


DIGITAL CONTROLLER DESIGN FOR SAMPLED-DATA NONLINEAR SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET ÜSTÜNTÜRK
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ABSTRACT

DIGITAL CONTROLLER DESIGN FOR SAMPLED-DATA NONLINEAR SYSTEMS

Üstüntürk, Ahmet

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Erol Kocaoğlan

March 2012, 155 pages

In this thesis, digital controller design methods for sampled-data nonlinear systems are consid-

ered. Although sampled-data nonlinear control has attracted much attention in recent years,

the controller design methods for sampled-data nonlinear systems are still limited. There-

fore, a range of controller design methods for sampled-datanonlinear systems are developed

such as backstepping, adaptive and robust backstepping, reduced-order observer-based output

feedback controller design methods based on the Euler approximate model. These controllers

are designed to compensate the effects of the discrepancy between the Euler approximate

model and exact discrete time model, parameter estimation error in adaptive control and ob-

server error in output feedback control which behave as disturbance. A dual-rate control

scheme is presented for output-feedback stabilization of sampled-data nonlinear systems. It

is shown that the designed controllers semiglobally practically asymptotically (SPA) stabi-

lize the closed-loop sampled-data nonlinear system. Moreover, various applications of these

methods are given and their performances are analyzed with simulations.

Keywords: Nonlinear, sampled-data, backstepping, outputfeedback
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ÖZ

DOĞRUSAL OLMAYAN KESİKL İ-ZAMAN SİSTEMLERİ İÇİN SAYISAL
DENETLEYİCİ TASARIMI

Üstüntürk, Ahmet

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Erol Kocaoğlan

Mart 2012, 155 sayfa

Bu tezde, kesikli zaman doğrusal olmayan sistemler için sayısal denetleyici tasarım yöntemleri

incelenmiştir. Son yıllarda, bu sistemlerin kontrolü çok ilgi görmesine karşın, denetleyici

tasarım yöntemleri henüz sınırlı sayıdadır. Bu nedenle,söz konusu sistemler için Euler

yaklaşık model kullanılarak geri adımlamalı, uyarlanabilir ve gürbüz geri adımlamalı, indir-

genmiş dereceli gözleyiciye dayalı çıktı geri beslemeli denetleyici tasarım yöntemleri gelişti-

rilmiştir. Bu denetleyiciler, Euler yaklaşık model ile tam model arasındaki farklılık, uyarlan-

abilir denetimde parametre tahmin hatası ve çıktı geri beslemeli denetimde gözleyici hatası

gibi sisteme gürültü şeklinde etki eden etkenleri dengelemek amacıyla tasarlanmıştır. Kesikli

zaman doğrusal olmayan sistemlerin çıktı geri beslemelikontrolü için çift örnekleme zamanlı

denetleme yöntemi verilmiştir. Bu denetleyicilerin, s¨oz konusu sistemleri yarı global pratik

asimtotik olarak kararlı hale getirdiği gösterilmiştir. Ayrıca, bu yöntemlerin çeşitli uygula-

maları verilmiş olup, performansları benzetişimlerle irdelenmiştir.

Anahtar Kelimeler: Doğrusal olmayan, kesikli zaman, geriadımlamalı, çıktı geri besleme
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CHAPTER 1

INTRODUCTION

This thesis considers the controller design methods for sampled-data nonlinear systems. Al-

though sampled-data nonlinear control has attracted much attention in recent years, the con-

troller design methods for sampled-data nonlinear systemsare still limited. The aim of this

research is to provide a range of controller design methods for sampled-data nonlinear sys-

tems, present various applications of the methods obtainedand analyze their performances

through simulation based analyses.

In this chapter, the background and purpose of this researchare presented. Then, a short

overview of contributions and outline of the thesis are introduced. Finally, publications from

the work done are given.

1.1 Stabilization of Sampled-Data Nonlinear Systems

Because of technological advances in computer technology,nowadays controllers are imple-

mented using a digital computer in most control engineeringsystems. Therefore sampled-data

systems has received much attention in recent years. A sampled-data system involves both

continuous-time system and digital controller which is implemented with the computer. In

Figure 1.1, a sampled-data system is shown schematically [5].

In sampled-data control system, a digital controller is applied using analog-to-digital (A/D)

converter and digital-to-analog (D/A) converter. In Figure 1.1, the output from the process

y(t) is converted to digital form by the A/D converter which is often called as sampler device.

The conversion is done at the sampling time,tk. The A/D converter sends the sampled output
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Figure 1.1: General sampled-data system configuration.

{y(tk)} to the controller. Then, the controller produces the control sequence{u(tk)}. Later this

sequence is converted to piecewise continuous control signal u(t) by D/A converter which is

often referred as hold device. This control signal is then applied to the process. An internal

clock is used to synchronize the operation of the system.

Most plants are nonlinear in nature. A linear approximationaround a prescribed operating

point can be used for analysis and controller design of thesenonlinear plants. However,

the nonlinearities cannot be neglected (see [60] for details) in many situations. Therefore,

in these cases, controller is designed using a nonlinear model. Moreover, the system which

includes a nonlinear plant and digital controller is classified as sampled-data nonlinear control

system. There are many applications for sampled-data nonlinear control systems such as ship

or submarine control, biochemical reactors, manoeuvre control of an aircraft, position control

for robotic systems, etc.

Controllers can be designed for sampled-data nonlinear systems using three different ap-

proaches which are described in [32] as continuous-time design (CTD), direct discrete-time

design and sampled-data design.

1.1.1 Continuous-Time Design

One way to design a digital controller is CTD method, often referred to as emulation, based

on continuous-time model of the plant. First, a continuous-time controller is designed using
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continuous-time plant model and any continuous-time design tools. In this step, sampling

is completely ignored. Secondly, the designed continuous-time controller is discretized us-

ing one of the discretization methods such as Euler, Tustin,other Runge-Kutta methods and

matched pole-zero discretization. Then, the discretized controller is implemented using sam-

pler and hold devices under sufficiently fast sampling rates.

Since there exist many design tools for continuous-time systems (see for instance [27, 30, 60,

62]) and there is no need to consider sampling at design stage, CTD method is rather popular.

In [5, 13, 53], various techniques of emulation design are given.

A general and unified framework for designing controllers for sampled-data nonlinear sys-

tems with disturbances using emulation technique was presented in [36]. In [36], it is shown

that if the continuous-time closed-loop system satisfies a certain dissipation inequality with

a continuous-time controller, then a similar dissipation inequality is satisfied in a semiglobal

practical sense for the discrete-time model of the sampled-data closed-loop system with the

emulation controller.

Emulation controllers work well under sufficiently fast sampling (see [7, 36, 54, 59, 67]).

The reference [49] provided a formula to compute the largestsampling period to stabilize a

sampled-data nonlinear system with an emulation controller.

There are some advantages of emulation design. First, thereare many tools for controller

design in continuous-time domain. Second, the sampling is taken into account at the imple-

mentation stage. Therefore, the controller design problemis separated from the problem of

choosing a sampling period. However, some disadvantages may arise during the application

of this method. Since the performance of the continuous-time controller can only be recovered

under very fast sampling condition, because of hardware restrictions it may be impossible to

reduce sampling period to a sufficiently small value to ensure desired performance. Therefore,

in these cases direct discrete-time design is a better alternative which is based on discrete-time

model of the plant.

1.1.2 Direct Discrete-Time Design

The second way to design a digital controller is direct discrete-time design which is based on

discrete-time model of the plant. This method involves designing a controller for the discrete-
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time plant model. Sampling is considered at the design stage.

There are two approaches in the literature regarding the discrete-time plant model. The first

one is based on the assumption of the availability of the exact discrete-time models. While in

the second one, it is assumed that the exact models are unknown. Although the assumption of

the availability of the exact models usually holds for linear systems, this almost never holds

for nonlinear systems. Since the computation of the exact discrete-time model of nonlinear

system involves solving analytically a nonlinear differential equation over one sampling in-

terval, which is impossible in general, the exact model of the nonlinear system cannot be

computed in general. Because of this, approximate discrete-time models are commonly used

in practice.

The controller is designed in three steps using approximatemodel based direct discrete-time

design. The first design step is discretization of the continuous-time model to obtain the

approximate model of the plant. The approximate model is usually parameterized by the

sampling periodT, which may be left as a parameter to be determined later. In the second

step, a discrete-time controller is designed for the approximate model of the plant to satisfy

certain stability and robustness criteria for closed-loopdiscrete-time system. At this stage,

T is determined to achieve a satisfactory performance for thesystem. As the final step, the

designed controller is implemented using sampled and hold devices under sufficiently fast

sampling rates.

To obtain the approximate discrete-time model of continuous-time plant, numerical methods

are generally used. Approximation by these methods causes discrepancy between exact and

approximate models. Since controller is designed using theapproximate model and stability

is checked for the exact model, there is no guarantee for the stability of the exact model

[46, 50]. Therefore, design verification needs to be done before implementing the controller

to the original continuous-time plant.

A more general framework for stabilization of sampled-datanonlinear systems using approx-

imate discrete-time models was presented in the recent papers [43, 45, 46, 47, 50, 32]. Ref-

erences [46, 50] give a set of general and sufficient conditions that guarantee the stabilization

of exact model with the family of controllers which stabilizes the approximate model. Al-

though [46, 50] provide a framework for controller design using approximate models, they

did not explain how the controller design can be carried out within this framework. Since
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the results in [46, 50] are prescriptive they can be used as guide when designing a controller

based on the approximate model. [43, 45] generalize the results in [46, 50] for input-to-state

(ISS) stabilization and ISS stabilization of sampled-datanonlinear systems with disturbance,

respectively. Controller design within this framework is also addressed in [47, 35].

There are several ways to design controllers satisfying theconditions given in [46, 50]. In

[48], two integrator backstepping designs were presented for sampled-data nonlinear systems

in strict feedback form using Euler approximate model. Applications of the direct discrete-

time design to jet engine stall and two link manipulator weregiven in [32]. Also [63] shows

that a direct discrete-time controller guarantees asymptotic stability of the closed-loop system

that is not achieved by the emulation controller for two linkmanipulator system with Slotine

and Lie controller. In [58], robust backstepping for sampled-data nonlinear system in strict

feedback form using Euler approximate model was presented.Receding horizon control,

also known as model predictive control, of sampled-data nonlinear system using approximate

discrete-time model was addressed in [11]. Simulations in these papers show that the con-

trollers designed by direct discrete-time design method outperform the emulation controllers.

Redesigning an emulation controller using direct discrete-time design is another way to obtain

some improvements. In [44], a redesign method based on Fliess expansions of the Lyapunov

difference for the sampled-data system was presented. [17] investigates the sampled-data

feedback laws to minimize the difference between the continuous-time system and sampled-

data system after one sampling interval. In addition, a continuous-time controller was re-

designed for a robotic manipulator in [32] using the Euler model. It was shown in [32] that

the redesigned controller yielded better performance whencompared to the emulation con-

troller.

There are some advantages of the direct discrete-time design. First, the sampling is considered

from the beginning of the design process. Therefore, betterperformance can be achieved by

the controller obtained by direct discrete-time design comparing to emulation controller. Sec-

ond, larger sampling periods may be applied to the controller designed by direct discrete-time

design. However, there also exist some disadvantages of this method. Since the continuous-

time model is discretized at the beginning of the design process, the discretization may destroy

some important properties of the continuous-time model such as feedback linearizability [2, 8]

and minimum phase properties [41]. Therefore, analysis anddesign using this method are usu-
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ally harder. Moreover, intersample behaviour is not taken into account in direct discrete-time

design. This limitation may cause ripple in the response of the systems. This disadvantage

can be eliminated by careful design and the choice of sampling period. Another way to take

the intersample behaviour into account is sampled-data design.

1.1.3 Sampled-Data Design

The third way to design a digital controller is sampled-datadesign based on the sampled-

data model of the plant. Because of the use of sampled-data model, intersample behaviour

is taken into account. This approach has been developed since 1990’s for linear systems [8].

However, because of the complexity of nonlinear sampled-data model, results on this method

for nonlinear systems are scarce. [55] proposed a sampled-data design method for solving

the sampled-data stabilization problem of the general class of nonlinear Lipschitz continuous

systems. This method was applied to robot manipulator in [55].

Sampled-data design method uses exact sampled-data model of the system and controller is

designed using this model. Since this method does not involve approximation of the plant

or controller, stability and performance are maintained bythis method for arbitrarily large

sampling periodsT.

1.1.4 Multi-rate Sampling

Although the emulation and direct discrete-time design allow multi-rate sampled-data sys-

tems, design methods using these approaches are single-rate in general, i.e. input and mea-

surement sampling rates are assumed to be equal. In practical applications, hardware restric-

tions on input and measurement sampling rate can be different. Moreover, it is assumed that

measurement results and the corresponding controller signals are available instantaneously.

This assumption is unrealistic. Therefore, the use of multi-rate control scheme for sampled-

data systems was proposed in [1, 37, 38, 56] so that several sample rates co-exist to achieve

better performances.
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1.1.5 Output-Feedback Control

In many applications, only a part of the state vector is available from measurement. Thus

control using output-feedback or dynamic feedback is necessary. The dynamic feedback bases

the input signal on output history. Since dynamic feedback controller has its own state called

as controller internal state, it can be thought as a dynamic system itself. The output feedback

is based on the partial information about the state vector. Output feedback controller reads

some output signal which is a known function of all or some of the state variables. Then it

builds the input signal accordingly. Moreover, designing an observer for unmeasured states is

a useful method to be used for constructing an output-feedback controller.

The problem of output feedback stabilization of sampled-data nonlinear systems was con-

sidered in [10, 28, 65, 3]. A framework for designing a discrete-time observer based on

approximate discrete-time model of the plant was presentedin [3]. [10, 28] show that the

obtained sampled-data controllers using high gain observers can recover the performance of

the continuous-time state feedback controllers.

1.2 Purpose of this Research

In this thesis, the problem of controller design for sampled-data nonlinear systems is con-

sidered. Although there exist a comprehensive set of tools for analysis and controller de-

sign of continuous-time nonlinear systems, the controllerdesign methods are still limited for

their sampled-data counterparts. The purpose of this research is to provide a range of con-

troller design tools for sampled-data nonlinear systems. In particular, backstepping, adaptive

backstepping and reduced order observer based output-feedback control design methods for

sampled-data nonlinear systems are investigated. A multi-rate control scheme for output-

feedback stabilization of sampled-data nonlinear systemsis developed. Moreover, the design

tools developed in the study conducted is applied to some examples arising from engineering

practice and their performances are analyzed with simulations.

1.3 Outline

The organization of this research can be summarized as shownbelow:
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Chapter 2: In this chapter, technical preliminaries are provided. Common notation and

definitions which will be used throughout the thesis are presented. Various important results

from the literature which will be used to compare with the results of the work conducted are

also cited.

Chapter 3: The problem of backstepping control of sampled-data nonlinear systems in strict

feedback form based on the Euler approximate model is considered. A backstepping design

method is presented to compensate the effects of the discrepancy between the Euler approx-

imate model and exact discrete time model. Also numerical examples are given to illustrate

the design methods.

Chapter 4: This chapter considers the problem of adaptive backstepping control of sampled-

data nonlinear systems in strict feedback form based on the Euler approximate model. Two

adaptive backstepping design methods are presented to compensate the effects of the error in

parameter estimation. Also numerical examples are given toillustrate the design methods.

Chapter 5: The robust backstepping control of sampled-data nonlinearsystems in strict feed-

back form based on the Euler approximate model is discussed.A robust backstepping design

method which is modified version of the method given in [58] ispresented to compensate the

effect of difference between disturbance or model uncertainty and its bound. Also a numerical

example is given to illustrate the design method.

Chapter 6: This chapter considers the problem of reduced order observer-based output feed-

back control of sampled-data nonlinear systems in strict feedback form based on the Euler

approximate model. A reduced order observer design which isan extension of the reduced

order observer given in [33] to a general class of multi-input nonlinear systems is presented.

Then, a reduced-order observer-based backstepping methodis given to compensate the effect

of observer error. Also numerical examples are given to illustrate the design methods.

Chapter 7: In this chapter, the problem of dual-rate output feedback stabilization of sampled-

data nonlinear systems is studied under the low measurementrate constraint. The dual-rate

control scheme is presented based on estimation of the missing output values between mea-

sured output samples using approximate discrete-time model. It is shown that if one designs a

single-rate observer-based output feedback controller which semiglobally practically asymp-

totically (SPA) stabilizes the sampled-data nonlinear system, then the dual-rate observer-
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based output feedback controller will also SPA stabilize the exact discrete-time plant model.

Then, numerical examples are given to illustrate the designmethod.

Chapter 8: The concluding remarks and future work related to the research are presented.

1.4 Contributions

1. A range of controller design tools for sampled-data nonlinear systems are proposed.

The designed controllers SPA stabilize sampled-data nonlinear systems in strict feed-

back form and are based on the Euler approximate model. In particular,

• A backstepping design method is developed for sampled-datanonlinear systems

in strict feedback form. Different from the backstepping controller given in [48],

the controller in this thesis is designed for multi-input sampled-data nonlinear sys-

tems to compensate the effects of the discrepancy between the Euler approximate

model and exact discrete time model by adding a nonlinear damping term. Simu-

lation results show that the designed controller outperforms the controllers given

in [48] and [26].

• Two adaptive backstepping design methods are presented forsampled-data non-

linear systems in strict feedback form. The controllers aredesigned to compensate

the effect of the error in parameter estimation. Simulation results show that the

designed controllers outperform the emulation controllers.

• A robust backstepping method is developed for sampled-datanonlinear systems

in strict feedback form. This controller is a modified version of the controller

given in [58]. Different from the controller in [58], the controller in this thesis

is designed to compensate the effect of difference between disturbance or model

uncertainty and their bounds. Simulation results show thatthe designed controller

outperforms the controller given in [58].

• A reduced-order observer-based SPA stabilizing backstepping method is given for

sampled-data nonlinear systems in strict feedback form. Different from the back-

stepping controller given in [25], the controller in this thesis is designed to com-

pensate the effects of observer error. Simulation results show that the designed

controller outperforms the controller given in [25].
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2. A reduced order observer design is presented, which is an extension of the reduced

order observer given in [33] to a general class of multi-input nonlinear systems. It is

shown by simulations that observer error converges to zero by the designed observer

when compared to the observer given in [25].

3. For the problem of dual-rate output feedback stabilization of sampled-data nonlinear

systems under the low measurement rate constraint, a dual-rate control scheme is pre-

sented based on estimation of the missing output values between measured output sam-

ples using approximate discrete-time model. It is shown that if one designs a single-

rate observer-based output feedback controller which SPA stabilizes the sampled-data

nonlinear system, then the SPA stability property will be preserved by the dual-rate

observer-based output feedback controller. Simulation results show that the designed

dual-rate controller gives faster results when compared tothe single-rate controller.

4. The design tools developed in this research are applied toseveral practical examples

and the resulting performances are analyzed.

1.5 Publications from This Work

The followings are submitted to journals:

1. Üstüntürk, A., Output-feedback stabilization of nonlinear dual-rate sampled-data sys-

tems via approximate discrete-time model, Accepted by Automatica, 2011.

2. Üstüntürk, A., Kocaoğlan, E., Backstepping designs forthe stabilization of nonlinear

sampled-data systems via approximate discrete-time model, Submitted to International

Journal of Control, 2011, Under review.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

This chapter provides technical preliminaries. Common notation and definitions which will

be used throughout the thesis are presented. Various important results from the literature

which will be used to compare with the results of this thesis in simulations are also cited.

2.2 Notations and Definitions

The sets of real, natural and nonnegative integer numbers are denoted asR, N andZ+, respec-

tively. SN denotes the class of all smooth nondecreasing functionsq : R≥0 → R≥0 which

satisfyq(t) > 0 for all t > 0. A functionγ : R≥0 → R≥0 is called classG if it is continuous,

zero at zero and strictly increasing. The classes of functions are defined in [27] as follows.

Definition 2.2.1 [27] A continuous functionα : [0, a)→ [0,∞) is said to belong to classK if

it is strictly increasing andα(0) = 0. It is said to belong to classK∞ if a = ∞ andα(r) → ∞

as r→ ∞. Functions of classK∞ are invertible.

Definition 2.2.2 [27] A continuous functionβ : [0, a) × [0,∞) → [0,∞) is said to belong to

classKL if, for each fixed s, the mappingβ(r, s) belongs to classK with respect to r and, for

each fixed r, the mappingβ(r, s) is decreasing with respect to s andβ(r, s)→ 0 as s→ ∞.

The notation|·| always denotes the Euclidean norm for a vector and the Frobenius norm

for a matrix given by|A| =
√

trace(AT A). The symbol
q,n∑

i, j=1
means

q∑

i=1

n∑

j=1
. For the sake
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of simplicity, the notationx will be used to denotex(kT) wherek ∈ N,T > 0. εs(i) =

(0, ..., 0, 1, 0, ..., 0)T ∈ Rs, i = 1, ..., s, s ≥ 1 is a vector of the canonical basis of the vectorial

spaceRs wherei shows the location of 1 in the vector. The setCo(a, b) = {λa + (1 − λ)b :

λ ∈ [0, 1]} is the convex hull of{a, b} wherea, b ∈ Rn. Throughout the thesis, the units of the

sampling periods and time axes in all figures are in seconds.

Consider the continuous-time nonlinear system

ẋ = f (x(t), u(t)), y = Cx(t) (2.1)

wherex ∈ R
n is the state,u ∈ R

m is the control input,y ∈ R
l is the output, C is a constant

matrix of appropriate dimension and the functionf is locally Lipschitz. The control inputu

is realized through a zero-order hold such thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k+ 1)T), k ∈ N

and the outputy is measured at sampling instantskT; that isy(k) := y(kT) whereT > 0 is the

sampling period.

The difference equation corresponding to the exact discrete-time model of (2.1) and its ap-

proximate discrete-time model are represented by:

x(k+ 1) = Fe
T(x(k), u(k)), y(k) = Cx(k) (2.2)

x(k+ 1) = Fa
T(x(k), u(k)), y(k) = Cx(k), (2.3)

respectively.

The exact discrete-time modelFe
T is obtained as the exact solution of initial value problem

of the continuous-time model over sampling interval. The approximate discrete-time model

Fa
T is obtained via numerical approximation. As mentioned in Chapter 1, exact discrete-time

model is not available for nonlinear systems in general and approximate discrete-time model

is used. Since, in general, discretization with numerical approximation obviously involves

inaccuracy, this leads to discrepancies between the exact model and the approximate model.

Therefore, sampled-data systems cannot achieve identicalproperties as what their continuous-

time counterparts have. If continuous-time systems achieve the properties such as asymptotic

stability, input-to-state stability and dissipativity for the whole state space and the whole input

space (in a global sense), this case is not satisfied for sampled-data systems in general. Sam-

pling might destroy global properties of the systems, so that the properties hold in a weaker

(semiglobal practical) sense. Indeed, semiglobal practical property is common in sampled-

data systems. Semiglobal practical asymptotical (SPA) stability and SPA stability Lyapunov
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functions are defined in [48] as follows:

Definition 2.2.3 [48] The family of controllers uT SPA stabilizes FT if there existsβ ∈ KL

such that for any pair of strictly positive real numbers(D, v) there exists T∗ > 0 such that

for each T ∈ (0,T∗) the solutions of x(k + 1) = FT(x(k), uT (x(k))) satisfy: |x(k, x(0))| ≤

β(|x(0)|, kT) + v, for all k ≥ 0, whenever|x(0)| ≤ D.

Definition 2.2.4 [48] Let T̂ > 0be given and for each T∈ (0, T̂) let functions VT : Rn→ R≥0

and uT : Rn → R
m be defined. The pair of families(uT ,VT) is a SPA stabilizing pair for FT

if there existα1, α2, α3 ∈ K∞ such that for any pair of strictly positive real numbers(∆, δ)

there exists a triple of strictly positive real numbers(T∗, L,M), with T∗ ≤ T̂ , such that for all

x, z ∈ Rn with max{|x| , |z|} ≤ ∆ and T ∈ (0,T∗), and the following conditions are satisfied:

α1(|x|) ≤ VT(x) ≤ α2(|x|) (2.4)

VT(FT (x, uT(x))) − VT(x) ≤ −Tα3(|x|) + Tδ (2.5)

|VT(x) − VT(z)| ≤ L |x− z| (2.6)

|uT(x)| ≤ M (2.7)

Consistency is an important property for the approximate model to be a good approximation

of the exact model. This property is used to measure the discrepancy between the exact model

and the approximate model. One step consistency property isgiven in [46] as follows:

Definition 2.2.5 ([46]) The family Fa
T(x, u) is said to be one-step consistent with the exact

discrete-time model FeT(x, u) if, for each compact setΩ ⊂ R
n × R

m, there exists a class-K

functionρ(.) and a constant T0 > 0 such that,|Fe
T(x, u) − Fa

T(x, u)| ≤ Tρ(T) for all (x, u) ∈ Ω

and T ∈ (0,T0].

A sufficient condition for one-step consistency is the following whose proof is given in [36].

Lemma 2.2.6 [36] Consider Fe
T and Fa

T . If

1. Fa
T is one-step consistent with FEuler

T where FEuler
T = x+ T f(x, u),

2. given any strictly positive real numbers(∆x,∆u), there existsρ1 ∈ K∞, M > 0, T∗ > 0,

such that, for all T∈ (0,T∗) and for all |x| ≤ ∆x, |u| ≤ ∆u,
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(a) max
|x|≤∆x,|u|≤∆u

| f (x, u)| ≤ M

(b) | f (x1, u) − f (x2, u)| ≤ ρ1(|x1 − x2|)

then Fa
T is one-step consistent with Fe

T

By Lemma 2.2.6, it can be shown that Euler approximate model is one-step consistent with

the exact model, whose proof is given in [36]. Moreover, if the approximate model (2.3) is

consistent with the exact model (2.2), stability properties for (2.2) can be deduced from the

stability analysis of (2.3) according to the following theorem which is a direct consequence

of Theorem 3.2 in [45].

Theorem 2.2.7 [45, 50, 51] If system (2.3) is SPA stable with the pair of families (uT ,VT)

and uT is uniformly locally bounded, then the exact discretized system (2.2) is SPA stable.

Then, stability properties of the sampled-data system (2.1) can be deduced from those of exact

discretized system under mild conditions [51].

Definition 2.2.8 (Uniformly locally bounded) [32] uT is said to be uniformly locally bounded

if for any ∆x > 0 there exist strictly positive numbers T∗ and ∆u > 0 such that for all

T ∈ (0,T∗) and all |x| ≤ ∆x we have|uT | ≤ ∆u.

Consider now the following family of observers for (2.2)

x̂(k+ 1) = GT(x̂(k), y(k), u(k)) (2.8)

SPA stable observers and Lyapunov functions for SPA stable observers are defined in the fol-

lowing definitions. These definitions will be used later to prove the SPA stability of designed

observer.

Definition 2.2.9 [33] The family of observers (2.8) is SPA stable observer forx(k + 1) =

FT(x(k), u(k)), if for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m,Y ⊂ R

l and any strictly

positive numberν, there exists T∗ > 0 such that the followings hold.

1. For all x0 ∈ X, u ∈ U, y0 ∈ Y and T ∈ (0,T∗], there existsx̂0 ∈ X̂ such that

|x̂(k) − x(k)| ≤ Tν, ∀k ≥ 1.
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2. For all x0 ∈ X, x̂0 ∈ X̂, u ∈ U, y0 ∈ Y and all T ∈ (0,T∗], lim supk→∞|x̂(k)−x(k)| ≤ Tν.

where x0 = x(0), x̂0 = x̂(0) and y0 = y(0).

Definition 2.2.10 [3] The family of observers (2.8) is SPA stable as in Definition 2.2.9 if there

exists a family of Lyapunov functions VT(x, x̂) and class-K∞ functionsα1(.), α2(.), α3(.) such

that for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m,Y ⊂ R

l and any strictly positive number

ν, there exist constants T∗ > 0 and M> 0, such that for all x, x1, x2 ∈ X, x̂ ∈ X̂, u ∈ U, y ∈ Y,

and T ∈ (0,T∗],

|VT(x1, x̂) − VT(x2, x̂)| ≤ M|x1 − x2|, (2.9)

α1(|e|) ≤ VT(x, x̂) ≤ α2(|e|), (2.10)

VT(FT(x, y, u),GT (x̂, y, u)) − VT(x, x̂)
T

≤ −α3(|e|) + ν (2.11)

where e is the observer error defined by the difference between the actual states and their

estimates. Moreover, if FaT is consistent with FeT as in Definition 2.2.5 and the family of

observers (2.8) is SPA stable observer for (2.3), then the family of observers (2.8) is also SPA

stable observer for (2.2).

Delta operatorδ is defined asδ(x(k)) = x(k+1)−x(k)
T , for any sequencex(k) ∈ R

n for all k and

T is the sampling period. Using this definition, one hasδ(gT
1 g1) = 2g1

Tδg1 + T(δg1)Tδg1 for

any sequenceg1(k) ∈ Rn for all k.

Theorem 2.2.11 (Mean Value Theorem)Assume that f: Rn→ R is continuously differen-

tiable at each point x of an open set S⊂ R
n. Let x and y be two points of S such that the line

segment L(x, y) ⊂ S . Then there exists a point z of L(x, y) such that

f (y) − f (x) =
∂ f
∂x

∣
∣
∣
∣
∣
x=z

(y− x).

The line segment L(x, y) joining two distinct points x and y inRn is

L(x, y) = {z|z= θx+ (1− θ)y, 0 < θ < 1}

The differential mean value theorem (DMVT) for higher dimensional vector valued functions

is defined in [66] as follows:
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Definition 2.2.12 [66] Let f : Rn → R
q. Let a, b ∈ Rn. It is assumed that f is differentiable

on Co(a, b). Then there are constant vectors c1, ..., cq ∈ Co(a, b), ci , a, ci , b for i = 1, ..., q

such that:

f (a) − f (b) =





q,n∑

i, j=1

εq(i)εT
n ( j)

∂ fi
∂x j

(ci)




(a− b).

2.3 Backstepping

Backstepping is a recursive design method. In this method, appropriate functions of state

variables are selected as virtual-control inputs for lowerdimension subsystems of the overall

system recursively. In each step of the method, a new virtualcontrol law expressed as a

function of the virtual control law in the previous steps is obtained. The algorithm terminates

when the overall system is reached. The resulting feedback controller is then obtained to

achieve the original control objective.

The backstepping technique can be applied for systems in strict feedback form as follows:

ẋ = f (x) + g(x)ξ1

ξ̇1 = f1(x, ξ1) + g1(x, ξ1)ξ2

...

ξ̇i = fi(x, ξ1, ..., ξi) + gi(x, ξ1, ..., ξi)ξi+1

...

ξ̇m = fm(x, ξ1, ..., ξm) + gm(x, ξ1, ..., ξm)u

(2.12)

This technique can also be applied to a more general feedbackform or even for a larger

class of systems that do not follow any formal feedback forms. The detailed procedure for

backstepping design is presented in [30].

2.3.1 Continuous-Time Backstepping

Consider the following continuous-time plant of the strictfeedback form:

ẋ = f (x) + g(x)ξ

ξ̇ = u
(2.13)

wherex ∈ R
n andξ ∈ R are the states,f (0) = 0, f , g are differentiable sufficiently many

times andu ∈ R is the control input.
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Assumption 2.3.1 [32] Consider the system

ẋ = f (x) + g(x)u (2.14)

where x∈ Rn is the state and u∈ R is the control input. There exist a continuously differen-

tiable feedback control law

u = α(x), α(0) = 0, (2.15)

and a smooth, positive definite, radially unbounded function W : Rn→ R such that

∂W
∂x

(x)[ f (x) + g(x)α(x)] ≤ −Ω(x), ∀x ∈ Rn, (2.16)

whereΩ : Rn→ R is positive definite.

