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ABSTRACT 

PROTOTYPE DEVELOPMENT AND VERIFICATION  
FOR AN IP LOOKUP ENGINE ON FPGAS 

PERFORMANCE STUDY 

Özkaner, Akın 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı 

 

February 2012, 117 pages 

The increasing use of the internet demands more powerful routers with higher 

speed, less power consumption and less physical space occupation. IP lookup 

operation is one of the major concerns in today’s routers for providing such 

attributes. To accomplish IP lookup on routers, hardware or software based 

solutions can be used. In this thesis, an SRAM based pipelined architecture 

proposed earlier for ASIC implementation is re-designed and implemented on an 

FPGA in the form of a BRAM based pipelined 8x8 torus architecture using Xilinx 

ISE and simulated and verified using Modelsim Simulator. Some necessary 

modifications and improvements for FPGA implementation are carried out. The 

results of our experiments, which are performed for a real router lookup table and a 

real time traffic load with various optimizations, are also presented. Our study and 

design effort demonstrates the feasibility of the FPGA implementation of the 

proposed technique, of course with a considerable performance penalty.  

Keywords : IP lookup, FPGA, routers. 
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ÖZ 

FPGA ÜZERĐNDE IP TARAMA MOTORU PROTOTĐP GELĐŞTĐRMESĐ VE 
DOĞRULAMASI 

 

Özkaner, Akın 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi :  Doç. Dr. Cüneyt F. Bazlamaçcı 

 

Şubat 2012, 117 sayfa 

Artan internet kullanımı; yüksek hızda çalışan, güç tüketimi düşük olan ve fiziksel 

olarak az yer kaplayan daha etkili  ağ yönlendiricilerinin kullanımını 

gerektirmektedir. Bu özelliklere sahip ağ yönlendiricileri için en önemli unsurlardan 

birisi de IP arama işlemidir. Ağ yönlendiriciler üzerinde IP arama işlevini 

gerçekleştirmek amacıyla yazılım veya donanım temelli çözümler 

kullanılabilmektedir. Bu tez çalışması, boru hattı davranışlı  SRAM tabanlı ASIC 

model için daha önce önerilmiş bir çalışmanın yeniden tasarlanarak FPGA donanım 

yapısında gerçeklenmesini içermektedir. Tez kapsamında, boru hattı davranışlı 

BRAM tabanlı 8x8 torus mimarinin Xilinx ISE ile tasarımı ve Modelsim Simulator  

ile benzetimi gerçekleştirilmiştir. FPGA tasarımına yönelik bazı iyileştirmeler ve 

gerekli değişiklikler yapılmıştır. Gerçek yönlendirici arama tabloları ve gerçek 

zamanlı ağ trafiği ile çeşitli en iyileştirmeler ve denemeler de gerçekleştirilmiş ve 

sonuçları sunulmuştur. Çalışmamız ve tasarım çabamız daha önce önerilmiş 

tekniğin, elbette belirgin bir başarım kaybı karşılığında, FPGA gerçeklemesinin de 

mümkün olduğunu göstermektedir.  

Anahtar Kelimeler: IP arama, IP tarama, ağ yönlendiricisi, FPGA üzerinde IP 

tarama 
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CHAPTER 1  

 

INTRODUCTION 

In the developing environment of high performance IP networks, it is expected that 

local and wide area backbones, enterprise networks, and ISPs will use multigigabit 

and even terabit networking technologies, where IP routers will be used not only to 

interconnect backbone segments but also to act as points of attachments to high 

performance wide area links.  

 

 

1.1 BACKGROUND 

 

The primary role of IP routers is to forward packets to their final destination 

address. For this purpose, a router must decide for each incoming packet where to 

send it next. In other words, the forwarding decision consists of finding the address 

of the next-hop router and the output port through which the packet should be sent. 

This information is stored in a lookup table that the router computes based on the 

information gathered by routing protocols. To consult the lookup table, the router 

uses the incoming packet’s destination address as a key and this process is called 

address lookup. Once the forwarding information is retrieved, the router can   

transfer the packet from the incoming link to the appropriate outgoing link, in a 

process called switching. 

 

The rapid growth of the Internet has stressed its routing system. While the link rates 

have kept pace with the increasing traffic, it has been difficult for the packet 

processing capacity of routers to keep up with the increased data rates of the link.  
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The Classful Addressing Scheme 

 

When Internet addressing was initially designed, a simple address allocation 

scheme was defined, which is known today as the classful addressing scheme. 

 

In IP version 4, IP addresses are 32 bit long and, when broken up into 4 groups of 8 

bits, are normally represented as four decimal numbers separated by dots. The IP 

address scheme initially used a simple two-level hierarchy, with networks at the top 

level and hosts at the bottom level. This hierarchy is reflected in the fact that an IP 

address consists of two parts, a network part and a host part. The network part 

identifies the network to which a host is attached and thus all hosts attached to the 

same network agree in the network part of their IP addresses. 

 

Since the network part corresponds to the first bits of the IP address, it is called the 

address prefix. We will write prefixes as bit strings of up to 32 bits in IPv4 followed 

by a “*”. For example, prefix 1000001001010110* represents all 216 addresses that 

begin with the bit pattern 1000001001010110. Alternatively, prefixes can be 

indicated using the dotted-decimal notation, so the same prefix can be written as 

130.86/16, where the number after the slash indicates the length of the prefix. 

 

With a two-level hierarchy, IP routers forward packets based only on the network 

part, until packets reach the destination network. As a result, a forwarding table 

only needs to store a single entry to forward packets to all the hosts attached to the 

same network. This technique is called address aggregation and allows using 

prefixes to represent a group of addresses. Each entry in a forwarding table contains 

a prefix (Figure 1-1). So, finding the forwarding information requires searching for 

the prefix in the forwarding table that matches the corresponding bits of the 

destination address. 
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Figure 1-1 Example Forwarding Table 

1.1.1 Network Topology 

Basically, three different sizes of networks were defined in the classful addressing 

scheme, identified by a class name: class A, B, and C. Size of networks was 

determined by the number of bits used to represent the network part and the host 

part. Thus networks of class A, B or C consisted in an 8, 16 or 24-bit network part 

and a corresponding 24, 16 or 8-bit host part (Figure 1-2). 

 

 

Figure 1-2 Classful Addressing Scheme 

With this scheme there were very few class A networks and their addressing space 

represented 50% of the total IPv4 address space (231 addresses out of a total of 232). 

There were 16,384 (214) class B networks with a maximum of 65,536 hosts per 

network and 2,097,152 (221) class C networks with up to 256 hosts. This allocation 

scheme worked well in the early days of the Internet. However, the continuous 

growth of the number of hosts and networks has made apparent two problems with 

this classful addressing architecture. First, with only three different network sizes to 
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choose, the address space was not used efficiently and the IP address space was 

getting exhausted very rapidly, even though only a small fraction of the addresses 

allocated were actually in use. 

 

 

 

The CIDR Addressing Scheme 

To allow for a more efficient use of the IP address space and to slow down the 

growth of the backbone forwarding tables, a new scheme called Classless Inter-

domain Routing or CIDR was introduced. 

 

In the classful addressing scheme, only 3 different prefix lengths are allowed: 8, 16 

and 24 corresponding to the classes A, B and C, respectively. CIDR makes more 

efficient use of the IP address space by allowing a finer granularity in the prefix 

lengths. With CIDR, prefixes can be of arbitrary length rather than constraining 

them to be 8, 16 or 24 bits long. 

 

CIDR allows address aggregation at several levels. Consider the networks 

represented by the network numbers from 208.12.16/24 through 208.12.31/24. 

Suppose that in a router all these network addresses are reachable through the same 

service provider. From the binary representation we can see that the leftmost 20 bits 

of all the addresses in this range are the same. Thus, we can aggregate these 16 

networks into one “super network” represented by the 20-bit prefix, which in 

decimal notation gives 208.12.16/20 (Figure 1-3).  Note that indicating the prefix 

length is necessary in decimal notation, because the same value may be associated 

to prefixes of different lengths, for instance 208.12.16/20 (11010000 00001100 

0001*) is different from 208.12.16/22   (11010000 00001100 000100*).  
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 Figure 1-3 Address Aggregation in CIDR Acheme 

 

1.1.2 Router Architecture 

The popularity of the Internet has caused the traffic on the Internet to grow 

drastically every year for the last several years. It has also spurred the emergence of 

many ISPs. To sustain growth, ISPs need to provide new differentiated services, 

e.g., tiered service, support for multimedia applications, etc. The routers in the ISPs’ 

networks play a critical role in providing these services. IP traffic in private 

enterprise networks has also been growing rapidly for some time. These networks 

face significant bandwidth challenges as new application types, especially desktop 

applications uniting voice, video, and data traffic need to be delivered on the 

network infrastructure. This growth in IP traffic is beginning to stress the traditional 

processor-based design of current-day routers and as a result has created new 

challenges for router design. 

 

Routers have traditionally been implemented purely in software. Because of the 

software implementation, the performance of a router was limited by the 

performance of the processor executing the protocol code. To achieve wire-speed 

routing, high-performance processors together with large memories were required. 

This translated into higher cost. Thus, while software-based wire-speed routing was 

possible at low-speeds, for example, with 10 megabits per second (Mbps) ports, or 

with a relatively smaller number of 100 Mbps ports, the processing costs and 
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architectural implications make it difficult to achieve wire-speed routing at higher 

speeds using software-based processing. 

 

Fortunately, many changes in technology (both networking and silicon) have 

changed the landscape for implementing high-speed routers. Silicon capability has 

improved to the point where highly complex systems can be built on a single 

integrated circuit. The use of 0.35 µm and smaller silicon geometries enables 

application specific integrated circuit implementations of millions gate-equivalents. 

Embedded memory and microprocessors are available in addition to high-density 

logic. This makes it possible to build single-chip, low-cost routing solutions that 

incorporate both hardware and software as needed for best overall performance. 

1.1.3 IP Lookup  

Due to the rapid growth of traffic in the Internet, backbone links of several 

Gigabit/sec are commonly deployed. To handle Gigabit/sec traffic rates, the 

backbone routers must be able to forward millions of packets per second on each of 

their ports. Fast IP address lookup in the routers, which uses the packets destination 

address to determine for each packet the next hop, is therefore crucial to achieve the 

packet forwarding rates required. 

 

1.2 MOTIVATION 

In hardware based IP Lookup solutions for network routers, there are two main 

categories. These are namely ternary content addressable memory (TCAM) based 

and random access memory (RAM) based solutions. RAM based solutions include 

dynamic or static random access memories (DRAM or SRAM) or Block RAM 

(BRAM) in FPGA or ASIC. Each prefix can be stored in a TCAM with not only 

using 0's or 1's but also using don't care values. A seach key (i.e. IP address) is 

compared to all entries cycle and only one matched result, which is the longest 

matching prefix, appears at the output in one clock cycle. Therefore, TCAM based 

solutions have been popular for implementing lookup functions in core routers [1]. 

However, they have high cost and high power consumption as major drawbacks in 
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addition to their unsuitability in adopting to new addressing and routing protocols 

[2, 3]. 

 

On the other hand, RAM based solutions offer higher memory access speeds, lower 

power consumption and higher density. To implement RAM based IP lookup 

architectures, generally tree type data structures for finding LPM are used and the 

trees are traversed appropriately during a search. However, multiple memory 

accesses may be needed to search an IP addresses in such structures. For improving 

the throughput, various pipelined architectures have been proposed [4, 5] the main 

idea being the storage of a lookup table (represented for example as a binary tree) of 

a router on seperate and multiple memory elements.  When an IP search is in 

progress in a pipeline, another incoming search key can be admitted into the system. 

Although the throughput is improved in pipelined solutions, straightforward 

mapping of the tree on the pipeline stages makes an unbalanced memory 

distribution inevitable. One of the possible solutions to unbalanced memory 

problem was proposed earlier using two dimensional, parallel, intersecting, circular 

and variable length pipelines [6,26]. Our implementation within the scope of this 

thesis provides minor modifications on the work of [6] to adapt it to be 

implemented in an FPGA rather than an ASIC.  

 

In [6], nothing was mentioned abour initializing RAM contents for each stage of the 

pipeline and hence we also proposed loading and updating of RAM contents in each 

processing element described in Section 4.1. 

1.3 CONTRIBUTIONS 

• We re-designed and adopted an existing SRAM based pipelined 

architecture, named SAFIL [6] for FPGA implementation. 

o We added load and update attributes to SAFIL. 

o We utilized FIFOs in CRs in SAFIL to prevent possible head of line 

blocking. 
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o We augmented SAFIL by designing a data flow manager (DFM) 

module in each PE to manage different type of incoming SAFIL 

frames. 

• We implemented and simulated the modified SAFIL structure in the form of 

a BRAM based pipelined 8x8 torus architecture on an FPGA using Xilinx 

ISE and Modelsim Simulator.  

