

A C++ DISTRIBUTED DATABASE SELECT-PROJECT-JOIN QUERY

PROCESSOR ON A HPC CLUSTER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERHAN CERAN

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

MAY 2012

Approval of the thesis:

A C++ DISTRIBUTED DATABASE SELECT-PROJECT-JOIN QUERY

PROCESSOR ON A HPC CLUSTER

submitted by ERHAN CERAN in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering, Middle East Technical

University by,

Prof. Dr. Canan Özgen _________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _________________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ahmet Coşar _________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Adnan Yazıcı _________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Coşar _________________
Computer Engineering Dept., METU

Prof. Dr. Hakkı Toroslu _________________

Computer Engineering Dept., METU

Prof. Dr. Faruk Polat _________________

Computer Engineering Dept., METU

Prof. Dr. Özgür Ulusoy _________________
Computer Engineering Dept., Bilkent University

 Date: _________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name: ERHAN CERAN

Signature:

iv

ABSTRACT

A C++ DISTRIBUTED DATABASE SELECT-PROJECT-JOIN QUERY
PROCESSOR ON A HPC CLUSTER

Ceran, Erhan

M.Sc., Department of Computer Engineering

 Supervisor : Assoc. Prof. Dr. Ahmet Coşar

May 2012, 75 pages

High performance computer clusters have become popular as they are more

scalable, affordable and reliable than their centralized counterparts. Database

management systems are particularly suitable for distributed architectures;

however distributed DBMS are still not used widely because of the design

difficulties. In this study, we aim to help overcome these difficulties by

implementing a simulation testbed for a distributed query plan processor. This

testbed works on our departmental HPC cluster machine and is able to perform

select, project and join operations. A data generation module has also been

implemented which preserves the foreign key and primary key constraints in the

database schema. The testbed has capability to measure, simulate and estimate the

response time of a given query execution plan using specified communication

network parameters. Extensive experimental work is performed to show the

correctness of the produced results. The estimated execution time costs are also

compared with the actual run-times obtained from the testbed to verify the

proposed estimation functions. Thus, we make sure that these estimation

v

functions can be used in distributed database query optimization and distributed

database design tools.

Keywords: Distributed database, Query execution plan, Distributed database

simulation, Query evaluation, Cost estimation.

vi

ÖZ

BİR DAĞITIK VERİTABANI SELECT-PROJECT-JOIN SORGU

İŞLEMCİSİNİN BİR HPC ÖBEĞİ ÜZERİNDE C++ İMPLEMENTASYONU

Ceran, Erhan

 Yüksek Lisans, Bilgisayar Mühendisliği Ana Bilim Dalı

Tez Yöneticisi : Doç. Dr. Ahmet Coşar

Mayıs 2012, 75 sayfa

Yüksek performanslı bilgisayar öbekleri merkezi muadillerine göre daha

ölçeklenebilir, ucuz ve güvenilir oldukları için günümüzde yaygınlaşmıştır.

Veritabanı yönetim sistemleri dağıtık mimariler için oldukça uygun olmalarına

rağmen, dağıtık veritabanları tasarımlarının zor olması nedeniyle yeterince geniş

alanda kullanılmamaktadırlar. Bu çalışmada dağıtık veritabanı tasarımında

karşılaşılan zorlukların üstesinden gelinmesine yardımcı olmak için simülasyona

yönelik bir test yatağı geliştirilmesi amaçlanmıştır. Bunun için bölümümüzün

HPC öbeği üzerinde select, project ve join işlemlerini dağıtık olarak çalıştıran bir

sorgu planı işlemcisi implemente edilmiştir. Bunun yanında primary key ve

foreign key kısıtlamalarını sağlayabilen bir veri üretim modülü hazırlanmıştır.

Test yatağının bir diğer yeteneği ise verilen bir sorgu planın cevap zamanını

ölçebilmesi, belirtilen iletişim ağı parametrelerine göre bu zamanı simüle ve

tahmin edebilmesidir. Üretilen sonuçların doğruluğunu göstermek üzere deneyler

yapılmıştır. Tahmin fonksiyonlarını doğrulamak için tahmin edilen çalışma

zamanlarıyla test yatağından elde edilen gerçek zamanlar karşılaştırılmıştır. Bu

şekilde tahmin fonksiyonlarının dağıtık veritabanı sorgu iyileştiricilerinde ve

dağatık veritabanı tasarım araçlarında kullanılabileceği gösterilmiştir.

vii

Anahtar Kelimeler: Dağıtık veritabanı, Sorgu çalıştırma planı, Dağıtık veritabanı

simülasyonu, Sorgu değerlendirimi, Maliyet tahmini.

viii

To My Family

ix

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my supervisor Assoc. Prof. Dr. Ahmet Coşar for

his invaluable assistance, advice and guidance. Without him this thesis research

would not have been possible.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ..x

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

CHAPTERS.. 1

1 INTRODUCTION .. 1

2 BACKGROUND .. 4

2.1 Distributed Databases .. 4

2.2 Database Operators .. 7

2.2.1 Nested Loop Join .. 9

2.2.2 Sort-Merge Join .. 9

2.2.3 Hash Join .. 10

2.2.4 Distributed Semi-Join ... 11

2.3 Computer Cluster ... 13

2.3.1 Message Passing Interface.. 14

2.3.2 Disk and Network Costs ... 15

2.4 Query Optimization Problem... 18

2.4.1 Cost Estimation .. 21

3 THE METHODS AND IMPLEMENTATION.. 24

3.1 Development Environment .. 24

3.2 Design and Implementation ... 25

3.2.1 Data Generation .. 28

3.2.2 Query Plan Execution ... 33

xi

3.2.3 Performance Evaluation ... 42

4 EXPERIMENTAL RESULTS ... 47

4.1 Correctness .. 47

4.1.1 Data Generation Correctness .. 48

4.1.2 Operation Correctness .. 48

4.2 Correlation between Real and Estimated Costs 53

4.3 Comparison of Join Algorithms... 57

4.4 Effect of Network Bandwidth.. 58

4.4.1 Influence on QEP Selection.. 60

4.5 Bushy QEP Execution ... 61

4.5.1 Running The Same QEP Concurrently... 62

4.5.2 Left-Deep and Bushy Tree Comparison ... 63

4.6 Performance Evaluation... 64

4.7 String Comparison and Memory Copy Times 67

5 CONCLUSIONS AND FUTURE WORK... 70

REFERENCES ... 72

APPENDICES .. 75

A. MEASURED DISK AND NETWORK TIMES ... 75

xii

LIST OF TABLES

TABLES

Table 4.1: “Employee” Relation... 49

Table 4.2: "Education" Relation ... 49

Table 4.3: Result of Select operation on Employee table 50

Table 4.4: Result of Project operation on Employee table 51

Table 4.5: Result of Join operation on Employee and Education tables 52

Table 4.6: Result of Composite operation .. 53

Table 4.7: Input Sizes ... 57

Table 4.8: Measured Real Times for Algorithms ... 58

Table 4.9: Effect of Bandwidth .. 59

Table 4.10: Network Parameters .. 61

Table 4.11: Concurrent QEP Join Time ... 63

Table 4.12: Left-Deep and Bushy Tree Comparison.. 64

Table 4.13: Variations in Real Time .. 65

Table 4.14: Measured Times for Different Tuple Counts 66

Table 4.15: Measured Times for Different Operations .. 67

Table 4.16: Measured Times for Increasing Comparison Numbers..................... 68

Table 4.17: Measured Times of Memory Copies with Increasing Tuple Counts 69

Table A.1: Measured Disk and Network Times .. 75

xiii

LIST OF FIGURES

FIGURES

Figure 2.1: Overview of a Distributed DBMS ... 5

Figure 2.2: Horizontal and Vertical Fragments .. 6

Figure 2.3: NLJ Pseudo Code... 9

Figure 2.4: SMJ Pseudo Code .. 10

Figure 2.5: HJ Pseudo Code ... 11

Figure 2.6: Distributed Semi Join... 12

Figure 2.7: HPC Cluster Architecture .. 14

Figure 2.8: Transmission Cost Variation with Message Size............................... 17

Figure 2.9: Query Optimizer Structure... 18

Figure 2.10: Possible Join Orders for a 3-way Join.. 20

Figure 3.1: System Class Diagram ... 26

Figure 3.2: Example Database Schema File ... 29

Figure 3.3: Pseudo Code of Data Generation Algorithm 31

Figure 3.4: Example Relation Data File ... 32

Figure 3.5: Example QEP Definition File .. 34

Figure 3.6: Example QEP Definition Tree ... 34

Figure 3.7: Pseudo Code of QEP Processing Algorithm at Master Site 37

Figure 3.8: QEP Traversal Algorithm .. 38

Figure 3.9: Inter-Site Message and Data Flow ... 40

Figure 3.10: Pseudo Code of Command Execution Algorithm at Worker Sites .. 41

Figure 3.11: Example Result File ... 42

Figure 3.12: Example Network Parameters File .. 44

Figure 4.1: Change in Disk Read Time with Increasing Tuple Count 54

Figure 4.2: Change in Disk Read Time with Increasing Tuple Size. 55

file:///C:/Users/Erhan/Desktop/Thesis_ErhanCeran-v8-20May2012.docx%23_Toc325277901
file:///C:/Users/Erhan/Desktop/Thesis_ErhanCeran-v8-20May2012.docx%23_Toc325277905
file:///C:/Users/Erhan/Desktop/Thesis_ErhanCeran-v8-20May2012.docx%23_Toc325277906
file:///C:/Users/Erhan/Desktop/Thesis_ErhanCeran-v8-20May2012.docx%23_Toc325277908

xiv

Figure 4.3: Change in Network Time with Tuple Count...................................... 56

Figure 4.4: Change in Network Time with Tuple Size .. 56

Figure 4.5: Measured Times for Algorithms .. 58

Figure 4.6: Effect of Communication Link Bandwidth.. 60

Figure 4.7: Time Spent on String Comparisons with Increasing Tuple Count 68

Figure 4.8: Time Spent on Memory Copies with Increasing Tuple Count 69

1

CHAPTERS CHAPTER 1

INTRODUCTION

1 INTRODUCTION

Distributed databases have many advantages over traditional databases for

organizations with non-centralized data structures. They utilize the locality of

resources, resulting in a scalable architecture and better performance. Replication

of relations makes distributed databases more reliable. Also, building a

distributed database is cheaper than its centralized counterpart as creating a

network of less powerful computers does not cost as much as one high-end

computer.

Despite these advantages, distributed databases were not very popular because of

data network limitations. However, with the advances in network technologies,

interest in distributed databases is growing rapidly. The complexity of designing

and creating efficient distributed database systems made it a popular field among

researchers.

