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ABSTRACT

FINITE ELEMENT ANALYSIS OF LABORATORY MODEL EXPERIMENTS ON
BEHAVIOR OF SHALLOW FOUNDATIONS UNDER GENERAL LOADING

Oktay, Hasan Emre

M.S., Department of Civil Engineering

Supervisor : Prof. Dr. B. Sadık Bakır

February 2012, 161 pages

In this study, a series of laboratory model experiments carried on shallow foundations is in-

tended to be simulated through numerical modeling. The laboratory model tests were con-

ducted by Fukui et al. (2005), over square shaped, shallow surfacial foundations located over

air-dried Toyoura sand. Tests included centered vertical and combined loading cases on sand

with 60% and 80% relative densities. Plastic limit loads obtained from numerical analyses

and available analytical solutions in literature are compared to the laboratory test results and

the differences are discussed.

Employment of Mohr - Coulomb yield criterion and linear elasticity, resulting in linear elastic

perfectly plastic constitutive law, is one of the most common practices in modeling geotech-

nical problems. Accuracy of this approach for the modeled experiments is judged by compar-

ison of analyses results with experimental findings and solutions in literature. Finite element

method is utilized for modeling purposes, with Mohr-Coulomb yield criterion and linear elas-

tic behavior. Abaqus 6-10.2 is selected as the analysis software, and two and three dimen-

sional models are used in the analyses. Analyses, the results of which are compared with

experimental findings, aim employment of associated flow rule. Additional analyses are con-
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ducted with varying dilation angles in order to examine the influence of unassociated flow

rule on eccentric and concentric loading results.

Differences between the results of numerical analyses and experimental observations varied

between 2% and 34%. Main reason of the difference is attributed to employed soil behavior

modeling approach in analyses and the eccentric placement of model weight in monotonic

horizontal loading experiments. In the case when this eccentric placement is accounted for

in numerical models, it is seen that the difference diminished to vary between 8% and 18%,

and order of the difference was similar for similar experiment cases. Therefore, based on this

condition, it is seen that results of the modeled experiments are consistent, while in general

they are somewhat higher than the results obtained from analyses and solutions in literature.

Difference between the results of analyses and average of selected solutions in literature in

both cases is at most 9%.

Finite element method employing Mohr-Coulomb failure criterion could provide results in

close agreement with solutions in literature that inherently assume Mohr-Coulomb failure

criterion as well. However, the same accuracy could not be obtained for experiments due to

uncertainties involved in the material properties as well as the insufficiencies of the model to

represent the behavior precisely. Finite element method has the potential to consider more

advanced material models. Nonetheless, employment of Mohr-Coulomb failure criterion pro-

vides results with sufficient accuracy for most cases.

Keywords: finite element method, Abaqus, general loading conditions, shallow foundations,

bearing capacity
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ÖZ

YÜZEYSEL TEMELLERİN GENEL YÜKLEME KOŞULLARI ALTINDAKİ
DAVRANIŞINI İNCELEYEN LABORATUVAR MODEL DENEYLERİNİN SONLU

ELEMANLAR YÖNTEMİ İLE ANALİZİ

Oktay, Hasan Emre

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. B. Sadık Bakır

Şubat 2012, 161 sayfa

Bu çalışmada yüzeysel temeller üzerinde yapılan bir seri laboratuvar model deneyinin sayısal

yöntemler ile modellenmesine çalışılmıştır. Laboratuvar model deneyleri havada kurutulmuş

Toyoura kumu üzerine yerleştirilen kare biçimli sığ temeller üzerinde Fukui et al. (2005)

tarafından yapılmıştır. Deneyler dikey ve genel yükleme koşulları altındaki temellerin %60

ve %80 rölatif yoğunluktaki kum üzerinde yer alan testlerini içermektedir. Sayısal analizler-

den ve literatürdeki mevcut çözümlerden elde edilen limit plastik yükler, laboratuvar deney

sonuçları ile karşılaştırılmış ve farklar irdelenmiştir.

Zemin mekaniği problemlerini modellemede en yoğun olarak kullanılan uygulamalardan biri

Mohr-Coulomb akma kriteri ve doğrusal elastikiyetin kullanılması ve neticede doğrusal elastik

mükemmel plastik davranış elde edilmesidir. Bu yaklaşımın modellenen deneyler için has-

sasiyeti analiz sonuçlarının deneysel bulgular ve literatürdeki mevcut çözümlerin sonuçları ile

karşılaştırılması ile değerlendirilmiştir. Sayısal modelleme yöntemi olarak, sonlu elemanlar

yöntemi Mohr-Coulomb akma kriteri ve doğrusal elastik davranış ile birlikte kullanılmıştır.

Abaqus 6-10-2, analiz yazılımı olarak seçilmiş ve analizlerde iki ve üç boyutlu modeller

kullanılmıştır. Sonuçları deneysel bulgular ile karşılaştırılan analizler ilişkili akma koşulunu
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kullanmayı hedeflemiştir. İlişkisiz akma koşulunun analiz sonuçları üzerindeki etkisini ird-

elemek amacıyla farklı dilatasyon açıları ile dikey ve genel yükleme koşullarını modelleyen

ek analizler yapılmıştır.

Sayısal modeller ile deneysel gözlemler arasındaki fark %2 ila %34 arasında değişmiştir.

Farkın ana sebebi, analizlerde kullanılan zemin davranışı modelleme yaklaşımına ve mono-

tonik yatay yükleme deneylerinde model ağırlığının merkezde olmayacak şekilde konum-

landırılmasına bağlanmıştır. Dengelenmemiş model ağırlığının kurulan sayısal modellerde

göz önüne alınması durumunda ise bu farkın kapanarak %8 ila %18 arasında değiştiği ve

benzer deneyler arasında benzer mertebelerde kaldığı görülmüştür. Buna gözlemden ötürü,

laboratuvar deney bulgularının analiz sonuçları ve literatürdeki çözümlerden genel olarak

bir miktar yüksek olmakla birlikte, tutarlı olduğu görülmektedir. Analiz sonuçları ile lit-

eratürden seçilen sonuçların ortalaması arasındaki fark ise her halükarda en fazla %9 olarak

bulunmuştur.

Mohr-Coulomb akma kriterini kullanan sonlu elemanlar yöntemi, literatürde yine Mohr-Coulomb

akma kriterini kabul eden çözümlere çok yakın sonuçlar sağlayabilmektedir. Ancak, aynı has-

sasiyet malzeme parametrelerindeki belirsizliklerden, ve modelin gerçek davranışı tamamen

yansıtamadığından ötürü deneyler için elde edilememiştir. Sonlu elemanlar yönteminin daha

gelişmiş malzeme modellerini kullanabilme potansiyeli bulunmaktadır. Bununla beraber, bu

analiz yöntemi pek çok amaç için yeterli hassasiyette sonuçlar vermektedir.

Anahtar Kelimeler: sonlu elemanlar yöntemi, Abaqus, genel yükleme koşulları, yüzeysel

temeller, taşıma kapasitesi
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CHAPTER 1

INTRODUCTION

1.1 General

Finite element method is a valuable tool for geotechnical engineering considering its capabil-

ity to enable solution of specific problems with complex geometries and demanding material

models, for which analytical solutions may not exist. Mohr - Coulomb failure criterion is

one of the most commonly used yield criterion to define plasticity of soils in finite element

method. One of the difficulties with finite element method is the verification of the analysis re-

sults. Accuracy and reliability of finite element method analyses employing Mohr - Coulomb

yield criterion for bearing capacity problems under general loading conditions is investigated

by modeling laboratory model experiments and comparing results with solutions in literature.

1.2 Literature Review

Bearing capacity defines the load that a foundation can sustain at the state immediately before

failure. In this section a review of studies in literature on ultimate bearing capacity of shallow

foundations under centered vertical and combined loading is presented with emphasis on

square shaped foundations resting on cohesionless soil without surcharge and for rough soil-

foundation interface.

Traditional approach for bearing capacity calculation, which is suggested by Terzaghi (1943),

involves the independent assessment of the influence of soil cohesion, overburden, and weight

of the soil beneath the footing on bearing capacity. His expression in its most basic form

is presented in Equation 1.1. The idea behind this equation is that there exist three main
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contributions to the ultimate bearing pressure for a foundation. These contributions are due

to the soil cohesion (c), the surcharge (qs), and the soil self weight (γ).

Bearing capacity factors (Nc,Nq,Nγ) determine the extent of these contributions to the bearing

capacity (qu). Bearing capacity factors (Nc,Nq,Nγ) are defined to depend only on the internal

friction angle of the soil. Among these, soil self weight contribution was the least agreed

upon by the researchers as stated by Michalowski (1997). Later, Martin (2005) was able to

obtain precise value for Nγ for rough or smooth footing assumptions, and associated flow rule

condition by employing method of characteristics.

Bearing capacity equation when employed in its basic form as presented in Equation 1.1 is

representative for the strip foundations (i.e., due to plane strain assumption) resting on soil

surface and subjected to centered vertical loading. This equation is extended to be applicable

to more general cases to account for the influence of foundation shape, depth of embedment

and loading conditions involving inclined and eccentric loading by introduction of modifica-

tion factors to the equation.

qu = cNc + qsNq + 0.5γBNγ (1.1)

Bearing capacity equation is given in Equation 1.2 as presented by Das (1997) with the intro-

duced factors to account for the shape, inclination, and embedment depth of foundations. For

footings that are positioned below ground level, embedment depth factors ( fcd, fqd, fγd), for

loading conditions involving horizontal loading, load inclination factors( fci, fqi, fγi), and to

consider the foundation shape, shape factors ( fcs, fqs, fγs) are utilized to modify the compo-

nents in Equation 1.1 as presented in Equation 1.2.

qu = cNc fcs fcd fci + qsNq fqs fqd fqi + 0.5γBNγ fγs fγd fγi (1.2)

There are a number of numerical, analytical, and experimental studies in literature which

aim to obtain the factors employed in Equation 1.2. Sieffert and Bay-Gress(2000) compared

analytical formulations for the factors in Equation 1.2 as presented in Figure 1.1. These

formulations are mainly based on the proposals of Terzaghi (1943), Meyerhof (1963), Hansen

(1970) and Vesic (1973). It is observed that, the bearing capacity estimated by Equation 1.2

depends strongly on the selected formulation and among these Meyerhof’s proposal yields
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the highest results. Yilmaz (2004) stated that a unique methodology to estimate the bearing

capacity does not exist for application, and further studies are required on this topic.

Figure 1.1: Comparison of analytical formulations and design codes of countries for an ex-
ample problem by Sieffert and Bay-Gress(2000)

Bearing capacity factors are defined to depend only on the internal friction angle of the soil.

Actually, these factors are shown to depend on cohesion, unit weight, foundation breadth and

surcharge pressure (Michalowski, 1997). However, these dependencies are not considered in

design for simplicity. In addition to the uncertainty of the magnitude of the factors employed

in Equation 1.2, suitability of the equation itself is of question as well. Although the summa-

tion of the contributions of cohesion, surcharge and soil weight on ultimate bearing capacity

is not strictly correct (Yilmaz, 2004, Zhu and Michalowski, 2005) this approach was adopted

for application for its simplicity. Nonetheless it is shown by Bolton and Lau (1993) that the

approximation due to this superposition is on the safe side.

Bolton and Lau(1993) investigated bearing capacity factors under vertical loading by using

method of characteristics. This method avoids the assumption of arbitrary slip surfaces and

produces zones within which equilibrium and plastic yield are simultaneously satisfied for

given boundary stresses. They have considered strip and circular foundations resting on Mohr-

Coulomb soil with rough or smooth soil - foundation interfaces. They have confirmed that the

Terzaghi’s approach of superposition of bearing capacity terms provides safe solutions. Addi-

tionally they have confirmed that Cox (1962) solution is mathematically acceptable. Moreover
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bearing capcity factors Nq and Nγ are observed to be very sensitive to the value of ϕ. Interface

condition between soil and foundation bottom is also found to have strong influence on the

bearing capacity.

Michalowski (1997) investigated Nγ factor using upper bound limit analysis. The effect of

non-associativity of the soil on this factor is investigated by employing the approach proposed

by Drescher and Detournay (1993) in their study. It is observed that Nγ is sensitive to angle of

dilation ψ and drops significantly with the decrease in ψ. Accordingly, they have concluded

that the influence of non-asssociative flow rule should be considered in design.

Frydman and Burd (1997) investigated Nγ for strip foundation by finite difference method

and finite element method analyses. It is found that for smooth footings with ϕ < 35◦, ψ

has almost no effect on Nγ. For rough footings, however, very significant decrease in Nγ

was found with decrease in ψ. For example, for rough soil - footing interface on soil with

ϕ = 30◦ Nγ = 21.7 for ψ = ϕ, and Nγ = 16.7 for ψ = 0. They have concluded that numerical

techniques can be utilized for investigations of foundation load capacity.

Martin (2005) employed method of characteristics to obtain bearing capacity factors for strip

and circular foundations with rough or smooth soil foundation interface conditions. He proved

that for strip foundations results of the study were exact. On the other hand, for circular

foundations results were not exact, as indicated by Loukidis and Salgado(2009), due to the

assumption on the magnitude of intermediate principal effective stress at failure and its im-

plication of occasional overlapping of the stress characteristic lines. In addition to publishing

exact Nγ values, Martin (2005) commented that the method of characteristics is not a versatile

method and has developed a software, that has casted away the error due to superposition of

contributions of cohesion, surcharge and soil weight.

Loukidis and Salgado (2009) studied centered vertical bearing capacity of strip and circular

foundations on sand with finite element method employing Mohr-Coulomb failure criterion.

Focus of the study was on bearing capacity factors Nq and Nγ and corresponding shape fac-

tors for circular foundations. Influence of non-associativity of flow rule on bearing capacity

factors was investigated with employment of realistic pairs of internal friction angle and di-

lation angle values as well. Influence of non-associativity of flow rule on ultimate bearing

capacity was concluded as significant. Based on the analysis results, equation for Nγ and

Nq presented in Equation 1.3 depending on dilation angle in addition to internal friction angle
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was presented. For circular foundations, they have compared the finite element method analy-

sis results with the results of Martin (2005), concluding that bearing capacity results obtained

from finite element analyses can be in very close agreement with rigorous analytical methods.

Shape factors, sq and sγ (Equation 1.4) were proposed for associated flow rule, which indi-

cate higher bearing capacity of circular foundations compared to strip foundations, for high

internal friction angles.

Nq =
1 + sin ϕ
1 − sin ϕ

eF(ϕ,ψ)π tan ϕ (1.3a)

Nγ = (Nq − 1) tan(1.34ϕ) (1.3b)

F(ϕ, ψ) = 1 − tan ϕ(tan(0.8(ϕ − ψ)))2.5 (1.3c)

scirc
γ = 1 +

(
0.26

1 + sin ϕ
1 − sin ϕ

− 0.73
)

(1.4)

Lyamin et al. (2007) studied the bearing capacity of strip, circular, square and rectangular

foundations in sand, considering embedment depth, with finite-element limit analysis. In this

technique, separate analyses are conducted to obtain rigorous upper and lower bounds of the

desired result. Analyses for the upper and lower bounds are conducted with different finite

element types and governing equations. Based on the average of results of upper and lower

bound analyses, and their comparison with results of Martin (2005), equations for shape and

depth factors for surcharge and soil weight contributions were suggested. It is commented

that shape factor for soil weight contribution for circular foundations is slightly higher than

that of square foundation. Additionally, a new ultimate bearing capacity equation was pro-

posed which combine the influence of surcharge and soil weight in to a single quantity, in

order to remove the error due to superposition discussed for Terzaghi (1943) bearing capacity

equation.

Siddiquee et al. (1999) conducted finite element method simulations of the laboratory model

experiments on strip foundation resting on Toyoura sand. They have conducted a parametric

study to identify the significance of the factors influencing the bearing capacity, including

confining pressure, anisotropy, non-linear strain hardening and softening, dilatancy and strain

localization into shear bands. Their results present that as the number of influencing factors
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accounted for in the analyses increases, ultimate bearing capacity obtained from the anal-

yses decreases, resulting in better agreement with the laboratory model experiments. They

have concluded that only when these influences are taken into account, results of physical

model tests could be reasonably simulated by finite element method, and that the isotropic

perfectly-plastic modeling of the deformation and strength property of sand are overly sim-

plified approximations to be employed in finite element method analyses.

Approaches for obtaining the plastic limit loads for the bearing capacity of foundations sub-

jected to eccentric and inclined loading could be grouped in two categories. The first group

employs the traditional approach where Equation 1.2 is used by utilizing adjustment factors

for eccentricity and inclination in the similar manner to the shape factors mentioned in Section

1.2. As discussed by Randolph et al. (2004), this approach is replaced by use of interaction

envelopes defined in vertical, horizontal and moment spaces. This is the second group and an

envelope proposed by Butterfield and Gottardi (1994) is shown in Figure 1.2.

Meyerhof bearing capacity equation together with Meyerhof’s effective width rule is one of

the most commonly used methods in estimation of the foundation load carrying capacity

under eccentric and inclined loading. Note that for this equation shape factor utilization is

not allowed by the formulation, since for loading with inclination Meyerhof has published

the ultimate bearing capacity formula without shape factors. This is due to the fact that the

plane strain assumption has significant effect on vertical bearing capacity, whereas it does not

have such significance for inclined and eccentric loaded foundations. To take into account

the eccentricity, effective width calculated according to Equation 1.5 of the foundation is used

instead of full breadth of foundation. As for the inclination, inclination factors presented in

Equation 1.6 are employed. In this equation α is the angle of inclination of the resultant force

with respect to vertical.

B′ = B − 2e (1.5)

iq =
(
1 − α

90◦

)2
(1.6a)

iγ =
(
1 − α

ϕ

)2

(1.6b)
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The other method used in this study is that proposed by Paolucci and Pecker (1997). Paolucci

and Pecker (1997) presents a method for the evaluation of seismic effects on the ultimate

bearing capacity of shallow foundations on Mohr-Coulomb soils based on the kinematic ap-

proach of the yield design theory. This solution is an upper bound solution for the loading

conditions involving inclination and eccentricity. Kinematic mechanism employed in their

study allowed the uplift of the foundation under strong load eccentricities. Based on the ob-

tained results they proposed an empirical formula presented in Equation 1.7, which defines an

interaction envelope in vertical, moment and horizontal load space. This series of equation is

organized in such a way that, for known breadth (B), ultimate bearing capacity under vertical

loading (Vmax), load eccentricity (e), magnitude of horizontal load acting on foundation (H);

vertical load carrying capacity V of the foundation can be computed, by considering effect

of inclination (first multiplier), inertial body forces (second multiplier) and eccentricity (third

multiplier). In this study, test results and finite element analyses results for monotonic hori-

zontal loading cases are compared with the proposal by Paolucci and Pecker (1997) by only

considering the eccentricity and load inclination components of the equation.

V =
(
1 − kh

0.85

)3

·
(
1 − kh

tan ϕ

)0.35

·
(
1 − 2e

B

)1.8

· Vmax (1.7a)

kh = H/Vmax (1.7b)

Butterfield and Gottardi (1994) utilized model test results on cohesionless soils from different

authors. Relationship presented in Equation 1.8 is found between M, V, and H.

(
V
Vu

(Vu − V)
)2

=

( H
0.52

)2
+

(
My

0.35B

)2

−
(
2.4

MyH
B

)
(1.8)

One of the studies from which Equation 1.8 was derived is Georgiadis and Butterfield (1988).

This study investigated the response of footings on sand, under eccentric and inclined loads.

The experimental program included several tests on surface footings subjected to different

eccentric and inclined load combinations. All of the experiments in the study were conducted

on a foundation model that lies on the surface of a sand having peak internal friction angle of

46◦. The footing model was made of steel and it was 50 mm wide and 400 mm long.
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Figure 1.2: Failure envelope defined in vertical load, horizontal load and moment space de-
fined by Butterfield and Gottardi (1994)

Loukidis et al. (2008) employed the finite element method in determination of collapse loads

of strip footings subjected to combined loading resting on purely frictional soil following

Mohr-Coulomb failure criterion. They considered effect of non-associativity as well. Based

on the analyses results, they suggested a failure locus in vertical load, horizontal load and

moment space, and described the failure surface by two different expressions. Equation 1.9 is

the one which provides poorer fit to the analysis results but has a simpler form. In this equation

V is the vertical load capacity under inclined and eccentric loading, e is the eccentricity, B is

the breadth of the foundation, α is the angle of the loading with respect to vertical, Vmax is

the ultimate bearing capacity of foundation under vertical loading. The other form, which is

stated to fit better with the analysis results, is employed in this study for the comparison in

Chapter 4.

V =

1 −
√

3.7
( e

B

)2
+ 2.1(tanα)2 + 1.5

e
B

tanα

2

· Vmax (1.9)

1.3 Objective and Scope

This study aims to make simulation of a set of laboratory model experiments using finite

element method. Experiments include monotonic vertical and horizontal loading tests The

tests were conducted on square shaped shallow foundation models, which are positioned on

the surface of air-dried Toyoura Standard Sand (Fukui et al., 2005). Test cases involve Toy-

oura sand with 60% and 80% relative densities and loading conditions which yield different
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moment to base-shear ratios.

Simulation method is chosen as implicit Finite Element Method (FEM) utilizing linear elastic

perfectly plastic Mohr-Coulomb constitutive model. For all experiment cases both 2D plane

strain and 3D FEM analyses are conducted. Abaqus 6-10.2 is utilized as the software for

the FEM analyses. Calculated values of plastic limit loads of square shallow foundations on

granular soils under general loading conditions through FEM analyses are compared with the

Fukui et al. (2005) tests’ results and with analytical solutions available in literature.

Other aims of this thesis include the discussions on the influence of unassociated flow rule,

plane strain assumption, second order moments on conducted FEM analyses.

1.4 Outline

This study is composed of seven chapters and three appendices, which are organized as de-

scribed below.

In Chapter 1, objective and scope of the study together with literature review for the modeled

problem are presented.

In Chapter 2, the simulated laboratory model experiments are introduced.

In Chapter 3, details of the finite element analyses are presented. After a basic introduction of

the finite element method, features of Abaqus software, which is employed in this study are

presented. Following this background, layout of monotonic vertical loading and horizontal

loading analyses are presented separately together with the employed modeling decisions.

Afterwards, verification studies are presented. Then, consequences of the compromises made

to increase computational efficiency of the analyses are evaluated. Finally, material properties

employed in analyses are discussed.

In Chapter 4, results of experiments, analyses, and available solutions in literature are pre-

sented, compared and discussed. Details of the FEM modeling, such as the material parame-

ters are presented.

In Chapter 5, differences observed between the results of experiments and analyses presented

in Chapter 4 are further investigated and explanations are provided for.
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In Chapter 6, influence of the unassociated flow rule, plane strain assumption and second

order moments are discussed, based on analyses results.

In Chapter 7, conclusions are presented together with the recommendations for further studies.

In Appendix A, load versus sliding and foundation tilt angle curves obtained for monotonic

horizontal loading analyses, the results of which were presented in Chapter 4, are provided

together with experiment measurements.

In Appendix B, deformed meshes and distribution of vertical components of stresses and

deformations of the finite element method analyses, the results of which were presented in

Chapter 4, are given.

In Appendix C, computational costs of a number of the analyses, the results of which were

presented in this study, are provided.
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CHAPTER 2

DETAILS OF THE MODELED EXPERIMENTS

2.1 Overview of the Experiments

All experiment cases are conducted on 2 m thick layer of Toyoura Standard Sand having

relative density of either 80% or 60%. Foundation models are placed at the center of the

soil surface and have square shape with 0.5 m breadth. In order to ensure rough interface

between foundation and soil, sandpaper is glued to the bottom face of the models. In cases

conducted on sand with 80% relative density, 1 m thick layer of Kashima Sand with identical

unit density was placed under the Toyoura Sand layer. Dimensions of the deep soil tank

employed in experiments are given as 3 m wide, 4 m long and 11 m deep.

Experiments were conducted on a special basic research projects laboratory of the Public

Works Research Institute (PWRI) (Fukui et al., 2005). General view of the soil tank with

experiment models for centered vertical loading and horizontal loading tests are presented in

Figure 2.1
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(a) Centered Vertical Loading Test

(b) Horizontal Loading Test

Figure 2.1: General view of the experiments

12

(b) Horizontal Loading Test

Figure 2.1: General view of the experiments
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(b) Shear Loading

Figure 2.6: Example of test results for vertical and shear loads verification (Fukui et al., 2005)

Table 2.3: Results of verification tests on load cells conducted before experiments (Fukui et
al., 2005)



2.2 Experiment Cases and Purposes

Fukui et al. (2005) has conducted eleven experiment cases in the framework of their experi-

mental work. Six of the cases were cyclic horizontal loading experiments, three of the cases

were monotonical horizontal loading experiments, and two of the cases were monotonical

centered vertical loading experiments. Cases can be grouped according to model used, and

relative density of the employed Toyoura Sand as expressed in the following paragraphs. A

summary of the tests is provided in Table 2.1. Employed foundation models are introduced in

Section 2.3.

Two of the cases are monotonic vertical loading experiments conducted on Model V. Cases

in this group are named as Case 1 and Case 2. Varying parameter in this group of tests is the

relative density of the test medium. Case 1 is conducted on sand with 80% relative density,

and Case 2 is conducted on sand with 60% relative density. Both of these experiment cases

are simulated in this study.

Three of the cases are horizontal loading experiments run on Model H, underlain by sand with

80% relative density. Cases in this group are named as Case 3, Case 4 and Case 5. Varying

parameter in this group is the horizontal load application method. In Case 3, horizontal load

is applied monotonically; in Case 4, horizontal load is applied as one sided cyclic load; and

finally in Case 5, horizontal load is applied as alternating cyclic load. For cyclic loading

experiments of this group, Type II loading pattern is used. Only Case 3 is simulated in this

group of tests.

