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ABSTRACT

MINING MICROARRAY DATA FOR BIOLOGICALLY IMPORTANT GENE
SETS

Korkmaz, Gülberal Kırçiçeği Yoksul

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Mehmet Volkan Atalay

March 2012, 166 pages

Microarray technology enables researchers to measure the expression levels of thou-

sands of genes simultaneously to understand relationships between genes, extract

pathways, and in general understand a diverse amount of biological processes such

as diseases and cell cycles. While microarrays provide the great opportunity of reveal-

ing information about biological processes, it is a challenging task to mine the huge

amount of information contained in the microarray datasets. Generally, since an accu-

rate model for the data is missing, first a clustering algorithm is applied and then the

resulting clusters are examined manually to find genes that are related with the bio-

logical process under inspection. We need automated methods for this analysis which

can be used to eliminate unrelated genes from data and mine for biologically impor-

tant genes. Here, we introduce a general methodology which makes use of traditional

clustering algorithms and involves integration of the two main sources of biological

information, Gene Ontology and interaction networks, with microarray data for elimi-

nating unrelated information and find a clustering result containing only genes related

with a given biological process. We applied our methodology successfully on a number

of different cases and on different organisms. We assessed the results with Gene Set
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Enrichment Analysis method and showed that our final clusters are highly enriched.

We also analyzed the results manually and found that most of the genes that are in

the final clusters are actually related with the biological process under inspection.

Keywords: microarray analysis, Gene Ontology, interaction networks, clustering
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ÖZ

BİYOLOJİK ÖNEM TAŞIYAN GEN LİSTELERİNİN BULUNMASI İÇİN
MİKRODİZİ VERİ MADENCİLİĞİ

Korkmaz, Gülberal Kırçiçeği Yoksul

Doktora, Bilgisayar Mühendislig̈i Bölümü

Tez Yöneticisi : Prof. Dr. Mehmet Volkan Atalay

Mart 2012, 166 sayfa

Mikrodizi teknolojisi araştırmacıların aynı anda birçok gen ifade seviyesini ölçerek

genler arasındaki ilişkileri anlamalarını, yolakları bulmalarını ve genel olarak hastalık-

lar, hücre döngüsü gibi birçok biyolojik olayı anlayabilmelerini sağlamaktadır. Aynı

anda büyük sayılarda deneyin yapılmasına olanak sağlamakla birlikte, bu büyük mik-

tarda mikrodizi verisini araştırmak ilgi çekici bir konudur. Veri hakkında önceden

fazla bilginin olmaması nedeni ile genellikle önce veriye bir bölümleme algoritması

uygulandıktan sonra bulunan bölümler konu ile ilgili önemli genleri bulmak amacı ile

araştırmacılarca incelenir. Bu incelemeyi kolaylaştırmak için gereksiz genleri eleyerek

biyolojik olarak önemli genleri bulacak otomatik metotlar gereklidir. Bu tezde mevcut

bölümleme algoritmalarını kullanan, Gen Ontolojisi ve etkileşim ağları olmak üzere

iki ana biyolojik bilgi kaynağını birleştirerek mikrodizi verisindeki gereksiz bilgileri

eleyen ve çıktı olarak sadece deneyle ilgili genleri içeren bir bölümleme veren genel

bir metodoloji sunulmaktadır. Sunulan metodoloji birçok farklı veri üzerinde denen-

miş ve umut verici sonuçlar elde edilmiştir. Sonuçlar Gen Seti Zenginleştirme Metodu

(GSEA) ile karşılaştırılmış ve metodoloji ile bulunan bölümlerin yüksek zenginleştirme

skorlarına sahip olduğu görülmüştür. Sonuçlar üzerinde yapılan detaylı incelemelerde
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de bölümleme sonucunda bulunan genlerin büyük çoğunluğunun deney konusu olan

biyolojik süreç ile ilişkili olduğu tespit edilmiştir.

Anahtar Kelimeler: bölümleme, mikrodizi, gen ontolojisi, etkileşim ağları
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There are thousands of genes in the genome of an organism. At a given instant of

time, only a small percentage of them are expressed. Thanks to the microarray tech-

nology, the expression levels of thousands of genes can be measured simultaneously.

Microarray technology enables researchers to study the expressions of entire genomes

under different conditions. Microarray experiments are used to understand relation-

ships among genes, extract pathways, and in general to understand a diverse amount

of biological processes. While microarrays provide great opportunity of revealing in-

formation about biological processes, it is a challenging task to mine the the massive

quantity of microarray datasets to identify important aspects of biological processes.

The methods to analyze microarray data should address the curse of dimensionality

problem raised by the tens of thousands of genes and small sample sizes, i.e. small sizes

of experimental conditions or time points compared to the number of measurements.

1.2 Problem Definition

A widely used technique in mining microarray data is to apply clustering since an

accurate model for the data is missing. There are dozens of clustering algorithms

available in the literature, each of which is better under certain conditions. Generally,

clustering algorithms all result with different number of clusters and cluster contents

differ greatly as can be seen from the results presented in Chapter 5. To solve these

stability problems, ensembles of clusters approach may be considered. However, even

1



when the perfect clustering that fits to the data is achieved, the interpretation of

the clustering still remains as a problem to solve. For the interpretation of results,

biologists apply enrichment methods to select important clusters and then manually

analyze the genes in the selected clusters. In the analysis, they make use of the

information contained in databases such as Gene Ontology, pathway databases and

biological networks. Among tens of thousands of genes, at most hundreds of them are

related with the biological process under inspection. We need automated methods to

mine for that hundreds of biologically important genes.

Another problem to be solved in mining microarray data is the combination of het-

erogeneous datasets. There are experiments made at different times and conditions

about the same process, with different number of samples and genes involved. We need

methodologies to find the genes that play a common role among these experiments

about the same biological process performed at different times and conditions.

The problem definition is to find biologically important genes in an experiment or

locate the common characteristics between heterogeneous datasets without facing the

curse of dimensionality problem. We should make use of the previous knowledge about

genes contained in the biological information resources. Gene Ontology is an important

resource containing information about genes and it is widely used. Gene interaction

network is yet another important source of information that enriches the knowledge

about genes and gene lists. Furthermore, the number of known gene interactions is

constantly growing thanks to the recent developments in research. Therefore, it is

valuable to combine these two important sources of information in the analysis.

1.3 Contributions

In this thesis, we provide a general methodology which involves integration of Gene

Ontology, interaction networks and microarray data to eliminate unrelated informa-

tion from microarray data and find a clustering result containing only genes which

are related with the biological process under inspection. The methodology is also

applicable to the problem of combination of heterogeneous datasets.

The contributions of this thesis are as follows:
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• We describe and assess Interaction Based Homogeneity , a measure to eval-

uate the relationship of a gene list with respect to an interaction network. To

the best of our knowledge, this is the first study to use interaction networks in

the calculation of homogeneity of gene lists.

• We propose a gene weight measure calculated from Interaction Based Ho-

mogeneity values of the clusters that a gene belongs to and use it to clean up

clusters.

• We propose a novel and robust methodology called Cluster-Eliminate-Combine

(CEC) integrating Gene Ontology and interaction networks for mining microar-

ray data.

• We show that instead of using whole interaction networks, taking their subset

using Gene Ontology terms dramatically improves the performance of the anal-

ysis.

• We show that the CEC methodology is applicable for different cases such as

combining multiple clustering algorithms for the analysis of the same microar-

ray data and for combining heterogeneous microarray experiments to find their

common characteristics.

1.4 Organization of the Thesis

A brief introduction is already given in this chapter. Background and literature in-

formation about microarray data analysis, clustering ensembles, gene ontology, inter-

action networks, enrichment methods and data integration is presented in Chapter 2.

Interaction Based Homogeneity is presented in Chapter 3. Cluster-Eliminate-Combine

methodology is outlined in Chapter 4 along with the results proving the necessity of

each component of the methodology. Chapter 5 contains detailed results and discus-

sions of applying the CEC methodology to a diverse set of datasets and cases. The

thesis ends with Chapter 6 which contains conclusions and future work.
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CHAPTER 2

BACKGROUND INFORMATION

One of the biggest challenges in bioinformatics research is to infer networks which rep-

resents relations among genes. Usually, high throughput experiments such as microar-

ray experiments are applied to gather information for network construction. Generally,

a two-step approach has been taken in order to interpret the results of the microarray

experiments to infer relationships. First, a clustering algorithm is applied onto the

data. The clustering results are then interpreted to extract relationships [1, 2, 3]. In

the first section of this chapter, clustering algorithms for microarray data is summa-

rized. In the second section, a survey on clustering combination methods is given. The

third section describes methods for the interpretation of clustering results. The next

section summarizes partition similarity metrics used in our study. The last section

contains a survey on methods integrating different biological information sources.

2.1 Clustering Microarray Data

For clustering microarray data, general clustering methods such as k -means and hi-

erarchical clustering [4, 5, 6, 7] are widely used. In addition to general algorithms,

there are algorithms designed specifically for the analysis of microarray data. Fu

and Medico proposed the Fuzzy Clustering by Local Approximation of Membership

(FLAME) method which is based on a fuzzy clustering algorithm which makes use

of neighborhood information. The implementation of the algorithm can be found in

Gene Expression Data Analysis Studio (GEDAS) [2]. Huttenhower et al. proposed

Nearest Neighbor Networks (NNN) clustering algorithm which uses neighborhood in-

formation to construct an interaction graph and searches for mutual cliques in this
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graph to find clusters [8].

A popular and recent method is biclustering which clusters simultaneously genes and

samples or experimental conditions [9]. A survey on biclustering algorithms is provided

by Tanay et al. [10]. Prelic´ et al. provides a comparison of biclustering methods for

gene expression data [11].

A specific type of microarray experiments is called time-series microarray experiments

at which the expression of genes are measured at different time points. There are algo-

rithms designed specifically for time series microarray data. Schliep et al. proposes a

mixture model with Hidden Markov Models for analyzing time series data [12]. They

apply partially supervised learning of mixtures through a modification of Expectation

Maximization algorithm. Ernst et al. proposed Short Time Series Expression Miner

method which first finds model profiles from the data and then uses them to find clus-

ters [3]. The method is implemented in Short Time Series Expression Miner (STEM)

tool. Sacchi et al. proposed Temporal Abstraction method for clustering short time

series data [13]. The method is a generalization of the template-based clustering.

The implementation of the algorithm can be found in TimeClust application [14].

Bin and Russo [15] filter genes and apply dimensionality reduction to the data before

clustering.

In this work, we use five different clustering methods: FLAME, GQL, NNN, STEM

and TAC. The details of these methods are given in the following subsections.

2.1.1 FLAME: Fuzzy Clustering by Local Approximation of Membership

Fu and Medico proposed the FLAME method which is a fuzzy clustering algorithm

based on neighborhood information for the analysis of DNA microarray data. The

implementation of the algorithm can be found in Gene Expression Data Analysis

Studio (GEDAS) [2]. The method has three steps. In the first step, the object

density of each gene (object) is calculated by using the distance between its k nearest

neighbors. By using these densities, Cluster Supporting Objects and outliers are

defined. In the next step, each object is assigned to a fuzzy membership vector in an

iterative process which makes use of the object densities and the Cluster Supporting
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Objects. In the final step, clusters are constructed by using the fuzzy membership

vectors. In the following three subsections, the details of each step is given.

2.1.1.1 Extraction of Local Structure Information and CSO Identification

In this step, the similarities between each pair of objects are calculated and the k -

nearest neighbors are identified for each object. The density of each gene is calculated

as one over the average distance of the gene to its k nearest neighbors. Cluster

Supporting Objects are identified as the genes with higher densities than all of its

neighbors. Similarly, outliers are then identified as genes with lower densities than its

neighbors. In addition, a density threshold is also applied to locate the outliers. The

density threshold is calculated by using the mean and variance of the densities.

2.1.1.2 Local Approximation of Fuzzy Membership

In this step, each gene x is associated with a fuzzy membership vector p(x) such that

p(x) = (p1(x), p2(x), ..., pM(x)) where,

pi(x) denotes the membership of gene x to cluster i,

0 ≤ pi(x) ≤ 1;
∑M

i=1 pi(x) = 1, and

M is the number of clusters defined as the number of Cluster Supporting Objects plus

one (for outliers).

For the calculation of the membership vector, the weights defining how much each

neighbor contributes to the approximation is calculated by

wxy =
s(x, y)∑

z∈KNN(x) s(x, z)
,

where s(x, y) is the similarity between x and y.

The membership vector is then calculated in an iterative process of local approxima-

tion:

pt+1(x) =
∑

y∈KNN(x) wxy pt(y),
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p0
i (x) = 1, p0

j(x) = 0, j , i, 1 ≤ j ≤ M for Cluster Supporting Objects representing

cluster i,

p0
M(x) = 1, p0

j(x) = 0, 1 ≤ j < M for outliers and,

p0
i (x) = 1

M , for every other gene.

2.1.1.3 Cluster Construction

In this step, membership vectors are used to construct clusters. One object can be

assigned to multiple clusters if it has a high membership score for more than one

cluster. Also, some objects are not assigned to any clusters if they don’t have a high

membership score for any of the clusters. These objects are also labeled as outliers.

2.1.2 GQL-Cluster: Graphical Query Language

Schliep et al. proposed a mixture model for analyzing time series data with Hidden

Markov Models [12]. They apply partially supervised learning of mixtures through

a modification of Expectation Maximization algorithm. The method has four main

parts. The first part is a class of Hidden Markov models. They applied a linear chain

HMM topology with the addition of possibility of transition from the last to the first

state for cyclic behavior. In the models, states do not have a specific semantic. The

second part is for selection of an initial collection of models. The authors proposed

three methods for choosing a starting point for mixture estimation. The first method

is expert selection by using a graphical tool. The second method is to use randomized

models. The third method is to learn initial models. The third part is for estimating

a finite mixture. The last part is to infer groups from the mixture.

2.1.3 NNN: Nearest Neighbor Networks

Huttenhower et al. proposed Nearest Neighbor Networks (NNN) clustering algorithm

which makes use of small cliques of mutual nearest neighbors in an interaction network

to find clusters [8]. The input of NNN is a set of m genes, a similarity measure s(x, y),

and a neighborhood size k. For each gene gi, N(gi) which represents the set of k nearest
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neighbors of gi according to the similarity matrix s is calculated. An undirected graph

is constructed such that the vertices are the genes and there is an edge between gene

gi and gene g j if g j is in N(gi) and gi is in N(g j), i.e. the two genes are mutual nearest

neighbors. Then, all cliques of size g are identified, overlapping cliques are merged to

produce preliminary networks representing potential clusters. Subsequently, clusters

which has cut vertices are divided into two clusters and the cut vertices are included

in both of the clusters. Here, cut vertices represents genes connecting clusters which

shares no other interactions.

2.1.4 STEM: Short Time Series Expression Miner

Ernst et al. proposed a method designed specifically for short time series microarray

data [3]. The method is implemented in Short Time Series Expression Miner (STEM)

tool. The method has three main steps. In the first step, the model profiles are

selected. In the next step, genes are assigned to a model profiles and the significant

profiles are located. And in the final step, the significant profiles are grouped to find

final clusters. In the following subsections, details of these steps are given.

2.1.4.1 Selecting Model Profiles

In this step, first, model profiles are generated by using a user-defined parameter c

which controls the amount of change a gene can exhibit between successive time points.

For n time points, a profile is a vector of size n − 1, and each entry in the vector has

a value between −c and c. As an example, if c=2, a gene can go up either one or two

units (1 and 2), stay the same (0), or go down one or two units (-1 and -2). For n time

points, (2c + 1)(n−1) profiles are generated. If P represents the set of profiles, the set

R of model profiles is constructed such that the minimum distance between any two

profiles in R is maximized. The algorithm starts with R = p1 where p1 = −1,−1, ...,−1.

Then, in each iteration the profile r which satisfies:

r = max
p∈P\R

min
q∈R

d(p, q)

is added to R. This process is repeated m times where m is the user-defined number

of model profiles.
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2.1.4.2 Identifying Significant Model Profiles

In this step, each gene g is assigned to a model profile with the smallest distance.

After this assignment, the significant model profiles which deviates significantly from

the null hypothesis are identified by using a permutation based test. Each gene has n!

permutations. Each possible permutation is assigned to its closest model profile. Let

s j
i be the number of genes assigned to model profile i in permutation j. The expected

number of genes for model profile i is calculated by

Ei =

∑
j s j

i

n!

If the number of genes assigned to model profile i is greater than the expected value,

it is selected as a significant model profile.

2.1.4.3 Grouping Significant Profiles

The last step is to determine and group similar significant profiles. For this reason, a

graph G = (V, E) is constructed in which the nodes V are the significant model profiles

and there is an edge between two nodes if the distance between two profiles are smaller

than a threshold. Cliques in this graph represents the profiles that should be grouped.

In order to locate cliques, a greedy algorithm which grows a cluster Ci around each

significant model profile pi is applied. The algorithm starts with Ci = pi. Then, at

each step, a profile p j which is connected to every node in Ci is selected and added to

Ci. After obtaining clusters for each significant profile, the largest cluster is selected

and removed from the graph. The process is repeated until every profile is assigned

to a cluster.

2.1.5 TAC: Temporal Abstraction Clustering

Sacchi et al. proposed Temporal Abstraction method for clustering short time series

data [13]. Temporal Abstraction Clustering is a generalization of the template-based

clustering. The implementation of the algorithm can be found in TimeClust applica-

tion [14]. The algorithm has two steps. In the first step, qualitative representation of

the time series is inferred from the data. In the next step, the qualitative represen-
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tation is used to cluster data. In the following subsections, details of these steps are

given.

2.1.5.1 Temporal Abstraction Detection and Time Series Representation

Time series are represented with a qualitative label consisting of trend temporal ab-

stractions which are inferred from the expression profiles by applying piecewise linear

approximations. There are three types of trends: increasing, decreasing and steady.

For each expression profile, a set of dominant points which are time points at which

is the start of the significant change of the trend starts are determined. Given two

time points ti and t j, the arc length S i j is defined as the sum of the lengths of all the

segments joining pairs of consecutive points between ti and t j. The chord length Ci j is

the length of the segment joining ti and t j. Then, the point t j−1 is a dominant point

if

√
S 2

i j−C2
i j

2 > T , where T is a predefined threshold, in other words if the slope change

that occur between ti and t j is higher than a threshold. After finding dominant points,

each interval between two dominant points is labeled with a trend according to the

slope between them. Then, a three level representation of the qualitative pattern is

created. The first level, named L1 is the immediate output of the temporal abstrac-

tion detection phase. The next level, L2 is created by combining consecutive interval

labels of the same type into same label. The last level L3 is obtained by removing all

elements of type steady from the temporal abstractions.

2.1.5.2 Temporal Abstraction Clustering

The clustering step starts with the first gene and build initial sets of clusters for each

level of representation. Then, for each gene, the temporal abstraction pattern of the

gene and each cluster is compared. If the temporal abstraction pattern of the gene

is matched with a cluster, the gene is assigned to the cluster. If there is no match, a

new cluster is created and the gene is assigned to the newly created cluster.
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2.2 Combination of Multiple Clustering Algorithms

There are a dozen of different clustering algorithms, each of which is suitable for a

different model or cluster shape. Since in most of the cases, the shape of the cluster is

not known in advance, combination of clusterings is widely applied to obtain a stable

and robust clustering solution [16, 2, 17, 18]. This approach is also called clustering

ensembles or consensus clustering. The approach is summarized in Figure 2.1. The

partitions, i.e. different clustering solutions, can be obtained in several ways such as

applying the same algorithm with different parameters, using different distance metrics

or applying different clustering algorithms to the data. Topchy et al. showed that

with the increasing number of partitions, the clustering ensembles method approaches

to a true clustering solution [19, 17].

