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ABSTRACT

DIGITAL CONTROLLER DESIGN FOR SAMPLED-DATA NONLINEAR SYSEMS

Ustiinturk, Ahmet
Ph.D., Department of Electrical and Electronics Engimegri

Supervisor : Prof. Dr. Erol Kocaoglan

March 2012, 155 pages

In this thesis, digital controller design methods for sagdpdiata nonlinear systems are consid-
ered. Although sampled-data nonlinear control has aéidactuch attention in recent years,
the controller design methods for sampled-data nonlingstems are still limited. There-
fore, a range of controller design methods for sampled-datdinear systems are developed
such as backstepping, adaptive and robust backsteppihg;aé-order observer-based output
feedback controller design methods based on the Euler gppate model. These controllers
are designed to compensate theeets of the discrepancy between the Euler approximate
model and exact discrete time model, parameter estimation ia adaptive control and ob-
server error in output feedback control which behave amidiahce. A dual-rate control
scheme is presented for output-feedback stabilizatioramipted-data nonlinear systems. It
is shown that the designed controllers semiglobally pcaflyi asymptotically (SPA) stabi-
lize the closed-loop sampled-data nonlinear system. Mereearious applications of these

methods are given and their performances are analyzed withations.

Keywords: Nonlinear, sampled-data, backstepping, odgmdback
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DOGRUSAL OLMAYAN KESIKL I-ZAMAN SISTEMLERI ICIN SAYISAL
DENETLEYICI TASARIMI

Ustuintirk, Ahmet
Doktora, Elektrik ve Elektronik Muhendisligi Bolim{

Tez Yoneticisi : Prof. Dr. Erol Kocaoglan

Mart 2012, 155 sayfa

Bu tezde, kesikli zaman dogrusal olmayan sistemler iginsal denetleyici tasarim yontemleri
incelenmistir. Son yillarda, bu sistemlerin kontroldkcilgi gdrmesine karsin, denetleyici
tasarim yontemleri henliz sinirli sayidadir. Bu nedeste, konusu sistemler icin Euler
yaklasik model kullanilarak geri adimlamali, uyarlafialvie gurbliz geri adimlamali, indir-

genmis dereceli gozleyiciye dayali ¢ikti geri beslardehetleyici tasarim yontemleri gelisti-
rilmistir. Bu denetleyiciler, Euler yaklasik model ilarh model arasindaki farklilik, uyarlan-
abilir denetimde parametre tahmin hatasi ve ¢iktl gerielnesli denetimde gozleyici hatasi
gibi sisteme guriltd seklinde etki eden etkenleri ddamek amaciyla tasarlanmistir. Kesikli
zaman dogrusal olmayan sistemlerin ¢ikti geri beslekagitrolii icin ¢ift ornekleme zamanlh

denetleme yontemi verilmistir. Bu denetleyicilerimzskonusu sistemleri yari global pratik
asimtotik olarak kararl hale getirdigi gosterilmistiAyrica, bu ydntemlerin ¢esitli uygula-

malari verilmis olup, performanslari benzetisimleridelenmistir.

Anahtar Kelimeler: Dogrusal olmayan, kesikli zaman, gehimlamali, ¢ikti geri besleme
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CHAPTER 1

INTRODUCTION

This thesis considers the controller design methods fopsadrdata nonlinear systems. Al-
though sampled-data nonlinear control has attracted mibehtian in recent years, the con-
troller design methods for sampled-data nonlinear systamstill limited. The aim of this

research is to provide a range of controller design methodsdmpled-data nonlinear sys-
tems, present various applications of the methods obtanedanalyze their performances

through simulation based analyses.

In this chapter, the background and purpose of this reseanetpresented. Then, a short
overview of contributions and outline of the thesis areadtrced. Finally, publications from

the work done are given.

1.1 Stabilization of Sampled-Data Nonlinear Systems

Because of technological advances in computer technotmyyadays controllers are imple-
mented using a digital computer in most control engineesirgiems. Therefore sampled-data
systems has received much attention in recent years. A sdrdplta system involves both
continuous-time system and digital controller which is lempented with the computer. In

Figure 1.1, a sampled-data system is shown schematicdlly [5

In sampled-data control system, a digital controller isliggpusing analog-to-digital (/D)
converter and digital-to-analog (B) converter. In Figure 1.1, the output from the process
y(t) is converted to digital form by the/B converter which is often called as sampler device.

The conversion is done at the sampling tirge,The A/'D converter sends the sampled output



Computer

Clock

) fufty)} uft) v

A-D |- *  Algonthm [~ = D-A

Process

Figure 1.1: General sampled-data system configuration.

{y(t)} to the controller. Then, the controller produces the cdmsrquencdu(ty)}. Later this
sequence is converted to piecewise continuous controakigt) by D/A converter which is
often referred as hold device. This control signal is thepliad to the process. An internal

clock is used to synchronize the operation of the system.

Most plants are nonlinear in nature. A linear approximatwoound a prescribed operating
point can be used for analysis and controller design of timesdinear plants. However,
the nonlinearities cannot be neglected (see [60] for dgtail many situations. Therefore,
in these cases, controller is designed using a nonlineaeimddbreover, the system which
includes a nonlinear plant and digital controller is clisdias sampled-data nonlinear control
system. There are many applications for sampled-datamearlicontrol systems such as ship
or submarine control, biochemical reactors, manoeuvréaloof an aircraft, position control

for robotic systems, etc.

Controllers can be designed for sampled-data nonlineaemgsusing three fierent ap-
proaches which are described in [32] as continuous-timaag€TD), direct discrete-time

design and sampled-data design.

1.1.1 Continuous-Time Design

One way to design a digital controller is CTD method, ofteflemed to as emulation, based

on continuous-time model of the plant. First, a continutine controller is designed using

2



continuous-time plant model and any continuous-time detigls. In this step, sampling
is completely ignored. Secondly, the designed contindimos-controller is discretized us-
ing one of the discretization methods such as Euler, Tustirer Runge-Kutta methods and
matched pole-zero discretization. Then, the discretizedroller is implemented using sam-

pler and hold devices underfigiently fast sampling rates.

Since there exist many design tools for continuous-timéesys (see for instance [27, 30, 60,
62]) and there is no need to consider sampling at design,staAge method is rather popular.

In [5, 13, 53], various techniques of emulation design averyi

A general and unified framework for designing controllers Sampled-data nonlinear sys-
tems with disturbances using emulation technique was ptegen [36]. In [36], it is shown
that if the continuous-time closed-loop system satisfiesream dissipation inequality with
a continuous-time controller, then a similar dissipatioaequality is satisfied in a semiglobal
practical sense for the discrete-time model of the samgéd-closed-loop system with the

emulation controller.

Emulation controllers work well under iciently fast sampling (see [7, 36, 54, 59, 67]).
The reference [49] provided a formula to compute the largasipling period to stabilize a

sampled-data nonlinear system with an emulation controlle

There are some advantages of emulation design. First, #terenany tools for controller
design in continuous-time domain. Second, the samplingkisrt into account at the imple-
mentation stage. Therefore, the controller design proli¢eseparated from the problem of
choosing a sampling period. However, some disadvantaggsarse during the application
of this method. Since the performance of the continuous-tiomtroller can only be recovered
under very fast sampling condition, because of hardwatectsns it may be impossible to
reduce sampling period to affigiently small value to ensure desired performance. Thezefo
in these cases direct discrete-time design is a bettenattee which is based on discrete-time

model of the plant.

1.1.2 Direct Discrete-Time Design

The second way to design a digital controller is direct disetime design which is based on

discrete-time model of the plant. This method involves giasig a controller for the discrete-
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time plant model. Sampling is considered at the design stage

There are two approaches in the literature regarding tlteedestime plant model. The first
one is based on the assumption of the availability of thetekiacrete-time models. While in

the second one, it is assumed that the exact models are unkidtitough the assumption of

the availability of the exact models usually holds for linegstems, this almost never holds
for nonlinear systems. Since the computation of the exactrelie-time model of nonlinear
system involves solving analytically a nonlineaffédiential equation over one sampling in-
terval, which is impossible in general, the exact model ef tlonlinear system cannot be
computed in general. Because of this, approximate distireaemaodels are commonly used

in practice.

The controller is designed in three steps using approximmatgel based direct discrete-time
design. The first design step is discretization of the cootiis-time model to obtain the
approximate model of the plant. The approximate model isllsyparameterized by the
sampling periodl'’, which may be left as a parameter to be determined later. drs¢icond

step, a discrete-time controller is designed for the apgprate model of the plant to satisfy
certain stability and robustness criteria for closed-loigrrete-time system. At this stage,
T is determined to achieve a satisfactory performance fosyiseem. As the final step, the
designed controller is implemented using sampled and helices under dficiently fast

sampling rates.

To obtain the approximate discrete-time model of contirsdtime plant, numerical methods
are generally used. Approximation by these methods cause®pancy between exact and
approximate models. Since controller is designed usingpipeoximate model and stability
is checked for the exact model, there is no guarantee forttisliy of the exact model
[46, 50]. Therefore, design verification needs to be donereamplementing the controller

to the original continuous-time plant.

A more general framework for stabilization of sampled-daialinear systems using approx-
imate discrete-time models was presented in the recentpis 45, 46, 47, 50, 32]. Ref-
erences [46, 50] give a set of general anffisient conditions that guarantee the stabilization
of exact model with the family of controllers which stabdiz the approximate model. Al-
though [46, 50] provide a framework for controller desigringsapproximate models, they

did not explain how the controller design can be carried oitiiiw this framework. Since



the results in [46, 50] are prescriptive they can be used @& guhen designing a controller
based on the approximate model. [43, 45] generalize thdtseay46, 50] for input-to-state
(ISS) stabilization and ISS stabilization of sampled-dadalinear systems with disturbance,

respectively. Controller design within this framework iscaddressed in [47, 35].

There are several ways to design controllers satisfyingctimglitions given in [46, 50]. In
[48], two integrator backstepping designs were preseredampled-data nonlinear systems
in strict feedback form using Euler approximate model. Agailons of the direct discrete-
time design to jet engine stall and two link manipulator wegiken in [32]. Also [63] shows
that a direct discrete-time controller guarantees asytetability of the closed-loop system
that is not achieved by the emulation controller for two Im&nipulator system with Slotine
and Lie controller. In [58], robust backstepping for sandpdiata nonlinear system in strict
feedback form using Euler approximate model was presenkgkeding horizon control,
also known as model predictive control, of sampled-datdimear system using approximate
discrete-time model was addressed in [11]. Simulationfi@sé papers show that the con-

trollers designed by direct discrete-time design methdgertorm the emulation controllers.

Redesigning an emulation controller using direct disetiete design is another way to obtain
some improvements. In [44], a redesign method based orsFigsansions of the Lyapunov
difference for the sampled-data system was presented. [1&timaes the sampled-data
feedback laws to minimize theftiérence between the continuous-time system and sampled-
data system after one sampling interval. In addition, ainaotus-time controller was re-
designed for a robotic manipulator in [32] using the Euledelo It was shown in [32] that

the redesigned controller yielded better performance wdwenpared to the emulation con-

troller.

There are some advantages of the direct discrete-timerddsigt, the sampling is considered
from the beginning of the design process. Therefore, bpagormance can be achieved by
the controller obtained by direct discrete-time design jgarimg to emulation controller. Sec-

ond, larger sampling periods may be applied to the contrdésigned by direct discrete-time
design. However, there also exist some disadvantagessoitihod. Since the continuous-
time model is discretized at the beginning of the designgsscthe discretization may destroy
some important properties of the continuous-time modei sisdeedback linearizability [2, 8]

and minimum phase properties [41]. Therefore, analysiglasgyn using this method are usu-



ally harder. Moreover, intersample behaviour is not takeo account in direct discrete-time
design. This limitation may cause ripple in the responsénefdystems. This disadvantage
can be eliminated by careful design and the choice of sampkmiod. Another way to take

the intersample behaviour into account is sampled-datgrles

1.1.3 Sampled-Data Design

The third way to design a digital controller is sampled-dé¢sign based on the sampled-
data model of the plant. Because of the use of sampled-datielmotersample behaviour
is taken into account. This approach has been developed $8%0’s for linear systems [8].
However, because of the complexity of nonlinear sampldd-agendel, results on this method
for nonlinear systems are scarce. [55] proposed a sampledelsign method for solving
the sampled-data stabilization problem of the generak@asonlinear Lipschitz continuous

systems. This method was applied to robot manipulator ih [55

Sampled-data design method uses exact sampled-data nidbdelsystem and controller is
designed using this model. Since this method does not iavapproximation of the plant
or controller, stability and performance are maintainedttoyg method for arbitrarily large

sampling periods .

1.1.4 Multi-rate Sampling

Although the emulation and direct discrete-time desigovalinulti-rate sampled-data sys-
tems, design methods using these approaches are singlerigéneral, i.e. input and mea-
surement sampling rates are assumed to be equal. In ptagijuaations, hardware restric-
tions on input and measurement sampling rate canfbereint. Moreover, it is assumed that
measurement results and the corresponding controllealsigme available instantaneously.
This assumption is unrealistic. Therefore, the use of mnateé control scheme for sampled-
data systems was proposed in [1, 37, 38, 56] so that sevenglsaates co-exist to achieve

better performances.



1.1.5 Output-Feedback Control

In many applications, only a part of the state vector is atddl from measurement. Thus
control using output-feedback or dynamic feedback is resrgs The dynamic feedback bases
the input signal on output history. Since dynamic feedbamkroller has its own state called
as controller internal state, it can be thought as a dynaysies itself. The output feedback
is based on the partial information about the state vectatp@ feedback controller reads
some output signal which is a known function of all or somehef $tate variables. Then it
builds the input signal accordingly. Moreover, designingoaserver for unmeasured states is

a useful method to be used for constructing an output-fesdbantroller.

The problem of output feedback stabilization of sample@denlinear systems was con-
sidered in [10, 28, 65, 3]. A framework for designing a disertme observer based on
approximate discrete-time model of the plant was preseintg¢8]. [10, 28] show that the

obtained sampled-data controllers using high gain obsgian recover the performance of

the continuous-time state feedback controllers.

1.2 Purpose of this Research

In this thesis, the problem of controller design for samydath nonlinear systems is con-
sidered. Although there exist a comprehensive set of tamlafalysis and controller de-
sign of continuous-time nonlinear systems, the contralesign methods are still limited for
their sampled-data counterparts. The purpose of this i@sémto provide a range of con-
troller design tools for sampled-data nonlinear systemgalticular, backstepping, adaptive
backstepping and reduced order observer based outpuiafgledontrol design methods for
sampled-data nonlinear systems are investigated. A mai#i-control scheme for output-
feedback stabilization of sampled-data nonlinear sysisrdeveloped. Moreover, the design
tools developed in the study conducted is applied to somepbes arising from engineering

practice and their performances are analyzed with sinougti

1.3 Outline

The organization of this research can be summarized as shel\ow:
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Chapter 2: In this chapter, technical preliminaries are provided. @wn notation and
definitions which will be used throughout the thesis are gmesd. Various important results
from the literature which will be used to compare with theulesof the work conducted are

also cited.

Chapter 3: The problem of backstepping control of sampled-data nealirsystems in strict
feedback form based on the Euler approximate model is cereid A backstepping design
method is presented to compensate tfieats of the discrepancy between the Euler approx-
imate model and exact discrete time model. Also numericaimples are given to illustrate

the design methods.

Chapter 4: This chapter considers the problem of adaptive backstgpmntrol of sampled-
data nonlinear systems in strict feedback form based on tier Bpproximate model. Two
adaptive backstepping design methods are presented tcecsatp theféects of the error in

parameter estimation. Also numerical examples are givdlusirate the design methods.

Chapter 5: The robust backstepping control of sampled-data nonlisgstems in strict feed-
back form based on the Euler approximate model is discugseabust backstepping design
method which is modified version of the method given in [58jresented to compensate the
effect of diference between disturbance or model uncertainty and itsdb@lso a numerical

example is given to illustrate the design method.

Chapter 6: This chapter considers the problem of reduced order obhsbased output feed-
back control of sampled-data nonlinear systems in strigtitfeack form based on the Euler
approximate model. A reduced order observer design whietm isxtension of the reduced
order observer given in [33] to a general class of multi-inpanlinear systems is presented.
Then, a reduced-order observer-based backstepping mistgae@n to compensate th&ect

of observer error. Also numerical examples are given tatithte the design methods.

Chapter 7: In this chapter, the problem of dual-rate output feedbaakiktation of sampled-
data nonlinear systems is studied under the low measuremaentonstraint. The dual-rate
control scheme is presented based on estimation of thengissitput values between mea-
sured output samples using approximate discrete-time imibdeshown that if one designs a
single-rate observer-based output feedback controlléchndemiglobally practically asymp-

totically (SPA) stabilizes the sampled-data nonlineartesys then the dual-rate observer-



based output feedback controller will also SPA stabilize¢kact discrete-time plant model.

Then, numerical examples are given to illustrate the desigtihod.

Chapter 8: The concluding remarks and future work related to the rebeare presented.

1.4 Contributions

1. A range of controller design tools for sampled-data mama@r systems are proposed.
The designed controllers SPA stabilize sampled-data mealisystems in strict feed-

back form and are based on the Euler approximate model. ticplar,

e A backstepping design method is developed for sampled+uaibnear systems
in strict feedback form. Dierent from the backstepping controller given in [48],
the controller in this thesis is designed for multi-inputnged-data nonlinear sys-
tems to compensate th&ects of the discrepancy between the Euler approximate
model and exact discrete time model by adding a nonlineapaenterm. Simu-
lation results show that the designed controller outperfothe controllers given

in [48] and [26].

e Two adaptive backstepping design methods are presentesérigoled-data non-
linear systems in strict feedback form. The controllersdasgned to compensate
the dtect of the error in parameter estimation. Simulation ressitiow that the

designed controllers outperform the emulation contrsller

e A robust backstepping method is developed for sampled+uaténear systems
in strict feedback form. This controller is a modified versiof the controller
given in [58]. Diferent from the controller in [58], the controller in this fie
is designed to compensate théeet of diference between disturbance or model
uncertainty and their bounds. Simulation results showttietesigned controller

outperforms the controller given in [58].

e Areduced-order observer-based SPA stabilizing backstgppethod is given for
sampled-data nonlinear systems in strict feedback forrfiei@int from the back-
stepping controller given in [25], the controller in thiseHis is designed to com-
pensate thefects of observer error. Simulation results show that thégded

controller outperforms the controller given in [25].



2. A reduced order observer design is presented, which iscamson of the reduced
order observer given in [33] to a general class of multi-inponlinear systems. It is
shown by simulations that observer error converges to zgrhidy designed observer

when compared to the observer given in [25].

3. For the problem of dual-rate output feedback stabilwatf sampled-data nonlinear
systems under the low measurement rate constraint, a aigatontrol scheme is pre-
sented based on estimation of the missing output valueskatmeasured output sam-
ples using approximate discrete-time model. It is shown ifhene designs a single-
rate observer-based output feedback controller which $&tilizes the sampled-data
nonlinear system, then the SPA stability property will besarved by the dual-rate
observer-based output feedback controller. Simulatisalte show that the designed

dual-rate controller gives faster results when compardhdsingle-rate controller.

4. The design tools developed in this research are appliséwveral practical examples

and the resulting performances are analyzed.

1.5 Publications from This Work

The followings are submitted to journals:
1. Ustiintiirk, A., Output-feedback stabilization of noelar dual-rate sampled-data sys-
tems via approximate discrete-time model, Accepted by datica, 2011.

2. Ustiintiirk, A., Kocaoglan, E., Backstepping designstlfier stabilization of nonlinear
sampled-data systems via approximate discrete-time m8dbmitted to International

Journal of Control, 2011, Under review.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

This chapter provides technical preliminaries. Commoratat and definitions which will
be used throughout the thesis are presented. Various iamartsults from the literature

which will be used to compare with the results of this thesisiinulations are also cited.

2.2 Notations and Definitions

The sets of real, natural and nonnegative integer numbeidesoted aR, N andZ*, respec-
tively. SN denotes the class of all smooth nondecreasing function®.o — R.q which
satisfyq(t) > O for allt > 0. A functiony : R.g — Rq is called clasg; if it is continuous,

zero at zero and strictly increasing. The classes of funstare defined in [27] as follows.

Definition 2.2.1 [27] A continuous functiom : [0, a) — [0, o) is said to belong to clask’ if
it is strictly increasing andr(0) = 0. It is said to belong to clas&., if a = oo anda(r) —

as r — oo. Functions of class(,, are invertible.

Definition 2.2.2 [27] A continuous functiors : [0, @) x [0, o) — [0, o) is said to belong to
classK L if, for each fixed s, the mappimjr, s) belongs to clas$C with respect to r and, for

each fixed r, the mapping(r, s) is decreasing with respect to s agt, s) » 0as s— oo.

The notation|-| always denotes the Euclidean norm for a vector and the Fiaberorm

qn g n
for a matrix given bylAl = +/tracgATA). The symbol >} means) Y . For the sake
i,j=1 i=1j=1
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of simplicity, the notationx will be used to denotex(kT) wherek € N, T > 0. &g(i) =
o,....0,1,0,..., 0)T e RSi=1,..5 s> 1is avector of the canonical basis of the vectorial
spaceR® wherei shows the location of 1 in the vector. The €xi(a,b) = {1a+ (1 - )b :
A € [0, 1]} is the convex hull ofa, b} wherea, b € R". Throughout the thesis, the units of the

sampling periods and time axes in all figures are in seconds.

Consider the continuous-time nonlinear system

x=f(x(®),u(®). y=CXi (2.1)

wherex € R" is the statep € R™ is the control inputy € R! is the output, C is a constant
matrix of appropriate dimension and the functibiis locally Lipschitz. The control input
is realized through a zero-order hold such @t = u(kT) := u(k), vt € [KT, (k+ 1)T),k e N
and the outpuy is measured at sampling instaRis; that isy(k) := y(kT) whereT > 0 is the

sampling period.

The diference equation corresponding to the exact discrete-tioeehof (2.1) and its ap-

proximate discrete-time model are represented by:

x(k+1) = FF(x(K),u(k),  y(k) = CxK) (2.2)
x(k+ 1) = F3(x(k),u(K)),  y(K) = CxK), (2.3)

respectively.

The exact discrete-time modEE is obtained as the exact solution of initial value problem
of the continuous-time model over sampling interval. Thpragimate discrete-time model
F2 is obtained via numerical approximation. As mentioned im@br 1, exact discrete-time
model is not available for nonlinear systems in general gmicximate discrete-time model
is used. Since, in general, discretization with numeriggdraximation obviously involves
inaccuracy, this leads to discrepancies between the exadtlrand the approximate model.
Therefore, sampled-data systems cannot achieve ideptmaérties as what their continuous-
time counterparts have. If continuous-time systems aehiew properties such as asymptotic
stability, input-to-state stability and dissipativityrfine whole state space and the whole input
space (in a global sense), this case is not satisfied for sargaita systems in general. Sam-
pling might destroy global properties of the systems, sott@properties hold in a weaker
(semiglobal practical) sense. Indeed, semiglobal pralcicoperty is common in sampled-

data systems. Semiglobal practical asymptotical (SPAjlgtaand SPA stability Lyapunov
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functions are defined in [48] as follows:

Definition 2.2.3 [48] The family of controllers ¢ SPA stabilizes f if there exist®8 € KL

such that for any pair of strictly positive real numbdi3, v) there exists T > 0 such that
for each T e (0, T*) the solutions of ¢k + 1) = Fr(x(k), ur(x(k))) satisfy: |x(k, x(0))| <

B(x(0)|,kT) + v, for all k > 0, wheneveix(0)| < D.

Definition 2.2.4 [48] Let T > Obe given and for each & (0, T) let functions ¥ : R" — R
and ur : R" —» R™ be defined. The pair of familidst, V1) is a SPA stabilizing pair for i
if there exista1, az, a3 € K. such that for any pair of strictly positive real numbérs, 6)
there exists a triple of strictly positive real numbéTs, L, M), with T* < T, such that for all

X,z € R"with max{|X|,|Z} < Aand T € (0, T*), and the following conditions are satisfied:

a1(X) <Vr(x) < a2(X) (2.4)
Vi(Fr(xur(®))) = Vr(¥) < -Tasz(x)+To (2.5)
Vr() - Vr(@l < Lix-2 (2.6)

ur(l < M (2.7)

Consistency is an important property for the approximatel@hto be a good approximation
of the exact model. This property is used to measure thegtiaacy between the exact model

and the approximate model. One step consistency propegtyan in [46] as follows:

Definition 2.2.5 ([46]) The family F(x, u) is said to be one-step consistent with the exact
discrete-time model {x, u) if, for each compact se® c R" x R™, there exists a clas#
functionp(.) and a constant ¢ > 0 such that|F$(x, u) — F3(x, u)l < Tp(T) for all (x,u) € Q

and T e (0, To].

A sufficient condition for one-step consistency is the followinigose proof is given in [36].
Lemma 2.2.6 [36] Consider Ff and F£. If

1. F2is one-step consistent witiEHe" where FEUIer = x + T f(x, u),

2. given any strictly positive real numbdisy, A,), there existg1 € Koo, M > 0, T* > 0,

such that, for all Te (0, T*) and for all|x| < A, |u| < Ay,

13



<
@ max [f(xu)l<M

(b) 1f(x1, u) = f(x2, )l < pa(Ixa — Xal)
then F is one-step consistent withfF

By Lemma 2.2.6, it can be shown that Euler approximate madehe-step consistent with
the exact model, whose proof is given in [36]. Moreover, & #pproximate model (2.3) is
consistent with the exact model (2.2), stability properfier (2.2) can be deduced from the
stability analysis of (2.3) according to the following tlem which is a direct consequence

of Theorem 3.2 in [45].

Theorem 2.2.7 [45, 50, 51] If system (2.3) is SPA stable with the pair of fami(ur, Vr)
and ur is uniformly locally bounded, then the exact discretizestesy (2.2) is SPA stable.

Then, stability properties of the sampled-data system) (ai be deduced from those of exact

discretized system under mild conditions [51].

Definition 2.2.8 (Uniformly locally bounded) [32] ut is said to be uniformly locally bounded
if for any Ax > O there exist strictly positive numbers* Bnd A, > 0 such that for all

T € (0, T*) and all|x| < Ax we havdur| < Ag.
Consider now the following family of observers for (2.2)

X(k + 1) = Gr(X(k), y(k), u(k)) (2.8)

SPA stable observers and Lyapunov functions for SPA stdidergers are defined in the fol-
lowing definitions. These definitions will be used later toyw the SPA stability of designed

observer.