Three of the cases are horizontal loading experiments run on Model L, underlain by sand with

80% relative density. Cases in this group are named as Case 6, Case 7 and Case 8. Varying

parameter in this group is the horizontal load application method and employed load pattern.

In Case 6, horizontal load is applied monotonically; in Case 7, horizontal load is applied as

alternating cyclic load with Type I loading pattern; and finally in Case 8, horizontal load is

applied as alternating cyclic load with Type II loading pattern. Only Case 6 is simulated in

this group of tests.

Three of the cases are horizontal loading experiments run on Model L, underlain by sand with

60% relative density. Cases in this group are named as Case9, Case10 and Case11. Varying

parameter in this group is the horizontal loading method and load pattern used. In Cases 9

13



horizontal load is applied monotonically; in Case 10 horizontal load is applied as alternating

cyclic load with Type I loading pattern; and finally in Case 11 horizontal load is applied as

alternating cyclic load with Type II loading pattern. Only Case 9 is simulated in this group of

tests.

Table 2.1: Summary of the model tests, after Fukui et al. (2005)

a, b: Method of sand replacement as discussed in Section 2.5
a: The entire (2m thick) sand layer was replaced.
b: Only 1m thick sand layer was replaced.

For monotonic centered vertical loading cases, load application is load controlled, with 0.2kN/s

loading speed, until maximum force is reached. After reaching of the maximum force, load

control was converted to displacement control with 0.5 mm/s loading speed. During hori-

zontal loading tests, load application was either monotonic or cyclic, whereas the load was

displacement controlled.

It is inferred that, monotonic vertical loading experiments provide guidance on the angle of di-

lation and Young’s Modulus of the soil used in experiments. Moreover bearing capacity under

general loading is often presented as a function of vertical bearing capacity in the literature.

Monotonic horizontal loading experiments are conducted in order to determine the horizontal

displacement to be employed in displacement controlled dynamic loading experiments.
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2.3 Foundation Models Employed in Experiment Cases

Experiment cases employ three different foundation models. Two of these models are used in

horizontal loading experiment cases in order to apply horizontal loading at different heights.

The remaining one model is utilized in the vertical loading experiment. Models are named as

”vertical loading experiment model” (Model V), ”high pier model” (Model H) and ”low pier

model” (Model L).

Model V consisted of a cube shaped steel shell filled with concrete. Horizontal face dimen-

sions of the model were 0.5 x 0.5 m. Model H and Model L, shown in Figure 2.2, consisted of

cap, pier and foundation parts and are employed in horizontal loading cases. Cap is composed

of the weight placed on top of the pier and loading point apparatus which is attached on top

of the weight. Pier is made of H Beams measuring 200 x 200 x 8 x 12 mm. Horizontal face

dimension of the foundation was 500 x 500 mm. Load cells were attached to the bottom of

the foundation. Weights of Model H and Model L were 8.924 kN and 8.728 kN respectively.

Major difference between Model H and Model L is the height of the horizontal loading point

from ground, which is 1300 mm for Model H and 900 mm for Model L. Due to weight placed

on top of the pier, center of gravity of the models lie on the pier with 427 mm and 700 mm

above from foundation base for Model L and Model H respectively.

2.4 Measuring Instruments Employed in Experiments

Figure 2.3 and Figure 2.4 presents the location of modeling instruments attached to foundation

models employed in horizontal loading experiments. Table 2.2 presents the details of these

instruments, including the quantity measured by each instrument and units of measurement.

Vertical displacements are measured at four corners of the square foundation and at top of

the model corresponding to center. Horizontal displacements are measured at five locations.

Horizontal force is measured at load application point. Eleven load cells are placed at footing

base, each of which measures both horizontal and vertical forces.
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(a) High Pier Model (Model H)

(b) Low Pier Model (Model L)

Figure 2.2: Models used in horizontal loading experiments, after Fukui et al. (2005)
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Table 2.2: Measuring instruments attached to horizontal loading experiment models (Fukui et
al., 2005)
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Figure 2.3: Measuring instruments attached to High Pier Model (Model H) (Fukui et al.,
2005)
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Figure 2.4: Measuring instruments attached to Low Pier Model (Model L) (Fukui et al., 2005)
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2.4.1 Bidirectional Load Cells

In horizontal loading experiments eleven load cells were placed at footing base, each of which

measures both horizontal and vertical forces. Each of these load cells was verified with a

universal testing machine under vertical and shear loading conditions as shown in Figure 2.5.

In verification of normal load sensors, load was applied with 1.961kN steps up to 19.613 kN,

whereas in verification of shear load sensors load was increased with 0.196kN load steps up

to 1.961 kN. Each test was conducted twice and calibration value was calculated by finding

the mean slope of the tests in a primary regression analysis by Fukui et al. (2005). Results of

two experiments on a single load cell for normal and shear load sensor verification are shown

in Figure 2.6. Table 2.3 presents the results of the verification experiments for all load cells,

conducted before the actual experiments.

It is inferred in this study that obtained magnitudes in the verification experiments were the

strains recorded by load cells and the applied force in universal testing machine as shown

in Figure 2.6. Then the relationship between these magnitudes were obtained by calculation

of the slopes in these figures with primary regression analysis. Therefore in Figure 2.6 and

Table 2.3, the ϵp and ϵs are the vertical and shear strains recorded by the load cells, respec-

tively. Similarly, P and S are the vertical and shear forces, respectively, applied to the load

cells by universal testing machine. In Table 2.3, P/ϵp, S/ϵs are presented indicating the linear

relationship between strains measured by the load cells and applied loading. Taking note that

these magnitudes are presented in Table 2.2, it is inferred that strains measured by load cells

are converted to their respective forces with these magnitudes.

Under vertical loading verification tests the load cells were not expected to report shear forces,

likewise under shear loading verification tests, the load cells were not expected to report

vertical forces. These unexpected recordings are presented in Figure 2.6 and Table 2.3 as

shear load and vertical load interference.
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(a) Normal Loading (b) Shear Loading

Figure 2.5: Verification of vertical and shear sensors of load cells in universal testing machine
(Fukui et al., 2005)

(a) Normal Loading (b) Shear Loading

Figure 2.6: Example of test results for vertical and shear loads verification (Fukui et al., 2005)

Table 2.3: Results of verification tests on load cells conducted before experiments (Fukui et
al., 2005)
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2.5 Method of Sand Placement

Figure 2.7 presents the procedure employed in preparation of the sand layers according to the

desired relative density. When the relative density was changed among subsequent test runs

the entire 2m thick layer was removed and new sand was placed, however when the same

relative density is employed between subsequent experiments, only the 1 m of the layer was

replaced. This was achieved thanks to the blue plastic and veneer (12 mm thick) were placed

between the sand layers to simplify the replacement. Table 2.4 presents the densities for each

experiment case modeled in this study. In this table, layer 1 is the deepest layer, whereas layer

8 is the closest layer to the soil surface.

Table 2.4: Density of each layer of sand for all experiment cases
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Figure 2.7: The procedure employed for preparation of the sand layers for the desired relative
density
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2.6 Geotechnical Properties of Toyoura Standard Sand in Experiments

Material properties given by Fukui et al. (2005) are presented in Table 2.5. Figure 2.8 presents

shear modulus degradation and damping curves obtained from cyclic triaxial tests. In Section

3.7 material properties employed in finite element analyses are presented based on this infor-

mation.

Table 2.5: Summary of physical properties of Toyura Sand used in experiments, after Fukui
et al. (2005)

Item Symbol Unit Value
Specific gravity Gs g/cm3 2.655

Maximum diameter - mm 0.85
50 percent diameter D50 mm 0.170
30 percent diameter D30 mm 0.151

Coefficient of uniformity Uc - 1.4
Maximum dry density ρdmax g/cm3 1.664
Minimum dry density ρdmin g/cm3 1.364

Internal friction angle (for Dr = 60%) ϕ ◦ 39.9
Internal friction angle (for Dr = 80%) ϕ ◦ 42.1

Cohesion c kPa 0
Density (for Dr = 80%) ρ g/cm3 1.602
Density (for Dr = 60%) ρ g/cm3 1.539

(a) For DR = 80% (b) For DR = 60%

Figure 2.8: Shear modulus degradation and damping, after Fukui et al. (2005)
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CHAPTER 3

MATERIAL PARAMETERS AND METHOD USED IN THE

FINITE ELEMENT ANALYSES

3.1 Field of Study

In this study, static, displacement based nonlinear finite element method analyses are con-

ducted for plastic limit load calculations with granular material.

Soil is modeled as continuum with two dimensional quadrilateral or three dimensional hexa-

hedral continuum elements that are utilizing quadratic shape functions and reduced integration

scheme. Linear elastic perfectly plastic material model is selected for soil. Mohr-Coulomb

yield surface is utilized as plasticity definition. Effect of unassociativity of the flow rule for

plasticity is considered.

Foundation loads are either directly applied on soil continuum as prescribed displacements,

or applied via discontinuous constraints with contact interactions. Interaction between soil

continuum and foundation which is modeled as a discrete rigid body is enforced with penalty

method. As contact interaction approach, contact pairs approach is utilized with surface to

surface contact discretization together with finite sliding contact tracking. Frictional behavior

of the contact is modeled to obey Coulomb friction rule with constant friction coefficient and

pressure overclosure behavior of the contact is selected to enable separation after contact. The

contact algorithm used in Abaqus is presented in Figure 3.1.

Newton’s method is used as the solution strategy for nonlinear response. Line search algo-

rithm is employed to ensure robustness of Newton’s method. In order to deal with numerical

instabilities adaptive automatic stabilization is utilized.
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3.2 Finite Element Method Overview

This section reviews the basics of the finite element method. It includes a fast derivation

of the method, compiled from books by Bathe (1996), Chandrupatla and Belegundu (1997),

Potts and Zdravkovic (1999), Reddy (2004) and Abaqus Documentation (2010) as to provide

a basis of reference for the explanations for the modeling choices presented in Section 3.4.

As stated in Abaqus Documentation (2010): ”First step of any finite element simulation is to

discretize the actual geometry of the structure using a collection of finite elements. Each finite

element represents a discrete portion of the physical structure. The finite elements are joined

by shared nodes. The collection of nodes and finite elements is called the mesh.” Distribution

of analysis variables are approximated within each element according to the magnitudes of

that variables at that element’s nodes.

Finite element method is used to solve a governing equation under given boundary condi-

tions. For mechanical stress-strain analyses, which are conducted in this study, finite element

method can make use of principle of virtual work as the governing equation. This principle

is presented in Equation 3.1 and states that: ”the equilibrium of a body requires that for any

compatible small virtual displacements imposed on the body in its state of equilibrium, the

total internal virtual work is equal to the total external work.” (Bathe, 1996)

∫
V

ϵTσ dV =
∫
V

UT FB dV +
∫
A

UT
A FA dA +

∑
i

UT
i Ri (3.1)

Left hand side of this equation represents internal work done due to deformation of the body,

and right hand side of the equation considers external work done by the applied loads on the

body. In this equation σ and ϵ are the virtual stresses and strains within the body, U terms

are the virtual displacements, V is the volume of the body, FB is the body force (such as

gravitational force) acting on the body, UA is the displacement of the nodes that makes up the

surface with area A, FA is the distributed force applied on that area and Ui is the displacement

of a single node where reaction force Ri is applied on.

Considering employment of principle of virtual work in finite element method as the govern-

ing equation, terms in the equation could be reevaluated as follows. All terms at the right

hand side of the equation except virtual displacements, namely FA, A, Ri, FB, V are part of
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the problem definition. Hence values of these parameters are known. These variables are

defining the boundary conditions for which the solution of the governing equation is sought.

U terms are the unknown nodal displacements that would satisfy the governing equation for

the boundary conditions. U,UA,Ui could be considered as the same variable since they are

represented with vector U. Considering virtual displacements do not depend on variables of

integrations in Equation 3.1, they could readily be taken out of the integrals. By multiplying

both sides of the Equation 3.1 with U (note that U.UT = 1), and denoting
∫
V
ϵTσ dV term as

stiffness matrix (K) this equation reduces to Equation 3.2b.

K =
∫
V

ϵTσ dV (3.2a)

KU =
∫
V

FB dV +
∫
A

FA dA +
∑

i

Ri (3.2b)

Remembering that except the nodal displacements, right hand side of the Equation 3.1 which

concerns external forces is composed of known values, all of the terms at the right hand side

of Equation Equation 3.2b can be evaluated numerically such that each body force, surface

pressure and boundary condition is converted to representative forces or displacements acting

at the finite element nodes. Sum of these forces for each node is held by the load vector (P)

in Equation 3.3. Note that this evaluation might not strictly be considered as part of finite

element method, since the results of the evaluation is an input for the finite element method.

This input defines the boundary conditions for which the solution satisfying the governing

equation (i.e., principle of virtual work) will be found by finite element method.

KU = P (3.3)

It will be explained that once the nodal displacements (U) are known, the stresses (σ) and

strains (ϵ) in each finite element can be determined. Hence the only remaining unknown term

in Equation 3.1 is the nodal displacements. Therefore in a stress analysis displacements of

the nodes (U) are the fundamental variables that are calculated.

In order for the stiffness matrix (K) presented in Equation 3.2a to be computed, relationships

of nodal displacements with stresses and strains within the body is required.
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Relationship between strains and nodal displacements is defined by the chosen element type.

Such a relationship exists since displacement of any spatial location within a finite element

is approximated according to the displacements of that element’s nodes. Approximation is

done by a polynomial function named as shape function which is defined within the finite

element type utilized for discretization of the body. By differentiating this function according

to requested strain direction, desired strains could be obtained. This relationship is shown in

Equation 3.4. Note that approximation of strains according to nodal displacements is one of

the main sources of errors in finite element method.

ϵ = BU (3.4)

Relationship between stresses and strains is defined by the chosen material model. This rela-

tionship is formulated in Equation 3.5, where C is the constitutive matrix.

σ = Cϵ (3.5)

An example constitutive matrix, for linear elastic material model with plane strain assumption

is given in Equation 3.6. It is worth to note that terms in this matrix only depend on mate-

rial constants namely elasticity modulus, and Poisson’s ratio, which are part of the problem

definition.

C =
E

(1 + ν)(1 − 2ν)


1 − ν ν 0

ν 1 − ν 0

0 0 1−ν
2

 (3.6)

By substituting Equations 3.4 and 3.5 into Equation 3.2a for strains and stresses, right hand

side of the equation is found as shown as stiffness matrix (K) in Equation 3.7.

K =
∫
V

BTCB dV (3.7)

It is important to note that obtaining the stiffness matrix (K) requires evaluation of an integral.

Therefore a numerical integration method is essential for finite element method. For numer-
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ical integration, Gauss Quadrature method, which requires the evaluation and summation of

the term to be integrated for certain number of data points, can be utilized.

After computation of stiffness matrix, Equation Equation 3.2b becomes a system of linear

equations which could be solved for U by solution techniques such as Gauss Elimination.

After obtaining the displacements (U) from Equation 3.3, strains and stresses throughout the

problem domain could be computed with Equations 3.4 and 3.5.

Boundary conditions are enforced by methods such as elimination approach or penalty ap-

proach. These methods are composed of modifying the terms of stiffness matrix (K) and load

vector (P) or displacement vector (U) shown in Equation 3.3 once the system of equations

is constructed in matrix form for the given boundary conditions. It is worth to note that the

penalty method is an approximate approach, where a boundary condition is assigned by means

analogous to placing a spring with high stiffness to the enforced degree of freedom, whereas

elimination method is an exact method where the specific terms of the stiffness matrix is re-

moved. Chandrupatla et al. (1997) has further details on formulation of stiffness matrix, and

implementation details of finite element method.

At this point, introduction of finite element method in its basic form is completed. With fea-

tures introduced up to this point, problems employing linear material model and for which

small deformation assumption holds could be analyzed. Additionally, it is worth to note that,

these type of analyses could complete in a single calculation step and do not require iterations.

Additional features such as considerations of non-linear material behavior or discontinuous

boundary conditions are implemented by introduction of iterations into the calculation. Calcu-

lation procedure utilized in Abaqus for analysis containing discontinuous constraints is shown

in Figure 3.1 as an example for introduction of iterations in finite element method. Until this

point non-linear behavior has not been considered. Although, ability to model non-linear load

- displacement behavior is one of the essential features of finite element code for analyzing

geotechnical problems in which material behavior is generally non-linear. In addition to the

material, large deformations of the modeled bodies are another source of non-linearity. In this

study, consideration of both material and geometric non-linearities have been appeared as a

necessity in order to adequately model the experiments.

For linear elastic material definitions C matrix is composed of constant numbers whereas

for non-linear material behavior C matrix depends on the strain magnitude. Material non-
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Figure 3.1: Contact algorithm used in Abaqus (Abaqus Documentation, 2010)

linearity is taken into account by recalculating the C matrix throughout the analysis, according

to the strain magnitudes in the elements. Note that strains in elements depend on the nodal

displacements.

There are a number of solution strategies for non linearity problems modeled with finite ele-

ment method. Considering only material non-linearity, one of the differences of these methods

is on how often, the changes in strains should be considered.

As an example, if tangent stiffness method is utilized (Figure 3.2(a)), C matrix is recomputed

at the beginning of each load increment, according to the calculated stresses at the previous

load increment. Therefore each load increment would conclude with a single iteration. On

the other hand, if Modified Newton - Raphson method is utilized, a number of additional

iterations are conducted within the load increment. In these iterations strains which were

found previously according to the given load increment are utilized once more to update

the C matrix and a new load increment is found with this matrix. Difference of these load

magnitudes are checked for a given error tolerance and if the error magnitude is not found

as acceptable, a new iteration is conducted, this time setting the load difference as the load

increment. After an acceptable error is reached, nodal displacements corresponding to load

increment is computed by summing all nodal displacements found in the iterations. Figure

3.2(b) illustrates one load increment, which completes in 5 iterations of this procedure.

For the sake of completeness, it is also worth to note that elastic strains and plastic strains
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are evaluated separately by separate elastic and plastic constitutive matrices. Total strain

is obtained by summation of elastic and plastic strains. This and similar implementation

details are not mentioned in this section. Potts and Zdravkovic (1999) provide more detailed

explanations and comparisons of different solution strategies for nonlinear problems.

(a) Tangent Stiffness Method (b) Modified Newton Raphson Method

Figure 3.2: Illustrations of Solution Strategies for Non-Linear Problems After Potts and
Zdravkovic(1999)

In order to take geometrical nonlinearity into account, B matrix is updated throughout the

analysis similar to C matrix as described in above paragraphs. One other source of nonlinear-

ity is the discontinuous constraints which are utilized for soil foundation contact interaction.

If the soil and foundation are contacting these constraints are enforced, if they get separated

these constraints are suppressed and not used. This prevents the artificial sticking of the soil

to the foundation for cases showing uplift behavior. Figure 3.1 shows the algorithm used by

Abaqus for the discontinuous constraint enforcement.

3.3 Abaqus Finite Element Code

3.3.1 General

Abaqus is a commercial, general purpose simulation tool which is used in different engineer-

ing fields. It is based on finite element method and has a large number of predefined element

formulations and material models. It has means to solve contact interactions between bodies

and has multiple methods for solving problems with non-linear behavior. Additionally it has
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a graphical user interface for preprocessing of input files and post processing of the results.

Abaqus has been chosen as the finite element analysis software in this study for the following

reasons: First, Mohr-coulomb yield criterion is readily available. Second, it has capability to

conduct three dimensional analyses. Third, in literature studies on geotechnical engineering

problems using this software are available. And the final reason is the availability of software

license.

As a general purpose finite element software, Abaqus enables the use of a number of different

technologies developed for finite element method. Generally, it has more than one means for

modeling a physical phenomenon and multiple choices of algorithms to be used for finding

the solution of the modeled problems. One of the valuable features of the software might

be that, for any chosen method, it has predefined values of configuration parameters for that

method, that would yield acceptable solutions in a general sense. Although modifications to

the predefined parameters may be needed for the specific problem to be modeled, advices and

guidelines for these modifications, with their possible consequences are documented.

Abaqus analysis product Abaqus/Standard requires an ASCII text file as input. This file con-

tains all aspects of the model, from coordinates of the nodes, to the analysis steps, and re-

quested output variables. Users can edit or create this file from scratch manually, or could

use preprocessor software such as Abaqus CAE which has a graphical user interface for this

purpose. In 6.10-2 version of Abaqus used in this study, not all, but most of the features of

Abaqus analysis product could be utilized from within Abaqus CAE. For the not yet imple-

mented features, input files could be modified by hand and Abaqus CAE could store these

modifications. In this study Abaqus CAE is used for Abaqus input file generation.

As output, Abaqus can save the values of a certain variable at a selected entity throughout the

analysis; or it can record the state of the whole model for a certain variable. The former is

called a history output request, whereas the latter is called a field output request according to

Abaqus Documentation (2010). These requests are written to an output database file, which

is in a binary format that can be read by Abaqus CAE. Other forms of output format exists in

which history output could be saved in binary or ASCII file formats and opened by third party

software.
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3.3.2 Element Types

There are a number of continuum element geometries and formulations available in Abaqus.

With combination of these selections, over 20 element types are available in Abaqus software

for 3 dimensional stress-displacement analyses. Main differences among element types are

the element geometry, integration scheme, and order of shape function.

In Abaqus Documentation (2010), it is advised to use hexahedral (brick-shaped) elements

wherever possible for 3D analyses, since they give the best results with minimum cost. There-

fore, only elements with hexahedral geometry are considered in this study.

In this section properties of C3D8R, C3D20R, C3D20, C3D8I element types are investi-

gated. Naming convention for these elements are as follows: C3D stands for 3D continuum

stress/displacement element, number after C3D is the number of nodes of the element, R (op-

tional) means element uses reduced integration scheme, I (optional) means that element is

an incompatible mode element. Incompatible mode elements are enhanced versions of linear

first order fully integrated elements to decrease the vulnerability of element to shear locking

numerical problem explained in this Section 3.3.2.4. Among these element types consider-

ing order of shape function, elements with 8 nodes are linear elements and elements with 20

nodes are quadratic elements.

Based on findings in this section, and advices given in Abaqus Documentation (2010), C3D20

and C3D8R element types are dismissed for analyses conducted in this study. C3D20 is

eliminated due to availability of C3D20R, which is more accurate and computationally more

efficient. C3D8R is eliminated due to its high vulnerability to specific numerical problem

called hourglassing. As for the remaining two element types: accuracy of C3D8I is found as

sensitive to distortion compared to C3D20R. On the other hand, C3D20R is computationally

more expensive then C3D8I. In the end, due to its reliability on yielding acceptable accuracy

C3D20R element type is utilized in all 3D analyses of this study. Trapezoidal distortions

in mesh designs of 3D analyses have made the major contribution in elimination of C3D8I

element type.
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3.3.2.1 Element Formulation and Integration

Element types could be grouped according to order of shape function as linear or quadratic,

and according to order of integration as reduced or fully integrated. In this study both lin-

ear and quadratic elements, with reduced and full integration scheme are evaluated for their

adequateness to be employed in analyses.

Order of Element

First order elements utilize linear shape functions, whereas second order elements utilize

quadratic shape functions. In order to use second order (quadratic) shape functions, quadratic

elements have higher number of nodes than first order elements. In general, second order

elements could more accurately approximate the displacements within the element than first

order elements. Moreover quadratic elements are more resilient to numerical difficulties dis-

cussed in Section 3.3.2.4.

Order of Integration

As mentioned in Section 3.4 internal work done according to nodal displacements is computed

via stiffness matrix. Stiffness matrix is obtained by a procedure which involves integration

of shape function of elements. This integral could be computed by a numerical integration

method called Gauss Quadrature. Gauss Quadrature can find the exact solution for an integral

of any polynomial function with degree of 2n − 1, if the value of this function is available for

at least n number of special points within the integral limits. If the value of the function is

available only for less data points than n, Gauss Quadrature can still be employed, however it

yields an estimate for the integral but not the exact result. Similarly if the data points are not

at locations requested by Gauss Quadrature, but at close locations, Gauss quadrature can still

be employed, however it again yields an estimate.

According to Abaqus Documentation (2010), fully integrated elements have sufficient number

of Gauss points required to integrate the polynomial terms in an element’s stiffness matrix

exactly, when the element has a regular shape. Reduced integration elements on the other hand

have one fewer number of integration points in each direction compared to fully integrated

elements. Therefore for fully integrated elements integral used for computing stiffness matrix

is exact if element has regular shape, whereas for reduced integration elements stiffness matrix
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has error due to integration.

As an example to number of integration points; fully integrated quadrilateral elements use 3

integration points in each direction, whereas reduced integration quadrilateral elements use

2 integration points. Locations of nodes and integration points of linear and quadratic two

dimensional elements for both reduced and full integration schemes are shown in Figure 3.3.

In this figure integration points are shown with cross symbols, whereas element nodes are

symbolized with filled circles.

It is stressed at Abaqus Documentation (2010) that for fully integrated elements integral is

only exact for elements having regular shape. The term regular shape means the edges are

straight and meet at right angles and that any edge nodes are at the midpoint of the edge.

Therefore in general, in addition to the errors due approximation of the displacements within

elements according to the displacements of nodes, an error due to integration of these approx-

imated quantities are introduced as well.

(a) Quadratic Fully In-
tegrated (e.g.,CPS8)

(b) Quadratic Re-
duced Integration
(e.g.,CPS8R)

(c) Linear Fully Inte-
grated (e.g.,CPS4)

(d) Linear Reduced In-
tegration (e.g.,CPS4R)

Figure 3.3: Integration Points at 2D Elements (Abaqus Documentation, 2010)

3.3.2.2 Accuracy of Elements

In order to assess the accuracy of element types, following verification study is conducted.
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A linear elastic beam, under cantilever support condition with a point load acting at its free tip,

is taken as the analysis subject (Figure 3.4). Verification study is selected as the comparison

of deflection of the loading point in the loading direction with the analytical exact solution.

This verification study is also reported in Abaqus Documentation (2010).

