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Date:



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HASAN HÜSEYİN TOPÇU
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ABSTRACT

HUMAN BODY PART DETECTION AND MULTI-HUMAN TRACKING IN
SURVEILLANCE VIDEOS

Topçu, Hasan Hüseyin

M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Nihan Kesim Çiçekli

Co-Supervisor : Assist. Prof. İlkay Ulusoy

May 2012, 59 pages

With the recent developments in Computer Vision and Pattern Recognition, surveillance ap-

plications are equipped with the capabilities of event/activity understanding and interpreta-

tion which usually require recognizing humans in real world scenes. Real world scenes such

as airports, streets and train stations are complex because they involve many people, com-

plicated occlusions and cluttered backgrounds. Although complex real world scenes exist,

human detectors have the capability to locate pedestrians accurately even in complex scenes

and visual trackers have the capability to track targets in cluttered environments. The integra-

tion of visual object detection and tracking, which are the fundamental features of available

surveillance applications, is one of the solutions for multi-human tracking problem in crowded

scenes which is studied in this thesis.

In this thesis, human body part detectors, which are capable of detecting human heads and hu-

man upper body parts, are trained with Support Vector Machines (SVM) by using Histogram

of Oriented Gradients (HOG), which is one of the state-of-the-art descriptor for human de-

tection. The training process is elaborated by investigating the effects of the parameters of

the HOG descriptor. The human heads and upper body parts are searched in the region of
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interests (ROI) computed by detecting motion. In addition, these human body part detectors

are integrated with a multi-human tracker which solves the data association problem with the

Multi Scan Markov Chain Monte Carlo Data Association (MCMCDA) algorithm. Associated

measurements of human upper body part locations are used for state correction for each track.

State estimation is done through Kalman Filter. The performance of detectors are evaluated

using MIT Pedestrian dataset and INRIA Human dataset.

Keywords: Human Head Detection, Human Upper Body Detection, Multi-Human Tracking
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ÖZ

GÖZETLEME VİDEOLARINDA İNSAN VÜCUT PARÇASI BULMA VE ÇOKLU
İNSAN TAKİBİ

Topçu, Hasan Hüseyin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nihan Kesim Çiçekli

Ortak Tez Yöneticisi : Yrd. Doç. Dr. İlkay Ulusoy

Mayıs 2012, 59 sayfa

Bilgisayarlı görme ve örüntü tanıma alanlarındaki son gelişmeler ile gözetleme uygulamaları

insanın sahnede tanınmasını da gerektiren olay/aktivite anlama ve yorumlama yetenekleriyle

donatılmaya başlandı. Havaalanları, caddeler ve tren istasyonları gibi gerçek dünya sah-

neleri içerisinde çok fazla insan bulundurması ve insanların örtüşmesi sebebiyle karmaşıktır.

Gerçek dünya sahnelerinin karmaşıklığına rağmen, insan bulucular karmaşık sahnelerde bile

doğru şekilde insanları konumlandırabiliyor, görsel takip ediciler gürültülü ortamlarda hede-

fler izleyebiliyorlar. Bu tezde de üzerinde durulan, gözetleme uygulamalarının temelini oluştu-

ran görsel nesne bulma ve izleyicilerin birleştirilmesi kalabalık sahnelerde çoklu insan takibi

için kullanılan çözümlerden birisidir.

Bu tezde, görsel insan başı ve vücut üst kısmı tanıma yeteneğine sahip olan insan vücut

parçası bulma detektörleri Destek Vektör Makinesi (DVM) yardımıyla eğitilmiştir. Özellik

tanımlayıcı olarak, insan tanınmasında en başarılı özellik tanımlayıcılarından biri olan HOG

kullanılmıştır. Eğitim süreci HOG parametrelerinin etkisi açıklanarak detaylandırılmıştır.

İnsan başları ve üst vücutları hareketi tespiti yardımıyla bulunan alanlarda aranır. Bunun

dışında, vücut parçası bulma detektörü, veri eşleştirme problemini Markov Zinciri Monte
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Carlo Veri Eşleştirme algoritmasıyla çözen çoklu-insan takip edici ile entegre edilmiştir. Eşleş-

tirilmiş insan üst vücut konum ölçümleri her bir iz için durum düzeltmesinde kullanılmıştır.

Durum tahmini Kalman Filtresi ile yapılmıştır. Detektörlerin performansı MIT yaya veriseti

ve INRIA insan veriseti kullanılarak değerlendirilmiştir.

Anahtar Kelimeler: İnsan Başı Bulma, İnsan Üst Parçası Bulma, Çoklu İnsan Takibi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computer Vision is one of the fields that has an impressive impact on the daily life and mil-

itary field as well. Streets, airports, train stations, robots and satellites are equipped with

various types of cameras. According to [1], the number of cameras in England is approx-

imately 4 millions in 2005. While some of these cameras have the capability of capturing

high definition image from distances, some others can capture thermal images or interpret

what they see called Smart Cameras[2] defining the ultimate goal of the smart cameras as

mimicing the human eyes and brain. This challenging purpose has attracted significant inter-

est from academic community as well as the industry and governments. As an example, The

Defense Advanced Research Projects Agency (DARPA) has initiated a program called Mind’s

Eye[3] which addresses the problem of absence of visual intelligence capability in unmanned

systems.

Visual Surveillance is the most prominent field of Computer Vision. This field has application

areas such as traffic monitoring, homeland security, automotive safety and monitoring a scene

for detecting abnormal events. Object detection, recognition and tracking are the fundamental

features of surveillance systems. Surveillance systems in daily life generally include vehicles

and humans. These systems are listed below[4]:

• Access control in special areas

• Person specific identification in certain scenes

• Crowd flux statistics and congestion analysis
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• Anomaly detection and alarming

• Interactive surveillance with multiple cameras

The focus of this thesis is human detection and tracking of multiple humans in surveillance

videos due to their popularity in academic community and industry. Intelligent visual surveil-

lance provides automated object recognition, tracking of objects, event/activity understand-

ing and indexing/retrieval of visual events compared to conventional visual surveillance [5].

The main goal of this thesis has been producing some beneficial output to be used in an

event/activity understanding system. Another motivation is to assist semantic annotation of

videos with a robust object/human detection tool.

1.2 Scope of the Thesis

In this thesis, it is aimed to develop a system that has the capability of detecting humans

and tracking multiple humans in surveillance videos without a real time requirement. Ac-

tivity recognition, which is defined as a “complex sequence of actions performed by several

humans” [6], requires discriminating the occluded humans in the scene. Therefore a robust

human detection mechanism is one of the requirements of this thesis. Although the human

detection has been studied for years, it is still a challenging problem due to appearance varia-

tions, shape variations and viewpoint variations. The variability is regarded as a curse of the

Computer Vision by Freeman [7]. Addressing the variability problem is within the scope of

this thesis.

Visual surveillance applications should be able to track multiple objects, handling the en-

terance of objects into the scene and exitting of objects from the scene. Therefore another

requirement of the thesis is achiving the multi-human tracking for unknown number of hu-

mans.

As a result, the scope of this thesis is defined as detecting humans in the scene handling

appearance variations and tracking multiple humans handling the dynamic nature of the scene

such as appeareance and disapperance of humans.
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1.3 Our Approach

In this thesis, the integration [8, 9] of human detection and tracking is adopted for the multi-

human tracking problem. People detectors can locate people even in complex scenes [8, 10,

11, 12, 13]. Tracking methods have the ability to find a particular human in image sequences

[14], but are severely suffered from crowded scenes [8]. Combining both advantages of human

detection and tracking in a single framework is regarded as a promising research direction by

Schiele et al [8, 9]. The motion information, which is used in general object tracking problems

[14], is used only for reducing the computational overhead of human detection in a scene.

Our overall system has the following parts:

• Firstly, the region of interests (ROIs) that can have potential targets are computed using

the motion information.

• Secondly, the human head locations and human upper body locations are detected by

the trained detector in the ROIs.

• Thirdly, the detection locations (called measurements) are associated to current tracks

by the MCMCDA algorithm.