Fred and Jain [20, 21] introduced the idea of evidence accumulation which creates

a new similarity matrix from the initial partitions by a voting mechanism and then

perform hierarchical clustering based on the new similarity matrix. The evidence

accumulation clustering method makes no assumptions on the number of clusters in

each partition. Assuming that patterns belonging to natural clusters are more likely

to co-exist in the same cluster than in different partitions, they propose a new measure

based on voting mechanism to combine partitions. They create a new nxn similarity

matrix C called co-association matrix from N partitions of n patterns as:

C(i, j) =
ni j

N
,

where ni j is the number of co-occurrences of pattern pair (i, j) in N partitions.

Clustering ensembles method is also applied to different bioinformatics problems. Hu

and Yoo applied the ensembles method to gene expression data analysis [22]. They

first create a distance matrix based on clustering solutions, then apply a graph based

clustering algorithm to obtain a consensus clustering. Yu et al. applied a graph

based consensus clustering algorithm for class discovery from microarray data [23].

Chakrabarti and Panchenko applied clustering ensembles method to the problem of

finding determining sites for functional specification or diversification in protein fami-

lies by combining three best performing methods [24]. Glaab et al. created a web based
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tool which provides ensemble and consensus methods for microarray analysis [25].
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Figure 2.1: Outline of the clustering ensembles method.

2.3 Interpretation of Clustering Results

Interpretation of clustering results is an important step in microarray data analy-

sis. While interpreting clustering results, methods annotate each cluster with GO

terms [26], protein structural information [27], MeSH categories [28], protein-protein

interactions, pathways [29], functional categories [30] and enrichment according to pre-

defined gene lists [31] along with some statistical significance measures. The method

of annotating each cluster is applicable when the assignments are to be analyzed and

interpreted by experts. However, in some cases interpretation by experts can be very

difficult and time consuming, especially when there are dozens of clusters which con-

tains thousands of genes and each of the clusters have several annotations. When we

need to decide which clusters are more important and contains biologically relevant

genes, we need some quantitative measures of the quality of gene lists. Such measures

can also be used in other applications such as evaluation and comparison of different

clustering algorithms.

Most of the popular measures are based on Gene Ontology (GO) [32]. Wang et al.

defines a GO-based measure which gives weights to different relationships among GO

terms and calculate semantic values of GO terms by taking ancestor terms into con-

13



sideration [33]. The semantic values of terms are then used to calculate the similarity

between GO terms. Datta and Datta propose two performance measures called Biolog-

ical Homogeneity Index and Biological Stability Index for cluster evaluation in terms of

the algorithm’s capability to produce biologically meaningful clusters using a reference

set of functional classes [34]. Resnik’s similarity is defined to calculate the semantic

similarity based on the information content. It is applied to GO terms first by Lord et

al. [35]. Resnik’s similarity is widely used in GO-based evaluation [36, 37, 38, 39, 40].

GOSemSim package [41] which is available through Bioconductor [42], contains im-

plementations of various GO-based measures including Resnik’s similarity.

Interaction network is another important source of information. There is a growing

number of known interactions with the contribution of recent work [43, 44, 45]. Pattin

and Moore provide a good review on the importance of interaction networks in genetic

research and state that knowledge on interaction networks complements the knowledge

on genome and the use of these two sources of information together can provide an

in-depth understanding of biological phenomena such as diseases [46]. As stated by

Marco and Marin, Gene Ontology and interaction networks are mostly correlated;

however, there are cases in which these two show significant differences [47].

2.4 Comparison of Partition Similarity

At different stages of our work, we needed comparison of partitions. For this purpose,

we applied three different metrics which are defined in [48] as:

When comparing two partitions M and N:

• Rand statistic represents the average number of agreements between clusters M

and N and defined as

Rand =
(a + d)

(a + b + c + d)
.

• Jaccard coefficient represents the average number of elements contained in the

intersection of clusters and defined as

Jaccard =
(a)

(a + b + c)
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• Folkes and Mallows index represents agreements between clusters M and N.

The index is successful in discriminating unrelated clusters from related ones

and defined as

FolkesAndMallows =
√

a
(a + b)

∗
a

(a + c)
,

where

• a is the number of pairs of data points which are in the same cluster of M and

in the same cluster of N,

• b is the number of pairs of data points which are in the same cluster of M but

in different clusters of N,

• c is the number of pairs of data points which are in different clusters of M but

in the same cluster of N, and,

• d is the number of pairs of data points which are in different clusters of M an in

different clusters of N.

For each of the three measures, higher values represent more similar clusterings.

2.5 Integration of Biological Information Resources

Recently, there are methods that integrate biological information resources such as

Gene Ontology and interaction networks into microarray data analysis. Yeh et al.

integrates microarray data, disease genes and interaction networks to locate drug

targets [49]. Weights are assigned to interactions in network by using the microarray

data, model the problem of finding drug targets as a maximum flow problem and

use disease genes to solve the maximum flow problem to locate drug targets. Zhao

et al. [50] combine interactions and microarray data to locate drug targets. They

assign weights to genes by using the distance of a gene to known disease genes in the

interaction network and gene expression values. Both of the methods are specific to

finding drug targets and do not make use of information about genes contained in

Gene Ontology.
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Lee et al. [51] incorporate microarray and interaction data to construct a subnet-

work of abnormally expressed genes in postmortem brain samples of schizophrenia,

bipolar disorder, and major depression patients. After constructing the subnetwork,

they analyzed abnormally expressed genes by using topological features of the subnet-

work and with several enrichment tools. The study does not provide an automated

methodology to incorporate microarrays and interaction networks, however, it clearly

shows the significance of incorporating microarrays and interaction networks.

Smoot et al. [52] incorporate Gene Ontology and interaction networks to visualize

the subnetworks that are enriched by the input GO terms. Although it provides users

to visually analyze the subnetwork to locate candidate genes, they do not make use

of microarray data in their study.

From these examples, we can clearly say that the integration of biological information

sources enables us to reveal previously unknown biological infomation. We need meth-

ods such as the Cluster-Eliminate-Combine that we propose in our study to automate

this integration and analysis.
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CHAPTER 3

INTERACTION BASED HOMOGENEITY

The number of known interactions is growing significantly thanks to the current re-

search. In order to incorporate the interaction information source in the analysis of

microarrays, we should apply measures based on interaction networks. In this chapter,

we describe Interaction Based Homogeneity (IBH) which is a measure to evaluate the

relation of the gene lists with respect to a known interaction network.

3.1 Homogeneity

Homogeneity is widely used to evaluate similarity of gene lists, especially in the eval-

uation of clustering results [53, 54, 55, 1, 34]. Assume that we have a gene list

L = {g1, g2, ..., gn} of size n. By using the similarity measure S (gi, g j) of two genes

gi and g j, the homogeneity of list L is defined as follows:

Homogeneity(L) =

∑n
i=1
∑n

j=1 S (gi, g j)

n2 .

.

Here, homogeneity is defined as the average of the similarities between each element in

the list. Homogeneity ranges from 0 to 1; 0 meaning that genes in list are not similar

and 1 meaning that all genes in list are similar.
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Figure 3.1: The graph representation of a very small sub-network of yeast.

3.2 Interaction Network

An interaction network is a representation of the cell as a biological model. There

are two types of interactions in an interaction network. The first one is the protein-

protein interactions, which represent the dynamics of cell function. The second type of

interactions is genetic interactions that represent the relationship between regulatory

modules of the cell. The interaction network can be modeled as a graph in which

proteins or genes are represented as nodes and the relationship between them is repre-

sented as edges. As an example, the graph representation of a very small sub-network

of yeast is given in Figure 3.1.

There are several repositories containing interactions such as IntAct [56], STRING [57],

MIPS [58], MINT [59] and BioGRID [45]. Among them, Biological General Repository

for Interaction Datasets (BioGRID) is a unified database of interactions which contains

both protein-protein and genetic interactions for various organisms.
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Table 3.1: Adjacency matrix of the graph in Figure 3.1.

YDR378C YDR369C YDR439W YLJ124C YGL173C YML032C YMR198W
YDR378C 0 1 1 1 1 1 1
YDR369C 1 0 1 0 1 1 0
YDR439W 1 1 0 0 1 1 0
YLJ124C 1 0 0 0 1 1 1
YGL173C 1 1 1 1 0 1 1
YML032C 1 1 1 1 1 0 1
YMR198W 1 0 0 1 1 1 0

3.3 Interaction Based Homogeneity

Given a gene list L of n genes and a network E, we first form an adjacency matrix

A whose rows and columns are genes in L where Ai j = 1 if genes i and j have an

interaction in the E and Ai j = 0 otherwise. Interaction Based Homogeneity for a gene

list L = {g1, g2, ..., gn} with respect to a network E is then calculated as follows:

IBHE(L) =

∑n
i=1
∑n

j=1 Ai j

n2 .

.

As an example, the adjacency matrix for the sub-network in Figure 3.1 is given in

Table 3.1. IBH for the gene list

Lexample = {YDR369C,YDR378C,YDR439W,Y JL124C,YGL173C,Y ML032C,Y MR198W}

is

IBH(Lexample) = 0.694.

3.3.1 Relationship with Other Network-Based Measures

There are a numerous number of measures based on interaction network. The degree

of a gene g on an interaction network E of n nodes that has the adjacency matrix A is

defined as:

DE(g) =
n∑

i=1

Agi.
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The interaction based homogeneity is equal to the normalized average degree of genes

in a gene list L on the interaction network E:

IBHE(L) =
∑n

i=1 DE(L(i))
n2 .

There is also a popular measure called clustering coefficient that is defined as the

normalized number of edges (interactions) between the neighbors of a node. In other

words, the clustering coefficient of a gene g given an interaction network represents the

number of interactions between genes interacting with g. The clustering coefficient of

a gene g given an interaction network E of n nodes that has the adjacency matrix A

is defined as:
CE(g) =

∑n
i=1
∑n

j=1 AgiAg jAi j

kg ∗ (kg − 1),

where kg is the number of genes interacting with gene g and calculated as:

kg =

n∑
i=1

Agi.

Both of the IBH and clustering coefficient measure the connectedness of the interac-

tion network. When the interaction network is fully connected, the interaction based

homogeneity and clustering coefficient are equal.

3.4 Comparison

To evaluate the performance of Interaction Based Homogeneity, we compared it with

four different enrichment methods. First two methods are GO-based homogeneities

calculated by two different popular similarity measures: Resnik’s similarity and Wang’s

similarity. The third one is DAVID (Database for Annotation, Visualization and In-

tegrated Discovery) Gene Functional Classification method which uses an integrated

biological knowledge base to extract biological meaning from gene lists [60, 61]. The

last method is a KEGG-based domainSignatures enrichment method proposed by

Hahne et al. [62].

For GO-based enrichment, we downloaded a recent snapshot of GO database [32].

We eliminated ’IEA’ annotations which means that the annotation is inferred from

electronic annotation. The number of non-IEA annotations for each of the selected
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Table 3.2: Number of non-IEA annotations for the selected organisms.

Organism Number of Annotations
Yeast 47.882
Fruit Fly 59.515
Human 90.011

Table 3.3: Number of interactions in interaction databases for the selected organism.

Organism Interaction Database Number of Interactions
Yeast BioGRID 186.589
Yeast IntAct 98.475
Fruit Fly BioGRID 47.761
Fruit Fly DroID 16.858
Fruit Fly IntAct 28.992
Human BioGRID 40.584
Human IntAct 68.415

organism is given in Table 3.2. We used GOSemSim [41] package in R [63] for

GO-based Resnik’s and Wang’s similarity based homogeneity between two genes in

the lists.

To calculate Interaction Based Homogeneity, we combined several interaction databases:

Biological General Repository for Interaction Datasets (BioGRID) database [45], droID

[64, 65], i2d [66, 67] and IntAct [56]. Extracting new interactions is still an ongoing

study and the amount of known interactions varies from one organism to another one.

The amount of known interactions may affect the performance of Interaction Based

Homogeneity. To see the effects of the knowledge level of interactions on Interaction

Based Homogeneity, we selected three different organisms: fruit fly, human and yeast.

The number of interactions in each interaction database for the selected organisms are

given in Table 3.3.

In order to show the accuracy of Interaction Based Homogeneity, we tailored the

evaluation strategy of Ruths et al. [68] that makes use of predefined gene sets and

adds randomly selected genes to measure the performance of their similarity measure.

Similarly, we compared the performance of the measures by adding randomly selected

genes that are not in the original list. We expected a linear decrease in the measure

with the increase of the percentage of the randomness.
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In the last section of the comparison, we ranked a microarray data with Interaction

Based Homogeneity and apply Gene Set Enrichment Analysis to the ranked list.

3.4.1 Gene Ontology (GO)

Gene Ontology is a database of hierarchical annotations of genes, gene products and

sequences and it is organized as three non-overlapping ontologies. Molecular Function

(MF) ontology describes activities at the molecular level while Biological Process (BP)

ontology describes biological goals. The last ontology is the Cellular Component (CC)

ontology describing locations of genes and gene products. There are evidence codes for

each of the annotation that describes the method by which the annotation is extracted.

3.4.2 Homogeneity Based on GO Based Resnik’s Similarity

Resnik defined semantic similarity between terms by using the concept of information

content [69]; less frequent terms are accepted as more informative GO terms. For each

GO term t, the frequency of the term f requency(t) can be calculated as follows:

f requency(t) = annotations(t) +
∑

c∈children(t)

f requency(c),

where annotations(t) is the number of gene products annotated by t and children(t) is

the set of child terms of t.

The information content is the probability p(t) of the term t which is calculated as

follows:

p(t) =
f requency(t)

f requency(root)
.

Resnik’s semantic similarity between two terms t1 and t2 is then defined as given below.

S Resnik(t1, t2) = maxt∈A(t1,t2)(− log p(t)),

where A(t1, t2) is the set of common ancestors of t1 and t2.
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The similarity between two genes g1 and g2 is defined as the maximum Resnik’s

similarity between terms annotated by g1 and g2:

S maxResnik(g1, g2) = maxS Resnik(t1 ,t2) , t1 ∈ T (g1), t2 ∈ T (g2),

where T (gi) is the set of terms annotated by gi.

Finally, GO Based Resnik’s Homogeneity (GBRH) for a gene list L = {g1, g2, ..., gn} of

size n is defined as follows:

GBRH(L) =

∑n
i=1
∑n

j=1 S maxResnik(gi, g j)

n2 .

3.4.3 Homogeneity Based on GO Based Wang’s Similarity

Wang et al. defined the semantic similarity between GO terms [33]. A GO term A

can be represented as a directed acyclic graph GA = {A,TA, EA} where TA = A
⋃

P(A),

P(A) is the set of ancestors of A in GA, and EA are the edges connecting the terms in

GA. There are two types of edges: “is a” edge and “part of” edge. For any term t ∈ TA,

S A(t) is defined as follows:

S A(A) = 1

SA(t) = max{we ∗ S A(t′)|t′ ∈ C(t)i f (t , A)},

where C(t) is the set of children of term t, we is the semantic contribution factor for

edge e, 0 < we < 1, which depends on the type of the edge. The semantic value of GO

term A, S V(A) is defined as follows:

S V(A) =
∑
t∈TA

S A(t).

and the semantic similarity between GO terms A and B, S GO(A, B) is defined as follows:
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S Wang(A, B) =

∑
t∈TA

⋃
TB

S A(t) + S B(t)

S V(A) + S V(B)
.

The similarity between two genes g1 and g2 is defined as the maximum Wang’s simi-

larity between terms annotated by g1 and g2.

S maxWang(g1, g2) = maxS Wang(t1 ,t2) , t1 ∈ T (g1), t2 ∈ T (g2),

where T (gi) is the set of terms annotated by gi.

Finally, GO Based Wang Homogeneity (GBWH) for a gene list L = {g1, g2, ..., gn} of

size n is defined as follows:

GBWH(L) =

∑n
i=1
∑n

j=1 S maxWang(gi, g j)

n2 .

3.4.4 David Gene Functional Classification

David Functional Classification Tool uses 14 functional annotation sources to create

similarity matrix between genes. Genes are clustered using this matrix by a heuristic

fuzzy partition algorithm to group genes into functionally related clusters. For the

comparison, we take the highest Enrichment Score of the found clusters.

3.4.5 KEGG Based DomainSignatures Method

Hahne et al. [62] proposed a method to assign lists of genes to previously described

functional gene collections or pathways by comparing InterPro domain signatures of

the candidate gene lists with domain signatures of gene sets derived from KEGG path-

ways. For the comparison, we take the maximum similarity in the pathway similarity

matrix.
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3.4.6 Comparison on Lists of Highly Interacting Genes

We created a 25 gene lists for each of the three organisms so that the lists contain

highly interacting genes.

We first calculated the degree of each gene in the interaction network. Then, the first

25 genes with the highest degrees were selected as prototype genes. The lists were

created from the prototype genes by adding genes interacting with prototype gene to

the list.

The results of the comparison of Interaction Based Homogeneity on lists of highly inter-

acting genes with GO Based Resnik’s Homogeneity, GO Based Wang’s Homogeneity,

David Gene Functional Classification and domainSignatures are given in Figure 3.2,

Figure 3.3, Figure 3.4 and Figure 3.5 respectively.

In the comparisons with David Gene Functional Classification, over 25 gene lists, 23 of

them have 0 enrichment score in yeast, only two of the lists have non zero enrichment

score. For fruit fly 3 gene lists and for human 9 gene lists have non zero enrichment

scores.

Similar results are found in the comparison of domainSignatures, all of the gene lists

have zero similarity scores in the case of yeast and fruit fly, for this reason only results

for human are given in the figure. In the human gene lists, 3 lists have zero enrichment

scores.

We can observe from the results that Interaction Based Homogeneity describes the

gene lists better than GO-based measures especially when the number of known inter-

actions is high. With the increased level of randomness, there is only a slight decrease

in GO-based measures which indicates that genes in the lists are not evaluated as sim-

ilar and that totally random lists also has non-zero homogeneity values.Similar results

can be observed in the David and domainSignature comparisons, and in these cases

we can not find any enrichment for most of the highly interacting gene lists. There is

an unexpected increase in David’s enrichment score for yeast gene lists with 40% to

60% randomness. And for fruit fly, it gives zero enrichment for all of the gene lists

that have more than 40% randomness. In domainSignature method, an unexpected
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increase in similarity is observed for gene lists with 20% randomness. On the other

hand, Interaction Based Homogeneity starts with higher values of homogeneity and

homogeneity goes to nearly zero with the increased randomness.

3.4.7 Comparison on Lists That Are Similar According to Gene Ontology

We created gene lists in which GO-based measures would perform well. We created

25 gene lists for each of the organism by following the strategy of Ruth et al. [68].

