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ABSTRACT 

 

A C++ DISTRIBUTED DATABASE SELECT-PROJECT-JOIN QUERY 
PROCESSOR ON A HPC CLUSTER  

 

 

Ceran, Erhan 

M.Sc., Department of Computer Engineering 

                Supervisor      : Assoc. Prof. Dr. Ahmet Coşar 

 

 

May 2012, 75 pages 

 

 

High performance computer clusters have become popular as they are more 

scalable, affordable and reliable than their centralized counterparts. Database 

management systems are particularly suitable for distributed architectures; 

however distributed DBMS are still not used widely because of the design 

difficulties. In this study, we aim to help overcome these difficulties by 

implementing a simulation testbed for a distributed query plan processor. This 

testbed works on our departmental HPC cluster machine and is able to perform 

select, project and join operations. A data generation module has also been 

implemented which preserves the foreign key and primary key constraints in the 

database schema. The testbed has capability to measure, simulate and estimate the 

response time of a given query execution plan using specified communication 

network parameters. Extensive experimental work is performed to show the 

correctness of the produced results. The estimated execution time costs are also 

compared with the actual run-times obtained from the testbed to verify the 

proposed estimation functions. Thus, we make sure that these estimation 
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functions can be used in distributed database query optimization and distributed 

database design tools. 

 

Keywords: Distributed database, Query execution plan, Distributed database 

simulation, Query evaluation, Cost estimation. 
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ÖZ 

BİR DAĞITIK VERİTABANI SELECT-PROJECT-JOIN SORGU 

İŞLEMCİSİNİN BİR HPC ÖBEĞİ ÜZERİNDE C++ İMPLEMENTASYONU 
 

 

Ceran, Erhan 

      Yüksek Lisans, Bilgisayar Mühendisliği Ana Bilim Dalı  

Tez Yöneticisi          : Doç. Dr. Ahmet Coşar 

 

 

Mayıs 2012, 75 sayfa 

 

Yüksek performanslı bilgisayar öbekleri merkezi muadillerine göre daha 

ölçeklenebilir, ucuz ve güvenilir oldukları için günümüzde yaygınlaşmıştır. 

Veritabanı yönetim sistemleri dağıtık mimariler için oldukça uygun olmalarına 

rağmen, dağıtık veritabanları tasarımlarının zor olması nedeniyle yeterince geniş 

alanda kullanılmamaktadırlar. Bu çalışmada dağıtık veritabanı tasarımında 

karşılaşılan zorlukların üstesinden gelinmesine yardımcı olmak için simülasyona 

yönelik bir test yatağı geliştirilmesi amaçlanmıştır. Bunun için bölümümüzün 

HPC öbeği üzerinde select, project ve join işlemlerini dağıtık olarak çalıştıran bir 

sorgu planı işlemcisi implemente edilmiştir. Bunun yanında primary key ve 

foreign key kısıtlamalarını sağlayabilen bir veri üretim modülü hazırlanmıştır. 

Test yatağının bir diğer yeteneği ise verilen bir sorgu planın cevap zamanını 

ölçebilmesi, belirtilen iletişim ağı parametrelerine göre bu zamanı simüle ve 

tahmin edebilmesidir. Üretilen sonuçların doğruluğunu göstermek üzere deneyler 

yapılmıştır. Tahmin fonksiyonlarını doğrulamak için tahmin edilen çalışma 

zamanlarıyla test yatağından elde edilen gerçek zamanlar karşılaştırılmıştır. Bu 

şekilde tahmin fonksiyonlarının dağıtık veritabanı sorgu iyileştiricilerinde ve 

dağatık veritabanı tasarım araçlarında kullanılabileceği gösterilmiştir. 
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Anahtar Kelimeler: Dağıtık veritabanı, Sorgu çalıştırma planı, Dağıtık veritabanı 

simülasyonu, Sorgu değerlendirimi, Maliyet tahmini.   
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CHAPTERS      CHAPTER 1 

 

 

INTRODUCTION 

1 INTRODUCTION 

 

Distributed databases have many advantages over traditional databases for 

organizations with non-centralized data structures. They utilize the locality of 

resources, resulting in a scalable architecture and better performance. Replication 

of relations makes distributed databases more reliable. Also, building a 

distributed database is cheaper than its centralized counterpart as creating a 

network of less powerful computers does not cost as much as one high-end 

computer. 

 

Despite these advantages, distributed databases were not very popular because of 

data network limitations. However, with the advances in network technologies, 

interest in distributed databases is growing rapidly. The complexity of designing 

and creating efficient distributed database systems made it a popular field among 

researchers. 

 

One of the hardest problems when building a distributed database system is the 

optimization of queries. For a given database query, there exists multiple ways of 

execution. These query execution plans differ in the order and the location of the 

operations that will be performed, as well as the cost of execution. The search 

space of query execution plans can become very large for a query with a lot of 

input relations on a large distributed database. To find good solutions with 
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reasonable costs, query optimizers run algorithms that evaluate the cost of 

candidate plans and select the lowest cost plan among considered plans. 

 

In [Kossmann (2000)] query plan evaluation algorithms are examined 

extensively. Dynamic programming methods as proposed in [Selinger (1979)] 

have been used in traditional databases. This approach finds good solutions with 

low costs. However it is not very suitable for distributed databases, as there are 

many additional factors that need to be considered such as network costs, relation 

sites and replication, resulting in very costly search computations. Genetic 

algorithms are also used in query optimization. They are more suitable for 

distributed environments as they have significantly better search time and come 

up with acceptable plans.  

 

Regardless of the search algorithm used, the approximate cost of a plan must be 

known by the algorithm to be able to compare plans without actually executing 

them. Cost estimators are used for this purpose. The cost estimator takes an 

execution plan and the state of the distributed database as input, and returns the 

approximate cost of executing that plan as output. In this study, we create a 

distributed query processor that can execute and estimate costs for distributed 

queries. While estimating the total cost, network communication costs and disk 

access costs are considered. We first implement a simple distributed database that 

is able to execute select, project and join operations which runs on a computer 

cluster. Another module is built to generate relation data according to given size 

and selectivity criteria. To evaluate the accuracy of the cost estimator, actual 

time, simulated time and the time estimated by the cost estimator is compared. 

Our results show that we can estimate the simulated costs accurately, while 

preserving a correlation between real and simulated costs. 
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In the first section we briefly explain the problem we study on this thesis. 

Following section gives detailed background information about distributed 

databases, the computer cluster we worked on, the database operators used and 

the optimization problem. Section 3 addresses the actual implementation of our 

system including design, capabilities, modules and tools used. The data formats 

used for input in our system is also explained in detail. In section 4 we depict the 

experimental results obtained from executing different queries on different 

database setups. In the last section we briefly discuss the overall result of this 

study and possible ways to make our system more realistic.  
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CHAPTER 2 

 

 

BACKGROUND 

2 BACKGROUND 

 

2.1 Distributed Databases 

 

A database is a collection of data organized in a way to describe related activities. 

Today, most of the databases are stored on digital environments. The difficulty of 

managing databases with large amount of data has raised the need for database 

managements systems (DBMS). A DBMS is a software system that aids the user 

to effectively manage data. [Ramakrishnan (2002)] 

 

Users describe their data on a DBMS with high-level abstractions, called data 

models. There are various data models suitable for specific tasks such as 

hierarchical, network, relational and object-relational models. This study focuses 

on commonly used relational data model which was introduced in [Codd (1970)]. 

In relational model, data is represented with one or more relations. The schema of 

a relation describes the meta-data for that relation. The instance consists of tuples 

which are units of data with fields as described in the schema.  

 

A distributed database (DDB) is a group of logically related databases residing at 

different sites on a network. A distributed database management system 

(distributed DBMS) software manages the databases on the network and hides the 

complexity of data distribution, making it transparent. The user of distributed 
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DBMS views the data as a centric database without concerns about relation 

locations. The data-storage sites on a DDB are independent. They can be 

physically close like nodes of a computer cluster, or far like two machines of an 

organization residing on different cities, connected with a WAN. Each site has its 

processor, disk, memory and operating system, allowing them to run applications 

on their own. Even if the site has multiple processors, Distributed DBMS is not 

concerned by the data parallelism inside one machine. Data is transferred 

between sites through computer networks, not interprocessor communication, 

resulting in a loosely coupled architecture. [Ozsu (1999)] 

 

 

Figure 2.1: Overview of a Distributed DBMS 

 

DDBs employ concepts called fragmentation and replication for data storage. 

Fragmentation is the separation of a relation into smaller relations. These smaller 

relations are usually kept on different sites. Breaking a relation into row groups 

while preserving the same columns in all the fragments is called horizontal 

fragmentation.  

Site1 

 

Site4 

  

Site3 

  

Site2 

         Network 
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On the contrary, vertical fragmentation means separating a relation by columns, 

where each fragment has data about all the rows in the original relation. In both 

horizontal and vertical fragmentation, the original relation must be 

reconstructable from its own fragments with no data loss. Also it is mostly 

desired that fragments contain non-redundant data. Figure 2.2 depicts example 

fragmentations on a table. 

 

 

Figure 2.2: Horizontal and Vertical Fragments 

 

Replication means storing multiple copies of a relation or some fragments of a 

relation in different sites. Storing these copies increase reliability of the system, 

as if a site crashes replicated relations can be used instead of the relations on the 

crashed site. 

 

DDBs have the following main advantages over centralized databases: 

 DDBs do not depend on the hardware and software capacity of one 

machine, making them very suitable for growth in data size. Today, 

computer processors have nearly reached their physical limit for clock 

frequency. This makes parallelism a must for systems requiring more 

computational power. DDBs naturally reflect parallelism. 
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 Ideally a DDB is independent of the hardware, operating system, network 

or the DBMS its sites run. This gives large organizations the opportunity 

to easily reflect their organization structure to DDB and make use of 

already existing databases. 

 

 

 Fragmentation and replication increases reliability. In a centralized 

database, if the machine storing relations is down, the database is 

completely unusable. However on a DDB even if a site is down, replicas 

and fragments of the relations in the down site can still exist on running 

sites, making the DDB available. 

 

 In a DDB relations can be stored on the sites where they are expected to 

be used most. This improves the performance by decreasing 

communication times. Another performance advantage is the utilization of 

multiple sites. Executing a query in parallel on different sites results in 

lower response times. 