Under this assumption, the following lemma on integrator backstepping is given together with

its proof in [30].

Lemma 2.3.2 [30] Consider the system (2.13), which is an augmentation of(2.14) with an

integrator. Suppose that all conditions on Assumption 2.3.1 are satisfied by the upper subsys-

tem of (2.13) with controlξ ∈ R. Then

V(x, ξ) =W(x) +
1
2

[ξ − α(x)]2 (2.17)

is a control Lyapunov function (clf ) for the full system (2.13). That is, there exists a feedback

control u = αa(x; ξ) which renders x= 0, ξ = 0 the globally asymptotically stable (GAS)

equilibrium of (2.13). One such control is

u = −c(ξ − α(x)) +
∂α

∂x
(x)[ f (x) + g(x)ξ] − ∂W

∂x
(x)g(x), c > 0. (2.18)

2.3.2 Continuous-Time Adaptive Backstepping

Consider the following parametric strict feedback system

ẋ = Ax+ Bξ + φTθ (2.19)

ξ̇ = u+ φT
n (x1, ..., xn−1, ξ)θ (2.20)
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where

A =





0 1 0 . . . 0

0 0 1 0 . . 0

. . . . . . .

. . . . . . .

0 . . . . 0 1

0 . . . . . 0





, B =





0

.

.

.

0

1





, φ =

[

φ1(x1) φ2(x1, x2) . . . φn−1(x1, ..., xn−1)
]

andx ∈ Rn−1, ξ ∈ R, u ∈ R andφi ∈ Rp is a vector of known smooth nonlinear functions with

φi(0, ..., 0) = 0, i = 1, ..., n, θ ∈ Rp is a vector of unknown constant parameters. It is assumed

that there exists a known constantθ̄ such that|θ| ≤ θ̄.

Using adaptive backstepping based on tuning function technique given in [30] a continuous-

time adaptive controller can be designed for plant (2.19)-(2.20) as follows:

u = −cnzn − zn−1 +

n−1∑

m=1

∂αn−1

∂xm
xm+1 − wT

n θ̂ +
∂αn−1

∂θ̂
Γτn + νn (2.21)

wherez1 = x1, α1 = −c1z1 − φ1
T θ̂, xn = ξ, ν2 = 0 and fori = 2, 3, ..., n

zi = xi − αi−1, (2.22)

αi(x1, ..., xi , θ̂) = −zi−1 − cizi +

i−1∑

m=1

∂αi−1

∂xm
xm+1 − wT

i θ̂ +
∂αi−1

∂θ̂
Γτi + νi (2.23)

τi(x1, ..., xi , θ̂) = τi−1 + ziwi (2.24)

wi(x1, ..., xi , θ̂) = φi −
i−1∑

m=1

∂αi−1

∂xm
φm (2.25)

νi(x1, ..., xi , θ̂) =
i−2∑

m=1

zm+1
∂αi−1

∂θ̂
Γwi , i = 3, ..., n (2.26)

andci are any positive real numbers.

The parameter estimator is obtained as:

˙̂θ = ΓW(z, θ̂)z (2.27)

wherez := [z1, ..., zn]T , W(z, θ̂) = [w1, ...,wn] andΓ = ΓT is any arbitrary positive definite

matrix.

Moreover, another adaptive backstepping method based on immersion and invariance princi-

ple is introduced in [22]. Using the algorithm in [22] an adaptive state feedback control law
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for system (2.19)-(2.20) can be designed as follows:

x∗i+1 = −σi(x1, ..., xi, θ̂1, ..., θ̂i) − φi(x1, ..., xi)
T × (θ̂i + βi(x1, ..., xi))

+

i−1∑

k=1

∂x∗i
∂xk

[xk+1 + φk(x1, ..., xk)
T × (θ̂k + βk(x1, ..., xk))] +

i−1∑

k=1

∂x∗i
∂θ̂k

˙̂θk + x∗1
(i)
, (2.28)

u = x∗n+1 (2.29)

with i = 1, ..., n andxn = ξ,

σ1 =

(

c1 +
ε

2

) (

x1 − x∗1
)

(2.30)

σi =

(

ci +
ε

2

) (

xi − x∗i
)

+
ε

2

i−1∑

k=1

(
∂x∗i
∂xk

)2
(

xi − x∗i
)

+
(

xi−1 − x∗i−1

)

(2.31)

for i = 2, ..., n whereci > 0 andε > 0 are constants.

To obtain the adaptive law define the estimation errors

zi = θ̂i − θ + βi(x1, ..., xi), i = 1, ..., n (2.32)

whereθ̂i are the estimator states andβi : Ri → R
pareCn−i functions. The functionsβi are

selected as:

βi (x1, ..., xi) = γi

∫ xi

0
φi (x1, ..., xi−1, χ) dχ + δi (xi) (2.33)

whereγi > 0 are constants andδi (xi) areCn−i functions withδ1 (x1) = 0. From the dynamics

of zi , the adaptive law is obtained as:

˙̂θi = −
i∑

k=1

∂βi

∂xk
(xk+1 + φk(x1, ..., xk)

T(θ̂i + βi)), i = 1, ..., n (2.34)

2.3.3 The Euler Model-Based Disrete-Time Backstepping

The Euler model-based disrete-time backstepping method isdeveloped for single-input sampled-

data nonlinear systems in [48] and extended to multi-input sampled-data nonlinear systems in

[24, 25, 26]. Consider a continuous-time plant of the strictfeedback form:

η̇ = f (η) + g(η)ξ (2.35)

ξ̇ = u (2.36)

whereη ∈ R
n andξ ∈ R

m are the state vectors,f (0) = 0, f , g are differentiable sufficiently

many times, and the control inputu ∈ R
m is realized through a zero order hold such that
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u(t) = u(kT) := u(k),∀t ∈ [kT, (k+ 1)T), k ∈ N and the state measurementsη(k) := η(kT) and

ξ(k) := ξ(kT) are available at sampling instantskT, k ∈ N whereT > 0 is the sampling period.

Then the Euler approximate discrete-time model of (2.35)-(2.36) is given by

η(k+ 1) = rT (η(k), ξ(k)) (2.37)

ξ(k+ 1) = ξ(k) + Tu(k) (2.38)

whererT = η+T[ f (η)+g(η)ξ]. The following theorem provides the SPA stabilizing controller

design based on backstepping via Euler approximate discrete-time model of sampled-data

nonlinear system.

Theorem 2.3.3 [48, 26] Assume that there existT̂ > 0 and a pair (φT ,WT) that is defined

for each T ∈ (0, T̂) and that is a SPA stabilizing pair for the subsystem (2.37) with ξ ∈ R
m

regarded as its control. Suppose also that:

1. φT and WT are continuously differentiable for any T∈ (0, T̂);

2. there existsϕ ∈ K∞ such that|φT(η)| ≤ ϕ(|η|) for all η ∈ Rn, T ∈ (0, T̂);

3. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃) such thatmax{|∂WT
∂η
|,

|∂φT
∂η
|} ≤ M̃ for each T∈ (0, T̃) and |η| ≤ ∆̃.

Then there exists a SPA stabilizing pair(φT ,VT) for (2.37)-(2.38) as:

u = −c(ξ − φT(η)) − ∆W̃T(x)
T

+
∆φT

T
(2.39)

VT(x) =WT(η) +
1
2
|ξ − φT(η)|2 (2.40)

where c> 0 is arbitrary, x= [ηT ξT]
T

and

∆φ̄T = φT(rT) − φT(η)

∆W̃T(x) =






∆W̄T (x)[ξ−φT (η)]
|ξ−φT(η)|2 , ξ , φT(η)

TgT (η)
(
∂WT
∂η

)T
(rT ), ξ = φT(η)

∆W̄T(x) =WT(rT ) −WT(rφT )

rφT = η + T[ f (η) + g(η)φT(η)].
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CHAPTER 3

SPA STABILIZATION OF SAMPLED-DATA NONLINEAR

SYSTEMS VIA BACKSTEPPING

3.1 Introduction

In this chapter, a digital controller design method is proposed. In this method, the controller

is designed by backstepping based on the approximate discrete-time model. This controller

semiglobally practically asymptotically (SPA) stabilizes the sampled-data nonlinear systems

in strict feedback form.

In Chapter 1, digital controller design methods for sampled-data nonlinear systems were clas-

sified as continuous-time design, often referred to as emulation, direct discrete-time design

and sampled-data design. As the performance of the continuous-time controller can only be

recovered under very fast sampling condition, it may be impossible to reduce sampling period

to a sufficiently small value to ensure desired performance due to thehardware restrictions.

Moreover, sampling is taken into account at the design process in direct discrete-time design.

Therefore, direct discrete-time method may outperform theemulation design [32, 48, 63].

Direct discrete-time design method involves designing a controller for the discrete-time plant

model. In this method, the first step is the discretization ofthe continuous-time model. To

obtain the exact discrete-time model it is needed to solve a nonlinear differential equation ex-

plicitly. Therefore, the exact discrete-time model of the plant cannot be computed in general.

This has motivated research on controller design using direct discrete-time design via approx-

imate discrete-time models. Hence, a more general framework for stabilization of sampled-

data nonlinear systems using approximate discrete-time models was presented in the recent

papers [43, 45, 46, 47, 50, 32]. In [46, 50], it is shown that the stabilization of exact model

21



with the family of controllers which stabilizes the approximate model is guaranteed under cer-

tain conditions. In [48], two integrator backstepping designs were presented for sampled-data

nonlinear systems in strict feedback form using Euler approximate model within this frame-

work. The controller in [48] was extended to multi-input sampled-data nonlinear systems in

[26].

In this chapter, the problem of backstepping controller design is considered for sampled-data

nonlinear systems in strict feedback form using direct discrete-time design. The controller de-

sign is based on the Euler approximate model. In this problem, the discrepancy between the

Euler approximate model and exact discrete time model behaves as disturbance. It is known

that even exponentially decaying disturbances can destabilize the sampled-data nonlinear sys-

tem. Hence, in this chapter, the controller is designed to compensate the effects of this factor.

This is the main difference from the controllers in [48] and [26]. It is shown thatthe designed

controller SPA stabilizes the closed-loop sampled-data system based on the framework pro-

posed in [46]. Also numerical examples are given to illustrate the design method. Simulation

results show that the designed controller outperforms the controllers given in [48] and [26].

The chapter is organized as follows. In Section 3.2 preliminaries are given. The main results

are stated and proved in Section 3.3. Then, in Section 3.4, application examples are provided

to illustrate the design method. Finally, conclusions are presented in the last section.

3.2 Preliminaries

This section provides technical preliminaries. Common definitions which will be used through-

out this chapter are presented. For the sake of clarity and easy reading, some notions and

definitions that have been introduced in Chapter 2 are repeated when necessary.

Consider the following continuous-time nonlinear system

ẋ = f (x(t), u(t)) (3.1)

wherex ∈ Rn is the state,u ∈ Rm is the control input and the functionf is locally Lipschitz.

The control inputu is realized through a zero-order hold such thatu(t) = u(kT) := u(k),∀t ∈

[kT, (k + 1)T), k ∈ N whereT > 0 is the sampling period.

The difference equation corresponding to the exact discrete-time model of (3.1) and its ap-
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proximate discrete-time model are represented by:

x(k + 1) = Fe
T(x(k), u(k)) (3.2)

x(k + 1) = Fa
T(x(k), u(k)), (3.3)

respectively.

To measure the discrepancy between the exact model and the approximate model, one step

consistency property, as defined in [46], is used:

Definition 3.2.1 [46] The family Fa
T(x, u) is said to be one-step consistent with the exact

discrete-time model FeT(x, u) if, for each compact setΩ ⊂ R
n × R

m, there exists a class-K

functionρ(.) and a constant T0 > 0 such that,|Fe
T(x, u) − Fa

T(x, u)| ≤ Tρ(T) for all (x, u) ∈ Ω

and T ∈ (0,T0].

SPA stability and SPA stability Lyapunov functions are defined in [48] as follows.

Definition 3.2.2 [48] The family of controllers uT SPA stabilizes FT if there existsβ ∈ KL

such that for any pair of strictly positive real numbers(D, v) there exists T∗ > 0 such that

for each T ∈ (0,T∗) the solutions of x(k + 1) = FT(x(k), uT (x(k))) satisfy: |x(k, x(0))| ≤

β(|x(0)|, kT) + v, for all k ≥ 0, whenever|x(0)| ≤ D.

Definition 3.2.3 [48] Let T̂ > 0be given and for each T∈ (0, T̂) let functions VT : Rn→ R≥0

and uT : Rn → R
m be defined. The pair of families(uT ,VT) is a SPA stabilizing pair for FT

if there existα1, α2, α3 ∈ K∞ such that for any pair of strictly positive real numbers(∆, δ)

there exists a triple of strictly positive real numbers(T∗, L,M), with T∗ ≤ T̂ , such that for all

x, z ∈ Rn with max{|x| , |z|} ≤ ∆ and T ∈ (0,T∗), and the following conditions are satisfied:

α1(|x|) ≤ VT(x) ≤ α2(|x|) (3.4)

VT(FT (x, uT(x))) − VT(x) ≤ −Tα3(|x|) + Tδ (3.5)

|VT(x) − VT(z)| ≤ L |x− z| (3.6)

|uT(x)| ≤ M (3.7)

Theorem 3.2.4 [45, 50, 51] If (uT ,VT) is a SPA stabilizing pair for FaT , then uT stabilizes

Fe
T .
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Then, stability properties of the sampled-data system (3.1) can be deduced from those of exact

discretized system under certain conditions [51].

3.3 Main Results

In this section, the design of SPA stabilizing backsteppingcontroller based on the Euler ap-

proximate model is presented for sampled-data nonlinear system in strict feedback form. The

controller is designed to compensate the effect of the discrepancy between the Euler and the

exact discrete-time model which behaves as disturbance. This is the main difference from the

controllers given in [48] and [26].

Consider the following strict feedback nonlinear system

η̇ = f (η) + g(η)ξ (3.8)

ξ̇ = α(η, ξ) + β(η)u (3.9)

whereη ∈ Rn andξ ∈ Rm are the state vectors,f (0) = 0, f , g, α are differentiable sufficiently

many times,β(η) , 0,∀η, the control inputu ∈ Rm is realized through a zero order hold such

thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k+ 1)T), k ∈ N and the state measurementsη(k) := η(kT)

andξ(k) := ξ(kT) are available at sampling instantskT, k ∈ N whereT > 0 is the sampling

period.

The difference equations corresponding to the exact discrete-timemodel of the system (3.8)-

(3.9) are denoted by:

η(k+ 1) = Fe
η,T(η, ξ, u) (3.10)

ξ(k+ 1) = Fe
ξ,T(η, ξ, u). (3.11)

Then the Euler approximate discrete-time model of (3.8)-(3.9) is given by:

η(k+ 1) = Fa
η,T(η, ξ, u) = η + T( f (η) + g(η)ξ) (3.12)

ξ(k+ 1) = Fa
ξ,T(η, ξ, u) = ξ + T(α(η, ξ) + β(η)u). (3.13)

Using the Euler model, the exact discrete-time model (3.10)-(3.11) can be written as:

η(k+ 1) = η + T( f (η) + g(η)ξ) + Fe
η,T(η, ξ, u) − Fa

η,T(η, ξ, u) (3.14)

ξ(k+ 1) = ξ + T(α(η, ξ) + β(η)u) + Fe
ξ,T(η, ξ, u) − Fa

ξ,T(η, ξ, u) (3.15)
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Hypothesis 3.3.1[48] There existT̂ > 0 and a pair (φT ,WT) that is defined for each T∈

(0, T̂) and that is a SPA stabilizing pair for the subsystem (3.14) with ξ ∈ Rm regarded as its

control. Suppose also that the followings hold:

1. φT and WT are twice differentiable for any T∈ (0, T̂);

2. there existsϕ ∈ K∞ such that|φT(η)| ≤ ϕ(|η|) for all η ∈ Rn, T ∈ (0, T̂);

3. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃1) such thatmax{|∂WT
∂η
|,

|∂φT
∂η
|, |∂

2φT

∂η2 |, |∂
2WT
∂η2 |} ≤ M̃1 for each T∈ (0, T̃) and |η| ≤ ∆̃.

The following theorem provides the SPA stabilizing controller design based on backstepping

via Euler approximate discrete-time model of sampled-datanonlinear system and one-step

consistency of the Euler model with the exact model.

Theorem 3.3.2 Assuming that Hypothesis 3.3.1 holds, the system (3.14)-(3.15) is SPA stable

with the following controller

u = β−1(η)( − c(ξ − φT(η)) − g(η)T(
∂WT

∂η
(η̄+0 ))

T

− d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

(ξ − φT(η)) +
∆φT

T
− α(η, ξ)) (3.16)

where c, d > 0, ∆φT = φT(η+0)−φT(η), η+0 = η+T( f (η)+g(η)ξ) andη̄+0 = η+T( f (η)+g(η)φT ).

Proof. Let ∆, µ, µ̂ ∈ R>0, ρη, ρξ ∈ K∞, x = [ηT zT ]
T
∈ Rn+m with |x| ≤ ∆, z = ξ − φT and

c = c1 + c2. Consider the system (3.14). According to Hypothesis 3.3.1, there existsT̂ > 0

such that condition (3.5) holds forT ∈ (0, T̂) with α̃3 ∈ K∞ andµ̂ whenξ = φT as input such

that,

∆WT =WT(η̄+) −WT(η) ≤ −Tα̃3(|η|) + Tµ̂ (3.17)

whereη̄+ = η + T( f (η) + g(η)φT ) + Fe
η,T(η, φT , u) − Fa

η,T(η, φT , u). Then, using delta operator

the exact discrete-time models (3.14)-(3.15) can be written as:

δη = f (η) + g(η)(z+ φT) +
Fe
η,T − Fa

η,T

T
(3.18)

δz= α(η, ξ) + β(η)u− φT(η+) − φT(η)
T

+
Fe
ξ,T − Fa

ξ,T

T
(3.19)
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with η+ = η + T( f (η) + g(η)ξ) + Fe
η,T − Fa

η,T. Let∆1 = sup|x|≤∆,T∈(0,T̂) max{|η+|, |η+0 |, |η̄+0 |, |η̄+|}

that is well defined since functionsf , g, φT are continuous. Let̄∆ = max{∆,∆1} generates

T̃, M̃1 such that inequality 3 in Hypothesis 3.3.1 holds. LetM̃ = sup|x|≤∆,T∈(0,T̂) max{|ξ −

φT |, | f (η) + g(η)ξ|, |g(η)|, M̃1, |β(η)|, |α(η, ξ)|, ρη, ρξ} which is well defined since all the consid-

ered functions are continuous over the given compact set. Let T∗ > 0 and for eachT ∈ (0,T∗)

let the Lyapunov functionVT be defined asVT(η, ξ) =WT(η)+ 1
2zTz. It is obvious that condi-

tions (3.4) and (3.6) are satisfied, (see [48]) and hence, to prove SPA stability, it is enough to

show that conditions (3.5) and (3.7) are satisfied. First, itwill be shown that condition (3.5)

holds:

δVT =
∆VT

T
=

VT(k + 1)− VT(k)
T

= δWT + zTδz+
T
2

((δz)Tδz).

δWT can be written, using the mean value theorem, as:

δWT =
WT(η+) −WT(η̄+) +WT(η̄+) −WT(η)

T

=
∆WT

T
+ (ξ − φT(η))Tg(η)T(

∂WT

∂η
(η⋄))

T

(3.20)

whereη⋄ = η̄+ + Tθ1g(η)(ξ − φT(η)) andθ1 ∈ (0, 1).

Then,δVT can be written, using (3.18), (3.19) and (3.20), as:

δVT ≤
∆WT

T
− czTz+ zTΛ +

T
2

((δz)Tδz) + zT





Fe
ξ,T − Fa

ξ,T

T





+ zTg(η)T





(

∂WT

∂η
(η⋄)

)T

−
(

∂WT

∂η
(η̄+0)

)T



with Λ =
φT (η+0 )−φT(η+)

T − d
∣
∣
∣
∣(
∂φT
∂η

(η+0 ))
∣
∣
∣
∣

2
z.

Using the mean value theorem, the termzTg(η)T
((
∂WT
∂η

(η⋄)
)T −

(
∂WT
∂η

(η̄+0)
)T

)

can be written

as:

zTg(η)T





(

∂WT

∂η
(η⋄)

)T

−
(

∂WT

∂η
(η̄+0)

)T

 ≤ TM̃4. (3.21)

Using the mean value theorem, it can be obtained that

φT(η+0) − φT(η+)

T
= −

(

∂φT

∂η
(η∗)

) 



Fe
η,T − Fa

η,T

T



 (3.22)

whereη∗ = η+0 + ℓ1Fe
η,T − Fa

η,T andℓ1 ∈ (0, 1).
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Then, using the differential mean value theorem (DMVT) and (3.22),Λ can be written as:

Λ =

((

∂φT

∂η
(η+0 )

)

−
(

∂φT

∂η
(η∗)

)

−
(

∂φT

∂η
(η+0 )

)) 



Fe
η,T − Fa

η,T

T



 − d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

z

= −
(

∂2φT

∂η2
(η∗∗)

)

ℓ1Ω





Fe
η,T − Fa

η,T

T



 −
(

∂φT

∂η
(η+0)

) 



Fe
η,T − Fa

η,T

T



 − d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

z (3.23)

whereΩ = [ΩT
1 ,Ω

T
2 , ...,Ω

T
n ]T , Ωi = Fe

η,T − Fa
η,T , η∗∗ = η+0 + ℓ1ℓ2Fe

η,T − Fa
η,T andℓ2 ∈ (0, 1).

From one-step consistency of the Euler model with the exact model, there existρη, ρξ ∈ K∞
such that,

∣
∣
∣
∣Fe
η,T − Fa

η,T

∣
∣
∣
∣ ≤ Tρη(T) (3.24)

∣
∣
∣
∣Fe
ξ,T − Fa

ξ,T

∣
∣
∣
∣ ≤ Tρξ(T). (3.25)

Then, using (3.17), (3.21), (3.23)-(3.25) and Young’s inequality, δVT can be written as:

δVT ≤
∆WT

T
+ TM̃4 + |zT ∂

2φT

∂η2
(η∗∗)ℓ1Ω|ρη(T) − (c1 + c2)zTz+ |zT |ρξ(T) +

1
4d

(ρη(T))2

− (
√

d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0))z

∣
∣
∣
∣
∣
+

1

2
√

d
ρη(T))

2

+
T
2
| − (c1 + c2)z− |

(

∂2φT

∂η2
(η∗∗)

)

ℓ1Ω|ρη(T)

− g(η)T
(

∂WT

∂η
(η̄+0 )

)T

− |
(

∂φT

∂η
(η+0 )

)

|ρη(T) − d

∣
∣
∣
∣
∣
∣

(

∂φT

∂η
(η+0)

)∣
∣
∣
∣
∣
∣

2

z+ ρξ(T)|2

≤ −α̃3(|η|) + µ̂ + TM̃4 − c1zTz+ (
1

4c2
+

1
4d

)M̃2 +
T
2

((c+ 1)M̃ + 2M̃2 + dM̃3)
2

≤ −α̃3(|η|) − c1zTz+ µ.

Then, from Proposition 1 in [48], there exists ¯α3 ∈ K∞ such that∆VT ≤ −Tᾱ3(|x|) + Tµ.

Finally, the following equation shows that condition (3.7)holds:

|u| ≤ |β(η)−1|(c|ξ − φT(η)| + |g(η)T
(

∂WT

∂η
(η̄+0)

)T

| + |d|
∣
∣
∣
∣
∣

∂φT

∂η

(

η+0

)
∣
∣
∣
∣
∣

2

|(ξ − φT(η))|

+ |∆φT

T
| + |α(η, ξ̂)|) ≤ c+ 1+ 2M̃ + dM̃2 = M̄.

Consequently, one can easily conclude that system (3.14)-(3.15) with the controller (3.16) is

SPA stable. �

3.4 Applications

In this section, the design method given in Theorem 3.3.2 is applied to various systems and

the simulation results are analyzed.

27



3.4.1 Dynamically Positioned Ship

In the dynamic positioning problems, the speed of a ship is quite small. Hence it can be

assumed that the damping forces are linear [12]. Then, consider the following equation of

motion for the moored tanker in Example 11.4 in [12]

η̇ = R(ψ(t))ν (3.26)

ν̇ = A1η + A2ν + Bu (3.27)

whereη = [n e ψ]
T
, ν = [µ υ r ]

T
, u = [u1 u2 u3]

T
, A1 = −M−1K, A2 = −M−1D,

B = M−1 and

M =





1.0852 0 0

0 2.0575 −0.4087

0 −0.4087 0.2153





, R(ψ) =





cosψ − sinψ 0

sinψ cosψ 0

0 0 1





,

D =





0.0865 0 0

0 0.0762 0.1510

0 0.0151 0.0031





, K = diag{0.0389, 0.0266, 0}

as given in [25].

The control lawφT(η) = −RT(ψ)Lη and the Lyapunov functionWT(η) = 1
2η

Tη are a SPA

stabilizing pair for the subsystem (3.26), whereL can be chosen such thatL = diag{l1, l2, l3}

with |1− Tli | < 1 andl i > 0 for sufficiently smallT > 0. Using this pair, the controllersuT and

uE are designed. The controlleruT is designed using (3.16) in Theorem 3.3.2. The controller

uE is obtained using the method given in [26] which was also presented in Theorem 2.3.3. The

following simulation parameters are set:L = diag{0.5, 0.5, 0.5} andc = 1. Then, simulations

have been performed in order to compare the performances of the controllersuT anduE with

different sampling periods and initial conditions.

First, the controllersuT and uE are applied to the system (3.26)-(3.27) with the sampling

periodT = 0.2 and the initial conditions,η(0) = [−2 2 −π4]
T

andν(0) = 03x1. Simulation

results are given in Figure 3.1. As can be seen from figure, both controllers stabilize the

system (3.26)-(3.27), but faster withuT . Simulation results for the controlleruT show that

as the parameterd increases, the performance of the controlleruT is faster. Ford > 7, the

controlleruT cannot stabilize the system (3.26)-(3.27).
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Figure 3.1: Time responses of the yaw angleψ, the North positionn and the East positione
with T = 0.2. Dotted line:controlleruE. Solid line:designed controlleruT .
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Figure 3.2: Time responses of yaw angleψ, the North positionn and the East positione with
T = 0.4. Dotted line:controlleruE. Solid line:designed controlleruT .
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Figure 3.3: Time responses of yaw angleψ, the North positionn and the East positione with
T = 0.2 and large initial conditions. Dotted line:controlleruE. Solid line:designed controller
uT .

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.4. Simulation results are given in Figure 3.2. It is shown that both controllers

stabilize the system (3.26)-(3.27), but faster withuT again. Faster results are obtained with

the controlleruT until d = 2.7 and the performance worsens afterd = 2.7. Ford > 2.7, the

controlleruT cannot stabilize the system (3.26)-(3.27). Simulation results for the controller

uE show that increase in the sampling periodT results in slightly slow response. While the

controlleruE cannot stabilize the system (3.26)-(3.27) forT > 0.9 with the initial conditions

above, the controlleruT can stabilize the system untilT = 0.1.

Finally, the controllers are applied to the system (3.26)-(3.27) with the same sampling period

T = 0.2 as in the first simulation and large initial conditions,η(0) = [−4 3 −π2]
T

and

ν(0) = 03x1. Simulation results are given in Figure 3.3. It is shown thatthe controlleruT

yields better results when compared to the controlleruE again.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.
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3.4.2 Two-Link Robot Manipulator

In general, the dynamic model of n-link rigid-body robot manipulator can be written as given

by the following matrix equation [9, 52]:

M(q)q̈+C(q, q̇)q̇+G(q) = u

where the stateq ∈ R
n is the angular position vector of joint variable,M(q) ∈ R

n×n is the

positive definite symmetric inertia matrix,C(q, q̇) ∈ R
n×n is the Coriolis-centripetal matrix,

G(q) ∈ R
n is the gravity vector, andu ∈ R

n is the control input vector. In the simulations, a

two-link manipulator is considered with massesm1 andm2 [kg], lengthsl1 andl2 [m], angles

q1 andq2 [rad], torquesu1 andu2 [Nm] for each link. Hence, defining the state vectors as

η := [q1 q2]
T

andξ := [q̇1 q̇2]
T
, the dynamic model of the two-link manipulator can be

written as:

η̇ = ξ (3.28)

ξ̇ = M−1(η) (u−C(η, ξ)ξ −G(η)) (3.29)

whereM =
[

M1 M2
M3 M4

]

, C =
[

C1 C2
C3 C4

]

, G =
[

G1
G2

]

andu =
[ u1

u2

]

with M1 = m1l2c1 + m2(l21 + l2c2 +

2l1lc2 cosq2),M2 = M3 = m2l1lc2 cosq2 + m2l2c2,M4 = m2l2c2,C1 = −m2l2lc2 sinq2q̇2,C2 =

−m2l2lc2 sinq2(q̇1 + q̇2),C3 = m2l2lc2 sinq2q̇1,C4 = 0,G1 = m1glc1 cosq1 + m2g(l1 cosq1 +

lc2 cos(q1 + q2)),G2 = m2glc2 cos(q1 + q2). lc1 andlc2 are the distances of the center of mass

from the joint axes. The robot parameters are given asm1 = m2 = 5 [kg], l1 = l2 = 0.5 [m],

lc1 = lc2 = 0.25 [m]. The control objective is to solve the trajectory tracking problem. Hence,

the joint position tracking errore is defined ase := η − ηd whereηd :=
[

q1d
q2d

]

is the desired

position trajectory. Then, the system dynamics can be written as:

ė= ξ − η̇d (3.30)

ξ̇ = M−1(η) (u−C(η, ξ)ξ −G(η)) . (3.31)

The control lawφT(η) =
[ −c1(q1−q1d)+q̇1d
−c2(q2−q2d)+q̇1d

]

and the Lyapunov functionWT(η) = 1
2η

Tη is a SPA

stabilizing pair for the subsystem (3.30). Using this pair the controllersuT anduE are designed

for the system (3.30)-(3.31). The controlleruT is designed using (3.16) in Theorem 3.3.2.

The controlleruE is obtained using the method given in [26] which was also presented in

Theorem 2.3.3. The following simulation parameters are set: c1 = 2, c2 = 3 andc = 1.

Two different reference trajectories,qd1 = qd2 =
5
4 −

5
4e−t and qd1 = qd2 = sin(t), are
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considered. Then, simulations have been performed in orderto compare the performances of

the controllersuT anduE with the initial conditionsη(0) = ξ(0) =
[

0
0

]

and different sampling

periods.

First, the controllersuT anduE are applied to the system (3.28)-(3.29) with the first reference

trajectory,qd1 = qd2 =
5
4 −

5
4e−t.

Simulation results with the sampling periodT = 0.1 are given in Figure 3.4. As can be seen

from figure, both controllers track the desired trajectory,but the tracking error converges to

zero faster withuT . Simulation results for the controlleruT show that as the parameterd

increases, the tracking error of the controlleruT is smaller. Ford > 1.2, the controlleruT

cannot stabilize the system (3.28)-(3.29).