One of the hardest problems when building a distributed database system is the

optimization of queries. For a given database query, there exists multiple ways of

execution. These query execution plans differ in the order and the location of the

operations that will be performed, as well as the cost of execution. The search

space of query execution plans can become very large for a query with a lot of

input relations on a large distributed database. To find good solutions with

2

reasonable costs, query optimizers run algorithms that evaluate the cost of

candidate plans and select the lowest cost plan among considered plans.

In [Kossmann (2000)] query plan evaluation algorithms are examined

extensively. Dynamic programming methods as proposed in [Selinger (1979)]

have been used in traditional databases. This approach finds good solutions with

low costs. However it is not very suitable for distributed databases, as there are

many additional factors that need to be considered such as network costs, relation

sites and replication, resulting in very costly search computations. Genetic

algorithms are also used in query optimization. They are more suitable for

distributed environments as they have significantly better search time and come

up with acceptable plans.

Regardless of the search algorithm used, the approximate cost of a plan must be

known by the algorithm to be able to compare plans without actually executing

them. Cost estimators are used for this purpose. The cost estimator takes an

execution plan and the state of the distributed database as input, and returns the

approximate cost of executing that plan as output. In this study, we create a

distributed query processor that can execute and estimate costs for distributed

queries. While estimating the total cost, network communication costs and disk

access costs are considered. We first implement a simple distributed database that

is able to execute select, project and join operations which runs on a computer

cluster. Another module is built to generate relation data according to given size

and selectivity criteria. To evaluate the accuracy of the cost estimator, actual

time, simulated time and the time estimated by the cost estimator is compared.

Our results show that we can estimate the simulated costs accurately, while

preserving a correlation between real and simulated costs.

3

In the first section we briefly explain the problem we study on this thesis.

Following section gives detailed background information about distributed

databases, the computer cluster we worked on, the database operators used and

the optimization problem. Section 3 addresses the actual implementation of our

system including design, capabilities, modules and tools used. The data formats

used for input in our system is also explained in detail. In section 4 we depict the

experimental results obtained from executing different queries on different

database setups. In the last section we briefly discuss the overall result of this

study and possible ways to make our system more realistic.

4

CHAPTER 2

BACKGROUND

2 BACKGROUND

2.1 Distributed Databases

A database is a collection of data organized in a way to describe related activities.

Today, most of the databases are stored on digital environments. The difficulty of

managing databases with large amount of data has raised the need for database

managements systems (DBMS). A DBMS is a software system that aids the user

to effectively manage data. [Ramakrishnan (2002)]

Users describe their data on a DBMS with high-level abstractions, called data

models. There are various data models suitable for specific tasks such as

hierarchical, network, relational and object-relational models. This study focuses

on commonly used relational data model which was introduced in [Codd (1970)].

In relational model, data is represented with one or more relations. The schema of

a relation describes the meta-data for that relation. The instance consists of tuples

which are units of data with fields as described in the schema.

A distributed database (DDB) is a group of logically related databases residing at

different sites on a network. A distributed database management system

(distributed DBMS) software manages the databases on the network and hides the

complexity of data distribution, making it transparent. The user of distributed

5

DBMS views the data as a centric database without concerns about relation

locations. The data-storage sites on a DDB are independent. They can be

physically close like nodes of a computer cluster, or far like two machines of an

organization residing on different cities, connected with a WAN. Each site has its

processor, disk, memory and operating system, allowing them to run applications

on their own. Even if the site has multiple processors, Distributed DBMS is not

concerned by the data parallelism inside one machine. Data is transferred

between sites through computer networks, not interprocessor communication,

resulting in a loosely coupled architecture. [Ozsu (1999)]

Figure 2.1: Overview of a Distributed DBMS

DDBs employ concepts called fragmentation and replication for data storage.

Fragmentation is the separation of a relation into smaller relations. These smaller

relations are usually kept on different sites. Breaking a relation into row groups

while preserving the same columns in all the fragments is called horizontal

fragmentation.

Site1

Site4

Site3

Site2

 Network

6

On the contrary, vertical fragmentation means separating a relation by columns,

where each fragment has data about all the rows in the original relation. In both

horizontal and vertical fragmentation, the original relation must be

reconstructable from its own fragments with no data loss. Also it is mostly

desired that fragments contain non-redundant data. Figure 2.2 depicts example

fragmentations on a table.

Figure 2.2: Horizontal and Vertical Fragments

Replication means storing multiple copies of a relation or some fragments of a

relation in different sites. Storing these copies increase reliability of the system,

as if a site crashes replicated relations can be used instead of the relations on the

crashed site.

DDBs have the following main advantages over centralized databases:

 DDBs do not depend on the hardware and software capacity of one

machine, making them very suitable for growth in data size. Today,

computer processors have nearly reached their physical limit for clock

frequency. This makes parallelism a must for systems requiring more

computational power. DDBs naturally reflect parallelism.

7

 Ideally a DDB is independent of the hardware, operating system, network

or the DBMS its sites run. This gives large organizations the opportunity

to easily reflect their organization structure to DDB and make use of

already existing databases.

 Fragmentation and replication increases reliability. In a centralized

database, if the machine storing relations is down, the database is

completely unusable. However on a DDB even if a site is down, replicas

and fragments of the relations in the down site can still exist on running

sites, making the DDB available.

 In a DDB relations can be stored on the sites where they are expected to

be used most. This improves the performance by decreasing

communication times. Another performance advantage is the utilization of

multiple sites. Executing a query in parallel on different sites results in

lower response times.

2.2 Database Operators

Retrieving data from a database is achieved through query languages based on

Relational Algebra(RA). Every operator in the language takes one or two

relations as input and produces a result relation, allowing operators to be chained.

Complex queries can be created by composing these basic operators with a set of

base relations as input. [Ramakrishnan (2002)].

For this study the basic select, project and join operators were implemented. Also

two helper operators, “make distinct” and “reduce” were used in semi-join.

8

Select(σ) is a unary operator that retrieves the tuples of a relation matching a

given condition. As an example, σc>N(R) returns the rows in relation R where the

value in column C is greater than N.

Project(π) is another unary operator that filters and outputs the selected columns

of a relation as a new relation. Given a relation and a set of columns, it creates a

sub-relation with all the tuples but only the desired columns of the original

relation. For instance, πC1,C2(R) gets the values of C1 and C2 columns for all the

rows, eliminating any other columns R has.

Join operation is used to combine tuples from two relations by matching tuples

from both relations using a given condition (usually a common attribute having

the same value). In other words, join is the equivalent of taking cross product of

two relations and filtering out undesired rows. There are specialized names for

join depending on the type of condition, such as condition join, natural join and

equijoin. For the purpose of this study equijoin is used, which is depicted by the

symbol ‘⨝’. In equijoin, a tuple from relation R1 is merged with a tuple from

relation R2 if the specified column C1 of R1 has the same value with column

C2 of R2. This join operation is expressed as: R1 ⨝ R1.C1=R2.C2 R2 .

Join is an important binary operator whose evaluation is not as straightforward as

unary operators. In fact, the hardest part in distributed query optimization

problem is determining the order of join operations and which site to perform

them. The algorithm used for the join operation itself is also a factor for

performance. All of the algorithm types have advantages and disadvantages for

different kinds of input relations. Join algorithms implemented for this study are

explained below.

9

2.2.1 Nested Loop Join

Nested Loop Join (NLJ) is the most straightforward to implement join algorithm

which can be preferred for joining small relations. For larger relations, the cost of

I/O operations and memory consumption increases, making NLJ a bad choice.

The algorithm scans every tuple of inner relation for each tuple in outer relation,

adding them to result set if they match.

Figure 2.3: NLJ Pseudo Code [Ramakrishnan (2002)]

Our implementation uses the smaller input as outer relation, as the number of

total I/O operations are decreased this way.[Ramakrishnan (2002)].

2.2.2 Sort-Merge Join

Sort-Merge Join (SMJ) is another join method that groups tuples of input

relations according to their join attribute value by sorting them. Because input

relations are partitioned on join attribute, it is possible to find matching tuples by

iterating only matching partitions. This way join operation can be completed in a

single iteration for both relations, eliminating the need for scanning the whole

relation for every tuple in the other input relation. The pseudo-code for SMJ is as

following:

10

Figure 2.4: SMJ Pseudo Code [Ramakrishnan (2002)]

The most expensive part of the algorithm is the sorting of input relations.

Therefore SMJ performance is good for relations that are already sorted or

indexed on join attribute. Our implementation avoids sorting already sorted

relations.

2.2.3 Hash Join

Hash Join (HJ) consists of two phases: building and probing. In building phase,

the inner relation is hashed by the value of its join attribute. Using the hashed

value as key, a hash table is created for tuples.

In probing phase, the outer relation is iterated. For each iterated tuple, a hash

value is computed on the join attribute using the same hash function. If there are

any values with the same key in the hash table created in the building phase,

11

actual tuples of the hash table are compared to see if they match. With this

approach only the partitions with the same hash keys are scanned.

Figure 2.5: HJ Pseudo Code [Ramakrishnan (2002)]

HJ is particularly suited for joining large relations. One of the important factors to

determine performance of HJ is how well the tuples are distributed on the hash

table. We used the C++ standard library hash table for our implementation. As it

performs best in average case scenarios, HJ is used as the join algorithm in this

study unless otherwise stated.

2.2.4 Distributed Semi-Join

Distributed Semi-Joins [Kang(1987)] aim to reduce the response time of

distributed join operations. During a distributed query execution, network

communication costs between sites usually outweigh the local processing costs.

12

Semi-Joins aim to decrease the amount of total data communication by

performing some extra operations locally.

For this study we used 2-way semi-join (2SJ) [Daniels(1982)]. Assume that there

is a relation R residing in Site1, and relation S residing in Site2 and these

relations need to be joined at Site3. To join R and S using 2SJ, first R and S are

projected on the join attribute at their local sites resulting in relations PR and PS.

Then PR is sent to Site2, where it will be compared with the tuples of PS for

equality. Matching tuples are put in relation T1, non-matching tuples are put in

relation T2. This operation is called “reduction”. The smaller of T1 and T2 is sent

back to Site1. In Site1, depending on the type of relation received from Site2 (T1

or T2), tuples of R matching with T1 or non-matching with T2 are sent to Site3.

Likewise, Site2 sends tuples of S matching with PR to Site3, where the join

operation is performed locally. Note that, Site3 and Site2 can be the same site.