 

2.2 Database Operators 

Retrieving data from a database is achieved through query languages based on 

Relational Algebra(RA). Every operator in the language takes one or two 

relations as input and produces a result relation, allowing operators to be chained. 

Complex queries can be created by composing these basic operators with a set of 

base relations as input. [Ramakrishnan (2002)].  

 

For this study the basic select, project and join operators were implemented. Also 

two helper operators, “make distinct” and “reduce” were used in semi-join. 



8 

 

 

Select(σ) is a unary operator that retrieves the tuples of a relation matching a 

given condition. As an example, σc>N(R) returns the rows in relation R where the 

value in column C is greater than N. 

 

Project(π) is another unary operator that filters and outputs the selected columns 

of a relation as a new relation. Given a relation and a set of columns, it creates a 

sub-relation with all the tuples but only the desired columns of the original 

relation. For instance, πC1,C2(R) gets the values of C1 and C2 columns for all the 

rows, eliminating any other columns R has. 

 

Join operation is used to combine tuples from two relations by matching tuples 

from both relations using a given condition (usually a common attribute having 

the same value). In other words, join is the equivalent of taking cross product of 

two relations and filtering out undesired rows. There are specialized names for 

join depending on the type of condition, such as condition join, natural join and 

equijoin. For the purpose of this study equijoin is used, which is depicted by the 

symbol ‘⨝’. In equijoin, a tuple from relation R1 is merged with a tuple from 

relation R2 if the specified column C1 of R1 has the same value with column 

C2 of R2. This join operation is expressed as: R1  ⨝ R1.C1=R2.C2 R2 . 

 

Join is an important binary operator whose evaluation is not as straightforward as 

unary operators. In fact, the hardest part in distributed query optimization 

problem is determining the order of join operations and which site to perform 

them. The algorithm used for the join operation itself is also a factor for 

performance. All of the algorithm types have advantages and disadvantages for 

different kinds of input relations. Join algorithms implemented for this study are 

explained below. 
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2.2.1 Nested Loop Join 

Nested Loop Join (NLJ) is the most straightforward to implement join algorithm 

which can be preferred for joining small relations. For larger relations, the cost of 

I/O operations and memory consumption increases, making NLJ a bad choice. 

The algorithm scans every tuple of inner relation for each tuple in outer relation, 

adding them to result set if they match.  

 

 

Figure 2.3: NLJ Pseudo Code [Ramakrishnan (2002)] 

 

Our implementation uses the smaller input as outer relation, as the number of 

total I/O operations are decreased this way.[Ramakrishnan (2002)].  

 

2.2.2 Sort-Merge Join 

Sort-Merge Join (SMJ) is another join method that groups tuples of input 

relations according to their join attribute value by sorting them. Because input 

relations are partitioned on join attribute, it is possible to find matching tuples by 

iterating only matching partitions. This way join operation can be completed in a 

single iteration for both relations, eliminating the need for scanning the whole 

relation for every tuple in the other input relation. The pseudo-code for SMJ is as 

following: 
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Figure 2.4: SMJ Pseudo Code [Ramakrishnan (2002)] 

 

The most expensive part of the algorithm is the sorting of input relations. 

Therefore SMJ performance is good for relations that are already sorted or 

indexed on join attribute. Our implementation avoids sorting already sorted 

relations. 

 

2.2.3 Hash Join 

Hash Join (HJ) consists of two phases: building and probing. In building phase, 

the inner relation is hashed by the value of its join attribute. Using the hashed 

value as key, a hash table is created for tuples.  

In probing phase, the outer relation is iterated. For each iterated tuple, a hash 

value is computed on the join attribute using the same hash function. If there are 

any values with the same key in the hash table created in the building phase, 
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actual tuples of the hash table are compared to see if they match. With this 

approach only the partitions with the same hash keys are scanned.  

 

 

Figure 2.5: HJ Pseudo Code [Ramakrishnan (2002)] 

 

HJ is particularly suited for joining large relations. One of the important factors to 

determine performance of HJ is how well the tuples are distributed on the hash 

table. We used the C++ standard library hash table for our implementation. As it 

performs best in average case scenarios, HJ is used as the join algorithm in this 

study unless otherwise stated. 

 

2.2.4 Distributed Semi-Join 

Distributed Semi-Joins [Kang(1987)] aim to reduce the response time of 

distributed join operations. During a distributed query execution, network 

communication costs between sites usually outweigh the local processing costs. 
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Semi-Joins aim to decrease the amount of total data communication by 

performing some extra operations locally.  

For this study we used 2-way semi-join (2SJ) [Daniels(1982)]. Assume that there 

is a relation R residing in Site1, and relation S residing in Site2 and these 

relations need to be joined at Site3. To join R and S using 2SJ, first R and S are 

projected on the join attribute at their local sites resulting in relations PR and PS. 

Then PR is sent to Site2, where it will be compared with the tuples of PS for 

equality. Matching tuples are put in relation T1, non-matching tuples are put in 

relation T2. This operation is called “reduction”. The smaller of T1 and T2 is sent 

back to Site1. In Site1, depending on the type of relation received from Site2 (T1 

or T2), tuples of R matching with T1 or non-matching with T2 are sent to Site3. 

Likewise, Site2 sends tuples of S matching with PR to Site3, where the join 

operation is performed locally. Note that, Site3 and Site2 can be the same site.  

 

 

Figure 2.6: Distributed Semi Join 
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Briefly, instead of sending whole tuples on network, 2SJ sends the only necessary 

attributes. These attributes determine which tuples of both relations will be in the 

result relation, avoiding the transmission of non-matching tuples. However, there 

is an extra communication cost involved with 2SJ, which are the transfers of 

projected and reduced relations. If the whole size of the tuples of relations R and 

S are not much bigger than the join attribute, and the matching ratio between R 

and S is high, 2SJ can bring extra cost for join operation. Databases use statistics 

based approaches to determine if 2SJ is beneficial for a join operation. 

 

We implemented 2 variations of reduce operations based on which site they will 

run. These reduce operations are not visible to the last user and employed only 

during 2SJ.   

 

2.3 Computer Cluster 

In a DDB, sites communicate with each other via a computer network. The 

network can vary in size such as a small LAN in an office building or a WAN 

connecting different countries. For this study, we used a high performance 

computer cluster (HPC) to execute distributed queries. The cluster consists of 46 

compute nodes. Each node has its own primary and secondary storage, operating 

system and two quad-core processors, making them able to run individually. Note 

that we are not concerned with the parallelism inside a node in the scope of this 

study. Cluster communicates with the external world through a master node. User 

data is stored on a common hard disk that each node can access. Primary storages 

of nodes are not directly accessible and used for internal purposes such as 

caching. Computational communication between nodes is performed with 

InfiniBand network architecture.  
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Figure 2.7: HPC Cluster Architecture 

 

2.3.1 Message Passing Interface 

Nodes of the cluster use a message passing specification for communication, 

called Message Passing Interface (MPI), which is widely used in parallel systems. 

MPI is a specification with multiple implementations. These implementations 

make use of the underlying hardware efficiently, while following the 

specification. This results in standardized, portable and practical message passing 

applications. [mpi-forum (2009)] 

 

Basically, communication in MPI is achieved through send and receive 

operations. A node can send data to a group of nodes simultaneously or a single 

node at a time. Type of the data and a tag information to express metadata is also 

sent together with the payload. On the receiving side, a node declares the 

identities of source nodes that it expects data from. If data is received with an 

expected source and tag, it is accepted and put into a memory buffer. Allocation 

of this buffer is a user responsibility.  

 

One of the main concerns for MPI in this study is the type of send/receive 

operations. These operations can be made in two ways: synchronous and 
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asynchronous. After a synchronous send/receive operation is performed, the flow 

of the program is suspended until the send/receive application buffer of MPI is 

available to use again. During blocking period no other instruction can be 

executed. On the contrary, asynchronous operations do not block and application 

can continue to run. Sent/received data is put temporarily in a memory area. The 

actual transmission status of data can be tested programmatically from the 

application.  

 

Although asynchronous message passing decreases the total time spent on 

communication, in most cases it increases complexity of the application as data 

sent/receive status must be managed manually. In our implementation we 

preferred synchronous methods, as the system requires all the tuples of a relation 

before performing any operations. 

 

2.3.2 Disk and Network Costs 

The computer cluster we used does not only run our distributed queries, it serves 

other users with completely different applications through a job scheduling 

mechanism. Nodes assigned for our usage share common resources with other 

nodes such as network and shared storage. In other words, the load and state of 

the computer cluster at the moment query is executed critically affects response 

time. This is confirmed by the real response time differences between consecutive 

executions of the same query in our experiments. 

 

In order to avoid these issues with real response times, we used simulated 

response time functionality. Simulated times provide more clear results that we 

can compare our estimated results to, enabling us to focus on network costs 

which are the most important factors that determine query response 

time[Banerjee(1993)]. 
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We consider network and disk costs for simulation. How simulated costs are 

calculated is explained in Section 3. In this section, we give the simplified base  

formulas used for calculation of the time required to retrieve a given amount of 

data from the network or the disk. 

 

To estimate the approximate time required to transfer an amount of data over the 

network, we use a modified version of the formula given in (2.1). In this formula, 

         is the time required for one packet of data to be transferred between 

sites.          is independent from the total data size and mainly dependent on 

round trip time (RTT) and the processing times at the endpoints of 

communication.   

 

                   
         

         
      (2.1) 

 

Data size and bandwidth are other factors that affect network time. Bandwidth is 

the measure for expressing how much data a network can transfer per second. 

Usually bits per second (bps) or its multiples are used as bandwidth unit. In 

[Sevinc(2011)], the network time required to transfer a number of messages was 

measured as (2.2) for the cluster we work on. The experimental results this 

formula is based on are given in Figure 2.8. In our implementation we send 

relations in 1 message. Using (2.1), we can calculate          is 0.9μs and 

          is approximately 1526 Mbps for our system. 

 

Transfer Time = No. of messages * (0.9μs + 0.005μs * BytesPerMsg)    (2.2) 
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Figure 2.8: Transmission Cost Variation with Message Size [Onder(2010)] 

  

Another time cost we consider is disk I/O time, as copying a page from disk to 

memory can considerably suspend the processor execution. Data is accessed 

block by block in hard disk. The smallest unit that can be read is a block. We 

assume that a relation exists on a single block on the hard disk. However, it is 

possible that the relation is fragmented and it resides on separate blocks on the 

hard disk, causing disk transfer time to increase.  

