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ABSTRACT 

 
 

A SEGMENT-BASED APPROACH TO CLASSIFY AGRICULTURAL LANDS 
USING MULTI-TEMPORAL KOMPSAT-2 AND ENVISAT ASAR DATA  

 
 
 

ÖZDARICI OK, Aslı 

PhD. Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Zuhal AKYÜREK 

 
 

February 2012, 258 pages 

 

 

 

Agriculture has an important role in Turkey; hence automated approaches are crucial to 

maintain sustainability of agricultural activities. The objective of this research is to 

classify eight crop types cultivated in Karacabey Plain located in the north-west of 

Turkey using multi-temporal Kompsat-2 and Envisat ASAR satellite data. To fulfill this 

objective, first, the fused Kompsat-2 images were segmented separately to define 

homogenous agricultural patches. The segmentation results were evaluated using multiple 

goodness measures to find the optimum segments. Next, multispectral single-date 

Kompsat-2 images with the Envisat ASAR data were classified by MLC and SVMs 

algorithms. To combine the thematic information of the multi-temporal data set, 

probability maps were generated for each classification result and the accuracies of the 

thematic maps were then evaluated using segment-based manner. The results indicated 

that the segment-based approach based on the SVMs method using the multispectral 

Kompsat-2 and Envisat ASAR data provided the best classification accuracies. The 

combined thematic maps of June-August and June-July-August provided the highest 

overall accuracy and kappa value around 92% and 0.90, respectively, which was 4% 

better than the highest result computed with the MLC method. The produced thematic 

maps were also evaluated based on field-based manner and the analysis revealed that the 

classification performances are directly proportional to the size of the agricultural fields. 
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ÖZ 

 
 
 

TARIM ALANLARININ ÇOK TARİHLİ KOMPSAT-2 VE ENVİSAT ASAR 
GÖRÜNTÜLERİ KULLANILARAK SINIFLANDIRILMASINDA BÖLÜT TABANLI 

BİR YAKLAŞIM  
 
 
 

ÖZDARICI OK, Aslı 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Doç. Dr. Zuhal AKYÜREK 

 
 

Şubat 2012, 258 sayfa 

 

 

 

Tarım Türkiye’de önemli bir role sahiptir, bu nedenle sürdürülebilirliğinin sağlanabilmesi 

açısından tarımsal faaliyetlerin otomatik yaklaşımlar ile yürütülmesinin önemi büyüktür. 

Bu çalışmanın amacı, Türkiye’nin kuzey batısında yer alan Karacabey ovasında 

yetiştirilen sekiz ürün türünün çok tarihli Kompsat-2 ve Envisat ASAR uydu görüntüleri 

kullanılarak sınıflandırılmasıdır. Bu amaç doğrultusunda, ilk olarak, homojen tarım 

alanlarını bulabilmek için keskinleştirilmiş (fused) Kompsat-2 görüntülerine bölütleme 

işlemi uygulanmıştır. En uygun bölütlerin belirlenebilmesi için üretilen bölütler çoklu 

istatistiksel indeksler yardımıyla değerlendirilmiştir. Ardından çok bantlı ve tek tarihli 

Kompsat-2 görüntüleri, Envisat ASAR verileri ile En Büyük Olasılık ve Destek Vektör 

Makineleri sınıflandırma yöntemleri yardımıyla sınıflandırılmıştır. Çok tarihli 

görüntülerin sınıflandırılması yoluyla elde edilen tematik haritala ait bilgilerin 

birleştirilebilmesi amacıyla her bir tematik harita için olasılık haritaları üretilmiş ve 

tematik haritalara ait doğruluk oranları bölüt bazında değerlendirilmiştir. Sonuçlar, en 

yüksek sınıflandırma doğruluklarının Kompsat-2 ve Envisat ASAR görüntülerinin bölüt 

tabanlı Destek Vektör Makineleri yöntemiyle sınıflandırılması sonucunda elde edildiğini 

göstermiştir. Tematik haritaların birleştirilmesi yoluyla elde edilen Haziran-Ağustos ve 

Haziran-Temmuz-Ağustos aylarına ait görüntülerin en yüksek genel ortalama hataları 
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(%92 genel hata oranı ve 0.90 kappa) sağladığı gözlenmiştir. Elde edilen doğrulukların 

bölüt tabanlı olarak gerçekleştirilen En Büyük Olasılık sınıflandırma yöntemiyle elde 

edilen en iyi sonuçtan %4 oranında daha yüksek olduğu saptanmıştır. Bu çalışmada 

ayrıca, üretilen tematik haritalar gerçek tarım parselleri ile çakıştırılarak parsel tabanlı 

analiz sonuçları da incelenmiştir.  Analizler, sınıflandırma doğruluklarının parsel 

büyüklükleri ile doğru orantılı olduğunu göstermiştir.  

 

 

Anahtar Kelimeler: Çok Tarihli Görüntü Sınıflandırması, Tarım, Destek Vektör 

Makineleri, Kompsat-2, Envisat ASAR 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Purpose and Scope 

 

Due to the rapid increase of urban population, a dramatic decrease of agricultural lands of 

Turkey is evident as in the case of most of the developing countries (Fig.1.1). A rapid 

growth of urban population is clear within the fifteen years period between 1995 and 

2010 (Figure 1.1) while a reasonable drop of the rural population between those years are 

also obvious. Besides, for the same time periods, the variation of land use types is 

depicted in Figure 1.2, in which a drop in the rural population is observed for arable lands 

while the sizes of the other land types are slightly increased. According to the figures, it 

can be stated that demand of agricultural products has gained more importance to provide 

agricultural needs in Turkey. In order to supply an extensive knowledge about the 

agricultural products, one important way is accurate yield estimation. In traditional 

agricultural applications, up-to-date information of crops is generally acquired by farmer 

declarations and/or ground visits of the fields. As already stated by Penã-Barragán et al. 

(2011), this procedure is not only subject to some errors and discrepancies in farmer 

declarations but also quite expensive and requires substantial time. Therefore, in order to 

perform fast and accurate yield estimation, automated methods based on the development 

stage are necessary to identify crop types of agricultural lands. At this point, analysis of 

satellite images and/or aerial photographs could be more reliable and cost-effective way 

to monitor agricultural areas. With the current developments involved in satellite sensor 

technology, the availability of high spatial resolution images increases (e.g. Geoeye, 

Worlview-2, QuickBird, Kompsat-2, and IKONOS). While that technological 

improvement provides several advantages to detect distinct small objects with a better 

precision in agricultural studies, it may increase the within field spectral variability of 

agricultural lands and affect the final accuracies of the thematic maps (e.g. Gong and 
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Howarth, 1990; De Wit and Clevers, 2004; Smith and Fuller, 2001). In order to handle 

this problem, discovering individual pixels as groups of connected pixels based on their 

textural and contextual properties are necessary to delineate more meaningful objects, 

which is the major interest of Object Based Image Analysis (OBIA) community (e.g. 

Gong et al. 1992; Gong and Howarth, 1992; Yu et al. 2006). In the literature, most of the 

researchers have developed effective segmentation algorithms and utilized the resulting 

segments in parallel to the OBIA (e.g. Schoenmakers et al. 1994; Cheng, 1995; Rydberg 

and Borgefors, 2001; Mueller et al. 2003; Zhan et al. 2005; Lee and Warner 2006; Chen 

et al. 2006; Li and Xiao., 2007; Lu et al. 2007; Wang et al. 2010; Xiao et al. 2010; 

Corcoran et al. 2010). Although a wide variety of results can be obtained through 

different parameter combinations and different softwares, additional steps are required to 

find more appropriate segmentation results.  

 

 

 

Figure 1.1 Variation of rural and urban population between the years 1995 and 2010 in 

Turkey (FAOSTAT, 2011) 
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Figure 1.2 Variation of land use types between the years 1994 and 2009 in Turkey 

(FAOSTAT, 2011) 

 

In crop classification, multi-temporal approaches provide advantages by including the 

phenological characteristics of the crops in the analyses. According to the studies related 

with multi-temporal approaches, reliable thematic maps are produced with high 

accuracies (e.g. Parmuchi et al. 2002; Ban, 2003; Blaes et al. 2005; Turker and Arikan, 

2005; Stankiewicz, 2006; Liu et al. 2006; Wang et al. 2010; Penã-Barragán et al. 2011; 

Skriver et al., 2011). However, most of the multi-temporal studies are based on a rule-

based approach, which requires a good knowledge about the data itself. Hence, in this 

study, a new multi-temporal classification strategy that combines different individual 

classification results in a joint probabilistic approach is proposed. To do that, three-dates 

(June, July, and August, 2008) multi-temporal Kompsat-2 MS (4m) and Envisat ASAR 

(15 m) data are utilized to classify eight crop types cultivated in a specific agricultural 

region of Turkey. Radar satellites sense objects in microwave portion of the 

electromagnetic spectrum, which provide information about surface roughness, dielectric 

properties, and moisture content. Thus, the contributions of microwave imagery on the 

multi-temporal classification performance are also investigated. 

 

The crop types are classified by MLC and SVMs classification methods with pixel-based, 

segment-based, and field-based manners. Multi-temporal images are combined based on 

the maximum membership values of the pixels computed during the classifications. 

Effects of the field sizes on classification accuracies for the original agricultural fields are 
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also examined in this study. The produced thematic maps are then evaluated based on 

confusion matrices and the results are presented. 

 

1.2 Objectives of the Study 

 

The major objectives of this study are stated below: 

 

 to develop an automated multi-temporal classification methodology to provide a 

reliable classification results for major crop types cultivated in the region,  

 to examine the effect of segment-based approach on the classification 

performance, 

 to investigate the performance of the microwave data on the classification 

framework, 

 to compare the performances of the MLC and SVMs methods for the proposed 

multi-temporal classification, 

 

Minor contributions of this study are: 

 

 to define an effective image fusion method on the optical data used for the study, 

 to produce optimum segmentation results for the agricultural fields by multiple 

goodness measures, 

 to provide an automated strategy to collect training samples from segments, 

 to define an optimum speckle reduction method for the microwave data, 

 to find out the field size effect on the classification performance. 

 

1.3 The Software Used in the Study 

 

Several software packages were utilized in this thesis. The Kompsat-2 images were fused 

with the “Pansharp” module of PCI Geomatica. For the other image fusion methods 

applied, ERDAS Imagine and ENVI softwares were utilized. Evaluation of the fused 

products was performed in MatLab environment. To atmospherically correct Kompsat-2 

data the “Atcor2” module of PCI Geomatica was used. Speckle effect of Envisat ASAR 

data was minimized by the “Radar” module of ERDAS software. “OrthoEngine” module 
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of PCI Geomatica was utilized for DTM generation and orthorectification. Map updating 

and generation of backscattering maps were performed by “Focus” and “Sarsigm” 

modules of PCI Geomatica, respectively. Open source Edge Detection and Image 

SegmentatiON (EDISON) software was utilized for the segmentation process. 

Performance evaluation of the segments was carried out by different open source 

software called Alpha. The classification of the images was performed via ERDAS and 

ENVI softwares. The proposed multi-temporal classification was performed by a script 

written in MatLab environment. Finally, the evaluation of the thematic maps was 

performed by PCI Geomatica. 

 

1.4 Organization of the Thesis 

 

This thesis is organized as six chapters, in which the improvement of the study is 

examined in sequence.  

 

Chapter 2 provides an extensive survey about image classification approaches on 

different plant species followed by an introduction section presented in Chapter 1.  

 

In Chapter 3, characteristics of the study area, technical details of the Kompsat-2, Envisat 

ASAR, and the other data utilized in the study and data preparation steps are presented. In 

this part, the data preparation steps are examined as seven titles: (i) image fusion, (ii) 

atmospheric correction, (iii) DTM generation, (iv) orthorectification, (v) map updating, 

(vi) speckle reduction, and (vii) generating backscattering maps. 

 
Methodological details are presented in Chapter 4, where the image segmentation 

methods applied on the fused images and the evaluation of the segments are included. 

The classification algorithms of MLC and SVMs methods are described with the 

probabilistic approach in this section. 

 

In Chapter 5, the results computed for the thematic maps are presented and discussed. 

Confusion matrices of the thematic maps provided the highest classification performance 

is presented in this chapter.  

 

Finally, chapter 6 involves the conclusions and recommendations for future studies. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

Automated image classification has an important role in remote sensing, which “lies at 

the heart of the transformation from satellite image to usable geographic products” 

(Wilkinson, 2005). It is a most commonly used technique to extract thematic information 

from remotely sensed data. However, classifying remotely sensed data into a thematic 

map still remains a big challenge. The study conducted by Lu and Weng (2007) presented 

a survey of image classification methods. Different factors such as; complexity of the 

landscape, the remotely sensed data selected, the inclusion of different image processing 

steps and classification approaches are examined in this study. They concluded that the 

classification performance is affected by many factors therefore further researches are 

necessary to compare the available methods and develop new classification algorithms 

(Lu and Weng, 2007). Wilkinson (2005) evaluated the degree of progress in thematic 

mapping through the development of classification algorithms and approaches. He 

evaluated the results over 500 reported classification experiments published in the journal 

of Photogrammetric Engineering and Remote Sensing by examining various experimental 

parameters including the number of classes, size of feature vector, resolution of satellite 

data, test area etc. In the paper, the mean value of the kappa coefficient of all the studies 

was computed as 0.65 with a standard deviation of 0.19. He found out that while the 

individual studies performed between 15 years period have some advantages; this is not 

effective to explain the overall picture. This can be due to the quality of the collected 

ground truth data, classification methods of class labeling, spatial boundaries used for the 

class definition, scale, and fractal effects. The requirement of new methods to classify the 

complexity of new satellite products is another factor that limits the classification 

accuracy. Therefore, it is concluded that although important advances are achieved, 

further researches that develop advanced classification techniques and methodologies are 

necessary to improve the classification accuracies. 
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The experiments examined in the papers described above (Lu and Weng (2007) and 

Wilkinson (2007)) indicated that up to know a significant effort is dedicated to obtain 

reliable information from the earth surface by remote sensing technology.  According to 

the studies, one significant way to obtain up-to-date information is to retrieve data from 

space-borne optical systems, in which the visible and infrared portions of the Electro 

Magnetic Spectrum (EMS) are very widely used. Acquisitions of that kind of systems are 

performed in day-time; therefore it is called passive systems. In recent decades, earth 

observation researchers have produced different satellite systems called active systems to 

produce information at varying atmospheric conditions even at night. The active systems 

are capable of collecting microwave data, which illuminates ground targets with its own 

radar beam. Therefore, the role of optical and microwave sensors in land-use monitoring 

can be viewed as complementary (Liu et al. 2006). This can be achieved by a number of 

image fusion methods, decision rules and/or multi-temporal approaches. The multi-

temporal approaches are necessary especially for the agricultural studies, in which the 

phenological characteristics of the crops can be a good indicator to improve the 

classification performance.  

 

Mapping of crop rotation using multi-temporal Indian Remote Sensing Satellite data was 

investigated by Panigrahy and Sharma (1997). They classified six major crop types by 

Maximum Likelihood Classification (MLC) method on seven images acquired from IRS 

LISS satellite. Results indicated that the images taken between October and March were 

found to be optimum to classify the major crop types cultivated in the area with an overall 

accuracy over 90%.  

 

Tso and Mather (1999) investigated the performance of multi-temporal SAR imagery on 

crop discrimination based on pixel-based and field-based approach. In pixel-based 

classifications, they utilized raw intensity images, temporal subtraction images, filtered 

images, and textural features. The field-based analyses were performed by computing the 

mean backscatter coefficients of the fields. The images were classified by Maximum 

Likelihood classifier and Self Organizing Map (SOM) algorithm. For the pixel-based 

classifications, the best results were obtained around 60% for the filtered images. They 

found out that the texture features did not contribute the classification results. The images 
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classified with SOM algorithm improved the pixel-based results and the accuracy was 

computed greater than 75%. 

 

Haack et al. (2000) evaluated the advantages of combining the optical and radar data. 

They used one of the traditional classification techniques, parallel-piped, on three study 

sites. The classification components included settlements, natural vegetation, and 

agriculture. They acquired that the fusion of optical and radar data improved the 

classification accuracy although different manipulations such as texture, spatial filtering, 

and de-speckling of the radar data are necessary in order to obtain more reliable results. It 

was observed that the image fusion improved the classification accuracies especially for 

the settlements. 

 

Lee et al. (2001) examined fully polarimetric synthetic aperture radar (SAR) versus dual- 

polarization and single-polarization SAR data for P-, L-, and C-band frequencies in order 

to understand the land-use classification capabilities. Several crop types and trees were 

classified using complex Wishart distribution and Maximum Likelihood classification 

algorithm. For the fully polarimetric crop classification, the L-band provided the best 

classification accuracy of 81.65%. The classification result was dramatically increased to 

91.21%, when each band was included in the classification. For dual polarization of the 

crops, the highest accuracy of 80.91% was computed for the L-band classification of 

complex HH and HV polarizations. Result of the single polarization data was revealed 

that the complex VV and HV polarizations were provided the best overall accuracy 

(59.72%). When the tree-based classifications were examined, it was observed that the P-

band HH and HV polarizations were the best choice. On the other hand, in all cases, it 

was found out that the multi-frequency fully polarimetric SAR data was highly 

preferable. 

 

Three-based approaches were examined by Dabrowska-Zielinska (2001) using optical 

and microwave remotely sensed data to estimate soil moisture. In the first method, 

NOAA/AVHHR images and meteorological data were utilized to estimate the moisture 

content of the soil by applying H\LE index (ratio of sensible to latent heat). Although 

there was a good relationship between soil moisture and the defined index, the application 

had some limitations due to the existing cloud cover. For the second method, the 

relationship between backscattering coefficient and soil moisture were analyzed using 
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ERS-2 SAR and NOAA data. It was concluded that soil moisture and geometrical 

properties of vegetation were primarily based on the backscattering coefficient. The third 

method was applied on the ERS-2 SAR and JERS SAR data set based on the Leaf Water 

Area Index. Highest correlation was observed between measured and estimated soil 

moisture. In conclusion, it was suggested that the incidence angles smaller than 300 was 

found to be more useful to estimate soil moisture and more reliable results can be 

obtained using radar satellites with various bands. 

 

The effect of multi-temporal ERS-1 ASAR and Landsat TM data on classification 

performance of eight agricultural crop types cultivated in Canada were examined by Ban 

Y. (2003). Multiple image combinations were classified by a per-field Artificial Neural 

Network approach. The images were also classified by Maximum Likelihood Classifier 

for comparison purposes. Based on the results, it was observed that thematic maps 

produced with both SAR and Landsat TM image provided higher accuracies than the 

results of single-date images. 

 

Classification accuracies of space-borne radar images were analyzed by Herold et al. 

(2005) for two test sites in East Africa and one in Nepal. Original radar data were 

investigated by applying post-classification smoothing and texture feature extraction 

techniques. A traditional classification technique was used to classify four land cover 

types. Analyses indicated that the original radar data did not separate the classes 

accurately. On the other hand, radar derived measures based on spatial attributes of the 

original data increased the overall accuracies of about 30% for each test site. The best 

results were obtained when two radar or textural/contextual information of radar derived 

bands were utilized in the study.  

 

Panigrahy et al. (2005) examined various indices on the eastern cost of India to assess 

efficiency and sustainability of the cropping system generally computed by traditional 

survey methods. IRS and Radarsat SAR data taken multiple dates were utilized in the 

study. Three main indices called Multiple Cropping Index, Area Diversity Index, and 

Cultivated Land Utilization Index were evaluated. Results showed that spatial resolution 

of IRS data (188 m) was found to be effective to evaluate the rice cropping system. It was 

also pointed out the potential of RS and GIS in generating system database and 

management issues. 
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An investigation on potential SAR signatures to monitor rice crops using multi-temporal 

RADARSAT data was performed by Indrani and Chakraborty (2006). Two different 

separability tests and knowledge-based classification were utilized to detect rice. 

According to the separability tests it was observed that, except for the early rice, other 

rice classes were detachable. On the whole, knowledge-based classification of the rice 

and non-rice areas produced an overall accuracy over 98%. 

 

An object-based classification using high spatial resolution airborne images Digital 

Airborne Imaging Spectrometer (DAIS) was carried out by Yu et al. (2006). In total, forty 

three vegetation and five non-vegetation classes were segmented by eCognition software. 

The classifications of the images were performed by K-NN algorithm in Classification 

and Regression Trees (CART) followed by the definition of feature objects derived from 

eleven spectral and ancillary channels, three intensity-hue-saturation (IHS) transform 

indices, and four topographic parameters. Accuracies obtained for the classification 

algorithm were then compared with the traditional MLC method. Results indicated that 

the object-based 1-NN classification method provided better performance than the pixel-

based MLC classification method. They stated that although it was observed an average 

accuracy around 50%, using high spatial resolution images in mapping detailed 

vegetation was important. They also stated that sample size and quality, classification 

method, distribution and characteristics of the vegetation directly affect the classification 

performance.   

 

Baghdadi et al. (2006) evaluated several ASAR acquisition configurations to acquire the 

surface soil moisture over bare soil from backscattering measurements. To do that, the 

ASAR images were acquired at various incidence angles and in HH and HV polarization 

combinations. The study consisted of two main steps: (i) a calibration phase and (ii) a 

validation phase. First, the data were divided into equal sets. Then, an empirical 

relationship was constructed between the backscattering coefficients and the ground truth 

volumetric soil moisture. Next, an inversion process was performed on the validation set 

in order to calculate the soil moisture. Results indicated that the higher accuracies could 

be obtained when both the high and low incidence angles were utilized. Poor results were 

acquired for only high incidence angles (400-430). This is due to the strong variations 

formed between the low sensitivity to soil moisture and the high sensitivity of the 



11 
 

backscattering coefficients. One other result is that multi-polarized data did not provide 

significant improvement for estimating the soil moisture content.   

 

Liu et al. (2006) investigated the winter wheat condition, grain yield and protein content 

with the help of Landsat TM and Envisat-ASAR data. Aims were (i) to find out the 

backscatter behavior of winter wheat of different growth stages, (ii) to examine and 

compare the ability of Envisat-ASAR and Landsat TM data for crop mapping, and (iii) to 

explore the information content and temporal limitations of Envisat-ASAR and Landsat 

TM for predicting yield and grain protein content of winter wheat. Three growth stages of 

the images and five indices were utilized to fulfill those objectives. Results indicated that 

reliable crop maps were produced when the Envisat-ASAR and Landsat TM data were 

used, together. It was stated that the acquisition dates of the images were quite important 

for the analyses. On the other hand, the spectral response of the SAR imagery on crop or 

soil changes was found to be difficult to explain. Therefore, it was stated that further 

analyses should be performed on SAR response related with soil and crop conditions 

under different incidence angles. 

 

Crop characteristics were examined using multi-temporal series of Advanced Synthetic 

Aperture Radar (ASAR) data by Stankiewicz (2006). Different polarizations during two 

consecutive growing seasons were utilized in the study. Crop signatures were computed 

as an arithmetic mean using the agricultural plots. After the segmentation, a Neural 

Network (NN) classifier was utilized to classify crop types. Results indicated that the 

usage of various polarizations enhanced the classification accuracy. On the other hand, it 

was stated that high accuracies over 90% cannot be acquired using only the Envisat 

ASAR data. 

 

Blaes et al. (2007) examined discrimination of six crop types based on simulated fifteen 

multi-temporal Envisat ASAR data. In the study, they not only evaluated the impact of 

spatial resolution on the field size but also the effect of multi-temporal data set in 

discriminating crop types. As a result, they found out that the multi-temporal data set was 

suitable to extract the crop types for the study. They obtained an overall accuracy of 83% 

using a field-based unsupervised classification strategy for large parcels. 
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Chen et al. (2007) tested different classification methods using single-band full 

polarization SAR data for agricultural crop identification. The classification methods used 

were Wishart-Maximum Likelihood Classifier (WML), Normal Distribution Probability 

Density Functions (PDF) Based Maximum Likelihood (NML) classifier, and Spatial-

Spectral classifiers. Same training sites were utilized in order to perform a reliable 

comparison between the methods. Results indicated that only the Maximum Likelihood 

classifiers such as WML and NML provided better results. It was indicated that the 

results of WML were superior to the results of the NML if the intensity and phase images 

were directly used for training the classifier. They found out that when the images are 

supplied to a Spatial-Spectral-Based classifier, the accuracy could be increased. 

 

Support Vector Machine (SVM) based classifier was examined in order to improve the 

classification accuracy by means of fusing additional data sources by Watanachaturaporn 

et al. (2008). Indian Remote Sensing Satellite IRS-1C Linear Imaging Self Scanning 

Sensor (LISS) III having spatial resolution of 23.5 m was acquired over a mountainous 

region including nine land cover types. Normalized Difference Vegetation Index (NDVI) 

and Digital Elevation Model (DEM) data were used as ancillary data to improve the 

quality of the classification. The SVM was implemented using different types of kernel. 

The results were compared with four other well–known classifiers called as MLC, a 

Decision Tree Classification (DTC), a Back-Propagation Nearest Neighbor (BPNN), and 

a Radial Basis Function Network (RBFNET) classifier using the same data set. A 

significant increase in the accuracy of the SVM-based classifier was observed by 

different kernels and the integration of the ancillary data. 

 

Slazar et al. (2008) investigated the possibility of predicting corn yield using the 

Advanced Very High Resolution Radiometer (AVHRR) sensor with Partial Least Squares 

(PLS) method. In order to construct a model and validation, 23 years (1982-2004) of 

AVHRR data with the official corn yield statistics of Haskel County, USA, were utilized. 

The images were used to compare the Vegetation Health (VH) Indices, Vegetation 

Condition Index (VCI) and Temperature Condition Index (TCI). The PLS method was 

utilized to construct a model relating corn yield anomaly with VH indices. Results 

showed that the error of corn yield prediction in the study were around 6%, which was an 

acceptable error in that kind of applications. 
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A Support Vector Machines (SVMs) method was applied to classify paddy rice with 

multi-temporal ALOS/PALSAR imagery in southeast China by Zhang et al. (2009). 

Three growing seasons were selected to apply the SVMs classification on the images 

followed by computing backscattering coefficients of the data. A conditional kappa value 

of 0.87 was obtained by the SVMs method. Results revealed that besides the advantage of 

SVMs algorithm, multi-temporal analysis of the backscatter information improved the 

classification performance. 

 

McNairn et al. (2009) investigated integration of optical and Synthetic Aperture Radar 

(SAR) imagery to classify Canada’s large agricultural lands. In this way, they tried to 

answer some critical questions about level of accuracy, satellite data to be utilized, 

acquisition times of the satellite images, and classification model. In three-year project, 

RADARSAT-1 (HH), Envisat ASAR (alternating polarization: VV, VH), SPOT-4/5, and 

Landsat-5 images acquired during the growing period were classified based on Decision 

Tree, Neural Network and Maximum Likelihood classifiers. Multi-temporal optical and 

SAR data provided consistent results around 85% for each classification method. It was 

observed that the best results were computed when dual-polarization mode of VV-VH 

combination was used.  

 

Wang et al. (2010) proposed a method using six scenes of multi-temporal, multi-

polarization Envisat ASAR data to produce an agricultural map of Pearl River Delta in 

China. They established a decision tree followed by interpreting signature profiles of land 

cover types. Results indicated that basic land cover types could be classified effectively 

with overall accuracy of 80% when the multi-temporal, multi-polarization data were 

utilized. They also proved that the decision tree approach was appropriate to get 

satisfactory classification results if appropriate images were used based on the growing 

periods of the agricultural classes. 

 

Both object-based and knowledge-based strategies were applied on the fused QuickBird 

MS and RADARSAT SAR data to classify sixteen urban land cover types by Ban et al. 

(2010). It was observed from the general results that the highest accuracy around 90% 

was obtained when optical and SAR data were classified along with object-based and 

rule-based approaches.  
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Among the studies published so far, object-based image analyses received considerable 

attention over pixel-based analyses in land cover classifications due to the reason that 

better results can be achieved. At this point two approaches became popular especially for 

agricultural applications: (i) field-based, and (ii) segment-based. In field-based 

classification, the field geometry defines the spatial relationship between the pixels 

falling within the field by the rule-based re-labeling of image classification results. Jansen 

et al. (1990) treated the map polygons as objects by expecting only one cover type was 

available in each polygon. An improvement of 12% and 20% over a per-pixel MLC were 

reported for two agricultural test sites. 

 

Pedley and Curran (1991) compared per-pixel and per-field classification approaches 

using SPOT High Resolution Visible (HRV) imagery. The study area covers 10 km by 10 

km with well drained and virtually flat area. They applied two classification approaches 

on the SPOT image based on MLC method; however they could not acquire high 

classification accuracy from those classifications. Therefore, they refined the results by 

using prior probabilities, low-pass filters, and image texture. At the end of the analyses, 

they had nine classification results, a basic and four refined versions of the per-pixel 

classification and three refined versions of the per-field classification for twelve classes. 

Among all the results, the highest accuracy was obtained for the per-field classification as 

62.1% using the prior probabilities and image texture. 

 

Congalton et al. (1998) proposed a methodology to develop a water model from remotely 

sensed data using an agricultural crop map and other vegetation on Lower Colorado River 

Basin. For that purpose, Landsat Thematic Mapper image taken four times per-year 

integrated with GIS were used to produce an accurate map and to monitor land cover 

types. Final thematic accuracy was computed around 90% via the proposed automated 

extraction process and data exploration techniques. 

 

Aplin et al. (2001) developed a set of classification methods to detect land cover types on 

a per-field basis from high resolution satellite imagery. A Compact Airborne 

Spectrographic Imager (CASI) with 4m resolution was used to classify urban and rural 

areas in the United Kingdom. Aim of the study was to develop four tools related with the 

per-field classification to improve the results. Results indicated that of the methods the 

per-field texture filtered classification provided the best performance. 
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A field-based land cover map was generated for Jersey by Smith and Fuller (2001), in 

which a vector land parcel boundaries were utilized to subdivide the images. The 

accuracy of the per-field approach was increased by the knowledge-based corrections; a 

GIS database was produced at the end of the analyses with accuracy between 85% and 

95%. 

 

De Wit and Clevers (2004) developed a methodology by integrating multi-temporal and 

multi-sensor satellite imagery for producing a crop map of the Netherlands. They 

achieved 90% overall accuracy and concluded that per-field classification was a more 

effective way to produce crop maps than per-pixel approach. They also stated that 

dynamic crop boundaries can be determined easily by applying automatic segmentation 

techniques. 

 

Lloyd et al. (2004) classified the land cover of a Mediterranean region using an artificial 

neural network (ANN) on per-field basis. In addition to spectral information, geo-

statistical and textural measures extracted from the co-occurrence matrix were utilized. 

 

Aplin and Atkinson (2004) developed a method to predict the missing field boundaries in 

order to increase the accuracy of per-field classification. The technique was based on a 

comparison of the within-field modal land cover proportion and local variance, which 

provided an indication of the missing field boundaries. 

 

A tree-based vegetation classification was performed with fuzzy approach using multi-

temporal NDVI data of India by Krishnaswamy et al. (2004). Two IRS LISS data 

acquired on November 1998 and April 1999 were used to classify eight vegetation types 

in the study. A knowledge-based classification strategy was applied with membership 

information and overall kappa value of vegetation classes were computed around 60%. 

They concluded that the proposed approach was relatively simple and cost effective to 

apply on other applications about vegetation classification. Results achieved for the 

proposed method were then utilized to complete the existing reference map of study area.   

 

Blaes et al. (2005) aimed to develop a robust approach in order to discriminate 

agricultural crop types. Their strategy was based on a parcel-based classification of multi-
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spectral and multi-temporal images. For that purpose, they used three optical imagery 

(SPOT XS and Landsat ETM), fifteen ERS and Radarsat data. Various combinations of 

images were utilized to classify a set of 6571 parcels into 39 crop types. A hierarchical 

classification strategy was adapted to the classification. Results showed that ERS and 

Radarsat data produced similar accuracies. When optical images were included in the 

classification, the accuracy was improved by at least 5%. They concluded that the 

performance of the classification depends on the sensor types and acquisition dates of the 

images. 

 

A recent study was performed by Turker and Ozdarici (2011). They compared the effect 

of pre- and post-polygon classification performance on five agricultural crop types 

cultivated in north-west of Turkey using SPOT4, SPOT5, IKONOS, and QuickBird 

images. They obtained promising results for the post-polygon classification of IKONOS 

and QuickBird data, yielding overall accuracies above 83%. 

 

Although satisfactory results are achieved for the field-based analyses, requirement of 

precise agricultural field boundaries is a big limitation to apply the method. This is 

because digitizing agricultural fields for especially large areas is an expensive and also 

time consuming process. Hence, in recent years, the field-based approach is replaced with 

more automated methods like image segmentation. The idea behind the image 

segmentation is to partition an image into multiple meaningful objects by searching 

homogeneity criteria/s in groups of connected pixels (Cheng et al., 2001). As a result of 

continuous development in satellite sensor technology, the availability of high spatial 

resolution space images has greatly increased. That development provided a significant 

improvement to perceive targets of images, while it increased the spectral within-field 

variability. In order to overcome the problems caused by the heterogeneous pixels within 

the field, the segment-based approaches have been increasingly utilized in parallel to 

Object Based Image Analysis (OBIA) (Blaschke, 2010).  On the other hand, delineating 

meaningful features from satellite images is a critical step because the resulting output 

directly affects the accuracy of subsequent analyses. Hence, significant effort is spent to 

develop effective segmentation algorithms.  

 

An early study that implemented a new segmentation method was performed on crop 

mapping in the Netherland for the combined high resolution optical and radar data by 
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Schoenmakers et al. (1994). Different segmentation products derived from SPOT XS 

(20m), CAESAR (5m), L band HH JPL-AIRSAR intensity data, a multi-channel 

combination of SPOT XS, and CAESAR data were compared in this study. The proposed 

segmentation method was based on region growing followed after edge detection. The 

edge detection method was utilized in order to compute per-pixel magnitude and edge 

direction. After applying an appropriate threshold on the edges, final edge composition 

was acquired. Then, a region growing method was applied within the closed polygons. 

They concluded that the segmented radar image provided better results after filtering the 

microwave data. It was observed that the filtered radar data exhibited good results as the 

optical data. On the other hand, the radar signal of L-band and HH polarization provided 

an ineffective performance to the increase of biomass. The best results were obtained 

when both optic and radar data was segmented together. 

 

For the automated extraction of agricultural field boundaries, the multispectral 

segmentation method of ISODATA algorithm was examined by Rydberg and Borgefors 

in 2001. In the study, the segmentation algorithm was integrated with the edge 

information generated from the gradient edge detector. After computing the initial point 

distance from the edges, the segmentation of ISODATA classifier was applied on the 

SPOT image. Next, each segment was labeled with a separate id number. The number of 

regions produced by the segmentation procedure exceeded the actual number of the fields 

in the image. In order to merge the fields, a likelihood-ratio test was applied on the image. 