1.4 OUTLINE 

The rest of the thesis is organized as follows. Chapter 2 covers the background and 

related work for IP lookup approaches. Our array design for trie-based IP lookup 

and update is discussed in Chapter 3. Chapter 4 introduces the proposed IP lokup 

architecture and its implementation on FPGA. Finally, Chapter 5 summarizes and 

concludes our work. 
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CHAPTER 2  

 

IP LOOKUP APPROACHES 

In modern IP routers, Internet Protocol (IP) lookup forms a bottleneck in packet 

forwarding because the lookup speed cannot catch up with the increase in link 

bandwidth. To deal with this problem, various software and hardware based 

solutions have been proposed for over 20 years. In this chapter, a brief overview of 

prior work on IP lookup solutions will be presented. 

2.1 SOFTWARE BASED SOLUTIONS 

In IP lookup, the simplest and most popular data structure is binary trie. Each node 

in trie contains two pointers, the left-child pointer and the right-child pointer. 

Moreover if a trie node contains a valid prefix (corresponding to a routing table 

entry), then a next hop information (port number) associated with that prefix is also 

stored in a trie node. Figure 2-1 illustrates a sample prefix table and its corresponding 

binary trie. 

 

In the rest of this text, the following terms are used: 

• Prefix node is any trie node that corresponds to a valid prefix (marked as 

black)  

• Leaf prefix node is a leaf node which is a valid prefix node (black leaf) 

 

In a trie data structure, a node does not hold any prefix explicitly but the path from 

the root to another node corresponds to a prefix implicitly. 
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Figure 2-1 A Prefix Table and Corresponding Binary Trie 

 

Any search operation begins with the root node. According to the bits of the IP 

address, operation continues traversing the trie from parent to child nodes. If 

following bit of IP address is "0", search continues towards left child node, 

otherwise right child node. While traversing, port result is updated if a valid node is 

encountered. Search operation terminates if a null child node or a leaf node is 

reached. The last matched prefix is selected as the longest matched prefix. For 

instance, a search key starting with 1010 will match the leaf prefix node whose next 

hop is P8 according to longest prefix mathing (LPM) rule in Figure 2-1. Update 

operations such as prefix insertion, deletion and route changes are easy to 

implement in a binary trie structure. On the other hand, search operation in a binary 

trie needs 32 memory accesses for IPv4 and 128 memory accesses for IPv6 in the 

worst case and hence lookup time gets longer. 

 

When all the prefix nodes are pushed to leaves, then a binary trie is called a leaf-

pushed binary trie [7]. In a leaf-pushed binary trie, a non-leaf node contains only 

pointers to its children and the leaf node contains only a next hop information 

associated with the corresponding prefix. Figure 2-2 shows the leaf-pushed version 

of the binary trie in Figure 2-1. 
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Figure 2-2 The Leaf Pushed Version of the Binary Trie in Figure 2-1  

 

Software based IP lookup solutions are generally based on algorithms that use 

binary trie. These software approaches are scalable but slow to work in line speeds 

[8].  To accelarate software based lookup, various solutions were proposed. The 

search time and the memory performance of a binary trie can be increased with path 

compression technique, which was first proposed by [9]. With this method, any 

node of a trie can be omitted if it has only one child node to make the path from 

root node to leaf node shorten. In order to keep the record of removed internal 

nodes, each node must store a skip value and bit string. The skip value stores the 

number of bits to be skipped on the path. The bit string stores missing bits from the 

last skip operation. 

 

2.2 HARDWARE BASED SOLUTIONS 

Altgough software based solutions are simple and scalable, they are slow to work in 

line speeds [8].  To improve performance and especially the throughput, various 

hardware based solutions were proposed using either SRAM or TCAM based 

memory technologies. And recently, ASIC or FPGA based solutions have also 

appeared in the literature [10, 11, 12, 13, 14]. 
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2.2.1 SRAM Based Solutions 

Single SRAM based IP lookup solutions are in need of multiple memory accesses 

during the tree traversal for finding the matched port result. To increase the 

throughput, various SRAM based pipelined solutions have been proposed. A binary 

trie can be implemented in an SRAM based pipelined architecture using multiple 

static random access memory elements. Each stage in binary trie is represented by 

an SRAM block. Therefore, the number of stages should be equal to the SRAM 

blocks utilized. The number of memory accesses is then determined by the average 

depth of the trie that stores a part or all of the routing table. Each search operation 

can access a seperate memory block only once during a search if each stage of the 

binary trie is utilized seperately. During a search that checks whether an IP address 

matches a prefix or not, a new incoming search request must wait for the on-going 

lookup operation to finish up.  

IP lookup in binary tries need multiple memory accesses in order to find LPM node. 

In a pipelined architectures, the trie is mapped onto the stages of the pipelines. The 

trie traversal is then performed on these separate and multiple memory elements 

(SRAMs) through the pipeline. Enough memory stages exist and no stage is 

accessed more than once during a search in a conventional one dimensional pipeline 

architecture. Although throughput is improved using a pipeline, an ordinary 

mapping of the binary trie onto the pipeline stages results in unbalanced memory 

utilization. Unbalanced trie node distribution over pipeline stages decreases the 

overall performance of the architecture. Various different solutions have been 

proposed to address the memory balancing problem [4, 5, 15, 16]. 

In [4], a ring pipeline architecture, which allows search to start from any pipeline 

stage, is proposed. This approach is based on dividing the binary trie into subtries 

and choosing each subtrie starting point to a different pipeline stage to create a 

balanced pipeline. In this approach, there are two different data path. First one is for 

finding the starting pipeline stage and the second one is for lookup operation. The 

matched port result propagates to the final pipeline stage to appear at the output. 

The throughput of the described Baboescu et al. architecture is 0,5 lookups per 

clock cycle. 
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In [5], the previous method is improved with an approach called Circular, Adaptive 

and Monotonic Pipeline (CAMP). Apart from previous approach, at any pipeline 

stage, there are two different input and one output  stage. In this architecture, 

maximum 0,8 lookups per clock cycle are possible. 

 

The throughput of pipelined architectures can be improved by using multiple 

pipelines. Jiang et al. [12] proposed the first parallel multipipeline architecture 

Parallel Optimized Linear Pipeline (POLP) in which each pipeline can operate 

concurrently to increase the speed up rate.  POLP is improved further in later 

studies. For example a bidirectional linear pipeline is introduced in [17]. To 

improve POLP power effciency, a hybrid SRAM/TCAM selector unit is also 

proposed in [18] and [19], the aim being shortening pipeline lengths by introducing 

hybrid partitioning schemes. 

 

2.2.2 T-CAM Based Solutions 

Binary CAM is the simplest type of CAM which uses data search words consisting 

entirely of 1s and 0s. Ternary CAM (TCAM) allows a third state of  "Don't Care" 

bits in the stored dataword, thus adding flexibility to the search. For example, a 

ternary CAM might have a stored word of "10XX0" which will match any of the 

four search words "10000", "10010", "10100", or "10110". The added search 

flexibility comes at an additional cost over binary CAM as the internal memory cell 

must now encode three possible states instead of the two of binary CAM. This 

additional state is typically implemented by adding a mask bit ("care" or "don't 

care" bit) to every memory cell. TCAM is more powerful because don’t cares may 

act as wildcards during a search and hence LPM can be solved naturally in one 

cycle [20]. 

As shown in Figure 2-3, in TCAM architectures, prefixes are stored in sorted order 

based on prefix lengths. When a search key (i.e. an IP address) is admitted into 

conventional TCAM, incoming bits are distributed to all the entries. The matched 

entries activate outputs that are fed into a priority encoder. If more than one outputs 



14 

are activated, the priority encoder decides which entry is LPM and outputs the 

longest matching one. 

 

 

Prefix 0       P0

Prefix 1       P1

Prefix 2       P2

...

...

Prefix n       Pn

IP Address

Output 

Port

 
 

Figure 2-3 TCAM 

 

 

Although TCAM-based solutions are straightforward and famous, they are 

expensive, power consuming, and offer little scalability and adaptability to new 

addressing and routing protocols [2, 3, 21, 22]. While a search is in progress, in 

which every memory block of the entries are used in active state, TCAM modules 

consumes high power. Moreover, updating a memory cell may require multiple 

entry moves, which means that long updating progress may be needed. 

Additionally, low scalability may arise in the case of changing the order in the 

priority encoder when updating the contents of the memory cells. 
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CHAPTER 3  

 

ARRAY DESIGN FOR  TRIE BASED IP LOOKUP AND 

UPDATE 

3.1 INTRODUCTION 

SRAM based IP lookup solutions are in need of multiple memory accesses to 

traverse the tree to perform a single search request. Since only one memory access 

is allowed during a lookup process for an IP address, a new incoming lookup 

request should wait until previous search is completed. Several researchers have 

explored various SRAM based pipelined architectures to improve the througput 

[4,5].  

 

In these architectures, only a single pipeline stage is used for mapping a binary trie. 

This single pipeline stage is composed of  multiple connected sub blocks that 

represent a node in the trie. Each sub block utilizes an SRAM unit to store node 

information. Each new search request starts in the boundary sub block and proceed 

until the LPM node is encountered. 

 

An SRAM based multi pipeline [13, 15, 16, 18, 19] approach improves the 

throughput considerably by using parallel non-intersecting and costant length 

pipelines having m different sub blocks that contains SRAM units. Each sub block 

is connected to each other with n pipelines. 

 

In this chapter, we review and present a Block RAM based array architecture for 

fast IP lookup with update functionality, which is a slightly modified version of [6].  
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3.2 MOTIVATION 

In this thesis, we implement a two dimensional multiple pipelined architecture 

proposed in [6] that has parallel, circular search capabilities on intersecting and 

variable length pipelines.  

 

In our implementation, we added FIFOs to the system to prevent head of line 

blocking in Contention Resolvers and a Ram Data Loader module to load or update 

RAM contents of the system. We also modified the PE architecture slightly to adapt 

it to Xilinx FPGAs and used BRAMs instead of seperate SRAMs. 

 

3.3 ARRAY ARCHITECTURE for  FAST IP LOOKUP WITH 

UPDATE CAPABILITY 

SRAM based array architecture for fast IP lookup (SAFIL) is composed of specially 

designed processing elements (PEs) that are connected like a 2D torus topology but 

is operated like a systolic array to benefit from multi-pipeline parallelism [6]. In the 

following, the systolic array like structure and 2D torus network topology are 

explained briefly: 

 

Systolic array: A systolic array is a pipe network arrangement of processing units 

called cells. It is a specialized form of parallel computing, where cells (i.e. 

processors), compute data and store it independently of each other. Each processing 

element inputs data from one or more neighbors (e.g. North and West) and 

processes it. The output of the process is given to the neighbors in the opposite 

direction (e.g. South and East). The task of one cell can be summarized as receive, 

compute and transmit. The communication with the outside world occurs only at 

boundary cells. The processing elements share the information with their neighbors 

after performing the needed operations on the data.  Figure 3-1 demonstrates an 

example of 4x4 systolic array architecture. The systolic arrays have attractive 
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properties such as synchronization, modularity, regularity, locality, finite 

connection, parallel pipelining and modular extendibility [6]. 

 

 

 

 

Figure 3-1 A 4x4 Systolic Array 

 

2D-torus: 2D torus is a k-ary 2-cube network where k≥3. A k-ary n-cube network 

where n is the dimension of the cube and k is the radix, is a well-known topology 

used in communication networks and high performance computing architectures. It 

consists of nkN =  nodes arranged in n-dimensions, with k-nodes per dimension. 

Figure 3-2 illustrates 4-ary 2-cube network or 4 x 4 torus. 

 

 

 

Figure 3-2 4x4 Torus 
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The topology in SAFIL is like a k-ary 2-cube; in particular a 2D torus, where k≥3, 

in which the wrap-around connections are not between PEs but rather between a PE 

and a contention resolver (CR) (Figure 3-3). As a result, SAFIL can be regarded as 

an array of PEs that are connected in a 2D torus topology and is operated like a 

systolic array to benefit from multi-pipeline parallelism for trie-based IP lookup. 

 

 

Figure 3-3 4x4 SAFIL Architecture [6] 

 

In a systolic array in general; 

 i) a PE is similar to a central processing unit except for a program counter, 

 ii) the operations are synchronous and transport-triggered, 

iii) the communication with the outside world occurs only at the array boundary, 

 iv) there exist structured data parallelism, strict flows along rows/columns and 

interaction of data streams at the PEs.  

SAFIL is not exactly a systolic array since it has the above (i)-(iii) characteristics 

but not (iv) [6]. 
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3.3.1 IP Lookup Process 

An IP Lookup Process starts at an available Selector Unit (SU). The searched IP 

address arrives at input side of SU to start a new search operation. Then this SU, 

using initial r bits of the IP address, finds the input stage PE and the memory 

address of the corresponding subtrie root in this PE. Then a SAFIL Frame is 

constructed as shown in Figure 3-4. 

 

 

Figure 3-4 SAFIL Frame 

 

A SAFIL Frame consists of the following four fields: 

- A-field holds the least significiant (32-r) bits of the IP address being 

searched (most significiant r bits are to be used for initial partitioning). 