Simulation results with large sampling periodT = 0.2 are given in Figure 3.5. It is shown

that both controllers track the desired trajectory, but thetracking error converges to zero faster

with uT again. Results with smaller tracking error are obtained with the controlleruT until

d = 0.5. Ford > 0.5, the controlleruT cannot stabilize the system (3.28)-(3.29). Simulation

results for the controlleruE show that increase in the sampling periodT results in slower

response. While the controlleruE cannot stabilize the system (3.28)-(3.29) forT > 0.22, the

controlleruT can stabilize the system untilT = 0.24.

Then, the controllersuT anduE are applied to the system (3.28)-(3.29) with the second refer-

ence trajectory,qd1 = qd2 = sin(t).

Simulation results with the sampling periodT = 0.1 are given in Figure 3.6. As can be

seen from figure, the controlleruT tracks the desired trajectory with smaller tracking error

when compared to the controlleruE. Simulation results for the controlleruT show that as

the parameterd increases, the controlleruT tracks the desired trajectory with smaller error

but for d = 1 its performance is degraded. Ford > 1, the controlleruT cannot stabilize the

system (3.28)-(3.29).

Simulation results with large sampling periodT = 0.15 are given in Figure 3.7. It is shown

that the tracking error increases for both controllers whencompared to the results withT =

0.1, but tracking error of the controlleruT is smaller than that of the controlleruE. Results

with smaller tracking error are obtained with the controller uT until d = 0.6. The performance

of the controlleruT worsens afterd = 0.6. Ford > 0.6, the controlleruT cannot stabilize
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Figure 3.4: Responses of the system for the first trajectory with T = 0.1. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 3.5: Responses of the system for the first trajectory with T = 0.2. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 3.6: Responses of the system for the second trajectory with T = 0.1. Dotted
line:controlleruE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 3.7: Responses of the system for the second trajectory with T = 0.15. Dotted
line:controlleruE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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the system (3.28)-(3.29). While the controlleruE cannot stabilize the system (3.28)-(3.29) for

T > 0.18, the controlleruT can stabilize the system untilT = 0.2.

Moreover, as the sampling periodT increases, the controlleruT shows good performance for

cases where the parameterd has smaller value.

3.4.3 Attitude Control of Rigid Artificial Satellite

In this part, a digital attitude control of a rigid artificialsatellite is considered. Its attitude

motion is modeled by the following nonlinear differential equations

ρ̇ = H(ρ)w, (3.32)

ẇ = J−1S(w)Jw+ J−1u (3.33)

wherew := [w1 w2 w3]
T
∈ R

3 is the angular velocity vector of the body in a body-fixed

frame,ρ ∈ R
3 is the Cayley-Rodrigues parameters describing the body orientation,u ∈ R

3

is the control torque vector of the body,J = JT = diag{10, 15, 20} is the inertia matrix

of the body [31],S(w) is the skew-symmetric matrix given byS(w) =
[ 0 w3 −w2
−w3 0 w1
w2 −w1 0

]

and

H(ρ) = 1
2(I − S(ρ) + ρρT).

The control lawφT(ρ) = −H−1(ρ)Lρ and the Lyapunov functionWT(η) = 1
2ρ

Tρ is a SPA sta-

biling pair for the subsystem (3.32) whereL can be chosen such thatL = diag{l1, l2, l3} with

|1− Tli | < 1 andl i > 0 for sufficiently smallT > 0. Using this pair, the controllersuT anduE

are designed for the system (3.32)-(3.33). The controlleruT is designed using (3.16) in The-

orem 3.3.2. The controlleruE is obtained using the method given in [26] which was also pre-

sented in Theorem 2.3.3. The following simulation parameters are set:L = diag{0.5, 0.5, 0.5}

andc = 1. Then, simulations have been performed in order to comparethe performances of

the controllersuT anduE with different sampling periods and initial conditions.

First, the initial conditions are chosen asρ(0) = [1.4735 0.6115 2.5521]
T

andw(0) = 03x1.

Simulation results with the sampling periodT = 0.1 are given in Figure 3.8. As can be

seen from figure, both controllers stabilize the system (3.32)-(3.33), but faster withuT . As the

parameterd increases, the performance of the controlleruT is faster but ford = 1 performance

degradation starts. Ford > 7, the controlleruT cannot stabilize the system (3.32)-(3.33).

Then, the simulation is performed with the initial conditions given above and large sampling
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Figure 3.8: Time responses ofρ and w with T = 0.1. Dotted line:controlleruE. Solid
line:designed controlleruT .
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Figure 3.9: Time responses ofρ and w with T = 0.4. Dotted line:controlleruE. Solid
line:designed controlleruT .
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Figure 3.10: Time responses ofρ andw with T = 0.1 and initial conditions doubled. Dotted
line:controlleruE. Solid line:designed controlleruT .
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periodT = 0.4. Simulation results are given in Figure 3.9. It is shown that the controller

uT gives faster results when compared to the controlleruE. The controlleruT shows a good

performance untild = 1. For d > 1, the controlleruT cannot stabilize the system (3.32)-

(3.33). The controlleruE gives slower response with larger overshoots when comparedto

results withT = 0.1. While the controlleruE cannot stabilize the system (3.32)-(3.33) for

T > 0.47, the controlleruT can stabilize the system untilT = 0.51.

Finally, the controllers are applied to the system (3.32)-(3.33) with the same sampling period

T = 0.1 as in the first simulation and initial conditions doubled. Simulation results are given

in Figure 3.10. It is shown that the controlleruT gives faster results when compared to the

controlleruE again.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

3.4.4 Second-Order Single-Input System

Now, as a different example, consider the following second-order continuous-time plant with

single input:

η̇ = η2 + ξ (3.34)

ξ̇ = u (3.35)

whereη ∈ R andξ ∈ R are the state vectors andu ∈ R is the control input.

First, continuous-time backstepping controlleruct is designed for system (3.34)-(3.35) using

the backstepping method given in [30]. The controlleruct is obtained asuct = −2η − η2 − ξ −

(2η + 1)(ξ + η2) with φT = −η2 − η, the Lyapunov functionW(η) = 1
2η

2 andc = 1. Then,

the controlleruT is designed using (3.16) in Theorem 3.3.2 withφT = −η2 − η, the Lyapunov

function WT(η) = 1
2η

2 andc = 1. The controlleruNT is designed using the method given

in [48] which was also presented in Theorem 2.3.3. Then, simulations have been performed

in order to compare the performances of the controllersuT anduE with different sampling

periods and initial conditions.

In the first simulation, the initial conditions are chosen as(η(0), ξ(0)) = (1.6, 0.5). Simulation

results for the time responses ofη, ξ andu with the sampling periodT = 0.6 are given in
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Figure 3.11: Time responses ofη, ξ andu with T = 0.6. Solid line:controlleruT . Dash-dotted
line:controlleruNT. Dotted line:controlleruct.
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Figure 3.12: Time responses ofη, ξ andu with T = 0.9. Solid line:controlleruT . Dash-dotted
line:controlleruNT. Dotted line:controlleruct.
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Figure 3.13: Time responses ofη, ξ andu with T = 0.6 and the initial condition (η(0), ξ(0)) =
(−1,−30). Solid curve:controlleruT . Dash-dotted line:controlleruNT. Dotted line:controller
uct.
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Figure 3.11. It is shown that the designed controlleruT works well and is faster than the

controlleruNT. As the parameterd increases, the performance of the controlleruT is faster

but for d = 0.03 performance degradation starts. Ford > 0.03, the controlleruT cannot

stabilize the system (3.34)-(3.35).

Next, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.9. Simulation results are given in Figure 3.12. It is shown that the controller

uT gives faster results when compared to the controlleruNT. The controlleruT shows a good

performance untild = 0.02 and the performance worsens afterd = 0.02. Ford > 0.02,

the controlleruT cannot stabilize the system (3.34)-(3.35). The controlleruNT gives slower

response as the sampling periodT is increased. While the controlleruNT cannot stabilize the

system (3.34)-(3.35) forT > 0.95, the controlleruT can stabilize the system untilT = 1.

Then, the controllers are applied to the system (3.34)-(3.35) with the same sampling period

T = 0.6 as in the first simulation and large initial conditions (η(0), ξ(0)) = (−1,−30). Simu-

lation results are given in Figure 3.13. As can be seen from figure, while the controlleruNT

cannot stabilize the system the designed controlleruT stabilizes the system successfully.

As can be seen from figures, the control inputuT is produced with less energy when compared

to the control inputuNT. Therefore, the proposed method requires less control effort. Simula-

tion results also show that when the parameterd is increased, energy of the control inputuT

decreases in general.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

Finally, by applying the controllers to the system (3.34)-(3.35) with different initial condi-

tions, domain of attraction (DOA) estimates with the controllers uT anduNT for the sampling

periodT = 0.6 are given in Figure 3.14. In DOA estimate with the controller uT , the pa-

rameterd is chosen asd = 0.001. As can be seen from figure, DOA for the system with the

controlleruT is much larger than that with the controlleruNT. For different controller param-

eters and sampling periods, much larger DOA estimate may be obtained with the controller

uT when compared to the estimate given in figure.
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3.4.5 Jet Engine Stall

As a last example, consider the jet engine model given in [30]:

Ṙ= −σR2 − σR(2φ + φ2) (3.36)

φ̇ = −ψ − 3
2
φ2 − 1

2
φ3 − 3Rφ − 3R (3.37)

ψ̇ = −u (3.38)

whereφ is the mass flow,ψ is the pressure rise andR is the normalized stall squared amplitude.

As R≥ 0, the stabilization of the subsystem (3.36) is obvious by inspection. Choosing simply

a virtual controlφ = α(R) = 0 yields Ṙ = −σR2, which means thatR(t) → 0 ast → ∞.

Therefore the backstepping procedure can be shortened froma three-step design to a two-step

design [30].

Consider (3.37) as the upper subsystem, and (3.38) as the lower subsystem withψ regarded

as the virtual control for the upper subsystem. The upper subsystem can be stabilized with

the virtual controlα(ϕ,R) = c1ϕ − 3
2ϕ

2 − 3R. Then using Lyapunov functionW = 1
2φ

2,

continuous-time backstepping controller is obtained asuct = c(ψ−c1ϕ+
3
2ϕ

2+3R)−ϕ− (c1−

3ϕ)(−ψ − 3
2ϕ

2 − 1
2ϕ

3 − 3Rϕ − 3R) + 3σR(−R− 2ϕ − ϕ2). Using (3.16) in Theorem 3.3.2, the

controlleruT is obtained with control lawα(ϕ,R) = c1ϕ − 3
2ϕ

2 − 3R and Lyapunov function

WT =
1
2φ

2. The controller parameters are chosen such thatc = c1 = 1, σ = 7. Simulations

have been performed to compare performances of the designedcontrolleruT and the controller

uNT designed in [32] using the method given in [48].

First, the initial conditions are chosen as (R(0), φ(0), ψ(0)) = (0,−1,−6). Simulation results

for the time responses ofφ andψ with the sampling periodT = 0.01 are given in Figure 3.15.

It is shown that the designed controlleruT works well and is faster than the controlleruNT.

As the parameterd increases, the performance of the controlleruT is faster but ford = 6 per-

formance degradation starts. Ford > 13, the controlleruT cannot stabilize the system (3.36)-

(3.38).

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.5. Simulation results are given in Figure 3.16. It is shown that the controller

uT yields faster results when compared to the controlleruNT. The controlleruT shows a good

performance untild = 0.1. Ford > 0.1, the controlleruT cannot stabilize the system (3.36)-
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Figure 3.15: Time responses ofφ andψ with T = 0.01. Solid curve:controlleruT . Dash-dotted
line:controlleruNT. Dotted line:controlleruct.
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Figure 3.16: Time responses ofφ andψ with T = 0.5. Solid curve:controlleruT . Dash-dotted
line:controlleruNT. Dotted line:controlleruct.
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Figure 3.17: Time responses ofφ and ψ with the initial conditions (R(0), φ(0), ψ(0)) =
(5, 4, 4) andT = 0.01. Solid curve:controlleruT . Dash-dotted line:controlleruNT. Dotted
line:controlleruct.

(3.38). The controlleruNT gives response with larger overshoots as the sampling period T is

increased. While the controlleruNT cannot stabilize the system (3.36)-(3.38) forT > 0.85,

the controlleruT can stabilize the system untilT = 1.

Finally, the controllers are applied to the system (3.36)-(3.38) with the same sampling period

T = 0.01 as in the first simulation and large initial conditions (R(0), φ(0), ψ(0)) = (5, 4, 4).

Simulation results are given in Figure 3.17. As can be seen from Figure 3.17, both controllers

stabilize the system successfully, but faster withuT .

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

3.5 Conclusions

In this chapter, the problem of backstepping controller design has been considered for sampled-

data nonlinear systems in strict feedback form. A backstepping design method has been pre-

sented based on the Euler approximate model. It has been shown that the designed controllers

SPA stabilize the closed-loop sampled-data system based onthe framework proposed in [46].

The proposed design has been applied to several examples arising from the engineering prac-

tice. Their performances were analyzed with simulations.
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For the problem considered, the discrepancy between the Euler approximate model and exact

discrete time model behaves as disturbance. It is known thateven exponentially decaying

disturbances can destabilize the sampled-data nonlinear systems. Hence, in this chapter, the

controllers were designed to compensate the effects of this factor. The results obtained are,

of course, different from the controllers in [48] and [26]. Using simulations, the performance

of the designed controller has been compared with the controllers given in [48] and [26]. It

was shown that the designed controller yielded better performance when compared to the

controllers given in [48] and [26].

Moreover, in case of unstable results, the controllers given in [48] and [26] can be tuned to

obtain stable results by adapting the controller gain. However, the controller designed by the

proposed method can also be tuned adapting another parameter in addition to the controller

gain. So the proposed method gives an additional flexibilityfor tuning the controller. Another

advantage of the designed controller is that the controllerdesigned by the proposed method

can stabilize the systems with larger sampling periods whencompared to the controllers given

in [48] and [26].
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CHAPTER 4

ADAPTIVE BACKSTEPPING FOR THE EULER

APPROXIMATE MODEL OF SAMPLED-DATA NONLINEAR

SYSTEMS

4.1 Introduction

In this chapter, two adaptive digital controller design methods are proposed. In these methods,

the controllers are designed by adaptive backstepping based on the approximate discrete-time

model. These controllers semiglobally practically asymptotically (SPA) stabilize the sampled-

data nonlinear systems.

In many cases, a desired control performance cannot be satisfied with a nonadaptive controller

because of parameter uncertainties. For these cases, the adaptive design methods are used.

Generally the adaptive design method is based on the design of a parameter adaptive law, i.e.

estimates of the parameters are made to converge to the true value of uncertain parameters for

plants by controllers.

The problem of adaptive control of continuous-time nonlinear systems have been widely stud-

ied in the last years and many design tools have been proposed(see [21, 22, 30, 40, 61, 62]

and references therein). The class of feedback linearizable systems that depend linearly on

the unknown parameters are most widely studied (see [30, 40,61] and references therein). In

[30], the design of a backstepping adaptive controller has been well studied for continuous-

time nonlinear systems in the parametric strict-feedback form. In [22], an alternative adaptive

backstepping design for continuous-time nonlinear systems in the parametric strict-feedback

form was proposed using the nonlinear adaptive stabilization tools developed in [4, 23].
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On the other hand, adaptive control of sampled-data nonlinear systems has drawn little at-

tention. In [19], a controller based on higher order approximations is developed using an

overparametrization. A sampled-data scheme using continuous-time adaptive controller with

σ-modification based on emulation approach is given in [64]. In [57], considering high order

approximations for a general class of nonlinear systems, the design of high order adaptive

discrete-time controllers using the truncated Fliess series of the Lyapunov difference equation

is developed. In [34], an adaptive controller for sampled-data nonlinear systems is developed

based on [22].

In this chapter, the problem of adaptive backstepping controller design is considered for

sampled-data nonlinear systems in strict feedback form using direct discrete-time design. The

controller design is based on the Euler approximate model. In this problem, the error in pa-

rameter estimation behaves as disturbance. Even exponentially decaying disturbances can

destabilize the sampled-data nonlinear system. Hence, in the work that follows, the design

methods to compensate the effects of this factor are presented. It is shown that the designed

controllers SPA stabilize the closed-loop sampled-data system based on the framework pro-

posed in [46]. Also numerical examples are given to illustrate the design methods. Simulation

results show that the designed controllers outperform the emulation controllers.

The chapter is organized as follows. In Section 4.2 preliminaries are given. The main results

are stated and proved in Section 4.3. Then, in Section 4.4, application examples are provided

to illustrate the design method. Finally, conclusions are presented.

4.2 Preliminaries

This section provides technical preliminaries. Common definitions which will be used through-

out the chapter are presented. For the sake of clarity and easy reading, some notions and

definitions that have been introduced in Chapter 2 are repeated when necessary.

Consider the following continuous-time nonlinear system

ẋ = f (x(t), u(t)) (4.1)

wherex ∈ Rn is the state,u ∈ Rm is the control input and the functionf is locally Lipschitz.

The control inputu is realized through a zero-order hold such thatu(t) = u(kT) := u(k),∀t ∈
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[kT, (k + 1)T), k ∈ N whereT > 0 is the sampling period.

The difference equation corresponding to the exact discrete-time model of (4.1) and its ap-

proximate discrete-time model are represented by:

x(k+ 1) = Fe
T(x(k), u(k)) (4.2)

x(k+ 1) = Fa
T(x(k), u(k)) (4.3)

respectively.

To measure the difference between the exact model and the approximate model, one step

consistency property, as defined in [46], is used:

Definition 4.2.1 ([46]) The family Fa
T(x, u) is said to be one-step consistent with the exact

discrete-time model FeT(x, u) if, for each compact setΩ ⊂ R
n × R

m, there exists a class-K

functionρ(.) and a constant T0 > 0 such that,|Fe
T(x, u) − Fa

T(x, u)| ≤ Tρ(T) for all (x, u) ∈ Ω

and T ∈ (0,T0].

SPA stability and SPA stability Lyapunov functions are defined in [48] as follows.

Definition 4.2.2 [48] The family of controllers uT SPA stabilizes FT if there existsβ ∈ KL

such that for any pair of strictly positive real numbers(D, v) there exists T∗ > 0 such that

for each T ∈ (0,T∗) the solutions of x(k + 1) = FT(x(k), uT (x(k))) satisfy: |x(k, x(0))| ≤

β(|x(0)|, kT) + v, for all k ≥ 0, whenever|x(0)| ≤ D.

Definition 4.2.3 [48] Let T̂ > 0be given and for each T∈ (0, T̂) let functions VT : Rn→ R≥0

and uT : Rn → R be defined. The pair of families(uT ,VT) is a SPA stabilizing pair for FT

if there existα1, α2, α3 ∈ K∞ such that for any pair of strictly positive real numbers(∆, δ̂)

there exists a triple of strictly positive real numbers(T∗, L,M), with T∗ ≤ T̂ , such that for all

x, x1, x2 ∈ Rn with max{|x| , |x1| , |x2|} ≤ ∆ and T ∈ (0,T∗), and the following conditions are

satisfied:

α1(|x|) ≤ VT(x) ≤ α2(|x|) (4.4)

VT(FT (x, uT(x))) − VT(x) ≤ −Tα3(|x|) + Tδ̂ (4.5)

|VT(x1) − VT(x2)| ≤ L |x1 − x2| (4.6)

|uT(x)| ≤ M (4.7)
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Theorem 4.2.4 [45, 50, 51] If (uT ,VT) is a SPA stabilizing pair for FaT , then uT stabilizes

Fe
T .

Then, stability properties of the sampled-data system (4.1) can be deduced from those of exact

discretized system under certain conditions [51].

4.3 Main Results

In this section, two adaptive backstepping controller designs are presented for sampled-data

nonlinear system in strict feedback form. The controller designs are based on the Euler ap-

proximate model. The controllers are designed to compensate the effects of the error in param-

eter estimation which behaves as disturbance and SPA stabilize the sampled-data nonlinear

systems.

Consider the following parametric strict feedback system:

ẋ = Ax+ Bξ + φTθ (4.8)

ξ̇ = u+ φT
n (x1, ..., xn−1, ξ)θ (4.9)

where

A =





0 1 0 . . . 0

0 0 1 0 . . 0

. . . . . . .

. . . . . . .

0 . . . . 0 1

0 . . . . . 0





, B =





0

.

.

.

0

1





, φ =

[

φ1(x1) φ2(x1, x2) . . . φn−1(x1, ..., xn−1)
]

and x ∈ R
n−1, ξ ∈ R, u ∈ R andφi ∈ R

p is a vector of known smooth nonlinear functions

with φi(0, ..., 0) = 0, i = 1, ..., n, θ ∈ R
p is a vector of unknown constant parameters, the

control inputu(t) = u(kT) =: u(k),∀t ∈ [kT, (k + 1)T), k ∈ N which is realized through a zero

order hold whereT > 0 is the sampling period and the state measurementsx(k) := x(kT) and

ξ(k) := ξ(kT) are available at sampling instantskT, k ∈ N. It is assumed that there exists a

known constant̄θ such that|θ| ≤ θ̄.

The difference equations corresponding to the exact discrete-timemodel of (4.8)-(4.9) are
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represented by

x(k+ 1) = Fe
x,T(x, ξ, u, θ) (4.10)

ξ(k+ 1) = Fe
ξ,T(x, ξ, u, θ). (4.11)

Then the Euler approximate model of (4.8)-(4.9) is given by

x(k+ 1) = x+ T(Ax+ Bξ + φTθ) (4.12)

ξ(k+ 1) = ξ + T(u+ φT
n θ). (4.13)

The first adaptive backstepping controller design will be presented for the Euler approximate

model (4.12)-(4.13) below. The controller design is based on the Euler approximate model of

the parameter estimator obtained using the algorithm givenin [30] and stated in Chapter 2.

Hypothesis 4.3.1[48] There existT̂ > 0, a pair (αT ,WT) and parameter estimator̂θx(k+ 1)

that are defined for each T∈ (0, T̂) and that SPA stabilize the subsystem (4.12) withξ ∈ R

regarded as its control where the parameter estimatorθ̂x(k+1) is the Euler approximate model

of the estimatoṙ̂θx which is obtained during the design ofαT using tuning function technique

given in [30]. Suppose also that the followings hold:

1. for any∆̃ > 0 there exists̄∆ > 0 such that|φi | ≤ ∆̄ for all |x| ≤ ∆̃ and i= 1, 2, ..., n,

2. αT and WT are twice differentiable for any T∈ (0, T̂);

3. there existsϕ ∈ K∞ such that|αT(x̃)| ≤ ϕ(|x̃|) for all x̃=[xT θ̂T
x]T ∈ R

n+p−1 and T ∈

(0, T̂) where x∈ Rn−1 and θ̂x ∈ Rp;

4. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃1) such thatmax{|∂WT
∂x |,

|∂αT
∂x |, |

∂2αT
∂x2 |, |∂

2WT
∂x2 |} ≤ M̃1 for each T ∈ (0, T̃), |x| ≤ ∆̃, |θ̃x| ≤ ∆p and |θ| ≤ θ̄ where

θ̃x = θ − θ̂x.

The following theorem provides the SPA stabilizing adaptive backstepping controller design

based on the Euler approximate discrete-time model of sampled-data nonlinear system.

Theorem 4.3.2 Assuming that Hypothesis 4.3.1 holds, the system (4.12)-(4.13) is SPA stable

with the following controller and parameter estimators forθ and so is the exact discretized
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system (4.10)-(4.11).

u = −c(ξ − αT(x, θ̂x)) −
(

∂WT

∂x
(x̄+0 )

)

B+
∆αT

T

− φT
n θ̂ξ − d(ξ − αT(x, θ̂x))

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

(4.14)

θ̂x(k+ 1) = θ̂x + Tg(x, θ̂x) (4.15)

θ̂ξ(k+ 1) = θ̂ξ + TΓ(ξ − αT(x, θ̂x))φn (4.16)

where c, d > 0, Γ is an arbitrary positive definite matrix,∆αT = αT(x+0 , θ̂
+
x ) − αT(x, θ̂x), x+0 =

x+T(Ax+Bξ+φT θ̂x), x̄+0 = x+T(Ax+BαT(x, θ̂x)+φT θ̂x), g(x, θ̂x) is the estimatoṙ̂θx obtained

during the design ofαT using tuning function technique given in [30], and (4.15)-(4.16) are

the parameter estimators forθ where (4.15) is obtained when designing the virtual control

law αT and (4.16) is obtained when designing the control law u.

Proof. Let ∆, ∆p, µ, µ̂ ∈ R>0, η=[xT ξT]T ∈ R
n with |η| ≤ ∆, η̂=[xT θ̃T

x]T ∈ R
n+p−1,

η̃=[xT z θ̃T]T ∈ Rn+2p, z = ξ − αT andθ̃ = θ − θ̂=[θ̃T
x θ̃T

ξ
]Twith θ̂=[θ̂T

x θ̂T
ξ
]T, |θ̃| ≤ ∆p and

|θ| ≤ θ̄. Consider the system (4.12). There existsT̂ > 0 such that condition (4.5) holds for

T ∈ (0, T̂) with α̃3 ∈ K∞ andµ̂ whenξ = αT as input such that

∆WT =WT(x̄+, θ̃+x ) −WT(x, θ̃x) ≤ −Tα̃3(|η̂|) + Tµ̂ (4.17)

wherex̄+ = x+ T(Ax+ BαT(x, θ̂x) + φTθ). Then, using delta operator, the Euler approximate

models ofx, zandθ̃ξ can be written as:

δx = Ax+ B(z+ αT) + φTθ (4.18)

δz= u− αT(x+, θ̂+x ) − αT(x, θ̂x)

T
+ φT

n θ (4.19)

δθ̃ξ = −Γzφn (4.20)

Let ∆1 = sup|η|≤∆,|θ|≤θ̄,|θ̃|≤∆p,T∈(0,T̂) max{|x+|, |x+0 |, |x̄+0 |, |x̄+|} that is well defined since functions

αT , φi are continuous. Let̄∆ = max{∆,∆1} generates̃T, M̃1 such that inequality 4 in Hypoth-

esis 4.3.1 holds. Let̃M = sup|η|≤∆,|θ|≤θ̄,|θ̃|≤∆p,T∈(0,T̂) max{|ξ−αT |, |Ax+Bξ+φTθ|, |φi |, M̃1, |θ̃|, |θ̂|}

which is well defined since all the considered functions are continuous over the given com-

pact set. LetT∗ > 0 and for eachT ∈ (0,T∗) let the Lyapunov functionVT be defined as

VT(x, ξ, θ̃) =WT(x, θ̃x) + 1
2z2 + 1

2 θ̃
T
ξ
Γ−1θ̃ξ. It is obvious that conditions (4.4) and (4.6) are sat-

isfied, (see [48]) and hence, to prove SPA stability, it is enough to show that conditions (4.5)
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and (4.7) are satisfied. First, it will be shown that condition (4.5) holds.

δVT =
∆VT

T
=

VT(k+ 1)+ VT(k)
T

= δWT + zδz+ θ̃T
ξ Γ
−1δθ̃ξ +

T
2

((δz)2 + (δθ̃ξ)
T
Γ−1δθ̃ξ)

δWT can be written, using the mean value theorem, as:

δWT =
WT(x+, θ̃+x ) −WT(x̄+, θ̃+x ) +WT(x̄+, θ̃+x ) −WT(x, θ̃x)

T

=
∆WT

T
+

(

∂WT

∂x
(x⋄)

)

B(ξ − αT) (4.21)

wherex⋄ = x̄+ + Tℓ1B(ξ − αT) andℓ1 ∈ (0, 1).

Then,δVT can be written, using (4.18-4.20) and (4.21), as:

δVT =
∆WT

T
+

(

∂WT

∂x
(x⋄)

)

Bz+ z(u− αT(x+, θ̂+x ) − αT(x, θ̂x)

T
+ φT

n θ)

− θ̃T
ξ zφn +

T
2

((δz)2 + (δθ̃ξ)
T
Γ−1δθ̃ξ)

=
∆WT

T
+

((

∂WT

∂x
(x⋄)

)

−
(

∂WT

∂x
(x̄+0)

))

Bz− cz2 + zΛ

+
T
2

((δz)2 + (δθ̃ξ)
T
Γ−1δθ̃ξ) (4.22)

with Λ =
αT (x+0 ,θ̂

+
x )−αT (x+ ,θ̂x)

T − dz
∣
∣
∣
∣

(
∂αT
∂x

(

x+0 , θ̂
+
x

))T
∣
∣
∣
∣

2
.

Using the mean value theorem, the term
((
∂WT
∂x (x⋄)

)

−
(
∂WT
∂x (x̄+0 )

))

Bzcan be written as:

((

∂WT

∂x
(x⋄)

)

−
(

∂WT

∂x
(x̄+0 )

))

Bz≤ TM̃3. (4.23)

Using the mean value theorem, it can be obtained that

αT(x+0 , θ̂
+
x ) − αT(x+, θ̂+x )

T
= −

(

∂αT

∂x
(x∗, θ̂+x )

)

φT θ̃x (4.24)

wherex∗ = x+0 + Tℓ2φ
T θ̃x andℓ2 ∈ (0, 1).

Then, using the mean value theorem and (4.24),Λ can be written as:

Λ =

((

∂αT

∂x
(x+0 , θ̂

+
x )

)

−
(

∂αT

∂x
(x∗, θ̂+x )

)

−
(

∂αT

∂x
(x+0 , θ̂

+
x )

))

φT θ̃x − dz

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

= −
(

∂2αT

∂x2
(x∗∗, θ̂+x )

)

ℓ2T(φT θ̃x)
2 −

(

∂αT

∂x
(x+0 , θ̂

+
x )

)

φT θ̃x − dz

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

(4.25)

wherex∗∗ = x+0 + Tℓ2ℓ3φ
T θ̃x andℓ3 ∈ (0, 1).
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Using (4.17), (4.23), (4.25) and Young’s inequality,δVT can be written as:

δVT ≤
∆WT

T
+ |z

(

∂2αT

∂x2
(x∗∗, θ̂+x )

)

ℓ2T(φT θ̃x)
2| + TM̃3 − cz2 +

1
4d
|φT θ̃x|

2

− |
√

d

(

∂αT

∂x
(x+0 , θ̂

+
x )

)T

z+
1

2
√

d
φT θ̃x|

2

+
T
2

((c|z| + |
(

∂2αT

∂x2
(x∗∗, θ̂+x )

)

ℓ2T(φT θ̃x)
2|

+

∣
∣
∣
∣
∣
∣

(

∂WT

∂x
(x̄+0 )

)

B

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

(

∂αT

∂x
(x+0 , θ̂

+
x )

)

φT θ̃x

∣
∣
∣
∣
∣
∣
+ d

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

|z| + |φT
n θ̃ξ |)2 + |Γ||zφn|2)

≤ −α̃3(|η̂|) + µ̂ + TM̃3 − cz2 +
1
4d

M̃4 +
T
2

(((c+ 1)M̃ + M̃2 + (d + 1)M̃3)
2
+ |Γ|M̃4)

≤ −α̃3(|η̂|) − cz2 + µ.

Then, from Proposition 1 in [48], there exists ¯α3 ∈ K∞, such that∆VT ≤ −Tᾱ3(|η̃|) + Tµ.