Definition 2.2.9 [33] The family of observers (2.8) is SPA stable observerxér+ 1) =
Fr(x(K), u(k)), if for any compact set¥ c R" X c RP, % c R™ Y c R and any strictly

positive number, there exists T > 0 such that the followings hold.

1. Forall o € X, ue U,y € Y and T € (0,T*], there existsky € X such that
IR(K) = x(Q)I < Ty, VK = 1.
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2. Forallxpe X, % € X,ue U,y Yandall T e (0, T, limsup,_,.|XK) —x(K)| < Tv.
where ¥ = X(0), X0 = X(0) and y = y(0).

Definition 2.2.10 [3] The family of observers (2.8) is SPA stable as in Defini202.9 if there
exists a family of Lyapunov functions (%, X) and classK., functionsa(.), @2(.), @3(.) such
that for any compact set§ c R", X c RP, ¢ c R™ Y c R' and any strictly positive number
v, there exist constants* ™ 0and M > 0, such that for all xx;, X € X, X € )?, ueUu,yely,

and Te (0, T,

VT (X1, X) = V7 (X2, X)| < MIx1 — X2l (2.9)
ai(le) < Vr(x X) < ax(), (2.10)
VT(FT(X9 Y, U), GT-I(_X’ Y, U)) - VT(X9 X) < —Cl’3(|e|) +v (211)

where e is the observer error defined by thgedence between the actual states and their
estimates. Moreover, if Fis consistent with £ as in Definition 2.2.5 and the family of
observers (2.8) is SPA stable observer for (2.3), then tiilyaof observers (2.8) is also SPA
stable observer for (2.2).

X(k+1)—
—

Delta operatop is defined a$(x(k)) = XK for any sequence(k) € R" for all k and

T is the sampling period. Using this definition, one hej{gl) = 2017601 + T(601) " 601 for

any sequencg; (k) € R" for all k.

Theorem 2.2.11 (Mean Value Theorem)Assume that f R" — R is continuously gferen-
tiable at each point x of an open setcSR". Let x and y be two points of S such that the line

segment [x,y) ¢ S. Then there exists a point z dfkLy) such that

of
fiy)— f(x) = — - X).
M =09 =70 =%
The line segment(k, y) joining two distinct points x and y iR" is

L(xy) ={Z4z=0x+(1-0)y,0< 6 < 1}

The diterential mean value theorem (DMVT) for higher dimensioredter valued functions

is defined in [66] as follows:
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Definition 2.2.12 [66] Let f : R" — RY9. Letab € R". Itis assumed that f is flerentiable
on Cda, b). Then there are constant vectorg c.,cq € Co(a,b),ci # a,¢c # bfori=1,...,q

such that:
a.n

f(a) - f(b) = [Z eq(i>el(j>§—xf‘j(ci>] (a—b).

=1
2.3 Backstepping

Backstepping is a recursive design method. In this methpgiopriate functions of state
variables are selected as virtual-control inputs for lodiarension subsystems of the overall
system recursively. In each step of the method, a new vidaatrol law expressed as a
function of the virtual control law in the previous steps igained. The algorithm terminates
when the overall system is reached. The resulting feedbankddler is then obtained to

achieve the original control objective.

The backstepping technique can be applied for systemsiéh fetedback form as follows:
x= () +g(x)é1
&1 = fa(x 1) + qu(X. E1)é2

_ (2.12)
& = fi(x.é1, ... &) + 9i(X 1, ..., &)1

fm = fm(X, é:l’ weey é:m) + gm(X, é:l’ weey é:m)u
This technique can also be applied to a more general feedioackor even for a larger

class of systems that do not follow any formal feedback forifise detailed procedure for

backstepping design is presented in [30].

2.3.1 Continuous-Time Backstepping

Consider the following continuous-time plant of the stfegdback form:

X =109 +9(9¢

£=u
wherex € R" and¢ € R are the statesf(0) = 0, f,g are diferentiable sfficiently many

(2.13)

times andu € R is the control input.
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Assumption 2.3.1[32] Consider the system
x = f(X) + g(X)u (2.14)

where xe R" is the state and & R is the control input. There exist a continuouslyfetien-

tiable feedback control law
u = a(x), a(0) =0, (2.15)
and a smooth, positive definite, radially unbounded fumcthd: R" — R such that
oW n
W(X)[ f(X) + g(X)a(¥)] < -Q(x), VxeR", (2.16)

whereQ : R" — R is positive definite.

Under this assumption, the following lemma on integratakiséepping is given together with

its proof in [30].

Lemma 2.3.2 [30] Consider the system (2.13), which is an augmentatio(2df4) with an
integrator. Suppose that all conditions on Assumption12aBe satisfied by the upper subsys-

tem of (2.13) with controf € R. Then
V(x,.6) = W) + 5[ ~ ()’ (217)

is a control Lyapunov function (clf ) for the full system @.1That is, there exists a feedback
control u = @?(x; &) which renders x= 0, = 0 the globally asymptotically stable (GAS)

equilibrium of (2.13). One such control is

U= e —a()) + T + 90081 - 200080, ©>0 (219

2.3.2 Continuous-Time Adaptive Backstepping

Consider the following parametric strict feedback system

X=Ax+B&+¢'0 (2.19)

E=U+ @] (X, X0 1,6)0 (2.20)
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where

010 . . . 0 0]
0O010. .0
A=" T B =) da( %) . . . Bnea(Xes e Xoo1)
o. . . .01 0
o . . . . .o |

andx e R™1 £ e R, ue R andg; € RPis avector of known smooth nonlinear functions with
¢i(0,...,0)=0,i = 1,...,n, 0 € RP is a vector of unknown constant parameters. It is assumed

that there exists a known constanguch that| < 6.

Using adaptive backstepping based on tuning function igaergiven in [30] a continuous-

time adaptive controller can be designed for plant (2.294€) as follows:

n-1
o ~  Oan-
U= —CnZn— Znq1 + Z Hnty - w6 + i SV (2.21)
e} O0%Xm 00

wherez; = X1, a1 = -C12 — ¢1T9, Xn=& vo=0andfori=23,..,n

Z = % - ai, (2.22)
1 oq; 1 oq; 1
~ i— ~ i—
(X1, s X, 0) = ~Z_1 — CiZ + ;1 T XL~ w6+ 5 TTi (2.23)
Ti(Xe, ooes X, 0) = Tioy + ZW, (2.24)
A =P .
WXL, . 0) = 61 = ) = b (2.25)
Xm
m=1
2 S
Vi(Xay oory X, 0) = Z Zop1 ——TW,, i = 3,...n (2.26)
m=1 90
andc; are any positive real numbers.
The parameter estimator is obtained as:
6 = TW(z 6)z (2.27)

wherez = [z, ... z1]", W(z.6) = [wa, ...,wp] andT = I'T is any arbitrary positive definite

matrix.

Moreover, another adaptive backstepping method based meiision and invariance princi-

ple is introduced in [22]. Using the algorithm in [22] an atie® state feedback control law
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for system (2.19)-(2.20) can be designed as follows:

X|*+1 = _O-I(Xl’ ey Xi’ él’ ] él) - ¢|(X1’ ] Xl)T X (él +ﬂ|(xl’ ey Xl))
1 i-1

R OX* - _
Z O et + 006t X0T % (B Bt XN+ S i+ 30, (2.28)
-1 =1 90k
u=x,, (2.29)
with i=1,..,nandx, =&,
8 K
o1 = (Cl + E)(Xl - Xl) (2.30)
P! X 2
ai—( Z)Oq X) + Eza(a&) X = %)+ (X1 - % q) (2.31)
fori = 2,...,nwherec; > 0 ands > 0 are constants.
To obtain the adaptive law define the estimation errors
Z=0-0+p(....%), i=1..n (2.32)

whereé; are the estimator states agd: R' — RPareC™ functions. The functiong; are

selected as:

X

00 X) =1 [ 1020 By 6 ) (2.33)
wherey; > 0 are constants anii(x) areC™ functions withs; (x1) = 0. From the dynamics
of z, the adaptive law is obtained as:

X 0B ~ .
b = — a_(Xk+1 + k(X %) G + ). i=1..n (2.34)
o1 0%

2.3.3 The Euler Model-Based Disrete-Time Backstepping

The Euler model-based disrete-time backstepping methielEloped for single-input sampled-
data nonlinear systems in [48] and extended to multi-inpoi@ed-data nonlinear systems in

[24, 25, 26]. Consider a continuous-time plant of the steetdback form:

n=f(n)+9mé (2.35)
£=u (2.36)

wheren € R" and¢ € R™ are the state vector$(0) = 0, f, g are diferentiable sfiiciently

many times, and the control inpute R™ is realized through a zero order hold such that
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u(t) = u(kT) := u(k), ¥t € [KT, (k+ 1)T),k € N and the state measuremen(k) := n(kT) and
£(K) := £(KT) are available at sampling instat(§, k € N whereT > 0 is the sampling period.

Then the Euler approximate discrete-time model of (2.2534) is given by

n(k+1) = rr(n(k), £(K) (2.37)
Ek+1) = £(K) + Tuk) (2.38)

wherert = n+T[f(n)+9(n)é]. The following theorem provides the SPA stabilizing cofiar
design based on backstepping via Euler approximate déstree model of sampled-data

nonlinear system.

Theorem 2.3.3[48, 26] Assume that there exi$t > 0 and a pair (¢1, Wr) that is defined
for each Te (0, T) and that is a SPA stabilizing pair for the subsystem (2.3 wic R™

regarded as its control. Suppose also that:
1. ¢1 and Wt are continuously gferentiable for any Te (0, T);

2. there exist® € K., such thatgr ()| < () for all y € R™, T € (0, T);

~ _ _ _ " =~ W
3. foranyA > Othere exists a pair of strictly positive numbéls M) such tharnax{|6—n|,

I%TI} < M for each Te (0,T) and | < A.

Then there exists a SPA stabilizing péir, VT) for (2.37)-(2.38) as:

U= o~ grln) - 0 B0 (239)
VE(X) = Wr(n) + 5lé ~ dr ()P (2.40)

T
where c> Ois arbitrary, x= [T ¢T] and

Apt = ¢1(r7) — $7(1)

AW ()[E-¢1 (1)]
AWr (%) = WMNZUT & # ¢1(m)
TG o) (52)' (). €= or()

AW (X) = Wr(rr) = Wi (1)

r? =0+ TLE@) + gm)er ().
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CHAPTER 3

SPA STABILIZATION OF SAMPLED-DATA NONLINEAR
SYSTEMS VIA BACKSTEPPING

3.1 Introduction

In this chapter, a digital controller design method is psszb In this method, the controller
is designed by backstepping based on the approximate w@igoree model. This controller
semiglobally practically asymptotically (SPA) stabikizthe sampled-data nonlinear systems

in strict feedback form.

In Chapter 1, digital controller design methods for samyulath nonlinear systems were clas-
sified as continuous-time design, often referred to as dioaladirect discrete-time design
and sampled-data design. As the performance of the conigatime controller can only be
recovered under very fast sampling condition, it may be issfale to reduce sampling period
to a suficiently small value to ensure desired performance due théindware restrictions.
Moreover, sampling is taken into account at the design poedirect discrete-time design.
Therefore, direct discrete-time method may outperformeimailation design [32, 48, 63].
Direct discrete-time design method involves designingrarodler for the discrete-time plant
model. In this method, the first step is the discretizatiorthef continuous-time model. To
obtain the exact discrete-time model it is needed to solvenéimear diferential equation ex-
plicitly. Therefore, the exact discrete-time model of thenp cannot be computed in general.
This has motivated research on controller design usingtdiliecrete-time design via approx-
imate discrete-time models. Hence, a more general frankefsorstabilization of sampled-
data nonlinear systems using approximate discrete-timédetaavas presented in the recent

papers [43, 45, 46, 47, 50, 32]. In [46, 50], it is shown that stebilization of exact model
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with the family of controllers which stabilizes the appnméte model is guaranteed under cer-
tain conditions. In [48], two integrator backstepping desiwere presented for sampled-data
nonlinear systems in strict feedback form using Euler agprate model within this frame-
work. The controller in [48] was extended to multi-input gded-data nonlinear systems in
[26].

In this chapter, the problem of backstepping controlleigtes considered for sampled-data
nonlinear systems in strict feedback form using directrdigctime design. The controller de-
sign is based on the Euler approximate model. In this propteendiscrepancy between the
Euler approximate model and exact discrete time model leshas disturbance. It is known
that even exponentially decaying disturbances can déigtatlie sampled-data nonlinear sys-
tem. Hence, in this chapter, the controller is designed topEmsate thefiects of this factor.

This is the main dterence from the controllers in [48] and [26]. It is shown tthest designed

controller SPA stabilizes the closed-loop sampled-dastesy based on the framework pro-
posed in [46]. Also numerical examples are given to illustthe design method. Simulation

results show that the designed controller outperforms ¢inérallers given in [48] and [26].

The chapter is organized as follows. In Section 3.2 prelamas are given. The main results
are stated and proved in Section 3.3. Then, in Section 3plicapon examples are provided

to illustrate the design method. Finally, conclusions aesented in the last section.

3.2 Preliminaries

This section provides technical preliminaries. Commormitasns which will be used through-
out this chapter are presented. For the sake of clarity agg msding, some notions and

definitions that have been introduced in Chapter 2 are regdemlhen necessary.
Consider the following continuous-time nonlinear system
x = f(x(t), u(t) (3.1)

wherex € R" is the stateu € R™ is the control input and the functiohis locally Lipschitz.
The control inpu is realized through a zero-order hold such th@f = u(kT) := u(k), Yt €
[KT,(k+ 1)T),k € N whereT > 0 is the sampling period.

The diference equation corresponding to the exact discrete-tioaehof (3.1) and its ap-
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proximate discrete-time model are represented by:

x(k + 1) = FE(x(K), u(k) (3.2)
x(k + 1) = FA(x(K), u(k)), (3.3)

respectively.

To measure the discrepancy between the exact model and phexapate model, one step

consistency property, as defined in [46], is used:

Definition 3.2.1 [46] The family F(x, u) is said to be one-step consistent with the exact
discrete-time model {x, u) if, for each compact se® c R" x R™, there exists a clas#
functionp(.) and a constant § > 0 such that|F3(x, u) — F&(x, u)l < Tp(T) for all (x,u) € Q

and T € (0, To].

SPA stability and SPA stability Lyapunov functions are dedirin [48] as follows.

Definition 3.2.2 [48] The family of controllers ¢ SPA stabilizes f if there exist®8 € KL

such that for any pair of strictly positive real numbdi3, v) there exists T > 0 such that
for each T € (0, T*) the solutions of ¢k + 1) = Fr(x(K), ur(x(k))) satisfy: |x(k, x(0))| <

B(x(0)|,kT) + v, for all k > 0, wheneveix(0)| < D.

Definition 3.2.3 [48] Let T > Obe given and for each & (0, T) let functions ¥ : R" — R
and ur : R" —» R™be defined. The pair of familidst, V1) is a SPA stabilizing pair for i
if there exista1, az, a3 € K. such that for any pair of strictly positive real numbérs, 6)
there exists a triple of strictly positive real numbéfs, L, M), with T* < T, such that for all

X,z € R"withmax{|X|,|Z} < Aand T € (0, T*), and the following conditions are satisfied:

a1(X) < Vr(x) < a2(X) (3.4)
Vi(Fr(xur(x) -Vr(x) < -Tas(x)+To (3.5)
Vt(¥) -Vr(@l < LIx-12 (3.6)

ur()l < M (3.7)

Theorem 3.2.4[45, 50, 51] If (ur, V) is a SPA stabilizing pair for &, then u stabilizes

Fe.
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Then, stability properties of the sampled-data system) (2 be deduced from those of exact

discretized system under certain conditions [51].

3.3 Main Results

In this section, the design of SPA stabilizing backstepmagtroller based on the Euler ap-
proximate model is presented for sampled-data nonlinesiesyin strict feedback form. The
controller is designed to compensate tiftee of the discrepancy between the Euler and the
exact discrete-time model which behaves as disturbands.igtihe main dierence from the

controllers given in [48] and [26].

Consider the following strict feedback nonlinear system
n=fm)+9m)é (3.8)
£ = a(n,€) + Bn)u (3.9)

wheren € R" andé € R™ are the state vector$(0) = 0, f, g, « are diferentiable sfiiciently
many timesgp(n) # 0, ¥n, the control inpuu € R™ is realized through a zero order hold such
thatu(t) = u(kT) := u(k), vt € [KT, (k+ 1)T),k € N and the state measurementk) := n(kT)
andé(k) := £(KT) are available at sampling instark$, k € N whereT > 0 is the sampling

period.

The diference equations corresponding to the exact discretentiatel of the system (3.8)-

(3.9) are denoted by:

n(k+1)=F7 (€ u) (3.10)
Ek+1)=F1(n.¢ u). (3.11)

Then the Euler approximate discrete-time model of (3.8)(& given by:

n(k+1) = Fi1(.& u) =n+T(f() + 9m)é) (3.12)
ék+1)=Fr(n.€,u) = £+ T(am.€) + Bnu). (3.13)

Using the Euler model, the exact discrete-time model (3(21) can be written as:

n(k+1)=n+T(f@m) +9m)é) + F 1 (.€,0) - Fpr(n.€,U) (3.14)

E(k+1) =€+ T(an. &) +Bmu) + Fg1(m. &, u) - FE1(m, ¢, ) (3.15)
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Hypothesis 3.3.1[48] There existT > 0 and a pair (¢1, W) that is defined for each E
(0,T) and that is a SPA stabilizing pair for the subsystem (3.14) ic R™ regarded as its

control. Suppose also that the followings hold:
1. ¢t and W are twice djferentiable for any Te (0, T);

2. there existe € K., such thatgr ()| < ¢(nl) forall y € R™, T € (0, T);

3. foranyA > Othere exists a pair of strictly positive numbgfs Ms) such thamax(| % |,

0 5 5 7 = A
(281, 1221, 125 ) < Wy for each Te (0, ) and iyl < A,

The following theorem provides the SPA stabilizing corteotesign based on backstepping
via Euler approximate discrete-time model of sampled-aatalinear system and one-step

consistency of the Euler model with the exact model.

Theorem 3.3.2 Assuming that Hypothesis 3.3.1 holds, the system (3.183)(& SPA stable

with the following controller

}
=70~ e - o1(0) - 9" (55, )

d ]<%(n5))

2
L )| (€ - o) + 2T - atn, ) (3.16)
n

where ¢d > 0, A¢t = ¢1(178) -1 (M), nd = n+T(F(7) +9(m)é) andn = n+T(f(n)+9(m)eT).

-
Proof. LetA, u, fi € Rso, py,ps € Keon X=[pT Z'] € R™Mwith [x <A, z=¢ - ¢7 and

C = ¢; + Cp. Consider the system (3.14). According to Hypothesis 3tBdre existsl > 0

such that condition (3.5) holds fdr € (0, T) with &3 € Ko, andi whené = ¢1 as input such
that,

AWr = Wr(77) = Wr(n) < -Tas(nl) + Ti (3.17)

wheren™ =+ T(f(n) + 9(n)éT) + F,?,T(U, ¢T,U) — F,?,T(fl, é7,U). Then, using delta operator

the exact discrete-time models (3.14)-(3.15) can be wardte

Fe _Fa

on = f(n) + 90n)(z+ ¢71) + % (3.18)
. Fe_ _Fa

52 = a(n. ) + Bln)u — ¢1(n )T ¢1(n) . f,TT Al (3.19)
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with ™ =n+ T(f(n) + 9()¢) + Fr 1 — Fo 1. LetAr = sufy, reof) Maxin®l. gl gl 1771}
that is well defined since functionf g, ¢t are continuous. Led = maxA, A1} generates
T, My such that inequality 3 in Hypothesis 3.3.1 holds. Bet= Sup,., rc ) Maxé -
#1115 (n) + 9m)él, lg(m)l, M1, 18I, la(n, E, py, pe} Which is well defined since all the consid-
ered functions are continuous over the given compact séfl Le 0 and for eacii’ € (0, T*)
let the Lyapunov functiovVt be defined a¥+(n, &) = Wy () + %sz. It is obvious that condi-
tions (3.4) and (3.6) are satisfied, (see [48]) and henceaoeSPA stability, it is enough to
show that conditions (3.5) and (3.7) are satisfied. Firstjlitbe shown that condition (3.5)
holds:

AVt _ VT(k + l) - VT(k)

6V = -
T T

=Wy + 26z + g((éz)Téz).

6Wr can be written, using the mean value theorem, as:

Wr (") - Wr (") + Wr (") — Wr (i)
T

+(E—¢7 (n))Tg(n)T( (77 )) (3.20)

oWr =

AWr

wheren® = 7" + To19(n)(& — ¢7(n)) andé, € (0, 1).
Then,6Vt can be written, using (3.18), (3.19) and (3.20), as:
AWr 1 T I T T FfT Fa
oVt < T czz+z A+2((5z) 02)+2 T
oW\ (oW
+2g(n)" [(a_n(" )) —( — (i )) ]

. ¢r(ng)-¢1(1")
with A = M _ |(5¢T( +))

Using the mean value theorem, the tezhy(i)" (( i (no)) - (52 L

7)) ) can be written

as:
oW\ (oW
ﬂwﬁ“;;wﬂ—( ())] 3 (3.21)
Using the mean value theorem, it can be obtained that

)~ 1) __(d0m For —Far
0 {ope

(3.22)
wheren* = n{ + les’T - F;"T and/; € (0, 1).
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Then, using the dierential mean value theorem (DMVT) and (3.2&)¢can be written as:

(- () B«

(¢ . For—For) (o¢r, . -Fir Ot
- refae(=T) (5 >)(—T J- \<

whereQ = [Q],QJ, ... Q" Qi = Fo = Fap, ™ = 5 + L16F S — F21 and(z € (0, 1).

(3.23)

From one-step consistency of the Euler model with the exactet) there exisp,, ps € K

such that,

Fer = Far| < Toy(T) (3.24)

Fer — F2r| < Tpe(T). (3.25)
Then, using (3.17), (3.21), (3.23)—(3.25) and Young’s urdiy, 6V can be written as:
AW 4 ok T T i 2
VT < —— +TM* + Iz (n )flﬁlpn(T) (€1 + )z 2+12 |pe(T) + 75 (0y(T))

_(Vd \(a"’T o)A +

2
L)+ T e+ ez |(%<n**))ampnm

(‘%T(na)) 2

1 1. ., T .
< —Gs(n) + A+ TN — 1" 2+ G * SN2+ =((c+ 1) + 212 + dNi3)

2 «/_
AW

- g(n)T(—(no)) (), - 2+ pe(TYP

< —as(ll) - c1z' 2+ pu.
Then, from Proposition 1 in [48], there exists € K., such thatAVt < —Taz(|x]) + Tpu.

Finally, the following equation shows that condition (3hig)ds:

Jul < 1B7)1(ck ~ ¢T(n)l+lg(n)T( Wr(no)) I+|dl‘
+|A%ﬂ| fla(né)) <c+1+2M+dM2=M

Consequently, one can easily conclude that system (33L#%) with the controller (3.16) is

SPA stable. [ |

3.4 Applications

In this section, the design method given in Theorem 3.3.pjdied to various systems and

the simulation results are analyzed.
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3.4.1 Dynamically Positioned Ship

In the dynamic positioning problems, the speed of a ship ieggmall. Hence it can be
assumed that the damping forces are linear [12]. Then, denghe following equation of

motion for the moored tanker in Example 11.4 in [12]

n =Ry (@) (3.26)
v =Am+ Ay +Bu (3.27)
wheren = [n e w]T, v=1[u v r]T, u=lu w U3]T1 AL = -M7IK, A; = -M71D,
B=Mtand
1.0852 0 0 cosy -sing O
M=| 0 20575 -0.4087|, R@)=|siny cosy O,
0  -04087 02153 0 0 1
0.0865 0 0
D=| 0 00762 01510,. K =diag(0.03890.0266 0}

0 0.0151 00031
as given in [25].

The control lawgr(7) = —R"(¥)Ln and the Lyapunov functioiVr(7) = 3n"n are a SPA
stabilizing pair for the subsystem (3.26), whé&rean be chosen such that= diag{ls, |2, 13}
with |1 — Tlj| < 1 andl; > O for suficiently smallT > 0. Using this pair, the controllets and

ug are designed. The controllef is designed using (3.16) in Theorem 3.3.2. The controller
Ug is obtained using the method given in [26] which was alsogares] in Theorem 2.3.3. The
following simulation parameters are sét= diag{0.5, 0.5, 0.5} andc = 1. Then, simulations
have been performed in order to compare the performancée @ontrollersur andug with

different sampling periods and initial conditions.

First, the controllerair and ug are applied to the system (3.26)-(3.27) with the sampling
periodT = 0.2 and the initial conditionsy(0) = [-2 2 _’Zf]T andv(0) = Oszx. Simulation
results are given in Figure 3.1. As can be seen from figuréy bohtrollers stabilize the
system (3.26)-(3.27), but faster with. Simulation results for the controller show that

as the parametat increases, the performance of the controllgris faster. Fod > 7, the

controllerur cannot stabilize the system (3.26)-(3.27).
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Figure 3.1: Time responses of the yaw anglehe North positiom and the East position
with T = 0.2. Dotted line:controlleug. Solid line:designed controller.
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Figure 3.2: Time responses of yaw anglethe North positiom and the East positioa with
T = 0.4. Dotted line:controlleug. Solid line:designed controller.
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Figure 3.3: Time responses of yaw anglethe North positiom and the East positioa with
T = 0.2 and large initial conditions. Dotted line:controlleg. Solid line:designed controller
ur.

Then, the simulation is performed with the initial conditiogiven above and large sampling
periodT = 0.4. Simulation results are given in Figure 3.2. It is showrt thath controllers
stabilize the system (3.26)-(3.27), but faster withagain. Faster results are obtained with
the controllerur until d = 2.7 and the performance worsens afies 2.7. Ford > 2.7, the
controllerur cannot stabilize the system (3.26)-(3.27). Simulatiomltedor the controller
U show that increase in the sampling peribdesults in slightly slow response. While the
controllerug cannot stabilize the system (3.26)-(3.27) Tor- 0.9 with the initial conditions

above, the controllew; can stabilize the system unfil= 0.1.