• Finally, the state of each track are updated (corrected) by using associated measure-

ments with Kalman Filter algorithm.

1.4 Contributions

The main contributions of this thesis are as follows:

• The human head and upper body training procedure is examined in detail. The effects

of the parameters of the HOG descriptor are investigated for human head training and

human upper body training.

• Multi-Scan version of the MCMCDA algorithm [15] is applied to a Computer Vision

problem which has already presented for general tracking problems in [15].

• Instead of traditional solutions to object tracking, integration of human detection and

multi-human tracking is used [8, 9] which is best applicable to crowded scenes.

3



1.5 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents related work and gives background methods for human detection, human

tracking and data association techniques for multi-human tracking.

Chapter 3, explains the pre-processing steps for detecting the regions that have potential tar-

gets.

In Chapter 4, the training steps for visual human head detection and human upper body de-

tection are presented. The effects of the HOG descriptor parameters are examined in detail in

this chapter. Also, the results are given in the rest of the Chapter 4.

In Chapter 5, Multi-Scan MCMCDA (Markov Chain Monte Carlo Data Association) algoritm

is presented as a data association technique. The state-space model used for multi-human

tracking and Kalman Filter algorithm are introduced.

The summary of the thesis and future work are explained in Chapter 6.
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CHAPTER 2

RELATED WORK

The detection and tracking of people are the main tasks in visual surveillance [5, 25] and high

level human motion analysis is highly dependent on the accuracy of these main tasks [25].

Visual object detection and tracking have been both active research topics for many years due

to the growing needs of the society. Surveillance cameras spread over the streets, airports,

train stations, etc. in order to monitor the actions and activities of humans, vehicles, and

groups of people. While the surveillance equipments are increasing, the need for automated

human detection and tracking is being inevitable for the surveillance applications.

There is an extensive literature on the object detection and tracking. In spite of this immense

literature, an advanced surveillance application may not still detect a human or track a human

for a long period especially in an uncontrolled environment. The complexities coming from

the nature of the problem are listed below [7, 14]:

• Nonrigid or articulated objects

• Scene illumination variations

• Partial and full object occlusions

• Complex object motion

• View Variations

Freeman exemplifies the viewing condition variation for the face recognition problem [7].

Computer Vision systems can detect the frontal view faces under good conditions whereas the

recognition rates drop significantly for non-frontal faces. Therefore computer vision solves
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these problems by imposing the constraints on the motion, appearance, viewing condition or

uses priori information such as the number of objects, size or shape of the objects [14].

Schiele et al. [8] classifies the visual people detection approaches into two major types:

Sliding-window methods and part-based human body models. Sliding window methods scan

the input images at each location and scale, classifying each window. Part based models, on

the other hand, generate hyphothesis by evidence aggregation. The work by Schiele et al.

[8] experimentally shows that part-based models outperform sliding window based models in

the presence of occlusion and articulations however part-based approaches have a drawback

which is the need of a high-resolution person existence in the images [8, 10]. [10] as a part-

based model solves the object detection problem by developing a new multiscale deformable

model. This detection system is modeled by parts of the object which are all trained in a

discriminative training procedure. This object detection system achieves the best results in

ten out of the twenty categories in PASCAL 2007 [10].

The literature includes a huge number of papers about visual tracking systems. An efficient

feature-based tracking algorithm which searches and matches the candidate scale-invariant

interest points in local neighbourhoods inside the 3D image pyramids is presented in [16]. A

tracking algorithm using Scale Invariant Feature Transform (SIFT) based mean shift algorithm

for object tracking by Zhou et al in [17]. Mean shift algorithm is used to conduct similarity

search via color histograms for SIFT features over the region of interests. Liu et al. use not

only color information but also motion information for modelling the environment. Liu et al.

[18] integrates multiple cues into color-based Mean-Shift algorithm which is a fast algorithm

for color blobs.

Tracking problem can be seen as a state estimation problem of dynamic systems. Ricon et al.

[19] concentrates on the human legs benefiting from biomechanics constraint . The tracking

is achieved by using a set of particle filters, and the bounding box of a person is tracked using

Kalman Filter algorithm. A six-stick skeleton model of a pedestrian as a state space model is

used in [20] and tracking is achieved by using particle filters. Tung et al. [21] uses an adaptive

color based particle filter coupled with optical flow estimations for tracking. Lucas-Kanade

Optical Flow algorithm is used by [22] for tracking human joints (head, torso and joints) and

the joint movements are modeled with an articulate human stick model. Needham et al. [23]

developed a multiple object tracking system using CONDENSATION algorithm. Each player
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being tracked is independently fitted to a model, and the sampling probability for the group

of samples is calculated as a function of the fitness score of each player.

[9, 24, 29] use tracking-by-detection technique that first detects the object of interests and

tracks the targets. In this perspective, the performance of tracker is highly dependent to accu-

racy of the object detectors. Schiele et al. [8] examines the visual people detection approaches

and compares their accuracies by re-implementing them.

The state-of-the-art techniques in the literature with their advantages and disadvantages are

examined in this thesis. The background methods consist of four main parts:

• Motion detection

• Human detection

• Object tracking and

• Data association techniques for multi-target tracking.

2.1 Motion Detection

Motion is a valuable information for video processing. Hence, motion segmentation is gen-

erally used as a powerful preprocessing step to detect regions that can have potential targets

in order to provide a focus of attention for later processing such as object recognition, track-

ing or action/activity understanding. The existing motion detection methods can be divided

into three main categories; which are Temporal Differencing, Background Substraction and

Optical Flow [5].

2.1.1 Temporal Differencing

Temporal differencing is a temporal information based approach for motion detection. This

method classifies each pixels of the current frame as either background or foreground by first

differencing the intensity values of each pixels of consecutive frames and then thresholding

the resulting values. The difference values greater than a chosen threshold value are classified

as foreground object where as the difference values smaller than the threshold values are
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classified as background. This method is very simple and fast, however, it is very sensitive to

the threshold value.

2.1.2 Background Substraction

In background substraction algorithms, the foreground objects are extracted using a reference

image, called the background model. The simplest one of background algorithms is detect-

ing moving regions in an image by taking the difference between the current image and the

reference static background model. However it is very sensitive to illumination variations.

Recent backgorund substraction algorithms [5] focused on adaptive background models which

eliminate the effects of illimunation variations and repetitive motion from clutter such as mo-

tion of leaves in a tree. Stauffer and Grimson [26] model each background pixel by multiple

gaussian distribution, called Mixture of Gaussian (MoG). In this background model, if the

current pixel value is matched with the Gaussian model, then the current pixel is decided

as the background and the background model is updated with the current pixel value. An

example of foreground-background segmentation using MoG is depicted in Figure 2.1.

(a) Original Image (b) Foreground Objects

Figure 2.1: Foreground extraction with Mixture of Gaussian Model

In this thesis, moving objects are detected using the Mixture of Gaussian model. After

foreground-background segmentaion, some morphological operations and connected com-

ponent analysis are applied to image in order to remove noises and for extracting foreground

objects to be easily differentiated. This preprocessing phase is explained in detail in Chapter

3.
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2.1.3 Optical Flow

Optical Flow uses characteristics of flow vectors of moving objects over time to detect moving

regions in an image sequence [27]. One of the drawbacks of the optical flow method is

that it extracts coherent motion under the assumption of brightness constancy and spatial

smoothness.

2.2 Human Detection

Human detection is the task of distinguishing people from the background. An impressive

progress has been accomplished in visual people detection techniques over the last few years

although this problem has a challenging nature due to articulation, illumination variations,

viewpoint variations etc. [8]. Schiele et al. The state-of-the art techniques for the sliding

window approach for people detection are compared by Schiele et al. [8] and by Dalal et al.

[11] and they are briefly described in the following subsections:

2.2.1 Haar Wavelets

Papageorgiou and Poggion [12] first proposed a trainable object detection system by using

Haar Wavelets. The object class is represented in terms of local, oriented, multscale dif-

ferences between adjacent regions which is computable by a Haar Wavelet transform which

transforms the images from pixel space to wavelet coefficients. A large set of positive and

negative object examples are trained by support vector machines to model the object class.