Figure 3.4: Cantilever beam under a point load P at its free end (Abaqus Documentation,
2010)

Equation 3.8 is the precise solution for the vertical displacement at the tip of the beam for an

applied load P. In this equation L is the length, E is the Young’s modulus and I is the moment

of inertia of the beam.

δtip =
PL3

3EI
(3.8)

Elastic parameters are selected as, elasticity modulus E = 70GPa, Poisson’s ratio ν = 0.0.

Dimensions of the beam are selected as 150mm long, 2.5mm wide and 5mm deep. Magnitude

of the point load at free end is selected as 5N. Hence, exact solution for vertical deflection of

the free tip is found as 3.086mm from Equation 3.8.

Meshes used in element verification analyses are presented in Figure 3.5. Point load acting at

the free tip of the beam is applied as 4 point loads with magnitudes P/4 each applied at the

four corners of face of the free tip in the model. Hence resultant force would be at the centroid

of the face with magnitude of P.
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(a) 6x2x1

(b) 12x2x1

Figure 3.5: Meshes used in element verification analyses

Two meshes with different element counts are utilized for each element type in order to see

the degree of improvement in solution accuracy with increasing element count. These meshes

are presented in Figure 3.5 and are named as 6x2x1, 12x2x1. Naming convention is based

on the number of elements through the length, width and height of the beam. For example in

12x2x1 mesh, beam is modeled with 24 elements in such a way that, length of the beam is

divided into 12 elements, width of the beam is divided into 2 element and height of the beam

is represented by 1 element.

Table 3.1: Error in Analyses Compared to Analytical Solution

Mesh Type C3D8R C3D8I C3D20R C3D20

6x2x1 6922% 0.65% 0.03% 0.45%

12x2x1 6958% 0.13% 0.03% 0.03%

Table 3.1 shows the error level of analyses results with respect to the exact solution for each

element and mesh type. Based on the results in this table, it is seen that all elements except

C3D8R yields results with less than 1% error. Error in C3D8R elements which is well beyond

usable limits is due to the numerical problem called hourglassing effect discussed in Section

3.3.2.4. Closest result to the solution is obtained from analyses utilizing C3D20R elements

with error less than 0.1%.

For all mesh types the order of elements yielding closest result to the precise solution does

not change. This order, from most accurate to least accurate, is C3D20R - C3D20 - C3D8I -

C3D8R. The order of element types from most expensive to the cheapest, from computational

cost point of view, is reported by Abaqus Documentation (2010) as C3D20 - C3D20R - C3D8I

- C3D8R. Note that although C3D20R is computationally cheaper than C3D20, it provides
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better accuracy.

3.3.2.3 Sensitivity of Elements to Distortion

All cases considered up to this point had regular shapes with corner angles of 90◦. In this

section sensitivity of elements to distortion is investigated by meshing the beam with elements

having parallel and trapezoidal distortion with 45◦ internal corner angle (Figure 3.6). For the

investigation 6x2x1 mesh utilized in previous section is employed.

(a) 45◦ Parallel Distortion (6x2x1)

(b) 45◦ Trapezoidal Distortion (6x2x1)

Figure 3.6: Meshes used in element verification analyses for distortion vulnerability

Table 3.2: Error in Analyses Compared to Analytical Solution

Element Distortion Type C3D8R C3D8I C3D20R C3D20

45◦ Parallelogram 226% 33.00% 0.39% 2.11%

45◦ Trapezoidal 168% 94.65% 2.82% 9.38%

Table 3.2 presents the error level of analysis results with respect to the exact solution for each

element and distortion type. It is seen that distortion of elements has significantly unfavorable

effect on the accuracy. Among distortion types, trapezoidal distortion causes the highest dam-

age to the accuracy. Most resilient element type to distortion is found as C3D20R, whereas

C3D8I is found as the least tolerant. It is notable that although C3D20 element type is more

expensive than C3D20R element type, C3D20R performed considerably better.

Seemingly favorable effect of distortion to solution accuracy in analyses with C3D8R el-

ements is because, in previous cases, this element type has suffered from a finite element

method instability called hourglassing effect. Distortion introduced in this section has relaxed

this numerical problem specifically for the applied loading direction. However this does not
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necessarily mean that using deformed C3D8R elements would always yield more accurate

results.

3.3.2.4 Numerical Problems Related to Element Types

Numerical problems of elements develop when displacement of the integration points of the

elements does not adequately represent the nodal displacements and overall behavior of the

element. In this section two major numerical problems, hourglassing and shear locking effects

are discussed.

Based on explanations in this section, for quadrilateral and hexahedral elements, it is seen

that, linear reduced integration elements are susceptible to hourglassing effect, whereas lin-

ear fully integrated elements are vulnerable to shear locking effects. In the end, quadratic

elements are found out as resilient to these problems with a note that, although quadratic re-

duced integration elements can suffer from hourglassing effect in theory, in practice they are

considered as resilient to numerical problems by Abaqus Documentation (2010).

Hourglassing Effect

Linear reduced integration elements are vulnerable to this numerical problem which results

in unrealistic flexible response of the body under given loads.

Consider a linear, reduced integration element whose integration point and nodes are shown

in Figure 3.3(d). Note that this element has only one integration point, which is at the centroid

of the element. If this element is subjected to a bending moment M, deformed element shape

would be as shown in Figure 3.7.

Figure 3.7: Deformation of a linear reduced integration element subjected to bending moment
(Abaqus Documentation, 2010)

As depicted by the dashed visualization lines, location of integration point does not change;

hence displacement is zero at that point. Consequently stresses and strains due to bending

moment M is zero at the integration point. Since this element has only one integration point,
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sum of strain energy within the element due to this deformation would be zero, which is

obviously incorrect. Therefore even though the element deforms significantly under the given

load, strain energy that is represented with K U term in Equation 3.3 would be zero. Hence

the element can not resist these deformations and overall response of the mesh would be an

implausibly flexible behavior.

Shear Locking Effect

Linear, fully integrated elements are vulnerable to this numerical problem, the result of which

is unrealistic stiff response of the body under given loads.

Consider a linear, fully integrated element whose integration points and nodes are shown in

Figure 3.3(c). If this element is subjected to a bending moment M, deformed element shape

would be as shown in Figure 3.8.

Figure 3.8: Deformation of a linear fully integrated element subjected to bending moment
(Abaqus Documentation, 2010)

As depicted by the dashed visualization lines, horizontal displacements at the location of in-

tegration points are as follows. Integration points lying at the tension zone of the element

moves further away from each other, indicating tensile behavior with positive σ11, whereas

in compression zone the opposite is observed, resulting in negative σ11. As for vertical dis-

placements of integration points, considering small deformations, vertical displacements are

zero. These displacements and stresses are in accord with physical phenomena. What should

be noticed is the inclination of the originally vertical visualization lines. This indicates shear

stresses (σ12) at integration points. This is incorrect, since shear stress is zero under constant

moment. This spurious shear stresses results in an extra internal strain energy, which gives

additional stiffness against applied loading. Hence the overall response of the mesh would be

an implausibly stiff behavior.
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3.3.3 Rigid Body Modeling Capability

There are two types of rigid body definitions available in Abaqus. One of them is the analyti-

cal rigid body the other is the discrete rigid body. For analytical rigid bodies a reference node

must be selected on the part. All loading and boundary conditions must be applied to that

reference node only. Surfaces can be defined on the analytical rigid body for its interaction

with other parts in the assembly. In the solution process rigid body movement of the analytical

rigid part is computed based on the movement of the reference point. One advantage of using

analytical rigid body could be its surface accuracy and computation efficiency since it is not

meshed. Disadvantage of using analytical rigid body is that loading can only be applied to a

single point.

Other rigid body type is the discrete rigid body. Discrete rigid bodies should be meshed. A

rigid element type suitable for the analysis is assigned to the rigid body mesh. A reference

node must also be selected for discrete rigid bodies and all boundary conditions should be

assigned to this node. However unlike analytical rigid bodies, loading could be applied to any

node of the discrete rigid body.

This feature is important for horizontal loading cases of this study since there are two load-

ing points on the models. One is center of gravity point where the weight of the model is

applied as point load and the other is the loading point where horizontal loading is applied as

displacement. Therefore in this study discrete rigid body type is selected for the modeling of

foundations of horizontal loading experiments.

3.3.4 Contact Interactions

In a finite element analysis, contact conditions are a special class of discontinuous constraint,

allowing forces to be transmitted from one part of the model to another. The constraint is

discontinuous because it is applied only when the two surfaces are in contact. When the two

surfaces are separate, no constraint is applied. The analysis has to be able to detect when two

surfaces are in contact and apply the contact constraints accordingly. Similarly, the analysis

must be able to detect when two surfaces separate and remove the contact constraints.

Abaqus provides two distinct approaches for modeling contact interactions: contact pairs and
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contact elements. If possible, Abaqus manual recommends use of contact pairs approach.

Therefore contact pairs approach is utilized and explained in this study.

In contact pairs approach, surfaces of the bodies that may contact during analysis must be

defined as master and slave surfaces. Significance of master slave assignment is that, dis-

placement of the nodes in slave surface depends on the displacement of the master surface.

According to Abaqus Documentation (2010), in reality contact pairs approach also utilizes

contact elements, however these elements are not accessible to the user. Abaqus automatically

covers the slave surface with this family of contact element types, which construct a measure

of overclosure (penetration of the point on the surface of the deforming body into the rigid

surface) and means of relative shear sliding.

3.3.4.1 Mechanical Contact Properties

Pressure overclosure relationship and frictional behavior are defined under mechanical contact

properties.

Default contact pressure overclosure relationship used in Abaqus is named as ”hard con-

tact” and it implies that; surfaces do not transmit contact pressure if they are not contacting,

penetration of master surface into slave surface is not allowed, and there is no limit to the

magnitude of contact pressure that could be transmitted between surfaces.

There are other pressure overclosure relationships available in Abaqus, such as softened con-

tact relationship in which the contact pressure is a linear function of the clearance between

surfaces. In this study hard contact relationship is utilized.

There are multiple friction formulations available in Abaqus. In this study penalty friction

formulation is utilized. Other main friction formulations include rough behavior, and fric-

tionless behavior. Frictionless behavior is the default formulation. For rough behavior, no slip

is allowed between surfaces as long as they are in contact.

Penalty friction formulation could be utilized with different parameters. For example, friction

coefficient could depend on slip rate and contact pressure, or constant shear stress limit could

be utilized. This is possible since Abaqus has an extended version of the classical isotropic

Coulomb friction model as explained Abaqus Documentation (2010). In Figure 3.9 slip re-
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gions for the coulomb friction model with constant friction coefficient, which is the friction

model utilized in this study, is shown.

Figure 3.9: Slip regions for the basic Coulomb friction model (Abaqus Documentation, 2010)

Since penalty method is an approximate method as mentioned in Section 3.3.4.4, incremental

slip may occur between surfaces even though the friction model determines that the current

frictional state is sticking. Figure 3.10 demonstrates this behavior, where κ is the sticking

stiffness. Magnitude of the elastic slip could be adjusted, however according to Abaqus Doc-

umentation (2010) convergence problems may occur if the elastic slip is chosen very small.

Figure 3.10: Elastic slip versus shear traction relationship for sticking and slipping friction
(Abaqus Documentation, 2010)
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3.3.4.2 Contact Surface Discretization

Surface discretization defines the locations where the contact constraints are enforced. Such

as at individual slave nodes or over regions defined arbitrarily at proximity of slave nodes.

There are two allowed contact discretizations in Abaqus, namely ”node to surface” and ”sur-

face to surface”. In node to surface discretization, slave surface is the set of finite element

nodes corresponding to that surface. Displacement of each of these nodes is computed ac-

cording to the projection of the node on the master surface. Therefore displacement of each

slave node depends on average of displacements of a number of master nodes.

Other contact discretization approach is the surface to surface discretization. If this discretiza-

tion is utilized, contact conditions are enforced in an average sense over regions nearby slave

nodes rather than only at individual slave nodes. The averaging regions are approximately

centered on slave nodes, so each contact constraint will predominantly consider one slave

node but will also consider adjacent slave nodes.

Node to surface discretization simply resists penetrations of slave nodes into the master sur-

face, hence forces tend to concentrate at these slave nodes. This concentration leads to spikes

and valleys in the distribution of pressure across the surface; whereas surface to surface dis-

cretization resists penetrations in an average sense over finite regions of the slave surface,

which has a smoothing effect. Therefore, in general, surface to surface discretization provides

more accurate stress results. On the other hand, in surface to surface discretization, penetra-

tion of master surface into the slave surface could be observed at a number of nodes, since

contact conditions are enforced on slave nodes in an average sense.

According to Abaqus Documentation (2010), calculation cost of both approaches could be

considered as same for most applications. Although surface to surface discretization generally

involves more nodes per constraint and can therefore increase solution cost.

3.3.4.3 Contact Tracking Approaches

There are two tracking approaches to account for the relative motion of two interacting sur-

faces in mechanical contact simulations. Namely, finite sliding and small sliding approaches.
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For small sliding approach, coupling of slave nodes with their projections on master surface

is calculated at the beginning of the analysis and does not change throughout the analysis,

whereas for finite sliding approach, this coupling is checked and recalculated throughout the

analysis.

Therefore, if small sliding approach is utilized and significant relative tangential motion of

the surfaces occurred, than the vertical contact pressure would still act on the nodes of the

slave surface which were originally in contact with the master surface whether or not they are

still in contact.

3.3.4.4 Contact Enforcement Methods

Contact enforcement method defines how the boundary conditions originating from contact

interactions are resolved into the numerical operations of the finite element method. There

are three contact enforcement methods in Abaqus. Namely, direct method, penalty method

and augmented Lagrange method. Augmented Lagrange method, which is an approximate

implementation, is not considered in this study.

Direct method strictly enforces a given pressure-overclosure behavior for each constraint

without approximation. According to Abaqus Documentation (2010), because of its strict

interpretation of contact constraints, hard contact simulations utilizing the direct enforcement

method are susceptible to overconstraint issues, which is a numerical difficulty.

The penalty method approximates hard pressure-overclosure behavior likewise the penalty

method remarked in Section 3.2. With this method the contact force is proportional to the

penetration distance, so some degree of penetration of master surface into slave surface will

occur. Numerical softening associated with the penalty method can mitigate overconstraint

issues and reduce the number of iterations required in an analysis. Penalty stiffness could be

defined as a constant or as a function depending on the penetration distance. Former is called

linear penalty method. In this study linear penalty method is utilized as contact enforcement

method, both for frictional and pressure versus overclosure contact behaviors since it is the

default method for finite sliding surface to surface contact formulation in Abaqus.
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3.3.5 Automatic Stabilization Mechanism

Automatic stabilization is employed for stabilizing instable quasi-static analyses. Instabilities

may be of a geometrical nature, such as buckling, or of a material nature, such as material

softening. By automatic stabilization, extreme displacements computed during a step are de-

creased by adding artificial stiffness for the problematic region of the model. This is achieved

by modifying the Equation 3.3 as in Equation 3.9 by including artificial stiffness to the prob-

lematic nodes where extreme displacements are computed.

KU + Fv = P (3.9)

Effect of automatic stabilization occurs when the displacement per load increment size com-

puted is very high for any node in the model. In this case the displacement velocity (v)

computed for that particular node according to Equation 3.10 increases. In this equation ∆u is

the displacement of the node in the increment, and ∆t is the increment size. And the increase

in v results in an increase in the viscous force to be applied to that node Fv, which is calculated

according to Equation 3.11. In that equation c is damping factor, M∗ is artificial mass matrix

computed via unit density of the material.

Finally, since the Fv is subtracted from load vector (P) as shown in Equation 3.9, and effect

of automatic stabilization would be an extra (artificial) resistance to displacement for that

particular node.

v =
∆u
∆t

(3.10)

Fν = cM∗v (3.11)

Risk of this technique is that, if the artificial stiffness computed is higher than a suitable value,

this procedure can decrease the accuracy of the solution by resulting in overly stiff behavior,

thus yielding unrealistically high loads and / or implausibly low displacements. Note that the

undesired effect of this technique is on yielding higher load resistances. Effect of automatic

stabilization is investigated in Section 3.6.1.

In adaptive automatic stabilization scheme, damping factor (c) computed at the first increment
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of the step is modified spatially and with time. Modification depends on the convergence

history of the step. If convergence behavior is problematic because of instabilities, damping

factor is automatically increased. For example, damping factor may increase if an analysis

takes extra equilibrium iteration per increment, or requires time increment cutbacks. On the

other hand, damping factor may be reduced if instabilities subside.

In order to limit the artificial stiffness brought, the ratio of the energy dissipated by viscous

damping to the total strain energy is defined by the user as a maximum limit.

3.4 General Layout of Finite Element Method Analyses

In order to see the effect of plane strain assumption, both 2D and 3D analyses are conducted.

In this section modeling and solution control details of all finite element analyses of test cases

are explained.

3.4.1 3D Monotonic Vertical Loading Analyses

Due to symmetry 1/4 of the problem is modeled in order to increase the computational effi-

ciency.

3.4.1.1 Mesh and Element Selection

Dimensions of the soil continuum are selected as 2 m width x 2 m length x 2 m depth. Note

that, these are the dimensions of the quarter of the actual problem. Therefore, the actual

problem modeled would have the dimensions of 4 m width x 4 m length x 2 m depth. It is

aimed to employ the dimensions of the soil tank utilized in experiments by Fukui et al. (2005).

Selected mesh boundaries are 1 m wider than the boundaries of the modeled soil tank, which

had 4 m width x 3 m length. This modification of boundary size is done, in order to have better

sized elements by symmetry, which have internal face corner angles closer to 90 degrees.

Depth of the soil layer varied among experiment cases, according to the relative density of

the test medium as 2 m and 3 m as mentioned in Section 2.1. Same mesh is employed for

both cases Case 1 and Case 2, hence, selected mesh boundary dimensions are 1 m shallower

than soil tank boundaries of the experiment case Case 1. Results of two-dimensional analyses
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conducted for Case 1, employing material parameters presented in Table 4.1, with meshes of 2

m and 3 m depth, yielded ultimate bearing capacities of 568.2 kPa and 567.6 kPa, respectively.

Difference between these results was less than 0.12%, which is considered as negligible.

Mesh design is important for computational efficiency and solution accuracy. It is required to

have a mesh which yields most accurate solution for least number of elements. In this study,

among many factors, attention is paid to two main factors in mesh selection. First, more

elements should be placed where there are rapid changes in stresses and strains, which cor-

responds to rapid changes in directions of movement (Potts and Zdravkovic, 2001). Second,

a mesh of regular shaped elements will give the best result; therefore elements with widely

distorted geometries should be avoided (Potts and Zdravkovic, 1999).

Mesh and element type of 3D FEM analysis of monotonic vertical loading cases are based

on the study by Zhu and Michalowski (2005). Efficiency of this mesh design is verified with

an analysis by comparing it with another design composed of more regular shaped elements.

Both meshes were utilizing C3D20R elements and are shown in Figure 3.11. It is seen that

mesh design utilized by Zhu and Michalowski (2005) with 725 elements yields practically

the same results with a mesh design utilizing 2520 elements for a bearing capacity analysis.

It should be noted that both of the analyses were preliminary analyses and according to fur-

ther mesh refinements it was seen that both meshes were not adequate to achieve required

accuracy. Nevertheless considering the mesh used in the analyses in this study, shown in Fig-

ure 3.13(b) is composed of 1036 elements which is considerably less than 2520 elements, it

could be seen that mesh used by Zhu and Michalowski (2005) is both efficient and accurate

compared to the other mesh design which has more regular element shapes.
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(a) Mesh with 2520 Elements (b) Mesh with 725 Elements
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Figure 3.11: Comparison of results of different mesh designs
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It is worth to note that advantage of the mesh design utilized by Zhu and Michalowski (2005)

is that, areas which are out of interest could be meshed with very little number of elements

compared to other mesh types, and number of elements is independent of problem size if

any value of aspect ratio and edge size is suitable. Moreover Potts and Zdravkovic (1999)

has also shown this type of mesh for 2D as a good mesh example as shown in Figure 3.12.

Disadvantage of this mesh design is that most elements have trapezoidal shapes from the

beginning. This is not preferable as shown in Section 3.3.2.3. However by increasing the

number of elements, angles between the edges of elements close to foundation area can be

set as close to ideal as desired. Nonetheless this type of meshing would not be preferable for

elements, such as incompatible mode elements (C3D8I), that are too sensitive to distortion

as shown in Section 3.3.2.3. Hence C3D20R elements are used in analyses, especially for its

tolerance to distortion and resistance to numerical problems as discussed in Section 3.3.2.4.

(a) Ill-conditioned mesh (b) Well conditioned mesh

Figure 3.12: Examples of good and bad meshes after Potts and Zdravkovic (2001)

Boundary conditions do not allow normal displacements on the boundaries of the model, but

allow tangential displacements. Loukidis and Salgado (2009) states that based on prelimi-

nary analyses, fixing both degrees of freedom or fixing only the horizontal one at the lateral

boundary nodes does not affect the resulting collapse load as long as the lateral boundaries

are placed far enough from the developing collapse mechanism. Base of the model does not

allow either tangential or normal displacements. Planes of symmetry are constrained with

symmetric boundary conditions which only restrain normal displacement. These conditions

are in accord with the study by Zhu and Michalowski (2005).
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Two different meshes are used in bearing capacity analyses, these meshes are shown in Fig-

ure 3.13. For associated flow rule conditions coarse mesh, composed of 1036 elements is

used, whereas for unassociated flow rule conditions fine mesh, composed of 8640 elements is

used. Using the coarse mesh in analyses utilizing unassociated flow rule, results in very small

increment sizes.

This observation might be explained by a comment from Abaqus Documentation (2010). ”In

plasticity applications as the solution approaches the limit load, discontinuities occur in the

solution such as slip lines. In order to reasonably model the discontinuities in the gradient

field of the solution, locations at which discontinuities could be modeled should be plenty.

These locations are the element edges.”

From this comment it is understood that, the finer the mesh, the better the discontinuities are

modeled. In general, refining the mesh increases the solution accuracy since as the element

size gets smaller, errors due to strain approximation within the element decreases. However

for this specific case, aim is to increase the surface area of the elements so that discontinuities

such as slip could be better modeled. Slip could be modeled at element surfaces such that

nodes of the top surface of an element moves in an opposite direction to the nodes at bottom

surface of the element.

In this context, Abaqus Documentation (2010) continues and advises to use first order ele-

ments, since for a given number of nodes these elements provide the most locations at which

some component of the gradient of the solution can be discontinuous.

As an explanation to this comment, note that in first order three dimensional elements there

are 4 nodes per element face, whereas in second order elements there are 8 nodes per element

face. Second order elements are computationally more expensive. Therefore this comment

could be considered as an advice from computational efficiency point of view.

Abaqus Documentation (2010) adds that incompatible mode elements, which are fully inte-

grated first order elements that have been enhanced by incompatible modes to improve the

bending behavior to eliminate the parasitic shear stresses that causes locking instability, are

able to represent strain localizations such as the ones occur in shear bands. Comment ends

with a warning that defining shear localization better increases the strain magnitude, therefore

tends to increase the number of increment and iterations required for the analysis.
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Based on the advices of Abaqus Documentation (2010) it could be concluded that manual

advises the use of incompatible mode elements for plasticity limit analyses. Reason of this

might be that, these elements, as being first order elements, are computationally cheaper

than all second order elements and do not have the finite element instabilities of shear and

volumetric locking, to which first order elements are vulnerable.

In the end, choice of not using first order elements may have inversely affected the com-

putational efficiency of the analyses particularly for unassociated bearing capacity solutions.

Nonetheless these comments and advices do not imply that analyses using a fine mesh of

second order elements might not be suitable from solution accuracy point of view.

Employment of second order elements in analyses employing unassociated flow rule could be

supported by the studies by Loukidis and Salgado (2009) and Loukidis et al. (2008) which

favored employment of second order elements. Difference of these studies from this study

should be noted that these studies were employing triangular elements with plane strain as-

sumption. Loukidis et al. (2008) commented that triangular elements provides flexibility

in element arrangement and size. Study of plastic limit loads of shallow foundations lying

on cohesionless soils that obey Mohr Coulomb yield criterion is common among the stud-

ies. Loukidis and Salgado (2009) utilized second order elements for finite element analyses

of ultimate bearing capacity of foundation subjected to vertical load without eccentricity or

inclination, where dilation angles were chosen to model unassociated flow rule. Loukidis

et al. (2008) studied foundation subjected to combined loading by considering eccentricity

and inclination of the foundation load. They commented that use of second order elements

provided superior numerical performance than first order elements for analyses employing

unassociated flow rule, due to better performance of second order elements in intense strain

localization. They utilized coarser mesh with second order elements for analyses with unas-

sociated flow rule, and finer mesh composed of first order elements for associated flow rule.

They added that selection of first order or second order elements does not affect the analysis

results when associated flow rule is employed.

In order to ensure that selected meshes are adequately fine, a mesh convergence study is

conducted. For this purpose mesh shown in Figure 3.13(b) is compared with a finer mesh

shown in Figure 3.13(a). For Case 2 analysis with material parameters of ϕ = 39.9◦, ψ = 30◦,

and c = 0.1 kPa, ultimate bearing capacity obtained from selected mesh and convergence
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(a) Fine (b) Coarse

Figure 3.13: Meshes used in 3D monotonic vertical loading analyses

study mesh are 480.64 kPa and 478.40 kPa respectively. There is 0.47% difference between

results. This level of difference is considered as acceptable.

3.4.1.2 Application of Loads

Analyses are performed under displacement control. Foundation is modeled as rough and

rigid with uniform downward displacement at the nodal points applied at the element nodes

which lie immediately beneath the footing. Rough footing is modeled by not allowing hori-

zontal displacements for these nodes. Modeling rough and rigid foundation in this manner is

both consistent with Zhu and Michalowski (2005) and Potts and Zdravkovic (2001).

3.4.1.3 Analysis Procedure

Each analysis consists of 2 main steps.

