection of a 3D scene to 2D

imposes constraints on possible values of 3D invariants of the corresponding 3D scene points.

These constraints limit the location of 3D invariants on a line, whose parameters are defined

by 2D invariants (i1, i2, i3, i4) of the image points. Each projection of the same scene imposes

the same type of constraints on 3D invariants of the real scene points. This also means that,

3D invariants of the scene must satisfy all of the line equations simultaneously, and therefore,

reside at the intersection point of all these lines. This fact will be used in experiments in

Section 5.3.
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Table 5.2: 3D coordinates of 6 points that are used in the simulations of Section 5.3.1

3D World Point Coordinates

~X1
~X2

~X3
~X4

~X5
~X6

x 0 4 0 0 2.8 -2

y 0 0 4 0 -0.4 2.8

z 4 0 0 0 2 1.6

Table 5.3: 2D projected coordinates of 6 points using the middle view

2D Coordinates of Projected 3D World Points

~x1 ~x2 ~x3 ~x4 ~x5 ~x6

x 0 -14.5042 26.1784 0 -13.4914 23.7127

y 24.1737 -19.339 -8.7261 1.7e-014 -0.4997 10.8163

5.3 Preliminary Experiments

5.3.1 Robustness Analysis of Projective Invariants

In the first set of simulations, projective invariants that are resistant against perspective trans-

formation were tested. In Figure 5.1, projection of 6 3D points, first 4 of which is not coplanar

are given. Projections are obtained from three different point of views. 3D Invariants are cal-

culated from coordinates of artificially located points. On the other hand, three sets of 2D

invariants were obtained from three point of views with a perspective camera. Numerical

values for homogeneous 3D point coordinates are given in Table 5.2, while 2D coordinates of

the projection obtained from the second camera are given in Table 5.3.

Projective 3D to 2D relation (Equation 5.7) is tested for robustness against pixel errors and the

results are given in Figure 5.2 and Figure 5.3. These figures present the plots of the absolute

error in the equation when one of the non-base points is perturbed in terms of percentage and

absolute pixel coordinates, respectively.

It can be deduced from the error curves that projective invariants are quite fragile against

perturbations in 2D projection. This is definitely an important weakness, that should prohibit

its use in imperfect conditions, such as real life scenarios.
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Figure 5.1: Projection of six 3D points from three different viewpoints. All cameras look

towards origin from the coordinates indicated above the figures. (a) Camera at (10,5,10), (b)

Camera at (10,10,10), (c) Camera at (5,10,10)
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Figure 5.2: 3D-2D Projective Relation Error with respect to percentage of coordinate change

in 2D projected coordinates of Table 5.3. (a) ~x1, (b) ~x2, (c) ~x3, (d) ~x4, (e) ~x5, (f) ~x6
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Figure 5.3: 3D-2D Projective Relation Error with respect to absolute coordinate change in

2D projected coordinates of Table 5.3. (a) ~x1, (b) ~x2, (c) ~x3, (d) ~x4, (e) ~x5, (f) ~x6
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5.3.2 Robustness Analysis of Affine Invariants

In this second set of simulations, we experimented with affine invariants which are theoreti-

cally expected to be less prone to pixel errors. However, since these invariants are, by defini-

tion, not invariant against perspective projection, their usage should be in selective domains,

where perspective distortion is limited. In order to test their robustness under orthographic

and perspective projection cases, we organized three sets of experimental data. To create

the first set, we projected a planar logo image on a quadric artificial surface that we defined.

Then, we obtain both orthographic and perspective projections of this surface and mark the

coordinates of 6 pre-selected points on these projections. As a result, we had 2 sets of 3D

invariants obtained from 2 sets of points {1, 2, 3, 4, 5} and {1, 2, 3, 4, 6}. For each of these two

sets of points, we obtained 6 projections (3 point of views in orthographic and perspective

mode) and check the errors in the invariance equations (Equations 5.11 and 5.12). A second

set of data is obtained from a 3D Studio Max model of a Coke can. First, 3D coordinates

of pre-selected points are marked on the model and recorded. Then, the model is rendered

from three point of views with two types of camera (orthographic and perspective). The affine

invariants are tested on these projections. Lastly, a real Coke can is captured in a real scene

from three different views with two types of lenses. The first of these lenses is for simulating

perspective distortion, whereas the second orthographic distortion.

5.3.2.1 Simulation I (2D Logo Projected on Artificial 3D Surface)

Base Images of logo projections are given in Figure 5.4. 6 points are marked on these base

images, similar to the ones in Figure 5.5. Each pair of invariance equations, (5.11) and (5.12),

obtained for 3D invariants by substituting 2D invariants obtained from a projection defines

a line in invariant space. A pair of these lines that are obtained from two different views of

the same 5 points is given in Figure 5.6. Invariant lines for two point sets from 6 different

views (three orthographic and three perspective), whose 3D invariants are also plotted are

given in Figure 5.7. The location of line intersections around the true 3D invariant is given in

Figure 5.8. In this figure, green points denote intersections for corresponding point sets and

red lines denote intersections by that occurred randomly. Note that green points are confined

in a compact region that seems to be separable from the red ones.
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Figure 5.4: Images of projected logo obtained from different viewpoints with orthographic

(upper row) and perspective (lower row) camera models.

(a) (b)

Figure 5.5: Marked points on (a) orthographic and (b) perspective images.
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Figure 5.6: Invariant lines in (I1, I2, I3) space, calculated from orthogonal and perspective

projection of the same view.

Figure 5.7: Invariant lines in (I1, I2, I3) space, calculated for two different point sets from 6

different views including orthographic and perspective modes.
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Figure 5.8: Distribution of correct (green) and erroneous (red) intersection points around 3D

invariant point (blue).

5.3.2.2 Simulation II (3D Object Model - Artificial 2D Multi-view Rendering)

Base images that are used in a manner similar to the previous simulations are given in Figure

5.9. These images are obtained by rendering of 3D Studio Max models. Note that in these

images, spheres that are manually embedded into the model to represent pre-selected points

are also rendered. Hypothetical lines in 3D invariant space that result from 3D-2D invariance

equations of two 5-point sets, viewed from three views with orthographic and perspective

cameras are given in Figure 5.10. The location of line intersections around the true 3D invari-

ant is given in Figure 5.11. In this figure, green points denote intersections for corresponding

point sets and red lines denote intersections by chance. Again, green points are confined in a

compact region that seems to be separable from the red ones.

5.3.2.3 Simulation III (3D Object Model - 2D Photos of Real Object)

Base images that are used in a similar manner as previous simulations are given in Figure 5.12.

These images are obtained by a real camera with two different kinds of lenses (18mm for or-

thographic and 135mm for perspective).Note that pre-selected points are marked manually

on these images. Hypothetical lines in 3D invariant space that result from 3D-2D invariance
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Figure 5.9: Marked points on orthographic (upper row) and perspective (lower row) projec-

tions of model Coke can from three different views.

Figure 5.10: Invariant lines in (I1, I2, I3) space, calculated for two different point set from 6

different views including orthographic and perspective modes.

141



Figure 5.11: Distribution of correct (green) and erroneous (red) intersection points around

3D invariant location (blue) in (I1, I2, I3) space.

equations of two 5-point sets, viewed from three views with orthographic and perspective

cameras are given in Figure 5.13. The location of line intersections around the true 3D invari-

ant is given in Figure 5.14. In this figure, green points denote intersections for corresponding

point sets and red lines denote intersections by erroneously due to random behaviour. Again,

green points are confined in a compact region that seems to be separable from the red ones.

Together with simulations on the second dataset, these results proved the usability of affine

invariance relations for matching 3D geometric structures.

5.3.2.4 Simulation IV (Correspondence Search between Multi-view Photographs of 3D

Scenes)

The core element of object recognition algorithms is the matching algorithm, which in our

case jointly utilizes invariants in two modalities, namely appearance and geometry. These

two channels of discriminative information, i.e. local appearance descriptions and global

geometric constraints on localization of local features, are utilized for detecting consistent

groups of local feature matches between two local feature sets.

During the simulations of this section, validity of affine invariant relations are tested for ro-
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Figure 5.12: Marked points on orthographic (upper row) and perspective (lower row) pho-

tographs of a real Coke can from three different views.