Results were compared with the manually extracted boundaries and 83% of the ground 

truth edges were detected by the proposed algorithm at correct pixels. However, some of 

the extra edges representing the within field variation were assumed to be correct. 

 

Du et al. (2002) proposed an approach about segmentation of Synthetic Aperture Radar 

(SAR) images based on statistics of the amplitude and textural characteristics of the data. 

Both co-polarized and cross-polarized amplitude images were utilized in the study. In the 

first case, a filter that preserves the details and edges of the images was applied. Next, 

clusters were determined by using a scanning window. After the merging procedure 

applied on the segments, the images were classified using a Bayes Maximum Likelihood 

classifier. In the second case, the second-order Gaussian Markov random field models 

were applied on the unfiltered images to extract textural characteristics of the data. The 

results of the two methods were also compared in the study. It was found out that the 



18 
 

segmentation procedure on the filtered image reduced the speckle and preserved the 

edges. On the other hand, the segmentation of the texture measure blurred the borders and 

produced smaller unnecessary segments. As a result, the two methods could not eliminate 

the user’s judgments and decision on splitting into sub-classes of the segments. 

 

Wang et al. (2004) compared the classification performance of IKONOS and QuickBird 

image acquired under similar conditions to classify mangrove species. They used textural 

information together with object-based classification. The results showed that the 

classification accuracy did not increase when using only the panchromatic channels for 

each image. The results also revealed that object-based classification provided more 

accurate results for IKONOS imagery. 

 

A segment-based approach was applied on a combination of optical and microwave data 

in Kaifeng Township in China by Xu et al. (2004) in order to extract agricultural crop 

structure using two dates of last season  RADARSAT C band (HH) having 6.25 pixel size 

and two dates of mid-season Landsat ETM+ data (15m). Six classes were included in the 

analyses. After applying the pre-processing operations such as atmospheric and geometric 

corrections, reducing speckle effects, the optical and radar data were combined. The 

combined images were then segmented using an object oriented software, e-Cognition. 

Similar, adjacent pixels were aggregated by e-Cognition software. After the 

segmentation, a supervised image classification was applied on the images. It was stated 

that reliable results especially in residential areas were obtained for agricultural crops. 

The resulting accuracy (overall) was computed as 90% for the proposed approach. 

 

Lee and Warner (2006) compared five aspatial and spatial methods in the study called 

“Segment based image classification”. These are: (i) standard per-pixel MLC; (ii) Kettig 

and Landgrebe’s ECHO classification; (iii) maximum likelihood classification using the 

segment mean; (iv) maximum likelihood classification using the segment divergence 

index; and (v) maximum likelihood classification using the segment probability density 

function (PDF). In order to compare these methods a digital aerial imagery with a 1m 

pixel size and four multispectral bands acquired over Morgantown, West Virginia, USA 

were utilized. At the end of the analyses, it was observed that the MLC using the segment 

PDF provided the highest accuracy of 0.78 (kappa) while the lowest accuracy was 

computed for the segment divergence index. 
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Xiao et al. (2010) applied a watershed segmentation algorithm on a multispectral high 

resolution satellite imagery using log Gabor filter. First, IKONOS panchromatic and 

multispectral images were converted from spatial domain to frequency domain. Next, log 

Gabor filtering was applied on the panchromatic band of the IKONOS image to compute 

texture features. Next, edges were extracted by the pan-sharpened multispectral IKONOS 

imagery. Both texture and edge features were represented with gradient in the study. In 

order to combine edge and texture information of the objects, a watershed transform was 

then applied based on the edges and integrated with the texture features. The proposed 

method provided effective performance and it also reduced the over-segmentation 

problem of the watershed algorithm. It was stated that further research/s should be 

performed to reduce computational load of the method. 

 

An optimal region growing segmentation and the effect of the segments on classification 

accuracy was examined by Gao et al. (2011). A region growing algorithm was performed 

on Landsat multispectral imagery by setting nine different parameter combinations. The 

quality of the segments was evaluated by a statistical test, McNeMar test, and segment-

based classifications were performed on the image. Based on the results it was concluded 

that the classification accuracy is directly related with the quality of the segments. 

 

A new methodology called Object-based Crop Identification and Mapping (OCIM) was 

developed Peña-Barragán et al. (2011) for thirteen major crop types cultivated in 

California by combining Object-based Image Analysis (OBIA) and decision tree (DT) 

algorithms. Several vegetation indices and textural features were obtained from the 

images taken three planting period and included in the OCIM methodology. Promising 

results were obtained when the extracted features were utilized in the classifications. It 

was observed that SWIR band had significant effect on the results to improve the 

classification performance.  

 

Major wetland cover types and their classification uncertainty of Poyang Lake in China 

were investigated based on an object-based analysis and change detection method by 

Dronova et al. (201X). In the analyses, they utilized four multi-temporal images of 

Beijing-1 microsatellite (32m) acquired on November 2007 and March 2008. By spectral 

indices estimated from the satellite images, they proposed a new semi-automated training 
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site selection method. A hard classification was performed to the objects. The 

classification uncertainty was then evaluated by fuzzy thresholds. It was found out that 

the ‘Vegetation’ was the major class in all the scenes. The highest change was observed 

for ‘Mudflat’ among the other classes in the study. 

 

Up to know, a significant number of research papers have been published in the field of 

land cover mapping (Table 2.1). However, most of the proposed methods or approaches 

are site-specific and requires extensive knowledge to adapt the rules on the data. 

Therefore, additional effort should be spent to develop fast and accurate classification 

approaches/algorithms based on the phenological characteristics of agricultural crop types 

(Wilkinson, 2005; Xiao et al., 2010).  
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Table 2.1 Summary of the previous works about the image classification methodologies  

 

* Spatial resolutions of the satellites are categorized in the table as follows: High Spatial 

Resolution refers Pixel Size ≤ 5, Medium Spatial Resolution means 5  	Pixel	Size	  15, 

Low Spatial Resolution is Pixel Size ≥ 15. 

 

 
 

Previous Study 

 
 

Data Source 
Spatial Resolution* 

 
 

Method 

  Optic Radar  

Jansen et al. 
(1990) 

Multispectral Low - 
Maximum 
Likelihood 

Pedley and Curran, 
(1991) 

Multispectral Low - 
Maximum 
Likelihood 

Panigrahy and Sharma, 
(1997) 

Multispectral Low - 
Maximum 
Likelihood 

Congalton et al. 
(1998) 

Multispectral Low - 
Maximum 
Likelihood 

Aplin et al. 
(2001) 

Multispectral High - 
Maximum 
Likelihood 

Rydberg and Borgefors  
(2001) 

Multispectral Low -  ISODATA 

Smith and Fuller 
(2001) 

Multispectral Low - 
Maximum 
Likelihood 

Lloyd et al. 
(2004) 

Multispectral Low - 
Artificial Neural 

Network 
Aplin and Atkinson 

(2004) 
Multispectral High, Low - 

Maximum 
Likelihood 

Yu et al. 
(2006) 

Multispectral High - 
eCognition, 

K-NN algorithm 

Lee and Warner 
(2006) 

Multispectral High - 
ECHO Classifier, 

Maximum 
Likelihood 

Watanachaturaporn et 
al. (2008) 

Multispectral Low - 
Support Vector 

Machines 
Slazar et al. 

(2008) 
Multispectral Low - Partial Least Squares 

Xiao et al. 
(2010) 

Multispectral High - 
Watershed 

Segmentation 
Gao et al. 

(2011) 
Multispectral Low - 

Maximum 
Likelihood 

Peña-Barragán et al. 
(2011) 

Multispectral Low - 
Decision Tree 

Classifier 
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Table 2.1 (cont’d) 

 
 
 

Previous Study 

 
 

Data Source 
Spatial Resolution* 

 
 

Method 

  Optic Radar  

Dronova et al. 
(2011) 

Multispectral Low - 
eCognition 

Fuzzy Classification 

Turker and Ozdarici 
(2011) 

Multispectral 
High, 

Medium, 
Low 

- 
Maximum 
Likelihood 

Tso and Mather 
(1999) 

Radar - Low 
Maximum 
Likelihood, 

SOM 
Lee et al. 

(2001) 
Radar - 

Medium 
& Low 

Maximum 
Likelihood 

Du et al. 
(2002) 

Radar - - 

Segmentation, 
Maximum 
Likelihood, 

Gaussian Markov 
Random Field 

Herold et al. 
(2005) 

Radar - Low 
Maximum 
Likelihood 

Baghdadi et al. 
(2006) 

Radar - Low 
Index-Based 

Analyses 
Stankiewicz 

(2006) 
Radar  - Low 

Segmentation, 
Neural Network 

Indrani and Chakraborty 
(2006) 

Radar - Low 
Rule-Based 
Classifier 

Blaes et al. 
(2007) 

Radar - Low 
Spectral Indices, 
Backscattering 

Analyses 

Chen et al. 
(2007) 

Radar - Medium 
Maximum 
Likelihood, 

ECHO 
Zhang et al. 

(2009) 
Radar - Medium SVMs 

Wang et al. 
(2010) 

Radar - Low 
Decision Tree 

Classifier 
Schoenmakers et al. 

(1994) 
Multispectral 

& Radar 
Low High Segmentation 

Haack et al. 
(2000) 

Multispectral 
& Radar 

Low Medium  Parallel-Piped 

Dabrowska-Zielinska 
(2001) 

Multispectral 
& Radar 

Low Low 
Spectral Indices, 
Backscattering 

Analyses 
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Table 2.1 (cont’d) 

 
 
 

Previous Study 

 
 

Data Source 
Spatial Resolution* 

 
 

Method 

  Optic Radar  

Ban, Y. 
(2003) 

Multispectral 
& Radar 

Low Low 

Maximum 
Likelihood 

Artificial Neural 
Network 

De Wit and Clevers 
(2004) 

Multispectral 
& Radar 

Low Low 
Maximum 
Likelihood 

Xu et al. 
(2004) 

Multispectral 
& Radar 

Low Medium E-Cognition 

Krishnaswamy et al., 
(2004) 

Multispectral Low - 
Rule-Based Fuzzy 

Classifier 
Blaes et al. 

(2005) 
Multispectral 

& Radar 
Low Low 

Parcel-based 
Classification 

Panigrahy et al. 
(2005) 

Multispectral 
& Radar 

Low Low 
Index-Based 

Analyses 

Liu et al. 
(2006) 

Multispectral 
& Radar 

Low Low 

Index-Based 
Analyses, 

Backscattering 
Analyses 

McNairn et al. 
(2009) 

Multispectral 
& Radar 

Low 
Medium
& Low 

Decision Tree, 
Neural Network, 

Maximum 
Likelihood 

Ban et al. 
(2010) 

Multispectral 
& Radar 

High Medium 
eCognition 

 
 



24 
 

 

CHAPTER 3 

 

 

 

STUDY AREA, DATA SETS, AND DATA PREPARATION 

 

 

 

3.1 Study Area and Data Set 

 

3.1.1 Study Area 

 

The study area is situated in Karacabey, an agricultural area in Bursa, northwest of 

Turkey (Fig. 3.1a). It covers an approximately 100 km2 and has central geographic 

coordinates at 28014’12’’ E and 40011’09’’ N (Fig. 3.1b). The area is one of the most 

productive and valuable agricultural regions of Turkey with its rich soils and good 

weather conditions. It is surrounded by nine villages (Hotanlı, Sultaniye, Küçükkarağaç, 

Yolağazı, Akhisar, Yenisarıbey, Ortasarıbey, Eskisarıbey, and İsmet Paşa) and Lake 

Manyas, an important lake for Turkey, which provides water supply for the crop types. 

The region has a temperate and semi-humid climate with a mean annual temperature of 

14.4 0C and a mean annual precipitation of 706 mm. The area has a flat terrain and the 

mean elevation above sea level is 10 m. The soil map of the test site is provided in Figure 

3.2(a) and Figure 3.2(b), where four soil types (alluvial soil, vertisols, colluvial soils, and 

rendzina) and four soil characteristics (I, II, III, and VIII) are available in the region. Most 

of the fields have regular shape in the area based on the land consolidation project 

performed between 1988 and 1992 (Turker and Ozdarici, 2011).  
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3.1.2 Data Set 

 

Three different data sets were utilized in this study: (i) optical data, (ii) microwave  data, 

(iii) vector data of the study area. 

 

3.1.2.1 Optical Data 

 

Three Kompsat-2 panchromatic (PAN) and multispectral (MS) optical data acquired with 

a cloud free condition in June, 13 (early season); July, 11 (mid season); August, 18 (late 

season) were used in the study (Table 3.1). Technical characteristics of the Kompsat-2 

data are given in Table 3.2. The spectral range of PAN image (1m) is between 0.5-0.9 

µm. Kompsat-2 MS (4m) data has four spectral bands: blue, green, red, and near infrared 

(NIR). The spectral ranges of these bands lie between 0.45-0.52, 0.52-0.60, 0.63-0.69 and 

0.76-0.90 µm, respectively (Spot Image, 2008). The pre-processing level of the Kompsat-

2 images is level 2A; in which radiometric correction is applied on the images to 

minimize the sensor-based radiometric errors. Besides the radiometric correction, the 

geometric corrections have also been applied on the images; where the images have been 

projected to a standard cartographic projection (UTM WGS 84) without any ground 

control points. 

 

Table 3.1 Acquisition details of the Kompsat-2 data used in the study. 

      GTM: Greenwich Meridian Time 

 Kompsat-2 PAN&MS 

Acquisition Date 13 June 2008 11 July 2008 18 August 2008 
Time (GMT) 08:18 08:16 08:06 
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Table 3.2 Technical details of the Kompsat-2 data used in this study 

 Kompsat-2 
 

Products PAN MS 
 
Spectral Bands (µm) 

 blue:   0.45-0.52 
0.50-0.90 green: 0.52-0.60 

 red:     0.63-0.69 
 nir:      0.76-0.90 

Spatial Resolution 1m 4m 
Footprint 15 kmx15 km 
Viewing angle Revisit rate of 3 days with roll angle of 30° 
Pre-processing level Level 2A 
Datum WGS 84 
Map Projection UTM 
Zone Number 35 

 

3.1.2.2 Microwave Data 

 

The Envisat ASAR images (15m) used in this study was acquired in June, 28; July, 18; 

August 03, 2008 in Precision Image mode (Table 3.3). This mode provides both HH and 

VV polarization images with a spatial resolution between 15 m and 150 m and ground 

coverage of 56x105 km2. Due to the technical problems occurred during image 

acquisition, only the VV polarization images were available in this study. Envisat ASAR 

operates in C-band and the images can be acquired with various incidence angles ranging 

between 150 and 45.20. A total of seven acquisition configurations (IS1-…-IS7) are 

available for the Envisat ASAR data, however, due to the limitations occurred on data 

acquisition, only the configurations of IS2, IS6 and IS7 could be utilized (Euroimage, 

2009) (Table 3.4). 

 

Table 3.3 Acquisition details of the Envisat ASAR data used in this study 

 Envisat ASAR 
Acquisition Date 28 June 2008 18 July 2008 03 August 2008 
Time (GMT) 19:52 08:07 08:04 
Beam IS2 IS6 IS7 
Pass Ascending Descending Descending 
Polarization VV VV VV 
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Table 3.4 Technical details of Envisat ASAR data used in this study 

 Envisat ASAR 
Wavelength C-band 
Frequency Range 5.331 GHz 
Spatial Resolution 15 m 
Footprint 56 kmx105 km 
Acquisition Configuration  IS2, IS6, IS7 
Swath Width IS2: 105km, IS6: 70km, IS7: 56 km 
 
Incidence Angle Range 

 IS2: 19.20 - 26.70 
 IS6: 39.10 - 42.80  

 IS7: 42.50 - 45.20 
Pre-processing level Level 1B 
Polarization VV 
Datum WGS 84 
Map Projection UTM 
Zone Number 35 

 

3.1.2.3 Vector Data 

 

Two types of vector data were used in the study: (i) field boundaries, (ii) contour maps. 

 

(i) Field Boundaries 

 

The vector data used in this study consists of cadastral maps including agricultural field 

boundaries, which was produced by a land consolidation project conducted between the 

years 1988 and 1992. The field boundaries were manually digitized and updated by 1:5 

000 cadastral maps in a previous work performed by Turker and Arikan (2005) and it was 

further modified for this study (Ozdarici and Akyurek, 2009) by manually digitizing the 

within field boundaries based on the fused Kompsat-2 data (1 m). After the final 

modification, a total of 4689 agricultural fields were provided in Gauss-Kruger (Zone 5) 

projection and European datum 1950 (ED 50) (Figure 3.4). The vector data includes crop 

information cultivated in the area, which was collected by field works performed 

concurrently with the image acquisitions (June, July and August). 

 

(ii) Contour Maps 

 

In this study, 1:25 000- scale digital contour maps covering the test site were obtained 

from General Command of Mapping, which is a national mapping agency of Turkey. 
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and Appendix C, respectively. The fused results were evaluated visually, statistically and 

in terms of the classification performance. The analyses were conducted for two different 

image patches (~5km2) selected from the entire test site, and multiple evaluation 

indicators were used in statistical evaluations: relative mean difference, relative variation 

difference, correlation, peak signal to noise ratio, universal image quality index, and 

ERGAS (erreur relative globale adimensionnelle desynthèse) (Table 3.5). Each image 

patch fused was then classified with MLC method and the results were evaluated by 

confusion matrices. Based on the analyses, it was found that the LSF method was 

provided the best performance, therefore the LSF method utilized for the fusion task of 

the PAN and MS Kompsat-2 images for this study (Figure 3.6). 

 

Table 3.5 Statistical evaluation indicators of the image fusion methods 
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Where; 

 i mean the image pixel value, 

F  refers to the mean value of the fused image, 

LR  is the mean value of the original low resolution image, 

2

F
  is the variance of the fused product and, 

2

LR
 is the variance of the original multispectral image, 

h, l refers to the high and low spatial resolution,  
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respect, two common correction methods are used to correct raw (distorted) images: (i) 

rectification, (ii) orthorectification. The difference of the two methods can be explained 

by the accuracy level of the final product. The rectification process corrects any kind of 

distortions except for relief distortion, which is caused by elevation differences occur due 

to the rugged topography. The relief distortion can be corrected or minimized with the 

help of external elevation information when the orthorectification process is utilized 

(Manual of Photogrammetry, 2004). 

 

In this study, the generated DEM of the study area and well distributed Ground Control 

Points (GCP) that were collected from fieldworks by sub-pixel Differential Global 

Positioning System (DGPS) measurements (Mini MAX, 2004) were used during the 

orthorectification process. In terms of the integrity, those GCPs were collected from 

distinct features, such as intersection of the roads, within the study area. As a geometric 

model, the rigorous “Satellite Orbital Modeling” (PCI Geomatica, 2009) was used for the 

entire Kompsat-2 and Envisat ASAR data. For the orthorectification process, at least 6 

and 14 evenly distributed GCPs were selected for the Envisat and Kompsat-2 datasets 

respectively, and all Root Mean Square Error (RMSE) values of the geometric model 

were computed to be less than one pixel size. The number of GCPs used, RMSE values, 

and the method used for the resampling are given in Table 3.6.  

 

Table 3.6 The number of GCPs used, resampling method and the RMSE values computed 

for each image 

Data Acquisition 
Date 

# of GCPs Resampling RMSE 
(pixels) 

 28 June 08 6 NN 0.55 

Envisat ASAR 18 July 08 8 NN 0.45 

 03 August 08 10 NN 0.50 

 13 June 08 16 NN 0.34 

Kompsat-2  11 July 08 19 NN 0.47 

MS data 18 August 08 18 NN 0.41 

 13 June 08 14 NN 0.80 

Kompsat-2  11 July 08 15 NN 0.85 

(fused) data 18 August 08 20 NN 0.75 

NN: Nearest Neighbor 
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provide a dense canopy structure in this month. After June, in parallel to the development 

stage of tomato, a slight decrease is observed from -8.78 dB to -9.13 dB in July and 

August, respectively. Due to the unique tillage characteristics, the rice fields exhibits a 

different temporal behavior when compared with the other crop types. The highest 

backscattering value (-8.12 dB) is computed in July because the fields have a dense 

vegetation structure in this month. The lowest mean backscattering value (-10.62 dB) can 

be explained by the effect of bare soil during the first and last planting period of rice. In 

August (-10.71 dB) the harvesting period of the rice starts, hence a dramatic decrease is 

observed. A slight decrease is obtained for the mean backscatter values of the sugar beet. 

The mean backscattering values of this crop type was computed to be -7 dB, -8.04 dB, 

and -9.37 dB for June, July, and August, respectively. The temporal fluctuation ranging 

between -9.14 dB and -13.01 dB of the class wheat reveals the dramatic decrease in this 

time period. Based on the early sowing phase of wheat, the dense canopy closure exists in 

June. Together with the harvesting period in July, the bare soil and different tillage 

practices may affect the backscatter variation, which may cause a dramatic drop for the 

wheat fields. The seasonal variation of mean backscatter coefficients of grass land is 

computed to be -10.87 dB, -12.18 dB and -13.82 dB in June, July, and August, 

respectively.  

 

 

Figure 3.11 Mean backscatter values of the crops computed for each date (1: Pea, 2: Corn, 3: 

Tomato, 4: Rice, 5: Sugar beet, 6: Wheat, 7: Grass Land cultivated in June; 8: Corn, 9: Tomato, 

10: Rice, 11: Sugar beet, 12: Wheat, 13: Grass Land, 14: Late Corn cultivated in July; and 15: 

Corn, 16, Tomato, 17: Rice, 18: Sugar beet, 19: Wheat, 20: Grass land cultivated in August). 
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The max, min, and mean backscatter characteristics of all the crop types included in the 

analysis are presented in Figure 3.11, where a slight decrease is observed for the crops 

cultivated in August. This can be explained by the acquisition characteristics of the 

microwave data, because the Envisat ASAR data acquired in August has higher viewing 

angles (42.50 - 45.20) than the other microwave images due to the characteristics of  

different acquisition configuration (IS7). 
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4.2.1 Mean-Shift Method 

 

A popular pattern recognition procedure (Fukunaga and Hostetler, 1975), Mean-Shift, was 

utilized in this study to segment homogenous agricultural patches. Mean-Shift examines 

each data point in its neighborhood by computing the center of mass of the pre-defined 

kernel and shifts the center of the kernel to a new center. The direction between the recent 

and the shifted center of the kernel forms the Mean-Shift vector. This kernel shifting 

process is repeated until there is no (or a slight) change on the position of the kernel 

(Commaniciu and Meer, 1997, 2002; Friedman et al., 2003) (Eq. 4.1).  
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1)(                                         (Eq.4.1) 

Where 

K(x) is the kernel defined for the Mean-Shift process 

x   denotes the center of the kernel used, 

h    is the size of the kernel, 

n    is number of the data values (Comaniciu and Meer, 2002) 

 

The formula of the Mean-Shift method adapted to an image space requires three 

parameters to be defined; (i) kernel type, (ii) bandwidth, and (iii) minimum region. 

Several kernel types such as; Flat, Gaussian, Epanechnikov are utilized in different 

studies during the Mean-Shift (Cheng, 1995). Besides the kernel type, two bandwidth 

parameters namely; (i) spatial (hs) and (ii) range (hr) determine the final quality of the 

segments. The spatial (hs) domain is explained by the positional information of a pixel 

while the range (hr) domain describes the gray level of the pixel in a two-dimensional 

lattice (e.g. satellite image) (Eq. 4.2). In order to eliminate the segments smaller than a 

pre-defined minimum object size, a minimum region (MR) threshold must also be defined 

prior to the segmentation operation. The formula of the Mean-Shift method adapted to an 

image space is given in Equation 4.2. Further details about the Mean-Shift segmentation 

method can be found in Comaniciu and Meer (1997) and Comaniciu and Meer (2002). 
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Where; 

 xs is the spatial part, 

 xr defines the range part of a vector, 

k(x) means the common profile used in both domains, 

hs and hr are the employed kernel bandwidths that are used to determine the resolution of 

the mode detection by controlling the size of the kernel, and C is the corresponding 

normalization constant (Comaniciu and Meer, 2002). 

 

The Mean-Shift method was applied on the fused Kompsat-2 images taken in June, July, 

and August by open source segmentation software called Edge Detection and Image 

SegmentatiON (EDISON) (EDISON software). The software is capable of segmenting 

both gray scale and color images, however it can process color images with three bands at 

a time since the color image is converted to Luv color space prior to the segmentation. 

Therefore, different band combinations of the image were tested and it was found that the 

band combinations, green, red, and near-infrared, provided the most effective solutions 

and therefore used for the segmentation. Principle Component Analysis (PCA) was also 

applied on the images and the first three PC bands were segmented separately for each 

image. However, the produced segments did not provide satisfactory results therefore the 

PCA were not included in the analysis. Epanechnikov kernel that provided high 

performance in most of the studies (e.g. Commaniciu and Meer, 1999; Friedman et al., 

2003) was utilized in this study. The MR parameter was determined as 1000 pixel which 

was based on the total number of pixels that belongs to the smallest agricultural field in 

the area. In total 324 parameter combinations in spatial hs, and range hr, domains were 

tested {3,4,5,…,20} x {3,4,5,…,20} respectively, and effective parameter combinations 

were found for the fused Kompsat-2 data.  

 

4.2.2 Quality Assessment of the Segments 

 

In order to evaluate the segmentation results and define the optimum parameters, the 

segmentation results for different parameter combinations were evaluated in a wide 

perspective via multiple goodness measures. Two types of measures; (i) area-based and 
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(ii) location-based were utilized during the assessment of the segments. In total 11 

measures namely; over segmentation, under segmentation, area fit index (AFI), count 

over, count under, relative area metric, similar size index, quality rate, under merge, over 

merge indices, qLoc, relative position indices and a number of weighted products of their 

variants were computed between the segments and the reference field boundaries to 

compute the similarities in area- and location-based manner. Specific formulas for each 

goodness measure used are given in Table 4.1 in which it was assumed that X = {xi: 

i=1…n} is the set of n training objects (the selected reference polygons), and Y = {yi: 

i=1…m} denotes the related subsets of the segments generated from the image data. 

 

Table 4.1 The goodness measures used in this study 
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The measures of under merging and over merging are considered to compute area-based 

similarities between the reference polygons and the output segments. Based on the total 

over segmentation and total under segmentation of an image for p pixels and a training set 

of polygons, the minimum (min) and maximum (max) values of the under merging are 0 

(zero) and (p-1), respectively. The minimum value (zero, 0) means the reference polygons 

and the relevant segments have a perfect match or over merged. The min and max ranges 

of the over merging lies between 0 and p(p-1), respectively, in which the min value 

indicates a perfect match or under merging. As its name implies the area fit index (AFI) is 

another measure that is utilized to compute the area-based similarities. The min value of 

the AFI is (1-p), while the max value of this measure is (p-1)/p. If the AFI is smaller than 

zero (AFI<0), which means under segmentation while the reverse case (AFI>0) refers 

over segmentation. The relative area (RA) and quality rate (QR) indices were also used to 

evaluate the area-based similarities between the segments and the reference fields. The 

min and max values of these measures are 1/p and 1, respectively. For each measure, one 

(1) indicates an optimum match. The min and max ranges of the over segmentation and 

under segmentation are defined 0 and (p-1)/p, respectively. Zero (0) means a perfect 

match for each index. 

 

The indices mean distance (ModDb), relative position, and qLoc distance were utilized to 

compute the location-based similarities between the reference polygons and the related 

segments. The measure of ModDb is computed based on the distance between the 

reference polygon and the closest vertex in the output segment. The min value of this 

index is zero (0). If the distance increases, it indicates a worse matching in the 

segmentation. Similar to the ModDb, for the measures of relative position index, and 

qLoc distance index, an increase in the distance to nadir location indicates worse 

matching results. 
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(i) In the pixel-based classification; first, each single-date Kompsat-2 images 

were classified separately by assigning the class label to the pixels. Then the 

classification operations were performed using the Kompsat-2 images along 

with the Envisat ASAR data. 

(ii) For the segment-based approach, the thematic maps generated with the pixel-

based classifications were integrated with the segments. The frequencies of 

the pixel values in each segment were computed and the mode of the class id 

was assigned as label to the segments,  

(iii) In the field-based approach, the original agricultural field boundaries were 

overlaid with the thematic map and the majority class was assigned as label 

to the fields. 

 

For a meaningful comparison between those three different types of classification 

approaches, the same training sites were automatically selected and utilized in the 

analyses. The details of the proposed training site selection strategy and the classification 

approaches are given below:   

 

4.3.1 Training Site Selection 

 

In supervised classification, sufficient number of samples is required as prior information 

to produce representative parameters for the pre-defined classes. On the other hand, 

defining training samples is a critical process since the quality of the samples directly 

affects the final accuracies of the thematic maps. Therefore, manual selection of the 

training samples not only needs qualified expert knowledge but also requires lots of time 

and money (Chen and Stow, 2002; Lu and Weng, 2007). In order to tackle those 

problems and eliminate possible bias that may occur during the training area selection, in 

this study, a new approach was proposed to automatically select and define homogenous 

training samples from a subset of segmentation results. First, the optimum segmentation 

output was overlaid with each band (blue, green, red, and NIR) of the MS Kompsat-2 

data to find the best representative regions among all the available segments. Next, 

standard deviations of the pixels within the segments were computed and stored in a 

database. Next, mean values of the standard deviations of the segments computed for 

each band were then calculated. In the final step, the segments that have standard 

deviation smaller than 2 were extracted as training samples and labeled automatically 
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Accuracies obtained for the resulting thematic maps not only depend on the quality of the 

training samples but also the optimum bands used in the classification operations (Jensen, 

2005). Therefore, to assess the degree of statistical separability between the selected 

training class signatures based on the input bands, Bhattacharya Distance and 

Transformed Divergence separability indices were utilized. 

 

Let say a and b are the classes that statistical separability is going to be calculated. 

Bhattacharya Distance is computed by the mean and covariance matrix of the classes 

(Eq.4.3).  
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Where; 

 

 , are the mean vectors of the classes a and b	ܯ	݀݊ܽ	ܯ

ܸ	ܽ݊݀	 ܸ	 are the covariance matrices of the classes a and b. 

 

The Transformed Divergence Index is implemented based on the Eq.4.4 and Eq. 4.5 

below: 
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tr[ ] is the trace of matrix (e.g. the sum of the diagonal elements), 

 , are the mean vectors of the classes a and b	ܯ	݀݊ܽ	ܯ

(Eq.4.4) 

(Eq.4.3) 

(Eq.4.5) 



55 

ܸ	ܽ݊݀	 ܸ	 are the covariance matrices of the classes a and b. 

 

The separability values are scaled between 0 and 2 for each index. The value of 2 

indicates a complete separation between the classes and therefore, the larger the value the 

greater the statistical distance between the class a and b (Jensen, 2005). The separability 

values of each crop pairs computed for the Bhattacharya Distance and the Transformed 

Divergence Index of the four-band MS Kompsat-2 images acquired in June, July, and 

August (a, b, c), and the same optical bands with Envisat-ASAR data (d, e, f) are given in 

Table 4.2 and Table 4.3. 

 

Except for the matrix produced for the four-band Kompsat-2 MS image taken in August, 

the average separability values were computed over 1.70 for other image combinations. 

The Kompsat-2 MS image taken in August provided relatively poor separability values 

when compared with the other matrices. This can be explained by the inefficient training 

samples collected for the August image. The average separability value computed for the 

four-band Kompsat-2 MS image taken in August was improved when the Envisat ASAR 

data was included in the analysis. The same case is also valid for the other images taken 

in June and July. This means an improvement was observed for the separability values of 

the four-band Kompsat-2 MS images when the Envisat ASAR data was included. 

 

Table 4.2 The matrices of Bhattacharya distance of the four-band Kompsat-2 MS images 

taken in June, July, and August (a, c, e), with the Envisat ASAR data (b, d, f). 

 

Four-band Kompsat-2 MS image taken in June 

Class Names Corn Tomato Rice Sugar beet Wheat 

Tomato 1.94     

Rice 1.99 1.99    

Sugar beet 1.99 1.90 1.99   

Wheat 1.97 1.63 1.91 1.95  

Grass Land 1.51 1.40 1.97 1.80 1.51 

Average Separability: 1.83 

Signature pair with Minimum Separability: Tomato, Grass Land 

(a) 
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Table 4.2 (Cont’d) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.94     

Rice 1.99 1.99    

Sugar beet 1.99 1.93 1.99   

Wheat 1.97 1.65 1.91 1.97  

Grass Land 1.55 1.58 1.98 1.95 1.54 

Average Separability: 1.86 

Signature pair with Minimum Separability: Wheat, Grass Land 

(b) 

According to the matrices, it was observed that the separability values improved when the 

Envisat ASAR data was included in the computation. For the matrix of four-band 

Kompsat-2 MS image and Envisat ASAR data taken in June, the major confusions were 

observed for the crop pairs of grass land -corn, grass land-tomato, and grass land-wheat 

as 1.55, 1.58, and 1.54, respectively. A moderate separability value of 1.65 was computed 

for the class pairs of wheat and tomato. 

 

  Four-band Kompsat-2 MS image taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.90     

Rice 1.85 1.95    

Sugar beet 1.99 1.82 2.00   

Wheat 1.99 1.99 2.00 2.00  

Grass Land 1.91 1.95 1.99 1.99 1.58 

Average Separability: 1.86 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 

 

 

 

 

 

 



57 

Table 4.2 (Cont’d) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.04     

Rice 1.88 1.95    

Sugar beet 1.99 1.82 2.00   

Wheat 1.99 1.99 2.00 2.00  

Grass Land 1.93 1.98 1.99 1.99 1.59 

Average Separability: 1.88 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 

 

The lowest separability value was computed as 1.04 for tomato and corn of the four-band 

Kompsat-2 MS image and Envisat ASAR data acquired in July. The classes grass land 

and wheat provided moderate result of about 1.59. The separability values of the other 

crop types exhibited relatively high results over 1.80. The max separabilities (2.00) were 

provided between the class pairs of sugar beet-rice, wheat-rice, and wheat-sugar beet. 

 

Four-band Kompsat-2 MS image taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.56     

Rice 1.51 1.30    

Sugar beet 1.82 1.04 0.96   

Wheat 1.99 1.92 1.99 1.99  

Grass Land 1.99 1.66 1.99 1.99 1.27 

Average Separability: 1.67 

Signature pair with Minimum Separability: Rice, Sugar beet 

(e) 
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Table 4.2 (Cont’d) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.63     

Rice 1.53 1.47    

Sugar beet 1.84 1.07 1.27   

Wheat 1.99 1.97 1.99 1.99  

Grass Land 1.99 1.93 1.99 1.99 1.38 

Average Separability: 1.74 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(f) 

 

The lowest separability values of the four-band Kompsat-2 MS image and Envisat ASAR 

data taken in August were computed for the class pairs of sugar beet-tomato (1.07), sugar 

beet-rice (1.27), grass land-wheat (1.38), and rice-tomato (1.47). A marginal result of 

about 1.53 was observed between the class rice and corn. 