 

Disk block transfer time calculation is done according three factors: seek time, 

rotational latency and transfer rate. Seek time is the time spent by the read/write 

head to position itself to the right track of the hard drive. With the read/write head 

on the track, the required sector takes some time to become available for access, 

which is rotational latency. Transfer rate means how much data per second is read 

from hard disk. We base disk cost calculation to the following formula with some 

modifications in our system: 

 

                    
         

             
    (2.3) 
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We used 9ms for      , 4.2ms from                     and 40MBps for Transfer 

Rate.  

 

2.4 Query Optimization Problem 

A database query can be executed in many different ways all with the same 

desired result. However these paths usually have huge differences at their time 

cost. Query optimizers try to find optimal or close to optimal query execution 

plans (QEP) in an acceptable time frame. Figure 2.9 shows a query optimizers 

place in query execution process. 

 

 

Figure 2.9: Query Optimizer Structure 

 

In order to understand the possible cost difference of plans with the same result, 

consider we have the following relations: 

 

Person(Name, Age, CityId) 

City(CityId, Name, Population) 

 

 
Query

Parser 

Query 

Optimizer 

  
Query 

Processor 

  

 

QEP Generation 

and Evaluation 

  

  
Cost Estimation 
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Two ways to execute the query “select Name from Person, City where 

Person.CityId = City.CityId and City.Population  > 1000000 and Person.Age = 

18” are: 

 

 Build the cartesian product of the two relations by iterating all the tuples 

of Person for each tuple in City. From the cartesian product, select the 

tuples which satisfy all the three conditions given in the where statement 

of the query. 

 

 Select the tuples with Age value of 18 from Person relation and put them 

in an intermediate relation. Likewise, select the tuples with population 

greater than 1000000 from the City relation. Scan the selected Person 

checking if any tuples with the same CityId exists in the selected City 

relation, adding the join row to the result relation if they match. 

 

Although both execution paths give the same correct results, the second one is 

clearly more efficient in terms of memory and time. First one creates a cartesian 

product as intermediate relation, which is a very expensive operation especially 

for large relations. The cross product contains a lot of unnecessary tuples which 

will be filtered during selection phase. On the other hand, the second execution 

path performs single relation select operations first. This reduces the size of the 

relations that will be used for join, making it a better alternative. 

 

Databases systems use indexing structures such as B+ trees to get better access 

times on certain attributes. A query optimizer will try to make use of existing 

indices on a relation in most cases. Because our implementation focuses on 

network costs, we do not consider the existence of indices for query plans. 
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The number of possible QEPs can be very large for a query, especially if it 

involves a lot of relations. For a query with N relations, the size possible join tree 

space is Ω(N!). In Figure 2.10, possible join trees are depicted that can be built to 

join three relations R⨝S⨝M. The node at the left side is assumed to be the 

outer relation of the join.  

 

Figure 2.10: Possible Join Orders for a 3-way Join 

 

It can be seen that possible join order number grows very quickly with increasing 

number of relations. Considering selects, projects, different types of join and 

which indexes to use further enlarges the search space. To limit the search space, 

most commercial optimizers follow three restrictions [Ioannidis(1996)]:  

 

 If there is a selection on a relation, it is executed the first time the relation 

is accessed. On the contrary projections are made after other operations 

complete.  
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 Cartesian products of relations are avoided unless explicitly requested in 

the query. 

 

 The inner operand of a join must be a relation, not an intermediate result 

obtained from a previous operation.  Join trees obeying this restriction are 

called “left-deep” trees. If a join tree does not follow this restriction it is 

called a “bushy” tree. This is a heuristic restriction and may eliminate 

optimal plans. However, best left-deep trees do not have much higher cost 

than optimal plans in most cases. 

 

For distributed queries, QEP search space is even larger. In addition to 

possibilities of a centralized query, a distributed query optimizer must also 

consider which site to perform an operation, how to transfer results and 

whether to use semi-join or not. Also, as operations can be done parallel, 

bushy trees cannot be eliminated. These choices make distributed query 

optimization a harder problem, and dynamic programming based algorithms 

[Selinger (1979)] used in centralized databases become too expensive. For 

distributed optimization, other approaches have been proposed such as 

iterative dynamic programming [Kossmann(2000)] and genetic algorithm 

based solutions [Sevinc(2011)]. These methods have less complexity than 

dynamic programming and they still find good enough QEPs. 

 

2.4.1 Cost Estimation 

Query optimization algorithms must know the approximate cost of given QEPs to 

be able to compare them and find a good plan.  The aim may be to reduce total 

time or response time. Total time is the sum of the times spent by the sites 

involved in the execution of a query. Response time is the time from the start of 

query execution to the delivery of query result. One may choose to reduce 
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response time by increasing total time. In this thesis we focus on and use the term 

“cost” to express response time. 

 

To estimate costs, optimizers employ a size estimation module to roughly predict 

the size of an operation’s result without actually executing it. The accuracy of 

estimated size to real size greatly determines the success of optimizer. Query 

optimizers mainly focus on CPU and I/O waiting times, and network delays for 

distributed databases. CPU time’s importance is debated compared to I/O time 

and in some research it is completely ignored. We also follow this approach in 

this study.  Number of the disk page transfer operations required to read a relation 

from the hard drive should be estimated correctly to guess good I/O times. For 

communication costs, mostly number of the bytes sent through the network is 

used as measurement tool. 

 

Current optimizers base their estimations on the data distributions of attribute 

values. To keep these frequencies equi-depth histograms are used on many 

systems [Mousavi(2011)]. Histograms aim to divide the values of an attribute into 

a number of equally sized buckets. Increasing the number of buckets improves 

estimation accuracy; however it is more expensive in terms of memory and 

processing time. When calculating result size of an operation, the size of input 

relations and attribute data distributions are used as cost formula parameters. 

 

Two assumptions are made on the distribution of data by most optimizers which 

decrease estimation accuracy but needed to keep estimation cost acceptable 

[Mannio(1988)].   

 Attribute values are uniform, meaning there are equal numbers of tuples 

for each attribute value. This assumption helps to guess the data 

distribution of attributes in intermediate results. 

 



23 

 

 Values of different attributes are independent and they do not correlate 

with each other. This assumption is wrong in many real life cases but 

keeping buckets for all combinations of attribute values is not practical. 

Bayesian network based methods have been proposed to reflect relations 

between attributes [Getoor(2001)]. 

 

In this thesis we generate our own synthetic data based on the rules defined by the 

user. The metadata for these rules are shared among data generation and query 

processing modules. Therefore our cost estimations are more exact, allowing us 

to focus on network costs and design of a specific distributed database. 
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CHAPTER 3 

 

 

THE METHODS AND IMPLEMENTATION 

3 THE METHODS AND IMPLEMENTATION 

 

This chapter explains how our system is built. First, we briefly describe our 

working environment and the tools we used for development. Then we give 

detailed information about system design and implementation. 

 

3.1 Development Environment 

Briefly mentioning the tools, libraries and process we used during development is 

beneficial as this is an implementation emphasized study. As previously stated, 

our system runs on HPC Cluster with Scientific Linux v5.2 64-bit operating 

system. The details of the cluster can be found in [metu-hpc(2012)].  

 

We chose C++ as our development language for its object-oriented programming 

support and speed. To compile and link the source code we used “mpiCC”, which 

is a wrapper for the local gcc compiler that adds constructs for MPI support. 

Following line is a simple command that builds the executable “runQuery” from 

all available *.cpp files: 

 

mpiCC *.cpp –o runQuery 

 

As the cluster serves multiple users, the prepared executable cannot be run 

directly. A “Portable Batch Script”(PBS)  file must be prepared, which basically 
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states the location of the executable to run and its arguments, as well as the 

number of nodes to run the executable on. Then this script is submitted to job 

queue and handled by job-scheduling service of the cluster. An important point 

for our system is to make sure the number of nodes used in PBS file is equal to 

number of nodes involved in QEP file.  

 

To access computer cluster from Windows operating system we used “SSH 

Secure Shell” and the commercial “ZOC Terminal” products. ZOC Terminal’s 

support for scripts helped with recurring tasks. To be more practical, our code 

was mainly written on Windows and then transferred to the cluster machine. 

However, one issue encountered with this approach is end of line (EOL) 

characters. Windows and Linux handle EOL differently, which causes our 

processor to fail executing queries. If data is generated on Windows and uploaded 

to Linux, line endings must be converted. The standard “dos2unix” tool can be 

used for this purpose. 

 

We included some open source external components in our system. During tests 

we saw that standard random number generator of C++ was not producing 

uniformly distributed results. Therefore we used a C++ implementation of 

Mersenne-Twister pseudo-random number generator as an external component 

[mtrand(2012)]. Another library included in the project was pugixml, which was 

used for parsing and building of our XML (eXtensive Markup Language) input 

files [pugixml(2012)]. To represent tree data structures the class published in 

[treehh(2012)] was used. 

 

3.2 Design and Implementation 

The system has an object-oriented architecture. In Figure 3.1, a simplified UML 

class diagram is given. Note that external libraries and C++ STL are not included 
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in the diagram. Classes that perform different tasks are loosely coupled. For 

example, “CDataGen” class, which is responsible for creation of test relations 

with dummy data, can be executed standalone.  

 

 

Figure 3.1: System Class Diagram 

 

The responsibilities of the classes are briefly given below. Their working process 

is explained in more detail later in this section. 

 

 CRelation: Represents a database relation. Stores a collection of 

attributes and tuples. Modification on these collections during runtime is 

allowed. Values are stored as null terminated character arrays. Metadata 

of relation such as size, attributes and relation name can be accessed. A 

relation can print its metadata and actual data to an output. 

 

 CTable: Table is a specialized relation. They are physical relations that 

exist on files residing on the hard disk of a site. In addition to 

functionalities of a relation, tables can serialize themselves from files. 
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 CDataGen: The responsibility of this class is to generate relation data 

files according to definitions given in database schema input file. The 

application must be run in “generation mode” to create files.  

 

 COperator: This is a utility class that contains the implementations of 

database operators. Select, project, nested loop join, sort merge join, hash 

join and “make distinct” operators are available to use directly from QEP 

definition files. Reduce operator is implicit and used for semi-join 

operations. 