Figure 5.13: Invariant lines in (I1, I2, I3) space, calculated for two different point set from 6

different views including orthographic and perspective modes.
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Figure 5.14: Distribution of correct (green) and erroneous (red) intersection points around

3D invariant location (blue).

bustness against perspective effects. In order to do so, local features are detected by DoG on

different images of the same scene and then ground truth for matches between these images

are constructed manually. The scene that is utilized during these experiments is deliberately

set up in order to contain objects and structures which violate affine projection constraints

given in Section 3.2.2. Two images of the aforementioned scene along with 5 ground truth

matches are given in Figure 5.15a. The idea behind the geometric consistency step in our ap-

proach is utilizing relation in Equations (5.11) and (5.12) as a grouping constraint for appear-

ance based matches [50, 51]. The implications of the geometrical meaning of these equations

in the domain of 3D geometric invariants are worth emphasis at this point. Equations (5.11)

and (5.12), each by itself represent a plane in 3D invariant space (I1, I2, I3). The geometric

entity that satisfy these two plane equations in a typical degenerate case is a line, which de-

fines their intersection. In other words, each five point combination in an affine projection of

a 3D scene to 2D imposes constraints on possible values of 3D invariants of the correspond-

ing 3D scene points. These constraints limit the location of 3D invariants on a line, whose

parameters are defined by 2D invariants (i1, i2, i3, i4) of the image points. Each projection of

the same scene imposes the same type of constraints on 3D invariants of the real scene points.

This result also means that 3D invariants of the scene must satisfy all of the line equations

simultaneously, and therefore, reside at the intersection point of all these lines. This fact is
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Figure 5.15: (a) 5 local features repeatedly detected in two images of the same 3D scene, (b)

The lines that imply the constraints on 3D invariant location. These lines are computed from

2D invariants calculated from coordinates of the 5 local features given in (a). (Black straight

line) and (blue dashed line) are computed from the features on the (left and right) pictures,

respectively. Their intersection, which is defined by 3D invariant coordinates of the scene

points, is represented by the (red circle)

illustrated in Figure 5.15b for two images of the same scene.

The matching algorithm proposed in Section 5.4, exploits the aforementioned constraining re-

lation for removing the ambiguity in the appearance-based matches. In parallel, 3D invariants

of the consistent model groups are also computed using the line intersections in the invariant

space. This enables us to check for consistency of 3D structure without explicitly computing

a 3D model. In this last set of preliminary experiments, succeeding the robustness analysis

in Sections 5.3.2.1, 5.3.2.2 and 5.3.2.3, we analyze the expected number of false positives

arising from line intersections of random groups.

The results of these experiments indicate that random feature groupings between two irrel-

evant images may lead to lines that come significantly close to each other at some point

(Figure 5.16) [51]. This information led us to the fact that, using invariant line intersections

alone does not completely remove the ambiguity of matches. In order to overcome this fact,

we performed the same analysis, but this time calculating the 3D invariant locations using

two manually matched images. This way, we utilize the advantage of multiple images of the

same group of local features for determining the precise 3D invariant location, and increase

certainty in comparison to the previous single image case that can only narrow down the pos-

sible 3D invariant location to a line. In this setting, we select a reference image pair and two
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Figure 5.16: (a) Line-to-line distances obtained from ground truth groupings. 90.9% of a total

of 300 line pairs intersect each other. (b) Line-to-line distances (i.e. intersection of 2 lines)

obtained from random generated groupings. 3.6% of 604,000 line pairs intersect each other.

test images, one being another view of the same scene and the other having totally irrelevant

content. First, we generate a high number of random local feature matches between the ref-

erence images. The cumulative histogram of distances between lines induced by extremely

high number of groupings of these random matches and the corresponding 3D invariant points

that are computed from the reference image pair (Figure 5.17b). Next, for the test image with

the same content, we compute cumulative histogram of distances between lines induced by

ground truth match groups and the corresponding 3D invariant points that are computed from

the reference image pair (Figure 5.17a). The results has shown that, although line-line in-

tersections in the invariant space may lead to false positives, line-point intersections are very

discriminative between true and false positives. Distribution of distances between the ground

truth 3D invariants computed from two reference images and invariant lines defined by a third

image is given in Figure 5.17.

5.4 A Method for 3D Object Recognition using Covariant Local Appearance

Descriptors and Invariant Geometric Constraints

The proposed algorithm [51], which is designed considering the results of the preliminary

experiments in Section 5.3, can be briefly summarized in three steps: In Step 1 of the algo-

rithm, local appearance information is used to generate putative matches common between

three images. During the modeling process, these three images are typically images of the
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Figure 5.17: (a) Point-to-line distances obtained from ground truth groupings. 95.2% of

the 300 lines generated from groundtruth groupings has distance lower than 0.35 to their

corresponding model points (b) Point-to-line (intersection of 2 lines to a third line) distances

obtained from lines generated from random generated groupings. None of the 604,000 lines

generated from random groupings has a distance lower than 0.388 to the model points

model scene taken, consecutively. During the testing step, third image is replaced with the

test image. Step 2, performs similar to Random Sample Consensus (RANSAC) and searches

for the 4 point match group that has the highest number of consistent matches in terms of 3D

invariants. In Step 3, consistent match groups are used for testing other matches for consis-

tency and expanding the group of geometrically consistent matches. This step is necessary,

since, in real life photographs, affine assumption is violated in different amounts. Quadruplet

groups containing grossly affected patches may miss other compatible matches, while less

affected groups can successfully detect them.

The core matching procedure is explained in Algorithm 5.1. The matching method is utilized

both in model library construction and recognition stages. The parameters of the algorithm

typically varies between the two tasks. This variation is due to the nature of the scenes in train-

ing and test datasets. Experimental results for both of the tasks is presented in the following

sections.
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Algorithm 5.1 Proposed Invariant based Matching Algorithm

• thra: Appearance distance ratio threshold

• R: Number of iterations of the Selection/Verification Stage

• RT : Number of iterations of the Expansion Stage

• thrd: Distance threshold in the Selection/Verification Stage

• g : R2×R2×R2×R2×R2
g
−→ R

4 : Mapping from 5 image coordinates to 2D invariants

(i1, i2, i3, i4) defining lines in 3D invariant space

• h : R4 × R
4 h
−→ R

3 : Mapping from 2 lines in 3D invariant space to the midpoint on

the shortest path between them

A. Appearance-based Potential Match Selection

(1) Let fi j represent jth local feature location (x, y) and ai j its description in the ith image

where i = 1, . . . , 3, j = 1, . . . ,Ni.

(2) M12 =















(p, q) : q = arg min
j

‖a1p − a2 j‖ ∧
‖a1p−a2k‖

‖a1p−a2q‖
> thra, ∀k ∈ [1,N2] \ q















(3) M32 =















(r, q) : q = arg min
j

‖a3r − a2 j‖ ∧
‖a3r−a2k‖

‖a3r−a2q‖
> thra, ∀k ∈ [1,N2] \ q















(4) C :=
{

~ci = (ci1, ci2, ci3) : (ci1, ci2) ∈ M12 ∧ (ci3, ci2) ∈ M32

}
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Algorithm 5.1 Proposed Invariant based Matching Algorithm (cont’d)

B. Geometric Selection/Verification Procedure

Note that ci j is the index of the feature from the jth image in the ith common feature triplet.

Assume ci j = f jci j
from this point on for notational simplicity.

(1) for i = 1→ R do

Select 4 random matches from C, S (i) = ( ~cp, ~cq, ~cr, ~cs)

Let S k(i) = (cpk, cqk, crk, csk) be features in the kthimage

for all ~c j ∈ C \ S (i) do

~L1 = g(S 1(i), c j1), ~L2 = g(S 2(i), c j2), ~L3 = g(S 3(i), c j3)

d j = ‖h( ~L1, ~L2) − h( ~L3, ~L2)‖

end for

Z(i)←
{

~cp, ~cq, ~cr, ~cs

}

∪ T , where T =
{

~c j : d j < thrd

}

end for

(2) if ∃Z(i) : |Z(i)| > 4 then

B← Z(î) where î = arg max
i∈{1,...,R}

|Z(i)|

else

B← ∅

end if

C. Expansion using Compatible Matches (B , ∅)

for i = 1→ RT do

Select 4 random matches from B, S (i) = ( ~cp, ~cq, ~cr, ~cs)

Let S k(i) = (cpk, cqk, crk, csk) be features in the kthimage

for all ~c j ∈ C \ B do

~L1 = g(S 1(i), c j1), ~L2 = g(S 2(i), c j2), ~L3 = g(S 3(i), c j3)

d j = ‖h( ~L1, ~L2) − h( ~L3, ~L2)‖

end for

B← B ∪ T where T :=
{

~c j : d j < thrd

}

end for
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5.4.1 3D Object Model Library Construction from Images

Modeling process contains three main steps: (1) Construction of the adjacency graph among

model images; (2) Iterative application of the core procedure defined in Algorithm 5.1 for

identification of robust model features; (3) Creation of a model library using the results of step

(2). In a typical case for a model image chain of 16 consecutive images, modeling process

takes less than 2 minutes. The parameters of the procedure that are defined in Algorithm 5.1

are set to their nominal values of thra = 1.5, thrd = 0.03,R = 100 and RT = 20 during the

modeling phase of the experiments in Section 5.4.3.