 

Separability values computed for the Transformed Divergence Index slightly improved 

the results of the Bhattacharya distance. The results are provided below: 

 

Table 4.3 The matrices of Transformed Divergence Index for four-band Kompsat-2 MS 

images taken in June, July, and August (a, c, e), with the Envisat ASAR data (b, d, f). 

 

Four-band Kompsat-2 MS image taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.99     

Rice 1.99 1.99    

Sugar beet 1.99 1.95 1.99   

Wheat 1.99 1.94 1.99 1.99  

Grass Land 1.85 1.64 1.99 1.85 1.58 

Average Separability: 1.92 

Signature Pair with Minimum Separability: Wheat, Grass Land 

(a) 
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Table 4.3 (Cont’d) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.99     

Rice 1.99 1.99    

Sugar beet 1.99 1.96 1.99   

Wheat 1.99 1.94 1.99 1.99  

Grass Land 1.88 1.76 1.99 1.97 1.62 

Average Separability: 1.94 

Signature Pair with Minimum Separability: Wheat, Grass Land 

(b) 

 

Four-band Kompsat-2 MS image taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.98     

Rice 1.97 1.99    

Sugar beet 1.99 1.96 2.00   

Wheat 1.99 2.00 2.00 2.00  

Grass Land 1.96 1.98 2.00 2.00 1.80 

Average Separability: 1.91 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.13     

Rice 1.98 1.99    

Sugar beet 1.99 1.97 2.00   

Wheat 1.99 2.00 2.00 2.00  

Grass Land 1.97 1.99 2.00 2.00 1.81 

Average Separability: 1.92 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 
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Table 4.3 (Cont’d) 

 

Four-band Kompsat-2 MS image taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.69     

Rice 1.70 1.92    

Sugar beet 1.86 1.51 1.09   

Wheat 2.00 1.98 2.00 2.00  

Grass Land 1.99 1.95 2.00 1.99 1.52 

Average Separability: 1.81 

Signature pair with Minimum Separability: Rice, Sugar beet 

(e) 

 

Four-band Kompsat-2 MS image with Envisat ASAR data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.75     

Rice 1.72 1.96    

Sugar beet 1.87 1.55 1.42   

Wheat 2.00 1.99 2.00 2.00  

Grass Land 1.99 1.99 2.00 1.99 1.60 

Average Separability: 1.86 

Signature pair with Minimum Separability: Rice, Sugar beet 

(f) 

 

In this study, manually collected training samples were also analyzed for each image and 

similar results were obtained with the results achieved from the proposed automated 

approach. Furthermore, due to the lower separability values, the optical band 

combinations less than four were not included in the analysis. The separability values 

computed for Bhattacharya Distance less than four band combinations are provided in 

Appendix G. 

 

4.3.2 Pixel-Based Analysis 

 

In this study, two different types of pixel-based image classification methods called; (i) 

Maximum Likelihood Classification (MLC) and (ii) Support Vector Machines (SVMs) 
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were examined to classify eight crop types by four-band Kompsat-2 MS images and 

Envisat ASAR data. When performing the classifications, other type of land classes such 

as villages, roads, and water canals were manually excluded. The flowchart of the pixel-

based image classification is presented in Figure 4.7. Detailed explanations of the MLC 

and SVMs methods are provided in Section 4.3.2.1 and Section 4.3.2.2, respectively. 

 

4.3.2.1 Maximum Likelihood Classification (MLC) 

 

Maximum Likelihood Classification (MLC), a traditional supervised classification 

method, computes the probabilities of a pixel for a given number of training classes and 

assigns the class id to the pixel that has the highest probability value. The method 

assumes that the statistics of each class in the training data has a normal distribution. In 

order to obtain the most probable classes, a probability density function is computed. If 

the classification is performed on a single band image, the statistics mean and variance of 

each training class are computed as in Eq.4.6 (Jensen, 2005).  

 

ሻݓ|ݔሺ̂ ൌ
1

ሺ2ߨሻ
ଵ
ଶߪො

ݔ݁ െ
1
2
൫ߤ̂│ݔ൯

ଶ

ොߪ
ଶ ൩ 

 

Where; 

exp [ ] is e (the base of the natural logarithms) raised to the computed power, 

x is the brightness values of the pixel, 

పෝߤ  is the estimated mean value of the pre-defined training class, 

పଶߪ  is the estimated variance of all measurements in this class. 

 

(Eq.4.6) 
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 , is the mean vector of each training classܯ

ܸ is the covariance matrix of each training class, 

│ ܸ│is the determinant of the covariance matrix, 

ܸ
ିଵ is the inverse of the covariance matrix, 

ሺܺ െܯሻ் is the transpose of the vector ሺܺ െ  .ሻܯ

 

The MLC method was tested on the study area based on two different data sets: 

 

(i) The four-band single-date Kompsat-2 images (June, July, and August) and, 

(ii) The four-band single-date Kompsat-2 images (June, July, and August) with 

the corresponding Envisat ASAR data. 

 

First, the classification method was applied on the MS Kompsat-2 data by the 

automatically selected training samples and the resulting thematic maps for the six crop 

types (corn, tomato, rice, sugar beet, wheat, and grass land) having common growing 

period were produced separately for each date (June, July, and August) (Figure 4.8 (a, c, 

e)). The classification results of the fused Kompsat-2 products were also tested in the 

analyses. However, the overall accuracies did not exceed 0.2% to the classification results 

of the MS data. Hence, the MS Kompsat-2 data was used in the classification operations 

to increase the computational efficiency and save time. In order to make use of different 

characteristics of the microwave data, backscattering coefficients of the filtered Envisat 

ASAR data was included as additional band to the classification analyses. The resulting 

pixel-based classification results of the six crop types are given in Figure 4.8 (b, d, f).  
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4.3.2.2 Support Vector Machines (SVMs) Classification  

 

The Support Vector Machines (SVMs) approach has become an attractive supervised 

classification method in recent years due to the effective classification performance in the 

remote sensing analyses (e.g. Huang et al., 2002; Keuchel et al., 2003; Foody and Mathur, 

2004; Pal and Mather, 2005; Foody and Mathur, 2006; Liu et al., 2006; Pal, 2006; Yang, 

2011; Taskin Kaya et al., 2011) although it was proposed in the late 1970s (Vapnik, 

1979). A recent and an extensive review of the SVMs method were performed by 

Mountrakis et al. (2011). Based on the studies conducted, the SVM method has several 

advantages compared to the other image classification algorithms: (i) The SVMs do not 

have any assumption about data distribution, because the distribution of remotely sensed 

images is usually unknown. This characteristic makes the SVMs method superior to the 

other image classification methods, especially MLC; because the MLC assumes that the 

data have a normal distribution. However, if the selected classes have different kind of 

distributions than the normal distribution, this may negatively affect the final 

performance of the classification. (ii) Other important characteristic of the SVMs method 

is the ability of classifying the data successfully using small numbers of training data set. 

The SVMs algorithm can be effectively applied on the data using a limited number of 

training samples which is a very important characteristic, especially for the studies 

analyzing large areas. This is because the collection of ground truth is very expensive and 

time consuming process for large test sites. Besides the advantages described above, the 

usage of an appropriate kernel type in the analysis provides further effective classification 

performance (e.g. Kavzoglu and Colkesen, 2009; Yang, 2011; Mountrakis et al., 2011). 

Detailed explanation about the SVMs algorithm is presented below: 

 

In SVMs, a structural risk minimization concept is introduced to reduce the probability of 

misclassification of the data by defining a hyper plane (e.g. a decision boundary) based 

on the training samples (Vapnik, 1995, 1998). The method was originally developed to 

solve linear classification problems by assigning the labels +1 and -1, in which a hyper 

plane is constructed to classify the data with maximal distance, called ‘margin’. Figure 

4.9 shows multiple hyper planes that separate the two classes, where the hyper plane b 

separates the classes with maximum margin, while the other hyper planes (a, c, and d) are 

very close to the training data points and do not provide an efficient separation. So, the 

logic of the SVMs classifier is to construct the optimum hyper plane that keeps the 
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side of the hyper plane with the perpendicular distance from the origin and wTxi +b ≤ -1, 

yi = -1, for the training points lying on the other side of the hyper plane. The training 

points on the hyper planes are called support vectors, which are used to construct the 

optimum hyper plane and classify the unknown data in the analyses. Hence, a small 

number of training samples could be sufficient to obtain high accuracies for the SVMs 

method. The two equations defined above can be combined as below (Eq.4.9);  

 

(wݕ                                   
TX xi +b) -1 ≥ 0                                        (Eq.4.9) 

 

The margin between two hyper planes is written as 2/║w║. Depending on the restriction 

indicated in Eq.4.9, the maximization of the margin is formulated as (Eq. 4.10); 

 

min ቊ
ݓ ଶ

2
ቋ 

                              

In order to make the Eq. 4.9 easy, a dual Lagrangian equation is utilized: 

 

ௗ௨ܮ ൌ ∑ ∝

ୀଵ െ

ଵ

ଶ
∑ ∝

ୀଵ ∝ ݔݕݕ ൈ  ݔ

Where; 

 . represents positive Lagrangian multipliersߙ

 

The hard margin SVM optimization problem is then defined using the Eq. 4.12.  

 

 

݂ሺݔሻ ൌ ݊݃݅ݏ ൭ ∝

௦௩

ୀଵ

ݔሺݕ ൈ ሻݔ  ܾ൱ 

 

Where;  

nsv means the number of support vectors. 

 

Based on the formula, all the training samples are suitable to the inequality restriction and 

thus the points can be separated easily, which is called hard margin method. On the other 

hand, due to the nature of remotely sensed data, this situation does not always valid and 

(Eq.4.10) 

(Eq.4.11) 

(Eq.4.12) 
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The linear hyper planes are not suitable to separate the classes in most real-world 

problems; therefore the concept of non-linear decision surface is proposed. Based on this 

concept, to increase the separability between classes, the data points are mapped into a 

higher dimensional Euclidean space (called Hilbert Space). 

 

In order to improve the computational performance of the SVMs performed in higher 

dimensional space, several kernel functions are presented (Vapnik 1995). Most of the 

recent remote sensing studies indicated that the definition of kernel function based on the 

study is a very critical step to obtain reliable outputs (e.g. Yang, 2011; Schölkopt et al., 

1997). The mostly used kernel functions are given in Eq.4.15, Eq.4.16, Eq.4.17, and 

Eq.4.18. 

Linear kernel:              

൯ݔ,ݔ൫ܭ                                                 ൌ ்ݔ ൈ 	ݔ

 

Polynomial kernel: 

൯ݔ,ݔ൫ܭ ൌ ൫ߛ൫ݔ ൈ ൯ݔ  ൯ߜ
ௗ
, ߛ  0, ߜ  0 

 

Radial basis function:                                             

൯ݔ,ݔ൫ܭ ൌ ߛ൫െݔ݁ ݔ െ ݔ ଶ൯, ߛ  0 
 

 
Sigmoid kernel:                                                                                                                                               

൯ݔ,ݔ൫ܭ ൌ ݔ൫ߛ൫݄݊ܽݐ ൈ ൯ݔ െ ,൯ߜ ߛ  0, ߜ  0 
 
 
Where; 
 
γ   defines gamma term in the kernel function, 
 
d   is the polynomial degree for the polynomial kernel types, 
 
 .means bias term (Tso and Mather, 2009)   ߜ
 
 

In order to classify multiple classes, the method of SVMs is then extended (Vapnik, 1998; 

Crammer and Singer, 2002). There are three main approaches proposed for the problem 

of multiclass SVMs in the literature: (i) one-against-one, (ii) one-against-others, and (iii) 

directed acyclic graph (DAG).  

    (Eq. 4.15)     

(Eq. 4.16) 

(Eq. 4.17) 

(Eq. 4.18) 
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The one-against-one method was applied on the MS Kompsat-2 images and Envisat 

ASAR data in this study, in which the training process is performed based on each couple 

of classes and the label is assigned to the pixel having the highest vote (Chang and Lin, 

2001; Wu et al., 2004; Tso and Mather, 2009). Radial Basis Function (RBF) kernel that 

provides the improved classification accuracies in most of the studies (e.g. Yang, 2011; 

Kavzoglu and Colkesen, 2010, Pal and Mather, 2005) was utilized in the analyses. In 

order to perform a meaningful comparison, the same training samples were used when 

classifying the data with MLC and SVMs method (Section 4.2.1). Similar to the analyses 

of MLC, the Kompsat-2 images taken for each date were classified with the method of 

SVMs, and after that, Envisat ASAR data were also included in the analyses. The gamma 

functions (ߛ) and penalty parameters (C) utilized in the classifications of each image 

combinations are provided in Table 4.4. The resulting thematic outputs of the SVMs 

method are presented in Figure 4.11. 

 

Table 4.4 Gamma functions ሺߛሻ and penalty parameters (C) used for the SVMs 

classification of the MS Kompsat-2 images and for the combined maps of Kompsat-2 MS 

and Envisat ASAR data 

Data Month ߛ C 

 

Four-band Kompsat-2 MS image  

 

June 0.25 2200

July 0.25 200 

August 0.25 200 

 

Four-band Kompsat-2 MS image and Envisat ASAR data  

June 0.20 2200

July 0.20 200 

August 0.20 200 
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4.3.3 Probability Estimation 

 

In multi-temporal applications, reliable methods are necessary to combine the information 

of the same objects taken in different images. This is generally performed based on 

multiple decision rules. Although the rule-based analysis may provide acceptable results 

in various remote sensing studies (e.g. Ban, et al., 2010), defining the rules require not 

only an efficient knowledge about the study area but also an accurate data analysis. 

Suitability of these rules to the study area and data directly affects the resulting accuracy 

of the thematic maps. Hence, much more effective methods are necessary to combine 

such multi-temporal data.  

 

In this study, a new approach was proposed to combine the thematic information of 

optical and microwave images taken in different dates. The proposed approach is based 

on a hard classification strategy in which, first, probability maps were computed for each 

single-date image in pixel-based manner and the max membership value is then assigned 

as a class label to the pixels. The probabilities of the pixels were computed using two 

different approaches due to the different characteristics of the classifiers used. For the 

MLC, the probability membership function of the class a is computed by the following 

equations, Eq.4.19, Eq.4.20, Eq.4.21, and Eq.4.22: 
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N means the dimension of the pixel vectors, 

m is the number of classes, 

In the equation (Eq.4.20), fuzzy mean and covariance matrices are calculated as below, 

respectively: 

  

∗ߤ ൌ
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(Eq.4.19) 

(Eq.4.20) 

(Eq.4.21) 
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In order to assess the probabilities of the thematic maps computed for the SVMs method, 

assume that an observation of x is provided with its label y. Based on the given 

observations; let say ݎ, which is the estimated pair wise class probabilities of ߤ ൌ

ܲሺݕ ൌ ݕ│݅ ൌ ,݆	ݎ	݅  ሻ, are exist. A model was constructed by ݅௧ and ݆௧classes of a࢞

training set to compute ݎ for each new x. After computing all	ݎ, estimation of  ൌ

ܲ൫ݕ ൌ ,൯࢞│݅ ݅ ൌ 1,… , ݇. is performed for each pixel as follows (Wu et al., 2004): 

ܲ ൫ݎ െ ൯ݎ
ଶ

:ஷ



ୀଵ

 

Subject to: 





ୀଵ

ൌ 1,   0, ∀. 

The classification rule is then defined by 

 

ߜ ൌ ൣݔܽ݉݃ݎܽ
ଶ൧                                             (Eq.4.25) 

Where; 

 ,ଶ denotes the solution of Eq. 4.24

k is the number of classes. 

 

Figure 4.13 indicates a combined SVMs classification result of the four-band Kompsat-2 

images with Envisat ASAR data taken in June, July, and August with the computed 

probability map. Other probability maps produced for the MLC and SVMs methods with 

the corresponding thematic maps are given in Appendix H. 

 

 

 

(Eq.4.23) 

(Eq.4.24) 



 

 
 

Figure 4.13

 

In this stud

according t

and late co

of the pea. 

the late cor

ASAR data

samples fo

maps did n

set on the 

were most 

threshold (

reclassified

 

(

3 (a) The com

dy, the proba

to the field-w

orn in the tes

After June, 

rn cultivated

a taken in Ju

or the class p

not provide s

probability 

likely to be

(< 0.90) wer

d again (Figu

(a) 

mbined them

ability maps 

works it was

st site. The im

a crop rotati

d in July. To

une and July

pea and late

atisfactory r

maps of the

e incorrectly 

re then extra

ure 4.14).  

75

 

matic map of 

were genera

s observed th

mages taken

ion occurs fo

o find those 

y were classi

e corn into t

results for the

e single-date 

classified. T

acted from t

SVMs metho

ated for each

hat a crop ro

n in June rep

or the pea fie

regions, firs

ified separat

the classifica

e crops. Hen

June and Ju

The incorrec

the thematic 

(b) 

od and (b) its

h single-date 

tation occurs

resent the la

lds. A simila

st, the Komp

ely by inclu

ation. Howev

nce, a histogr

uly to find o

tly classified

map and th

 

s probability

e image. How

s for the cla

ate planting p

ar case is val

psat-2 and E

uding new tra

ever, the pro

ram threshol

out the pixel

d pixels und

hose regions

 

 

y map 

wever, 

ss pea 

period 

lid for 

nvisat 

aining 

duced 

ld was 

ls that 

der the 

s were 



 

 
Figure 4.14

pea 

     

4.3.4 Seg

 
With the 

GeoEye-1, 

opportunity

hand, in th

resolution 

misclassific

the variatio

boundaries

eliminate th

the image i

of the enti

class label 

the segmen

accuracy o

the themati

4 (a) Correct

gment-Base

recent adva

Worldview

y to obtain 

he case of 

images, the 

cation proble

on in soil mo

s (Smith and

he misclassi

is divided int

re segment 

for each pix

nts generated

of the classifi

ic maps defin

(a) 

    

ly classified 

d Analysis

ances in RS

w1-2, and Q

more detaile

agricultural 

traditional p

ems caused b

oisture cond

d Fuller, 200

fication prob

to homogeno

according to

xel separately

d for the hom

ication. In th

ned below (F

76

 

pixels and (b

S technology

QuickBird) h

ed informati

applications

pixel-based a

by for examp

ditions, and t

01; De Wit 

blems, a segm

ous segments

o the statisti

y (De Wit a

mogenous re

his study, the

Figure 4.15):

b) the new th

y, high spat

have becom

ion from the

s, with the 

analyses are 

ple; the nutri

the mixed pi

and Clever

ment-based 

s and each p

cal propertie

and Clevers, 

egions play a

e segment-ba

 

(b) 

        

hematic map

tial resolutio

me available 

e earth surfa

improvemen

negatively a

ient limitatio

ixel effects o

rs, 2004). H

strategy is p

ixel is assign

es, instead o

2004). In th

a critical role

ased approac

 

    

p of June incl

on satellites

and provid

ace. On the 

nt of high s

affected due 

ons, pests, di

on the agricu

Hence, in ord

proposed, in w

ned to a final

of determinin

his case, qual

e to determin

ch was appli

  

luding 

s (e.g. 

de an 

other 

spatial 

to the 

isease, 

ultural 

der to 

which 

l class 

ng the 

lity of 

ne the 

ied on 



i. Th

ii. the

iii. the

 

 

Figure 4.15

July), (b) 

classificatio

 

The segme

MLC and S

thematic m

multiple im

he optimum s

e frequency o

e label of maj

(

5 A small p

the result 

on result of t

ent-based res

SVMs metho

maps of the s

mage combin

segmentation

of the classifi

jority class w

(a) 

part of (a) fa

of MLC c

the segment-

sults of the c

od are presen

segment-base

nations are pr

77

n result was i

fied pixels (m

was assigned

(b)

alse color co

classification

-based appro

combined im

nted in Figu

ed approach

rovided in Ap

integrated to 

mode) in the 

d to the segm

omposite MS

n (blue, gre

ach overlaid

mage (June-J

re 4.17 and 

h produced f

ppendix H. 

the classifie

segments we

ments (Figure 

(c) 

S Kompsat-2

een, red, NI

with the pro

uly-August) 

Figure 4.18, 

for the single

ed map, 

ere computed

 4.16).  

 

2 image (tak

IR), and (c

oduced segm

generated f

, respectively

e-date image

d, 

ken in 

c) the 

ments. 

for the 

y. The 

es and 



Figure 

 

4.16 The floowchart of th

78

 

he segment-based image cclassificationn methodolog

 

gy 



 

Figure 4.1

segment-ba

with Envisa

 

Figure 4.1

segment-ba

(b) with En

(

7 (a) The 

ased approac

at ASAR dat

(

8 (a) The 

ased approac

nvisat ASAR

(a) 

      

combined (

ch using ML

ta.  

(a) 

          

combined (

ch using SV

R data.  

79

(June-July-A

LC method 

   

(June-July-A

VMs method

August) them

of four-ban

August) them

of four-ban

(b) 

          

matic maps 

d Kompsat-2

(b) 

     

matic maps 

d MS Komp

     

produced b

2 MS imag

     

produced b

psat-2 MS im

 

   

by the 

es (b) 

 

   

by the 

mages 



4.3.5 Fie

 

Besides the

the pixel-b

results wer

analyses, f

mode of th

field size e

groups bas

field size r

medium si

38.31ha) (

produced b

Figure 4.20

and SVMs 

eld-Based A

e pixel-based

based approa

re evaluated

frequency of 

he class id wa

effect on the

ed on the fie

range from 0

ze (5.00 ha-

(Figure 4.19

by the field-b

0 and Figure

method base

Figure 4.1

Analysis 

d and segme

ach were ov

d in a field-

f the pixels c

as assigned a

e accuracies

eld-sizes. The

0.01 ha to 4.

-9.99 ha), an

9). The resu

based approa

e 4.21, respec

ed on the fiel

9 Agricultur

80

ent-based an

verlaid with 

-based mann

classified by

as label to th

, the field a

e first group

99 ha, the se

nd the third 

ulting comb

ach of the M

ctively. The 

ld sizes are p

ral fields clas

 

nalyses, the t

the referenc

ner, as well

y MLC and 

he original fi

agricultural f

p includes sm

econd group

group conta

bined thema

MLC and SV

field-based r

provided in A

ssified based 

thematic map

ce agricultur

. To perform

SVMs was c

elds. After th

fields were d

mall agricultu

p indicates th

ains the large

atic maps (J

VMs method

results comp

Appendix I.  

on the field-

aps generated

ral fields an

m the field-

computed an

hat, to analy

divided into

ural fields wi

he fields that

e fields (10.

June-July-Au

ds are presen

puted for the 

 

-sizes 

 

d with 

nd the 

-based 

nd the 

yze the 

 three 

ith the 

t have 

.00ha-

ugust) 

nted in 

MLC 



 

Figure 4.20

of the ML

data. 

 

Figure 4.21

of the SVM

data. 

(

0 (a) The fie

C method fo

(

1 (a) The fie

Ms method f

(a) 

      

ld-based resu

for four-band

(a) 

      

eld-based res

for four-band

81

ults of the co

d Kompsat-2

sult of the co

d Kompsat-2

ombined (Jun

2 MS image

ombined (Jun

2 MS image

(b) 

            

ne-July-Aug

s (b) with th

(b) 

              

ne-July-Augu

es with (b) th

    

gust) themati

he Envisat-A

    

ust) thematic

the Envisat-A

 

   

c map 

ASAR 

 

    

c map 

ASAR 



82 
 

 

CHAPTER 5 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

Evaluation of the thematic maps is a crucial process to image classification analyses to 

understand and interpret the quality of the final products produced. In this chapter, the 

evaluation strategy is explained in detail followed by an introduction of the reference data 

used in the accuracy assessment process. The computed accuracies of the pixel-based, 

segment-based and field-based analyses are then discussed. 

 

5.1 Reference Data 

 

The reference data was prepared by updating the database of the existing vector data 

(agricultural field boundaries) by the field works performed concurrently with the image 

acquisitions. Three visits were performed on the test site and crop information such as 

canopy developments, irrigation, fertilization activities were recorded into a database of 

the vector data. After transferring the vector data into a raster format based on the crop 

information, around 30% of all the pixels were utilized as a reference source in the 

accuracy assessment process. During the computations of the accuracy measures, to 

provide a reliable evaluation, the training areas were excluded from the reference data. 

The reference fields utilized in the accuracy assessment process of the six crop types that 

have a common development period are presented in Figure 5.1. 

 

 



 

 

Figure 5.1 

grass land)

 

To evaluate

fields by a 

the referen

evaluation 

 

Where  

N refers to 

∏ is the

proportion 

bi   is the d

B explains 

degree of fr

k is the num

 

 

Reference m

 

e the themati

simple rand

nce fields ba

was determi

the sample s

e proportion

closest to 50

esired preces

the upper (

freedom, 

mber of class

map for six c

ic maps, in t

om sampling

sed on its cl

ned by Jense

N

size 

n of a popul

0%, 

ssion for this

(∝/݇) x100th

ses. 

83

crop types (

total 567 sam

g strategy, w

lass percenta

en (2005) in 


2

1

i

i

b

B
N

 


lation in the

s class (e.g. 5
h percentile 

 

corn, tomato

mple points w

where the sam

ages. The nu

Eq.5.1: 


i

       

e ith class o

5%), 

of the chi sq

 

 

 

 

 

o, rice, sugar

were scattere

mple points w

umber of sam

                    

out of k cla

quare (X2) d

 

 

r beet, whea

ed on the refe

were distribu

mples used 

                
(E

asses that ha

distribution w

 

 

at, and 

erence 

uted to 

in the 

Eq.5.1) 

as the 

with 1 



84 
 

5.2 Evaluation Method 

 

Accuracies of the thematic maps were computed by confusion (error) matrices, which is 

a very widely used accuracy assessment method in remote sensing studies. By the 

confusion matrix, the relationship between the known reference data (ground truth) and 

the corresponding results can be compared pixel-by-pixel basis on the defined categories 

(Lillesand, 2004). The matrix consists of three major accuracy measures: (i) producer’s 

accuracy (omission error), (ii) user’s accuracy (commission error) and (iii) overall 

accuracy. The producer’s accuracy (omission error) is computed by dividing the total 

number of correctly classified pixels by the total number of the given reference pixels, 

which indicates the probability of a reference pixel that is correctly classified. The user’s 

accuracy (commission error) is defined by a ratio between the total number of correctly 

classified pixels in a category and the total number of pixels that were actually classified 

in that category. The user’s accuracy of a class indicates the reliability of a pixel 

classified on a map actually represents that category on the ground. In order to provide a 

general accuracy for the results, the overall accuracy is computed by dividing the total 

number of correctly classified pixels, major diagonal elements of the matrix, by the total 

number of pixels in the error matrix (Jensen, 2005). 

 

The overall accuracy includes the data along the major diagonal only and excludes the 

errors of omission and commission, therefore Kappa was also computed to evaluate the 

results. The Kappa value incorporates the non-diagonal elements of the error matrix, 

which removes the chance agreement. The Kappa statistics (k) are adapted from Lillesand 

(2004) in (Eq. 5.2): 

 

݇ ൌ
ே∑ ௫

ೝ
సషభ ି∑ ሺ௫శ.		௫శሻ

ೝ

ேమି∑ ሺ௫శ.	௫శሻ
ೝ
సషభ

                                     (Eq.5.2) 

                 

Where; 

        r  = number of rows in the error matrix 

         xii  = number of observations in row i and column i (on the major diagonal) 

        xi+ = total of observations in row i 

        x+i = total of observations in column i 

        N  = total number of observations include in matrix  
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Table 5.1 Summary table of the analyzed data 

Data Date Class No Methods Approaches 

 

Kompsat-2 

MS  

June  

6 

 

 

 

 

MLC 

 

 

 

 

 

 

 

 

 

 

Pixel-Based, 

Segment-Based, 

Field-Based 

July 

August 

 

 

 

Kompsat-2 

MS &Envisat 

ASAR  

June 6&8 

July 6&8 

August 6 

June&July  

 

6 

 

MLC & 

Probabilistic 

Approach 

June&August 

July&August 

June& July&August 

 

Kompsat-2 

MS 

June  

6 

 

 

 

SVMs 

July 

August 

 

 

 

Kompsat-2 

MS &Envisat 

ASAR 

June 6&8 

July 6&8 

August 6 

June&July  

 

6 

 

SVMs & 

Probabilistic 

Approach 

June&August 

July&August 

June& July&August 

 

According to Table 5.1, in total 64 different overall accuracy measures were computed 

for the image combinations based on pixel-based, segment-based, and field-based 

manner.  

 

Table 5.2 and Table 5.3 provide a general overview about the results computed for the 

classification methods of the (a) MLC and (b) SVMs, respectively, based on the pixel-

based and segment-based analyses for the six crop types having similar planting period. 

For each method, the highest accuracies in the results are examined by confusion matrices 

in Section 5.3 and Section 5.4 for pixel-based and segment-based analyses, respectively. 

The classification results computed for the MLC and SVMs method were evaluated based 
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on the field-based analyses, as well. The confusion matrices of the field-based results are 

provided in Section 5.5. Other confusion matrices generated for the produced thematic 

maps can be found in Appendix I. 
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Data 

Kompsat-2 MS (4 m) Kompsat-2 MS (4 m) & Envisat ASAR (15 m) 
 

Pixel-based results 
 

 
Segment-based results 

 
Pixel-based results 

 

 
Segment-based results 

 
 Overall 

Accuracy 
(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

June 45.67 0.34 51.85 0.41 54.32 0.44 63.66 0.56 
July 74.25 0.69 76.36 0.71 75.13 0.70 80.42 0.76 
August 71.95 0.66 78.13 0.73 79.18 0.75 82.71 0.79 
June-July 75.66 0.70 84.30 0.81 77.07 0.72 87.47 0.84 
June-August 72.66 0.67 84.48 0.81 78.83 0.74 88.71 0.86 
July-August 76.01 0.71 82.71 0.79 78.66 0.74 85.36 0.82 
June-July-August  75.66 0.70 85.18 0.82 79.18 0.75 88.71 0.86 

Table 5.2 MLC results of the thematic maps computed for different image combinations based on pixel-based and 

segment-based manners 
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Data 

Kompsat-2 MS (4 m) Kompsat-2 MS (4 m) & Envisat ASAR (15 m)  
 

Pixel-based results 
 

 
Segment-based results 

 

 
Pixel-based results 

 

 
Segment-based results 

 
 Overall 

Accuracy 
(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

Overall 
Accuracy 

(%) 

Overall 
Kappa 

June 51.67 0.41 59.61 0.51 56.96 0.48 63.84 0.56 
July 76.01 0.71 84.12 0.81 79.18 0.75 85.36 0.82 
August 65.43 0.58 70.54 0.64 76.01 0.71 78.30 0.73 
June-July 80.24 0.76 91.71 0.90 80.77 0.76 92.59 0.91 
June-August 70.54 0.64 82.54 0.78 81.48 0.77 88.88 0.86 
July- August 79.36 0.75 86.59 0.83 82.36 0.78 86.59 0.83 
June-July-August  82.01 0.78 91.35 0.89 84.48 0.81 92.06 0.90 

Table 5.3 SVMs results of the thematic maps computed for different image combinations based on pixel-based and 

segment-based manner 
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5.3 Results of the Pixel-Based Analysis 

 

In this section, the results of the pixel-based classification of the MLC and SVMs 

methods are discussed in sections 5.3.1 and 5.3.2, respectively. In the pixel-based 

analysis the minimum spatial unit is a pixel that defines the minimum discernable object 

on the satellite image. 

   

5.3.1 Results of the MLC Method 

 

The overall accuracies and overall kappa results of the pixel-based MLC classification 

method computed for the single-date images and different image combinations are 

provided in Table 5.4. 

 

Table 5.4 The overall accuracies of the pixel-based classifications for the thematic maps 

generated 

 

       Month 

Kompsat-2 MS Kompsat-2 MS & Envisat ASAR 

Overall 
Accuracy (%) 

Overall Kappa Overall 
Accuracy (%) 

Overall Kappa 

June 45.67 0.34 52.20 0.42 

July 74.25 0.69 75.13 0.70 

August 71.95 0.66 79.18 0.75 

June-July 75.66 0.70 77.07 0.72 

June-August 72.66 0.67 78.83 0.74 

July-August 76.01 0.71 78.66 0.74 

June-July-August  75.66 0.70 79.18 0.75 

 

Results indicated that an improvement was observed for the thematic maps when the 

Envisat ASAR data was included in the classification analyses. The highest improvement 

was observed around 8% for the Kompsat-2 and Envisat ASAR data taken in August. The 

overall accuracy and kappa values of the August image were computed as 79.18% and 

0.75, respectively. The results computed for the combined thematic map of the images 

taken in June-July-August, and the thematic map produced for the single-date August 

images provided the best overall accuracies. Comparable results around 78% were 

obtained for the thematic maps of the dual image combinations. On the other hand, the 
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lowest overall accuracy (52.20%) and kappa value (0.42) were computed for the 

Kompsat-2 and Envisat ASAR data taken in June. These unsatisfactory performances can 

be explained by the acquisition date of the images, because the crops are in the first 

planting phase in June and the canopy development of the crops has not been completed 

yet. Thus, bare soil may substantially affect the spectral response of different crop types. 

The confusion matrix of the combined map of June-July-August can be seen in Table 5.5. 

 

Table 5.5 Confusion matrix of the combined map of June-July-August 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 67 6 6 1 19 4 103 65.04 
Grass Land 1 77 0 0 1 19 98 78.57 
Rice 0 0 84 2 0 0 86 97.67 
Sugar beet 1 0 3 63 6 0 73 86.30 
Tomato 2 3 2 17 64 1 89 71.91 
Wheat 1 23 0 0 0 94 118 79.66 
Column T* 72 109 95 83 90 118 567  
PA ** (%) 93.05 70.64 88.42 75.90 71.11 79.66   

Overall A. (%): 79.18    Kappa: 0.75  

 

       *: Total 

       **: Producer’s Accuracy  

       ***: User’s Accuracy  

 

According to the confusion matrix in Table 5.5, the highest producer’s accuracy of 

93.05% was obtained for the corn, which can be explained by significant spectral 

difference between the corn and other crop types because; only 5 of the 72 corn pixels for 

validation were misclassified as other cover types. The class rice also provided high 

producer’s accuracy around 88%. Reasonable producer’s accuracies over 70% were 

obtained for the classes grass land, sugar beet, and wheat. 