 

 CPlanProcessor: Plan processor parses the given tree structured QEP file 

and converts it into a sequential form of commands that is directly 

assignable to relevant sites.  While converting, it infers required 

commands that are not directly stated in the plan and modifies/adds 

commands.  

 

 CSite: CSite class includes the data and functionality to represent a 

distributed database site. Each site runs on its own node in the cluster and 

calls necessary functions required to execute a QEP. A site instance 

communicates with other sites via MPI infrastructure to exchange 

commands and data.  

 

 CEvaluator: Evaluator class focuses on performance evaluation. It 

measures the real time, simulated time and estimated time required to 

execute a QEP. Also, parsing network and disk latency parameters from a 

file and calculating the cost of transferring/reading a given amount of data 

is this class’ responsibility.  
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We have given a static overview of our architecture. In order to understand 

execution logic in more detail, the system can be examined under three sections 

according to the tasks performed.  

 

3.2.1 Data Generation 

Finding data suitable to the design of our system was not possible, so we 

implemented our own data generator. Our system uses series of numeric digits for 

attribute values and handles them as character arrays. Data generator produces 

relations according to this format.  

The generator takes an XML input file describing the tables and Primary-Foreign 

key relations between the tables in the database. As output, it generates relation 

data files and a modified version of input database schema file.  
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Figure 3.2: Example Database Schema File 

 

Figure 3.2 shows an example database schema input file. Definitions follow 

standard XML notation and features like comments are supported. Every schema 

must have a “Tables” section, while “PFKeys” and “Selectivities” sections are 

optional.  

 

 Tables Section: In this section database tables and their columns are 

defined. For each table, a table entity is created. “Name” attribute states 

the name of the table, and is used as the table file name. The number of 

<!-- 
This database schema input f ile is used to generate data f iles. 
PK-FK sizes must be the equal. 

--> 
<DDBSchema> 
 
 <Tables> 

  <Table Name="Student" Records="1000"> 
   <Column Name="SId" Size="10"/> 
   <Column Name="SName" Size="9"/> 
   <Column Name="C12" Size="2"/> 

  </Table>   
  <Table Name="Enroll" Records="3000"> 
   <Column Name="FSId" Size="10"/> 
   <Column Name="FCId" Size="10"/> 

  </Table>  
  <Table Name="Course" Records="20"> 
   <Column Name="CId" Size="10"/> 

   <Column Name="CName" Size="10"/> 
  </Table>  
  <Table Name="Staff" Records="30"> 
   <Column Name="StaffId" Size="9"/> 

   <Column Name="StaffName" Size="31"/> 
  </Table>  
  <Table Name="Interest" Records="200"> 
   <Column Name="InterestCode" Size="11"/> 

   <Column Name="FStaffId" Size="9"/> 
  </Table>   
 </Tables> 
  

 <PFKeys> 
  <PFKey TableP="Student" PK="SId" TableF="Enroll" FK="FSId"/> 
  <PFKey TableP="Course" PK="CId" TableF="Enroll" FK="FCId"/> 
 </PFKeys> 

 
 <Selectivities> 
  <Selectivity Table1="Staff" Column1="StaffId" Table2="Interest" Column2="FStaffId" 

Value="0.003"/> 
 </Selectivities>  
 

</DDBSchema> 
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the tuples is given in “Records” attribute. Attributes are defined as 

separate “Column” tags. Here, “Name” specifies the name of a column 

and “Size” specifies the maximum number of characters the column has. 

 

 PFKeys Section: Primary-Foreign key associations of relation attributes 

are defined here. By entering a “PFKey”, the user states that two columns 

are connected and their data is generated accordingly. The column that 

will be used as primary key determined by setting “TableP” and “PK” 

fields. TableP is the name of the table that primary key is defined on, and 

PK is the name of the column that will be used as primary key. Foreign 

keys are defined in the same manner using “TableF” and “FK” fields.  

 

 Selectivity Section: We added an alternative way to associate relations 

called “Selectivity”. Although PFKey is more likely to be used, selectivity 

is also helpful for some simulations. To define a selectivity association, 

two columns are entered with their relations using “Table1” - “Column1” 

and “Table2” – “Column2” field pairs. Then a selectivity “Value” is 

entered. When the data generator finds a selectivity defined between two 

columns, it generates data so that if two tables are joined on their 

selectivity attributes, the result relation’s tuple count will be 

approximately |R1|*|R2|*ValueSelectivity  . Here |R1| and |R2| are the size of 

relations selectivity is defined for. 

 

Data generator  provides PFKey and selectivity by creating unique pseudo-

random numbers as cell values. However, ensuring a generated random number is 

unique among in a set of attribute values is computationally expensive. Also, 

random number creation functions can give undesired results such returning the 

same value consecutively. Therefore the effects of PFKey and selectivity 
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definitions are not exact, but differences are negligible. In Figure 3.3 pseudo-code 

for data generation is given.  

 

 

 

 

Figure 3.4 depicts a sample relation output file. The first non-comment row states 

how many records are in relation, number of the attributes and total size of a 

tuple. Names of the columns and their sizes are written in following lines. 

Finally, actual tuple values are listed. In the example figure only 5 of 1000 

records are given. Comments starting with “//” are supported in the beginning of 

a relation data file. Note that even the column C12 size is given as 2, there are 

only 1 character long cell values. This is because the generator sets the range of 

possible attribute values so that a space character is reserved and cell value is 

for each table 
      for each column 

            if a selectivity value is defined for this column then    
                  if connected column is not generated yet then 
                        generate independent values for this column 

                  else  
                        set matchProbability to the probability attribute value will exist on connected column 
                        for each tuple 

                              set random to random number between 0 and 100 
                              if random < matchProbability then 
                                    select a random value from connected column and add it to this column 
                              else 

                                    generate independent value and add it to this column 
                              endif 
                        endfor 

            elseif a PFKey is defined for this column  then 
                  set connectedColumn primary key column for this column 
                  if connected column is not generated yet then 

                        generate connected primary key 
                  endif       
                  for each tuple  
                        set a random value from connected column and add it to this column 

                  endfor 
            else  
                  generate independent value and add it to this column 

            endif 
      endfor 
endfor 

Figure 3.3: Pseudo Code of Data Generation Algorithm 
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distinguishable by human eye. This behavior can be overridden and has no effect 

on how system handles values. 

 

 

Figure 3.4: Example Relation Data File 

 

Another output of data generation process is modified database schema file. 

Generator creates a file with the name “[InputSchemaName]_output.xml”. The 

content of this file is the same as input schema file, except “Min” and “Max” 

attributes are added to “Column” tags. The range of values an attribute can have 

is determined automatically according to its length. This output schema file must 

be given as an argument when executing a query so that the estimator knows the 

metadata about relations.  

 

 

When preparing a schema file, following constraints must be satisfied: 

 Table column names must be unique among database. They must be at 

most 31 characters long. 

 

 If a PFKey or selectivity association is defined between two columns, 

their size must be equal. 
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 A selectivity value can be between 0 and 
 

    
 , where RL is the larger of 

the relations selectivity is defined between.  

 

After preparing a database schema file, tables can be generated by running our 

executable in generation mode using the following command: 

 

runQuery generate [dbschema_filename] 

 

3.2.2 Query Plan Execution 

The main part of our implementation is query plan execution. Given a QEP file in 

a predefined format, the system can execute that plan and find the result relation. 

The below command is used to run a QEP. Note that relations data files must be 

under the same directory with QEP definition file. 

 

runQuery [QEP_filename] [networkparamaters_filename] [dbschema_filename] 

 

Here, “runQuery” is the executable file. [QEP_filename] is the file containing 

QEP which will be given in this section. [networkparamaters _filename] is used 

for setting network latency and bandwidth parameters.  [dbschema_filename] is 

the output of data generator. 

3.2.2.1 QEP Definition File Format 

QEP files are written in XML format, which is particularly good for representing 

QEPs as they have tree structure. Figure 3.5 depicts an example QEP file. Figure 

3.6 is the tree representation for the same QEP. 
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Figure 3.5: Example QEP Definition File 

 

 

Figure 3.6: Example QEP Definition Tree 

 

XML root of a QEP definition file is an operation. Select and project operations 

must have one child node, while joins must have two children. A child can be a 

table node or another operation node. Leafs of the tree can only be table nodes. 

“Table”, “Select”, “Project” and “Join” tags can be used in QEP definitions.  

 

Table tag represents a table residing on a site. Table name is entered inside the 

tag. This tag has only one attribute: 

 Site: Identifier number of the site the table resides on 

Course 

⨝ CoursePId = CourseFId 

⨝ StudentPId = StudentFId 

Enroll π StudentPId, Name 

σ Age<20 and Scholarship 

> 300 

Student 
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The remaining tags are all operation tags. Following attributes are common to all 

operations and can be used with all of them: 

 Perform site: Indicates on which site the operation will be executed. For 

unary operations, this attribute is optional. If no perform site is entered, 

the plan processor sets the site where the only operand resides as default 

perform site. 

 

 Target site: Target site is required only in root operation. If not entered, it 

defaults to perform site. It determinates where the result relation will be 

sent after operation execution is complete. Although the system has the 

ability to send result any site, this must be set to 0 to be able to evaluate 

performance and terminate session. 

 

 Display: This is also an optional parameter and assumed “f” (false) if not 

entered. If set to “t” (true), all the tuples of the operation result are printed 

to standard output. Note that setting this to true for intermediate result can 

degrade execution performance especially for large results. However 

displaying the result of the root operation has no side effects as 

performance measurement is already complete at that point. 

 

The only attribute specific to project is: 

 Attributes: Comma separated column names that will be projected. ‘*’ 

character can be used as sole attribute, and it is equivalent to all attributes 

of a relation. 
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The only attribute specific to select is: 

 Criteria: Comma separated condition strings. These strings are formatted 

as [ColumnName][Condition][NumericValue]. Condition can be “gt” 

(greater than), “et” (equal to) or “lt” (less than). For example, to find 20 

years old students whose Id is greater 1000 we can use 

“Ageet20,StudentIdgt1000” as select criteria. 