5.4.1.1 Construction of Model Image Adjacency Graph

As previously stated in Section 5.4, the core matching/verification part of the proposed al-

gorithm operates on three adjacent model images. Therefore, the pairwise neighborhood

information of the model images is a prerequisite for the modeling process. Although this

information can be considered as an extra input, since most of the time images are taken suc-

cessively in an ordered manner, the manual labor it costs is negligible. Pairwise neighborhood

information of images are used to construct an undirected graph, whose nodes are model im-

ages that are connected by edges representing neighborhood relationships among them. Next,

this graph is parsed to generate a list of unique paths with length two, in other words, all

image triplets that are continuous in terms of viewing conditions are listed. In order to illus-

trate this process, let’s assume we have five images (I1, I2, I3, I4, I5) taken successively using

a camera rotating around an object. The pairwise neighborhood information for these images

is represented by the set A = {(1, 2), (2, 3), (3, 4), (4, 5)}. The adjacency graph corresponding

to this set of neighbors correspond to a simple chain: 1 → 2 → 3 → 4 → 5. The output of

the adjacency graph creation step for this example is then a set G,which contains three triplets

such that G = {(1, 2, 3), (2, 3, 4), (3, 4, 5)}.

5.4.1.2 Identification of Robust Model Features

Each triplet in set G is considered as a source model features which are robust enough in

terms of appearance such that they are detected in at least three model images. In order to

reveal those model features that are compatible in terms of invariants of both appearance (Sec-
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tion 2) and geometry (Section 3.3), the method defined in Algorithm 5.1 is utilized. During

the processing of triplets, the first step is to determine initial feature correspondences which

will constitute the input to the verification step. This is performed by using SIFT descriptors

and an ambiguity threshold of thrd on the second-to-best match distance ratios. It is observed

during preliminary experiments that in images with multiple identical features, this simple

elimination method discards a significant number of useful matches. For this reason, filtering

the best matches is omitted, and instead a potential match list is used to facilitate the use of

multiple candidates for each feature. This approach has proved fruitful in successful meth-

ods in the literature [176]. Despite these facts, we concentrate on the geometric verification

process in this work and adopt this naive appearance-based filtering criterion in this initial

version of our algorithm. After the pairwise appearance-based matching/filtering step be-

tween first-second and second-third images in the triplet, based on descriptors di j in steps A1

through A3 of Algorithm 5.1, in step A4, a set of common matches (C) among three images

are determined.

In Step B1, a predefined number (R) of quadruplet groups S (i) from set C are selected in

order to be tested as a basis. For this aim, one-by-one, each of the remaining matches ~c j in set

C is considered as the source of 5th point for the computation of 3D invariant lines (Section

3.3). The midpoints of shortest paths, namely h( ~L1, ~L2) and h( ~L3, ~L2) from lines ~L1 and ~L3,

which are defined using 2D coordinates of five features in the first and third images, to the line

defined by the second image features ~L2 are computed for each selection of (~c j). The distance

between these midpoints, which is used as the measure of group geometric consistency, is

computed as the Euclidean distance between midpoints h( ~L1, ~L2) and h( ~L3, ~L2). The best

basis and its compatible matches are determined in Step B2 of Algorithm 5.1. If there is

at least one basis with an additional compatible match, then Step C is performed for mining

more matches among others. An example demonstrating the results obtained by this approach,

under viewing conditions that can be considered marginal according to the weak perspective

assumption, is presented in Figure 5.18.

5.4.1.3 Model Library Structure

The robust model features, which are detected among at least three images and compatible

according to the 3D invariant constraints, are determined by the iterative application of Al-
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(a)

(b)

(c)

Figure 5.18: Demonstration of the atomic operation in the modeling process under challeng-

ing imaging conditions: Three consecutive images (left, center and right) of a scene with

complex 3D structure taken from a relatively short distance are input to Algorithm 5.1. (a)

165 appearance-based matches common among 3 images (b) 97 matches that are filtered out

using invariant geometric constraints (c) 68 matches that are verified using invariant geometric

constraints
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gorithm 5.1 as explained in Section 5.4.1.2. As the final step of the modeling process, the

output of the preceding steps should be organized in a model library structure that enables

efficient utilization in the recognition process. The proposed model library contains two main

elements: (1) Refined Model Feature List; (2) Model Match Graph.

Refined Model Feature List is populated by parsing the results obtained during the process

defined in Section 5.4.1.2 , and recording each unique feature of each model image that is

seen in at least one of the compatible groups (B) in Step C of Algorithm 5.1. The connec-

tions between these refined list of image features are formed considering every B set and are

represented in a graph structure. In our implementation, this graph structure is represented

as a sparse matrix, whose columns represent images, and rows represent verified robust local

features. This data structure is identical in terms of its content and purpose to the one used in

[176], and therefore will be called as feature view matrix similar to its counterpart.

5.4.2 3D Object Recognition from Images

Application of the proposed approach to recognition of objects in test images utilizes Al-

gorithm 5.1 in a way similar to the modeling process defined in Section 5.4.1. The nuances

specific to recognition are explained in the following sections. Briefly, the recognition process

can be explained by three main steps: (1) Appearance based putative correspondence deter-

mination between the test image features and each of the refined model image feature sets;

(2) Identification of Geometrically Consistent 3D Features via application of Algorithm 5.1

(3) Assessment of confidence level for the test image features that are matched in step (2).

5.4.2.1 Putative Correspondences using Local Appearance Descriptors

The first step in recognition is generating set of putative matches between the test image and

each model image. This is performed in a per model image basis, comparing SIFT descriptors

in the refined model image features list with the test image features and applying an ambiguity

threshold of thra on the second-to-best match distance ratios.
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Figure 5.19: Illustration of the common feature selection process for recognition, which is

defined in Section 5.4.2.2. Test image IT is compared to model image IR using appearance

matches. According to the feature view matrix, features fR1, . . . , fR5 in IR are linked to features

fP1, . . . , fP5 in IP, while features fR6, . . . , fR10 in IR are linked to features fS 1, . . . , fS 5 in IS .

Matches between IT and IR are divided into two common match groups, namely CPRT and

CS RT for geometric verification step (Step B) of the method described in Algorithm 5.1.

.

5.4.2.2 Iterative Identification of Geometrically Consistent 3D Features

In the modeling step (Section 5.4.1), the proposed method is applied on each model image

triplet in the model image adjacency graph defined in Section 5.4.1.1. Triplets are used also

in the recognition process, but they are selected in a different way. First of all, the third

feature in any triplet is always used as a test feature. In addition, during the per model image

basis comparison of a model library with a test image, the second feature in the triplet is

the feature in the model image under consideration that matched to the third feature. The

selection process of the third feature is illustrated by a visual example in Figure 5.19.

In the comprehensive example of Figure 5.19, we have a test image IT and three model images

IP, IR and IS . During the appearance-based matching process, it is assumed that 10 features

( fT1, . . . , fT10) of model image IT has been matched to features ( fR1, . . . , fR10) of the model

image IR under consideration. In order to select the third image to be used in the common fea-

ture triplets, feature view matrix defined in Section 5.4.1.3) is utilized. Features fR1, . . . , fR5
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are complemented by features ( fP1, . . . , fP5) in image IP, and used for geometric verification

of test features fT1, . . . , fT5. On the other hand, features fR5, . . . , fR10 in IR are used together

with their counterparts fS 1, . . . , fS 5 in image IS for evaluation of test features fT5, . . . , fT10.