We first chose 25 prototype genes for each organism which have highest number of

GO annotations. The lists were then created by adding genes that shared more than

7 GO terms with the lists of prototype genes. Finally, we have gene lists which had

different number of total GO terms but all of the genes in the list shared at least 7

GO terms with the prototype gene. The results of the evaluation of Interaction Based

Homogeneity on lists containing similar genes according to Gene Ontology with GO

Based Resnik’s Homogeneity, GO Based Wang’s Homogeneity, David Gene Functional

Classification and domainSignatures are given in Figure 3.6, Figure 3.7, Figure 3.8 and

Figure 3.9 respectively.

In the comparison of David Gene Functional Classification enrichment scores with

IBH on lists similar according to GO, we see that 4 lists have zero enrichment scores

for yeast and 5 for human. In this case, for yeast there are no gene lists that have

zero enrichment scores. The domainSignatures method yields zero similarity score for

8 gene lists.

As expected, GO Based Homogeneity measures performs better in this case than in the

case of highly interacting genes. Interaction Based Homogeneity performs well in this

case, too. More interestingly, Interaction Based Homogeneity performs better than GO

Based Resnik’s and Wang’s Homogeneities in gene lists of yeast, an organism for which

lots of interactions are known. This surprising result indicates that the performance

of Interaction Based Homogeneity will increase in parallel with the number of known

interactions. David Gene Functional Classification gives better results for gene lists

similar according to GO, however it cannot discriminate gene lists with 80% and 100%

randomness in yeast and fruit fly. In domainSignature method, an unexpected increase

in similarity is observed for gene lists with 20% randomness.
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(a) Interaction Based Homogeneity on highly inter-
acting yeast genes.

(b) GO Based Resnik’s Homogeneity on highly in-
teracting yeast genes.

(c) Interaction Based Homogeneity on highly inter-
acting fly genes.

(d) GO Based Resnik’s Homogeneity on highly in-
teracting fly genes.

(e) Interaction Based Homogeneity on highly inter-
acting human genes.

(f) GO Based Resnik’s Homogeneity on highly inter-
acting human genes.

Figure 3.2: Comparison of GO based Resnik’s Homogeneity and Interaction Based
Homogeneity on gene lists of highly interacting genes for 3 different organisms.
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(a) Interaction Based Homogeneity on highly inter-
acting yeast genes.

(b) GO Based Wang’s Homogeneity on highly inter-
acting yeast genes.

(c) Interaction Based Homogeneity on highly inter-
acting fly genes.

(d) GO Based Wang’s Homogeneity on highly inter-
acting fly genes.

(e) Interaction Based Homogeneity on highly inter-
acting human genes.

(f) GO Based Wang’s Homogeneity on highly inter-
acting human genes.

Figure 3.3: Comparison of GO based Wang’s Homogeneity and Interaction Based
Homogeneity on gene lists of highly interacting genes for 3 different organisms.
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(a) Interaction Based Homogeneity on highly inter-
acting yeast genes.

(b) DAVID Functional Classification Enrichment
Score on highly interacting yeast genes.

(c) Interaction Based Homogeneity on highly inter-
acting fly genes.

(d) DAVID Functional Classification Enrichment
Score highly interacting fly genes.

(e) Interaction Based Homogeneity on highly inter-
acting human genes.

(f) DAVID Functional Classification Enrichment
Score on highly interacting human genes.

Figure 3.4: Comparison of DAVID Functional Classification Enrichment Score and
Interaction Based Homogeneity on gene lists of highly interacting genes for 3 different
organisms.
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(a) Interaction Based Homogeneity on highly inter-
acting human genes.

(b) domainSignatures on highly interacting human
genes.

Figure 3.5: Comparison of domainSignatures and Interaction Based Homogeneity on
gene lists of highly interacting human genes.

3.4.8 Gene Set Enrichment Analysis of p53 Dataset Ranked by Interac-

tion Based Homogeneity

We take the a gene expression microarray data from the original GSEA paper mea-

suring the p53 status in cancer cell lines (p53 dataset) and created a ranked list of

genes based on the Interaction Based Homogeneity. For creating a ranked list of genes,

we first created different partitions of the p53 dataset by applying different clustering

algorithms to the dataset. When clustering, we applied algorithms implemented in

GEDAS [70] to the microarray data with different parameters. Then, we calculated

IBH for each of the resulting clusters. The weight wg of a gene g is then calculated

as the sum of the Interaction Based Homogeneities of the clusters that gene g belongs

to:

wg =

k∑
i=1

IBH(Ci),

where C1...Ck are the clusters that gene g belongs to.

We applied Gene Set Enrichment Analysis to the ranked list based on p53 dataset to

identify functional gene sets (C2). Several gene sets related with p53 function such

as Biocarta p53 pathway, KEGG p53 pathway are enriched. Some of the enrichment

results are given in Figure 3.10.
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(a) Interaction Based Homogeneity on yeast genes
similar according to Gene Ontology.

(b) GO Based Resnik’s Homogeneity on yeast genes
similar according to Gene Ontology.

(c) Interaction Based Homogeneity on fly genes sim-
ilar according to Gene Ontology.

(d) GO Based Resnik’s Homogeneity on fly genes
similar according to Gene Ontology.

(e) Interaction Based Homogeneity on human genes
similar according to Gene Ontology.

(f) GO Based Resnik’s Homogeneity on human genes
similar according to Gene Ontology.

Figure 3.6: Comparison of GO based Resnik’s Homogeneity and Interaction Based
Homogeneity on gene lists similar according to Gene Ontology for 3 different organ-
isms.
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(a) Interaction Based Homogeneity on yeast genes
similar according to Gene Ontology.

(b) GO Based Wang’s Homogeneity on yeast genes
similar according to Gene Ontology.

(c) Interaction Based Homogeneity on fly genes sim-
ilar according to Gene Ontology.

(d) GO Based Wang’s Homogeneity on fly genes sim-
ilar according to Gene Ontology.

(e) Interaction Based Homogeneity on human genes
similar according to Gene Ontology.

(f) GO Based Wang’s Homogeneity on human genes
similar according to Gene Ontology.

Figure 3.7: Comparison of GO based Wang’s Homogeneity and Interaction Based Ho-
mogeneity on gene lists similar according to Gene Ontology for 3 different organisms.
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(a) Interaction Based Homogeneity on yeast genes
similar according to Gene Ontology.

(b) DAVID Functional Classification Enrichment
Score on yeast genes similar according to Gene On-
tology.

(c) Interaction Based Homogeneity on fly genes sim-
ilar according to Gene Ontology.

(d) DAVID Functional Classification Enrichment
Score on fly genes similar according to Gene Ontol-
ogy.

(e) Interaction Based Homogeneity on human genes
similar according to Gene Ontology.

(f) DAVID Functional Classification Enrichment
Score on human genes similar according to Gene On-
tology.

Figure 3.8: Comparison of DAVID Functional Classification Enrichment Score and
Interaction Based Homogeneity on gene lists similar according to Gene Ontology for
3 different organisms.
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(a) Interaction Based Homogeneity on human genes
similar according to Gene Ontology.

(b) domainSignatures on human genes similar ac-
cording to Gene Ontology.

Figure 3.9: Comparison of domainSignatures and Interaction Based Homogeneity on
gene lists similar according to Gene Ontology for human genes.

3.5 Results and Discussion on IBH

We compared IBH with four different enrichment methods in two different cases: two

GO based measure which employs popular Resnik’s distance and Wang’s distance,

David annotation method and a KEGG-based enrichment method using domain sig-

natures. We proved the effectiveness of the Interaction Based Homogeneity measure in

two different cases in which the measure’s ability to distinguish related lists from ran-

dom lists and to measure the randomness is presented. In the first case, we compared

results for 75 gene lists of highly interacting genes. The results show that Interaction

Based Homogeneity is especially more useful in detecting highly interacting gene lists

than GO-based measure. In the second case, 75 gene lists which are similar according

to GO is used. Interaction Based Homogeneity also performs well in the comparison

of lists that are similar according to Gene Ontology. We also create an R package

called ibh implementing Interaction Based Homogeneity in different cases. It is ac-

cepted to Bioconductor [42] and freely available. Details of the package can be found

in Appendix A.
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(a) Enrichment plot for biocarta p53 pathway. (b) Enrichment plot for bio-
carta p53hypoxia pathway.

(c) Enrichment plot for
kegg p53 signalling pathway.

(d) Enrichment plot for amund-
son gamma radiation response.

(e) Enrichment plot for biocarta g2 pathway. (f) Enrichment plot for
haslinger b cll with 17p13 deletion.

Figure 3.10: Results of GSEA analysis of p53 dataset which is ranked by Interaction
Based Homogeneity.
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CHAPTER 4

CLUSTER-ELIMINATE-COMBINE METHOD

In this chapter, we describe Cluster-Eliminate-Combine (CEC) method that take as

input an interaction network, a list of GO terms representing the functional class of

the genes that are of the interest and a set of partitions of microarray data and give

as output a clustering result containing only genes that are related with the biolog-

ical process under inspection. CEC method is mainly based on clustering ensembles

method described in Section 2.2. Several improvements are made to the clustering

ensembles method as indicated below.

1. Instead of using every cluster in combination, a subset of clusters are selected

according to the relevance with the biological process of the experiment. The

relevance is measured by Interaction Based Homogeneity described in Chapter

3. Gene Ontology terms related with the experiment are provided to the method

as input to describe the biological process under inspection.

2. The selected clusters are cleaned up by applying a gene weight measure which

is calculated for each gene by using clusters and Interaction Based homogeneity.

3. The clustering ensembles method is finally applied to the selected and cleaned

clusters.

The outline and the algorithm of the proposed method is given in Figure 4.1 and

Algorithm 1 respectively. First, a subnetwork of the interaction network is constructed

by using the GO terms provided as input. The constructed interaction subnetwork

represents the relations that are more likely to be related according to the functional
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class that are of the current interest. Second, Interaction Based Homogeneity of each

cluster is calculated by using this subnetwork. Third, for each gene, a gene weight is

calculated. The gene weight represents the importance of the gene according to the

experiments and the interaction subnetwork. As the next step, the genes that have

high weights are selected and the others are eliminated from the clusters. As the final

step, the remaining clusters are combined to achieve the final relationship information.
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Algorithm 1 Outline of the CEC algorithm.
Require: A set of partitions P of microarray data M resulting from N clustering

algorithms, a threshold T for cluster elimination, interaction network I, a set of

Gene Ontology terms O

C ← createS etO fClusters(P) {Create the set of clusters}

S ← createInteractionS ubnetwork(I,O) {Create interaction subnetwork}

for i = 1→ length(C) do

calculate IBHS (Ci)

end for{Calculate IBH for each cluster}

G ← S etO fGenes(C)

for all gene g ∈ G do

weight(g)←
∑

i IBHS (Ci), g ∈ Ci

end for{Calculate gene weights}

for i = 1→ length(C) do

for all gene g ∈ Ci do

if weight(g) ≤ T then

remove g from C[i]

end if

end for

end for{Clean clusters}

for i = 1→ length(G) do

for j = 1→ length(G) do

n(i, j)← 0

for c = 1→ N do

if G[i] ∈ Pc G[ j] ∈ Pc then

n(i, j)← n(i, j) + 1

end if

end for{Create co-association matrix from C}

C(i, j)← n(i, j)
N

end for

end for

return Cluster(C)
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Figure 4.1: Outline of the CEC method.
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4.1 Details of CEC Method

In the following sections, each step of the methodology are described in detail.

4.1.1 Interaction Subnetwork

An interaction network can be represented as a graph whose edges are genes. There is

an edge in the graph between nodes X and Y only if there is an interaction between

gene X and Y. Given an interaction network N and a set of GO terms G, an interaction

subnetwork S is created by eliminated edges (X, Y) such that both X and Y are not

annotated by GO terms contained in G.

4.1.2 Interaction Based Homogeneity

Interaction Based Homogeneity is described in detail in Chapter 3. Given a gene list

of n genes, we first form an adjacency matrix A whose rows and columns are genes in

the list where Ai j = 1 if genes i and j have an interaction in the network and Ai j = 0

otherwise. The Interaction Based Homogeneity for a gene list L = {g1, g2, ..., gn} of size

n is then calculated as

IBH(L) =

∑n
i=1
∑n

j=1 Ai j

n2 .

4.1.3 Calculating Gene Weights

The weight W(g) of a gene g is defined as the sum of weights of clusters that g belongs

to: W(g) =
∑n

i=1
∑

g∈Ci IBH(Ci)

4.1.4 Cleaning the Clusters

Before clustering combination, the clusters are cleaned by removing unnecessary genes

from the clusters. Genes that have weight smaller than a given threshold T are as-

sumed to be unrelated. That is, for each cluster Ci, a new cluster C′i is constructed
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such that C′i = {g|g ∈ Ci and W(g) > T }.

4.1.5 Cluster Combination

The result of each method is used as a partition and the evidence accumulation method

is applied, the co-association value is calculated as the new similarity matrix. Evidence

accumulation method and co-association value are described in Section 2.2. Then,

a model based algorithm is used to cluster the genes with the new similarity matrix

to obtain the combined clusters. For the model based clustering, we used mclust

package [71].

4.2 Dataset

Gasch et al. [72] use DNA microarrays to measure changes in transcript levels over time

for almost every yeast gene and the dataset contains 5457 genes. The GDS36 dataset

that is provided in their study is a yeast heat shock dataset in which measurements

are taken at 5, 15, 30 and 90 minutes on a heat shock from 29°C to 33°C. There are 4

samples in the dataset. The log ratio values of the measurements are used. We used

the whole dataset as is in all of the analyses without performing a preprocessing step

for selecting differentially expressed genes.

4.3 Results of Cluster-Eliminate-Combine on GDS36 Dataset

For analyzing GDS36 dataset, in the clustering step, the dataset is clustered by five

algorithms to obtain different partitions. The algorithms used are CAGED, GEDAS,

NNN, STEM and TAC. The algorithms are described in detail in Section 2.1. Number

of clusters found in each partition is given in Table D. As can be seen from the table,

the number of clusters found varies from 1 to 50 and each partition contains different

numbers of genes ranging from 5 to 5457.

Then, we run the elimination step of the algorithm. Genes annotated with GO term

Response to Heat (GO:0009408) is selected as the gene list. There are 192 genes

annotated by this GO term with experimental evidence codes. The subnetwork of
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Table 4.1: Number of clusters found in each partition for GDS36 dataset.

Algorithm Number of Clusters Total Number of Genes in Clusters
CAGED 7 5457
FLAME 1 11
NNN 1 5
STEM 50 1461
TAC 3 5457

Figure 4.2: CEC on yeast heat shock GDS36 dataset.

BioGRID interactions related with the 192 genes in the selected GO term is prepared.

First, the IBH for each cluster is calculated. Then, from IBH values of each cluster,

gene weights are calculated. The unrelated genes are eliminated from the clusters in

partitions by using threshold being equal to 0.01.

The distance matrix among genes that passed the elimination step is calculated by

using the evidence accumulation. Then, the distance matrix is used by a model based

clustering algorithm to obtain the final clustering. The results after combination step

can be found in Figure 4.2 and detailed analysis of the results are given in Table D.2

in Appendix D.

We can see from the results that the analysis suggests 1 cluster that contains 36 genes.

We analyzed the results on gene by gene basis. First, GO annotations for each gene is
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searched to locate annotations related with heat shock. After GO search, a literature

survey is performed for genes that do not have related annotations in GO.

The results can be summarized as follows:

• Genes that are annotated by the input GO term: Only 1 gene (HSP104 ) is

annotated by the input GO term.

• Genes that are annotated by other GO terms as stress related: 12 genes (SSE2,

SSA4, HSP42, TSL1, DDR2, TPS3, HOR7, GAD1, CTT1, GRE3, BDH1, SPI1)

are annotated by other GO terms as stress related.

• Genes whose relationship with stress are not stated in GO bu have evidence in lit-

erature: 16 genes (PRB1 [73], PHR1 [74], TMA17 [75, 76], TPK1 [73], CIT1 [73],

PGM2 [73], HXK1 [73], CWP1 [77], RTN2 [78], UGP1 [79], PNC1 [80], DCS2 [81],

GLK1 [73], TFS1 [82], SOL4 [83], GTO3 [80]) are found to be related with stress

in literature.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:

– Genes whose function are not known: 3 genes have unknown functions

(YNL195C, FMP16 and YCL042W).

– Other genes: AMS1 gene is related with hydrolase activity and YSC84 gene

works in actin cortical path localization.

Several interesting and promising results can be seen:

1. Many stress response genes that are not annotated by Heat Shock GO term,

and therefore not given to the method as input, are extracted from the dataset.

Examples of those genes are HSP42, TSL1, DDR2, TPS3 and HOR7.

2. Response to oxidative stress can be seen as well as response to stress genes. Lee

et al. [84] states that oxidation and heat shock have common physiological effect

on cells, so it is meaningful that oxidative response genes such as CIT1 and

BDH1 are included in the final clustering by CEC method.
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3. When cell response to heat, the amount of hydrolysis also increases since it gen-

erates the energy needed to refold the proteins and to the synthesis of biological

polymers. A more detailed description about the process can be found in [85].

Genes related with hydrolase activity such as PNC1, DC2, SOL4 and AMS1

have been found in the final clustering.

We compared the input partitions and the clustering found by CEC method by 3

different similarity measures which are described in Section 2.4. The results for

Rand statistics, Jaccard coefficient and Folkes and Malkows index are given in Table

4.3, Table 4.3 and Table 4.3, respectively. To make results more clear, we included

tables containing average statistics among input partitions for Rand statistics, Jaccard

coefficient and Folkes and Malkows index in Table 4.3, Table 4.3 and Table 4.3,

respectively. We can see from the analysis that the CEC method finds a partition

that is the most similar to all of the partitions.

Table 4.2: Rand Statistics Between Partitions on GDS36 Dataset.

CAGED GEDAS NNN STEM TAC CEC
CAGED 1,00 0,97 0,97 0,54 0,37 0,99
GEDAS 0,97 1,00 0,99 0,52 0,36 0,98
NNN 0,97 0,99 1,00 0,52 0,36 0,98
STEM 0,54 0,52 0,52 1,00 0,49 0,53
TAC 0,37 0,36 0,36 0,49 1,00 0,36
CEC 0,99 0,98 0,98 0,53 0,36 1,00

Table 4.3: Average Rand Statistics Between Input Partitions and Between Input
Partitions and CEC on GDS36 Dataset.

Partition Name Average
CAGED 0,71
GEDAS 0,71
NNN 0,71
STEM 0,50
TAC 0,40
CEC 0,77

4.4 Contributions of Each Component of the Method

In order to demonstrate the contributions of each of the component of the method,

we will show and compare several different versions of the method as follows:
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Table 4.4: Jaccard Coefficient Between Partitions on GDS36 Dataset.

CAGED GEDAS NNN STEM TAC CEC
CAGED 1,00 0,97 0,97 0,53 0,36 0,99
GEDAS 0,97 1,00 0,99 0,52 0,36 0,98
NNN 0,97 0,99 1,00 0,52 0,36 0,98
STEM 0,53 0,52 0,52 1,00 0,27 0,53
TAC 0,36 0,36 0,36 0,27 1,00 0,36
CEC 0,99 0,98 0,98 0,53 0,36 1,00

Table 4.5: Average Jaccard Coefficient Between Input Partitions and Between Input
Partitions and CEC on GDS36 Dataset.