Finally, the following equation shows that condition (4.7)holds,

|u| ≤ c|ξ − αT | +
∣
∣
∣
∣
∣
∣

(

∂WT

∂x
(x̄+0 )

)∣
∣
∣
∣
∣
∣
|B| + |∆αT

T
| + |φT

n θ̂ξ | + d

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

|z|

≤ (c+ 1)M̃ + 2M̃2 + dM̃3 = M̄.

Consequently, system (4.12)-(4.13) with the controller (4.14) and parameter estimators (4.15)

and (4.16) is SPA stable and since the Euler approximate model is one-step consistent with

the exact model the same property holds for the exact discretized system (4.10)-(4.11). �

Considering the system (4.8)-(4.9), another adaptive backstepping controller design will be

presented for the Euler approximate model (4.12)-(4.13) below. Different from the controller

in Theorem 4.3.2, the controller design in this case is basedon the Euler approximate models

of the parameter estimators obtained using the algorithm given in [22] and stated in Chapter 2.

Hypothesis 4.3.3[48] There existT̂ > 0, a pair (αT ,WT) and parameter estimatorŝθi(k+ 1)

for i = 1, ..., n − 1 that are defined for each T∈ (0, T̂) and that SPA stabilize the subsys-

tem (4.12) withξ ∈ R regarded as its control where the parameter estimatorsθ̂i(k + 1) are

the Euler approximate models of˙̂θi which are obtained during the design ofαT using the

technique given in [22]. Suppose also that the followings hold:

1. for any∆̃ > 0 there exists̄∆ > 0 such that|φi | ≤ ∆̄ for each|x| ≤ ∆̃ and i= 1, 2, ..., n,

2. αT and WT are twice differentiable for any T∈ (0, T̂);
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3. there existsϕ ∈ K∞ such that|αT(x̃)| ≤ ϕ(|x̃|) for all x̃=[xT θ̂T
x]T ∈ R

(n−1)(p+1) and

T ∈ (0, T̂) where x∈ Rn−1 and θ̂x = [θ̂1, θ̂2, ..., θ̂n−1] with θ̂i ∈ Rp;

4. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃1) such thatmax{|∂WT
∂x |,

|∂αT
∂x |, |

∂2αT
∂x2 |, |∂

2WT
∂x2 |, |∂β∂x |} ≤ M̃1 for each T∈ (0, T̃) and |x| ≤ ∆̃, |θ̃| ≤ ∆p, |θ| ≤ θ̄ where

β = [β1, β2, ..., βn] and θ̃x = [θ̃1, θ̃2, ..., θ̃n] with θ̃i = θ̂i − θ + βi .

The following theorem provides the SPA stabilizing adaptive backstepping controller design.

The controller design is based on the Euler approximate model (4.12)-(4.13).

Theorem 4.3.4 Assuming that Hypothesis 4.3.3 holds, the system (4.12)-(4.13) is SPA sta-

ble with the following controller and the adaptive laws forθ and so is the exact discretized

system (4.10)-(4.11).

u = −c(ξ − αT(x, θ̂x)) −
(

∂WT

∂x
(x̄+0)

)

B+
∆αT

T

− φT
n (θ̂n + βn) − d(ξ − αT(x, θ̂x))

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x
(x+0 , θ̂

+
x )

)T
∣
∣
∣
∣
∣
∣
∣

2

(4.26)

θ̂i(k+ 1) = θ̂i − T
i∑

m=1

∂βi

∂xm
(xm+1 + φ

T
m(θ̂i + βi)) (4.27)

for i = 1, ..., n where c, d > 0, xn = ξ,

βi (x1, ..., xi) = γi

∫ xi

0
φi (x1, ..., xi−1, χ) dχ + δi (xi)

whereγi > 0 are constants andδi (xi) areCn−i functions withδ1 (x1) = 0 and

∆αT = αT(x+0 , θ̂
+
x ) − αT(x, θ̂x), (4.28)

x+0 = x+ T(Ax+ Bξ + φT(βx + θ̂x)), (4.29)

x̄+0 = x+ T(Ax+ BαT + φ
T(βx + θ̂x)) (4.30)

with βx = [β1, β2, ..., βn−1], θ̂x = [θ̂1, θ̂2, ..., θ̂n−1] with θ̂i ∈ Rp.

Proof. Let ∆, ∆p, µ, µ̂ ∈ R>0, η=[xT ξT]T ∈ R
n with |η| ≤ ∆, η̂=[xT θ̃T

x]T ∈ R
(n−1)(p+1)

with |η| ≤ ∆, η̃=[xT z θ̃T]T ∈ R(n+1)p, z= ξ − αT andθ̃ = [θ̃x, θ̃n] with θ̃x = [θ̃1, θ̃2, ..., θ̃n−1],

θ̃i = θ̂i − θ + βi, |θ̃| ≤ ∆p, |θ| ≤ θ̄ andc = c1 + c2. There existŝT > 0 such that condition (4.5)

holds forT ∈ (0, T̂) with µ̂ and α̃3 ∈ K∞ considering system (4.12) whenξ = αT as input

such that

∆WT =WT(x̄+, θ̃+x ) −WT(x, θ̃x) ≤ −Tα̃3(|η̂|) + Tµ̂ (4.31)
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wherex̄+ = x+T(Ax+BαT + φ
Tθ). Let∆1 = sup|η|≤∆,|θ|≤θ̄,|θ̃|≤∆p,T∈(0,T̂) max{|x+|, |x+0 |, |x̄+0 |, |x̄+|}

that is well defined since functionsαT , φi , βi are continuous. Let̄∆ = max{∆,∆1} generates

T̃, M̃1 such that inequality 4 in Hypothesis 4.3.3 holds. LetM̃ = sup|η|≤∆,|θ|≤θ̄,|θ̃|≤∆p,T∈(0,T̂) max{

|ξ − αT |, |Ax+ Bξ + φTθ|, |φi |, M̃1, |θ̃|, |θ̂|, |βi |} which is well defined since all the considered

functions are continuous over the given compact set. LetT∗ > 0 and for eachT ∈ (0,T∗) let

the Lyapunov functionVT be defined asVT(x, ξ, θ̃) = WT(x, θ̃x) + 1
2z2 + 1

8c2γn
θ̃2

n. It is obvious

that the conditions (4.4) and (4.6) are satisfied and hence, to prove SPA stability, it is enough

to show that conditions (4.5) and (4.7) are satisfied. First,it will be shown that condition (4.5)

holds.

Using delta operator, the Euler approximate models ofθ̃n can be written as

δθ̃n = −
n∑

m=1

∂βn

∂xm
φT

mθ̃n (4.32)

δWT can be written, using the mean value theorem, as:

δWT =
WT(x+, θ̃+x ) −WT(x̄+, θ̃+x ) +WT(x̄+, θ̃+x ) −WT(x, θ̃x)

T

=
∆WT

T
+

(

∂WT

∂x
(x⋄)

)

B(ξ − αT) (4.33)

wherex⋄ = x̄+ + Tℓ1B(ξ − αT) andℓ1 ∈ (0, 1).

Then, using (4.18), (4.19) , (4.32), Remark 6 in [22] and applying the delta operator,δVT can

be written as:

δVT = δWT + zδz+
1

4d1γn
θ̃nδθ̃n +

T
2

((δz)2 +
1

4c2γn
(δθ̃n)2)

≤ ∆WT

T
+

(

∂WT

∂x
(x⋄)

)

Bz+ z(u− αT(x+, θ̂+x ) − αT(x, θ̂x)

T
+ φT

n θ)

− 1
4c2

(φT
n θ̃n)

2
+

T
2

((δz)2 +
1

4c2γn
(δθ̃n)2)

≤ ∆WT

T
− cz2 +

((

∂WT

∂x
(x⋄)

)

−
(

∂WT

∂x
(x̄+0 )

))

Bz+ zΛ

− zφT
n θ̃n −

1
4c2

(φT
n θ̃n)

2
+

T
2

((δz)2 +
1

4c2γn
(δθ̃n)2)

with

Λ =
αT(x+0 , θ̂

+
x ) − αT(x+, θ̂x)

T
− dz

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

.

Using the mean value theorem, the term
((
∂WT
∂x (x⋄)

)

−
(
∂WT
∂x (x̄+0 )

))

Bzcan be written as:
((

∂WT

∂x
(x⋄)

)

−
(

∂WT

∂x
(x̄+0 )

))

Bz≤ TM̃3. (4.34)
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Using the mean value theorem, it can be obtained that

αT(x+0 , θ̂
+
x ) − αT(x+, θ̂+x )

T
=

(

∂αT

∂x
(x∗, θ̂+x )

)

φT θ̃x (4.35)

wherex∗ = x+0 − Tℓ2φ
T θ̃x andℓ2 ∈ (0, 1).

Then, using the mean value theorem and (4.35),Λ can be written
(
∂αT
∂x (x+0 , θ̂

+
x )

)

φT θ̃x as:

Λ =

((

∂αT

∂x
(x+0 , θ̂

+
x )

)

−
(

∂αT

∂x
(x∗, θ̂+x )

)

−
(

∂αT

∂x
(x+0 , θ̂

+
x )

))

φT θ̃x − dz

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

= −
(

∂2αT

∂x2
(x∗∗, θ̂+x )

)

ℓ2T(φT θ̃x)
2
+

(

∂αT

∂x
(x+0 , θ̂

+
x )

)

φT θ̃x − dz

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

(4.36)

wherex∗∗ = x+0 − Tℓ2ℓ3φ
T θ̃x andℓ3 ∈ (0, 1).

Using (4.31), (4.34), (4.36) and Young’s inequality,δVT can be written as:

δVT ≤
∆WT

T
+ |z

(

∂2αT

∂x2
(x∗∗, θ̂+x )

)T

ℓ2T(φT θ̃x)
2| + TM̃3 − c1z2 +

1
4d

(φT θ̃x)
2

− |
√

d

(

∂αT

∂x
(x+0 , θ̂

+
x )

)T

z− 1

2
√

d
φT θ̃x|2 − (

√
c2z− 1

2
√

c2
φT

n θ̃n)2 +
T
2

((c|z|

+

∣
∣
∣
∣
∣
∣

(

∂WT

∂x
(x̄+0 )

)

B

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

(

∂2αT

∂x2
(x∗∗, θ̂+x )

)

ℓ2T(φT θ̃x)
2
∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

(

∂αT

∂x
(x+0 , θ̂

+
x )

)

φT θ̃x

∣
∣
∣
∣
∣
∣

+ d

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

|z| + |φT
n θ̃n|)2 +

1
4c2γn

(|
n∑

m=1

∂βn

∂xm
φT

m||θ̃n|)
2

)

≤ −α̃3(|η̂|) + µ̂ + TM̃3 − c1z2 +
1
4d

M̃4 +
T
2

(((c+ 1)M̃ + M̃2 + (d + 1)M̃3)2 +
1

4c2γn
M̃6)

≤ −α̃3(|η̂|) − c1z2 + µ.

Then, from Proposition 1 in [48], there exists ¯α3 ∈ K∞, such that

∆VT ≤ −Tᾱ3(|η̃|) + Tµ

Finally, the following equation shows that condition (4.7)holds,

|u| ≤ c|ξ − αT | +
∣
∣
∣
∣
∣
∣

(

∂WT

∂x
(x̄+0 )

)∣
∣
∣
∣
∣
∣
|B| + |∆αT

T
| + |φT

n (θ̂n + βn)| + d

∣
∣
∣
∣
∣
∣
∣

(

∂αT

∂x

(

x+0 , θ̂
+
x

)
)T

∣
∣
∣
∣
∣
∣
∣

2

|z|

≤ (c+ 1)M̃ + 3M̃2 + d2M̃3 = M̄

Consequently, system (4.12)-(4.13) with the controller (4.26) and parameter estimators (4.27)

is SPA stable and since the Euler approximate plant model is one-step consistent with the

exact model the same property holds for the exact discretized system (4.10)-(4.11). �
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4.4 Applications

In this section, design methods given in Theorems 4.3.2 and 4.3.4 are applied to two different

systems and the simulation results are analyzed.

4.4.1 Second-Order System

Consider the following plant

ẋ1 = x2 + x1
2θ (4.37)

ẋ2 = u. (4.38)

whereθ is the unknown parameter.

First, the controller in Theorem 4.3.2 and the emulation of the continuous-time controller

designed using the tuning function technique will be applied to the system (4.37)-(4.38).

For the system (4.37)-(4.38), the continuous-time adaptive backstepping controller is de-

signed according to the adaptive backstepping method basedon tuning function technique

given in [30] as:

˙̂θ = x3
1 + (c1x1 + x2

1θ̂ + x2)(2x1θ̂ + c1)x2
1 (4.39)

uct = −x1 − c2(c1x1 + x2
1θ̂ + x2) − (2x1θ̂ + c1)(x2 + x2

1θ̂) − x2
1
˙̂θ (4.40)

Then, the controlleruT is obtained using (4.14) in Theorem 4.3.2 with the estimatorθ̂(k+1) =

θ̂ + T x3
1, αT = −c1x1 − x2

1θ̂ and the Lyapunov functionWT =
1
2 x2

1 +
1
2 θ̃

2. Simulations have

been performed in order to compare performances of controller uT and the emulation,uE

of continuous-time controller (4.39)-(4.40) with different sampling periods and initial condi-

tions. In simulations, following parameters are used:c = c1 = c2 = 3 andθ = 1.

In the first simulation, the initial conditions are chosen asx1(0) = x2(0) = 3 andθ̂(0) = 0.

Simulation results for the time responses ofx1 and the estimate ofθ with the sampling period

T = 0.002 are given in Figure 4.1. It is shown that both controllersstabilize the system (4.37)-

(4.38), but faster with controlleruT . As the parameterd increases, the performance of the

controlleruT is faster but further increase results in performance degradation. The controller

uT cannot stabilize the system ford > 14.
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Figure 4.1: Time responses ofx1, θ̂ and u with T = 0.002. Dotted line:Continuous-time
controller. Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Figure 4.2: Time responses ofx1, θ̂ anduwith T = 0.1. Dotted line:Continuous-time controller.
Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.1. Simulation results given in Figure 4.2 show that while theemulation con-

troller uE cannot stabilize the system, the controlleruT works well again. As the parameter

d increases, the controlleruT yields faster results but further increase results in performance

degradation. The controlleruT cannot stabilize the system ford > 0.04. While the emula-

tion controlleruE cannot stabilize the system forT > 0.003 the controlleruT stabilizes until

T = 0.1.

Finally, the controllers are applied to the system (4.37)-(4.38) with the same sampling period

T = 0.002 as in the first simulation and initial conditions doubledx1(0) = x2(0) = 6. Simu-

lation results are shown in Figure 4.3. While the emulation controlleruE cannot stabilize the

system (4.37)-(4.38), the controlleruT still performs very well, even when compared to the

continuous-time controlleruct.

As can be seen from figures, it can be observed that the parameter estimatêθ from the estima-

tor θ̂(k + 1) = θ̂ + T x3
1 designed for the controlleruT does not converge to the correct value

of θ although it is bounded. This is expected due to the practicalstability, rather than global

asymptotic stability property of the error dynamics of the estimator. However, the estimator

error of the controlleruT is smaller than that of the emulation controlleruE.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

As can be seen from figures, the control inputuT is produced with less energy when compared

to the control inputuE. Therefore, the proposed method requires less control effort. Simula-

tion results also show that when the parameterd is increased, energy of the control inputuT

decreases in general.

Finally, by applying the controllers to the system (4.37)-(4.38) with different initial condi-

tions, domain of attraction (DOA) estimates with the controllers uT anduE for the sampling

periodT = 0.002 are given in Figure 4.4. In DOA estimate with the controlleruT , the parame-

terd is chosen asd = 0.1. As can be seen from figure, DOA for the system with the controller

uT is much larger than that with the controlleruE. For different controller parameters and

sampling periods, DOA estimate with the controlleruT may be much larger than the estimate

given in figure.
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Figure 4.3: Time responses ofx1, θ̂ andu with the doubled initial conditionsx1(0) = x2(0) = 6
andT = 0.002. Dotted line:Continuous-time controller. Dash-dotted line:Emulation controller.
Solid line:Designed controller.
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Second, the controller in Theorem 4.3.4 and the emulation ofthe continuous-time controller

designed using the technique in [22] will be applied to the system (4.37)-(4.38).

The continuous-time adaptive controlleruct for system (4.37)-(4.38) is designed using the

method given in [22] withβ = γ1
x3

1
3 . The controlleruT is obtained using (4.26) and (4.27) in

Theorem 4.3.4 withαT = −(c1 +
ε
2)x1 − x2

1(θ̂ + β), the Lyapunov functionWT =
1
2 x2

1 +
1

(γ1)z1
2

andβ = γ1
x3

1
3 wherez1 = θ̂ − θ + β. Simulations have been performed in order to compare

performances of the controlleruT and the emulation,uE of continuous-time controller with

different sampling periods and initial conditions. In simulations, following parameters are

used:c = c1 = c2 = 3, ε = 0.0002,γ1 = 0.05 andθ = 1.

In the first simulation, the initial conditions are chosen asx1(0) = x2(0) = 3 andθ̂(0) = 0.

Simulation results for the time responses ofx1 and the estimate ofθ with the sampling period

T = 0.05 are given in Figure 4.5. It is shown that both controllers stabilize the system (4.37)-

(4.38), but faster with the controlleruT . As the parameterd increases, the performance of the

controlleruT is faster but further increase results in performance degradation. The controller

uT cannot stabilize the system ford > 0.6.

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.15. As can be seen from Figure 4.6, the emulation controlleruE cannot sta-

bilize the system withT = 0.15. On the other hand, the controlleruT stabilizes the system

successfully. As the parameterd increases, the performance of the controlleruT is faster but

further increase results in performance degradation. The controller uT cannot stabilize the

systemd > 0.02. While the emulation controlleruE cannot stabilize the system forT > 0.1

the controlleruT stabilizes untilT = 0.15.

Next, the controllers are applied to the system (4.37)-(4.38) with the same sampling period

T = 0.05 as in the first simulation and large initial conditionsx1(0) = x2(0) = 5. Simula-

tion results are shown in Figure 4.7. Both controllers stabilize the system (4.37)-(4.38), but

smoother and faster results are obtained with the controller uT again.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

Finally, by applying the controllers to the system (4.37)-(4.38) with different initial condi-

tions, domain of attraction (DOA) estimates with the controllers uT anduE for the sampling
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Figure 4.5: Time responses ofx1, θ̂ andu with T = 0.05. Dotted line:Continuous-time con-
troller. Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Figure 4.6: Time responses ofx1, θ̂ andu with T = 0.15. Dotted line:Continuous-time con-
troller. Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Solid line:Designed controller.
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Figure 4.9: Time responses ofx1, θ̂ andu with T = 0.05. Dotted line:Continuous-time con-
troller. Dash-dotted line:Emulation controller. Solid line:Designed controller.

periodT = 0.05 are given in Figure 4.8. In DOA estimate with the controller uT , the pa-

rameterd is chosen asd = 0.001. As can be seen from figure, DOA for the system with the

controlleruT is slightly larger than that with the controlleruE. For different controller param-

eters and sampling periods, much larger DOA estimate may be obtained with the controller

uT when compared to the estimate given in figure.

In addition, to see the effect of adding a constant toβ, all the controllers are designed with

β = γ1(
x3

1
3 + γ2) and applied to the system (4.37)-(4.38). Simulation results with T = 0.05,

γ2 = 0.5 and the initial conditionsx1(0) = x2(0) = 3 can be seen from Figure 4.9. It is shown

that results in this case are faster and with smaller overshoots when compared to the results in

Figure 4.5.
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As can be seen from figures, the control inputuT is produced with less energy when compared

to the control inputuE. Therefore, the proposed method requires less control effort. Simula-

tion results also show that when the parameterd is increased, energy of the control inputuT

decreases in general.

Consequently, in this example, the controller designed using Theorem 4.3.4 gives stable re-

sults with larger sampling periods when compared to the controller designed using Theo-

rem 4.3.2. Due to the structure of the parameter estimators in Theorem 4.3.4, parameter

estimation error of the controller designed using Theorem 4.3.4 is smaller than that of the

controller designed using Theorem 4.3.2

4.4.2 Aircraft Wing Rock

In this part, the problem of wing rock elimination in high-performance aircraft is considered.

Wing rock is a limit cycle oscillation which appears in the rolling motion of slender delta

wings at high angles of attack (see [18, 20] and the references in Section 4.6 of [30]). Consider

the following equations which describe the motion of the wing [30, 42]:

ẋ1 = x2 (4.41)

ẋ2 = x3 + φ2(x1, x2)Tθ (4.42)

ẋ3 =
1
τ

u− 1
τ

x3 (4.43)

where the statesx1, x2 andx3 represent the roll angle, roll rate and aileron deflection angle,

respectively,τ is the aileron time constant,u is the control input,θ ∈ R
5 is an unknown

constant vector andφ2(x1, x2) = [1, x1, x2, |x1|x2, |x2|x2]T .

First, the controller in Theorem 4.3.2 and the emulation of the continuous-time controller

designed using the tuning function technique will be applied to the system (4.41)-(4.43).

For the system (4.41)-(4.43), the continuous-time adaptive backstepping controller is de-

signed using the adaptive backstepping method based on tuning function technique given

in [30]. Then, the controlleruT is obtained using (4.14) in Theorem 4.3.2 with the estimator

θ̂(k + 1) = θ̂ + TΓ(x2 + c1x1)φ2, αT = −c2(x2 + c1x1) − φ2
T θ̂ and the Lyapunov function

WT =
1
2 x2

1 +
1
2(x2 + c1x1)2 + 1

2 θ̃
TΓ−1θ̃. Simulations have been performed in order to compare

performances of the controlleruT with the emulation,uE of continuous-time controller with
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different sampling periods and initial conditions. In simulations, following parameters are

used:c = c1 = c2 = 5, τ = 1
15, θ = [0,−26.67, 0.76485,−2.9225, 0]T andΓ = 0.02I whereI

is the unit matrix.

In the first simulation, the initial conditions are chosen asx1(0) = 0.4, x2(0) = x3(0) = 0 and

θ̂(0) = 0. Simulation results for the time responses ofx1, x2 and x3 with T = 0.1 are given

in Figure 4.10. It is shown that both controllers stabilize the system (4.41)-(4.43), but faster

with controlleruT . As the parameterd increases, the performance of the controlleruT is faster

but further increase results in performance degradation. The controlleruT cannot stabilize the

system ford > 0.02.

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.15. Simulation results are given in Figure 4.11. It is shown that the controller

uT yields faster results when compared to the emulation controller uE. As the parameterd

increases, results of the controlleruT are faster. Ford > 0.015, the controlleruT cannot

stabilize the system (4.41)-(4.43). The emulation controller uE yields slower results with

larger overshoots when the sampling periodT is increased. While the emulation controller

uE gives unstable results forT > 0.15, the controlleruT can stabilize untilT = 0.2.

Finally, the controllers are applied to the system (4.41)-(4.43) with the same sampling period

T = 0.1 as in the first simulation and initial conditions doubledx1(0) = 0.8, x2(0) = x3(0) = 0.

Simulation results are shown in Figure 4.12. While the emulation controller cannot stabilize

the system (4.41)-(4.43), the controlleruT still performs very well.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

Second, the controller in Theorem 4.3.4 and the emulation ofthe continuous-time controller

designed using the technique in [22] will be applied to the system (4.41)-(4.43).

The continuous-time adaptive controlleruct for system (4.41)-(4.43) is designed using the

method given in [22] withβ = γ1

[

x2, x1x2,
1
2 x2

2, 1
2 |x1|x2

2, 1
3 |x2|x2

2
]T

. The Euler based adap-

tive backstepping control lawuT is obtained using (4.26) and (4.27) in Theorem 4.3.4 with

αT = −(x1+ (c2+
ε
2)(x2+c1x1))−φ2

T(θ̂+β), Lyapunov functionWT =
1
2 x2

1+
1
2(x2 + c1x1)2+

2
(γ1ε)

z2
Tz2 andβ = γ1

[

x2, x1x2,
1
2 x2

2, 1
2 |x1|x2

2, 1
3 |x2|x2

2
]T

wherez2 = θ̂−θ+β. Simulations have

been performed in order to compare performances of the controller uT and the emulation,uE
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Figure 4.10: Time responses ofx1, x2, x3 with T = 0.1. Dotted line:Continuous-time controller.
Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Figure 4.11: Time responses ofx1, x2, x3 with T = 0.15. Dotted line:Continuous-time con-
troller. Dash-dotted line:Emulation controller. Solid line:Designed controller.

68



0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x 1

 

 
u

ct

u
E

u
T
 with d=0.001

u
T
 with d=0.005

u
T
 with d=0.01

u
T
 with d=0.02

(a)

0 1 2 3
−4

−3

−2

−1

0

1

2

t

x 2

 

 

u
ct

u
E

u
T
 with d=0.001

u
T
 with d=0.005

u
T
 with d=0.01

u
T
 with d=0.02

(b)

0 1 2 3
−30

−20

−10

0

10

20

30

40

50

t

x 3

 

 
u

ct

u
E

u
T
 with d=0.001

u
T
 with d=0.005

u
T
 with d=0.01

u
T
 with d=0.02

(c)

Figure 4.12: Time responses ofx1, x2, x3 with the initial conditions doubled andT =

0.1. Dotted line:Continuous-time controller. Dash-dotted line:Emulation controller. Solid
line:Designed controller.

of continuous-time controller. In simulations, followingparameters are used:c = c1 = c2 = 5,

ε = 0.0002,γ1 = 0.01,τ = 1
15 andθ = [0,−26.67, 0.76485,−2.9225, 0]T .

In the first simulation, the initial conditions are chosen asx1(0) = 0.4, x2(0) = x3(0) = 0 and

θ̂(0) = 0. Simulation results for the time responses ofx1, x2 and x3 with T = 0.1 are given

in Figure 4.13. It is shown that both controllers stabilize the system (4.41)-(4.43), but faster

with controlleruT . As the parameterd increases, the performance of the controlleruT is faster

but further increase results in performance degradation. The controlleruT cannot stabilize the

system ford > 0.025.

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.15. Simulation results are given in Figure 4.14. It is shown that the controller

uT yields faster results when compared to the emulation controller uE. As the parameterd

increases, results of the controlleruT are faster. Ford > 0.01, the controlleruT can not

stabilize the system (4.41)-(4.43). The emulation controller uE yields slower results with

larger overshoots when the sampling periodT is increased. Both controllers give unstable
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Figure 4.13: Time responses ofx1, x2, x3 with T = 0.1. Dotted line:Continuous-time controller.
Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Figure 4.14: Time responses ofx1, x2, x3 with T = 0.15. Dotted line:Continuous-time con-
troller. Dash-dotted line:Emulation controller. Solid line:Designed controller.
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Figure 4.15: Time responses ofx1, x2, x3 with the initial conditionsx1(0) = 0.8, x2(0) = x3(0) =
0 andT = 0.1. Dotted line:Continuous-time controller. Dash-dotted line:Emulation controller.
Solid line:Designed controller.
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Figure 4.16: Time responses ofx1, x2, x3 with T = 0.1. Dotted line:Continuous-time controller.
Dash-dotted line:Emulation controller. Solid line:Designed controller.
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results forT > 0.2.

Next, the controllers are applied to the system (4.41)-(4.43) with the same sampling period

T = 0.1 as in the first simulation and initial conditions doubledx1(0) = 0.8, x2(0) = x3(0) = 0.

Simulation results are shown in Figure 4.15. Both controllers stabilize the system (4.41)-

(4.43) successfully, but faster with the controlleruT .

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

Finally, to see the effect of adding a constant toβ, all the controllers are designed with

β = γ1

([

x2, x1x2,
1
2 x2

2, 1
2 |x1|x2

2, 1
3 |x2|x2

2
]T
+ γ2

)

by adding a constant toβ and applied to

the system (4.41)-(4.43). Simulation results withT = 0.1, γ2 = 25 and the initial conditions

x1(0) = 0.4, x2(0) = x3(0) = 0 can be seen from Figure 4.16. It is shown that results in this

case are faster and with smaller overshoots when compared tothe results in Figure 4.13.

4.5 Conclusions

In this chapter, the problem of adaptive backstepping controller design has been considered for

sampled-data nonlinear systems in strict feedback form using direct discrete-time design. Two

adaptive backstepping design methods has been presented based on the Euler approximate

model. It has been shown that the designed controllers SPA stabilize the closed-loop sampled-

data system based on the framework proposed in [46]. The proposed designs have been

applied to two different examples. Their performances are analyzed with simulations.

For the problem considered, the error in parameter estimation behaves as disturbance. It is

known that even exponentially decaying disturbances can destabilize the sampled-data non-

linear system. Hence, in this chapter, the controllers weredesigned to compensate the effects

of this factor. As a result of this measure taken, the simulation results have shown that the

controllers designed by the proposed methods outperform the emulation controllers.

While sampling is ignored prior to the implementation stagein emulation design, it is consid-

ered from the beginning of the design process in direct discrete-time design which is used in

this chapter. Therefore, simulation results show that the designed controllers can stabilize the

system with larger sampling periods when compared to the emulation controllers.

72



CHAPTER 5

ROBUST BACKSTEPPING FOR THE EULER APPROXIMATE

MODEL OF SAMPLED-DATA NONLINEAR SYSTEMS

5.1 Introduction

In this chapter, a robust digital controller design method which is the modified version of

the method given in [58] is proposed. In this method, the controller is designed by robust

backstepping based on the approximate discrete-time model. This controller semiglobally

practically asymptotically (SPA) stabilizes the sampled-data nonlinear systems.

Robust controller is designed to deal with model uncertainty and disturbances. Robust back-

stepping for continuous-time nonlinear systems have been widely studied in the last years

(see [14, 15, 39, 16, 29] and references therein). With robust backstepping, [14, 15, 39, 16]

achieved global stabilization in the presence of disturbances. The emergence of robust back-

stepping was described in [29].

On the other hand, the problem of stabilization of sampled-data nonlinear systems in the pres-

ence of disturbances has not received much attention. ISS (Input-to-State Stability) and IOSS

(Input-to-Output-State Stability) properties are discussed in [45, 36, 35]. In [58], robust back-

stepping for sampled-data nonlinear system in strict feedback form using Euler approximate

model is presented.

In this chapter, the problem of robust backstepping controlof sampled-data nonlinear systems

in strict feedback form based on the Euler approximate modelis considered. The robust

backstepping method given in [58] is modified to compensate the effect of difference between

disturbance or model uncertainty and their bounds. It is shown that the designed controllers
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SPA stabilize the closed-loop sampled-data system based onthe framework proposed in [46].

Also a numerical example is given to illustrate the design method.

The chapter is organized as follows. In Section 5.2 preliminaries are given. The main results

are stated and proved in Section 5.3. Then, in Section 5.4, anapplication example is provided

to illustrate the design method. Finally, conclusions are presented.

5.2 Preliminaries

This section provides technical preliminaries. Common notation and definitions which will

be used throughout the chapter are presented. For the sake ofclarity and easy reading, some

notions and definitions that have been introduced in Chapter2 are repeated when necessary.

For a functiond : R≥0 → R
n, d(k) denotes{d(t) : t ∈ [kT, (k + 1)T)}, k ∈ Z+, n ∈ N,T ∈ R≥0.

It is said thatd ∈ L∞ if d is Lebesgue measurable and there existsr ∈ R≥0 such that‖d‖∞ =

sup
τ∈R≥0

|d(τ)| ≤ r and
∥
∥
∥df

∥
∥
∥∞ denotes sup

τ∈[kT,(k+1)T)
|d(τ)| ≤ r, k ∈ Z+,T ∈ R≥0.