The object classes for detections are faces, people and cars. For people class, three different

types of wavelets (vertical, horizontal and diagonal) are used at the scale of 16 and 32 pixel.

The visual boundary information is identified by the wavelets which are depicted in Figure

2.2. As depicted in this figure, the sides of the humans are represented by vertical wavelets,

the head and the shoulders are represented by horizontal wavelets and the heads, feet, head

and shoulders are represented by diagonal wavelets.
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Figure 2.2: Visual boundary information of people identified by wavelets [12]

2.2.2 Histogram of Oriented Gradients

Histogram of gradients (HOG), proposed by Dalal and Triggs [11], has the idea that in the

absence of precise knowledge of gradient or edge position, the local object appearance can be

characterized better by the distribution of local intensity gradients or edge directions. HOG

object detection method has a feature extraction chain resulting with a person / non-person

classification. First the input image is normalized with a gamma correction, then the gradi-

ents are computed with an edge detector, then edge orientation histograms are formed (8x8

pixels) based on the orientation of the gradients. This orientation histograms are block nor-

malized and the final vector which is formed by all normalized block histograms is used for

person/non-person classification by using support vector machines (SVM). The HOG chain is

depicted in Figure 2.3. Schiele et al. [8] and Dalal et al. [11] experimentally show that HOG

method outperforms existing feature descriptors such as SIFT and Shape Contexts.

2.2.3 Shape Context

Shape Context has been originally proposed [28] for shape matching and object recognition.

This approach uses a set of points sampled from the contour on the object and each of these

points is associated with shape context descriptor which describes the arrangement of the

rest of the shape with respect to that point. The shape context desriptor is invariant to shape

deformations.

Leibe et al. [29] use shape context descriptor in Implicit Shape Model (ISM) framework for
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Figure 2.3: Silhoutte contours (the head, ahoulders and feet) are the cues [11]. (a) The average
gradient image (b) Maximum positive SVM weight for each ”pixel” (c) Likewise for negative
SVM weights (d) A test image (e) its computed R-HOG descriptor

pedestrian detection. The shape of object is extracted with a Canny edge detector. For a point

P on the shape, a histogram is computed for the relative coordinates of the remaining points.

This histogram is called shape context of P.

[29], [11] and [12] propose descriptors for human and pedestrian detections. In recent years,

however, there is a tendency to find human body parts such as human heads[24] or upper

body of humans [30] instead of finding the whole human silhouttes because the probability of

occulusions for heads or upper body parts is less than the whole body [24] in crowded scenes.

2.3 Tracking

Tracking is the process of associating the detected object(s) throughout the video frames.

Activity understanding and image interpretation, which are the processes of high level infor-

mation extraction, are dependent on the performance of the tracking process. Tracking of

objects is difficult due to complex object motion, partial/full occlusion of objects, scene illu-

mination variations and noise in the images [14]. Tracking methods are classified into three

major types [5, 14]: Point Tracking, Kernel Tracking and Contour Tracking.
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2.3.1 Point Tracking

In point tracking the object is represented with points (Figure 2.4 (a)). The point representa-

tion is robust to the changes of rotation, scale and afine transformation[5]. In this method an

external mechanism is required for object detection. The point correspondance problem exists

due to misdetections and this problem can be solved with deterministic methods or statistical

methods. Deterministic methods solve the correspondance problem constraining proximity,

maximum velocity, and rigidity of object to be tracked. On the other hand, statistical methods

use state-space representation of object including position, velocity, size and acceleration. In

these methods, the pose estimation is usually done through Kalman Filter or Particle Filter

[5].

2.3.2 Kernel Tracking

Kernel tracking is based on the computation of object motion where the object is represented

by a geometrical region such as rectangular, ellipsodial or circular region (Figure 2.4 (b)).

This tracking method is divided into two subcategories naming template model and appear-

ance model [14, 5]. Template models are based on matching the object representation using

similarity metrics [5] such as sum of squared differences (SSD), normalized crossed correla-

tion and Battacharya coefficient. Optical Flow method is a popular kernel tracking method.

On the other hand, multi view appearance model based kernel tracking uses an offline trained

learning machine to overcome the appearance of object from different views[14].

2.3.3 Silhoutte Tracking

Objects generally have complex shapes rather than simple geometric shapes so silhoutte track-

ers extract the silhoutte of objects to be tracked and find the object region in each frame by

using the object model generated from the previous frames. Silhoutte tracking methods are

classified into two subcategories : shape matching and contour tracking. Shape matching

methods are similar to template matching methods where an object silhoutte is searched in

the current frame by using a similarity measurement. On the other hand, Contour tracking

methods represent the object by its contour (Figure 2.4 (c), (d)) and find the object by itera-

tively evolving the contour in consecutive frames [14].
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Silhoutte tracking methods has the advantage of handling a large variety of object shapes

compared to kernel tracking methods. Another advantage of silhoutte tracking is the capabil-

ity for dealing object split and merge for action understanding applications [14]. On the other

hand, the tracking methods such as silhoutte tracking and kernel tracking are severely chal-

lenged by real-world scenes [9]. Real world scenes such as airports, streets and train stations

are complex because they involve multiple people, complicated occlusions and backgrounds.

Figure 2.4: Different Tracking approaches [14] (a) Point Tracking (b) Kernel Tracking (c,d)
Contour Tracking

2.4 Data Association Approaches for Multi-target Tracking

In multiple object tracking, the measurements need to be associated with the objects to be

tracked as an additional task compared to single object tracking. This problem is called Data

Association or Correspondence problem, depicted in Figure 2.5 , which needs to be solved

before the measurements are applied to the filters like Kalman Filter or Particle Filter [14].

In order to tackle the correspondance problem [14], the simplest way is using the nearerst

neighbour method, however it fails if the objects are close to each other. Multiple Hyphothesis

Tracking (MHT) [31], Joint Probability Data Association Filter (JPDAF) [32] and Markov

Chain Monte Carlo Data Association (MCMCDA) [15] techniques are widely used for data

association problem which briefly are described in the following subsections:

2.4.1 Multiple Hyphothesis Tracking

The Multiple Hyphothesis Tracking (MHT) technique makes decision over multiple frames by

deferring the correspondence decision [31]. The decision for forming a new track or remov-

ing an existing track is postponed until enough measurements are collected. Since multiple

hypotheses are maintained at each frame for each object , the hypotheses grow exponentially

over time and this results in an computational complexity. One of the advantages of the MHT
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Figure 2.5: Which observations (measurements) belong to which track?

algorithm is the way it handles new tracks for objects entering the scene [14] which is suitable

for surveillance applications.

2.4.2 Joint Probabilistic Data Association Filter

Joint Probabilistic Data Association Filter (JPDAF) algorithm is an extension of Probabilis-

tic Data Association Filter algorithm which calculates the association probabilities for each

validated measurement [32] at each time step by enumerating all possible associations in-

stead of finding the best association between measurements and tracks. JPDAF uses only the

measurements in the validation gate. Figure 2.6 shows two validation regions. The states of

the objects are estimated by combining the measurement-to-track association probabilitiesB jk

where B jk is the probability that jth measurement extends the kth track . JPDAF algorithm can

handle the association of only fixed number of objects so it is not capable of handling new

objects entering the scene[14]. On the other hand, JPDA has proved very effective in cluttered

environments[15].

2.4.3 Markov Chain Monte Carlo Data Association

Markov Chain Monte Carlo Data Association (MCMCDA) algorithm, as the name suggests,

uses Markov Chain Monte Carlo (MCMC) sampling instead of enumerating all possible as-

sociations. MCMC was first used to solve data association problem for a multi-camera traffic

surveillance application containing hundreds of vehicles [33]. [15] introduces multi scan

MCMCDA algorithm incorporating missing measurements, false alarms and handling vary-

ing tracks with real-time performance. [24] presents a multi-target tracking system which is
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Figure 2.6: The two elliptical validation regions for two targets [32]

based on MCMCDA data association algorithm.