Partition Name Average
CAGED 0,71
GEDAS 0,71
NNN 0,71
STEM 0,46
TAC 0,34
CEC 0,77

• A first improvement to the clustering ensembles method is the IBH based elim-

ination of unrelated clusters before clustering combination. We will show the

results of using the interaction network, without using Gene Ontology to create

interaction subnetwork and without the gene cleaning step. The details and

results are given in Section 4.4.1.

• The second improvement is the addition of Gene Ontology terms and the idea

of taking the interaction subnetworks. We will show the results of using the

interaction network and Gene Ontology to create an interaction subnetwork and

using it to eliminate unrelated clusters, without cluster cleaning. The details

and results are given in Section 4.4.2.

• In order to demonstrate the significance of using a real interaction network, we

will apply CEC with a fully connected network as input. The details and results

are given in Section 4.4.3.
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Table 4.6: Folkes and Mallows Index Between Partitions on GDS36 Dataset.

CAGED GEDAS NNN STEM TAC CEC
CAGED 1,00 0,99 0,99 0,73 0,59 0,99
GEDAS 0,99 1,00 1,00 0,72 0,6 0,99
NNN 0,99 1,00 1,00 0,72 0,6 0,99
STEM 0,73 0,72 0,72 1,00 0,43 0,73
TAC 0,59 0,6 0,6 0,43 1,00 0,6
CEC 0,99 0,99 0,99 0,73 0,6 1,00

Table 4.7: Average Folkes and Mallows Index Between Input Partitions and Between
Input Partitions and CEC on GDS36 Dataset.

Partition Name Average
CAGED 0,82
GEDAS 0,83
NNN 0,83
STEM 0,65
TAC 0,56
CEC 0,86

4.4.1 Elimination of Unrelated Clusters Before Clustering Combination

The idea behind this component of the CEC method is to incorporate the knowledge

contained in interaction networks to clustering combination. We calculate the fitness

of a cluster to the interaction network by Interaction Based Homogeneity. In this step,

we calculate IBH for each cluster and eliminate clusters that has small IBH values.

The resulting clusters are then combined by using the evidence accumulation method.

The outline and the algorithm of this step is given in Figure 4.3 and Algorithm 2,

respectively.
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Algorithm 2 Algorithm for elimination of unrelated clusters before clustering com-

bination.
Require: A set of partitions P of microarray data M resulting from N clustering

algorithms, a threshold T for cluster elimination, interaction network I

{Create the set of clusters}

C ← createS etO fClusters(P)

{Calculate Interaction Based Homogeneity for each Cluster}

for i = 1→ length(C) do

if IBHI(Ci) < T then

remove Ci from C

end if

end for

G ← S etO fGenes(C)

for i = 1→ length(G) do

for j = 1→ length(G) do

n(i, j)← 0

for c = 1→ N do

if G[i] ∈ Pc G[ j] ∈ Pc then

n(i, j)← n(i, j) + 1

end if

end for{Create co-association matrix from C}

C(i, j)← n(i, j)
N

end for

end for

R← Cluster(C)

return R
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Figure 4.3: Elimination of unrelated clusters before clustering combination.
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Figure 4.4: Elimination of unrelated clusters before clustering combination on yeast
heat shock GDS36 dataset.

4.4.1.1 Results of Elimination of Unrelated Clusters Before Clustering

Combination

The results of analyzing GDS36 data is given in Figure 4.4.

We analyzed the results on a gene by gene basis. First, GO annotations for each

gene is searched to locate annotations related with heat shock. After that a literature

survey is performed for genes who do not have related annotations in GO. The results

can be summarized as:

• Genes that are annotated by the input GO term: LCB5 gene is annotated by the

input GO term.

• Genes that are annotated by other GO terms as stress related: 2 genes (ZEO1,

ATC1) are annotated by other GO terms as stress related.

• Genes whose relationship with stress are not stated in GO bu have evidence in

literature: No genes are found to be related with stress in literature.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:
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– Other genes that may be related with stress: 14 genes are transport related:

HXT5, AVT6, GOT1, SAM1, PPM2, SAM2, YMC2, YJR129C,YNL022C,

YGR283C, AIR1, PHO84, ARE1, TRM44, TRM5, FRE1, YBR141C, FRE7

and HXT3. It is known that the expression levels of transport-related genes

decreases under stress [73]. The role of these genes should be further in-

vestigated to make sure of their relevance with stress conditions, especially

the heat shock. Other genes in this group are PTH2 and YHR113W which

are responsible from hydrolase activity.

– Genes whose function are not known: 35 genes have unknown functions.

– Other genes: 157 genes have no evidence for relevance with heat shock.

When we examine genes in this category, we see that they are mostly tran-

scription, processing and binding related genes.

Since there are lots of known interactions on transcription and binding related genes,

the results are dominated by them. This situation may be the result of the fact that

some biological phenomena may involve more interactions than another. In order to

prevent these interactions to dominate the results, we should include some functional

information about the experiment.

4.4.2 Create Interaction Subnetworks Using Gene Ontology

The problem in the method described in previous section is the lack of functional

information related with the experiment. The Gene Ontology is an excellent resource

from which the functional classes of genes can be obtained. The idea introduced in

this section is to take as input Gene Ontology terms related with the experiment and

incorporate knowledge contained in these Gene Ontology terms into the analysis. The

Gene Ontology terms are used to create an interaction subnetwork from the whole

network of the organism. The subnetwork contains the interactions of genes related

with the functional classes. As an example, when analyzing sporulation dataset, Gene

Ontology terms related with sporulation are given as input, the interaction subnetwork

are than created by selecting interactions among genes annotated by the input Gene

Ontology term. Then, we calculate IBH for each cluster by using the subnetwork and

eliminate clusters that has small IBH values. The resulting clusters are than combined
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by using the evidence accumulation method. The outline and the algorithm of this

step is given in Figure 4.5 and Algorithm 3, respectively.
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Algorithm 3 Algorithm for creating interaction subnetworks using Gene Ontology.
Require: A set of partitions P of microarray data M resulting from N clustering

algorithms, a threshold T for cluster elimination, interaction network I, a set of

Gene Ontology terms O

{Create the set of clusters}

C ← createS etO fClusters(P)

{Create interaction subnetwork}

S ← createInteractionS ubnetwork(I,O)

{Calculate Interaction Based Homogeneity for each Cluster}

for i = 1→ length(C) do

if IBHS (Ci) < T then

remove Ci from C

end if

end for

G ← S etO fGenes(C)

{Create co-association matrix from C}

for i = 1→ length(G) do

for j = 1→ length(G) do

n(i, j)← 0

for c = 1→ N do

if G[i] ∈ Pc G[ j] ∈ Pc then

n(i, j)← n(i, j) + 1

end if

end for

C(i, j)← n(i, j)
N

end for

end for

R← Cluster(C)

return R
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Figure 4.5: Outline of creating interaction subnetworks using Gene Ontology.

53



Figure 4.6: Results of creating interaction subnetworks using Gene Ontology on yeast
heat shock GDS36 dataset.

4.4.2.1 Results of Creating Interaction Subnetworks Using Gene Ontology

The results of analyzing GDS1711 data are given in Figure 4.6.

We analyzed the results on a gene by gene basis. First, GO annotations for each

gene is searched to locate annotations related with heat shock. After that a literature

survey is performed for genes who do not have related annotations in GO. The results

can be summarized as follows:

• Genes that are annotated by the input GO term: 1 gene (HSP12) is annotated

by the input GO term.

• Genes that are annotated by other GO terms as stress related: 16 genes (BDH1,

DDR2, GAD1, GRE3, HOR7, HSP104, HSP42, NCE103, SPI1, SSA4, SSE2,

TPS1, TPS3, TSL1, YHN1, YOL053C) are annotated by other GO terms as

stress related.

• Genes whose relationship with stress are not stated in GO bu have evidence

in literature: 14 genes (CIT1, CWP1, DCS2, GLK1, GTO3, HXK1, PGM2,

PHR1, PRB1, RTN2, SOL4, TMA17, TPK1, UGP1) are found to be related

54



with stress in literature.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:

– Other genes that may be related with stress: 3 genes are transport related

genes: (FTH1, GYP5, THI17). It is known that the expression levels of

transport-related genes decreases under stress [73]. The role of these genes

should be further investigated to make sure of their relevance with stress

conditions, especially the heat shock.

– Genes whose function are not known: 13 genes have unknown functions.

– Other genes: 20 genes have no evidence for relevance with heat shock.

We can see that the results are significantly improved with the inclusion of the func-

tional class information contained in the provided Gene Ontology terms. However,

we have lots of unrelated genes in the result. The unrelated genes come from clusters

with high IBH values. Although some of the genes in such clusters are important, we

should find a way to eliminate the unrelated genes. Another problem is that with this

method, some related genes contained in clusters with low IBH values are eliminated.

The last problem to be solved before finalizing the method is that the method elimi-

nates clusters and some important genes are lost since the method tends to eliminate

larger clusters. When small cluster thresholds are used, the method outputs large

clusters having more than 1000 genes in a cluster since the clustering algorithms used

to create partitions generate such clusters. The solution found to this problem is that

instead of eliminating clusters, we clean them. For cleaning clusters, first, an IBH

based weight is calculated for each gene. Than, genes that have small weights are re-

moved from clusters. The resulting clusters are than combined by using the evidence

accumulation method.

4.4.3 Contribution of Using Interaction Networks

From the results presented in previous sections, we can see the contribution of Gene

Ontology terms. The other important part of the algorithm is the interaction net-

work. To show the contribution of the interaction network, we give as input a fully
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Figure 4.7: CEC on yeast heat shock GDS36 dataset–with a fully connected interaction
network.

connected graph as an interaction network. The result without the contribution of a

real interaction network is given in Figure 4.7.

The results can be summarized as:

• Genes that are annotated by the input GO term: 5 genes (YAP1, HSP12, WSC4,

WSC3, LCB5) are annotated by the input GO term.

• Genes that are annotated by other GO terms as stress related: 6 genes (RIM15,

SIN3, MHR1, TIF4632, YOL053C, HSP30) are annotated by other GO terms

as stress related.

• Genes whose relationship with stress are not stated in GO bu have evidence in

literature: 18 genes (RRN5, MMS22, FAB1, TOM1, DRS2, TFC3, YTA7,

YME1, RML2,IRA1, SWI4, HSP12, KAP104, YHL037C, YFL052W, ICS3,

OCA5, TFP1) are found to be related with stress in literature.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:

– Other genes that may be related with stress: 6 genes are transport related
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genes: LRO1, YHR009C, DAN1, QDR2, COX5A, FRE7. It is known that

the expression levels of transport-related genes decreases under stress [73].

The role of these genes should be further investigated to make sure of their

relevance with stress conditions, especially the heat shock.

– Genes whose function are not known: 40 genes have unknown functions.

– Other genes: 48 genes have no evidence for relevance with heat shock.

We can see from the results that although the number of genes that are annotated

by the input GO term is increased from 1 to 5, the number of unrelated genes is also

increased significantly, proving the necessity of using a real interaction network.

4.5 Summary

In this chapter, we described the Cluster-Eliminate-Combine method and demon-

strate the significance of its components. A summary of the results can be found in

Figure 4.8:

• The results of applying whole interaction network to select clusters with high

IBH are given in Figure 4.8-(a). We can see that the results are dominated with

transcription and binding related genes since there are a lot of known interactions

for them and we do not use any functional class information.

• The results of using the functional class information contained in Gene Ontol-

ogy by creating a subnetwork of the interaction network by a GO term which

represents the biological process related with the microarray dataset are shown

in Figure 4.8-(b). We can see from the results that the number of related genes

are increased, however there are lots of unrelated genes in the result.

• In the final CEC method, a subnetwork of the interaction network is taken by

a GO term which represents the biological process related with the microarray

dataset, in this case heat shock. Then clusters are cleaned by gene weight. After

cleaning the resulting clusters are combined. The results are shown in Figure

4.8-(a). The results show the step-by-step contributions made by each of the

components of CEC method.
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Finally, in order to show the significance of the interaction network, CEC is applied

to the same dataset with a fully connected interaction network. The results are shown

in Figure 4.9. This results proves the significance of using a real interaction network.
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(a) Summarized Results of the Step-2 of CEC on Yeast heat
shock GDS36 dataset

(b) Summarized Results of the Step-3 of CEC on Yeast heat
shock GDS36 dataset

(c) Summarized Results of CEC on Yeast heat shock GDS36
dataset-Final Method

Figure 4.8: Contribution of the components of CEC method on GDS36 heat shock
dataset.
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(a) Summarized Results of CEC on Yeast heat shock GDS36
dataset-With real interaction network

(b) Summarized Results of CEC on Yeast heat shock
GDS36 dataset with a fully connected interaction network.

Figure 4.9: Significance of using a real interaction network.
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CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, we show the results of applying the CEC method in different cases.

Interactions are taken from BioGRID interaction repository [45]. While taking genes

annotated by related Gene Ontology terms, only experimental Evidence Codes (EXP:

Inferred from Experiment , IDA: Inferred from Direct Assay, IPI: Inferred from Phys-

ical Interaction , IMP: Inferred from Mutant Phenotype, IGI: Inferred from Genetic

Interaction , IEP: Inferred from Expression Pattern) are taken into consideration. For

the GO searches in the first two subsections, AMIGO tool is used [86]. In Section 5.1,

two time-series datasets are analyzed by CEC. As mentioned in previous section, CEC

can be applied to the problem of combining heterogeneous datasets. In Section 5.2,

an example application of CEC to the combination of 7 different heat shock datasets

is presented. Finally, in Section 5.3, CEC is analyzed with GSEA [87] on two example

datasets.

5.1 Different Algorithms on Time-Series Microarray Data

5.1.1 Description

In time series experiments, the expression levels of genes are measured at different

time points. There are algorithms designed specifically to cluster time series gene

expression data. In this section, we applied 5 different clustering algorithms to a

time series dataset and apply CEC method to the clustering results. The experiment

is outlined in Figure 5.1. We selected two different time series datasets which are

described in the first subsection for the analysis. The results of analyzing the datasets

61



Figure 5.1: Outline of the application of CEC method to time-series microarray data.

by CEC is presented in the following sections.

5.1.2 Datasets

Yeast is a model organism in which most of the experiments are carried on very simply

and quickly. For this reason, yeast genes are more annotated and its interactions are

better known compared to many other organisms. We selected two different yeast

time series datasets.

1. Yeast sporulation dataset: Chu et al. [88] measured the changes of the ex-

pression levels of yeast genes during sporulation. There are 7 time points in this

datasets. They identified 485 differentially expressed genes and we use them as

input.

2. GDS1711: Matsumoto et al. [89] measured the genomic response at the level

of mRNA expression to the deletion of SSA1/2 in comparison with the mild

heat-shocked wild-type using cDNA microarray. The GDS1711 microarray data

prepared in this study is a heat shock dataset in which measurements are taken

at 30 and 60 minutes on heat shock treatment at 43°C for wild types and ssa1

ssa2 double deletion mutant. There are 12 samples. The log ratio values of
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the measurements are used. The dataset contains 6020 genes. We used the

whole dataset in all of the analyses without performing a preprocessing step for

selecting differentially expressed genes.

5.1.3 Results on Yeast Sporulation Dataset

For analyzing Yeast sporulation dataset, in the clustering step, the dataset is clustered

by five algorithms to obtain different partitions. Number of clusters found in each

partition is given in Table F. As can be seen from the table, the number of clusters

found varies from 5 to 18.

Table 5.1: Number of clusters found in each partition for yeast sporulation dataset.

Algorithm Number of Clusters
CAGED 6
FLAME 13
GQL 5
NNN 18
STEM 8
TAC 7

We apply subsequently the elimination step of the algorithm. Genes annotated with

GO term Sporulation (GO:0043934) is selected as the gene list. The subnetwork of

BioGRID interactions related with the genes in the selected GO term is prepared.

First, the IBH for each cluster is calculated. Then, from IBH values of each cluster,

gene weights are calculated. The unrelated genes are eliminated from the clusters in

partitions by using threshold as 0.01.

The distance matrix between genes that passed the elimination step is calculated by

using the evidence accumulation. Then, the distance matrix is used by a model based

clustering algorithm to obtain the final clustering. The results after combination step

can be found in Figure 5.2 and detailed analysis of the results are given in Table F.2

in Appendix F.

We can see from the results that the analysis suggests 7 clusters. When we examine

the clusters, we can see that Cluster-1 contains mostly genes related with meiosis,

Cluster-6 contains stress response genes, Cluster-7 contains transport related genes.
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Figure 5.2: CEC on yeast sporulation dataset.

We then analyzed the results on a gene by gene basis. First, GO annotations for each

gene is searched to locate annotations related with heat shock. After GO search, a

literature survey is performed for genes that do not have related annotations in GO.

The results can be summarized as follows:

• Genes that are annotated by the input GO term: 20 genes (YDR523C, YLR213C,

YLR227C, YOR313C, YPL130W, YHR184W, YLR307W, YOL091W, YOR298W,

YLR343W, YNL128W, YNL204C, YOL132W, YDR273W, YDR522C, YGL170C,

YHR185C, YNL098C, YHR139C, YJL074C) are annotated by the input GO

term.

• Genes that are annotated by other GO terms as sporulation related: 9 genes

(YBR268W, YDL154W, YOR033C, YER106W, YKL042W, YHR124W, YGR059W,

YJL038C, YAR007C) are annotated by other GO terms as sporulation related.

• Genes whose relationship with sporulation are not stated in GO bu have evidence

in literature: YDR065W [90], YGR229C [91], YFR032C [92] YGL138CBriza2002,

YMR125W [93], genes are found to be related with sporulation.

• The unrelated genes and genes whose functions are not known yet: These genes
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Table 5.2: Number of clusters found in each partition for GD1711 dataset.

Algorithm Number of Clusters Total Number of Genes in Clusters
CAGED 16 5959
FLAME 63 6020
NNN 4 36
STEM 50 4305
TAC 13 5949

grouped for further analysis:

– Cell division related genes: YDL008, YDR218C,

– Mitosis related genes: YIL139C, YEL061C, YAL040C,

– DNA repair genes: YDR263C, YDR317W,

– Stress related genes: YAL062W, YDR256C, YOR375C,

– Transport related genes: YFL011W, YLR209C, YMR272C, YGL179C,

YJR152W, YML008C, YNL142W, YAL067C, YGR224W, YPL208W,

– Spindle pole body duplication: YPL124W,

– Genes whose function are not known: YER182W, YDL186W, YPR027C,

YGL015C, YOL015W,

– Other genes: YDL103C, YEL016C, YIL159W, YFR023W, YHR015W,

YKR016W, YOR051C.

5.1.4 Results on Yeast Heat Shock GDS1711 Dataset

For analyzing GDS1711 dataset, in the clustering step, the dataset is clustered by five

algorithms to obtain different partitions. Number of clusters found in each partition is

given in Table 5.2. As can be seen from the table, the number of clusters found varies

from 4 to 63 and each partition contains different numbers of genes ranging from 36

to 6020.