Consider the following continuous-time nonlinear system

ẋ = f (x(t), u(t), d(t)) (5.1)

wherex ∈ Rn is the state,u ∈ R is the control input,d ∈ Rm is the exogenous disturbance and

Lebesgue measurable and the functionf is locally Lipschitz. The control inputu is realized

through a zero-order hold such thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k + 1)T), k ∈ N where

T > 0 is the sampling period.

The difference equation corresponding to the exact discrete-time model of (5.1) and its ap-

proximate discrete-time model are represented by:

x(k+ 1) = Fe
T(x(k), u(k), d(k)) (5.2)

x(k+ 1) = Fa
T(x(k), u(k), d(k)) (5.3)

respectively.

To measure the discrepancy between the exact model and the approximate model, one step

consistency property, as defined in [46], is used:
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Definition 5.2.1 ([46]) The family Fa
T(x, u) is said to be one-step consistent with the exact

discrete-time model FeT(x, u) if, for each compact setΩ ⊂ R
n × R

m, there exists a class-K

functionρ(.) and a constant T0 > 0 such that,|Fe
T(x, u) − Fa

T(x, u)| ≤ Tρ(T) for all (x, u) ∈ Ω

and T ∈ (0,T0].

The definition of SPA stability and SPA stability Lyapunov functions can be deduced from

[45] as follows.

Definition 5.2.2 [45] The family of controllers uT SPA stabilizes FT if there existsβ ∈ KL

such that for any strictly positive real numbers(∆x,∆d, v) there exists T∗ > 0 such that for

each T∈ (0,T∗) the solutions of x(k + 1) = FT(x(k), uT (x(k)), d(k)) satisfy: |x(k, x(0), d)| ≤

β(|x(0)|, kT) + v, for all k ≥ 0, whenever|x(0)| ≤ ∆x and d∈ L∞ with ‖d‖∞ ≤ ∆d.

Definition 5.2.3 [45] Let T̂ > 0be given and for each T∈ (0, T̂) let functions VT : Rn→ R≥0

and uT : Rn→ R
m be defined. The pair of families(uT ,VT) is a SPA stabilizing pair for FT if

there existα1, α2, α3 ∈ K∞ such that for any pair of strictly positive real numbers(∆x,∆d, δ)

there exists a triple of strictly positive real numbers(T∗, L,M), with T∗ ≤ T̂ , such that for

all x, z ∈ R
n with max{|x| , |z|} ≤ ∆x, all d ∈ L∞ with ‖d‖∞ ≤ ∆d and T ∈ (0,T∗), and the

following conditions are satisfied:

α1(|x|) ≤ VT(x) ≤ α2(|x|) (5.4)

VT(FT(x, uT (x), d)) − VT(x) ≤ −Tα3(|x|) + Tδ (5.5)

|VT(x) − VT(z)| ≤ L |x− z| (5.6)

|uT(x)| ≤ M (5.7)

If the approximate model (5.3) is consistent with the exact model (5.2), stability properties

for (5.2) can be deduced from the stability analysis of (5.3)according to the following theorem

which is a direct consequence of Theorem 3.2 in [45].

Theorem 5.2.4 [45, 50, 51] If (uT ,VT) is a SPA stabilizing pair for FaT , then uT stabilizes

Fe
T .

Then, stability properties of the sampled-data system (5.1) can be deduced from those of exact

discretized system under certain conditions [51].
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5.3 Main Results

In this section, the design of SPA stabilizing robust backstepping controller is presented for

sampled-data nonlinear system in strict feedback form. Thecontroller design which is mod-

ified version of the method given in [58] is based on the Euler approximate model. The

controller is designed to compensate the effect of difference between disturbance or model

uncertainty and their bounds. This is the main difference from the controller given in [58].

Consider the following parametric strict feedback system

η̇ = f (η) + g(η)ξ + d1 (5.8)

ξ̇ = α(η, ξ) + β(η)u+ d2 (5.9)

where x = [ηT ξT ]
T

with η ∈ R
n and ξ ∈ R

m is the state vector,f (0) = 0, f , g, α are

differentiable sufficiently many times,β(η) , 0, ∀η, the control inputu ∈ R
m is realized

through a zero order hold such thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k + 1)T), k ∈ N and

the state measurementsη(k) := η(kT) andξ(k) := ξ(kT) are available at sampling instants

kT, k ∈ N whereT > 0 is the sampling period andd = [dT
1 dT

2
]
T
∈ L∞ is unknown and

models the uncertainties or perturbations acting on the system.

In this section some information on the uncertain terms is supposed to be available. The

following type of hypothesis is given in [58] which is standard when dealing with perturbed

strict feedback systems [15].

Hypothesis 5.3.1[58] 1. d1 ∈ C1([t0,∞) × Rn+m,Rn) and d2 ∈ C1([t0,∞) × Rn+m,Rm).

2. There exist known functionsρ1 ∈ C1(Rn,R≥0) with ρ1(0) = 0, ρ2 ∈ C1([t0,∞) × Rn+m,Rm)

such that, for all(t, x) ∈ [t0,∞) × Rn+m : |d1(t, x)| ≤ ρ1(η) and |d2(t, x)| ≤ ρ2(x).

Suppose that family of exact discrete-time models of the system (5.8)-(5.9) is

η(k + 1) = Fe
η,T(η, ξ, u, d1) (5.10)

ξ(k+ 1) = Fe
ξ,T(η, ξ, u, d2). (5.11)

Since the exact discrete-time models (5.10)-(5.11) are notavailable in general, approximate

discrete-time models are used. Also condition (1) in Hypothesis 5.3.1 will be assumed to hold.
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Hence the following Euler approximate discrete-time modelof (5.8)-(5.9) is considered.

η(k + 1) = η + T( f (η) + g(η)ξ + d1) (5.12)

ξ(k+ 1) = ξ + T(α(η, ξ) + β(η)u+ d2) (5.13)

The following functions are defined in [58] are going to be used in the sequel.

Definition 5.3.2 [58] For any ε,T ∈ R≥0, n ∈ Z
+, the function satTε,n(z) : R

n → R
n is

defined as, for z= [z1, ..., zn]T ∈ Rn : satTε,n(z) = [
˜

satTε,1(z1), ...,
˜

satTε,1(zn)]
T

with

˜
satTε,1(zi ) =






sign(zi ), if |zi | ≥ Tε
n

p(zi ), otherwise

where p: R 7→ R, p(0) = 0 and |p| ≤ 1 over
[

−Tε
n ,

Tε
n

]

, yp(y) = 0 for y ∈
[

−Tε
n ,

Tε
n

]

, is such

that function satTε,n is C1 overRn.

Hypothesis 5.3.3[48] There existT̂ > 0 and a pair (φT ,WT) that is defined for each T∈

(0, T̂) and that is a SPA stabilizing pair for the subsystem (5.12) with ξ ∈ Rm regarded as its

control. Suppose also that the followings hold:

1. φT and WT are twice differentiable for any T∈ (0, T̂);

2. there existsϕ ∈ K∞ such that|φT(η)| ≤ ϕ(|η|) for all η ∈ Rn, T ∈ (0, T̂);

3. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃1) such thatmax{|∂WT
∂η
|,

|∂φT
∂η
|, |∂

2φT

∂η2 |, |∂
2WT
∂η2 |} ≤ M̃1 for each T∈ (0, T̃) and |η| ≤ ∆̃.

The following theorem provides the SPA stabilizing robust backstepping controller design

based on the Euler approximate discrete-time model of sampled-data nonlinear system.

Theorem 5.3.4 Assuming that Hypotheses 5.3.1 and 5.3.3 hold, the system (5.12)-(5.13) is

SPA stable with the following controller and so is the exact discretized system (5.10)-(5.11)

u = β−1(η)( − c(ξ − φT(η)) − g(η)T(
∂WT

∂η
(η̄+0 ))

T

+
∆φT

T
− α(η, ξ)

− κ
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0))

∣
∣
∣
∣
∣

2

− (
∂φT

∂η
(η+0 ))d̂1 + d̂2) (5.14)

where c, κ > 0, ∆φT = φT(η+0) − φT(η), η+0 = η + T( f (η) + g(η)ξ), η̄+0 = η + T( f (η) + g(η)φT ),

d̂1 = ρ1satTε,n
{

(ξ − φT(η))∂φT
∂η

(η+0 )
}

andd̂2 = −ρ2satTε,m ((ξ − φT(η))) with ε ∈ R≥0.
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Proof. Let∆, µ, µ̂, ε ∈ R>0, x̃ = [ηT zT ]
T
∈ Rn+m with |x̃| ≤ ∆ andz= ξ−φT . Consider the

system (5.12). There existŝT > 0 such that condition (5.5) holds forT ∈ (0, T̂) with α̃3 ∈ K∞

andµ̂ whenξ = φT as input such that,

∆WT =WT(η̄+) −WT(η) ≤ −Tα̃3(|η|) + Tµ̂ (5.15)

whereη̄+ = η+T( f (η)+g(η)φT+d1). Then, using delta operator the approximate discrete-time

models (5.12)-(5.13) can be written as:

δη = f (η) + g(η)(z+ φT) + d1 (5.16)

δz= α(η, ξ) + β(η)u− φT(η+) − φT(η)
T

+ d2 (5.17)

with η+ = η + T( f (η) + g(η)ξ + d1). Let ∆1 = sup|x̃|≤∆,T∈(0,T̂) max{|η+|, |η+0 |, |η̄+0 |, |η̄+|} that is

well defined since functionsf , g, φT , d1 are continuous. Let̄∆ = max{∆,∆1} generates̃T, M̃1

such that inequality 3 in Hypothesis 5.3.3 holds. LetM̃ = sup|x̃|≤∆,T∈(0,T̂) max{|ξ − φT |, | f (η)+

g(η)ξ|, |g(η)|, M̃1, |β(η)|, |α(η, ξ)|, ρ1, ρ2} which is well defined since all the considered func-

tions are continuous over the given compact set. LetT∗ > 0 and for eachT ∈ (0,T∗) let

the Lyapunov functionVT be defined asVT(η, ξ) = WT(η) + 1
2zTz. It is obvious that condi-

tions (5.4) and (5.6) are satisfied, (see [48]) and hence, to prove SPA stability, it is enough to

show that conditions (5.5) and (5.7) are satisfied. First, itwill be shown that condition (5.5)

holds:

δVT =
∆VT

T
=

VT(k + 1)− VT(k)
T

= δWT + zTδz+
T
2

((δz)Tδz).

δWT can be written, using the mean value theorem, as:

δWT =
WT(η+) −WT(η̄+) +WT(η̄+) −WT(η)

T

=
∆WT

T
+ (ξ − φT(η))Tg(η)T(

∂WT

∂η
(η⋄))

T

(5.18)

whereη⋄ = η̄+ + Tθ1g(η)(ξ − φT(η)) andθ1 ∈ (0, 1).

Then,δVT can be written, using (5.16), (5.17) and (5.18), as:

δVT ≤
∆WT

T
− czTz+ zT(Λ + d2 + d̂2) +

T
2

((δz)Tδz)

+ zTg(η)T





(

∂WT

∂η
(η⋄)

)T

−
(

∂WT

∂η
(η̄+0 )

)T



with Λ =
φT (η+0 )−φT(η+)

T − κ
∣
∣
∣
∣(
∂φT
∂η

(η+0))
∣
∣
∣
∣

2
− (∂φT

∂η
(η+0 ))d̂1.
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Using the mean value theorem, the termzTg(η)T
((
∂WT
∂η

(η⋄)
)T −

(
∂WT
∂η

(η̄+0)
)T

)

can be written

as:

zTg(η)T





(

∂WT

∂η
(η⋄)

)T

−
(

∂WT

∂η
(η̄+0)

)T

 ≤ TM̃4. (5.19)

Using the mean value theorem, it can be obtained that

φT(η+0) − φT(η+)

T
= −

(

∂φT

∂η
(η∗)

)

d1 (5.20)

whereη∗ = η+0 + Tℓ1d1 andℓ1 ∈ (0, 1).

Then, using the differential mean value theorem (DMVT) and (5.20),Λ can be written,
(
∂φT
∂η

(η+0)
)

d1 as:

Λ =

((

∂φT

∂η
(η+0 )

)

−
(

∂φT

∂η
(η∗)

)

−
(

∂φT

∂η
(η+0 )

))

d1 − (
∂φT

∂η
(η+0 ))d̂1 − κ

∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

= −
(

∂2φT

∂η2
(η∗∗)

)

Tℓ1Ωd1 −
(

∂φT

∂η
(η+0)

)

(d1 + d̂1) − κ
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0))

∣
∣
∣
∣
∣

2

(5.21)

whereΩ = [ΩT
1 ,Ω

T
2 , ...,Ω

T
n ]T , Ωi = d1, η∗∗ = η+0 + Tℓ1ℓ2d1 andℓ2 ∈ (0, 1).

Using Definition 5.3.2, it can be shown that the following inequalities hold:

|zT (−d1 − d̂1)| ≤ 2TM̃ε (5.22)

|zT (d2 + d̂2)| ≤ 2TM̃ε. (5.23)

Then, using (5.15), (5.19), (5.21)-(5.23) and Young’s inequality, δVT can be written as:

δVT ≤
∆WT

T
+ TM̃4 + |zT ∂

2φT

∂η2
(η∗∗)Tℓ1Ω|ρ1(η) − czTz+ |zT(d2 + d̂2)| + 1

4κ
|zT(−d1 − d̂1)|2

− (
√
κ

∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣
+

1

2
√
κ
|zT(−d1 − d̂1)|)

2

+
T
2

(c|z| − |
(

∂2φT

∂η2
(η∗∗)

)

ℓ1Ω|ρ1(T)

+ |g(η)T
(

∂WT

∂η
(η̄+0 )

)T

| + |
(

∂φT

∂η
(η+0 )

)

d̂1| + κ
∣
∣
∣
∣
∣

∂φT

∂η
(η+0 )

∣
∣
∣
∣
∣

2

+ |d̂2|)2

≤ −α̃3(|η|) + µ̂ + TM̃4 + 2TM̃ε − czTz+
1
κ

T2M̃2ε
2
+

T
2

((c+ 1)M̃ + (2+ κ)M̃2)
2

≤ −α̃3(|η|) − czTz+ µ.

Then, from Proposition 1 in [48], there exists ¯α3 ∈ K∞ such that∆VT ≤ −Tᾱ3(|x|) + Tµ.

Finally, the following equation shows that condition (5.7)holds,

|u| ≤ |β(η)−1|(c|ξ − φT(η)| + |g(η)T
(

∂WT

∂η
(η̄+0 )

)T

| + κ|∂φT

∂η

(

η+0

)

|2 + |∂φT

∂η

(

η+0

)

d̂1| + |d̂2|

+ |∆φT

T
| + |α(η, ξ̂)|) ≤ c+ 2+ (κ + 3)M̃ = M̄.
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Consequently, the system (5.12)-(5.13) with the controller (5.14) is SPA stable and since the

Euler approximate plant model is one-step consistent with the exact model the same property

holds for the exact discretized system (5.10)-(5.11). �

5.4 Application

In this section, design method given in Theorem 5.3.4 is applied to a second order system and

the simulation results are analyzed.

Consider the following continuous-time plant:

η̇ = η2 + ξ + d1(x) (5.24)

ξ̇ = u+ d2(x) (5.25)

whered1 : x 7→ (1+ sin(x2))x3
1 is bounded byρ1 : x 7→ 2|x1|3 andd2 : x 7→ 1+ cos(x1)x2

2 by

ρ2 : x 7→ 1+ x2
2.

The control lawφT = −η − η2 − 2η3 and the Lyapunov functionWT(η) = 1
2η

2 is SPA stabi-

lizing pair for the subsystem (5.24). The robust controllers uT anduP, and their nonrobust

versionsuNT anduB are designed for the system (5.24)-(5.25) using the controllaw φT and

the Lyapunov functionWT which are given above. The controllersuT anduP are designed

using (5.14) in Theorem 5.3.4 and Theorem 12 in [58], respectively. Then, the controllersuB

anduNT are obtained using (3.16) in Theorem 3.3.2 and the method given in [48] which was

also presented in Theorem 2.3.3, respectively. The following simulation parameters are set:

ε = 0.01 andc = 1. Then, simulations have been performed in order to compareperformances

of the obtained controllers with different sampling periods and initial conditions.

First, the obtained controllers are applied to the system (5.24)-(5.25) with the sampling pe-

riod T = 0.005 and the initial conditionsη(0) = ξ(0) = 2. The parameterd in the controller

uB is chosen asd = 2. Simulation results for the time responses ofη, ξ andu are given in

Figure 5.1. It is shown that while the controlleruNT cannot stabilize the system, the trajecto-

ries of the system with the controlleruB does not converge to the origin. On the other hand,

the controllersuT anduP stabilize the system (5.24)-(5.25), but faster with controller uT . As

the parameterκ increases, the performance of the controlleruT is faster but further increase

results in performance degradation. The controlleruT cannot stabilize the system forκ > 3.
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Figure 5.1: Time responses ofη, ξ andu with T = 0.005.
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Figure 5.2: Time responses ofη, ξ andu with T = 0.02.
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Next, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.02. Simulation results are given in Figure 5.2. The parameter d in the controller

uB is chosen asd = 0.01. It is shown that the controllersuNT anduB give similar response with

the first simulation. The controlleruT yields faster results when compared to the controlleruP.

As the parameterκ increases, results of the controlleruT are faster. Forκ > 2, the controlleruT

cannot stabilize the system (5.24)-(5.25). Transient response of the controlleruP is degraded

when the sampling periodT is increased. The controllersuT anduP give unstable results for

T > 0.03.

Then, the controllers are applied to the system (5.24)-(5.25) with the same sampling period

T = 0.005 as in the first simulation and large initial conditionsη(0) = ξ(0) = 3. The parameter

d in the controlleruB is chosen asd = 0.05. Simulation results are shown in Figure 5.3. The

controllersuNT anduB give similar response with the first simulation again. The controllers

uT anduP stabilize the system (5.24)-(5.25) successfully, but faster with the controlleruT .

As can be seen from figures, the control inputuT is produced with less energy when compared

to the control inputuP. Therefore, the proposed method requires less control effort. Simula-

tion results also show that when the parameterκ is increased, energy of the control inputuT

decreases in general.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterκ has smaller value.

Finally, by applying the controllers to the system (5.24)-(5.25) with different initial condi-

tions, domain of attraction (DOA) estimates with the controllers uT anduP for the sampling

periodT = 0.005 are given in Figure 5.4. In DOA estimate with the controller uT , the pa-

rameterκ is chosen asκ = 0.05. As can be seen from figure, DOA for the system with the

controlleruT is slightly larger than that with the controlleruP. For different controller param-

eters and sampling periods, much larger DOA estimate may be obtained with the controller

uT when compared to the estimate given in figure.

The last simulation is performed for the case of without disturbance or model uncertainty by

takingd1 = d2 = 0 in the system (5.24)-(5.25). The parameterd in the controlleruB and the

parameterκ in the controlleruT are chosen asd = κ = 0.4. Simulation results are shown in

Figure 5.5. The robust controllersuT anduP give faster results when compared to the their
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Figure 5.3: Time responses ofη, ξ and u with the initial conditionsη(0) = ξ(0) = 3 and
T = 0.005.
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Figure 5.5: Time responses ofη, ξ and u with the initial conditionsη(0) = ξ(0) = 3 and
T = 0.005.

nonrobust versionsuB anduNT, respectively. In addition, the controllersuT anduB yield faster

results than the controlleruP.

5.5 Conclusions

In this chapter, the problem of robust backstepping controlhas been considered for sampled-

data nonlinear systems in strict feedback form. A controller design which is modified version

of the method given in [58] has been presented based on the Euler approximate model. It

has been shown that the designed controller SPA stabilizes the closed-loop sampled-data sys-

tem based on the framework proposed in [46]. Also a numericalexample has been given to

illustrate the design method. The performances are analyzed with simulations.

Different from the controller given in [58], in this chapter, thecontroller was designed to com-

pensate the effects of difference between disturbance or model uncertainty and their bounds.

Therefore, simulation results have shown that the designedcontroller outperforms the con-

troller in [58]. Moreover, in case of unstable results, the controller given in [58] can be tuned
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to obtain stable results by adapting the controller gain. However, the controller designed by

the proposed method can also be tuned adapting another parameter in addition to the controller

gain. So the proposed method gives an additional flexibilityfor tuning the controller.
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CHAPTER 6

REDUCED ORDER OBSERVER BASED OUTPUT-FEEDBACK

CONTROL FOR THE EULER APPROXIMATE MODEL OF

SAMPLED-DATA NONLINEAR SYSTEMS

6.1 Introduction

In this chapter, reduced order observer design and reduced order observer based output-

feedback controller design methods are proposed. These methods are based on the approxi-

mate discrete-time model. It is shown that these controllers and observers semiglobally prac-

tically asymptotically (SPA) stabilize the sampled-data nonlinear systems.

In many applications only a part of the state vector is available from measurement. Thus

control using output feedback or dynamic feedback is necessary. Designing an observer for

unmeasured states is a useful method to be used for constructing an output feedback controller.

Considering the output feedback tracking problem, observer-based output-feedback control

design for continuous-time nonlinear systems using the observer backstepping procedure is

proposed in [30]. On the other hand, the problem of output feedback stabilization of sampled-

data nonlinear systems has not been studied much in the literature [10, 28, 65]. In particular,

[10] and [28] showed that obtained sampled-data controllers using high gain observers can

recover the performance of the continuous-time state feedback controllers.

In this chapter, the problem of reduced order observer-based output feedback control of

sampled-data nonlinear systems in strict feedback form based on the Euler approximate model

is considered. First, the design of reduced order observersfor sampled-data nonlinear systems

is presented, which is an extension of the reduced order observer given in [33] to a general
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class of multi-input nonlinear systems. Then the design of reduced order observer based SPA

stabilizing output-feedback controller for sampled-datanonlinear system in strict feedback

form is discussed. For this problem, observer error behavesas disturbance. Even exponen-

tially decaying disturbances can destabilize the sampled-data nonlinear system. Hence, in this

chapter, the controller is designed to compensate the effects of this factor and this constitutes

the difference from the controller in [25]. It is shown that the designed controllers SPA sta-

bilize the closed-loop sampled-data system based on the framework proposed in [46]. Also

numerical examples are given to illustrate the design method. Simulation results show that

the designed controller outperforms the controllers givenin [25].

The chapter is organized as follows. In Section 6.2 preliminaries are given. The main results

are stated and proved in Section 6.3. Then, in Section 6.4, application examples are provided

to illustrate the design method. Finally, conclusions are presented in the last section.

6.2 Preliminaries

This section provides technical preliminaries. Common definitions which will be used through-

out the chapter are presented. For the sake of clarity and easy reading, some notions and

definitions that have been introduced in Chapter 2 are repeated when necessary.

Consider the continuous-time nonlinear system

ẋ = f (x(t), u(t)), y = Cx(t) (6.1)

wherex ∈ R
n is the state,u ∈ R

m is the control input,y ∈ R
l is the output, C is a constant

matrix of appropriate dimension and the functionf is locally Lipschitz. The control inputu

is realized through a zero-order hold such thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k+ 1)T), k ∈ N

and the outputy is measured at sampling instantskT; that isy(k) := y(kT) whereT > 0 is the

sampling period.

The difference equations corresponding to the exact discrete-timemodel of (6.1) and its ap-

proximate discrete-time model are represented by:

x(k + 1) = Fe
T(x(k), u(k)), y(k) = Cx(k) (6.2)

x(k + 1) = Fa
T(x(k), u(k)), y(k) = Cx(k) (6.3)
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respectively.

Now, consider the following family of observers:

x̂(k + 1) = GT(x̂(k), u(k)) (6.4)

Definition 6.2.1 [33] The family of observers (6.4) is SPA stable observer forx(k + 1) =

FT(x(k), u(k)), if for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m and any strictly positive

numberν, there exists T∗ > 0 such that the followings hold.

1. For all x0 ∈ X, u ∈ U and T ∈ (0,T∗], there existŝx0 ∈ X̂ such that|x̂(k) − x(k)| ≤

Tν, ∀k ≥ 1.

2. For all x0 ∈ X, x̂0 ∈ X̂, u ∈ U and all T ∈ (0,T∗], lim supk→∞|x̂(k) − x(k)| ≤ Tν.

To measure the discrepancy between the exact model and the approximate model, one step

consistency property, as defined in [46], is used:

Definition 6.2.2 ([46]) The family Fa
T(x, u) is said to be one-step consistent with the exact

discrete-time model FeT(x, u) if, for each compact setΩ ⊂ R
n × R

m, there exists a class-K

functionρ(.) and a constant T0 > 0 such that,|Fe
T(x, u) − Fa

T(x, u)| ≤ Tρ(T) for all (x, u) ∈ Ω

and T ∈ (0,T0].

Definition 6.2.3 [3] The family of observers (6.4) is SPA stable as in Definition 6.2.1 if there

exists a family of Lyapunov functions VT(x, x̂) and class-K∞ functionsα1(.), α2(.), α3(.) such

that for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m and any strictly positive numberν,

there exist constants T∗ > 0 and M > 0, such that for all x, x1, x2 ∈ X, x̂ ∈ X̂, u ∈ U, and

T ∈ (0,T∗],

|VT(x1, x̂) − VT(x2, x̂)| ≤ M|x1 − x2|, (6.5)

α1(|e|) ≤ VT(x, x̂) ≤ α2(|e|), (6.6)

VT(FT(x, u),GT (x̂, u)) − VT(x, x̂)
T

≤ −α3(|e|) + ν (6.7)

where e is the observer error defined by the difference between the actual states and their

estimates. Moreover, if FaT is consistent with FeT as in Definition 6.2.2 and the family of

observers (6.4) is SPA stable observer for (6.3), then the family of observers (6.4) is also SPA

stable observer for (6.2).
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In order to shorten notations, the following definitions will be used: ˜x := [ x̄T , eT ]T , F̃T(x̃) :=
[

F̄T (x̄,u)
ET (x,x̂,u)

]

with x̄ := [xT , x̂T ]T , F̄T(x̄, u) :=
[

FT (x,u)
GT (x̂,u)

]

andET(x, x̂, u) := FT(x, u) −GT(x̂, u).

Definition 6.2.4 [3, 48] The family of controllers uT with observer (6.4) SPA stabilizes̃FT

if there existsβ ∈ KL such that for any pair of strictly positive real numbers(D, v) there

exists T∗ > 0 such that for each T∈ (0,T∗] the solutions of̃x(k + 1) = F̃T(x̃(k)) satisfy:

|x̃(k, x̃(0))| ≤ β(|x̃(0)|, kT) + v, for all k ≥ 0, whenever|x̃(0)| ≤ D.

Definition 6.2.5 [48] Let T̂ > 0 be given and for each T∈ (0, T̂] let functions VT : Rn+p →

R≥0 and uT : R
n → R

m be defined. The pair of families(uT ,VT) with observer (6.4) is a

SPA stabilizing pair forF̃T if there existα1, α2, α3 ∈ K∞ such that for any pair of strictly

positive real numbers(∆, δ) there exists a triple of strictly positive real numbers(T∗, L,M),

with T∗ ≤ T̂ , such that for allx̃1, x̃2 ∈ Rn+p with max{|x̃1| , |x̃2|} ≤ ∆, and T∈ (0,T∗]:

α1(|x̃|) ≤ VT(x̃) ≤ α2(|x̃|) (6.8)

VT(F̃T (x̃)) − VT(x̃) ≤ −Tα3(|x̃|) + Tδ (6.9)

|VT(x̃1) − VT(x̃2)| ≤ L |x̃1 − x̃2| (6.10)

|uT | ≤ M (6.11)

Theorem 6.2.6 [45, 50, 51] If (uT ,VT) is a SPA stabilizing pair forF̃a
T , then uT stabilizes

F̃e
T .

Then, stability properties of the sampled-data system (6.1) can be deduced from those of exact

discretized system under certain conditions [51].

6.3 Main Results

In this section, the design of reduced order observers for sampled-data nonlinear systems

using the Euler approximate discrete-time models is presented. This is an extension of the

reduced order observer given in [33] to a general class of multi-input nonlinear systems.

Then, the design of reduced order observer based SPA stabilizing output-feedback controller

for sampled-data nonlinear system in strict feedback form using the Euler approximate model
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is discussed. The controller is designed to compensate the effect of the observer error which

behaves as disturbance and this is the main difference from the controller given in [25].

Consider the following strict feedback nonlinear system with sampled observationy(k) = η(k)

η̇ = f (η) + g(η)ξ (6.12)

ξ̇ = α(η, ξ) + β(η)u (6.13)

wherex = [ηT ξT ]
T

with η ∈ Rn andξ ∈ Rm is the state vector,f (0) = 0, g(0) , 0, f , g, α

are differentiable sufficiently many times,g is invertible,β(η) , 0, ∀η, α is locally Lipschitz

and the control inputu ∈ Rm is realized through a zero order hold such thatu(t) = u(kT) :=

u(k),∀t ∈ [kT, (k + 1)T), k ∈ N and the outputy is measured at sampling instantskT; that is

y(k) := y(kT) whereT > 0 is the sampling period.

Suppose that family of exact discrete-time models of the system (6.12)-(6.13) is

η(k+ 1) = Fe
η,T(η, ξ, u) (6.14)

ξ(k+ 1) = Fe
ξ,T(η, ξ, u) (6.15)

with the outputy(k) = η(k). Since the exact discrete-time models (6.14)-(6.15) are not avail-

able in general, approximate discrete-time models are used. Hence the following Euler ap-

proximate discrete-time model of (6.12)-(6.13) is considered.

η(k+ 1) = η + T( f (η) + g(η)ξ) (6.16)

ξ(k+ 1) = ξ + T(α(η, ξ) + β(η)u) (6.17)

Since the stateξ is not measured, its estimateξ̂ is used whereξ = ξ̂ + ξ̃. Then, the following

theorem provides the design of SPA stable reduced order observers.

Theorem 6.3.1 Given the exact discrete-time model (6.14)-(6.15) with theoutput ye = ηe.

For any triple of strictly positive numbers(∆x,∆ξ̂,∆u), if there exists T∗ > 0 such that for

all x, ξ̂, u and T satisfying|x| ≤ ∆x, |ξ̂| ≤ ∆ξ̂, |u| ≤ ∆u,T ∈ (0,T∗], and if there exist matrices

P = PT > 0and R of appropriate dimensions such that the following linear matrix inequalities

(LMIs) are feasible:

AT(γ)P− R+ PA(γ) − RT < 0,∀γ ∈ VHm,m. (6.18)
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whereVHm,m = {γ = (γ11, ..., γ1m, ..., γmm)|γi j ∈ {h̄i j , h∗i j }} with h∗i j = max
k

(hi j (k)) and h̄i j =

min
k

(hi j (k)), then the following reduced order observer is a SPA stable observer for the exact

discrete-time model (6.15)

ξ̂(k + 1) = ξ̂ + T(α(η, ξ̂) + β(η)u+ Lξ̃) (6.19)

whereξ̃ = g−1(η)(η̇− f (η))− ξ̂, η̇ := η(k)−η(k−1)
T and the observer gain L is given by L= P−1RT

when the LMIs in (6.18) are feasible.