 

User’s accuracies of the crops indicated that the lowest accuracy (65.04%) was computed 

for the corn with the highest commission error although it provided the maximum 

producer’s accuracy (93.05%). This is due to the fact that only 67 pixels of 113 reference 

pixels were classified as corn. The major confusion occurred for the class tomato with 19 

pixels. On the other hand, the class rice yielded the best user’s accuracy of 97.67%. The 

user’s accuracy of the sugar beet was found as 86.30% while the user’s accuracies of the 

grass land, tomato, and wheat exhibited acceptable results over 70%. 
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 MLC Results of the Class Pea and Late Corn computed for the Kompsat-2 and 

Envisat ASAR data 

 

Owing to the crop rotation occurring in June and July, the class pea and late corn were 

classified separately by MS Kompsat-2 and Envisat ASAR data. However, marginal 

producer’s and user’s accuracies around 50% were observed for the class pea and late 

corn. Hence, to improve the classification accuracies, a histogram threshold (< 0.90) was 

applied on the probability maps of the images taken in June and July and mostly 

incorrectly classified pixels below the threshold was excluded from the images and the 

masked areas were then classified again. The resulting confusion matrices computed 

based on the pixel-based MLC are shown in Table 5.6. 

 

Table 5.6 Confusion matrix of the map of June including the class pea 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Pea Row 
T* 

UA*** 
(%) 

Corn 9 3 0 1 1 8 1 23 39.13 
Grass Land 29 51 1 2 17 28 6 134 38.06 
Rice 1 0 88 2 2 1 10 104 84.61 
Sugar beet 3 2 2 63 7 3 2 82 76.82 
Tomato 3 5 0 3 17 1 5 34 50 
Wheat 5 18 4 2 6 76 25 136 55.88 
Pea 6 2 1 0 4 6 35 54 64.81 
Column T* 56 81 96 73 54 123 84 567  
PA ** (%) 16.07 62.96 91.66 86.30 31.48 61.78 41.66   

 Overall A (%):  59.78      Kappa: 0.52  

 

The classification of seven classes including the pea revealed a marginal classification 

performance, where the overall accuracy and overall kappa were calculated as 59.78% 

and 0.52, respectively (Table 5.6). For the class pea, of 54 pixels for validation, only 35 

were correctly classified as pea and the producer’s accuracy of that class was computed 

as 60.71%. The major confusions were observed for the class rice and wheat with 10 and 

25 pixels, respectively. The user’s accuracy of the pea indicated that only 35 pixels of 54 

were classified as pea that was actually represents that category on the ground. The pea 

pixels were confused mostly with corn and wheat in the user’s accuracy level. The results 

can be explained by the reason that the pea is in harvesting period, so most of the pea 

fields are old in June. Spectral response of the pea fields may be unhealthy in this period 

and this situation negatively affects the classification performance of the pea pixels. 
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Table 5.7 Confusion matrix for the map of July including the late corn 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Late 
Corn 

Row 
T* 

UA*** 
(%) 

Corn 64 1 0 0 13 0 31 111 57.65 
Grass 
Land 

0 54 0 0 0 31 4 89 60.67 

Rice 0 0 83 1 4 1 0 89 93.25 
Sugar beet 0 0 4 71 1 0 0 76 93.42 
Tomato 3 0 1 9 51 0 1 65 78.46 
Wheat 0 14 2 0 0 63 9 88 71.59 
Late Corn 1 9 0 0 6 3 30 49 61.22 
Column T* 68 78 90 81 75 98 77 567  
PA ** (%) 94.11 69.23 92.22 87.65 68 64.28 38.96   

 Overall A (%):  73.36           Kappa: 0.68  

 

Table 5.7 indicates the confusion matrix of the MLC for seven crop types including late 

corn computed for the Kompsat-2 and Envisat ASAR data. The overall accuracy and 

kappa values were computed to be 73.36% and 0.68, respectively, which means a 

moderate classification performance. The class corn provided the highest user’s accuracy 

while its user’s accuracy was poor (57.65%). On the other hand, the lowest producer’s 

accuracy of 38.96% was obtained for the late corn. The major confusion was calculated 

for the class corn due to the similar spectral response characteristics. Of the 77 pixels of 

the late corn for validation, only 30 were correctly classified as late corn and 31 pixels 

were wrongly classified as corn in the matrix. Although the lowest producer’s accuracy 

was computed for the late corn, a moderate user’s accuracy of about 61.22% was 

obtained for the same class. The major confusion of the late corn was observed for the 

grass land. The highest user’s accuracy was obtained for the rice and sugar beet above 

90% in the matrix.  

 

5.3.2 Results of the SVMs Method 

 

Table 5.8 summarizes the overall accuracies of the pixel-based SVMs classifications for 

different image combinations. According to the Table 5.8, it was observed that except for 

the images taken in August, the method of SVMs improved the classification accuracies 

of the MLC method. This improvement indicates effective classification performance of 

the SVMs approach. Similar to the results computed for the MLC method, a certain 

improvement was observed when the Envisat ASAR data was included in the 
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classification framework. The highest improvement was around 11% for the thematic 

map of Kompsat-2 and Envisat ASAR data taken in August (overall accuracy: 76.01% 

and kappa: 0.71) and the combined map of the optical and microwave images acquired in 

June and August (overall accuracy: 81.48% and kappa: 0.77). While the highest 

improvement was observed for those images, the combined map of June-July- August 

provided the best performance with an overall accuracy of 84.48% and kappa value of 

0.81 when the Envisat ASAR data was included in the classification. The error matrix of 

the combined map (June-July-August) is provided in Table 5.9. 

 

Table 5.8 The overall accuracies of the pixel-based classifications for the thematic maps 

 

       Month 

Kompsat-2 MS (4 m) Kompsat-2 MS (4m) & Envisat 

ASAR (15 m) 

Overall 
Accuracy (%) 

Overall Kappa Overall 
Accuracy (%) 

Overall Kappa 

June 51.67 0.41 56.96 0.48 

July 76.01 0.71 79.18 0.75 

August 65.43 0.58 76.01 0.71 

June-July 80.24 0.76 80.77 0.76 

June-August 70.54 0.64 81.48 0.77 

July-August 79.36 0.75 82.36 0.78 

June-July-August  82.01 0.78 84.48 0.81 

 

The confusion matrix in the Table 5.9 revealed that the maximum producer’s and user’s 

accuracy were observed for the class rice around 93% and 95%, respectively. The high 

accuracies of the rice pixels can be explained by the dielectric properties of the 

microwave data due to the flooded rice fields and the multi-temporal optical response 

characteristics. Although the lowest producer’s accuracy (71.08%) was computed for the 

class corn, which was mainly confused with the sugar beet, the corn pixels had fairly 

good user’s accuracy around 86%. The other crop types also provided rather good results 

for the combined thematic map (June-July-August). 
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Table 5.9 Confusion matrix of the combined map of June-July-August 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 59 3 4 0 0 3 69 85.50 
Grass 
Land 

4 78 0 0 1 6 89 87.64 

Rice 4 0 106 1 1 0 112 94.64 
Sugar beet 11 2 0 81 10 1 105 77.14 
Tomato 3 2 3 15 64 1 88 72.72 
Wheat 2 9 1 1 0 91 104 87.50 
Column T* 83 94 114 98 76 102 567  
PA ** (%) 71.08 82.97 92.98 82.65 84.21 89.21   

Overall A (%): 84.48           Kappa: 0.81  

 

5.4 Results of the Segment-Based Analysis 

 

This part examines the classification results of the segment-based analysis, where the 

minimum spatial unit is a segment. The segment-based results and discussions for the 

MLC and SVMs method are presented in Section 5.4.1 and Section 5.4.2, respectively.  

 

5.4.1 Results of the MLC Method 

 

Table 5.10 summarizes the overall accuracies of the thematic maps computed for the 

segment-based approach. It was observed that the segment-based approach improved the 

classification accuracies of the results computed for the pixel-based MLC. The highest 

overall accuracy 88.71% and kappa value of 0.86 were achieved for the combined 

thematic map of June-July-August of the classified Kompsat-2 and Envisat ASAR data, 

which were higher around 4% than the relevant classification results of the Kompsat-2 

data. Similar results were obtained for the combined thematic map of June and July. 

Except for the June image (overall accuracy: 61.19, kappa: 0.53), other thematic maps 

provided rather good results over 80%. This improvement can be explained by the 

segments that define the textural information of the classes by overcoming the problem of 

within field spectral variability. 

 

The confusion matrix of the combined thematic map of Kompsat-2 and Envisat ASAR 

data revealed that the highest producer’s (94.73%) and user’s accuracies (100%) were 

computed for the class rice (Table 5.11). This is due to the dielectric property of water 

sensed by microwave data. The rice fields appear dark during the early vegetative phase 
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when the fields are flooded, which makes the rice fields significantly different from that 

of the other land cover. The crops corn, grassland, sugar beet, tomato, and wheat yielded 

producer’s accuracies over 85%, which denotes a good identification performance. 

Nevertheless, the user’s accuracies of corn and tomato were around 77%, which 

demonstrates that the segment-based analysis of the combined images slightly 

overestimated the classification performance for those crops. The major confusion of the 

class corn was computed with 9 pixels for the class tomato. Tomato was mainly mixed 

with the sugar beet with 11 pixels. The confusions are due to the similar spectral response 

characteristics of those crop types. 

 

Table 5.10 The overall accuracies of the segment-based MLC for the thematic maps 

generated 

 

Month 

Kompsat-2 MS Kompsat-2 MS & Envisat ASAR 

Overall 
Accuracy (%) 

Overall Kappa Overall 
Accuracy (%) 

Overall Kappa 

June 51.85 0.41 61.19 0.53 

July 76.36 0.71 80.42 0.76 

August 78.13 0.73 82.71 0.79 

June-July 84.30 0.81 87.47 0.84 

June-August 84.48 0.81 86.59 0.83 

July- August 82.71 0.79 85.36 0.82 

June-July-August  85.18 0.82 88.71 0.86 

 

Table 5.11 Confusion matrix of the combined map of June-July-August 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 63 0 2 1 9 6 81 77.77 
Grass 
Land 

0 93 0 0 0 2 95 97.89 

Rice 0 0 90 0 0 0 90 100 
Sugar beet 2 0 0 71 3 0 76 93.42 
Tomato 7 0 3 11 78 2 101 77.22 
Wheat 0 16 0 0 0 108 124 87.09 
Column T 72 109 95 83 90 118 567  
PA 87.50 85.32 94.73 85.54 86.66 91.52   

Overall A (%): 88.71    Kappa: 0.86  
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 MLC Results of the Class Pea and Late Corn 

  

Table 5.12 provides the confusion matrix of the thematic map of June produced by the 

segment-based approach for seven crop types including class pea. An improvement 

around 5% was observed when the segment-based approach was applied on the thematic 

map, where the overall accuracy and kappa result were found as 64.72% and 0.58, 

respectively. Even an obvious improvement was observed with the segment-based 

approach; it was not sufficient to obtain high producer’s accuracy of the class pea, which 

was computed as 45.23%. The lowest producer’s accuracy around 23% was computed for 

the class corn with the highest omission error. Other classes provide reasonable 

producer’s accuracies over 75% except for the class tomato and wheat. When the user’s 

accuracies of the crops were examined, it was observed that the classes of corn, rice, 

sugar beet and tomato provided significant results over 85%. On the other hand, the 

lowest user’s accuracy of 42.25% was obtained for the grass land. The classes of wheat 

and pea exhibited marginal results. The user’s accuracy of pea was computed as 57.57%, 

where the major confusions were observed for the class corn and wheat. 

 

Table 5.12 The confusion matrix of the reclassified map including pea 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Pea Row 
T* 

UA*** 
(%) 

Corn 13 1 0 0 0 1 0 15 86.66 
Grass 
Land 

29 60 0 0 15 36 2 142 42.25 

Rice 0 0 92 2 0 2 7 103 89.32 
Sugar beet 4 0 0 62 3 0 1 70 88.57 
Tomato 0 0 0 1 29 2 1 33 87.87 
Wheat 2 17 1 5 5 73 35 138 52.89 
Pea 8 2 3 3 2 9 38 66 57.57 
Column T* 56 81 96 73 54 123 84 567  
PA ** (%) 23.21 74.07 95.83 84.93 53.70 59.35 45.23   

 Overall A (%): 64.72      Kappa: 0.58  

 

The confusion matrix including the late corn is presented in Table 5.13, where the overall 

accuracy and kappa value were computed as 78.30% and 0.74, respectively. An 

improvement around 5% was observed for the overall accuracies of the segment-based 

approach compared with pixel-based results. The lowest producer’s accuracy around 25% 

was computed for the late corn. The major confusion of the late corn was observed for the 

class corn. Only 19 pixels in 77 for validation were correctly classified as late corn due to 
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the spectral similarity and similar phenological characteristics of the crops. On the other 

hand the other crop types provided significant producer’s accuracies over 85% while 

marginal result (65.30%) was observed for the class wheat. The user’s accuracies of the 

classes indicated that except for the corn, acceptable results were obtained for the other 

crop types over 70%. The lowest accuracy around 50% was observed for the class corn, 

which denotes a marginal result. The user’s accuracy of the late corn was computed as 

73.07% though it provided an inefficient producer’s accuracy (24.67%). 

 

Table 5.13 The confusion matrix of the reclassified map including late corn 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Late 
Corn 

Row 
T* 

UA*** 
(%) 

Corn 67 1 5 2 6 4 47 132 50.78 
Grass 
Land 

0 75 0 0 0 24 0 99 75.75 

Rice 0 0 78 0 0 1 0 79 98.73 
Sugar beet 0 0 3 72 0 0 0 75 96 
Tomato 1 0 2 7 69 0 0 79 87.34 
Wheat 0 0 2 0 0 64 11 77 83.11 
Late Corn 0 2 0 0 0 5 19 26 73.07 
Column T* 68 78 90 81 75 98 77 567  
PA ** (%) 98.52 96.15 86.66 88.88 92 65.30 24.67   

 Overall A (%): 78.30        Kappa: 0.74  

 

5.4.2 Results of the SVMs method 

 

The overall accuracies of the SVMs method computed for the segment-based strategy are 

presented in Table 5.14.  According to the table, even the classifications were performed 

based on the Kompsat-2 data only, the segment-based approach of the SVMs method 

improved the classification accuracies of the MLC results. For the thematic maps 

produced using the Kompsat-2 image, the highest overall accuracies around 90% were 

computed for the dual and triple map combination of June and July, and the combined 

map of June-July-August, respectively. The computed accuracy was improved around 1% 

when the Envisat ASAR data was included in the classification analyses. For the thematic 

maps generated for the Kompsat-2 and Envisat ASAR data, the highest overall accuracy 

of 92% was obtained for dual image combination of June and July and the combined map 

of June-July-August. The kappa results of those images were computed around 90%, 

which means an outstanding classification performance for the crop types. The confusion 
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matrix of the dual combination of the images taken in June and July are given in Table 

5.15. 

 

Table 5.14 The overall accuracies of the segment-based SVMs classifications for the 

thematic maps 

 

       Month 

Kompsat-2 MS Kompsat-2 MS & Envisat ASAR 

Overall 
Accuracy (%) 

Overall Kappa Overall 
Accuracy (%) 

Overall Kappa 

June 59.61 0.51 63.84 0.56 

July 84.12 0.81 85.36 0.82 

August 70.54 0.64 78.30 0.73 

June-July 91.71 0.90 92.59 0.91 

June-August 82.54 0.78 88.88 0.86 

July- August 86.59 0.83 86.59 0.83 

June-July-August  91.35 0.89 92.06 0.90 

 

According to the confusion matrix of the combined map of June and July (Table 5.15), 

the producer’s accuracies were computed significantly high (over 85%), which means a 

quite good classification performance. The maximum producer’s accuracy of about 99% 

was achieved for the grass land, in which only 1 pixel of 94 were omitted as tomato. 

Promising results (97.89%) were achieved for the user’s accuracy of the grass land, as 

well. The best user’s accuracy was found for the class wheat around 99%, in which of the 

93 pixels 92 were correctly classified as wheat. The lowest, but not actually low, user’s 

accuracy was computed around 83% for tomato, which was mainly confused with sugar 

beet due to the spectral overlaps. 

 

Table 5.15 Confusion matrix of the combined map of June-July 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 75 0 0 1 6 7 89 84.27 
Grass 
Land 

0 93 1 0 0 1 95 97.89 

Rice 4 0 111 1 1 0 117 94.87 
Sugar beet 4 0 1 85 0 1 90 94.44 
Tomato 0 1 1 11 69 1 83 83.13 
Wheat 0 0 1 0 0 92 93 98.92 
Column T 83 94 114 98 76 102 567  
PA 90.36 98.93 97.36 86.73 90.78 90.19   

Overall A (%): 92.59   Kappa: 0.91  
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The class pea and late corn were also classified by the segment-based SVMs method 

without using a histogram threshold. This is because the reclassified thematic maps did 

not significantly improve the thematic accuracies of the classes when the masked areas 

were reclassified. The segment-based SVMs classification approach computed for the 

images taken in June improved the producer’s and user’s accuracies of the class pea 

around 10% and 5%, respectively, compared to the results of segment-based MLC 

method. A dramatic improvement around 50% was computed for the producer’s accuracy 

of the late corn (76.62%) when a segment-based SVMs classification was applied on the 

June image. The user’s accuracy of the late corn was found to be 75.64%, which was 

higher around 2% than the corresponding MLC result. 

 

5.5 Results of the Field-Based Analysis 

 

This part presents the results of field-based analyses of the Kompsat-2 and Envisat ASAR 

data computed for the MLC method. First, the analyses were performed on all the fields, 

thereafter the effects of field sizes were analyzed by dividing the fields into three groups: 

(i) small (0.1-4.9 ha), (ii) medium (5-9.9 ha), (iii) large fields (10-38 ha).  

 

Table 5.16 presents the confusion matrix of the field-based classification computed for all 

reference fields. The overall accuracy and kappa values of the matrix were computed as 

92.45% and 0.90, respectively, which indicates similar performance with the segment-

based approach. In the producer’s accuracy level, all the crop types provided high 

accuracies over 85%. The highest producer’s accuracy was computed for the class rice 

with the minimum omission error. For sugar beet, all the reference pixels were correctly 

classified and the class had maximum user’s accuracy (100%). The smallest user’s 

accuracy of 57.14% was observed for the class tomato although producer’s accuracy of 

tomato was relatively high (88.88%). The major confusion was observed as 5 pixels for 

sugar beet due to the similar spectral response characteristics. 
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Table 5.16 Confusion matrix of the field-based analysis  

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 26 0 1 0 1 6 34 76.47 
Grass 
Land 

0 25 0 0 0 2 27 92.59 

Rice 0 0 48 0 0 1 49 97.95 
Sugar beet 0 0 0 54 0 0 54 100 
Tomato 1 0 0 5 8 0 14 57.14 
Wheat 0 3 0 0 0 84 87 96.55 
Column T 27 28 49 59 9 93 265  
PA 96.29 89.28 97.95 91.52 88.88 90.32   

Overall A (%): 92.45   Kappa: 0.90  

 

Table 5.17 indicates the results of field-based analysis based on the small fields between 

0.1 and 4.9 ha. In total 195 agricultural fields were analyzed for that group. The overall 

accuracy and kappa values were computed as 90.76% and 0.81, respectively. Except for 

the grass land (70%), the producer’s accuracies of all the other crop types were calculated 

over 85%. No confusion was observed for the class rice in the producer’s accuracy level 

(100%). Similar result was computed for the class sugar beet in the user’s accuracy level. 

On the other hand, the highest commission error (57.14%) was observed for tomato while 

it provided fairly acceptable producer’s accuracy (88.88%).  

 

Table 5.17 Confusion matrix of the small fields (0.1 ha and 4.9 ha) 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 25 0 0 0 1 5 31 80.64 
Grass 
Land 

0 7 0 0 0 2 9 77.77 

Rice 0 0 34 0 0 1 35 97.14 
Sugar beet 0 0 0 48 0 0 48 100 
Tomato 1 0 0 5 8 0 14 57.14 
Wheat 0 3 0 0 0 55 58 94.82 
Column T 26 10 34 53 9 63 195  
PA 96.15 70 100 90.56 88.88 87.30   

Overall A (%): 90.76  Kappa: 0.81  

 

The field-based analysis computed for the medium fields (5 ha-9.9 ha) include four crop 

types; grass land, rice, sugar beet, and wheat. The confusion matrix of the crops is given 

in Table 5.18, where the overall accuracy and kappa value were computed as 96.87% and 

0.95, respectively. It was observed from the matrix that all the crops provided 

significantly high accuracies. The major confusion was computed for the sugar beet in the 
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user’s accuracy level. This is due to the reason that 1 sugar beet field out of 2 was 

classified as rice, where the number of samples is not adequate for validation. 

 

Table 5.18 Confusion matrix of the medium fields (5 ha and 9.9 ha) 

 Grass 
Land 

Rice Sugar 
beet 

Wheat Row 
T 

UA 

Grass 
Land 

6 0 0 0 6 100 

Rice 0 12 0 0 12 100 
Sugar beet 0 1 1 0 2 50 
Wheat 0 0 0 12 12 100 
Column T 6 13 0 0 32  
PA 100 92.30 100 100   

        Overall A (%): 96.87     Kappa: 0.95  

 

Table 5.19 indicates the confusion matrix of the large fields (10-38 ha), which includes 

grass land, rice, and wheat. The overall accuracy and kappa value for the large fields were 

computed as 100%, where all the classes were classified in its maximum accuracy level. 

Based on the results, it is quite evident that the larger the fields, the higher the 

classification performances reached. 

 

Table 5.19 Confusion matrix of the large fields (10 ha and 38 ha) 

 Grass 
Land 

Rice Wheat Row 
T 

UA 

Grass 
Land 

9 0 0 9 100 

Rice 0 1 0 1 100 
Wheat 0 0 12 12 100 
Column T 9 1 12 22  
PA 100 100 100 100  

Overall A (%): 100     Kappa: 100 

 

Similar results were obtained for the field-based analyses of the SVMs method. 

Confusion matrix of the field-based analysis for the SVMs method is provided in 

Appendix I. 
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CHAPTER 6 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

In this part the conclusions derived from this study are presented along with the 

recommendations for further studies.  

 

6.1 Conclusions 

 

Based on the results, the following conclusions are drawn from this study: 

 

 The Least Square Fusion was found to be the most effective method compared to 

the other image fusion methods that provided high spatial resolution (1 m) MS 

Kompsat-2 images for the study, 

 

 It was observed that the Lee filter with 5x5 window size was an appropriate 

method to minimize the speckle effect of the Envisat ASAR data, 

 

 For all the image combinations used, the separability values between the classes 

and also the classification accuracies were improved when the C-band Envisat 

ASAR data was included in the classification framework, 

 

o Based on the Transformed Divergence Index, major confusions were 

observed between wheat/grass land, corn/tomato, and tomato/sugar beet 

for the MS Kompsat-2 and Envisat ASAR data acquired in June, July, 

and August 2008, respectively. Using less than four optical bands caused 

low separability values. Additional images based on the development 

periods of the crops might be a good way to increase the separabilities 

between the classes, 
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o For the segment-based MLC method, an improvement of 13% was 

observed for the combined thematic map of June-July-August when the 

Envisat ASAR data was included into the classification framework. 

 

o In terms of the segment-based SVMs method of the combined thematic 

map of June-July-August, an improvement around 10% was achieved 

when the Envisat ASAR data was included into the classification. 

 

 The classification accuracies are strongly affected from the quality of the 

segments. In this study, for the segmentation task, the goodness measures 

computed for 324 different parameter combinations of the Mean-Shift were 

evaluated and the optimum segments were provided for the classification 

operations, 

 

 The proposed training site selection strategy was found to be effective to prevent 

possible bias on the classification performance and save time during the 

collection of training sample, 

 

 Segment-based approach was found to be an effective way compared to the pixel-

based method during the classification of images by overcoming the problem of 

misclassification due to the within field internal spectral variability, 

 

o For the segment-based MLC method, the highest accuracies were 

obtained for the combined map of June-July-August classified with MS 

Kompsat-2 and Envisat ASAR data, which improved the overall 

accuracy of the pixel-based classification around 10% and computed to 

be 88.71%. 

 

o The best results around 92% were obtained for the segment-based SVMs 

method of the combined thematic maps of the June-July and June-July-

August classified with MS Kompsat-2 and Envisat ASAR data, which is 

better around 10% than the corresponding pixel-based results.  
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 It was observed that multi-temporal classification approach is essential to provide 

reliable results in agricultural classification studies. For this study, higher 

accuracies were obtained for the classification of multi-date data compared to the 

single-date satellite images, 

 

 Selection of the optimum growing dates of different crop types is a key factor to 

improve the classification performance. In this study, based on the results, the 

images taken in June, July, and August were found to be effective to classify the 

crop types, 

 

o It was observed that high accuracies were computed around 89% for the 

segment-based MLC results of the combined thematic maps of June-

August, and June-July-August.  

 

o For the segment-based SVMs method, the highest accuracies were 

computed around 92% for the combined map of June-July and June-July-

August. 

 

 Results indicated that the SVMs method provided better classification accuracies 

compared to the results obtained from MLC method except for the images taken 

in August: 

 

o The segment-based SVMs improved the maximum overall accuracy of 

the segment-based MLC method around 4% and it was computed as 

92.06%. 

 

o A significant drop around 3% was observed for the map of August 

classified with the segment-based MLC and SVMs methods. This can be 

explained by unrepresentative training samples that provide inefficient 

classification performance for the image taken in August, which can be 

explained by the low separability index values of the August image. 
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 Multi-temporal segment-based approach along with the probabilistic approach 

was found to be effective to combine the information of multi-date data and 

improved the classification accuracies of the agricultural crop types, 

 

 To set a histogram thresholds on the probability maps to classify pea and late 

corn improved the classification accuracies of the single-date images of June and 

July but the improvement was not enough to achieve the high classification 

accuracies computed for the multi-temporal data sets, 

 

o For the pixel-based MLC of the optical and microwave data taken in June 

and July, marginal user’s accuracies over 60% were observed for the 

class pea and late corn while low producer’s accuracies were computed 

around 40%. For the class pea, this can be explained by the acquisition 

dates of the images because the pea fields are in harvesting period in June 

and bare soil may affect the spectral response of this crop type. The 

major confusion of late corn was observed for the class corn because 

each crop type exists in July on the study area, which causes spectral 

overlaps between these classes.  

 

 It was observed that the segment-based approach provided similar results based 

on the field-based analyses, which is a good indicator of reliability for the 

segments produced, 

 

o The maximum overall accuracy for the segment- and field-based 

approaches was computed around 92% for the combined thematic map 

(June-July-August) of the MLC and SVMs classifications of the MS 

Kompsat-2 and Envisat ASAR data, 

 

 It was revealed that field sizes of the agricultural parcels directly affects the 

classification accuracies, hence, it can be stated that the higher the field-size, the 

higher the classification performance, 
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6.2 Recommendations 

 

The following items are recommended for further studies: 

 

 To detect more precise agricultural fields, satellite images (e.g. Geoeye and 

Worldview-2) or aerial photographs that provide higher spatial resolutions might 

be utilized in the segmentation process. 

 

 Further research should be performed to classify land cover types by microwave 

images that have spatial resolution higher than 15m (TerraSAR, Radarsat etc.), 

 
 Besides VV polarizations, HH and other cross polarized microwave data should 

be analyzed in further studies to understand the polarization effect of the 

microwave data on the classification results. On the other hand, phase information 

of Envisat ASAR data might be included in the analysis in order to understand the 

potential of the phase information on the classification performance, 

 

 In order to classify the crop types more reliably, additional images and also 

ground truth taken on early-, mid-, and late-season of each month might be 

helpful.  

 

 Evaluation of the segment-based classification results is still a challenging 

process. This is because the produced segments generally do not represent actual 

fields on the ground; therefore an appropriate segment-based evaluation method is 

necessary to further assess the segments. 

 

 The proposed methodology should be tested on rough terrains and the effects of 

topography on the results should be evaluated,  

 
 In order to see the effect of red and near infrared bands on the segmentation 

performance, Normalized Difference Vegetation Index (NDVI) may be tested in 

the study, 
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 Soil condition (e.g. clay, fertilizer, water content) directly affects the spectral 

response characteristics of the satellite imagery and also classification accuracies, 

therefore more detailed ground truth data and further researches are necessary to 

understand the crop conditions, 

 

 As a future application area, the resulting products (thematic maps, statistics, 

graphs, etc.) can provide valuable information to various departments; hence this 

information should be shared with the relevant departments to assess the crop 

diversity in agricultural communities, to compute water consumption in large 

regions, etc.  
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ANAHTAR KELİMELER:  Görüntü Zenginleştirme, Görüntü Sınıflandırması, Tarım, 

Doğruluk Değerlendirme, QuickBird 

 

 

ÖZET 

 

 

Görüntü zenginleştirme, farklı mekânsal, spektral ve zamansal görüntü özellikleri biraraya 

getirilerek bu görüntülerden yüksek mekânsal ve spektral özelliklere sahip yeni bir görüntü 

elde etme yöntemidir. Yöntemin ana amacı, görüntü analizlerine (görüntü sınıflandırması, 

bölütleme, değişim belirleme vb.) detaylı girdi sağlamaktır. 
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Çalışmada literatürde sıkça karşılaşılan dokuz farklı görüntü zenginleştirme yöntemi test 

edilmiş ve bu yöntemlerin tarımsal ürün sınıflandırması üzerindeki etkileri incelenmiştir. 

Çalışma alanı olarak Bursa’da yer alan Karacabey Ovası seçilmiştir. Karacabey Ovası, alanda 

yetiştirilen ürün çeşitliliği bakımından Türkiye’nin en verimli ovaları arasında yer almaktadır. 

Tarımsal alanlarda yetiştirilen ürünlerin güvenilir bir şekilde haritalanabilmesi için son 

yılllarda yüksek mekânsal çözünürlük sağlayan uydular önem kazanmıştır. Bu çalışmada 13 

Ağustos 2004 tarihli QuickBird siyah-beyaz (0.61m) ve renkli (2.44 m) görüntüleri 

kullanılmıştır. Hesaplamalarda kolaylık sağlamak amacıyla analizler görüntünün yaklaşık 5 

km2 lik bölümü üzerinde uygulanmıştır. Görüntüler üzerinde ilk olarak, Gram-Schmidt, En 

Küçük Kareler, Yüksek Frekans Filtreleme yöntemi, Ana Bileşenler Spektral görüntü 

zenginleştirme yöntemi, Renk-Doygunluk-Parlaklık dönüşümü (RDP), İyileştirilmiş 

Yoğunluk-Renk-Doygunluk (YoRD) dönüşümü, Brovey, Dalgaboyu tabanlı Ana Bileşenler 

Yöntemi ve Dalgaboyu tabanlı YoRD görüntü zenginleştirme yöntemleri uygulanmıştır. 

Zenginleştirilmiş görüntüler üzerinde yer alan beş ürün sınıfı (Mısır, Buğday, Anız, Domates 

ve Şeker Pancarı) En Büyük Olasılık Sınıflandırma yöntemi yardımıyla sınıflandırılmıştır. 

Görüntü zenginleştirme yöntemleri sonucunda üretilen zenginleştirilmiş görüntülerin spektral 

kalitesinin gerçek renkli görüntü ile karşılaştırılabilmesi için görüntüler, gerçek renkli 

görüntü çözünürlüğü olan 2.44 m ye dönüştürülerek sınıflandırılmıştır. Sınıflandırma 

süresince tüm görüntüler için aynı örnek alanlar kullanılmıştır. Sınıflandırma sonuçları 

gerçek renkli görüntüye ait sınıflandırma sonucu ile karşılaştırılmış ve referans harita 

yardımıyla değerlendirilmiştir. Kullanılan referans harita, ürün bilgilerinin alana gidilerek 

toplanması yoluyla üretilmiştir. Referans harita üretimi, görüntü çekim tarihiyle eş zamanlı 

olarak gerçekleştirilmiştir. Referans harita yardımıyla sınıflandırılmış görüntüler için hata 

matrisleri oluşturulmuş ve genel hata, Kappa değeri ve ürün sınıflarına ait doğruluk oranları 

bu matrisler yardımıyla hesaplanmıştır. Değerlendirmeler sonucunda gerçek renkli görüntüye 

ait en yüksek genel hata oranı %84,2 olarak hesaplanmıştır. Gram-Schmidt görüntü 

zenginleştirme yöntemi gerçek renkli görüntüden elde edilen sınıflandırma doğruluğunu 

yaklaşık %4 arttırarak %88 olarak hesaplanmıştır. Bu oranı yaklaşık %86 ile En Küçük 

Kareler yöntemi, Ana Bileşenler Spektral görüntü zenginleştirme yöntemi, Yüksek Frekans 

Filtreleme Yöntemi ve İyileştirilmiş YoRD dönüşümü yöntemleri izlemiştir. Brovey ve 
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Dalgaboyu tabanlı YoRD dönüşümlerine ait doğruluk oranları yaklaşık  %85 olarak 

hesaplanmış ve bu iki yönteme ait sonuçlar da kabul edilebilir bulunmuştur. Diğer taraftan 

Dalgaboyu tabanlı Ana Bileşenler yöntemi ve RDP yöntemlerine ait doğruluk oranlarının 

gerçek renkli görüntü için hesaplanan orandan düşük olduğu gözlenmiştir. Bu iki yönteme ait 

genel doğruluk oranları yaklaşık %81 olarak hesaplanmıştır. Elde edilen sonuçlar, Gram-

Schmidt, En Küçük Kareler, Ana Bileşenler Spektral, Yüksek Frekans Filtreleme Yöntemi, 

İyileştirilmiş YoRD dönüşümü, Brovey dönüşümü ve Dalgaboyu tabanlı YoRD görüntü 

zenginleştirme yöntemlerinin tarım alanlarındaki ürün çeşitliliğinin sınıflandırılmasında 

sınıflandırma doğruluğunu arttırmak için kullanılabileceğini göstermiştir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 
 

 

EVALUATING THE CONTRIBUTION OF IMAGE FUSION METHODS 

INTO THE CLASSIFICATION ACCURACIES OF AGRICULTURAL CROPS 

 

 

A. Ozdarici a , Z. Akyurekb 

 
a METU Geodetic and Geographic Information Technologies Department, Middle East 

Technical University 

Ankara, Turkey - ozdarici@metu.edu.tr 
b METU Civil Engineering Department, Middle East Technical University, Ankara, Turkey - 

zakyurek@metu.edu.tr 

 

 

 

KEY WORDS:  Image Fusion, Image Classification, Agriculture, Accuracy, QuickBird 

 

 

ABSTRACT: 

 

 

Image fusion is a process to generate a new image by integrating different spatial, spectral 

and/or temporal resolution images. The main goal of image fusion is to provide detail input to 

the later image analyses (image classification, segmentation, change detection, etc.). 

 

This study focuses on evaluating the influence of nine different image fusion methods, 

mostly encountered in the literature, on the accuracies of the agricultural crop classification. 