 

Following attributes can be used with join operations: 

 Type: States the type of join operation. Possible values are “nestedloop”, 

“sortmerge”, “hash” and “noop”. Noop is not a real join operation. It is 

included only to measure the time both operands of a join operation are 

available for experimental purposes. 

 

 Left Key and Right Key: Join operation accepts the first child node as 

left operand and second child node as right operand. Left key and right 

key are the names of the columns join will executed on. 

 

 Semijoin: This is an optional parameter and set to “f” (false) if not 

entered. If set to “t” (true) the join operation is performed as a semi-join. 

 

3.2.2.2 QEP Processing 

QEP definition files are handled by plan processor in our system. The output of 

plan processor is a list of sequential commands that will be assigned to worker 

sites from the initiator site, which is site 0. 

The creation of command list is done in two phases. In the first phase, QEP 

definition tree is traversed in preorder and operation structures are created. The 

recursive algorithm given in Figure 3.7 is used in the first phase. An operation 

can have one or two operands depending on its type. Each operation result is 
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given an identifier. This way it is possible to know which operation expects 

which intermediate result even after tree structure is broken and its fragments are 

distributed to relevant sites. Before mentioned perform and target inferences are 

also made in this phase.  

 

 

Operand function traverseTree(xmlnode node, integer targetSite, boolean isRoot)  

begin 
 Operand result 
 if node is table then 

  set result.residingSite = get node site attribute 
  set result.name = get node child value 
 else   
  Operation oper    

  set result.name = get next generated id    
  if target site of oper is not supplied then  
   set oper.opTargetSite = oper.opPerformSite 

  endif  
  read operation specific fields and set oper    
  if oper.Type = Project or oper.Type = Select then   

   set xmlnode singleChild = get only child of the node   
   if "performsite" attribute of tag is empty then 
    set oper.Operand1 = traverseTree(singleChild, -1) 
    set oper.PerformSite = oper.Operand1.residingSite 

   else   
    set oper.PerformSite = get "performsite" attribute of tag  
    oper.Operand1 = traverseTree(singleChild, oper->opPerformSite) 

   endif  
   set result.residingSite = oper.PerformSite    
  elseif oper.Type = Join then   

   set result.residingSite = get "performsite" attribute of tag 
   set oper.PerformSite = result.residingSite 
   set xmlnode leftChild = get first child of the node 
   set oper.joinOperand1 = traverseTree(leftChild, oper.PerformSite)   

   set xmlnode rightChild = get second child of the node 
   set oper.joinOperand2 = traverseTree(rightChild, oper.PerformSite)  
  endif 

  if targetSite > -1 then 
   set oper.targetSite = targetSite 
  else 

   set oper.targetSite = oper.PerformSite 
  endif  
  set oper.result = result  
  add oper to the operations list 

 endif 
 return result 
end 

Figure 3.7: Pseudo Code of QEP Processing Algorithm at Master Site 
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Figure 3.8 depicts the execution of traversal algorithm on the QEP given in 

Figure 3.5. The algorithm starts on the root and follows the path shown with 

dashed arrows. The encircled numbers are the unique names of temporary result 

relations used as operands in other operations. Commands that will be assigned to 

the worker sites are created using these temporary names. For example, to 

represent the outer join a join command is created with two operands. These 

operands are “Course”, which is a table and “2”, which is a temporary relation. 

The result of outer join is given the name “1”. Likewise, the inner join has 

operands “3” and “Enroll”, while its result is named “2”. The input-output 

relations between operations are achieved through relation names. When the outer 

join operation needs to be performed at its worker site, both its input relations 

must be available in that site. 

 

 

 

In the second phase of QEP processing, we add implicit operations to the list 

obtained from first phase. Implicit operations are commands required for query 

executions but not directly stated in QEP definition such as “Move”. For 

Course 

⨝

  

⨝

  

Enroll π  

σ  

Student 

1 

2 

3 

4 

Figure 3.8: QEP Traversal Algorithm 
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example, consider a join operation that will join table “Student” from site 2 and 

table “Enroll” from site 3, and the operation itself will take place in site 2. 

Obviously, Enroll table must be available in site 2 for site 2 to execute this 

operation. To make this possible, plan processor creates a “Move Enroll to site 2” 

command for site 3. Implicit operations are not limited with move commands. 

For semi-joins, project, make distinct, reduce and move commands are created. In 

case of a sort-merge join, implicit sorts are generated. Also for every QEP, an 

implicit “Wait” command is used. This command is assigned to initiator site so 

that it does not terminate right after assigning commands to worker sites and 

waits to perform evaluation tasks. 

 

3.2.2.3 System Architecture 

The architecture of our system consists of one initiator site and several worker 

sites. Initiator site is responsible for running plan processor, assigning relevant 

commands to worker sites, receive the final QEP result and measure performance. 

On the other hand, worker sites await commands and execute them, sending 

results to required destinations. 

 

Figure 3.9 gives an overview of our system. When the program is started, all sites 

start to run together. Initiator site parses QEP and sends each worker site the 

number of operations they need to execute. This is required for worker sites to 

terminate properly. Then the operations they need to execute are sent to each 

worker site. At this point initiator site starts to wait for QEP execution to 

complete.  
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Figure 3.9: Inter-Site Message and Data Flow 

 

Worker sites store the received operations they need to execute on a list. When 

they complete an operation or receive a relation from another worker site, they 

iterate the command list to see if an operation is performable, i.e., all its operands 

are locally available. If so, that operation is performed. The pseudo code for the 

algorithm running in worker sites is given in Figure 3.10.  
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It is possible that an intermediate relation needs to be sent to another site as a 

result of an operation. In this case, an auxiliary command “Receive” command is 

sent to destination site first. This way MPI receiver knows the metadata of the 

relation it expects and allocates required buffers. If the intermediate result will be 

consumed locally, it is stored in memory. This “wait-check availability-perform 

operation” cycle repeats until all the operations are executed. Then the worker 

site terminates. 

 

The initiator site stops waiting after receiving QEP result, measures performance, 

logs them to a file named “results.txt” and terminates. A sample results file is 

given in Figure 3.11. Note that only execution summaries are stored in this file. 

More detailed error and debug level logs, as well as relation data are kept in 

output files created by job scheduling system. These files names are in 

[jobname].[ojobid] format. Flow of commands and result relation data can be 

found in these files. 

 

while operation list is not empty do 
 if data needs to be received then 
  receive and store data in memory 

 endif 
 do 
  set operation completed false 

for each operation in list 
   if all operands are available then 
    perform operation 
    remove operation from list 

    set operation completed true 
    break 
   end if    

  endfor 
 while operation completed  
endwhile 

Figure 3.10: Pseudo Code of Command Execution Algorithm at Worker Sites  
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Figure 3.11: Example Result File 

 

3.2.3 Performance Evaluation 

The last capability we implemented in this study is the evaluation of QEPs. For 

this purpose we use three time measurements: real time, simulated time and 

estimated time. 

 

3.2.3.1 Real Time 

In our system real time measurement is made solely at initiator site, using OS 

provided clock function. We have to depend on one site to measure real time, as 

system clocks of different sites are not precisely synchronized. Initiator site starts 

its timer after assigning commands to the worker sites. The timer is stopped when 

QEP result is received. As mentioned before, HPC cluster’s purpose and 

architecture is not directly fit to distributed query simulation. This causes 

differences in response times up to 3 times between consecutive executions of the 

same query. Also, there are a lot of details in real execution we cannot consider in 

the scope of this study.  

3.2.3.2 Simulated Time 

To overcome issues with real time, we implemented response time simulation, 

which take disk and network times into account. There is a basic idea behind 

simulation. The point in time for an operand to be available in a receiver site 

equals to the point in time for that operand is available in sender site plus the time 

interval required to transfer the operand through network. In other words, if a 
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relation R becomes available in site i at time     
  , and R needs to be transferred 

to site j,     
 
 is calculated as in (3.1), where         

   
 is the time spent on 

network to transfer R from site i to site j. Calculation of         
   

 is made 

according to (3.2), using parameters supplied in the parameters file.  

 

    
       

          
   

       (3.1) 

 

To calculate disk latency, (3.3) is used when a table is first read from hard disk. 

For intermediate relations disk latency is 0. As a site knows it needs to read a 

table from disk at the start of execution, we assume each site reads its first table at 

t0, and continues to next tables from the time previous reading was completed.  

 

In our trials we saw that impact of the tuple count was greater than the impact of 

the tuple size for both network and disk costs. For example, transferring or 

reading a relation with 10000 tuples where each tuple is 10 characters long took 

more time than a relation with 1000 tuples where each tuple is 100 characters 

long. In other words, the time it takes to create a relation from a network stream 

or disk is not a function of only data size for our system. Therefore, we modified 

formulas given in (2.1) and (2.3) by converting them to use tuple count and tuple 

size with some coefficients. Formula (3.2) is used for network costs, while (3.3) 

is used for disk costs. For relation R, |R| donates the tuple count and SZR donates 

tuple size. The constant numbers used in formulas are based on experimental 

results explained in next chapter. 

 

                        
     

         
                               (3.2) 

 

                         
      

             
                      (3.3)
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For unary operations, the result’s availability time is equal to its only operand’s 

availability time, because we ignore CPU costs. For binary operations, the 

result’s availability time is the maximum of its operands’ availability time. 

 

Network parameters that are used for simulated and estimated times can be 

configured via a text file. Comments starting with “//” sequence are supported. 

This file represents an adjacency matrix where each cell keeps bandwidth and 

latency values. For example, the value in 3rd row, 4th column is used when data is 

being sent from site 2 to site 3. The adjacency matrix does not have to be 

symmetrical. Bandwidth unit is Mbps (megabits per second); latency unit is ms 

(millisecond). These values are separated with a “|” character. Latency can be 

omitted; in that case the default value 0.0009 ms is used. A negative value means 

very low bandwidth and very high latency. A sample network parameter file is 

given in Figure 3.12.  

 

 

Figure 3.12: Example Network Parameters File 

 

//Matrix values are separated either with tabs or spaces 

//Edges are separated with pipes (|) -> Bandwidth|Latency 

//Bandwidth unit is Mbps, Latency unit is ms 

//Default value for latency is 0.0009 

 

0 1 3 2 1 

1 0 -1 2 1 

3 -1 0 2 1 

2 2 2 0 1 

1 1 1 1 0 
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3.2.3.3 Estimated Time 

Our system can estimate the approximate simulated response time of a QEP 

without executing it, which is useful for selecting a good plan in QEP search 

space. Select, project and non-semi joins are supported for estimation. Sort, move 

and make distinct operations can also be estimated but they are not directly 

available in QEP definition. 