- I-field is a pointer to the Block RAM in PE. 

- P-field holds the search result that the IP packet will use to reach to the next 

router 

- U-field holds the type of the frame (IP Lookup or IP Update). 

 

Since more than one search requests may arrive at an input stage PE, in this case 

contention occurs. The contention resolver (CR) is used to get a SAFIL frame that 
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contains the IP address to be processed into the system. When contention occurs, 

only one of the contented packets is selected and the others are put on hold using a 

suitable strategy. Each SU is connected to every other CR. Number of SUs is a 

design choice and defines the maximum number of search requests that can be 

admitted to the system simultaneously. The endpoints of each row and column are 

connected to their corresponding CRs. Hence a pipeline corresponding to a branch 

in prefix tree can be mapped onto the array of PEs by wrapping it around the 

corresponding row or column. If a circulating search exists, other search requests 

from SUs are accepted by CR into "inside FIFOs". The backplane obtains the search 

result from any of the PEs. 

 

 

Figure 3-5 Propagation of a SAFIL frame during lookup 

 

Figure 3-5 illustrates the lookup process for two different addresses on an 8x8 

SAFIL system assuming an initial stride for partitioning as r = 8. These two search 

keys are assumed to enter into the system at the same time. While search key is 

traversing through each PE, SAFIL frame is updated and mapped to one of the child 

node according to MSB of it. If the stored prefix node is valid, the port number field 
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in the traversing SAFIL frame is updated. At the end of the search operation, port 

number is output to the backplane. 

3.3.2 IP Lookup Table Update and Propagate Process 

A binary trie is initially partitioned into several disjoint subtries. These subtries are 

then mapped on SAFIL starting from the input stage PE (to which CRs ans SUs are 

connected). The Block RAM contents of each PE is loaded by Ram Data Loader by 

constructing SAFIL Update Frames. This unit is connected to all CRs located in the 

northern side of the structure.  

 

A SAFIL Update Frame (shown in Figure 3-6) consists of four fields, namely m-bit 

ram data (D), p-bit Block RAM index (I), n-bit PE ID code (PE) and 1-bit frame 

type (U). D-field holds p-bit Block RAM data that will be updated, I-field holds 

Block RAM Address, PE-field holds the identification code of the PE and U-field is 

the type of the frame (if SAFIL Update Frame U='1' otherwise U='0').  

 

 

Figure 3-6 SAFIL Update Frame 

 

An update process begins at Ram Data Loader (RDL) by constructing SAFIL 

update frame. This frame comes to the corresponding column (one of northern side 

CRs). Since each PE in one column has a unique ID, only one ID of the update 

packet will match the destination PE ID. The update packet propagates along with 

the column until the mached ID's are encountered. The propagation of the update 

packet between the PEs is named as "propagation process". If matching occurs in 

any PE, this is named as "update process". 
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3.3.3 Processing Element 

A PE consists of two FIFO queue blocks, a Block RAM, a Data Flow Manager and 

additional combinational logic as shown in Figure 3-7. 

 

Figure 3-7 Block Diagram of the Processing Element (PE) 

Each block in the PE is explained below: 

FIFO Block: This block is used for buffering data coming from west or north side 

of the PE. 

Block RAM: This memory element is used to store trie nodes.  

Data Flow Manager: This unit is used for managing the data flow coming into PE. It 

manages two FIFOs using a Round Robin Scheduler by enabling only one of the 

FIFOs at each cycle. It also decides whether the incoming frame is a SAFIL Frame 

or a SAFIL Update Frame. Then, according to frame type, it starts one of either 

lookup, update or propagate processes. 

Combinational Logic: This logic is used for deciding whether the IP address 

searched encounter an LPM or not in the current node of the trie (LPM node: there 
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is a valid prefix and a match in the current node). With this decision, this logic can 

modify the SAFIL Frame and put this frame at the output (either south or east) or 

send the result (i.e., output port information) to the backplane. 

 

A SAFIL Frame consists of four fields, namely t-bit address (A), p-bit Block RAM 

index (I), q-bit port number (P) and 1-bit frame type (U). A-field holds the least 

significant t-bits of the IP address being searched (most significant (32-t) bits are to 

be used for initial partitioning, I-field is a pointer to the Block RAM in PE, P-field 

holds the search result that the IP packet will use to reach to the next router and U-

field is the type of the frame. (if SAFIL Frame U='0', otherwise U='1')  

In addition to the (t+p+q+1)-bits wide data bus connection, a single bit data 

available (DAV) signal between two neighboring PEs is also used. Each Block 

RAM unit stores (2p+q+1) bits in each entry, having two p-bit fields of south (SI) 

and east (EI) Block RAM indices, a q-bit port number (PN) field and a valid (V) bit 

(indicating whether the current trie node is a prefix or an intermediate node). A PE 

modifies the P-field in SAFIL frame if the current node is a valid prefix node. A 

SAFIL frame carries the latest longest matched port number through each traversed 

PE not to backtrack from the last stage when a search terminates. 

Each PE's behavioral structure is shown in Figure 3-8. In each two clock cycle, a PE 

functions as follows: 

i. SAFIL/SAFIL Update Frame arrives from northern or western input 

ports 

ii. Data Flow Manager finds the Frame type: 

iii. If the frame is a SAFIL Frame, Combinational Logic decides if the 

current node is an LPM node or not.  

a. If LPM node, q-bits wide port result is output to backplane by 

using the information read with a single access from Block 

RAM. 

b. If not, Combinational Logic modifies the frame by using the 

information read with a single access from Block RAM and 

this modified frame is guided to one of eastward or 

southward output ports.  
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If the frame is a SAFIL Update Frame, Data Flow Manager modifies the data row 

of the relevant Block RAM. 

 

Figure 3-8 Flowchart of Data Processing in PE 
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Figure 3-9 Detailed Block Diagram of a PE (Lookup Process) 

 

Figure 3-9 presents the block diagram of a Processing Element in SAFIL for lookup 

process. 
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Figure 3-10 Block Diagram of a PE (Update Process) 

 

Figure 3-10 presents the block diagram of a Processing Element in SAFIL for 

update process. 
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Figure 3-11 Block Diagram of a PE’s Propagate Process 

Figure 3-11 gives the block diagram of a SAFIL Processing Element’s propagate 

process. 

 

3.3.4 Selector Unit 

This unit is used for initial partitioning and constructing SAFIL Frames. Selector 

Unit is a combinational logic that inputs the destination IP address and processes its 

initial r-bits (r is used for initial partitioning and was discussed in Section 3.3.1). 

SU functions as follows: 

i. It finds the input stage PE by checking the initial r-bits of the IP address. 

ii. It constructs the SAFIL Frame by adding the memory address of the root 

node of the corresponding subtrie. 
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iii. It puts the constructed SAFIL Frame on its output port. 

 

3.3.5 Contention Resolver 

This unit is used for buffering and arranging incoming data from different SU’s and 

wrapped around eastern and southern PE’s. Since more than one search request may 

arrive at an input stage PE, there is a need for a mechanism in order to accept an IP 

address into the system to be searched. Therefore, only one search operation will be 

accepted by a Contention Resolver. When contention occurs, only one of the 

contented packets is selected and routed to the connected PE while the others being 

stored in FIFO’s in each Contention Resolver. 

 

Since more than one packet may arrive at each CR in one cycle, we implemented a 

FIFO block in each port in a CR to accept incoming data. Since more than one 

packet want to leave CR at the same time, there is also a need for arranging these 

packets. A suitable strategy, such as Round Robin for example, can be employed for 

this operation.  

 

CR functions as follows: 

i. SAFIL Frames or SAFIL Update Frames arrives at the input of the CR. 

ii. At each input port, receiving data enters the corresponding FIFO. 

iii. CR enables one of the FIFOs for taking data to the output port. 

 

3.3.6 Congestion Control Unit 

This unit is designed and used to prevent possible FIFO overflow in any PE. Since 

FIFO’s in each PE have limited size, packet loss due to queue overflow is always 

possible. Using a simple congestion control mechanism, one can control the 

incoming traffic rate by activating or deactivating the input ports if any of the 

FIFO’s is almost full. A one bit connection from each PE’s queue to congestion 

control unit (CCU) is sufficient for this purpose. One possible congestion control 

algorithm in activating and deactivating the SU’s is additive increase multiplicative 
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decrease strategy. If the FIFO queue usage exceeds the predefined threshold value, 

then half of the SUs are deactivated to decrease the load at the input of the whole 

system. SUs to be deactivated can be chosen arbitrarily because each SU may 

receive packets from the input queue and has direct connections to each CR. If there 

is no congestion,  number of active SUs are increased by one at each cycle. 

 

CCU functions as follows: 

 

i. If one of the FIFO’s in any PE reaches to predefined threshold value, one bit 

almost full signal becomes logic ‘1’. 

ii. CCU deactivates SUs with multiplicative decrease strategy. For example, if 

n SU’s are active at some time and one of the FIFO’s is almost full, CCU 

deactivates half of the SU’s not to accept a search key (IP Address) anymore 

having n/2 active SUs for the next cycle.    

iii. CCU activates SUs with additive increase strategy. For example, if n SU’s 

are active at some and none of the FIFO’s are almost full, CCU activates 

one of the inactive SUs making a total of n+1 SU’s are active. 

 

3.3.7 Ram Data Loader 

This unit is used for loading and updating the contents of the Block RAM’s inside 

each PE. Each load or update operation starts at Ram Data Loader (RDL). RDL 

examines the incoming packet and finds the column, which contains the PE that will 

be updated. Then, RDL constructs SAFIL Update Frame and sends it to CR of the 

corresponding column. As was explained in Section 3.3.2, SAFIL Update Frame 

travels through this column until the ID of the PE and Frame matches. If such a 

match occurs, the selected PE content will be updated. 

Since the update process can be performed while lookup processes are running, the 

system can be modified without being stopped, which is very beneficial. 
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CHAPTER 4  

 

FPGA IMPLEMENTATION OF THE ARRAY 

ARCHITECTURE FOR FAST IP LOOKUP WITH 

UPDATE CAPABILITY 

Our Block RAM based array implementation of SAFIL is composed of 8x8 

specially designed processing elements (PEs) that are connected like a 2D torus 

topology, buffered CRs that connects all SUs to corresponding PE, Ram Data 

Loader that is used for loading and updating RAM content and finally CCU that is 

used to regulate the incoming traffic. In this chapter, all of these blocks and sub 

modules will be explained and detailed including design and simulation studies. 

4.1 PROCESSING ELEMENT 

A PE consists of two FIFO blocks, a Block RAM, a Data Flow Manager and 

additional combinational logic. The 49 bit input port of each PE is connected to 

west and north neighbors. The 49 bit output port of each PE is connected to east and 

south neighbors. Each PE is also connected to Congestion Control Unit (CCU) by 

one bit data line.  

4.1.1 Design 

The PE unit is composed of blocks and sub-units explained below: 

FIFO Block: This block is used for buffering data coming from western or northern 

sides of the PE.  
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FIFOs are implemented using distributed RAM's on FPGA. To achieve a high speed 

IP lookup process, FIFO Blocks are designed with "first word fall through" 

attribute. With this, data written to an empty FIFO appears on the read port at the 

same clock cycle. 

To avoid data overflow in FIFO, fifo_full output signal is used for warning CCU to 

reduce incoming traffic rate. To do this, FIFO Block asserts this almost full signal 

to high when FIFO memory usage reaches the predefined threshold level. 

Since SAFIL Frame and SAFIL Update Frame are 49 bits wide, FIFO width is 49 

bits and depth can be choosen as a result of some optimization trials. In our design, 

FIFO depth was selected as 1024. 

The schematic view of FIFO is given in Figure 4-1.  

 

Figure 4-1 FIFO Input and Output Signals 

Each in and out signals of FIFO are described in Table 4-1. 
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Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the FIFO module  into a state  that is 
ready to receive data. 

clk In 1 bit The clock signal is used  in order to 
synchronize FIFO with other modules 

fifo_rd In 1 bit The read enable signal 
fifo_wr In 1 bit The write enable signal 
fifo_wr_data In 49 bits Data written to FIFO 
fifo_empty Out 1 bit Indication signal of fifo empty 
fifo_full Out 1 bit Indication signal of fifo is almost full 
fifo_rd_data Out 49 bits Output data of FIFO 

The VHDL source code for designing FIFO is given in Appendix A. 

Block RAM: This memory element is used to store trie nodes.  

Each Block RAM has 32 bits width and 8192213
=  bits depth. Total memory size 

for one PE is 8k x 32 = 256 kbits. Since the whole system consists of 64 PEs, total 

memory size is 64 x 256 kbits = 16,777,216 mbits ≅ 2 MByte. 

Block RAM's were generated with IP CORE in Xilinx ISE as shown in Figure 4-2. 