Then, we run the elimination step of the algorithm. As in the GDS36 heat shock

dataset, genes annotated with GO term Response to Heat (GO:0009408) is selected

as the gene list. There are 192 genes annotated by this the GO term with experimental

evidence codes. The subnetwork of BioGRID interactions related with the 192 genes
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Figure 5.3: CEC on yeast heat shock GDS1711 dataset.

in the selected GO term is prepared. First, the IBH for each cluster is calculated.

Then, from IBH values of each cluster, gene weights are calculated. The unrelated

genes are eliminated from the clusters in partitions by using threshold being equal to

0.01.

The distance matrix between genes that passed the elimination step is calculated by

using the evidence accumulation. Then, the distance matrix is used by a model based

clustering algorithm to obtain the final clustering. We analyzed the results on a gene

by gene basis. First, GO annotations for each gene is searched to locate annotations

related with heat shock. After that a literature survey is performed for genes who do

not have related annotations in GO. The results are summarized in Figure 5.3 and

detailed analysis of the results are given in Table H.1 in Appendix H. We can see

from the results that the analysis suggests 6 clusters and 55 genes.

The results can be summarized as:

• Genes that are annotated by the input GO term: 3 genes (SGT2, NUP84, ASM4 )

are annotated by the input GO term.

• Genes that are annotated by other GO terms as stress related: 10 genes (TDH3,
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MRK1, HSC82, MSN4, SSE1, STI1, ACT1, LRE1, YOR356W, MET22) are

annotated by other GO terms as stress related.

• Genes whose relationship with stress are not stated in GO bu have evidence

in literature: 11 genes (YOR356W [94], PRE7 [94], YGR207C [95], AIM2 [94],

NSE5 [94], TOK1 [96], TPM1 [94], VPS53 [94], NGL1 [97], BPT1 [98], ESC2 [94])

are found to be related with stress in literature.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:

– Other genes that may be related with heat shock: Among these genes, most

of them are transport related genes: PFA5, AVT2, YGL114W, YPL236C,

ATF2, DSL1 and EST1. It is known that the expression levels of transport-

related genes decreases under stress [73]. The role of these genes should be

further investigated to make sure of their relevance with stress conditions,

especially the heat shock.

– Genes whose function are not known: 7 genes (YOR352W, YFR032C,

YIR043C, AIM38, AIM43, DLT1, GTT3) have unknown functions.

– Other genes: There are 8 genes that have no evidence for relevance

with heat shock. PTH2 and YHR113W which are responsible from hy-

drolase activity, YBL036C for pyridoxal phosphate binding, YNR048W for

phospholipid-translocating ATPase activity, UBA for protein ubiquitina-

tion, EDC3 for cytoplasmic mRNA processing body assembly, AEP1 for

regulation of translation and GTB1 polysaccharide biosynthetic process.

5.2 Combining Different Microarray Experiments

5.2.1 Description

In heat shock response of the cell, several groups of genes are expressed in order to

adapt the cell to the new environment. Mainly, carbohydrate metabolism, fatty acid

metabolism, respiration, oxidative stress defense autophagy and vacuolar function,

protein folding and degradation, cytoskeletal reorganization and signaling genes are
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Figure 5.4: Outline of the application of CEC method to combination of heterogeneous
datasets, 7 different heat shock microarray datasets in this example.

expressed. We take seven different time series datasets, each representing a heat shock

time series experiment. Our aim is to find the common characteristics that can be

observed on these 7 experiments in the context of heat shock. For clustering, FLAME

algorithm is used [2]. The outline of the combination is shown in Figure 5.4. The

selected datasets are described in the next section and the results are then given.

5.2.2 Datasets

Gasch et al. measured genomic expression patterns in the yeast Saccharomyces cere-

visiae responding to diverse environmental transitions over time for almost every yeast

gene [72]. We selected heat shock experiments from the experiment data they provide,

namely GDS15, GDS16, GDS34, GDS35, GDS36 and GDS112. In addition to these

datasets, we included a gene deletion experiment on SSA1/2 gene heat shock response

by Matsumoto et al. [89]. All datasets can be downloaded from Gene Expression

Omnibus (GEO).
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• GDS15: In this dataset, measurements are taken 20 min after temperature shift

from 17°C, 21°C, 25°C, 29°C or 33°C to 37°C [72]. There are 6 samples and

9345 genes/gene candidates in the dataset.

• GDS16: In this dataset, measurements are taken at several time points up to

80 minutes on heat shock from 25°C to 37°C [72]. There are 8 samples and 9388

genes/gene candidates in the dataset.

• GDS34: In this dataset, measurements are taken at 15, 30, 45, 60 and 90

minutes on heat shock from 37°C to 25°C [72]. There are 5 samples and 7467

genes/gene candidates in the dataset.

• GDS35: In this dataset, measurements are taken on mild heat shocks from 29°C

to 33°C at variable osmolarity, with or without addition of 1 M sorbitol. There

are 6 samples and 7424 genes/gene candidates in the dataset. The samples are

collected at 5, 15 and 30 minutes [72].

• GDS36: In this dataset, measurements are taken at 5, 15, 30 and 90 minutes on

a heat shock from 29°C to 33°C [72]. There are 4 samples and 7578 genes/gene

candidates in the dataset.

• GDS112: In this dataset, measurements are taken at 0, 5, 15, 30 and 60 minutes

on a heat shock from 30°C to 37°C [72]. There are 5 samples and 8582 genes/gene

candidates in the dataset.

• GDS1711: In this dataset,measurements are taken at 30 and 60 minutes on heat

shock treatment at 43°C for wild types and ssa1 ssa2 double deletion mutant.

There are 12 samples [89] and 6974 genes/gene candidates.

5.2.3 Results

In the clustering step, the 7 different heat shock datasets are clustered by FLAME

algorithm to obtain different partitions.

Then, we run the elimination step of the algorithm. Genes annotated with GO term

Response to Heat (GO:0009408) is selected as the gene list. There are 192 genes

annotated by this the GO term with experimental evidence codes. The subnetwork of
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Figure 5.5: CEC on application of CEC method to combination of heterogeneous
datasets, 7 different heat shock microarray datasets in this example.

BioGRID interactions related with the 192 genes in the selected GO term is prepared.

First, the IBH for each cluster is calculated. Then, from IBH values of each cluster,

gene weights are calculated. The unrelated genes are eliminated from the clusters in

partitions by using threshold being equal to 0.01.

The distance matrix between genes that passed the elimination step is calculated by

using the evidence accumulation. Then, the distance matrix is used by a model based

clustering algorithm to obtain the final clustering. The results after combination step

can be found in Figure 5.5.

We examined the results on gene basis and the results are given in Table I.1. Most

of the genes resulting from the CEC analysis are related to heat shock experiments.

In addition to genes that are annotated with the input GO term Heat shock response,

genes that have functions related with heat shock response are found. Some of the

genes are not annotated in GO with heat shock or stress related terms. However,

when we look at the literature, we found some genes are actually related with heat

shock response.

To summarize,
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• Genes that are annotated by the input GO term: Genes STE20, ASM4, HSP104,

NUP100, NUP84, SGT2 and MDJ1 are annotated by the GO term Response to

heat are given as output of CEC analysis.

• Genes that are annotated by other GO terms as stress related: DAN1, LRE1

and PSR2 are annotated as stress related genes in GO.

• Genes whose relationship with stress are not stated in GO bu have evidence in

literature: ARP4 [99], DOG2 [100], AIM45 [95], BPT1 [98], PFK26 [73] and

TOK1 [96] genes are found to be related with stress response.

• The unrelated genes and genes whose functions are not known yet: Among

these genes, most of them are transport related genes: APL1, ATF2, GGA1,

SSH4, THI72, VTI1, YCK3, YPL236C and YGL14W. It is known that the

expression levels of transport-related genes decreases under stress [73]. The role

of these genes should be further investigated to make sure of their relevance

with stress conditions, especially the heat shock. Other genes in this group are

HOS3 and SGA1 which are responsible from hydrolase activity, CFT2 for mRNA

cleavage and MOT2 for protein polyubiquitination. The last subgroup of genes

are those whose function are not yet known: YHL005C, YJR141W, YLR177W

and YLR345W.

5.3 Evaluation of CEC With the Gene Set Enrichment Analysis

Method

5.3.1 Description

In order to assess the success of the method, we checked the GSEA enrichment scores

of the analysis results. To make the comparisons more accurate, we selected two

datasets from the original GSEA study. We first clustered the datasets with different

algorithms such as FLAME, k -means and fuzzy c-means with different parameters

and then applied the CEC method. The dataset is described in the first subsection.

The results of analyzing the datasets by CEC is presented in the following sections.
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5.3.2 Datasets

In order to make accurate comparisons, we selected two datasets from the original

GSEA study.

1. Male vs. Female Lymphoblastoid Cells. Subramanian et al. measured expression

profiles from lymphoblastoid cell lines derived from 15 males and 17 females to

identify gene sets correlated with the distinctions [31]. They achieved enrichment

of male related genes in male>female comparison.

2. p53 Status in Cancer Cell Lines Olivier et al. measured gene expressions from

the NCI-60 collection of cancer cell lines [101]. Subramanian et al. used 50 of

them in which mutation status was reported. The p53 gene was normal in 17 of

them and mutated in the other 33.

5.3.3 Results on Male vs. Female Lymphoblastoid Cells Dataset

We selected male sex differentiation GO term as input to CEC method. We used each

cluster found by CEC as a gene list as the input to Gene Set Enrichment analysis

method.

We performed 2 runs with different cluster cleaning thresholds. The enrichment plots

of enriched clusters with t=0.01 are given Figure 5.6.

We can see from the GSEA analysis results that each of the two clusters resulted from

the CEC analysis of Male vs. Female Lymphoblastoid Cells Dataset are enriched, one

positively correlated with male phenotypes and one negatively correlated with female

phenotypes.

In order to show the affect of the gene cleaning threshold, the enrichment plots of the

analysis with t=0.001 is given in 5.7.

When threshold being equal to 0.001 is used, 9 clusters are found by CEC analysis. We

can see from the results that each of the 9 clusters are enriched by GSEA method and

4 clusters are positively correlated with male phenotypes and 5 clusters are negatively

correlated with female phenotypes.
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Figure 5.6: GSEA enrichment plot of enriched clusters found in CEC analysis of Male
vs. Female Lymphoblastoid Cells Dataset with t=0.01.

5.3.4 Results on p53 Status in Cancer Cell Lines Dataset

We selected p53 Binding GO term as input to CEC method. The enrichment plots of

enriched clusters are given in Figure 5.8.

We can see from the results of analysis of clusters found by CEC method by GSEA

that all of the clusters are enriched. 2 clusters are positively correlated with nor-

mal phenotypes and 3 clusters are negatively correlated with phenotypes having p53

mutation.

5.3.5 Stability and Complexity Analysis

The only variable that can affect the stability of the method is the threshold value

used in cleaning step. In order to see the effect of it on the method, we make slight

changes on the threshold value and compared the resulting partitions by Rand Statis-

tics, Jaccard Coefficient and Folkes and Mallow Index. As can be seen from the results

in Table 5.3, Table 5.4 and Table 5.5, slight changes in the threshold do not cause

dramatic changes in the results, showing the stability of the method on threshold

values.

The algorithm of CEC method is O(n2), where n is the number of genes in the mi-
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Figure 5.7: GSEA enrichment plot of enriched clusters found in CEC analysis of Male
vs. Female Lymphoblastoid Cells Dataset with t=0.001.

Table 5.3: Rand Statistics among partitions with different threshold t values.

t=0.003 t=0.004 t=0.005 t=0.006 t=0.007
t=0.003 1,00 0,95 0,95 0,81 0,79
t=0.004 0,95 1,00 1,00 0,86 0,84
t=0.005 0,95 1,00 1,00 0,86 0,84
t=0.006 0,81 0,86 0,86 1,00 0,98
t=0.007 0,79 0,84 0,84 0,98 1,00
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Figure 5.8: GSEA enrichment plot of enriched clusters found in CEC analysis of p53
Status in Cancer Cell Lines Dataset with t=0.01.

Table 5.4: Jaccard Coefficient among partitions with different threshold t values.

t=0.003 t=0.004 t=0.005 t=0.006 t=0.007
t=0.003 1,00 0,93 0,93 0,78 0,76
t=0.004 0,93 1,00 1,00 0,84 0,82
t=0.005 0,93 1,00 1,00 0,84 0,82
t=0.006 0,78 0,84 0,84 1,00 0,98
t=0.007 0,76 0,82 0,82 0,98 1,00

Table 5.5: Folkes and Mallows Coefficient among partitions with different threshold t
values.

t=0.003 t=0.004 t=0.005 t=0.006 t=0.007
t=0.003 1,00 0,96 0,96 0,88 0,87
t=0.004 0,96 1,00 1,00 0,91 0,90
t=0.005 0,96 1,00 1,00 0,91 0,90
t=0.006 0,88 0,91 0,91 1,00 0,99
t=0.007 0,87 0,90 0,90 0,99 1,00
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croarray dataset.

5.3.6 Results on Yeast Sporulation Dataset with STRING Interaction

Database

In order to see the effect of using another interaction database, we used STRING

interaction database [57] to the yeast sporulation database. For analyzing Yeast

sporulation dataset, in the clustering step, the dataset is clustered by five algorithms

to obtain different partitions. Number of clusters found in each partition is given in

Table F in Appendix G. As can be seen from the table, the number of clusters found

varies from 5 to 18.

Then, we run the elimination step of the algorithm. Genes annotated with GO term

Sporulation (GO:0043934) is selected as the gene list. The subnetwork of STRING

interactions related with the genes in the selected GO term is prepared. First, the

IBH for each cluster is calculated. Then, from IBH values of each cluster, gene weights

are calculated. The unrelated genes are eliminated from the clusters in partitions by

using threshold being equal to 0.01.

The distance matrix between genes that passed the elimination step is calculated by

using the evidence accumulation. Then, the distance matrix is used by a model based

clustering algorithm to obtain the final clustering. The results after combination step

can be found in Figure 5.9 and detailed analysis of the results are given in Table G.1

in Appendix G.

We analyzed the results on a gene by gene basis. First, GO annotations for each

gene is searched to locate annotations related with heat shock. After GO search, a

literature survey is performed for genes that do not have related annotations in GO.

The results can be summarized as follows:

• Genes that are annotated by the input GO term: 18 genes (YLR227C, YOR313C,

YPL130W, YDR523C, YLR213C, YHR184W, YOR298W, YLR307W, YOL091W,

YHR185C, YDR273W, YDR522C, YLR343W, YNL128W, YNL204C, YOL132W,

YDR273W, YGL170C) are annotated by the input GO term.
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Figure 5.9: CEC on yeast sporulation dataset with STRING interaction database.

• Genes that are annotated by other GO terms as sporulation related: 8 genes

(YDR218C, YHR124W, YDL154W, YOR33C, YER106W, YKL042W, YGR059W,

YJL038C) are annotated by other GO terms as sporulation related.

• Genes whose relationship with sporulation are not stated in GO bu have evi-

dence in literature: 6 genes (YDR065W, YGR229C,M YFR032C, YMR125W,

YGL138C) are found to be related with sporulation.

• The unrelated genes and genes whose functions are not known yet: These genes

grouped for further analysis:

– Mitosis related genes: YIL139C, YEL061C,

– DNA repair genes: YDR263C, YDR317W, YIL159W,

– Transport related genes: YFL011W, YLR209C, YMR272C, YHR015W,

– Spindle pole body duplication: YPL124W,

– Genes whose function are not known: YGL015C, YCRX06W, YDR355C,

YGR228W, YCRX07W, YPR027C, YOL015W, YER182W, YDL186W.

– Other genes: YBR268W, YDL008W, YDL103C, YEL016C, YFR023W.
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The summarized results of the application of CEC method on yeast sporulation

datasets with two different interaction databases, BioGRID and STRING are given

in 5.10. As can be seen from the results, the results of CEC method does not change

significantly with the change of interaction database used.
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(a) Analysis with BioGRID Interaction Database.

(b) Analysis with String Interaction Database.

Figure 5.10: Summarized results of the analysis of sporulation dataset with two dif-
ferent interaction databases.
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CHAPTER 6

CONCLUSION

Microarrays are used to understand relationships between genes, extract pathways,

and in general to understand biological processes. With microarray technology, the

expression levels of the entire genome can be measured simultaneously. While mi-

croarrays provide a great opportunity, mining microarray data is a challenging task.

Methods to analyze microarray data should address the curse of dimensionality prob-

lem raised by the tens of thousands of genes versus small sample sizes. In order to

solve the curse of dimensionality problem and find genes related with the biological

process under inspection, methods should incorporate biological sources and use them

in the analysis.

In this study, we describe Cluster-Eliminate-Combine method which involves integra-

tion of two important biological resources, Gene Ontology (GO) [32] and interaction

networks in the analysis microarray data for eliminating unrelated genes from mi-

croarray data and allows us to find a clustering result containing only genes which are

related with the biological process under inspection.

CEC method depends heavily on Interaction Based Homogeneity (IBH) that we de-

scribe in Chapter 3. Interaction Based Homogeneity measure is the first study to use

interaction networks in the calculation of homogeneity, to the best of our knowledge.

In order to demonstrate the effectiveness of IBH, we compared it with different sim-

ilar popular measures. We applied two GO-based homogeneity measures, one using

Resnik’s similarity [69, 35] and the other using Wang’s similarity [33]. We applied

a KEGG-based enrichment score which is based on domainSignatures method [62].

Finally, we compared IBH with the popular DAVID tool’s enrichment scores with
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IBH [60, 61]. We performed our experiments on two cases. In the first case, lists

of highly interacting genes were used and in the second case lists that are similar

according to Gene Ontology were used. We showed that IBH is very successful in dis-

tinguishing related lists from random lists and measuring randomness in both cases.

Gene Set Enrichment Analysis (GSEA) [31] is a popular method in the analysis of

microarray data. We applied IBH to create a ranked list from a microarray data, p53

dataset, and used GSEA method to locate enriched gene lists according to the ranked

list. Gene lists related with the biological process under inspection were enriched by

GSEA method, which proves the quality of the ranked list created by IBH.

We implemented an R [63] package called ibh containing several methods to calculate

IBH. The package is accepted to be included in Bioconductor which provides tools for

the analysis and comprehension of high-throughput genomic data and has an active

user community. ibh package is freely available through Bioconductor [42].

After demonstrating the effectiveness of Interaction Based Homogeneity, we presented

details of CEC method in Chapter 4. In CEC method, first, several partitions from

microarray data are made by applying different clustering algorithms to the data

or using different parameters on the same algorithm. An interaction subnetwork is

created by using the whole interaction network of the genome and the Gene Ontology

terms provided by the user presenting the biological process under inspection. Each

cluster contained in the partitions are evaluated by IBH and a gene weight is calculated

for each gene in the microarray data by using IBH values of the clusters that the gene

belongs to. The clusters are then cleaned up by gene weights and a threshold. Finally,

the cleaned clusters are combined by the cluster ensembles method using evidence

accumulation strategy [20, 21].

We selected an example dataset, GDS36 yeast heat shock dataset, and showed the

significance of each component of the method individually on this dataset. We pre-

sented results without contributon of Gene Ontology terms, without providing a real

interaction network and without the cluster cleaning. The addition of each component

have significant effects on the results as shown in Chapter 4.