The processing and evaluation of each of these groups are performed as described in Step (B)

of the method described in Algorithm 5.1.

5.4.2.3 Metrics for Object Detection

Another nuance of the recognition process is the calculation of confidence measures for each

test image feature that is matched to the model. This calculation is performed in synchroniza-

tion with Step (C) of the method described in Algorithm 5.1 without adding extra complexity.

The modified version of the third step for recognition is as follows:

Let V(i) = 0 where i = 1, . . . , |C|

for i = 1→ RT do

Select 4 random matches from B, S (i) = ( ~cp, ~cq, ~cr, ~cs)

Let S k(i) = (cpk, cqk, crk, csk) be features in the kthimage

for all ~c j ∈ C \ S (i) do

~L1 = g(S 1(i), c j1), ~L2 = g(S 2(i), c j2), ~L3 = g(S 3(i), c j3)

d j = ‖h( ~L1, ~L2) − h( ~L3, ~L2)‖

end for

B← B ∪ T , where T =
{

~c j : d j < thrd

}

V( j)← V( j) + 1, ∀ j ∈ {x : dx < thrd} ∪ {p, q, r, s}

end for

Each of the test image features c3 j are filtered according to threshold thrv on confidence

measure V( j), which is actually the number of compatibility votes it receives from other

compatible features. This can be interpreted for each test feature, as a measure of its coherence

with the group of compatible features that it belongs.
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5.4.3 Experimental Results

We tested the proposed approach on a publicly available dataset 1, which has been created

for comparative analysis of a diverse set of object recognition algorithms [176]. This dataset

contains model images for eight different objects, which will be shortly referred to as truck,

bear, vase, spidy, shoe, salt, rubble and apple. Each object is modeled using 16-20 images,

except for the apple object, which has 29 images. Images used during the modeling process

are generated in a controlled environment without any clutter (Figure 5.20). During the ex-

periments, Difference-of-Gaussian (DoG) [75] and Harris-Affine [44] detectors are used for

extraction of local features. In both cases, local appearance is characterized by the SIFT [75]

descriptor.

Recognition experiments are performed on a seperate set of 51 images that contain heavy

clutter, occlusion and photometric variations. Each test image contains instances of at least 1

and at most 5 model objects. In a typical case, comparing a single test image against a model

library of 16 consecutive images is performed around 1 minute excluding the SIFT descriptor

comparison. The parameters of the method described in Algorithm 5.1 are set to their nominal

values of thra = 1.5, thrd = 0.05,R = 100,RT = 20 and thrv = 8 during the recognition phase.

Recognition performance of the proposed algorithm is compared to other methods that are

tested on the same dataset (all use Harris-Affine detector and SIFT, one additionally uses

color), as well as Lowe’s Hough-based method [75], in Table 5.4. None of the compared

methods, including the proposed, yielded false positives in their reported parameter settings,

and therefore, compared in terms of recall performances.

1 This dataset is publicly available at http://www-cvr.ai.uiuc.edu/ponce_grp/data .
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.20: Model images for objects in the dataset. (a) toy truck, (b) teddy bear, (c) vase,

(d) spidy (Spiderman action figure), (e) shoe, (f) salt (salt can), (g) rubble (rubble-covered

stand for Spiderman action figure) and (h) apple
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Table 5.4: Object Recognition Performances (recall) on the Dataset used in [176]

Truck Bear Vase Spidy Shoe Salt Rubble Apple

Color (SIFT) [176] 12/12 11/11 12/12 4/4 7/9 10/10 9/9 8/11

B&W(SIFT) Greedy [176] 12/12 11/11 12/12 4/4 5/9 10/10 9/9 5/11

B&W(SIFT) Alignment [176] 12/12 10/11 12/12 4/4 4/9 10/10 9/9 5/11

B&W(SIFT) RANSAC [176] 9/12 11/11 11/12 3/4 2/9 9/10 8/9 3/11

Hough-based (Alg. 4.1) [75] 6/12 10/11 11/12 3/4 2/9 8/10 7/9 1/11

Proposed (DoG) 12/12 11/11 12/12 3/4 3/9 8/10 8/9 1/11

Proposed (Harris-Affine) 12/12 11/11 12/12 4/4 6/9 10/10 9/9 1/11

The performance of the DoG variant is much lower than its counterparts, except the Hough-

based method that depends heavily on the planarity assumption. These changes affect the

localization of the DoG detector negatively, leading to a reduced appearance-based matching

performance. Examples of successful recognition results for the DoG variant of the proposed

method is provided in Fig. 5.21. On the other hand, examples of test cases, where DoG variant

of the proposed method fails, are given in Fig. 5.22.

The Harris-Affine variant of our approach, however, performed superior than most of com-

pared methods in most of the cases (Table 5.4), despite its simplicity and naive appearance-

based matching step. Substituting the Harris-Affine detector in place of DoG during the local

feature detection step had a significant positive effect on the performance of the proposed

method. Examples of successful recognition results for the Harris-Affine variant of the pro-

posed method is provided in Fig. 5.23. Misdetections are reduced to 3 instances for the shoe

object, and completely removed for the spidy, salt and rubble objects (Fig. 5.24). Still, the

problems for the apple object persists, since they are mostly related to the low discriminative

power of the local descriptors. Local features that are detected on the apple object can not

be uniquely identified by their SIFT descriptions. Considering this observation, the stringent

ambiguity threshold (thra = 1.5) utilized in the first step can be argued as the main cause of

early feature elimination in apple object tests. The compared methods handle this problem

by enabling many-to-one matching between model and test image local features and omitting

the ambiguity threshold. This problem will be further elaborated in the conclusions section.

It is worth mentioning that the proposed method achieved this performance with a much
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Figure 5.21: Representative examples of successful recognition results for truck, bear, vase,

spidy, salt, rubble and shoe objects (top to bottom) using the DoG variant of the proposed

method (Alg. 5.1)
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Figure 5.22: Examples of test cases, where recognition fails for apple, shoe, salt, spidy and

rubble objects (top to bottom) using the DoG variant of the proposed method (Alg. 5.1).
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Figure 5.23: Representative examples of successful recognition results for truck, bear, vase,

spidy, salt, rubble and shoe objects (top to bottom) using the Harris-Affine variant of the

proposed method (Alg. 5.1)
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Figure 5.24: All three cases, where recognition fails for shoe (bottom row) and representative

examples of cases, where recognition fails for apple (top row) objects using the Harris-Affine

variant of the proposed method (Alg. 5.1).

lower modeling complexity (2 minutes in Matlab vs. 30-70 hours in C++). On the other

hand, our method performs recognition in comparable times with its counterparts, although

our time computations are performed using a Matlab implementation, in contrast to C++

implementations of the compared methods [176]. But this comparison can not be considered

as fair, since computations are performed on different PC configurations.

5.5 Discussion and Future Work

In this chapter, invariant geometric relations between invariants of 3D-3D and 2D-2D are

investigated. These relations that are designed to bridge the gap experienced in 3D-2D pro-

jection that results from the loss of depth information are analyzed in terms of applicability

in practical cases. In order to perform this evaluation, simulations on controlled datasets have

been conducted and important results have been recorded. The first of these results is the

fragility of the relations that are defined for the general perspective projections. The second

important result is the robustness of the relations that are defined for the affine projection ap-

proximations on appropriate projection conditions that are artificially created. The last and

the most important result is the extended robustness observed for affine relations even under

cases where perspective effects become significant in projections.

Affine relations between geometric invariance, which emerge as a promising alternative for
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extending the model-based object recognition framework to 3D objects were selected for ex-

tensive experimentation in the rest of this chapter. In the light of the preliminary experiments

in Section 5.3, we developed a method that utilize local feature based appearance from images

and geometric invariance relations among these features for finding correspondences between

the object model and real life images of an object.

The method that we presented in Section 5.4, combines local features that are appearance-

based invariants and 3D affine geometric invariants for 3D object recognition [51]. Utiliza-

tion of 3D geometric invariants in combination with distinctive and robust local representa-

tion of appearance has brought us two significant advantages: (1) The grouping problem that

prevented widespread use of the powerful 3D geometric invariants [149] is ameliorated by

narrowing down the search space using discriminative power of local feature descriptors; (2)

Limited discriminative power of local descriptions is complemented by 3D geometric invari-

ants at the early steps of recognition as a substitute for explicit modeling of the 3D object,

which is costly both to construct and use. Our experiments provided strong evidence that the

adopted approach efficiently utilizes multi-view model images during modeling and recog-

nition phases, leading to performance comparable with variants of a more complex method

[176].