Figure 2.6: Distributed Semi Join

13

Briefly, instead of sending whole tuples on network, 2SJ sends the only necessary

attributes. These attributes determine which tuples of both relations will be in the

result relation, avoiding the transmission of non-matching tuples. However, there

is an extra communication cost involved with 2SJ, which are the transfers of

projected and reduced relations. If the whole size of the tuples of relations R and

S are not much bigger than the join attribute, and the matching ratio between R

and S is high, 2SJ can bring extra cost for join operation. Databases use statistics

based approaches to determine if 2SJ is beneficial for a join operation.

We implemented 2 variations of reduce operations based on which site they will

run. These reduce operations are not visible to the last user and employed only

during 2SJ.

2.3 Computer Cluster

In a DDB, sites communicate with each other via a computer network. The

network can vary in size such as a small LAN in an office building or a WAN

connecting different countries. For this study, we used a high performance

computer cluster (HPC) to execute distributed queries. The cluster consists of 46

compute nodes. Each node has its own primary and secondary storage, operating

system and two quad-core processors, making them able to run individually. Note

that we are not concerned with the parallelism inside a node in the scope of this

study. Cluster communicates with the external world through a master node. User

data is stored on a common hard disk that each node can access. Primary storages

of nodes are not directly accessible and used for internal purposes such as

caching. Computational communication between nodes is performed with

InfiniBand network architecture.

14

Figure 2.7: HPC Cluster Architecture

2.3.1 Message Passing Interface

Nodes of the cluster use a message passing specification for communication,

called Message Passing Interface (MPI), which is widely used in parallel systems.

MPI is a specification with multiple implementations. These implementations

make use of the underlying hardware efficiently, while following the

specification. This results in standardized, portable and practical message passing

applications. [mpi-forum (2009)]

Basically, communication in MPI is achieved through send and receive

operations. A node can send data to a group of nodes simultaneously or a single

node at a time. Type of the data and a tag information to express metadata is also

sent together with the payload. On the receiving side, a node declares the

identities of source nodes that it expects data from. If data is received with an

expected source and tag, it is accepted and put into a memory buffer. Allocation

of this buffer is a user responsibility.

One of the main concerns for MPI in this study is the type of send/receive

operations. These operations can be made in two ways: synchronous and

15

asynchronous. After a synchronous send/receive operation is performed, the flow

of the program is suspended until the send/receive application buffer of MPI is

available to use again. During blocking period no other instruction can be

executed. On the contrary, asynchronous operations do not block and application

can continue to run. Sent/received data is put temporarily in a memory area. The

actual transmission status of data can be tested programmatically from the

application.

Although asynchronous message passing decreases the total time spent on

communication, in most cases it increases complexity of the application as data

sent/receive status must be managed manually. In our implementation we

preferred synchronous methods, as the system requires all the tuples of a relation

before performing any operations.

2.3.2 Disk and Network Costs

The computer cluster we used does not only run our distributed queries, it serves

other users with completely different applications through a job scheduling

mechanism. Nodes assigned for our usage share common resources with other

nodes such as network and shared storage. In other words, the load and state of

the computer cluster at the moment query is executed critically affects response

time. This is confirmed by the real response time differences between consecutive

executions of the same query in our experiments.

In order to avoid these issues with real response times, we used simulated

response time functionality. Simulated times provide more clear results that we

can compare our estimated results to, enabling us to focus on network costs

which are the most important factors that determine query response

time[Banerjee(1993)].

16

We consider network and disk costs for simulation. How simulated costs are

calculated is explained in Section 3. In this section, we give the simplified base

formulas used for calculation of the time required to retrieve a given amount of

data from the network or the disk.

To estimate the approximate time required to transfer an amount of data over the

network, we use a modified version of the formula given in (2.1). In this formula,

 is the time required for one packet of data to be transferred between

sites. is independent from the total data size and mainly dependent on

round trip time (RTT) and the processing times at the endpoints of

communication.

 (2.1)

Data size and bandwidth are other factors that affect network time. Bandwidth is

the measure for expressing how much data a network can transfer per second.

Usually bits per second (bps) or its multiples are used as bandwidth unit. In

[Sevinc(2011)], the network time required to transfer a number of messages was

measured as (2.2) for the cluster we work on. The experimental results this

formula is based on are given in Figure 2.8. In our implementation we send

relations in 1 message. Using (2.1), we can calculate is 0.9μs and

 is approximately 1526 Mbps for our system.

Transfer Time = No. of messages * (0.9μs + 0.005μs * BytesPerMsg) (2.2)

17

Figure 2.8: Transmission Cost Variation with Message Size [Onder(2010)]

Another time cost we consider is disk I/O time, as copying a page from disk to

memory can considerably suspend the processor execution. Data is accessed

block by block in hard disk. The smallest unit that can be read is a block. We

assume that a relation exists on a single block on the hard disk. However, it is

possible that the relation is fragmented and it resides on separate blocks on the

hard disk, causing disk transfer time to increase.

Disk block transfer time calculation is done according three factors: seek time,

rotational latency and transfer rate. Seek time is the time spent by the read/write

head to position itself to the right track of the hard drive. With the read/write head

on the track, the required sector takes some time to become available for access,

which is rotational latency. Transfer rate means how much data per second is read

from hard disk. We base disk cost calculation to the following formula with some

modifications in our system:

 (2.3)

18

We used 9ms for , 4.2ms from and 40MBps for Transfer

Rate.

2.4 Query Optimization Problem

A database query can be executed in many different ways all with the same

desired result. However these paths usually have huge differences at their time

cost. Query optimizers try to find optimal or close to optimal query execution

plans (QEP) in an acceptable time frame. Figure 2.9 shows a query optimizers

place in query execution process.

Figure 2.9: Query Optimizer Structure

In order to understand the possible cost difference of plans with the same result,

consider we have the following relations:

Person(Name, Age, CityId)

City(CityId, Name, Population)

Query

Parser

Query

Optimizer

Query

Processor

QEP Generation

and Evaluation

Cost Estimation

19

Two ways to execute the query “select Name from Person, City where

Person.CityId = City.CityId and City.Population > 1000000 and Person.Age =

18” are:

 Build the cartesian product of the two relations by iterating all the tuples

of Person for each tuple in City. From the cartesian product, select the

tuples which satisfy all the three conditions given in the where statement

of the query.

 Select the tuples with Age value of 18 from Person relation and put them

in an intermediate relation. Likewise, select the tuples with population

greater than 1000000 from the City relation. Scan the selected Person

checking if any tuples with the same CityId exists in the selected City

relation, adding the join row to the result relation if they match.

Although both execution paths give the same correct results, the second one is

clearly more efficient in terms of memory and time. First one creates a cartesian

product as intermediate relation, which is a very expensive operation especially

for large relations. The cross product contains a lot of unnecessary tuples which

will be filtered during selection phase. On the other hand, the second execution

path performs single relation select operations first. This reduces the size of the

relations that will be used for join, making it a better alternative.

Databases systems use indexing structures such as B+ trees to get better access

times on certain attributes. A query optimizer will try to make use of existing

indices on a relation in most cases. Because our implementation focuses on

network costs, we do not consider the existence of indices for query plans.

20

The number of possible QEPs can be very large for a query, especially if it

involves a lot of relations. For a query with N relations, the size possible join tree

space is Ω(N!). In Figure 2.10, possible join trees are depicted that can be built to

join three relations R⨝S⨝M. The node at the left side is assumed to be the

outer relation of the join.

Figure 2.10: Possible Join Orders for a 3-way Join

It can be seen that possible join order number grows very quickly with increasing

number of relations. Considering selects, projects, different types of join and

which indexes to use further enlarges the search space. To limit the search space,

most commercial optimizers follow three restrictions [Ioannidis(1996)]:

 If there is a selection on a relation, it is executed the first time the relation

is accessed. On the contrary projections are made after other operations

complete.

21

 Cartesian products of relations are avoided unless explicitly requested in

the query.

 The inner operand of a join must be a relation, not an intermediate result

obtained from a previous operation. Join trees obeying this restriction are

called “left-deep” trees. If a join tree does not follow this restriction it is

called a “bushy” tree. This is a heuristic restriction and may eliminate

optimal plans. However, best left-deep trees do not have much higher cost

than optimal plans in most cases.

For distributed queries, QEP search space is even larger. In addition to

possibilities of a centralized query, a distributed query optimizer must also

consider which site to perform an operation, how to transfer results and

whether to use semi-join or not. Also, as operations can be done parallel,

bushy trees cannot be eliminated. These choices make distributed query

optimization a harder problem, and dynamic programming based algorithms

[Selinger (1979)] used in centralized databases become too expensive. For

distributed optimization, other approaches have been proposed such as

iterative dynamic programming [Kossmann(2000)] and genetic algorithm

based solutions [Sevinc(2011)]. These methods have less complexity than

dynamic programming and they still find good enough QEPs.

2.4.1 Cost Estimation

Query optimization algorithms must know the approximate cost of given QEPs to

be able to compare them and find a good plan. The aim may be to reduce total

time or response time. Total time is the sum of the times spent by the sites

involved in the execution of a query. Response time is the time from the start of

query execution to the delivery of query result. One may choose to reduce

22

response time by increasing total time. In this thesis we focus on and use the term

“cost” to express response time.

To estimate costs, optimizers employ a size estimation module to roughly predict

the size of an operation’s result without actually executing it. The accuracy of

estimated size to real size greatly determines the success of optimizer. Query

optimizers mainly focus on CPU and I/O waiting times, and network delays for

distributed databases. CPU time’s importance is debated compared to I/O time

and in some research it is completely ignored. We also follow this approach in

this study. Number of the disk page transfer operations required to read a relation

from the hard drive should be estimated correctly to guess good I/O times. For

communication costs, mostly number of the bytes sent through the network is

used as measurement tool.

Current optimizers base their estimations on the data distributions of attribute

values. To keep these frequencies equi-depth histograms are used on many

systems [Mousavi(2011)]. Histograms aim to divide the values of an attribute into

a number of equally sized buckets. Increasing the number of buckets improves

estimation accuracy; however it is more expensive in terms of memory and

processing time. When calculating result size of an operation, the size of input

relations and attribute data distributions are used as cost formula parameters.

Two assumptions are made on the distribution of data by most optimizers which

decrease estimation accuracy but needed to keep estimation cost acceptable

[Mannio(1988)].

 Attribute values are uniform, meaning there are equal numbers of tuples

for each attribute value. This assumption helps to guess the data

distribution of attributes in intermediate results.

23

 Values of different attributes are independent and they do not correlate

with each other. This assumption is wrong in many real life cases but

keeping buckets for all combinations of attribute values is not practical.

Bayesian network based methods have been proposed to reflect relations

between attributes [Getoor(2001)].