Detailed results of CEC are given in Chapter 5. We presented results on another
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yeast heat shock dataset, GDS1711 and on a popular yeast sporulation dataset. We

analyzed two microarray datasets contained in the original GSEA study, gender and

p53 datasets, by CEC method and applied GSEA on the resulting clusters. We showed

that the resulting clusters are also enriched by the GSEA method.

Another challenge in mining microarray data is to combine heterogeneous datasets

which contains different number of genes and different samples and measurement con-

ditions. CEC method can also address combination of heterogeneous datasets. We

provided an example application on the combination of seven heat shock datasets,

showing that CEC method reveals the genes that play a common role among seven

experiments.

The results given in Chapter 5 proves that application of CEC method reveals pre-

viously unknown biological information. As an example, in heat shock experiment

analysis the resulting clustering reveals the heat shock relevance of genes that plays

role in oxidative stress genes, hydrolase genes and general stress genes, although the

input GO term provided to the algorithm does not contain information about them.

The results of the analyses of CEC method are also supported by recent research as

can be seen from the manual analysis of CEC results.

In all of the above experiments we used BIOGRID [45] interaction database as the

information resource of the interaction network. To show that the method is not very

dependent on the BIOGRID database, we used another popular interaction database,

STRING [57], which contains known and predicted interactions. The results of CEC

by using STRING database are similar to the previous results.

Several improvements can be made to the CEC method. The current work on in-

teraction networks has a focus on weighted interaction networks [102, 103, 104].

Certain interaction networks such as STRING [57] provides scores for interactions.

CEC method can be extended to make use of such weighted interaction networks and

interaction scores. When the weighted interaction networks become more publicly

available, Interaction Based Homogeneity measure and gene weight calculation may

be adapted to use weighted interaction networks.

Interaction Based Homogeneity gives good results on protein complexes since is based
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on pairwise interactions, but it does not perform well on signaling cascades. Another

improvement on the method can be on increasing the performance of Interaction Based

Homogeneity measure on signaling cascades. Interaction Based Homogeneity can be

changed to take transitive interactions into consideration to solve this problem and

increase its performance on signaling cascades.

Since the clustering part of the CEC method does not involve any special steps,

the method can be generalized to analyze other omics data such as proteomics or

metabolomics. The data can be clustered with different algorithms or parameters,

and then the elements in the clusters can be eliminated and combined in the same

way as analyzing microarray data.
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Heinisch, and J. Arroyo, “Characterization of sensor-specific stress response by
transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors
in saccharomyces cerevisiae,” OMICS, vol. 14, no. 6, pp. 679–688, 2010.

[78] K. Sakaki, K. Tashiro, S. Kuhara, and K. Mihara, “Response of genes asso-
ciated with mitochondrial function to mild heat stress in yeast saccharomyces
cerevisiae,” J Biochem, vol. 134, no. 3, pp. 373–384, 2003.

[79] M. Taylor, M. Tuffin, S. Burton, K. Eley, and D. Cowan, “Microbial responses
to solvent and alcohol stress,” Biotechnol J, vol. 3, no. 11, pp. 1388–1397, 2008.

[80] A. A. Petti, C. A. Crutchfield, J. D. Rabinowitz, and D. Botsteina, “Survival
of starving yeast is correlated with oxidative stress response and nonrespiratory
mitochondrial function,” Proc Natl Acad Sci, vol. 108, no. 34, pp. –, 2011.

[81] N. Malys and J. McCarthy, “Dcs2, a novel stress-induced modulator of m7gpppx
pyrophosphatase activity that locates to p bodies,” J Mol Biol, vol. 363, no. 2,
pp. 370–382, 2006.

[82] C. R and B. A, “The stress-induced tfs1p requires natb-mediated acetylation to
inhibit carboxypeptidase y and to regulate the protein kinase a pathway,” J Biol
Chem, vol. 279, no. 37, pp. 38532–38543, 2004.

[83] N. Zhang, J. Wu, and S. G. Oliver, “Gis1 is required for transcriptional repro-
gramming of carbon metabolism and the stress response during transition into
stationary phase in yeast,” Microbiology, vol. 155, no. 5, pp. 1690–1690, 2009.

[84] P. Lee, B. Bochner, and A. BN, “Appppa, heat-shock stress, and cell oxidation,”
Proc Natl Acad Sci, vol. 80, no. 24, pp. 7496–7500, 1983.

[85] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular
biology of the cell. Garland Science, 5 ed., 2007.

[86] S. Carbon, A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, AmiGO
Hub, and Web Presence Working Group, “AmiGO: online access to ontology
and annotation data.,” Bioinformatics (Oxford, England), vol. 25, pp. 288–289,
Jan. 2009.

[87] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A.
Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P.
Mesirov, “Gene set enrichment analysis: A knowledge-based approach for inter-
preting genome-wide expression profiles,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 102, pp. 15545–15550, Oct.
2005.

[88] S. Chu, J. DeRisi, M. Eisen, J. Mulholland, D. Botstein, P. O. Brown, and
I. Herskowitz, “The transcriptional program of sporulation in budding yeast.,”
Science, vol. 282, no. 5389, pp. 699–705, 1998.

90



[89] R. Matsumoto, K. Akama, R. Rakwal, and H. Iwahashi, “The stress response
against denatured proteins in the deletion of cytosolic chaperones ssa1/2 is dif-
ferent from heat-shock response in saccharomyces cerevisiae,” BMC Genomics,
vol. 6, no. 141, pp. –, 2005.
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Appendix A

ibh SOFTWARE PACKAGE

ibh software package contains methods to calculate Interaction Based Homogeneity

(IBH), a measure to evaluate the relationship of gene lists with respect to an interaction

network. ibh package is developed in R and it is freely available through Bioconductor.

In ibh package, researchers may make use of predefined interaction networks as well

as their own interaction networks. In addition to using gene lists as input, methods

in the package enable the user to directly employ the clustering results as input for

the evaluation with IBH.

ibh software package is implemented in R and it is submitted to Bioconductor. ibh

package contains easy to use functions. We also created an experimental data pack-

age called simpIntLists. simpIntLists package contains interaction networks which are

generated from the latest version of BioGRID interactions. simpIntLists is used by

functions of ibh package in which predefined interactions are used. simpIntLists con-

tains interactions for seven organisms: Arabidopsis thaliana, Caenerhabditis elegans,

Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisae, and

Schizosaccharomyces pombe. Unique identifiers, official names or Entrez identifiers

can be used as identifiers for each organism. When using the predefined interactions,

the user should provide the name of the organism and type of the identifier.

ibh and simpIntLists packages require R programming language and they can be

installed by entering the following commands from R command line.

> source("http://Bioconductor.org/biocLite.R")

> biocLite("ibh")

> biocLite("simpIntLists")
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In the following sections, we give examples on how the methods in ibh package can be

applied.

A.0.7 Loading the Package

In order to employ the methods implemented in ibh package, the following command

should be entered in R command line:

> library(ibh)

This command will also load simpIntLists package that contains experimental data.

A.0.8 Interaction Based Homogeneity to Evaluate Gene Lists

Interaction Based Homogeneity can be calculated for multiple gene lists by providing

an organism name and identifier type as shown in the example below.

> listofGeneList <- list(list("YJR151C", "YBL032W", "YAL040C",

+ "YBL072C", "YCL050C", "YCR009C"), list("YDR063W", "YDR074W",

+ "YDR080W", "YDR247W", "YGR183C", "YHL033C"), list("YOL068C",

+ "YOL015W", "YOL009C", "YOL004W", "YOR065W"))

> ibhForMultipleGeneListsPreDefined(listofGeneList,

+ organism = "yeast", idType = "UniqueId")

[1] 0.4722222 0.2222222 0.0400000

In this example, we evaluated the IBH for three lists that contain yeast genes. Gene

names are unique identifiers and the predefined BioGRID interactions are used in eval-

uation. The IBH for gene list {”YJR151C”, ”YBL032W”, ”YAL040C”, ”YBL072C”,

”YCL050C”, ”YCR009C”} is 0.4722222, for gene list {”YDR063W”, ”YDR074W”,

”YDR080W”, ”YDR247W”, ”YGR183C”, ”YHL033C”} is 0.2222222 and for gene list

{”YOL068C”, ”YOL015W”, ”YOL009C”, ”YOL004W”, ”YOR065W”} is 0.0400000.

The first gene list is more homogeneous according to the interaction network than the

other two gene lists.
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A.0.9 Interaction Based Homogeneity to Evaluate Clustering Results

ibh package contains methods that can be used in clustering evaluation based on In-

teraction Based Homogeneity for each cluster. As an example, we show the evaluation

of results of clustering on a sample data set, yeastCC which can also be downloaded

from Bioconductor. yeastCC package contains an expression set of yeast cell cycle

microarray experiment dataset[105]. We use the kmeans method implemented in stats

package to cluster the data.

> require(yeastCC)

> require(stats)

> library(ibh)

> data(yeastCC)

> subset <- exprs(yeastCC)[1:50, ]

> d <- dist(subset, method = "euclidean")

> k <- kmeans(d, 3)

With the commands above, we clustered the data into 3 clusters. We can now evaluate

the result of clustering as follows:

> ibhClusterEvalPredefined(k$cluster,

+ rownames(subset), organism = "yeast", idType = "UniqueId")

[1] 0.00925926 0.02378121 0.11111111

.

The result shown above contains Interaction Based Homogeneity for each of the three

cluster based on predefined interactions. The results show that the third cluster is more

homogeneous than the other clusters with respect to the predefined yeast interaction

network.
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A.0.10 Creating and Using Proprietary Interaction Lists

Users can also provide proprietary interaction lists for any type of organism and identi-

fier. As an example, consider an organism with genes A, B,C and D and the interaction

network as given in Figure 3. User can provide interactions in the network by filling

a list:

> intList <- list(list(name="A", interactors=as.vector(c("B", "C"))),

list(name="C", interactors=as.vector(c("A","D"))))

Interaction Based Homogeneity can then be calculated with respect to interaction

network defined by intList as:

> listOfGeneList <- list(list("A","C"),list("C", "D"))

> ibhForMultipleGeneLists(intList, listOfGeneList)

[1] 0.50 0.25
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Appendix B

DETAILED RESULTS ON ELIMINATION OF

UNRELATED CLUSTERS BEFORE CLUSTERING

COMBINATION

Table B.1: Analysis of the GDS36-heat shock time course

dataset with elimination of unrelated clusters before cluster-

ing combination

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 HXT5

fructose

transmembrane

transporter activity no no

glucose transmembrane

transporter activity

mannose

transmembrane

transporter activity

2 STU2 microtubule binding no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 FPR4

ubiquitin-protein ligase

activity no no

mitosis

4 MAE1 malic enzyme activity no no

5 YDL129W
Putative protein of

unknown function
no no

5 IZH1 metal ion binding no no

1 AVT6 transporter activity no no

1 PIR1
structural constituent

of cell wall
no no

1 UGA2
succinate-semialdehyde

dehydrogenase
no no

1 CSI1 cullin deneddylation no no

2 SPR28
structural molecule

activity
no no

2 YMR082C unknown no no

2 SRM1
signal transducer

activity
no no

2 GPI17
GPI-anchor

transamidase activity
no no

2 GOT1
Golgi to endosome

transport
no no

3 ZEO1 response to stress no yes

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 DAS2 unknown no no

3 HIF1 histone binding no no

3 NET1 rDNA binding no no

3 POL5 rRNA transcription no no

3 POL5 rRNA transcription no no

4 YJR071W unknown no no

4 NIP7 rRNA processing no no

4 KRE33
ribosomal small

subunit biogenesis
no no

4 URA7 CTP synthase activity no no

4 NUG1 rRNA processing no no

4 RRB1 ribosome biogenesis no no

4 RRP5 poly(U) RNA binding no no

4 SAM1

methionine

adenosyltransferase

activity

no no

4 RRP5 poly(U) RNA binding no no

4 PPM2

tRNA

methyltransferase

activity

no no

4 SDA1
ribosomal large subunit

biogenesis
no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

4 ILV1
L-threonine

ammonia-lyase activity
no no

4 SQT1
ribosomal large subunit

assembly
no no

4 IZH2 metal ion binding no no

4 ESF1 rRNA processing no no

4 LHP1 RNA binding no no

4 PPT1

protein

serine/threonine

phosphatase activity

no no

4 PHO5
acid phosphatase

activity
no no

4 UTP10 snoRNA binding no no

4 MTR4 poly(A) RNA binding no no

4 MTR4 poly(A) RNA binding no no

4 SVS1
response to chemical

stimulus
no no

4 RPC40

contributes to

DNA-directed RNA

polymerase activity

no no

4 ELP2

regulation of

transcription from

RNA polymerase II

promoter

no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

4 YDL050C unknown no no

4 UTP20

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

4 TYW1
wybutosine

biosynthetic process
no no

4 NOP58

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

4 YBR238C aerobic respiration no no

4 PHO3
acid phosphatase

activity
no no

4 RPA135

contributes to

DNA-directed RNA

polymerase activity

no no

4 RNR1 nucleotide binding no no

4 UTP10

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

4 IMD4
IMP dehydrogenase

activity
no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

4 SNU13 RNA binding no no

4 YMR304CA unknown no no

4 PRS3

contributes to ribose

phosphate

diphosphokinase

activity

no no

4 SAM2

methionine

adenosyltransferase

activity

no no

5 YGR160W unknown no no

5 ARX1
ribosomal large subunit

biogenesis
no no

5 RRP12 ribosome biogenesis no no

5 RPF1
rRNA primary

transcript binding
no no

5 ROK1 rRNA processing no no

5 UTP23

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 TRM1 tRNA methylation no no

5 YNL060C unknown no no

5 PWP1 rRNA processing no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 NOC2 ribosome assembly no no

5 DBP3 rRNA processing no no

5 RPF2 rRNA binding no no

5 DBP9 rRNA processing no no

5 NOP4 rRNA processing no no

5 RRP1 rRNA processing no no

5 RRP8 rRNA processing no no

5 RLP7 rRNA binding no no

5 UTP11

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 EFG1
G1 phase of mitotic cell

cycle
no no

5 YCL053C unknown no no

5 RLP24 unknown no no

5 YOR287C unknown no no

5 PWP2

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 RRS1
ribosomal large subunit

biogenesis
no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 IPI3 rRNA processing no no

5 DBP7 rRNA processing no no

5 TRM2 tRNA modification no no

5 FAF1

maturation of

SSU-rRNA from

tricistronic rRNA

transcript

no no

5 YDL062W unknown no no

5 PNO1
protein complex

assembly
no no

5 UTP5

positive regulation of

transcription from

RNA polymerase I

promoter

no no

5 DBP8

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 YCR056W unknown no no

5 SSF1 rRNA binding no no

5 TRF5
histone mRNA

catabolic process
no no

5 YBR266C endocytosis no no

Continued on next page
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 YDR491C unknown no no

5 PUF6
ribosomal large subunit

biogenesis
no no

5 CGR1 rRNA processing no no

5 YCLX02C unknown no no

5 PUF6
ribosomal large subunit

biogenesis
no no

5 RPC34

tRNA transcription

from RNA polymerase

III promoter

no no

5 ERG3
ergosterol biosynthetic

process
no no

5 YBL028C unknown no no

5 RRP17 rRNA processing no no

5 YDR413C unknown no no

5 RAS1 GTPase activity no no

5 YMC2
transmembrane

transport
no no

5 NSA2
ribosomal large subunit

biogenesis
no no

5 YLR003C unknown no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 MPP10

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 YDR274C unknown no no

5 IMP4 rRNA processing no no

5 MRT4 rRNA processing no no

5 NOC3 rRNA processing no no

5 NOP12 RNA binding no no

5 RRP15

maturation of 5.8S

rRNA from tricistronic

rRNA transcript

no no

5 MPP10

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 RIO1 protein kinase activity no no

5 TMA16 unknown no no

5 YPL044C unknown no no

5 NOP2 rRNA processing no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 YJR129C

S-adenosylmethionine-

dependent

methyltransferase

activity

no no

5 NSA1
ribosomal large subunit

biogenesis
no no

5 RRP6
histone mRNA

catabolic process
no no

5 YNL022C

tRNA (cytosine-5-)-

methyltransferase

activity

no no

5 RPP1 rRNA processing no no

5 YNL114C unknown no no

5 YLR400W unknown no no

5 BUD21

endonucleolytic

cleavage to generate

mature 5’-end of

SSU-rRNA

no no

5 GCD14 tRNA methylation no no

5 BUD27
formation of translation

preinitiation complex
no no

5 TRM13 tRNA methylation no no

5 UTP30
ribosomal small

subunit biogenesis
no no

Continued on next page

107



Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 DUS3 tRNA modification no no

5 BUD22
ribosomal small

subunit biogenesis
no no

5 UTP6

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 GCD10 tRNA methylation no no

5 DIP2

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 YGR283C

S-adenosylmethionine-

dependent

methyltransferase

activity

no no

5 UTP18

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 LCP5 rRNA processing no no

Continued on next page

108



Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 UTP4

positive regulation of

transcription from

RNA polymerase I

promoter

no no

5 ATC1 response to stress no yes

5 NRP1 unknown no no

5 UTP13

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 UTP8 tRNA binding no no

5 AIR1

contributes to

polynucleotide

adenylyltransferase

activity

no no

5 YIL127C unknown no no

5 FCF2

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 YPR142C unknown no no

5 NOG1 rRNA processing no no

5 NSR1 rRNA processing no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 RSA4
ribosomal large subunit

assembly
no no

5 REI1
ribosomal large subunit

biogenesis
no no

5 NAF1 RNA binding no no

5 UTP21 rRNA processing no no

5 PWP2

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 RCL1

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 TRM11 RNA binding no no

5 ALB1
ribosomal large subunit

biogenesis
no no

5 NOG2
ribosomal large subunit

export from nucleus
no no

5 YOR146W unknown no no

5 IMP3 rRNA processing no no

5 FAL1
ATP-dependent RNA

helicase activity
no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 FYV7

maturation of

SSU-rRNA from

tricistronic rRNA

transcript

no no

5 BFR2 rRNA processing no no

5 YIL091C rRNA binding no no

5 PHO84

inorganic phosphate

transmembrane

transporter activity

no no

5 YML018C unknown no no

5 ARE1

ergosterol

O-acyltransferase

activity

no no

5 TRM44

tRNA (uracil)

methyltransferase

activity

no no

5 DBP6 rRNA processing no no

5 YIH1

regulation of cellular

amino acid metabolic

process

no no

5 TRM5

tRNA (guanine)

methyltransferase

activity

no no

5 SFL1 gene silencing ( no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 AQR1 amino acid export no no

5 FRE1 iron ion transport no no

5 RTT10 endocytic recycling no no

5 YBR141C

S-adenosylmethionine-

dependent

methyltransferase

activity

no no

5 HMT1
mRNA export from

nucleus
no no

5 YGR079W unknown no no

5 UTP15 snoRNA binding no no

5 NOC4

endonucleolytic

cleavage in 5’-ETS of

tricistronic rRNA

transcript

no no

5 UBP10
ubiquitin-specific

protease activity
no no

5 YPR136C unknown no no

5 YPL068C unknown no no

5 GIT1
transmembrane

transport
no no

5 YIL091C
ribosomal small

subunit biogenesis
no no
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 YDL151C ascospore formation no no

5 FOB1 rDNA condensation no no

5 SWC7 chromatin remodeling no no

5 NIP1
translation initiation

factor activity
no no

5 YBL054W

regulation of

transcription from

RNA polymerase II

promoter

no no

5 YOR342C unknown no no

5 DPH1

peptidyl-diphthamide

biosynthetic process

from peptidyl-histidine

no no

5 HNM1 choline transport no no

6 RRN11

transcription initiation

from RNA polymerase

I promoter

no no

6 YER130C
sequence-specific DNA

binding
no no

6 YDL063C
ribosomal large subunit

biogenesis
no no

6 YDR539W
cinnamic acid catabolic

process
no no

6 LCB5 response to heat yes yes
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Table B.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

6 YPR157W unknown no no

6 TFP1
cellular protein

metabolic process
no no

6 YER0191C unknown no no

6 CHA1
threonine catabolic

process
no no

6 FRE7 iron ion transport no no

6 GAL10

galactose catabolic

process via

UDP-galactose

no no

7 HXT3
transmembrane

transport
no no

7 ECM34
fungal-type cell wall

organization
no no

7 YJL215C unknown no no

7 SPG1 unknown no no

7 MDE1

methylthioribulose

1-phosphate

dehydratase activity

no no

7 NMT1 replicative cell aging no no

7 THI4 ferrous iron binding no no
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Appendix C

DETAILED RESULTS ON CREATING INTERACTION

SUBNETWORKS USING GENE ONTOLOGY

Table C.1: Analysis of the GDS36 time course dataset with

creating interaction subnetworks using Gene Ontology.