The proposed method is compared both in terms of its components (Table 5.1) and recogni-

tion performance (Table 5.4) to its counterparts. This comparison is suggestive of the promise

of the proposed method after proper supplementary tools are integrated at its early stages.

One of these tools is the relaxation of the appearance-based matching step, lifting the 1-1 cor-

respondence constraint between local appearance descriptors. Utilization of a simple color

descriptor has also been reported to have a positive effect on the performance [176], and

therefore, will be considered in the future work. Testing the method with other alternative

appearance descriptions, optimizing the parameters/structure of the recognition step and re-

ducing the computation time using simple grouping constraints [75] are the next steps in our

agenda.
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CHAPTER 6

CONCLUSIONS

In this final chapter of this dissertation, we recapitulate the contributions of our research and

discuss possible directions for future work in the light of the insight gained from the conducted

experimentation and research.

6.1 Summary and Conclusions

In this dissertation, we have considered a variety of frameworks for utilizing geometric in-

variants in synchronization with local features for the purpose of object recognition. In this

way, we aim to exploit the solid mathematical foundations of geometric invariance for incor-

porating the strong spatial constraints between relatively small groups of local features among

significant clutter. The planar object recognition part of our research has progressed from a

hybrid method for matching local features in a model image to the ones in a query image,

which iteratively evaluates the nearest appearance descriptor based potential matches, to a

semi-local neighborhood model, which utilizes joint appearance and geometry based descrip-

tions, and finally to a global model, which utilizes joint appearance and geometry descriptions

of local features without any scale restriction on the neighborhood. Next, relations derived as

part of the geometric invariance literature in the past are analyzed for their adaptability to 3D

object recognition and important experimental findings are highlighted.

A Hybrid Method for Robust Correspondence Search Between Partially Planar Objects.

Section 4.1 presented the application of hybrid representations of local features in terms of lo-

cal appearance and semi-local geometry to one-to-one image matching. The use of affine 2D

geometric invariants, namely barycentric coordinates, enabled us to perform robust detection
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of correspondences between semantically related parts of the images. This chapter presented

a hierarchy of simulations on a constrained dataset containing partially planar objects. Exper-

imental results presented in Section 4.1.3 show the robustness of the joint representation and

the matching method against appearance variations, which severely degrade the performance

of local appearance descriptions extracted from small patches. Although, this method is con-

ceptually primitive, its performance on a constrained dataset motivated future research [48].

During the experiments, it is observed that making a premature matching decision based on

solely appearance leads to significant drop in the number of true matches, and therefore, the

overall performance. On the other hand, the experiments showed that utilization of the hybrid

description, which is constructed by combining appearance and geometric information, lead

to a higher matching performance.

A Framework for Joint Utilization of Vector Quantized Appearance and Geometry. Sec-

tion 4.2, has considered a method for extending the nearest appearance descriptor based

matching scheme of Section 4.1 by adapting the method to utilize vector quantized local

appearance descriptions. This extension provided a greater degree of robustness against ap-

pearance variations, which becomes especially important when searching for objects in real

life scenes. In addition, hybrid descriptions that are based on multiple small groups of points,

quads, are introduced. Lastly, the method is applied to a realistic unconstrained dataset that is

created for natural scene logo detection. In the experiments of Section 4.2.3, the robustness of

the proposed method in template matching within datasets with harsh appearance variations.

In the experiments of Section 4.1, it was shown that utilization of the hybrid description,

which is constructed by combining appearance and geometric information, lead to a higher

matching performance. In the method presented in this chapter, appearance-based similarity

step is modified in order to render the solution less dependent on the context. During the scene

logo detection experiments, it is observed that performing appearance matching based on

more robust appearance descriptions that are quantized using k-means, can lead to successful

results in real life applications. On the other hand, handling the grouping problem during

the computation of geometric descriptors by considering only a predefined number of nearest

spatial neighbors can be argued as a reason behind the degraded performance that is observed

under extreme scale changes.

An Extended Framework for Joint Utilization of Vector Quantized Appearance, Geom-
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etry and Significance-based Grouping. Section 4.3, has presented an evolved version of the

method described in Section 4.2. This method, inherited the strong properties of the previous,

and augments it with a novel scheme for ameliorating the grouping problem in high clutter

and large changes in scale. This method has been evaluated on a dataset that is much larger

than the one used in Section 4.2, and the result proved that the method work with significant

confidence under harsh real life conditions.

In the experiments of Section 4.2, handling the grouping problem during the computation of

geometric descriptors by considering only a predefined number of nearest spatial neighbors

is identified as a source of the degraded performance that is observed under extreme scale

changes. In the light of this observation, the method proposed in Section 4.3 is equipped with

the means that render the local feature grouping process independent of the location of the

local features. During the experiments performed using this modified version of the method,

it is observed that successful results are obtained even in challenging conditions of a realistic

scene logo recognition dataset.

Joint Utilization of Appearance and Geometry for 3D Object Recognition. Chapter 5

have presented some important results from the literature [149, 150], which investigates the

use of geometric invariants for 3D object recognition. Useful relations that have been de-

rived in [149], which may enable the use of geometry in 3D object recognition from 2D

images despite the lack of invariants under 3D to 2D projection [36] have been analyzed in

detail. Simulations that have been performed on various projection scenarios, for assessment

of practical applicability of these relations provide important results. Affine geometric in-

variance relations have proved quite robust in realistic simulations, in contrast with projective

relations. In addition, during the experiments performed on both artificial and real data, it is

observed that affine geometric invariance relations are robust against perspective effects up to

an adequate level. This encourages the use of affine invariants instead of the more general

projective invariants in cases where the projection parameters permit affine approximation.

Affine relations between geometric invariants, which emerge as a promising alternative for

extending the model-based object recognition framework to 3D objects, were selected for ex-

tensive experimentation in the rest of Chapter 5. In the light of the preliminary experiments

in Section 5.3, a method, which utilize local feature based appearance from images and ge-

ometric invariance relations among these features for finding correspondences between the
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object model and real life images of an object, was developed. Two variants of the proposed

method is compared both in terms of its components (Table 5.1) and recognition performance

(Table 5.4) to its counterparts. Despite being in initial implementation state, the proposed

algorithm has been proved to have much more to promise after integration of proper supple-

mentary tools.

The experimental results of Section 5.4 has proved that the proposed method can perform

better than its counterparts in the literature, especially in situations, where localization and

repeatability performance of local features do not limit the performance. During the experi-

ments, it is also observed that performance of local detectors, which are invariant against only

2D similarity transforms (such as DoG) can significantly degrade under significant viewpoint

changes. Supporting this observation, the variant of the proposed method, which utilizes a

local feature detector (Harris-Affine) that uses affine adaptation during feature localization

performed significantly superior than the DoG variant under challenging viewing conditions.

An important factor limiting the performance of the proposed method under special cases is

identified as the texture characteristics of the model object (such as apple), which in practice

may lead to local feature patches that are indistinguishable in terms of appearance. It is

concluded that this problem can be solved with the incorporation of a more robust appearance-

based matching step.

6.2 Future Work

In the future, we will work towards extending the use of 3D to 2D projective invariant relations

to practical instance-level object recognition scenarios. In addition, the use of 2D projective

invariants in place of 2D affine invariants will be investigated in planar object recognition

problem domain.

Planar Object Recognition with Joint Utilization of Appearance and Projective Geome-

try. Section 4.3 presented a mature method that is based on affine 2D invariants, which are

also called barycentric coordinates. As discussed in Section 3.2, affine approximation is valid

only when certain conditions are met. In order to extend the applicability of the method in

Section 4.3, utilizing 2D projective invariants are planned.
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Joint Utilization of Appearance and Geometry for 3D Object Recognition. A novel

method for 3D object recognition in cluttered scenes via 3D geometric invariants was pre-

sented in Chapter 5. Despite the promising results obtained in experiments of Section 5.4, the

proposed method has many improvement opportunities. The first of these tools is relaxation

of the appearance-based matching step, lifting the 1-1 correspondence constraint between lo-

cal appearance descriptors. Utilization of a more distinctive local description such as a simple

color descriptor [176] appended to the original SIFT descriptor will also be considered in

the future work. Testing the method with alternative appearance descriptions, incorporating

fundamental matrix (Chapter 9 in [95]) as a global measure of consistency in the model ver-

ification step, optimizing the parameters/structure of the recognition step (Section 5.4.2) and

reducing the computation time using simple grouping constraints [75] are the next steps in

our agenda.
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APPENDIX A

DERIVATION OF INVARIANTS AND INVARIANT

RELATIONS

In this appendix, geometric invariants are derived for point sets in affine and projective spaces.