Proof. The observer error is defined asξ̃ = ξ − ξ̂. Considering the Euler approximate

model (6.17) and the observer (6.19) the error dynamics could be written as:ξ̃(k + 1) =

ξ̃ + T(α(η, ξ) − α(η, ξ̂) − Lξ̃). Using the delta operator, the error dynamics are obtainedas:

δξ̃ =
ξ̃(k+ 1)− ξ̃(k)

T
= α(η, ξ) − α(η, ξ̂) − Lξ̃. (6.20)

By the differential mean value theorem (DMVT), there existszi(k) ∈ Co(ξ, ξ̂) for all i =

1, ...,m, such that:

α(η, ξ) − α(η, ξ̂) =





m,m∑

i, j=1

εm(i)εT
m( j)

∂αi

∂ξ j
(zi (k))




ξ̃.

Then, using the notations:

hi j (k) =
∂αi

∂ξ j
(zi(k)),

h(k) = (h11(k), ..., h1m(k), ..., hmm(k))

A(h(k)) =
m,m∑

i, j=1

hi j (zj (k))εm(i)εT
m( j)

the equation of the observer error dynamics can be rewrittenas:

δξ̃ = (A(h(k)) − L)ξ̃ (6.21)

It is assumed that the functionshi j are bounded for alli, j = 1, ...,m. Then the vectorh(k)

evolves in a bounded domainHm,m of VHm,m = {γ = (γ11, ..., γ1m, ..., γmm)|γi j ∈ {h̄i j , h∗i j }}

whereh∗i j = max
k

(hi j (k)) andh̄i j = min
k

(hi j (k)).

Let T∗ > 0 and for eachT ∈ (0,T∗) let the Lyapunov functionVo be defined asVo = ξ̃
TPξ̃.

It is obvious that the conditions (6.5) and (6.6) are satisfied and hence, to prove SPA stability,
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it is enough to show that condition (6.7) is satisfied.δVo can be written, using delta operator

and (6.21), as:

δVo =
Vo(k + 1)− Vo(k)

T
=
∆Vo

T
= ξ̃TPδξ̃ + (δξ̃)TPξ̃ + T(δξ̃)TPδξ̃

= ξ̃TF(h(k))ξ̃ + Tξ̃T(A(h(k)) − L)T P(A(h(k)) − L)ξ̃ (6.22)

whereF(h(k)) = (A(h(k)) − L)TP + P(A(h(k)) − L). It is observed from (6.22) that condi-

tion (6.7) is satisfied ifF(h(k)) < 0 for all h(t) ∈ Hm,m. Using the fact thatF is affine inh(k)

and the convexity principle ([6]), condition (6.7) holds ifthe following condition is satisfied:

F(γ) < 0 ∀γ ∈ VHm,m. (6.23)

If the notationR= LTP is used, condition (6.23) is found to be equivalent to (6.18). Therefore,

if (6.18) holds, then the inequality (6.23) is also verified.This implies that

δVo ≤ −ξ̃TLoξ̃ + Tξ̃T(A(h(k)) − L)TP(A(h(k)) − L)ξ̃

∆Vo ≤ −Tα3(|ξ̃|) + Tν

whereν > 0 is sufficiently small,α3 ∈ K∞ andLo > 0 is a matrix. Hence, condition (6.7) is

satisfied for Euler model. Since the Euler model is one step consistent with the exact model,

the same property holds for exact model. Consequently, the observer (6.19) is SPA stable

observer for the exact model (6.15). �

Consider the system represented by (6.12)-(6.13). Assume that a SPA stabilizing reduced-

order observer for the system (6.13) is designed. Using thisobserver and Euler models, the

closed-loop system can be written as:

η(k+ 1) = η + T( f (η) + g(η)(ξ̂ + ξ̃)) (6.24)

ξ̂(k+ 1) = ξ̂ + T(γ(η, ξ̂) + β(η)u) (6.25)

ξ̃(k+ 1) = ξ̃ + T(α(η, ξ) − γ(η, ξ̂)) (6.26)

where the termγ(η, ξ̂) is obtained during the observer design.

Hypothesis 6.3.2[48] There existT̂ > 0 and a pair (φT ,WT) that is defined for each T∈

(0, T̂) and that is a SPA stabilizing pair for the subsystem (6.24) with ξ̂ ∈ Rm regarded as its

control. Suppose also that the followings hold:

1. φT and WT are twice differentiable for any T∈ (0, T̂);
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2. there existsϕ ∈ K∞ such that|φT(η)| ≤ ϕ(|η|) for all η ∈ Rn, T ∈ (0, T̂);

3. for any∆̃ > 0 there exists a pair of strictly positive numbers(T̃, M̃1) such thatmax{|∂WT
∂η
|,

|∂φT
∂η
|, |∂

2φT

∂η2 |, |∂
2WT
∂η2 |} ≤ M̃1 for each T∈ (0, T̃) and |η| ≤ ∆̃.

Then, the following theorem provides the SPA stabilizing reduced order observer-based con-

troller design.

Theorem 6.3.3 Assume that a SPA stabilizing reduced-order observer (6.25) for the sys-

tem (6.13) is designed and Hypothesis 6.3.2 holds. Then the Euler model (6.24)-(6.26) is

SPA stable with the following output-feedback controller u, and so is the exact discretized

system (6.14)-(6.15).

u = β−1(η)( − c(ξ̂ − φT(η)) − g(η)T(
∂WT

∂η
(η̄+0 ))

T

− d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

(ξ̂ − φT(η)) +
∆φT

T
− γ(η, ξ̂)) (6.27)

where c, d > 0, ∆φT = φT(η+0)−φT (η), η+0 = η+T( f (η)+g(η)ξ̂) andη̄+0 = η+T( f (η)+g(η)φT ).

Proof. Let∆, µ, µ̂, µ̃ ∈ R>0, x = [ ηT zT ξ̃T ]T ∈ Rn+2m and x̄ = [ ηT ξ̃T ]T ∈ Rn+m with |x| ≤ ∆,

z= ξ̂ − φT . Consider the system given by (6.24). There existsT̂ > 0 such that condition (6.9)

holds forT ∈ (0, T̂) with α̃3 ∈ K∞ andµ̂ whenξ̂ = φT as input such that,

∆WT =WT(η̄+, ξ̃+) −WT(η, ξ̃) ≤ −Tα̃3(|x̄|) + Tµ̂ (6.28)

whereη̄+ = η + T( f (η) + g(η)(φT + ξ̃)).

Then, using delta operator the Euler approximate models forη andzcan be written as:

δη = f (η) + g(η)(z+ φT(η) + ξ̃) (6.29)

δz= γ(η, ξ̂) + β(η)u− φT(η+) − φT(η)
T

(6.30)

with η+ = η + T( f (η) + g(η)(ξ̂ + ξ̃)). Let ∆1 = sup|x|≤∆,T∈(0,T̂) max{|η+|, |η+0 |, |η̄+0 |, |η̄+|} that is

well defined since functionsf , g, φT are continuous. Let̄∆ = max{∆,∆1} generates̃T, M̃1

such that inequality 3 in Hypothesis 6.3.2 holds. LetM̃ = sup|x|≤∆,T∈(0,T̂) max{|ξ̂ − φT |, | f (η)+

g(η)ξ̂|, |g(η)|, M̃1, |ξ̃|, |β(η)|, |α(η, ξ̂)|} which is well defined since all the considered functions

are continuous over the given compact set.
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Let T∗ > 0 and for eachT ∈ (0,T∗) let the Lyapunov functionV be defined asV = VT + Ve

whereVe is the Lyapunov function for the observer error andVT(x, ξ̃) = WT(η, ξ̃) + 1
2zTz. It

is obvious that conditions (6.8) and (6.10) are satisfied, (see [48]) and hence, to prove SPA

stability, it is enough to show that conditions (6.9) and (6.11) are satisfied. First, it will be

shown that condition (6.9) holds:

δVT =
∆VT

T
=

VT(k + 1)− VT(k)
T

= δWT + zTδz+
T
2

((δz)Tδz).

δWT can be written, using the mean value theorem (MVT), as:

δWT =
WT(η+) −WT(η̄+, ξ̃+) +WT(η̄+, ξ̃+) −WT(η, ξ̃)

T

=
∆WT

T
+ (ξ̂ − φT(η))

T
g(η)T(

∂WT

∂η
(η⋄))

T

(6.31)

whereη⋄ = η̄+ + Tθ1g(η)(ξ̂ − φT(η)) andθ1 ∈ (0, 1).

Then,δVT can be written, using (6.29-6.31), as:

δVT ≤
∆WT

T
− czTz+ zTΛ +

T
2

((δz)Tδz) + zTg(η)T(
∂WT

∂η
(η⋄)

T

− ∂WT

∂η
(η̄+0 )

T

)

with Λ = −d
∣
∣
∣
∣(
∂φT
∂η

(η+0 ))
∣
∣
∣
∣

2
z+

φT (η+0 )−φT (η+)
T .

Using MVT, it can be shown that

zTg(η)T(
∂WT

∂η
(η⋄)

T

− ∂WT

∂η
(η̄+0)

T

) ≤ TM̃4. (6.32)

Thanks to the use of MVT, the following equation can be written:

φT(η+0 ) − φT(η+)

T
= −(

∂φT

∂η
(η∗))g(η)ξ̃ (6.33)

whereη∗ = η+0 + Tℓ1g(η)ξ̃ andℓ1 ∈ (0, 1).

Then, using DMVT and (6.33),Λ can be written as:

Λ =

(

(
∂φT

∂η
(η+0 )) − (

∂φT

∂η
(η∗)) − (

∂φT

∂η
(η+0))

)

g(η)ξ̃ − d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

z

= −(
∂2φT

∂η2
(η∗∗))ℓ1TΩ(g(η)ξ̃) − (

∂φT

∂η
(η+0 ))g(η)ξ̃ − d

∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

z (6.34)

whereΩ = [ΩT
1 ,Ω

T
2 , ...,Ω

T
n ]T , Ωi = g(η)ξ̃, η∗∗ = η+0 + Tℓ1ℓ2g(η)ξ̃ andℓ2 ∈ (0, 1).
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Using (6.28), (6.32), (6.34) and Young’s inequality,δVT can be written as:

δVT ≤
∆WT

T
+ TM̃4 + |zT ∂

2φT

∂η2
(η∗∗)ℓ1TΩ(g(η)ξ̃)| − czTz+

1
4d
|g(η)ξ̃|2

− (
√

d|(∂φT

∂η
(η+0 ))z| + 1

2
√

d
|g(η)ξ̃|)

2

+
T
2
| − cz− (

∂2φT

∂η2
(η∗∗))ℓ1TΩ(g(η)ξ̃)

− (
∂φT

∂η
(η+0 ))g(η)ξ̃ − g(η)T (

∂WT

∂η
(η̄+0))

T

− d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0))

∣
∣
∣
∣
∣

2

z|2

≤ −α̃3(|x̄|) + µ̂ + TM̃4 − czTz+
1
4d
ξ̃Tg(η)Tg(η)ξ̃ +

T
2

((c+ 1)M̃ + 2M̃2 + dM̃3)
2

≤ −α̃3(|x̄|) − czTz+ µ̃ +
1
4d
ξ̃Tg(η)Tg(η)ξ̃.

Then, from SPA stability of the observer with a a proper Lyapunov functionVe for observer

error and Proposition 1 in [48], there exists ¯α3 ∈ K∞, such that∆V ≤ −Tᾱ3(|x|) + Tµ.

Finally, the following equation shows that condition (6.11) holds,

|u| ≤ |β(η)−1|(c|ξ̂ − φT(η)| + |g(η)T ||(∂WT

∂η
(η̄+0))

T

| + d
∣
∣
∣
∣
∣
(
∂φT

∂η
(η+0 ))

∣
∣
∣
∣
∣

2

|z|

+ |α(η, ξ̂)| + |∆φT

T
| + L|ξ̃|) ≤ c+ L + 1+ 2M̃ + dM̃4 = M̄.

Consequently, the closed-loop system (6.24)-(6.26) is SPAstable. As a result of SPA stability

of the observer, the Euler model (6.16)-(6.17) is SPA stableand the same property holds for

the exact discretized system (6.14)-(6.15) due to the one-step consistency of the Euler model

with the exact model. �

6.4 Applications

In this section, design methods given in Theorems 6.3.1 and 6.3.3 are applied to various

systems and the simulation results are analyzed.

6.4.1 Dynamically Positioned Ship

Consider the following equation of motion for the moored tanker in Example 11.4 in [12]

η̇ = R(ψ(t))ν (6.35)

ν̇ = A1η + A2ν + Bu (6.36)
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wherey(k) = η(k), η = [n e ψ]
T
, ν = [µ υ r]

T
, u = [u1 u2 u3]

T
, A1 = −M−1K,

A2 = −M−1D, B = M−1 and

M =





1.0852 0 0

0 2.0575 −0.4087

0 −0.4087 0.2153





, R(ψ) =





cosψ − sinψ 0

sinψ cosψ 0

0 0 1





,

D =





0.0865 0 0

0 0.0762 0.1510

0 0.0151 0.0031





, K = diag{0.0389, 0.0266, 0},

as given in [25].

First, the reduced observers given in Theorem 6.3.1 and [25]will be applied to the sys-

tem (6.35)-(6.36). The reduced-order observer for (6.35) is designed in [25] as:

z(k + 1) = M1z(k) + M2y(k) + T Bu(k), (6.37)

ν̂(k) = z(k) +Gdy(k) (6.38)

whered = [0 0 1], M1 = I + T(A2 −Gd), M2 = T(A1 + (A2 −Gd)Gd) andG ∈ R3×1.

Using (6.19) in Theorem 6.3.1, another reduced-order observer for (6.35) is designed as:

ν̂(k+ 1) = ν̂ + T(A1η + A2ν̂ + Bu+ Lν̃) (6.39)

with ν̃ = (R(ψ))T η(k)−η(k−1)
T − ν̂ and L = h + A2 whereh can be chosen such thath =

diag{h1, h2, h3} with hi > 0 for sufficiently smallT > 0.

Then, the observers given by (6.37)-(6.38) and (6.39) are applied to the system (6.35)-(6.36)

with the following controller given in [25]:

uE(y, ν̂) = B−1[uaT(y, ν̂) − A1y− A2ν̂] (6.40)

where

uaT(y, ν̂) = −c(ν̂ − φT(y)) − ∆W̃T(y, ν̂)
T

+
∆φ̄T (y, ν̂)

T

∆φ̄T(y, ν̂) = φ̄T(k + 1)− φT(y(k))

φT(y(k)) = −RT(ψ(k))Ky(k)

φ̄T(k+ 1) = −RT(ψ̂(k+ 1))K[y(k) + TR(ψ(k))Kν̂(k)]

ψ̂(k+ 1) = ψ(k) + Tr̂(k)
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Figure 6.1: Time responses of observer errors withT = 0.2. Solid curve:observer (6.39).
Dotted line:observer (6.37)-(6.38).

∆W̃T (y, ν̂) =






∆W̄T (y,ν̂)[ν̂−φT (y)]
||ν̂−φT (y)||2 , ν̂ , φT(y)

TRT(x3)[y+ TR(x3)ν̂], ν̂ = φT(y)

∆W̄T (y, ν̂) =WT(y+ TR(ψ)ν̂) −WT((I + TK)y)

WT =
1
2η

Tη andc > 0 is arbitrary.

In simulations, the following parameters are used:G = [0 −1.8862 1.1358]
T

and h =

diag{0.082, 0.25, 1} for observers,K = diag{0.5, 0.5, 0.5} andc = 1 for controller. The initial

conditions are chosen asη(0) = [−2 2 −π4]
T
, ν(0) = 03x1 and ν̂(0) = 03x1. Simulation

results withT = 0.2 andT = 0.4 are shown in Figures 6.1 and 6.2, respectively. It is shown

that observer error ˜ν := ν− ν̂ converges to zero with both observers, but faster with (6.39). As

the sampling periodT increases, both observers give slower responses.
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Figure 6.2: Time responses of observer errors withT = 0.4. Solid curve:observer (6.39).
Dotted line:observer (6.37)-(6.38).

Second, the controlleruT designed using (6.27) in Theorem 6.3.3 and the controlleruE given

by (6.40) will be applied to the system (6.35)-(6.36) with the observer (6.39). The controller

uT is designed withWT =
1
2η

Tη + 1
2 ν̃

Th−1ν̃ andφT(η) = −RT(ψ)Kη whereK can be chosen

such thatK = diag{k1, k2, k3} with |1− Tki | < 1 andki > 0 for sufficiently smallT > 0.

The following simulation parameters are set:K = diag{0.5, 0.5, 0.5} andc = 1 for controllers

andh = diag{0.082, 0.25, 1} for observer. Then, simulations have been performed in order to

compare the performances of the controllersuT anduE with different sampling periods and

initial conditions.

In the first simulation, the controllersuT anduE are applied to the system (6.35)-(6.36) with

the sampling periodT = 0.2 and the initial conditions,η(0) = [−2 2 −π4]
T
, ν(0) = 03x1

and ν̂(0) = 03x1. Simulation results withT = 0.2 are given in Figure 6.3. As can be seen
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Figure 6.3: Time responses of yaw angleψ, the North positionn and the East positione with
T = 0.2. Dotted line:controlleruE. Solid line:designed controlleruT .
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Figure 6.4: Time responses of yaw angleψ, the North positionn and the East positione with
T = 0.4. Dotted line:controlleruE. Solid line:designed controlleruT .
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Figure 6.5: Time responses of yaw angleψ, the North positionn and the East positione with
T = 0.2 and large initial conditions. Dotted line:controlleruE. Solid line:designed controller
uT .

from figure, both controllers stabilize the system (6.35)-(6.36), but faster withuT . Simulation

results for the controlleruT show that as the parameterd increases, the performance of the

controlleruT is faster. Ford > 6.6, the controlleruT cannot stabilize the system (6.35)-(6.36).

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.4. Simulation results are given in Figure 6.3. It is shown that both controllers

stabilize the system (6.35)-(6.36), but faster withuT again. Faster results are obtained with

the controlleruT until d = 2.6 and the performance worsens afterd = 2.6. Ford > 2.6, the

controlleruT cannot stabilize the system (6.35)-(6.36). Simulation results for the controller

uE show that increase in the sampling periodT results in slightly slow response. While the

controlleruE cannot stabilize the system (6.35)-(6.36) forT > 0.8 with the initial conditions

above, the controlleruT can stabilize the system untilT = 1.2.

Finally, the controllers are applied to the system (6.35)-(6.36) with the same sampling pe-

riod T = 0.2 as in the first simulation and large initial conditions,η(0) = [−4 3 −π2]
T
,

ν(0) = 03x1 andν̂(0) = 03x1. Simulation results are given in Figure 6.5. It is shown thatboth
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controllers stabilize the system (6.35)-(6.36) successfully, but faster with the controlleruT .

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

6.4.2 Two-Link Robot Manipulator

Consider the dynamic model of a two-link manipulator given in Subsection 3.4.2

η̇ = ξ (6.41)

ξ̇ = M−1(η) (u−C(η, ξ)ξ −G(η)) (6.42)

wherey(k) = η(k), the state vectors areη := [q1 q2]
T

andξ := [q̇1 q̇2]
T
, M =

[
M1 M2
M3 M4

]

,

C =
[

C1 C2
C3 C4

]

, G =
[

G1
G2

]

andu =
[ u1

u2

]
with M1 = m1l2c1 + m2(l21 + l2c2 + 2l1lc2 cosq2),M2 =

M3 = m2l1lc2 cosq2 + m2l2c2,M4 = m2l2c2,C1 = −m2l2lc2 sinq2q̇2,C2 = −m2l2lc2 sinq2(q̇1 +

q̇2),C3 = m2l2lc2 sinq2q̇1,C4 = 0,G1 = m1glc1 cosq1+m2g(l1 cosq1+ lc2 cos(q1+ q2)),G2 =

m2glc2 cos(q1+q2). lc1 andlc2 are the distances of the center of mass from the joint axes. The

robot parameters are taken asm1 = m2 = 5 [kg], l1 = l2 = 0.5 [m], lc1 = lc2 = 0.25 [m]. The

control objective is to solve the trajectory tracking problem. Hence, the joint position tracking

errore is defined ase := η − ηd whereηd :=
[

q1d
q2d

]

is the desired position trajectory. Then, the

system dynamics can be written as:

ė= ξ − η̇d (6.43)

ξ̇ = M−1(η) (u−C(η, ξ)ξ −G(η)) . (6.44)

Using (6.19) in Theorem 6.3.1, the observer for (6.44) is designed as:

ξ̂(k + 1) = ξ̂ + T(M−1(η)
(

u−C(η, ξ̂) −G(η)
)

+ Kξ̃) (6.45)

with ξ̃ = η(k)−η(k−1)
T − ξ̂ and whereK can be chosen such thatK = diag{k1, k2} with ki > 0 for

sufficiently smallT > 0.

Considering the observer (6.45), the controllersuT anduE are designed for the system (6.43)-

(6.44) withφT(η) =
[ −c1(q1−q1d)+q̇1d
−c2(q2−q2d)+q̇1d

]

. The controlleruE for (6.43)-(6.44) is designed using the

method given in [25] which was also presented in Theorem 2.3.3 with WT(η) = 1
2η

Tη. The

controlleruT is obtained using (6.27) in Theorem 6.3.3 withWT(η) = 1
2η

Tη+ 1
2 ξ̃

TLo
−1ξ̃ where

Lo is a positive definite matrix. The following simulation parameters are set:c1 = 2, c2 = 3
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Figure 6.6: Responses of the system for the first trajectory with T = 0.08. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 6.7: Responses of the system for the first trajectory with T = 0.12. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 6.8: Responses of the system for the second trajectory T = 0.05. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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Figure 6.9: Responses of the system for the second trajectory T = 0.1. Dotted line:controller
uE. Solid line:designed controlleruT . Dash-dotted line:desired trajectory.
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andc = 1 for controllers andh = diag{8, 9} for observer. Two different reference trajectories,

qd1 = qd2 =
5
4 −

5
4e−t andqd1 = qd2 = sin(t), are considered. Then, simulations have been

performed in order to compare the performances of the controllers uT anduE with the initial

conditionsη(0) = ξ(0) = ξ̂(0) =
[

0
0

]

and different sampling periods.

First, the controllersuT anduE with the observer (6.45) are applied to the system (6.41)-(6.42)

with the first reference trajectory,qd1 = qd2 =
5
4 −

5
4e−t.

Simulation results withT = 0.08 are given in Figure 6.6. As can be seen from figure, both

controllers track the desired trajectory, but the trackingerror converges to zero faster withuT .

Simulation results for the controlleruT show that as the parameterd increases, the tracking

error of the controlleruT is smaller. Ford > 1.5, the controlleruT cannot stabilize the

system (6.41)-(6.42).

Simulation results withT = 0.12 are given in Figure 6.7. It is shown that both controllers

track the desired trajectory, but the tracking error converges to zero faster withuT again.

Results with smaller tracking error are obtained with the controller uT until d = 0.9. For

d > 0.9, the controlleruT can not stabilize the system (6.41)-(6.42). Simulation results for the

controlleruE show that increase in the sampling periodT results in slower response. While

the controlleruE cannot stabilize the system (6.41)-(6.42) forT > 0.14, the controlleruT can

stabilize the system untilT = 0.15.

Then, the controllersuT anduE with the observer (6.45) are applied to the system (6.41)-

(6.42) with the second reference trajectory,qd1 = qd2 = sin(t).

Simulation results withT = 0.05 are given in Figure 6.8. As can be seen from figure, the

controlleruT tracks the desired trajectory with smaller tracking error when compared to the

controlleruE. Simulation results for the controlleruT show that as the parameterd increases,

the controlleruT tracks the desired trajectory with smaller error but ford = 2.5 its perfor-

mance is degraded. Ford > 2.5, the controlleruT cannot stabilize the system (6.41)-(6.42).

Simulation results withT = 0.1 are given in Figure 6.9. It is shown that the tracking error

increases for both controllers when compared to the resultswith T = 0.05, but tracking error

of the controlleruT is smaller than that of the controlleruE. Results with smaller tracking

error are obtained with the controlleruT until d = 1.2. The performance of the controlleruT

worsens afterd = 1.2. Ford > 1.2, the controlleruT cannot stabilize the system (6.41)-(6.42).
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While the controlleruE cannot stabilize the system (3.28)-(3.29) forT > 0.13, the controller

uT can stabilize the system untilT = 0.15.

Moreover, as the sampling periodT increases, the controlleruT shows good performance for

cases where the parameterd has smaller value.

6.4.3 Attitude Control of Rigid Artificial Satellite

Consider the following nonlinear equations for the digitalattitude control of a rigid artificial

satellite which were also given Subsection 3.4.3

ρ̇ = H(ρ)w, (6.46)

ẇ = J−1S(w)Jw+ J−1u (6.47)

with sampled observationy(k) = ρ(k) where w := [w1 w2 w3]
T
∈ R

3 is the angular

velocity vector of the body in a body-fixed frame,ρ ∈ R
3 is the Cayley-Rodrigues pa-

rameters describing the body orientation,u ∈ R
3 is the control torque vector of the body,

J = JT = diag{10, 15, 20} is the inertia matrix of the body [31],S(w) is the skew-symmetric

matrix given byS(w) =
[ 0 w3 −w2
−w3 0 w1
w2 −w1 0

]

andH(ρ) = 1
2(I − S(ρ) + ρρT ).

Using (6.19) in Theorem 6.3.1, the observer for (6.47) is designed as:

ŵ(k + 1) = ŵ+ T(J−1S(ŵ)Jŵ+ J−1u+ Kw̃) (6.48)

with w̃ = H−1(ρ)η(k)−η(k−1)
T − ŵ and whereK can be chosen such thatK = diag{k1, k2, k3} with

ki > 0 for sufficiently smallT > 0.

Considering the observer (6.48), the controllersuT anduE are designed for the system (6.46)-

(6.47) withφT(ρ) = −H−1(ρ)Lρ whereL can be chosen such thatL = diag{l1, l2, l3} with

|1− Tli | < 1 andl i > 0 for sufficiently smallT > 0. The controlleruE is designed using

the method given in [25] which was also presented in Theorem 2.3.3 with WT(η) = 1
2ρ

Tρ.

The controlleruT is obtained using (6.27) in Theorem 6.3.3 withWT(η) = 1
2ρ

Tρ+ 1
2w̃TLo

−1w̃

whereLo is a positive definite matrix. The following simulation parameters are set:L =

diag{0.5, 0.5, 0.5} andc = 0.5 for controllers andh = diag{1, 4, 0.4} for observer. Then, the

controllersuT anduE with the observer (6.48) are applied to the system (6.46)-(6.47) in order

to compare their performances with different sampling periods and initial conditions.
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Figure 6.10: Time responses ofρ and w̃ with T = 0.1. Dotted line:controlleruE. Solid
line:designed controlleruT .
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Figure 6.11: Time responses ofρ and w̃ with T = 0.2. Dotted line:controlleruE. Solid
line:designed controlleruT .
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Figure 6.12: Time responses ofρ andw̃ with T = 0.1 and doubled initial conditions. Dotted
line:controlleruE. Solid line:designed controlleruT .
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In the first simulation, the initial conditions are chosen asρ(0) = [1.4735 0.6115 2.5521]
T
,

w(0) = 03x1 andŵ(0) = 03x1. Simulation results with the sampling periodT = 0.1 are given

in Figure 6.10. As can be seen from figure, both controllers stabilize the system (6.46)-(6.47),

but faster withuT . As the parameterd increases, the performance of the controlleruT is faster

but ford = 1 performance degradation starts. Ford > 7, the controlleruT cannot stabilize the

system (6.46)-(6.47).

Then, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.2. Simulation results are given in Figure 6.11. It is shown that the controller

uT gives faster results when compared to the controlleruE. The controlleruT shows a good

performance untild = 1 and the performance worsens afterd = 1. Ford > 2, the controller

uT cannot stabilize the system (6.46)-(6.47). The controlleruE gives slower response with

larger overshoots when compared to results withT = 0.1. While the controlleruE cannot

stabilize the system (6.46)-(6.47) forT > 0.37, the controlleruT can stabilize the system until

T = 0.4.

Finally, the controllers are applied to the system (6.46)-(6.47) with the same sampling period

T = 0.1 as in the first simulation and initial conditions doubled. Simulation results are given

in Figure 6.12. It is shown that the controlleruT gives faster results when compared to the

controlleruE again.

Moreover, when the sampling periodT or the initial conditions are increased, the controller

uT gives faster results for cases where the parameterd has smaller value.

6.4.4 Second-Order Single-Input System

As a last example, consider the following continuous-time plant:

η̇ = η2 + ξ (6.49)

ξ̇ = u (6.50)

whereη ∈ R andξ ∈ R are the state vectors,u ∈ R is the control input andy(k) = η(k).

Using (6.19) in Theorem 6.3.1, the observer for (6.50) is designed as:

ξ̂(k+ 1) = ξ̂ + T(u+ Kξ̃) (6.51)
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with ξ̃ = η(k)−η(k−1)
T − η2 − ξ̂ and whereK > 0 for sufficiently smallT > 0.

Considering the observer (6.51), the controllersuT anduE are designed for the system (6.49)-

(6.50) withφT(η) = −η2 − η. The controlleruE is designed using the method given in [25]

which was also presented in Theorem 2.3.3 withWT(η) = 1
2η

2. The controlleruT is obtained

using (6.27) in Theorem 6.3.3 withWT(η) = 1
2η

Tη + 1
2Lo

−1ξ̃2 whereLo > 0. The following

simulation parameters are set:c = 1 for controllers andK = 0.5 for observer.

Then, the controllersuT anduE with the observer (6.51) are applied to the system (6.49)-(6.50)

in order to compare their performances with different sampling periods and initial conditions.

In the first simulation, the initial conditions are chosen as(η(0), ξ(0)) = (1.6, 0.5) and (̂ξ(0)) =

0. Simulation results withT = 0.6 are given in Figure 6.13. It is shown that the designed

controlleruT works well and is faster than the controlleruE. As the parameterd increases,

the performance of the controlleruT is faster but ford = 0.03 performance degradation starts.

For d > 0.03, the controlleruT cannot stabilize the system (6.49)-(6.50).

Next, the simulation is performed with the initial conditions given above and large sampling

periodT = 0.9. Simulation results are given in Figure 6.14. It is shown that the controller

uT yields faster results when compared to the controlleruE. The controlleruT shows a good

performance untild = 0.006 and the performance worsens afterd = 0.006. Ford > 0.006,

the controlleruT can not stabilize the system (6.49)-(6.50). The controlleruE gives slower

response with larger overshoots as the sampling periodT is increased. Neither controller can

stabilize the system (6.49)-(6.50) forT > 1.

Then, the controllers are applied to the system (6.49)-(6.50) with the same sampling period

T = 0.6 as in the first simulation and large initial conditions (η(0), ξ(0)) = (5, 5). Simulation

results are given in Figure 6.15. As can be seen from figure, while the controlleruE stabilize

the system very slowly, the designed controlleruT stabilizes the system successfully.

As can be seen from figures, the control inputuT is produced with less energy when compared

to the control inputuE. Therefore, the proposed method requires less control effort. Simula-

tion results also show that when the parameterd is increased, energy of the control inputuT

decreases in general.

Moreover, when the sampling periodT or the initial conditions are increased, the controller
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Figure 6.13: Time responses ofη, ξ̂ and u with T = 0.6. Solid line:controlleruT . Dotted
line:controlleruE.
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Figure 6.14: Time responses ofη, ξ̂ and u with T = 0.9. Solid line:controlleruT . Dotted
line:controlleruE.
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Figure 6.15: Time responses ofη, ξ̂ andu with T = 0.9 and the initial condition (η(0), ξ(0)) =
(5, 5). Solid line:controlleruT . Dotted line:controlleruE.
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uT gives faster results for cases where the parameterd has smaller value.