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 AIM17 unknown no no

1 ALD3

aldehyde

dehydrogenase (NAD)

activity

no no

1 ALD4
aldehyde

dehydrogenase
no no

1 AMS1
cellular carbohydrate

metabolic process
no no

1 BDH1
oxidation-reduction

process
no yes

1 CIT1
cellular carbohydrate

metabolic process
no yes [73]
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Table C.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 CWP1

ascospore-type

prospore membrane

assembly

no yes [77]

1 CY3 0.1X unknown no no

1 DCS2 hydrolase activity no yes [81]

1 DDR2 response to stress no yes

1 DNL4 replicative cell aging no no

1 DSE4

glucan endo-1,3-beta-

D-glucosidase

activity

no no

1 ESC1
chromatin silencing at

telomere
no no

1 FAA2
long-chain fatty

acid-CoA ligase activity
no no

1 FMP16 unknown no no

1 FMP33 unknown no no

1 FTH1
high-affinity iron ion

transport
no no

1 GAD1
cellular response to

oxidative stress
no yes

1 GAL11

negative regulation of

transcription from

RNA polymerase II

promoter

no no
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Table C.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 GLK1
carbohydrate metabolic

process
no yes [73]

1 GPH1
glycogen catabolic

process
no no

1 GRE3

cellular response to

oxidative stress, no yes

response to stress

1 GSY2
glycogen biosynthetic

process
no no

1 GTO3
glutathione metabolic

process
no yes [80]

1 GYP5
vesicle-mediated

transport
no no

1 HOR7 response to stress no yes

1 HSP104 response to stress no yes

1 HSP12
cellular response to

heat
yes yes

1 HSP42

Small heat shock

protein (sHSP) with

chaperone activity,
no yes

response to stress

1 HXK1
carbohydrate metabolic

process
no yes [73]
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Table C.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 NCE103
cellular response to

oxidative stress
no yes

1 NIP100 microtubule binding no no

1 NORF 108 unknown no no

1 NORF 13 unknown no no

1 PGM2
carbohydrate metabolic

process
no yes [73]

1 PHR1
DNA repair,

no yes [74]
response to DNA

damage stimulus

1 PNS1 unknown no no

1 PRB1 hydrolase activity no yes [73]

1 PYC1
pyruvate carboxylase

activity
no no

1 RTN2
Protein of unknown

function
no yes [78]

1 SDS24
cytokinetic cell

separation
no no

1 SOL4

carbohydrate metabolic

process, no yes [83, 76]

hydrolase activity

1 SPI1 response to acid no yes
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Table C.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 SSA4

Heat shock protein that

is highly induced upon

stress,
no yes

response to stress

1 SSE2

Member of the heat

shock protein 70

(HSP70) family,
no yes

response to stress

1 TFS1
regulation of

proteolysis
no no

1 THI7

thiamine

transmembrane

transporter activity

no no

1 TMA17

Protein of unknown

function that associates

with ribosomes

no yes [75, 76]

1 TPK1
Ras protein signal

transduction
no yes [73]

1 TPS1 response to stress no yes

1 TPS3 response to stress no yes

1 TSL1 response to stress no yes

1 UGP1
glycogen biosynthetic

process
no yes [79]
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Table C.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 URK1
pyrimidine-containing

compound salvage
no no

1 YAR002AC unknown no no

1 YCLX05C unknown no no

1 YER067W
energy reserve

metabolic process
no no

1 YGP1 cell wall assembly no no

1 YHB1 response to stress no yes

1 YHR079BC
double-strand break

repair
no no

1 YJL217W unknown no no

1 YKL202W unknown no no

1 YLR111W unknown no no

1 YNL195C
Putative protein of

unknown function
no no

1 YOL053C response to stress no yes

1 YPL185W unknown no no

1 YSC84 actin filament binding no no
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Appendix D

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

GDS36 YEAST HEAT SHOCK DATASET

Table D.1: Number of clusters found in each partition for GDS36Dataset.

Algorithm Number of Clusters Total Number of Genes in Clusters
CAGED 7 5457
FLAME 1 11
NNN 1 5
STEM 50 1461
TAC 3 5457

Table D.2: Analysis of the GDS36-heat shock from 29°C to

33°C time course dataset with CEC method.

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 HSP104

Heat shock protein that

refolds denatured,

yes yesaggregated proteins,

trehalose metabolism in

response to heat stress,

Continued on next page
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Table D.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

response to stress

1 SSE2

Member of the heat

shock protein 70

(HSP70) family,
no yes

response to stress

1 SSA4

Heat shock protein that

is highly induced upon

stress,
no yes

response to stress

1 HSP42

Small heat shock

protein (sHSP) with

chaperone activity,
no yes

response to stress

1 TSL1 response to stress no yes

1 DDR2 response to stress no yes

1 TPS3 response to stress no yes

1 HOR7 response to stress no yes

1 GAD1
cellular response to

oxidative stress
no yes

1 CTT1

oxidation-reduction

process,

no yesresponse to oxidative

stress,
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Table D.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

cellular response to

water deprivation,

response to stress

1 GRE3

cellular response to

oxidative stress, no yes

response to stress

1 BDH1
oxidation-reduction

process
no yes

1 PRB1

sporulation resulting in

formation of a cellular

spore, no yes [73]

hydrolase activity,

cellular response to

starvation,

1 PHR1
DNA repair,

no yes [74]
response to DNA

damage stimulus

1 TMA17

Protein of unknown

function that associates

with ribosomes

no yes [75, 76]

1 TPK1
Ras protein signal

transduction
no yes [73]

1 CIT1
cellular carbohydrate

metabolic process
no yes [73]
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Table D.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 PGM2
carbohydrate metabolic

process
no yes [73]

1 HXK1
carbohydrate metabolic

process
no yes [73]

1 SPI1 response to acid no yes

1 CWP1

ascospore-type

prospore membrane

assembly

no yes [77]

1 RTN2
Protein of unknown

function
no yes [78]

1 UGP1
glycogen biosynthetic

process
no yes [79]

1 PNC1 hydrolase activity no yes [80]

1 DCS2 hydrolase activity no yes [81]

1 GLK1
carbohydrate metabolic

process
no yes [73]

1 TFS1
negative regulation of

peptidase activity
no yes [82]

1 SOL4

carbohydrate metabolic

process, no yes [83, 76]

hydrolase activity

1 GTO3
glutathione metabolic

process
no yes [80]
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Table D.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 YSC84
actin cortical patch

localization
no no

1 YNL195C
Putative protein of

unknown function
no no

1 FMP16
Putative protein of

unknown function
no no

1 YCL042W
Putative protein of

unknown function
no no

1 AMS1

cellular carbohydrate

metabolic process,
no no

hydrolase activity,

acting on glycosyl

bonds
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Appendix E

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

GDS36 YEAST HEAT SHOCK DATASET WITH A

FULLY CONNECTED INTERACTION NETWORK

Table E.1: Analysis of the GDS36-heat shock time course

dataset with CEC method and a fully connected interaction

network.

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 NORF 78 unkown no no

1 NORF 17 unkown no no

1 RRN5 chromatin organization no yes [106]

1 RIM15 response to stress no yes

1 GCV2

glycine dehydrogenase

(decarboxylating)

activity

no no

Continued on next page
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 NCA3
mitochondrion

organization
no no

1 DLD3
lactate metabolic

process
no no

1 MMS22
double-strand break

repair
no yes [107]

1 YBR286W50 unknown no no

1 FAB1 endosome membrane no yes [107]

1 YML003W unknown no no

1 MCM4
DNA replication origin

binding
no no

1 YPR127W unknown no no

1 MEC1 protein kinase activity no no

1 YDR186C unknown no no

1 RPH1 histone demethylation no no

1 TOM1
ubiquitin-protein ligase

activity
no yes [107]

1 GZF3
sequence-specific DNA

binding
no no

1 DRS2

phospholipid-

translocating ATPase

activity

no yes [107]
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 GDH2

glutamate

dehydrogenase

(NAD+) activity

no no

1 GCV1
glycine catabolic

process
no no

1 286W750 unknown no no

1 CIT2
citrate metabolic

process
no no

1 TOR2 protein binding no no

1 YNR040W unknown no no

1 CHO2
phosphatidylcholine

biosynthetic process
no no

1 AIM23 unknown no no

1 286W700 unknown no no

1 TFC3
contributes to DNA

binding, bending
no yes [107]

1 YTA7 chromatin binding no yes [107]

1 YME1
ATP-dependent

peptidase activity
no yes [108]

1 SIN3

positive regulation of

transcription from

RNA polymerase II

promoter in response to

heat stress

no yes
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 COG4 CVT pathway no no

1 YOR022C phospholipase activity no no

1 RML2
structural constituent

of ribosome
no yes [107]

1 ISM1
isoleucine-tRNA ligase

activity
no yes [107]

1 GPB1
signal transducer

activity
no no

1 TCB3 lipid binding no no

1 TGL4
phospholipid metabolic

process
no no

1 LRO1
phospholipid:diacylglycerol

acyltransferase activity
no no

1 YAP1 response to heat yes yes

1 MHR1
cellular response to

oxidative stress
no yes

1 YAL004W unknown no no

1 BNA3
kynurenic acid

biosynthetic process
no no

1 YAL004W unknown no no

1 BNA3
kynurenic acid

biosynthetic process
no no

1 CHA4
cellular amino acid

catabolic process
no no
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 YHR009C
retrograde transport,

endosome to Golgi
no no

1 IRA1
Ras GTPase activator

activity
no yes [107]

1 YHR009C
retrograde transport,

endosome to Golgi
no no

1 SWI4 DNA binding no yes [107]

1 HSP12
cellular response to

heat
yes yes

1 PYC1
pyruvate carboxylase

activity
no no

2 MET1 sulfate assimilation no no

2 YOR356W unknown no no

2 YEL020C unknown no no

2 KAP104
nuclear localization

sequence binding
no yes [107]

2 TPD3
actin filament

organization
no no

2 YKL136W unknown no no

2 MDV1 ubiquitin binding no no

2 BEM3

phosphatidylinositol-3-

phosphate

binding

no no
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

2 KHA1
potassium:hydrogen

antiporter activity
no no

2 UBP5
protein

deubiquitination
no no

3 NORF 3 unknown no no

3 COX4 zinc ion binding no no

3 DAN1 sterol transport no no

3 YER135C unknown no no

3 YHL037C DNA binding no yes [109]

3 YFL052W unknown no yes [109]

3 YER181C unknown no no

3 YLR365W unknown no no

3 YDL186W unknown no no

3 WSC4 response to heat yes yes

3 YHL041W unknown no no

3 YKL031W unknown no no

3 YGL188C unknown no no

3 YGL109W unknown no no

3 YGR066C unknown no no

3 FDH2
formate catabolic

process
no no

3 MMS4 DNA repair no no

3 YOR055W unknown no no
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 TIF4632 stress granule assembly no yes

3 YGR053C unknown no no

3 YLR296W unknown no no

3 YGL118C unknown no no

3 SPG4 unknown no no

3 YJR157W unknown no no

3 SPO19 meiosis no no

3 YDR220C unknown no no

3 QDR2
drug transmembrane

transporter activity
no no

3 YPT53 endocytosis no no

4 YOL053C response to stress no yes

4 CY3 0.1X unknown no no

5 HXT2 glucose transport no no

5 ECM22
sequence-specific DNA

binding
no no

5 HSP30 response to stress no yes

5 HIS4
histidinol

dehydrogenase activity
no no

5 YOR013W mitotic recombination no no

5 MIP6 RNA binding no no
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 COX5A

mitochondrial electron

transport, cytochrome

c to oxygen

no no

5 GSM1 DNA binding no no

5 YDR537C unknown no no

5 YIG1
glycerol biosynthetic

process
no no

5 YML090W unknown no no

5 PAC1
microtubule plus-end

binding
no no

5 ICS3 unknown no yes [108]

5 YER188W unknown no no

5 ATP20
structural molecule

activity
no no

5 CTH1 mRNA binding no no

5 PAU11 unknown no no

5 WSC3 response to heat yes yes

6 RRN11
TBP-class protein

binding
no no

6 OCA5 unknown no yes [107]

6 YER130C unknown no no

6 YDL063C
ribosomal large subunit

biogenesis
no no
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Table E.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

6 YDR539W
cinnamic acid catabolic

process
no no

6 YPR157W unknown no no

6 TFP1 intron homing no yes [107]

6 YER0191C unknown no no

6 FRE7 iron ion transport no no

6 GAL10

galactose catabolic

process via

UDP-galactose

no no

6 LCB5 response to heat yes yes

6 CHA1
L-serine catabolic

process
no no
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Appendix F

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

YEAST SPORULATION DATASET

Table F.1: Number of clusters found in each partition for yeast sporulation dataset.

Algorithm Number of Clusters
CAGED 6
FLAME 13
GQL 5
NNN 18
STEM 8
TAC 7

Table F.2: Analysis of the Sporulation time course dataset

with CEC method.

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

1 YBR268W

sporulation resulting in

formation of a cellular

spore

no yes

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

1 YDL103C

UDP-N-

acetylglucosamine

biosynthetic process

no no

1 YDL008W
mitosis

no no
cell division

1 YDL154W
reciprocal meiotic

recombination
no yes

1 YDR065W vacuolar acidification no yes [90]

1 YDR523C

meiosis

yes yesascospore wall assembly

sporulation resulting in

formation of a cellular

spore

1 YEL016C
nucleoside-triphosphate

diphosphatase activity
no no

1 YFL011W
transmembrane

transport
no no

1 YLR213C
ascospore wall assembly

yes yes
sporulation resulting in

formation of a cellular

spore

2 YER182W

Putative protein of

unknown

function(FMP10)

no no
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

1 YGR229C

regulation of mitotic

cell cycle
no yes [91]

cellular bud neck

cell wall biogenesis

1 YLR227C

meiosis

yes yesspindle pole body

sporulation resulting in

formation of a cellular

spore

1 YOR033C

meiotic DNA

double-strand break

processing
no yes

DNA repair

1 YOR313C

meiosis

yes yes
protein whose

expression is induced

during sporulation

sporulation resulting in

formation of a cellular

spore

ascospore formation

1 YPL130W

meiosis-specific

prospore protein,
yes yes

meiosis,

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

sporulation resulting in

formation of a cellular

spore

2 YER106W

meiotic chromosome

segregation,
no yes

meiosis,

meiotic sister

chromatid cohesion

involved in meiosis I

2 YFR032C

(RRT5)Putative

protein of unknown

function, no yes [92]

regulation of

transcription,

DNA-dependent

2 YHR184W

meiosis,

yes yesascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore

2 YIL139C mitosis no no

2 YIL159W DNA repair no no

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

2 YKL042W

spindle pole body

duplication in nuclear

envelope

no yes

2 YLR209C
transferase activity

(PNP1)
no no

2 YPL124W

spindle pole body

duplication in nuclear

envelope

no no

2 YLR307W

ascospore wall

assembly,
yes yes

chitosan layer of spore

wall,

sporulation resulting in

formation of a cellular

spore

2 YMR272C

fatty acid biosynthetic

process no no

electron transport

chain

2 YOL091W

ascospore wall

assembly,
yes yes

spindle pole body ,

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

sporulation resulting in

formation of a cellular

spore

2 YOR298W
ascospore wall assembly

yes yes
sporulation resulting in

formation of a cellular

spore

3 YDR218C

cellular bud neck,

no no
fungal-type cell wall

organization,

cell morphogenesis,

cell division

3 YDR263C

response to DNA

damage stimulus no no

DNA repair

3 YDR317W

response to DNA

damage stimulus no no

DNA repair

3 YGL138C
Putative protein of

unknown function
no yes [110]

3 YHR124W meiosis no yes

3 YLR343W ascospore wall assembly yes yes

3 YNL128W ascospore wall assembly yes yes

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

3 YMR125W

(STO1) mRNA

capping,
no yes [93]

nuclear-transcribed

mRNA catabolic

process,

nonsense-mediated

decay

3 YNL204C

sporulation resulting in

formation of a cellular

spore

yes yes

3 YOL132W ascospore wall assembly yes yes

4 YDL186W
Putative protein of

unknown function
no no

4 YDR273W

Meiosis-specific

component of the

spindle pole body,

yes yesmeiosis,

ascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore,

cell division

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

4 YPR027C
Putative protein of

unknown function
no no

4 YDR522C

meiosis,

yes yes
ascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore,

ascospore formation

4 YGL170C

Component of the

meiotic outer plaque of

the spindle pole body,
yes yes

ascospore formation,

sporulation resulting in

formation of a cellular

spore,

spindle pole body

4 YHR185C

ascospore wall

assembly,
yes yes

sporulation resulting in

formation of a cellular

spore,

spindle pole body

5 YFR023W (PES4) RNA binding no no

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

5 YEL061C
mitosis,

no no
spindle pole body

separation

5 YGL015C
Putative protein of

unknown function
no no

5 YHR015W
(MIP6)mRNA export

from nucleus
no no

5 YJL038C

sporulation resulting in

formation of a cellular

spore

no yes

5 YGR059W

ascospore wall

assembly,

no yessporulation resulting in

formation of a cellular

spore,

ascospore wall,

cellular bud neck

5 YOL015W
Putative protein of

unknown function
no no

6 YAL040C
G1/S transition of

mitotic cell cycle
no no

6 YAL062W
oxidation-reduction

process
no no

Continued on next page
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Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