These derivations are performed in a way to enable formation of relations between invariants

of point sets in 3D spaces and their projections in 2D. The derivations included in this chapter

reproduces the work of Weiss [149].

A.1 Linear Algebraic Prerequisites

Linear algebraic operations constitute an important part of the derivations in Sections A.2 and

A.3. This section is devoted to theorems of linear algebra that are essential for the aforemen-

tioned derivations. The first theorem below is related to the n-linearity property of determi-

nants on n × n matrices, and the ones that follow are related to the relations governing the

product of determinants and row operations of determinants.

Theorem A.1.1 Determinant is an n-linear function on n × n matrices [182], that is to say,

if the ith row of a square matrix is of the form cRi + dR′
i

where Ri and R′
i

are 1 × n matrices,

then we have:
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Theorem A.1.2 Determinant is alternating [182], that is to say, the determinant of any ma-

trix with two identical rows is equal to zero. Further, if a multiple of one row is added to

another row the determinant does not change; and if two rows are interchanged the determi-

nant is multiplied by (-1).

Theorem A.1.3 The determinant of a product is equal to the product of determinants [182]:

|AB| = |A| |B| (A.2)

These three algebraic properties of determinants will be utilized for the derivations in Sec-

tions A.2 and A.3.

A.2 Invariants and Invariant Relations of Affine 3D and 2D Spaces

In this context, 3D homogeneous world coordinates are denoted by ~X, and 2D image co-

ordinates by ~x. For the invariants of affine space and their relations, at least five 3D points

~Xi, i = 1, . . . , 5, in general setting (no four of which are on the same plane) are required. These

five points can not be independent, since in 3D space any point can be represented as a linear

combination of four independent points. In accordance with this fact, ~X5 can be represented

uniquely as a linear combination of the others:

~X5 = a ~X1 + b ~X2 + c ~X3 + d ~X4 (A.3)

The combination weights a, b, c, d are constrained by the fact that fourth homogeneous coor-

dinate is always 1, which can also be represented mathematically by the constraining relation:

a + b + c + d = 1 (A.4)

Determinant operation is a linear function in both 3D and 2D, and therefore determinants are

relative invariants of transformations in these spaces. The determinant of matrices involving

the original and transformed entities are related through a constant scale factor based, which

is equal to the determinant of the affine transformation matrix (Theorem A.1.3). Any four

of the five points in 3D, represented by homogeneous coordinates can form a determinant.

Let us denote determinant of the 4 × 4 matrix formed by an ordered quadruple of 3D point
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coordinates, as Mi. For instance, determinant of the matrix formed by the first four points,

( ~X2, ~X3, ~X4, ~X5), can be defined as:

M1 =

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X5

∣

∣

∣

∣

(A.5)

Determinants Mi are indexed using the index of the point that is left out (first point, ~X1 in the

above case). According to this convention, M2,M3,M4 and M5 are defined as:

M2 =

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X5

∣

∣

∣

∣

(A.6)

M3 =

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X5

∣

∣

∣

∣

(A.7)

M4 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X5

∣

∣

∣

∣
(A.8)

M5 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(A.9)

As indicated by Equation (A.3), there is a dependence among 3D points. Determinants in-

volving these points are also related due to the n-linearity property of determinants (Theo-

rem A.1.1). Substituting the dependence in Equation (A.3), and augmenting the point coordi-

nates with A =
[

~X2, ~X3, ~X4

]

the determinant M1 =

∣

∣

∣

∣

A| ~X5

∣

∣

∣

∣

, can be represented in terms of
∣

∣

∣

∣

A|~Xi

∣

∣

∣

∣

as:

M1 = a
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ b
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X2

∣

∣

∣

∣

+ c
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X3

∣

∣

∣

∣

+ d
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.10)

Due to the property of determinants that is explained in Theorem A.1.2, any determinant with

two identical columns vanishes. In addition, according to the same theorem, when columns

are interchanged in a determinant, the value of the determinant is multiplied by (−1). Using

these, we simplify Equation (A.10) as:

M1 = a
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X1

∣

∣

∣

∣

= −a
∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

= −aM5 (A.11)

In a manner similar to Equation (A.10),The dependence Equation (A.3) can be substituted in

the determinants M2,M3,M4 defined in Equations (A.6) through (A.8) as follows:

M2 = a
∣

∣

∣

∣

~X1, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ b
∣

∣

∣

∣

~X1, ~X3, ~X4, ~X2

∣

∣

∣

∣

+ c
∣

∣

∣

∣

~X1, ~X3, ~X4, ~X3

∣

∣

∣

∣

+ d
∣

∣

∣

∣

~X1, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.12)

M3 = a
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X1

∣

∣

∣

∣

+ b
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X2

∣

∣

∣

∣

+ c
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X3

∣

∣

∣

∣

+ d
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X4

∣

∣

∣

∣

(A.13)

M4 = a

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X1

∣

∣

∣

∣
+ b

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X2

∣

∣

∣

∣
+ c

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X3

∣

∣

∣

∣
+ d

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣
(A.14)
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Equations (A.12) through (A.14) can be simplified using Theorem A.1.2 similar to Equa-

tion (A.11) as follows:

M2 = b
∣

∣

∣

∣

~X1, ~X3, ~X4, ~X2

∣

∣

∣

∣

= b
∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

= bM5 (A.15)

M3 = c
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X3

∣

∣

∣

∣

= −c
∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

= −cM5 (A.16)

M4 = d
∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

= dM5 (A.17)

Using the results in Equations (A.11), (A.15), (A.16), and (A.17), the weights a, b, c, d in

Equation (A.3) can be defined in terms of the ratios of determinants Mi. These coefficients

are also invariants of 3D affine transformations.

a = −
M1

M5

, b =
M2

M5

, c = −
M3

M5

, d =
M4

M5

(A.18)

Projection from 3D to 2D is also a linear operation in homogeneous coordinates (Section 3.2).

Due to this linearity, the relation among 3D coordinates (Equation A.3) also hold for the 2D

coordinates of their projections:

~x5 = a ~x1 + b ~x2 + c ~x3 + d ~x4 (A.19)

Similar to the 3D case, determinants of matrices formed by the 2D homogeneous coordinates,

~xi, of projected points possess the property of relative invariance against linear transforma-

tions. Any three of the five point projections can form a determinant, mi j, in which indices

i and j correspond to indices of points that are not included. Using this convention, three

determinants, m12,m13 and m14 are defined as:

m12 =
∣

∣

∣ ~x3, ~x4, ~x5

∣

∣

∣ , m13 =
∣

∣

∣ ~x2, ~x4, ~x5

∣

∣

∣ , m14 =
∣

∣

∣ ~x2, ~x3, ~x5

∣

∣

∣ (A.20)

2D dependence relation in Equation (A.19) can be substituted in the determinants m12,m13

and m14 by augmenting the point coordinates with a matrix A from the left. For the de-

terminant m12, matrix A =
[

~x3, ~x4

]

is selected as the determinant and m12 =
∣

∣

∣A| ~x5

∣

∣

∣ can be

represented in terms of
∣

∣

∣A|~xi

∣

∣

∣ as:

m12 =
∣

∣

∣ ~x3, ~x4, ~x5

∣

∣

∣ = a
∣

∣

∣ ~x3, ~x4, ~x1

∣

∣

∣ + b
∣

∣

∣ ~x3, ~x4, ~x2

∣

∣

∣ + c
∣

∣

∣ ~x3, ~x4, ~x3

∣

∣

∣ + d
∣

∣

∣ ~x3, ~x4, ~x4

∣

∣

∣

= a
∣

∣

∣ ~x3, ~x4, ~x1

∣

∣

∣ + b
∣

∣

∣ ~x3, ~x4, ~x2

∣

∣

∣

= a
∣

∣

∣ ~x1, ~x3, ~x4

∣

∣

∣ + b
∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= am25 + bm15

(A.21)
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m13 and m14 are also substituted similarly into Equation (A.19). For A =
[