Table 4-1 FIFO Signal Descriptions 
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Figure 4-2 IP Core Menu for Block RAM Generation 

 

Data Flow Manager (DFM): This unit is used for managing the data flow coming 

into PE. It manages two FIFOs with respect to a round robin schedule by enabling 

only one FIFO at each cycle. It also checks if the incoming frame is a SAFIL Frame 

or a SAFIL Update Frame and then it starts either lookup, update or propagate 

processes according to frame type. 

The schematic view of Data Flow Manager is given in Figure 4-3. 
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Figure 4-3 Data Flow Manager Schematic View 

The VHDL source code for designing DFM is given in Appendix B. 

 

Combinational Logic: This logic is used for deciding whether the IP address 

searched hits an LPM node or not. With this decision, the logic can modify the 

SAFIL Frame and directs it to output (either south or east) or send the output port 

information to backplane. 

 

Combinational Logic inputs the outputs of the DFM.  

 

All of these blocks and sub modules form the PE, whose input and output signals 

are illustrated in Figure 4-4 Processing Element  

Each in and out signals of PE are described in Table 4-2 and the VHDL source code 

for designing PE is given in Appendix C. 
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Figure 4-4 Processing Element  

 

 

 

 

 

Table 4-2 PE Signal Descriptions 

Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and 
to bring the PE module  into a state  that 
is ready to receive data. 

clk In 1 bit The clock signal is used  in order to 
synchronize different parts of the PE 
module (cycling at a rate less than the 
worst-case internal propagation delays) 

data_av_in_west In 1 bit The  available signal of data from west 
data_in_west In 49 bits The data coming from west side of the PE 
data_av_in_north In 1 bit The available signal of data from north 
data _in_north In 49 bits The data coming from north side of the 

PE 
data_av_out_east Out 1 bit The  available signal of data to east 
data _out_east Out 49 bits The data going out to east side of the PE 
data_av_out_south Out 1 bit The  available signal of data to south 
data_out_south Out 49 bits The data going out to south side of the PE 
data_backplane Out 5 bits The search result (port number) of  the IP 

address looked up 
fifo_almost_full Out 1  bit The signal indicating one of FIFOs in the 

PE is almost full 
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4.1.2 Simulation 

SCENARIO 1 

Aim: To show and verify southern and eastern port outputs for simultaneously 

applied predefined input data from northern and western sides of the PE. (Lookup 

Process) 

Test Code:  

wait for 100 ns;  

rst<='1'; 

wait for clk_period*3; 

rst<='0'; 

wait for clk_period*10; 

data_in_west <= '0' & x"EEEEE7800044";   

--011101110111011101110011110000  0000000000001  00010  0 

data_av_in_west <= '1'; 

wait for clk_period; 

data_av_in_west <= '0'; 

data_in_north <= '1' & x"F83E00780040"; 

 --111111000001111100000000001111  0000000000001  00000  0 

data_av_in_north <= '1'; 

wait for clk_period; 

data_av_in_north <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data from west and north is sent to the input ports consecutively. Since  the 

input data is of type SAFIL Frame, U-field is '0'. The Block RAM data content  in 

0000000000001 address is hex 000800EB ( binary 0000000000001  

0000000000011  10101  1). According to this scenario, the node that refers to tested 

PE is an intermediate node. Therefore, there shouldn't be any backplane output. 

Since 01 =−tA for the data from west, the southern available output should be high 

for one clock cycle after some delay. Since 11 =−tA for the data from north, the 

eastern available output should be high for one clock cycle after some delay.
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Figure 4-5 Simulation Results for PE in Scenario 1 

 

The result of the simulation is given in Figure 4-5. In this scenario, data_av_in_west appears at label 1 and data_av_in_north appears at label 2. 

Since the input data is in the form of intermediate node data, at labels 3 and 4, data_av_out_south and data_av_out_east are activated after 2 

clock cycles.



38 

SCENARIO 2 

Aim: To show and verify southern and eastern port outputs for simultaneously 

applied predefined input data from northern and western sides of the PE and Round-

Robin Scheduler inside the DFM of the PE. (Lookup Process) 

Test Code:  

wait for 100 ns;  

rst<='1'; 

wait for clk_period*3; 

rst<='0'; 

wait for clk_period*10; 

data_in_west <= '0' & x" EEEEE7800104";   

-- 011101110111011101110011110000  0000000000100  00010   0 

data_av_in_west <= '1'; 

data_in_north <= '1' & x" F83E00780100"; 

 -- 111111000001111100000000001111  0000000000100  00000  0 

data_av_in_north <= '1'; 

wait for clk_period*3; 

data_av_in_north <= '0'; 

data_av_in_west <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data from west and north is sent to the input ports concurrently for 3 clock 

cycles.  Since  the input data is of type SAFIL Frame, U-field is '0'. The Block 

RAM data content  in 0000000000100 address is hex F4FFFFFF  

( binary 1111010011111  1111111111111  11111  1). According to this scenario, 

the node that refers to tested PE is an intermediate node. Therefore, there shouldn't 

be any backplane output. Since 01 =−tA for the data from west, the southern 

available output should be high for one clock cycle after some delay. Since 11 =−tA

for the data from north, the eastern available output should be high for one clock 

cycle after some delay. Because there are data on both of the FIFO outputs at the 

same time,  it verifies that Round Robin Scheduler works well. 
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Figure 4-6 Simulation Results for PE in Scenario 2 

The result of the simulation is given in Figure 4-6. In this scenario, data_av_in_west and data_av_in_north appear at labels 1 and 2 during 3 

clock cycles. Since the input data is in the form of intermediate node data, at labels 3, 4, 5, 6, 7, 8; data_av_out_south and data_av_out_east are 

activated by the Round Robin Scheduler.
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SCENARIO 3 

Aim: To show and verify backplane outputs for simultaneously applied predefined 

input data from northern and western sides of the PE (Lookup Process) 

Test Code:  

wait for 100 ns;  

rst<='1'; 

wait for clk_period*3; 

rst<='0'; 

wait for clk_period*10; 

data_in_west <= '0' & x"EEEEE7800004";   

--011101110111011101110011110000  0000000000000  00010  0 

data_av_in_west <= '1'; 

data_in_north <= '1' & x"F83E007800CE"; 

 --111111000001111100000000001111  0000000000011  00111  0 

data_av_in_north <= '1'; 

wait for clk_period*3; 

data_av_in_north <= '0'; 

data_av_in_west <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data from west and north is sent to the input ports concurrently for 3 clock 

cycles.  Since  the input data is of type SAFIL Frame, U-field is '0'. The Block 

RAM data content in 0000000000000 address is hex 0000000B ( binary 

0000000000000  0000000000000  00101  1) and in 0000000000011 address is hex 

0000003F (binary 0000000000000  0000000000000  11111  1) . Since “SI= all 0's” 

and “EI=all 0's” in both cases, the node that refers to the tested PE is an LPM node. 

Therefore, there exists data at the backplane output.  
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Figure 4-7 Simulation Results for PE in Scenario 3 

 
The result of the simulation is given in Figure 4-7. In this scenario, data_av_in_west and data_av_in_north appear at labels 1 and 2. Since the 

input data is in form of longest prefix node data, at labels 3, 4, 5, 6, 7 and 8 data_backplane output is activated. 
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SCENARIO 4 

Aim: To show and verify southern output for predefined input data applied from 

northern side of the PE for IP update process (Propagate Process) 

Test Code:  

wait for 100 ns;  

rst<='1'; 

wait for clk_period*3; 

rst<='0'; 

wait for clk_period*10; 

data_av_in_west <= '0'; 

data_in_north <= '1' & x"F83E00780003"; 

--11111100000111110000000000111100  0000000000000  001  1 

data_av_in_north <= '1'; 

wait for clk_period*3; 

data_av_in_north <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data from north is sent to the input port for 3 clock cycles.  Since the input 

data is of type SAFIL Update Frame, U-field is '1'. Therefore, PE decides which 

process (Update or Propagate) to run. In this case, propagate process should run 

because PE ID and ID of the incoming SAFIL Update Frame does not match. 

Therefore, there exists data at the southern output port. 
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Figure 4-8 Simulation Results for PE in Scenario 4 

 

The result of the simulation is given in Figure 4-8. In this scenario, data_av_in_north appears at label 1. Since the input data is in form of 

propagate process data, at labels 2,  and, 4 data_av_out_south output is activated. 
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SCENARIO 5 

Aim: To verify and show that Block RAM data contents can be loaded/updated via 

the update process (Update Process). 

Test Code:  

wait for 100 ns;  

rst<='1'; 

wait for clk_period*3; 

rst<='0'; 

wait for clk_period*10; 

data_av_in_west <= '0'; 

data_av_in_north <= '0'; 

wait for clk_period; 

data_in_west <= '1' & x"EEEEE7800040";   

--111101110111011101110011110000  0000000000001  00000  0 

data_av_in_west <= '1'; 

wait for clk_period; 

data_av_in_west <= '0'; 

wait for clk_period; 

data_in_north <= '1' & x"FFFFFFFE0011";   

--11111111111111111111111111111111  0000000000001  000  1 

data_av_in_north <= '1'; 

wait for clk_period; 

data_av_in_north <= '0'; 

wait for clk_period; 

data_in_west <= '1' & x"EEEEE7800040";  

 --111101110111011101110011110000  0000000000001  00000  0 

data_av_in_west <= '1'; 

wait for clk_period; 

data_av_in_west <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data from west is sent to the input port for 3 clock cycles. First, a SAFIL 

Frame arrives at the western side of the PE. After 2 clock cycles, a SAFIL Update 

Frame appears in the Northen side. Since  the input data is of type SAFIL Update 
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Frame, U-field is '1'. Therefore, PE decide which process (Update or Propagate) to 

run. In this case, update process should run because PE ID and ID of the incoming 

SAFIL Update Frame match. Finally, the same SAFIL Frame appears again at the 

western side of the PE to observe that the same SAFIL Frame provides a different 

SAFIL Frame output after ram update process. 
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Figure 4-9 Simulation Results for PE in Scenario 5 

 

The result of the simulation is given in Figure 4-9. In this scenario, data_av_in_west appears for a lookup process at label 1. Then, 

data_av_in_north appears for an update process at label 3. Then, data_av_in_west appears for a lookup process again at label 2. Before the 

update process is completed, the corresponding output for data_out_east is activated at label 4. After the update process is completed, the 

corresponding output for data_out_east is activated at label 5. 
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4.2 SELECTOR UNIT 

This unit is designed and used for initial partitioning and for constructing SAFIL 

Frames. 

4.2.1 Design 

Just a 4x16 line decoder is sufficient for initial partitioning (Table 4-3). Using 

leftmost 4-bits of the key IP address, the seacrh is directed to the corresponding CR 

and PE. 

 

Initial 4 Bit Output Port of SU 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 10 

1011 11 

1100 12 

1101 13 

1110 14 

1111 15 

The 32-bit input port of each SU is connected to incoming traffic port, i.e. the IP 

address to be searched. The output ports of each SU are connected to all of the CR's 

input ports. 

Table 4-3 Initial Partitioning Conversion  
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The schematic view of SU is given in Figure 4-10. 

 

 

Figure 4-10 Selector Unit Input and Output Signals 

 

In and out signals of SU are described in Table 4-4. 
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Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the SU module  into a state  that is 
ready to receive data 

clk In 1 bit The clock signal is used  in order to 
synchronize SU with other modules 

data_av_in_SU In 1 bit The available signal of data incoming to SU 
data_in_SU In 32 bits The data incoming to SU 
data_av_out_X_SU Out 1 bit The available signal of data outgoing from 

SU X 
data _out_X_SU Out 49 bits The data outgoing from SU X 

 

In each falling edge of a cycle, SU checks data available input. If data is available, 

SU gets the 32-bit wide IP Address into the block. After initial partitioning stage, 

SU finds the input stage CR and constructs the SAFIL Frame while outputing it at 

the corresponding output port . 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 SU Signal Descriptions 
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4.2.2 Simulation 

SCENARIO 1 

Aim: To show and verify that SU constructs SAFIL Frame and outputs it on the 

corresponding output port. 

Test Code:  

wait for 100 ns;  

rst <= '1'; 

wait for clk_period*3; 

rst <= '0'; 

wait for clk_period*10; 

data_av_in_SU <= '1'; 

data_in_SU <= x"ffffffff" ; 

wait for clk_period; 

data_in_SU <= x"cfffffff" ; 

wait for clk_period; 

data_in_SU <= x"0fffffff" ; 

wait for clk_period; 

data_in_SU <= x"2fffffff" ; 

wait for clk_period; 

data_av_in_SU <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, data that has different initial partitions at each cycle appears in the input port. 

According to this scenario, different output ports of the SU be active at each cycle.  

 

 



51 

 

Figure 4-11 Simulation Results for SU in Scenario 1 

 

The result of the simulation is given in Figure 4-9. In this scenario, data_av_in_su appears at label 1. Then, data_out_x_su appears 

correspondingly at labels 2, 3, 4 and 5. 
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4.3 CONTENTION RESOLVER 

This unit is designed and used for buffering and arranging incoming data from 

different SU’s and eastern and southern PE’s. 