Finally, the controllers are applied to the system (3.262{) with the same sampling period
T

T = 0.2 as in the first simulation and large initial conditiongD) = [-4 3 -z and

v(0) = Os3x0. Simulation results are given in Figure 3.3. It is shown tift controllerur

yields better results when compared to the contralfeagain.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantders smaller value.
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3.4.2 Two-Link Robot Manipulator

In general, the dynamic model of n-link rigid-body robot npartator can be written as given

by the following matrix equation [9, 52]:

M(a)d + C(a.a)q + G(g) = u

where the statg € R" is the angular position vector of joint variabls](q) € R™" is the
positive definite symmetric inertia matri€(q, g) € R™" is the Coriolis-centripetal matrix,
G(q) € R"is the gravity vector, and € R" is the control input vector. In the simulations, a
two-link manipulator is considered with massasandnmy, [kg], lengthsl, andl, [m], angles

g1 andqgp [rad], torquesu; andu, [Nm] for each link. Hence, defining the state vectors as
n = [ qz]T and¢ = [gy qZ]T, the dynamic model of the two-link manipulator can be

written as;:

n=¢ (3.28)
&= M) (u-Cn. &)¢ - Gn)) (3.29)

whereM = [V V2], C = [& & G = [&] andu = [ 1] with My = myi2, + mp(2 +12, +
2l1le2 cOSTp), M2 = M3 = mplilez €OSG2 + MplZ,, Mg = mplZ,, C1 = —mplalez singadp, C; =
—Mplalez SiNgz(G + G2), C3 = Mylalez SiNd20y, C4 = 0,G1 = Mgl cosay + mpg(ly cosay +

lc2 cos@r + O2)), G2 = Mgl cos@r + Op). I andl, are the distances of the center of mass
from the joint axes. The robot parameters are givemas np = 5 [kg], |1 = 12 = 0.5 [m],

Il =l = 0.25 [m]. The control objective is to solve the trajectory kiag problem. Hence,
the joint position tracking erroe is defined a® := n — ng wherenq = [3;3] is the desired

position trajectory. Then, the system dynamics can beemris:

e=¢— iy (3.30)

£=M"1(n) (u-C(n,6)¢ - G(n)). (3.31)

The control lawgr (17) = [:g;gg;:g;ggjgig] and the Lyapunov functiolvr () = 2777 is a SPA
stabilizing pair for the subsystem (3.30). Using this plaér ¢controllerair andug are designed
for the system (3.30)-(3.31). The controller is designed using (3.16) in Theorem 3.3.2.
The controllerug is obtained using the method given in [26] which was also el in
Theorem 2.3.3. The following simulation parameters are sgt= 2,c, = 3 andc = 1.

Two different reference trajectorieggs = Qg2 = %— %e“ andggq:r = Qg2 = sin(t), are
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considered. Then, simulations have been performed in dod@ympare the performances of
the controllersur andug with the initial conditionsy(0) = £(0) = | §| and diferent sampling

periods.

First, the controllersr andug are applied to the system (3.28)-(3.29) with the first rafeee

trajectory,qg; = Qg2 = 3 — 367",

Simulation results with the sampling peridd= 0.1 are given in Figure 3.4. As can be seen
from figure, both controllers track the desired trajecttmyt the tracking error converges to
zero faster withur. Simulation results for the controllerr show that as the parameter
increases, the tracking error of the controllgris smaller. Fod > 1.2, the controllerur

cannot stabilize the system (3.28)-(3.29).

Simulation results with large sampling peridd= 0.2 are given in Figure 3.5. It is shown
that both controllers track the desired trajectory, butitheking error converges to zero faster
with ur again. Results with smaller tracking error are obtainedh it controllerur until

d = 0.5. Ford > 0.5, the controllerur cannot stabilize the system (3.28)-(3.29). Simulation
results for the controlletg show that increase in the sampling peribdesults in slower
response. While the controlleg cannot stabilize the system (3.28)-(3.29) Tor- 0.22, the

controllerur can stabilize the system uniil = 0.24.

Then, the controllersr andug are applied to the system (3.28)-(3.29) with the second-refe

ence trajectoryglgr = gaz2 = sin(t).

Simulation results with the sampling peridd = 0.1 are given in Figure 3.6. As can be
seen from figure, the controllerr tracks the desired trajectory with smaller tracking error
when compared to the controllee. Simulation results for the controllerr show that as
the parameted increases, the controller tracks the desired trajectory with smaller error
but ford = 1 its performance is degraded. Fbr- 1, the controllerur cannot stabilize the

system (3.28)-(3.29).

Simulation results with large sampling peridd= 0.15 are given in Figure 3.7. It is shown
that the tracking error increases for both controllers wbempared to the results with =
0.1, but tracking error of the controllar is smaller than that of the controlleg. Results
with smaller tracking error are obtained with the contnollg until d = 0.6. The performance

of the controllerur worsens afted = 0.6. Ford > 0.6, the controllerur cannot stabilize
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the system (3.28)-(3.29). While the controligr cannot stabilize the system (3.28)-(3.29) for

T > 0.18, the controlley can stabilize the system unfil= 0.2.

Moreover, as the sampling periddincreases, the controlles shows good performance for

cases where the parametthas smaller value.

3.4.3 Attitude Control of Rigid Artificial Satellite

In this part, a digital attitude control of a rigid artificiahtellite is considered. Its attitude

motion is modeled by the following nonlinearfidirential equations

= H(po)w, (3.32)

w = JIsw)dw+ Jtu (3.33)

wherew = [w; w» W3]T € R3 is the angular velocity vector of the body in a body-fixed
frame,p € R3 is the Cayley-Rodrigues parameters describing the bo@niation,u € R3

is the control torque vector of the body, = JT = diag{10, 15,20} is the inertia matrix
of the body [31],S(w) is the skew-symmetric matrix given y(w) = [—w3 o W, ] and
H(p) = 3(1 = S(p) +pp").

The control lawgr (p) = —H™(0)Lp and the Lyapunov functiovr () = 3p"p is a SPA sta-
biling pair for the subsystem (3.32) whdrecan be chosen such that= diag{l4, I, I3} with
|1-TIi| < 1 andl; > 0 for suficiently smallT > 0. Using this pair, the controlletsr andug

are designed for the system (3.32)-(3.33). The controlfes designed using (3.16) in The-
orem 3.3.2. The controllars is obtained using the method given in [26] which was also pre-
sented in Theorem 2.3.3. The following simulation paramsetiee setl. = diag{0.5, 0.5, 0.5}
andc = 1. Then, simulations have been performed in order to comparperformances of

the controlleraur andug with different sampling periods and initial conditions.

First, the initial conditions are chosen@®) = [1.4735 06115 25521]T andw(0) = Osyg.
Simulation results with the sampling perid@d = 0.1 are given in Figure 3.8. As can be
seen from figure, both controllers stabilize the systenm?(3(3.33), but faster witlir. As the
parameted increases, the performance of the contrallers faster but fod = 1 performance

degradation starts. Fdr> 7, the controlleiur cannot stabilize the system (3.32)-(3.33).
Then, the simulation is performed with the initial conditsogiven above and large sampling
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period T = 0.4. Simulation results are given in Figure 3.9. It is showrt the controller
ur gives faster results when compared to the contralier The controllerur shows a good
performance untid = 1. Ford > 1, the controllerur cannot stabilize the system (3.32)-
(3.33). The controlleug gives slower response with larger overshoots when compared
results withT = 0.1. While the controllerug cannot stabilize the system (3.32)-(3.33) for

T > 0.47, the controlle; can stabilize the system unfil= 0.51.

Finally, the controllers are applied to the system (3.&33%) with the same sampling period
T = 0.1 as in the first simulation and initial conditions doubleim@ation results are given
in Figure 3.10. It is shown that the controller gives faster results when compared to the

controllerug again.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantetes smaller value.

3.4.4 Second-Order Single-Input System

Now, as a diterent example, consider the following second-order caotis-time plant with

single input:

n=n’+¢ (3.34)

E=u (3.35)
wheren € R andé¢ € R are the state vectors anck R is the control input.

First, continuous-time backstepping controllgris designed for system (3.34)-(3.35) using
the backstepping method given in [30]. The controllgris obtained asiy = -2 — %> — & —
(2n + 1)(€ + n%) with ¢ = —? — 5, the Lyapunov functioW() = 3r% andc = 1. Then,
the controllerur is designed using (3.16) in Theorem 3.3.2 with= -2 — 1, the Lyapunov
function Wr(n) = %nz andc = 1. The controlleruyT is designed using the method given
in [48] which was also presented in Theorem 2.3.3. Then, Isitions have been performed
in order to compare the performances of the controligrand ug with different sampling

periods and initial conditions.

In the first simulation, the initial conditions are choser(:g6), £(0)) = (1.6, 0.5). Simulation

results for the time responses gfé and u with the sampling period = 0.6 are given in
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Figure 3.11. It is shown that the designed controligerworks well and is faster than the
controlleruyt. As the parameted increases, the performance of the controllgris faster
but for d = 0.03 performance degradation starts. Eor 0.03, the controllerur cannot

stabilize the system (3.34)-(3.35).

Next, the simulation is performed with the initial conditegiven above and large sampling
period T = 0.9. Simulation results are given in Figure 3.12. It is showet the controller
ur gives faster results when compared to the contrailgr. The controllerur shows a good
performance untid = 0.02 and the performance worsens aftee= 0.02. Ford > 0.02,
the controllerur cannot stabilize the system (3.34)-(3.35). The contraljgr gives slower
response as the sampling peribds increased. While the controllegt cannot stabilize the

system (3.34)-(3.35) foF > 0.95, the controlleur can stabilize the system unfil = 1.

Then, the controllers are applied to the system (3.34)6[3m8th the same sampling period
T = 0.6 as in the first simulation and large initial conditiongQ), £(0)) = (-1, —30). Simu-
lation results are given in Figure 3.13. As can be seen froordigwhile the controlleuyt

cannot stabilize the system the designed controlfestabilizes the system successfully.

As can be seen from figures, the control inpgis produced with less energy when compared
to the control inputyT. Therefore, the proposed method requires less corflimiteSimula-
tion results also show that when the parameltes increased, energy of the control inpyt

decreases in general.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantetes smaller value.

Finally, by applying the controllers to the system (3.33)86) with diferent initial condi-
tions, domain of attraction (DOA) estimates with the coltérs ur anduyT for the sampling
period T = 0.6 are given in Figure 3.14. In DOA estimate with the controlle, the pa-
rameterd is chosen asl = 0.001. As can be seen from figure, DOA for the system with the
controlleruy is much larger than that with the controllayt. For diferent controller param-
eters and sampling periods, much larger DOA estimate maytsned with the controller

ur when compared to the estimate given in figure.
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3.4.5 Jet Engine Stall

As a last example, consider the jet engine model given irt [30]

R=-0R - oR(2¢ + ¢?) (3.36)
- 3 1

=y -5¢°= 54"~ 3Ry~ 3R (3.37)
b = —u (3.38)

whereg is the mass flowy is the pressure rise amitis the normalized stall squared amplitude.
As R > 0, the stabilization of the subsystem (3.36) is obvious Bpéttion. Choosing simply
a virtual control¢ = a(R) = 0 yieldsR = —oR2, which means thaR(t) — 0 ast — co.
Therefore the backstepping procedure can be shortenedftbree-step design to a two-step
design [30].

Consider (3.37) as the upper subsystem, and (3.38) as tlee smbsystem witly regarded
as the virtual control for the upper subsystem. The uppesyaibm can be stabilized with
the virtual controla(y, R) = c1p — %goz — 3R Then using Lyapunov functiollvV = %qbZ,
continuous-time backstepping controller is obtainedas c(¥ — Cip+ %goz +3R)—¢p—(C1—
30)(—¢ — 3¢? - 3¢° - 3Ry — 3R) + 3rR(-R - 2p — ¢?). Using (3.16) in Theorem 3.3.2, the
controllerut is obtained with control law (¢, R) = Ci¢ — %’goz — 3R and Lyapunov function
Wr = %qbZ. The controller parameters are chosen suchdhatc; = 1,0 = 7. Simulations
have been performed to compare performances of the design&ollerur and the controller

unT designed in [32] using the method given in [48].

First, the initial conditions are chosen &), #(0), »(0)) = (0, -1, —6). Simulation results
for the time responses @fandy with the sampling period = 0.01 are given in Figure 3.15.
It is shown that the designed controller works well and is faster than the controlliggr.
As the parameted increases, the performance of the contraligiis faster but ford = 6 per-
formance degradation starts. Fbr 13, the controlleur cannot stabilize the system (3.36)-
(3.38).

Then, the simulation is performed with the initial conditiogiven above and large sampling
period T = 0.5. Simulation results are given in Figure 3.16. It is showat the controller
ur yields faster results when compared to the contraligr. The controllerur shows a good

performance untitl = 0.1. Ford > 0.1, the controllerur cannot stabilize the system (3.36)-
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(3.38). The controlleuyT gives response with larger overshoots as the samplingg&ris
increased. While the controllert cannot stabilize the system (3.36)-(3.38) Tor> 0.85,

the controllerur can stabilize the system unfil = 1.

Finally, the controllers are applied to the system (3.33%) with the same sampling period
T = 0.01 as in the first simulation and large initial conditiof¥Q), #(0), ¥(0)) = (5,4, 4).
Simulation results are given in Figure 3.17. As can be semn ffigure 3.17, both controllers

stabilize the system successfully, but faster with

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantetes smaller value.

3.5 Conclusions

In this chapter, the problem of backstepping controlleigielas been considered for sampled-
data nonlinear systems in strict feedback form. A backstepgesign method has been pre-
sented based on the Euler approximate model. It has beemghatithe designed controllers
SPA stabilize the closed-loop sampled-data system bast#tbdramework proposed in [46].
The proposed design has been applied to several exam@ggydrom the engineering prac-

tice. Their performances were analyzed with simulations.
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For the problem considered, the discrepancy between thex Bpproximate model and exact
discrete time model behaves as disturbance. It is knownetvext exponentially decaying
disturbances can destabilize the sampled-data nonligstenss. Hence, in this chapter, the
controllers were designed to compensate tffiecés of this factor. The results obtained are,
of course, diterent from the controllers in [48] and [26]. Using simulatsp the performance
of the designed controller has been compared with the drsajiven in [48] and [26]. It
was shown that the designed controller yielded better pmadace when compared to the

controllers given in [48] and [26].

Moreover, in case of unstable results, the controllersrging48] and [26] can be tuned to
obtain stable results by adapting the controller gain. Henghe controller designed by the
proposed method can also be tuned adapting another paramatiition to the controller
gain. So the proposed method gives an additional flexidityuning the controller. Another
advantage of the designed controller is that the contrdésigned by the proposed method
can stabilize the systems with larger sampling periods wiempared to the controllers given
in [48] and [26].
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CHAPTER 4

ADAPTIVE BACKSTEPPING FOR THE EULER
APPROXIMATE MODEL OF SAMPLED-DATA NONLINEAR
SYSTEMS

4.1 Introduction

In this chapter, two adaptive digital controller design noels are proposed. In these methods,
the controllers are designed by adaptive backsteppinglmasthe approximate discrete-time
model. These controllers semiglobally practically asyatipally (SPA) stabilize the sampled-

data nonlinear systems.

In many cases, a desired control performance cannot béestidgth a nonadaptive controller

because of parameter uncertainties. For these cases,apgvaddesign methods are used.
Generally the adaptive design method is based on the dek@gpavyameter adaptive law, i.e.
estimates of the parameters are made to converge to thealueeaof uncertain parameters for

plants by controllers.

The problem of adaptive control of continuous-time nordingystems have been widely stud-
ied in the last years and many design tools have been progsesed21, 22, 30, 40, 61, 62]
and references therein). The class of feedback lineadzsystems that depend linearly on
the unknown parameters are most widely studied (see [3®H&nd references therein). In
[30], the design of a backstepping adaptive controller feenhwell studied for continuous-
time nonlinear systems in the parametric strict-feedbackf In [22], an alternative adaptive
backstepping design for continuous-time nonlinear systienthe parametric strict-feedback

form was proposed using the nonlinear adaptive stabitinatiols developed in [4, 23].
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On the other hand, adaptive control of sampled-data nalisgstems has drawn little at-
tention. In [19], a controller based on higher order apprations is developed using an
overparametrization. A sampled-data scheme using cantsitime adaptive controller with
o-modification based on emulation approach is given in [64]5FF], considering high order
approximations for a general class of nonlinear systenesd#sign of high order adaptive
discrete-time controllers using the truncated Fliesesasf the Lyapunov dierence equation
is developed. In [34], an adaptive controller for samplathdchonlinear systems is developed

based on [22].

In this chapter, the problem of adaptive backstepping odiatr design is considered for
sampled-data nonlinear systems in strict feedback forngudirect discrete-time design. The
controller design is based on the Euler approximate moaethis problem, the error in pa-
rameter estimation behaves as disturbance. Even expalhemtecaying disturbances can
destabilize the sampled-data nonlinear system. Hencégimvork that follows, the design
methods to compensate theets of this factor are presented. It is shown that the dedign
controllers SPA stabilize the closed-loop sampled-dastesy based on the framework pro-
posed in [46]. Also numerical examples are given to illustthe design methods. Simulation

results show that the designed controllers outperform itinglaion controllers.

The chapter is organized as follows. In Section 4.2 prelamas are given. The main results
are stated and proved in Section 4.3. Then, in Section 4plicafion examples are provided

to illustrate the design method. Finally, conclusions aesented.

4.2 Preliminaries

This section provides technical preliminaries. Commormitadins which will be used through-
out the chapter are presented. For the sake of clarity andreading, some notions and

definitions that have been introduced in Chapter 2 are regdemlhen necessary.

Consider the following continuous-time nonlinear system

= f(x(t), u(t)) (4.1)

wherex € R" is the stateu € R™ is the control input and the functiohis locally Lipschitz.

The control inpu is realized through a zero-order hold such th@f = u(kT) := u(k), Yt €
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[KT,(k+ 1)T),k € N whereT > 0 is the sampling period.

The diference equation corresponding to the exact discrete-tioadehof (4.1) and its ap-

proximate discrete-time model are represented by:

X(k + 1) = FS(x(K), u(k)) (4.2)
X(k + 1) = F2(x(K), u(k)) (4.3)

respectively.

To measure the fference between the exact model and the approximate modelstep

consistency property, as defined in [46], is used:

Definition 4.2.1 ([46]) The family F}(x, u) is said to be one-step consistent with the exact
discrete-time model {x, u) if, for each compact se® c R" x R™, there exists a clas#
functionp(.) and a constant § > 0 such that|F3(x, u) — F3(x, u)l < Tp(T) for all (x,u) € Q

and T e (0, To].

SPA stability and SPA stability Lyapunov functions are dedirn [48] as follows.

Definition 4.2.2 [48] The family of controllers ¢ SPA stabilizes  if there exist®8 € KL

such that for any pair of strictly positive real numbdi3, v) there exists T > 0 such that
for each T e (0, T*) the solutions of ¢k + 1) = Fr(x(k), ur(x(k))) satisfy: |x(k, x(0))| <

B(x(0),kT) + v, for all k > 0, whenevefx(0)| < D.

Definition 4.2.3 [48] Let T > Obe given and for each & (0, T) let functions ¥ : R" — R
and ur : R" — R be defined. The pair of familigsiy, V1) is a SPA stabilizing pair for i
if there existay, o, a3 € K. such that for any pair of strictly positive real numbefs, 6)
there exists a triple of strictly positive real numbé¥s, L, M), with T* < T, such that for all

X, X1, X2 € R" with max({|x|, |x1], %]} < Aand T € (0, T*), and the following conditions are

satisfied:
a1(IX) <Vr(¥X) < a2(X) (4.4)
Vr(Fr(x ur(¥) = Vr() < -Tas(x)+Té (4.5)
VT(x1) = Vr(x)l < LIxg =X (4.6)
ur(l < M 4.7)
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Theorem 4.2.4[45, 50, 51] If (ur, V) is a SPA stabilizing pair for &, then y stabilizes
FS.
Then, stability properties of the sampled-data system) ¢aid be deduced from those of exact

discretized system under certain conditions [51].

4.3 Main Results

In this section, two adaptive backstepping controller giesiare presented for sampled-data
nonlinear system in strict feedback form. The controllesigies are based on the Euler ap-
proximate model. The controllers are designed to compenisatgfects of the error in param-
eter estimation which behaves as disturbance and SPAistatlie sampled-data nonlinear

systems.

Consider the following parametric strict feedback system:

X=Ax+Bé+¢'0 (4.8)
E=U+ @) (Xts s X1, E)0 (4.9)
where
01 0. . . 0 0]
0010. .0
A= lB=||, ¢= $1(x1) d2(X1. %) . . . Pn-1(Xe, ... Xno1)
O . . . .01 0
o . . .. .0 1

andx € R™1 £ e R, u € R andg¢; € RP is a vector of known smooth nonlinear functions
with ¢;(0,...,0) = 0,i = 1,...,n, # € RP is a vector of unknown constant parameters, the
control inputu(t) = u(kT) =: u(k), vt € [KT, (k + 1)T), k € N which is realized through a zero
order hold wherd > 0 is the sampling period and the state measuremék}s= x(kT) and
&(K) = &(KT) are available at sampling instark$, k € N. It is assumed that there exists a

known constané such thatd| < 6.
The diference equations corresponding to the exact discreterfiogel of (4.8)-(4.9) are
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represented by

x(k+1) = F31(x&,u,6) (4.10)
Ek+1)=Fgr(x £ u,0). (4.11)

Then the Euler approximate model of (4.8)-(4.9) is given by

X(k+ 1) = X+ T(Ax+ BE + ¢ 6) (4.12)
EK+1D)=E+TU+p0). (4.13)

The first adaptive backstepping controller design will bespnted for the Euler approximate
model (4.12)-(4.13) below. The controller design is basethe Euler approximate model of

the parameter estimator obtained using the algorithm div§30] and stated in Chapter 2.

Hypothesis 4.3.1[48] There existl > 0, a pair (e, Wr) and parameter estimatda(k + 1)
that are defined for each E (0, T) and that SPA stabilize the subsystem (4.12) withR
regarded as its control where the parameter estimajgk+1) is the Euler approximate model
of the estimato@X which is obtained during the design @f using tuning function technique

given in [30]. Suppose also that the followings hold:

1. for anyA > Othere exists\ > 0 such thatgi| < Aforall [x <Aandi=1,2,..,n,
2. at and W are twice djferentiable for any Te (0, T);

3. there existy € K., such thafat(X)| < ¢(|X]) for all X=[x" éI]T e R™Pland Te

(0, T) where xe R andéy € RP;

4. for anyA > Othere exists a pair of strictly positive numbéis My) such thamax(| 2T,

|on | | Zar) | 2We )y < KAy for each Te (0,T), IX < A, 16 < Ap and6] < 6 where

éXZG—éx.

The following theorem provides the SPA stabilizing adaptdackstepping controller design

based on the Euler approximate discrete-time model of ssdvgidta nonlinear system.

Theorem 4.3.2 Assuming that Hypothesis 4.3.1 holds, the system (4.123)(#% SPA stable

with the following controller and parameter estimators tband so is the exact discretized
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system (4.10)-(4.11).

U= —C(¢ — at(X 0y) — (aWT (_'F)) T
TI2
— g1 6z — d( - at(x.6)) ( = (x5, 05 )) (4.14)
Ox(k + 1) = Oy + T (X, 6y) (4.15)
Os(k+ 1) = 0 + TO(E — at(X, 6x))¢n (4.16)

where ¢cd > 0, I' is an arbitrary positive definite matriar = a1(X} ,9;) — a1(X 6y), X5 =
X+ T(Ax+BE+¢T6y), 3 = x+T(Ax+Bat(X, 65) +¢"6y), g(x, bx) is the estimatody obtained
during the design oft using tuning function technique given in [30], and (4.18)16) are
the parameter estimators fé where (4.15) is obtained when designing the virtual control

law a1 and (4.16) is obtained when designing the control law u.

Proof. LetA, Ap, u, it € Rog, n=lxT  £T]" € R with [g| < A, #=[xT 81" € R™PL,
A=xT z 07" € R™2P, z= ¢ — a7 andd = 6 - 637 ég]Twith f=[0T é;]T, 6] < Ap and
1] < 6. Consider the system (4.12). There exibts 0 such that condition (4.5) holds for
T € (0,T) with &3 € K, andi whené = a7 as input such that

AWr = Wr (X", 8%) — Wr(x.6) < ~Tas(lil) + TA (4.17)

wherex® = x+ T(Ax+ Bat(x, 6y) + ¢'6). Then, using delta operator, the Euler approximate

models ofx, zandd; can be written as:

6X=Ax+B@z+ar)+¢'0 (4.18)
+,é+ _ ’é

§z=u- at(X X)T ar(.6 e (4.19)

60; = ~T'zn (4.20)

Let A = SURy <A 01<A.71<Ap, Te(0.T) max{|x* |, x{1, X1, XT]} that is well defined since functions
at, ¢ are continuous. Lek = maxA, A1} generate§’, M, such that inequality 4 in Hypoth-
esis 4.3.1 holds. Le¥l = SUR, 4 y<iii<a, Te(o.F) MaXIE — ], |AX+BE+076l, |gil, M1, 161, 161}
which is well defined since all the considered functions amgtiouous over the given com-
pact set. LefT* > 0 and for eachll € (0, T*) let the Lyapunov function/t be defined as
Vr (X, €, 6) = Wr(x 6) + 322 + %égr—léf. It is obvious that conditions (4.4) and (4.6) are sat-
isfied, (see [48]) and hence, to prove SPA stability, it isug/ioto show that conditions (4.5)
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and (4.7) are satisfied. First, it will be shown that condit{d.5) holds.