1. Calculation of free-field stresses: This step simulates stress distribution in the free field.

(ie. before foundation placement). In this step, gravity loading is applied to the elements

modeling the soil medium according to the defined soil density, and then the initial conditions

for the lateral pressures are enforced according to the defined lateral earth pressure at rest
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coefficient (Ko). In this thesis lateral earth pressure at rest coefficient is computed according

to Jaky’s (1948) formula.

2. Application of foundation load: Vertical displacement modeling the foundation load is

applied at this step. A maximum value of 50 mm of vertical displacement is found to be

appropriate to reach the limit load for the modeled cases.

3.4.1.4 Output Requests and Evaluation of Results

Vertical components of reaction forces, and vertical displacements at the nodes which lie di-

rectly below the foundation are recorded for each increment throughout the analysis. Bearing

pressure is calculated as the sum of the vertical components of the reaction forces at the nodal

points where the vertical displacement is applied divided by the foundation area. Settlement

of the foundation is computed from the vertical displacement of these nodes. Unlike Zhu and

Michalowski (2005) study, sizes of the neighboring elements are not considered in the area of

foundation in calculation of the bearing pressure.

At the end of free-field stress calculation stage, although very small compared to given foun-

dation displacement at the foundation load step, vertical displacements occur throughout the

soil medium. These unwanted displacements at nodes directly under the foundation are de-

ducted from the total displacements of the foundation load application step.

3.4.1.5 Solution Strategy and Control Parameters

In this section solution control parameters, increment size selection, solution technique are

explained. These parameters are selected both for increasing the computational efficiency of

the analyses, and avoiding convergence difficulties.

Increment Size Selection

Automatic increment size selection algorithm is employed. Maximum number of allowed in-

crements is selected as 1 million, in order to have practically unlimited number of increments.

Initial increment size is set as 0.01%, which is observed to be a suitable initial increment size.

Minimum increment size is selected among 1x10−6%, 1x10−7% and 1x10−10% depending on

the convergence behavior. Among the calculation parameters, minimum increment size pa-
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rameter is defined as the limiting parameter that decides whether the analysis will continue or

terminate. Selection of a large value for this parameter may result in early termination of the

analysis; however, selection of a very small value may result in continuation of analysis with

very small increment sizes. Since automatic stabilization effect is increased by the algorithm

as minimum increment size is approached.

Maximum increment size is set as 1% to obtain smooth displacement versus pressure graphs

and prohibit algorithm from selecting high increment sizes and subsequently have conver-

gence problems and waste of processor time.

Solution Control Parameters

Only calculation parameters of the foundation load step are modified from their default values.

If automatic increment size selection algorithm decides that the selected increment size is too

large, increment is terminated by identifying it as unconverged and another attempt is made

with a smaller increment size starting from the last successful increment. Basically an incre-

ment size is considered as too large, if the increment could not converge to a solution within

allowable number of iterations. However Abaqus also utilizes another set of rules which may

identify the increment as diverging and terminate it before reaching the maximum allowed

number of iterations. One such rule is the increase of residuals in 2 subsequent iterations.

However as stated by Abaqus Documentation (2010) this and similar convergence rate checks

may not be appropriate for some material models and could be deactivated by modifying time

incrementation parameters IO and IR that define the number of increments after these checks

are started. By assigning very high values (such as 1x1010) to these parameters those checks

are disabled.

Increment size selection algorithm decides that an analysis should terminate after a certain

number of subsequent increment size degradations. This certain number is defined by IA pa-

rameter and default value of it is 5. Based on observation this value is found as too small,

therefore IA parameter, which controls the maximum number of successive unconverged at-

tempts within a step is set to 100. Therefore early termination of analyses due to this param-

eter is avoided.

Line search algorithm is activated by specifying maximum number of searches as 10 and

error contingency for line search as 0.01. According to Abaqus Documentation (2010) pur-
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pose of the line search is to improve the robustness of the Newton or quasi-Newton methods.

This algorithm helps to prevent divergence in strongly nonlinear problems, and increases the

efficiency of problems involving high coefficient of friction, since by automatic step size se-

lection algorithm smaller the number of unconverged cases, larger the step size. Since test

medium has high internal friction angles, line search algorithm is employed.

Moreover automatic stabilization is activated since it is observed to help solving the con-

vergence difficulties. Automatic stabilization method is chosen to be applied by specifying

dissipated energy fraction as 0.0002 and using adaptive stabilization with maximum ratio to

stabilization to strain energy as 0.01. Default value for maximum ratio to stabilization energy

to strain energy was 0.05, however using this value resulted in decrease of solution accuracy

as elaborated in Section 3.6.1.

Solution Technique

Full Newton solution technique is used as it performed better than Quasi-Newton method.

Quasi-Newton method might have been utilized if only recalculation of stiffness matrix could

have been avoided throughout the analyses. This technique was utilized by Loukidis and

Salgado (2009) in order not to suffer from numerical difficulties in analyses using strongly

non-associated flow rule. Unable to follow this technique, numerical difficulties are avoided

by utilizing automatic stabilization method with Full Newton solution technique in this study.

Unsymmetrical matrix storage is selected based on advice in Abaqus Documentation (2010)

for analyses using Mohr-Coulomb yield criterion, as it increases analysis speed. Direct equa-

tion solver is utilized as iterative equation solver is feasible for models composed of higher

number of elements.

3.4.2 2D Monotonic Vertical Loading Analyses

These analyses, utilizing plane strain assumption, are conducted with an aim to compare

with 3D analyses in order to assess the effect of plane strain assumption on analyses results.

Therefore 2D analyses are conducted with same modeling preferences as 3D analyses, which

are described in Section 3.4.1, except mesh, element type and output evaluation procedures,

to which modifications were inevitable due to change in modeling dimension.
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Due to symmetry 1/2 of the problem is modeled to increase the computational efficiency. For

this purpose half of the foundation breadth is modeled.

3.4.2.1 Mesh and Element Selection

Dimensions of the soil model are selected as 4 m wide x 1.5 m long x 2 m deep. Note that

these are the dimensions of the half of the actual problem. Therefore the actual problem

modeled would be 3 m wide x 2 m deep. This is 1 m shallower than the boundaries of the soil

tank modeled, which was 4 m long x 3 m wide x 2 m deep. This modification is done in order

to be consistent with the 3D bearing capacity analyses presented in Section 3.4.1.1.

Although mesh design is important for computational efficiency and solution accuracy, since

2D analyses are computationally cheaper than 3D analyses, greater tolerance to increase in

number of elements are given in order to have better proportioned elements. Mesh used

in analyses, composed of 1432 elements, and are shown in Figure 3.14(a). Element type

is selected as CPE8R which is a second order reduced integration element for plane strain

analyses, analoguos to C3D20R for 3D analyses.

In order to ensure that selected mesh shown in Figure 3.14(a) is adequately fine, a mesh con-

vergence study is conducted. For this purpose an analysis to be used as a mesh convergence

study is conducted with a finer mesh, which is presented in Figure 3.14(b). Monotonic ver-

tical loading analysis with material parameters of ϕ = 39.9◦, ψ = 37◦, and c = 0.1kPa is

conducted. Ultimate bearing capacities obtained from the selected convergence study meshes

are 358.36kPa and 352.82kPa respectively. There is 1.57% difference between the results.

This level of difference is considered as acceptable.
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(a) Mesh used in analyses (b) Mesh used in mesh convergence study

Figure 3.14: Meshes used in 2D monotonic vertical loading analyses

3.4.2.2 Output Requests and Evaluation of Results

At the end of free-field stress calculation stage, although very small compared to given foun-

dation displacement at the foundation load step, vertical displacements occur throughout the

soil medium. These unwanted displacements at the nodes directly under the foundation are

deducted from the total displacements of the foundation load application step.

Bearing pressure is calculated as the sum of the vertical components of the reaction forces at

the nodal points where the vertical displacement is applied divided by the foundation area.

Since this is a plane strain analysis foundation length is assumed as 1m. Therefore instead of

the actual foundation area which is 0.50m x 0.50m, an area of 0.25m x 1m should be used,

considering half of the breadth of the footing is modeled due to symmetry, for calculating the

pressure under footing. Note that unlike Zhu and Michalowski (2005), size of the neighboring

elements are not considered for the calculation of the bearing pressure.

Settlement of the foundation is computed from the vertical displacement of the nodes directly
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under foundation, which settle uniformly according to the prescribed boundary condition.

3.4.3 3D Monotonic Horizontal Loading Analyses

In this section modeling details of 3D monotonic horizontal loading analyses are explained.

Due to symmetry, half of the problem is modeled in order to increase the computational

efficiency.

3.4.3.1 Mesh and Element Selection

Mesh design is selected as similar to the mesh used in monotonic vertical loading analyses

explained in Section 3.4.1.1. Selected mesh, presented in Figure 3.15(a), is composed of 3520

elements where 96 elements are placed directly below the footing.

Soil medium is modeled by 20 node reduced integration quadratic (C3D20R) elements. As

explained in Section 3.3.2 two element types, namely C3D20R and C3D8I, are considered

as usable in this study. C3D20R is chosen over C3D8I because of its tolerance to distortion,

considering most of the elements have trapezoidal distortion in the selected mesh.

Dimensions of the soil model are selected as 4 m wide x 1.5 m long x 2 m deep. Note that

these are the dimensions of the half of actual problem. Therefore the actual problem would

have the dimensions of 4 m width x 3 m length x 2 m depth. This is 1 m shallower than the

soil boundaries of the soil tank modeled, which was 4 m wide x 3 m long x 3 m deep.

Boundary conditions do not allow normal displacements on the boundaries of the model,

but allow tangential displacements. Base of the model allows neither tangential nor normal

displacements. Plane of symmetry is constrained with symmetric boundary conditions which

only restrains normal displacement.

In order to ensure that selected mesh is adequately fine, a mesh convergence study is con-

ducted. For this purpose, mesh shown in Figure 3.15(a) is compared with a finer mesh, com-

posed of 4416 elements shown in Figure 3.15(b). 144 elements are placed directly below

the footing in this finer mesh. For Case 9 analysis with material parameters of ψ = 37◦,

ϕ = 39.9◦ and c = 0.05 kPa, maximum horizontal load carrying capacities obtained from

selected mesh and convergence study mesh are 6.27 kPa and 6.24 kPa, respectively. There is
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0.48% difference between the results. This level of difference is considered as acceptable.

(a) Mesh used in analyses (b) Mesh used in mesh convergence study

Figure 3.15: Meshes used in 3D monotonic horizontal loading analyses shown with low pier
foundation model

3.4.3.2 Foundation Model and Interaction with Soil

Foundation model is idealized to consist of a rigid shell, representing the foundation base, and

a rigid wire monolithically connected to the foundation base representing the pier. Foundation

is modeled as a rigid body, utilizing discrete rigid body type, as explained in Section 3.3.3.

Foundation base is a rectangle with dimensions of 0.25 m x 0.5 m. Note that these dimensions

are the dimensions of the half of actual foundation. Therefore, the actual foundation base

modeled is a square with 0.5 m edge length. Pier is positioned at the middle of the half-

footing base as shown in Figure 3.15(a) so that together with the symmetric counterpart, the

resultant force applied to the pier would act exactly at the center of the full foundation model.

Reference node of the foundation model is selected as the top of the pier. This selection

was a requirement in order to apply the horizontal load with displacement control, since all

boundary conditions assigned to the rigid body are moved to the reference node. Significance

of reference node was discussed in Section 3.3.3.

Symmetric boundary condition is assigned to the rigid body for the direction perpendicular

to the horizontal load application axis, in order to restrain the movement of the foundation

perpendicular to the symmetry plane due to accumulated small numerical errors in analyses.

It is worth to note that these displacements, since very small, do not affect the results even if

they are allowed.
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One approach for modeling soil structure interaction in finite element method, as employed

by Yılmaz (2004), is binding all degree of freedoms of foundation nodes to the soil nodes that

lie directly below the foundation and then use the tension cut-off feature of the soil material to

prevent the undesirable sticking of the soil to the foundation bottom during uplift. However

due to the observed convergence difficulties when tension-cutoff feature of Mohr-Coulomb

failure criterion is utilized in Abaqus, this method could not be employed. Instead, contact

interaction is utilized for modeling the interface between soil and foundation for horizontal

loading cases since uplift of foundation is expected.

Foundation-soil interface is modeled with contact pairs approach of Abaqus. Interacting sur-

faces are selected as the bottom of footing and the soil surface immediately below the footing.

It was desired to include a portion of the soil surface near foundation edges into the contact

interaction, however due to the observed convergence difficulties, this was not achieved. Ac-

cording to the analysis results, significant vertical deformations of the elements directly near

the foundation edge prohibit surface contact at these element faces. Moreover, forward edge

of the footing embeds into the soil due to rotation. However, since sliding of the foundation

is not at the soil surface as could be seen from this description, this situation did not have

considerable effect on analysis results.

Finite sliding contact tracking approach is utilized since sliding of the foundation is expected.

However, overall sliding of the foundation was observed to be mostly due to the plastic sur-

face developing within the soil medium according to the analysis results. This observation

suggests that utilization of finite sliding formulation was redundant and instead small sliding

formulation could have been selected. Small sliding formulation is referred as a subset of

finite sliding formulation in Abaqus Documentation (2010). As explained in Section 3.3.4.3

finite sliding formulation performs additional calculations compared to small sliding formu-

lation. Therefore this redundancy may have increased computational cost of the analyses.

Surface to surface contact discretization is utilized due to observed computational efficiency.

This efficiency could be explained by the comment from Abaqus Documentation (2010) stat-

ing that for finite-sliding contact interactions surface to surface contact tends to converge in

fewer iterations than node-to-surface contact discretization since surface-to-surface contact

has more continuous behavior upon sliding.

Hard contact pressure-overclosure relationship is utilized. Therefore contact pressures are
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directly transferred to soil medium.

Frictional behavior is modeled by using Coulomb friction model with constant friction coef-

ficient equal to the tangent of internal friction angle of the soil. Since Mohr-Coulomb yield

criterion, if not considering cohesion, reduces to Coulomb friction model under the footing on

the surface of the soil. Rough footing is modeled since sand papers were glued at the bottom

of the actual footing.

Note that instead of utilizing Coulomb friction model, frictional forces could have directly

been trasferred to the soil continuum elements by utilizing rough friction formulation. This

method is not chosen due to faster convergence rate with utilization of the penalty method and

observed finer accuracy with less number of elements under the footing.

Penalty contact enforcement is utilized for both frictional and pressure overclosure behavior.

Therefore certain magnitude of undesired elastic sliding, and penetration to the soil continuum

of the foundation is observed. Magnitudes of these undesired effects are investigated with the

verification studies presented in Section 3.5.2 and are considered as negligible.

State based contact tracking algorithm is used due to observed faster convergence to solution

with this algorithm.

3.4.3.3 Application of Loads

Weight of the model is applied as a point load, at the center of gravity, which lies on the pier

at a certain height from the foundation bottom. Since half of the foundation is modeled, half

of the weight of the actual model is utilized. Application of the model self weight at certain

height above ground level, has enabled consideration of the additional eccentricity due to self

weight (P - ∆ effect) to be taken into account. For this purpose consideration of non-linear

effects of nodal displacements are included for all steps of the analysis.

Horizontal test load is applied as a prescribed displacement at the top of the pier of the foun-

dation model. 40 mm of horizontal displacement is observed as adequate both for reaching the

peak capacity and establishing the decrease in load horizontal load carrying capacity. There-

fore analysis is a displacement controlled analysis. This is necessary to model the decrease

in horizontal load after reaching the peak capacity observed in the experiment results. This
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reduction in horizontal load carrying capacity is expected due to two reasons. First reason is,

as indicated by Fukui et al. (2005), that submergence of the forward tip of the foundation into

the soil results in decrease in horizontal load carrying capacity of the foundation. And the

second reason is, with increasing tilt angle of the foundation, second order moments would

increase with a consequence of decrease in horizontal load capacity of the foundation as in-

dicated by analytical solutions such as Paolucci and Pecker (1997). These aspects could be

considered through implementation of geometric nonlinearities.

3.4.3.4 Analysis Procedure

Each analysis consists of three main steps. Figure 3.16 demonstrates these steps. In this

figure g and w represent the gravitational acceleration and weight of foundation respectively.

Whereas ∆x represents the horizontal force applied in a displacement controlled manner.

Figure 3.16: Demonstration of Load Steps of Monotonic Horizontal Loading Analyses

1. Calculation of free-field stresses: This step simulates stress distribution in the free field.

(ie. before foundation placement). In this step, gravity loading is applied to the elements

modeling the soil medium according to the defined soil density, than the initial conditions

for the lateral pressures are enforced according to the defined lateral earth pressure at rest

coefficient (Ko).

2. Application of model self weight: In this step foundation model is placed on the soil surface

by activating the interaction between foundation and soil, and applying the self weight of the

foundation model to its center of gravity.

3. Application of the test loading: In this step, horizontal test load is applied at the horizontal
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loading point of the foundation model.

3.4.3.5 Output Requests and Evaluation of Results

Vertical and horizontal components of reaction forces at the side and bottom boundaries of

the soil mesh, horizontal and vertical displacements of the loading point, backward edge and

forward edge of the foundation are recorded for each increment throughout the analyses.

At the end of free-field stress calculation stage, although very small compared to given foun-

dation displacement at the foundation load step, vertical displacements occur throughout the

soil medium. These displacements at the nodes directly beneath the foundation are deducted

from the total displacements of the later steps of the analyses.

Horizontal force acting at the loading point of the foundation model is calculated as the sum

of the horizontal components of the reaction forces at the nodal points of outer boundaries of

soil mesh. Since half of the foundation is modeled, this value is multiplied by two in order to

reach the actual capacity of the experiments.

Tilt angle and sliding of the foundation are computed from the vertical and horizontal dis-

placements of the backward and forward edges of the foundation.

3.4.3.6 Solution Strategy and Control Parameters

Solution Technique

Full Newton solution strategy is employed. Note that using Riks nonlinear problem solu-

tion strategy (Abaqus Documentation, 2010) with load controlled analyses instead of Newton

method might also capture the decrease in horizontal load carrying capacity. But utilizing dis-

placement controlled analysis with Newton solution strategy is believed to be a more efficient

choice, due to its simplicity and less number of unknowns compared to Riks solution strategy.

Unsymmetrical matrix storage is selected based on advice in Abaqus Documentation (2010)

for analysis using Mohr-Coulomb yield criterion; as it increases analysis speed. Direct equa-

tion solver is utilized as iterative equation solver is feasible for models composed of higher

number of elements.
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In order to consider second order moments nonlinear geometry analysis is enabled for all

steps of the analysis.

Solution Control Parameters

Solution control parameters of steps coming after calculation of free field stresses are modified

as described in Section 3.4.1.5.

Increment Size Selection

In free-field stress calculation step fixed increment size with 100% is utilized. This configu-

ration is the suggested configuration in Abaqus Documentation (2010). Since the requested

free field stresses would not be considerably different than the original stress configuration

this step is advised to complete in a single load increment.

In self weight application step, automatic increment size selection algorithm is utilized with

1% as the first increment size, 100% as the maximum increment size and 1x10−8% as the

minimum allowable increment size. 1% increment size is a high value for the first incre-

ment; however, considering the model self weight is not close to the bearing capacity of the

foundation, it is found as adequate.

In test loading application step, automatic increment selection algorithm is used. First incre-

ment size is selected as 0.01%, and 100% as the maximum increment size and 1x10−9% as

the minimum increment size.

3.4.4 2D Monotonic Horizontal Loading Analyses

These analyses, utilizing plane strain assumption, are conducted with an aim to compare with

3D analyses in order to assess the effect of plane strain assumption on analyses results. There-

fore, these analyses are conducted with same modeling preferences as 3D analyses described

in Section 3.4.3 except mesh, element type, evaluation of results and load application proce-

dures, to which modifications are required due to change in problem dimension.
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3.4.4.1 Mesh and Element Selection

Meshes used in analyses, composed of 1711 CPE8R elements, are shown in Figure 3.17(a).

Element type is selected as CPE8R which is a second order reduced integration element for

plane strain analyses, analogous to C3D20R which is for 3D analyses.

Dimensions of the soil model are selected as 3 m wide x 2 m deep. This is 1m shallower than

the boundaries of the soil tank modeled, which was 4 m long x 3 m wide x 2 m deep. This

modification is done in order to be consistent with the 3D bearing capacity analyses presented

in Section 3.4.3.1.

Boundary conditions are set to not allow normal displacements on the boundaries of the

model, but allow tangential displacements. Base of the model does not allow neither tan-

gential nor normal displacements.

In order to ensure that selected mesh shown in Figure 3.14(a) is fine enough, a mesh con-

vergence study is conducted. For this purpose an analysis to be used as a mesh convergence

study is conducted with a finer mesh composed of 3458 elements, which is presented in Fig-

ure 3.17(b). Monotonic horizontal loading analysis with material parameters of ψ = 37◦,

ϕ = 39.9◦ and c = 0.05kPa is conducted. Maximum horizontal load carrying capacities

obtained from selected mesh and convergence study mesh are 5.78 kPa and 5.70 kPa, respec-

tively. There is 1.40% difference between the results. This level of difference is considered as

acceptable.

(a) Mesh used in analyses (b) Mesh used in mesh convergence study

Figure 3.17: Meshes used in 2D monotonic horizontal loading analyses
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3.4.4.2 Application of Loads

Due to plane strain assumption, foundation is modeled as strip foundation with breadth 0.5

m and unit length (1 m). Since the actual length of the foundation was 0.5 m, in order to

apply same pressure on the soil, two times the actual weight of the foundation is applied on

the model. Compare this with the 3D analyses, which exploits the symmetry of the loading

conditions, half of the footing was modeled, consequently half of the actual weight of the

foundation was applied on the model. This was necessary since for plasticity, yield is defined

in terms of pressure.

3.4.4.3 Output Request and Evaluation of Results

Vertical and horizontal components of reaction forces at the side and bottom boundaries of

the soil mesh, horizontal and vertical displacements of the loading point, backward edge and

forward edge of the foundation are recorded for each increment throughout the analyses.

At the end of free-field stress calculation stage, although very small compared to the given

foundation displacement at the foundation load step, vertical displacements occur throughout

the soil medium. These unwanted displacements at nodes directly under the foundation are

deducted from the total displacements of the later steps of the analyses.

Horizontal force acting at the loading point of the foundation model is calculated as the sum

of the horizontal components of the reaction forces at the nodal points of outer boundaries of

soil mesh. Since plane strain analysis is conducted with imaginary length dimension of 1 m,

this value is divided by two in order to reach the actual capacity of the experiments conducted

with foundation length of 0.5 m.

Tilt angle, and sliding of the foundation is computed from the vertical and horizontal dis-

placements of the backward and forward edges of the foundation.

3.5 Verification of Modeling Approaches

In this section, suitability of the modeling choices made in Section 3.4 is verified with avail-

able theoretical solutions.
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3.5.1 Verification Studies for Monotonic Vertical Loading Analyses

3.5.1.1 Verification of 3D Analyses with Exact Solution by Cox (1962)

In order to verify the solution method, a circular foundation bearing capacity problem, whose

solution is found by Cox (1962) is modeled. Cox (1962) has shown that for smooth circular

shallow foundation with radius (R) lying on a soil with cohesion (c), internal friction angle

(ϕ), unit weight (γ) satisfying Equations 3.12a and 3.12b; solution for the ultimate bearing

capacity (qult) of this foundation could be found by Equation 3.12c.

γR
c
= 10 (3.12a)

ϕ = 30◦ (3.12b)

qult = 141c (3.12c)

Following the modeling layout described in Section 3.4.1, a finite element model is con-

structed with R = 0.25m, γ = 16kN/m3, c = 0.4kPa. Since these parameters and analysis

satisfies the conditions of the Cox (1962) solution, it is expected to find ultimate bearing

capacity of 56.4kPa from the finite element model.

As a result, 57.8 kPa is found from the finite element analysis with a mesh composed of 2821

elements. Therefore, the exact solution is approached from above with less than 2.50% error.

This analysis verifies that selected element type, boundary conditions, application of sym-

metry, application of vertical displacement on the nodes lying directly below the foundation

as loading, reading the vertical components of reaction forces at these nodes as the result,

modifications done to the default solution control parameters, are adequate for modeling the

bearing capacity problem.
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3.5.1.2 Verification of 2D Analyses with Exact Solution by Prandtl (1920)

In order to verify the solution method, bearing capacity of a strip foundation lying over a

cohesive soil, to which exact solution is found by Prandtl (1920) is modeled. Prandtl (1920)

has shown that for smooth strip shallow foundation lying on a soil with cohesion (c), internal

friction angle (ϕ) satisfying Equation 3.13a; exact solution for the ultimate bearing capacity

(qult) of this foundation could be found by Equation 3.13b.

ϕ = 0◦ (3.13a)

qult = (π + 2)c (3.13b)

Following the modeling layout described in Section 3.4.2, a finite element model is con-

structed with ϕ = 0◦, c = 100kPa. Since these parameters and analysis satisfies the conditions

of the Prandtl (1920) solution, it is expected to find ultimate bearing capacity of 514.16kPa

from the finite element analysis.

As a result 516.32kPa is found from the finite element analysis with mesh composed of 1234

elements. Therefore the exact solution is approached from above with 0.42% error. This

analysis verifies that selected element type, boundary conditions, application of symmetry,

application of vertical displacement on the nodes lying directly below the foundation as load-

ing, reading the vertical components of reaction forces at these nodes as the result, modifica-

tions done to the default solution control parameters, are proper approaches for modeling the

bearing capacity problem.

3.5.2 Verification Studies For Monotonic Horizontal Loading Analyses

These analyses utilize the same element type and boundary conditions with monotonic vertical

loading analyses which were verified in Section 3.5.1. The main difference introduced in

modeling the monotonic horizontal loading analyses is the modeling of the foundation as a

rigid body and the contact interaction defined between rigid body and the soil.