In conclusion, there are lots of techniques for both object detection and multi-object tracking

in the literature. The smart surveillance applications need to recognize the object category

in order to extract higher level information from the detections and tracking results which is

called action/activity/ behaviour understanding in the literature [6]. In this thesis, we concen-

trate specifically on humans rather than objects as a general category and their motions.

The overall architecture is depicted in Figure 2.7. First, the background is modeled using Mix-

ture of Gaussians method and region of interests are computed by foreground segmentation

after applying shadow removal. This pre-processing step is used in many vision applications

for better post-processing [14]. When a new frame is available, the humans are extracted

by detecting their heads or upper bodies using self-trained detectors using HOG descriptors.

The HOG descriptor is chosen for human detection since it gives the best results compared

to other descriptors [8, 11]. The locations of the detections are represented by points due to

its simplicty in crowded scenes [14] and they are associated with the tracks by using Markov

Chain Monte Carlo Data Association algorithm (MCMCDA). Although there is no real-time

requirement for this thesis, the MCMCDA is used for the data association problem for a pos-

sible need of real-time perpormance [15]. Finally, all detected humans are tracked with the

Kalman Filter which is extensively used in vision community in order to track targets repre-

sented by points in state space [14].
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Figure 2.7: The overall architecture for multi-human tracking

The implemented system has an iterative process. When a new frame is fetched from the

input video, a pre-processing step is applied. After the head/upper body detections, measure-

ments are associated to each track and tracks are corrected. The main logic of the system

is maintaining the state of each track. The number of the tracks is dynamically handled by

MCMCDA. This process continues until all frames run out.
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CHAPTER 3

MOTION DETECTION

The detection of moving objects in the scene is the first step of surveillance applications

[14]. The performance of the pre-processing step directly affects the performance of the

overall architecture since the human head detection and upper body detection steps are highly

dependent on this step. The foreground is segmented by modelling the background pixels

using Mixture of Gaussians (MoG) technique.

When a new video frame is available, the foreground objects are extracted by MoG. The noises

are removed by applying some morphological operations. The region of interests (ROIs)

for detecting human heads/upper bodies are extracted by applying the connected component

analysis method in order to reduce the time for detections by focusing only these ROIs. The

pre-processing step is depicted in Figure 3.1.

Figure 3.1: The pre-processing step of the overall architecture
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3.1 Background Modeling

In this thesis, the foreground objects are extracted by using Mixture of Gaussians (MoG)

method. The MoG proposed by Stauffer and Grimson [26] models every pixel in the image

with a mixture of Gaussian distributions. The recent history of intensity value of each pixel

X1, ..., Xt is modeled by a mixture of K Gaussians. The probability of observing the current

pixel value is

P(Xt) =

K∑
i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (3.1)

where the number of distributions are represented by K, weight associated to the ith Gaussian

at time t is represented by ωi,t, the mean and the covariance matrix of the ith Gaussian at time

t are represented by µi,t and Σi,t respectively. η is the multivariate Gaussian distribution whose

probability density function is given in equation (3.2).

η(Xt, µ,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2 (Xt−µ)T Σ−1(Xt−µ) (3.2)

The number of Gaussian distribution, K, is proposed to be 3 to 5 by Stauffer and Grimson [26].

[26] assumes independent variances for computational reasons. Therefore the covariance

matrix is in the form:

Σi,t = σ2
i,tI (3.3)

The parameters for gaussian distributions ωi,t, µi,t and Σi,t are initialized by the K-means

algorithm for real time requirements [26].

When a new frame is captured, a match test is made for each pixel. If a match is found with

one of the K Gaussians, then the pixel is classified as a background pixel, otherwise the pixel

is classified as a foreground pixel. The match test for a pixel is made by using the Mahalanobis

distance

√
(Xt+1 − µi,t)T Σ−1(Xt+1 − µi,t) < kσi,t (3.4)
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where k is a constant threshold equal to 2.5 [26]. After the match test, if a match is found

with one of the K Gaussians, then the parameters ωi,t+1, µi,t+1 and Σi,t+1 are updated for the

matched components and only ωi,t+1 is updated for unmatched components. If a match is not

found with one of the K Gaussians, the least probable distribution is replaced with a new one

with its new parameters.

An example modelling is depicted in Figure 3.2. This figure shows the shadows with gray

color.

Figure 3.2: Foreground-Background image with shadow

The shadows are removed for more precise region of interests. Smaller region of interests

provides less false alarms for detection. The scene with shadow removal is depicted in Figure

3.3.

3.2 Morphological Operations

The next pre-processing step is the application of Morphological operations. Morphology is a

set of image processing operations that process images based on shapes. The set of operations

are generally used for removing noises in a binary image before a connected component

labeling algorithm is applied. The inputs for morphological operations are the input image
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Figure 3.3: Foreground-Background image without shadow

and the structuring element (also called kernel) and the output is an output image of the same

size. The structuring elements represents a shape such as rectangular or circular shapes.

The structuring element is shifted through the input image in such a manner that the center

pixel of the mask is matched with each pixel location of the input image. This is depicted in

Figure 3.4 with a sharpening structuring element.

Figure 3.4: Convolution of the input image [34]

The basic morphological operations are the erosion and dilation operations which are gener-

ally used for removing noise and isolating individual elements. The combination of erosion
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and dilation operations are called openning and closing operations. The erosion and dilation

operations are explaind in the following subsections.

3.2.1 Erosion

Erosion completely removes objects smaller than the structuring element and shrinks greater

than structuring elements for binary images. While structuring element is shifted over the

binary image, if the structuring element is the same as region in the input image, then the

pixel in the output image becomes binary 1-pixel, otherwise becomes binary 0-pixel. The

structuring element for erosion operation used in this thesis is given in (3.5).

S EErosion =


0 1 0

1 1 1

0 1 0

 (3.5)

3.2.2 Dilation

Dilation adds pixels to the boundaries of objects in an image. While structuring element is

shifted over the binary image, if the center of structuring element touches a binary 1-pixel,

the entire structuring element is logically ”‘OR”’ed with output image whose all pixels are

initialized to a binary 0-pixel. The structuring element for dilation operation used in this thesis

is given in (3.6).

S EDilation =


1 1 1

1 1 1

1 1 1

 (3.6)

3.3 Connected Component Analysis

Connected component analysis is the labeling operation in which the value of each foreground

pixel is labeled with its component label and used for detecting the connected regions. The

connected components of Figure 3.2 are depicted in Figure 3.5 and the connected components
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of Figure 3.3 are depicted in Figure 3.6.

Figure 3.5: The connected components with shadow

Figure 3.6: The connected components without shadow

After connected componets are labeled, region of interests (ROIs) are generated using the

boundaries of components by additionaly adding margins for two axes. These ROIs are used

for human body part detection with a detector trained in Chapter 4. They are depicted in

Figure 3.7 without shadow removal and Figure 3.8 with shadow removal.
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Figure 3.7: The ROIs generated without applying shadow removal

Figure 3.8: The ROIs generated with applying shadow removal

Figure 3.8 involves more precise region of interests compared to Figure 3.7. More precison

provides less false alarms and less computational time. However false shadow detections can

cause losing regions of interests for further processing. While Figure 3.7 has 3 ROIs, Figure

3.8 has 2 ROIs. The effects of the shadow removal will be discussed in Chapter 4.
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CHAPTER 4

HUMAN BODY PART DETECTION

Real world scenes such as airports, streets and train stations are complex because they involve

many people, complicated occlusions and cluttered backgrounds. Although complex real

world scenes exist, human detectors are able to locate pedestrians with recent developments

in computer vision. In Chapter 2, the human detectors were briefly described. An object

detection mechanism is required for every tracking method. The performance of the object

detector will directly affect the performance of object tracker.

[8] and [9] claim that combining detection and tracking is a promising direction for crowded

real world scenes. [24] uses human head detections for tracking and [30] uses human upper

body part detections for tracking and action understanding.

In this chapter, first the HOG descriptor proposed by Dalal and Triggs [11] is explained. Then,

the experimental work for human head detections and upper body detections done throughout

this study will be explained. Finally the performance of the trained detector will be discussed

by evaluating the effects of the parameters in the training process.