 
To estimate cost, the evaluator applies the same formulas used in latency 

simulation. First, the QEP tree structure is rebuilt from the operation list with 

additional implicit commands, which is the output of plan processor. Then, this 

tree is traversed in post order. This allows us to calculate each operations time as 

maximum of its children’s availability time plus its own network transfer time. 

 

The biggest challenge in cost estimation is guessing the size of intermediate 

relations, which is needed for network time calculation.  To do this, we use the 

advantage of knowing characteristics of synthetically generated tables.  Each 

operation type is handled specially during result size prediction. 

 Sort: Sort does not change relation size. 

 

 Move: Move does not change relation size. 

 

 Make Distinct: As generated attribute values are mostly unique, we 

assume make distinct operation eliminates 1% of tuples. 

 

 Project: The result size of a project operation can be calculated exactly, 

as size of each column and tuple count is known. 

 

 Select: Estimation of select operations is limited to one select condition.  

Also it is assumed that numeric attribute values are uniformly distributed. 
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 Join: Join results sizes can be approximately calculated with help of 

PFKey and selectivity associations defined in database schema file. For 

PFKey, join result’s tuple count is equal to the relation foreign key is 

defined for. If selectivity is defined, join result tuple count is 

multiplication of input relations’ and selectivity value. Once tuple count is 

known, it is straightforward to calculate relation size as tuple size is sum 

of input relations’ tuple size.  
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CHAPTER 4 

 

 

EXPERIMENTAL RESULTS 

4 EXPERIMENTAL RESULTS  

 

In this section we perform experiments to see various aspects of our system and 

discuss obtained results. In [Onder (2010)], the nodes of the cluster we use were 

shown to be equivalent, therefore we do not perform those experiments. Our trials 

focus on query processing aspects of our system. 

 

The relations that we use for experiments in this section are written in 

RelName(Att1Name:Att1Size, Att2Name:Att2Size,..):TupleCount format. 

Attributes used as primary key and foreign key will start with “P_” and “F_” 

prefixes respectively. For example to express a relation named “Student” with 

10000 tuples and two attributes, a 10 characters long “Id” and 30 characters long 

“Name”, we use Student(P_Id:10, Name:30):10000. The “P_” prefix in “P_Id” 

states it is a primary key. 

 

4.1 Correctness 

The first thing we need to verify to continue our experiments is the correctness of 

our results. We try data generation and perform operations to see if they work as 

expected. 
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4.1.1 Data Generation Correctness 

For data generation we produce relations connected with PFKey and selectivity. 

Then we join them to see resulting tuple count. 

 

PFKey: We test PFKey association with two relations: Player(PlayerId:10, 

F_CityId:10):1000 and City(P_CityId:10, PlateNo:3):80. When we join these 

relations on key attributes, we saw that the result had 1000 records. This is 

expected, as each record in Player matches with a record in City. The result size 

is equal to the relation with foreign key. 

 

Selectivity: Selectivity is also tested with two relations: Restaurant(ResName:10, 

F_RCity:10):1000 and Cinema(CiName:10, F_CCity:10):1000. F_RCity and 

F_CCity attributes are connected with a selectivity value of 0.0003. The join 

between these relations resulted in 270 records. The expected value is 

1000*1000*0.0003 = 300. The difference is caused by the probabilistic function 

data generator uses and acceptable. 

 

4.1.2 Operation Correctness 

To test operation correctness we use two small tables as input so that results can 

be shown and checked by eye: Employee(P_EmpId:10, EmpName:9, 

EmpAge:3):10 and Education(F_EmpId:10, EdCode:4):8.  Select, project and 

join operations are executed one by one. Unless otherwise stated, only one 

worker site is used aside from the initiator site. The contents of two relations we 

use are given in Table 4.1 and Table 4.2.  
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Table 4.1: “Employee” Relation 

Record# P_EmpId EmpName EmpAge 

1 155 3571 20 

2 1808 2867 73 

3 6625 8672 84 

4 3397 5044 52 

5 8558 7527 77 

6 924 87 14 

7 4113 7998 32 

8 5609 9971 38 

9 4272 9579 91 

10 4450 1834 37 

 

 

Table 4.2: "Education" Relation 

Record# F_EmpId EdCode 

1 8558 467 

2 4450 425 

3 6625 46 

4 1808 794 

5 4272 890 

6 4113 856 

7 8558 941 

8 8558 158 

 

Select: Select is performed with the following QEP definition and result is shown 

in Table 4.3: 

 

<select criteria="EmpAgegt30" targetsite="0" display="t"> 

 <table site="1">Employee</table>  

</select> 
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Table 4.3: Result of Select operation on Employee table 

Record# P_EmpId EmpName EmpAge 

1 1808 2867 73 

2 6625 8672 84 

3 3397 5044 52 

4 8558 7527 77 

5 4113 7998 32 

6 5609 9971 38 

7 4272 9579 91 

8 4450 1834 37 

 

 

Select operation filters the records that do not satisfy EmpAge>30 condition as 

expected.  

 

Project: Project is performed with the following QEP definition and its result is 

shown in Table 4.4: 

 

<project attributes="P_EmpId,EmpAge" targetsite="0" display="t"> 

 <table site="1">Employee</table>  

</project> 
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Table 4.4: Result of Project operation on Employee table 

Record# P_EmpId EmpAge 

1 155 20 

2 1808 73 

3 6625 84 

4 3397 52 

5 8558 77 

6 924 14 

7 4113 32 

8 5609 38 

9 4272 91 

10 4450 37 

 

Project operation only displays the attributes stated in QEP definition as 

expected.  

 

Join: Join is performed with the below QEP definition and result is shown in 

Table 4.5. Even though only hash join is given below, nested loop and sort-merge 

joins were also tried. Their results were the same, only difference was sort-merge 

join’s result was sorted on key attribute.  Semi-join with hash algorithm was 

experimented with two worker nodes. Again, the result was the same. 

 

<join type="hash" leftkey="P_EmpId" rightkey="F_EmpId" performsite="1" targetsite="0" 

display="t"> 

 <table site="1">Employee</table> 

 <table site="1">Education</table> 

</join>  
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Table 4.5: Result of Join operation on Employee and Education tables  

Record# P_EmpId EmpName EmpAge F_EmpId EdCode 

1 1808 2867 73 1808 794 

2 6625 8672 84 6625 46 

3 8558 7527 77 8558 467 

4 8558 7527 77 8558 941 

5 8558 7527 77 8558 158 

6 4113 7998 32 4113 856 

7 4272 9579 91 4272 890 

8 4450 1834 37 4450 425 

 

 

Join result attributes are from both input relations and key values are the same. 

There are no missing records with equal keys in input relations, meaning join 

works correctly.   

 

Composite Operation: In addition to simple operations, we executed a 

composite operation that consists of a select, project and join operation. Also, this 

query is executed on two worker sites. Our purpose here is to show that result of 

an operation can be used as input for another operation. The result is shown in 

Table 4.6: 

 

<project  attributes="EmpName,EdCode" targetsite="0" display="t"> 

 <join type="hash" leftkey="F_EmpId" rightkey="P_EmpId" performsite="1"> 

  <table site="2">Education</table> 

  <select criteria="EmpAgelt50"> 

   <table site="1">Employee</table>  

  </select> 

 </join> 

</project> 
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Table 4.6: Result of Composite operation 

Record# EmpName EdCode 

1 1834 425 

2 7998 856 

 

 

Result relation is as expected. This is easier to see by checking Table 4.5 for 

tuples with EmpAge<50. 6th and 8th records satisfy this criterion. 

 

4.2 Correlation between Real and Estimated Costs 

When the execution times the system estimate using the raw disk cost (2.3) and 

raw network cost (2.4) formulas were compared real execution times, it was seen 

that the real times were not reflected correctly. In order to tune our formulas, we 

have run simple QEPs  that isolate the time required to create a relation from a 

disk file as well as the  time required to create a relation from network stream. 

Collected data suggests that network and disk costs are bound tuple count and 

tuple size, rather than just relation size. The cost formulas were revised with these 

two parameters. Also coefficients derived from experimental data were included, 

resulting in new formulas given in (3.2) and (3.3). 

 

To measure the time required to create a relation from disk, we conducted two 

experiments. The experimental raw data used in this experiment is given in Table 

A.1Error! Reference source not found.. First, we increased tuple count of a 

relation while keeping tuple size constant. Figure 4.1 depicts how disk time 

changes according to tuple count for relation with tuple size 10 bytes. The real 

time measured, the raw disk cost formula’s (2.3) estimation and the modified disk 

cost formula’s (3.3) estimation are represented with different lines. It can be seen 

that modified disk cost formula reflects real time better. The increase in raw disk 

formula is not even visible on this scale. The reason for the difference between 
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raw cost formula’s estimation and real time is that real time is affected by the 

relation construction.     

 

 

Figure 4.1: Change in Disk Read Time with Increasing Tuple Count 

 

Next experiment is similar, however this time tuple count is set to 1000000 as 

constant and tuple size is changed. Figure 4.2 shows the results for this 

experiment.  This chart has a similar pattern. However, we can see that tuple size 

does not impact disk cost as much as tuple size. 
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Figure 4.2: Change in Disk Read Time with Increasing Tuple Size. 

 

We applied the same logic for network experiment. Figure 4.3 shows how the 

time required to create a relation from network changes with tuple count. Tuple 

size is 10 bytes.  Again, we can see modified network formula (3.2) gives closer 

results to real time than raw network formula (2.1).  
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Figure 4.3: Change in Network Time with Tuple Count 

 

The last experiment is changing the tuple size while keeping tuple count at 

1000000. The results are given in Figure 4.4. It can be seen that tuple size is not 

as important as tuple count in network times.  

 

 

Figure 4.4: Change in Network Time with Tuple Size 
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Overall, it is clear that tuple counts and sizes must be handled separately for disk 

and network time estimation, and there is a need for coefficients for accuracy. 

 

4.3 Comparison of Join Algorithms 

In this experiment we compare the real response times of nested-loop, sort-merge 

and hash join algorithms. All the joins are performed using initiator site and one 

worker site. The same input relations were used for all algorithms. These 

relations were connected with PFKey association. 