In this thesis we generate our own synthetic data based on the rules defined by the

user. The metadata for these rules are shared among data generation and query

processing modules. Therefore our cost estimations are more exact, allowing us

to focus on network costs and design of a specific distributed database.

24

CHAPTER 3

THE METHODS AND IMPLEMENTATION

3 THE METHODS AND IMPLEMENTATION

This chapter explains how our system is built. First, we briefly describe our

working environment and the tools we used for development. Then we give

detailed information about system design and implementation.

3.1 Development Environment

Briefly mentioning the tools, libraries and process we used during development is

beneficial as this is an implementation emphasized study. As previously stated,

our system runs on HPC Cluster with Scientific Linux v5.2 64-bit operating

system. The details of the cluster can be found in [metu-hpc(2012)].

We chose C++ as our development language for its object-oriented programming

support and speed. To compile and link the source code we used “mpiCC”, which

is a wrapper for the local gcc compiler that adds constructs for MPI support.

Following line is a simple command that builds the executable “runQuery” from

all available *.cpp files:

mpiCC *.cpp –o runQuery

As the cluster serves multiple users, the prepared executable cannot be run

directly. A “Portable Batch Script”(PBS) file must be prepared, which basically

25

states the location of the executable to run and its arguments, as well as the

number of nodes to run the executable on. Then this script is submitted to job

queue and handled by job-scheduling service of the cluster. An important point

for our system is to make sure the number of nodes used in PBS file is equal to

number of nodes involved in QEP file.

To access computer cluster from Windows operating system we used “SSH

Secure Shell” and the commercial “ZOC Terminal” products. ZOC Terminal’s

support for scripts helped with recurring tasks. To be more practical, our code

was mainly written on Windows and then transferred to the cluster machine.

However, one issue encountered with this approach is end of line (EOL)

characters. Windows and Linux handle EOL differently, which causes our

processor to fail executing queries. If data is generated on Windows and uploaded

to Linux, line endings must be converted. The standard “dos2unix” tool can be

used for this purpose.

We included some open source external components in our system. During tests

we saw that standard random number generator of C++ was not producing

uniformly distributed results. Therefore we used a C++ implementation of

Mersenne-Twister pseudo-random number generator as an external component

[mtrand(2012)]. Another library included in the project was pugixml, which was

used for parsing and building of our XML (eXtensive Markup Language) input

files [pugixml(2012)]. To represent tree data structures the class published in

[treehh(2012)] was used.

3.2 Design and Implementation

The system has an object-oriented architecture. In Figure 3.1, a simplified UML

class diagram is given. Note that external libraries and C++ STL are not included

26

in the diagram. Classes that perform different tasks are loosely coupled. For

example, “CDataGen” class, which is responsible for creation of test relations

with dummy data, can be executed standalone.

Figure 3.1: System Class Diagram

The responsibilities of the classes are briefly given below. Their working process

is explained in more detail later in this section.

 CRelation: Represents a database relation. Stores a collection of

attributes and tuples. Modification on these collections during runtime is

allowed. Values are stored as null terminated character arrays. Metadata

of relation such as size, attributes and relation name can be accessed. A

relation can print its metadata and actual data to an output.

 CTable: Table is a specialized relation. They are physical relations that

exist on files residing on the hard disk of a site. In addition to

functionalities of a relation, tables can serialize themselves from files.

27

 CDataGen: The responsibility of this class is to generate relation data

files according to definitions given in database schema input file. The

application must be run in “generation mode” to create files.

 COperator: This is a utility class that contains the implementations of

database operators. Select, project, nested loop join, sort merge join, hash

join and “make distinct” operators are available to use directly from QEP

definition files. Reduce operator is implicit and used for semi-join

operations.

 CPlanProcessor: Plan processor parses the given tree structured QEP file

and converts it into a sequential form of commands that is directly

assignable to relevant sites. While converting, it infers required

commands that are not directly stated in the plan and modifies/adds

commands.

 CSite: CSite class includes the data and functionality to represent a

distributed database site. Each site runs on its own node in the cluster and

calls necessary functions required to execute a QEP. A site instance

communicates with other sites via MPI infrastructure to exchange

commands and data.

 CEvaluator: Evaluator class focuses on performance evaluation. It

measures the real time, simulated time and estimated time required to

execute a QEP. Also, parsing network and disk latency parameters from a

file and calculating the cost of transferring/reading a given amount of data

is this class’ responsibility.

28

We have given a static overview of our architecture. In order to understand

execution logic in more detail, the system can be examined under three sections

according to the tasks performed.

3.2.1 Data Generation

Finding data suitable to the design of our system was not possible, so we

implemented our own data generator. Our system uses series of numeric digits for

attribute values and handles them as character arrays. Data generator produces

relations according to this format.

The generator takes an XML input file describing the tables and Primary-Foreign

key relations between the tables in the database. As output, it generates relation

data files and a modified version of input database schema file.

29

Figure 3.2: Example Database Schema File

Figure 3.2 shows an example database schema input file. Definitions follow

standard XML notation and features like comments are supported. Every schema

must have a “Tables” section, while “PFKeys” and “Selectivities” sections are

optional.

 Tables Section: In this section database tables and their columns are

defined. For each table, a table entity is created. “Name” attribute states

the name of the table, and is used as the table file name. The number of

<!--
This database schema input f ile is used to generate data f iles.
PK-FK sizes must be the equal.

-->
<DDBSchema>

 <Tables>

 <Table Name="Student" Records="1000">
 <Column Name="SId" Size="10"/>
 <Column Name="SName" Size="9"/>
 <Column Name="C12" Size="2"/>

 </Table>
 <Table Name="Enroll" Records="3000">
 <Column Name="FSId" Size="10"/>
 <Column Name="FCId" Size="10"/>

 </Table>
 <Table Name="Course" Records="20">
 <Column Name="CId" Size="10"/>

 <Column Name="CName" Size="10"/>
 </Table>
 <Table Name="Staff" Records="30">
 <Column Name="StaffId" Size="9"/>

 <Column Name="StaffName" Size="31"/>
 </Table>
 <Table Name="Interest" Records="200">
 <Column Name="InterestCode" Size="11"/>

 <Column Name="FStaffId" Size="9"/>
 </Table>
 </Tables>

 <PFKeys>
 <PFKey TableP="Student" PK="SId" TableF="Enroll" FK="FSId"/>
 <PFKey TableP="Course" PK="CId" TableF="Enroll" FK="FCId"/>
 </PFKeys>

 <Selectivities>
 <Selectivity Table1="Staff" Column1="StaffId" Table2="Interest" Column2="FStaffId"

Value="0.003"/>
 </Selectivities>

</DDBSchema>

30

the tuples is given in “Records” attribute. Attributes are defined as

separate “Column” tags. Here, “Name” specifies the name of a column

and “Size” specifies the maximum number of characters the column has.

 PFKeys Section: Primary-Foreign key associations of relation attributes

are defined here. By entering a “PFKey”, the user states that two columns

are connected and their data is generated accordingly. The column that

will be used as primary key determined by setting “TableP” and “PK”

fields. TableP is the name of the table that primary key is defined on, and

PK is the name of the column that will be used as primary key. Foreign

keys are defined in the same manner using “TableF” and “FK” fields.

 Selectivity Section: We added an alternative way to associate relations

called “Selectivity”. Although PFKey is more likely to be used, selectivity

is also helpful for some simulations. To define a selectivity association,

two columns are entered with their relations using “Table1” - “Column1”

and “Table2” – “Column2” field pairs. Then a selectivity “Value” is

entered. When the data generator finds a selectivity defined between two

columns, it generates data so that if two tables are joined on their

selectivity attributes, the result relation’s tuple count will be

approximately |R1|*|R2|*ValueSelectivity . Here |R1| and |R2| are the size of

relations selectivity is defined for.

Data generator provides PFKey and selectivity by creating unique pseudo-

random numbers as cell values. However, ensuring a generated random number is

unique among in a set of attribute values is computationally expensive. Also,

random number creation functions can give undesired results such returning the

same value consecutively. Therefore the effects of PFKey and selectivity

31

definitions are not exact, but differences are negligible. In Figure 3.3 pseudo-code

for data generation is given.

Figure 3.4 depicts a sample relation output file. The first non-comment row states

how many records are in relation, number of the attributes and total size of a

tuple. Names of the columns and their sizes are written in following lines.

Finally, actual tuple values are listed. In the example figure only 5 of 1000

records are given. Comments starting with “//” are supported in the beginning of

a relation data file. Note that even the column C12 size is given as 2, there are

only 1 character long cell values. This is because the generator sets the range of

possible attribute values so that a space character is reserved and cell value is

for each table
 for each column

 if a selectivity value is defined for this column then
 if connected column is not generated yet then
 generate independent values for this column

 else
 set matchProbability to the probability attribute value will exist on connected column
 for each tuple

 set random to random number between 0 and 100
 if random < matchProbability then
 select a random value from connected column and add it to this column
 else

 generate independent value and add it to this column
 endif
 endfor

 elseif a PFKey is defined for this column then
 set connectedColumn primary key column for this column
 if connected column is not generated yet then

 generate connected primary key
 endif
 for each tuple
 set a random value from connected column and add it to this column

 endfor
 else
 generate independent value and add it to this column

 endif
 endfor
endfor

Figure 3.3: Pseudo Code of Data Generation Algorithm

32

distinguishable by human eye. This behavior can be overridden and has no effect

on how system handles values.

Figure 3.4: Example Relation Data File

Another output of data generation process is modified database schema file.

Generator creates a file with the name “[InputSchemaName]_output.xml”. The

content of this file is the same as input schema file, except “Min” and “Max”

attributes are added to “Column” tags. The range of values an attribute can have

is determined automatically according to its length. This output schema file must

be given as an argument when executing a query so that the estimator knows the

metadata about relations.

When preparing a schema file, following constraints must be satisfied:

 Table column names must be unique among database. They must be at

most 31 characters long.

 If a PFKey or selectivity association is defined between two columns,

their size must be equal.

33

 A selectivity value can be between 0 and

 , where RL is the larger of

the relations selectivity is defined between.

After preparing a database schema file, tables can be generated by running our

executable in generation mode using the following command:

runQuery generate [dbschema_filename]

3.2.2 Query Plan Execution

The main part of our implementation is query plan execution. Given a QEP file in

a predefined format, the system can execute that plan and find the result relation.

The below command is used to run a QEP. Note that relations data files must be

under the same directory with QEP definition file.

runQuery [QEP_filename] [networkparamaters_filename] [dbschema_filename]

Here, “runQuery” is the executable file. [QEP_filename] is the file containing

QEP which will be given in this section. [networkparamaters _filename] is used

for setting network latency and bandwidth parameters. [dbschema_filename] is

the output of data generator.