4.1 HOG Descriptor for Human Detection

Human detection is a challenging task due to a wide variety of articulated poses of humans,

variable appearance, complex backgrounds, occlusions, illumination variance and different

scales of humans in images. Dalal et al. [11] show experimentally that locally normalized

Histogram of Oriented Gradients (HOG) descriptor outperforms existing feature sets includ-

ing wavelets, SIFT Descriptors and shape contexts. The basic idea of HOG is providing the

distribution of local intensity gradients and edge directions to characterize the object appear-
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ance.

(a) Human Body
Detection

(b) Human Upper
Body Detection

(c) Human Head
Detection

Figure 4.1: Human Part Detections

The HOG based human detection in images has two phases: Learning phase (Figure 4.2 -(a))

and Detection phase (Figure 4.2 -(b)). In the learning phase a binary classifier is trained to

provide the object/non-object decision for image windows. In the detection phase the pre-

trained binary classifier is used by multi-scale scanning of every location of the test image

[9].

Figure 4.2: Overall Human Detection Architecture a) Learning Phase b) Detection Phase [11]

Dalal et al. [11] first created a new dataset containing positive examples with ideally one

human in it and negative examples with no human. The binary classifier is trained for
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person/non-person decision by using this dataset. Dalal et al. [11] used Linear SVM as a

binary classifier for the training phase due to its reliable convergence, handling large datasets

and robustness for varying feature sets and their parameters. The feature vectors extracted

from the image window are fed into SVM classifier for learning.

The experimental work done by Dalal et al. [11] is about the feature extraction process (Figure

4.3) which transforms the pixel space to feature space. The proposed descriptor [11] is based

on the distribution of local intensity gradients and edge orientations which characterizes the

object appearance and shape.

Figure 4.3: HOG feature extraction chain [11]

The feature extraction steps which are used in both learning and detection phases(depicted in

Figure 4.3)) are briefly described below:

• Global Normalization: Gamma correction (normalization) is applied for each color

26



channel either using square root function or log function. This normalization provides

to reduce the effects of local shadowing and illumination variations. The formula is

given below:

Vout = AVγ
in (4.1)

where A is a constant scalar and the input and output values of matrices are non-negative

real values.

Figure 4.4: Application of gamma normalization. (a) Original image (b) Normalized image
with γ < 1

• Gradient Computation: The edges are computed for each channel and the locally

dominant color channel is used. This provides color invariance.

• Forming Orientation Histograms: The image window is divided into regions called

”cells” and for each cell a local 1D histogram of gradient is formed. This histogram

consists of orientation bins. The gradient magnitudes vote one of the orientation bin of

the orientation histogram.

• Local Normalization: A group of cells are combined and called as “blocks”. The

blocks are formed by a measure of local histogram “energy”. Since the blocks are

overlapped, the cells appear several times in the final feature vector.

• Forming feature vector: The feature vector is formed from all blocks covering the

detection window.

In the detection phase the test image is scanned at each scale and location. At each detection

window the pre-trained binary classifier is run to produce object/non-object decision. Dalal et
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al. [11] discuss the effects of some parameters such as the number of orientation bins, gamma

correction, gradient scale, normalization methods and window size in their study.

4.2 Human Head and Upper Body Training

In this thesis, OpenCV and SVMLight are used for HOG descriptor computation and binary

classification (person/ non-person decision) is done on a Linux machine with 2.10 GHz CPU.

The datasets used for both human head detections and human upper body detections are nor-

malized such that heads and upper bodies are centered at the image.

During the training process, the effects of some parameters are examined and the detection

rate is recorded. The number of positive images are doubled with their reflections for both

human heads and human upper bodies. The parameters are listed below:

• Detection window size

• Number of orientation bins (spaced over 0 - 180)

• Effect of overlap

• Gamma Correction

• Re-training process (Hard training)

The SVM parameters for both human head and human upper body training processes are same

as [11] with linear kernel and trade-off between training error and margin.

4.2.1 Human Head Training

For human head training, the dataset which belongs to “Oxford University - Active Vision

Group” is used for positive training set. This dataset has 1836 images that are all 24x24

pixels with the center 16x16 pixels containing the head (Some of them are depicted in Figure

4.5). As a negative training dataset 100 human-free images are used.

The only window size for human head training process is 24x24. So there is no window

size variation for this experimental training process. The results obtained by changing the
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Figure 4.5: Human head images for training

parameters such as the number of orientation bins, size of overlap, gamma correction are

explained below:

The trained HOG Descriptor is tested with both the MIT Pedestrian dataset and the INRIA

Person dataset including only positive data. On the other hand, the trained HOG Descriptors

are tested separately with the INRIA Negative person dataset in order to observe the false

positives. For each image in the 600 images of INRIA Negative dataset, 10 random image

patches are cropped which makes 6000 image patches in total.

The Number of orientation bins:

In this training procedure the effects of the number of orientation bins are observed. The

cell size used in this training is 4x4 pixels for a given training image having a 24x24 pixels

size and 2x2 cells size is used for descriptor blocks. 75% block overlapping is used. The

experimentally observed numbers of orientation bins are 6, 9, 12, 18.

The results for positive dataset are given in Table 4.1 for both test datasets.

Table 4.1: Effect of Number of Orientation Bins for Human Head Training - Recall

# Recall(MIT) Recall(INRIA)
6 83% 79%
9 87% 82%
12 82% 78%
18 77% 76%

The rate of false positives are given in Table 4.2.
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Table 4.2: Effect of Number of Orientation Bins for Human Head Training - False Positives

# False Positives(INRIA)
6 505 / 6000
9 523 / 6000

12 516 / 6000
18 522 / 6000

Effect of block overlapping rate:

In this training procedure the effects of overlapping of descriptor blocks are observed. The cell

size used in this training is 4x4 pixels for a given training image having a 24x24 pixels size

and 2x2 cells size is used for descriptor blocks. The number of bins for orientation histograms

is 9. The experimentally observed overlapping rates are 0% , 25%, 50%, 75%.

The results for the positive dataset are given in Table 4.3 for both test datasets.

Table 4.3: Effect of Block Overlapping Rate for Human Head Training - Recall

% Recall(MIT) Recall(INRIA)
0 76% 71%
25 82% 77%
50 84% 79%
75 87% 82%

The rate of false positives are in Table 4.4 below.

Table 4.4: Effect of Block Overlapping Rate for Human Head Training - False Positives

% False Positives(INRIA)
0 584 / 6000

25 551 / 6000
50 547 / 6000
75 523 / 6000

The results of the increasing block overlapping rate are depicted in Figrue 4.6. In Figure 4.6

b and 4.6 d, the false positive detections are ommited with 75% block overlapping rate.

Gamma Correction: In this training procedure the effects of applying gamma correction are

observed. The cell size used in this training is 4x4 pixels for a given training image having a

24x24 pixels size and 2x2 cells size is used for descriptor blocks. 75 % block overlapping is
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(a) Frame 5 with 25% overlapping rate (b) Frame 5 with 75% overlapping rate

(c) Frame 58 with 25% overlapping rate (d) Frame 58 with 75% overlapping rate

Figure 4.6: Effect Of Block Overlapping on Human Detection

used. The experimentally applied gamma functions are square root and log functions. They

have very ignorable effects, they change the recall rate very modestly.

Hard-training: In [11] negative training dataset is re-trained in order to reduce the false

positive rates. This technique is applied here with initial 100 images by exhaustively searching

them. However this method increases the false negative rate.

4.2.2 Human Upper Body Training

For human upper body training, 32x32 and 32x48 image patches of MIT Pedestrian dataset

consisting 924 images of size 128x64 pixels are used for the positive training set. As a neg-

ative training dataset 100 human-free images are used. The window sizes of 32x32 pixels

(Figure 4.7) and 32x48 pixels (Figure 4.8) are trained separately. The results obtained by

changing the parameters such as the number of orientation bins, rate of block overlapping,
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gamma correction are explained below.