 

The Cartesian product size of input relations was changed in each run. Table 4.7 

shows tested sizes, where A(P_A:10, AName:30) and B(F_A:10, BName:30) are 

input relations. The average measured times of 5 runs for join algorithms are 

given in Table 4.8. Figure 4.5 is the chart representation. Note that vertical axis in 

the chart uses logarithmic scale. 

 

Table 4.7: Input Sizes 

Input# |A| |B| |A| x |B| 

1 10 10 100 

2 100 100 10,000 

3 1,000 1,000 1,000,000 

4 10,000 10,000 100,000,000 

5 100,000 100,000 10,000,000,000 
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Table 4.8: Measured Real Times for Algorithms 

Size/Time(ms) Nested-Loop Sort-Merge Hash 

100 7 1 5 

10,000 11 18 7 

1,000,000 641 80 30 

100,000,000 58477 5025 203 

10,000,000,000 5874204 489758 1524 

 

 

 

Figure 4.5: Measured Times for Algorithms 

 

We can roughly say that hash join performs best and nested-loop performs worst 

overall. The difference in performance gets clearer with the increase in data size 

that needs to be processed. We must note that sort merge could perform better 

than hash join but our data is not sorted. 

 

4.4 Effect of Network Bandwidth 

We performed experiments to see how simulated response time is affected by 

network bandwidth. In this test setup, we run a join with two worker sites, which 
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requires a relation to be transferred to the site where it will be joined locally. 

Input relations are Applicant(AppName:10,F_HsId:10, F_UniId:10):1000,  

HighSchool(P_HsId:10, HsName:70):10000 and University(P_UniId:10, 

UniName:70):10000. The query is as following: 

 

<join type="hash" leftkey="F_HSId" rightkey="P_HSId" performsite="1" targetsite="0">  

 <table site="1">Applicant</table> 

 <table site="2">HighSchool</table> 

</join>   

 

As operation will be performed at site 1, HighSchool relation is transferred from 

site 2 to site 1, and the final result is transferred from site 1 to initiator site. To 

minimize the impact of this transfer, we increased the bandwidth of the network 

line between site 1 and site 0 to a very high value (1000000Mbps). For network 

delays we use the default value, 0.009 ms, which is negligible during transfers of 

relations this large. We increased the bandwidth between sites 1 and 2 in every 

test run. We also run the same query with semi-join flag set to true. The results 

are given in Table 4.9. Figure 4.6 reflects these results on logarithmic scale. 

 

Table 4.9: Effect of Bandwidth 

Bandwidth (Mbps) Join Sim. Time (ms) Semi-join Sim. Time (ms) 

1 6116.74 672.079 

10 623.573 79.0917 

100 74.2569 19.793 

1,000 19.3252 13.8631 

10,000 13.8321 13.2803 
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Figure 4.6: Effect of Communication Link Bandwidth 

 

From these results we can see that response time gets better with wider bandwidth 

values. However, the decrease in response time is not linear as bandwidth gets 

bigger, it loses its position as a bottleneck and other factors such as disk times 

and latencies become more determining.  

 

When comparing join with semi-join, we see that semi-join is advantageous over 

normal join for this query. However, as bandwidth loses its importance, the 

performance difference gets smaller. In this case semi-join can be actually 

harmful at some point as requires more processing locally.  

 

4.4.1 Influence on QEP Selection 
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join and executed again with the same network configurations. Network 

parameters and simulated response times are given in Table 4.10.  

 

<join type="hash" leftkey="F_UniId" rightkey="P_UniId" performsite="3" targetsite="0">  

 <join type="hash" leftkey="F_HSId" rightkey="P_HSId" performsite="2"> 

  <table site="1">Applicant</table> 

  <table site="2">HighSchool</table> 

 </join>  

 <table site="3">University</table> 

</join> 

 

Table 4.10: Network Parameters 

Inner Join Site Bandwidth between 

Site1 and Site 3 (Mbps) 

Bandwidth between 

Site2 and Site 3 (Mbps) 

Simulated Response 

Time (ms) 

1 100  1 82.61 

2 100 1 850.37 

1 1 100 909.19 

2 1 100 23.77 

 

Here we can see that executing the inner join on site 2 can be a good or bad 

choice, depending on the network speed between sites. This is because the result 

of the inner join must be transferred to site 3 for further operations. We can 

conclude that, if the optimizer is comparing QEPs that can execute the same 

operation in different sites, it must consider network speeds.  

 

4.5 Bushy QEP Execution 

Another experiment we conducted was about bushy execution of joins in a query 

plan. In centralized databases, bushy plan trees are avoided as a heuristic. 

However in a distributed system, performing parallel operations can be beneficial 

in terms of performance. 
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4.5.1 Running The Same QEP Concurrently 

In the first experiment, we prepared two join queries that will abstract our results 

from unwanted factors as much as possible. All bandwidths are equal between 

sites. We have two relations: A(AName:40, F_BId:10):10000 and B(P_BId:10, 

BName:40):10000. Our first query is a single-join as given below: 

 

<join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1" targetsite="0"> 

  <table site="1">A</table> 

  <table site="2">B</table> 

</join> 

 

In our second query, we replicate the same single-join in different sites. Then 

both the original and replicated queries’ results are sent to initiator site. This is 

achieved through before mentioned “noop” type join, which only awaits its 

operands become available to complete. Our second query is given below. Table 

4.11 depicts the average real times for 5 runs of these queries.  

 

<join type="noop" leftkey="F_BId" rightkey="P_BId" performsite="0" targetsite="0"> 

 <join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1"> 

  <table site="1">A</table> 

  <table site="2">B</table> 

 </join>   

 <join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="3"> 

  <table site="3">A</table> 

  <table site="4">B</table> 

 </join>  

</join> 
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Table 4.11: Concurrent QEP Join Time 

QEP Real time (ms) 

Single-Join 158.4 

Bushy-Join 189.4 

 

Even though we perform equivalent single-join operations twice in the bushy 

join, we can see that real response time is not doubled. This was our expectation 

because the joins are processed in different sites. The small difference between 

times can be caused by the extra transfer of A⨝B from site 3 to initiator site. 

 

4.5.2 Left-Deep and Bushy Tree Comparison 

In the second experiment, we compare a left deep tree and a bushy tree with 

equivalent results. Four relations are used in this setup: A(F_BId:10):10000, 

B(P_BId:10,F_CId:10):10000, C(P_CId:10,F_DId:10):10000, D(P_DId:10):1000 

All bandwidths are equal between sites. The left-deep QEP we used is as 

following: 

 

<join type="hash" leftkey="F_DId" rightkey="P_DId" performsite="1" targetsite="0">  

 <join type="sortmerge" leftkey="F_CId" rightkey="P_CId" performsite="1"> 

<join type="sortmerge" leftkey="F_BId" rightkey="P_BId" 

performsite="1"> 

   <table site="1">A</table> 

   <table site="2">B</table> 

  </join>  

  <table site="3">C</table> 

 </join>  

 <table site="4">D</table> 

</join> 
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Following QEP was used as bushy plan: 

 

<join type="hash" leftkey="F_CId" rightkey="P_CId" performsite="1" targetsite="0  

 <join type="sortmerge" leftkey="F_BId" rightkey="P_BId" performsite="1">  

  <table site="1">A</table> 

  <table site="2">B</table> 

 </join>   

 <join type="sortmerge" leftkey="F_DId" rightkey="P_DId" performsite="3"> 

  <table site="3">C</table> 

  <table site="4">D</table> 

 </join>  

</join> 

 

Notice that we chose sort-merge join as join type in this experiment to emphasize 

CPU times. The average real times for 5 runs of these QEPs are given in Table 

4.12. 

 

Table 4.12: Left-Deep and Bushy Tree Comparison 

QEP Real time (ms) 

Left-Deep 5330 

Bushy 2768 

 

We can see that bushy QEP performs better than left-deep QEP. This is because 

instead of site 1 performing all the sort-merge join processing task, the join 

between relations C and D is done in site 3 at parallel. 

 

4.6 Performance Evaluation  

In this experiment our purpose is to see the relation between real, simulated and 

estimated times. It is hard to design good experiments for this purpose, as there 

are a lot of parameters that can change the outcome of results. We used relations 
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A(AName:40, F_BId:10) and B(BName:40, P_BId:10):1000 for experiments. 

Bandwidth between all the sites was simulated to be 1526 Mbps.   

 

In order to find how changes in data size affect times, we executed a simple 

project operation while incrementing the tuple count of relation A. The QEP is as 

follows: 

 

<project  attributes="*" performsite="1" targetsite="0"> 

 <table site="1">A</table> 

</project> 

 

One of the first things we noticed is that measured real time can vary a lot 

between consecutive runs. These variations cause noticeable differences, 

especially in operations with small response times. Table 4.13 shows real 

response times of 5 consecutive project operations where A has 10000 tuples. To 

compensate these variations, we run each test 5 times and use the average value 

as real time. On the other hand, simulated and estimated times do not differ 

between runs.  

 

Table 4.13: Variations in Real Time 

Run# Real Time(ms) 

1 89 

2 40 

3 27 

4 25 

5 22 

Average 40.6 

 

When we executed the operation for different tuple sizes of A, we got the results 

given in Table 4.14. It can be said that all the time values increase as A’s tuple 
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count increases. Simulated and estimated times are the same, which is an 

expected outcome as project operation’s output size can be estimated exactly.  

 
 

Table 4.14: Measured Times for Different Tuple Counts  

Tuple# of A Real Time(ms) Sim. Time(ms) Est. Time(ms) 

1,000 13.4 3.93 3.93 

10,000 40.6 21.3022 21.3022 

100,000 275.2 195.014 195.014 

1,000,000 2058.2 1932.13 1932.13 

 

 

In addition to this experiment, we run the following operations where A had 

100000 tuples: 

 
Select: 
<select criteria="ANamegt50000000" performsite="1" targetsite="0"> 
 <table site="1">A</table>  
</select> 

 

Join: 

 
<join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1" targetsite="0">  
 <table site="2">A</table> 
 <table site="1">B</table> 

</join> 

 

Composite: 

 
<project  attributes="AName,BName" targetsite="0"> 

 <join type="hash" leftkey="P_BId" rightkey="F_BId" performsite="1">  
  <table site="2">B</table> 
  <select criteria="ANamegt30000000"> 

   <table site="1">A</table>  
  </select> 
 </join> 

</project> 

 

 

The results for these operations are given in Table 4.15. We can see that real time 

measurement, time simulation and estimation are possible for different kinds of 

operations. Also, there is a small difference between simulated and estimated 
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times in select and composite operations. This happens because outcome of select 

operation cannot be known exactly. Because we used a PFKey between relations 

A and B, join estimation is exact. If they were connected with selectivity, 

estimated and simulated join times would also not be exactly the same. 