In this section, chosen contact simulation technique for soil foundation interface modeling is
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verified in three steps. First, tangential contact behavior will be verified for its compliance

with Coulomb Friction Model described in Abaqus Documentation (2010). Then, capability

of normal contact behavior to model uplift behavior is assessed. Finally, it is verified that the

analyses take second order moments into account, which are due to rotational deformation of

the foundation model.

3.5.2.1 Verification of Frictional Contact Behavior with Coulomb Friction Rule

Frictional contact behavior between soil and foundation defines the relative sliding of foun-

dation with respect to the soil and the amount of shear the soil - foundation interface can

support.

Frictional contact behavior is modeled to obey the Coulomb Friction Rule which enforces

absolutely no relative sliding up to a defined maximum shear resistance calculated according

to Equation 3.14 between soil and foundation. Once the ultimate shear capacity is reached,

the foundation is expected to slide indefinitely under this shear resistance.

F f = µFn (3.14)

In Equation 3.14, F f is the maximum shear resistance, µ is the friction coefficient and Fn is

the normal force acting on the soil - foundation interface.

Note that in this formulation friction coefficient is of constant value which does not depend on

any other variable such as, strain magnitude or magnitude of Fn. Therefore, modeling soil -

foundation interface in this manner is not physically exact, since friction coefficient generally

depends on these parameters. Nonetheless, this formulation is selected for its simplicity, and

unknown parameters to define the more rigorous sliding models.

A foundation, with weight V, sustaining a horizontal load H, overlying a linear elastic contin-

uum is taken as the analysis subject for investigation. Contact interaction is defined between

bottom surface of foundation and whole top surface of the elastic continuum. Verification

study is selected as the comparison of the maximum horizontal load the foundation can carry

and sliding amount at the instant immediately before the onset of this maximum horizontal

load with theoretical solution.
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Horizontal force is applied at the base of the foundation in order not to create eccentric load-

ing. Weight of the foundation and friction coefficient are chosen to be equal to parameters

used in Case 9 analysis as 4.364kN and 0.83613, respectively. Weight of the foundation is

applied at the center of gravity of the foundation as a point load. General view of the analysis

showing loads and support conditions is presented in Figure 3.18.

Figure 3.18: General view of frictional contact behavior verification analyses

Load steps are defined as described in Section 3.4.3.

Under these conditions slip is expected to occur for a horizontal load magnitude of F f =

3.649kN according to Equation 3.14.

Table 3.3 presents the amount of sliding (∆x) and horizontal force (F f ) at the onset of sliding.

Analyses have successfully provided the sliding load with less than 0.1% error, whereas there

is an amount of unexpected sliding before this point.

Table 3.3: Comparison of the results of finite element analysis and analytical solution

Slip Tolerance Expected Ff Analysis Ff Expected ∆x Analysis ∆x
(kN) (kN) (mm) (mm)

Default 3.649 3.648 0.00 0.93
Stricter 3.649 3.648 0.00 0.64
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Figure 3.19 shows the horizontal force versus horizontal displacement curves of these analy-

ses. It is seen that the chosen method yielded the same value for sliding. However there is a

region in this figure showing behavior analogous to elastic behavior. This is due to a trade-off

between computational cost and solution accuracy as explained in Section 3.3.4.1. Magni-

tude of allowed elastic slip can be adjusted by the user. In the analyses of this study default

parameter controlling the allowed elastic slip which is as fraction of characteristic surface

dimension is chosen as 10 times lower than its predefined value of 0.005. As an alternative,

a single value could have been selected for allowed slip distance instead of modifying this

parameter.
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Figure 3.19: Variation of force versus sliding of frictional contact behavior in verification
analyses

3.5.2.2 Verification of Pressure - Overclosure Contact Behavior for Uplift

Pressure overclosure contact behavior ensures that penetration of one surface into another is

resisted as described by Abaqus Documentation (2010). Therefore normal contact behavior

between soil and foundation assures that normal displacement of the soil nodes yield adequate

resistance in normal direction, to the forces applied on foundation.

For verification of the technique used for modeling pressure - overclosure contact and uplift

behavior between soil and foundation model, a finite element model utilizing linear elastic

beam-column behavior is constructed with C3D20R elements. In the model, foundation is

placed on top of a linear elastic continuum as shown in Figure 3.20. First an axial load which
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results in compression of the beam-column is applied on the foundation. In the next step, a

moment is applied on the foundation.

Figure 3.20: General view of the model used for pressure - overclosure contact verification
analysis

Since the continuum would behave as an elastic beam column under the given loading condi-

tions, an analytical solution shown in Equation 3.15 based on small displacement assumption

is available for stress at the continuum under the tension edge of the foundation under the

vertical load and applied moment. According to this solution, moment required to establish

zero stress at the tension edge of the beam can be computed. At this magnitude of moment,

finite element model is expected to yield zero contact pressure at the tension edge of the beam.

Additionally, beyond this point uplift of the footing is expected.

σ =
P
A
− Mc

I
(3.15)

In Equation 3.15 σ is the foundation pressure at the tension edge of the foundation, P is the

vertical load, A is the foundation area, M is the applied moment and I is the moment of inertia

of the footing computed with respect to middle of the footing.

Contact pressure and contact opening at the foundation edge that is over the tension fiber of

the beam are monitored throughout the analysis.
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Foundation is placed on top of a beam column with 0.1 m height, 0.25 m width, 0.5 m length.

Elasticity modulus and Poisson’s ratio of the continuum are selected as 10.000 MPa and 0.0,

respectively. Small displacement condition is achieved by utilizing such a high elasticity

modulus compared to magnitude of applied loading.

Vertical load and moment are applied at the pier base of the foundation model. In first step, a

vertical load of 12.5 kN is applied.

Frictional coefficient between soil and foundation base is selected as 0.80. Note that for this

load configuration, development of shear stresses between foundation and the beam is not

expected. However, for the sake of faster convergence to the solution with large increment

sizes, frictional behavior is defined. After the analysis, total shear between foundation and

the beam is found as close to zero, as expected.

Results are compared in Table 3.4. In order to obtain the error between analytical and finite

element solutions with the desired accuracy, moment is applied with 0.001 kNm load incre-

ments after reaching 1.0 kNm. Instead of the exact solution, which is 1.0417 kNm, zero stress

is achieved one load step later for 1.043 kNm moment magnitude. And uplift was expected

one more step later, for 1.044 kNm; however, it is encountered at 1.046 kNm.

Table 3.4: Comparison of the moment results of finite element analysis and analytical solution

Analytical Solution Finite Element Result Uplift Moment
(kN m) (kN m) (kN m)
1.042 1.043 1.046

From Table 3.4 it can be seen that finite element model computes the zero stress moment

with 0.43% error, compared to the analytical solution. Moreover, uplift of the foundation is

encountered for moment which is greater than the zero stress moment, as expected. These

errors could be attributed to the use of penalty method as the contact enforcement method, as

explained in Section 3.3.4.4

3.5.2.3 Verification of Capability to Model P-Delta Moment Effect

In order to verify that second order moments developing due to rotation of the foundation,

a finite element model utilizing linear elastic beam column behavior is constructed. In the
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model, foundation is placed on top of a linear elastic continuum as shown in Figure 3.21. First

an axial load which results in compression of the beam-column is applied on the foundation

at the pier top. In the next step, a moment is applied on the foundation.

Foundation is placed on top of a beam column with 1m height, 0.25m width, 0.5m length.

Elasticity modulus and Poisson’s ratio of the continuum are selected as 10 MPa and 0.0,

respectively. Vertical load is applied at the top of the pier, and moment is applied at the pier

base of the foundation model. In the first step a vertical load of 12.5kN is applied. Then in

the next step, a moment of 1kNm is applied on the foundation.

Figure 3.21: General view of P-Delta effect verification analysis

Due to high beam length and low elasticity modulus of the beam-column, bending of the

beam-column and significant second order moments were expected.

Reaction forces at the base of the beam column are monitored throughout the analysis. Under

the given vertical force and moment, beam-column is expected to show considerable bending
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deformation, which would yield additional, second order moments due to horizontal displace-

ment of the vertical load application point with respect to the centroid of the base support

area of the beam. Therefore although the sum of the vertical reaction forces are expected to

be equal to the vertical load applied, moment of vertical components of reaction forces with

respect to center of base of the beam column is expected to be equal to the sum of applied

moment and second order moment.

Results of the analysis are shown in Table 3.5. It is seen that the second order moments

are taken into account. If it were not, the reaction moments would be equal to the applied

moment. However, considering the deformed shape of the model, additional moment was

included in the solution and it yielded the expected moment with less than 0.3% error.

Table 3.5: Comparison of the results of finite element analysis with the expected solution

Applied Loads Analysis Results

V. Force Moment ∆xV V. Force Moment Exp. Moment
(kN) (kNm) (cm) (kN) (kNm) (kNm)

12.50 1.00 6.652 12.50 1.837 1.832

3.6 Evaluation of Measures Taken to Resolve Convergence Difficulties

3.6.1 Effect of Automatic Stabilization on Results

It is observed that, the automatic stabilization technique has potential to increase the plastic

limit loads of the analyses significantly, which is detrimental to accuracy of analyses results.

In this section, this influence together with step taken to reduce it is discussed with an example

analysis.

Example analysis models the monotonic vertical loading of soil that is meshed with 21523

C3D8I elements. This mesh and element combination, without automatic stabilization, could

provide the solution of verification case studied in Section 3.5.1.1 with 6.7% error. When the

material properties defining plasticity of the analysis are changed as ψ = 10◦, ϕ = 39.9◦, c =

0.1 kPa, and rough footing is modeled by prohibiting horizontal displacements of the nodes

placed directly below the foundation, this analysis terminates as a result of failing to achieve
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minimum step size criterion specified, due to a number of successive diverging increments.

In order to remedy this issue two additional analyses which employ automatic stabilization

mechanism are conducted.

Figure 3.22 presents the foundation pressure - settlement variation of these three analyses. In

Figure 3.22 curve with label ”no stabilization” belongs to the analysis, that does not employ

the automatic stabilization mechanism. It is seen for this analysis that, last load increments

show an unexpected sharp deviation from the almost linear trend, which was expected con-

tinue until the limit load is approached. The other two analyses were identical to this anal-

ysis, with the exception of making use of the automatic stabilization mechanism in order to

overcome the divergence from solution issue. Difference between the analyses employing

automatic stabilization technique shown in Figure 3.22 is the ratio of stabilization to strain

energy (allsdtol).

Figure 3.22: Effect of Automatic Stabilization on Analysis Results

In order to overcome the divergence from solution issue, analysis was conducted again by

enabling automatic stabilization and employing the default value of 5% for the ratio of stabi-

lization to strain energy. In that case, analysis completed successfully, despite an unexpected

asymptotic jump in pressure - displacement curve as shown in Figure 3.22. Note that, this

asymptotic jump might be considered as originated from a sudden increase in stiffness of the

overall response of soil mesh, and according to the explanation in Section 3.3.5 it could be

inferred that this is due to the introduced high artificial stiffness by the automatic stabiliza-

tion method. For automatic stabilization technique, ratio of the energy dissipated by viscous
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damping to the total strain energy is calculated to control the introduced artificial stiffness .

This ratio is named as the ratio of stabilization to strain energy (allsdtol). A maximum limit

is defined by the user to this energy in order to limit the artificial stiffness brought. Based

on observation, it is seen that another consequence of decreasing this value is the decrease of

initial damping factor utilized for automatic stabilization. Decreasing this value directly re-

sults in decrease in artificial stiffness introduced. Considering this observation, as an attempt

to see if the analysis would still converge with less amount of artificial stiffness, this ratio is

decreased to 1% from the original value of 5%. For this magnitude, the sudden asymptotic

jump disappeared, and analysis yielded a considerably lower plastic limit. Therefore ratio of

1% is utilized for all analyses as stated in Section 3.4.

From analyses utilizing 5% ratio, with different meshes composed of C3D20R elements, it

is observed that aspect ratio of elements might have significant effect on sudden increases

in overall stiffness. Three meshes and foundation stress - settlement curves of the monotonic

vertical loading analysis using these meshes are shown in Figure 3.23. In this Figure, elements

with aspect ratios greater than 10 are highlighted. Note that the abnormal increase in stiffness

occurs earlier if the elements with high aspect ratio are closer to the load application area.
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(a) Mesh A (b) Mesh B (c) Mesh C
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Figure 3.23: Effect of High Magnitude of Automatic Stabilization on Different Meshes

3.6.2 Effect of Artificial Cohesion on Results

Cohesion is observed to have favourable effect on completion speed of analyses, and improve-

ment of the convergence difficulties. Based on works in literature such as Zhu and Michalowki

(2005) and Loukidis and Salgado (2009) which model cohesionless materials, it is seen that

inclusion of a small cohesion value in material parameters in order to prevent convergence dif-

ficulties is common practice. In this section effect of defining artificial cohesion to the purely

frictional material for bearing capacity analyses and elimination of this effect is discussed.

For analytical bearing capacity solutions, contribution of cohesion to the bearing capacity is

defined by cNc. Where c is the cohesion magnitude, and Nc is the bearing capacity factor

for cohesion which depends on the internal friction angle of the soil. Figure 3.24 shows Nc

value with respect to internal friction angle, according to Meyerhof’s proposal. It is seen
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that Nc factor increases with increasing rate with internal friction angle. Therefore for high

internal friction angles such as for the sand modeled in this study, effect of addition of a small

cohesion value might not be negligible. In contrast inclusion of cohesion is most needed for

high internal friction angles.
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Figure 3.24: Bearing capacity factor Nc (Meyerhof, 1963)

Possibly considering that the cohesion effect is not negligible, Zhu and Michalowski (2005)

chose to deduct the effect of cohesion from the result of finite element analyses with artificial

cohesion by subtracting the cNc fsc (cNcsc) term of Equation 1.2 from the ultimate bearing

capacity found from the analysis.

They chose to obtain the magnitude of Ncsc factor from a finite element analysis which models

weightless soil (γ = 0) and no overburden (q=0). By this means, bearing capacity equation

reduces to Equation 3.16. And from this equation, Ncsc term could be found, by the known

values of given cohesion, and bearing capacity found from analysis. Then this Ncsc term is

multiplied with the small cohesion used in the analysis and deducted from the ultimate bearing

capacity. Hence the error due to cohesion is removed from the ultimate bearing capacity by

removing the contribution of the artificial cohesion. Note that the analysis conducted for

finding the Nc value does not necessarily have the same cohesion as the analysis where the

effect of the cohesion is deducted.
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qult = cNcsc (3.16)

In order to observe the effect of added artificial cohesion, and the sufficiency of the procedure

practiced by Zhu and Michalowski (2005) , 6 analyses with different cohesion values of 0.2,

0.5, 1.5, 2.0, 3.0, 4.0 kPa are conducted for ϕ = 39.9◦, ψ = 30◦. Among these analyses

cohesion was the only variable.

Ultimate bearing capacity of each analysis (qult) and resulting bearing capacity after deducting

the effect of cohesion with above described procedure is shown in Figure 3.25.
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Figure 3.25: Effect of cohesion on results

It is seen from this figure that unlike as expected from Equation 1.1, bearing capacity is con-

siderably different for each analysis although the effect of added cohesion is deducted. Based

solely on this figure and Equation 1.1 it could be concluded that some of the factors in this

equation increase for increasing cohesion value. This phenomenon can be explained accord-

ing to the fact that Nc and Nγ factors also depend on c/γB ratio which is stated by Michalowski

(1997). Therefore it could be stated that Nc and Nγ factors depend on the magnitude of the

selected cohesion range for the analysis in this study.

It could be seen from the qult − cNcsc curve in Figure 3.25 that effect of cohesion on ultimate

bearing capacity is almost linear in 0.1 kPa - 1.5 kPa cohesion range. This could mean that rate
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of change in magnitude of Nc and Nγ is linear within this range. Exploiting this observation,

in order to remove the effect of added cohesion, two analyses can be performed with cohesion

values of 0.5 kPa and 1.5 kPa respectively. Then Ncsc factor could be found from these two

analyses according to Equation 1.2, by assuming Nγ is constant and Ncsc is changing linearly

with c. Afterwards the cNcsc could be computed for 0.5 kPa and deducted from the 0.5 kPa

analysis. Note that this suggested method for deducting the effect of cohesion is not strictly

correct and is based solely on observation. Therefore considerable magnitude of artificial

cohesion is not employed in this study. Maximum artificial cohesion is limited to 0.1 kPa in

this study.

Figure 3.26 shows pressure - settlement curves of analyses with ϕ = 42.1◦, ψ = 39◦ and

cohesion values of 1.5 kPa, 0.5 kPa and 0.1 kPa. In this figure an approximation for zero

cohesion, computed based on results of the two analyses with cohesion of 0.5 kPa and 1.5

kPa is also shown. It is seen that the method provides a reasonable estimate. It should be

mentioned that analysis with cohesion of 0.1 kPa progressed with very small increment sizes

and took considerably more time than the two analyses. Average increment sizes of analyses

with cohesion of 0.1 kPa, 0.5 kPa, and 1.5 kPa were 3x10−6, 2x10−5 and 1x10−4, respectively.

This could be interpreted as analysis with 0.1 kPa cohesion progressed 7 and 33 times slower

than the analyses with 0.5 kPa and 1.5 kPa cohesion respectively.
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Figure 3.26: Deduction of effect of artificial cohesion

Figure 3.27 shows pressure - settlement variation of analyses the results of which were pre-
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sented in Figure 3.25. It is seen from this figure that increase in cohesion does not change the

initial inclination of the curve.
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Figure 3.27: Effect of cohesion on pressure - displacement curve

3.7 Material Parameters Used In Analyses

3.7.1 Parameters Controlling Elasticity

3.7.1.1 Poisson’s Ratio

As summarized in Das (2007), Trautmann and Kulhavy (1987) provided the approximation

presented in Equation 3.17 for drained Poisson’s ratio as a function of drained friction angle

in the triaxial compression test.

ν = 0.1 + 0.3
(
ϕt − 25◦

45◦ − 25◦

)
(3.17)

Moreover, Krizek and Corotis (1975) showed that although the magnitude of Poisson’s ratio

depends on the confining pressure and the level of major principal stress, the range of vari-

ation of Poisson’s ratio for these parameters for a given soil is rather narrow. Therefore, for

simplicity, effect of variance of Poisson’s ratio with depth is not taken into account.
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In this study, Poisson’s ratio is selected according to Equation 3.17 for the given internal

friction angles experiment manual, which are presented in Section 2.6. Obtained values for

Poisson’s ratio from Equation 3.17 are presented in description of each analysis in Chapter 5.

3.7.1.2 Modulus of Elasticity

Modulus of elasticity is found according to Hooke’s law of isotropic elasticity (Das, 1997)

via its relationship between Poisson’s ratio and shear modulus presented in Equation 3.18 .

E =
2G

1 + ν
(3.18)

Elasticity modulus is obtained via shear modulus since vast amount of relationships are found

in literature, which considers effects of relative density, confining pressure, and strain magni-

tude for shear modulus. A number of these relationships are summarized by Ishihara (1996).

3.7.1.3 Shear Modulus

Ishihara (1996) has summarized a number of relationships for shear modulus in literature

which consider effects of relative density, confining pressure, and strain magnitude.

Small Strain Shear Modulus

Among relationships summarized by Ishihara (1996), relationship by Kokusho (1980) is se-

lected for finding small strain stiffness in this study, since it is based on tests conducted on

Toyoura sand. Kokusho (1980) conducted cyclic triaxial tests on saturated Toyoura sand with

various void ratios and confining pressures and measured shear modulus. As a result of con-

ducted tests for shear strain magnitude of 10−6, Kokusho (1980) has obtained relationship

presented in Equation 3.19 for shear modulus, depending on void ratio and confining pres-

sure. In this equation G◦ is the small strain shear modulus, e is the void ratio and σc is the

confining pressure. Void ratio to be used in this equation is found from its relationship with

minimum and maximum dry densities (δmin, δmax), specific gravity of solid particles (Gs) and

relative density (RD) provided by experiment manual. These relationships are presented in

Equation 3.20.
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G◦ = 840
(2.17 − e)2

1 + e
(σ
′
c)1/2 (3.19)

e = emax − RD(emax − emin) (3.20a)

δmax =
Gs

1 + emin
(3.20b)

δmin =
Gs

1 + emax
(3.20c)

Based on Figure 3.28 by Wicaksono et al. (2008), which shows normalized small strain shear

modulus with respect to a pressure index on log-log scale for triaxial tests run on dry and

saturated samples, it is concluded that saturation has small effect on small strain shear mod-

ulus. Therefore, although soil medium modeled in this study is air-dried and Equation 3.19

is obtained from tests on saturated specimens, Equation 3.19 is employed for finding small

strain shear modulus in this study.

Figure 3.28: Effect of saturation on small strain stiffness, after Wicaksono et al. (2008)
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As seen from Equation 3.19 shear modulus tends to increase with confining pressure. And it is

mentioned in Plaxis Reference Manual (2002) that when using a constant stiffness modulus to

represent soil behaviour, it is advised to choose a value that is consistent with the stress level

and expected stress path. In order to achieve this, while determining the confining pressure

which will be utilized for obtaining the small strain shear modulus, not only the free-field

stresses, which increases linearly with depth, but also stresses due to foundation load are

considered as well. Considering the effect of foundation load together with free-field stresses

on confining pressure which will be experienced by the region under certain depth of the

loading area, Equation 3.21 is used in obtaining σc for Equation 3.19.

σc =

(
qBL

(B + 2z tan 45◦)(L + 2z tan 45◦)
+ γz

)
1 + 2K◦

3
(3.21)

Secant Shear Modulus

According to Plaxis Reference Manual (2002), using secant modulus at 50% strength is more

appropriate in soil mechanics for sand compared to using initial slope. Therefore small strain

shear modulus is converted to secant shear modulus by utilizing the given modulus degrada-

tion curve in the experiment manual.

Strain level for the degradation of small strain shear modulus to secant shear modulus is

obtained from finite element analyses conducted with an estimated elasticity modulus. It is

selected based on the average of vertical strain components of elements lying directly below

the foundation at a selected load level during analysis.

Separate load levels are selected for horizontal loading analyses and vertical loading analyses.

For monotonic vertical loading cases load level is selected as the load where the applied load

is 50% of the ultimate bearing capacity of the soil. For monotonic horizontal loading analyses

load level is selected as the instant where soil carries the full weight of the foundation model

but immediately before the application of horizontal load.

Under the above mentioned conditions for all loading cases it is seen that the order of mag-

nitude of strain level is 1x10−3. Therefore this value is used for determining secant shear

modulus in all analyses cases.
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3.7.2 Coefficient of At-Rest Earth Pressure

For normally consolidated soils, an approximate relationship of earth pressure at rest (K◦)

with internal friction angle (ϕ) is defined by Jaky (1944) as in Equation 3.22.

K◦ = 1 − sinϕ′ (3.22)

In this study coefficient of at rest earth pressure is calculated according to Jaky’s formula

presented in Equation 3.22.

There are a number of more recent studies in literature that questions the accuracy and suit-

ability of Equation 3.22, such as Zhu and Michalowski (2005) which concludes that its mean-

ingful results are coincidental. Additionally study by Guo (2010) concludes that Jaky’s equa-

tion may still be considered as a reasonable representation for K◦ for granular soils statisti-

cally, even though it may not be able to reproduce the experimental data of a specific soil.

However since it is shown by Potts and Zdravkovic (2001) and Yılmaz (2004) that the coef-

ficient of lateral earth pressure at rest has little effect on the bearing capacity of soil obtained

from finite element models, Equation 3.22 is justified as suitable for this study since it is one

of the most commonly used method of estimation for K◦.

3.7.3 Parameters Controlling Plasticity

3.7.3.1 Cohesion Intercept

According to given material properties in the experiment manual, soil medium is cohesionless.

Therefore cohesion should not be included in the analysis. However due to the observed

beneficial effect of cohesion on solving convergence problems, a small amount of cohesion,

which is not more than 0.1 kPa, is added to the models. Effect of this artificial cohesion on

analysis results is investigated in Section 3.6.2.
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3.7.3.2 Angle of Internal Friction

Angle of internal friction values are given for the soil in the experiment manual by Fukui

et al. (2005) as listed in Table 2.5. These given values are used in analyses without any

modification.

For a mean effective stress of 98 kPa, Sun et al. (2008) found peak internal friction angle

for Toyoura Sand with 80% relative density as 40.5◦. For Toyoura sand with 80% relative

density, experiment manual (Fukui et al., 2005) provides internal friction angle value as 42.1◦.

Therefore, it is most probable that internal friction angle values given in the test manual are

the peak internal friction angles.

Loukidis and Salgado (2009) states that angle of internal friction depends on relative density,

level of mean effective stress, relative magnitude of the intermediate principal stress and the

direction of the principal effective stresses relative to the axis of sand deposition. The dif-

ference in values of internal friction angle between experiment manual and Sun et al.(2008)

might therefore be attributed to mean effective stress magnitude the tests were conducted.

3.7.3.3 Angle of Dilation

Magnitude of this parameter is not available in the experiment manual (Fukui et al., 2005).

Yılmaz (2004) has shown that the angle of dilation has significant effect on bearing capacity.

Plaxis Manual (2002) states that angle of dilation is approximately 30◦ less than internal

friction angle for quartz sands.

Analyses, the results of which are presented in Chapter 4, target associated flow rule with

employment of dilation angles very close to the internal friction angle of the soil in order to

be able to obtain comparable results with solutions in literature. Influence of dilation angle

on analysis results is separately sought by conducting analyses aiming unassociated flow rule

presented in Section 6.2.
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CHAPTER 4

RESULTS AND COMPARISONS

4.1 Introduction

In this section, limit loads obtained from finite element method analyses, experiment cases

of Fukui et al. (2005), and selected solutions from literature are presented. These results are

compared and discussed in Section 4.5 and Section 4.6 respectively.

Before presentation of the findings, properties of the finite element analyses not mentioned in

Section 3.4 such as magnitudes of material properties are presented in Section 4.2.