3.2.2.1 QEP Definition File Format

QEP files are written in XML format, which is particularly good for representing

QEPs as they have tree structure. Figure 3.5 depicts an example QEP file. Figure

3.6 is the tree representation for the same QEP.

34

Figure 3.5: Example QEP Definition File

Figure 3.6: Example QEP Definition Tree

XML root of a QEP definition file is an operation. Select and project operations

must have one child node, while joins must have two children. A child can be a

table node or another operation node. Leafs of the tree can only be table nodes.

“Table”, “Select”, “Project” and “Join” tags can be used in QEP definitions.

Table tag represents a table residing on a site. Table name is entered inside the

tag. This tag has only one attribute:

 Site: Identifier number of the site the table resides on

Course

⨝ CoursePId = CourseFId

⨝ StudentPId = StudentFId

Enroll π StudentPId, Name

σ Age<20 and Scholarship

> 300

Student

35

The remaining tags are all operation tags. Following attributes are common to all

operations and can be used with all of them:

 Perform site: Indicates on which site the operation will be executed. For

unary operations, this attribute is optional. If no perform site is entered,

the plan processor sets the site where the only operand resides as default

perform site.

 Target site: Target site is required only in root operation. If not entered, it

defaults to perform site. It determinates where the result relation will be

sent after operation execution is complete. Although the system has the

ability to send result any site, this must be set to 0 to be able to evaluate

performance and terminate session.

 Display: This is also an optional parameter and assumed “f” (false) if not

entered. If set to “t” (true), all the tuples of the operation result are printed

to standard output. Note that setting this to true for intermediate result can

degrade execution performance especially for large results. However

displaying the result of the root operation has no side effects as

performance measurement is already complete at that point.

The only attribute specific to project is:

 Attributes: Comma separated column names that will be projected. ‘*’

character can be used as sole attribute, and it is equivalent to all attributes

of a relation.

36

The only attribute specific to select is:

 Criteria: Comma separated condition strings. These strings are formatted

as [ColumnName][Condition][NumericValue]. Condition can be “gt”

(greater than), “et” (equal to) or “lt” (less than). For example, to find 20

years old students whose Id is greater 1000 we can use

“Ageet20,StudentIdgt1000” as select criteria.

Following attributes can be used with join operations:

 Type: States the type of join operation. Possible values are “nestedloop”,

“sortmerge”, “hash” and “noop”. Noop is not a real join operation. It is

included only to measure the time both operands of a join operation are

available for experimental purposes.

 Left Key and Right Key: Join operation accepts the first child node as

left operand and second child node as right operand. Left key and right

key are the names of the columns join will executed on.

 Semijoin: This is an optional parameter and set to “f” (false) if not

entered. If set to “t” (true) the join operation is performed as a semi-join.

3.2.2.2 QEP Processing

QEP definition files are handled by plan processor in our system. The output of

plan processor is a list of sequential commands that will be assigned to worker

sites from the initiator site, which is site 0.

The creation of command list is done in two phases. In the first phase, QEP

definition tree is traversed in preorder and operation structures are created. The

recursive algorithm given in Figure 3.7 is used in the first phase. An operation

can have one or two operands depending on its type. Each operation result is

37

given an identifier. This way it is possible to know which operation expects

which intermediate result even after tree structure is broken and its fragments are

distributed to relevant sites. Before mentioned perform and target inferences are

also made in this phase.

Operand function traverseTree(xmlnode node, integer targetSite, boolean isRoot)

begin
 Operand result
 if node is table then

 set result.residingSite = get node site attribute
 set result.name = get node child value
 else
 Operation oper

 set result.name = get next generated id
 if target site of oper is not supplied then
 set oper.opTargetSite = oper.opPerformSite

 endif
 read operation specific fields and set oper
 if oper.Type = Project or oper.Type = Select then

 set xmlnode singleChild = get only child of the node
 if "performsite" attribute of tag is empty then
 set oper.Operand1 = traverseTree(singleChild, -1)
 set oper.PerformSite = oper.Operand1.residingSite

 else
 set oper.PerformSite = get "performsite" attribute of tag
 oper.Operand1 = traverseTree(singleChild, oper->opPerformSite)

 endif
 set result.residingSite = oper.PerformSite
 elseif oper.Type = Join then

 set result.residingSite = get "performsite" attribute of tag
 set oper.PerformSite = result.residingSite
 set xmlnode leftChild = get first child of the node
 set oper.joinOperand1 = traverseTree(leftChild, oper.PerformSite)

 set xmlnode rightChild = get second child of the node
 set oper.joinOperand2 = traverseTree(rightChild, oper.PerformSite)
 endif

 if targetSite > -1 then
 set oper.targetSite = targetSite
 else

 set oper.targetSite = oper.PerformSite
 endif
 set oper.result = result
 add oper to the operations list

 endif
 return result
end

Figure 3.7: Pseudo Code of QEP Processing Algorithm at Master Site

38

Figure 3.8 depicts the execution of traversal algorithm on the QEP given in

Figure 3.5. The algorithm starts on the root and follows the path shown with

dashed arrows. The encircled numbers are the unique names of temporary result

relations used as operands in other operations. Commands that will be assigned to

the worker sites are created using these temporary names. For example, to

represent the outer join a join command is created with two operands. These

operands are “Course”, which is a table and “2”, which is a temporary relation.

The result of outer join is given the name “1”. Likewise, the inner join has

operands “3” and “Enroll”, while its result is named “2”. The input-output

relations between operations are achieved through relation names. When the outer

join operation needs to be performed at its worker site, both its input relations

must be available in that site.

In the second phase of QEP processing, we add implicit operations to the list

obtained from first phase. Implicit operations are commands required for query

executions but not directly stated in QEP definition such as “Move”. For

Course

⨝

⨝

Enroll π

σ

Student

1

2

3

4

Figure 3.8: QEP Traversal Algorithm

39

example, consider a join operation that will join table “Student” from site 2 and

table “Enroll” from site 3, and the operation itself will take place in site 2.

Obviously, Enroll table must be available in site 2 for site 2 to execute this

operation. To make this possible, plan processor creates a “Move Enroll to site 2”

command for site 3. Implicit operations are not limited with move commands.

For semi-joins, project, make distinct, reduce and move commands are created. In

case of a sort-merge join, implicit sorts are generated. Also for every QEP, an

implicit “Wait” command is used. This command is assigned to initiator site so

that it does not terminate right after assigning commands to worker sites and

waits to perform evaluation tasks.

3.2.2.3 System Architecture

The architecture of our system consists of one initiator site and several worker

sites. Initiator site is responsible for running plan processor, assigning relevant

commands to worker sites, receive the final QEP result and measure performance.

On the other hand, worker sites await commands and execute them, sending

results to required destinations.

Figure 3.9 gives an overview of our system. When the program is started, all sites

start to run together. Initiator site parses QEP and sends each worker site the

number of operations they need to execute. This is required for worker sites to

terminate properly. Then the operations they need to execute are sent to each

worker site. At this point initiator site starts to wait for QEP execution to

complete.

40

Figure 3.9: Inter-Site Message and Data Flow

Worker sites store the received operations they need to execute on a list. When

they complete an operation or receive a relation from another worker site, they

iterate the command list to see if an operation is performable, i.e., all its operands

are locally available. If so, that operation is performed. The pseudo code for the

algorithm running in worker sites is given in Figure 3.10.

Initiator Site

Worker Site 0

Worker Site 1

Worker Site k

Worker Site n

In
te

rm
e
d

ia
te

 R
e
la

tio
n

 D
a
ta

List of Operations

QEP Result

A
u

x
ilia

ry
 C

o
m

m
a
n

d
s

41

It is possible that an intermediate relation needs to be sent to another site as a

result of an operation. In this case, an auxiliary command “Receive” command is

sent to destination site first. This way MPI receiver knows the metadata of the

relation it expects and allocates required buffers. If the intermediate result will be

consumed locally, it is stored in memory. This “wait-check availability-perform

operation” cycle repeats until all the operations are executed. Then the worker

site terminates.

The initiator site stops waiting after receiving QEP result, measures performance,

logs them to a file named “results.txt” and terminates. A sample results file is

given in Figure 3.11. Note that only execution summaries are stored in this file.

More detailed error and debug level logs, as well as relation data are kept in

output files created by job scheduling system. These files names are in

[jobname].[ojobid] format. Flow of commands and result relation data can be

found in these files.

while operation list is not empty do
 if data needs to be received then
 receive and store data in memory

 endif
 do
 set operation completed false

for each operation in list
 if all operands are available then
 perform operation
 remove operation from list

 set operation completed true
 break
 end if

 endfor
 while operation completed
endwhile

Figure 3.10: Pseudo Code of Command Execution Algorithm at Worker Sites

42

Figure 3.11: Example Result File

3.2.3 Performance Evaluation

The last capability we implemented in this study is the evaluation of QEPs. For

this purpose we use three time measurements: real time, simulated time and

estimated time.

3.2.3.1 Real Time

In our system real time measurement is made solely at initiator site, using OS

provided clock function. We have to depend on one site to measure real time, as

system clocks of different sites are not precisely synchronized. Initiator site starts

its timer after assigning commands to the worker sites. The timer is stopped when

QEP result is received. As mentioned before, HPC cluster’s purpose and

architecture is not directly fit to distributed query simulation. This causes

differences in response times up to 3 times between consecutive executions of the

same query. Also, there are a lot of details in real execution we cannot consider in

the scope of this study.

3.2.3.2 Simulated Time

To overcome issues with real time, we implemented response time simulation,

which take disk and network times into account. There is a basic idea behind

simulation. The point in time for an operand to be available in a receiver site

equals to the point in time for that operand is available in sender site plus the time

interval required to transfer the operand through network. In other words, if a

43

relation R becomes available in site i at time
 , and R needs to be transferred

to site j,

 is calculated as in (3.1), where

 is the time spent on

network to transfer R from site i to site j. Calculation of

 is made

according to (3.2), using parameters supplied in the parameters file.

 (3.1)

To calculate disk latency, (3.3) is used when a table is first read from hard disk.

For intermediate relations disk latency is 0. As a site knows it needs to read a

table from disk at the start of execution, we assume each site reads its first table at

t0, and continues to next tables from the time previous reading was completed.