4.3.1 Design 

The 49-bit input ports of each Contention Resolver (CR) is connected to the output 

ports of SUs and to the western or northern sides of the PE.  

The block diagram of CR is given in Figure 4-12. Data from any SU or RDL arrives 

into the relevant FIFO. Round Robbin Scheduler then selects one of the incoming 

data and directs it to CR out by taking into account that data coming from PE has 

higher priority. 

 

 

Figure 4-12 Block Diagram of CR 
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The size of each FIFO depends on the size of FIFO in each PE. In high load, some 

FIFOs may overflow and to prevent this, incoming traffic should be accepted with a 

slower rate. As will be explained in CCU design section below, almost full signals 

in each buffer in PEs goes high when one of the FIFOs reaches the predefined 

threshold level. Each CR is connected to a neighbour PE and hence if a FIFO in any 

PE asserts such almost full signel to the CCU, input traffic rate will be reduced. 

Therefore, the load of neighbouring CR will drop until the FIFO that has reached to 

its threshold in the PE deasserts almost full signal again 

  

We utilized a ratio of (CR FIFO size/PE FIFO size) which ensures that no CR will 

reach its full capacity. 

 

Considering the worst case scenario illustrated in Figure 4-13, assume that CR is 

highly loaded but PE is not. In other words, all incoming traffic is directed to one 

CR and PE. Since PE is not highly loaded, the other input side of the PE should be 

idle. Also assume that CR FIFO size is m, PE FIFO size is n and the number of 

FIFOs in a CR is S . After t  cycles, the examined FIFO in the CR will have load of 

S

t
t − . At this cycle, the working FIFO in PE will have a load of 

2

t
t −  since PE is 

designed (due to other reasons) in such a way that it produces one output every two 

cycle. Then free capactiy in PE should be lower  then CR, i.e.,  

  

)(
S

t
tm −−  >  )

2
(

t
tn −−  

 

Since in the 8x8 torus architecture, S = 17. If t  is choosen as m, using the above  

inequality  

78.1
19

34
≅>

n

m
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When m is at least 1.78 x n , the free area in a CR FIFO will always be lower than 

PE FIFO. Because of having a CCU which regulates input traffic by controlling PE 

FIFO, CR FIFOs will never overflow. 

...

C
R

 O
U

T

 

 

Figure 4-13 Block Diagram of Transition from CR to PE 

 

In and out signals of CR are described in Table 4-5. 

 

Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the CR module  into a state  that is 
ready to receive data 

clk In 1 bit The clock signal is used  in order to 
synchronize CR with other modules 

data_av_in_X In 1 bit The available signal of data incoming to CR 
data_in_X In 49 bits The data incoming to CR 
data_av_out_X_SU Out 1 bit The available signal of data outgoing from 

CR X 
data _out_X_SU Out 49 bits The data outgoing from CR X 
 

 

The schematic view of CR is given in Figure 4-14. 

Table 4-5 CR Signal Descriptions 
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Figure 4-14 Contention Resolver Input and Output Signals 
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4.3.2 Simulation 

SCENARIO 1 

Aim: To show and verify that CR outputs incoming data according to round robin 

scheduling. 

Test Code:  

wait for 100 ns;  

rst <= '1' ; 

wait for clk_period*3; 

rst <= '0' ; 

wait for clk_period*10; 

data_in_3 <= '1' & x"ffffffffffff"; 

data_av_in_3 <= '1'; 

wait for clk_period; 

data_av_in_3 <= '0'; 

data_in_7 <=  '1' & x"eeeeeeeeeeee"; 

data_av_in_7 <= '1'; 

wait for clk_period; 

data_av_in_7 <= '0'; 

data_in_1 <= '1' & x"cccccccccccc"; 

data_av_in_1 <= '1'; 

data_av_in_8 <= '1'; 

data_in_8 <= '1' & x"aaaaaaaaaaaa"; 

wait for clk_period; 

data_av_in_1 <= '0'; 

data_av_in_8 <= '0'; 

wait for clk_period; 

data_av_in_0 <= '1'; 

data_av_in_1 <= '1'; 

data_av_in_2 <= '1'; 

data_av_in_3 <= '1'; 

data_av_in_4 <= '1'; 
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data_av_in_5 <= '1'; 

data_av_in_6 <= '1'; 

data_av_in_7 <= '1'; 

data_av_in_8 <= '1'; 

data_av_in_9 <= '1'; 

data_av_in_10 <= '1'; 

data_av_in_11 <= '1'; 

data_av_in_12 <= '1'; 

data_av_in_13 <= '1'; 

data_av_in_14 <= '1'; 

data_av_in_15 <= '1'; 

data_av_in_16 <= '1'; 

data_av_in_17 <= '1'; 

data_in_0 <= '1' & x"000000000000"; 

data_in_1 <= '1' & x"111111111111"; 

data_in_2 <= '1' & x"222222222222"; 

data_in_3 <= '1' & x"333333333333"; 

data_in_4 <= '1' & x"444444444444"; 

data_in_5 <='1' &  x"555555555555"; 

data_in_6 <= '1' & x"666666666666"; 

data_in_7 <= '1' & x"777777777777"; 

data_in_8 <='1' &  x"888888888888"; 

data_in_9 <= '1' & x"999999999999"; 

data_in_10 <= '1' & x"101010101010"; 

data_in_11 <= '1' & x"111111111111"; 

data_in_12 <= '1' & x"121212121212"; 

data_in_13 <='1' &  x"131313131313"; 

data_in_14 <= '1' & x"141414141414"; 

data_in_15 <= '1' & x"151515151515"; 

data_in_16 <='1' &  x"161616161616"; 

data_in_17 <='1' &  x"171717171717"; 
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wait for clk_period; 

data_av_in_0 <= '0'; 

data_av_in_1 <= '0'; 

data_av_in_2 <= '0'; 

data_av_in_3 <= '0'; 

data_av_in_4 <= '0'; 

data_av_in_5 <= '0'; 

data_av_in_6 <= '0'; 

data_av_in_7 <= '0'; 

data_av_in_8 <= '0'; 

data_av_in_9 <= '0'; 

data_av_in_10 <= '0'; 

data_av_in_11 <= '0'; 

data_av_in_12 <= '0'; 

data_av_in_13 <= '0'; 

data_av_in_14 <= '0'; 

data_av_in_15 <= '0'; 

data_av_in_16 <= '0'; 

data_av_in_17 <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, all of the CR input ports have SAFIL or SAFIL Update Frame data. In this 

scenario, data on the output ports should appear with respect to round robin 

scheduling except for high priority input port 16. 
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Figure 4-15 Simulation Results for CR in Scenario 1 
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Figure 4-16 Simulation Results for CR in Scenario 1 (continued) 

 

The result of the simulation is given in Figure 4-15 and Figure 4-16. In this scenario, data_av_in_x appears at labels 1, 2, 3 and 4. Then, 

data_out_cr appears is generated by the Round Robin Scheduler in order. 
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4.4 CONGESTION CONTROL UNIT 

This unit is designed and used to prevent possible FIFO overflow in any PE. 

4.4.1 Design 

The input ports of the Congestion Control Unit (CCU) are connected to all of the 

FIFOs in each PE. 

The schematic view of CCU is given in Figure 4-17. 

 

 

Figure 4-17 Congestion Controller Unit Input and Output Signals 

 

In and out signals of CCU are described in Table 4-6. 
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Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the CCU module  into a state  that is 
ready to receive data 

clk In 1 bit The clock signal is used  in order to 
synchronize CCU with other modules 

fifo_X_full In 1 bit The signal indicating that relevant FIFO is 
almost full 

SU_Control Out 16 bits The output signal showing that how many 
incoming traffic port will be enabled 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6 CCU Signal Descriptions 
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4.4.2 Simulation 

SCENARIO 1 

Aim: To show and verify that CCU works with additive increase, multiplicative 

decrease strategy. 

Test Code:  

wait for 100 ns;  

rst <= '1' ; 

wait for clk_period*3; 

rst <= '0' ; 

wait for clk_period*10; 

fifo_0_full<='1'; 

wait for clk_period; 

fifo_14_full<='1'; 

wait for clk_period; 

fifo_35_full<='1'; 

wait for clk_period; 

fifo_0_full<='0'; 

fifo_14_full<='0'; 

fifo_35_full<='0'; 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, some of the FIFOs assert full messages. In this scenario, when fifo full signals 

appear at the input port, SU control output port changes according to additive 

increase multiplicative decrease strategy. When there are no full messages, output 

should be hex "FFFF" while the output changes to hex "FFOO" if one of the FIFOs 

sends full.  
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Figure 4-18 Simulation Results for CCU in Scenario 1 

The result of the simulation is given in Figure 4-18. In this scenario, fifo_x_full signals appear at labels 1, 2 and 3. Then su_control output 

changes according to FIFO full alert signals. 
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4.5 RAM DATA LOADER 

This unit is designed and used for loading and updating the contents of the Block 

RAM’s located inside each PE. To achieve this, SAFIL Update Frame is 

constructed by this unit. 

4.5.1 Design 

Each Block RAM has a width of 32 bits and a depth of 8192213
=  bits, making the 

total memory size for one PE 8k x 32 = 256 kb. Since the whole system consists of 

64 PEs, the total memory required is 64 x 256 kb = 16,777,216 mb ≅ 2 MB.  

RAM Data Loader (RDL) unit is connected to all Contention Resolver’s located on 

the northern side. The input port has 52 bits width. The first 32 bits holds BRAM 

contents, the next 13 bits holds the address of the relevant BRAM and the following 

6 bits holds PE ID that will be modified while the last bit indicates the Update 

operation. If Block RAM Data Load or Update Operation is started, this bit should 

be ‘1’; otherwise ‘0’. 

The schematic view of RDL is given in Figure 4-19. 

In and out signals of RDL are described in Table 4-7. 
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Figure 4-19 RDL Unit Input and Output Signals 

 

Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

rst In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the RDL module  into a state  that is 
ready to receive data 

clk In 1 bit The clock signal is used  in order to 
synchronize RDL with other modules 

data_update_av_in In 1 bit The available signal of data incoming to 
RDL 

ram_data_in In 32 bits RAM content to be stored 
ram_address_in In 12 bits RAM address that will be updated 
pe_id_in In 6 bits The processing element ID whose RAM 

content will be updated 
data_update_av_out Out 1 bit The available signal of data incoming to 

RDL 
data_update _out Out 49 bits SAFIL Update Frame constructed 

Table 4-7 RDL Signal Descriptions 
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4.5.2  Simulation 

SCENARIO 1 

Aim: To show and verify that RDL constructs SAFIL Update Frame and presents 

this data on its output. 

Test Code:  

wait for 20 ns; 

rst<='1'; 

wait for 100 ns;  

rst <='0'; 

ram_data_in <= x"ffffffff"; 

ram_address_in <= "1010101010101"; 

pe_id_in <= "111010"; 

data_update_av_in <= '1'; 

wait for clk_period; 

data_update_av_in <= '0'; 

Pre-Statement: Initially, reset input is set to "high" for 100 ns. After reset state, 

RAM update data signals appear at input ports. In this scenario, SAFIL Update 

Frame is constructed and appears at the output port. 
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Figure 4-20 Simulation Results for RDL in Scenario 1 

 

The result of the simulation is given in Figure 4-20. In this scenario, data_update_av_in signal appears at label 1. Then data_update_out_2 

output is activated at label 2. 
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4.6 SYSTEM INTEGRATION 

In this present subsection, the blocks designed in the preceding subsections are 

integrated into a whole system to fulfill the following requirements: 

• IP addresses that are to be searched should be admitted to the system via 

SUs at any time. 

• Search keys should be mapped to correct CR and PE using initial 

partitioning. 

• The incoming SAFIL or SAFIL update frames should to be buffered in CRs 

first.  

• At any time SAFIL frames and SAFIL update frames, if exist, should be 

admitted to the system simultaneously. 

• The latency encountered at each PE should be as small as possible. 

• The system should be capable of initializing the RAM contents or updating 

them using RDL. 

• The search results (i.e. port number) should be observed at the backplane. 

• The traffic load should be regulated via CCU. 

4.6.1 Design 

Overall system is composed of the following modules: 

• 8 x 8 = 64 PEs 

• 8 + 8 = 16 SUs 

• 8 + 8 = 16 CRs 

• 1 CCU 

• 1 RDL 
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As will be explained at the end of this section, the available resources on the 

currently selected FPGA target board allows an 8 x 8 SAFIL system (illustrated in) 

as the largest that can be implemented for the time being. 

SU is connected to CRs. Incoming traffic arrives at the input ports of the SU, in 

which SAFIL frames are constructed and mapped to corresponding CR. These 

search keys are then directed to the boundary.  