4.2 Details of Analyses

For all cases at least one 2D and one 3D analysis results are presented which employs the

material properties presented in Table 4.1. In these analyses, although associated flow rule

is aimed, angle of dilation is selected slightly lower than internal friction angle of the soil

according to advice of Abaqus Documentation (2010) based on convergence considerations.

Moreover, although the analysis medium is cohesionless, a magnitude of cohesion of 0.1 kPa

and 0.05 kPa is introduced to monotonic vertical and horizontal cases, respectively, for easier

convergence as discussed in Section 3.6.2.

For monotonic vertical loading experiments, Case 1 and Case 2, elasticity modulus is obtained

from Equation 3.21 by considering the magnitude of confining pressure at 0.25 m below the

foundation for vertical load corresponding to the 50% of the ultimate bearing capacity. For

monotonic horizontal loading experiments, Case 3, 6 and 9, elasticity modulus is computed

from the same equation for the confining pressure immediately below the foundation before
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application of horizontal loading. Poisson’s ratio and coefficient of at rest earth pressure for

all analyses are selected as described in Section 3.7.

Table 4.1: Material Properties Employed in Analyses

Experiment ϕ ψ c γ E ν K◦

Case 1 42.1◦ 39◦ 0.1kPa 16.02kN/m3 65,831.45kPa 0.3565 0.330
Case 2 39.9◦ 37◦ 0.1kPa 15.39kN/m3 41,641.6kPa 0.3235 0.359
Case 3 42.1◦ 39◦ 0.05kPa 16.02kN/m3 34,629.1kPa 0.357 0.330
Case 6 42.1◦ 39◦ 0.05kPa 16.02kN/m3 34,246.7kPa 0.357 0.330
Case 9 39.9◦ 37◦ 0.05kPa 15.39kN/m3 29,783.2kPa 0.324 0.359

Table 4.2 presents height of center of gravity and loading point from foundation base, together

with the model weight employed in analyses. Center of gravity and horizontal load applica-

tion points of low pier model lie 427 mm and 900 mm above foundation base, respectively.

Actual model weight is 8.728 kN. In 3D analyses which employs low pier model, since half

of the foundation is modeled due to symmetry, 4.364 kN is employed as model weight. In

2D analyses since foundation length is assumed as 1 m which is double of the actual length,

17.456 kN is employed as model weight. Similarly, center of gravity and horizontal load

application points of high pier model lie 700 mm and 1300 mm above foundation base re-

spectively. Actual model weight is 8.924 kN. In 3D analyses since half of the foundation is

modeled due to symmetry, 4.462 kN is employed as model weight. In 2D analyses since foun-

dation length is assumed as 1 m which is double of the actual length, 17.848 kN is employed

as model weight.

Table 4.2: Model Weights Employed in Monotonic Horizontal Loading Analyses

Experiment Dimension Model Type HCoG HLP Model Weight

Case 3 3D High Pier 700mm 1300mm 4.462kN
Case 3 2D High Pier 700mm 1300mm 17.848kN
Case 6 3D Low Pier 427mm 900mm 4.364kN
Case 6 2D Low Pier 427mm 900mm 17.456kN
Case 9 3D Low Pier 427mm 900mm 4.364kN
Case 9 2D Low Pier 427mm 900mm 17.456kN

HCoG, HLP: Height of center of gravity and horizontal load application points of
foundation models with respect to foundation base

Table 4.3 presents friction coefficients employed in analyses, for the contact interaction be-
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tween foundation and soil. Frictional behavior of the interface is modeled to obey Coulomb

friction law as described in 3.3.4.1. Rough interface is modeled by setting the friction coeffi-

cient equal to tangent of internal friction angle of the soil, considering the bottom surfaces of

the actual foundation models were covered with sand paper.

Table 4.3: Friction Coefficients Employed for Soil Foundation Interface in Monotonic Hori-
zontal Loading Analyses

Experiment ϕ µ

Case 3 42.1◦ 0.90357
Case 6 42.1◦ 0.90357
Case 9 39.9◦ 0.83613

4.3 Results of Experiments

4.3.1 Monotonic Centered Vertical Loading Cases

Figure 4.1 presents the results of centered vertical loading experiments Case 1 and Case 2 by

Fukui et al. (2005).
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Figure 4.1: Results of Monotonic Vertical Loading Experiments
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4.3.2 Monotonic Horizontal Loading Cases

4.3.2.1 Tilt Angle and Sliding

From the test recordings for vertical displacement of the foundation tilt angles are calculated

for each data point. Then the horizontal displacement of the loading point is calculated ac-

cording to the found tilt angle. Afterwards the difference of recorded displacement of loading

point and calculated displacement is found, and named as the sliding of the model.

Among obtained tilt angles, tilt angle corresponding to maximum pressure is named as tilt

angle at maximum pressure. From tilt angle at maximum pressure, horizontal displacement

of the center of gravity is calculated, which is employed in calculation of second order mo-

ments. These values for monotonic horizontal loading analyses are presented in Table 4.4 and

Table 4.5.

Table 4.4: Tilt Angle and Sliding of the Models At Ultimate Load Capacity and At The End
of Loading

Tilt Angle (◦) Sliding (mm)
Test Name At Maximum Maximum Tilt At Maximum Maximum

Pressure Angle Pressure Sliding

Case 3 1.04 3.98 1.30 7.40
Case 6 0.84 5.28 1.83 17.90
Case 9 0.89 4.85 14.02 76.41

Table 4.5: Sway of Center of Gravity at Maximum Test Load, and at Maximum Tilt Angle

Sway of Center of Gravity (mm)

Test Name At Maximum At Maximum Tilt
Pressure Angle

Case 3 12.78 49.00
Case 6 6.31 39.90
Case 9 6.66 36.33
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4.3.2.2 Ultimate Loads

Figure 4.3.2.2 presents the results of horizontal loading experiment cases Case 3, Case 6 and

Case 9 by Fukui et al. (2005).
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Figure 4.2: Results of Monotonic Horizontal Loading Experiments

4.4 Results of Selected Solutions in Literature

In this section, estimates to the plastic limit loads by solutions in literature are presented

for the monotonic experiment cases conducted by Fukui et al. (2005). Results of selected

solutions are presented in order to compare with analyses results of this study together with

the experimental findings of Fukui et al. (2005).

4.4.1 Monotonic Vertical Loading Cases

Solutions for the ultimate vertical load of monotonic vertical loading experiments could be

obtained from bearing capacity equations available in literature. In this section, equations

proposed by Terzaghi (1943), Meyerhof (1961) and Vesic (1973) will be utilized. Additionally

shape factors for square foundations proposed in studies by Zhu and Michalowski (2005) and
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Lyamin et al. (2007) will be employed with the exact bearing capacity factor calculated by

Martin (2005) for rough and strip foundation.

Table 4.6 shows the parameters supplied to analytical solutions for obtaining the results pre-

sented in this section. In this table B, L and D are the foundation dimensions of breadth,

length and depth, respectively; ϕ and c are the Mohr-Coulomb model parameters, angle of

internal friction and cohesion; finally, γ is the unit weight of the soil.

Table 4.6: Input parameters supplied to solutions in literature

Experiment B L D ϕ c γ

Case (m) (m) (m) (◦) (kPa) kN/m3

Case 1 0.50 0.50 0.0 42.1◦ 0.0 16.02
Case 2 0.50 0.50 0.0 39.9◦ 0.0 15.39

Figure 4.3 and Table 4.7 presents results of available solutions in literature. Figure 4.4 and

Table 4.8 presents results only for studies among these solutions which propose shape factor

sγ greater than unity for square shaped foundations.
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Figure 4.3: Results of Solutions In Literature for Monotonic Centered Vertical Loading Cases

Table 4.7: Results of Solutions in Literature for Monotonic Centered Vertical Loading Cases

Case 1 Case 2
Solution Nγ sγ qult Nγ sγ qult

Terzaghi (1943) 169.4 0.80 542.7 98.9 0.80 304.4
Meyerhof (1961) 142.2 1.51 858.0 91.9 1.45 515.4
Vesic (1973) 158.4 0.60 380.6 107.5 0.60 248.3
Zhu and Michalowski (2005) 128.7 1.21 622.1 83.96 1.15 371.6
Lyamin et al. (2007) 128.7 1.41 729.4 83.96 1.34 433.1

Average 145.5 1.11 626.6 93.24 1.07 374.6
Standard Deviation 18.12 0.39 181.45 10.12 0.36 105.04

For Zhu and Michalowski (2005) and Lyamin et al. (2007) exact value of Nγ

by Martin (2005) is employed.
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Figure 4.4: Results of solutions in literature for monotonic centered vertical loading cases
with shape factor greater than unity

Table 4.8: Results of solutions in literature for monotonic centered vertical loading cases with
shape factor greater than unity

Case 1 Case 2
Solution Nγ sγ qult Nγ sγ qult

Meyerhof (1961) 142.2 1.51 858.0 91.9 1.45 515.4
Zhu and Michalowski (2005) 128.7 1.21 622.1 83.96 1.15 371.6
Lyamin et al. (2007) 128.7 1.41 729.4 83.96 1.34 433.1

Average 133.2 1.38 736.5 86.61 1.3 440.0
Standard Deviation 7.8 0.15 118.1 4.58 0.2 72.2

For Zhu and Michalowski (2005) and Lyamin et al. (2007) exact value of Nγ

by Martin (2005) is employed.
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It is seen from Figure 4.3 that Meyerhof (1961), Zhu and Michalowski(2005), Lyamin et al.

(2007) provides considerably higher results than Terzaghi (1943) and Vesic (1973). Major

reason of this is the significant difference between shape factors employed in the equations.

For example, shape factors provided for square foundations of Terzaghi’s and Vesic’s bearing

capacity equations are given as constants with values of 0.8 and 0.6, respectively; whereas

according to Meyerhof this value depends on the internal friction angle of soil and is 1.51 and

1.45 for internal friction angles of Case 1 and Case 2 respectively. In this case, Meyerhof’s

proposal indicates that bearing capacity of square foundations are higher compared to strip

foundations, whereas Terzaghi’s and Vesic’s proposals indicate the opposite.

Zhu and Michalowski (2005) commented on this issue and stated that, these proposals for the

shape factors are based on empirical or semiempirical considerations leading to conflicting

results. As summarized by Zhu and Michalowski (2005), shape factors proposed by Terza-

ghi (1943) for square footings were based on the tests of Golder (1941) together with some

unpublished data. As stated by Zhu and Michalowski (2005), the results of Golder (1941)

had a large scatter, and Terzaghi disregarded the scatter and took only the most unfavorable

test result as a basis for establishing a provisional equation. Zhu and Michalowski (2005)

continued that based on the very same experiments, Golder (1941) concluded that the footing

length does not influence the bearing capacity.

On the other hand, Loukidis and Salgado (2009) commented on this issue as well, by stating

that, although in reality the bearing capacity of square and circular footings with zero em-

bedment is smaller than the bearing capacity of strip footings, theoretical methods assuming

simple Mohr Coulomb failure criterion suggests the opposite, with reasoning that, as pointed

out by Meyerhof and discussed by other studies, peak friction angle of sand is lower in near

triaxial conditions (square and circular footings), than in plane strain conditions (strip foot-

ings). Loukidis and Salgado (2009) further reminds the suggestion of Meyerhof, on internal

friction angle to be used for bearing capacity calculation of strip foundations, that internal an-

gle of friction should be increased by 10% if it is obtained under triaxial loading conditions.

Considering the experiment results of Fukui et al. (2005), and analyses of this study, only the

results of equations providing shape factor sγ greater than unity are included in the compari-

son presented in Section 4.5.
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4.4.2 Monotonic Horizontal Loading Cases

Solution for the ultimate horizontal load of monotonic horizontal loading experiments con-

ducted by Fukui et al. (2005) could be obtained from combined vertical loading equations

for shallow foundations, and from seismic bearing capacity equations by neglecting inertia

effects. Four studies are selected from literature for the comparison: Meyerhof (1951, 1963)

is the conventional solution based on effective width rule and inclination factor; Paolucci and

Pecker (1997) is an analytical upper bound solution based on kinematic approach of yield

design theory; Loukidis et al. (2008) is a numerical study based on finite element method;

and finally, Butterfield and Gottardi (1994) is an experimental study conducted on scaled

laboratory models.

Input parameters supplied to studies are presented in Table 4.9. In this table Vult is ultimate

monotonic vertical load bearing capacity of foundation obtained from Case 1 and Case 2 test

results of Fukui et al. (2005), V is the weight of the foundation model - which was the only

vertical load acting on the foundation, ∆xCoG is the component of horizontal displacement

of the center of gravity due to tilt obtained from Table 4.5, Marm is signifying the moment

arm which is the height of horizontal load application point from foundation base, B is the

foundation breadth, and finally Φ, c and γ are the angle of internal friction, cohesion intercept

and unit weight of the soil respectively. Moment acting on foundation (M) is calculated

according to Equation 4.1 which considers moment due to applied horizontal test loading (H)

and second order moments developed due to tilt of the foundation. Table 4.10 and Figure 4.5

presents the results obtained from these studies.

Table 4.9: Input parameters supplied to solutions in literature

Experiment Vult V ∆xCoG Marm B ϕ c γ

Case (kN) (kN) (cm) (m) (m) (◦) (kPa) kN/m3

Case 3 244.8 8.924 1.28 1.3 0.5 42.1 0.0 16.02
Case 6 244.8 8.728 0.63 0.9 0.5 42.1 0.0 16.02
Case 9 128.8 8.728 0.67 0.9 0.5 39.9 0.0 15.39

M = HMarm + V∆xCoG (4.1)
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Figure 4.5: Results of Solutions in Literature for Monotonic Horizontal Loading Cases

Table 4.10: Results of Solutions in Literature for Monotonic Horizontal Loading Cases

Solution Case 3 Case 6 Case 9
(kPa) (kPa) (kPa)

Meyerhof (1951, 1963) 4.45 6.29 5.51
Butterfield and Gottardi (1994) 4.39 6.40 6.16
Paolucci and Pecker (1997) 5.04 7.06 6.22
Loukidis et al. (2008) 4.54 6.36 5.83

Average 4.61 6.53 5.93
Standard Deviation 0.30 0.36 0.33
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4.5 Results of Analyses and Comparisons

In this section, results of three dimensional analyses of this study are presented in a compar-

ative manner with the experimental findings of Fukui et al. (2005) and average of solutions

in literature; both of which were previously presented in Section 4.3 and Section 4.4, respec-

tively.

Only three-dimensional finite element analysis results of this study are included in this com-

parison, considering they simulate the experiment conditions more realistically than the 2D

analyses, whereas 2D and 3D analysis results are compared in Section 6.3.

4.5.1 Monotonic Vertical Loading Cases

Figure 4.5.1 presents the limit plastic loads obtained from three dimensional analyses of this

study with the mean of selected solutions in literature and experimental findings of Fukui et

al. (2005). In Table 4.11 normalized magnitudes of analyses results, and results of solutions

in literature with respect to experimental findings are presented.
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Table 4.11: Ultimate bearing capacities provided by monotonic vertical loading tests by Fukui
et al. (2005), solutions in literature and 3D FEM analyses

Experiment Exp. Lit. T.S. Lit. / Exp. T.S. / Exp.Case (kPa) (kPa) (kPa)

Case 1 979.2 736.5 801.1 0.75 0.82
Case 2 515.2 440.0 473.9 0.85 0.92

Exp.: Experiment by Fukui et al. (2005)
T.S.: This Study
Lit.: Average of solutions in literature with shape factor greater
than unity, calculated in Section 4.4.1

4.5.2 Monotonic Horizontal Loading

4.5.2.1 Ultimate Loads

Figure 4.5.2.1 and Table 4.12 presents the limit plastic loads obtained from three dimensional

analyses of this study in a comparative manner with the mean of solutions in literature and

experimental findings of Fukui et al. (2005).
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Table 4.12: Comparison of Monotonic Horizontal Loading Results

Experiment Exp. Lit. T.S. Lit. / Exp. T.S. / Exp.Case (kPa) (kPa) (kPa)

Case 3 7.04 4.61 4.88 0.65 0.69
Case 6 10.44 6.53 6.85 0.63 0.66
Case 9 6.13 5.93 6.27 0.97 1.02

Exp.: Experiment by Fukui et al. (2005)
T.S.: This Study
Lit.: Average of solutions in literature calculated in 4.4.2

4.6 Discussion of Results

4.6.1 Monotonic Vertical Loading

Finite element method analyses of monotonic centered vertical loading experiment cases Case

1 and Case 2, carried on by Fukui et al. (2005), are conducted; and results of selected solutions

in literature for the ultimate loads of these experiment cases are calculated. Analyses provided

lower bearing capacities than experiment measurements. There are 18% and 8% difference

between analysis and experiment results of Case 1 and Case 2 experiments cases respectively.

These cases differ only in the relative density of the Toyoura sand employed as foundation soil.

Such that, for Case 1 80% relative density is employed, whereas for the Case 2 foundation

soil had 60% relative density.

It is known that finite element method analyses for vertical bearing capacity problems ap-

proach true solution from above, hence smaller and more accurate solutions for bearing ca-

pacity problems are achieved with increasing mesh refinement (Zhu and Michalowski, 2005).

Therefore, further increase in mesh refinement would not contribute to closing the gap be-

tween analysis and experiment results.

There are a number of simplifications and assumptions employed in construction of finite

element method models of this study. By excluding the items concerning material model,

these points could be listed as follows: i) rough soil - foundation interface idealization, ii)

employment of dilation angle close to internal friction angle, iii) taking gravitational acceler-

ation as 10 m/s2 instead of its actual value (9.8 m/s2) in unit weight calculation of the soil iv)
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employment of artificial cohesion for computational efficiency, v) employment of automatic

stabilization mechanism for computational efficiency.

Considering (i), Potts and Zdravkovic (2001) showed that for finite element analyses of strip

foundation, employment of rough footing idealization results in significantly higher bearing

capacities (almost 100% greater for the case presented by them) than the smooth footing

idealization. Even though sand paper was glued at foundation base for the experiment cases

(Fukui et al., 2005) it is unlikely that this idealization is fully achieved in experiments, hence

this idealization is expected to introduce an error, on the side of increasing the analysis results.

Considering (ii), it is well known that dilation angle of frictional soils is significantly lower

than internal friction angle (Randolph et al. 2004; Loukidis et al. 2008). As presented in

Section 6.2.1 for analyses conducted in this study, as dilation angle increases ultimate bearing

capacity obtained from analyses increases. Significance of dilation angle on limit loads pro-

vided by finite element method analyses on vertical bearing capacity problems is recognized

by Yılmaz (2004) and Loukidis and Salgado (2009) as well. Although it is considered as less

significant by Potts and Zdravkovic (2001) and Randolph et al. (2004), there is consensus on

the increase in bearing capacity with the increase in dilation angle. Since employed dilation

angle values are higher than their true value in the simulations conducted in this study, this

point is expected to introduce an error on the side of increasing the analysis results. Hence,

employment of dilation angles more representative of the actual experiment conditions would

not contribute to closing the gap between analysis and experiment results.

Considering (iii), it is well known that bearing capacity increases as the unit weight increases

for frictional soils. By employing gravitational acceleration higher than its precise value,

obtained unit weight from unit density is higher than its actual value. Therefore introduced

error is on the side of increasing the analysis results.

As for (iv) and (v), effect of these points were studied in Section 3.6 and it is concluded that

these points introduce errors on the side of increasing the analysis results.

It is seen that these listed assumptions and simplifications have provided errors that lie on the

side of increasing the results of the analyses. Accordingly, it would normally be expected

that the analysis results should have been higher than the experiment results. Since analysis

results are lower than the experiment results, by considering that the analysis approach has
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been verified with solution by Cox (1962) as presented in Section 3.5.1, it could be inferred

that the only point which could be responsible for the difference should be connected to the

material model, and material parameters employed for defining plasticity.

Loukidis and Salgado (2009) states that there are certain aspects of bearing capacity prob-

lem, which are not considered by traditional approaches, that stem mainly from dependence

of the internal friction angle on a number of factors. Factors influencing the magnitude of

internal friction angle, within the context of bearing capacity problems, are stated as follows:

”ϕ depends on a number of variables that evolve continuously during the footing loading pro-

cess: the relative density, DR, the level of mean effective stress p, the relative magnitude of

the intermediate principal effective stress (stress induced anisotropy) and the direction of the

principal effective stresses relative to the axis of sand deposition (fabric induced anisotropy).”

Siddiquee (2001), regarding the limitations of traditional approaches, states the following

factors as well: highly non-linear strain-hardening and softening stress-strain behavior, shear

banding with a specific shear band width as a function of the particle size of the test material.

Employed linear elastic perfectly plastic material model with Mohr Coulomb failure criterion

in the simulations of this study, being a simple model which only requires internal friction

angle, cohesion intercept and dilation angle as the parameters to define behavior of plasticity,

does not take into account any of these conditions listed by Loukidis and Salgado (2009) and

Siddiquee (2001).

Employment of a more advanced material model in simulations to consider these phenomena

may provide closer results to the experiments. Alternatively, better results could be obtained

by employing a higher internal friction angle considering that the majority of the phenomena

listed by Loukidis and Salgado (2009), influence the magnitude of internal friction angle.

Since the results of experiments are higher than analysis results of this study, it could be

judged that internal friction angles employed in analyses were lower than their representative

values for the experiment conditions of these listed phenomena. This suggestion would justify

the significant difference between the error levels for Case 1 and Case 2, with reasoning

that internal friction angle for Case 2 is better selected than that for Case 1 in the analyses.

Solutions in literature support this condition as well, such that, Case 2 result is better predicted

than Case 1 result, with error levels of 15% and 25% respectively.
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4.6.2 Monotonic Horizontal Loading

4.6.2.1 Ultimate Loads

Finite element method analyses of monotonic horizontal loading experiment cases Case 3,

Case 6 and Case 9, carried on by Fukui et al. (2005), are conducted; and results of selected

solutions in literature for the ultimate loads of these experiment cases are calculated. For all

experiment cases, results obtained from solutions in literature are in good agreement among

themselves and with finite element method analyses conducted in this study. It is worth to note

that selected solutions in literature include the solution by Butterfield and Gottardi (1994)

which is based on laboratory model experiment results similar to the experiments modeled

in this study. Among all experiment cases, there is at most 6% difference between analysis

results and the arithmetic mean of the selected solutions from literature. Likewise, for all

cases there is at most 9% difference between an individual solution and arithmetic mean of

solutions.

Three experiment cases, namely Case 3, Case 6 and Case 9 were conducted as monotonic

horizontal loading experiments. Relative density of the foundation soil (80% or 60%) and the

foundation model employed (high pier or low pier model) are the differences among these

cases.

Relative density of soil on which the experiments were conducted is found to have a high

effect on conformation of experiment results with analysis results. For example, Case 3 and

Case 6 are conducted on sand with 80% relative density and experiment results for these

cases are 31% and 34% higher than the analysis results, respectively. Case 9 is conducted

on sand with 60% relative density and experiment result is 2% lower than the analysis result.

In contrast, foundation model type does not have significant effect on conformation of the

experiment results with analysis results. For instance, while Case 3 and Case 6 are conducted

on sand with the same relative density, Case 3 employed high pier model and Case 6 employed

low pier model. Analyses of both of these cases have provided similar performance regarding

conformation with experiment results. This indifference between error levels with respect to

employed foundation model, at a first glance, might be considered to indicate that analyses

had successfully captured the influence of moment to base shear ratio difference introduced

in experiments due to employment of different foundation models.
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In order to reason the strong relationship between relative density of foundation soil and con-

formation of analysis results with experiment results, centered vertical loading cases Case 1

and Case 2 could be considered. Although not as significant as observed for the monotonic

horizontal loading cases, the relationship between relative density and conformation of anal-

ysis results with experiment results has been seen for monotonic vertical loading experiment

cases as well. Such as, centered vertical loading cases, Case 1 and Case 2 were conducted

on 80% and 60% relative density sand respectively. Experiment result of Case 1 and Case 2

were 18% and 8% higher than the analysis result respectively. There is an additional simi-

larity, considering centered vertical and horizontal loading analyses, all experiment cases on

foundation soil with 60% relative density has better conformation with analysis results than

the experiment cases on sand with 80% relative density.

These similarities are significant since the same yield criterion, flow rule and magnitudes

of internal friction and dilation angles are employed in both horizontal and vertical loading

analyses. Additionally, while discussing the results of monotonic centered vertical loading

analyses, difference of experiment and analysis results were concluded as connected to ma-

terial model and employed parameters; more specifically, selection of internal friction angle

representative for the factors of which were not considered by the employed material model

in analyses. Therefore, it may be expected that a similar condition would govern the error

levels in monotonic horizontal loading cases as well. Mentioned observed similarity of better

conformance of analysis results with experiment cases on 60% relative density foundation

soil encourages this expectation.

On the other hand, assuming that internal friction angles presented in experiment manual

(employed in analyses as well) are measured under identical conditions, such as under same

mean effective stress, it is unlikely that an unaccounted phenomenon in analyses to increase

the errors in results of cases on sand with 80% relative density (Case 3 and Case 6), and

diminish the errors for case on sand with 60% relative density (Case 9). Moreover, increase

of error level of horizontal loading cases with respect to centered vertical loading case (from

-18% to -31%) for cases on 80% relative density, whereas decrease of error level of horizontal

loading case with respect to centered vertical loading case (from -8% to +2%) for 60% relative

density questions this logic as well, since overall influence of the unaccounted factors are not

expected to change side for the experiments which have similar stress levels such as Case 6

and Case 9.
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Additionally, studies in literature are in very good agreement with each other and analyses

conducted in this study. It should be emphasized that experiment results are not in harmony

with results from Butterfield and Gottardi (1994) as well. This is significant since, that study

is based on laboratory experiment data; therefore, does not share the same shortcomings dis-

cussed in Section 4.6.1, which are common for the analysis of this study and the rest of the

selected studies in literature based on method of characteristics or plasticity limit solutions

that inherently employ Mohr-Coulomb failure criterion with associated flow rule. Further-

more, Butterfield and Gottardi (1994) does not depend on the internal friction angle of the

soil; instead, it provides results according to the centered vertical bearing capacity of foun-

dation. Therefore, phenomena listed in Section 4.6.1 or adequateness of selected internal

friction angle are not likely the factors that govern the difference between analysis and exper-

iment results.