In our trials we saw that impact of the tuple count was greater than the impact of

the tuple size for both network and disk costs. For example, transferring or

reading a relation with 10000 tuples where each tuple is 10 characters long took

more time than a relation with 1000 tuples where each tuple is 100 characters

long. In other words, the time it takes to create a relation from a network stream

or disk is not a function of only data size for our system. Therefore, we modified

formulas given in (2.1) and (2.3) by converting them to use tuple count and tuple

size with some coefficients. Formula (3.2) is used for network costs, while (3.3)

is used for disk costs. For relation R, |R| donates the tuple count and SZR donates

tuple size. The constant numbers used in formulas are based on experimental

results explained in next chapter.

 (3.2)

 (3.3)

44

For unary operations, the result’s availability time is equal to its only operand’s

availability time, because we ignore CPU costs. For binary operations, the

result’s availability time is the maximum of its operands’ availability time.

Network parameters that are used for simulated and estimated times can be

configured via a text file. Comments starting with “//” sequence are supported.

This file represents an adjacency matrix where each cell keeps bandwidth and

latency values. For example, the value in 3rd row, 4th column is used when data is

being sent from site 2 to site 3. The adjacency matrix does not have to be

symmetrical. Bandwidth unit is Mbps (megabits per second); latency unit is ms

(millisecond). These values are separated with a “|” character. Latency can be

omitted; in that case the default value 0.0009 ms is used. A negative value means

very low bandwidth and very high latency. A sample network parameter file is

given in Figure 3.12.

Figure 3.12: Example Network Parameters File

//Matrix values are separated either with tabs or spaces

//Edges are separated with pipes (|) -> Bandwidth|Latency

//Bandwidth unit is Mbps, Latency unit is ms

//Default value for latency is 0.0009

0 1 3 2 1

1 0 -1 2 1

3 -1 0 2 1

2 2 2 0 1

1 1 1 1 0

45

3.2.3.3 Estimated Time

Our system can estimate the approximate simulated response time of a QEP

without executing it, which is useful for selecting a good plan in QEP search

space. Select, project and non-semi joins are supported for estimation. Sort, move

and make distinct operations can also be estimated but they are not directly

available in QEP definition.

To estimate cost, the evaluator applies the same formulas used in latency

simulation. First, the QEP tree structure is rebuilt from the operation list with

additional implicit commands, which is the output of plan processor. Then, this

tree is traversed in post order. This allows us to calculate each operations time as

maximum of its children’s availability time plus its own network transfer time.

The biggest challenge in cost estimation is guessing the size of intermediate

relations, which is needed for network time calculation. To do this, we use the

advantage of knowing characteristics of synthetically generated tables. Each

operation type is handled specially during result size prediction.

 Sort: Sort does not change relation size.

 Move: Move does not change relation size.

 Make Distinct: As generated attribute values are mostly unique, we

assume make distinct operation eliminates 1% of tuples.

 Project: The result size of a project operation can be calculated exactly,

as size of each column and tuple count is known.

 Select: Estimation of select operations is limited to one select condition.

Also it is assumed that numeric attribute values are uniformly distributed.

46

 Join: Join results sizes can be approximately calculated with help of

PFKey and selectivity associations defined in database schema file. For

PFKey, join result’s tuple count is equal to the relation foreign key is

defined for. If selectivity is defined, join result tuple count is

multiplication of input relations’ and selectivity value. Once tuple count is

known, it is straightforward to calculate relation size as tuple size is sum

of input relations’ tuple size.

47

CHAPTER 4

EXPERIMENTAL RESULTS

4 EXPERIMENTAL RESULTS

In this section we perform experiments to see various aspects of our system and

discuss obtained results. In [Onder (2010)], the nodes of the cluster we use were

shown to be equivalent, therefore we do not perform those experiments. Our trials

focus on query processing aspects of our system.

The relations that we use for experiments in this section are written in

RelName(Att1Name:Att1Size, Att2Name:Att2Size,..):TupleCount format.

Attributes used as primary key and foreign key will start with “P_” and “F_”

prefixes respectively. For example to express a relation named “Student” with

10000 tuples and two attributes, a 10 characters long “Id” and 30 characters long

“Name”, we use Student(P_Id:10, Name:30):10000. The “P_” prefix in “P_Id”

states it is a primary key.

4.1 Correctness

The first thing we need to verify to continue our experiments is the correctness of

our results. We try data generation and perform operations to see if they work as

expected.

48

4.1.1 Data Generation Correctness

For data generation we produce relations connected with PFKey and selectivity.

Then we join them to see resulting tuple count.

PFKey: We test PFKey association with two relations: Player(PlayerId:10,

F_CityId:10):1000 and City(P_CityId:10, PlateNo:3):80. When we join these

relations on key attributes, we saw that the result had 1000 records. This is

expected, as each record in Player matches with a record in City. The result size

is equal to the relation with foreign key.

Selectivity: Selectivity is also tested with two relations: Restaurant(ResName:10,

F_RCity:10):1000 and Cinema(CiName:10, F_CCity:10):1000. F_RCity and

F_CCity attributes are connected with a selectivity value of 0.0003. The join

between these relations resulted in 270 records. The expected value is

1000*1000*0.0003 = 300. The difference is caused by the probabilistic function

data generator uses and acceptable.

4.1.2 Operation Correctness

To test operation correctness we use two small tables as input so that results can

be shown and checked by eye: Employee(P_EmpId:10, EmpName:9,

EmpAge:3):10 and Education(F_EmpId:10, EdCode:4):8. Select, project and

join operations are executed one by one. Unless otherwise stated, only one

worker site is used aside from the initiator site. The contents of two relations we

use are given in Table 4.1 and Table 4.2.

49

Table 4.1: “Employee” Relation

Record# P_EmpId EmpName EmpAge

1 155 3571 20

2 1808 2867 73

3 6625 8672 84

4 3397 5044 52

5 8558 7527 77

6 924 87 14

7 4113 7998 32

8 5609 9971 38

9 4272 9579 91

10 4450 1834 37

Table 4.2: "Education" Relation

Record# F_EmpId EdCode

1 8558 467

2 4450 425

3 6625 46

4 1808 794

5 4272 890

6 4113 856

7 8558 941

8 8558 158

Select: Select is performed with the following QEP definition and result is shown

in Table 4.3:

<select criteria="EmpAgegt30" targetsite="0" display="t">

 <table site="1">Employee</table>

</select>

50

Table 4.3: Result of Select operation on Employee table

Record# P_EmpId EmpName EmpAge

1 1808 2867 73

2 6625 8672 84

3 3397 5044 52

4 8558 7527 77

5 4113 7998 32

6 5609 9971 38

7 4272 9579 91

8 4450 1834 37

Select operation filters the records that do not satisfy EmpAge>30 condition as

expected.

Project: Project is performed with the following QEP definition and its result is

shown in Table 4.4:

<project attributes="P_EmpId,EmpAge" targetsite="0" display="t">

 <table site="1">Employee</table>

</project>

51

Table 4.4: Result of Project operation on Employee table

Record# P_EmpId EmpAge

1 155 20

2 1808 73

3 6625 84

4 3397 52

5 8558 77

6 924 14

7 4113 32

8 5609 38

9 4272 91

10 4450 37

Project operation only displays the attributes stated in QEP definition as

expected.

Join: Join is performed with the below QEP definition and result is shown in

Table 4.5. Even though only hash join is given below, nested loop and sort-merge

joins were also tried. Their results were the same, only difference was sort-merge

join’s result was sorted on key attribute. Semi-join with hash algorithm was

experimented with two worker nodes. Again, the result was the same.

<join type="hash" leftkey="P_EmpId" rightkey="F_EmpId" performsite="1" targetsite="0"

display="t">

 <table site="1">Employee</table>

 <table site="1">Education</table>

</join>

52

Table 4.5: Result of Join operation on Employee and Education tables

Record# P_EmpId EmpName EmpAge F_EmpId EdCode

1 1808 2867 73 1808 794

2 6625 8672 84 6625 46

3 8558 7527 77 8558 467

4 8558 7527 77 8558 941

5 8558 7527 77 8558 158

6 4113 7998 32 4113 856

7 4272 9579 91 4272 890

8 4450 1834 37 4450 425

Join result attributes are from both input relations and key values are the same.

There are no missing records with equal keys in input relations, meaning join

works correctly.

Composite Operation: In addition to simple operations, we executed a

composite operation that consists of a select, project and join operation. Also, this

query is executed on two worker sites. Our purpose here is to show that result of

an operation can be used as input for another operation. The result is shown in

Table 4.6:

<project attributes="EmpName,EdCode" targetsite="0" display="t">

 <join type="hash" leftkey="F_EmpId" rightkey="P_EmpId" performsite="1">

 <table site="2">Education</table>

 <select criteria="EmpAgelt50">

 <table site="1">Employee</table>

 </select>

 </join>

</project>

53

Table 4.6: Result of Composite operation

Record# EmpName EdCode

1 1834 425

2 7998 856

Result relation is as expected. This is easier to see by checking Table 4.5 for

tuples with EmpAge<50. 6th and 8th records satisfy this criterion.

4.2 Correlation between Real and Estimated Costs

When the execution times the system estimate using the raw disk cost (2.3) and

raw network cost (2.4) formulas were compared real execution times, it was seen

that the real times were not reflected correctly. In order to tune our formulas, we

have run simple QEPs that isolate the time required to create a relation from a

disk file as well as the time required to create a relation from network stream.

Collected data suggests that network and disk costs are bound tuple count and

tuple size, rather than just relation size. The cost formulas were revised with these

two parameters. Also coefficients derived from experimental data were included,

resulting in new formulas given in (3.2) and (3.3).

To measure the time required to create a relation from disk, we conducted two

experiments. The experimental raw data used in this experiment is given in Table

A.1Error! Reference source not found.. First, we increased tuple count of a

relation while keeping tuple size constant. Figure 4.1 depicts how disk time

changes according to tuple count for relation with tuple size 10 bytes. The real

time measured, the raw disk cost formula’s (2.3) estimation and the modified disk

cost formula’s (3.3) estimation are represented with different lines. It can be seen

that modified disk cost formula reflects real time better. The increase in raw disk

formula is not even visible on this scale. The reason for the difference between

54

raw cost formula’s estimation and real time is that real time is affected by the

relation construction.

Figure 4.1: Change in Disk Read Time with Increasing Tuple Count

Next experiment is similar, however this time tuple count is set to 1000000 as

constant and tuple size is changed. Figure 4.2 shows the results for this

experiment. This chart has a similar pattern. However, we can see that tuple size

does not impact disk cost as much as tuple size.

0

10

20

30

40

50

60

0 100 200 300 400 500

T

i

m

e

(

m

s)

Tuple Count x 1000

Real

Raw Formula (2.3)

Modified Formula (3.3)

55

Figure 4.2: Change in Disk Read Time with Increasing Tuple Size.