Finally, by applying the controllers to the system (6.49)-(6.50) with different initial condi-

tions, domain of attraction (DOA) estimates with the controllers uT anduE for the sampling

periodT = 0.6 are given in Figure 6.16. In DOA estimate with the controller uT , the pa-

rameterd is chosen asd = 0.001. As can be seen from figure, DOA for the system with the

controlleruT is much larger than that with the controlleruE. For different controller parame-

ters and sampling periods, much larger DOA estimate may be obtained with the controlleruT

when compared to the estimate given in figure.

6.5 Conclusions

In this chapter, the problem of reduced order observer-based output feedback control of

sampled-data nonlinear systems in strict feedback form hasbeen considered. First, a reduced

order observer design has been presented based on the Euler approximate model, which is an

extension of the reduced order observer given in [33] to a general class of multi-input non-

linear systems. Then, a reduced-order observer-based backstepping method has been given

based on the Euler approximate model. It has been shown that the designed controllers SPA

stabilize the closed-loop sampled-data system based on theframework proposed in [46]. The

proposed design methods have been applied to several examples arising from the engineering

practice. Their performances are analyzed with simulations.

For the problem considered, observer error behaves as disturbance. It is known that even expo-

nentially decaying disturbances can destabilize the sampled-data nonlinear systems. Hence,

in this chapter, the controllers were designed to compensate the effects of this factor. As a

result of this, the results obtained are different from the controllers in [25]. Simulation results

have shown that the controller designed by the proposed method gives better results than the

controllers given in [25]. Moreover, in case of unstable results, the controller given in [25]

can be tuned to obtain stable results by adapting the controller gain. However, the controller

designed by the proposed method can also be tuned adapting another parameter in addition

to the controller gain. So the proposed method gives an additional flexibility for tuning the

controller.

The performance of the designed reduced order observer has been compared with the observer
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given in [25]. It has been shown that observer error converges to zero with the designed

observer faster than with the observer given in [25].
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CHAPTER 7

OUTPUT-FEEDBACK STABILIZATION OF NONLINEAR

DUAL-RATE SAMPLED-DATA SYSTEMS VIA

APPROXIMATE DISCRETE-TIME MODEL

7.1 Introduction

In this chapter, the problem of output feedback stabilization of nonlinear sampled-data control

systems is considered under the low measurement rate constraint. A dual-rate control scheme

is proposed based on a numerical integration scheme which isused to approximately predict

the missing output values between measured output samples.If an observer-based output

feedback controller that semiglobally practically asymptotically (SPA) stabilizes the single-

rate sampled-data plant model is given, then it is shown thatSPA stability property will be

preserved for the closed-loop dual-rate sampled-data system based on the proposed dual-rate

control scheme under standard assumptions.

In Chapter 1, digital controller design methods for sampled-data nonlinear systems were men-

tioned such as emulation and direct discrete-time design methods. Although the emulation

and direct discrete-time design allow multi-rate sampled-data systems, design methods us-

ing these approaches are single-rate in general, i.e. inputand measurement sampling rates are

assumed to be equal. For single-rate systems, [45, 46] showed that the input-to-state stabiliza-

tion of exact model with the family of controllers which input-to-state stabilizes the approxi-

mate model is guaranteed under certain conditions. In [48],backstepping design is presented

for a class of strict feedback nonlinear systems using Eulerapproximate discrete-time model.

Robust backstepping method for sampled-data strict-feedback nonlinear system based on the

Euler approximate model is given in [58]. However, these approaches may not perform well
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in practice since the required sampling rate may exceed the hardware limitations.

In many applications only a part of the state vector is available from measurement. Thus

control using output feedback or dynamic feedback is necessary. Designing an observer for

unmeasured states is a useful method to be used for constructing an output feedback controller.

Considering the output feedback tracking problem, observer-based output-feedback control

design for continuous-time nonlinear systems using the observer backstepping procedure is

proposed in [30]. On the other hand, the problem of output feedback stabilization of sampled-

data nonlinear systems has not been studied much in the litearature [10, 28, 65]. In particular,

[10] and [28] showed that the obtained sampled-data controllers using high gain observers

can recover the performance of the continuous-time state feedback controllers.

Moreover, in practical applications, hardware restrictions on input and measurement sampling

rate can be different. Also, it is assumed that measurement result and the corresponding

controller are available instantaneously. This assumption is unrealistic. Therefore, the use of

multi-rate control scheme is proposed in [1, 56, 37, 38] to configure the control system so that

several sample rates co-exist to achieve better performances. In [1] multi-rate sampled-data

output feedback control of a class of nonlinear systems using high-gain observers where the

analog-to-digital (A/D) sampling rate is faster than the digital-to-analog (D/A) sampling rate

is considered. In [37, 38] the state feedback multi-rate controllers based on CTD and DTD

methods, respectively, are discussed under the constraintthat the D/A sampling rate is faster

than the A/D sampling rate, called as low measurement rate constraint.

In this chapter, the problem of output feedback stabilization of sampled-data nonlinear sys-

tems under the low measurement rate constraint is considered. The design of semiglobally

practically asymptotically (SPA) stabilizing dual-rate observer-based output feedback con-

trollers is presented using single-rate observer-based output feedback controller and a fast-

rate model based on the approximate discrete-time model to estimate the missing output val-

ues between measured output samples. It is shown that if a single rate observer-based output

feedback controller SPA stabilizes a plant, then under somestandard assumptions the pro-

posed dual-rate observer-based output feedback controller makes the closed-loop dual-rate

sampled-data system SPA stable. It is emphasized that the result is prescriptive since it can

be used as a guide when designing observer-based output feedback controllers based on an

approximate discrete-time model. Numerical examples are also included to illustrate the the-

116



oretical results obtained. Simulation results show that the dual-rate observer-based output

feedback controller yields faster results when compared tothe single-rate observer-based out-

put feedback controller. However, the dual-rate design requires higher numerical effort.

The chapter is organized as follows. In Section 7.2 preliminaries are given. The main results

are stated and proved in Section 7.3. Then, in Section 7.4, application examples are provided

to illustrate the design method. Finally, conclusions are presented in the last section.

7.2 Preliminaries

This section provides technical preliminaries. Common notations and definitions which will

be used throughout the chapter are presented. For the sake ofclarity and easy reading, some

notions and definitions that have been introduced in Chapter2 are repeated when necessary.

Consider the nonlinear continuous-time system

ẋ = f (x(t), y(t), u(t)), y(t) = H(x(t)) (7.1)

wherex ∈ Rn is the state,u ∈ Rm is the control input,y ∈ Rl is the output and the functions

f andH are locally Lipschitz. The control inputu is realized through a zero-order hold such

thatu(t) = u(kT) := u(k),∀t ∈ [kT, (k+1)T), k ∈ Z+ and the outputy is measured at sampling

instantskT; that isy(k) := y(kT) whereT > 0 is the sampling period. The difference equations

corresponding to the exact discrete-time model of (7.1) andits approximate discrete-time

model are represented by:

x(k + 1) = Fe
T(x(k), y(k), u(k)), y(k) = H(x(k)) (7.2)

x(k + 1) = Fa
T(x(k), y(k), u(k)), y(k) = H(x(k)), (7.3)

respectively.

Consider now the following family of observers

x̂(k+ 1) = GT(x̂(k), y(k), u(k)) (7.4)

Definition 7.2.1 [33] The family of observers (7.4) is SPA stable observer forx(k + 1) =

FT(x(k), y(k), u(k)), if for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m,Y ⊂ R

l and any

strictly positive numberν, there exists T∗ > 0 such that the followings hold.
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1. For all x0 ∈ X, u ∈ U, y0 ∈ Y and T ∈ (0,T∗], there existsx̂0 ∈ X̂ such that

|x̂(k) − x(k)| ≤ Tν, ∀k ≥ 1.

2. For all x0 ∈ X, x̂0 ∈ X̂, u ∈ U, y0 ∈ Y and all T ∈ (0,T∗], lim supk→∞|x̂(k)−x(k)| ≤ Tν.

Definition 7.2.2 Fa
T(x, y, u) and Fa

T,h(x, y, u) is said to be one-step consistent with Fe
T(x, y, u)

if for any positive real numbers(∆1,∆2,∆3) there exist class-K functionsρ1(.), ρ2(.) and T∗ >

0 for each fixed T∈ (0,T∗], such that|Fe
T(x, y, u) − Fa

T(x, y, u)| ≤ Tρ1(T) and there exist

h∗ ∈ (0,T] such that|Fe
T(x, y, u) − Fa

T,h(x, y, u)| ≤ Tρ2(h) for all |x| ≤ ∆1, |y| ≤ ∆2, |u| ≤ ∆3

and h∈ (0, h∗).

Definition 7.2.3 [3] The family of observers (7.4) is SPA stable as in Definition 7.2.1 if there

exists a family of Lyapunov functions VT(x, x̂) and class-K∞ functionsα1(.), α2(.), α3(.) such

that for any compact setsX ⊂ R
n, X̂ ⊂ R

p,U ⊂ R
m,Y ⊂ R

l and any strictly positive number

ν, there exist constants T∗ > 0 and M> 0, such that for all x, x1, x2 ∈ X, x̂ ∈ X̂, u ∈ U, y ∈ Y,

and T ∈ (0,T∗],

|VT(x1, x̂) − VT(x2, x̂)| ≤ M|x1 − x2|, (7.5)

α1(|e|) ≤ VT(x, x̂) ≤ α2(|e|), (7.6)

VT(FT(x, y, u),GT (x̂, y, u)) − VT(x, x̂)
T

≤ −α3(|e|) + ν (7.7)

where e is the observer error defined by the difference between the actual states and their

estimates. Moreover, if FaT is consistent with FeT as in Definition 7.2.2 and the family of

observers (7.4) is SPA stable observer for (7.3), then the family of observers (7.4) is also SPA

stable observer for (7.2).

To shorten notation, the following definitions will be used:x̃ := [ x̄T , eT ]T , F̃T(x̃) :=
[

F̄T (x̄,y,u)
ET (x,x̂,y,u)

]

with x̄ := [xT , x̂T ]T , F̄T(x̄, y, u) :=
[

FT (x,y,u)
GT(x̂,y,u)

]

andET(x, x̂, y, u) := FT(x, y, u) −GT(x̂, y, u).

Definition 7.2.4 [3, 48] The family of controllers uT with observer (7.4) SPA stabilizes̃FT

if there existsβ ∈ KL such that for any pair of strictly positive real numbers(D, v) there

exists T∗ > 0 such that for each T∈ (0,T∗] the solutions of̃x(k + 1) = F̃T(x̃(k)) satisfy:

|x̃(k, x̃(0))| ≤ β(|x̃(0)|, kT) + v, for all k ≥ 0, whenever|x̃(0)| ≤ D.
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Definition 7.2.5 [48] Let T̂ > 0 be given and for each T∈ (0, T̂] let functions VT : Rn+p →

R≥0 and uT : R
n → R

m be defined. We say that the pair of families(uT ,VT) with ob-

server (7.4) is a SPA stabilizing pair for̃FT if there existα1, α2, α3 ∈ K∞ such that for any

pair of strictly positive real numbers(∆, δ) there exists a triple of strictly positive real num-

bers (T∗, L,M), with T∗ ≤ T̂ , such that for allx̃1, x̃2 ∈ R
n+p with max{|x̃1| , |x̃2|} ≤ ∆, and

T ∈ (0,T∗]:

α1(|x̃|) ≤ VT(x̃) ≤ α2(|x̃|) (7.8)

VT(F̃T (x̃)) − VT(x̃) ≤ −Tα3(|x̃|) + Tδ (7.9)

|VT(x̃1) − VT(x̃2)| ≤ L |x̃1 − x̃2| (7.10)

|uT | ≤ M (7.11)

Theorem 7.2.6 [45, 50, 51] If (uT ,VT) is a SPA stabilizing pair forF̃a
T , then uT stabilizes

F̃e
T .

Then, stability properties of the sampled-data system (7.1) can be deduced from those of exact

discretized system under certain conditions [51].

It is assumed that the single-rate SPA stabilizing output feedback controlleruT(x̂, y) with

observer (7.4) is given. Then, a dual-rate output feedback control scheme for system (7.1) is

designed using the given single-rate observer-based output feedback controller. As in [38], it

is chosen that the sampling period of (7.2) is equal to the input sampling periodTi, i.e. T = Ti .

Suppose that measurement sampling periodTm is different from the input sampling periodTi

due to the hardware restrictions andTm > Ti due to the low measurement rate constraint.

The main idea in the dual-rate output feedback control is to predict the unmeasured output

samples between measured samples. Hence, the slow sampled measurement is used every

Tm period such asy(0), y(Tm), y(2Tm), etc., and the approximate modelFa
T,h of the plant is

used to get the estimated output to fill in the missing samples. Let the measurement sampling

periodTm be a multiple ofT, i.e. Tm = lT for some integerl > 1 without loss of generality.

Then, to compensate for the lack of information about outputwhich is fed back to controller

and observer, a periodic switch is introduced which connects to the actual outputy at times

klT and connects to the estimate of the output att = klT + jT, j = 1, 2, ..., l − 1 which is

reconstructed by the approximate model with periodically updated initialization at sampling

instanti = klT by the actual output. Then the output of the switchyc(i +1) := yc((i +1)T) can
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be written as:

yc(i + 1) =






y(i + 1), if i + 1 = kl,

H(Fa
T,h(x̂(i), y(i), u(i))), if i = kl

H(Fa
T,h(x̂(i), yc(i), u(i))), if i + 1 = kl + τ

(7.12)

wherek ∈ Z
+, τ = 2, ..., l − 1 and Fa

T,h is the approximate discrete-time model of (7.2)

parameterized by the modeling parameterh > 0 which may be different from the sampling

period T. The parameterh represents the integration period of the numerical integration

used to generate the approximate models. The following sampled-data closed loop system

is considered which consists of the continuous-time plant and the dual-rate observer-based

output feedback controller depending on the switch outputyc(k) := yc(kT):

ẋ = f (x(t), y(t), u(t)), y(t) = H(x(t)) (7.13)

x̂(k + 1) = GT,h(x̂, yc, u) = GT(x̂, yc, u) (7.14)

u(k) = uT,h(x̂, yc) = uT(x̂, yc) (7.15)

whereGT,h, uT,h are zero at zero, the controlu is implemented using a zero-order hold such

thatu(t) = u(kTi) := u(k),∀t ∈ [kTi , (k+1)Ti ), k ∈ Z+ and the outputy is measured at sampling

instantskTm; that isy(k) := y(kTm). The discrete-time model of this sampled-data system

consists of the exact discrete-time model (7.2), the controller (7.15), the observer (7.14) and

the switch (7.12). To summarize, the dual rate output feedback control scheme uses a single-

rate observer-based output feedback controller and a fast-rate model based on the approximate

discrete-time model to estimate the missing output values between measured output samples.

The following definitions are now introduced.

Definition 7.2.7 [50] F a
T(x, u) is said to be multi-step consistent with Fe

T(x, u) if, for each

L > 0, η > 0 and each compact setX ⊂ R
n, there exist a functionα : R≥0 × R≥0 →

R≥0 ∪ {∞} and T∗ > 0 such that,{x, z ∈ X, |x − z| ≤ δ} for all T ∈ (0,T∗] which implies

|Fe
T(x, u) − Fa

T(z, u)| ≤ α(δ,T) and k≤ L/T ⇒ αk(0,T) :=

k
︷   ︸︸   ︷

α(...α(α(0,T),T)...,T) ≤ η.

Definition 7.2.8 The control law uT,h, the observer dynamic GT,h and the approximate model

Fa
T,h are said to be uniformly locally Lipschitz if for any∆1 > 0 there exist Lu, L f , Lg > 0 and

T∗ > 0 such that for each fixed T∈ (0,T∗], there exists h∗ ∈ (0,T] such that for all|ξ1|, |ξ2| ≤
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∆1 and h∈ (0, h∗), we have|uT,h(ξ1)−uT,h(ξ2)| ≤ Lu|ξ1− ξ2|, |GT,h(ξ1)−GT,h(ξ2)| ≤ Lg|ξ1− ξ2|

and |Fa
T,h(ξ1) − Fa

T,h(ξ2)| ≤ L f |ξ1 − ξ2|, whereξ := (x̂T , yT
c )T .

Lemma 7.2.9 [38] By the property that uT,h is zero at zero and uT,h,GT,h are uniformly lo-

cally Lipschitz, given positive numbers(∆1,∆2,∆3) there exist T∗ > 0, h∗ > 0 such that for all

|x̂| ≤ ∆1, |yc| ≤ ∆2, T ∈ (0,T∗] and h∈ (0, h∗], |uT,h(x̂, yc)| ≤ ∆3 holds. That is, the controller

is locally uniformly bounded (see [27]).

7.3 Main Results

In this section, it is shown that the dual-rate observer-based output feedback controller given

in (7.12), (7.14) and (7.15) SPA stabilizes the closed loop sampled-data system if given single

rate observer-based output feedback controller SPA stabilizes the closed loop sampled-data

system. The stabilization problem is addressed under the following assumptions.

Assumption . (1) The single-rate output feedback controller uT(x̂, y) with observer (7.4) SPA

stabilizes the system (7.2).(2) The single-rate observer (7.4) is a SPA stable observer for (7.2).

(3) The approximate models Fa
T and Fa

T,h, the controller (7.15) and the observer (7.14) are

uniformly locally Lipschitz.(4) The approximate discrete-time models Fa
T and Fa

T,h are one-

step consistent with the exact discrete-time model Fe
T .

Next, two claims will be stated and their proofs will be given. These claims are to be used in

the proofs of two theorems that follow.

Claim 7.3.1 Consider the exact model (7.2), the dual-rate output feedback control scheme

(7.12), (7.14), (7.15) and Lemma 7.2.9. Given any strictly positive real numbers(∆1, ε),

there exists T1 > 0 such that for any fixed T∈ (0,T1], there exists h1 ∈ (0,T] such that

for all |x̂(0)| ≤ ∆1, |x(0)| ≤ ∆1 and h ∈ (0, h1] the following holds under Assumptions 1-4:

if maxi∈{0,1,...,k}|x̂(i)| ≤ ∆1 and maxi∈{0,1,...,k}|x(i)| ≤ ∆1 for some k∈ {0, 1, ...} then the exact

discrete-time output of the plant satisfies:|y(k) − yc(k)| ≤ Tε for all k.

Proof. Let ∆1,∆2,∆3 ∈ R≥0 be given. Using Assumption 3 and the fact thatuT,h is zero at

zero, there existT11 > 0 andh11 > 0 such that|uT,h(x̂, yc)| ≤ ∆3 for all |x̂| ≤ ∆1, |yc| ≤ ∆2
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by Lemma 7.2.9. From Assumption 3, letT12 > 0 andh12 > 0 be generated using Defi-

nition 7.2.8. From Assumption 4, there existT13 > 0 andh13 > 0 using Definition 7.2.2.

Let LF , L f , LH, Lg, Lu > 0 be the Lipschitz constants of the functionsFa
T , Fa

T,h, H(.), GT

anduT,h, respectively. Using Definition 7.2.2, letρ1(.), ρ2(.) ∈ K∞ be a function from As-

sumption 4 for one-step consistency of the approximate models Fa
T andFa

T,h with the exact

modelFe
T , respectively. Finally,T1 = min{T11,T12,T13} andh1 = min{h11, h12, h13} are de-

fined. SupposeT ∈ (0,T1], h ∈ (0, h1], maxi∈{0,1,...,k}|x̂(i)| ≤ ∆1, maxi∈{0,1,...,k}|x(i)| ≤ ∆1 and

maxi∈{0,1,...,k}|y(i)| ≤ ∆2 by the Lipschitzity ofH(.) for somek ∈ {0, 1, ...}. First it is claimed

that |yc(k)| ≤ ∆2 follows by induction for somek ∈ {0, 1, ...}. Considerk in the following three

cases.

First, if k = jl for some j ∈ {0, 1, ...} then it is obvious that|y(k) − yc(k)| = 0. Since the

single-rate observer (7.4) with initial condition|x̂(0)| ≤ ∆1 is SPA stable by Assumption 2,

it is obtained that|x(k) − x̂(k)| ≤ Tν with ν > 0 using Definition 7.2.1 and the condition

maxi∈{0,1,...,k}|x̂(i)| ≤ ∆1.

Second, ifk = jl + 1, then using Assumption 4 and triangle inequalities it can be written that

|y(k) − yc(k)| = |H(Fe
T (x( jl ), y( jl ), uT,h(x̂( jl ), y( jl )))) − H(Fa

T,h(x̂( jl ), y( jl ), uT,h(x̂( jl ), y( jl ))))|

≤ LHTρ2(h) + |H(Fa
T,h(x( jl ), y( jl ), uT,h(x̂( jl ), y( jl )))) − H(Fa

T,h(x̂( jl ), y( jl ), uT,h(x̂( jl ), y( jl ))))|.

Hence, using Assumption 3 and|x( jl ) − x̂( jl )| ≤ Tν, it can be obtained that

|y(k) − yc(k)| ≤ LHTρ2(h) + LHL f Tν.

By Assumption 2 and Definition 7.2.1, one obtains that

|x(k) − x̂(k)| = |Fe
T(x( jl ), y( jl ), uT,h(x̂( jl ), y( jl ))) −GT(x̂( jl ), y( jl ), uT,h(x̂( jl ), y( jl )))| ≤ Tν

with ν > 0.

Finally, using Assumption 3, it can be written for allk ∈ { jl + 2, ..., ( j + 1)l − 1} that

|x(k) − x̂(k)| = |Fe
T(x(k − 1), y(k − 1), uT,h(x̂(k− 1), yc(k− 1)))

−GT(x̂(k − 1), yc(k − 1), uT,h(x̂(k − 1), yc(k − 1)))|

≤ Tν + |Fe
T(x(k − 1), y(k − 1), uT,h(x̂(k − 1), yc(k − 1)))

− Fa
T(x(k − 1), y(k − 1), uT,h(x̂(k − 1), yc(k − 1)))|
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+ |Fa
T (x(k− 1), y(k − 1), uT,h(x̂(k − 1), y(k − 1)))

− Fe
T(x(k − 1), y(k − 1), uT,h(x̂(k − 1), y(k − 1)))|

+ |Fa
T (x(k− 1), y(k − 1), uT,h(x̂(k − 1), yc(k − 1)))

− Fa
T(x(k − 1), y(k − 1), uT,h(x̂(k − 1), y(k − 1)))|

+ |GT(x̂(k− 1), y(k − 1), uT,h(x̂(k− 1), y(k − 1)))

−GT(x̂(k − 1), yc(k − 1), uT,h(x̂(k − 1), yc(k − 1)))|

≤ Tν + 2Tρ1(T) + (LFLu + Lg(1+ Lu))|y(k − 1)− yc(k− 1)| ≤ Tν̃

with ν̃ > 0.

Then, it can be obtained by induction that

|y(k) − yc(k)| = |H(Fe
T (x(k − 1), y(k − 1), uT,h(x̂(k− 1), yc(k− 1))))

− H(Fa
T,h(x̂(k− 1), yc(k− 1), uT,h(x̂(k− 1), yc(k− 1))))|

≤ LHTρ(h) + |H(Fa
T,h(x(k − 1), y(k − 1), uT,h(x̂(k− 1), yc(k− 1))))

− H(Fa
T,h(x̂(k− 1), yc(k− 1), uT,h(x̂(k− 1), yc(k− 1))))|

≤ LHTρ2(h) + LHL f Tν̃ + LHL f |y(k − 1)− yc(k− 1)|

Consequently, by the choice ofT andh it is obtained that|y(k) − yc(k)| ≤ Tε for all k. This

completes the proof of Claim 1. �

Claim 7.3.2 [38] Let α1, α2, α3 ∈ K∞ and strictly positive real numbers(∆, δ) be such that

α1(∆) ≥ δ. Let T2 > 0 be such that for each fixed T∈ (0,T2], there exists h2 ∈ (0,T] such that

for any h∈ (0, h2] there exists a function VT : Rn+p→ R≥0 such thatα1(|x̃|) ≤ VT(x̃) ≤ α2(|x̃|)

for all x̃ ∈ Rn+p and VT(x̃(i + 1))−VT(x̃(i)) ≤ −T
4α3(|x̃(i)|) holds for all x̃ ∈ Rn+p with |x̃| ≤ ∆

and max{VT(x̃(i + 1)),VT(x̃(i))} ≥ δ. Then,|x̃(i)| ≤ δ holds for all |x̃(0)| ≤ α2
−1 ◦ α1(∆) and

all i ∈ Z+.

Proof. By Assumption 1 and Definition 7.2.5, there exists a functionVT for all x̃ ∈ R
n+p

such thatα1(|x̃|) ≤ VT(x̃) ≤ α2(|x̃|). As stated in [38], the definitions ofδ and∆ imply

|x̃(0)| ≤ max{α1
−1 ◦VT(x̃(0)), α1

−1(δ)} ≤ ∆. So eitherVT(x̃(1)) ≥ δ which, from the condition

of Claim 7.3.2, impliesVT(x̃(1)) ≤ VT(x̃(0)) or elseVT(x̃(1)) ≤ δ. Then, in either case,

VT(x̃(1)) ≤ max{VT(x̃(0)), δ}. HenceVT(x̃(i)) ≤ max{VT(x̃(0)), δ} follows by induction and

|x̃(i)| ≤ ∆ holds as well. �
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In the following theorem, it is shown that the observer (7.14) is a SPA stable observer with (7.12)

for the system (7.2) and this is proved using the conditions given in Definition 7.2.3.

Theorem 7.3.3 Consider the exact model (7.2), the dual-rate output feedback control scheme

(7.12), (7.14), (7.15), Lemma 7.2.9, Claim 7.3.1 and Claim 7.3.2. Given any strictly positive

real number∆1, there exists T1 > 0 such that for any fixed T∈ (0,T1], there exists h1 ∈ (0,T]

such that for all|x̂(0)| ≤ ∆1, |x(0)| ≤ ∆1 and h∈ (0, h1]. Then, the observer (7.14) is a SPA

stable observer with (7.12) for the system (7.2) under Assumptions 1-4.

Proof. Let ∆1,∆2,∆3, ν, ε ∈ R≥0, |x| ≤ ∆1, |x̂| ≤ ∆1, |y| ≤ ∆2 by the Lipschitzity ofH(.),

|yc| ≤ ∆2. Using Assumption 3 and the fact thatuT,h is zero at zero, there existT11 > 0

andh11 > 0 such that|uT,h(x̂, yc)| ≤ ∆3 for all |x̂| ≤ ∆1, |yc| ≤ ∆2 by Lemma 7.2.9. From

Assumption 3, letT12 > 0 andh12 > 0 be generated using Definition 7.2.8. From Assumption

4, there existT13 > 0 andh13 > 0 using Definition 7.2.2. LetLv, L f , Lg, Lu > 0 be the

Lipschitz constants of the functionsVe, Fa
T , GT anduT,h, respectively. Using Definition 7.2.2,

let ρ1(.) ∈ K∞ be a function from Assumption 4 for one-step consistency ofFa
T with Fe

T .

From Claim 7.3.1 and Claim 7.3.2, letT14 > 0, h14 > 0 andT15 > 0, h15 > 0 be generated,

respectively. Finally,T1 = min{T11,T12,T13,T14,T15} andh1 = min{h11, h12, h13, h14, h15} are

defined. SupposeT ∈ (0,T1], h ∈ (0, h1], maxi∈{0,1,...,k}|x̂(i)| ≤ ∆1, maxi∈{0,1,...,k}|x(i)| ≤ ∆1. By

Assumption 2, Lyapunov functionVe for the observer errore= x− x̂ satisfies

∆Ve = Ve(E
e
T(x, x̂, y, uT(x̂, y))) − Ve(e) ≤ −Tα(|e|) + Tν (7.16)

whereα ∈ K∞, ν > 0 is sufficiently small number andEe
T(x, x̂, y, uT(x̂, y)) := Fe

T(x, y, uT (x̂, y))−

GT(x̂, y, uT (x̂, y)).

Consider the observer (7.14). It is obvious that conditions(7.5) and (7.6) are satisfied and

hence, to prove SPA stability, it is enough to show that condition (7.7) holds. First, the

following equations are defined for the observer error dynamics:

Ee
T,h(x, x̂, yc, uT,h(x̂, yc)) := Fe

T(x, y, uT,h(x̂, yc)) −GT,h(x̂, yc, uT,h(x̂, yc)) (7.17)

Ea
T,h(x, x̂, yc, uT,h(x̂, yc)) := Fa

T(x, y, uT,h(x̂, yc)) −GT,h(x̂, yc, uT,h(x̂, yc)) (7.18)

Ea
T(x, x̂, y, uT (x̂, y)) := Fa

T(x, y, uT (x̂, y)) −GT(x̂, y, uT (x̂, y)). (7.19)
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Using Assumption 4, (7.16)-(7.19) and continuity ofVe, the Lyapunov difference for the ob-

server error can be written as:

∆Ve = Ve(E
e
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(e)

= Ve(E
e
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(E

e
T (x, x̂, y, uT (x̂, y))) + Ve(E

e
T (x, x̂, y, uT (x̂, y))) − Ve(e)

≤ Ve(E
e
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(E

a
T,h(x, x̂, yc, uT,h(x̂, yc))) + Ve(E

a
T(x, x̂, y, uT(x̂, y)))

− Ve(E
e
T (x, x̂, y, uT (x̂, y))) + Ve(E

a
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(E

a
T (x, x̂, y, uT (x̂, y))) − Tα(|e|)

+ Tν ≤ −Tα(|e|) + Tν + Ve(E
a
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(E

a
T(x, x̂, y, uT(x̂, y))) + 2LvTρ1(T)

Then, using continuity ofVe, Claim 7.3.1, Claim 7.3.2 and Assumption 3, it can be written

that

∆Ve ≤ −Tα(|e|) + Tν + 2LvTρ1(T) + LvL f Lu|yc − y| + LvLg|yc − y| + LvLgLu|yc − y|

≤ −Tα(|e|) + Tν + 2LvTρ1(T) + (LvL f Lu + LvLg + LvLgLu)Tε

A sufficiently smallν̃ > ν can be picked such that there existsT1 > 0 such that for eachT ∈

(0,T1], there existsh1 ∈ (0,T] such thatTν+2LvTρ1(T)+ (LvL f Lu+LvLg+LvLgLu)Tε ≤ Tν̃

for all h ∈ (0, h1] and hence∆Ve ≤ −Tα(|e|) + Tν̃. Consequently, condition (7.7) is satisfied

and this completes the proof. �

In the following theorem, it is shown that the dual-rate observer-based output feedback con-

troller (7.14), (7.15) and (7.12) SPA stabilizes the system(7.2) and this is proved using the

conditions given in Definition 7.2.5.

Theorem 7.3.4 Consider the exact model (7.2), the dual-rate output feedback control scheme

(7.12), (7.14), (7.15), Lemma 7.2.9, Claim 7.3.1 and Claim 7.3.2. Given any strictly positive

real numbers∆1, there exists T1 > 0 such that for any fixed T∈ (0,T1], there exists h1 ∈ (0,T]

such that for all|x̂(0)| ≤ ∆1, |x(0)| ≤ ∆1 and h∈ (0, h1]. Then the system (7.2) is SPA stable

with the dual-rate observer-based output feedback controller (7.14), (7.15) and (7.12) under

Assumptions 1-4.