The trained HOG Descriptor is tested with INRIA Person dataset both including positive

dataset and negative dataset. For each image of 600 images of INRIA Negative dataset, 10

random image patches are cropped which totally equals to 6000 image patches.

Figure 4.7: 32x32 px upper body images

Figure 4.8: 32x48 px upper body images

Number of orientation bins:

In this training procedure the effects of the number of orientation bins are observed. The cell

size used in this training is 8x8 pixels for a given training image having size of 32x32 and

32x48 pixels. 2x2 cells size is used for descriptor blocks. 75 % block overlapping is used.

The experimentally observed numbers of orientation bins are 6, 9, 12, 18.

The results for positive dataset are given in Table 4.5 for both 32x32 and 32x48.

The rate of false positives are given in Table 4.6.

Effect of block overlapping rate: In this training procedure the effects of overlapping of
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Table 4.5: Effect of Number of Orientation Bins for Human Upper Body Training - Recall

# Recall(32x32) Recall(32x48)
6 77% 80%
9 79% 82%
12 78% 81%
18 75% 78%

Table 4.6: Effect of Number of Orientation Bins for Human Upper Body Training - False
Positives

# F.P.(32x32) F.P.(32x48)
6 323 / 6000 236 / 6000
9 301 / 6000 239 / 6000
12 312 / 6000 245 / 6000
18 336 / 6000 235 / 6000

descriptor blocks are observed. The cell size used in this training is 8x8 pixels for a given

training image having size of 32x32 and 32x48 pixels and 2x2 cells size is used for descriptor

blocks. The experimentally observed overlapping rates are 0%, 25%, 50%, 75%.

The results for positive dataset are given in Table 4.7 for both 24x32 and 32x48 pixel images.

Table 4.7: Effect of Block Overlapping Rate for Human Upper Body Training - Recall

% Recall(32x32) Recall(32x48)
0 73% 76%

25 74% 78%
50 77% 81%
75 79% 82%

The rates of false positives are given in Table 4.8.

Gamma Correction: In this training process the application of gamma correction has the

same effect that head training process has.

Hard-training: In this training process again hard-training has the same effects that head

training has. While the false positive rate decreases, the false negative rate increases.
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Table 4.8: Effect of Block Overlapping Rate for Human Upper Body Training - False Positives

% F.P.(32x32) F.P.(32x48)
0 361 / 6000 278 / 6000
25 339 / 6000 267 / 6000
50 327 / 6000 248 / 6000
75 301 / 6000 239 / 6000

4.3 Discussion

For human detection both the head detection and the upper-body detection approaches have

their advantages and disadvantages. The head detection with trained HOG Descriptor is faster

than upper-body detection due to the window size and the HOG Descriptor size. However

the head detection comes with higher rates of false positives compared to the upper body

detection. An example that explains this situation is depicted in Figure 4.9 and Figure 4.10;

Figure 4.9: Head Detections

This experimental study has similar outcomes compared to Dalal’s et al. study [11]. Dalal

et al. claim that fine orientation coding and higher rate of overlapping of spatial blocks are

very critical for good performance for the whole body detection. In this study we have similar

outcomes for both head detection and upper-body detection. When the rate of spatial block

overlapping is increased, the size of the HOG descriptor increases and the detection time
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Figure 4.10: Upper Body Detections

decreases.

Another important point is the occlusion problem. Our experimental work shows that detect-

ing human heads or human upper bodies is more robust than detecting human bodies from

occluded humans since the feature extracted from the image is not enough to discriminate the

human bodies from occuluded humans. Figure 4.11 shows this situation.

(a) Upper Body Detections (b) Full Body

Figure 4.11: Comparison of Upper Body Detections and Full Body Detection

Hard-training technique is used in order to decrease the false-positive rate which is the main

problem in human detection [9]. This false-positive detections are the noisy measurements for
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the tracking problem and they will be discarded at the tracking step by the application of the

filtering method i.e. Kalman Filter. However if a human head or upper-body cannot be found

by the detector although it exists, this is a problem for tracking because it cannot be solved

in any step. So in order to form a final HOG descriptor our strategy has been decreasing the

false-negative rates.

The head and upper body detections from MIT Pedestrian dataset using trained HOG Detector

are depicted in Figure 4.12 and Figure 4.13 respectively.

Figure 4.12: Images containing detected human heads

Figure 4.13: Images containing detected human upper body parts

The upper body detections by the trained HOG Detector for images containing humans at

different scales are depicted in Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17.
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Figure 4.14: Upper Body Detections with different scales from INRIA Dataset-1

Figure 4.15: Upper Body Detections with different scales from INRIA Dataset-2
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Figure 4.16: Upper Body Detections with different scales from INRIA Dataset-3

Figure 4.17: Upper Body Detections with different scales from INRIA Dataset-4
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The upper body detections trained by the HOG Detector in a video containing occluded walk-

ing humans are depicted in Figure 4.18. The human detector proposed by Dalal and Triggs

[11] was not able to discriminate the occluded humans in this scenario. Figure 4.11 shows

both upper body detections and full body detection result in the same scene.

(a) Frame 61 (b) Frame 68 (c) Frame 74

(d) Frame 85 (e) Frame 86 (f) Frame 87

(g) Frame 88 (h) Frame 101 (i) Frame 128

Figure 4.18: Upper body detections for video with occlusions

The final human head detector that generates measurements for the tracker is formed with

24x24 window size, 9 orientation bins, 75% block overlapping rate. On the other hand, the

final human upper body detector is formed with 32x48 window size, 9 orientation bins and

75% block overlapping rate. The training processes of final detectors do not involve the

hard training phase due to the high rate of false negatives. These detectors’ computational

performance is measured with a 720x576 resolution video from PETS2006 Dataset-S4 [39].

This video has 3020 frames. Table 4.10 gives the detection time percentage for a single frame.
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These rates are calculated by the division of total processing time for the video over the 3020

frames. Application of shadow removal method gives better processing time due to more

precise region of interests. Small detection window size constitutes small HOG Descriptor

size for the detection. Small HOG descriptor size takes less processing time for a frame.

Table 4.9: Time performance comparisons

sec/frame Head Upper Body Full Body
Shadow Removal 0.537 0.881 1.84

No Shadow Removal 0.769 1.067 1.912

The precision and recall values of the trained head detector and upper body detector are com-

pared with the full body detector with INRIA person test dataset. This dataset contains 741

images. 288 images of this dataset involves human in it.

Table 4.10: Precision and Recall rates for the detectors

% Head Upper Body Full Body
Precison 72.8% 79.7% 85.5%
Recall 77.9% 82.3% 88.7%

Precision value in head detection is smaller compared to the other detectors because of the

high rates of false positives. The recall values show more succesfull performance due to

the less rates of false negatives. According to both metrics, full body detector provides more

accurate detections but the trained upper body detector is almost same as the full body detector

in terms of the accuracy. The circular shape of the human head leads to more false positive

rates.
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CHAPTER 5

MULTI HUMAN TRACKING

Multiple-Target Tracking problem is distinguished from Single-Target Tracking problem with

data association problem which is the problem of mapping the measurements to the tracks es-

pecially in a cluttered environment. In this thesis, Multi-Scan version of Markov Chain Monte

Carlo Data Association algorithm is used rather than Joint Probabilistic Data Association Fil-

ter (JPDAF) and Multiple Hyphothesis Tracking (MHT) algorithms described in Chapter 2.

Oh et al. [15] proves that single-scan MCMCDA approximates JPDAF when the number of

the targets to be tracked is fixed. On the other hand, Oh et al. [15] presents the multi-scan ver-

sion of MCMCDA for unknown numbers of targets proving that Multi-Scan MCMCDA has

a better performance compared to MHT for a large number of target in a dense environment

and high false alarm rates.