We applied the same logic for network experiment. Figure 4.3 shows how the

time required to create a relation from network changes with tuple count. Tuple

size is 10 bytes. Again, we can see modified network formula (3.2) gives closer

results to real time than raw network formula (2.1).

0

50

100

150

200

250

300

350

0 20 40 60 80

T

i

m

e

(

m

s)

Tuple Size

Real

Raw Formula (2.3)

Modified Formula (3.3)

56

Figure 4.3: Change in Network Time with Tuple Count

The last experiment is changing the tuple size while keeping tuple count at

1000000. The results are given in Figure 4.4. It can be seen that tuple size is not

as important as tuple count in network times.

Figure 4.4: Change in Network Time with Tuple Size

0

100

200

300

400

500

600

0 100 200 300 400 500

T

i

m

e

(

m

s)

Tuple Count x 1000

Real

Raw Formula (2.1)

Modified Formula (3.2)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80

T

i

m

e

(

m

s)

Tuple Size

Real

Raw Formula (2.1)

Modified Formula (3.2)

57

Overall, it is clear that tuple counts and sizes must be handled separately for disk

and network time estimation, and there is a need for coefficients for accuracy.

4.3 Comparison of Join Algorithms

In this experiment we compare the real response times of nested-loop, sort-merge

and hash join algorithms. All the joins are performed using initiator site and one

worker site. The same input relations were used for all algorithms. These

relations were connected with PFKey association.

The Cartesian product size of input relations was changed in each run. Table 4.7

shows tested sizes, where A(P_A:10, AName:30) and B(F_A:10, BName:30) are

input relations. The average measured times of 5 runs for join algorithms are

given in Table 4.8. Figure 4.5 is the chart representation. Note that vertical axis in

the chart uses logarithmic scale.

Table 4.7: Input Sizes

Input# |A| |B| |A| x |B|

1 10 10 100

2 100 100 10,000

3 1,000 1,000 1,000,000

4 10,000 10,000 100,000,000

5 100,000 100,000 10,000,000,000

58

Table 4.8: Measured Real Times for Algorithms

Size/Time(ms) Nested-Loop Sort-Merge Hash

100 7 1 5

10,000 11 18 7

1,000,000 641 80 30

100,000,000 58477 5025 203

10,000,000,000 5874204 489758 1524

Figure 4.5: Measured Times for Algorithms

We can roughly say that hash join performs best and nested-loop performs worst

overall. The difference in performance gets clearer with the increase in data size

that needs to be processed. We must note that sort merge could perform better

than hash join but our data is not sorted.

4.4 Effect of Network Bandwidth

We performed experiments to see how simulated response time is affected by

network bandwidth. In this test setup, we run a join with two worker sites, which

0,1
1

10
100

1000
10000

100000
1000000

10000000
100000000

1E+09
1E+10

Real
Time(ms)

|R1|x|R2|

NLJ

SMJ

HJ

59

requires a relation to be transferred to the site where it will be joined locally.

Input relations are Applicant(AppName:10,F_HsId:10, F_UniId:10):1000,

HighSchool(P_HsId:10, HsName:70):10000 and University(P_UniId:10,

UniName:70):10000. The query is as following:

<join type="hash" leftkey="F_HSId" rightkey="P_HSId" performsite="1" targetsite="0">

 <table site="1">Applicant</table>

 <table site="2">HighSchool</table>

</join>

As operation will be performed at site 1, HighSchool relation is transferred from

site 2 to site 1, and the final result is transferred from site 1 to initiator site. To

minimize the impact of this transfer, we increased the bandwidth of the network

line between site 1 and site 0 to a very high value (1000000Mbps). For network

delays we use the default value, 0.009 ms, which is negligible during transfers of

relations this large. We increased the bandwidth between sites 1 and 2 in every

test run. We also run the same query with semi-join flag set to true. The results

are given in Table 4.9. Figure 4.6 reflects these results on logarithmic scale.

Table 4.9: Effect of Bandwidth

Bandwidth (Mbps) Join Sim. Time (ms) Semi-join Sim. Time (ms)

1 6116.74 672.079

10 623.573 79.0917

100 74.2569 19.793

1,000 19.3252 13.8631

10,000 13.8321 13.2803

60

Figure 4.6: Effect of Communication Link Bandwidth

From these results we can see that response time gets better with wider bandwidth

values. However, the decrease in response time is not linear as bandwidth gets

bigger, it loses its position as a bottleneck and other factors such as disk times

and latencies become more determining.

When comparing join with semi-join, we see that semi-join is advantageous over

normal join for this query. However, as bandwidth loses its importance, the

performance difference gets smaller. In this case semi-join can be actually

harmful at some point as requires more processing locally.

4.4.1 Influence on QEP Selection

We made another experiment to observe how network infrastructure can affect

selection of QEPs. For this purpose, we first executed the following QEP in two

different network configurations. Then we changed the perform site of the inner

1

10

100

1000

10000

1 10 100 1000 10000

Simulated
Time(ms)

Bandwidth (Mbs)

Join

Semi Join

61

join and executed again with the same network configurations. Network

parameters and simulated response times are given in Table 4.10.

<join type="hash" leftkey="F_UniId" rightkey="P_UniId" performsite="3" targetsite="0">

 <join type="hash" leftkey="F_HSId" rightkey="P_HSId" performsite="2">

 <table site="1">Applicant</table>

 <table site="2">HighSchool</table>

 </join>

 <table site="3">University</table>

</join>

Table 4.10: Network Parameters

Inner Join Site Bandwidth between

Site1 and Site 3 (Mbps)

Bandwidth between

Site2 and Site 3 (Mbps)

Simulated Response

Time (ms)

1 100 1 82.61

2 100 1 850.37

1 1 100 909.19

2 1 100 23.77

Here we can see that executing the inner join on site 2 can be a good or bad

choice, depending on the network speed between sites. This is because the result

of the inner join must be transferred to site 3 for further operations. We can

conclude that, if the optimizer is comparing QEPs that can execute the same

operation in different sites, it must consider network speeds.

4.5 Bushy QEP Execution

Another experiment we conducted was about bushy execution of joins in a query

plan. In centralized databases, bushy plan trees are avoided as a heuristic.

However in a distributed system, performing parallel operations can be beneficial

in terms of performance.

62

4.5.1 Running The Same QEP Concurrently

In the first experiment, we prepared two join queries that will abstract our results

from unwanted factors as much as possible. All bandwidths are equal between

sites. We have two relations: A(AName:40, F_BId:10):10000 and B(P_BId:10,

BName:40):10000. Our first query is a single-join as given below:

<join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1" targetsite="0">

 <table site="1">A</table>

 <table site="2">B</table>

</join>

In our second query, we replicate the same single-join in different sites. Then

both the original and replicated queries’ results are sent to initiator site. This is

achieved through before mentioned “noop” type join, which only awaits its

operands become available to complete. Our second query is given below. Table

4.11 depicts the average real times for 5 runs of these queries.

<join type="noop" leftkey="F_BId" rightkey="P_BId" performsite="0" targetsite="0">

 <join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1">

 <table site="1">A</table>

 <table site="2">B</table>

 </join>

 <join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="3">

 <table site="3">A</table>

 <table site="4">B</table>

 </join>

</join>

63

Table 4.11: Concurrent QEP Join Time

QEP Real time (ms)

Single-Join 158.4

Bushy-Join 189.4

Even though we perform equivalent single-join operations twice in the bushy

join, we can see that real response time is not doubled. This was our expectation

because the joins are processed in different sites. The small difference between

times can be caused by the extra transfer of A⨝B from site 3 to initiator site.

4.5.2 Left-Deep and Bushy Tree Comparison

In the second experiment, we compare a left deep tree and a bushy tree with

equivalent results. Four relations are used in this setup: A(F_BId:10):10000,

B(P_BId:10,F_CId:10):10000, C(P_CId:10,F_DId:10):10000, D(P_DId:10):1000

All bandwidths are equal between sites. The left-deep QEP we used is as

following:

<join type="hash" leftkey="F_DId" rightkey="P_DId" performsite="1" targetsite="0">

 <join type="sortmerge" leftkey="F_CId" rightkey="P_CId" performsite="1">

<join type="sortmerge" leftkey="F_BId" rightkey="P_BId"

performsite="1">

 <table site="1">A</table>

 <table site="2">B</table>

 </join>

 <table site="3">C</table>

 </join>

 <table site="4">D</table>

</join>

64

Following QEP was used as bushy plan:

<join type="hash" leftkey="F_CId" rightkey="P_CId" performsite="1" targetsite="0

 <join type="sortmerge" leftkey="F_BId" rightkey="P_BId" performsite="1">

 <table site="1">A</table>

 <table site="2">B</table>

 </join>

 <join type="sortmerge" leftkey="F_DId" rightkey="P_DId" performsite="3">

 <table site="3">C</table>

 <table site="4">D</table>

 </join>

</join>

Notice that we chose sort-merge join as join type in this experiment to emphasize

CPU times. The average real times for 5 runs of these QEPs are given in Table

4.12.

Table 4.12: Left-Deep and Bushy Tree Comparison

QEP Real time (ms)

Left-Deep 5330

Bushy 2768

We can see that bushy QEP performs better than left-deep QEP. This is because

instead of site 1 performing all the sort-merge join processing task, the join

between relations C and D is done in site 3 at parallel.

4.6 Performance Evaluation

In this experiment our purpose is to see the relation between real, simulated and

estimated times. It is hard to design good experiments for this purpose, as there

are a lot of parameters that can change the outcome of results. We used relations

65

A(AName:40, F_BId:10) and B(BName:40, P_BId:10):1000 for experiments.

Bandwidth between all the sites was simulated to be 1526 Mbps.

In order to find how changes in data size affect times, we executed a simple

project operation while incrementing the tuple count of relation A. The QEP is as

follows:

<project attributes="*" performsite="1" targetsite="0">

 <table site="1">A</table>

</project>

One of the first things we noticed is that measured real time can vary a lot

between consecutive runs. These variations cause noticeable differences,

especially in operations with small response times. Table 4.13 shows real

response times of 5 consecutive project operations where A has 10000 tuples. To

compensate these variations, we run each test 5 times and use the average value

as real time. On the other hand, simulated and estimated times do not differ

between runs.

Table 4.13: Variations in Real Time

Run# Real Time(ms)

1 89

2 40

3 27

4 25

5 22

Average 40.6

When we executed the operation for different tuple sizes of A, we got the results

given in Table 4.14. It can be said that all the time values increase as A’s tuple

66

count increases. Simulated and estimated times are the same, which is an

expected outcome as project operation’s output size can be estimated exactly.