PE PE PE PE PE PE PE PE

CR CR CR CR CR CR CR CR

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

CR

CR

CR

CR

CR

CR

CR

CR

CCU

8

8

8

8

8

8

8

8

49

49
SU Block

16

RDL

 

Figure 4-21 8x8 SAFIL System 

 

Data arrive to each PE either from west or north side. In each PE, using the 

corresponding bit in the search key the incoming data is modified and directed to 

either eastern or southern neighbours. Search operation terminates when a null 

pointer is reached. 
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RAM contents of the system can be initially loaded and updated via our RDL unit. 

This module is connected to CRs located at the northern side. The update packets 

propagate through the corresponding column until the PE to be updated is reached. 

 

All PEs are connected to CCU with a control line of one bit. When one of the PEs 

becomes almost full, this bit goes high and CCU regulates the incoming traffic 

using "multiplicative decrease additive increase" strategy. 

 

The active signal duration between each module is one clock cycle. As shown in 

Figure 4-22, the searched IP address is admitted into the SU at a rising edge of the 

clock. With the falling edge of the clock, SAFIL frame is constructed and mapped 

to the corresponding CR. At each falling edge of the clock, PE accepts an incoming 

frame. In each PE, the latency between data arrival and departure processes is 2 

clock cycles. 

 

 

Figure 4-22 Timing Diagram for the Whole System 

 

The schematic view of the system is given in Figure 4-23. 
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Figure 4-23 System Input and Output Signals 

In and out signals of the system are described in Table 4-8. 

 

Signal Name 
Signal 
Type 

Signal 
Length 

Signal Description 

reset In 1 bit Reset signal is used in order  to set all 
configuration  registers to zero (low) and to 
bring the system into a state  that is ready 
to receive and send data 

clock In 1 bit The clock signal is used  in order to 
synchronize system with modules inside it. 

data_ in_X In 32 bit The IP address that will be searched. 
data_ av_in_X In 1 bit The available signal of data incoming to 

the system 
port_X Out 5 bits The port number result of the searched IP 

address 
data_ in_enable Out 16 bits The signal that indicates maximum 

allowable search is  

 

The system is designed and implemented in Xilinx ISE Design Suite 12.4 and 13.3 

NT 64 release version. VHDL is used to implement all the modules and the whole 

Table 4-8 The System Signal Descriptions 
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system. In selecting a suitable Xilinx device, constraints such as the number of I/O 

banks, the total capacity of Block RAMs and distributed RAMs, etc. were taken into 

consideration. Table 4-9 gives the design requirements for the whole system. As 

was explained in section 4.1 and 4.3, FIFOs used in CRs and PEs are implemeted 

using distributed RAM and RAMs in PEs are implemented using Block RAMs. 

 

Type 
The Source of 
Requirement 

Requirement Size 

I/O Pin data_in_X 32 bit x 16 512 
I/O Pin data_av_in_X 1 bit x 16 16 
I/O Pin port_X 5 bit x 64 320 
I/O Pin data_in_enable 16 bit 16 
Total Capacity of 
Block RAM Blocks 

Block RAMs in PEs  256 Kbit x 64 16384 Kbit 

Total Capacity of 
Distributed RAM 
Blocks 

FIFOs inside PEs and CRs  (16 Kbit x 49) +  
(64 Kbit x 49) 

3920 Kbit 

 

Table 4-10 gives device attributes for some Xilinx family members. 

Family Device Max I/O Size 
Block RAM 

Blocks 

Max 
Distributed 

RAM 
Virtex-5 XC5VLX330 1200 10368 Kbit 3420 Kbit 
Virtex-5 XC5VLX330T 960 11664 Kbit 3420 Kbit 
Virtex-5 XC5VSX240T 960 18576 Kbit 4200 Kbit 
Virtex-6 XC6VLX550T 1200 22752 Kbit 6200 Kbit 
Virtex-6 XC6VLX760 1200 25920 Kbit 8280 Kbit 
Artix-7 XC7A350T 600 18540 Kbit 4638 Kbit 
Kintex-7 XC7K480T 400 34380 Kbit 6788 Kbit 
Virtex-7 XC7V2000T 1200 46512 Kbit 21550 Kbit 

 

Comparing Table 4-9 and Table 4-10, we observe that there exist devices in Virtex-

5, Virtex-6 or Virtex-7 families, which fulfills our requirements. Since the listed 

devices are the latest and the most advanced in their own categories, Block RAM 

capacity and number of I/O pins is the limiting constraints and hence a 8 x 8 SAFIL 

Table 4-9 Design Requirements 

Table 4-10 Attributes of Some Xilinx Family Members 
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implementation is the largest possible for the time being. For example, if one 

requires a 16 x 16 SAFIL System similar to the one proposed and simulated using 

Visual C++ in [6], the whole system cannot fit in any Virtex family device. Table 4-

11 demonstrates that at most a 10 x 10 SAFIL system can fit in XC6VLX760 or 

XC7V2000T Xilinx device. A larger architecture can not be implemented in the 

current state of the art Xilinx devices using a single FPGA only. However, 

implementation of a larger architecture such as 16 x 16 is always possible using 

more than one Virtex devices. 

 

SAFIL 
System 

Virtex Device Max I/O Size 
Block RAM 

Blocks 

Max 
Distributed 

RAM 
8 x 8 XC6VLX760    
8 x 8 XC7V2000T    
9 x 9 XC6VLX760    
9 x 9 XC7V2000T    
10 x 10 XC6VLX760    
10 x 10 XC7V2000T    
11 x 11 XC6VLX760    
11 x 11 XC7V2000T    
12 x 12 XC7V2000T    
13 x 13 XC7V2000T    
14 x 14 XC7V2000T    

 

4.6.2 Simulation 

We performed overall system simulations using real life backbone IP packet traces 

from [23] and by constructing the corresponding routing tables using real life prefix 

length distributions [25]. In our simulations, the routing table was composed of 

150K prefixes. Our incoming traffic traces are composed of 1200K IP packets.  

 

Table 4-11 Feasibiliy of SAFIL Implementations on Xilinx Family Members 
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First, the routing table was adapted to our system to be loaded via the RDL unit. To 

achieve this, a "Data Adapter"  program is written in Microsoft Visual C#. Figure 

4-24 shows the form view of the "Data Adapter".  

 

 

Figure 4-24 Data Adapter 

 

 

When "RAM DATA" button on the main form is pressed, the RAM contents of the 

whole system is adapted to SAFIL Update Frame type. This adopted adat can then 

be loaded via RDL input port into our system. To insert data into RDL, this 

program also creates "file_data.in"  shown in Figure 4-25. To use this file as an 

input in our simulation, "textio" library has been utilized in Xilinx ISE platform. 
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Figure 4-25 The Binary View of "file_data.in" 

 

When "TRAFFIC DATA" button on the main form is pressed, the 32-bit IP 

addresses are converted into binary form. To insert this data into any SU, our 

program also creates "traffic.in"  shown in Figure 4-26. 

 



77 

 

Figure 4-26 The Binary View of  "traffic.in" 

 

These files created are used as inputs in our simulations. 
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SCENARIO 1 

Aim: To show and verify that RDL loads RAM contents into the whole system and 

one IP lookup operation produces the port result correctly in accordance with the 

trie mapped onto the system. 

Test Code:  

stim_proc: process  

file input : TEXT open READ_MODE is "file_data.in"; 

variable input_line : LINE; 

variable temp : std_logic_vector(51 downto 0) := x"0000000000000"; 

variable i_temp : integer ;   

file input2 : TEXT open READ_MODE is "traffic_onepacket.in"; 

variable input_line2 : LINE; 

variable temp2 : std_logic_vector(31 downto 0) := x"00000000"; 

variable i_temp2 : integer ;  

begin   

wait for clk_period*3; 

rst <= '1'; 

load_done <= '0'; 

wait for clk_period*2; 

rst <= '0'; 

wait for clk_period*2;  

loop 

exit when endfile(input); 

readline(input, input_line); 

read(input_line,temp); 

update_data <= temp;      

writeline(output, input_line);   

wait for clk_period; 

update_data<=x"0000000000000"; 

wait for clk_period; 

end loop; 

load_done <= '1';    
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update_data <= x"0000000000000"; 

wait for clk_period;  

loop 

exit when endfile(input2);   

wait until falling_edge(clk); 

if (su_enable_out(0)='1') then 

 readline(input2, input_line2); 

read(input_line2,temp2); 

data_in_0 <= temp2;  

data_av_in_0 <= '1'; 

else 

data_av_in_0 <= '0'; 

end if; 

end loop; 

wait for clk_period; 

data_av_in_0 <= '0'; 

 

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset 

state, RAM contents are loaded into the system. "update_data" is an input signal of 

the RDL unit. After load operation is completed, only one search key (32-bit IP 

address) is admitted into the Selector Unit 1. Figure 4-27 shows the simulation 

wave window for update data coming from "file_data.in" into RDL. After load 

operation finishes "load_done" signal goes high as shown in Figure 4-28. Then one 

search key is addmitted to the system for finding its corresponding port result. The 

IP address (1.37.59.207) to be searched starts with "0000" and is therefore directed 

to SU # 0. The SAFIL frame travels along the structure using the following 0's or 

1's until null pointer is reached. The last PE produces the matched port output. 
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Figure 4-27 Simulation Results for the System in Scenario 1 
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Figure 4-28 Simulation Results for the System in Scenario 1 (continued) 
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SCENARIO 2 

Aim: To show and verify that IP lookup operation produces corresponding the port 

results correctly when 1200K IP packet traces are admitted into the system. 

Pre-Statement: In this scenario, incoming traffic is generated by using real life 

backbone IP packet traces. The traces are composed of 1200K IP packets. Trace-1,  

which was obtained using [25],  is admitted to the system first. Then, trace-2, which 

was derived from trace-1 is admitted to the system to make the input traffic almost 

even with respect to prefix distribution. Each packet's arrival time to the system is 

saved in a text file. Each port result and time of assertion of this result are also 

saved in another text file. Using this data that contains input arrival time and output 

assertion time for each packet, total average latency can be calculated. 

Figure 4-29 gives the prefix distribution in trace-1. The majority of the incoming 

traffic is in the form of prefix 0. 

 

  

Figure 4-29 Trace 1 Distribution 
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After trace-1 was admitted into the system, the port results and corresponding 

timing data were written into the files. Figure 4-30 gives the corresponding port 

results for trace 1. Figure 4-32 gives part of the simulation waveform for the trace-

1. 

 

 

Figure 4-30 Port Results of Trace 1 

Figure 4-31 gives the prefix distribution in trace-2. The incoming traffic is almost 

equally distributed with respect to the initial four bits.  
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Figure 4-31 Trace 2 Distribution 

 

 

After trace-2 was admitted into the system, the port results and corresponding 

timing data were written into the files. Figure 4-33 gives part of this simulation 

waveform for the trace-2.  
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Figure 4-32 Trace 1 Simulation Results 

In this scenario, incoming traffic starts with labels 1 and 2, ends with label 4. The backplane results are started to be observed at label 3. 
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Figure 4-33 Trace 2 Simulation Results 
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4.7  PERFORMANCE EVALUATION 

Our  simulation is based on the experiment which admits the 1200K incoming IP 

packet stream into the system. 

4.7.1 Speedup and Throughput 

The first experiment was carried out using trace-1 shown in Figure 4-29. The total 

1200K incoming IP addresses are searched through the 8 x 8 SAFIL System and the 

mathced port results are observed in the backplane during 26,863,800 ns (clock 

cycle was choosen as 10 ns). Therefore,  

Speed up = cyclepackets
ns

packets
/447,0

2683757

1200000

570,837,26

000,200,1
≈=  

With minimum size (40-byte) IP packets, 788.1
10

40447,0
=

ns

bytex
GBps = 14.3 Gbps 

throughtput has been achieved. 

The second experiment was carried out using trace-2 shown in Figure 4-31. For this 

case, total time passed between the start of incoming IP address admission and final 

outgoing port result observation is found to be 7,135,730 ns. Hence 

Speed up = cyclepackets
ns

packets
/681,1

713573

1200000

730,135,7

000,200,1
≈=  

With minimum size (40-byte) IP packets, 724.6
10

40681,1
=

ns

bytex
Gbps = 53.79 Gbps 

throughtput has been achieved. 

4.7.2 Latency 

The average latency is also calculated. For this, all incoming packet arrival times 

and the time at which its corresponding port result appears at the backplane were 

saved and averaged over all packets.  

For the first experiment using trace-1,  average latency is calculated to be 97,57 

clock cycles.  
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For the other experiment using trace-2, average latency is calculated to be 60,67 

clock cycles. 

These performance metrics are far below the values acheied in the ASIC 

architecture prposed in [6] since we have a much higher latency in each Processing 

Element (PE), a high latency I/O in the FPGA board and a limit in memory capacity 

and also on the synthesizable maximum clock speed. To achieve terabit 

performance IP lookup our FPGA architecture, there should be FPGA devices with 

higher operating frequencies and with more I/O pin capabilities. Use of techniques 

such as zero or one skip clustering and use of cache [6] should also be implemented 

to improve the throughput. 