~x2, ~x4

]

and A =

[

~x2, ~x3

]

are used for m13 and m14 respectively. These substitution and simplifications are given

in Equation (A.22) and (A.23) below:

m13 =
∣

∣

∣ ~x2, ~x4, ~x5

∣

∣

∣ = a
∣

∣

∣ ~x2, ~x4, ~x1

∣

∣

∣ + b
∣

∣

∣ ~x2, ~x4, ~x2

∣

∣

∣ + c
∣

∣

∣ ~x2, ~x4, ~x3

∣

∣

∣ + d
∣

∣

∣ ~x2, ~x4, ~x4

∣

∣

∣

= a
∣

∣

∣ ~x2, ~x4, ~x1

∣

∣

∣ + c
∣

∣

∣ ~x2, ~x4, ~x3

∣

∣

∣

= a
∣

∣

∣ ~x1, ~x2, ~x4

∣

∣

∣ − c
∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= am35 − cm15

(A.22)

m14 =
∣

∣

∣ ~x2, ~x3, ~x5

∣

∣

∣ = a
∣

∣

∣ ~x2, ~x3, ~x1

∣

∣

∣ + b
∣

∣

∣ ~x2, ~x3, ~x2

∣

∣

∣ + c
∣

∣

∣ ~x2, ~x3, ~x3

∣

∣

∣ + d
∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= a
∣

∣

∣ ~x2, ~x3, ~x1

∣

∣

∣ + d
∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= a
∣

∣

∣ ~x1, ~x2, ~x3

∣

∣

∣ + d
∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= am45 + dm15

(A.23)

As previously stated, the determinants formed by the 3D and 2D point coordinates, namely Mi

and mi j are relative invariants of affine transformations applied to the points in these spaces. In

other words, a 3D affine transformation will merely multiply all the Mi by the same constant

factor, while a 2D affine transformation multiplies all the mi j with another constant factor. In

order to obtain invariants in 3D and 2D affine spaces by dropping out the constant factors,

it is required to use the ratios of determinants. In addition, the relations or dependencies

among 3D invariants and those among 2D invariants can be linked together via coefficients

a, b, c, d. In order to constitute this relation in terms of the ratios of determinants, the coeffi-

cients in Equation (A.18) is substituted into Equations (A.21) and (A.22). As a result of this

substitution operation, the following relations between 3D and 2D determinants are obtained:

m12 +
M1

M5

m25 −
M2

M5

m15 = 0 (A.24)

m13 +
M1

M5

m35 −
M3

M5

m15 = 0 (A.25)

Equation (A.23) is linearly dependent on the other two, due to the constraint given in Equa-

tion (A.4), which shows that the coefficients a, b, c, d sum to one. We can divide Equa-

tions (A.24) and (A.25) by m15 in prder to group the determinants as ratios:

m12

m15

+
M1

M5

m25

m15

−
M2

M5

= 0 (A.26)

m13

m15

+
M1

M5

m35

m15

−
M3

M5

= 0 (A.27)
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The ratios of Mi and mi j determinants in the above equations are invariants of 3D or 2D

transformations respectively. For notational convenience, 3D invariants are defined as:

I1 =
M1

M5

, I2 =
M2

M5

, I3 =
M3

M5

(A.28)

while 2D invariants are defined as:

i1 =
m12

m15

, i2 =
m13

m15

, i3 =
m25

m15

, i4 =
m35

m15

(A.29)

Using these convenient definitions of 3D and 2D invariants, the relations between them (Equa-

tion A.26 and A.27) for a set of five 3D points and their affine projections can be rewritten

as:

i1 + I1i3 − I2 = 0 (A.30)

i2 + I1i4 − I3 = 0 (A.31)

A.3 Invariants and Invariant Relations of Projective 3D and 2D Spaces

Geometric invariants of 3D and 2D projective space and relation linking them are derived

similar to the affine case. However, due to the higher degree of freedom existent in projective

transformations, six 3D points and their projections in 2D image coordinates are necessary

for the relation among them. 3D homogeneous world coordinates are denoted by ~X, and 2D

image coordinates by ~x like the affine case. In projective 3D space, two points ~X5 and ~X6 in

3D space can be represented as a combination of four independent points ~X1, ~X2, ~X3 and ~X4

with a higher number of coefficients:

λ5
~X5 = aλ1

~X1 + bλ2
~X2 + cλ3

~X3 + dλ4
~X4 (A.32)

λ6
~X6 = a′λ1

~X1 + b′λ2
~X2 + c′λ3

~X3 + d′λ4
~X4 (A.33)

As indicated in Equations (A.32) and (A.33), points in projective 3-space, which are repre-

sented by homogeneous coordinates can not be uniquely defined by Equation (A.3). Instead,

the coordinates (a, b, c, d) can be multiplied by an arbitrary non-zero factor, still satisfying

the equation. Therefore, this factor need to be eliminated in order to obtain projective 3D

invariants.
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In order to obtain 3D invariants, at least six points are needed according to the number of in-

variants calculation (3×6−15 = 3). Invariants of six points can be derived using determinant-

based calculations similar to the affine case. For this, nine determinant definitions are uti-

lized. Similar to the affine case five of these determinants Mi are indexed using the index

of the point that is left out (first point, ~X1 in the above case). According to this convention,

M1,M2,M3,M4 and M5 are defined as:

M1 =

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X5

∣

∣

∣

∣

M2 =

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X5

∣

∣

∣

∣

M3 =

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X5

∣

∣

∣

∣

M4 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X5

∣

∣

∣

∣

M5 =

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(A.34)

In addition to these five determinants, four more are defined involving the sixth point ~X6,

instead of the fifth point ~X5:

M′1 =
∣

∣

∣

∣

~X2, ~X3, ~X4, ~X6

∣

∣

∣

∣

M′2 =

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X6

∣

∣

∣

∣

M′3 =
∣

∣

∣

∣

~X1, ~X2, ~X4, ~X6

∣

∣

∣

∣

M′4 =
∣

∣

∣

∣

~X1, ~X2, ~X3, ~X6

∣

∣

∣

∣

(A.35)

As indicated by Equation (A.32), there is a dependence among 3D points. Determinants

involving these points are also related due to the n-linearity property of determinants (Theo-

rem A.1.1). Substituting the dependence in Equation (A.32), and augmenting the point co-

ordinates with A =
[

~X2, ~X3, ~X4

]

the determinant M1 =

∣

∣

∣

∣

A| ~X5

∣

∣

∣

∣

, can be represented in terms of
∣

∣

∣

∣

A|~Xi

∣

∣

∣

∣

as:

λ5M1 = aλ1

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ bλ2

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X2

∣

∣

∣

∣

+cλ3

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X3

∣

∣

∣

∣
+ dλ4

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.36)

Due to the property of determinants that is explained in Theorem A.1.2, any determinant with

two identical columns vanishes. In addition, according to the same theorem, when columns

are interchanged in a determinant, the value of the determinant is multiplied by (−1). Using
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these, we simplify Equation (A.10) as:

λ5M1 = aλ1

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X1

∣

∣

∣

∣

= −aλ1

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

= −aλ1M5

(A.37)

The dependence Equations (A.32) and (A.33) are substituted in determinants M2,M3,M4 and

M′
1
,M′

2
,M′

3
,M′

4
respectively in a manner similar to Equation (A.36):

λ5M2 = aλ1

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ bλ2

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X2

∣

∣

∣

∣

+cλ3

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X3

∣

∣

∣

∣

+ dλ4

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.38)

λ5M3 = aλ1

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X1

∣

∣

∣

∣
+ bλ2

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X2

∣

∣

∣

∣

+cλ3

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X3

∣

∣

∣

∣

+ dλ4

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X4

∣

∣

∣

∣

(A.39)

λ5M4 = aλ1

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X1

∣

∣

∣

∣

+ bλ2

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X2

∣

∣

∣

∣

+cλ3

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X3

∣

∣

∣

∣

+ dλ4

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(A.40)

λ6M′1 = a′λ1

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ b′λ2

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X2

∣

∣

∣

∣

+c′λ3

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X3

∣

∣

∣

∣
+ d′λ4

∣

∣

∣

∣

~X2, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.41)

λ6M′2 = a′λ1

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X1

∣

∣

∣

∣

+ b′λ2

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X2

∣

∣

∣

∣

+c′λ3

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X3

∣

∣

∣

∣

+ d′λ4

∣

∣

∣

∣

~X1, ~X3, ~X4, ~X4

∣

∣

∣

∣

(A.42)