SV _AVT _VT(k+ l)+VT(k)
T T

~ ~ T ~ ~
= oW + 267 + B} T 268 + E((52)2 + (66,) ' T 160,)

6Wr can be written, using the mean value theorem, as:

M = W (X", 8%) — Wr (X, 65) + W (X7, 8%) — Wr (X, )

T
AW (W, )
- S+ [Tt an (4.21)
wherex® = X + T{1B(¢ — a7) and?y € (0, 1).
Then,6Vt can be written, using (4.18-4.20) and (4.21), as:
_ AWT aVVT o G‘/T(X+’ é;) —ar (Xa éX) T
SVr = = +( ™ (X ))Bz+ Z(u T + ¢ 0)
. T T4
— Gl 20+ E(((Sz)2 + (66) ' T 260y)
CAWr  ((OWr, L\ (OWr
== +(( o (X )) ( o (xo)))Bz cZ +zA
+ %((52)2 + (66) ' T 260,) (4.22)
. at (% ) —ar (X Bx) o ~ T2
with A = OG0 8) _ g e (o )T
Using the mean value theorem, the i (x°)) — (% (%)) Bzcan be written as:
aWT o 6VVT Vs YE
(2250 (2 g <o w2
Using the mean value theorem, it can be obtained that
at (X, 07) — at(x, 6% . -
T(XO X)T T( X) _ —(6;;(X*,0;))¢T0x (424)

wherex” = x} + Tto¢"6x andt, € (0, 1).
Then, using the mean value theorem and (4.24)an be written as:
_ [{9at ~ dat, , ~ daTt ~ T oaT T
A= ((W(XS,H;Z)) - (W(X ,9;)) - (W(XS,H;Z)))fﬁ Ox — dz{( " (XS, ))
& e A ~ 2 [Oat A ~ daT
= —(W(X ,9;))52T(¢T9x) - (W(XS,QD)QJ@X -d (

wherex™ = x + Tlal3¢" 0 andés € (0, 1).
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Using (4.17), (4.23), (4.25) and Young'’s inequaliiy;r can be written as:
2((920/1- wx D+ ) 3
6VT<— X, 69) |62 T (6787 + TM —c22+—|¢ O’
-|Vd (80” (%5 e*)) Z+ 7¢ 9x| +3 ((clz +|( (<, 9*))52T(¢ 6
aVVT ot 80’/ N+
|+ [ .55)

2
oa A ~
(a—;(xg,e;))eﬂex

<-as(A) +a+TM3—cZ + 4—1d|\7|4 + g(((c+ DM + K2 + (d + 1)N3)° + TIN1%)

T

+d |2 + 167, O¢l)? + ITl|Zepn %)

< ~a3(lil) - Z + p.
Then, from Proposition 1 in [48], there exists € K., such tha\Vt < —Tasz(77]) + Tpu.
Finally, the following equation shows that condition (4hoids,

(5 %) [ o)

<(c+1)M + 2M? + dM® = M.

2

ul < clg —at|+ I|3|+|—|+|¢n@g|+0| 12

Consequently, system (4.12)-(4.13) with the controllet 43 and parameter estimators (4.15)
and (4.16) is SPA stable and since the Euler approximate Indae-step consistent with

the exact model the same property holds for the exact disedesystem (4.10)-(4.11). H

Considering the system (4.8)-(4.9), another adaptive siapking controller design will be
presented for the Euler approximate model (4.12)-(4.1BvbeDifferent from the controller
in Theorem 4.3.2, the controller design in this case is basedtie Euler approximate models

of the parameter estimators obtained using the algoritivengn [22] and stated in Chapter 2.

Hypothesis 4.3.3[48] There existl > 0, a pair (e, Wy) and parameter estimatofs(k + 1)
fori = 1,...,n— 1 that are defined for each E (O,f) and that SPA stabilize the subsys-
tem (4.12) with¢ € R regarded as its control where the parameter estimatpfis + 1) are
the Euler approximate models éf which are obtained during the design @f using the

technique given in [22]. Suppose also that the followingisiho

1. for anyA > Othere exists\ > 0 such that¢;| < A for eachjx < Aandi= 1,2, ....n,

2. at and W are twice djferentiable for any Te (0, T);
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3. there exists € K., such thatjer(X)| < (X)) for all %=[xT gI]" € RM1DFED and

T € (0, T) where xe R™ andéy = [61, b, ..., Bn_1] With §; € RP;

4. for anyA > Othere exists a pair of strictly positive numbéis My) such thamax(|%T,

2 2! ~ ~ ~ ~ —
%01, |1 Z0x), | 2%, 12} < Niy for each Te (0,T) and|X| < A, 6] < Ap, |6 < 6 where

B = [B1.B2, ..., Bn] and by = [61, O, ..., O] With 6 = 6, — 6 + B;.

The following theorem provides the SPA stabilizing adaptsackstepping controller design.
The controller design is based on the Euler approximate h{dde?)-(4.13).

Theorem 4.3.4 Assuming that Hypothesis 4.3.3 holds, the system (4.123)(4 SPA sta-
ble with the following controller and the adaptive laws fbend so is the exact discretized

system (4.10)-(4.11).

= —ofe - ar(x.d) - | G )|+ T

2
. NRIZ) Ry
- ¢I(9n +Bn) — d(€ — a1(X, 6x)) (%(X& 9;)) (4.26)
Gk+1)=6-T 2 %(erl + (G + ) (4.27)
m=1 8Xm "
fori=1,..,nwhere ¢d >0, x, = &,
X
100 X) =1 [ 10020 By 6 )
wherey; > 0 are constants and; (x;) areC™"' functions withs; (x;) = 0 and
Aat = a1(X5, 65) - at(x 6y), (4.28)
X = X+ T(AX+ BE+ @7 (Bx + 6x)), (4.29)
G = X+ T(Ax+ Bat + ¢ (Bx + 6x)) (4.30)

WIthBX = [ﬂlaﬂZ; ~-~aﬂn—l]! éX = [91592a -«-,én—l] Wlth él € Rp

Proof. LetA, Ap, p, i € Rog, n=[x" €7 € R"with ] < A, i=[xT  §]]" € R-DP+L)
with 7l < A, =T z 67" e RODP 7z = ¢ — o1 and = [By, 6] with Oy = [61, O, ..., On-1],
6 = 6 — 6+ i, 16 < Ap, 6] < 6 andc = c1 + cp. There existd > 0 such that condition (4.5)
holds forT e (0, T) with & andds € Ko, considering system (4.12) wheén= a7 as input

such that

AWr = Wr (X", 87) — Wr(x.6x) < —Tas(lil) + TA (4.31)
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wherex™ = x+ T(AxX+ Bat +¢'6). LetA; = SURy <A jo1<a.fl<a, Te(.F) MAXIXTL X1 X1, 1X71}
that is well defined since functionsr, ¢;, 8 are continuous. Let = maxA, A1} generates
T, My such that inequality 4 in Hypothesis 4.3.3 holds. Net s, <z i<, T<(0) MaX

1€ — atl, IAX + BE + ¢7 6], |¢il, M1, 11, 16], |81} which is well defined since all the considered

functions are continuous over the given compact set.Tet 0 and for eacilT € (0, T*) let

the Lyapunov functioV/r be defined a¥r(x, £, 6) = Wr(x, 6x) + 322 + o 62. It is obvious
that the conditions (4.4) and (4.6) are satisfied and heogqaolve SPA stability, it is enough
to show that conditions (4.5) and (4.7) are satisfied. Hirgt]l be shown that condition (4.5)

holds.

Using delta operator, the Euler approximate model,afan be written as

(Sén =
m=1 5Xm

1 Bn (4.32)

6Wr can be written, using the mean value theorem, as:
We (XF, B5) = W (5, 65) + Wr (5, 6%) — War (X, Bx)
T
() Bt - am) (4.39

SWr =
AW (awT

T ax

wherex® = X + T{1B(¢ — a7) and?y € (0, 1).

Then, using (4.18), (4.19) , (4.32), Remark 6 in [22] and gipgl the delta operatosV can
be written as:

1 ~0
06
402%]( n)")

a1 (X", %) — a1 (% by)
T

(66n)?)

oVt = OWr + 2072+

1 ~ ~ 7T 2
61,06 + =((6Z
Ay notn + 2(( )< +

AWt oWt .
< - + (W(X ))Bz+ Z(u-—
1 T7 \2 T 2
- 4—02(¢n9n) + E(((SZ) +
AWt oWt . oWy _,
< — - CZ2 + ((W(X )) - (W(XO))) Bz+ zA

=
1 ~2 T
= 2nbn = 35 (0nbn)" + 5((62° +

+ ¢ 0)

1
4coyn

1 ~0

06,
T )
with
2

ar(x.85) —ar(x.8) et , o\
A= T ‘d%( )

Using the mean value theorem, the i (x°)) — (52 (X)) Bzcan be written as:

ox

((%(%})) - (%(x@))) Bz< TM3. (4.34)
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Using the mean value theorem, it can be obtained that

(X, é;))¢Téx (4.35)

a1 (06, 05) — a1 (X, 6%)  (dar
T | ox

wherex" = x¢ — Tto¢"6x andt; € (0, 1).
Then, using the mean value theorem and (4.85)an be writter{ 2L (x; . 61))¢" fy as:

dat . -, aT e o dat . -, Th dat (. o, !
(-5 ol )

0%t o Ok ~2 [dat . A, 3 + O !
Z—(W(X ,9x))52T(¢T9x) +(ﬁ(xo,9x))¢T9x—dZ{(W (Xo,ex))

2

wherex™ = x3 — Tlol3¢" 0 andés € (0, 1).
Using (4.31), (4.34), (4.36) and Young'’s inequalify,r can be written as:
svr < 20 |z(‘9 T (x, 9*)) ET@ 0+ TM3 - 2 + —(¢ B’

- VH(%LXT(X;,@:)) z- 7¢Téx|2 ~ (Veaz~ \/_qbn n6n)? + ((c|z|
T |
(6a/T (xg - ))T

% (. e+>)¢Téx
< -a3(A) +a+TM - 22 + iM"’ + =(((c+ 1)I\7I + M2+ (d + 1)M3)? + L|\7I6)
2 4Coyn

2
(a (x", e+))sz<¢ 5.y
2

12 + 11 6nl)? *2

+d 6ﬁn

¢m||9n|) )

4d

< ~a3(fj) - o Z + 4.
Then, from Proposition 1 in [48], there exists € K, such that
AVT < -Tas(il) + Tu
Finally, the following equation shows that condition (4hoids,

(S

< (c+ 1M + 3M? + dyM® = M

2

(a (x5, ))T 12

ul < ¢lg —at| + |B|+|—|+|¢n(9n +Bn)| +d

Consequently, system (4.12)-(4.13) with the controlle2§} and parameter estimators (4.27)
is SPA stable and since the Euler approximate plant modehésstep consistent with the

exact model the same property holds for the exact discrefiystem (4.10)-(4.11). |
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4.4 Applications

In this section, design methods given in Theorems 4.3.2 aB¢! dre applied to two terent

systems and the simulation results are analyzed.

4.4.1 Second-Order System

Consider the following plant

X1 = Xo + X129 (4-37)

X2 = U. (4.38)
whered is the unknown parameter.

First, the controller in Theorem 4.3.2 and the emulationhef tontinuous-time controller

designed using the tuning function technique will be agpt@the system (4.37)-(4.38).

For the system (4.37)-(4.38), the continuous-time adapbackstepping controller is de-
signed according to the adaptive backstepping method basedning function technique

given in [30] as:

0 =3 + (Coxe + X20 + X) (240 + C1)X (4.39)

Ugt = —X1 — C2(C1 X1 + Xo0 + Xp) — (2x10 + C1) (X2 + X26) — xfé (4.40)

Then, the controlleur is obtained using (4.14) in Theorem 4.3.2 with the estiméior 1) =
0+ T, ar = —C1x¢ — 29 and the Lyapunov functioly = 12 + 162. Simulations have
been performed in order to compare performances of coatrofl and the emulationug

of continuous-time controller (4.39)-(4.40) withfidirent sampling periods and initial condi-

tions. In simulations, following parameters are usee:c; = ¢, = 3 andd = 1.

In the first simulation, the initial conditions are chosenxg®) = x»(0) = 3 andé(0) = O.
Simulation results for the time responsexgtnd the estimate @fwith the sampling period
T = 0.002 are given in Figure 4.1. Itis shown that both controlieabilize the system (4.37)-
(4.38), but faster with controllenr. As the parameted increases, the performance of the
controlleruy is faster but further increase results in performance diegian. The controller

ur cannot stabilize the system fdr> 14.
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Then, the simulation is performed with the initial conditsogiven above and large sampling
period T = 0.1. Simulation results given in Figure 4.2 show that while &neulation con-
troller ug cannot stabilize the system, the controllgrworks well again. As the parameter
d increases, the controller yields faster results but further increase results in perémce
degradation. The controller; cannot stabilize the system fdr> 0.04. While the emula-
tion controllerug cannot stabilize the system fdr> 0.003 the controlleuy stabilizes until

T =01

Finally, the controllers are applied to the system (4.3738) with the same sampling period
T = 0.002 as in the first simulation and initial conditions double(@) = x,(0) = 6. Simu-
lation results are shown in Figure 4.3. While the emulationtmller ug cannot stabilize the
system (4.37)-(4.38), the controllef still performs very well, even when compared to the

continuous-time controlleug;.

As can be seen from figures, it can be observed that the paaestimate from the estima-
torO(k + 1) = 6 + Txf designed for the controllarr does not converge to the correct value
of 6 although it is bounded. This is expected due to the pracsiedility, rather than global
asymptotic stability property of the error dynamics of tistireator. However, the estimator

error of the controlleuy is smaller than that of the emulation controligr.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantEies smaller value.

As can be seen from figures, the control inpgis produced with less energy when compared
to the control inputug. Therefore, the proposed method requires less confimite Simula-
tion results also show that when the parametér increased, energy of the control inpyt

decreases in general.

Finally, by applying the controllers to the system (4.3%)38) with diferent initial condi-
tions, domain of attraction (DOA) estimates with the colirs ur andug for the sampling
periodT = 0.002 are given in Figure 4.4. In DOA estimate with the conénallr, the parame-
terdis chosen ad = 0.1. As can be seen from figure, DOA for the system with the cdietro
ur is much larger than that with the controlleg. For different controller parameters and
sampling periods, DOA estimate with the controllermay be much larger than the estimate

given in figure.
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Second, the controller in Theorem 4.3.4 and the emulatidhetontinuous-time controller

designed using the technique in [22] will be applied to thetesy (4.37)-(4.38).

The continuous-time adaptive controllag for system (4.37)-(4.38) is designed using the
method given in [22] withB = ylx_; The controllerur is obtained using (4.26) and (4.27) in
Theorem 4.3.4 wither = —(¢1 + §)x1 — X2(6 + B), the Lyapunov functiomr = 22 + ﬁzl2
andg = ylg wherez; = 6 — 6 + 8. Simulations have been performed in order to compare
performances of the controller and the emulationyg of continuous-time controller with
different sampling periods and initial conditions. In simwa$, following parameters are

used:.c=c; =C = 3, =0.0002,y; = 0.05 andd = 1.

In the first simulation, the initial conditions are chosenxg®) = X»(0) = 3 andé(0) = O.
Simulation results for the time responsesxptind the estimate @f with the sampling period
T = 0.05 are given in Figure 4.5. It is shown that both controlléabiize the system (4.37)-
(4.38), but faster with the controller-. As the parametett increases, the performance of the
controlleruy is faster but further increase results in performance diegi@n. The controller

ur cannot stabilize the system fdr> 0.6.

Then, the simulation is performed with the initial conditsogiven above and large sampling
period T = 0.15. As can be seen from Figure 4.6, the emulation controfiecannot sta-
bilize the system withT = 0.15. On the other hand, the controllef stabilizes the system
successfully. As the parametgincreases, the performance of the controlleris faster but
further increase results in performance degradation. Dméraller ur cannot stabilize the
systemd > 0.02. While the emulation controllarz cannot stabilize the system for> 0.1

the controlleruy stabilizes untilT = 0.15.

Next, the controllers are applied to the system (4.37)8/v@ith the same sampling period
T = 0.05 as in the first simulation and large initial conditioxg0) = x>(0) = 5. Simula-
tion results are shown in Figure 4.7. Both controllers $itabihe system (4.37)-(4.38), but

smoother and faster results are obtained with the contrefl@gain.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantders smaller value.

Finally, by applying the controllers to the system (4.3%38) with diferent initial condi-

tions, domain of attraction (DOA) estimates with the coltérs ur andug for the sampling
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period T = 0.05 are given in Figure 4.8. In DOA estimate with the controlle, the pa-
rameterd is chosen asl = 0.001. As can be seen from figure, DOA for the system with the
controllerur is slightly larger than that with the controlleg. For different controller param-
eters and sampling periods, much larger DOA estimate maytaned with the controller

ur when compared to the estimate given in figure.

In addition, to see thefiect of adding a constant & all the controllers are designed with
B = yl(g + v2) and applied to the system (4.37)-(4.38). Simulation tesulth T = 0.05,

v2 = 0.5 and the initial conditiong;(0) = x2(0) = 3 can be seen from Figure 4.9. It is shown
that results in this case are faster and with smaller ovetshehen compared to the results in

Figure 4.5.
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As can be seen from figures, the control inpgis produced with less energy when compared
to the control inputug. Therefore, the proposed method requires less confimite Simula-
tion results also show that when the parameter increased, energy of the control inpyt

decreases in general.

Consequently, in this example, the controller designedgu$heorem 4.3.4 gives stable re-
sults with larger sampling periods when compared to therotiet designed using Theo-
rem 4.3.2. Due to the structure of the parameter estimatofcheorem 4.3.4, parameter
estimation error of the controller designed using TheoreBu4is smaller than that of the

controller designed using Theorem 4.3.2

4.4.2 Aircraft Wing Rock

In this part, the problem of wing rock elimination in highffigmance aircraft is considered.
Wing rock is a limit cycle oscillation which appears in thdlirmg motion of slender delta
wings at high angles of attack (see [18, 20] and the refeseincgection 4.6 of [30]). Consider

the following equations which describe the motion of thegiB0, 42]:

5(1 = X2 (4.41)

Xo = X3 + ¢2(X1, %2) 6 (4.42)

X3 = }U - 1-X3 (4.43)
T T

where the stateg;, X, and xsz represent the roll angle, roll rate and aileron deflectiogign
respectively,r is the aileron time constanty is the control inputg € R® is an unknown

constant vector angh (X1, X2) = [1, X1, X2, |X1|X2, |x2|x2]T.

First, the controller in Theorem 4.3.2 and the emulationhef tontinuous-time controller

designed using the tuning function technigue will be agpt@the system (4.41)-(4.43).

For the system (4.41)-(4.43), the continuous-time adapbackstepping controller is de-
signed using the adaptive backstepping method based omgtdimnction technigue given
in [30]. Then, the controlleur is obtained using (4.14) in Theorem 4.3.2 with the estimator
Ok + 1) = 6+ TI(X2 + C1x1)d2, a1 = —Co(Xo + C1X1) — 2" and the Lyapunov function
Wr = $x2 + (%, + €1%)? + 367 T14. Simulations have been performed in order to compare

performances of the controller with the emulationug of continuous-time controller with
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different sampling periods and initial conditions. In simwa$, following parameters are
usedic=c;=cp=57= %5 6 = [0,-26.67,0.76485-2.92250]" andI’ = 0.02I wherel

is the unit matrix.

In the first simulation, the initial conditions are choserxg®) = 0.4, X(0) = x3(0) = 0 and
6(0) = 0. Simulation results for the time responsesxgfx, and xs with T = 0.1 are given
in Figure 4.10. It is shown that both controllers stabilire system (4.41)-(4.43), but faster
with controllerur. As the parametat increases, the performance of the contralieis faster
but further increase results in performance degradatibe.cbntrollerur cannot stabilize the

system ford > 0.02.

Then, the simulation is performed with the initial conditsogiven above and large sampling
period T = 0.15. Simulation results are given in Figure 4.11. It is shohat the controller
ur yields faster results when compared to the emulation chetroz. As the parameted
increases, results of the controller are faster. Fod > 0.015, the controlleur cannot
stabilize the system (4.41)-(4.43). The emulation coldralg yields slower results with
larger overshoots when the sampling periods increased. While the emulation controller

Ue gives unstable results fdr > 0.15, the controlleuy can stabilize untill = 0.2.

Finally, the controllers are applied to the system (4.4133%) with the same sampling period
T = 0.1 as in the first simulation and initial conditions doublg¢0) = 0.8, x»(0) = x3(0) = 0.
Simulation results are shown in Figure 4.12. While the etmariacontroller cannot stabilize

the system (4.41)-(4.43), the controller still performs very well.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantetes smaller value.

Second, the controller in Theorem 4.3.4 and the emulatidhetontinuous-time controller

designed using the technique in [22] will be applied to theteay (4.41)-(4.43).

The continuous-time adaptive controllag for system (4.41)-(4.43) is designed using the
method given in [22] with = yl[xz, X1X2, 5 %27, 3[X1|X22, %|x2|x22]T. The Euler based adap-
tive backstepping control lawy is obtained using (4.26) and (4.27) in Theorem 4.3.4 with

at = —(X1+ (C2+ §) (X2 + C1x1)) — ¢2" (0+53), Lyapunov functionMr = 252 + 1(xo + c1xq)? +

2
(r18)

been performed in order to compare performances of thedaltantur and the emulationyg

T R . .
2"z andp = yl[xz, X1X2, 3 %27, 3|Xa|X22, %llexzz] wherez, = 6—6+4. Simulations have
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of continuous-time controller. In simulations, followipgrameters are used= ¢; = ¢; = 5,

& =0.0002,y; = 0.01,7 = - andé = [0,-26.67,0.76485-2.92250] .

In the first simulation, the initial conditions are choserxg®) = 0.4, x»(0) = x3(0) = 0 and
6(0) = 0. Simulation results for the time responsesxgfx, and x3 with T = 0.1 are given
in Figure 4.13. It is shown that both controllers stabilire system (4.41)-(4.43), but faster
with controlleruy. As the parametat increases, the performance of the contralieis faster
but further increase results in performance degradatibe.cbntrolleru; cannot stabilize the

system ford > 0.025.

Then, the simulation is performed with the initial conditsogiven above and large sampling
periodT = 0.15. Simulation results are given in Figure 4.14. It is shotat the controller
ur yields faster results when compared to the emulation clbaitro=. As the parameted
increases, results of the controllef are faster. Fod > 0.01, the controllerur can not
stabilize the system (4.41)-(4.43). The emulation coldgralg yields slower results with

larger overshoots when the sampling peribds increased. Both controllers give unstable
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results forT > 0.2.

Next, the controllers are applied to the system (4.41)3{wiith the same sampling period
T = 0.1 as in the first simulation and initial conditions doublg¢0) = 0.8, x»(0) = x3(0) = 0.
Simulation results are shown in Figure 4.15. Both contrsligtabilize the system (4.41)-

(4.43) successfully, but faster with the controllgr.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantdiers smaller value.

Finally, to see the féect of adding a constant 16, all the controllers are designed with
B=mn ([xz, X1X2, 3%22, 31X1|%22, :l%|x2|x22]T + yz) by adding a constant t8 and applied to
the system (4.41)-(4.43). Simulation results with= 0.1, y, = 25 and the initial conditions
x1(0) = 0.4, X(0) = x3(0) = 0 can be seen from Figure 4.16. It is shown that results in this

case are faster and with smaller overshoots when compatbd tesults in Figure 4.13.

45 Conclusions

In this chapter, the problem of adaptive backstepping otiatrdesign has been considered for
sampled-data nonlinear systems in strict feedback forngudirect discrete-time design. Two
adaptive backstepping design methods has been presersed da the Euler approximate
model. It has been shown that the designed controllers SPAlize the closed-loop sampled-
data system based on the framework proposed in [46]. Theopeabdesigns have been

applied to two diferent examples. Their performances are analyzed with ationk.

For the problem considered, the error in parameter estimdtéhaves as disturbance. It is
known that even exponentially decaying disturbances cataldiize the sampled-data non-
linear system. Hence, in this chapter, the controllers wlesggned to compensate théeets

of this factor. As a result of this measure taken, the sinaratesults have shown that the

controllers designed by the proposed methods outperfoerartiulation controllers.

While sampling is ignored prior to the implementation stagemulation design, it is consid-
ered from the beginning of the design process in direct elisetime design which is used in
this chapter. Therefore, simulation results show that #eégihed controllers can stabilize the

system with larger sampling periods when compared to thdadiom controllers.
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CHAPTER 5

ROBUST BACKSTEPPING FOR THE EULER APPROXIMATE
MODEL OF SAMPLED-DATA NONLINEAR SYSTEMS

5.1 Introduction

In this chapter, a robust digital controller design methddcl is the modified version of
the method given in [58] is proposed. In this method, the rodliet is designed by robust
backstepping based on the approximate discrete-time mddas controller semiglobally

practically asymptotically (SPA) stabilizes the sampiieda nonlinear systems.

Robust controller is designed to deal with model unceryaamd disturbances. Robust back-
stepping for continuous-time nonlinear systems have beadelyvstudied in the last years
(see [14, 15, 39, 16, 29] and references therein). With tabaskstepping, [14, 15, 39, 16]
achieved global stabilization in the presence of distutban The emergence of robust back-

stepping was described in [29].

On the other hand, the problem of stabilization of sampla@-donlinear systems in the pres-
ence of disturbances has not received much attention. ifp8t{to-State Stability) and I0OSS
(Input-to-Output-State Stability) properties are disagsin [45, 36, 35]. In [58], robust back-
stepping for sampled-data nonlinear system in strict faekltiorm using Euler approximate

model is presented.

In this chapter, the problem of robust backstepping comtrehmpled-data nonlinear systems
in strict feedback form based on the Euler approximate madebnsidered. The robust
backstepping method given in [58] is modified to compendaeafiect of diference between

disturbance or model uncertainty and their bounds. It isvehiinat the designed controllers
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SPA stabilize the closed-loop sampled-data system bast#wdramework proposed in [46].

Also a numerical example is given to illustrate the desigthme:.

The chapter is organized as follows. In Section 5.2 prelamas are given. The main results
are stated and proved in Section 5.3. Then, in Section 5dpplication example is provided

to illustrate the design method. Finally, conclusions aesented.

5.2 Preliminaries

This section provides technical preliminaries. Commoratoh and definitions which will
be used throughout the chapter are presented. For the saka@itf and easy reading, some

notions and definitions that have been introduced in Ch&psee repeated when necessary.

For a functiond : Ry — R", d(k) denoteqd(t) : t € [KT,(k+ 1)T)L,ke Z*,ne N, T € Ry.
It is said thatd € L, if d is Lebesgue measurable and there exigtsR. such that|d||., =

sup |d(7)| < r and||d¢|| , denotes  sup |d(r)| <r.ke Z*, T € Rso.
R0 Te[KT.(k+)T)

Consider the following continuous-time nonlinear system
x = F(x(t), u(t), d(t)) (5.1)

wherex € R" is the stateu € R is the control inputd € R™ is the exogenous disturbance and
Lebesgue measurable and the functfois locally Lipschitz. The control inputl is realized
through a zero-order hold such thdt) = u(kT) := u(k), ¥t € [KT, (k+ 1)T),k € N where

T > 0is the sampling period.

The ditference equation corresponding to the exact discrete-tioaehof (5.1) and its ap-

proximate discrete-time model are represented by:

X(k + 1) = FF(x(K), u(k), d(k)) (5.2)
X(k + 1) = F&(x(K), u(k), d(k)) (5.3)
respectively.