 
Table 4.15: Measured Times for Different Operations  

Operation Real Time(ms) Sim. Time(ms) Est. Time(ms) 

Select 222.4 109.938 110.007 

Join  677 405.028 405.028 

Composite 498.6 161.2 160.81 

 

 

Overall, it can be seen that the simulated and real times are different. There are a 

lot of factors that cause these differences, such as the CPU costs we ignored. 

However, there is usually a correlation between simulated and real times. In most 

cases, this is enough from the perspective of a query optimizer because it only 

needs to know which QEP has lesser cost. Knowing the exact cost is not 

important when comparing QEPs as long as the rankings are correct.  

 

4.7 String Comparison and Memory Copy Times  

In this experiment we measure the times spent on string comparisons and 

memory copies. These operations are frequently performed during joins. String 

comparison is done to find if two attribute values match, and memory copy is 

done to copy matching tuples to result relation. Measuring these times gives an 

idea of CPU times spent on operations. 

 

First, we measured the times for comparing strings with 10 characters with 

increasing comparison numbers. Table 4.16 gives average measured times of 3 

runs. Only comparison is performed, no other action is taken. Figure 4.7 shows 

average times spent on comparisons. 
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Table 4.16: Measured Times for Increasing Comparison Numbers  

Comparison # Time(ms) 

50,000,000 186 

100,000,000 282 

150,000,000 423 

200,000,000 564 

250,000,000 706 

 

 

 

Figure 4.7: Time Spent on String Comparisons with Increasing Tuple Count 

 

Next, we measured times to copy 500 byte long tuples for increasing tuple counts. 

Table 4.17 gives average memory copy times of 3 runs. In Figure 4.8 the linear 

increment in time cost can be seen. Note that given times include the allocation of 

destination memory area, as our system allocates the memory for result relation 

on runtime.  
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Table 4.17: Measured Times of Memory Copies with Increasing Tuple Counts  

Tuple Count Time(ms) 

1,000 1 

10,000 4.67 

100,000 59.67 

1,000,000 525.67 

 

 

 

Figure 4.8: Time Spent on Memory Copies with Increasing Tuple Count  

  

Both these experiments show that cost of comparisons and memory copies 

increase with tuple count. For large operations they become important factors. 

This explains why nested-loop join takes considerably more time than sort-merge 

and hash joins, as it performs a lot of comparisons.  
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CHAPTER 5 

 

 

CONCLUSIONS AND FUTURE WORK 

5 CONCLUSIONS AND FUTURE WORK 

 

In this study we implemented a distributed database query processor. The 

processor can execute a given QEP. The generation of dummy relation data for 

test purposes is also done by the system.  Another capability of the system is 

performance evaluation. We measure the real response time for QEP execution. 

However, to see the effects of database design clearly, real times are not 

dependable. To overcome this problem, we used simulated time which focuses on 

disk and network costs during QEP execution. We also estimated the approximate 

time a QEP will take without actually executing it. This is useful for comparing 

possible plans, which is a task performed by query optimizers. 

 

We performed several experiments with our implemented system. First we 

proved data generator and query plan processor produce correct results. Then we 

compared join algorithms implemented and saw hash-join performs good overall 

in the scope of this study. Later we modified network parameters to see the 

effects of different configurations on QEP response times and saw the inverse 

ratio between bandwidth and cost. To see how the system handles parallel 

execution another experiment was done. The results were as expected. In the next 

experiment we tried how real, simulated and estimated times are measured for 

different query plans. We saw that that estimated times were very close to 

simulated times. Also, real times and simulated times had a correlation. In the last 
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experiment we measured times spent for frequently performed string comparison 

and memory copy operations to give an idea of CPU costs. 

 

Our system can be extended in many ways. First of all, our data is synthetic 

numerical strings. Most real-world data cannot be represented in this form. 

Operation results and performance evaluation is affected by this artificiality. So, 

one of the main improvements to our system would be addition of different data 

types support. 

 

Lack of indexes on tables is another important factor that damages realism. 

Existence of indexes enlarges the search space for query optimizers, and selecting 

different indexes with different join algorithms can dramatically change QEP 

cost. In the future indexes can be added to our system, which would be a valuable 

feature that reflects commercial database costs more accurately. 

 

In this study we assume CPU costs and memory consumption are negligible. 

However, these are important factors to determine success of a QEP. Considering 

them is another possible future improvement. 

 

Despite these short-comings, our system is a good environment for experimental 

query optimizers. QEP files serve as a well-defined interface for users or other 

software. Most settings used by the system are configurable. The architecture is 

stable and easily expandable.  

 
  



72 

 

REFERENCES 

 
 

 

[Bernstein(1981)] P. A. Bernstein, D. Chiu. “Using Semi-Joins to Solve 

Relational Queries”.  Journal of ACM, Vol. 28, Issue 1, January 1981, pp. 25-40. 

 

[Banerjee(1993)] S. Banerjee , V. O. K. Li , C. Wang. “Distributed 

Database Systems in High Speed Wide-Area Networks”. 

 

[Codd (1970)] E.F. Codd, “A Relational Model of Data for Large Shared 

Data Banks”, Communications of the ACM, Vol. 13, June 1970, pp. 377-387. 

 

 [Getoor(2001)] L. Getoor, B. Taskar, D. Koller. “Selectivity Estimation 

using Probabilistic Models”.  ACM SIGMOD Record, Vol. 30 No. 2, 2001. 

 

[Ioannidis(1996)] Y. E. Ioannidis, “Query Optimization”, Citeseerx, 

doi=10.1.1.24.4154. 

 

[Kang(1987)] H. Kang, N. Roussopoulos. “Using 2-way Semijoins in 

Distributed Query Processing”.  Proceedings of the Third International 

Conference on Data Engineering, Washington, DC, USA, 1987. 

 



73 

 

[Kossmann(2000)] D. Kossmann, K. Stocker. “Iterative dynamic 

programming: a new class of query optimization algorithms”. ACM Transactions 

on Database Systems (TODS), Vol. 25, Issue 1,  March 2000, pp. 43 - 82. 

[Mannio(1988)] M. V. Mannio, P. Chu, T. Sager. “Statistical Profile 

Estimation in Database Systems”.  ACM Computing Surveys, Vol. 20 No. 3, 

1988. 

 

[metu-hpc(2012)] High Performance Computing, 

http://www.ceng.metu.edu.tr/hpc/index, last visited on April 2012. 

 

[Mousavi(2011)] H. Mousavi, C. Zaniolo. “Fast and Accurate Computation 

of Equi-Depth Histograms over Data Streams”.  Proceedings of the 14th 

International Conference on Extending Database Technology, Uppsala, Sweden, 

March 22-24, 2011. 

 

[mpi-forum (2009)] Message Passing Interface Forum, MPI: A Message-

Passing Interface Standard Version 2.2, September 2009, http://www.mpi-

forum.org/docs/mpi-2.2/mpi22-report.pdf, last visited on April 2012. 

 

[mtrand(2012)] C++ Mersenne Twister Pseudo-Random Number Generator, 

http://www.bedaux.net/mtrand/, last visited on April 2012. 

 

[Onder (2010)] I. S. Onder, “Execution of Distributed Database Queries on 

A HPC System”, METU, 2010. 

 



74 

 

[Ozsu (2011)] M. T. Ozsu and P. Valduriez, Principles of Distributed 

Database Systems (3rd edition), Prentice-Hall, 2011. 

[pugixml(2012)] pugixml, http://code.google.com/p/pugixml/, last visited 

on April 2012. 

[Ramakrishnan (2002)] Ragnu Ramakrishnan and Johannes Gehrke, 

Database Management Systems(2nd Edition), 2002. 

 

[Selinger (1979)] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. 

Price, “Access path Selection in a Relational Database Management System”. In 

Proc. of the ACM SIGMOD Conf. on Management of Data, Boston, USA, May 

1979, pp. 23–34. 

 

[Sevinc(2011)] E. Sevinc, A. Cosar. “An Evolutionary Genetic Algorithm 

for Optimization of Distributed Database Queries”.  The Computer Journal, Vol. 

54 No. 5, 2011. 

 

 [treehh(2012)] tree.hh: an STL-like C++ tree class, http://tree.phi-sci.com/, 

last visited on April 2012. 

 

 

  



75 

 

APPENDICES 

APPENDIX A 

 

 

A. MEASURED DISK AND NETWORK TIMES 

 

 

Table A.1: Measured Disk and Network Times (ms) 

Tuple 

Count 
Size Total Size 

Disk 

(Real) 

Network 

(Real) 

Disk 

(2.3) 

Network 

(2.1) 

Disk 

(3.3) 

Network 

(3.2) 

100000 10 1000000 14 178 13.2 5.0 15.5 138.0 

150000 10 1500000 21 245 13.2 7.5 22.2 207.0 

200000 10 2000000 27 309 13.2 10.0 29.0 276.0 

250000 10 2500000 35 388 13.3 12.5 35.7 345.0 

300000 10 3000000 40 386 13.3 15.0 42.5 414.0 

350000 10 3500000 49 492 13.3 17.5 49.2 483.1 

400000 10 4000000 55 542 13.3 20.0 56.0 552.1 

1000000 10 10000000 145 1164 13.4 50.0 137.0 1380.1 

1000000 20 20000000 154 1247 13.7 100.0 157.0 1460.1 

1000000 30 30000000 203 1323 13.9 150.0 177.0 1540.1 

1000000 40 40000000 217 1491 14.2 200.0 197.0 1620.1 

1000000 50 50000000 256 1456 14.4 250.0 217.0 1700.1 

1000000 60 60000000 285 1403 14.6 300.0 237.0 1780.1 

1000000 70 70000000 288 1482 14.9 350.0 257.0 1860.1 

 

 