Although it is expected to have certain difference between the experiment and analysis re-

sults, especially due to the employed simple material model; high magnitude of the difference

between the analysis and experiment results, and broad variation of this difference among

experiment cases could not be reasoned in this section. Therefore, it is possible that an un-

considered factor is governing the difference between experiment and analysis results. Hence,

good agreement of Case 9 with analysis results, or observation made on insignificance of em-

ployed foundation model on conformation of experiment and analysis results might not have

value. Finally, conditions that might be responsible for this difference are investigated in

Chapter 5.
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CHAPTER 5

ASSESSMENT OF DIFFERENCES IN RESULTS

5.1 Introduction

In Section 4.6.2.1 it is stated that there might be another factor, which could not be explained

with the results presented in Chapter 4, influencing the errors in analyses with respect to ex-

periment results of monotonic horizontal loading cases. Reason of inferring such a condition

could loosely be restated as the significant difference between error levels of Case 9 with re-

spect to Case 3 and Case 6. As shown in Figure 4.5.2.1, Case 3 and Case 6 experiment results

are significantly higher than the analysis results and results of solutions in literature, whereas

experiment result of Case 9 is in very good agreement with both.

Two possible conditions are evaluated in this chapter to explain this observation. First con-

dition considers the difference is connected to possible contribution of side face of the foun-

dation in horizontal load bearing as the result of significant rotation. Considering Case 3 and

Case 6 experiments were conducted on denser sand than that of Case 9, higher horizontal load

capacities are obtained from these experiments. Consequently, higher angles of rotations, as

the result of higher horizontal load capacities together with higher resistance to deformation,

are expected to occur for these cases. Validity of this condition is evaluated in Section 5.2.

The other condition is connected to the note by Fukui et al. (2005) that vertical load readings

of load cells placed under the footing base indicate eccentric application of model weight

on sand even before the beginning of horizontal load application. Direction of the reported

eccentricity has the opposite sign with eccentricity introduced with horizontal load application

in Case 3 and Case 6, whereas it has same sign for Case 9. Therefore, side of the eccentricity

is adequate for all experiments such that it could explain the high experiment results for Case
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3 and Case 6. Reason of this initial eccentricity and its influence on experiment results are

investigated in Section 5.3.

5.2 Contribution of Foundation Side Face to Load Bearing As a Result of Sig-

nificant Rotation

Ultimate horizontal load capacities provided by experiments conducted by Fukui et al. (2005)

for Case 3 and Case 6 analyses are considerably higher than results obtained from analyses

in this study or solutions in literature. One explanation of this difference might be the con-

tribution of side face of the foundation in load bearing. This condition is investigated in this

section, for the instant where maximum horizontal load is applied to the foundation model.

Shear force recorded by load cells attached to the bottom face of the footing is compared with

the expected base shear according to the horizontal load applied at loading point of the model,

and tilt angle of the foundation at that instant. It is concluded that side face of the foundation

has not made noticeable contribution to load bearing, since recorded base shear is not lower

than the shear expected according to the applied horizontal load.

Figure 5.1 shows base shear recorded throughout the experiments with applied horizontal

test loading for monotonic horizontal loading cases of Case 3, Case 6 and Case 9. In these

figures, portion of the curves corresponding to the loading zone is shown with different color

to indicate where the loading starts. It is seen from this figure that the base shear is not zero

before beginning of the experiment. After employing zero compensation procedure, described

by Fukui et al. (2005) to correct this error (i.e., deducting a value from all data points to set

initial data point equal to zero), values of base shear corresponding to maximum test loading

is found as in Table 5.1.

In addition to the horizontal force applied at loading point of the foundation model, base

shear additionally depends on the weight and the angle of rotation of the foundation. This

is demonstrated with the free body diagram of the foundation model presented in Figure 5.2.

Equilibrium equations that satisfy the conditions of rigid body equilibrium for this free body is

presented in Equations 5.1. In this figure and equations, H is the shear force at the foundation

base, W is the weight of the foundation model, θ is the rotation angle of the foundation model,

M is the moment, N is the normal component of force acting on centroid of the foundation
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Figure 5.1: Base Shear versus Horizontal Test Load According To Test Measurements by
Fukui et al. (2005)

base; finally, h and L are the height of the center of gravity, and horizontal load application

point with respect to foundation base, respectively.

Expected resultant shear force under foundation is found as shown in Table 5.1, according

to Equation 5.1 and tilt angles calculated at ultimate horizontal load presented in Table 4.4.

Then, this expected base shear is compared with measured shear force by eleven load cells

placed under the foundation shown in Table 5.1. Measured shear forces at the foundation base

are found as at most 5% greater than their expected values. This may be considered as within

the error tolerances of the load cells, details of which were presented in Section 2.4.1.

Figure 5.2: Free body diagram for the tilt of the foundation model

H cos θ − N sin θ = F (5.1a)

N cos θ + H sin θ = W (5.1b)

L cos(θ)F + h sin(θ)W = M (5.1c)
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Table 5.1: Comparison of Expected Base Shear with Recorded Base Shear

Test Name Expected Recorded Difference
(kN) (kN) (%)

Case 3 1.92 2.03 5%
Case 6 2.74 2.87 4%
Case 9 1.67 1.53 4%

It is seen that magnitude of base shear is not considerably lower than the test loading, in fact

it is higher than test loading; hence it could be concluded that side face of the foundation did

not bear horizontal load. This conclusion is supported by the shape of the curves in Figure

5.1 where base shear versus horizontal load curve follows a linear path in loading region

without showing a change in curve shape with the increase in load and consequent rotations.

Therefore, difference of horizontal load carrying capacity obtained from experiments and

solutions in literature or finite element analyses in this study may not be explained with this

hypothesis.

5.3 Initial Eccentricity

5.3.1 Introduction

It is stated in the experiment manual (Fukui et al., 2005) that, based on the recordings of load

cells attached to foundation base, weight of the foundation is applied in an eccentric fashion

to the soil before application of the horizontal experiment loading on models as shown in

Figure 5.3.2.

However, the origin of this eccentricity is not mentioned, which is significant for this study

in order to introduce the eccentricity to the solutions in literature and analyses in a correct

fashion. This initial eccentricity might be due to inclined placement of the foundation models

or due to unbalanced weight of the foundation models.

In this section, the origin of this initial eccentricity and its influence on ultimate horizontal

loads provided by experiments are sought. Based on reasoning in this section, it is inferred that

the eccentricity is mainly due to unbalanced weight of the foundation models. According to
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the solutions in literature, and result of an analysis of this study, influence of this eccentricity

is reasoned to have significant influence on ultimate horizontal loads of the experiments.

5.3.2 Experiment Results

Figure 5.3.2 presents the pressure distribution under footing, according to the load cells placed

beneath foundation, before application of horizontal experiment loading, for monotonic hor-

izontal loading experiment cases, Case 3, Case 6 and Case 9. Direction of the eccentricity is

different among experiments and could be seen from Figure 5.3.2 shown as points ”a”, ”d”,

”i” for Case 3, Case 6, and Case 9 experiments cases respectively. In this figure moment is

calculated according to vertical loads recorded at eleven load cells placed under the footing

by multiplying the load of each cell with its distance to centroid of the foundation. Magni-

tude of the initial moments calculated by this means are presented in Table 5.2. In Table 5.2

presented base shear is obtained by the summation of horizontal force measured by each load

cell.

(a) Case 3 (b) Case 6 (c) Case 9

Figure 5.3: Distibution of contact pressure before application of horizontal loading (Fukui et
al., 2005)

(a) Case 3 (b) Case 6 (c) Case 9

Figure 5.4: Moment versus rotation curves of test data (Fukui et al., 2005)
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Table 5.2: Moment and shear force measured by load cells placed at bottom of foundation
model, before application of horizontal experiment load

Experiment Case Moment(kNm) Base Shear (kN)

Case 3 -0.316 -0.606
Case 6 -0.595 -0.759
Case 9 0.241 0.142

5.3.3 Reason of Initial Eccentricity

5.3.3.1 Introduction

Initial eccentricity may be due to placement of the model on soil surface with an inclination,

or due to center of gravity of the model not lying on the vertical axis passing through the

geometric center of the foundation area. For the first condition, a resultant shear force under

footing is expected to satisfy static equilibrium equations presented in Equation 5.2, whereas

for the second condition, base shear is expected to be equal to zero.

5.3.3.2 First Alternative

Figure 5.5 presents the free body diagram of the foundation model at the instant before ap-

plication of the horizontal experiment load according to the assumption that model is placed

on soil surface in an inclined manner. In this figure W is the weight of the model acting on

center of gravity which is at h magnitude above the foundation base; N, H, M are the normal,

shear and moment reaction forces acting on the foundation base, and finally, θ is the angle of

inclination of the model. Equation 5.2 presents the equations of equilibrium for this free body

diagram.
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Figure 5.5: Free body diagram for the inclined placement of the foundation model on soil
surface

H = W sin θ (5.2a)

M = Hh (5.2b)

N = W cos θ (5.2c)

Table 5.3 shows magnitudes of measured moments before beginning of the horizontal ex-

periment loading, together with the tilt angle and base shear values calculated according to

Equation 5.2 to conform to these moments. In Equation 5.2 base shear is the resultant shear

force at the foundation base before application of the horizontal test loading. It is obtained by

summation of the shear loads measured by the eleven load cells placed under the foundation

base.

Table 5.3: Base shear and tilt angle computed in order to satisfy equilibrium equations for
measured moment

Experiment Case Measured Moment (kNm) Base Shear (kN) Tilt Angle (◦)

Case 3 -0.316 -0.451 -2.9◦

Case 6 -0.595 -1.393 -9.2◦

Case 9 0.241 0.564 3.7◦
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Table 5.4: Comparison of measured and computed base shear according to first alternative

Experiment Case Measured (kN) Computed (kN) Computed /Measured

Case 3 -0.606 -0.451 0.74
Case 6 -0.759 -1.393 1.84
Case 9 0.142 0.564 3.97

Table 5.4 presents the comparison of the measured base shear introduced in Table 5.2 with the

computed base shear given in Table 5.3 in order to assess the validity of assumption stating

the inclined placement of foundation on soil surface.

5.3.3.3 Second Alternative

Figure 5.6 presents the free body diagram of the foundation model for the moment before

application of the horizontal experiment load, with the assumption that center of gravity of the

foundation model not lying on the vertical axis passing through the centroid of the foundation

area. In this figure W is the weight of the model, M is the moment, and finally e is the

eccentricity. Equation 5.3 presents the equation for the magnitude of moment that satisfies

the static equilibrium conditions of this free body diagram.

Figure 5.6: Free body diagram for the application of model weight eccentrically

M = We (5.3)
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Table 5.5 presents the magnitudes of measured moments before application of the horizontal

experiment load, together with the eccentricity values calculated according to Equation 5.3 to

conform with these moments.

Table 5.5: Eccentricity computed in order to satisfy the equilibrium equations for measured
moment

Experiment Case Measured Moment (kNm) Eccentricity (cm)

Case 3 -0.316 -3.54
Case 6 -0.595 -6.81
Case 9 0.241 2.76

Figure 5.7 for Case 6 experiment, depicts the location of center of gravity with a red dot, as

deviating from geometric centroid with 6.81cm in horizontal, as indicated in Table 5.5. Case

6 is given as the example since it has the highest eccentricity among the cases presented in

Table 5.5.

Figure 5.7: Location of center of gravity for Case 6 experiment considering initial eccentricity

5.3.3.4 Discussion

Two potential alternatives were considered to explain the eccentric application of model

weight on sand before the application of horizontal experiment load. These alternatives were
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(i) placement of the model on soil surface in an inclined fashion, and (ii) center of gravity of

the model not lying on the vertical axis passing through geometric center of the foundation

area, respectively. Existence of the measured shear force under foundation base is the distinc-

tion between these alternatives. For the first alternative, a resultant shear force under footing

is expected, in order to satisfy static equilibrium equations presented in Equation 5.2, whereas

for the second alternative, base shear is expected to be equal to zero.

As shown in Table 5.2 considerable magnitude of base shear is measured by the load cells

placed beneath the foundation for all monotonic horizontal experiment cases before the ap-

plication of horizontal experiment load. Moreover, as shown in Table 5.4 for all experiment

cases, direction of these shear forces are in accord with the measured moments. However,

magnitudes of these shear forces are significantly different from the calculated shear forces

according to the measured moments as presented in Table 5.4. Furthermore, these differences

show high variation among experiment cases.

What is more, inclination angles computed to support the measured moment and presented

in Table 5.3 are considerably above probable values. Breadth of the foundation is 50 cm;

therefore, it could be computed that for a 1◦ inclination, 0.87 cm elevation difference should

exists between the edges of the foundation. Considering the vertical displacements are mea-

sured with gauges that have precision even below one millimeter, existences of such high and

unnoticed inclinations are not probable.

Then again, measured shear forces are large to be considered as due to measurement errors.

Shear load interference is checked by Fukui et al. (2005) by verifying each load cell with a

universal testing machine, applying vertical load, and recording the shear force measured by

the bidirectional load cell. In this configuration shear force is expected to be zero. Hence,

the shear load interference is defined by the measured shear force per applied vertical load.

Based on verification data by Fukui et al. (2005) it could be calculated that for each individual

load cell, this value is in range between -3% and +5%. For Case 6 experiment where the

highest base inclination is found among cases, weight of the foundation is 8.728 kN, and base

shear is measured as 0.759kN. Shear load interference should be 0.759/8.728 = 8.7% for the

inclination to be considered as zero. This interference is relatively higher than measures by

Fukui et al. (2005). Therefore, measured shear forces are not likely to be completely due to

measurement errors. Conformation of direction of these shear forces with the directions of
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measured moments supports this suggestion.

Nevertheless, high inclination angles suggested by the first alternative are not likely to have

occurred. This indicates that the first alternative could not be the governing factor for the

explanation of the measured moments. Therefore, for simplicity, first alternative will be ne-

glected.

Considering the second alternative explanation, calculated eccentricity magnitudes are pre-

sented in Table 5.5. Location of center of gravity is demonstrated in Figure 5.7 for the Case

6 experiment case where highest eccentricity is calculated. Deviation of center of gravity in

such manner is more likely to have occurred than the demanding tilt angles of first alternative.

Hence in this chapter eccentricity is considered to be explained by the placement of center of

gravity of the models with a horizontal distance from the geometric center of the foundation

models with the eccentricity magnitudes presented in Table 5.5.

5.3.4 Results of Selected Solutions in Literature

In Section 5.3.3.4 it is reasoned that the reported eccentric application of model weight to soil

surface by Fukui et al. (2005) is originating from unbalanced placement of model weight.

Eccentricities calculated to conform to this condition is presented in Table 5.5. Table 5.6

presents these initial eccentricities, together with the eccentricities due to rotation of foun-

dation at the instant corresponding to attainment of ultimate horizontal load in experiment

presented in Table 4.4. Total eccentricity presented in this table is obtained by summation of

these two eccentricities.

Parameters supplied to solutions in literature in this section follow the description presented

in Section 4.4.2. Only parameter that has changed in magnitude in this section compared to

Table 4.9 is the ∆xCoG, for which total eccentricity presented in Table 5.6 is employed in this

section.

Table 5.7 and Figure 5.8 present the results of solutions in literature which consider the initial

eccentric placement of the model self weight on soil surface.
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Table 5.6: Eccentricity at maximum horizontal load considering initial eccentricity

Test Initial Eccentricity Eccentricity Due to Rotation Total Eccentricity
Name (cm) (cm) (cm)

Case 3 -3.54 1.28 -2.26
Case 6 -6.81 0.63 -6.18
Case 9 2.76 0.67 3.43

Table 5.7: Estimates of collapse load by studies in literature (considering both initial and
second order moments)

Solution Case 3 Case 6 Case 9

Meyerhof (1951, 1963) 5.33 8.53 4.61
Butterfield and Gottardi (1994) 5.34 8.82 5.13
Paolucci and Pecker (1997) 5.92 9.26 5.34
Loukidis et al. (2008) 5.42 8.56 4.93

Average 5.51 8.79 5.00
Standard Deviation 0.28 0.34 0.31
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Considering Initial and Second order Moments
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5.3.5 Analyses Results and Comparisons

Results of the analyses conducted in the manner to account for the initial eccentricities are

presented in Table 5.8 and Figure 5.3.5 together with experiment results and average of so-

lutions in literature presented in Section 5.3.4. All aspects of these analyses are identical to

those analyses, the results of which were presented in Section 4.5.2.1, with the exception that

weight of the model is applied in the manner as shown in Figure 5.6, with the eccentricities

presented in Table 5.5 to account for the initial moments.

Table 5.8: Comparison of Monotonic Horizontal Loading Results Considering Initial Eccen-
tricity

Experiment Exp. Lit. T.S. Lit. / Exp. T.S. / Exp.
(kPa) (kPa)

Case 3 7.04 5.51 5.86 0.78 0.83
Case 6 10.44 8.79 9.30 0.84 0.89
Case 9 6.13 5.00 5.27 0.82 0.86

Exp.: Experiment by Fukui et al. (2005)
T.S.: Results of analyses of this study
Lit.: Average of Solutions in Literature Calculated in Sec-
tion 5.3.4
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Figure 5.9: Comparison of Monotonic Horizontal Loading Results Considering Initial Eccen-
tricity
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5.3.6 Discussions

In Section 4.6.2.1, for monotonic horizontal loading cases, possibility of an unconsidered

factor that governs the difference between experiment and analyses results was mentioned

based on large magnitude of the difference and variation of the differences among experiment

cases, which could not be reasoned at that section.

It is seen that, based on comment by Fukui et al. (2005) on measurements of eleven load cells

placed under foundation base to record horizontal and vertical forces, model self weight is

applied in an eccentric manner to the soil medium before beginning of experiments. In Sec-

tion 5.3.3.4 it is reasoned out that this condition could be modeled by relocation of center of

gravity of the foundation models according to the measured eccentricity. Note that, modeling

in this manner would not account for the significant resultant base shear measured by the load

cells.

In Section 5.3.5 results from experiment, analyses, and selected solutions from literature are

compared by considering this initial eccentricity. It is seen that analyses results and mean of

results of selected solutions in literature are in good agreement with at most 6% difference.

By comparison of these results with those presented in Section 4.5.2.1 it is seen that not

only the overall difference between experiments and analyses have decreased, but also the

variance of the difference among experiment cases has been decreased as well. Since eccentric

application of model weight is seen to have significant influence on the results, it would not be

proper to neglect this condition in analyses or solutions in literature. Therefore comparison in

Section 5.3.5 is more representative for the validation of analyses and solutions in literature

than the comparison in Section 4.5.2.1.

Simplifications and assumptions listed for monotonic centered vertical loading cases are valid

for monotonic horizontal loading cases as well. Each of these points provides errors that lie

on the side that increase the analysis results as discussed in Section 4.6.1. Furthermore, it is

observed that increasing the mesh refinement leads to lower results, similar to monotonic ver-

tical loading analyses. Therefore it is expected to obtain higher results from analyses than the

precise solution. Slightly higher results obtained from finite element method analyses com-

pared to mean of solutions in literature for all monotonic horizontal loading cases, whether

considering initial eccentricity or not, is in agreement with this condition.
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In spite of the expectation, finite element method analyses conducted in this study have pro-

vided lower bearing capacities than experiment measurements for all experiment cases, rang-

ing between 11% and 17%. This condition is observed for the monotonic vertical loading

cases as well. The factors listed in Section 4.6.1 for monotonic centered vertical loading cases

which are not considered in analyses and studies in literature based on analytical solutions are

likewise valid for monotonic horizontal loading cases. Therefore, it could be reasoned that

these unaccounted factors are likely the major source of the difference between experiment

and analyses results. Additionally, for monotonic horizontal loading cases, modeling the ini-

tial eccentricity without considering the measured base shear might have certain contribution

to the difference.

Similar to monotonic vertical loading cases, employment of a more advanced material model

in simulations to consider these factors, may provide closer results to the experiments. Al-

ternatively, better results could be obtained by employing a higher internal friction angle

considering the majority of the phenomena are influencing the magnitude of internal friction

angle as discussed in Section 4.6.1.
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5.4 Sensitivity Study for Internal Angle of Friction

In order to evaluate the influence of the uncertainties involved in the magnitude of internal

friction angle on analyses results of monotonic horizontal loading experiment cases, that con-

sider the initial eccentricity as described in Section 5.3.3.3, a sensitivity study is conducted

for Case 6 and Case 9. Since it is suggested in Section 5.3.6 that, employment of higher inter-

nal friction angles may decrease the gap between experimental findings and analysis results,

only a set of internal friction angles, presented in Table 5.9 which are composed of magni-

tudes higher than the values presented in the experiment manual (Fukui et al., 2005) were

considered in sensitivity analyses.

Table 5.9: Employed internal friction angles in sensitivity analyses

Experiment Relative Density Presented Value in Magnitudes Employed in
Case of Sand Experiment Manual Sensitivity Analyses

Case 6 80% 42.1◦ 43.1◦, 45.0◦

Case 9 60% 39.9◦ 40.9◦, 45.0◦

5.4.1 Results of Solutions in Literature

In order to observe the sensitivity of solutions in literature to the variation of internal friction

angle, and compare this observation with sensitivity analyses of this study, results of solutions

in literature were calculated, with the internal angle of friction values presented in Table 5.9

as well. Parameters supplied to solutions in literature in this section follow the description

presented in Section 5.3.4. The only parameter that has changed in magnitude in this section

is the angle of internal friction.

Figure 5.10 presents the obtained results according to internal friction angles presented in

Table 5.9 together with the results that were presented in Section 5.3.5 and obtained according

to the internal angle of friction magnitudes provided in experiment manual (Fukui et al.,

2005). As can be seen from Figure 5.10, except Meyerhof (1951, 1963), results obtained

from literature do not change considerably with the internal friction angle. The reason of this

is that, all of the selected solutions, except Meyerhof (1951, 1963), require ultimate bearing

capacity under centered vertical conditions as input, to which experiment results of Case 1
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Figure 5.10: Results obtained from solutions in literature for varying internal friction angle
magnitudes

and Case 2, were provided as input as described in Section 5.3.4. Note that, ultimate bearing

capacity under centered vertical loading conditions depend significantly on internal friction

angle for cohesionless soils.

According to Figure 5.10 it could be stated that most of the selected solutions from literature

are insensitive to the variation of internal angle of friction. This insensitivity is beneficial in

terms of comparison with experimental findings. On the other hand, one other aim of calcu-

lation of the results of solutions in literature was to compare with analyses results. For this

purpose, it could be considered that, results presented in Figure 5.10 does not thoroughly ac-

count for the variation of internal angle of friction, since the same ultimate bearing capacity

magnitudes are provided as input for different internal angle of friction values. Therefore, in

order to obtain more adequate results from selected solutions, and to compare with the sensi-
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tivity analyses, influence of increase in internal friction angle to the ultimate centered bearing

capacity could be calculated and introduced to the solutions for monotonic horizontal loading

experiments. Based on the comparison presented in Section 4.4.1 it is seen that Meyerhof’s

proposal, among the selected studies in literature for monotonic vertical loading experiment

cases, provides the closest results to the experiments. Therefore, ultimate bearing capacity ob-

tained from the Meyerhofs proposal for the centered vertical loading is employed as the input

to the studies in this section for the internal friction angles employed in sensitivity analyses.

Magnitude of parameters supplied to Meyerhofs proposal and obtained bearing capacities are

presented in Table 5.10. Table 5.11 presents the magnitudes of input parameters supplied to

solutions in literature with this approach. Results of solutions in literature for the sensitivity

to magnitude of internal friction angle are presented in Figure 5.11 and Table 5.12 for Case 6

and in Figure 5.12 and Table 5.13 for Case 9.

Table 5.10: Parameters supplied to Meyerhof (1963) and obtained bearing capacities

Experiment B L D ϕ c γ qult Vult
Case (m) (m) (m) (◦) (kPa) (kN / m3) (kPa) (kN)

Case 6 0.5 0.5 0.0 43.1 0.0 16.02 1071.84 276.96
Case 6 0.5 0.5 0.0 45.0 0.0 16.02 1665.60 416.40
Case 9 0.5 0.5 0.0 40.9 0.0 15.39 636.03 159.01
Case 9 0.5 0.5 0.0 43.1 0.0 15.39 1600.10 400.02

Table 5.11: Parameters supplied to solutions in literature

Experiment Vult V ∆xCoG Marm B ϕ c γ
Case (kN) (kN) (cm) (m) (m) (◦) (kPa) (kN / m3)

Case 6 267.96 8.728 -6.18 0.9 0.5 43.1 0.0 16.02
Case 6 416.40 8.728 -6.18 0.9 0.5 45.0 0.0 16.02
Case 9 159.01 8.728 3.43 0.9 0.5 40.9 0.0 15.39
Case 9 267.96 8.728 3.43 0.9 0.5 45.0 0.0 15.39
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Figure 5.11: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 6

Table 5.12: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 6

Solution from Literature ϕ=42.1◦ ϕ=43.1◦ ϕ=45.0◦ ϕ=43.1◦/ ϕ=45.0◦/
ϕ=42.1◦ ϕ=42.1◦

(kPa) (kPa) (kPa) (kPa) (kPa)

Meyerhof (1951, 1963) 8.53 8.86 9.43 1.04 1.11
Butterfield and Gottardi (1994) 8.82 8.84 8.92 1.00 1.01
Paolucci and Pecker (1997) 9.26 9.37 9.87 1.01 1.07
Loukidis et al. (2008) 8.56 8.63 8.91 1.01 1.04

Average 8.79 8.92 9.28 1.02 1.06
Standard Deviation 0.34 0.31 0.46 0.02 0.04
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Figure 5.12: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 9

Table 5.13: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 9

Solution from Literature ϕ=39.9◦ ϕ=40.9◦ ϕ=45.0◦ ϕ=40.9◦/ ϕ=45.0◦/
ϕ=39.9◦ ϕ=39.9◦

(kPa) (kPa) (kPa) (kPa) (kPa)

Meyerhof (1951, 1963) 4.61 4.93 6.06 1.07 1.31
Butterfield and Gottardi (1994) 5.13 5.22 5.45 1.02 1.06
Paolucci and Pecker (1997) 5.34 5.62 6.60 1.05 1.24
Loukidis et al. (2008) 4.93 5.12 5.73 1.04 1.16

Average 5.00 5.22 5.96 1.04 1.19
Standard Deviation 0.31 0.29 0.50 0.02 0.11

127



5.4.2 Analyses Results, Comparisons and Discussions

In order to observe the sensitivity of analyses results and solutions in literature to variation

of internal friction angle, for monotonic horizontal loading cases, a sensitivity study is con-

ducted for internal angle of friction. Sensitivity analyses are identical to the analyses, the

results of which were presented in Section 5.3.5, except the employed internal angle of fric-

tion (ϕ), dilation angle (ψ) and friction coefficient of the interface between foundation and

soil (µ). Employed values of these parameters in sensitivity analyses are presented in Ta-

ble 5.14. Figure 5.13 presents the results of sensitivity analyses, in comparative manner with

the experiment results and selected solutions in literature.