The study site selected is on the Karacabey Plain, one of the most productive and valuable 

agricultural regions, located in Bursa in Turkey. A new trend for the agricultural crop 

classification is to utilize high resolution satellite products in order to extract the crop types 

more reliably. Therefore, a QuickBird panchromatic (0.61m) and multispectral (2.44m) 
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images acquired on 13 August 2004 were used in this study. A small part of QuickBird ( ~5 

km2) image was used in order to improve computational efficiency in the analyses. Nine 

different fusion methods, namely Gram-Schmidt, Least Square Fusion (LSF), High Pass 

Filter Resolution Merge (HPF), Principle Component (PC) Spectral Sharpening, Hue-

Saturation-Value (HSV), Modified Intensity-Hue-Saturation (IHS) Resolution Merge, 

Brovey, Wavelet-based PCA (Principle Component Analysis), and Wavelet-based IHS were 

used to combine the panchromatic and multispectral data. The fused images were classified 

into number of five classes (Corn, Wheat, Residue, Tomato and Sugar beet) as a supervised 

manner using Maximum Likelihood Classification method. Before the classification, the 

fused images were resized to 2.44m, the size of the original multispectral image, in order to 

understand the radiometric quality of the fused products. During the classification the same 

training areas were used for each image. The classification results were then compared with 

the classification of the original multispectral image. The accuracies of the classified thematic 

maps were tested using a reference map. The reference map was produced by collecting 

information about crop types from the study area. Producing reference map and image 

acquisition were performed simultaneously. Based on the reference map, the overall 

accuracy, overall kappa and individual class accuracies were computed using error matrices. 

The overall accuracy of the original multispectral image, was computed as 84,2%. The 

classified images fused by the Gram-Schmidt method provided the highest overall accuracy 

of about 88%. The Gram-Schmidt method was followed by the methods of LSF, PC Spectral 

Sharpening, HPF, and Modified IHS Resolution Merge and their accuracies were computed 

around 86%. The accuracies of Brovey and Wavelet IHS Resolution Merge also revealed 

acceptable result, which was around 85%. On the other hand, the results obtained from the 

Wavelet PCA and HSV methods were found lower than the accuracy of the classified 

original image. The accuracies of these methods were computed as around 81%. The results 

revealed that the methods of the Gram-Schmidt, LSF, PC Spectral Sharpening, HPF, and 

Modified IHS Resolution Merge, Brovey, and Wavelet IHS Resolution Merge can be used to 

fuse the images before the classification of the agricultural crops to increase the classification 

accuracy.  
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1. GİRİŞ 

Uzaktan Algılama, araştırmacılara mekânsal, spektral ve zamansal çözünürlükte çeşitli 

ürünler sağlayarak elektromanyetik spektrumun büyük bir bölümüne ait bilgi çıkarımına 

katkıda bulunmaktadır. Uzaktan algılama teknolojisinin sağladığı bu geniş çaplı veri, bir 

takım problemleri de beraberinde getirmektedir. Bu problemlerden başlıcaları; verilerin 

birbirleri ile uyumu, yüksek kalitede bilgi elde etmek ve gereksiz bilgilerin ayıklanması 

olarak sayılabilir.  En önemli problemlerden bir tanesi, renkli görüntüye ait spektral bilgi ile 

siyah-beyaz görüntüye ait mekânsal bilginin nasıl etkili bir şekilde kullanılacağına yöneliktir. 

Bu problemlerin çözümünde kullanılan en etkili yöntem ‘görüntü zenginleştirme’ olarak 

adlandırılmaktadır. Görüntü zenginleştirme, farklı mekânsal, spektral ve zamansal 

çözünürlükteki görüntülerin birleştirilmesi ve bu sayede yüksek spektral ve mekânsal 

özelliklerde yeni bir görüntü elde edilmesi işlemi olarak tanımlanabilir. Daha genel bir ifade 

ile görüntü zenginleştirme, farklı kaynaklardan elde edilen uydu verilerinin birleşimi, 

korelâsyonu ve kombinasyonu olarak ifade edilebilir. Bu yaklaşım sadece görsel yönden 

kaliteli görüntüler üretmekle kalmaz daha sonra görüntü üzerine uygulanacak analizlere de 

detaylı girdi sağlar. Pohl ve van Genderen tarafından 1998 yılında görüntü zenginleştirme 

yöntemlerinin değerlendirilmesine yönelik geniş çaplı bir çalışma yapılmıştır. Çalışmada, 

görüntü zenginleştirme yöntemleri; piksel tabanlı, nesne tabanlı ve karar ağacı düzeyinde 

olmak üzere 3 gruba ayrılmaktadır. Piksel düzeyinde gerçekleştirilen yöntemler veriyi 

oluşturan en küçük nesneler (piksel) üzerinde uygulanmaktadır. Nesne düzeyinde uygulanan 

yöntemler, görüntüyü oluşturan nesnelerin zenginleştirilmesine yönelik olarak yapılmaktadır. 

Karar ağacı düzeyinde gerçekleştirilen zenginleştirme yöntemlerinde görüntüler üzerinde 

zenginleştirme işlemini gerçekleştirecek uygun kuralların (kararların) belirlenmesi 

gerekmektedir (Pohl ve van Genderen, 1998). Bu çalışmada piksel düzeyinde uygulanan 

görüntü zenginleştirme yöntemlerine yer verilecektir. Görüntü zenginleştirme yöntemleri ile 

ilgili problemler ve kısıtlamalar bugüne kadar bir çok araştırmacı tarafından incelenmiştir 

(Chavez vd., 1991, Pellemans vd., 1993, Zhang, 2002). Bu araştırmacılardan Zhang (2002), 

görüntü zenginleştirme yöntemlerine ait sorunları Landsat 7 ve IKONOS görüntüleri 

üzerinde inceleyerek bu problemlere neden olan aksaklıkların belirlenmesi için çeşitli 

tespitlerde bulunmuştur. Colditz vd. (2006) Landsat 7 görüntüsü üzerinde 5 farklı görüntü 

zenginleştirme yöntemi uygulamış ve sonuçları 3 farklı sınıflandırma yöntemi yardımıyla 
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sınıflandırılarak değerlendirmiştir. Elde edilen bulgular, Brovey ve RDP dönüşümlerinin 

görüntülerin zenginleştirilmesi ve daha sonra bu görüntülere uygulanacak sınıflandırma 

işlemi için uygun yöntemler olmadığını göstermiştir. Benzer bir çalışma Karathanassi vd. 

tarafından gerçekleştirilmiştir (Karathanassi vd., 2007). Çalışmada görüntü zenginleştirme 

yöntemlerini incelemek amacıyla çeşitli değerlendirme yöntemleri kullanılmıştır. 

Değerlendirmeler sonucunda en yüksek sonuçların Lokal Ortalama ve Dağılım Uyuşması, En 

Küçük Kareler ve Gram-Schmidt görüntü zenginleştirme yöntemlerinin sağladığı 

gözlenmiştir. Yukarıda sözü edilen çalışmalara benzer bir diğer çalışma Konstantinos (2008) 

tarafından gerçekleştirilmiştir. Çalışmada zenginleştirme yöntemi uygulanmış görüntüler 

görsel ve istatistiksel olarak değerlendirildikten sonra kontrolsüz bir sınıflandırma yöntemi 

kullanılarak yöntemlerin sınıflandırma doğruluğu üzerindeki etkileri incelenmiştir.  

 

Bu çalışmada dokuz (9) farklı görüntü zenginleştirme yöntemi sonucu üretilmiş görüntüler 

kontrollü bir sınıflandırma yöntemi yardımıyla sınıflandırılarak görüntü zenginleştirme 

yöntemlerinin ürün sınıflandırması üzerindeki etkileri incelenmiştir. Analizler 13 Ağustos 

2004 tarihli QuickBird renkli (2.44m) ve siyah-beyaz (0.60m) görüntüleri üzerinde 

uygulanmıştır. İlk olarak Gram-Schmidt, En Küçük Kareler, Yüksek Frekans Filtreleme 

yöntemi, Ana Bileşenler Spektral görüntü zenginleştirme yöntemi, Renk-Doygunluk-

Parlaklık dönüşümü (RDP), İyileştirilmiş Yoğunluk-Renk-Doygunluk (YoRD) dönüşümü, 

Brovey, Dalgaboyu tabanlı Ana Bileşenler Yöntemi ve Dalgaboyu tabanlı YoRD görüntü 

zenginleştirme yöntemleri kullanılarak QuickBird görüntüleri zenginleştirilmiştir. Yukarıda 

sayılan yöntemler yoluyla üretilen görüntüler beş (5) farklı istatistiksel değerlendirme 

yöntemi yardımıyla değerlendirilerek üretilen yüksek çözünürlükteki görüntülerin gerçek 

renkli görüntüye ait spektral değerlere yakınlığı ölçülmüştür. Bu amaç için kullanılan 

değerlendirme yöntemleri; Göreli Ortalama ve Varyans farkları, Korelasyon, En Yüksek 

Sinyal Hata Oranı ve Genel Kalite İndeksidir. Zenginleştirilmiş görüntülerin istatistiksel ve 

görsel olarak değerlendirilmelerinin ardından görüntüler üzerinde yer alan beş (5) farklı ürün 

sınıfı (mısır, domates/biber, buğday, anız ve şeker pancarı) En Büyük Olasılık sınıflandırma 

yöntemi yardımıyla sınıflandırılmıştır. Sınıflandırmalarda kullanılan örnek alanlar gerçek 

renkli görüntü üzerinden toplanmış ve aynı alanlar zenginleştirilmiş ve gerçek renkli 

görüntülerin sınıflandırılmasında kullanılmıştır. Sınıflandırma sonrasında tematik haritalar 
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üzerinde Sieve filtresi uygulanmış ve belli bir eşik değerinin altında kalan poligonları 

oluşturan pikseller birbirine komşu olan en yakın poligonların içine düşen piksel değerine 

atanmıştır. Elde edilen sonuçlar hata matrisleri yardımıyla değerlendirilmiş ve genel hata 

oranları, kappa değerleri ve ürünlere ait doğruluklar hesaplanarak sonuçlar gerçek renkli 

görüntüden elde edilen sınıflandırma sonucu ile karşılaştırılmıştır.  

 

2. ÇALIŞMA ALANI VE VERİ SETİ 

2.1 Çalışma Alanı 

Analizleri gerçekleştirmek için seçilen çalışma alanı, Türkiye’nin kuzeybatısında bulunan 

Marmara bölgesindeki Bursa ilinde yer almaktadır (Şekil 1). Karacabey Ovası olarak bilinen 

alan, ikliminin üretime elverişli olması ve zengin ürün çeşitliliği bakımından Türkiye’nin en 

verimli ve en değerli ovaları arasında yer almaktadır. Alanda yetiştirilen başlıca ürünler;  

mısır, domates, biber, soğan, pirinç, şeker pancarı, buğday ve bezelye olarak sayılabilir 

(Özdarıcı, 2005). 

 

 

 

Şekil 1. Çalışma alanı 

 

2.2 Veri Seti 

Çalışmada uydu görüntüsü ve referans veri olmak üzere iki farklı veri tipi kullanılmıştır. 

Görüntü zenginleştirme yöntemleri, 0.61 m siyah-beyaz ve 2.44 m renkli QuickBird uydu 

görüntüleri üzerinde uygulanmıştır (Şekil 2). Kullanılan QuickBird görüntüleri ürün 
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3. YÖNTEM 

Bu bölümde çalışmada kullanılan yöntemler açıklanmıştır. İlk bölümde görüntü 

zenginleştirme yöntemleri incelenecektir. İkinci bölümde, zenginleştirilmiş görüntüler 

üzerinde uygulanan görüntü sınıflandırma yöntemi anlatılacaktır. Son olarak sınıflandırma 

işlemi sonunda üretilen tematik haritalara ait sonuçlar ortaya koyulacaktır.  

 

3.1 Görüntü Zenginleştirme Yöntemleri 

Başarılı bir görüntü zenginleştirme, görüntülerin birbirine göre geometrik olarak hassas bir 

şekilde yönelimlerini gerektirir. Analizlerde kullanılan QuickBird görüntüleri birbirlerine 

göre düzeltilmiş olarak elde edilmiştir. Görüntüler aynı tarihte ve zamanda çekildikleri için 

iki veri arasında zaman farkı yoktur. Çalışmada literatürde sıkça karşılaşılan Renk-

Doygunluk-Parlaklık dönüşümü (RDP), Brovey, İyileştirilmiş Yoğunluk-Renk-Doygunluk 

(YoRD) dönüşümü, Ana Bileşenler Spektral görüntü zenginleştirme yöntemi, Gram-Schmidt, 

En Küçük Kareler, Yüksek Frekans Filtreleme yöntemi, Dalgaboyu tabanlı Ana Bileşenler 

Yöntemi ve Dalgaboyu tabanlı YoRD görüntü zenginleştirme yöntemleri değerlendirilmiştir. 

Yöntemlere ait açıklamalar aşağıda yer almaktadır. 

 

 

3.1.1 Renk-Doygunluk-Parlaklık (RDP) Dönüşümü  

 

RDP dönüşümü Yoğunluk-Renk-Doygunluk (YoRD) dönüşümü ile benzer özellikler 

göstermektedir. Yöntem, Kırmızı-Mavi-Yeşil (KMY) uzayının RDP uzayına dönüştürülmesi 

ile başlar. Bu dönüşüm, görüntü zenginleştirme sürecinde renkler üzerinde yüksek kontrol 

olanağı sağlar. Dönüşümü, parlaklık (P) ve yüksek mekânsal çözünürlüğe sahip bantların yer 

değiştirmesi izler. Bu işlem, renk ® ve Doygunluk (D) bantlarına ait piksellerin yüksek 

mekansal çözünürlüğe dönüştürülmesi (resampling) ile devam eder. Son aşamada, RDP uzayı 

RGB uzayına tekrar dönüştürülerek görüntü zenginleştirme işlemi tamamlanır (ENVI 

kılavuzu). RDP dönüşümü 3 banta sahip görüntüler üzerinde uygulanabilmektedir. 
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3.1.2 Brovey Dönüşümü 

 

Brovey dönüşümünde yüksek ve düşük mekânsal çözünürlüklü veri özellikleri 139ir araya 

getirilerek bu görüntülerden yeni bir görüntü elde etmek için basit bir oran kullanılır. Bu 

oran, düşük mekânsal çözünürlüğe sahip bantların yüksek mekânsal çözünürlüğe sahip bant 

ile çarpılması ve sonucun düşük mekânsal çözünürlüklü bantların toplamına bölünmesi 

şeklinde olmaktadır (Eşitlik 1). Bu işlem düşük mekânsal çözünürlüklü bantların uygun bir 

yeniden örnekleme yöntemi (örn. En yakın komşuluk, bilinear, cubic convolution) yardımıyla 

yüksek mekânsal çözünürlüğe dönüştürülmesi ile son bulmaktadır (ENVI kılavuzu). Brovey 

dönüşümü 3 bant ile sınırlıdır. 

 

                          





N

i
i

pani
i

DN

xDNDN
DNfused

1

                                                    (1) 

Eşitlikte; 

 

DNi renkli görüntüye ait bantların piksel değerleri i (i=1,2,3), DNpan yüksek mekansal 

çözünürlüklü veriye ait piksel değeri; 

N renkli görüntüdeki bant sayısı (Bant1+Bant2+Bant3). 

 

3.1.3 İyileştirilmiş YoRD Dönüşümü 

 

YoRD dönüşümü, zenginleştirme işlemi uygulanacak görüntüleri RGB uzayından YoRD 

uzayına dönüştürerek bantlar arasındaki mekânsal korelâsyonu algılamada kolaylık sağlar. 

YoRD uzayını oluşturan yoğunluk değeri; parlaklığı, renk değeri baskın olan rengi, 

doygunluk ise gri değere göre olan saflığı ifade eder (Lillesand, 2005). Renkli görüntünün 

YoRD uzayına dönüştürülmesini dönüşüm sonucunda elde edilen yoğunluk değeri ile yüksek 

mekânsal çözünürlüklü görüntünün yer değiştirmesi takip eder.  Ardından renk ve doygunluk, 

siyah-beyaz görüntünün sahip olduğu mekânsal çözünürlüğe dönüştürülür. Bu işlemi YoRD 
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uzayından KYM uzayına geçmeyi sağlayan ters dönüşüm işlemi takip eder ve zenginleştirme 

işlemi tamamlanır (Siddiqui, 2003).  

 

YoRD dönüşümü, yüksek mekânsal çözünürlüğe sahip görüntüye ait detayların 

korunmasında etkili bir yöntem olmasına rağmen bu yöntem ile üretilecek zenginleştirilmiş 

görüntüler sadece siyah-beyaz görüntü ile yoğunluk değerinin benzerlik gösterdiği 

durumlarda geçerlidir. Fakat renkli görüntüye ait yoğunluk değeri her zaman yüksek 

mekânsal çözünürlüklü görüntüler ile benzer özellikler göstermeyebilir. Bu nedenle daha 

güvenilir sonuçlar elde etmek için alternatif olarak iyileştirilmiş YoRD dönüşümü 

geliştirilmiştir.  

 

İyileştirilmiş YoRD dönüşümünde amaç görüntünün KYM uzayına dönüştürülmesinden önce 

yüksek mekânsal çözünürlüklü görüntüye ait istenmeyen piksellerin filtrelenmesidir.  

Yöntem, basit bir oran hesabına dayanır. Amaç, yüksek mekânsal çözünürlüklü görüntünün 

renkli görüntüye ait yoğunluk değerine benzetilmesidir (Eşitlik 2) (ERDAS Kılavuzu). 

İyileştirlimiş YoRD dönüşümü 3 banta sahip görüntüler üzerinde uygulanabilmektedir. 
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                                              (2) 

eşitlikte 

 

 rI  =  yoğunluk iyileştirme oranı 

r  kırmızı banttaki piksel değerine ait katsayı payı 

rd  kırmızı banta ait piksel değeri 

g  yeşil banttaki piksel değerine ait katsayı payı 

gd  yeşil banta ait piksel değeri 

b  mavi banttaki piksel değerine ait katsayı payı 

bd  =  mavi banta ait piksel değeri  

i  j bantındaki piksel değerine ait katsayı payı 
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jd   j bantına ait piksel değeri 

 j bantı, yüksek mekansal çözünürlüğe sahip verinin kapsadığı spektral aralığı temsil eden 

düşük mekansal çözünürlüklü bantları ifade eder.  

 

3.1.4 Ana Bileşenler Görüntü Zenginleştirme Yöntemi 

Renkli görüntülere ait bantlar birbirlerine göre genellikle benzer bilgiler içerir. Ana 

Bileşenler görüntü zenginleştirme yönteminin amacı, bu bantlardan birbirinden bağımsız 

doğrusal kombinasyonlar üretmek ve bu sayede bantlar arasında tekrarlanan bilgiyi en aza 

indirmektir. Bu dönüşüm sonucunda birbirine dik akslar üretilir. İşlem, görüntünün gerçek 

uzayına (RGB uzayı) dönüştürülmesi ile son erer. 

Ana Bileşenler görüntü zenginleştirme yöntemi, düşük ve yüksek mekansal çözünürlüklü 

görüntülerin zenginleştirilmesi için kullanılan etkili bir yöntemdir. İlk olarak, görüntüye Ana 

Bileşenler dönüşümü uygulanır. Bir sonraki işlem, bu dönüşüm sonucunda üretilen ilk bandın 

(Ana Bileşen 1) yüksek mekânsal çözünürlüklü veri ile yer değiştirmesidir. Bu aşamada, 

üretilen ilk ana bileşenin yüksek mekânsal çözünürlüklü veri özelliklerine yakın olduğu 

varsayımından yola çıkılır. Bu işlemi, spektral bilgi üzerinde olabilecek hataları önlemek 

amacıyla siyah-beyaz görüntünün ilk ana bileşen bandına göre ölçeklenmesi takip eder. 

Ardından ters dönüşüm uygulanarak görüntü gerçekte bulunduğu uzaya (KYM) dönüştürülür. 

Son aşama, renkli görüntüye ait bantların yüksek mekânsal çözünürlüğe dönüştürülmesi 

işlemidir (ENVI Kılavuzu). Ana Bileşenler görüntü zenginleştirme yöntemi 3 ve 3’ten fazla 

banta sahip görüntüler için uygulanabilmektedir. 

3.1.5 En Küçük Kareler Görüntü Zenginleştirme Yöntemi 

En Küçük Kareler görüntü zenginleştirme yöntemi iki temel problemi çözmeyi hedeflemiştir. 

Bu problemlerden biri renk bozulmaları, diğeri kullanıcı ve veri bağımlılığıdır. Diğer görüntü 

zenginleştirme yöntemlerinde olduğu gibi En Küçük Kareler görüntü zenginleştirme yöntemi 

de gerçek renkli görüntü ve zenginleştirilmiş görüntü arasında en iyi etkileşimi kurmayı 

hedefler. Bu amaç doğrultusunda görüntü zenginleştirme işlemini standart ve otomatik hale 

getirmek için bir takım istatistiksel yöntemlere başvurur. En Küçük Kareler görüntü 
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zenginleştirme yönteminin uygulanmasında kullanılan istatistiksel yöntemlere ilişkin 

literatürde net bir bilgi bulunmamaktadır (PCI Geomatica Kılavuzu). Gram-Schmidt görüntü 

zenginleştirme yöntemi 3 ve daha fazla banta sahip görüntüler üzerinde uygulanabilmektedir. 

3.1.6 Gram-Schmidt Görüntü Zenginleştirme Yöntemi 

 

Gram-Schmidt görüntü zenginleştirme yöntemi ismini matematik biliminde sıkça karşılaşılan 

Gram-Schmidt teoreminden almıştır. Gram-Schmidt, doğrusal cebirde kullanılan önemli bir 

yöntemdir ve bir uzayı oluşturan vektörlerin birbirine göre dik hale getirilmesi için kullanılır. 

Bu işlem, veri üzerinde daha fazla kontrol imkanı sağlar. 

 

Yöntemde ilk olarak, yüksek mekansal çözünürlüğe sahip veriyi düşük mekansal çözünürlüğe 

dönüştürmek için siyah-beyaz görüntünün simülasyonu yapılır. Ardından simülasyon işlemi 

uygulanmış siyah-beyaz veriye ve renkli görüntüye ait spektral bantlara Gram-Schmidt 

dönüşümü uygulanır. Bu dönüşümde simulasyon işlemi uygulanmış yüksek çözünürlüklü 

bant, sıralamada ilk sırada yer alır. Gerçek yüksek mekansal çözünürlüklü banta ait 

istatistikler Gram-Schmidt dönüşümü uygulanmış ilk banta adapte edilir ve gerçek yüksek 

mekansal çözünürlüklü bant Gram-Schmidt dönüşümü sonucu elde edilen ilk bantın yerini 

alır. Yüksek mekansal çözünürlüğe sahip yeni bantlar üretmek için ters dönüşüm işlemi 

uygulanarak zenginleştirme işlemi tamamlanır (Laben ve ark. 2000; ENVI Kılavuzu). 

 

3.1.7 Yüksek Frekans Filtreleme Yöntemi 

 

Yüksek Frekans Filtreleme yöntemi yüksek ve düşük mekânsal çözünürlüklü görüntüleri 

filtreleme tekniği yardımıyla zenginleştirmektedir. Yöntem, görüntüleri oluşturan piksellerin 

okunması ve R değerinin hesaplanması ile başlar. R değeri, renkli görüntüdeki piksel 

boyutunun siyah-beyaz görüntüdeki piksel boyutuna oranıdır. Bu oran QuickBird görüntüsü 

için 4 olarak hesaplanmıştır. R değeri hesaplandıktan sonra filtre boyutu belirlenerek yüksek 

mekânsal çözünürlüğe sahip görüntü filtrelenir. Çalışmada kullanılan QuickBird görüntüsü 

için görüntü özellikleri ve R değeri dikkate alınarak 9x9 boyutunda bir filtre kullanılmıştır. 

Renkli görüntüye ait piksel boyutunun filtrelenmiş görüntünün piksel boyutuna 
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dönüştürülmesi için renkli görüntü üzerinde yeniden örnekleme işlemi uygulanır. Ardından 

filtrelenmiş görüntü renkli görüntüye ait bantlara eklenir. İşlem, üretilen görüntünün gerçek 

renkli görüntüye ait istatistiksel değerlere benzetilmesi ile sona erer (ERDAS Kılavuzu). 

Yöntem, 3 ve daha fazla banta sahip görüntüler üzerinde uygulanabilmektedir. 

 

3.1.8 Dalgaboyu Tabanlı Görüntü Zenginleştirme Yöntemi 

 

Dalgaboyu tabanlı görüntü zenginleştirme yöntemi, Fourier dönüşümü ile benzer özellikler 

göstermektedir. Fourier dönüşümünde uzun dalga boyları (sinüs ve kosinüs) kullanılırken 

dalgaboyu tabanlı dönüşümlerde birbirinden farklı kısa dalgaboyları kullanılmaktadır. Bu 

nedenle yöntem, daha lokal işlemler üzerinde uygulanabilmektedir. Yöntemin en önemli 

noktalarından bir tanesi, temel dalga boylarının belirlenmesi aşamasıdır. Dönüşüme girdi 

olacak sinyale (görüntü) birbirinin ardı sıra filtreleme işlemi uygulanır ve önemli parçalar 

belirlenerek görüntü temsil edilir. Bu işlem sayesinde farklı çözünürlükte birden fazla 

görüntü elde edilmektedir. Üretilen görüntülerdeki farklılıklar görüntüye ait detayları temsil 

eder. Çoklu mekansal çözünürlüğe sahip görüntüler KYM uzayına dönüştürülerek gerçek 

renkli görüntü elde edilebilir (Ranchin vd., 2003; ERDAS Manual). Aşağıda dalgaboyu 

tabanlı iki farklı görüntü zenginleştirme yöntemi açıklanmaktadır.  

3.1.8.1 Dalgaboyu tabanlı YoRD Dönüşümü 

 

Dalgaboyu tabanlı YoRD dönüşümü, görüntünün KYM uzayından YoRD uzayına 

dönüştürülmesi ve yoğunluk değerinin elde edilmesi ile başlar. Bu aşamayı, yüksek mekânsal 

çözünürlüğe sahip görüntüye dalgaboyu dönüşümünün uygulanması takip eder. Dalgaboyu 

dönüşümü uygulanmış görüntü daha sonra yoğunluk bantı ile yer değiştirir. Son olarak ters 

dönüşüm işlemi uygulanarak görüntü KYM uzayına getirilir. Dalgaboyu tabanlı YoRD 

dönüşümü üç bant ile sınırlıdır.  
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3.1.8.2 Dalgaboyu tabanlı Ana Bileşenler Görüntü Zenginleştirme Yöntemi 

Dalgaboyu tabanlı ana bileşenler görüntü zenginleştirme yönteminde görüntüye ilk olarak 

Ana Bileşenler dönüşümü uygulanır. Ana Bileşenler görüntü zenginleştirme yöntemi 

sonucunda üretilen ilk bileşen yüksek mekânsal çözünürlüğe sahip görüntü ile yer değiştirir 

ve KYM uzayına geri dönüşüm gerçekleştirilir. Ana Bileşenler yöntemi üç ve daha fazla 

banta sahip görüntüler üzerinde uygulanabilmektedir.  

Yukarıda açıklanan görüntü zenginleştirme yöntemleri yoluyla üretilen görüntüler Göreli 

ortalama ve Varyans farkları, Korelâsyon, En Yüksek Sinyal Hata Oranı ve Genel Kalite 

İndeksi yardımıyla incelenmiştir. Değerlendirme yöntemleri zenginleştirilmiş görüntü 

çözünürlüğü olan 2.44m ye düşürülerek gerçekleştirilmiştir (Özdarıcı ve Akyürek, 2008).  

 

3.2 Görüntü Sınıflandırması 

Görüntü zenginleştirme yöntemlerinin ana amacı, görüntü üzerinde uygulanacak analizlere 

detaylı girdi sağlamak ve bu sayede güvenilir bilgi elde etmektir.  

 

Bu aşamada, görüntü zenginleştirme yöntemi sonucunda elde edilen yüksek mekânsal 

çözünürlüğe sahip renkli görüntüler gerçek renkli görüntü çözünürlüğü olan 2.44 m ye 

dönüştürülerek En Büyük Olasılık sınıflandırma yöntemi yardımıyla sınıflandırılmıştır. 

Görüntü zenginleştirme işlemi sonucunda elde edilen çözünürlük olan 0.60 m nin gerçek 

renkli görüntü çözünürlüğüne dönüştürülmesinin nedeni üretilen görüntülerin spektral olarak 

gerçek renkli görüntü ile karşılaştırılabilmesi ve bu sayede zenginleştirilmiş görüntüler 

üzerindeki spektral hataların bulunabilmesidir. Görüntülerin sınıflandırılmasında kullanılan 

yöntem, En Büyük Olasılık sınıflandırma yöntemi, görüntü üzerindeki bilinmeyen pikselleri 

bilgisayara tanıtılan örnek alanlara bağlı kalarak varyans ve kovaryans değerlerine göre 

gruplandırmaktadır (Lillesand et.al, 2004). En Büyük Olasılık sınıflandırma yöntemi 

yardımıyla mısır, buğday, anız, domates ve şeker pancarı olmak üzere beş ürün türü 

sınıflandırılmıştır. Sınıflandırma öncesinde uygun bir eşik değeri (2 piksel) atanarak parsel 

kenarlarına düşen pikseller gerçek renkli ve zenginleştirilmiş görüntülerden çıkarılmıştır.  

Parsel kenarlarına düşen piksellerin görüntülerden çıkarılmasının ardından sınıflandırma 
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işlemi için gerçek renkli görüntü üzerinde örnek alanlar belirlenmiştir. Örnek alan seçimi 

homojen parseller üzerinden yapılmıştır. Bu alanların seçiminde görüntü üzerindeki spektral 

farklılıklar ve fenolojik olaylar dikkate alınmıştır. Toplanan alanlar, ayrılabilirlik indeksleri 

yardımıyla değerlendirilmiştir. Bu incelemeler sonucunda domates ve biberin ayrılma 

oranlarının düşük olduğu gözlenmiş ve bu iki ürün, domates sınıfı altında birleştirilmiştir. 

Sınıflandırma işlemi tamamlandıktan sonra bu görüntüler üzerinde Sieve filtresi uygulanmış 

ve bu sayede tematik haritalama sonucu ortaya çıkan istenmeyen büyüklükteki piksellerden 

oluşan poligonlar elimine edilmiştir.  Filtre büyüklüğü bu çalışma için 20 piksel olarak 

belirlenmiştir. Filtreleme işleminin ardından tematik haritalar üzerinde doğruluk analizi 

yapılarak sonuçlar değerlendirilmiştir.  

 

3.3 Doğruluk Analizi 

Üretilen tematik haritaların gerçeğe yakın olup olmadığı hata matrisleri yardımıyla 

değerlendirilmiştir. Hata matrisi oluşturmak için alanın görüntü çekim tarihi ile eş zamanlı 

olarak elde edilen parsel bilgisini içeren referans veriden yararlanılmıştır. Sonuçlar üzerinde 

olabilecek önyargıyı önlemek için sınıflandırma işlemi için toplanan örnek alanlar doğruluk 

analizine dahil edilmemiştir. Sınıflandırılmış görüntülerin doğruluklarını test etmek için alan 

üzerinde rastgele örnekleme yöntemi kullanılarak (simple random sampling) 557 nokta 

belirlenmiştir. Bu noktalar referans verideki gerçek bilgiler ile karşılaştırılarak hata matrisleri 

oluşturulmuştur. Doğruluk analizleri için belirlenen nokta sayısı, aşağıda verilen eşitliğe 

dayanmaktadır (Eşitlik 3) (Jensen, 2005). 
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                                                        (3) 

Eşitlikte yer alan;  

 

 N : örnek boyutu 

i : alanda bulunan k sınıf içinde toplam alanın %50’sini kapsamaya en yakın olan i sınıfının 

tüm alana oranını  

bi  : i sınıfı için hedeflenen hassasiyet düzeyini (örn. %5), 
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B: 1 serbestlik derecesinde ve (α / k) x 100 formülüyle hesaplanan Ki kare (χ2) tablosundaki 

değeri, 

k :alanda bulunan toplam sınıf sayısını göstermektedir. 

 

Ratgele örnekleme işlemi doğruluk analizi için on defa tekrarlanmış ve tüm görüntüler için 

aynı örnek noktalar kullanılmıştır. Bu sayede doğruluk analizi üzerinde olabilecek ön yargı 

en aza indirilmeye çalışılmıştır. Doğruluk analizleri sonucunda tematik haritalara ait genel 

hata ve kappa oranları ve ürünlere ait doğruluklar elde edilmiştir.   

 

4. TARTIŞMA 

Üretilen tematik haritalar için hata matrisleri oluşturulmuş, en küçük ve en büyük genel hata 

ve kappa oranları ile sınıflara ait doğruluk oranları hesaplanmıştır. Hata matrisleri sonucu 

ulaşılan genel hata ve Kappa sonuçlarına ait ortalama değerler tablo 2 de verilmektedir. Tablo 

2 de verilen değerler Kappa sonuçlarına göre büyükten küçüğe doğru sıralanmıştır.  