6 YAR007C

reciprocal meiotic

recombination,
no yes

DNA repair,

DNA replication

6 YDR256C

oxidation-reduction

process, no no

age-dependent response

to reactive oxygen

species

6 YGL179C transferase activity no no

6 YJR152W

(DAL5) dipeptide

transporter activity, no no

allantoate

transmembrane

transporter activity

6 YKR016W cristae formation no no

6 YML008C transferase activity no no

6 YNL098C
ascospore formation,

yes yes
signal transduction

6 YNL142W

ammonium

transmembrane

transport

no no

6 YGL179C
regulation of

translation
no no

Continued on next page

144



Table F.2 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

6 YOR375C
oxidation-reduction

process
no no

7 YAL067C
transmembrane

transport
no no

7 YGR224W
transmembrane

transport
no no

7 YHR139C

meiosis,

yes yessporulation resulting in

formation of a cellular

spore,

ascospore wall assembly

7 YJL074C
ascospore formation,

yes yes
mitosis

7 YPL208W
methyltransferase

activity
no no
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Appendix G

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

YEAST SPORULATION DATASET WITH STRING

DATABASE

Table G.1: Analysis of the Sporulation dataset with CEC

method and STRING interaction database

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

playing role

in

sporulation

1 YDR263C DNA repair no no

1 YDR317W DNA repair no no

1 YDR218C

sexual sporulation

resulting in formation

of a cellular spore

no yes

1 YGL015C unknown no no

1 YHR124W meiosis no yes

2 YBR268W
mitochondrial

translation
no no

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

2 YDL008W
ubiquitin-protein ligase

activity
no no

2 YDL103C

UDP-N-

acetylglucosamine

biosynthetic process

no no

2 YDL154W
reciprocal meiotic

recombination
no yes

2 YFL011W hexose transport no no

2 YLR227C

sporulation resulting in

formation of a cellular

spore

yes yes

2 YOR313C ascospore formation yes yes

2 YPL130W meiosis yes yes

2 YCRX06W unknown no no

2 YDR065W vacuolar acidification no yes [90]

1 YLR213C
ascospore wall assembly

yes yes
sporulation resulting in

formation of a cellular

spore

1 YOR033C

meiotic DNA

double-strand break

processing
no yes

DNA repair

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 YEL016C
nucleoside-triphosphate

diphosphatase activity
no no

2 YDR523C

meiosis

yes yesascospore wall assembly

sporulation resulting in

formation of a cellular

spore

2 YGR229C

regulation of mitotic

cell cycle
no yes [91]

cellular bud neck

cell wall biogenesis

3 YER106W

meiotic chromosome

segregation,
no yes

meiosis,

meiotic sister

chromatid cohesion

involved in meiosis I

3 YHR184W

meiosis,

yes yesascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore

2 YIL159W DNA repair no no

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 YDR355C unknown no no

3 YER182W

Putative protein of

unknown

function(FMP10)

no no

3 YOR298W
ascospore wall assembly

yes yes
sporulation resulting in

formation of a cellular

spore

3 YFR032C

(RRT5)Putative

protein of unknown

function, no yes [92]

regulation of

transcription,

DNA-dependent

3 YGR228W unknown no no

3 YIL139C mitosis no no

3 YKL042W

spindle pole body

duplication in nuclear

envelope

no yes

3 YLR209C
transferase activity

(PNP1)
no no

3 YPL124W

spindle pole body

duplication in nuclear

envelope

no no

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 YLR307W

ascospore wall

assembly,
yes yes

chitosan layer of spore

wall,

sporulation resulting in

formation of a cellular

spore

3 YMR272C

fatty acid biosynthetic

process no no

electron transport

chain

3 YOL091W

ascospore wall

assembly,
yes yes

spindle pole body ,

sporulation resulting in

formation of a cellular

spore

4 YCRX07W unknown no no

4 YDL186W
Putative protein of

unknown function
no no

4 YPR027C
Putative protein of

unknown function
no no

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

4 YHR185C

ascospore wall

assembly,
yes yes

sporulation resulting in

formation of a cellular

spore,

spindle pole body

4 YDR273W

Meiosis-specific

component of the

spindle pole body,

yes yesmeiosis,

ascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore,

cell division

4 YDR273W

Meiosis-specific

component of the

spindle pole body,

yes yesmeiosis,

ascospore wall

assembly,

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

sporulation resulting in

formation of a cellular

spore,

cell division

5 YFR023W (PES4) RNA binding no no

5 YOL015W
Putative protein of

unknown function
no no

5 YEL061C
mitosis,

no no
spindle pole body

separation

5 YDR522C

meiosis,

yes yes
ascospore wall

assembly,

sporulation resulting in

formation of a cellular

spore,

ascospore formation

5 YGL170C

Component of the

meiotic outer plaque of

the spindle pole body,
yes yes

ascospore formation,

sporulation resulting in

formation of a cellular

spore,

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

spindle pole body

5 YHR015W
(MIP6)mRNA export

from nucleus
no no

5 YJL038C

sporulation resulting in

formation of a cellular

spore

no yes

5 YGR059W

ascospore wall

assembly,

no yessporulation resulting in

formation of a cellular

spore,

ascospore wall,

cellular bud neck

6 YLR343W ascospore wall assembly yes yes

6 YMR125W

(STO1) mRNA

capping,
no yes [93]

nuclear-transcribed

mRNA catabolic

process,

nonsense-mediated

decay

6 YNL128W ascospore wall assembly yes yes

Continued on next page
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Table G.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

6 YNL204C

sporulation resulting in

formation of a cellular

spore

yes yes

6 YOL132W ascospore wall assembly yes yes

6 YGL138C
Putative protein of

unknown function
no yes [110]
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Appendix H

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

GDS1711 YEAST HEAT SHOCK DATABASE

Table H.1: Analysis of the GDS1711 time course dataset with

CEC method

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 SIP1

regulation of protein

complex assembly no yes [94]

signal transduction

1 YBL036C
pyridoxal phosphate

binding
no no

1 YNR048W

phospholipid-

translocating ATPase

activity

no no

1 YOR352W
Putative protein of

unknown function
no no

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 TDH3

oxidation-reduction

process, oxidoreductase

activity, apoptosis

no yes

1 YGR207C
electron transport

chain
no yes [95]

1 PRE7
hydrolase activity,

no yes [94]
proteasomal

ubiquitin-independent

protein catabolic

process

1 PTH2
hydrolase activity,

no no
negative regulation of

proteasomal

ubiquitin-dependent

protein catabolic

process

1 YFR032C

Putative protein of

unknown function no no

Pregulation of

transcription,

1 YPR196W

sequence-specific DNA

binding transcription

factor activity, no no

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

regulation of

transcription,

DNA-dependent

2 PUS9 pseudouridine synthesis no no

2 ADD66

ER-associated protein

catabolic process, no no

proteasome assembly

2 DMA2

ubiquitin-protein ligase

activity, no no

mitosis

2 MRK1 response to stress no yes

2 ADE12

purine nucleotide

biosynthetic process, no no

DNA replication origin

binding

2 AIM2 hydrolase activity no yes

2 HCH1

Heat shock protein

regulator that binds to

Hsp90p,
no yes

response to stress

2 HSC82

Cytoplasmic chaperone

of the Hsp90 family,
no yes

response to stress,

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

telomere maintenance

2 SGT2 response to heat yes yes

2 SSE1 response to stress no yes

2 MSN4

heat acclimation,

no yes
response to stress,

response to freezing,

cellular response to

oxidative stress

2 PYC1

gluconeogenesis,

no noNADPH regeneration,

biotin carboxylase

activity

2 STI1

Hsp90 cochaperone,

no yes
response to stress,

Hsp70 protein binding,

Hsp90 protein binding

3 ACT1
cellular response to

oxidative stress
no yes

3 NSE5

response to DNA

damage stimulus, no yes [94]

DNA repair

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

3 NUP84

mRNA export from

nucleus in response to

heat stress

yes yes

3 TOK1

regulation of ion

transmembrane

transport,
no yes [96]

potassium ion

transmembrane

transport

3 YGL114W
transmembrane

transport
no no

3 YPL236C transferase activity no no

3 YIR043C
unknown function,

no no
membrane

4 GYL1 regulation of exocytosis no no

4 LRE1

Protein involved in

control of cell wall

structure and stress

response

no yes

fungal-type cell wall

organization

4 TPM1

actin polymerization or

depolymerization, no yes

exocytosis

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

4 EPL1

response to DNA

damage stimulus, no no

DNA repair

4 UBA1 protein ubiquitination no no

4 VPS53
Golgi to vacuole

transport
no yes [94]

4 YOR356W

oxidoreductase activity,

no yesoxidation-reduction

process,

transport

4 NGL1 hydrolase activity no yes [97]

4 PFA5 transferase activity no no

4 AVT2
amino acid transport,

no no
transporter activity

4 YHR113W hydrolase activity no no

4 ASM4

transmembrane

transport, yes yes

mRNA export from

nucleus in response to

heat stress

4 EDC3

cytoplasmic mRNA

processing body

assembly

no no

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

5 AEP1
regulation of

translation
no no

5 AIM38
Putative protein of

unknown function
no no

5 ATF2
transferase activity,

response to toxin
no no

5 MET22
response to stress,

hydrolase activity
no yes

6 AIM43
Protein of unknown

function
no no

6 BPT1

transmembrane

transport, no yes [98]

cadmium ion

transmembrane

transporter activity,

bilirubin

transmembrane

transporter activity

6 DLT1
Protein of unknown

function
no no

6 DSL1 protein transport no no

6 ESC2

intra-S DNA damage

checkpoint, no yes [94]

Continued on next page
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Table H.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

double-strand break

repair via homologous

recombination

6 EST1
transferase activity,

no no
telomere maintenance

via telomerase,

G-quadruplex DNA

formation

6 GTB1
polysaccharide

biosynthetic process
no no

6 GTT3

Protein of unknown

function may be

involved in glutathione

metabolism

no no
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Appendix I

DETAILED RESULTS OF APPLYING

CLUSTER-ELIMINATE-COMBINE METHOD TO

COMBINATION OF HETEROGENEOUS DATASETS

PROBLEM

Table I.1: Result of applying CEC method to 7 different heat

shock time-series datasets.

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 ARP4
DNA repair

no yes [99]
response to DNA

damage stimulus

1 DAN1 response to stress no yes

1 DOG2 hydrolase activity no yes [100]

1 HOS3 hydrolase activity no no

1 LRE1

Protein involved in

control of cell wall

structure and stress

response,

no yes

Continued on next page
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Table I.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

fungal-type cell wall

organization

1 PSR2
response to stress

no yes
hydrolase activity

1 SGA1 hydrolase activity no yes

1 STE20
cellular response to

heat
yes yes

1 ASM4

mRNA export from

nucleus in response to

heat stress

yes yes

1 HSP104

cellular heat

acclimation,

yes yesresponse to stress,

unfolded protein

binding,

chaperone binding

1 NUP100

mRNA export from

nucleus in response to

heat stress

yes yes

1 NUP84

mRNA export from

nucleus in response to

heat stress

yes yes

1 SGT2 response to heat yes yes

Continued on next page
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Table I.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 AIM45

flavin adenine

dinucleotide binding, no yes [95]

transport

1 APL1 protein transport no no

1 ATF2
transferase activity,

no no
response to toxin

1 BPT1
ATP binding,

no yes [98]
transmembrane

transport

1 CFT2

mRNA

polyadenylation, no no

mRNA cleavage

1 GGA1
intracellular protein

transport
no no

1 MDJ1

protein folding,

yes yesresponse to heat

response to stress

1 MOT2
protein

polyubiquitination
no no

1 PFK26
ATP binding,

no yes [73]
transferase activity

1 SSH4 protein transport no no

Continued on next page

165



Table I.1 – continued from previous page

Cluster Gene Description

Contained

in the

input of

selected

GO

terms

Known as

responsive

to stress

1 THI72
transmembrane

transport
no no

1 TOK1

regulation of ion

transmembrane

transport,
no yes [96]

potassium ion

transmembrane

transport

1 ULA1 ATP binding no no

1 VTI1 protein transport no no

1 YCK3
ATP binding,

no no
transferase activity

1 YPL236C
ATP binding,

no no
transferase activity

1 YGL114W
transmembrane

transport
no no

1 YHL005C
not found in GO

database
no no

1 YJR141W
Essential protein of

unknown function
no no

1 YLR177W
Putative protein of

unknown function
no no

1 YLR345W
not found in GO

database
no no
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Public  Electronic  Payment  System is one of  the biggest  e-government projects  in 

Turkey.  It  is  designed to safely and efficiently perform government expenditures such as 

provision of social benefits, salaries, pensions,  travel and miscellaneous expenses incurred 

by government employees on behalf of the government. It is a successful implementation of 

the Treasury Single Account. By the use of PEPS, Turkish cash management was developed 

from simple to active cash management and the Turkey's note on cash management was 

raised from 1.2 to 3.6,  which made the Turkish applications  better  than most  developed 

countries.

PEPS is a joint project of CBT, Treasury and Ministry of Finance. I was responsible 

from the  technical coordination between the organizations and I worked on the analysis, 

design and coding of the project.  I  also worked in the regulatory phases of the project by 

participating to the working  group that wrote the protocol which was signed between three 

organizations,  prepared the changes in the related law and wrote the legal regulations of the 

system.  

1.2.  Treasury Internet Banking System

The system enables Treasury to perform real-time inquiries about the balance and 

movements of  its accounts.  The infrastructure that accepts e-signed payment orders and 

performs the appropriate payments automatically is developed and in the testing phase now. 

The project was developed by Java, Spring Web Services, Spring(Struts, Hibernate, JSP) 

and COBOL. I worked both in the technical and regulatory phases of the project. As well as 

                                                                                                                             



actively developing the project, I contributed to the protocol that was signed between CBT 

and Treasury. 

1.3. Telephone Banking System

The Telephone Banking System serves the accountants of CBT since 2001. It was 

developed by Delphi, COBOL and Java. The system makes use of special hardware called 

voice boards to make use of telephone lines automatically. 

1.4.  Internet Banking System

The system  is a web service based application developed for banks  to perform real-

time inquiries about the balance and movements of their accounts.

1.5. TIC-ESTS(EMKT) Branch Interface

Turkish Interbank Clearing–Electronic Security Transfer and Settlement System (TIC-

ESTS) works in an integrated manner with the TIC-RTGS (EFT) to electronically transfer and 

settle Turkish government securities with “delivery versus payment” (DVP) principle. I worked 

on  the  CBT  Branch  interface  of  TIC-ESTS to  enable  CBT  branches  send,  receive  and 

process messages of TIC-ESTS. The application was developed in Cobol and run in AS/400. 

1.6. Message Transfer System

The system provides modules for applications to define, send and receive messages 

between branches. By the message transfer system, applications can send their messages 

to other AS/400 systems by just writing to a file and calling a module. The modules of the 

system encapsulates all  of  the APPC programming and error handling mechanisms. The 

system was developed in Cobol.

1.7. Application Security Group

The group worked on the possible attacks to applications and methods for preventing 

them. We created reports that can be used as an internal reference for all of the software 

developers in CBT for secure application development.

1.8.  Cheque Clearing System

I first worked on the group that developed the cheque clearing system interface of 

CBT in Cobol and Delphi. Then, for the new version of Cheque Clearing System, instead of 

                                                                                                                             



using Biztalk client internally, we created a Java based a web service client to communicate 

with Microsoft Biztalk. 

1.9. Central  Bank  of  Northern  Cyprus  (KKTCMB)  Cheque  Clearing 
System

Worked  on  the  KKTCMB  interface  of  the  Cheque  Clearing  System  which  was 

developed by Java and COBOL. I detected critical security defects of the general Cheque 

Clearing System of the country and reported them, which postponed the production date of 

the system. The report is then used as a checklist  and after all  of  the found defects are 

cleared out second examination was requested. After our second examination, the cheque 

clearing system was taken into production.

1.10. CBT Software Development Methodology Group 

I worked in the methodology group whose aim is to determine and standardize an 

application development methodology for CBT. We examined different methodologies and 

decided to tailor Extreme Programming to our organization. The methodology is now actively 

used by software development groups.

1.11. Microcomputer Environment Standardization Project

I worked in the group that aims to standardize the microcomputer environment. We 

reported the problems in the environment that  are mostly caused by the use of different 

programming languages and configurations. The findings of the group is used as a basis for 

a standardized microcomputer environment.

1.12. Informatics Crime Law Draft

Worked in the group that created the critics of CBT for Informatic Crimes Law Draft.

1.13. Year 2000 project

I worked on resolving the year 2000 problem of various applications of CBT.

1.14. YTL project

I worked on the TL-YTL conversion and the removal of 6 zeros from the TL projects in 

order to adapt the branch applications to the changes needed by the conversions.

                                                                                                                             



1.15. Accounting Archive System

The system generates reports  from past  accounting  reports that  are taken to the 

archive. The reports are usually requested by the Government Accounting Bureau. In order 

to create the archive, we processed and organized cartridges from  all of the 21 branches of 

CBT for the past 10 years. The system is developed by using Jasper Reports and Java.

1.16. CBT Branches Consolidation Project

As a part of the consolidation project that aims to centralize the branch applications 

that  were  previously  developed  in  a  distributed  manner,   the  applications  used  by CBT 

branches'  banking  services  are  re-developed  by  using  agile  methodologies  and  Spring 

infrastructure. I worked as the project manager of the development of the following systems:

1.16.1. Money Transfer System between Branches

The branches can send and receive money orders by this system.  

1.16.2. Treasury Exportation Funds Payment System

The exporters and exportation funds that they receive from treasury are followed by this  

system. The system is integrated by money order system, RTGS (EFT) and the accounting system.

1.16.3. Treasury R&D Funds Payment System 

The firms that receive R&D funds from fairs are followed and their payments are made by  

this system. The system is integrated by money order system, RTGS (EFT) and the accounting system.

1.16.4. Accounting Offices Payments System

Accounting offices sends payment orders to our branches and the orders are processed by 

this system and sent to RTGS (EFT).

1.16.5. Branch Expense System

It is a basic module that are used by other branch applications. If an expense should be taken 

from an accounting process, it is taken automatically by using predefined rules by expense system. 

The system uses Drools to process the rules on the fly.

                                                                                                                             



1.16.6. Electronic Banking System

The  telephone  banking  system  and  its  maintenance  applications  (for  creating 

passwords, adding/removing accounts to system, etc.) are redeveloped in Java.

2. The  Scientific  and  Technological  Research  Council  of 
Turkey (TUBITAK) 

(November 1997 – June 1999)

I worked as a part-time technical researcher at TUBITAK on Form Archiving Prototype 

System (FORMAR) and Constitutional Court Automation System.  The FORMAR project is 

selected as the best graduation project in 1999 in the research and development area in 

computer engineering department.

3. PhD Thesis

In my PhD, I worked on data integration and bioinformatics. I started with the short time  

series  microarray  data  analysis,  and  then  generalized  the  method  to  combine  microarray  data,  

interaction  networks  and  Gene  Ontology.  We  created  the  ibh package,  which  is  accepted  to 

Bioconductor, which computes the fitness of a given gene list to an interaction network. The ibh  

package is available from http://www.bioconductor.org/packages/release/bioc/html/ibh.html.

4. Master's Thesis

In the master's thesis, I worked on creating an OCR for the Turkish language. I used image  

processing techniques for preprocessing such as skew correction, noise removal and segmentation;  

and applied neural  network to  create a classifier for  Turkish  characters.  We combined it  with a  

Turkish post-processor and achieved very successful results that are far better than commercially 

available tools at that time.
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