Proof. Let ∆1,∆2,∆3, δ, ε ∈ R≥0, |x| ≤ ∆1, |x̂| ≤ ∆1, |y| ≤ ∆2 by the Lipschitzity ofH(.)

and |yc| ≤ ∆2. Using Assumption 3 and the fact thatuT,h is zero at zero, there existT11 > 0

andh11 > 0 such that|uT,h(x̂, yc)| ≤ ∆3 for all |x̂| ≤ ∆1, |yc| ≤ ∆2 by Lemma 7.2.9. From

Assumption 3, letT12 > 0 andh12 > 0 be generated using Definition 7.2.8. From Assumption
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4, there existT13 > 0 andh13 > 0 using Definition 7.2.2. LetLv, L f , Lg, Lu > 0 be the

Lipschitz constants of the functionsVT , Fa
T , GT anduT,h, respectively. Using Definition 7.2.2,

let ρ1(.) ∈ K∞ be a function from Assumption 4 for one-step consistency ofFa
T with Fe

T .

From Claim 7.3.1 and Claim 7.3.2, letT14 > 0, h14 > 0 andT15 > 0, h15 > 0 be generated,

respectively. Finally,T1 = min{T11,T12,T13,T14,T15} andh1 = min{h11, h12, h13, h14, h15} are

defined. SupposeT ∈ (0,T1], h ∈ (0, h1], maxi∈{0,1,...,k}|x̂(i)| ≤ ∆1, maxi∈{0,1,...,k}|x(i)| ≤ ∆1.

Let the Lyapunov functionV(x̃) be defined asV(x̃) = VT(x̄) + Ve(e). By Assumption 1, the

Lyapunov difference can be written as

∆V = V(F̃e
T(x̃)) − V(x̃) = VT(F̄e

T(x̄, y, uT(x̂, y))) − VT(x̄) + Ve(E
e
T(x, x̂, y, uT (x̂, y))) − Ve(e)

≤ −Tα̃(|x̃|) + Tδ (7.20)

whereα̃ ∈ K∞, δ > 0 is a sufficiently small number.

Consider the output feedback controller (7.14)-(7.15). Itis obvious that conditions (7.8)

and (7.10) are satisfied and hence it is enough to show that condition (7.9) holds. The

Lyapunov difference can be written using continuity ofVT , Assumption 4, Theorem 7.3.3

and (7.20) as:

∆V = VT(F̄e
T(x̄, y, uT,h(x̂, yc))) − VT(x̄) + Ve(E

e
T,h(x, x̂, yc, uT,h(x̂, yc))) − Ve(e)

≤ VT(F̄e
T(x̄, y, uT,h(x̂, yc))) − VT(F̄e

T(x̄, y, uT(x̂, y))) + VT(F̄e
T(x̄, y, uT (x̂, y))) − VT(x)

− Tα(|e|) + Tν̃ ≤ VT(F̄e
T(x̄, y, uT,h(x̂, yc))) − VT(F̄e

T(x̄, y, uT(x̂, y))) − Tα̃(|x̃|) + Tδ̄

≤ −Tα̃(|x̃|) + Tδ̄ + 2LvTρ1(T) + VT(F̄a
T(x̄, y, uT,h(x̂, yc))) − VT(F̄a

T(x̄, y, uT(x̂, y)))

whereδ̄ > 0 is a sufficiently small number.

Then, using Claim 7.3.1, Claim 7.3.2, Assumption 3 and continuity of VT, it can be written

that

∆V ≤ −Tα̃(|x̃|) + Tδ̄ + Lv(L f Lu + Lg + LgLu)|yc − y| + 2LvTρ1(T)

≤ −Tα̃(|x|) + Tδ̄ + 2LvTρ1(T) + Lv(L f Lu + Lg + LgLu)Tε.

A sufficiently small δ̃ > δ̄ can be picked such that there existsT1 > 0 such that for each

T ∈ (0,T1], there existsh1 ∈ (0,T] such that for allh ∈ (0, h1] it can be obtained that

Tδ̄ + 2LvTρ1(T) + Lv(L f Lu + Lg + LgLu)Tε ≤ Tδ̃ and hence∆V ≤ −Tα̃(|x̃|) + Tδ̃. Hence

condition (7.9) is satisfied. By Lemma 7.2.9, condition (7.11) holds and this completes the

proof. �
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Remark 7.3.5 The proposed dual-rate output feedback control scheme can be applied to

general output dynamical controllers (not necessarily observer-based) by predicting the un-

measured output samples between measured samples. Hence, aperiodic switch is used which

connects the slow sampled measurement every Tm period and uses the approximate model

Fa
T,h of the output dynamics of y to get the estimated output to fill in the missing samples.

7.4 Applications

In this section, dual-rate output feedback control scheme given in (7.14), (7.15) and (7.12) is

applied to various systems and the simulation results are analyzed.

7.4.1 Dynamically Positioned Ship

Consider the following system equations for the moored tanker in Example 11.4 in [12]

η̇ = R(x3(t))ν (7.21)

ν̇ = A1η + A2ν + Bu (7.22)

wherey(k) = η(k), η = [x1 x2 x3]
T
, ν = [x4 x5 x6]

T
, u = [u1 u2 u3]

T
, A1 = −M−1K,

M =





1.0852 0 0

0 2.0575 −0.4087

0 −0.4087 0.2153





, R(x3) =





cosx3 − sinx3 0

sinx3 cosx3 0

0 0 1





,

D =





0.0865 0 0

0 0.0762 0.1510

0 0.0151 0.0031





, K = diag{0.0389, 0.0266, 0},

A2 = −M−1D andB = M−1 as given in [25].

In [25], single-rate reduced order observer based SPA stabilizing output feedback controller

for the system (7.21)-(7.22) is designed using the Euler approximate model. The single-rate

output feedback controller is obtained usingWT =
1
2yTy as:

uT(y, ν̂) = B−1[uaT(y, ν̂) − A1y− A2ν̂] (7.23)

z(k + 1) = M1z(k) + M2y(k) + T Bu(k), (7.24)

ν̂(k) = z(k) +Gdy(k) (7.25)
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where

uaT(y, ν̂) = −c(ν̂ − φT(y)) − ∆W̃T(y, ν̂)
T

+
∆φ̄T(y, ν̂)

T

∆φ̄T (y, ν̂) = φ̄T(k+ 1)− φT(y(k))

φT(y(k)) = RT(x3(k))Ly(k)

φ̄T(k + 1) = RT(x̂3(k+ 1))L[y(k) + TR(x3(k))Lν̂(k)]

x̂3(k + 1) = x3(k) + Tx̂6(k)

∆W̃T (y, ν̂) =






∆W̄T (y,ν̂)[ν̂−φT (y)]
||ν̂−φT (y)||2 , ν̂ , φT(y)

TRT(x3)[y+ TR(x3)ν̂], ν̂ = φT(y)

∆W̄T (y, ν̂) =WT(y+ TR(x3)ν̂) −WT((I + TL)y)

andc > 0 is arbitrary,d = [0 0 1], M1 = I + T(A2 −Gd), M2 = T(A1 + (A2 −Gd)Gd) and

G ∈ R3×1.

Then, the dual-rate SPA stabilizing reduced order observer-based output feedback controller

is designed as:

uT,h = uT(yc(k), ν̂(k)) (7.26)

z(k + 1) = M1z(k) + M2yc(k) + T BuT,h(k) (7.27)

ν̂(k) = z(k) +Gdyc(k) (7.28)

yc(i + 1) =






y(i + 1), if i + 1 = kl,

Fa
T,h(y(i), ν̂(i)), if i = kl

Fa
T,h(yc(i), ν̂(i)), if i + 1 = kl + τ

(7.29)

wherek ∈ Z+, τ = 2, ..., l − 1. The numerically integrated approximate modelFa
T,h(yc, ν̂) can

be written as:

f 1
h (yc, ν̂) = fh(yc, ν̂) = yc + hR(x3)ν̂

f k+1
h (yc, ν̂) = fh( f k

h , ν̂)

Fa
T,h(yc, ν̂) = f N

h (yc, ν̂), k = 1, 2, ...,N − 1

whereh is the integration period,T is the sampling period andN = T
h . The consistency of

approximation scheme is checked. By Lemma II.2 in [45],fh is one-step consistent withFe
h

whereFe
h is the exact discrete-time model with the sampling periodh. Also, the multi-step
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Figure 7.1: Time responses of yaw anglex3, the North positionx1, the East positionx2 and the
observer errors forx4, x5 andx6 with Tm = 0.6, Ti = 0.2, h = 0.005 andT = 0.6. Dotted line:
Single-rate controller. Solid line:Dual-rate controller.
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Figure 7.2: Time responses of yaw anglex3, the North positionx1, the East positionx2 and the
observer errors forx4, x5 andx6 with Tm = 0.8, Ti = 0.2, h = 0.005 andT = 0.8. Dotted line
and right y-axis: Single-rate controller. Solid line and left y-axis:Dual-rate controller.
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Figure 7.3: Time responses of yaw anglex3, the North positionx1, the East positionx2 and
the observer errors forx4, x5 andx6 with and large initial conditions,Tm = 0.6, Ti = 0.2, h =
0.005 andT = 0.6. Dotted line: Single-rate controller. Solid line:Dual-rate controller.
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consistency is guaranteed by the one-step consistency plusthe uniform Lipschitz condition

on fh (see Remark 13 in [46]). Then, following closely the conclusions of Corollary 4 and

Remark 14 in [46], it is shown thatFa
T,h(η, ν) is one-step consistent withFe

T(η, ν). Moreover

it is easy to see that Assumption 3 is also satisfied.

As in [25], it is set thatG = [0 −1.8862 1.1368]
T

for observer andL = −diag{0.5, 2, 1}

andc = 0.2 for controller. Simulations have been performed to compare the dual-rate con-

troller (7.26)-(7.28) with the single-rate controller (7.23)-(7.25).

First, the single-rate and dual-rate controllers are applied to the system (7.21)-(7.22) with

the initial conditions,η(0) = [−2 2 −π4]
T
, ν(0) = [0 0 0]

T
and ν̂(0) = [0 0 0]

T
.

Simulation results with the sampling periodsT = 0.6 for the single-rate controller and

Tm = 0.6, Ti = 0.2, h = 0.005 for the dual-rate controller are given in Figure 7.1. It is

shown that the dual-rate controller (7.26)-(7.28) works well and is faster than the single rate

controller (7.23)-(7.25). Also, observer errors convergeto zero faster with the dual-rate con-

troller.

Then, the simulation is performed with the initial conditions given above and large sampling

periods. Simulation results with the sampling periodsT = 0.8 for the single-rate controller

and Tm = 0.8, Ti = 0.2, h = 0.005 for the dual-rate controller are shown in Figure 7.2.

While the single-rate controller (7.23)-(7.25) cannot stabilize the system, the dual-rate con-

troller (7.26)-(7.28) stabilizes the system successfully.

Finally, the controllers are applied to the system (7.21)-(7.22) with the same sampling periods

as in the first simulation and large initial conditionsη(0) = [−4 3 −π3]
T

andν(0) = ν̂(0) =

03x1. Simulation results with the sampling periodsT = 0.6 for the single-rate controller and

Tm = 0.6, Ti = 0.2, h = 0.005 for the dual-rate controller are given in Figure 7.3. It is shown

that the dual-rate controller gives faster results compared to the single-rate controller again.

7.4.2 Two-Link Robot Manipulator

Consider the dynamic model of the two-link manipulator given in Subsection 3.4.2

η̇ = ξ (7.30)

ξ̇ = M−1(η) (u−C(η, ξ)ξ −G(η)) (7.31)

132



with sampled measurementy(k) = η(k)where the state vectors areη := [q1 q2]
T

andξ :=

[q̇1 q̇2]
T
, M =

[
M1 M2
M3 M4

]

, C =
[

C1 C2
C3 C4

]

, G =
[

G1
G2

]

andu =
[ u1

u2

]
with M1 = m1l2c1+m2(l21+ l2c2+

2l1lc2 cosq2),M2 = M3 = m2l1lc2 cosq2 + m2l2c2,M4 = m2l2c2,C1 = −m2l2lc2 sinq2q̇2,C2 =

−m2l2lc2 sinq2(q̇1 + q̇2),C3 = m2l2lc2 sinq2q̇1,C4 = 0,G1 = m1glc1 cosq1 + m2g(l1 cosq1 +

lc2 cos(q1 + q2)),G2 = m2glc2 cos(q1 + q2). lc1 andlc2 are the distances of the center of mass

from the joint axes. The robot parameters are given asm1 = m2 = 5 [kg], l1 = l2 = 0.5 [m],

lc1 = lc2 = 0.25 [m]. The control objective is to solve the trajectory tracking problem.

The single-rate output feedback controlleruT with the observer (6.45) is designed in Subsec-

tion 6.4.2. Then the dual-rate output feedback controller is designed as:

uT,h = uT (yc(k), ξ̂(k)) (7.32)

ξ̂(k+ 1) = ξ̂ + T(M−1(yc)
(

uT,h −C(yc, ξ̂)ξ̂ −G(yc)
)

+ Kξ̃) (7.33)

yc(i + 1) =






y(i + 1), if i + 1 = kl,

Fa
T,h(y(i), ξ̂(i)), if i = kl

Fa
T,h(yc(i), ξ̂(i)), if i + 1 = kl + τ

(7.34)

wherek ∈ Z+, τ = 2, ..., l − 1. The numerically integrated approximate modelFa
T,h(yc, ξ̂) can

be written as:

f 1
h (yc, ξ̂) = fh(yc, ξ̂) = yc + h(ξ̂)

f k+1
h (yc, ξ̂) = fh( f k

h , ξ̂)

Fa
T,h(yc, ξ̂) = f N

h (yc, ξ̂), k = 1, 2, ...,N − 1

whereh is the integration period,T is the sampling period andN = T
h . The following

simulation parameters are set:c1 = 2, c2 = 3, c = 1 andd = 0.5 for controllers and

h = diag{5, 6} for observer. Two different reference trajectories,qd1 = qd2 =
5
4 −

5
4e−t

andqd1 = qd2 = sin(t), are considered. Then, simulations have been performed inorder to

compare performances of the single-rate and dual-rate output feedback controllers with the

initial conditionsη(0) = ξ(0) = ξ̂(0) =
[

0
0

]

and different sampling periods.

First, the single-rate and dual-rate controllers are applied to the system (7.30)-(7.31) with the

first reference trajectory,qd1 = qd2 =
5
4 −

5
4e−t.

Simulation results with sampling periodsT = 0.15 for the single-rate controller andTm =

0.15, Ti = 0.01, h = 0.001 for the dual-rate controller are given in Figure 7.4. It is shown
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Figure 7.4: Responses of the system for the first trajectory with Tm = 0.15, Ti = 0.01, h =
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andT = 0.3. Dotted line: Single-rate controller. Solid line: Dual-rate designed controller.
Dash-dotted line:desired trajectory.

134



0 2 4 6 8 10

−1

−0.5

0

0.5

1

t

q 1

(a)

0 2 4 6 8 10

−1

−0.5

0

0.5

1

q 2

t

(b)

0 2 4 6 8 10
−1

0

1

2

t

˜̇ q 1

(c)

0 2 4 6 8 10
−6

−4

−2

0

2

4

˜̇ q 2

t

(d)

Figure 7.6: Responses of the system for the second trajectory with Tm = 0.1, Ti = 0.01, h =
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that both controllers track the desired trajectory, but thetracking error converges to zero faster

with dual-rate controller.

Simulation results with sampling periodsT = 0.3 for the single-rate controller andTm =

0.3, Ti = 0.03, h = 0.003 for the dual-rate controller are given in Figure 7.5. While the

single-rate controller cannot track the trajectory, the dual-rate controller tracks the trajectory

successfully.

Then, the single-rate and dual-rate controllers are applied to the system (7.30)-(7.31) with the

second reference trajectory,qd1 = qd2 = sin(t).

Simulation results with sampling periodsT = 0.1 for the single-rate controller andTm =

0.1, Ti = 0.01, h = 0.001 for the dual-rate controller are given in Figure 7.6. It is shown that

the dual-rate controller track the desired trajectory withsmaller tracking error when compared

to the single-rate controller.

Simulation results with sampling periodsT = 0.2 for the single-rate controller andTm =

0.2, Ti = 0.005, h = 0.0005 for the dual-rate controller are shown in Figure 7.7. While the

single-rate controller cannot track the trajectory, the dual-rate controller tracks the trajectory

successfully.

7.4.3 Attitude Control of Rigid Artificial Satellite

Consider the following nonlinear equations for the digitalattitude control of a rigid artificial

satellite which were also given Subsection 3.4.3

ρ̇ = H(ρ)w, (7.35)

ẇ = J−1S(w)Jw+ J−1u (7.36)

with sampled observationy(k) = ρ(k) where w := [w1 w2 w3]
T
∈ R

3 is the angular

velocity vector of the body in a body-fixed frame,ρ ∈ R
3 is the Cayley-Rodrigues pa-

rameters describing the body orientation,u ∈ R
3 is the control torque vector of the body,

J = JT = diag{10, 15, 20} is the inertia matrix of the body [31],S(w) is the skew-symmetric

matrix given byS(w) =
[ 0 w3 −w2
−w3 0 w1
w2 −w1 0

]

andH(ρ) = 1
2(I − S(ρ) + ρρT ).

The single-rate output feedback controlleruT with the observer (6.48) is designed in Subsec-
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tion 6.4.3. Then the dual-rate output feedback controller is designed as:

uT,h = uT (yc(k), ŵ(k)) (7.37)

ŵ(k+ 1) = ŵ+ T(J−1S(ŵ)Jŵ+ J−1uT,h + Kw̃) (7.38)

yc(i + 1) =






y(i + 1), if i + 1 = kl,

Fa
T,h(y(i), ŵ(i)), if i = kl

Fa
T,h(yc(i), ŵ(i)), if i + 1 = kl + τ

(7.39)

wherek ∈ Z+, τ = 2, ..., l − 1.

The numerically integrated approximate modelFa
T,h(yc, ŵ) can be written as:

f 1
h (yc, ŵ) = fh(yc, ŵ) = yc + hH(yc)ŵ

f k+1
h (yc, ŵ) = fh( f k

h , ŵ)

Fa
T,h(yc, ŵ) = f N

h (yc, ŵ), k = 1, 2, ...,N − 1

whereh is the integration period,T is the sampling period andN = T
h . The following sim-

ulation parameters are set:L = diag{0.5, 0.5, 0.5}, c = 1 andd = 0.5 for controllers and

h = diag{1, 2, 0.4} for observer. Then, simulations have been performed in order to com-

pare performances of the single-rate and dual-rate output feedback controllers with different

sampling periods and initial conditions.

In the first simulation, the initial conditions are chosen asρ(0) = [1.4735 0.6115 2.5521]
T
,

w(0) = 03x1 andŵ(0) = 03x1 as the initial conditions of the observer. Simulation results with

the sampling periodsT = 0.5 for the single-rate controller andTm = 0.5, Ti = 0.1, h = 0.001

for the dual-rate controller are given in Figure 7.8. It is shown that both controllers stabilize

the system (7.35)-(7.36), but faster withuT .

Then, the simulation is performed with the initial conditions given above and large sampling

periods. Simulation results with the sampling periodsT = 0.8 for the single-rate controller

andTm = 0.8, Ti = 0.1, h = 0.001 for the dual-rate controller are shown in Figure 7.9. While

the single-rate controller cannot stabilize the system, the dual-rate controller stabilizes the

system successfully.

Finally, the controllers are applied to the system (7.35)-(7.36) with the same sampling periods

as in the first simulation and large initial conditions. Simulation results with 1.5-fold initial
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Figure 7.8: Time responses ofρ and w̃ with Tm = 0.5, Ti = 0.1, h = 0.001 andT = 0.5.
Dotted line: Single-rate controller. Solid line: Dual-rate controller.
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Figure 7.9: Time responses ofρ and w̃ with Tm = 0.8, Ti = 0.1, h = 0.001 andT = 0.8.
Dotted line: Single-rate controller. Solid line: Dual-rate controller.
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Figure 7.10: Time responses ofρ andw̃ with 1.5-fold initial conditions andTm = 0.5, Ti =

0.1, h = 0.001,T = 0.5. Dotted line: Single-rate controller. Solid line: Dual-rate controller.
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conditions and sampling periodsT = 0.5 for the single-rate controller andTm = 0.5, Ti =

0.1, h = 0.001 for the dual-rate controller are given in Figure 7.10. Itis shown that while the

single-rate controller cannot stabilize the system, the dual-rate controller stabilizes the system

successfully again.

7.4.4 Second-Order Single-Input System

As a last example, consider the following continuous-time plant:

η̇ = η2 + ξ (7.40)

ξ̇ = u (7.41)

whereη ∈ R andξ ∈ R are the state vectors,u ∈ R is the control input andy(k) = η(k).

The single-rate output feedback controlleruT with the observer (6.51) is designed in Subsec-

tion 6.4.4. Then the dual-rate output feedback controller is designed as:

uT,h = uT(yc(k), ξ̂(k)) (7.42)

ξ̂(k + 1) = ξ̂ + T(uT,h + Kξ̃) (7.43)

yc(i + 1) =






y(i + 1), if i + 1 = kl,

Fa
T,h(y(i), ξ̂(i)), if i = kl

Fa
T,h(yc(i), ξ̂(i)), if i + 1 = kl + τ

(7.44)

wherek ∈ Z+, τ = 2, ..., l − 1. The numerically integrated approximate modelFa
T,h(yc, ξ̂) can

be written as:

f 1
h (yc, ξ̂) = fh(yc, ξ̂) = yc + h(η2 + ξ̂)

f k+1
h (yc, ξ̂) = fh( f k

h , ξ̂)

Fa
T,h(yc, ξ̂) = f N

h (yc, ξ̂), k = 1, 2, ...,N − 1

whereh is the integration period,T is the sampling period andN = T
h . The following sim-

ulation parameters are set:c = 1 andd = 0.01 for controllers,K = 1 for observer. Then,

simulations have been performed in order to compare performances of the single-rate and

dual-rate output feedback controllers with different sampling periods and initial conditions.
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Figure 7.11: Time responses ofη, the observer error̃ξ andu with Tm = 0.8, Ti = 0.1, h = 0.05
andT = 0.8. Solid line: Dual-rate controller. Dotted line: Single-rate controller.
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Figure 7.12: Time responses ofη, the observer error̃ξ andu with Tm = 0.9, Ti = 0.1, h = 0.05
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Figure 7.13: Time responses ofη, the observer error̃ξ and u with the initial conditions
(η(0), ξ(0)) = (−3,−5) andTm = 0.8, Ti = 0.1, h = 0.05, T = 0.8. Solid line: Dual-rate
controller. Dotted line: Single-rate controller.
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Figure 7.14: Domain of attraction estimates withTm = 0.8, Ti = 0.1, h = 0.05, T = 0.8.
Diamond: Dual-rate controller. Star: Single-rate controller.
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First, the single-rate and dual-rate controllers are applied to the system (7.40)-(7.41) with the

initial conditions (η(0), ξ(0)) = (1.6, 0.5) and (̂ξ(0)) = 0. Simulation results with the sampling

periodsT = 0.8 for the single-rate controller andTm = 0.8, Ti = 0.1, h = 0.05 for the

dual-rate controller are shown in Figure 7.11. It is observed that both controllers stabilize the

system (7.40)-(7.41), but faster withuT .

Next, the simulation is performed with the initial conditions given above and large sampling

periods. Simulation results with the sampling periodsT = 0.9 for the single-rate controller

andTm = 0.9, Ti = 0.1, h = 0.05 for the dual-rate controller are can be seen from Figure 7.12.

It is shown that both controllers stabilize the system (7.40)-(7.41), but the dual-rate controller

yields better performance when compared to the single-ratecontroller.

Then, the controllers are applied to the system (7.40)-(7.41) with the same sampling periods

as in the first simulation and large initial conditions (η(0), ξ(0)) = (−3,−5) and (̂ξ(0)) = 0.

Simulation results with the sampling periodsT = 0.8 for the single-rate controller andTm =

0.8, Ti = 0.1, h = 0.05 for the dual-rate controller are given in Figure 7.13. It is shown that

the dual-rate controller gives faster results when compared to the single-rate controller.

Moreover, as can be seen from figures, the dual-rate controller produces the control input

with less energy when compared to the single-rate controller. Therefore, the dual-rate control

method requires less control effort.

Finally, by applying the controllers to the system (7.40)-(7.41) with different initial condi-

tions, domain of attraction (DOA) estimates with the single-rate and dual-rate controllers are

given in Figure 7.14. In DOA estimates, the sampling periodsare chosen asT = 0.8 for

the single-rate controller andTm = 0.8, Ti = 0.1, h = 0.05 for the dual-rate controller. As

can be seen from figure, DOA for the system with the dual-rate controller is almost same as

that with the single-rate controller. For different controller parameters and sampling periods,

much larger DOA estimate may be obtained with the dual-rate controller when compared to

the estimate given in figure.
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7.5 Conclusions

In this chapter, the problem of dual-rate output feedback stabilization of sampled-data non-

linear systems has been considered under the low measurement rate constraint. The dual-

rate control scheme has been presented based on estimation of the missing output values

between measured output samples using approximate discrete-time model. It is shown that if

one designs a single-rate observer-based output feedback controller which SPA stabilizes the

sampled-data nonlinear system, then the dual-rate observer-based output feedback controller

will also SPA stabilize the exact discrete-time plant model. Then, numerical examples have

been given to illustrate the design method.

Using simulations, the performance of the designed dual-rate controller has been compared

with the single-rate controller. It was observed that the dual-rate controller yielded better

performance. The dual-rate controller can stabilize the systems with larger sampling periods.
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CHAPTER 8

CONCLUSIONS & FURTHER RESEARCH

Because of technological advances in computer technology,nowadays controllers are imple-

mented using a digital computer in most control engineeringsystems. Therefore sampled-data

systems have received much attention in recent years. Although sampled-data nonlinear con-

trol has attracted much attention in recent years, the controller design methods for sampled-

data nonlinear systems are still limited.

In this thesis, digital controller design methods for sampled-data nonlinear systems have been

investigated. The direct discrete-time design, one of the main approaches to sampled-data

design, based on approximate plant models has been the focusof this research.

In this chapter, the main contributions of the thesis will besummarized and the topics for

further research will be stated.

8.1 Conclusions

In this thesis, a reduced order observer design and a range ofcontroller design tools have been

proposed for sampled-data nonlinear systems in strict feedback form. Then, a dual-rate con-

trol scheme has been presented for the problem of dual-rate output feedback stabilization of

sampled-data nonlinear systems under the low measurement rate constraint. To illustrate the

tools in this thesis, these tools were applied to several examples arising from the engineering

practice. Their performances were analyzed with simulations. The conclusions from each

part of the thesis are the following.

In Chapter 3, a backstepping design method has been developed for sampled-data nonlinear
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systems in strict feedback form. Different from the backstepping controller given in [48],

the controller in this thesis is designed for multi-input sampled-data nonlinear systems to

compensate the effects of the discrepancy between the Euler approximate modeland exact

discrete time model by adding a nonlinear damping term. It was shown by simulations that the

designed controller outperforms the controllers given in [48] and [26] which is an extension of

the controller in [48] to multi-input sampled-data nonlinear systems. This method can be used

for sampled-data nonlinear systems in strict feedback formwhen all the states are measured.

In Chapter 4, two SPA stabilizing adaptive backstepping design methods have been presented

for sampled-data nonlinear systems in strict feedback form. The controllers are designed

to compensate the effect of the error in parameter estimation. It was shown by simulations

that the designed controllers outperform the emulation controllers. These controllers can be

applied to the sampled-data nonlinear systems in strict feedback form in case of parameter

uncertainty.

In Chapter 5, a robust backstepping method has been developed for sampled-data nonlin-

ear systems in strict feedback form. This controller is a modified version of the controller

given in [58]. Different from the controller in [58], the controller in this thesis is designed

to compensate the effect of difference between disturbance or model uncertainty and their

bounds. It was shown by simulations that the designed controller outperforms the controller

given in [58]. To deal with model uncertainty and disturbances, this controller can be used for

sampled-data nonlinear systems in strict feedback form.

In Chapter 6, a reduced order observer design has been presented, which is an extension of

the reduced order observer given in [33] to a general class ofmulti-input nonlinear systems.

The observer error converges to zero by the designed observer. It was shown by simulation

that the designed observer gives faster results than the observer given in [25].

Then, a reduced-order observer-based SPA stabilizing backstepping method has been given

for sampled-data nonlinear systems in strict feedback formin Chapter 6. Different from the

backstepping controller given in [25], the controller in this thesis is designed to compensate

the effects of observer error. It was shown by simulations that the designed controller outper-

forms the controller given in [25]. This method can be applied to the applications where only

a part of the state vector is available from measurement.
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In Chapter 7, for the problem of dual-rate output feedback stabilization of sampled-data non-

linear systems under the low measurement rate constraint, adual-rate control scheme has

been presented based on estimation of the missing output values between measured output

samples using approximate discrete-time model. It was shown that if one designs a single-

rate observer-based output feedback controller which SPA stabilizes the sampled-data nonlin-

ear system, then the SPA stability property will be preserved by the dual-rate observer-based

output feedback controller. This control scheme can be usedin applications where hardware

restrictions on input and measurement sampling rate is different. Also network load mini-

mization can be achieved by this method.

Consequently, the proposed design tools have been applied to the practical applications such

as, ship, robot manipulator, satellite, etc. Simulation results have shown that the controllers

designed by the proposed tools yield better results when compared to the controllers existing

in the literature. The controllers designed by the proposedmethods enlarge the domain of

attraction and stabilize the sampled-data nonlinear systems with larger sampling periods in

general. When the simulation results with the proposed methods are compared, it can be

observed that observer-based output feedback controller given in Chapter 6 gives slightly

faster results when compared to the state feedback controller given in Chapter 3. In Chapter 7,

it was shown that the dual-rate output-feedback controlleroutperforms the single-rate output-

feedback controller. As a result, it can be said that dual-rate output-feedback controller yields

faster results when compared to the other controllers proposed in this thesis.

8.2 Further Research

Although this thesis has developed some design methods, there seems to be still a lot of work

to be done to develop a comprehensive set of tools that control engineers can use directly for

sampled-data controller design.

In this thesis, design tools based on the Euler approximate model have been given for sampled-

data nonlinear systems in strict feedback form. Hence, design tools for other types of sampled-

data nonlinear systems which cannot be expressed in strict feedback form may be developed.

Also, controllers may be designed using the approximate discrete-time models different from

the Euler approximate model.
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In this research, reduced order observer-based controllerdesign has been presented. There-

fore, for general output dynamical controllers (not necessarily observer-based), sampled-data

control design methods can be developed. Also dual-rate control scheme given in this thesis

can be applied to sampled-data systems with general output dynamical controllers.

In this thesis, a reduced order observer design has been presented, which is an extension of the

reduced order observer given in [33] to a general class of multi-input nonlinear systems. New

observer design methods for sampled-data nonlinear systems using the approximate model

can be studied. Moreover, the reduced observer-based controller given in this thesis can be

applied with the new observers designed and their performances can be analyzed.

The design tools have been applied to the practical applications such as, ship, robot manip-

ulator, satellite, etc. Application of these tools to otherpractical applications which can be

expressed in strict feedback form may be a further research topic.
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