 

Sınıflandırma sonuçları Gram-Schmidt, İyileştirilmiş YoRD dönüşümü, Dalgaboyu tabanlı 

YoRD dönüşümü, En Küçük Kareler yöntemi, Ana Bileşenler Spektral görüntü 

zenginleştirme yöntemi, Yüksek Frekans Filtreleme yöntemi, Brovey dönüşümü ve 

Dalgaboyu tabanlı Ana Bileşen dönüşümünün gerçek renkli görüntüye ait sınıflandırma 

doğruluğunu arttırdığını göstermiştir. Buna karşılık RDP yönteminin gerçek renkli görüntüye 

ait sınıflandırma sonucunu yaklaşık %3 oranında düşürdüğü gözlenmiştir. Sınıflandırma 

sonuçlarına ait en yüksek oran, %83,4 genel doğruluk ve %79,2 Kappa değerleri ile Gram-

Schmidt görüntü zenginleştirme yöntemi tarafından sağlanmıştır. Gram-Schmidt görüntü 

zenginleştirme yöntemi, gerçek renkli görüntüye ait sınıflandırma doğruluğunu yaklaşık %3 

oranında arttırmıştır. Gram-Schmidt yöntemine en yakın sonucu %83,4 genel doğruluk ve  

%79,14 Kappa oranları ile İyileştirilmiş YoRD dönüşümü sağlamıştır. Bu yöntemleri, gerçek 

renkli görüntü sonucuna yaklaşık %2 lik artış sağlayan Dalgaboyu tabanlı YoRD dönüşümü, 

En Küçük Kareler yöntemi, Ana Bileşenler Spektral görüntü zenginleştirme yöntemi, Yüksek 

Frekans Filtreleme yöntemi ve Brovey dönüşümleri izlemiştir. Dalgaboyu tabanlı Ana 

Bileşenler görüntü zenginleştirme yöntemi %79,69 genel doğruluk ve % 77,49 Kappa 

sonucuyla gerçek renkli görüntü sonucunu yaklaşık %1 oranında arttırmıştır. 
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Table 2. Görüntü sınıflandırması sonuçları 

Image Classification

Methods 

Avg. Overall

Accuracy (%) 

Avg. Overall 

Kappa (%) 

 

Gram Schmidt 83,4 79,2 

İyileştirilmiş YoRD dönüşümü 83,4 79,14 

Dalgaboyu tabanlı YoRD dönüşümü 82,99 78,63 

En Küçük Kareler 82,95 78,55 

Ana Bileşenler Spektral 82,84 78,36 

Yüksek Frekans Filtreleme y. 82,41 77,9 

Brovey 82,77 78,3 

Dalgaboyu tabanlı PCA 79,69 77,49 

Renkli QuickBird görüntüsü 81,03 76,2 

RDPdönüşümü 78,97 73,35 

 

Ürünlere ait en yüksek hata oranları şekil 3 de verilmektedir. Şekil 3a da yer alan siyah 

kutucuklar, görüntüler üzerinden toplanan örnek alanları göstermektedir. Gerçek renkli 

görüntüye ait sonuçlar, en düşük üretici doğruluğunun %78,26 ile mısır bitkisi tarafından 

sağlandığını göstermektedir. Diğer taraftan en düşük kullanıcı doğruluğu yaklaşık %75 ile 

domates ve şeker pancarı bitkileri için hesaplanmıştır. 
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Sonuçlar, Brovey ve RDP dönüşümleri dışında kalan görüntü zenginleştirme yöntemlerinin 

alanda yetiştirilen ürünleri güvenilir bir şekilde ayırabildiğini göstermiştir. En düşük 

ayrılabilirlik domates ve şeker pancarı ürünleri arasında gözlenmiştir. Diğer taraftan, gerçek 

renkli görüntü ile Brovey ve RDP dönüşümleri sonucu üretilen görüntüler arasında spektral 

açıdan farklılıklar olması bu yöntemler sonucunda üretilen görüntüler üzerine düşen örnek 

alanların diğer görüntülerden farklı olmasına ve ürünlerin farklı sınıflara atanmasına yol 

açmıştır. 

 

QuickBird görüntülerine uygulanan zenginleştirme yöntemlerinden, Brovey, RDP, 

Dalgaboyu tabanlı YoRD ve İyileştirilmiş YoRD dönüşümleri 3 bant ile sınırlıdır. Bu özellik, 

görüntü zenginleştirme yöntemlerine katkı sağlayacak bilgi miktarını kısıtlamakta ve 

zenginleştirme sonrasında uygulanacak analizlerin performansını olumsuz yönde 

etkilemektedir. Bunun nedeni geniş spektral aralığa sahip olan görüntülerin dar aralığa sahip 

olanlardan daha fazla bilgi sunma kapasitesine sahip olmasıdır.  

Ana Bileşenler Spektral ve Dalgaboyu tabanlı Ana Bileşenler görüntü zenginleştirme 

yöntemleri görüntülere Ana Bileşen dönüşümünün uygulanması ile 

gerçekleştirilebilmektedir. Fakat görüntüye Ana Bileşen dönüşümünün uygulanması bir 

takım problemleri de beraberinde getirmektedir. Ana Bileşen dönüşümünün doğrusallık 

mantığı ile çalışması ve Gaussian dağılımını esas alması bu dağılıma uymayan çoklu moda 

sahip veriler üzerinde güvenilir sonuçlar ortaya koymada olumsuz yönde etkili 

olabilmektedir. Bu nedenle yöntemin uygulanacağı görüntü özelliklerinin dikkate alınması 

gerekmektedir.  

 

5. SONUÇLAR  

Çalışmada 9 farklı görüntü zenginleştirme yöntemi incelenmiş ve bu yöntemlerin görüntü 

sınıflandırması üzerindeki etkileri değerlendirilmiştir. Kullanılan görüntü zenginleştirme 

yöntemleri; Gram-Schmidt, En Küçük Kareler, RDP, Brovey, İyileştirilmiş YoRD, Ana 

Bileşenler Spektral, Yüksek Frekans Filtreleme Yöntemi, Dalgaboyu tabanlı YoRD 

dönüşümü ve Dalgaboyu tabanlı Ana Bileşenler görüntü zenginleştirme yöntemleridir. 

Yöntemler, hesaplamalarda kolaylık sağlamak amacıyla yaklaşık 5 km2 lik QuickBird 

görüntüleri üzerinde uygulanmıştır. Analizlerde siyah-beyaz ve yeşil, kırmızı ve yakın kızıl 
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ötesi bantlarından oluşan QuickBird renkli görüntüleri kullanılmıştır. Zenginleştirilmiş 

görüntüler, Göreli ortalama ve varyans farkları, Korelâsyon, En Yüksek Sinyal Hata Oranı ve 

Genel Kalite İndeksi kullanılarak spektral açıdan değerlendirilmiştir. Sonuçların istatistiksel 

olarak değerlendirilmesinin ardından gerçek renkli görüntü ve zenginleştirilmiş görüntüler En 

Büyük Olasılık sınıflandırma yöntemi yardımıyla sınıflandırılmıştır. Görüntü sınıflandırması 

için gerekli örnek alanlar renkli QuickBird görüntüsü üzerinden toplanmıştır. Üretilen 

zenginleştirilmiş görüntüler ve renkli QuickBird görüntüsü daha sonra örnek alanlar 

yardımıyla sınıflandırılmış ve sonuçlar hata matrisleri yardımıyla değerlendirilmiştir. Hata 

matrisleri sonucunda hesaplanan kappa değerleri %79,2 doğrulukla en yüksek doğruluğu 

Gram-Schmidt görüntü zenginleştirme yönteminin sağladığını göstermiştir. Gram-Schmidth 

yöntemi, gerçek renkli görüntünün sınıflandırılması sonucu üretilen tematik haritanın 

doğruluğunu yaklaşık %3 oranında arttırmıştır. İyileştirilmiş YoRD dönüşümü, Dalgaboyu 

tabanlı YoRD dönüşümü, En Küçük Kareler, Ana Bişelenler Spektral, Keskinleştirilmiş 

Filtreleme Yöntemi, Brovey ve Dalgaboyu tabanlı Ana Bileşenler yöntemlerinin de gerçek 

renkli görüntüye ait tematik harita doğruluğunu belli oranlarda arttırdığı gözlenmiştir. Diğer 

taraftan RDP dönüşümü kullanılarak üretilen tematik harita doğruluğu gerçek renkli 

görüntüye ait doğruluğu %1 oranında düşürmüştür. 

 

Sonuçlar Gram-Schmidt, İyileştirilmiş YoRD dönüşümü, Dalgaboyu tabanlı YoRD ve Ana 

Bileşenler Zenginleştirme yöntemi, En Küçük Kareler, Ana Bileşenler Spektral, Yüksek 

Frekans Filtreleme Yöntemi ve Brovey dönüşümü kullanılarak elde edilmiş görüntülerin 

tarımsal alanlarda yetiştirlen ürün çeşitliliğini ayırmada etkili olduğunu göstermiştir. Görüntü 

zenginleştirme yöntemlerinin tarım alanlarında yetiştirilen ürün deseninin tesbit edilmesine 

olan katkısının belirlenebilmesi için yöntemlerin ürün çeşitliliğinin temsil edildiği farklı 

çalışma bölgelerine uygulanması yapılan çalışmanın güvenilirliğini arttıracaktır. 
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Abstract: This study focuses on evaluating four different image fusion methods on an 

agricultural land of Turkey. Two subsets of QuickBird images having almost 5 km2 are 

used as test sites in the analyses. Panchromatic and multispectral QuickBird data are 

fused and a high resolution colour images are generated by the image fusion methods 

namely: Gram-Schmidt, Least Square Fusion, Principle Component Spectral Sharpening, 

and Wavelet-integrated Principle Component Analysis. In order to examine the spectral 

properties of the fused images, the fused products are resampled to spatial resolution of 

multispectral image first, and then several statistical evaluation methods called: Relative 

Mean Difference (RMD), Relative Variation Difference (RVD), Correlation (C), Peak 

Signal to Noise Ratio (PSNR), Universal Image Quality Index (UQI) and Erreur Relative 
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Globale Adimensionnelle Desynthèse (ERGAS) are computed. Based on the results, it is 

observed that the Gram-Schmidt method provides the best performance for each test site.  

 

Key words: Image fusion, agriculture, QuickBird, evaluation. 

 

1. Introduction 

Image fusion is a process to generate a new image by integrating different spatial and 

spectral characteristics of the images. It is used to generate not only visually appealing 

images but also provide detailed input to the later image analyses like image classification, 

change detection, landslide hazard detection etc. [1]. A review article was presented by 

Pohl and Van Genderen in 1998 [2] about image fusion methods, in which concepts, 

methods and applications of image fusion were examined. Various pixel-level fusion 

methods were applied on QuickBird images by Karathanassi et al. in 2007 [3] and fused 

outputs were evaluated using some statistical evaluation indicators. Another assessment was 

performed on nine different image fusion methods by Konstantinos in 2008 [4], in which 

the fused products were evaluated both visually and statistically. Results indicated that the 

Local Mean and Variance Matching, Local Mean Matching, PANsharp and the Modified 

IHS algorithms produced better outputs. A similar study was conducted by Colditz et al. in 

2006, where five image fusion methods on Landsat 7 ETM+ images were examined [5]. 

Acceptable results were obtained with the Wavelet, multi-sensor multi-resolution image 

fusion and the method of principle component analysis. Problems and limitations of image 

fusion methods were examined by some other studies (Refs. [6-8]). Although several 

researches about evaluating the performance of image fusion methods are available in the 

literature, general view is that more studies are needed to examine the fusion methods on 

different data sets to make a generalization. 
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In this study we focused on four image fusion methods namely: Principle Component 

(PC) Spectral Sharpening, Least Square Fusion (LSF), Gram-Schmidt, and Wavelet-

integrated PCA, mostly encountered in the literature, on an agricultural land. QuickBird 

panchromatic (PAN) and four band (blue, green, red and near-infrared) multispectral (MS) 

images were utilized in the analyses. The fused results acquired by the fusion methods were 

resampled from 0.60 m to 2.44 m in order to compare them with the original MS image 

(2.44 m) by utilizing multiple evaluation indicators called: Relative Mean Difference 

(RMD), Relative Variation Difference (RVD), Correlation (C), Peak Signal to Noise Ratio 

(PSNR), Universal Quality Index (UQI) and Erreur Relative Globale Adimensionnelle 

Desynthèse (ERGAS).  

2. Methodology 

2.1 Study Area and Data 

The study area was selected from Karacabey Plain (Bursa) which is located in Marmara 

region in northwest of Turkey. The Karacabey Plain is a representative region of 

agricultural structure and it is characterized by rich, loamy soils having good weather 

conditions. The main crops can be listed as corn, tomato, pepper, wheat, pea, sugar beet and 

rice among twelve crop types cultivated in the area [9].  

QuickBird PAN (0.61 m) and MS (2.44 m) images were used to test the image fusion 

methods in the study. The spectral range of QuickBird PAN image lies between 0.44-0.90 

µm. The multispectral image consists of four channels including blue (0.45-0.52 µm), 

green (0.52-0.60 µm), red (0.63-0.69 µm), and near-infrared (0.76-0.89 µm). The images 

were taken on 13 August 2004 in which crop variation is in its maximum level in the 

area. The images used in the study correspond to the standard imagery product, where 

corrections for sensor, radiometric and geometric distortions are performed and the 

images are mapped to a cartographic projection. For the computational efficiency, two 
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small parts of 8 bit QuickBird image (~5 km2) selected from the area were used in the 

study. The first test site composes of five classes namely corn, wheat, residue, tomato and 

sugar beet and the second test site includes rice fields instead of the class of sugar beet.  

2.2 Methods 

In this part, the characteristics of image fusion methods used in the study are examined.  

2.2.1 Image Fusion Methods 

2.2.1.1 Principle Component (PC) Spectral Sharpening Method 

Principle Component Analysis (PCA) is used to reduce redundancy between image 

bands by generating a set of new uncorrelated linear combinations of the original 

variables. The technique is used to fuse low spatial resolution multispectral bands and a 

corresponding high spatial resolution PAN band. To do that, first, a PC transformation is 

applied on the multispectral data. Second, the PC band 1 is replaced with the high spatial 

resolution data. This is based on an assumption that the first PC and the PAN data which 

have similar spectral characteristics. Next, a scaling process is performed to match the PC 

band 1 to remove distortions of the spectral information. Next, an inverse transform is 

applied to return the RGB space. Final step is to perform a resampling process on the 

multispectral data to conform it to the high resolution pixel size [10].  

2.2.1.2 Least Square Fusion (LSF) Method 

LSF aims to achieve a best color relationship between the original multispectral and 

fused images while improving the spatial resolution of the image fused. The main 

objectives of this technique are to prevent color distortions and operator/data dependency. 

To do this, some statistical approaches are used to standardize the fusion process [3, 11]. 

2.2.1.3 Gram-Schmidt Method 

In the method of Gram-Schmidt spectral sharpening, first, a simulation of PAN band is 

performed using lower resolution spectral bands. In the simulation process, the high 
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resolution PAN band is blurred by appropriate factor, sub-sampled and interpolated up to 

an appropriate scale. Second, the Gram-Schmidt orthogonolization transformation, which 

provides to remove the redundant information in the data, is applied on the simulated 

PAN band and the spectral bands. The simulated lower spatial resolution PAN image is 

used as the first band in the Gram-Schmidt transformation. Third, the statistics of the 

higher spatial resolution PAN image are adjusted to the statistics of the first transform 

band resulting from the Gram-Schmidt transformation. Next, the higher spatial resolution 

PAN image having adjusted statistics is replaced with the band of the first transform. 

Finally, an inverse transform is applied to produce higher resolution spectral bands [10].  

2.2.1.4 Wavelet-Integrated PCA Method 

The wavelet transform is applied on the images by producing a set of low resolution 

PAN images from the high resolution PAN image using wavelet coefficients for each 

level. After decomposing the PAN band, the resulting low resolution PAN band is 

replaced with a multispectral band at the same resolution level. Then, a reverse wavelet 

transform is performed to convert the data to the original resolution level of PAN [12].  

In the Wavelet-integrated PCA method, PCA is applied on the multispectral image 

prior to the wavelet analysis. After applying a histogram match between the first PC and 

the PAN image, the first PC is replaced with the PAN band. The inverse transform is 

applied on the image to construct a fused RGB image.  

2.2.2 Evaluation Methods 

In order to understand the spectral effects of the image fusion methods, the fused 

products (0.60 m) were examined relative to the multispectral image (2.44 m). Six 

different evaluation indicators called Relative Mean Difference (RMD), Relative 

Variation Difference (RVD), Correlation, Peak Signal to Noise Ratio (PSNR), Universal 

Image Quality Index (UQI) and Erreur Relative Globale Adimensionnelle Desynthèse 

(ERGAS) were computed for the fused products of each image in Matlab environment. 
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Before the computations there is a need to decrease the spatial resolution of the fused 

products to the spatial resolution of low resolution image in order to examine the spectral 

quality of the fused products. Hence the spatial resolutions of the fused images were 

resampled to the multispectral image resolution (2.44 m). In this paper, the fused image 

with reduced resolution is called as “fused image”. The assessment criterion is based on 

preserving the spectral quality of the multispectral data for the fused products. Based on 

the results, if spectral quality of the multispectral and fused images is similar to each 

other, it can be stated that their global statistical parameters should be very similar [8]. 

The evaluation indicators used in this study are explained below: 

2.2.2.1 Relative Mean Difference (RMD) 

The RMD refers to the difference of means between the fused products and the low 

resolution image (Eq. (1)). It is computed as follows: 

LRLRF /)(                                                             (1) 

where, F  refers to the mean value of the fused image, LR  is the mean value of the low 

resolution image. 

2.2.2.2 Relative Variation Difference (RVD) 

The objective of RVD is to find the variation difference between the fused product and 

the low spatial resolution image (Eq. (2)). It is computed using the following equations: 

  222
/)(

LRLRF                                                            (2) 

where, 
2

F  is the variation of the fused product and, 
2

LR  is the variation of the low 

resolution image. 

2.2.2.3 Correlation (C) 

This evaluation criterion is used to compute the correlation between the fused product 

and the low spatial resolution image (Eq. (3)). 
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LRiFi
LRiFi

cov .
.                                                             (3) 

Fi means the fused image and LRi refers to the low spatial resolution image.  

 

2.2.2.4 Peak Signal to Noise Ratio (PSNR) Index 

The PSNR index is used to reveal radiometric distortions of the final product after 

applying an image fusion method (Eq. (4-5)). The computation is performed between the 

fused image and the low resolution image [3]. It is calculated as: 

2

1

)(
1

LRF i

N

i
iN

MSE  


                                                      (4)  

MSE

Peak
PSNR 10log20                                                          (5)  

where, Fi is the pixel value i of the fused image, LRi is the pixel value i of the low 

resolution image, N refers to the number of non-null image pixels, Peak is the maximum 

possible pixel value which is equal to 255 for 8 bit images. 

2.2.2.5 Universal Image Quality Index (UQI) 

The UQI has the capability of modeling any distortions as a combination of three 

different factors: (i) loss of correlation, (ii) luminance distortion, and (iii) contrast 

distortion (Eq. (6)). The dynamic range of Q is between -1 and 1. The possible highest 

value is provided if the spectral quality of the fused product and the low resolution image 

are identical [13]. 
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where, F  refers to the mean value of the fused product, LR is the mean value of the low 

spatial resolution image, F  and LR  means the variation of the fused and the low 
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resolution image, respectively, LRF .  is the variance value of the fused and the low 

resolution images. 

2.2.2.6 ERGAS 

ERGAS (erreur relative globale adimensionnelle desynthèse), relative dimensional 

global error in synthesis, is used to compare the spectral characteristics of the fused and 

reference image for identity. The ERGAS value exhibits a strong tendency to decrease 

when the quality of the fused product increases. If the ERGAS value is less than 3, it can 

be said that the resulting fused image has a “good quality” [14] (Eq. (7)). 
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100                                       (7) 

where, h, l refers to the high and low spatial resolution, N is the number of bands, RMSE 

(Bk) means the root mean square error between the fused image and the low resolution 

image, Mk is the mean value of the low resolution image for the kth band [14]. 

If the conditions of these evaluation indicators provide the smallest possible RMD, 

RVD, ERGAS and the maximum C, PSNR, UQI values with the MS image, it can be 

stated that the fused image better preserves the spectral information of the low resolution 

image [3].  

3. Results and Discussion 

The images fused were assessed both visually and statistically in the study. The visual 

interpretation of the outputs revealed that except for the method of Wavelet-integrated 

PCA, the visual quality of the other methods was found relatively good. Some spectral 

distortions were obtained through visual interpretation of the products of wavelet-

integrated PCA. The reason could be explained by the changes of the wavelength ranges 

of the new satellite products (e.g. QuickBird and Kompsat-2) in respect to the available 
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fusion methods, which can be solved by updating the existing fusion methods [11, 15]. 

The visual qualities of the methods based on the photo interpretation of the authors are 

given in Table 1. 

The statistical results were ranked based on the ERGAS values (Tables 2 and 3). 

Statistical evaluation of the first test site indicated that the Gram-Schmidt image fusion 

method better preserved the spectral quality of the MS image (Table 2). The results of 

Gram-Schmidt method was followed by the LSF method. It was observed that the 

methods of Wavelet-integrated PCA and PC Spectral Sharpening exhibited relatively 

poor results with the highest ERGAS and the lowest UQI values. The image fusion results 

can be seen for a small part of study area in Fig. 1 to make a visual comparison. 

Results obtained for the second test site indicated that similar to the first test site, the 

Gram-Schmidt method provided the best performance with the smallest RMD (-0.00) and 

ERGAS values (0.76) and the highest C, PSNR and UQI values when compared with the 

results of other image fusion methods (Table 3). The LSF method exhibited similar 

results with the Gram-Schmidt except for its ERGAS value, which was computed 

relatively high when compared with the Gram-Schmidt method. The method of Wavelet-

integrated PCA also exhibited high results although the PSNR index of it was too small 

(14), the poorest value among the others. 

 

Table 1 Visual quality of the image fusion methods. 

 
Gram- 

Schmidt
LSF 

PC 

Spectral S.

Wavelet-

PCA 

Very Good  X   

Good X    

Medium   X  

Poor    X 
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Table 2  Statistical result of image fusion methods of the first test site. 

Methods RMD RVD C PSNR UQI ERGAS 

Gram-Schmidt -0.01 0.10 0.98 29.6 0.90 2.30 

LSF 0.00 -0.01 0.89 23 0.72 7.39 

Wavelet PCA 0.70 1.59 0.92 8.6 0.53 35.14 

PC Spectral S. 0.00 -0.20 0.91 15.4 0.39 18.24 

                                       Poor                                 Good                                   Very Good 

 

Table 3  Statistical results of image fusion methods of the second test site. 

Methods RMD RVD C PSNR UQI ERGAS 

Gram-Schmidt -0.00 0.06 0.98 34.8 0.97 0.76 

LSF -0.00 0.00 0.90 32 0.96 3.18 

Wavelet PCA -0.01 0.00 0.93 14 0.92 2.22 

PC Spectral S. 0.00 -0.23 0.86 26.4 0.97 4.24 

                                        Poor                                  Good                                  Very Good 

5. Conclusions 

Image fusion is an important step for agricultural areas for the later image analyses like 

sensing agricultural patches and predicting undesirable agricultural issues like plant 

diseases, drought, and wrong agricultural practices etc. Hence, utilizing effective image 

fusion methods could provide researchers to improve the quality of the interpretation. The 

focus of this study was to evaluate four different image fusion methods in a statistical and 

visual manner on two test sites in an agricultural land. Visual evaluation revealed that the 

methods of Gram-Schmidt and LSF had better performance than other methods for each 

test site. In order to evaluate the results in a statistical manner, some basic evaluation 

indicators called RMD, RVD, C, PSNR, UQI and ERGAS were utilized. It was observed 

that better statistical results were achieved for the Gram-Schmidt method on both test 

sites. That means the results obtained for the Gram-Schmidt method better preserved the 

spectral characteristics of the QuickBird MS image. Similar results were observed for the 
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ABSTRACT 

 

This study presents a comprehensive evaluation of the most frequently used non-adaptive 

and adaptive Synthetic Aperture Radar (SAR) filtering techniques called; Mean, Median, 

Lee, Lee-sigma, Local Region, Frost and Gamma- MAP. Envisat ASAR Precision Image 

(PI) mode data acquired on August 2008 is used to examine the filtering techniques. 

Three test sites (~ 4 km2), located in Karacabey of Bursa in northwest of Turkey are 

selected. Two of them consist of homogenous agricultural fields and the third one is 

selected from lake. One of the agricultural test sites has 143 fields where seven different 

crop types namely; corn, pasture, pepper, sugar beet, tomato, wheat, and watermelon 

exist. The other agricultural test site contains relatively smaller agricultural fields and it 

has 386 fields where corn, rice, sugar beet, tomato, wheat, and watermelon are cultivated 
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in it. After correcting the images geometrically, the filtering operations are applied on the 

amplitude data using 5x5 windows. The filtering performances are evaluated by 

computing difference of means (MeanDif), difference of standard deviation (StdDif), 

correlation, and quality factor (Q). If the conditions of these evaluation indicators provide 

the smallest possible means, standard deviation and the maximum correlation and Q, it 

can be stated that the filtered image preserves the spectral information of the original 

image while reducing the speckle effect. Based on this evaluation the most reliable 

outputs are achieved by applying the Lee filter when compared with the original data. 

This technique is followed by the results of the Mean, Median, Gamma-MAP and Frost 

filters.
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INTRODUCTION 

 

Microwave signals backscattered from the earth’s surface can be in phase or out of phase 

when received by the satellite sensor. This stage causes random pattern of brighter and 

darker pixels in the microwave image called speckle. This characteristic reduces the 

interpretability of the microwave images. One of the most widely used method of 

reducing this limitation is image filtering. Image filtering is a local operation which 

modifies the original image with the neighboring pixels on the image (Lillesand et.al, 

2004). This operation is applied using a window called kernel. There are several well-

known researchers developing filtering algorithms for the SAR images (Lee 1980; Frost 

et.al, 1982 and Kuan et.al, 1985). In addition to this, there are also several researchers to 

examine the results of the filtered products and to evaluate the effectiveness of these 

methods (Lopes et.al, 1990; Shi and Fung, 1994; Serkan et.al, 2008). Shi and Fung (1994) 

compare the most widely used filtering methods called Kuan and Frost Filter, Enhanced 

Lee Filter, Enhanced Frost Filter and Gamma Map filter based on the preservation of 

point targets, linear features and angular structures. Two water bodies extracted from the 

ERS-1 image are filtered using the filtering methods in the study. The methods were 

applied on both the original SAR image and the computer simulated data. Results of the 

study indicate that the Kuan filter was found to be more accurate for determining point 

targets of the images. The results point out that the linear features could be separated 

better than the other filtering methods using the Frost filter. The Frost filter also provided 

the best results in term of the preservation of the angular structures in the image. Lopes 

et. al. (1990) also compares the most well-known adaptive filters called Frost, Kuan, Lee 

and Homomorphic filters on a SAR data and its simulation products. In order to improve 

the efficiency of the filter, some criteria are included in the filters. It is indicated that the 

filters reduce the speckle while better preserve the textural information. Herold et.al 

(2005) aims to improve the classification accuracy of the radar images. They examine 

various spatial components like speckle reduction while trying to improve the 

classification accuracy. Five different speckle filters (mean, median, local region, Frost 

and Lee) are applied on the image using 3x3 and 5x5 windows. They find that the mean 

and median filters increased the classification accuracy better than the other methods with 

the 5x5 window size. Serkan et al. (2008) propose a new adaptive speckle filter called 

Edge Map-Directed Adaptive Mean (ENDAM) and compare it with the other filtering 

methods (Mean, Median, Kuan, Lee, Lee-Sigma, Frost, Crimmins, Martin, Nagao and 
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Dong). The filtering operations were performed on a JERS-1 SAR image of Tuzla, 

Istanbul and a simulated SAR data. The ENDAM filtering method uses a wavelet edge 

detection algorithm while performing the filtering process, which is the main difference 

between the proposed method and the other filtering methods. Results indicate that the 

proposed method provided near results compared with the other filtering results. The 

objective of this study is to compare the most widely used SAR filtering methods called 

Mean, Median, Lee, Lee-Sigma, Frost, Gamma-Map and Local Region filters. Envisat 

ASAR precision image (I) mode is used to this purpose. The filters are tested on three 

different sites having almost 5 km2 extracted from the data. Two out of three belongs to 

an agricultural area and third one is taken from a lake site. The kernel size of 5x5 is 

applied on the test sites and results are evaluated four statistical evaluation indicators 

namely; mean, Std, correlation and Q. 

 

STUDY AREA AND DATA 

 

Three study sites are selected from Marmara Region in Turkey (Figure 1). The sizes of 

these areas are approximately 5 km2. Two out of three are selected from one of the most 

valuable agricultural area called Karacabey Plain in Turkey. Most of the fields in the 

areas have rectangular shape. The sizes of the fields ranged from 0.1 ha to 9.5 ha and 

from 0.1 to 13.7 ha for the first and second areas, respectively. There are six crop types 

filtered in the first region including, pasture, pepper, sugar beet, tomato, wheat, and 

watermelon. The land cover of the second agricultural region comprises six crop types 

including corn, rice, sugar beet, tomato, wheat, and watermelon. The third site is selected 

from the Ulubat Lake near the Karacabey Plain. The study area and the locations of the 

test sites on the whole area can be seen in figure 1 and 2. 

 

 

 

 

 

 

 

 

Figure 1 Study Area 

Ankara

50 0 50 150 km

Black Sea

Marmara
Sea

Aegean
Sea

Bursa

Istanbul

Study Area

N



 

The Envisa

August 200

 

The image 

Ozdarici in

a spatial re

Figu

at ASAR Pre

08. Table 1 s

Table

was obtaine

n 2007. The a

esolution be

ure 2 Envisa

ecision Image

shows the tec

e 1 Technica

ed by an ES

acquired mo

tween 12.5 

175

 

at ASAR data

 

e mode used

chnical summ

al summary o

 

SA Category 

odel provides

m and 150 

a and selecte

for the filter

mary of the d

of the Envisa

1 User proj

s HH and VV

m and cove

 

ed locations 

ring operatio

data. 

t ASAR data

ect proposed

V polarizatio

erage of 56x

ons acquired 

a 

 

d by Akyure

on image data

x105 km2. I

on 03 

ek and 

a with 

In this 



 

study, the V

various inc

available fo

be seen in t

as IS7 acqu

45.20  

SPECKLE

 

Speckle, a 

microscopi

therefore it

the nature 

two metho

study imag

pixel value

pixels. It c

adaptive sp

image over

filters use 

Gamma-M

the adaptiv

details than

like Lee, L

filter assum

addition to

VV polariza

cidence angl

or the Envisa

table 2. Amo

uisition conf

Table 2 

E FILTERIN

grainy appe

ic scattering

t must be ba

of the partic

ds to reduce

ge filtering pr

es of an orig

can be categ

peckle filters

r the entire 

weights ba

Map, Local Re

ve filters. Th

n the non-ad

Lee-Sigma an

mes a Gamm

 the characte

tion image i

les between 

at ASAR. Th

ong the seven

figuration. Th

The configu

NG 

earance caus

 through th

lanced with 

cular applicat

e the speckle

rocesses are 

ginal image a

gorized two m

s. Non-adapt

image (e.g. 

sed on the 

egion etc.). T

herefore, ada

aptive filters

nd Frost ass

ma distribut

eristics of the

176

s used. Envi

150 and 45

he technical 

n configurat

The incident a

urations type

 

 

sed by the in

he terrain, re

the amount 

tions (Medei

e: (i) image f

examined. Im

are modified

main groups

tive filters u

Mean and M

degree of s

The smoothi

aptive filters

s (Tso and M

sume a Gaus

tion to decr

e filtering m

isat ASAR o

5.20. Seven 

characteristi

ion category

angles of the

s of the Envi

nterference b

educes the i

of detail req

iros et. al., 2

filtering, (ii) 

mage filterin

d using the g

s: (i) Non-ad

use the same 

Median etc.)

speckle in th

ing is depen

s have more

Mather, 2001

ssian distribu

rease the spe

methods, the w

operates in th

acquisition c

ics of these c

y, the image u

e IS7image v

isat ASAR d

between wav

interpretabili

quired for the

2003; CCRS,

multi look p

ng is a local o

gray values o

daptive spec

set of weig

. On the oth

he image (L

dent on the 

e capability 

). Some of th

ution while t

eckle (Lope

window size

he C band an

configuration

configuration

used was acq

vary from 42

data 

ves reflected

ity of the im

e spatial scal

, 2000). The

processing. I

operation in 

of the neighb

ckle filters a

ghts to smoo

her hand, ad

Lee, Frost, 

local statisti

of preservin

the adaptive 

the Gamma-

es et.al. 199

e is also one 

nd has 

ns are 

ns can 

quired 

2.50 to 

 

d from 

mages 

le and 

ere are 

In this 

which 

boring 

and (i) 

oth the 

aptive 

Kuan, 

ics for 

ng the 

filters 

-MAP 

0). In 

of the 



177 
 

most important factors for smoothing an image. The larger the window size means the 

larger smoothing. Therefore, it should be decided before smoothing the images based on 

the analyses. 

 

Mean Filter 

 

The mean filter is a simple filtering method that slides its window (kernel) on the image 

and replaces the center value in the window with the average (mean) of all the pixel 

values in the window. It has a speckle reduction capability but it also removes high 

frequency information in the image. It is one of the most popular non-adaptive filtering 

methods. Mean filter uses the same set of smoothing for the whole image. Due to the 

characteristics it ignores the differences in image texture, contrast, etc. 

 

Median Filter 

 

The median filtering procedure is based on ranking the pixel values in the specified 

window and assigning the median pixel to the center value of the window. Median 

filtering is another mostly used non-adaptive filtering method. It is more effective than 

the mean filter. This is because it suppresses the speckle while preserving the 

characteristics of sharp edges. 

 

Lee Filter 

 

Lee filter is an adaptive speckle filter. It is based on three assumptions: 

(i) SAR speckle is modeled as a multiplicative noise that means the brighter the area the 

noisier it is. 

(ii) The noise and the signal are statistically independent to each other. 

(iii) The sample mean and sample variance of a pixel is equal to its local mean and local 

variance found calculated within a window (Lee, 1980; Tso and Mather, 2001). 

 

The assumptions above define the noise model of the Lee filter. In order to apply the 

filter, two main steps should be performed. The first one is approximating a multiplicative 

model by a linear model specified by the mean and the standard deviation. The other step 

is applying minimum mean square error criterion to this model. The filtering procedure 
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can be summarized as follows in a detail manner. First, a window size is determined. 

Second, the speckle noise mean v  and standard deviation  v  are determined based on 

the speckle model. If window i has piN  pixels, estimates of 
^

v   and  
^

2
v  are computed 

as follows: 


j

ij
pi

v z
N

1^

 ,  2
^

2 1  
j

liij
pi

v z
N

                             [1] 

Where; 

 

ijz  is the return from pixel i in a window i, 

^

v  refers to estimate mean intensity of pixels within the window, 

piN  means number of pixels in the window 

 

Third, local noise fading mean z   and standard deviation z  of the pixels within the 

window are computed. Fourth, noise-free signal standard deviation x  is determined. 

Next, weight coefficient k is determined. Finally, the computed 
^

x  value is assigned 
^

x  to 

the central pixel of the window. The formula of the Lee filter can be seen in Equation 2. 
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Where 

 

 z is the noise effected image pixel, 

v  is mean of the noise, 

z  , mean of the noise affected pixel, 

 vz andCC  refer to the coefficient of variations of the noise effected pixel and the noise, 

respectively. 
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Lee-sigma Filter 

 

Lee-sigma filter is an adaptive speckle filter. As its name implies, the Lee-sigma filter 

uses the standard deviation (sigma) to suppress the speckle on an image window. The 

procedure of the Lee-sigma filter is similar to the Lee filter. It estimates the noise-free 

signal within the predefined window. The basic difference is that the Lee sigma filter uses 

two sigma ranges of the pixels within the window. In this way, the pixels lying outside 

this range are excluded from the averaging process. The formula of the Lee-sigma filter 

can be seen in equation 3. 
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Where; 

 

1kl  if ijvij zz 2  ≤ ijvij zz 2  

0kl  otherwise 

 

Frost Filter 

 

The basic idea of the Frost filter is to minimize the mean square error based on the 

multiplicative noise assumption so that an optional filtering model is to be constructed 

(Tso and Mather, 2001). It is based on the assumptions of the multiplicative and 

stationary noise. The pixel of interest is replaced with a weighted sum of the values 

within the predefined window. The weighting factor is inversely proportional with the 

distance from the pixel of interest (ERDAS Manual). Its calculation is performed based 

on the formula below (Equation 4, 5 and 6). 