λ6M′3 = a′λ1

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X1

∣

∣

∣

∣

+ b′λ2

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X2

∣

∣

∣

∣

+c′λ3

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X3

∣

∣

∣

∣

+ d′λ4

∣

∣

∣

∣

~X1, ~X2, ~X4, ~X4

∣

∣

∣

∣

(A.43)

λ6M′4 = a′λ1

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X1

∣

∣

∣

∣
+ b′λ2

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X2

∣

∣

∣

∣

+c′λ3

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X3

∣

∣

∣

∣

+ d′λ4

∣

∣

∣

∣

~X1, ~X2, ~X3, ~X4

∣

∣

∣

∣

(A.44)

(A.45)

Simplified versions of Equations (A.36) and (A.38) through (A.44) using Theorem A.1.2 are

as follows:

a
λ1

λ5

= −
M1

M5

, b
λ2

λ5

=
M2

M5

, c
λ3

λ5

= −
M3

M5

, d
λ4

λ5

=
M4

M5

a′
λ1

λ6

= −
M′

1

M5

, b′
λ2

λ6

=
M′

2

M5

, c′
λ3

λ6

= −
M′

3

M5

, d′
λ4

λ6

=
M′

4

M5

(A.46)

As mentioned above, in projective case invariants are more complex in comparison to the

affine case. This is due to the fact that the determinant ratios given above in Equation (A.46)
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are not invariant. In order to obtain 3D invariants, cross ratios of determinants are utilized for

eliminating all the λi terms:

I1 =
ab′

a′b
=

M1M′
2

M′
1
M2

, I2 =
ac′

a′c
=

M1M′
3

M′
1
M3

, I3 =
ad′

a′d
=

M1M′
4

M′
1
M4

(A.47)

Since projection from 3D to 2D is a linear operation in homogeneous coordinates (Section

3.2), the relations among 3D coordinates (Equations A.32 and A.32) also hold for the 2D

coordinates of their projections:

λ5 ~x5 = aλ1 ~x1 + bλ2 ~x2 + cλ3 ~x3 + dλ4 ~x4 (A.48)

λ6 ~x6 = a′λ1 ~x1 + b′λ2 ~x2 + c′λ3 ~x3 + d′λ4 ~x4 (A.49)

Similar to the 3D case, in 2D, determinants of matrices formed by any three of the first five

2D homogeneous coordinates, ~x1, ~x2, ~x3, ~x4, ~x5, of projected points can form a determinant,

mi j, in which indices i and j correspond to indices of points that are not included. Using a

similar convention, but replacing ~x5 with ~x6, we define determinants m′
i j

. According to these

conventions, the definitions of m12 and m′
12

are provided below as examples:

m12 =
∣

∣

∣ ~x3, ~x4, ~x5

∣

∣

∣

m′12 =
∣

∣

∣ ~x3, ~x4, ~x6

∣

∣

∣

From Theorem A.1.3, we know that determinants are relative invariants of linear transforma-

tions, and therefore we know that cross ratios of determinants lead to cancellation of transform

related scaling terms, which in turn leads to 2D projective invariants. For convenience in the

following steps, we form the following four 2D invariants. We can derive invariants from

other determinants, but they will be dependent on the invariants below:

i1 =
m′

12
m14

m12m′
14

, i2 =
m′

12
m35

m25m′
13

, i3 =
m′

12
m13

m12m′
13

, i4 =
m′

12
m45

m25m′
14

(A.50)

Now that we have derived 3D and 2D invariants for the projective transformation case, we can

relate them using common terms in their definitions. 3D invariants that are defined in Equa-

tion (A.47) are defined in terms of a, b, c, d and a′, b′, c′, d′. In order to relate 2D invariants

defined in Equation (A.50), we need to use the method of substituting dependency relations

(Equation A.48 and A.49) into the definitions of determinants m12,m13,m14 and m′
12
,m′

13
,m′

14
,

like we did in Equations (A.21), (A.22) and (A.23).
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Like the affine case, 2D dependence relations in Equations (A.48) and (A.49) can be substi-

tuted in the determinants m12,m13,m14 and m′
12
,m′

13
,m′

14
by augmenting the point coordinates

with a matrix A from the left. For the determinant m12, matrix A =
[

~x3, ~x4

]

is selected as the

determinant and m12 =
∣

∣

∣A| ~x5

∣

∣

∣ can be represented in terms of
∣

∣

∣A|~xi

∣

∣

∣ as:

λ5m12 = λ5

∣

∣

∣ ~x3, ~x4, ~x5

∣

∣

∣

= aλ1

∣

∣

∣ ~x3, ~x4, ~x1

∣

∣

∣ + bλ2

∣

∣

∣ ~x3, ~x4, ~x2

∣

∣

∣ + cλ3

∣

∣

∣ ~x3, ~x4, ~x3

∣

∣

∣ + dλ4

∣

∣

∣ ~x3, ~x4, ~x4

∣

∣

∣

= aλ1

∣

∣

∣ ~x3, ~x4, ~x1

∣

∣

∣ + bλ2

∣

∣

∣ ~x3, ~x4, ~x2

∣

∣

∣

= aλ1

∣

∣

∣ ~x1, ~x3, ~x4

∣

∣

∣ + bλ2

∣

∣

∣ ~x2, ~x3, ~x4

∣

∣

∣

= aλ1m25 + bλ2m15

(A.51)

Only three of the derived dependence relations can be independent for each of the Equa-

tions (A.48) and (A.49). In this derivation, we select m12,m13,m14 for Equation (A.48) and

m′
12
,m′

13
,m′

14
for Equation (A.49). We have four unknown quantities in each of the three equa-

tions sets, namely, a
λ1

λ5
, bλ2

λ5
, cλ3

λ5
, d λ4

λ5
for the first set and a′

λ1

λ6
, b′ λ2

λ6
, c′ λ3

λ6
, d′ λ4

λ6
for the second

set. This means that for each set of equations, there is one free parameter. For our derivation,

we select the following two quantities as the free parameters:

µ = a
λ1

λ5

(A.52)

µ′ = a′
λ1

λ6

(A.53)

Substituting the first free parameter, µ, into equations for m12 (Equation A.51), m13 and m14,

we obtain the following relations:

b
λ2

λ5

=
m12 − µm25

m15

(A.54)

c
λ3

λ5

=
m13 − µm35

m15

(A.55)

d
λ4

λ5

=
m14 − µm45

m15

(A.56)

Substituting the second free parameter, µ′ into equations for m′
12
,m′

13
and m′

14
, we obtain the

following relations:

b′
λ2

λ5

=
m′

12
− µ′m25

m15

c′
λ3

λ5

=
m′

13
− µ′m35

m15

d′
λ4

λ5

=
m′

14
− µ′m45

m15
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Using these relations we relate 3D invariants and 2D invariants through three equations:

I1 =
ab′

a′b
=
µ
(

m′
12
− µ′m25

)

µ′ (m12 − µm25)

I2 =
ac′

a′c
=
µ
(

m′
13
− µ′m35

)

µ′ (m13 − µm35)

I3 =
ad′

a′d
=
µ
(

m′
14
− µ′m45

)

µ′ (m14 − µm45)

The free parameters µ and µ′ in the above equations can be represented in terms of determi-

nants and Ii in Equations (A.57) and (A.57). These representations are then substituted into

Equation (A.57). After this substitution, the determinants in the resulting relation are grouped

in order to form cross ratios corresponding to 2D projective invariants in Equation (A.50).

The resulting equation below constitutes an invariant relation between 3D invariants that are

computed from 3D point coordinates, and 2D invariants that are computed from their projec-

tions:

I3(I2 − 1)i1i2 − I3(I1 − 1)i1 − I1(I2 − 1)i2 = I2(I3 − 1)i3i4 − I2(I1 − 1)i3 − I1(I3 − 1)i4 (A.57)

This equation remains invariant under projective or in other words, perspective transforma-

tions.

192



VITA

Medeni Soysal was born in Birmingham, UK in 1980. He received his B.Sc. and M.Sc

degrees from Middle East Technical University (METU), Department of Electrical and Elec-

tronics Engineering in 2001 and 2003 respectively. He is working towards Ph. D. degree in

the same department since 2003.
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