5.1 Multiple-Target Tracking Problem Formulation

Let K number of objects appear in surveillance region R with duration T. Each object appears

in R at tk
i and disappears at tk

f where tk
i and tk

f are unknown. Let Fk : Rnx → Rnx be the discrete-

time dynamics of object k where nx is the dimension of the state-space, and the current state

of the object is denoted with xk
t at time t. The next state of the object k is computed by:

xk
t+1 = Fk(xk

t ) + wk
t , for t = tk

i , ..., t
k
f − 1 (5.1)

where wk
t ∈ Rnx are white noise processes. The measurements are observed with the prob-

ability pd meaning that the object is not detected with probability 1 − pd. Let y j
t be the j-th
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observation at time t for j = 1,..,nt where nt is the number of total observations at time t.

The multiple target tracking problem is to estimate the number of tracks (K), tk
i , tk

f for k =

1,...,K given the measurements. These measurements are generated from the HOG detections

explained in Chapter 4. The multi-object tracker finds a set of tracks, ω, for K objects called

partition (Figure 5.1) through tracking period T from the set of all measurements Y = Yt, t =

1,...,T where Yt = y j
t : j = 1,...,nt at time t.

Figure 5.1: (a) The observed measurements at time t. (b) An example of a partition ω of Y
where τ0 represents false-alarm [15]

As a result, the posterior of ω can be formulated by an equation

P(ω | Y) α P(Y | ω)
T∏

t=1

pzt
z (1 − pz)ct (1 − pd)gtλat

b λ
ft
f (5.2)

where

• P(Y | ω) is the likelihood of measurements Y given ω,

• λb is the birth rate of new objects per unit time,

• λ f is the false alarm rate per unit time,

• at is the number of new targets

• ct is the number of targets from t - 1

• dt is the number of actual target detections at time t

• gt is the number of undetected targets that can be found by gt = ct + at − dt
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5.2 MCMCDA for Multiple Target Tracking

Markov Chain Monte Carlo methods are algorithms for sampling from a probability distri-

bution π, which is the density of interest, on a space Ω constructing a Markov Chain M with

states where Ω is the collection of partitions Y (Figure 5.1 - b).

Figure 5.2: Transition probability from state ω to ω
′

In this thesis, Metropolis-Hastings algorithm is used as an MCMC method which is a Random

Walk algorithm [35]. This algorithm generates a random “move” using a proposal density and

provides a mechanism for accepting/rejecting this generated “move”.

In Metropolis-Hastings algorithm, a new state is proposed following the proposal distribution

q(ω,ω
′

) to move from state ω. The move is accepted, in which case the chain moves, with an

acceptance probability A(ω,ω
′

) where

A(ω,ω
′

) = min
(
1 ,

π(ω
′

)q(ω
′

, ω)
π(ω)q(ω,ω′)

)
(5.3)

otherwise the current state is kept that is the move is rejected. In other words, whether or not

the move is accepted or rejected depends on the acceptance probability. The π(ω) is defined

by

π(ω) = P(ω | Y) (5.4)

where P(ω | Y) defined in Equation 5.2

The transition probability is given by

P(ω | ω
′

) = q(ω,ω
′

)A(ω,ω
′

) (5.5)

where ω is the current state and ω
′

is the proposed state which is depicted in Figure 5.2.
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5.3 Multi-Scan MCMCDA Algorithm

The Multi-Scan MCMCDA algorithm has a significant performance compared to MHT al-

gorithm for unknown number of targets [15] . The inputs to the algorithm are the set of all

measurements denoted with Y, the number of samples nmcmc , the initial state winit and the X

which is a bounded function X : Ω → Rn. The X and X̂ are used as a metric which estimates

the minumum mean square error (MMSE).

Algorithm 1 Multi-Scan MCMCDA algorithm
Input: Y, nmc, X : Ω→ Rn

Output: ω̂, X̂

ω = ωinit; ω̂ = ωinit; X̂ = 0;

for n = 1→ nmc do

propose ω′ based on ω

sample U from Unif[0,1]

ω = ω′ if U < A(ω,ω′)

ω̂ = ω if P(ω | Y) / P(ω̂ | Y) > 1

X̂ = n
n+1 X̂ + 1

n+1 X(ω)

end for

Multi-Scan MCMCDA algorithm depicted in Algorithm 1 proposes a new partition ω
′

by

choosing a random move from the proposal distribution. The proposal distribution is based

on some assumptions. When there is no track, the only proposed move is the birth move. If

there exist only one track, a merge or track switch move will not be proposed.

Multi-Scan MCMCDA has a proposal distribution consisting 5 fundamental moves (totally 8

moves) which are depicted in Figure 5.3.

• Birth/Death move pair

• Split/Merge move pair

• Extension/Reduction move pair

• Track update move

• Track switch move
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The number of tracks denoted by K is updated depending on the type of the proposed move.

For a birth move and split move, the number of tracks denoted by K is incremented by one

and for a death move and merge move, K is decremented by one.

Figure 5.3: Different types of moves [15]

The matlab simulation results of Multi-Scan MCMCDA algorithm for Figure 4.18 in Chapter

4 are depicted in Figure 5.4. Since head detections with the trained HOG detector generates

many false positives, the Multi-Scan MCMCDA algorithm is used with human upper body

detections.

5.4 State Estimation

After measurements are assigned to current tracks, the state-space model is updated with the

assigned measurements for each track. The current state of the tracks are estimated using

Kalman Filtering algorithm. The Kalman Filter algorithm and the used state-space model are

explained in the following subsections.

5.4.1 Kalman Filtering

Kalman Filter is first introduced by Rudolph E. Kalman in his famous paper [37]. It is used in

many engineering fields because it can remove the noise while retaining the useful information

and estimates the state of a linear dynamic system. A linear dynamic system is simply a

process that can be described by the Equation 5.6 and 5.7 [36]:

State Equation: xk+1 = Axk + Buk + wk (5.6)
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(a) Frame 74

(b) Frame 85

(c) Frame 101

Figure 5.4: The output of Multi-Scan MCMCDA algorithm
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Output Equation: zk = Cxk + vk (5.7)

where

• xk is the state vector on time step k,

• zk is the measurement on time step k

• A is the transition matrix that models the represents the dynamics of the models

• Ck is the measurement model since all of state may not be observed

• wk and vk are the process noise and measurement noises respectively

Kalman filter algorithm proposes a recursive solution for estimating the state of the linear

dynamic system by using available noisy measurements while minimizing the variance of

the estimation error [36]. This filtering algorithm has two steps : the prediction step and

update(correction) step (depicted in Figure 5.5). In the prediction step the next state of the

system is predicted by using the previous measurements and in update (correction) step the

current state is estimated by using the current available noisy measurement.

Figure 5.5: Kalman Filtering steps [36]

5.4.2 State Space Model

The head or upper body locations are measured in two dimensions in the video. So the

state space used for modelling the dynamics of the surveillance world has two axis: x and

y representing a cartesian coordinate system depicted in Figure 5.6.
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Figure 5.6: Cartesian coordinate system for the video frames

A linear model is preferred for simplicity so the accelaration values are ignored for both axes.

The velocity values in the cartesian coordinate system with cartesian locations form the state

vector xk at time step k.



xk

yk

Vxk

Vyk


The transition matrix used for the linear model is defined as



1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1


where δt is the time between two frames. For 25 fps videos this value is 0.04 sec.
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The measurement model is defined as

1 0 0 0

0 1 0 0


In videos, the measurements include only the location of objects; however their velocities

are unknown. The trained HOG detector (explained in Chapter 4) finds the head locations

or upper body locations of objects of interest. So the chosen measurement model matrix

provides only the locations of objects to solution domain.

5.5 Tracking Results

According to [38], there is no consensus on how to evaluate a tracker, and numerical evalua-

tions are rare. Regarding the tracker as a detector, testing its accuracy at detection is seen as a

fair evaluation by [38]. Since the detection mechanism is integrated to the tracking problem

in this thesis, an extra evaluation has not been made. The detection results were explained in

Chapter 4.