 

 
nxn

teKDN ||                                              [4] 

 

 

 



180 
 

Where; 

 

  












 

2

2

2
4





n

                                                                                              [5] 

K is a normalization constant 



  is a local mean 

  means local variance 



  refers to image coefficient of variation value 

 n is the moving window size 

 

|||||| 00 yyxxt                                                                                           [6] 

 

Gamma Map Filter 

 

The Gamma- Map filter assumes that the scene reflectivity of an image has a Gaussian 

distribution. Therefore, this filter uses a priori knowledge of the probability density 

function (PDF) of the scene when suppressing the speckle of the image (Shi and Fung, 

1994). Under this assumption the computation of the Gamma Map filter can be performed 

as follows (Equation 7). 

 

0
^^

2
3^







  DN                                               [7] 

Where; 

 

  is the original image variance 

^

  is the expected valuej  

  refers to original image variance 

DN  is the input value  
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Local Region Filter 

 

The Local Region filter compares the variance values of the regions surrounding the pixel 

of interest (Equation 8). While doing this, it divides the moving window into eight 

regions based on angular position. The central pixel of the window is then replaced with 

the mean values within the region with the lowest variance (Sheng and Xia, 1996). 

 

 
1

2




  n
DN xy                                           [8] 

 

EVALUATION INDICATORS 

 

Quality of all the filtered products (3x3, 5x5, 7x7, and 9x9) was evaluated quantitatively 

using mean, standard deviation, correlation and quality factor. When evaluating the 

filtered products, preserving the radiometric quality of the data was taking into 

consideration. That means if the radiometric quality of the original and fused images is 

similar to each other, it can be stated that their global statistical parameters should be very 

similar (Karathanassi et al., 2007). If the conditions of these evaluation indicators provide 

the smallest possible means, standard deviation and the maximum correlation, the 

filtering performance can be thought as good. The computations of the correlation and Q 

measures can be seen in equation 9, 10 and 11. 

 

Correlation 

 

Correlation values were computed between the original and filtered products based on the 

equation below. 




of

of

of x

cov .

.
                                                      

[9] 

where 

cov .of
 refers to covariance of the original and filtered image 

o
 and  f

 are the standard deviations of the original and filtered images, respectively. 
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Quality Factor (Q) 

 

On the other hand the Q is an important test measures which is used to reduce the 

standard deviation to decrease the variations in the uniform areas. The computation of the 

quality factor is given in equation 10 and 11. 

 

                                              
 
  f

shift

xL
Q

2
0 


                                                  [10] 

Where; 

 

|| 0 foshift    

o  is the mean value of the original image 

f is the mean value of the filtered image 

  f
2  is the variance of the filtered image 

0L  is the equivalent number of looks value of the original image which is computed as: 

2
0

2
0

0 


L                                                                                                             [11] 

where 

 

  mean value, 

  is the variance of the image data, 

 

The Q value is always equal to 1 for the original image. Any change in the mean value 

will reduce the Q. This can be evaluated as reduction in filter capability. A decrease in the 

variation for the filtered image will increase the value of Q. That means the higher the Q 

value, the stronger the speckle reduction (Serkan et.al, 2008). 

 

RESULTS AND DISCUSSION 

 

Seven different filtering methods called Mean, Median, Lee, Lee-sigma, Frost, Gamma-

Map and Local Region were examined in the study. The filters with 5x5 kernels were 
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ÖZET 

 

Bu çalışmada iki önemli görüntü segmantasyon yöntemine, Ortalama Kaydırma (Mean-Shift) ve 

Berkeley Görüntü Segmantasyon (Berkeley Image Segmentation – BIS), ait sonuçlar vektör 

tabanlı çok sayıda ölçüm tekniği kullanılarak değerlendirilmiş ve bu anlamda oluşan boşluğun 

doldurulmasına katkı sağlanması hedeflenmiştir. Bu amaçla Bursa’da yer alan Karacabey Ovası 

üzerinde Haziran, Temmuz ve Ağustos 2008 tarihlerinde çektirilen keskinleştirilmiş Kompsat-2 

uydu görüntüleri kullanılmıştır. Segmentasyon işlemi öncesinde çok zamanlı görüntülere ait 

bantlara Ana Bileşenler Dönüşümü uygulanmıştır. Analizlerde Ortalama Kaydırma ve BIS 

yöntemleri için çeşitli parametre bileşenleri kullanılmıştır. Elde edilen segmentlerin değerlendirme 

işlemi sırasında önceden belirlenmiş örnek alanlar sayesinde her bir segment üzerinde alan ve 

konum tabanlı 14 farklı doğruluk ölçme tekniği kullanılarak örnek alanlar ve segmentler arasında 

konum ve şekil benzerliği bulmaya yarayan hesaplamalar yapılmıştır. Bu hesaplamalara bağlı 
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olarak her iki yöntem için de en yüksek doğruluğa sahip olan görüntü segmentasyon sonuçları 

karşılaştırılarak değerlendirilmiştir. Elde edilen bulgular, her iki yöntem için belli parametre 

bileşenleri ile elde edilen sonuçların görüntüleri oluşturan nesneleri saptamakta uygun olduğunu 

bunun yanında Ortalama Kaydırma görüntü segmentasyon yönteminin BIS yönteminden daha 

etkili sonuçlar sergilediğini göstermiştir.  

 

Anahtar Sözcükler: Görüntü Segmantasyonu, Ortalama Kaydırma Yöntemi, Berkeley Görüntü 

Segmentasyonu, Yüksek Mekânsal Çözünürlük, Doğruluk Analizi  
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AN EVALUATION OF MEAN-SHIFT AND BERKELEY IMAGE SEGMENTATION 

METHODS USING MULTI-TEMPORAL KOMPSAT-2 IMAGES 

 

This study focuses on examining the results of two image segmentation methods, Mean-Shift and 

Berkeley Image Segmentation (BIS), by comparing it based on both area-based and location-

based measures on an agricultural site. The test site (~10 km2) was selected from an important 

agricultural area, Karacabey Plain (Bursa), located in north-west of Turkey. Three Kompsat-2 

images taken on June, July and August (2008) were used in the analyses by applying a Principle 

Component Analysis technique on the image bands. Multiple parameter combinations for Mean-

Shift and BIS were tested and the resulting segments were evaluated using goodness measures that 

measure the shape similarity between the segments and training polygons. Results indicated that 

although some parameter combinations of each method provide efficient outputs based on the 

computations of goodness measures, Mean-Shift segmentation method provided more superior 

results than BIS.   

 

Keywords: Image Segmentation, Mean-Shift, BIS, High Spatial Resolution, Accuracy Assessment 

 

1.GİRİŞ 

 

Uydu teknolojilerindeki gelişmelere paralel olarak elde edilen görüntülere ait mekânsal 

çözünürlüğün artması, nesne içine düşen piksel değerlerindeki çeşitliliği arttırmış ve bu 

etki, geleneksel piksel tabanlı görüntü analizlerini negatif yönde etkilemiştir. Bu durum, 

uzaktan algılama çalışmalarında nesne tabanlı görüntü analizlerine olan önemin artmasına 

neden olmuştur (örn. De Wit ve Clever 2004). Nesne tabanlı görüntü analizlerinin ilk 

basamağını görüntü segmentasyonu oluşturur. Görüntü segmentasyonu, birbirine komşu 

olan pikseller arasındaki homojenlik bilgisini araştırarak görüntüyü anlamlı parçalara 

bölme işlemidir (Cheng vd. 2001).  Bu işlem sonucunda elde edilen her bir segment, 

görüntüyü oluşturan nesnelerin tanımlanmasında kullanılır. Görüntü segmentasyonu 

yöntemiyle görüntüye ait nesneleri elde etme işlemi nesne tabanlı görüntü analizlerinin 

önemli bir basamağını oluşturur. Bu konuda algoritma geliştirme ve bu algoritmaların 

çeşitli amaçlara yönelik kullanımıyla ilgili çok sayıda çalışmaya rastlamak mümkündür 

(örn. Schoenmakers vd., 1994; Cheng, 1995; Rydberg and Borgefors, 2001; Mueller vd., 

2003; Martin vd., 2004; Zhan vd., 2005; Lee and Warner 2006; Chen vd., 2006; Li and 

Xiao., 2007; Lu vd., 2007; Wang vd., 2010; Xiao vd., 2010; Corcoran vd., 2010). 
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Literatürde bu amaca yönelik birçok çalışma bulunmasına rağmen hala etkili yöntemlere 

ve ek analizlere ihtiyaç olduğu gözlenmektedir. Bunun nedeni segmentasyon 

algoritmaları sonucunda üretilen segmentlere ait doğruluk analizlerinin tek bir kritere 

dayandırılarak yapılmasıdır (Liu and Yang, 1994; Zhang, 1996; Zhang, 2001; Martin vd., 

2001; Ge vd., 2006; Chabrier vd., 2006; Li and Xiao, 2007). Fakat üretilen segmentlerin 

referans nesnelere göre her yönden etkili bir şekilde değerlendirilebilmesi için tek 

değerlendirme kriterinin yeterli olmadığı (Zhang, 2001, Clinton et al. 2010) ve bu nedenle 

farklı değerlendirme yöntemlerine ihtiyaç olduğu açıktır (örn. Zhang 1996; Chabrier vd. 

2006; Radoux and Defourny, 2007; Corcoran vd. 2010).  

 

Segmentasyon sonuçlarının değerlendirilmesinde kullanılan istatistiksel yöntemler nesne 

tabanlı görüntü analizlerinin önem verdiği bir konudur. Bu nedenle çalışmada, Ortalama 

Kaydırma ve Berkeley Görüntü Segmentasyon yöntemi adıyla anılan iki farklı 

segmentasyon sonucunun bir tarım alanı üzerinde farklı doğruluk ölçüm teknikleri 

kullanılarak incelenmesi konu edilmiştir. İlk olarak; uydu görüntüsü ve çalışma alanının 

tanıtılmasının ardından Ortalama Kaydırma ve Berkeley Görüntü Segmentasyon 

yöntemleri açıklanmaktadır. İkinci aşamada elde edilen segmentasyon sonuçlarını 

değerlendirme yöntemleri tanıtılmaktadır. Tartışma ve sonuç bölümlerinde çalışma alanı 

için bulunan segmentasyon sonuçları, değerlendirme yöntemleri yardımıyla test edilerek 

tartışılmaktadır. Son olarak çalışmanın içeriği ile birlikte genel sonuçlar verilmektedir. 

 

1.1 Çalışma Alanı 

 

Çalışma alanı, Türkiye’nin kuzeybatısına düşen Marmara bölgesindeki Karacabey Ovası 

(Bursa) olarak belirlenmiştir (Şekil 1). Bu çalışma için Karacabey Ovası’nın yaklaşık 10 

km2 lik bir kısmı kullanılmıştır. Alan, zengin toprak yapısı ve ikliminin tarıma elverişli 

olması nedeniyle Türkiye’nin en verimli ovaları arasında yer almaktadır. Alanda başta 

mısır, biber, bezelye, buğday, pirinç ve şeker pancarı olmak üzere çeşitli ürünler 

yetiştirilmektedir (Özdarıcı, 2005).  
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Şekil 1. Çalışma alanı 

 

1.2 Veri Seti 

 

Çalışma alanında yetiştirilen ürünlere ait segmentleri bulmak için Haziran, Temmuz ve 

Ağustos (2008) tarihlerinde çekilmiş pankromatik (1m) ve renkli (4m) Kompsat-2 uydu 

görüntüleri kullanılmıştır. Görüntülerin farklı aylarda çekilmesinin nedeni ürünlere ait 

ekim, büyüme, olgunlaşma ve hasat dönemleri ile ilgili bilgiler elde ederek segmentasyon 

işlemini kolaylaştırmaktır. Kompsat-2 uydusu 1 m çözünürlükte pankromatik ve 4m 

çözünürlükte renkli görüntü sağlamaktadır. Renkli görüntü; mavi, yeşil, kırmızı ve yakın 

kızıl ötesi olmak üzere dört banttan oluşmaktadır. Bu bantlara ait spektral aralık sırasıyla 

0.45-0.52, 0.52-0.60, 0.63-0.69 ve0.76-0.90 µm değerleri arasındadır. Pankromatik 

görüntüye ait spektral aralık ise 0.50-0.90 µm dır. Kompsat-2 görüntüsüne ait işlem 

düzeyi 2A dır. Bu düzeyde görüntü radiometrik olarak düzeltilmiş ve yer kontrol noktası 

(YKN) kullanılmaksızın geometrik düzeltme işlemi standart harita projeksiyonu (UTM 

WGS 84) na göre yapılmıştır. 

 

Elde edilen segmentlere ait doğruluk analizlerinin yapılabilmesi için referans olacak bir 

veri setine ihtiyaç vardır. Bu veri alanda bulunan parsel sınır bilgilerini içeren vektör 

veridir. Veri tabanında her bir parsele ayrı numaralar verilerek aylara ait ürün bilgileri 

tanımlanmıştır. Vektör veri, alana ait 1:5.000 ölçekli kadastral haritalar kullanılarak 

Gauss-Kruger (Zone-5) ve Avrupa Datumu (1950) na göre sayısallaştırılmıştır (Turker ve 

Arıkan 2005). Vektör veri bu çalışmada, elde edilen segmentler ile gerçek parseller 
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2.2 Ortalama Kaydırma Yöntemi 

 

Ortalama Kaydırma yönteminin temeli, filtre yardımıyla yoğunluk tahmini yapmaya 

dayanır. Yöntem, filtre içine düşen piksellere ait ortalama değeri hesaplayarak filtreye ait 

gerçek merkezin hesaplanan yoğunluk merkezine kaydırılmasını içerir ve özetle şu 

şekilde tanımlanabilir: 

 

“d” boyutlu Rd uzayında bulunan n nokta için xi vektörü (i = 1 . . . n) verilsin. Herhangi 

bir K kerneli kullanılarak çok değişkenli Ortalama Kaydırma vektörü - mK(x) aşağıdaki 

formülle hesaplanır (Comaniciu ve Meer, 2002):  
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h

xx
K

h

xx
Kx

xm n

i

i

n

i

i
i

K 






 







 











1

1)(                                      (1) 

Formülde kullanılan x, K filtresinin merkez noktası, h ise kullanılan filtrenin boyutunu 

tanımlamaktadır. Önemli modların bulunabilmesi için formülün (1), segmentasyonu 

yapılacak uzayı kapsayana kadar birden çok defa tekrarlanması gerekmektedir.                                                 
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                                       (2) 

 

Ortalama Kaydırma vektörü her zaman öznitelik uzayında var olan dağılımın en çok artan 

yönünü göstermektedir. Yine aynı formülden anlaşılabileceği üzere, filtrenin merkezi, 

yine aynı filtrenin içine düşen noktaların yoğun olduğu bölgeye doğru kaydırılmaktadır. 

Ortalama Kaydırma vektörü yerel eğim (gradient) tahmini ile uyuştuğu sürece, öznitelik 

uzayında var olan dağılımın durağan noktalarına (stationary points) kadar bir yol 

izleyebilir. Öznitelik uzayının modları ise bu durağan noktalardır. Dolayısıyla Ortalama 

Kaydırma işlemi iki basamaklı bir tekrar olduğu söylenebilir: 

 mK(x) vektörün hesaplanması 

 K(x) kernelinin mK(x) kadar ötelenmesi 
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Bu yöntem ile hesaplanan vektörler her zaman yoğunluğun en fazla olduğu yere doğru 

hareket eder. Formül 2 deki eşitlik, hesaplanan vektörün filtre yardımıyla elde edilen 

yoğunluk ile daima doğru orantılı olduğunu göstermektedir. 

 

Yöntemin renkli görüntüler üzerinde de uygulanabilmesi amacıyla ortak alan (joint 

domain) kavramı geliştirilmiştir. Bu kavrama göre her örnek, hem mekânsal uzayda (hs) 

hem de renk uzayı (hr) nda tanımlanır. Ortak alanda mekân ve renk vektörlerine ait 

farlılıkları gidermek için uygun bir normalizasyon işlemi gerekmektedir. Bu nedenle iki 

ışınsal simetrik filtre ürünü olan çok değişkenli filtre (multivariate kernel) öklid uzayında 

bant genişliği parametresi olarak kullanılmaktadır. 
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Formül (3) de; xs uzaysal kısmı, xr spektral kısmı, hs ve hr uzaysal ve spektral kısımlar 

için uygulanan filtre boyutlarını ve C ise tanımlanacak olan normalizasyon katsayısını 

belirtmektedir (Comaniciu ve Meer, 2002). 

 

Bu çalışmada segmentasyon işlemi, görüntülere Ana Bileşenler Dönüşümü uygulandıktan 

sonra gerçekleştirilmiştir. Segmentasyon işlemlerinde mekansal (hs) değişkeni için {2, 3, 

4, 5, 6, 7, 8, 9, 10} ve renk (hr) değişkeni için {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} 

değerleri kullanılmıştır. En küçük alan parametresi bu çalışma için 1000 piksel olarak 

belirlenmiştir. En küçük alan değişkeni, alanda bulunan en küçük parsel içine düşen 

piksel sayısını ifade etmektedir. Bu sayede Ortalama Kaydırma yöntemi ile segment 

edilecek görüntü üzerinde toplam 90 parametre bileşimi test edilmiştir. Tüm bantlara ait 

segmentleri tek bir katmanda toplamak için segmentasyon işlemi sonucunda elde edilen 

raster formatındaki katmanlar birbirleri ile çarpılarak 32 bit olarak kaydedilmiştir. 

Ardından en küçük parsel büyüklüğünden daha küçük alana sahip segmentler uygun 

işlemlerle elimine edilmiştir. Son olarak, raster formatındaki bant, vektöre dönüştürülerek 

doğruluk analizlerine hazır hale getirilmiştir.  
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2.3 Berkeley Görüntü Segmentasyon Yöntemi 

 

Berkeley görüntü segmentasyon yöntemi, Benz vd. (2004) tarafından ortaya çıkarılan 

alan birleştirme mantığına dayanır. Yöntemin ilk aşamasında her piksel bir alan olarak 

düşünülür. Pikseller, spektral homojenlik ve şekil kriterlerine bağlı olarak birleştirilir 

veya farklı nesneler olarak tanımlanır. Yöntemde her bir nesne (piksel) birbirinin sürekli 

komşusu olarak düşünülmektedir. a ve b şeklinde birbirine komşu olan iki nesne 

düşünüldüğünde bu iki nesnenin olası bileşimi ab birleşik (merged) nesne olarak kabul 

edilir. Birleşik nesneye ait spektral heterojenlik (hp) aşağıdaki eşitlikle ifade edilir. 

 

                                       ph = ))(( ,,, bibaiababiab
I

i nnnw                            (4) 

Eşitlikteki, 

 

I  bant ağırlığını, 

n bir pikselin kapladığı alanı, 

i görüntüye ait bantlardaki nesneler için standart sapmayı ifade etmektedir. 

Nesnelere ait yumuşaklık (∆hs) ve yoğunluk (∆hp) farkı aşağıdaki şekilde 

hesaplanmaktadır: 
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Eşitlikteki; 

 

l  nesnenin çevre uzunluğunu, 

b  nesneyi çevreleyen poligon çevresinin uzunluğunu ifade etmektedir. 

 

Nesneler arasındaki biçim farklılıklarına ait heterojenlik bilgisi aşağıdaki şekilde 

açıklanmaktadır: 
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,sscct hwhwh   

 

1,1,0  scsc wwww  

 

Eşitlikteki  

 

cw  değeri kullanıcı tarafından seçilen sıklık parametresini, 

tw  ise yine kullanıcı tarafından belirlenen yumuşaklık parametresini ifade eder. 

 

Berkeley Görüntü Segmentasyon yönteminde kullanılan ölçek oranı ise aşağıdaki eşitlik 

yardımıyla hesaplanmaktadır: 

 

,ttpp hwhwr   

 

1,1,0  tptp wwww  

 

Eşitlikte görülen tw  kullanıcı tarafından belirlenen biçim parametresini ifade etmektedir. 

 

Nesne birleştirme işlemi önceden belirlenmiş ölçek eşik değeri kriteri (T ) karşılanana 

kadar devam eder ( Tt ,...2,1,0 ).  

 

2.4 Doğruluk Analizi 

 

Her iki segmentasyon yöntemine ait sonuçların güvenilirliğinin araştırılabilmesi için 

segmentlere ait çeşitli kriterleri değerlendiren doğruluk testleri yapılmıştır (Clinton vd. 

2010). Üretilen segmentlere uygulanan testler Clinton vd. (2010)’ ne ait çalışmada detaylı 

olarak açıklanmaktadır. Bu kriterlerin amacı, elde edilen segmentler ve belirlenmiş örnek 

alanlar arasında konum ve şekil benzerliklerini çeşitli yönlerden araştırmaktır. Bu amaçla 

ilk olarak çalışma alanının %10 u kapsayan örnek poligonlar titizlikle belirlenmiş ve 

örnek poligonlar ile elde edilen segmentler doğruluk analizleri yardımıyla 

karşılaştırılmıştır. Son olarak, hesaplanan sonuçlar sıralanmış ve en çok kritere sahip 

segmentasyon sonucu çalışma alanı için en ideal sonuç olarak belirlenmiştir. 
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ortalama kaydırma yöntemi için segment sayısı 562 olarak hesaplanırken Berkeley 

Görüntü Segmentasyon işlemi için bu sayının 293 olduğu gözlenmiştir.  

 

Tüm sonuçlar genel olarak incelendiğinde Berkeley Görüntü Segmentasyon yöntemine ait 

ölçek eşik değerinin artmasıyla elde edilen segment sayısının ters orantılı olarak düştüğü 

gözlenmiştir. Diğer bir ifade ile ölçek eşik değerinin artması iki ya da daha fazla parsele 

ait segmentlerin birbirleri ile birleşmesine neden olmaktadır (over-segmentation). Diğer 

taraftan segmentasyon işleminde çok küçük mekânsal ve renk değişkenleri (hs, hr) 

kullanılmasının gereğinden fazla küçük segmentlere yol açtığı gözlenmiştir (under-

segmentation).  

 

4. SONUÇLAR 

 

Segmentasyon sonuçlarının örnek alanlara göre detaylı olarak değerlendirilmesi sadece 

güvenilir segmentasyon sonuçları üretmeye yardımcı olmakla kalmayıp aynı zamanda var 

olan segmentasyon algoritmalarının iyileştirilmesinde önemli bir süreçtir (Zhang 1996; 

Clinton vd. 2010). Bu çalışmada çeşitli parametrelerle elde edilen segmentasyon 

sonuçlarının örnek alanlar ile olan konum ve alan tabanlı uyumu geniş bir çerçevede 

incelenmiştir. Segmentasyon sonuçlarının birden çok doğruluk ölçüm tekniği ile 

değerlendirilmesinin nedeni üretilen segment kalitesinin çeşitli faktörlerden 

etkilenmesidir (Zhan vd. 2005).  

 

Üretilen segmentler doğruluk ölçütlerine göre sıralandıktan sonra her iki yönteme ait en 

uygun segmentasyon sonuçları doğruluk ölçütlerine göre birbirleri ile de 

karşılaştırılmıştır. Bu incelemeler ışığında Ortalama Kaydırma Yönteminin çalışma alanı 

için en ideal segmentasyon sonucunu ürettiğini göstermiştir. Ortalama Kaydırma Yöntemi 

en ideal sonucu sağlamasına rağmen üretilen bazı segmentlerde hala hatalar (over-

segmentation ve under-segmentation) olduğu gözlenmiştir. 

 

Tarım ürünlerinin uydu görüntülerinden tespit edilmesinde çok zamanlı görüntü kullanımı 

analizlerde daha güvenilir sonuçlar almak açısından önemlidir (De Wit ve Clevers 2004). 

Bununla birlikte segmentasyon işlemi öncesinde ve sonrasında yapılacak analizlerin de 

kaliteli segmentler üretmedeki başarısı da göz ardı edilmemesi gereken diğer bir noktadır 

(Zhang 1996). 
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Segmentasyon işlemi sonucunda üretilen sonuçların doğruluk kriterlerine göre otomatik 

olarak sıralanması doğruluk analizlerindeki olası insan faktörünü büyük ölçüde 

azaltacaktır. Bu nedenle yeni geliştirilecek segmentasyon yöntemlerinde bu durumun göz 

önünde bulundurulması araştırmacılara yarar sağlayacaktır. 

 

Teşekkür 

 

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 

desteklenmiştir. Çalışmada kullanılan Kompsat-2 uydu görüntüleri Orta Doğu Teknik 

Üniversitesi (ODTÜ), Jeodezi ve Coğrafi Bilgi Teknolojileri EABD tarafından ODTÜ’ye 
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APPENDIX F 

 
 
 
 

SIGNATURE SEPARABILITY VALUES 
 
 

 

Table F.1 The matrices of Bhattacharya distance for three-band, blue, green, red, of the 

Kompsat-2 MS images taken in June, July, and August (a, c, e), with the Envisat ASAR 

data (b, d, f). 

 
Three-band Kompsat-2 MS image (blue, green, red) taken in June 

Class Names Corn Tomato Rice Sugar beet Wheat 

Tomato 1.91     

Rice 1.32 1.62    

Sugar beet 1.99 1.87 1.83   

Wheat 1.89 1.50 1.45 1.94  

Grass Land 1.32 0.90 0.50 1.71 1.16 

Average Separability: 1.53 

Signature pair with Minimum Separability: Rice, Grass Land 

(a) 
 

Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR 

data taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.92     

Rice 1.44 1.67    

Sugar beet 1.99 1.92 1.89   

Wheat 1.90 1.52 1.51 1.96  

Grass Land 1.37 1.26 0.66 1.94 1.24 

Average Separability: 1.61 

Signature pair with Minimum Separability: Rice, Grass Land 

(b) 
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Table F.1 (Cont’d) 

 

Three-band Kompsat-2 MS image (blue, green, red) taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.78     

Rice 1.73 1.82    

Sugar beet 1.96 1.74 1.95   

Wheat 1.89 1.99 1.99 2.00  

Grass Land 1.65 1.91 1.99 1.99 1.46 

Average Separability: 1.79 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 
 

Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR 

data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.93     

Rice 1.78 1.83    

Sugar beet 1.96 1.74 1.96   

Wheat 1.94 1.99 1.99 2.00  

Grass Land 1.76 1.96 1.99 1.99 1.47 

Average Separability: 1.82 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 

 

Three-band Kompsat-2 MS image (blue, green, red) taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.45     

Rice 1.20 1.25    

Sugar beet 1.76 0.99 0.85   

Wheat 1.99 1.89 1.99 1.99  

Grass Land 1.99 1.46 1.99 1.99 1.06 

Average Separability: 1.59 

Signature pair with Minimum Separability: Rice, Sugar beet 

(e) 
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Table F.1 (Cont’d) 

 

Three-band Kompsat-2 MS image (blue, green, red) with Envisat ASAR 

data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.56     

Rice 1.23 1.42    

Sugar beet 1.79 1.02 1.18   

Wheat 1.99 1.96 1.99 1.99  

Grass Land 1.99 1.90 1.99 1.99 1.20 

Average Separability: 1.68 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(f) 

 

Table F.2 The matrices of Bhattacharya distance for three-band, green, red, NIR of the 

Kompsat-2 MS images taken in June- July-August (a, c, e), with Envisat ASAR data (b, 

d, f). 

Three-band Kompsat-2 MS image (green, red, NIR) taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.89     

Rice 1.99 1.99    

Sugar beet 1.99 1.89 1.98   

Wheat 1.97 1.46 1.90 1.95  

Grass Land 1.47 1.17 1.97 1.80 1.49 

Average Separability: 1.79 

Signature pair with Minimum Separability: Tomato, Grass Land 

(a) 
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Table F.2 (Cont’d) 

 

Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR 

data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.90     

Rice 1.99 1.99    

Sugar beet 1.99 1.93 1.99   

Wheat 1.97 1.49 1.91 1.97  

Grass Land 1.51 1.38 1.98 1.95 1.52 

Average Separability: 1.83 

Signature pair with Minimum Separability: Tomato, Grass Land 

(b) 

 

Three-band Kompsat-2 MS image (green, red, NIR) taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.89     

Rice 1.73 1.88    

Sugar beet 1.99 1.80 2.00   

Wheat 1.99 1.99 2.00 2.00  

Grass Land 1.91 1.95 1.99 1.99 1.38 

Average Separability: 1.83 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 

Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR 

data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.03     

Rice 1.78 1.89    

Sugar beet 1.99 1.81 2.00   

Wheat 1.99 1.99 2.00 2.00  

Grass Land 1.93 1.98 1.99 1.99 1.41 

Average Separability: 1.85 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 
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Table F.2 (Cont’d) 

 

Three-band Kompsat-2 MS image (green, red, NIR) taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.49     

Rice 1.41 0.91    

Sugar beet 1.78 0.62 0.82   

Wheat 1.99 1.87 1.99 1.99  

Grass Land 1.99 1.63 1.99 1.99 0.88 

Average Separability: 1.56 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(e) 

 

Three-band Kompsat-2 MS image (green, red, NIR) with Envisat ASAR 

data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.58     

Rice 1.43 1.19    

Sugar beet 1.81 0.68 1.14   

Wheat 1.99 1.96 1.99 1.99  

Grass Land 1.99 1.92 1.99 1.99 0.99 

Average Separability: 1.64 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(f) 
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Table F.3 The matrices of Bhattacharya distance for three-band, blue, red, NIR of the 

Kompsat-2 MS data taken in June-July-August (a, c, e), with Envisat ASAR data (b, d, f). 

 

Three-band Kompsat-2 MS image (blue, red, NIR) taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.93     

Rice 1.99 1.99    

Sugar beet 1.85 1.51 1.98   

Wheat 1.63 1.60 1.83 1.91  

Grass Land 1.40 1.39 1.92 1.28 1.49 

Average Separability: 1.74 

Signature pair with Minimum Separability: Sugar beet, Grass Land 

(a) 

 

Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR 

data taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.94     

Rice 1.99 1.99    

Sugar beet 1.96 1.67 1.99   

Wheat 1.97 1.63 1.84 1.95  

Grass Land 1.44 1.56 1.93 1.84 1.52 

Average Separability: 1.81 

Signature pair with Minimum Separability: Corn, Grass Land 

(b) 

 

Three-band Kompsat-2 MS image (blue, red, NIR) taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.76     

Rice 1.38 1.87    

Sugar beet 1.94 1.40 2.00   

Wheat 1.99 1.99 1.99 2.00  

Grass Land 1.91 1.95 1.99 1.99 1.57 

Average Separability: 1.78 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 
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Table F.3 (Cont’d) 

 

Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR 

data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.93     

Rice 1.53 1.88    

Sugar beet 1.95 1.42 2.00   

Wheat 1.99 1.99 2.00 2.00  

Grass Land 1.93 1.97 1.99 1.99 1.58 

Average Separability: 1.81 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 

 

Three-band Kompsat-2 MS image (blue, green, NIR) taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.54     

Rice 1.44 1.26    

Sugar beet 1.82 1.01 0.87   

Wheat 1.99 1.89 1.99 1.99  

Grass Land 1.99 1.59 1.99 1.99 1.25 

Average Separability: 1.64 

Signature pair with Minimum Separability: Rice, Sugar beet 

(e) 

Three-band Kompsat-2 MS image (blue, red, NIR) with Envisat ASAR 

data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.49     

Rice 1.28 1.41    

Sugar beet 1.59 0.96 1.19   

Wheat 1.99 1.97 1.99 1.99  

Grass Land 1.99 1.92 1.99 1.99 1.33 

Average Separability: 1.67 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(f) 
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Table F.4 The matrices of Bhattacharya distance for three-band, blue, green, NIR,  of the 

Kompsat-2 MS images taken in June, July, and August (a, c, e), with the Envisat ASAR 

data (b, d, f). 