 

4.8  OPTIMIZATION 

After the above initial simulations, some optimization steps have been carried out 

on the system in order to decrease the average latency and increase the speedup 

further. For this, minor modifications on PE, CR and SU blocks have been carried 

out as are explained below.  

The first optimization is based on the threshold level used in PE FIFOs. This value 

plays an important role since it directly affects CCU in regulating the incoming 

traffic. When this value is low, the system operates relatively slowly. On the other 

hand selecting this value high may cause packet drops. Although CCU slows down 

the incoming traffic, there may still be packets waiting in CR and PE FIFOs, which 

will travel to other PEs that may have already reached the threshold level. Selection 

of this level affects latency and speedup directly. We performed some trials to 

choose the right FIFO threshold level (in percentage of the FIFO size) as shown in 

Table 4-12. The highlighted rows in Table 4-12 give the optimum threshold level. 

Trace 
Threshold 

Level 
Speed up 

Packet Drop 
Rate 

Trace-1 % 75 0,490 % 4.5 
Trace-1 % 60 0,455 % 0.6 
Trace-1 % 50 0,447 % 0.07 

Table 4-12 Effect of Threshold Level on Performance 
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Trace-1 % 40 0,441 % 0.06 
Trace-1 % 34 0,438 % 0 
Trace-2 % 75 2,178 % 2.8 
Trace-2 % 60 2,166 % 0.7 
Trace-2 % 58 2,154 % 0 
Trace-2 % 50 1,681 % 0 
Trace-2 % 40 1,672 % 0 

 

The second optimization is based on CRs. While designing CRs in section 4.3.1, we 

already used FIFO modules to buffer the incoming data. When simulating the whole 

system, the buffer capacity plays an important role as was explained above in the 

first optimization. At this point, we removed all FIFOs inside the CRs and turned 

CR into a state machine. To implement CR without FIFOs, we also modified the SU 

to communicate in both directions. 

The state diagram of our modified CR is given in Figure 4-34. In addition to the 

"data_av_in" signal, "data_need" signal has been added. When data is available in 

SU and CR needs data from SU, available data arrives to the input port of the CR in 

one clock cycle. Figure 4-35 gives the block diagram of the connection from one 

SU to one PE. 
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Figure 4-34 State Diagram for Our Modified CR 

 

 

 

Figure 4-35 Block Diagram of the Modified System 

 

When these modified modules were used in the system, two different traces were 

admitted into the system. Table 4-13 gives the effects of removing FIFOs from CRs 

on performance. When both Tables 4-12 and 4-13 are compared, speed up is 

decreased by approximately 10% in the case of 50% threshold level.  However, 

latency is improved by approximately 40% when both results in Table 4-13 and 

Section 4.7.2 are compared in the case of 50% threshold level. 

Trace 
Threshold 

Level 
Speed up Latency 

Packet Drop 
Rate 

Trace-1 %50 0,411  45,12 % 0 
Trace-2 %50 1,505 36,36 % 0 

Table 4-13 Effects of Removing FIFOs from CRs on Performance 
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CHAPTER 5  

 

CONCLUSION 

In this thesis study, prototype development and verification for an IP lookup engine 

on FPGAs is carried out. The system is evaluated experimentally and the results are 

exhibited including detailed discussions.  

 

We first focused on the feasibility of the FPGA implementation of the SRAM based 

pipelined architecture proposed earlier originally for ASIC. We made some minor 

modifications and improvements on the architecture for FPGA adaptation. We then 

carried out other optimizations to improve the speed up and latency. The proposed 

prototype achieves a sustained throughput of 57 Gbps in case of uniform traffic load 

without any packet drop. In our system design, we utilized an existing FPGA board 

to realize an 8x8 torus architecture . In this architecture maximum 2 MB entries of 

the router lookup table could have be stored in BRAMs. A larger lookup engine can 

not be implemented in the current state of the art XILINX devices using a single 

FPGA only. However, implementation of a larger engine such as 16 x 16 is always 

possible using more than one virtex devices.  

 

As a future work, further study can be carried out for improving the performance 

with trying to reduce the latency in each PE with the latest Virtex devices. Using 

more than one Virtex device or latest devices coming in the future to support larger 

router lookup tables can be experimented. Moreover, some techniques to improve 

the performance for example cache using and zero skipping can be utilized in our 

architecture. 
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APPENDIX A 

SOURCE CODE for FIFO IMPLEMENTATION 

---------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:  

--  

-- Create Date:    17:20:35 09/12/2010  

-- Design Name:  

-- Module Name:    fifo - arch  

-- Project Name:  

-- Target Devices:  

-- Tool versions:  

-- Description:  

-- 

-- Dependencies:  

-- 

-- Revision:  

-- Revision 0.01 - File Created 

-- Additional Comments:  

-- 

---------------------------------------------------------------------------------- 
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library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

entity fifoCR is 

 generic ( 

  Data_Bits: natural:=49;   -- number of data bits  

  Address_Bits: natural:=12 -- number of address bits 

  ); 

   Port    (  

 clk    : in  std_logic; 

           reset    :  in  std_logic; 

           fifo_rd   :  in  std_logic; 

           fifo_wr   :  in  std_logic; 

           fifo_wr_data   :  in  std_logic_vector (Data_Bits-1 downto 0); 

           fifo_empty   :  out  std_logic; 

           fifo_full   :  out  std_logic; 

           fifo_rd_data   :  out  std_logic_vector (Data_Bits-1 downto 0) 

 ); 

end fifoCR; 
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architecture arch of fifoCR is 

 type register_type is array ((2**Address_Bits)-1 downto 0) of  

 std_logic_vector(Data_Bits-1 downto 0); 

 signal t_array_reg  : register_type; 

 signal write_ptr_now  : std_logic_vector(Address_Bits-1 downto 0); 

 signal write_ptr_next  : std_logic_vector(Address_Bits-1 downto 0); 

 signal write_ptr_inc : std_logic_vector(Address_Bits-1 downto 0); 

 signal read_ptr_now : std_logic_vector(Address_Bits-1 downto 0); 

 signal read_ptr_next : std_logic_vector(Address_Bits-1 downto 0); 

 signal read_ptr_inc : std_logic_vector(Address_Bits-1 downto 0); 

 signal read_data_now : std_logic_vector(Data_Bits-1 downto 0); 

 signal read_data_next : std_logic_vector(Data_Bits-1 downto 0); 

 signal write_data : std_logic_vector(Data_Bits-1 downto 0); 

 signal fifo_operator : std_logic_vector(1 downto 0); 

 signal fifo_full_now : std_logic; 

 signal fifo_full_next : std_logic; 

 signal fifo_empty_now : std_logic; 

 signal fifo_empty_next : std_logic; 

 signal write_enable  : std_logic; 

begin 

 -- Clocking Process 

 process(clk,reset) 

 begin 

  if (reset='1') then 

   t_array_reg <= (others =>(others=>'0')); 

   write_ptr_now <= (others => '0'); 
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   read_ptr_now <= (others => '0'); 

   fifo_full_now <= '0'; 

   fifo_empty_now <= '1'; 

  elsif (clk'event and clk='1') then 

   read_ptr_now <= read_ptr_next; 

   read_data_now <= read_data_next; 

   fifo_empty_now <= fifo_empty_next; 

   fifo_full_now <= fifo_full_next; 

   write_ptr_now <= write_ptr_next; 

   if (write_enable='1') then 

   t_array_reg(to_integer(unsigned(write_ptr_now))) <= 

write_data;     

   end if;   

  end if; 

 end process; 

 fifo_rd_data <= read_data_now; 

 fifo_full <= fifo_full_now; 

 fifo_empty <= fifo_empty_now; 

 -- Inputs 

 write_data <= fifo_wr_data; 

 write_enable <= fifo_wr and (not fifo_full_now); 

 -- This computes the next pointer values 

 write_ptr_inc <= std_logic_vector(unsigned(write_ptr_now)+1); 

 read_ptr_inc <= std_logic_vector(unsigned(read_ptr_now)+1); 

 fifo_operator <= fifo_wr & fifo_rd; 
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process(fifo_empty_next, read_ptr_next, t_array_reg, 

 fifo_empty_now,fifo_wr_data) 

 begin 

read_data_next  <= t_array_reg(to_integer(unsigned(read_ptr_next))); 

  if (fifo_empty_next = '1') then 

   -- if fifo is empty output '0' 

   read_data_next  <= (others => '0'); 

  else 

   if (fifo_empty_now = '1') then 

   -- If fifo empty next = 0 and fifo empty now = 1 then  

   -- feed data straight through to output on this clock cycle 

    -- (First Word Fall Through) 

    read_data_next <= fifo_wr_data;  

   end if; 

  end if;  

 end process; 

 process (write_ptr_now, write_ptr_inc, read_ptr_now, read_ptr_inc,  

  fifo_operator, fifo_empty_now, fifo_full_now) 

 begin 

  write_ptr_next <= write_ptr_now; 

  read_ptr_next <= read_ptr_now; 

  fifo_full_next <= fifo_full_now; 

  fifo_empty_next <= fifo_empty_now; 

  case fifo_operator is 

   when "00" => -- This means no operation 

   when "01" => --read 
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    if (fifo_empty_now /= '1') then --not empty 

     read_ptr_next <= read_ptr_inc; 

     fifo_full_next <= '0'; 

     if (read_ptr_inc=write_ptr_now) then 

      fifo_empty_next <= '1'; 

     end if; 

    end if; 

   when "10" => -- write 

    if (fifo_full_now /= '1') then -- not full 

     write_ptr_next <= write_ptr_inc; 

     fifo_empty_next <= '0'; 

     if (write_ptr_inc=read_ptr_now) then 

      fifo_full_next <= '1'; 

     end if; 

    end if; 

   when others => --read/write 

    write_ptr_next <= write_ptr_inc; 

    read_ptr_next <= read_ptr_inc; 

   end case; 

  end process; 

end arch; 
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APPENDIX B 

SOURCE CODE for DATA FLOW MANAGER 

---------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:  

--  

-- Create Date:    12:55:43 10/23/2011  

-- Design Name:  

-- Module Name:    DataFlowManager - Behavioral  

-- Project Name:  

-- Target Devices:  

-- Tool versions:  

-- Description:  

-- 

-- Dependencies:  

-- 

-- Revision:  

-- Revision 0.01 - File Created 

-- Additional Comments:  

-- 

---------------------------------------------------------------------------------- 

 

library IEEE; 
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use IEEE.STD_LOGIC_1164.ALL; 

library UNISIM; 

use UNISIM.VComponents.all; 

entity DataFlowManager_111 is 

 generic (safil : Integer := 49); 

    Port ( fifo1_data : in  STD_LOGIC_VECTOR (safil-1 downto 0); 

           fifo1_empty : in  STD_LOGIC; 

           fifo2_data : in  STD_LOGIC_VECTOR (safil-1 downto 0); 

           fifo2_empty : in  STD_LOGIC; 

           fifo1_en : out  STD_LOGIC; 

           fifo2_en : out  STD_LOGIC; 

           DFM_ram_ad_out : out  STD_LOGIC_VECTOR (12 downto 0); 

 DFM_port_out : out  STD_LOGIC_VECTOR (4 downto 0); 

 DFM_data_out : out  STD_LOGIC_VECTOR (31 downto 0); 

  DFM_action_type : out STD_LOGIC_VECTOR (1 downto 0); 

 ram_wr_en : out std_logic_vector(0 downto 0); 

 DFM_pe_id_out : out std_logic_vector(2 downto 0); 

           clk : in  STD_LOGIC; 

           rst : in  STD_LOGIC);     

end DataFlowManager_111; 

architecture Behavioral of DataFlowManager_111 is 

signal counter_data : std_logic_vector (1 downto 0) ; 

begin 

CONTROLLER: process (clk) 

begin 

 if rst ='0' then 
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   if clk'event and clk='0' then 

 if counter_data = "00" then 

  if fifo1_empty='0' then 

  fifo1_en <= '1'; 

  fifo2_en <= '0'; 

  counter_data <= "01"; 

  if fifo1_data(0) = '1' and fifo1_data(3 downto 1) = "111" then 

  DFM_action_type <= "11"; 

  ram_wr_en <="1"; 

  DFM_data_out <= fifo1_data (48 downto 17); 

  DFM_ram_ad_out <= fifo1_data (16 downto 4); 

  elsif fifo1_data(0) = '1' and fifo1_data(3 downto 1) /= "111" then 

  DFM_action_type <= "10"; 

  DFM_data_out <= fifo1_data (48 downto 17); 

  DFM_ram_ad_out <= fifo1_data (16 downto 4); 

  DFM_pe_id_out <= fifo1_data (3 downto 1); 

  ram_wr_en <="0"; 

  else 

  DFM_action_type <= "01"; 

  DFM_data_out  <= fifo1_data (48 downto 19) & "00"; 

  DFM_ram_ad_out <= fifo1_data (18 downto 6); 