Table 5.15 and Table 5.16 presents the comparison of ratio of horizontal load carrying capacity

obtained from sensitivity studies to results presented in Section 5.3.5 for the internal angle of

friction values presented in experiment manual (Fukui et al., 2005). Analyses and mean of

solutions in literature, are in good agreement with each other. It is seen that increasing the

internal friction angle results in closing the gap between experiment and analyses results.

However, experiment results for Case 6 are still higher than analyses results even when 45◦ is

employed as internal friction angle.

Table 5.14: Parameters employed in analyses

Experiment ϕ ψ
µCase (◦) (◦)

Case 6 43.1 40.0 0.93578
Case 6 45.0 42.0 1.00000
Case 9 40.9 38.0 0.86623
Case 9 45.0 42.0 1.00000
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Figure 5.13: Comparison of analyses results with experimental results and solutions in litera-
ture
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Table 5.15: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 6

Solution from Literature ϕ=42.1◦ ϕ=43.1◦ ϕ=45.0◦ ϕ=43.1◦/ ϕ=45.0◦/
ϕ=42.1◦ ϕ=42.1◦

(kPa) (kPa) (kPa) (kPa) (kPa)

Experimental Results 10.44 - - - -
Literature Results 8.79 8.92 9.28 1.02 1.06
Analysis Results 9.40 9.53 9.91 1.01 1.05

Table 5.16: Results of selected solutions in literature for sensitivity study on internal friction
angle of Case 9

Solution from Literature ϕ=39.9◦ ϕ=40.9◦ ϕ=45.0◦ ϕ=40.9◦/ ϕ=45.0◦/
ϕ=39.9◦ ϕ=39.9◦

(kPa) (kPa) (kPa) (kPa) (kPa)

Experimental Results 6.13 - - - -
Literature Results 5.00 5.22 5.96 1.04 1.19
Analysis Results 5.27 5.50 6.27 1.04 1.19

130



CHAPTER 6

OTHER CONDITIONS

6.1 Introduction

In this chapter, based on the conducted finite element method analyses, influence of dilation

angle, plane strain assumption and second order moments on analyses results are investigated.

6.2 Influence of Dilation Angle on Results

6.2.1 Influence of Dilation Angle on Monotonic Vertical Loading Analyses

6.2.1.1 Introduction

Influence of dilation angle on monotonic vertical loading analyses conducted in this study

is investigated by running the 3D Case 2 experiment with different dilation angles. Four

additional finite element analyses, with dilation angles presented in Table 6.1 are conducted

for this purpose.

Analyses with dilation angles up to and including 30◦ are conducted with the fine mesh shown

in Figure 3.13(a) with elasticity modulus of 31.6MPa, whereas other analyses are conducted

with the coarse mesh shown in Figure 3.13(b) and with elasticity modulus of 41.6MPa. Differ-

ence in elasticity modulus does not have significance for ultimate bearing capacity obtained

from analysis, whereas employment of different meshes were required due to convergence

difficulties as explained in Section 3.4.1.1.
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6.2.1.2 Results of Analyses

Table 6.1 and Figure 6.1 presents the ultimate bearing capacities obtained from analyses em-

ploying varying angle of dilation magnitudes. Figure 6.2 presents the pressure - settlement

variation of theses analyses.

Table 6.1: Influence of dilation angle on monotonic centered vertical bearing capacity accord-
ing to 3D analysis results for experiment Case 2

ψ(◦) qult(kPa) qult/(qult)ψ=37◦

37 473.9 1.00
35 482.6 1.02
30 478.4 1.01
20 450.0 0.95
10 355.0 0.75
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Figure 6.1: Influence of dilation angle on monotonic centered vertical bearing capacity ac-
cording to 3D analysis results for experiment Case 2
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Figure 6.2: Influence of dilation angle on pressure - settlement curve of monotonic centered
vertical loading cases according to 3D analysis results for experiment Case 2

6.2.1.3 Results of Study from Literature

In order to assess the quality of analysis results presented in Section 6.2.1.2, in this sec-

tion Equation 1.3 and Equation 1.4 provided by Loukidis and Salgado (2009) are employed.

Equation 1.3 accounts for the influence of dilation angle on bearing capacity factor Nγ and

Equation 1.4 presents the shape factor for circular foundations for associated flow rule scirc
γ

according to finite element method analysis results. Bearing capacity qult presented in Ta-

ble 6.2 and Figure 6.3 by this means is for circular foundation by neglecting the influence of

dilation angle on shape factor. Note that the results presented in Section 6.2.1.2 are for square

foundation. Considering the comment by Lyamin et al. (2007) that shape factor sγ for circular

foundation is only slightly higher than that of square foundation, comparison is expected to

be meaningful. Additionally, if shape factor is independent of angle of dilation, comparison

of qult/(qult)ψ=37◦ terms would be adequate.
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Table 6.2: Results obtained from Loukidis and Salgado (2009) for Case 2, considering influ-
ence of dilation angle

ψ(◦) Nγ scirc
γ qult(kPa) qult/(qult)ψ=37◦

37 84.04 1.46 472.2 1.00
35 83.87 1.46 471.2 1.00
30 82.76 1.46 465.0 0.98
20 76.32 1.46 428.8 0.91
10 62.73 1.46 352.5 0.75
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Figure 6.3: Results obtained from Loukidis and Salgado (2009) for Case 2, considering influ-
ence of dilation angle

6.2.1.4 Comparisons

Table 6.3 and Figure 6.4 present the comparison of results of analyses of this study presented

in Section 6.2.1.2 with the result obtained from proposals of Loukidis and Salgado (2009))

presented in Section 6.2.1.3.
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Table 6.3: Analysis results for monotonic centered vertical loading Case 2, considering influ-
ence of dilation angle

This Study Loukidis and Salgado (2009) T.S. / Lit.
ψ(◦) qult(kPa) qult/(qult)ψ=37◦ qult(kPa) qult/(qult)ψ=37◦ qult qult/(qult)ψ=37◦

37 473.9 1.00 472.2 1.00 1.00 1.00
35 482.6 1.02 471.2 1.00 1.02 1.02
30 478.4 1.01 465.0 0.98 1.03 1.03
20 450.0 0.95 428.8 0.91 1.05 1.04
10 355.0 0.75 352.5 0.75 1.01 1.00

T.S.: Results of this study presented in Section 6.2.1.2
Lit.: Results of Loukidis and Salgado (2009) calculated in Section 6.2.1.3
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Figure 6.4: Influence of dilation angle on bearing capacity
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6.2.1.5 Discussions

According to Figure 6.1 bearing capacity increases, at a decreasing rate, as dilation angle

increases. Data point for ψ = 37◦ does not conform to this trend. This may be an error

originating from the influence of automatic stabilization on analysis results as investigated in

Section 3.6.1. Since influence of automatic stabilization on analysis is expected to increase

with decrease in dilation angle. Moreover, order of difference between these results are 2%

as shown in Table 6.1, which is could be considered as within the error limits of analyses.

In Figure 6.2 pressure settlement curves of the analyses are presented. It is seen that there are

undulations on these curves for low dilation angles. Similar oscillations have been reported

by Loukidis and Salgado (2009), they studied bearing capacity of shallow foundations with

finite element method considering the influence of unassociated flow rule. They explain that

oscillations in pressure settlement curves for small angle of dilation values are observed in

studies in literature involving Mohr Coulomb constitutive model. These oscillations are due

to the apparent softening exhibited in shear bands and is related to the rotation of the principal

stress axes as strains are intensely localized inside the shear bands. Loukidis and Salgado

(2009) continues that these oscillations do not undermine the validity of the simulations and

that these oscillations are also recorded in footing load tests in the laboratory or at the field;

although neither intensity nor pattern of these oscillations match the simulation results, since

simulations do not constitute the exact representation of the actual physical process.

Due to employment of automatic stabilization mechanism, explained in Section 3.3.5, mag-

nitude of the oscillations in Figure 6.2 may be less than the study by Loukidis and Salgado

(2009).

Comparison of analysis results of this study with Loukidis and Salgado (2009) indicates good

agreement between results with at most 5% difference. Difference is at most 1% for dila-

tion angles of 37◦ and 10◦. Little difference between the error levels of quantities qult and

qult/(qult)ψ = 37◦ might suggest that shape factors presented in Table 6.2 are representative

for the analyses of this study.

Based on good agreement of results with Loukidis and Salgado (2009), it could be concluded

that the employment of automatic stabilization mechanism explained in Section 3.3.5 in fi-

nite element method is an adequate approach for mitigating the instabilities originating from
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utilization of unassociative flow rule with Mohr-Coulomb yield criterion.

6.2.2 Influence of Dilation Angle on Monotonic Horizontal Loading Analyses

In Figure 6.5, 2D analysis results presented for Case 6 in Section 6.3 are compared with

another analysis the only difference of which is magnitude of dilation angle selected for the

soil medium. In analysis referred as ”ψ = 20◦” in the figure, dilation angle of the foundation

is selected as 20◦. Results of these analyses are compared in order to see the effect of dilation

angle on analysis results.

0 5 10 15 20 25 30 35 40

Horizontal Deformation on Loading Point (mm)

0

1

2

3

4

5

6

7

H
o
ri

zo
n
ta

l 
Fo

rc
e
 /

 A
re

a
 (

kP
a
)

�=39�

�=20�

Figure 6.5: Influence of Dilation Angle on Analysis Results

As seen in Figure 6.5, influence of decrease in dilation angle results in decreasing of the load

carrying capacity of the foundation, as presented by Loukidis et al. (2008).

6.3 Comparison of 2D and 3D FEM Analysis Results

For each monotonic vertical and monotonic horizontal loading case, one 3D and one 2D

analysis was performed with identical material properties. Results of the 3D analyses were

presented in Section 4.5 previously. 2D analyses were performed with plane strain assump-

tion, which implies the modeling of a strip foundation instead of the actual square shaped

foundation. In this section results of these 2D and 3D analyses are compared with each other
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in terms of ultimate plastic loads and shape of force displacement curves.

6.3.1 Results of Analyses

6.3.1.1 Plastic Limit Loads

Table 6.4 and Figure 6.6(a) presents comparison results of 3D and 2D monotonic vertical

loading analyses, whereas Table 6.5 and Figure 6.6(b) presents the same comparison for

monotonic horizontal loading analyses.

Table 6.4: Ultimate bearing capacities provided by 3D and 2D FEM analyses

Experiment 3D Analysis 2D Analysis 3D/2D
Case (kPa) (kPa)

Case 1 801.1 568.2 1.41
Case 2 473.9 358.4 1.32

Table 6.5: Ultimate horizontal loads provided by 3D and 2D FEM monotonic horizontal
loading analyses divided by foundation area

Experiment 3D Analysis 2D Analysis 3D/2D
Case (kPa) (kPa)

Case 3 4.88 4.61 1.06
Case 6 6.85 6.41 1.07
Case 9 6.27 5.78 1.08
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Figure 6.6: Comparison of 2D and 3D FEM Analysis Results

6.3.1.2 Load versus Displacement Curves

Figure 6.3.1.2 presents variation of foundation settlement with foundation pressure for mono-

tonic centered vertical loading analyses. Figure 6.8 presents variation of horizontal displace-

ment of load application point with applied experiment loading for monotonic horizontal

loading analyses.
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Figure 6.7: Load versus displacement curves of 2D and 3D monotonic vertical loading anal-
yses
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Figure 6.8: Load versus displacement curves of 2D and 3D monotonic horizontal loading
analyses

6.3.2 Discussions

Table 6.4 presents ultimate plastic loads provided by 2D and 3D analyses of monotonic cen-

tered vertical loading cases. Comparison of the ratio of 3D analysis results to 2D analysis

results with shape factors obtained from solutions in literature presented in Table 4.8 reveals
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that results of this study are in close agreement with shape factors of Lyamin et al. (2007).

In Figure 6.8 limit loads provided by 2D monotonic horizontal loading analyses are compared

with their corresponding 3D analyses. It is seen that strip foundations yield lower ultimate

horizontal load capacity compared to square foundations. This observation is similar to the

monotonic vertical loading analyses. However, magnitude of the influence of plane strain

assumption on ultimate load is not as high as observed for monotonic vertical loading cases.

Equations that define interaction envelopes in vertical, horizontal and moment space in lit-

erature, such as Paolucci and Pecker (1997), and Loukidis et al. (2008) generally present a

linear relationship between vertical load carrying capacity under eccentric and inclined load-

ing with centered vertical load bearing capacity. Therefore accuracy of these equations when

employed for square shaped foundations might be of question since centered vertical load

bearing capacity increases with a higher rate than the vertical load bearing capacity under

inclined and eccentric loading. Hence extension of these equations to take into account the

shape factors could be more appropriate.

Figure 6.3.1.2 shows pressure - settlement curves of 3D and 2D analyses of monotonic vertical

loading analyses. From this figure it is seen that limit loads are approached with separate

paths having different inclinations for 2D and 3D analyses, where 3D analyses shows stiffer

response than 2D analyses. Figure 6.8 shows force - displacement curves of 2D and 3D

monotonic horizontal loading analyses. It is seen from this figure that square foundations

shows stiffer load displacement response than strip foundations. This behavior is in accord

with the behavior observed for monotonic vertical loading analyses. However this behavior is

more prominent for monotonic vertical loading analyses.

6.4 Influence of Second Order Moments on Results

Considering the experiments modeled in this study were conducted on bridge pier foundation

models, which have center of gravity considerably above the foundation base, second order

moments due to tilt of the foundation is considered in this study.

In Figure 6.9, 3D analysis results presented for Case 3 in Section 4.5.2.1 are compared with

another analysis the only difference of which is the application point of the model weight.

In analysis referred as ”Center of Gravity at Pier Base” in the figure, weight of foundation is
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applied at bottom of the pier at the middle of the footing. Therefore second order moments are

ignored in this analysis. Results of these analyses are compared in order to see the influence

of second order moments due to rotation of the foundation model on analysis results.
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Figure 6.9: Effect of Second order Moments on Analysis Results

As seen in Figure 6.9, both analyses follow the same force - displacement relationship ini-

tially. Once the deformations and consequent rotations increase, curves start to deviate from

each other as a result of second order moments. Moreover it is also seen that the second

order moments are responsible for the decrease in load carrying capacity in analysis results

observed after reaching the ultimate load capacity. Ultimate load carrying capacity of analysis

ignoring the second order moments is higher. This is in conformance with the analytical solu-

tions, implying that the increase in moment has unfavorable effect on horizontal load carrying

capacity.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

Simulation of a set of laboratory model experiments were conducted with finite element

method employing linear elastic perfectly plastic material model with Mohr - Coulomb yield

criterion. Results of the simulations and experiments were compared with each other and with

selected studies from literature.

Simulated experiment cases include monotonic centered vertical loading and monotonic com-

bined loading cases conducted on square shaped shallow foundation models, positioned on

surface of air-dried Toyoura standard sand. Relative density of the sand and the employed

foundation model, defining the magnitude of moment to base-shear ratio, were the variable

conditions among experiment cases.

Main objective of this study was the assesment of capability of finite element method em-

ploying Mohr-Coulomb yield criterion and linear elastic perfectly plastic constitutive law for

providing plastic limit loads for shallow foundation problems on granular soils. Additionally,

influence of plane strain assumption and angle of dilation on limit loads of square shaped

foundation models were investigated.

7.2 Conclusions

• Plastic limit loads provided by the analyses are in good agreement with the selected so-

lutions from literature. Therefore, finite element method analyses for bearing capacity

of shallow foundations could provide ultimate limit loads of comparable quality with
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analytical solutions. This finding is in agreement with Loukidis and Salgado (2009).

• Difference between plastic limit loads provided by the analyses conducted in this study

and experiments by Fukui et al. (2005) are relatively large for monotonic horizontal

loading cases and error levels are inconsistent among experiment cases. It is concluded

that major reason of this situation is the eccentric application of model weight on soil

surface before the application of horizontal test load in these cases. Eccentric applica-

tion of foundation model weight in monotonic horizontal loading analyses is probably

due to unbalanced placement of weights on the foundation models. When this condi-

tion is taken into account in analyses, and solutions from literature, it is seen that the

ultimate horizontal load carrying capacities of experiment cases increased for Case 3

and Case 6, and decreased for Case 9. Hence, resulting in similar differences between

analyses of this study and experimental findings by Fukui et al. (2005) for similar ex-

periment cases. According to this condition, it is seen that the results of the modeled

experiments are consistent, while providing somewhat higher load carrying capacities

than the analyses of this study and selected solutions in literature.

• Bearing capacity factors depend on magnitude of cohesion. Introduction of a small

magnitude of cohesion to vertical bearing capacity analyses of purely frictional soil

increases the computational efficiency. If the effect of cohesion on bearing capacity is

considered as large enough to be deducted from analysis result, deduction of cNcsc term

may not be sufficient. Instead, effect of cohesion on Nγ and Nc should be considered,

possibly by means discussed in Section 3.6.2, as well.

• Dilation angle has significant influence on limit plastic loads. Lower dilation angle

results in lower ultimate load capacities for both monotonic horizontal and vertical

loading analyses. Influence of dilation angle on limit plastic loads of monotonic vertical

loading analyses decreases as the dilation angle increases. Such that, for a granular soil

with internal friction angle of 39.9◦, change of dilation angle in the range of 30◦ to 37◦

does not have significant effect on bearing capacity, whereas 25% reduction in bearing

capacity is observed for dilation angle of 10◦. These results are in good agreement with

Loukidis et al. (2008). Employment of automatic stabilization mechanism in finite

element method is an adequate approach to mitigate the instabilities originating from

utilization of unassocaited flow rule with Mohr - Coulomb yield criterion.
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• Lower limit loads are obtained from finite element analyses both for monotonic verti-

cal and monotonic horizontal loading analyses compared to 3D analyses when plane

strain assumption is employed. Shape factors calculated according to analysis results

of centered vertical loading cases are in close agreement with the equation proposed

by Lyamin et al. (2007). Effect of plane strain assumption on plastic limit loads for

monotonic horizontal loading analyses are considerably lower than its influence on ver-

tical loading analysis results. Since equations such as Paolucci and Pecker (1997) and

Loukidis et al. (2008) present a linear relationship between vertical load carrying ca-

pacity under eccentric and inclined loading with centered vertical load bearing capacity

accuracy of these equations when employed for square shaped foundations might be

of question considering centered vertical load bearing capacity increases with a higher

rate than the vertical load bearing capacity under inclined and eccentric loading. Hence

extension of these equations to take into account the shape factors could be more ap-

propriate.

• For monotonic horizontal loading experiments, second order moments have unfavor-

able influence on horizontal load carrying capacity. Additionally, increase in second

order moments after attainment of ultimate horizontal load results in a linear decrease

in horizontal load carrying capacity observed in horizontal force versus horizontal dis-

placement curves.

7.3 Recommendations

• Dynamic analyses of cyclic horizontal loading experiments of Fukui et al. (2005) could

be conducted.

• More advanced material model could be employed in analyses considering phenomena

such as strain dependence of yield surface or dependence of internal friction angle on

confining pressure.

• Effect of dilation angle on monotonic horizontal loading analyses could further be in-

vestigated by conducting analyses employing lower dilation angles.

• Influence of dilation angle on shape factors for foundations under centered vertical

loading could be investigated.
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• Influence of foundation shape on bearing capacities of foundations under inclined and

eccentric loading could be investigated.
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Appendix A

LOAD VERSUS DEFORMATION VARIATIONS

In this appendix variations of applied test load with the horizontal displacement of load ap-

plication point, sliding of foundation and tilt angle of foundation are provided for monotonic

horizontal loading analyses, the results of which were presented in Section 4.5.2.1. Figure A.1

presents the variation of horizontal displacement of load application point with applied hor-

izontal test loading, normalized by the foundation area, for monotonic horizontal loading

experimental findings and analyses. Figure A.2 presents variation of tilt and sliding of foun-

dation with applied horizontal test loading normalized, by the foundation area, for monotonic

horizontal loading experimental findings and analyses.
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(b) Case 6
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Figure A.1: Force displacement curves provided 3D analysis results and experiment measure-
ments
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(e) Case 9
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Figure A.2: Sliding and tilt of foundation models provided by 3D analysis results and experi-
ment measurements
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Appendix B

VARIATION OF STRESSES AND DEFORMATIONS

In this appendix, variation of stresses and deformations for the three dimensional analyses

of monotonic centered vertical and horizontal loading cases, the force versus deformation

variations of which were given in Section 6.3, are presented.

B.1 Deformed Meshes

Figure B.1 presents the deformed meshes of the monotonic centered vertical loading analyses

plotted on undeformed meshes with deformations scaled by a scale factor of 0.1. Figure B.2,

Figure B.3 and Figure B.4 presents the deformed meshes of monotonic horizontal loading

analyses, with deformation scale factors of 2.0, for the instant corresponding to 3 cm horizon-

tal displacement of the horizontal load application point (i.e., pier top).
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(a) Case 1, at the end of analysis (deformation scale factor: 0.1)

(b) Case 2, for 3 cm settlement (deformation scale factor: 0.1)

Figure B.1: Deformed meshes of 3D centered vertical loading analyses cases
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Figure B.2: Deformed mesh of 3D Case 3 FEM analysis - for 3 cm horizontal displacement
of load application point (deformation scale factor: 2.0)

Figure B.3: Deformed mesh of 3D Case 6 FEM analysis - for 3 cm horizontal displacement
of load application point (deformation scale factor: 2.0)
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Figure B.4: Deformed mesh of 3D Case 9 FEM analysis - for 3 cm horizontal displacement
of load application point (deformation scale factor: 2.0)

B.2 Variation of Vertical Components of Deformations and Stresses

Figure B.5 and Figure B.6 presents the variation of vertical deformations on finite element

meshes of monotonic centered vertical, and monotonic horizontal loading analyses, respec-

tively. Figure B.7 and Figure B.8 presents the variation of vertical components of stresses

on finite element meshes of monotonic centered vertical, and monotonic horizontal loading

analyses, respectively. Figure B.5 and Figure B.7 are obtained for the instant corresponding

to 2.5 cm settlement of the foundation in monotonic centered vertical loading cases, and with

the deformation scale factor of 0.1. Figure B.6 and Figure B.8 are obtained for the instant

corresponding to 2 cm displacement of the horizontal load application point of the horizontal

loading analyses with the deformed mesh presented in true scale by employment of a defor-

mation scale factor of 1.0.
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Figure B.5: Vertical component of deformations plotted on deformed meshes of monotonic
vertical loading analyses for 2.5 cm settlement of foundation (deformation scale factor: 0.1,
units are in meters)
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Figure B.6: Variation of vertical component of deformations in FEM mesh for monotonic
horizontal loading cases
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(a) Case 1

(b) Case 2

Figure B.7: Variation of vertical component of stresses in FEM mesh for monotonic centered
vertical loading cases
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Figure B.8: Variation of vertical component of stresses in FEM mesh for monotonic horizontal
loading cases
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Appendix C

COMPUTATIONAL COSTS OF ANALYSES

In this appendix, computational costs of a number of analyses, the results of which were

presented in this study are presented in terms of analyses run times. Analyses run times

(TIME) are presented in Table C.1 and Table C.2 for centered vertical and horizontal loading

analyses, respectively. ”Section” column in these tables presents the number of the section in

this study,where the results of these analyses were presented. It is observed that, for a given

analysis, and number of central processing units (CPUS), number of iterations completed per

minute is approximately constant. Therefore, analyses run times are obtained by division

of total number of iterations (ITERATIONS) completed in the analyses to the number of

iterations completed per minute (ITER/MIN).

Table C.1: Computational costs of monotonic centered vertical loading analyses

CASE SECTION CPUS ITER/MIN ITERATIONS TIME

Case 1 Section 4.5.1 14 76 301625 66 hours
Case 2 Section 4.5.1 8 59 241654 68 hours

Case 2 (ψ = 35◦) Section 6.2.1.2 4 31 135387 73 hours
Case 2 (ψ = 30◦) Section 6.2.1.2 44 7 19231 46 hours
Case 2 (ψ = 20◦) Section 6.2.1.2 12 3 18524 103 hours
Case 2 (ψ = 10◦) Section 6.2.1.2 48 7 14173 34 hours

Table C.2: Computational costs of monotonic horizontal loading analyses

CASE SECTION CPUS ITER/MIN ITERATIONS TIME

Case 3 Section 4.5.2.1 4 6 10754 30 hours
Case 6 Section 4.5.2.1 4 6 14885 41 hours
Case 9 Section 4.5.2.1 4 6 24107 67 hours
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