To measure the discrepancy between the exact model and phexapate model, one step

consistency property, as defined in [46], is used:
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Definition 5.2.1 ([46]) The family F}(x, u) is said to be one-step consistent with the exact
discrete-time model {x, u) if, for each compact se® c R" x R™, there exists a clas#
functionp(.) and a constant § > 0 such that|F3(x, u) — F3(x, u)l < Tp(T) for all (x,u) € Q

and T € (0, To].

The definition of SPA stability and SPA stability Lyapunowétions can be deduced from

[45] as follows.

Definition 5.2.2 [45] The family of controllers ¢ SPA stabilizes  if there exist®8 € KL

such that for any strictly positive real numbds,, Ag, V) there exists T > 0 such that for
each Te (0, T*) the solutions of ¢k + 1) = Fr(x(K), ut(x(k)), d(K)) satisfy: |x(k, x(0), d)| <

B(%(0),kT) + v, for all k > 0, wheneveix(0) < Ay and de L, with ||d||, < Aq.

Definition 5.2.3 [45] Let T > Obe given and for each & (0, T) let functions ¥ : R" — R
and ur : R" — R™ be defined. The pair of familidar, V) is a SPA stabilizing pair for I if
there existry, a2, a3 € K, such that for any pair of strictly positive real numbérs,, Ay, 6)
there exists a triple of strictly positive real numbéf&’, L, M), with T* < T, such that for
all x,z € R" with max{|x|, |2} < Ay, alld € L, with||d|l, < Agand T € (0,T*), and the

following conditions are satisfied:

a1(IX) < Vr(x) < az(X) (5.4)

Vr(Fr(x ur(¥),d)) = Vr(x) < -Tas(IX)+Ts (5.5)
Vr() -Vr@l < Lix-17 (5.6)

ur(x)l < M (5.7)

If the approximate model (5.3) is consistent with the exaotet (5.2), stability properties
for (5.2) can be deduced from the stability analysis of (&c@)ording to the following theorem

which is a direct consequence of Theorem 3.2 in [45].

Theorem 5.2.4[45, 50, 51] If (ur, V) is a SPA stabilizing pair for &, then u stabilizes

Fe.

Then, stability properties of the sampled-data system) ¢ai be deduced from those of exact

discretized system under certain conditions [51].
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5.3 Main Results

In this section, the design of SPA stabilizing robust basiging controller is presented for
sampled-data nonlinear system in strict feedback form. cbimroller design which is mod-
ified version of the method given in [58] is based on the Eufgraximate model. The
controller is designed to compensate tlfkee of diference between disturbance or model

uncertainty and their bounds. This is the maifiatience from the controller given in [58].

Consider the following parametric strict feedback system

= () +9m)é + (5.8)
&= a(n, &) +Bnu + d (5.9)

wherex = [T gT]T with n € R" and¢ € R™M is the state vectorf(0) = O, f,g,« are
differentiable sfficiently many timesp(n) # 0, ¥n, the control inputu € R™ is realized
through a zero order hold such that) = u(kT) := u(k), vt € [kT,(k+ 1)T),k € N and
the state measuremenifk) := n(kT) and£(k) := £(kT) are available at sampling instants
KT,k € N whereT > 0 is the sampling period andl = [dI og]T € L is unknown and

models the uncertainties or perturbations acting on thiesys

In this section some information on the uncertain terms gpeged to be available. The
following type of hypothesis is given in [58] which is stamdavhen dealing with perturbed

strict feedback systems [15].

Hypothesis 5.3.1[58] 1. d; € C([tp, o) x R™™ R") and & € C([tg, c0) x R™M R™M),
2. There exist known functiopg € C1(R", Rsq) with p1(0) = 0, p» € C1([tg, c0) x R™M R™)
such that, for all(t, X) € [tg, o) x R™™M : |d4(t, X)| < p1(r) and|da(t, X)| < p2(X).

Suppose that family of exact discrete-time models of théegy$5.8)-(5.9) is

n(k+1) = Fr+(7,¢,u,0h) (5.10)

Ek+1)=FZr(n.¢ udb). (5.11)

Since the exact discrete-time models (5.10)-(5.11) areavaitable in general, approximate

discrete-time models are used. Also condition (1) in Hypsth5.3.1 will be assumed to hold.
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Hence the following Euler approximate discrete-time madéb.8)-(5.9) is considered.

n(k+1)=n+T(f(n) +9m)¢ + d1) (5.12)
Ek+1) =&+ T(an.§) +Bnu + do) (5.13)

The following functions are defined in [58] are going to bedisethe sequel.

Definition 5.3.2 [58] For any &, T € Ry, n € Z*, the function sat.n(2 : R" — R"is
- - T

defined as, for z [z, ..., )] € R": satr.n(2) = [satr.1(z), ..., satre1(z,)] with

signz), if z]> £

satt;1(z) =
p(z),  otherwise

where p: R - R, p(0) = 0and|p| < 1over|-1£, 2|, yp(y) = Ofory e [-2£, Z¢| is such

n’>n

that function sat, , is Ct overR".

Hypothesis 5.3.3[48] There existT > 0 and a pair (¢, Wr) that is defined for each E
(0,T) and that is a SPA stabilizing pair for the subsystem (5.12) @wic R™ regarded as its

control. Suppose also that the followings hold:
1. ¢t and W are twice djferentiable for any Te (0, T);

2. there exist® € K., such thatgr ()| < ¢(nl) forall y € R™, T € (0, T);

3. foranyA > Othere exists a pair of strictly positive numbéfs M;) such thamax| 2|,

on
1S9 1 541 154 1) < Ky for each Te (0. ) andlyl < .

The following theorem provides the SPA stabilizing robuathstepping controller design

based on the Euler approximate discrete-time model of sadvgdta nonlinear system.

Theorem 5.3.4 Assuming that Hypotheses 5.3.1 and 5.3.3 hold, the systd@){5.13) is
SPA stable with the following controller and so is the exasti@tized system (5.10)-(5.11)

i
U= B)(— ofé - dr() - g(n)T(%(no)) 2T o)

5¢T L

(5 - (5, (no))cil +dp) (5.14)

— K

where ¢k > 0, A¢gr = ¢T(n5) — o7 (1), 775 =n+T(f() +9m)é), ng = n+ T(F(n) + 9@m)é1),
di = p1Satren (€ - o1(m) %2 (14)} anddz = —pzsatrsm (€ — ¢1(n))) with & € Rso.
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.
Proof. LetA, u, ji,e € Ryo, X=[p" Z'] € R™Mwith |X] < Aandz= &-¢7. Consider the
system (5.12). There exists> 0 such that condition (5.5) holds far < (0, T) with &3 € Ko

andug whené = ¢t as input such that,
AWr = Wr (") = Wr () < ~Tas(nl) + Ta (5.15)

wheren™ = n+T(f(n)+9(n)¢t+d1). Then, using delta operator the approximate discrete-tim
models (5.12)-(5.13) can be written as:

on = f(n) +9m(z+ ¢7) + di (5.16)

¢1(7") — 1 () - d

- (5.17)

6z=a(n,&) +plnu -

with 77 = n + T(f(n) + g)¢ + dv). Let Ay = SURg, 1o F) MaXIn ™l gl Igls 171} that is
well defined since functions$, g, ¢1, d; are continuous. Lek = maxA, A1} generateé’, M,
such that inequality 3 in Hypothesis 5.3.3 holds. Met SURg<a Te(o ) MaXIé — ¢l 1T (m) +
agm)él, la@)l, My, 1B, la(, €I, p1, p2} which is well defined since all the considered func-
tions are continuous over the given compact set. TUet- 0 and for eachil € (0, T") let
the Lyapunov function/t be defined a¥+(n, &) = Wr () + %sz. It is obvious that condi-
tions (5.4) and (5.6) are satisfied, (see [48]) and henceaoeSPA stability, it is enough to
show that conditions (5.5) and (5.7) are satisfied. Firstjlitbe shown that condition (5.5)
holds:

AVt _ VT(k+ 1) —VT(k)
T T

T
6Vr = =Wy + 26z + E(((SZ)T(Sz).

6Wr can be written, using the mean value theorem, as:

Wr (7%) — Wr (") + Wr (") — Wr (1)
T

+(E—or (n))Tg(n)T( (77°)) (5.18)

oW =
AWr

wheren® = 1" + To19(n)(¢ — ¢7(n)) ando; € (0, 1).
Then,6Vt can be written, using (5.16), (5.17) and (5.18), as:

AW T
SVr < ?T —cZz+Z (A +dp+ ) + —((52)T62)

;
o) [(%m) (G| ]

: oT(md)-¢t(n*)
with A = M |(6¢T (6¢T (77 ))d
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Using the mean value theorem, the tezhg(;)" ((%(W))T - (%(ﬁg))T) can be written

as:
OWr, o \T(OWr
Z'g(m)’ [(a_n(" )) —( (1 ))] M. (5.19)
Using the mean value theorem, it can be obtained that

ér(ng) —¢1(7") (6¢T
T — \ap

(n*))dl (5.20)

wheren* = n{ + T{1d; and/y € (0, 1).

Then, using the dierential mean value theorem (DMVT) and (5.2@),can be written,
(22 (73))ds as:

on
A—((a"ST +)) (‘9"”( )) (‘9¢T(no))) (8¢T<no»d o G

g1 T i oay
) |T61Qd1 — | — () |(d d——+ 5.21
S ) [ T R AR 521
whereQ = [Q], Q). ... QT Q; = di, ** =5 + Tt1620; and¢; € (0, 1).
Using Definition 5.3.2, it can be shown that the followingqoalities hold:
12" (—dy — dy)| < 2T Me (5.22)
12" (dy + db)| < 2T Me. (5.23)

Then, using (5.15), (5.19), (5.21)—(5.23) and Young’s urtdy, 6V can be written as:
AW 4, 2
VT < ——+ ™ (77 VT aQlo1(n) — ¢’ z+ (27 (dp + do)| + —| T (~dy - dy)|

- R ) ( i

+ ﬁﬂ (- dl_dl)D + (C|Z|

.
+ |9(77)T(—(770)) (8¢T (Uo))aﬂ +K a(,;inT

(n**))flmpl(T)

+ |da))?

< —as(n) + 1+ TM*+2TMe —cZ z+ Lreg2e? . g((c + 1N+ (2 + N2
K
< —a3(lnl) - cZ'z+ p.
Then, from Proposition 1 in [48], there exists € K., such that\Vt < -Taz(|X) + Tu.

Finally, the following equation shows that condition (5hoids,

IUISLB(U)‘ll(le—¢T(n)l+Ig(n)T(%(ﬁ ) kg (7)1 + 155 () + 162

+ |$| +la(mE) <c+2+ (k+3)M = M.
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Consequently, the system (5.12)-(5.13) with the contr@Bel4) is SPA stable and since the
Euler approximate plant model is one-step consistent wighekact model the same property

holds for the exact discretized system (5.10)-(5.11). |

5.4 Application

In this section, desigh method given in Theorem 5.3.4 isiagpb a second order system and

the simulation results are analyzed.

Consider the following continuous-time plant:

=17+ &+ di(x) (5.24)

E=U+dy(X) (5.25)
whered; : X — (1 + sin(x))x; is bounded by : x - 2/xa* andd; : X - 1+ cosf)x5 by

p2:X|—>1+X%.

The control lawgr = —n — n? — 2% and the Lyapunov functiolVr () = 3n? is SPA stabi-
lizing pair for the subsystem (5.24). The robust contrslier andup, and their nonrobust
versionsuyT andug are designed for the system (5.24)-(5.25) using the colavolpt and
the Lyapunov functionVy which are given above. The controllans andup are designed
using (5.14) in Theorem 5.3.4 and Theorem 12 in [58], re$paygt Then, the controllersg
anduyt are obtained using (3.16) in Theorem 3.3.2 and the methahgiv[48] which was
also presented in Theorem 2.3.3, respectively. The foligveimulation parameters are set:
& =0.01 andc = 1. Then, simulations have been performed in order to congeafermances

of the obtained controllers with flierent sampling periods and initial conditions.

First, the obtained controllers are applied to the syste@4{55.25) with the sampling pe-
riod T = 0.005 and the initial conditiong(0) = £(0) = 2. The parameted in the controller

Ug is chosen asl = 2. Simulation results for the time responses;pf andu are given in
Figure 5.1. It is shown that while the controllegt cannot stabilize the system, the trajecto-
ries of the system with the controllei does not converge to the origin. On the other hand,
the controllersur andup stabilize the system (5.24)-(5.25), but faster with cdidrar. As

the parametek increases, the performance of the controlleris faster but further increase

results in performance degradation. The contrallecannot stabilize the system for> 3.
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Next, the simulation is performed with the initial condit®given above and large sampling
periodT = 0.02. Simulation results are given in Figure 5.2. The paranteie the controller
ug is chosen ad = 0.01. Itis shown that the controllets, T andug give similar response with
the first simulation. The controlles yields faster results when compared to the contraiter
As the parameterincreases, results of the controllgrare faster. For > 2, the controlletur
cannot stabilize the system (5.24)-(5.25). Transientaesp of the controlleup is degraded
when the sampling period is increased. The controllets andup give unstable results for

T > 0.03.

Then, the controllers are applied to the system (5.24)5B)5:th the same sampling period
T = 0.005 as in the first simulation and large initial conditioii8) = £(0) = 3. The parameter

d in the controllerug is chosen ad = 0.05. Simulation results are shown in Figure 5.3. The
controllersuyt andug give similar response with the first simulation again. Thetaalers

ur andup stabilize the system (5.24)-(5.25) successfully, buefasith the controlleur.

As can be seen from figures, the control inpgis produced with less energy when compared
to the control inpuup. Therefore, the proposed method requires less confiimiteSimula-
tion results also show that when the parametirincreased, energy of the control inpyt

decreases in general.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the paramdtas smaller value.

Finally, by applying the controllers to the system (5.2826) with diferent initial condi-
tions, domain of attraction (DOA) estimates with the colhtrs ur andup for the sampling
period T = 0.005 are given in Figure 5.4. In DOA estimate with the conéollr, the pa-
rameterx is chosen ag = 0.05. As can be seen from figure, DOA for the system with the
controllerur is slightly larger than that with the controllep. For different controller param-
eters and sampling periods, much larger DOA estimate maytaned with the controller

ur when compared to the estimate given in figure.

The last simulation is performed for the case of withoututlsince or model uncertainty by
takingd; = do = 0 in the system (5.24)-(5.25). The parametén the controllerug and the
parametek in the controllerur are chosen a8 = x = 0.4. Simulation results are shown in

Figure 5.5. The robust controlletg andup give faster results when compared to the their
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nonrobust versiongg anduyT, respectively. In addition, the controllens andug yield faster

results than the controllesp.

5.5 Conclusions

In this chapter, the problem of robust backstepping cotasl been considered for sampled-
data nonlinear systems in strict feedback form. A contralksign which is modified version
of the method given in [58] has been presented based on tlex &pproximate model. It
has been shown that the designed controller SPA stabilizesldsed-loop sampled-data sys-
tem based on the framework proposed in [46]. Also a numeexample has been given to

illustrate the design method. The performances are arglyzé simulations.

Different from the controller given in [58], in this chapter, tumtroller was designed to com-
pensate theftects of diference between disturbance or model uncertainty and thairds.
Therefore, simulation results have shown that the desigoettoller outperforms the con-

troller in [58]. Moreover, in case of unstable results, tbatooller given in [58] can be tuned
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to obtain stable results by adapting the controller gainweéier, the controller designed by
the proposed method can also be tuned adapting anothergtaramaddition to the controller

gain. So the proposed method gives an additional flexidititytuning the controller.
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CHAPTER 6

REDUCED ORDER OBSERVER BASED OUTPUT-FEEDBACK
CONTROL FOR THE EULER APPROXIMATE MODEL OF
SAMPLED-DATA NONLINEAR SYSTEMS

6.1 Introduction

In this chapter, reduced order observer design and reducksi observer based output-
feedback controller design methods are proposed. Thededwetre based on the approxi-
mate discrete-time model. It is shown that these contob@d observers semiglobally prac-

tically asymptotically (SPA) stabilize the sampled-datalinear systems.

In many applications only a part of the state vector is ats@ldrom measurement. Thus
control using output feedback or dynamic feedback is necges®esigning an observer for
unmeasured states is a useful method to be used for coimsfraatoutput feedback controller.
Considering the output feedback tracking problem, obsdyaeed output-feedback control
design for continuous-time nonlinear systems using thermvies backstepping procedure is
proposed in [30]. On the other hand, the problem of outpudifaek stabilization of sampled-
data nonlinear systems has not been studied much in thatliter[10, 28, 65]. In particular,

[10] and [28] showed that obtained sampled-data contsllsing high gain observers can

recover the performance of the continuous-time state fsgdbontrollers.

In this chapter, the problem of reduced order observerebaseput feedback control of
sampled-data nonlinear systems in strict feedback formdas the Euler approximate model
is considered. First, the design of reduced order obsefeesampled-data nonlinear systems

is presented, which is an extension of the reduced ordemwdrsgiven in [33] to a general
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class of multi-input nonlinear systems. Then the desigredéiced order observer based SPA
stabilizing output-feedback controller for sampled-datalinear system in strict feedback
form is discussed. For this problem, observer error behasedisturbance. Even exponen-
tially decaying disturbances can destabilize the samgétd-nonlinear system. Hence, in this
chapter, the controller is designed to compensateftieets of this factor and this constitutes
the diference from the controller in [25]. It is shown that the dasidj controllers SPA sta-
bilize the closed-loop sampled-data system based on theeWwark proposed in [46]. Also
numerical examples are given to illustrate the design nekti®mulation results show that

the designed controller outperforms the controllers gind5].

The chapter is organized as follows. In Section 6.2 prelama@s are given. The main results
are stated and proved in Section 6.3. Then, in Section 6plicafion examples are provided

to illustrate the design method. Finally, conclusions aesented in the last section.

6.2 Preliminaries

This section provides technical preliminaries. Commormitadins which will be used through-
out the chapter are presented. For the sake of clarity andreading, some notions and

definitions that have been introduced in Chapter 2 are regdemlhen necessary.

Consider the continuous-time nonlinear system

x=f(x(®.u®). y=Cx1 (6.1)

wherex € R" is the statep € R™ is the control inputy € R is the output, C is a constant
matrix of appropriate dimension and the functibiis locally Lipschitz. The control input
is realized through a zero-order hold such @t = u(kT) := u(k), vt € [KT,(k+ 1)T),k e N
and the outpuy is measured at sampling instaki; that isy(k) := y(kT) whereT > 0 is the

sampling period.

The diference equations corresponding to the exact discretertiotel of (6.1) and its ap-

proximate discrete-time model are represented by:

X(k+1) = FF(x(K),uk),  y(k) = CxK) (6.2)
x(k+ 1) = F3(x(k), u(K),  y(K) = CxK) (6.3)
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respectively.

Now, consider the following family of observers:

Rk + 1) = Gr(X(K), u(k)) (6.4)

Definition 6.2.1 [33] The family of observers (6.4) is SPA stable observerxér+ 1) =
Fr(x(K), u(k)), if for any compact set& c R", X c RP, %/ c R™and any strictly positive

numbery, there exists T > 0 such that the followings hold.

1. Forall o € X, ue U and T € (0,T*], there existstg € X such thatk(k) — x(K)| <
Tv, Yk > 1.

2. Forallxpe X, % € X,ue U and all T € (0, T*], lim sup_, . |X(K) — x(K)| < Tv.

To measure the discrepancy between the exact model and phexapate model, one step

consistency property, as defined in [46], is used:

Definition 6.2.2 ([46]) The family F}(x, u) is said to be one-step consistent with the exact
discrete-time model {x, u) if, for each compact se® c R" x R™, there exists a clas#
functionp(.) and a constant § > 0 such that|F3(x, u) — F&(x, u)l < Tp(T) for all (x,u) € Q
and T € (0, To].

Definition 6.2.3 [3] The family of observers (6.4) is SPA stable as in Definito2.1 if there
exists a family of Lyapunov functiong (%, X) and classK., functionsa(.), @2(.), a3(.) such
that for any compact set¥ ¢ R", X c RP,% c R™ and any strictly positive number;

there exist constants*T> 0 and M > 0, such that for all xx;,x; € X, X € X’, ue U, and

Te(,T,

IV (X1, X) = V1 (X2, X)| < MX1 — Xz, (6.5)
ax(lel) < Vr(x X) < az(le), (6.6)
VT(FT(X’ U), GT-I(_X’ U)) - VT(X’ X) < —(13(|e|) +y (67)

where e is the observer error defined by thgedence between the actual states and their
estimates. Moreover, if Fis consistent with £ as in Definition 6.2.2 and the family of
observers (6.4) is SPA stable observer for (6.3), then timidlyaof observers (6.4) is also SPA

stable observer for (6.2).
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In order to shorten notations, the following definitionshié used:x*= [XT,e']T, F1(X) :=

E'i;ﬁfﬂ)] with X := [xT, K717, Fr(xu) = [ £1%30 | andEr(x & u) := Fr(x.u) - Gr(X.u).
Definition 6.2.4 [3, 48] The family of controllers 1 with observer (6.4) SPA stabilizés;
if there exist®3 € KL such that for any pair of strictly positive real numbdi3, v) there
exists T > 0 such that for each Te (0, T*] the solutions ofk(k + 1) = Fr(X(K)) satisfy:
IX(k, X(0))| < B(I1X(0)|, KT) + v, for all k > 0, whenevetX(0)| < D.

Definition 6.2.5 [48] Let T > 0 be given and for each E (0, T] let functions W : R™P —
Rso and ur : R" — R™ be defined. The pair of familigsiy, V) with observer (6.4) is a
SPA stabilizing pair forFt if there existay, o, a3 € K. such that for any pair of strictly
positive real numbergA, 6) there exists a triple of strictly positive real numbéis', L, M),

with T* < T, such that for alf%y, % € R™P with max{|%i], |%|} < A, and T € (0, T*]:

a1(IX) < Vr(¥) < a2(IX) (6.8)
Vr(Fr(R) - Vr(%) < -Tas(|X) + T6 (6.9)
VT (%) = V1 (%)l < LI% — %ol (6.10)
ur| <M (6.11)

Theorem 6.2.6[45, 50, 51] If (ur, V1) is a SPA stabilizing pair fol5$, then y stabilizes

F$.
Then, stability properties of the sampled-data system) (&i be deduced from those of exact

discretized system under certain conditions [51].

6.3 Main Results

In this section, the design of reduced order observers fopkad-data nonlinear systems
using the Euler approximate discrete-time models is ptegenThis is an extension of the
reduced order observer given in [33] to a general class ofifimplut nonlinear systems.
Then, the design of reduced order observer based SPA stafpibutput-feedback controller

for sampled-data nonlinear system in strict feedback fasimgithe Euler approximate model
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is discussed. The controller is designed to compensatdiie ef the observer error which

behaves as disturbance and this is the mdtiemdince from the controller given in [25].

Consider the following strict feedback nonlinear systerthwampled observatioffk) = 1(k)

n= 1) +9mé (6.12)
£ = a(n,€) +Bn)u (6.13)

wherex = [T gT]T with 7 € R" and¢ € RM is the state vectorf (0) = 0, g(0) # 0, f,g,«
are diferentiable sfiiciently many timesg is invertible,3(n) # 0, ¥n, a is locally Lipschitz
and the control inputi € R™ is realized through a zero order hold such th@} = u(kT) :=
u(k), vt € [KT, (k + 1)T),k € N and the outpuy is measured at sampling instafs; that is
y(K) := y(kT) whereT > 0 is the sampling period.

Suppose that family of exact discrete-time models of théesy$6.12)-(6.13) is

n(k+1) = Fpr(n.6.0) (6.14)

é(k+1)=Fgr(n.£.0) (6.15)

with the outputy(k) = (k). Since the exact discrete-time models (6.14)-(6.15) atewail-
able in general, approximate discrete-time models are. udedce the following Euler ap-

proximate discrete-time model of (6.12)-(6.13) is consede

n(k+1) =n+T(f(n) + 9m)s) (6.16)
§(k+1) =&+ T(an. &) + Bn)u) (6.17)

Since the staté is not measured, its estimafds used where = & + . Then, the following

theorem provides the design of SPA stable reduced ordenarse

Theorem 6.3.1 Given the exact discrete-time model (6.14)-(6.15) withdbgout ¥ = r°.
For any triple of strictly positive number@y, Az, Ay), if there exists T > 0 such that for
all x, é u and T satisfyingx| < Ay, |$| < Apful < Ay, T € (0, T*], and if there exist matrices
P = PT > 0and R of appropriate dimensions such that the followingdimmaatrix inequalities

(LMIs) are feasible:
AT (V)P -R+PA(y) -R" <0,¥y € Vy... (6.18)
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where Vg, = 1y = (711 - Yim, - Yomlyij € {hij, 1} with b, = max(hij (k)) and hj =
mkin (hij (k)), then the following reduced order observer is a SPA stabsender for the exact

discrete-time model (6.15)

Ek+1) = €+ T(am. &) +Bm)u + LE) (6.19)

whereZ = g~1(y)(7 - f(n)) - &, 7 := 202D and the observer gain L is given by-LP~1RT
when the LMIs in (6.18) are feasible.

Proof. The observer error is defined &= ¢ — £. Considering the Euler approximate
model (6.17) and the observer (6.19) the error dynamicsdcbalwritten as:&(k + 1) =

£+ T(aln, &) — a(n, &) — LE). Using the delta operator, the error dynamics are obtaased

2 Ek+1)- &K N2
b= LV _ 0.0 - 0tr ) - LE (6:20)

By the diferential mean value theorem (DMVT), there exig(&) € Co(¢,é) for all i =
1,...,m, such that;
” ALl oq; ~
a(n.£) - a(n.8) = ”_Zﬂ en(en(i) 7 @(0) |

Then, using the notations:

() = g—gw»,

h(k) = (h11(K), ..., ham(K), ..., hmn(K))

mm
AhK) = Z hij (2 ()em()em(i)

ij=1
the equation of the observer error dynamics can be rewsisen
6& = (A(h(K) - L) (6.21)

It is assumed that the functiomg are bounded for all, j = 1,...,m. Then the vectoh(k)
evolves in a bounded domaimm of Vi, = {y = (11, oo Yim, - Ymmdbyij € {hij, b1}

wherehi*j = mkaX(hij(k)) andﬁij = mkin(hij(k)).