The multiple human tracking with human head detections and human upper body detections

are depicted in Figure 5.7 and Figure 5.8. The tracker is tested over some scenarios using

PETS2006 [39] video dataset. In Figure 5.7, (a)(d)(g) shows the foreground objects, (b)(e)(h)

shows the head detections in pre-computed ROIs and (c)(f)(i) shows the estimated positions of

the tracks. Although (e)(h) does not involve enough measurements, (f)(i) shows the positions

which are estimated by Kalman Filtering algorithm. In Figure 5.8, (a)(d)(g)(j)(m) shows the

foreground objects, (b)(e)(h)(k)(n) shows the human upper body detections in pre-computed

ROIs and (c)(f)(i)(l)(o) the estimated positions of the tracks. Although (k)(n) do not involve

enough measurements, (l)(o) show the positions which are estimated by Kalman Filtering

algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Head Tracking Results
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.8: Upper Body Tracking Results
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The detections of humans with pushing or carrying some objects are depicted in Figure 5.9.

Since the detector finds the upper body part within the ROIs, the unrelated objects are ignored

although they are occluded or stuck together. The tracking process is shown in Figure 5.10.

Figure 5.9: Partially occluded humans

(a) (b)

(c) (d)

Figure 5.10: Humans with objects
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis concentrates on visual surveillance videos obtained from the crowded scenes such

as train stations, streets and airports. A human detection based multi-human tracker is imple-

mented. The starting point of this thesis is the concept of the integration of human detectors’

advantages and robustness of the trackers. Human detectors can find humans accurately in

the crowded scenes and trackers can track objects even in the cluttered environments.

The overall system has three main parts: Motion Detection, Human Detection and Multi-

Human tracking. Each part is dependent on the former part. First, moving object regions are

detected in Motion Detection part since these regions involve potential targets to be tracked.

The boundaries with extra margins constitute the Region of Interests (ROIs) for human detec-

tion. In human detection part, the trained HOG descriptors are used for human head detection

and upper body part detection. These detections constitute location measurements for object

tracking.

The background is modeled by a Mixture of Gaussians (MOG) which is adaptive to dynamic

environments for static cameras. When a new frame is captured, the foreground objects are

extracted with some noise. The noise is removed by some morphological operations. Erosion

followed by dilation are applied to the foreground image to remove noises. After the removal

of noises, the connected component analysis method is applied to label each component.

Since each component has a potential to have human(s) inside, ROIs for human detections are

constituted from the components by adding extra margin to the boundaries of components.

In human detection part, human head detector and upper body part detector are seperately
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trained using the Histogram of Oriented Gradients (HOG) descriptor. The training procedure

is examined observing the effects of the HOG parameters in detail. The window size, the

number of orientation bins (spaced over 0 - 180 degree) and the block overlapping rate are

the HOG parameters that the experimentally observed in the training. In addition, the effects

of gamma correction and hard training are observed. The head dataset of Oxford University -

Active Vision Group is used for human head training and MIT Pedestrian dataset is used for

human upper body training. The head training dataset consists of 1836 images with 24x24

pixels and the upper body training dataset consists of 934 image patches of size 32x32 pixel

and 32x48 pixel. The number of positive examples in these datasets are doubled by generating

new images consisting the reflection of each image.

In both training phases high overlapping rates and low number of orientations bins give better

recall performance. The application of gamma normalization does not affect the recall rate for

human head detection and human upper body part detection. Finally, the human head detector

and upper body detector are re-trained in order to reduce the false positive rates, called Hard

Training. Although the reduction in false positive rate is achieved, the false negatives are also

increased. Hence the final human head detector that generates measurements for the tracker is

formed with 24x24 window size, 9 orientation bins, 75% block overlapping rate. On the other

hand, the final human upper body detector is formed with 32x48 window size, 9 orientation

bins and 75% block overlapping rate. The training processes of final detectors do not involve

the hard training phase due to the high rate of false negatives.

The human upper body detector generates less false positives compared to the human head

detector because the omega-like shape of the human upper body is more descriptive to the

shape of human head. Since the window size of human head is smaller than the human upper

body, the duration of finding the human heads are smaller than human upper body in the same

scene.

After the detections generate the location measurements, these measurements are associated

to current tracks using Multi Scan Markov Chain Monte Carlo Data Association Algorithm

(MCMCDA). In Multi-Scan MCMCDA, the recent history of measurements are utilized for

computing the posteriori instead of measurements belongs to only current frame. Due to its

simplicity, this algorithm is suitable for real time multi target tracking compared to MHT and

JPDAF. The associated measurements to tracks are used for the update of their states. The
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states of the tracks are estimated using Kalman Filtering algorithm. 4-dimensional state vector

consisting the locations at two axes x and y and the speeds at two axes is used for state-space

modelling.

The overall system has the capabilities of detecting and tracking multi-humans in a scene

captured from a static camera. Although no real-time requirements are included in the scope

of the thesis, Multi-Scan MCMCDA algorithm meets the real time requirements handling

the newly births of humans into the scene and deaths from the scene. Apart from human

tracking, the human detector itself has the ability of finding humans in the images. So this

capability can be used in different domains such as content based image/video retrievals,

automatic/semi-automatic semantic annotation tools.

The implemented multi-human tracker system can be improved in terms of the accuracy of

the detections, speed and robustness. The future works are listed in the following section.

6.2 Future Work

In this thesis, the advantages and disadvantages of human head detector and human upper

body detector are discussed. The hybrid version of these detectors can be a remedy for false

negative and false positive rates. Different configurations of head and upper body locations

can be fused with data fusion algorithms in order to increase the accuracy. This improvement

will directly affect the robustness of the multi-human tracker. On the other hand, an adaptive

thresholding mechanism can be applied for the detection decision. The trained detectors

use a threshold value in order to decide if the detection window contains a human or not.

This threshold value can be dynamically changed (probably reducing the threshold) within an

estimated region of interest. This estimated region of interest can be computed by Kalman

Filter.

The camera and processing unit technologies are being improved from day to day. In the

future, we will have higher resolution images and videos ever, and processing of these images

and videos gain more importance especially for biometric analysis applications that require

identification of targets. The speed of the tracking system should meet the real time require-

ments for real world applications. At this point, the parallelism of the algorithms targetting

the GPU (Graphical Processing Unit) environments is one of the solution. So moving the
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current implemented system into a GPU environment will be another future direction.

The current developed system is suitable for static cameras. This study can be extended

for active cameras having the pan-tilt-zoom capabilities for real world problems. With this

extension, the trained detectors will not be affected but the background modelling system

will sense that all pixels are moving when the camera is panned or tilted. In this situation,

the region of interest for human detection will be the whole captured scene that would cause

performance problems. If the current system is implemented for GPU environments, this

performance problem can be ignored.
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[30] A. Kläser and M. Marszałek and C. Schmid and A. Zisserman. Human Focused Action
Localization in Video. International Workshop on Sign, Gesture, and Activity (SGA) in
Conjunction with ECCV, 2010.

[31] S.S. Blackman. Multiple Hyphothesis Tracking For Multiple Targets. IEEE Aerospace
and Electronic Systems, vol. 19, no. 1, Part 2 : Tutorials,Jan 2004.

[32] Y. Bar-Shalom, F. Daum and J. Huang. The Probabilistic Data Association Filter. IEEE
Control Systems, vol. 29, pp.82-100, Nov 2009.

[33] H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov, Tracking many objects with many
sensors. International Joint Conference on Artificial Intelligence, Stockholm, 1999.

[34] Convolution Kernel Mask Operation, http://micro.magnet.fsu.edu/primer/java/digital
imaging/processing/kernelmaskoperation/, last accessed date : 21.03.2012.

[35] Metropolis-Hastings algorithm, http://en.wikipedia.org/wiki/Metropolis%E2%80%93
Hastings algorithm, last accessed date : 19.03.2012.

[36] G. Welch and G. Bishop, An Introduction to Kalman Filter, July 2006.

[37] R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transac-
tion of the ASME-Journal of Basic Engineering, pp. 35-45, Mar 1960.

[38] D.A. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien and D. Ramanan, Computational Stud-
ies of Human Motion : Part 1, Tracking and Motion Synthesis, Foundations and Trends
in Computer Graphics and Vision, vol.1, no. 2/3, pp. 77-254, 2006

[39] University of Reading, PETS 2006, http://ftp.pets.rdg.ac.uk/PETS2006/,September
2009.

59