Table 4.14: Measured Times for Different Tuple Counts

Tuple# of A Real Time(ms) Sim. Time(ms) Est. Time(ms)

1,000 13.4 3.93 3.93

10,000 40.6 21.3022 21.3022

100,000 275.2 195.014 195.014

1,000,000 2058.2 1932.13 1932.13

In addition to this experiment, we run the following operations where A had

100000 tuples:

Select:
<select criteria="ANamegt50000000" performsite="1" targetsite="0">
 <table site="1">A</table>
</select>

Join:

<join type="hash" leftkey="F_BId" rightkey="P_BId" performsite="1" targetsite="0">
 <table site="2">A</table>
 <table site="1">B</table>

</join>

Composite:

<project attributes="AName,BName" targetsite="0">

 <join type="hash" leftkey="P_BId" rightkey="F_BId" performsite="1">
 <table site="2">B</table>
 <select criteria="ANamegt30000000">

 <table site="1">A</table>
 </select>
 </join>

</project>

The results for these operations are given in Table 4.15. We can see that real time

measurement, time simulation and estimation are possible for different kinds of

operations. Also, there is a small difference between simulated and estimated

67

times in select and composite operations. This happens because outcome of select

operation cannot be known exactly. Because we used a PFKey between relations

A and B, join estimation is exact. If they were connected with selectivity,

estimated and simulated join times would also not be exactly the same.

Table 4.15: Measured Times for Different Operations

Operation Real Time(ms) Sim. Time(ms) Est. Time(ms)

Select 222.4 109.938 110.007

Join 677 405.028 405.028

Composite 498.6 161.2 160.81

Overall, it can be seen that the simulated and real times are different. There are a

lot of factors that cause these differences, such as the CPU costs we ignored.

However, there is usually a correlation between simulated and real times. In most

cases, this is enough from the perspective of a query optimizer because it only

needs to know which QEP has lesser cost. Knowing the exact cost is not

important when comparing QEPs as long as the rankings are correct.

4.7 String Comparison and Memory Copy Times

In this experiment we measure the times spent on string comparisons and

memory copies. These operations are frequently performed during joins. String

comparison is done to find if two attribute values match, and memory copy is

done to copy matching tuples to result relation. Measuring these times gives an

idea of CPU times spent on operations.

First, we measured the times for comparing strings with 10 characters with

increasing comparison numbers. Table 4.16 gives average measured times of 3

runs. Only comparison is performed, no other action is taken. Figure 4.7 shows

average times spent on comparisons.

68

Table 4.16: Measured Times for Increasing Comparison Numbers

Comparison # Time(ms)

50,000,000 186

100,000,000 282

150,000,000 423

200,000,000 564

250,000,000 706

Figure 4.7: Time Spent on String Comparisons with Increasing Tuple Count

Next, we measured times to copy 500 byte long tuples for increasing tuple counts.

Table 4.17 gives average memory copy times of 3 runs. In Figure 4.8 the linear

increment in time cost can be seen. Note that given times include the allocation of

destination memory area, as our system allocates the memory for result relation

on runtime.

0

100

200

300

400

500

600

700

800

0 100 200 300

T

i

m

e(

m

s)

Comparison Number x 1,000,000

69

Table 4.17: Measured Times of Memory Copies with Increasing Tuple Counts

Tuple Count Time(ms)

1,000 1

10,000 4.67

100,000 59.67

1,000,000 525.67

Figure 4.8: Time Spent on Memory Copies with Increasing Tuple Count

Both these experiments show that cost of comparisons and memory copies

increase with tuple count. For large operations they become important factors.

This explains why nested-loop join takes considerably more time than sort-merge

and hash joins, as it performs a lot of comparisons.

0

100

200

300

400

500

600

0 200 400 600 800 1.000 1.200

T

i

m

e(

m

s)

Tuple Count x 1000

70

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5 CONCLUSIONS AND FUTURE WORK

In this study we implemented a distributed database query processor. The

processor can execute a given QEP. The generation of dummy relation data for

test purposes is also done by the system. Another capability of the system is

performance evaluation. We measure the real response time for QEP execution.

However, to see the effects of database design clearly, real times are not

dependable. To overcome this problem, we used simulated time which focuses on

disk and network costs during QEP execution. We also estimated the approximate

time a QEP will take without actually executing it. This is useful for comparing

possible plans, which is a task performed by query optimizers.

We performed several experiments with our implemented system. First we

proved data generator and query plan processor produce correct results. Then we

compared join algorithms implemented and saw hash-join performs good overall

in the scope of this study. Later we modified network parameters to see the

effects of different configurations on QEP response times and saw the inverse

ratio between bandwidth and cost. To see how the system handles parallel

execution another experiment was done. The results were as expected. In the next

experiment we tried how real, simulated and estimated times are measured for

different query plans. We saw that that estimated times were very close to

simulated times. Also, real times and simulated times had a correlation. In the last

71

experiment we measured times spent for frequently performed string comparison

and memory copy operations to give an idea of CPU costs.

Our system can be extended in many ways. First of all, our data is synthetic

numerical strings. Most real-world data cannot be represented in this form.

Operation results and performance evaluation is affected by this artificiality. So,

one of the main improvements to our system would be addition of different data

types support.

Lack of indexes on tables is another important factor that damages realism.

Existence of indexes enlarges the search space for query optimizers, and selecting

different indexes with different join algorithms can dramatically change QEP

cost. In the future indexes can be added to our system, which would be a valuable

feature that reflects commercial database costs more accurately.

In this study we assume CPU costs and memory consumption are negligible.

However, these are important factors to determine success of a QEP. Considering

them is another possible future improvement.

Despite these short-comings, our system is a good environment for experimental

query optimizers. QEP files serve as a well-defined interface for users or other

software. Most settings used by the system are configurable. The architecture is

stable and easily expandable.

72

REFERENCES

[Bernstein(1981)] P. A. Bernstein, D. Chiu. “Using Semi-Joins to Solve

Relational Queries”. Journal of ACM, Vol. 28, Issue 1, January 1981, pp. 25-40.

[Banerjee(1993)] S. Banerjee , V. O. K. Li , C. Wang. “Distributed

Database Systems in High Speed Wide-Area Networks”.

[Codd (1970)] E.F. Codd, “A Relational Model of Data for Large Shared

Data Banks”, Communications of the ACM, Vol. 13, June 1970, pp. 377-387.

 [Getoor(2001)] L. Getoor, B. Taskar, D. Koller. “Selectivity Estimation

using Probabilistic Models”. ACM SIGMOD Record, Vol. 30 No. 2, 2001.

[Ioannidis(1996)] Y. E. Ioannidis, “Query Optimization”, Citeseerx,

doi=10.1.1.24.4154.

[Kang(1987)] H. Kang, N. Roussopoulos. “Using 2-way Semijoins in

Distributed Query Processing”. Proceedings of the Third International

Conference on Data Engineering, Washington, DC, USA, 1987.

73

[Kossmann(2000)] D. Kossmann, K. Stocker. “Iterative dynamic

programming: a new class of query optimization algorithms”. ACM Transactions

on Database Systems (TODS), Vol. 25, Issue 1, March 2000, pp. 43 - 82.

[Mannio(1988)] M. V. Mannio, P. Chu, T. Sager. “Statistical Profile

Estimation in Database Systems”. ACM Computing Surveys, Vol. 20 No. 3,

1988.

[metu-hpc(2012)] High Performance Computing,

http://www.ceng.metu.edu.tr/hpc/index, last visited on April 2012.

[Mousavi(2011)] H. Mousavi, C. Zaniolo. “Fast and Accurate Computation

of Equi-Depth Histograms over Data Streams”. Proceedings of the 14th

International Conference on Extending Database Technology, Uppsala, Sweden,

March 22-24, 2011.

[mpi-forum (2009)] Message Passing Interface Forum, MPI: A Message-

Passing Interface Standard Version 2.2, September 2009, http://www.mpi-

forum.org/docs/mpi-2.2/mpi22-report.pdf, last visited on April 2012.

[mtrand(2012)] C++ Mersenne Twister Pseudo-Random Number Generator,

http://www.bedaux.net/mtrand/, last visited on April 2012.

[Onder (2010)] I. S. Onder, “Execution of Distributed Database Queries on

A HPC System”, METU, 2010.

74

[Ozsu (2011)] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems (3rd edition), Prentice-Hall, 2011.

[pugixml(2012)] pugixml, http://code.google.com/p/pugixml/, last visited

on April 2012.

[Ramakrishnan (2002)] Ragnu Ramakrishnan and Johannes Gehrke,

Database Management Systems(2nd Edition), 2002.

[Selinger (1979)] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.

Price, “Access path Selection in a Relational Database Management System”. In

Proc. of the ACM SIGMOD Conf. on Management of Data, Boston, USA, May

1979, pp. 23–34.

[Sevinc(2011)] E. Sevinc, A. Cosar. “An Evolutionary Genetic Algorithm

for Optimization of Distributed Database Queries”. The Computer Journal, Vol.

54 No. 5, 2011.

 [treehh(2012)] tree.hh: an STL-like C++ tree class, http://tree.phi-sci.com/,

last visited on April 2012.

75

APPENDICES

APPENDIX A

A. MEASURED DISK AND NETWORK TIMES

Table A.1: Measured Disk and Network Times (ms)

Tuple

Count
Size Total Size

Disk

(Real)

Network

(Real)

Disk

(2.3)

Network

(2.1)

Disk

(3.3)

Network

(3.2)

100000 10 1000000 14 178 13.2 5.0 15.5 138.0

150000 10 1500000 21 245 13.2 7.5 22.2 207.0

200000 10 2000000 27 309 13.2 10.0 29.0 276.0

250000 10 2500000 35 388 13.3 12.5 35.7 345.0

300000 10 3000000 40 386 13.3 15.0 42.5 414.0

350000 10 3500000 49 492 13.3 17.5 49.2 483.1

400000 10 4000000 55 542 13.3 20.0 56.0 552.1

1000000 10 10000000 145 1164 13.4 50.0 137.0 1380.1

1000000 20 20000000 154 1247 13.7 100.0 157.0 1460.1

1000000 30 30000000 203 1323 13.9 150.0 177.0 1540.1

1000000 40 40000000 217 1491 14.2 200.0 197.0 1620.1

1000000 50 50000000 256 1456 14.4 250.0 217.0 1700.1

1000000 60 60000000 285 1403 14.6 300.0 237.0 1780.1

1000000 70 70000000 288 1482 14.9 350.0 257.0 1860.1