Let T* > 0 and for eacll € (0, T*) let the Lyapunov functioiV, be defined a¥/, = £TPZ.
It is obvious that the conditions (6.5) and (6.6) are satisdied hence, to prove SPA stability,
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it is enough to show that condition (6.7) is satisfié¥, can be written, using delta operator

and (6.21), as:

Vo(k+1) - Vo(K) AV,
T T

= ETF(h(K))E + TET(AK) - L) P(AK)) - L)E (6.22)

6V, = = ETPSE + (68)TPE + T(58)' PoE

whereF (h(k)) = (A(h(k)) — L)TP + P(A(h(k)) — L). It is observed from (6.22) that condi-
tion (6.7) is satisfied iF (h(k)) < O for all h(t) € Hmm. Using the fact thaF is afine inh(k)

and the convexity principle ([6]), condition (6.7) holdgfie following condition is satisfied:
F(y) <0 Vye Vg, (6.23)

If the notationR = LT P is used, condition (6.23) is found to be equivalent to (6. T8jerefore,

if (6.18) holds, then the inequality (6.23) is also verifi@dhis implies that

Vo < —ETLoZ + TET(AM(K) - L) P(A(h(K) - L)é

AVo < —Taz(€)) + Tv

wherey > 0 is suficiently small,az € K. andL, > 0 is a matrix. Hence, condition (6.7) is
satisfied for Euler model. Since the Euler model is one stegistent with the exact model,
the same property holds for exact model. Consequently, lbiserger (6.19) is SPA stable

observer for the exact model (6.15). |

Consider the system represented by (6.12)-(6.13). Asshateat SPA stabilizing reduced-
order observer for the system (6.13) is designed. Usingolbserver and Euler models, the

closed-loop system can be written as:

n(k+1) = n+T(f(n) + 9 + ) (6.24)
Ek+1)=E+T(y(n,6) +BnY) (6.25)
Ek+1) =&+ T(a(n,8) - y(n.9) (6.26)

where the termy(n, £) is obtained during the observer design.

Hypothesis 6.3.2[48] There existT > 0 and a pair (¢1, Wr) that is defined for each E
(0,T) and that is a SPA stabilizing pair for the subsystem (6.24) gic R™ regarded as its
control. Suppose also that the followings hold:

1. ¢t and W are twice djferentiable for any Te (0, T);
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2. there exist® € K., such thatgr ()| < () forall y € R™, T € (0, T);

3. foranyA > Othere exists a pair of strictly positive numbéfs M;) such thamax| 2|,

on
Ot | | 8¢1 | 10*Wr Y 3 A
1T b 152 s 152 1 < Ma for each Te (0, T) and|y| < A.

Then, the following theorem provides the SPA stabilizindueed order observer-based con-

troller design.

Theorem 6.3.3 Assume that a SPA stabilizing reduced-order observer J&@5the sys-
tem (6.13) is designed and Hypothesis 6.3.2 holds. Then uler Ehodel (6.24)-(6.26) is
SPA stable with the following output-feedback controllerand so is the exact discretized

system (6.14)-(6.15).

)
=741~ o - () - 90" (L)

0
- | )

2
€~ or) + "2~ y(1.8) (627)
n

where ¢d > 0, A¢t = ¢1(n5)— o7 (), 05 = n+T(F(n)+9m)E) andi = n+T(F () +9(mér).

Proof. LetA, u, fi, i€ Rog, X=[7" 77 &]T e R™2Mandx = [»" &7]" € R™™Mwith |x < A,
z= & — ¢7. Consider the system given by (6.24). There exists 0 such that condition (6.9)
holds forT € (0, T) with &3 € %, andi whené = ¢1 as input such that,

AWr = Wr (i7", E7) = Wr (1, €) < ~Tas(IX) + T/ (6.28)

wherer™ =+ T(f(n) + 9@ (@r + &)).

Then, using delta operator the Euler approximate models &rdz can be written as:

on = f(n) + 9(z+ ¢r(m) + &) (6.29)

¢1(7") - p1(0)

- (6.30)

6z =y(n,€) + Bl)u—

with 7+ = 5+ T(f(7) + 9)(€ + £)). Let Ay = Sup_s 1c(o. ) Maxn*l. Ingl. ). 71} that is
well defined since function$, g, ¢t are continuous. Led = maxA, A1} generated, M
such that inequality 3 in Hypothesis 6.3.2 holds. Met sup, ., 7.) MaXIé — ¢l 1f(n) +
a(mél, lg@m)l, My, €1, 181, la(n, €)1} which is well defined since all the considered functions

are continuous over the given compact set.

93



LetT* > 0 and for eacil € (0, T*) let the Lyapunov functio’vV be defined a¥ = V1 + Ve
whereV, is the Lyapunov function for the observer error ang(x, &) = Wr(n,€) + 327z It

is obvious that conditions (6.8) and (6.10) are satisfiege (48]) and hence, to prove SPA
stability, it is enough to show that conditions (6.9) andL{§.are satisfied. First, it will be

shown that condition (6.9) holds:

AV Vr(k+ 1) - V7(K T
SVr = TT _ Vi _3 (K = Wr + 2T 6z + E((éz)Téz).

6Wr can be written, using the mean value theorem (MVT), as:

Wr (") = We (7", €%) + Wr (7", €7) - Wr (7. )

oW = T

= 2 G- ) o (B (n ) (6.31)

wheren® = 7* + T619(1)( — ¢ (1)) and6s € (0, 1).

Then,6Vt can be written, using (6.29-6.31), as:
A T4
e < 0 cla e aTa+ L0700 + To ) - Sty )

74 ¢T(Uo);¢T(77 ).

2
mmA——q@W )

Using MVT, it can be shown that

]
zTg(n)T(aWT o) - %mo) )< THI% (6.32)

Thanks to the use of MVT, the following equation can be wnitte

¢1(nf) — o1 (n*) At

- (G NanE (6.33)

wheren” = nj + Tf19(n)é and¢y € (0, 1).

Then, using DMVT and (6.33)\ can be written as:

2
a“ﬂm ) - (T

52¢T

0
b1 .

) - (—(n )))g(n)f d \(—(n

N

(6.34)

(5,2 > (1) TIM)E) - ( (no))g(n)f d‘(

whereQ = [Q[, Q7. ... QIT, Qi = gm)é, 0™ = g + Tl1L20()é andez € (0, 1),
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Using (6.28), (6.32), (6.34) and Young'’s inequaliiy,r can be written as:

&h«<§¥1+TM4+u T )T - o7 2+ 2o laln)EP
—(Vd |<‘9¢T ) + \/_Ig(n)fl) cz( (n**»flm(gm)f)

O0dr

( (n )9mE - g(n)T( 1)) —d‘(—(ng)) 7

< —&3(|>?|) A+ TN~ ez Eg Ta(n) T gn)é + E((c + 1N + 2N12 + dNi3)
~ = . 1 -~ -
< —G3(X) - cZ z+ fi + Eng(n)Tg(n)g-

Then, from SPA stability of the observer with a a proper LyapufunctionVe for observer

error and Proposition 1 in [48], there exists € K., such tha\V < —Taz(|X) + Tpu.

Finally, the following equation shows that condition (6. hblds,

0pr

u sLB(n)-H(c@—m(n»+|g(n)T||(ﬁ(no» I+ \(

¢T

+lam )l + | —| + LIE) < c+ L+ 1+2M + dM* = M.

Consequently, the closed-loop system (6.24)-(6.26) is S&le. As a result of SPA stability
of the observer, the Euler model (6.16)-(6.17) is SPA stahkthe same property holds for
the exact discretized system (6.14)-(6.15) due to the @Eeonsistency of the Euler model

with the exact model. [ |

6.4 Applications

In this section, design methods given in Theorems 6.3.1 ar813 @re applied to various

systems and the simulation results are analyzed.

6.4.1 Dynamically Positioned Ship

Consider the following equation of motion for the mooredkamin Example 11.4 in [12]

n = R(®)v (6.35)

V= Ain + Ay + Bu (636)
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T T T
Wherey(k) = U(k)’ n = [n e lﬁ] y Vo= [,U 1% r] , U= [Ul Uo U3] ,A]_ = —M_lK,

A, =-M1D,B=M1and

10852 0 0 cosy —siny 0
M=| 0 20575 -0.4087, R{)=|siny cosy Of,
| 0 -04087 02153 0 0o 1
0.0865 0 0
D=| 0 00762 01510. K =diag{0.03890.0266 0},
0 00151 00031

as given in [25].

First, the reduced observers given in Theorem 6.3.1 and @blpe applied to the sys-

tem (6.35)-(6.36). The reduced-order observer for (6.88signed in [25] as:

2k + 1) = M1z(K) + May(K) + T BuK), (6.37)
$(K) = Z(K) + Gdy(k) (6.38)

whered=[0 0 1], M1=1+T(A2 - Gd), My = T(A1 + (A, — Gd)Gd) andG e R3*1,
Using (6.19) in Theorem 6.3.1, another reduced-order ebséor (6.35) is designed as:
v(k+1) =7+ T(Awn+ Ay + Bu+ LY) (6.39)

with v = (R(:ﬁ))Tw —vandL = h+ A, whereh can be chosen such that=

diag{h, hy, h3} with h; > 0 for suficiently smallT > O.

Then, the observers given by (6.37)-(6.38) and (6.39) gpéeapto the system (6.35)-(6.36)

with the following controller given in [25]:
UE(Y, ) = B [Uar(y, ) — Ary — Ag¥] (6.40)

where

AW (y,7) | AdT(y.9)
T T

UaT (Y, V) = —C(v = ¢7(Y)) -
AGr(y,9) = ¢r(k+ 1) - ¢7(¥(K)
¢1(¥(K) = —R" ((K)Ky(K)
gr(k+ 1) = -RT(@(k + DKIy(K) + TRU(K)KI(K)]
Yk + 1) = y(K) + TR(K)
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Figure 6.1: Time responses of observer errors Witk 0.2. Solid curve:observer (6.39).
Dotted line:observer (6.37)-(6.38).

AVVTEW)[?’—(ﬁT(Y)] LV # oY)
AR (y,5) = P-erOIF T
TR (x3)ly + TR(X3)V], ¥ = ¢7(y)

AWr (. 9) = Wr(y + TR®)?) - Wr((I + TK)y)
Wr = 4p"y andc > O is arbitrary.

In simulations, the following parameters are us&l:= [0 -1.8862 113551T andh =
diag{0.082 0.25, 1} for observersK = diag{0.5, 0.5, 0.5} andc = 1 for controller. The initial
conditions are chosen ag0) = [-2 2 _’ZT]T, v(0) = 0zq and{0) = Ozy;. Simulation
results withT = 0.2 andT = 0.4 are shown in Figures 6.1 and 6.2, respectively. It is shown
that observer error == v — ¥ converges to zero with both observers, but faster with {6 89

the sampling period increases, both observers give slower responses.
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Figure 6.2: Time responses of observer errors Witk 0.4. Solid curve:observer (6.39).
Dotted line:observer (6.37)-(6.38).

Second, the controllarr designed using (6.27) in Theorem 6.3.3 and the contrafiegiven
by (6.40) will be applied to the system (6.35)-(6.36) witk tibserver (6.39). The controller
ur is designed withWr = 1n"n + 39Th™1¥ and¢r(7) = —RT (¥)Kn whereK can be chosen
such thatk = diag{ki, ko, k3} with |1 - Tk| < 1 andk; > O for suficiently smallT > 0.
The following simulation parameters are skt= diag{0.5, 0.5, 0.5} andc = 1 for controllers
andh = diag{0.082 0.25, 1} for observer. Then, simulations have been performed inrdode
compare the performances of the controllersandug with different sampling periods and

initial conditions.

In the first simulation, the controlletsr andug are applied to the system (6.35)-(6.36) with
T
the sampling period = 0.2 and the initial conditionsy(0) = [-2 2 _g] , v(0) = Oza

and{0) = 0Oszxq. Simulation results witil = 0.2 are given in Figure 6.3. As can be seen
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Figure 6.3: Time responses of yaw anglethe North positiom and the East positioa with
T = 0.2. Dotted line:controlleug. Solid line:designed controllerr.
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Figure 6.4: Time responses of yaw anglethe North positiom and the East positioa with
T = 0.4. Dotted line:controlleug. Solid line:designed controller.
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Figure 6.5: Time responses of yaw anglethe North positiom and the East positioa with
T = 0.2 and large initial conditions. Dotted line:controlleg. Solid line:designed controller
ur.

from figure, both controllers stabilize the system (6.3&B6), but faster withury. Simulation
results for the controlletur show that as the parametéiincreases, the performance of the

controllerur is faster. Fod > 6.6, the controllelur cannot stabilize the system (6.35)-(6.36).

Then, the simulation is performed with the initial conditsogiven above and large sampling
periodT = 0.4. Simulation results are given in Figure 6.3. It is showrt thath controllers
stabilize the system (6.35)-(6.36), but faster withagain. Faster results are obtained with
the controllerur until d = 2.6 and the performance worsens afies 2.6. Ford > 2.6, the
controllerur cannot stabilize the system (6.35)-(6.36). Simulatiomltsgor the controller
U show that increase in the sampling peribdesults in slightly slow response. While the
controllerug cannot stabilize the system (6.35)-(6.36) Tor- 0.8 with the initial conditions

above, the controllew; can stabilize the system unfil= 1.2.

Finally, the controllers are applied to the system (6.33€) with the same sampling pe-
T
riod T = 0.2 as in the first simulation and large initial conditiong0) = [-4 3 -Z] ,

v(0) = 0341 and{0) = Ozx1. Simulation results are given in Figure 6.5. It is shown thath
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controllers stabilize the system (6.35)-(6.36) succdlgsfwt faster with the controlleur.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantders smaller value.

6.4.2 Two-Link Robot Manipulator

Consider the dynamic model of a two-link manipulator giversubsection 3.4.2

n=é (6.41)
&=M"() (u-Cn.&)¢ - Gn)) (6.42)

T T
wherey(k) = n(k), the state vectors are:= [g; o] andé =[g ¢l M = M; Mj]

C=[gg| G =|&]andu=[t]with My = myi2 + mp(12 + 12, + 2l1lz cOSGp), Mz =

Mz = mplilez cosa + MplZ,, My = mpl2,, C1 = —Mblaler SinGdp, Co = —Mplaleo Sinoa (G +

02), C3 = mplalez SingeQy, C4 = 0, Gy = mMugles cosay + Mpg(l1 costy + lez COSEL + 02)), G2 =
mpgle cos@y + 02). lcx andlg are the distances of the center of mass from the joint axes. Th
robot parameters are takenrag=mp = 5 [kg], I1 = 1o = 0.5[m], lx = lco = 0.25 [m]. The
control objective is to solve the trajectory tracking peal Hence, the joint position tracking
erroreis defined a® := n — ng wherenq := 3;3] is the desired position trajectory. Then, the

system dynamics can be written as:
e=¢&-nq (6.43)
£=M7() (u-C(n. ) - Gm)) . (6.44)

Using (6.19) in Theorem 6.3.1, the observer for (6.44) isgies] as:

Ek+1) =&+ T(M () (u-Cn.8) - G(n)) + K&) (6.45)

with & = 201<1) _ 2 and wherek can be chosen such thét= diag ki, ko) with k; > 0 for

suficiently smallT > 0.

Considering the observer (6.45), the controliersandug are designed for the system (6.43)-
(6.44) withgr (17) = [:gggg;:g;ggjg;g |- The controlleru for (6.43)-(6.44) is designed using the
method given in [25] which was also presented in TheorenB2:8th Wy () = %nTn. The
controllerur is obtained using (6.27) in Theorem 6.3.3 Wit (17) = 31" n+ 3" Lo~ where

Lo is a positive definite matrix. The following simulation pareters are sett; = 2,¢, = 3
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Figure 6.6: Responses of the system for the first trajectdityv= 0.08. Dotted line:controller
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Figure 6.8: Responses of the system for the second trajetter0.05. Dotted line:controller
Ue. Solid line:designed controllar. Dash-dotted line:desired trajectory.
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andc = 1 for controllers andh = diag(8, 9} for observer. Two dterent reference trajectories,
Ju1 = Gd2 = 3 — 3t andqgg = qg2 = sin(t), are considered. Then, simulations have been
performed in order to compare the performances of the diersair andug with the initial

conditionsy(0) = £(0) = £(0) = [ §] and diferent sampling periods.

First, the controllersir andug with the observer (6.45) are applied to the system (6.442(6

with the first reference trajectorglgr = Qg2 = % - %e‘t.

Simulation results witil = 0.08 are given in Figure 6.6. As can be seen from figure, both
controllers track the desired trajectory, but the traclemgr converges to zero faster wiif.
Simulation results for the controllerr show that as the parametgiincreases, the tracking
error of the controllerur is smaller. Ford > 1.5, the controllerur cannot stabilize the

system (6.41)-(6.42).

Simulation results withT = 0.12 are given in Figure 6.7. It is shown that both controllers
track the desired trajectory, but the tracking error cogesrto zero faster witlir again.
Results with smaller tracking error are obtained with thatagler ur until d = 0.9. For

d > 0.9, the controlleur can not stabilize the system (6.41)-(6.42). Simulationliesor the
controllerug show that increase in the sampling peribaesults in slower response. While
the controllerug cannot stabilize the system (6.41)-(6.42) Tor 0.14, the controlleuy can

stabilize the system unfil = 0.15.

Then, the controllersiy and ug with the observer (6.45) are applied to the system (6.41)-

(6.42) with the second reference trajectayys = qqo = Sin(t).

Simulation results withl = 0.05 are given in Figure 6.8. As can be seen from figure, the
controllerur tracks the desired trajectory with smaller tracking errtvew compared to the
controllerug. Simulation results for the controller show that as the parametgincreases,
the controllerur tracks the desired trajectory with smaller error but doe 2.5 its perfor-

mance is degraded. Fdr> 2.5, the controlleu; cannot stabilize the system (6.41)-(6.42).

Simulation results witir = 0.1 are given in Figure 6.9. It is shown that the tracking error
increases for both controllers when compared to the restitsT = 0.05, but tracking error
of the controllerur is smaller than that of the controlle. Results with smaller tracking
error are obtained with the controllef until d = 1.2. The performance of the controllef

worsens afted = 1.2. Ford > 1.2, the controlleur cannot stabilize the system (6.41)-(6.42).
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While the controllerug cannot stabilize the system (3.28)-(3.29) Tor- 0.13, the controller

ur can stabilize the system unfil = 0.15.

Moreover, as the sampling periddincreases, the controlles shows good performance for

cases where the parametthas smaller value.

6.4.3 Attitude Control of Rigid Artificial Satellite

Consider the following nonlinear equations for the digétitude control of a rigid artificial

satellite which were also given Subsection 3.4.3

b =Hw, (6.46)

w = JIS(w)dw+ Jtu (6.47)

with sampled observatiog(k) = p(k) wherew = [w; w, W3]T e R3 is the angular

velocity vector of the body in a body-fixed framg, € R3 is the Cayley-Rodrigues pa-
rameters describing the body orientatiene R? is the control torque vector of the body,
J = JT = diag{10, 15, 20} is the inertia matrix of the body [315(w) is the skew-symmetric
Ws W
0

matrix given byS(w) = [_33 Wf] andH(o) = 3(1 - S(p) + pp").

W, —w; O

Using (6.19) in Theorem 6.3.1, the observer for (6.47) isghes] as:
Wk + 1) = W+ T(I™IS(W)IW + I tu + KW) (6.48)

with w = H_l(p)w —Wand whereK can be chosen such thiat= diag{ky, ko, k3} with

ki > O for suficiently smallT > 0.

Considering the observer (6.48), the controliersandug are designed for the system (6.46)-
(6.47) with¢1(p) = —H 1(p)Lp whereL can be chosen such thiat= diag{l4, |2, 13} with
I1-TIi| < 1 andl; > 0 for suficiently smallT > 0. The controllerug is designed using
the method given in [25] which was also presented in Theore8 2vith Wy () = %pr.
The controlletur is obtained using (6.27) in Theorem 6.3.3 with () = 3p"p + 3W' Lo W
where L, is a positive definite matrix. The following simulation pareters are setL =
diag{0.5,0.5,0.5} andc = 0.5 for controllers andh = diag{1, 4, 0.4} for observer. Then, the
controllersur andug with the observer (6.48) are applied to the system (6.48)#jan order

to compare their performances witHterent sampling periods and initial conditions.
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In the first simulation, the initial conditions are chosep@) = [1.4735 06115 2552]]T,
W(0) = 0351 andwi(0) = 03x;. Simulation results with the sampling peridd= 0.1 are given
in Figure 6.10. As can be seen from figure, both controllekikze the system (6.46)-(6.47),
but faster withut. As the parametett increases, the performance of the contraligis faster
but ford = 1 performance degradation starts. Hor 7, the controlleiur cannot stabilize the

system (6.46)-(6.47).

Then, the simulation is performed with the initial conditsogiven above and large sampling
period T = 0.2. Simulation results are given in Figure 6.11. It is showat the controller
ur gives faster results when compared to the contralier The controllerur shows a good
performance untitl = 1 and the performance worsens afer 1. Ford > 2, the controller
ur cannot stabilize the system (6.46)-(6.47). The contrallegives slower response with
larger overshoots when compared to results Witk 0.1. While the controllelug cannot
stabilize the system (6.46)-(6.47) for> 0.37, the controlleur can stabilize the system until

T =04.

Finally, the controllers are applied to the system (6.463) with the same sampling period
T = 0.1 as in the first simulation and initial conditions doubleim@ation results are given
in Figure 6.12. It is shown that the controllef gives faster results when compared to the

controllerug again.

Moreover, when the sampling periddor the initial conditions are increased, the controller

ur gives faster results for cases where the parantdiers smaller value.

6.4.4 Second-Order Single-Input System

As a last example, consider the following continuous-tinap

n=n’+é (6.49)

E=u (6.50)
wheren € R andé € R are the state vectors,c R is the control input angi(k) = (k).
Using (6.19) in Theorem 6.3.1, the observer for (6.50) isgies] as:

Ek+1)=E+TU+KD (6.51)
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with & = 2016) _ 2 _ 2 and wherek > 0 for sufficiently smallT > 0.

Considering the observer (6.51), the controliersandug are designed for the system (6.49)-
(6.50) with¢r(7) = —n* — n. The controllerug is designed using the method given in [25]
which was also presented in Theorem 2.3.3 With(ny) = %nz. The controllerur is obtained
using (6.27) in Theorem 6.3.3 withr(57) = 31" + 3Lo"1&2 whereL, > 0. The following

simulation parameters are set= 1 for controllers an& = 0.5 for observer.

Then, the controllersr andug with the observer (6.51) are applied to the system (6.4%0)6

in order to compare their performances witkfelient sampling periods and initial conditions.

In the first simulation, the initial conditions are choserfi#8), £(0)) = (1.6, 0.5) and £(0)) =

0. Simulation results witilk = 0.6 are given in Figure 6.13. It is shown that the designed
controllerur works well and is faster than the controllet. As the parameted increases,
the performance of the controllef is faster but fod = 0.03 performance degradation starts.

Ford > 0.03, the controlleur cannot stabilize the system (6.49)-(6.50).

Next, the simulation is performed with the initial condit®given above and large sampling
period T = 0.9. Simulation results are given in Figure 6.14. It is showet the controller
ur yields faster results when compared to the contraller The controllerur shows a good
performance until = 0.006 and the performance worsens atter 0.006. Ford > 0.006,
the controllerur can not stabilize the system (6.49)-(6.50). The contrallegives slower
response with larger overshoots as the sampling périsdncreased. Neither controller can

stabilize the system (6.49)-(6.50) for> 1.

Then, the controllers are applied to the system (6.490{6:bth the same sampling period
T = 0.6 as in the first simulation and large initial conditiomgQ), £(0)) = (5,5). Simulation
results are given in Figure 6.15. As can be seen from figurédele controllerug stabilize

the system very slowly, the designed controllgrstabilizes the system successfully.

As can be seen from figures, the control inpgis produced with less energy when compared
to the control inputug. Therefore, the proposed method requires less confimite Simula-
tion results also show that when the parameltes increased, energy of the control inpyt

decreases in general.

Moreover, when the sampling periddor the initial conditions are increased, the controller
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ur gives faster results for cases where the parantdiers smaller value.

Finally, by applying the controllers to the system (6.48)50) with diferent initial condi-
tions, domain of attraction (DOA) estimates with the coltérs ur andug for the sampling
period T = 0.6 are given in Figure 6.16. In DOA estimate with the controlle, the pa-
rameterd is chosen agl = 0.001. As can be seen from figure, DOA for the system with the
controlleruy is much larger than that with the controlleg. For diterent controller parame-
ters and sampling periods, much larger DOA estimate may tanaa with the controlleur

when compared to the estimate given in figure.

6.5 Conclusions

In this chapter, the problem of reduced order observerebaseput feedback control of
sampled-data nonlinear systems in strict feedback fornibas considered. First, a reduced
order observer design has been presented based on the [iarexienate model, which is an
extension of the reduced order observer given in [33] to &ggrtlass of multi-input non-
linear systems. Then, a reduced-order observer-basedtbpping method has been given
based on the Euler approximate model. It has been showrhinalesigned controllers SPA
stabilize the closed-loop sampled-data system based drathework proposed in [46]. The
proposed design methods have been applied to several eeaaring from the engineering

practice. Their performances are analyzed with simulation

For the problem considered, observer error behaves astaisite. Itis known that even expo-
nentially decaying disturbances can destabilize the seargihta nonlinear systems. Hence,
in this chapter, the controllers were designed to compertbat €fects of this factor. As a
result of this, the results obtained arée@ient from the controllers in [25]. Simulation results
have shown that the controller designed by the proposedadefives better results than the
controllers given in [25]. Moreover, in case of unstableutss the controller given in [25]
can be tuned to obtain stable results by adapting the ctartigdin. However, the controller
designed by the proposed method can also be tuned adaptitfteaparameter in addition
to the controller gain. So the proposed method gives aniaddltflexibility for tuning the

controller.
The performance of the designed reduced order observeekascbmpared with the observer
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given in [25]. It has been shown that observer error congetgezero with the designed

observer faster than with the observer given in [25].
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CHAPTER 7

OUTPUT-FEEDBACK STABILIZATION OF NONLINEAR
DUAL-RATE SAMPLED-DATA SYSTEMS VIA
APPROXIMATE DISCRETE-TIME MODEL

7.1 Introduction

In this chapter, the problem of output feedback stabilratf nonlinear sampled-data control
systems is considered under the low measurement rate @imhs&k dual-rate control scheme
is proposed based on a numerical integration scheme whice$ to approximately predict
the missing output values between measured output samffl@s observer-based output
feedback controller that semiglobally practically asyatigally (SPA) stabilizes the single-
rate sampled-data plant model is given, then it is shown3iR& stability property will be
preserved for the closed-loop dual-rate sampled-datarsylsased on the proposed dual-rate

control scheme under standard assumptions.