Three-band Kompsat-2 MS image (blue, green, NIR) taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.93     

Rice 1.99 1.99    

Sugar beet 1.96 1.38 1.98   

Wheat 1.93 1.24 1.28 1.45  

Grass Land 1.42 1.34 1.88 1.02 1.26 

Average Separability: 1.60 

Signature pair with Minimum Separability: Sugar beet, Grass Land 

(a) 

 

Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR 

data taken in June 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.94     

Rice 1.99 1.99    

Sugar beet 1.99 1.59 1.99   

Wheat 1.94 1.27 1.32 1.64  

Grass Land 1.47 1.53 1.89 1.77 1.31 

Average Separability: 1.71 

Signature pair with Minimum Separability: Tomato, Wheat 

(b) 

 

Three-band Kompsat-2 MS image (blue, green, NIR) taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 0.84     

Rice 1.64 1.88    

Sugar beet 1.97 1.57 1.99   

Wheat 1.94 1.96 1.99 2.00  

Grass Land 1.76 1.82 1.98 1.99 1.07 

Average Separability: 1.76 

Signature pair with Minimum Separability: Corn, Tomato 

(c) 
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Table F.4 (Cont’d) 

 

Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR 

data taken in July 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.00     

Rice 1.71 1.89    

Sugar beet 1.98 1.58 1.99   

Wheat 1.97 1.99 1.99 2.00  

Grass Land 1.84 1.94 1.99 1.99 1.14 

Average Separability: 1.80 

Signature pair with Minimum Separability: Corn, Tomato 

(d) 

 

Three-band Kompsat-2 MS image (blue, green, NIR) taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.54     

Rice 1.44 1.26    

Sugar beet 1.82 1.01 0.87   

Wheat 1.99 1.89 1.99 1.99  

Grass Land 1.99 1.59 1.99 1.99 1.25 

Average Separability: 1.64 

Signature pair with Minimum Separability: Rice, Sugar beet 

(e) 

Three-band Kompsat-2 MS image (blue, green, NIR) with Envisat ASAR 

data taken in August 

Class Names  Corn Tomato Rice Sugar beet Wheat 

Tomato 1.62     

Rice 1.47 1.44    

Sugar beet 1.84 1.03 1.21   

Wheat 1.99 1.96 1.99 1.99  

Grass Land 1.99 1.92 1.99 1.99 1.37 

Average Separability: 1.72 

Signature pair with Minimum Separability: Tomato, Sugar beet 

(f) 
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APPENDIX I 

 

 

 

CONFUSION MATRICES OF THE PRODUCED THEMATIC MAPS 

 

 

 

Table I.1 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 13 6 0 1 7 7 34 38.23 
Grass Land 34 51 0 54 21 45 45 24.87 
Rice 3 2 88 0 5 0 98 89.79 

Sugar beet 20 7 3 28 18 1 77 36.36 
Tomato 1 8 3 5 28 0 108 62.22 
Wheat 8 23 7 5 14 51 205 47.22 

Column T* 79 97 101 93 93 97 567  
PA ** (%) 16.45 52.57 87.12 30.10 30.10 49.03   

Overall A (%): 45.67      Kappa: 0.34   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 12 0 0 0 3 0 15 80 
Grass Land 33 67 0 53 26 46 225 29.77 
Rice 3 0 98 0 0 2 103 95.14 

Sugar beet 22 5 2 30 13 1 73 41.09 
Tomato 0 7 0 2 33 1 43 76.74 
Wheat 9 18 1 8 18 54 108 50 

Column T* 79 97 101 93 93 104 567  
PA ** (%) 15.19 69.07 97.03 32.25 35.48 51.92   

Overall A (%):  51.85      Kappa: 0.41  

(b) 
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Table I.2 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of July classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 73 6 16 0 19 6 120 60.83 
Grass Land 2 83 0 1 3 51 140 59.28 
Rice 0 0 84 0 0 0 84 100 

Sugar beet 0 0 8 85 2 0 95 89.47 
Tomato 8 2 5 12 52 1 80 65 
Wheat 0 3 1 0 0 44 48 91.66 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 87.95 88.29 73.68 86.73 68.42 43.13   

Overall A (%): 74.25     Kappa: 0.69  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 83 1 10 1 29 9 133 62.40 
Grass Land 0 92 3 1 0 50 146 63.01 
Rice 0 0 88 0 0 0 88 100 

Sugar beet 0 0 4 80 0 0 84 95.23 
Tomato 0 1 9 16 47 0 73 64.38 
Wheat 0 0 0 0 0 43 43 100 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 100 97.87 77.19 81.63 61.84 42.15   

Overall A (%):  76.36     Kappa: 0.71  

(b) 

 

Table I.3 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 71 0 20 0 3 0 94 75.53 
Grass Land 0 72 0 0 24 7 103 69.90 
Rice 0 0 63 5 3 0 71 88.73 

Sugar beet 1 0 10 65 21 0 97 67.01 
Tomato 3 15 5 13 35 4 75 46.66 
Wheat 0 25 0 0 0 102 127 80.31 

Column T* 75 112 98 83 86 113 567  

PA ** (%) 94.66 64.28 64.28 78.31 40.69 90.26   
Overall A (%): 71.95      Kappa: 0.66  

(a) 

 

 

 



236 
 

Table I.3 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 70 0 19 1 6 0 96 72.91 
Grass Land 0 87 1 0 23 3 114 76.31 
Rice 0 0 71 0 0 0 71 100 

Sugar beet 0 0 2 77 21 0 100 77 
Tomato 5 13 5 5 36 6 70 51.42 
Wheat 0 12 0 0 0 102 114 89.47 

Column T* 75 112 98 83 86 113 567  
PA ** (%) 93.33 77.67 72.44 92.77 41.86 90.26   

Overall A (%): 78.13      Kappa: 0.73  

(b) 

 

Table I.4 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June-July classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 57 7 3 1 30 6 104 54.80 
Grass Land 1 85 1 3 5 34 129 65.89 
Rice 0 0 90 1 1 0 92 97.82 

Sugar beet 2 1 0 67 1 0 71 94.36 
Tomato 10 2 1 11 53 1 78 67.94 
Wheat 2 14 0 0 0 77 93 82.79 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 79.16 77.98 94.73 80.72 58.88 65.25   

Overall A (%):  75.66     Kappa: 0.70   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 68 0 2 1 35 5 111 61.26 
Grass Land 0 98 0 0 0 20 118 83.05 
Rice 0 0 89 0 0 0 89 100 

Sugar beet 2 0 0 77 0 0 79 97.46 
Tomato 2 0 4 5 55 2 68 80.88 
Wheat 0 11 0 0 0 91 102 89.21 

Column T* 72 109 95 83 90 118 567  

PA ** (%) 94.44 89.90 93.68 92.77 61.11 77.11   
Overall A (%):  84.30     Kappa: 0.81   

(b) 
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Table I.5 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June-August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 60 3 12 1 6 3 85 70.58 
Grass Land 3 75 0 1 22 19 120 62.50 
Rice 0 0 75 4 1 0 80 93.75 

Sugar beet 1 1 4 64 18 0 88 72.72 
Tomato 7 5 2 12 43 1 70 61.42 
Wheat 0 25 2 1 0 95 124 76.61 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 83.33 68.80 78.94 77.10 47.77 80.50   

Overall A (%):  72.66     Kappa: 0.67   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 66 0 5 0 13 3 87 75.86 
Grass Land 0 93 0 1 30 6 130 71.53 
Rice 0 0 90 0 0 0 90 100 

Sugar beet 1 0 0 75 16 0 92 81.52 
Tomato 5 0 0 7 31 0 43 72.09 
Wheat 0 16 0 0 0 109 125 87.20 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 91.66 85.32 94.73 90.36 34.44 92.37   

Overall A (%):  81.83     Kappa: 0.78   

(b) 

 

Table I.6 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of July-August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 66 3 17 1 25 3 115 57.39 
Grass Land 0 78 0 0 7 13 98 79.59 
Rice 0 0 70 2 0 0 72 97.22 

Sugar beet 0 0 8 63 3 0 74 85.13 
Tomato 6 3 0 17 55 3 84 65.47 
Wheat 0 25 0 0 0 99 124 79.83 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 91.66 71.56 73.68 75.90 61.11 83.89   

Overall A (%):  76.01     Kappa: 0.71   

(a) 
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Table I.6 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 92 1 14 1 29 6 143 64.33 
Grass Land 0 91 0 1 0 5 97 93.81 
Rice 0 0 80 0 0 0 80 100 

Sugar beet 1 0 1 53 1 0 56 94.64 
Tomato 3 3 1 19 53 1 80 66.25 
Wheat 0 11 0 0 0 100 111 90.09 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 95.83 85.84 83.33 71.62 63.85 89.28   

Overall A (%): 82.71       Kappa: 0.79   

(b) 

 

Table I.7 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the combined map (June-July-August) classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 63 6 11 1 25 4 110 57.27 
Grass Land 1 75 0 1 8 18 103 72.81 
Rice 0 0 80 3 0 0 83 96.38 

Sugar beet 1 1 4 63 3 0 72 87.50 
Tomato 6 2 0 15 54 2 79 68.35 
Wheat 1 25 0 0 0 94 120 78.33 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 87.50 68.80 84.21 75.90 60 79.66   

Overall A (%):  75.66     Kappa: 0.70   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 68 0 2 1 35 7 113 60.17 
Grass Land 0 93 0 0 0 2 95 97.89 
Rice 0 0 89 0 0 0 89 100 

Sugar beet 2 0 1 71 0 0 74 95.94 
Tomato 2 0 3 11 55 2 73 75.34 
Wheat 0 16 0 0 0 107 123 86.99 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 94.44 85.32 93.68 85.54 61.11 90.67   

Overall A (%):  85.18     Kappa: 0.82   

(b) 
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Table I.8 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June classified with Kompsat-2 data and Envisat ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 12 5 0 0 7 6 30 40 
Grass Land 33 61 0 21 14 45 174 35.05 
Rice 3 2 91 0 3 0 99 91.91 

Sugar beet 21 4 1 60 19 1 106 56.60 
Tomato 3 6 3 6 32 0 50 64 
Wheat 7 19 6 6 18 52 108 48.14 

Column T* 79 104 101 93 93 104 567  
PA ** (%) 15.19 62.88 90.09 64.51 34.40 50   

Overall A (%): 54.32     Kappa: 0.44   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 12 0 0 0 3 0 15 80 
Grass Land 32 80 0 13 13 45 183 43.71 
Rice 3 0 98 0 0 2 103 95.14 

Sugar beet 22 0 1 70 13 1 107 65.42 
Tomato 1 0 0 2 46 1 50 92 
Wheat 9 17 2 8 18 55 109 50.45 

Column T* 79 97 101 93 93 104 567  

PA ** (%) 15.19 82.47 97.03 75.26 49.46 52.88   
Overall A (%):  63.66       Kappa: 0.56  

(b) 

 

Table I.9 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of July classified with Kompsat-2 data and Envisat ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 75 9 16 0 18 6 124 60.48 
Grass Land 3 82 0 1 3 47 136 60.29 
Rice 0 0 83 0 0 0 83 100 

Sugar beet 0 0 8 85 2 0 95 89.47 
Tomato 5 0 6 12 53 1 77 68.83 
Wheat 0 3 1 0 0 48 52 92.30 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 90.36 87.23 72.80 86.73 69.73 47.05   

Overall A (%):  75.13      Kappa: 0.70   

(a) 
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Table I.9 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 83 1 11 2 10 9 116 71.55 
Grass Land 0 93 2 0 0 47 142 65.49 
Rice 0 0 88 0 0 0 88 100 

Sugar beet 0 0 4 80 0 0 84 95.23 
Tomato 0 0 9 16 66 0 91 72.52 
Wheat 0 0 0 0 0 46 46 100 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 100 98.93 77.19 81.63 86.84 45.09   

Overall A (%): 80.42     Kappa: 0.76  

(b) 

 

Table I.10 Confusion matrix of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of August classified with Kompsat-2 data and Envisat ASAR 

data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 72 0 15 0 2 0 89 80.89 
Grass Land 0 81 0 0 2 4 87 93.10 
Rice 0 0 71 5 3 0 79 89.87 

Sugar beet 1 1 7 66 18 0 93 70.96 
Tomato 2 12 5 12 56 6 93 60.21 
Wheat 0 18 0 0 5 103 126 81.74 

Column T* 75 112 98 83 86 112 567  
PA ** (%) 96 72.32 72.44 79.51 65.11 91.15   

Overall A (%): 79.18          Kappa: 0.75  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 69 0 14 1 6 0 90 76.66 
Grass Land 0 89 0 0 4 4 97 91.75 
Rice 0 0 77 0 0 0 77 100 

Sugar beet 0 0 1 75 21 0 97 77.32 
Tomato 6 11 6 7 55 5 90 61.11 
Wheat 0 12 0 0 0 104 116 89.65 

Column T* 75 112 98 83 86 113 567  
PA ** (%) 92 79.46 78.57 90.36 63.95 92.03   

Overall A (%): 82.71   Kappa: 0.79  

(b) 
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Table I.11 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June-July classified with the MS Kompsat-2 and Envisat 

ASAR data 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 74 8 4 1 23 4 114 64.91 
Grass Land 2 62 1 3 0 38 106 58.49 
Rice 0 0 106 0 0 0 106 100 

Sugar beet 0 3 0 72 2 0 77 93.50 
Tomato 5 2 4 15 45 0 71 63.38 
Wheat 1 10 1 3 0 78 93 83.87 

Column T* 82 85 116 94 70 120 567  

PA ** (%) 90.24 72.94  91.37 76.59 64.28 65   
Overall A (%): 77.07      Kappa: 0.72  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 80 1 1 1 17 9 109 73.39 
Grass Land 0 76 1 1 0 19 97 78.35 
Rice 0 0 112 0 0 0 112 100 

Sugar beet 0 0 0 83 0 0 83 100 
Tomato 2 1 2 7 53 0 65 81.53 
Wheat 0 7 0 2 0 92 101 91.08 

Column T* 82 85 116 94 70 120 567  
PA ** (%) 97.56 89.41 96.55 88.29 75.71 76.66   

Overall A (%): 87.48      Kappa: 0.84  

(b) 

 

Table I.12 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of June-August classified with the MS Kompsat-2 and Envisat 

ASAR data 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 75 4 13 0 2 0 94 79.78 
Grass Land 4 69 0 0 8 14 95 72.63 
Rice 5 0 78 3 0 0 86 90.69 

Sugar beet 1 0 2 81 12 0 96 84.37 
Tomato 1 4 0 18 47 1 71 66.19 
Wheat 2 22 0 0 4 97 125 77.60 

Column T* 82 99 93 102 73 112 567  

PA ** (%) 85.22 69.69 83.87 79.41 64.38 86.60   
Overall A (%): 78.83      Kappa: 0.74  

(a) 
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Table I.12 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 63 0 0 1 9 2 75 84 
Grass Land 0 93 0 0 6 2 101 92.07 
Rice 0 0 92 0 0 0 92 100 

Sugar beet 3 0 2 71 3 0 79 89.87 
Tomato 6 0 1 11 72 2 92 78.26 
Wheat 0 16 0 0 0 112 128 87.50 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 87.50 85.32 96.84 85.54 80 94.91   

Overall A (%): 88.71      Kappa: 0.86  

(b) 

 

Table I.13 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the map of July-August classified with the MS Kompsat-2 and Envisat 

ASAR data 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 84 5 10 0 12 2 113 74.33 
Grass Land 0 82 0 0 1 13 96 85.41 
Rice 0 0 78 3 1 0 82 95.12 

Sugar beet 0 0 5 46 7 0 58 79.31 
Tomato 11 4 3 25 60 1 104 57.69 
Wheat 1 15 0 0 2 96 114 84.21 

Column T* 96 106 96 74 83 112 567  
PA ** (%) 87.50 77.35 81.25 62.16 72.28 85.71   

Overall A (%): 78.66      Kappa: 0.74  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 83 1 11 1 10 6 112 74.10 
Grass Land 0 92 0 1 0 2 95 96.84 
Rice 0 1 84 0 0 0 85 98.82 

Sugar beet 1 0 0 53 4 0 58 91.37 
Tomato 12 2 1 19 69 1 104 66.34 
Wheat 0 10 0 0 0 103 113 91.15 

Column T* 96 106 96 74 83 112 567  
PA ** (%) 86.45 86.79 87.50 71.62 83.13 91.96   

Overall A (%):85.36        Kappa: 0.82  

(b) 
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Table I.14 Confusion matrices of the (a) pixel-based and (b) segment-based MLC, 

respectively, for the combined map (June-July-August) classified with the MS Kompsat-2 

and Envisat ASAR data 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 67 6 6 1 19 4 103 65.04 
Grass Land 1 77 0 0 1 19 98 78.57 
Rice 0 0 84 2 0 0 86 97.67 

Sugar beet 1 0 3 63 6 0 73 86.30 
Tomato 2 3 2 17 64 1 89 71.91 
Wheat 1 23 0 0 0 94 118 79.66 

Column T* 72 109 95 83 90 118 567  

PA ** (%) 93.05 70.64 88.42 75.90 71.11 79.66   
Overall A (%): 79.18      Kappa: 0.75   

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 63 0 2 1 9 6 81 77.77 
Grass Land 0 93 0 0 0 2 95 97.89 
Rice 0 0 90 0 0 0 90 100 

Sugar beet 2 0 0 71 3 0 76 93.42 
Tomato 7 0 3 11 78 2 101 77.22 
Wheat 0 16 0 0 0 108 124 87.09 

Column T* 72 109 95 83 90 118 567  
PA ** (%) 87.50 85.32 94.73 85.54 86.66 91.52   

Overall A (%): 88.71      Kappa: 0.86   

(b) 

 

Table I.15 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 16 10 0 1 6 6 39 41.02 
Grass Land 24 39 0 14 24 47 148 26.35 
Rice 7 9 94 0 11 1 122 77.04 

Sugar beet 18 9 0 68 18 0 113 60.17 
Tomato 1 4 2 3 26 0 36 72.22 
Wheat 13 26 5 7 8 50 109 45.87 

Column T* 79 97 101 93 93 104 567  
PA ** (%) 20.25 40.20 93.06 73.11 27.95 48.07   

Overall A (%): 51.67      Kappa: 0.41   

(a) 

 



244 
 

Table I.15 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 16 3 0 0 3 0 22 72.72 
Grass Land 27 60 0 3 26 48 164 36.58 
Rice 6 0 98 1 9 5 119 82.35 

Sugar beet 24 4 0 80 13 0 121 66.11 
Tomato 0 0 0 2 33 0 35 94.28 
Wheat 6 30 3 7 9 51 106 48.11 

Column T* 79 97 101 93 93 104 567  
PA ** (%) 20.25 61.85 97.03 86.02 35.48 49.03   

Overall A (%): 59.61      Kappa: 0.51   

(b) 

 

Table I.16 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of July classified with Kompsat-2 data. 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 71 12 12 0 6 7 108 65.74 
Grass Land 2 63 0 0 0 15 80 78.75 
Rice 0 0 72 0 0 0 72 100 

Sugar beet 0 0 0 78 1 0 86 90.69 
Tomato 10 14 22 20 69 2 137 50.36 
Wheat 0 5 1 0 0 78 84 92.85 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 85.54 67.02 63.15 79.59 90.78 76.47   

Overall A (%): 76.01        Kappa: 0. 71  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 83 5 8 1 7 7 111 74.77 
Grass Land 0 84 2 0 0 11 97 86.59 
Rice 0 0 83 0 0 0 83 100 

Sugar beet 0 0 4 76 0 0 80 95 
Tomato 0 5 17 21 69 2 114 60.52 
Wheat 0 0 0 0 0 82 82 100 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 100 89.36 72.80 77.55 90.78 80.39   

Overall A (%): 84.12      Kappa: 0.81  

(b) 
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Table I.17 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 74 0 33 0 1 0 108 68.51 
Grass Land 0 55 2 0 17 8 82 67.07 
Rice 0 1 62 14 1 0 78 79.48 

Sugar beet 0 0 8 39 5 0 52 75 
Tomato 9 16 8 44 51 4 132 38.63 
Wheat 0 22 1 1 1 90 115 78.26 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 89.15 58.51 54.38 39.76 67.10 88.23   

Overall A (%): 65.43       Kappa: 0.58  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 70 0 31 1 1 0 103 67.96 
Grass Land 0 59 1 0 13 6 79 74.68 
Rice 0 0 59 0 0 0 59 100 

Sugar beet 0 0 2 40 5 0 47 85.10 
Tomato 5 10 5 42 67 2 131 51.14 
Wheat 0 43 0 0 0 105 148 70.94 

Column T* 75 112 98 83 86 113 567  
PA ** (%) 93.33 52.67 60.20 48.19 77.90 92.92   

Overall A (%): 70.54     Kappa: 0. 64  

(b) 

 

Table I.18 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June-July classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 64 12 3 0 4 7 90 71.11 
Grass Land 7 65 1 0 3 15 91 71.42 
Rice 4   1 102 0 1 0 108 94.44 

Sugar beet 2 2 2 82 5 0 93 88.17 
Tomato 6 6 5 16 63 1 97 64.94 
Wheat 0 8 1 0 0 79 88 89.77 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 77.10 69.14 89.47 83.67 82.89 77.45   

Overall A (%): 80.24       Kappa: 0.76  

(a) 
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Table I.18 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 79 0 0 0 6 7 92 85.87 
Grass Land 0 92 0 0 0 9 101 91.08 
Rice 4 0 111 1 1 0 117 94.87 

Sugar beet 0 0 0 85 0 0 85 100 
Tomato 0 2 1 12 69 2 86 80.23 
Wheat 0 0 2 0 0 84 86 97.67 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 95.18 97.87 97.36 86.73 90.78 82.35   

Overall A (%): 91.71      Kappa: 0.90  

(b) 

 

Table I.19 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June-August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 57 6 3 0 2 2 70 81.42 
Grass Land 12 57 0 0 19 10 98 58.16 
Rice 4 1 106 10 7 0 128 82.81 

Sugar beet 5 3 1 55 6 0 70 78.57 
Tomato 4 7 3 32 37 2 85 43.52 
Wheat 1 20 1 1 5 88 116 75.86 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 68.67 60.63 92.98 56.12 48.68 86.27   

Overall A (%): 70.54       Kappa: 0.64  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 79 1 0 0 6 0 86 91.86 
Grass Land 0 73 0 0 21 1 95 76.84 
Rice 4 0 112 1 10 3 130 86.15 

Sugar beet 0 1 0 69 0 0 70 98.57 
Tomato 0 2 0 28 39 2 71 54.93 
Wheat 0 17 2 0 0 96 115 83.47 

Column T* 83 94 114 98 76 102 567  

PA ** (%) 95.18 77.66 98.24 70.40 51.31 94.11   
Overall A (%): 82.54       Kappa: 0.78  

(b) 
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Table I.20 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of July-August classified with Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 73 7 19 0 3 4 106 68.86 
Grass Land 0 70 0 0 0 6 76 92.10 
Rice 0 1 78 3 1 0 83 93.97 

Sugar beet 0 0 3 69 1 0 73 94.52 
Tomato 10 10 13 25 71 3 132 53.78 
Wheat 0 6 1 1 0 89 97 91.75 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 87.95 74.46 68.42 70.40 93.42 87.25   

Overall A (%): 79.36      Kappa: 0.75  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 79 1 10 1 7 7 105 75.23 
Grass Land 0 89 2 0 0 8 99 89.89 
Rice 0 0 97 0 0 0 97 100 

Sugar beet 0 0 2 72 0 0 74 97.29 
Tomato 4 4 3 25 69 2 107 64.48 
Wheat 0 0 0 0 0 85 85 100 

Column T* 83 94 114 98 76 102 567  

PA ** (%) 95.18 94.68 85.08 73.46 90.78 83.33   
Overall A (%): 86.59      Kappa: 0.83  

(b) 

 

Table I.21 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of the combined map (June-July-August) classified with 

Kompsat-2 data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 66 9 4 0 3 3 85 77.64 
Grass Land 5 68 0 0 3 5 81 83.95 
Rice 4 0 103 3 2 0 112 91.96 

Sugar beet 2 2 1 73 4 0 82 89.02 
Tomato 6 6 5 21 64 3 105 60.95 
Wheat 0 9 1 1 0 91 102 89.21 

Column T* 83 94 114 98 76 102 567  

PA ** (%) 79.51 72.34 90.35 74.49 84.21 89.21   
Overall A (%): 82.01      Kappa: 0.78  

(a) 
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Table I.21 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 79 1 0 0 6 7 93 84.94 
Grass Land 0 87 0 0 0 1 88 98.86 
Rice 4 0 111 1 1 0 117 94.87 

Sugar beet 0 0 0 80 0 0 80 100 
Tomato 0 3 1 17 69 2 92 75 
Wheat 0 3 2 0 0 92 97 94.84 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 95.18 92.55 97.36 81.63 90.78 90.19   

Overall A (%): 91.85      Kappa: 0.89  

(b) 

 

Table I.22 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June classified with Kompsat-2 data and Envisat ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 19 12 0 2 8 5  41.30 
Grass Land 21 46 0 2 14 46  35.65 
Rice 5 7 95 0 9 0  81.89 

Sugar beet 20 5 0 77 20 2  62.09 
Tomato 1 4 1 4 35 0  77.77 
Wheat 13 23 5 8 7 51  47.66 

Column T* 79 97 101 93 93 104 567  
PA ** (%) 24.05 47.42 94.05 82.79 37.63 49.03   

Overall A (%):  56.96       Kappa: 0.48  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 17 4 0 0 4 1 26 65.38 
Grass Land 19 71 0 3 14 42 149 47.65 
Rice 3 0 97 0 9 3 112 86.60 

Sugar beet 31 1 0 79 13 3 127 62.20 
Tomato 0 0 0 4 44 1 49 89.79 
Wheat 9 21 4 7 9 54 104 51.92 

Column T* 79 97 101 93 93 104 567  
PA ** (%) 21.51 73.19 96.04 84.94 47.31 51.92   

Overall A (%): 63.84         Kappa: 0.56  

(b) 
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Table I.23 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of July classified with Kompsat-2 data and Envisat ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 74 9 10 0 8 7 108 68.51 
Grass Land 2 78 1 0 1 11 93 83.87 
Rice 0 0 73 0 0 0 73 100 

Sugar beet 0 0 8 77 1 0 86 89.53 
Tomato 7 4 21 21 66 3 122 54.09 
Wheat 0 3 1 0 0 81 85 95.29 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 89.15 82.97 64.03 78.57 86.84 79.41   

Overall A (%): 79.18       Kappa: 0.75  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 83 0 9 1 6 7 106 78.30 
Grass Land 0 92 2 0 0 11 105 87.61 
Rice 0 0 81 0 0 0 81 100 

Sugar beet 0 0 2 76 0 0 78 97.43 
Tomato 0 2 20 21 70 2 115 60.87 
Wheat 0 0 0 0 0 82 82 100 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 100 97.87 71.05 77.55 92.10 80.39   

Overall A (%): 85.36       Kappa: 0.82  

(b) 

 

Table I.24 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of August classified with Kompsat-2 data and Envisat ASAR 

data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 71 0 23 0 5 0 99 71.71 
Grass Land 0 67 0 0 0 4 71 94.36 
Rice 0 0 63 3 1 0 67 94.03 

Sugar beet 1 0 9 50 3 0 63 79.36 
Tomato 3 13 3 30 76 5 130 58.46 
Wheat 0 32 0 0 1 104 137 75.91 

Column T* 75 112 98 83 86 113 567  
PA ** (%) 94.66 59.82 64.28 60.24 88.37 92.03   

Overall A (%): 76.01       Kappa: 0.71  

(a) 
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Table I.24 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 69 0 26 1 1 0 97 71.13 
Grass Land 0 92 1 0 0 7 100 92 
Rice 0 0 62 0 0 0 62 100 

Sugar beet 0 0 3 40 8 0 51 78.43 
Tomato 6 1 6 42 77 2 134 57.46 
Wheat 0 19 0 0 0 104 123 84.55 

Column T* 75 112 98 83 86 113 567  
PA ** (%) 92 82.14 63.26 48.19 89.53 92.03   

Overall A (%): 78.30        Kappa: 0.73  

(b) 

 

Table I.25 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June-July classified with Kompsat-2 data and Envisat ASAR 

data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 61 10 3 0 3 7 84 72.61 
Grass Land 4 73 0 0 2 13 92 79.34 
Rice 4 0 104 0 1 0 109 95.41 

Sugar beet 9 3 0 84 13 1 110 76.36 
Tomato 3 3 5 14 56 1 82 68.29 
Wheat 2 5 2 0 1 80 90 88.88 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 73.49 77.66 91.22 85.71 73.68 78.43   

Overall A (%): 80.77      Kappa: 0.76  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 75 0 0 1 6 7 89 84.27 
Grass Land 0 93 1 0 0 1 95 97.89 
Rice 4 0 111 1 1 0 117 94.87 

Sugar beet 4 0 0 85 0 1 90 94.44 
Tomato 0 1 1 11 69 1 83 83.13 
Wheat 0 0 1 0 0 92 93 98.92 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 90.36 98.93 97.36 86.73 90.78 90.19   

Overall A (%): 92.59       Kappa: 0.91  

(b) 
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Table I.26 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of June-August classified with Kompsat-2 data and Envisat 

ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 56 2 2 0 0 3 63 88.88 
Grass Land 5 70 0 1 2 7 85 82.35 
Rice 4 0 108 1 5 0 118 91.52 

Sugar beet 14 2 0 81 11 1 109 74.31 
Tomato 2 2 3 14 56 0 77 72.72 
Wheat 2 18 1 1 2 91 115 79.13 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 67.47 74.46 94.73 82.65 73.68 89.21   

Overall A (%):  81.48       Kappa: 0.77  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 75 1 0 0 6 1 83 90.36 
Grass Land 0 80 0 0 0 0 80 100 
Rice 4 0 112 1 10 3 130 86.15 

Sugar beet 4 0 0 86 0 1 96 89.58 
Tomato 0 2 0 11 55 1 69 79.71 
Wheat 0 11 2 0 0 96 109 88.07 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 90.36 85.10 98.24 87.75 72.36 94.11   

Overall A (%): 88.88      Kappa: 0.86  

(b) 

 

Table I.27 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the map of July-August classified with Kompsat-2 data and Envisat 

ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 72 2 12 0 3 5 94 76.59 
Grass Land 1 82 1 0 0 6 90 91.11 
Rice 0 0 89 4 1 0 94 94.68 

Sugar beet 0 0 2 64 2 0 68 94.11 
Tomato 10 3 9 29 70 1 122 57.37 
Wheat 0 7 1 1 0 90 99 90.90 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 86.74 87.23 78.07 65.30 92.10 88.23   

Overall A (%): 82.36        Kappa: 0.78  

(a) 
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Table I.27 (Cont’d) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 79 1 9 2 7 7 105 75.23 
Grass Land 0 89 2 0 0 8 99 89.89 
Rice 0 0 99 0 0 0 99 100 

Sugar beet 0 0 2 69 0 0 71 97.18 
Tomato 4 3 2 27 69 1 106 65.09 
Wheat 0 1 0 0 0 86 87 98.85 

Column T* 83 89 114 98 76 102 567  
PA ** (%) 95.18 94.68 86.84 70.40 90.78 84.31   

Overall A (%): 86.59       Kappa: 0.83  

(b) 

 

Table I.28 Confusion matrix of the (a) pixel-based and (b) segment-based SVM, 

respectively, for the combined map (June-July-August) classified with Kompsat-2 data 

and Envisat ASAR data. 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 59 3 4 0 0 3 69 85.50 
Grass Land 4 78 0 0 1 6 89 87.64 
Rice 4 0 106 1 1 0 112 94.64 

Sugar beet 11 2 0 81 10 1 105 77.14 
Tomato 3 2 3 15 64 1 88 72.72 
Wheat 2 9 1 1 0 91 104 87.50 

Column T* 83 94 114 98 76 102 567  
PA ** (%) 71.08 82.97 92.98 82.65 84.21 89.21   

Overall A (%): 84.48       Kappa: 0.81  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T* 

UA*** 
(%) 

Corn 75 1 1 1 6 4 88 85.22 
Grass Land 0 89 0 0 0 1 90 98.88 
Rice 4 0 111 1 1 0 117 94.87 

Sugar beet 4 0 0 83 0 1 88 94.31 
Tomato 0 0 0 13 69 1 83 83.13 
Wheat 0 4 2 0 0 95 101 94.05 

Column T* 90.36 94.68 97.36 84.69 90.78 93.13 567  
PA ** (%)         

Overall A (%): 92.06       Kappa: 0.90  

(b) 
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Table I.29 Segment-based results of the MLC method of the (a) class pea and (b) late 

corn computed for the Kompsat-2 and Envisat ASAR data. 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Pea  Row 
T* 

UA*** 
(%) 

Corn 9 3 0 1 1 8 1  23 39.13 
Grass Land 29 51 1 2 17 28 6  134 38.06 
Rice 1 0 88 2 2 1 10  104 84.61 

Sugar beet 3 2 2 63 7 3 2  82 76.82 
Tomato 3 5 0 3 17 1 5  34 50 
Wheat 5 18 4 2 6 76 25  136 55.88 

Pea  6  2  1  0  4  6  35  54  64.81 

Column T* 56 81 96 73 54 123 84  567  

PA ** (%) 16.07 62.96 91.66 86.30 31.48 61.78 41.66    
  Overall A (%):  59.78      Kappa: 0.52  

(a) 

 

Classes Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Late 
Corn 

Row 
T* 

UA*** 
(%) 

Corn 64 1 0 0 13 0 31  111 57.65 
Grass 
Land 

0 54 0 0 0 31 4  89 60.67 

Rice 0 0 83 1 4 1 0  89 93.25 

Sugar beet 0 0 4 71 1 0 0  76 93.42 
Tomato 3 0 1 9 51 0 1  65 78.46 
Wheat 0 14 2 0 0 63 9  88 71.59 

Late Corn 1 9 0 0 6 3 30  49 61.22 
Column T*  68  78  90  81  75  98  77  567   

PA ** (%) 94.11 69.23 92.22 87.65 68 64.28 38.96    
  Overall A (%):  73.36           Kappa: 0.68  

(b) 

 

Table I.30 Confusion matrix of the MLC field-based results for all the reference fields 

computed for the Kompsat-2 and Envisat ASAR data 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 26 0 1 0 1 6 34 76.47 
Grass Land 0 25 0 0 0 2 27 92.59 
Rice 0 0 48 0 0 1 49 97.95 
Sugar beet 0 0 0 54 0 0 54 100 
Tomato 1 0 0 5 8 0 14 57.14 
Wheat 0 3 0 0 0 84 87 96.55 
Column T 27 28 49 59 9 93 265  

PA 96.29 89.28 97.95 91.52 88.88 90.32   
Overall A (%): 92.45   Kappa: 0.90  
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Table I.31 Confusion matrix of the field-based results for the MLC method computed for 

small fields (0.1-4.9 ha) with the Kompsat-2 and Envisat ASAR data. 

 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 25 0 0 0 1 5 31 80.64 
Grass Land 0 7 0 0 0 2 9 77.77 
Rice 0 0 34 0 0 1 35 97.14 
Sugar beet 0 0 0 48 0 0 48 100 
Tomato 1 0 0 5 8 0 14 57.14 
Wheat 0 3 0 0 0 55 58 94.82 
Column T 26 10 34 53 9 63 195  

PA 96.15 70 100 90.56 88.88 87.30   
Overall A (%): 90.76  Kappa: 0.81  

 

Table I.32 Confusion matrix of the field-based results for the MLC method computed for 

medium fields (5 - 9.9 ha) with the Kompsat-2 and Envisat ASAR data. 

 

 Grass 
Land 

Rice Sugar 
beet 

Wheat Row 
T 

UA 

Grass Land 6 0 0 0 6 100 
Rice 0 12 0 0 12 100 
Sugar beet 0 1 1 0 2 50 
Wheat 0 0 0 12 12 100 
Column T 6 13 0 0 32  

PA 100  92.30  100  100     

        Overall A (%): 96.87     Kappa: 0.95  

 

Table I.33 Confusion matrix of the field-based results for the MLC method computed for 

large fields (10 - 38 ha) with the Kompsat-2 and Envisat ASAR data. 

 

 Grass 
Land 

Rice Wheat Row 
T 

UA 

Grass Land 9 0 0 9 100 
Rice 0 1 0 1 100 
Wheat 0 0 12 12 100 
Column T 9 1 12 22  
PA  100  100  100  100   

Overall A (%): 100     Kappa: 100
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Table I.34 Confusion matrix of the field-based results for the SVMs method computed for 

all the fields with the Kompsat-2 and Envisat ASAR data. 

 Corn Grass 
Land 

Rice Sugar 
beet 

Tomato Wheat Row 
T 

UA 

Corn 24 0 0 0 0 3 27 88.88 
Grass Land 0 24 0 0 0 4 28 85.71 
Rice 1 0 49 0 0 1 51 96.07 
Sugar beet 2 0 0 53 0 2 57 92.98 
Tomato 0 2 0 6 9 0 17 52.94 
Wheat 0 2 0 0 0 83 85 97.64 
Column T 27 28 49 59 9 93 265  

PA 88.88 85.71 100 89.83 100 89.24   
Overall A (%):  91.31    Kappa: 0.88  
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