  DFM_port_out <= fifo1_data (5 downto 1); 

  ram_wr_en <="0"; 

  end if;    

  elsif fifo2_empty='0' then 

  fifo1_en <= '0'; 
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  fifo2_en <= '1'; 

  counter_data <= "11";    

  if fifo2_data(0) = '1' and fifo2_data(3 downto 1) = "111" then 

  DFM_action_type <= "11"; 

  ram_wr_en <="1"; 

  DFM_data_out <= fifo2_data (48 downto 17); 

  DFM_ram_ad_out <= fifo2_data (16 downto 4); 

  elsif fifo2_data(0) = '1' and fifo2_data(3 downto 1) /= "111" then 

  DFM_action_type <= "10"; 

  DFM_data_out <= fifo2_data (48 downto 17); 

  DFM_ram_ad_out <= fifo2_data (16 downto 4); 

  DFM_pe_id_out <= fifo2_data (3 downto 1); 

  ram_wr_en <="0"; 

  else 

  DFM_action_type <= "01"; 

  DFM_data_out  <= fifo2_data (48 downto 19) & "00"; 

  DFM_ram_ad_out <= fifo2_data (18 downto 6); 

  DFM_port_out <= fifo2_data (5 downto 1); 

  ram_wr_en <="0";  

  end if; 

  else 

  fifo1_en <= '0'; 

   fifo2_en <= '0'; 

   DFM_action_type <= "00"; 

   counter_data <= "10"; 

   ram_wr_en <="0"; 
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   end if; 

   elsif  counter_data = "01" then 

   DFM_action_type <= "00"; 

   fifo1_en <= '0'; 

   fifo2_en <= '0'; 

   counter_data <= "10"; 

   ram_wr_en <="0"; 

   elsif  counter_data = "10" then 

   if fifo2_empty='0' then 

   fifo1_en <= '0'; 

   fifo2_en <= '1'; 

   counter_data <= "11"; 

   if fifo2_data(0) = '1' and fifo2_data(3 downto 1) = "111" then 

   DFM_action_type <= "11"; 

   ram_wr_en <="1"; 

   DFM_data_out <= fifo2_data (48 downto 17); 

   DFM_ram_ad_out <= fifo2_data (16 downto 4); 

   elsif fifo2_data(0) = '1' and fifo2_data(3 downto 1) /= "111" then 

   DFM_action_type <= "10"; 

   DFM_data_out <= fifo2_data (48 downto 17); 

   DFM_ram_ad_out <= fifo2_data (16 downto 4); 

   DFM_pe_id_out <= fifo2_data (3 downto 1); 

   ram_wr_en <="0"; 

   else 

   DFM_action_type <= "01"; 

   DFM_data_out  <= fifo2_data (48 downto 19) & "00"; 
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   DFM_ram_ad_out <= fifo2_data (18 downto 6); 

   DFM_port_out <= fifo2_data (5 downto 1); 

   ram_wr_en <="0";  

   end if; 

   elsif fifo1_empty='0' then 

   fifo1_en <= '1'; 

   fifo2_en <= '0'; 

   counter_data <= "01"; 

   if fifo1_data(0) = '1' and fifo1_data(3 downto 1) = "111" then 

   DFM_action_type <= "11"; 

   ram_wr_en <="1"; 

   DFM_data_out <= fifo1_data (48 downto 17); 

   DFM_ram_ad_out <= fifo1_data (16 downto 4); 

   elsif fifo1_data(0) = '1' and fifo1_data(3 downto 1) /= "111" then 

   DFM_action_type <= "10"; 

   DFM_data_out <= fifo1_data (48 downto 17); 

   DFM_ram_ad_out <= fifo1_data (16 downto 4); 

   DFM_pe_id_out <= fifo1_data (3 downto 1); 

   ram_wr_en <="0"; 

   else 

   DFM_action_type <= "01"; 

   DFM_data_out  <= fifo1_data (48 downto 19) & "00"; 

   DFM_ram_ad_out <= fifo1_data (18 downto 6); 

   DFM_port_out <= fifo1_data (5 downto 1); 

   ram_wr_en <="0";   

   end if; 
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   else 

   fifo1_en <= '0'; 

   fifo2_en <= '0'; 

   DFM_action_type <= "00"; 

   counter_data <= "00"; 

   ram_wr_en <="0"; 

   end if; 

   elsif  counter_data = "11" then 

   DFM_action_type <= "00"; 

   fifo1_en <= '0'; 

   fifo2_en <= '0'; 

   counter_data <= "00"; 

   ram_wr_en <="0";   

   end if; 

 end if; 

 else 

 counter_data <= "00";  

 ram_wr_en <="0"; 

 DFM_action_type <="00"; 

 fifo1_en <= '0'; 

 fifo2_en <= '0'; 

 DFM_data_out <= x"00000000"; 

 DFM_ram_ad_out <= "0000000000000"; 

 DFM_port_out <= "00000"; 

 DFM_pe_id_out <= "000"; 

 end if; 
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end process; 

end Behavioral; 
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APPENDIX C 

SOURCE CODE for PE IMPLEMENTATION 

---------------------------------------------------------------------------------- 

-- Company:  

-- Engineer:  

--  

-- Create Date:    20:40:20 10/18/2011  

-- Design Name:  

-- Module Name:    pe - module  

-- Project Name:  

-- Target Devices:  

-- Tool versions:  

-- Description:  

-- 

-- Dependencies:  

-- 

-- Revision:  

-- Revision 0.01 - File Created 

-- Additional Comments:  

-- 

---------------------------------------------------------------------------------- 

 

library IEEE; 
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use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

library UNISIM; 

use UNISIM.VComponents.all; 

entity pe_111 is 

generic (safil : Integer := 49);  

    Port ( data_in_west : in  STD_LOGIC_VECTOR (safil-1 downto 0); 

           data_av_in_west : in  STD_LOGIC; 

           data_in_north : in  STD_LOGIC_VECTOR (safil-1 downto 0); 

           data_av_in_north : in  STD_LOGIC; 

           data_out_east : out  STD_LOGIC_VECTOR (safil-1 downto 0); 

           data_av_out_east : out  STD_LOGIC; 

           data_out_south : out  STD_LOGIC_VECTOR (safil-1 downto 0); 

           data_av_out_south : out  STD_LOGIC; 

 data_backplane : out  STD_LOGIC_VECTOR (4 downto 0); 

 fifo_almost_full : out STD_LOGIC; 

           clk : in  STD_LOGIC; 

           rst : in  STD_LOGIC 

 ); 

end pe_111; 

 architecture module of pe_111 is  

signal rd_en_fifo1, rd_en_fifo2, empty_fifo1, empty_fifo2, il_data_out_pr, 

prpg_data_out_pr : std_logic; 

signal ram_wr : std_logic_vector (0 downto 0); 

signal dataout_fifo1, dataout_fifo2, dataout_buffer : std_logic_vector (safil-1 

downto 0); 
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signal DFM_data, ram_out_data : std_logic_vector (31 downto 0); 

signal ram_address : std_logic_vector (12 downto 0); 

signal dfm_port : std_logic_vector (4 downto 0); 

signal dfm_action : std_logic_vector (1 downto 0); 

signal pe_id : std_logic_vector (2 downto 0); 

signal fifo1_full, fifo2_full : std_logic;  

COMPONENT fifo 

 PORT( 

  clk : IN std_logic; 

  reset : IN std_logic; 

  i_fifo_rd : IN std_logic; 

  i_fifo_wr : IN std_logic; 

  i_fifo_wr_data : IN std_logic_vector(48 downto 0);           

  o_fifo_empty : OUT std_logic; 

  o_fifo_full : OUT std_logic; 

  o_fifo_rd_data : OUT std_logic_vector(48 downto 0) 

  ); 

 END COMPONENT; 

 COMPONENT DataFlowManager_111 

 PORT( 

  fifo1_data : IN std_logic_vector(48 downto 0); 

  fifo1_empty : IN std_logic; 

  fifo2_data : IN std_logic_vector(48 downto 0); 

  fifo2_empty : IN std_logic; 

  clk : IN std_logic; 

  rst : IN std_logic;           
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  fifo1_en : OUT std_logic; 

  fifo2_en : OUT std_logic; 

  DFM_ram_ad_out : OUT std_logic_vector(12 downto 0); 

  DFM_port_out : OUT std_logic_vector(4 downto 0); 

  DFM_data_out : OUT std_logic_vector(31 downto 0); 

  DFM_action_type : OUT std_logic_vector(1 downto 0); 

  ram_wr_en : OUT std_logic_vector(0 to 0); 

  DFM_pe_id_out : OUT std_logic_vector(2 downto 0) 

  ); 

 END COMPONENT; 

 component ram 

 port ( 

 clka: in std_logic; 

 ena: in std_logic; 

 wea: in std_logic_vector(0 downto 0); 

 addra: in std_logic_vector(12 downto 0); 

 dina: in std_logic_vector(31 downto 0); 

 douta: out std_logic_vector(31 downto 0)); 

 end component; 

 begin 

  

  

 fifo1: fifo PORT MAP( 

  clk => clk, 

  reset => rst, 

  i_fifo_rd => rd_en_fifo1, 
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  i_fifo_wr =>data_av_in_west, 

  i_fifo_wr_data => data_in_west, 

  o_fifo_empty => empty_fifo1, 

  o_fifo_full => fifo1_full, 

  o_fifo_rd_data => dataout_fifo1 

 ); 

 fifo2: fifo PORT MAP( 

  clk => clk, 

  reset => rst, 

  i_fifo_rd => rd_en_fifo2, 

  i_fifo_wr => data_av_in_north, 

  i_fifo_wr_data => data_in_north, 

  o_fifo_empty => empty_fifo2, 

  o_fifo_full => fifo2_full, 

  o_fifo_rd_data => dataout_fifo2 

 );  

 DFM_111: DataFlowManager_111 PORT MAP( 

  fifo1_data => dataout_fifo1, 

  fifo1_empty => empty_fifo1, 

  fifo2_data => dataout_fifo2, 

  fifo2_empty => empty_fifo2, 

  fifo1_en => rd_en_fifo1, 

  fifo2_en => rd_en_fifo2, 

  DFM_ram_ad_out => ram_address, 

  DFM_port_out => dfm_port, 

  DFM_data_out => DFM_data, 
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  DFM_action_type => dfm_action, 

  ram_wr_en => ram_wr, 

  DFM_pe_id_out => pe_id, 

  clk => clk, 

  rst => rst 

 ); 

 bram : ram 

  port map ( 

   clka => clk, 

   ena => dfm_action(0), 

   wea => ram_wr, 

   addra => ram_address, 

   dina =>  DFM_data, 

   douta => ram_out_data  

 );   

data_out: process (clk)  

begin 

  if rising_edge(clk) then 

  fifo_almost_full <= fifo1_full or fifo2_full; 

  if dfm_action= "01" then 

  il_data_out_pr <= '1'; 

  prpg_data_out_pr<='0'; 

  elsif dfm_action= "10" then 

  prpg_data_out_pr<='1'; 

  il_data_out_pr<='0'; 

  else 
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  il_data_out_pr<='0'; 

  prpg_data_out_pr<='0'; 

  end if; 

  end if; 

end process;   

combinational: process (clk) 

variable index_mux : std_logic_vector(12 downto 0); 

variable index_mux_null_det : std_logic; 

variable port_mux : std_logic_vector(4 downto 0); 

begin 

if falling_edge (clk) then 

 if il_data_out_pr='1' then 

 c1: case DFM_data(31) is 

 when '0' => index_mux := ram_out_data (31 downto 19); 

 when '1' => index_mux := ram_out_data (18 downto 6); 

 when others => index_mux:= "0000000000000"; 

 end case; 

 c2: case ram_out_data(0) is 

 when '0' => port_mux := dfm_port ; 

 when '1' => port_mux := ram_out_data (5 downto 1); 

 when others => port_mux:= "00000"; 

 end case; 

 if index_mux = "0000000000000" then 

 index_mux_null_det := '1'; 

 else 

 index_mux_null_det := '0'; 
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 end if;  

 if  index_mux_null_det = '1' then 

 data_backplane <= port_mux; 

 data_av_out_south <= '0'; 

 data_av_out_east <= '0'; 

 else  

 if DFM_data(31) = '0' then 

 data_av_out_south <= '1'; 

 data_av_out_east <= '0'; 

 data_out_south <= DFM_data(30 downto 2) & '0' & index_mux(12 downto 

0) & port_mux(4 downto 0) & '0'; 

 elsif DFM_data(31) = '1' then 

 data_av_out_south <= '0'; 

 data_av_out_east <= '1'; 

 data_out_east <= DFM_data(30 downto 2) & '0' & index_mux(12 downto 0) 

& port_mux(4 downto 0) & '0'; 

 end if;   

 end if; 

   

 elsif prpg_data_out_pr='1' then 

 data_av_out_south <= '1'; 

 data_av_out_east <= '0'; 

 data_out_south <= DFM_data & ram_address & pe_id & '1';   

 else 

 data_av_out_south <= '0'; 

 data_av_out_east <= '0'; 
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 data_backplane <= "00000"; 

 end if; 

end if; 

end process;   

end module; 

 

 