In Chapter 1, digital controller design methods for sanyalath nonlinear systems were men-
tioned such as emulation and direct discrete-time desighads. Although the emulation
and direct discrete-time design allow multi-rate sammath systems, design methods us-
ing these approaches are single-rate in general, i.e. amglineasurement sampling rates are
assumed to be equal. For single-rate systems, [45, 46] shibvaethe input-to-state stabiliza-
tion of exact model with the family of controllers which inpw-state stabilizes the approxi-
mate model is guaranteed under certain conditions. In pEjkstepping design is presented
for a class of strict feedback nonlinear systems using Eydproximate discrete-time model.
Robust backstepping method for sampled-data strict-B&dhonlinear system based on the

Euler approximate model is given in [58]. However, theserapphes may not perform well
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in practice since the required sampling rate may exceedatunare limitations.

In many applications only a part of the state vector is alddldrom measurement. Thus
control using output feedback or dynamic feedback is necges®esigning an observer for
unmeasured states is a useful method to be used for comsgractoutput feedback controller.
Considering the output feedback tracking problem, obsdyaeed output-feedback control
design for continuous-time nonlinear systems using therves backstepping procedure is
proposed in [30]. On the other hand, the problem of outpudifaek stabilization of sampled-
data nonlinear systems has not been studied much in theatitea [10, 28, 65]. In particular,

[10] and [28] showed that the obtained sampled-data cdatsolsing high gain observers

can recover the performance of the continuous-time stattbfeck controllers.

Moreover, in practical applications, hardware restritsion input and measurement sampling
rate can be dierent. Also, it is assumed that measurement result and tliesponding
controller are available instantaneously. This assumpsanrealistic. Therefore, the use of
multi-rate control scheme is proposed in [1, 56, 37, 38] tafigure the control system so that
several sample rates co-exist to achieve better perforesaria [1] multi-rate sampled-data
output feedback control of a class of nonlinear systemsyusigh-gain observers where the
analog-to-digital (AD) sampling rate is faster than the digital-to-analogXPsampling rate

is considered. In [37, 38] the state feedback multi-raterotiers based on CTD and DTD
methods, respectively, are discussed under the constinainthe DA sampling rate is faster

than the AD sampling rate, called as low measurement rate constraint.

In this chapter, the problem of output feedback stabilmatf sampled-data nonlinear sys-
tems under the low measurement rate constraint is condiddiiee design of semiglobally

practically asymptotically (SPA) stabilizing dual-rateserver-based output feedback con-
trollers is presented using single-rate observer-basguubteedback controller and a fast-
rate model based on the approximate discrete-time modstitnae the missing output val-

ues between measured output samples. It is shown that ik site observer-based output
feedback controller SPA stabilizes a plant, then under sstaxedard assumptions the pro-
posed dual-rate observer-based output feedback comtroi&es the closed-loop dual-rate
sampled-data system SPA stable. It is emphasized thatdb# i prescriptive since it can

be used as a guide when designing observer-based outpbifdedontrollers based on an

approximate discrete-time model. Numerical examples lareiacluded to illustrate the the-
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oretical results obtained. Simulation results show thatdbal-rate observer-based output
feedback controller yields faster results when compard¢desingle-rate observer-based out-

put feedback controller. However, the dual-rate designireg higher numericalféort.

The chapter is organized as follows. In Section 7.2 prelamas are given. The main results
are stated and proved in Section 7.3. Then, in Section 7plicafion examples are provided

to illustrate the design method. Finally, conclusions aesented in the last section.

7.2 Preliminaries

This section provides technical preliminaries. Commorations and definitions which will
be used throughout the chapter are presented. For the sakeibf and easy reading, some

notions and definitions that have been introduced in Ch&péee repeated when necessary.

Consider the nonlinear continuous-time system

x=f(x(1).y(®).u®).  y(t) = H(x() (7.1)

wherex € R" is the statey € R™ is the control inputy € R! is the output and the functions
f andH are locally Lipschitz. The control inputis realized through a zero-order hold such
thatu(t) = u(kT) := u(k), vt € [KT, (k+ 1)T),k € Z* and the outpuy is measured at sampling
instantkT; that isy(k) := y(kT) whereT > 0 is the sampling period. Theftirence equations
corresponding to the exact discrete-time model of (7.1) iépproximate discrete-time

model are represented by:

x(k+ 1) = F7(x(k). y(K), u(k)),  y(k) = H(x(K)) (7.2)
x(k+ 1) = FF(x(k). y(K), u(K)), ~ y(k) = H(x(K)), (7.3)

respectively.
Consider now the following family of observers

X(k + 1) = Gr(X(k), y(k), u(K)) (7.4)
Definition 7.2.1 [33] The family of observers (7.4) is SPA stable observerxér+ 1) =

Fr(x(K), y(k), u(k)), if for any compact set& ¢ R" X c RP, % c R™ Y c R and any

strictly positive numbey, there exists T > 0 such that the followings hold.
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1. Forall o € X, ue U,y € Y and T € (0,T*], there existsky € X such that
IX(K) = x(K)| < Tv, Vk > 1.

2. Forallxpe X, % € X,ue U, yo e Yandall T e (0, T, limsup,_,.|XK) —x(K)| < Tv.

Definition 7.2.2 F3(x,y, u) and F’;"h(x, y, U) is said to be one-step consistent with(k y, u)
if for any positive real number@\, Ay, Az) there exist class< functionspi(.), p2(.) and T >
0 for each fixed Te (0,T*], such thatiF$(x,y,u) — F&(x,y,u)| < Tp1(T) and there exist
h* € (0, T] such thatF3(x,y, u) - F%h(x, y,u)l < Tpa(h) for all [x| < A1, |yl < Ag,Jul < Az
and he (0, h*).

Definition 7.2.3 [3] The family of observers (7.4) is SPA stable as in Definifio2.1 if there
exists a family of Lyapunov functiong (%, X) and classK., functionsa(.), @2(.), a3(.) such
that for any compact sef§ ¢ R", X c RP, %/ ¢ R™ Y c R' and any strictly positive number
y, there exist constants*T> 0and M > 0, such that for all xx;, x; € X, X € )?, ueUuU,yely,

and Te (0, T"],

VT (X1, X) = V1 (%2, X)| < MIx1 — Xz, (7.5)
a(le) < Vr(x X) < az(le), (7.6)
VT(FT(X’ Y, U), GT-I(_X’ Y, U)) - VT(X’ X) < —CY3(|e|) iy (77)

where e is the observer error defined by thgedence between the actual states and their
estimates. Moreover, if Fis consistent with £ as in Definition 7.2.2 and the family of
observers (7.4) is SPA stable observer for (7.3), then tiilyaof observers (7.4) is also SPA

stable observer for (7.2).

To shorten notation, the following definitions will be uséd= [X",€"]", Fr(%) := | EF;T((Xﬁyvyug)]

with X := [x", %717, Fr(Xy.u) = [ g1y | andEr (x & ¥.U) = Fr(x y,u) - Gr(% Y. ).
Definition 7.2.4 [3, 48] The family of controllers + with observer (7.4) SPA stabilizés;
if there existy3 € KL such that for any pair of strictly positive real numbdi3, v) there
exists T > 0 such that for each Te (0, T*] the solutions ofi(k + 1) = Fr(X(K)) satisfy:
IX(k, X(0))| < B(IX(0)|,kT) + v, for all k > 0, wheneveiX(0)| < D.

118



Definition 7.2.5 [48] Let T > 0 be given and for each E (0, T] let functions W : R™P —
Rso and ur : R" — R™ be defined. We say that the pair of families, V) with ob-
server (7.4) is a SPA stabilizing pair féfr if there existay, o, a3 € K. such that for any
pair of strictly positive real numberg\, §) there exists a triple of strictly positive real num-
bers(T*, L, M), with T* < T, such that for all%;, % € R™P with max{|%],|%l} < A, and

Te(0T:

a1(|X) < Vr(8) < a2(/X) (7.8)
Vr(Fr(R) = V1(R) < ~Tas(R) + T6 (7.9)
VT (%) - VT (%)l < LI - %ol (7.10)
lurl <M (7.11)

Theorem 7.2.6[45, 50, 51] If (ur, V1) is a SPA stabilizing pair fol5$, then y stabilizes

Fe.

Then, stability properties of the sampled-data system) €aid be deduced from those of exact

discretized system under certain conditions [51].

It is assumed that the single-rate SPA stabilizing outpatli@ck controlletur(X,y) with
observer (7.4) is given. Then, a dual-rate output feedbaokral scheme for system (7.1) is
designed using the given single-rate observer-based iggdback controller. As in [38], it
is chosen that the sampling period of (7.2) is equal to thetisampling periodi, i.e. T = T;.
Suppose that measurement sampling pefigds different from the input sampling peridd
due to the hardware restrictions amgl > T; due to the low measurement rate constraint.
The main idea in the dual-rate output feedback control isréalipt the unmeasured output
samples between measured samples. Hence, the slow samgdsdinrement is used every
Tm period such ag(0), y(Tm), Y(2Trm), etc., and the approximate mod‘#h of the plant is
used to get the estimated output to fill in the missing samjlesthe measurement sampling
period T, be a multiple ofT, i.e. T, = IT for some integel > 1 without loss of generality.
Then, to compensate for the lack of information about outyhith is fed back to controller
and observer, a periodic switch is introduced which corm&xthe actual output at times
KIT and connects to the estimate of the output atkIT + jT, j = 1,2,...,1 — 1 which is
reconstructed by the approximate model with periodicafigated initialization at sampling

instanti = kIT by the actual output. Then the output of the swiygti+ 1) := y((i + 1)T) can
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be written as:

y(i + 1), ifi+1=Kl,
ye(i+1) = H(F%h()“((i),y(i), u@)), ifi=kl (7.12)
H(F2 (%), ye(i). u@),  ifi+1=Kl+7

wherek € Z*, = = 2,...,1 - 1 and F%h is the approximate discrete-time model of (7.2)
parameterized by the modeling paramdter O which may be dterent from the sampling
period T. The parameteh represents the integration period of the numerical integra
used to generate the approximate models. The following kai¥gata closed loop system
is considered which consists of the continuous-time plant the dual-rate observer-based

output feedback controller depending on the switch ougplid := yc(KT):

x = f(x(t), y(t), u(®)), y(t) = H(x()) (7.13)
X(k +1) = G (X, Ye, U) = GT(X, Yc, U) (7.14)
U(k) = Urh(X,Ye) = ur(X Ye) (7.15)

whereGr p, Urh are zero at zero, the controlis implemented using a zero-order hold such
thatu(t) = u(kT;) := u(k), vt € [KT;, (k+1)T;), k € Z* and the outpuy is measured at sampling
instantskTyy,; that isy(k) := y(kTyn). The discrete-time model of this sampled-data system
consists of the exact discrete-time model (7.2), the cteatrfr.15), the observer (7.14) and
the switch (7.12). To summarize, the dual rate output fegdbantrol scheme uses a single-
rate observer-based output feedback controller and adestmodel based on the approximate

discrete-time model to estimate the missing output valedsden measured output samples.

The following definitions are now introduced.

Definition 7.2.7 [50] F&(x, u) is said to be multi-step consistent wit§ &, u) if, for each
L > 0, > 0 and each compact s&X c R", there exist a functiomr : Rsg X Rsg —

R.o U {oo} and T* > 0 such that{x,z € X,|x -2 < ¢} for all T € (0, T*] which implies
k

—_—
IFe(x,u) - F3(z u)l < a(6, T) and k< L/T = (0, T) := a(...a(a(0, T), T)... T) < .

Definition 7.2.8 The control law g 1,, the observer dynamic{ and the approximate model
F%h are said to be uniformly locally Lipschitz if for amy, > O there exist b, L¢,Lg > Oand

T* > 0 such that for each fixed € (0, T*], there exists he (0, T] such that for all&4], |£2] <
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A and he (0,h"), we haveur n(é1) — Ut h(€2)l < Lulér—&al, IGn(é1) — Grn(é2)l < Lglér - &2
and|F2, (é1) - F2, (&)l < Lilé1 - &), whereg := (X7, y)".

Lemma 7.2.9 [38] By the property that ¢, is zero at zero and+h, Gt are uniformly lo-
cally Lipschitz, given positive numbdls;, Ay, A3) there exist T > 0, h* > 0 such that for all
X < A1, lyel < A2, T € (0, T*] and he (0, h*], lurh(X, Ye)| < Az holds. That is, the controller

is locally uniformly bounded (see [27]).

7.3 Main Results

In this section, it is shown that the dual-rate observeetasitput feedback controller given
in (7.12), (7.14) and (7.15) SPA stabilizes the closed l@p@ed-data system if given single
rate observer-based output feedback controller SPA &abithe closed loop sampled-data

system. The stabilization problem is addressed under tloeviag assumptions.

Assumption . (1) The single-rate output feedback controllai(, y) with observer (7.4) SPA
stabilizes the system (7.22) The single-rate observer (7.4) is a SPA stable observei7i@)(
(3) The approximate modelsFand 'jih' the controller (7.15) and the observer (7.14) are
uniformly locally Lipschitz.(4) The approximate discrete-time modefs &nd F“ih are one-

step consistent with the exact discrete-time model F

Next, two claims will be stated and their proofs will be givarnese claims are to be used in

the proofs of two theorems that follow.

Claim 7.3.1 Consider the exact model (7.2), the dual-rate output feekllw®ntrol scheme
(7.12), (7.14), (7.15) and Lemma 7.2.9. Given any strictgitive real numbergA, &),
there exists T > 0 such that for any fixed Te (0, T;], there exists h € (0, T] such that
for all [X(0)] < Aq, [X(0)] < Ay and h e (0, hy] the following holds under Assumptions 1-4:
if maXeo.1... kX))l < Ar and maxeo.1,. kiX(i)l < Ap for some ke {0, 1,...} then the exact

discrete-time output of the plant satisfiegk) — y:(K)| < Te for all k.

Proof. Let A1, Ay, Az € Ry be given. Using Assumption 3 and the fact thay, is zero at

zero, there exisT1; > 0 andhy; > 0 such thatur n(X, yc)| < Az for all [X] < A1, lyel < A2
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by Lemma 7.2.9. From Assumption 3, [€, > 0 andh;»> > 0 be generated using Defi-
nition 7.2.8. From Assumption 4, there exiBtz > 0 andh;3 > 0 using Definition 7.2.2.
Let Lr,Lt,LH,Lg, Ly > O be the Lipschitz constants of the functioR$, F%h, H(), Gt
andurp, respectively. Using Definition 7.2.2, lpt(.), p2(.) € K be a function from As-
sumption 4 for one-step consistency of the approximate tadéfeand F%h with the exact

model F-?-, respectively. Finally,Tl = min{T11, T12, T13} andh; = min{hy1, h12, hy3}) are de-

maXeo.1... klY()l < Az by the Lipschitzity ofH(.) for somek € {0,1,...}. Firstitis claimed
that|yc(K)| < A, follows by induction for somé € {0, 1, ...}. Considek in the following three

cases.

First, if k = jl for somej € {0,1,...} then it is obvious thaly(k) — y:(k)] = 0. Since the
single-rate observer (7.4) with initial conditioR(0)] < A; is SPA stable by Assumption 2,
it is obtained thatx(k) — X(k)] < Tv with v > 0 using Definition 7.2.1 and the condition

MaXe(o,1,... ki X(1)| < Ag.

Second, itk = jl + 1, then using Assumption 4 and triangle inequalities it camvhitten that

IY(K) = Ye(K)I = [H(FEF O, y(D, ura(X3D, y(N))) = HET L&D, YD, uraXAD, yGOD)I
< LuTp2(h) + IH(FT ,(x(J1), (1), ura(X(D, Y(i1))) = HET (XD, y(1D, urn(X3D, yAD))I-

Hence, using Assumption 3 afx(jl) — X(jl)| < Tv, it can be obtained that
Iy(K) = Ye(K)I < LuTpa(h) + LuL¢Tv.
By Assumption 2 and Definition 7.2.1, one obtains that
(K) = X(K)I = IFF(X(1), y(i, ur (X, y(iN)) = Gr (&), y(il). ur (XD, y(iD))I < Tv
with v > 0.

Finally, using Assumption 3, it can be written for &lE {jl + 2, ..., (j + 1)l — 1} that

IX(K) = X(K)I = [FF(x(k — 1), y(k — 1), ur q(R(k — 1), ye(k - 1))
— Gr(X(k— 1), ye(k — 1), urp(X(k — 1), ye(k — 1))
< Ty + [FR(x(k = 1), y(k = 1), urp(R(k = 1), ye(k - 1)))

- FR(x(k - 1), y(k - 1), ur p(R(k — 1), ye(k - 1))l
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+IFF(x(k= 1), y(k = 1), ur n(R(k = 1), y(k - 1))
= FF(x(k = 1), y(k = 1), ur p(X(k - 1), y(k = 1)))|
+IFF(x(k= 1), y(k = 1), ur n(X(k = 1), ye(k — 1)))
= FF(x(k = 1), y(k = 1), ur p(X(k - 1), y(k = 1)))|
+[Gr(X(k = 1), y(k = 1), ur n(X(k - 1), y(k — 1)))
= Gr(X(k = 1), ye(k — 1), urn(X(k — 1), ye(k — 1))l
< Tv+ 2Tpa(T) + (LeLy + Lo + Ly))ly(k — 1) - ye(k — 1)| < T¥

with ¥ > 0.
Then, it can be obtained by induction that

Iy(K) = Ye(K)I = IH(FE(x(k — 1), y(k — 1), ur n(%(k - 1), ye(k — 1))))
— H(F3 (X(k = 1), ye(k = 1), ur p(R(k = 1), ye(k = 1)))]
< LuTp(h) + H(F3 ,(x(k — 1), y(k — 1), urn(X(Kk — 1), ye(k — 1))))
— H(F2 ,(X(k = 1), ye(k = 1), ur p(R(k — 1), ye(k = 1)))|

< LuTpa(h) + LyLtTV + LuLtly(k — 1) — ye(k — 1)|

Consequently, by the choice ©fandh it is obtained thaty(k) — yc(k)| < Te for all k. This

completes the proof of Claim 1. |

Claim 7.3.2 [38] Let a1, a2, a3 € K and strictly positive real numberg\, §) be such that
a1(A) > 6. Let T, > 0 be such that for each fixed d (0, T2], there exists fhie (0, T] such that
for any he (0, hy] there exists a functionV: R™P — R.q such thatv1(|X) < V1 (X) < ax(|X)
for all X € R™P and Vf (X(i + 1)) V7 (X(i)) < —Fa3(%(i)]) holds for allk € R™P with |X| < A
and maxVr(X(i + 1)), V1 (X(i))} = 6. Then,|X(i)] < & holds for all|%(0)| < a2~ o a1(A) and

alli e Z*.

Proof. By Assumption 1 and Definition 7.2.5, there exists a functignfor all X € R™P
such thate1(|X) < Vr(X) < ao(|X)). As stated in [38], the definitions &f and A imply
1%(0)] < maxa1~t o VT (X(0)), a171(8)} < A. So eitheNt(X(1)) > 6 which, from the condition
of Claim 7.3.2, impliesvVr(X(1)) < V1(X(0)) or elseVr(X(1)) < 6. Then, in either case,
V1 (X(1)) < maxVr(X(0)),d}. HenceVr(X(i)) < maxVr(X(0)), s} follows by induction and

|X(i)] < A holds as well. |
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In the following theorem, it is shown that the observer (Ji$4 SPA stable observer with (7.12)

for the system (7.2) and this is proved using the conditiansrgin Definition 7.2.3.

Theorem 7.3.3 Consider the exact model (7.2), the dual-rate output feeklisantrol scheme
(7.12), (7.14), (7.15), Lemma 7.2.9, Claim 7.3.1 and ClaighZ Given any strictly positive
real numberA,, there exists T> 0 such that for any fixed E (0, T1], there exists he (0, T]
such that for all|X(0)| < A1, |X(0)] < A; and he (0, h;]. Then, the observer (7.14) is a SPA
stable observer with (7.12) for the system (7.2) under Apsions 1-4.

Proof. Let A1, Ap, Az, v,e € Ryg, IX| < A1, |X < Ag, Iyl < Ay by the Lipschitzity ofH(.),

Iyl < Az. Using Assumption 3 and the fact thagy, is zero at zero, there exidy; > 0
andhy; > 0 such thafjur n(X,yc)l < Az for all [X| < A1, lyel < A2 by Lemma 7.2.9. From
Assumption 3, lef1» > 0 andh;» > 0 be generated using Definition 7.2.8. From Assumption
4, there exisfTy3 > 0 andhyz > 0 using Definition 7.2.2. Let,,L¢,Lg, Ly > O be the
Lipschitz constants of the functiong, F2, Gt andur p, respectively. Using Definition 7.2.2,
let p1(.) € K be a function from Assumption 4 for one-step consistency¥pfwith F3.
From Claim 7.3.1 and Claim 7.3.2, &4 > 0, hy4 > 0 andT15 > 0, hy5 > 0 be generated,
respectively. FinallyTy = min{T11, T12, T13, T14, T1s} andhy = min{hyq, hio, iz, hig, his) are

..........

Assumption 2, Lyapunov functio¥ie for the observer errog = x — X satisfies
wherea € K., v > Ois suficiently small number anB3 (x, X, y, ur(X,y)) := F$(X,y, ur (X, y))—

GT(),Z’ Y, ur (),Z’ y))

Consider the observer (7.14). It is obvious that conditiGhS) and (7.6) are satisfied and
hence, to prove SPA stability, it is enough to show that diowli(7.7) holds. First, the

following equations are defined for the observer error dyinam

ETn(% X Yo, Urh(XYe)) := FT (XY, Ut h(X, Ye)) = GT h(X, Yo, Ut h(X, Ye)) (7.17)
ES (% %, Yo, Ut h(% Ye)) = FF(X,Y; Ut h(R, Ye)) = GTa(X Ye, Urn(X, Ye)) (7.18)
E?’(X’ X, Y, ur ()’Z, y)) = F%(X’ Yy, ur (),Z’ y)) -Gt ()’Z’ y, ur ()’Z’ y)) (719)
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Using Assumption 4, (7.16)-(7.19) and continuity\@f the Lyapunov dierence for the ob-

server error can be written as:

AVe = Ve(ET (X X, Yo, Ut h(R, ¥c))) — Ve(€)

= Ve(ET h(% %, Yo, UTh(X ¥o))) — Ve(EF (X R, Y, Ut (R,))) + Ve(EF (X, X ¥, Ut (X Y))) — Ve(€)

< Ve(ET (% &, Ye, Ut h(X Ye))) = Ve(ET h(% X Yo, UT (X, ¥o))) + Ve(EF (X, X, Y, Ut (R, Y)))

— Ve(EF (X XY, Ut (X)) + Ve(ET (% %, Yo, Urh(X, ¥e))) — Ve(EF (X, X, Y, Ut (R, Y))) — Ta(l€)
+ Ty < ~Ta(le) + Ty + Ve(EF 1(X &, Yo, Urn(R. Ye))) = Ve(EF (X, &y, ur(X,Y))) + 2Ly Tpa(T)

Then, using continuity o¥/e, Claim 7.3.1, Claim 7.3.2 and Assumption 3, it can be written

that

AVe < =Ta(l€) + Tv + 2Ly Tpa(T) + LyLLulye — Y + LuLglye — YI + LyLgLulyc — VI

<-Ta(e) + Tv+ 2L, Tp1(T) + (LyLtLy + LyLg + LyLgLy)Te

A sufficiently smally’> v can be picked such that there exi$ts> 0 such that for eacli €
(0, TY], there existd! € (0, T] such thafTv+ 2L, Tp1(T) + (LyLtLy+LyLg+ LyLgl ) Te < T
for all h € (0,h!] and hence\Ve < —Ta(le]) + T¥. Consequently, condition (7.7) is satisfied

and this completes the proof. |

In the following theorem, it is shown that the dual-rate atssebased output feedback con-
troller (7.14), (7.15) and (7.12) SPA stabilizes the sys{@r) and this is proved using the

conditions given in Definition 7.2.5.

Theorem 7.3.4 Consider the exact model (7.2), the dual-rate output feeklisantrol scheme
(7.12), (7.14), (7.15), Lemma 7.2.9, Claim 7.3.1 and ClaighZ Given any strictly positive
real numbers\y, there exists T> 0 such that for any fixed E (0, T1], there exists he (0, T]
such that for allX(0)| < A1, [X(0)] < A1 and he (0, h;]. Then the system (7.2) is SPA stable
with the dual-rate observer-based output feedback cdetr¢¥.14), (7.15) and (7.12) under

Assumptions 1-4.

Proof. Let A1,Az,A3,6,& € Rsg, X < Ag, IXl € Ag, Yl < A, by the Lipschitzity ofH(.)
andlyc| < Az. Using Assumption 3 and the fact tha, is zero at zero, there exi$t; > 0
andhy; > 0 such thafur n(X,yo)| < Az for all [X] < Ag, |yl < Az by Lemma 7.2.9. From

Assumption 3, lefT12 > 0 andhy» > 0 be generated using Definition 7.2.8. From Assumption
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4, there exisfT13 > 0 andhyz > 0 using Definition 7.2.2. Let,,L¢,Lg,L, > O be the
Lipschitz constants of the functioNg, F2, Gt andur , respectively. Using Definition 7.2.2,
let p1(.) € K be a function from Assumption 4 for one-step consistency¥pfwith F3.
From Claim 7.3.1 and Claim 7.3.2, [&t4 > 0, hy4 > 0 andTy5 > 0, hy5 > 0 be generated,

respectively. Finallyjl'l = min{Tll, T12, T13, T14, T15} and h]_ = min{hll, h12, h13, h14, h15} are

..........

Let the Lyapunov functiotV(X) be defined a¥(X) = V1(X) + Ve(e). By Assumption 1, the

Lyapunov diterence can be written as

AV = V(F§(R) - V(%) = Vr(FE(X Y, ur(R.Y))) — V1 (%) + Ve(E$(X, X Y. Ur(R.Y))) — Ve(€)
< -T&(I%) + Ts (7.20)

wherea € K, § > 0 is a stficiently small number.

Consider the output feedback controller (7.14)-(7.15).islbbvious that conditions (7.8)
and (7.10) are satisfied and hence it is enough to show thatitmon (7.9) holds. The
Lyapunov diference can be written using continuity \éf, Assumption 4, Theorem 7.3.3

and (7.20) as:

AV = VT(F_'?'()Z ¥, urh(X,¥e))) = Vr(X) + Ve(E%h(X’ %, Yo, Ut h(X, Ye))) — Ve(€)
< Vr(FE(X Y, Urh(R o) = VT (FE(X Y, ur (%, Y)) + Ve (FE(X Y, ur (%)) — Vr(X)
~ Ta(e) + T7 < VI (FE(X Y, Urn(R, Ye)) — VI (FE(X Y, ur(R,Y))) - Ta(I%) + T6

< —T&(I%) + T6 + 2Ly Toa(T) + Vi (FA(X Y, Uurn(% Ye))) — VI (FA(X Y, ur (%, Y)))
wheres > 0 is a stfficiently small number.

Then, using Claim 7.3.1, Claim 7.3.2, Assumption 3 and cwiitly of V1, it can be written
that

AV < -Ta(X) + TS+ Lv(LLy + Lg+ LgLy)lyc = Y1 + 2Ly Tp1(T)

< —Ta(X) + T6 + 2Ly Tpa(T) + Ly(LtLy + Ly + LgLy)Te.

A sufficiently smalls > § can be picked such that there exigts > 0 such that for each
T e (0, TY, there existsh® € (0, T] such that for allh € (0,h'] it can be obtained that
T6 + 2L, Tpa(T) + Ly(LtLy + Lg + LgLy)Te < T and hence\V < —Ta(X) + T6. Hence
condition (7.9) is satisfied. By Lemma 7.2.9, condition (j.holds and this completes the

proof. |
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Remark 7.3.5 The proposed dual-rate output feedback control scheme eaapplied to
general output dynamical controllers (not necessarilyestisr-based) by predicting the un-
measured output samples between measured samples. Hgmeemdic switch is used which
connects the slow sampled measurement evgrperiod and uses the approximate model

F%h of the output dynamics of y to get the estimated output tonfihé missing samples.

7.4 Applications

In this section, dual-rate output feedback control scheivengn (7.14), (7.15) and (7.12) is

applied to various systems and the simulation results alyzed.

7.4.1 Dynamically Positioned Ship

Consider the following system equations for the mooreddaikExample 11.4 in [12]

n = R(xa(t))v (7.21)

V= Ain + Ay + Bu (722)

T T T
wherey(k) = (K, 7=[x; % xal V=[x x5 Xl U=[u w usl ,A=-M'K,

10852 0 0 cosxg —sinxg O
M=| 0 20575 -0.4087|, R(x3s) =|sinxz cosxs O],
0  -04087 02153 0 0o 1
00865 0 0

D=| 0 00762 01510[, K =diag{0.03890.0266 0},
0 0.0151 00031

A, = —M~1D andB = M1 as given in [25].

In [25], single-rate reduced order observer based SPAligialgi output feedback controller
for the system (7.21)-(7.22) is designed using the Euleragdmate model. The single-rate

output feedback controller is obtained usig = %yTy as:

ur(y, 7) = B Uar(y, 9) — Ary — Ap7] (7.23)
2k + 1) = Miz(K) + May(K) + T BUK), (7.24)
H(K) = z(K) + Gdy(k) (7.25)
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where

AW (.9) | AdT(.9)
T T

UaT (Y, V) = —C(v = ¢1(Y)) —
AGt(Y,9) = dr(k+ 1) - ¢7(¥(K)

¢1(¥(K) = R (xa(K)Ly(K)
¢1(k+1) = R'(%a(k + D)LIY(K) + TRxa(K)LI(K)]
X3(k + 1) = x3(K) + T Xs(K)

AWE (Y=gt
~ 5 .V # 41(Y)
AW (y,5) =1 PerOIP T
TR (x)ly + TROX)V], 7 = ¢7(Y)

AWk (y, 9) = Wr(y + TR(x3)?) — Wr (1 + TL)Y)

andc > Oisarbitraryd=[0 0 1, Mi=1+T(Ay—Gd), My = T(A1 + (A2 — Gd)Gd) and
G e R,

Then, the dual-rate SPA stabilizing reduced order obsdrased output feedback controller

is designed as:

ur.h = Ut (Ye(k), v(K)) (7.26)
2(k + 1) = M1z(K) + Mayc(K) + T Burp(K) (7.27)
7(K) = 2(k) + Gdye(K) (7.28)
y(i + 1), if i +1=Kk|,
Ye(i +1) = \F2 (y(0), %), ifi=Kl (7.29)

Fa,0e(). (D). ifi+1=K+7

wherek € Z*, v = 2,...,| — 1. The numerically integrated approximate moEI%’ln(yc, v) can

be written as:
fa e 9) = fu(¥e, ) = Yo + hR(xa)?
f Ve, ) = f( 5, 9)
F2 e ?) = (e ?),  k=12..,N-1
whereh is the integration periodl is the sampling period and = % The consistency of

approximation scheme is checked. By Lemma I1.2 in [4R]is one-step consistent wifA;

whereF; is the exact discrete-time model with the sampling pefiod\Iso, the multi-step
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Figure 7.1: Time responses of yaw anglethe North positiorxs, the East positiorx, and the
observer errors foxs, x5 andxg with T, = 0.6, T; = 0.2, h = 0.005 andT = 0.6. Dotted line:
Single-rate controller. Solid line:Dual-rate contraller
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and right y-axis: Single-rate controller. Solid line anft {eaxis:Dual-rate controller.
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Figure 7.3: Time responses of yaw angle the North positionx;, the East positiorx, and
the observer errors foy, Xs andxg with and large initial conditionsT,, = 0.6, T; = 0.2, h =

0.005 andT = 0.6. Dotted line: Single-rate controller. Solid line:Duake controller.
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consistency is guaranteed by the one-step consistencyth@usniform Lipschitz condition
on fy (see Remark 13 in [46]). Then, following closely the conins of Corollary 4 and
Remark 14 in [46], it is shown thd?2  (», v) is one-step consistent with?(;, v). Moreover

it is easy to see that Assumption 3 is also satisfied.

T
Asin [25], itissetthalG = [0 -1.8862 11369 for observer and = —diag{0.5, 2, 1}
andc = 0.2 for controller. Simulations have been performed to comhe dual-rate con-

troller (7.26)-(7.28) with the single-rate controllerZ3)-(7.25).

First, the single-rate and dual-rate controllers are agplo the system (7.21)-(7.22) with
the initial conditions,p(0) = [-2 2 _%]T, v(0) =0 0 dT andv(0) = [0 0 dT.

Simulation results with the sampling periods = 0.6 for the single-rate controller and
Tm = 06, T; = 0.2, h = 0.005 for the dual-rate controller are given in Figure 7.1.slt i
shown that the dual-rate controller (7.26)-(7.28) workdl wed is faster than the single rate
controller (7.23)-(7.25). Also, observer errors convelmeero faster with the dual-rate con-

troller.

Then, the simulation is performed with the initial conditsogiven above and large sampling
periods. Simulation results with the sampling peridds- 0.8 for the single-rate controller

andTy = 0.8, Tj = 0.2, h = 0.005 for the dual-rate controller are shown in Figure 7.2.
While the single-rate controller (7.23)-(7.25) cannobgize the system, the dual-rate con-

troller (7.26)-(7.28) stabilizes the system successfully

Finally, the controllers are applied to the system (7.2Z12Z) with the same sampling periods
as in the first simulation and large initial conditiop®) = [-4 3 _%]T andy(0) = »(0) =
03x1. Simulation results with the sampling periofls= 0.6 for the single-rate controller and
Tm = 0.6, T; = 0.2, h=0.005 for the dual-rate controller are given in Figure 7.3sshown

that the dual-rate controller gives faster results contptwehe single-rate controller again.

7.4.2 Two-Link Robot Manipulator

Consider the dynamic model of the two-link manipulator give Subsection 3.4.2

n==¢ (7.30)
£ =M7(n) (U= C(7.)¢ - G(n)) (7.31)
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T
with sampled measuremeyk) = n(k)\where the state vectors age= [¢; ] andé :=

[ qz]T, M=[Mw].C=[@&]6=[&]andu=[t]with M = myl2, +my(12+12,+
2112 cOS2), M2 = M3 = Mplileo cOSGz + MplZ,, My = mplZ,, C1 = —mplalez sindatp, Co =
—Mglalez SiNd(Ga + G2), C3 = Melalez SinGeG, C4 = 0,G1 = Mgl cosqy + mpg(ly cosqy +
lc2 cos@r + O2)), G2 = Mgl cos@r + O2). I andl, are the distances of the center of mass
from the joint axes. The robot parameters are givemas np = 5 [kg], |1 = 12 = 0.5 [m],

Il =l = 0.25 [m]. The control objective is to solve the trajectory kiag problem.

The single-rate output feedback controllgrwith the observer (6.45) is designed in Subsec-

tion 6.4.2. Then the dual-rate output feedback contraieteisigned as:

urh = ur (Ye(K). £(K) (7.32)
Ek+1)= £+ T(M7(ye) (urh — C¥e. £)€ - G(yo)) + K&) (7.33)
y(i + 1), if i + 1=Kk,
Yl +1) = 0F2 (y(i),£(1)), if i =kl (7.34)
F2,(vc().£G). ifi+l=K+7
wherek € Z*, v = 2,...,| — 1. The numerically integrated approximate moﬂ%’ln(yc, &) can

be written as:

fhl(YCa é) = fh(Ye, é) =VYc+ h(é)
fit (e, £) = (.4
F2 e 8) = (e, &), k=1,2.,N-1

whereh is the integration period] is the sampling period anl = % The following

simulation parameters are setj = 2,¢c; = 3, ¢ = 1 andd = 0.5 for controllers and
h = diag(5,6} for observer. Two dferent reference trajectorieggs = Qo = 2 — 2e
andqgq1 = qq2 = sin(t), are considered. Then, simulations have been performedder to
compare performances of the single-rate and dual-rataubtépdback controllers with the

initial conditions(0) = £(0) = £(0) = | §Jand diferent sampling periods.

First, the single-rate and dual-rate controllers are agpt the system (7.30)-(7.31) with the

first reference trajectorgy: = Qg2 = ;51 - %e‘t.

Simulation results with sampling periods = 0.15 for the single-rate controller and, =

0.15, T; = 0.0, h = 0.001 for the dual-rate controller are given in Figure 7.4.slshown
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Figure 7.4: Responses of the system for the first trajectotly W, = 0.15 T; = 0.0, h =
0.001 andT = 0.15. Dotted line: Single-rate controller. Solid line: Duate designed con-
troller. Dash-dotted line:desired trajectory.
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Figure 7.5: Responses of the system for the first trajectaiy Ty, = 0.3, T; = 0.03, h = 0.003
andT = 0.3. Dotted line: Single-rate controller. Solid line: Duake designed controller.
Dash-dotted line:desired trajectory.
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Figure 7.6: Responses of the system for the second trajewith T,, = 0.1, T; = 0.01, h =
0.001 andT = 0.1. Dotted line: Single-rate controller. Solid line: Duake designed con-
troller. Dash-dotted line:desired trajectory.

Figure 7.7: Responses of the system for the second trayewitit T, = 0.2, T; = 0.005 h =
0.0005 andT = 0.2. Dotted line: Single-rate controller. Solid line: Duake designed con-
troller. Dash-dotted line:desired trajectory.
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that both controllers track the desired trajectory, butitheking error converges to zero faster

with dual-rate controller.

Simulation results with sampling periods = 0.3 for the single-rate controller anfl,, =
0.3, T; = 0.03 h = 0.003 for the dual-rate controller are given in Figure 7.5. \&hie
single-rate controller cannot track the trajectory, thaldate controller tracks the trajectory

successfully.

Then, the single-rate and dual-rate controllers are agppdieche system (7.30)-(7.31) with the

second reference trajectonyy; = g2 = Sin(t).

Simulation results with sampling periods = 0.1 for the single-rate controller ant,, =
0.1, T; = 0.01 h = 0.001 for the dual-rate controller are given in Figure 7.6sshown that
the dual-rate controller track the desired trajectory sitialler tracking error when compared

to the single-rate controller.

Simulation results with sampling periods = 0.2 for the single-rate controller ant,, =
0.2, T; = 0.005 h = 0.0005 for the dual-rate controller are shown in Figure 7.7.ilg\ine
single-rate controller cannot track the trajectory, thaldate controller tracks the trajectory

successfully.

7.4.3 Attitude Control of Rigid Artificial Satellite

Consider the following nonlinear equations for the digatitude control of a rigid artificial

satellite which were also given Subsection 3.4.3

o = H(o)w, (7.35)

w = JIS(w)dw+ Jtu (7.36)

with sampled observatiog(k) = p(k) wherew = [w; w, W3]T e R3 is the angular

velocity vector of the body in a body-fixed framg, € R is the Cayley-Rodrigues pa-

rameters describing the body orientatiene RS is the control torque vector of the body,

J = JT = diag{10, 15, 20} is the inertia matrix of the body [315(w) is the skew-symmetric
w.

matrix given byS(w) = [_%3 0 _wv?] andH (o) = 3(1 - S(p) + po").

wp —wp O

The single-rate output feedback controllgrwith the observer (6.48) is designed in Subsec-
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tion 6.4.3. Then the dual-rate output feedback contraieteisigned as:

Ut h = Ur (Ye(k), W(K)) (7.37)

Wk + 1) = W+ T(IIS(W) IW + I turp, + KW) (7.38)
y(i + 1), if i +1=KkI,

ye(i +1) =y F2, (y(i), W(i)), if i =K (7.39)

F2 (ve(i), W(i)), ifi+l=Kk+7
whereke Z*, r=2,...,1 — 1.

The numerically integrated approximate mo8él, (yc, W) can be written as:

fL(ye, W) = f(Ye, W) = Yo + hH(yc)W
5 (ye, W) = fin(FX, W)

F2 0eW) = flye, W),  k=12..,N-1

whereh is the integration periodl is the sampling period and = % The following sim-
ulation parameters are sdt: = diag{0.5,0.5,0.5}, c = 1 andd = 0.5 for controllers and
h = diag{1, 2,0.4} for observer. Then, simulations have been performed inraaleom-
pare performances of the single-rate and dual-rate ougmatbiack controllers with fierent

sampling periods and initial conditions.

In the first simulation, the initial conditions are chosep@) = [1.4735 06115 2552]]T,
w(0) = 03,1 andwi(0) = 034 as the initial conditions of the observer. Simulation resulith
the sampling period$ = 0.5 for the single-rate controller arig, = 0.5, T; = 0.1, h = 0.001
for the dual-rate controller are given in Figure 7.8. It i®wh that both controllers stabilize

the system (7.35)-(7.36), but faster with.

Then, the simulation is performed with the initial conditiogiven above and large sampling
periods. Simulation results with the sampling peridds: 0.8 for the single-rate controller

andT,, = 0.8, Tj = 0.1, h = 0.001 for the dual-rate controller are shown in Figure 7.9. [&/hi
the single-rate controller cannot stabilize the systera,dhal-rate controller stabilizes the

system successfully.

Finally, the controllers are applied to the system (7.353) with the same sampling periods

as in the first simulation and large initial conditions. Slation results with 15-fold initial
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Figure 7.8: Time responses pfandw with T, = 0.5, T; = 0.1,

Dotted line: Single-rate controller. Solid line: Dual-eatontroller.
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Figure 7.9: Time responses pfandw with T, = 0.8, T; = 0.1, h = 0.001 andT = 0.8.
Dotted line: Single-rate controller. Solid line: Dualeatontroller.
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Figure 7.10: Time responses pfandw with 1.5-fold initial conditions andry, = 0.5, T;

0.1, h=0.001,T = 0.5. Dotted line: Single-rate controller. Solid line: Duak& controller.
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conditions and sampling periods = 0.5 for the single-rate controller anf, = 0.5, T; =
0.1, h = 0.001 for the dual-rate controller are given in Figure 7.10s kRhown that while the
single-rate controller cannot stabilize the system, tra-cate controller stabilizes the system

successfully again.

7.4.4 Second-Order Single-Input System

As a last example, consider the following continuous-tifanp

n=1+¢ (7.40)

£=u (7.41)
wheren € R andé¢ € R are the state vectorg,c R is the control input angi(k) = n(k).

The single-rate output feedback controllgrwith the observer (6.51) is designed in Subsec-

tion 6.4.4. Then the dual-rate output feedback controfieteisigned as:

Urh = ur(Ye(K), £(K)) (7.42)

Ek+1)=E&+T(urp + KO (7.43)
y(i + 1), if i +1=KI,

(i +1) = (F2 (y(i),£()), if i =Kl (7.44)

Fa, (ve(i).&0), ifi+1=K+7

wherek € Z*, v = 2,...,| — 1. The numerically integrated approximate moEI%’ln(yc, &) can

be written as:

fa e €) = falYe, &) = Ye + h(y” + £)

f Ve, €) = (Y, 4)

F2 0. 8) = (e, &), k=12.,N-1
whereh is the integration periodTl is the sampling period and = % The following sim-
ulation parameters are sat:= 1 andd = 0.01 for controllers,K = 1 for observer. Then,

simulations have been performed in order to compare pedioces of the single-rate and

dual-rate output feedback controllers witlfdrent sampling periods and initial conditions.
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Figure 7.11: Time responsesmgfthe observer erraf andu with Ty, = 0.8, T; = 0.1, h = 0.05
andT = 0.8. Solid line: Dual-rate controller. Dotted line: Singlate controller.
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Figure 7.12: Time responsesmfthe observer errafandu with T, = 0.9, T; = 0.1, h = 0.05
andT = 0.9. Solid line: Dual-rate controller. Dotted line: Singlate controller.

142



(a) (b)

(©

Figure 7.13: Time responses gf the observer errof and u with the initial conditions
(7(0),£(0)) = (-3,-5) andT, = 0.8, T; = 0.1, h = 0.05, T = 0.8. Solid line: Dual-rate
controller. Dotted line: Single-rate controller.
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First, the single-rate and dual-rate controllers are agfdh the system (7.40)-(7.41) with the
initial conditions §(0), £(0)) = (1.6, 0.5) and £(0)) = 0. Simulation results with the sampling
periodsT = 0.8 for the single-rate controller anfi,, = 0.8, T; = 0.1, h = 0.05 for the

dual-rate controller are shown in Figure 7.11. It is obsé®t both controllers stabilize the

system (7.40)-(7.41), but faster with.

Next, the simulation is performed with the initial condit®given above and large sampling
periods. Simulation results with the sampling peridds: 0.9 for the single-rate controller
andT, =09, T; = 0.1, h = 0.05 for the dual-rate controller are can be seen from Figur2.7.
It is shown that both controllers stabilize the system (F(@&041), but the dual-rate controller

yields better performance when compared to the singlee@igoller.

Then, the controllers are applied to the system (7.40)tJAvth the same sampling periods
as in the first simulation and large initial conditiong@), £(0)) = (-3, -5) and £(0)) = 0.
Simulation results with the sampling periofis= 0.8 for the single-rate controller anig, =
0.8, T; = 0.1, h = 0.05 for the dual-rate controller are given in Figure 7.13slslhown that

the dual-rate controller gives faster results when contptréhe single-rate controller.

Moreover, as can be seen from figures, the dual-rate castrpibduces the control input
with less energy when compared to the single-rate contrdileerefore, the dual-rate control

method requires less contrdfert.

Finally, by applying the controllers to the system (7.4D4() with diferent initial condi-
tions, domain of attraction (DOA) estimates with the siaglee and dual-rate controllers are
given in Figure 7.14. In DOA estimates, the sampling periads chosen a$ = 0.8 for

the single-rate controller anfi, = 0.8, T; = 0.1, h = 0.05 for the dual-rate controller. As
can be seen from figure, DOA for the system with the dual-ratgroller is almost same as
that with the single-rate controller. Forfidirent controller parameters and sampling periods,
much larger DOA estimate may be obtained with the dual-ratgroller when compared to

the estimate given in figure.
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7.5 Conclusions

In this chapter, the problem of dual-rate output feedbaakiktation of sampled-data non-
linear systems has been considered under the low measureasterconstraint. The dual-
rate control scheme has been presented based on estimftioa missing output values
between measured output samples using approximate @igaret model. It is shown that if
one designs a single-rate observer-based output feedbatioler which SPA stabilizes the
sampled-data nonlinear system, then the dual-rate obydemged output feedback controller
will also SPA stabilize the exact discrete-time plant modéien, numerical examples have

been given to illustrate the design method.

Using simulations, the performance of the designed dualgantroller has been compared
with the single-rate controller. It was observed that thaldate controller yielded better

performance. The dual-rate controller can stabilize tlstesys with larger sampling periods.
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CHAPTER 8

CONCLUSIONS & FURTHER RESEARCH

Because of technological advances in computer technotmyyadays controllers are imple-
mented using a digital computer in most control engineesirsiems. Therefore sampled-data
systems have received much attention in recent years. #dtheampled-data nonlinear con-
trol has attracted much attention in recent years, the albeitrdesign methods for sampled-

data nonlinear systems are still limited.

In this thesis, digital controller design methods for saadpdlata nonlinear systems have been
investigated. The direct discrete-time design, one of tlénmpproaches to sampled-data

design, based on approximate plant models has been thedbthis research.

In this chapter, the main contributions of the thesis willsagnmarized and the topics for

further research will be stated.

8.1 Conclusions

In this thesis, a reduced order observer design and a rarmgatwbller design tools have been
proposed for sampled-data nonlinear systems in stricbfagdform. Then, a dual-rate con-
trol scheme has been presented for the problem of dual-wapeiiofeedback stabilization of
sampled-data nonlinear systems under the low measureatertanstraint. To illustrate the
tools in this thesis, these tools were applied to severahgles arising from the engineering
practice. Their performances were analyzed with simutatioThe conclusions from each

part of the thesis are the following.
In Chapter 3, a backstepping design method has been deddimpsampled-data nonlinear
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systems in strict feedback form. fBerent from the backstepping controller given in [48],
the controller in this thesis is designed for multi-inputgded-data nonlinear systems to
compensate theffects of the discrepancy between the Euler approximate naodkkexact
discrete time model by adding a nonlinear damping term. #svewn by simulations that the
designed controller outperforms the controllers giver] pind [26] which is an extension of
the controller in [48] to multi-input sampled-data nonkmeystems. This method can be used

for sampled-data nonlinear systems in strict feedback feh®n all the states are measured.

In Chapter 4, two SPA stabilizing adaptive backsteppinggiesethods have been presented
for sampled-data nonlinear systems in strict feedback fofithe controllers are designed
to compensate thefect of the error in parameter estimation. It was shown by kitimns
that the designed controllers outperform the emulatiorirotlars. These controllers can be
applied to the sampled-data nonlinear systems in strictol@ek form in case of parameter

uncertainty.

In Chapter 5, a robust backstepping method has been dedefopsampled-data nonlin-
ear systems in strict feedback form. This controller is a ifiedl version of the controller
given in [58]. Diferent from the controller in [58], the controller in this dieis designed

to compensate theffect of diference between disturbance or model uncertainty and their
bounds. It was shown by simulations that the designed dertrmutperforms the controller
given in [58]. To deal with model uncertainty and disturbescthis controller can be used for

sampled-data nonlinear systems in strict feedback form.

In Chapter 6, a reduced order observer design has been f@seich is an extension of
the reduced order observer given in [33] to a general clagsutti-input nonlinear systems.
The observer error converges to zero by the designed obséirveas shown by simulation

that the designed observer gives faster results than treavgiven in [25].

Then, a reduced-order observer-based SPA stabilizingsbtembhing method has been given
for sampled-data nonlinear systems in strict feedback far@hapter 6. Diferent from the
backstepping controller given in [25], the controller inmstkhesis is designed to compensate
the dfects of observer error. It was shown by simulations that dségmhed controller outper-
forms the controller given in [25]. This method can be agpti@the applications where only

a part of the state vector is available from measurement.
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In Chapter 7, for the problem of dual-rate output feedbaakikzation of sampled-data non-
linear systems under the low measurement rate constramiabrate control scheme has
been presented based on estimation of the missing outpugs/életween measured output
samples using approximate discrete-time model. It was shbat if one designs a single-
rate observer-based output feedback controller which $Alizes the sampled-data nonlin-
ear system, then the SPA stability property will be presgtwethe dual-rate observer-based
output feedback controller. This control scheme can be irsadplications where hardware
restrictions on input and measurement sampling ratefisrdnt. Also network load mini-

mization can be achieved by this method.

Consequently, the proposed design tools have been applibe practical applications such
as, ship, robot manipulator, satellite, etc. Simulaticsulis have shown that the controllers
designed by the proposed tools yield better results whermpaced to the controllers existing
in the literature. The controllers designed by the propasethods enlarge the domain of
attraction and stabilize the sampled-data nonlinear systgith larger sampling periods in
general. When the simulation results with the proposed ousttare compared, it can be
observed that observer-based output feedback contraiten gn Chapter 6 gives slightly

faster results when compared to the state feedback cartgillen in Chapter 3. In Chapter 7,
it was shown that the dual-rate output-feedback controllgperforms the single-rate output-
feedback controller. As a result, it can be said that dual-oatput-feedback controller yields

faster results when compared to the other controllers [segbin this thesis.

8.2 Further Research

Although this thesis has developed some design methods, $bems to be still a lot of work
to be done to develop a comprehensive set of tools that dartgineers can use directly for

sampled-data controller design.

In this thesis, design tools based on the Euler approximatiehihave been given for sampled-
data nonlinear systems in strict feedback form. Hencegdéebls for other types of sampled-
data nonlinear systems which cannot be expressed in gteidbfick form may be developed.
Also, controllers may be designed using the approximate elis-time models dierent from

the Euler approximate model.
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In this research, reduced order observer-based conta#kign has been presented. There-
fore, for general output dynamical controllers (not neaglsobserver-based), sampled-data
control design methods can be developed. Also dual-rateai@theme given in this thesis

can be applied to sampled-data systems with general owpantcal controllers.

In this thesis, a reduced order observer design has beeanpedswhich is an extension of the
reduced order observer given in [33] to a general class diitimplut nonlinear systems. New
observer design methods for sampled-data nonlinear sgstising the approximate model
can be studied. Moreover, the reduced observer-basedtiengiven in this thesis can be

applied with the new observers designed and their perfocesaoan be analyzed.

The design tools have been applied to the practical ap@itasuch as, ship, robot manip-
ulator, satellite, etc. Application of these tools to otpeactical applications which can be

expressed in strict feedback form may be a further reseafib. t
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