

PROTOTYPE DEVELOPMENT AND VERIFICATION
OF AN IP LOOKUP ENGINE ON FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AKIN ÖZKANER

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2012

APPROVAL OF THE THESĐS:

PROTOTYPE DEVELOPMENT AND VERIFICATION
FOR AN IP LOOKUP ENGINE ON FPGAS

PERFORMANCE STUDY

submitted by AKIN ÖZKANER in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Đsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde B. Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ş. Ece Schmidt

Electrical and Electronics Engineering Dept., METU

Dr. Oğuzhan Erdem

Electrical and Electronics Engineering Dept., Atatürk Univ.

 Date: 08.02.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Akın Özkaner

Signature :

iv

ABSTRACT

PROTOTYPE DEVELOPMENT AND VERIFICATION
FOR AN IP LOOKUP ENGINE ON FPGAS

PERFORMANCE STUDY

Özkaner, Akın

M. S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

February 2012, 117 pages

The increasing use of the internet demands more powerful routers with higher

speed, less power consumption and less physical space occupation. IP lookup

operation is one of the major concerns in today’s routers for providing such

attributes. To accomplish IP lookup on routers, hardware or software based

solutions can be used. In this thesis, an SRAM based pipelined architecture

proposed earlier for ASIC implementation is re-designed and implemented on an

FPGA in the form of a BRAM based pipelined 8x8 torus architecture using Xilinx

ISE and simulated and verified using Modelsim Simulator. Some necessary

modifications and improvements for FPGA implementation are carried out. The

results of our experiments, which are performed for a real router lookup table and a

real time traffic load with various optimizations, are also presented. Our study and

design effort demonstrates the feasibility of the FPGA implementation of the

proposed technique, of course with a considerable performance penalty.

Keywords : IP lookup, FPGA, routers.

v

ÖZ

FPGA ÜZERĐNDE IP TARAMA MOTORU PROTOTĐP GELĐŞTĐRMESĐ VE
DOĞRULAMASI

Özkaner, Akın

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt F. Bazlamaçcı

Şubat 2012, 117 sayfa

Artan internet kullanımı; yüksek hızda çalışan, güç tüketimi düşük olan ve fiziksel

olarak az yer kaplayan daha etkili ağ yönlendiricilerinin kullanımını

gerektirmektedir. Bu özelliklere sahip ağ yönlendiricileri için en önemli unsurlardan

birisi de IP arama işlemidir. Ağ yönlendiriciler üzerinde IP arama işlevini

gerçekleştirmek amacıyla yazılım veya donanım temelli çözümler

kullanılabilmektedir. Bu tez çalışması, boru hattı davranışlı SRAM tabanlı ASIC

model için daha önce önerilmiş bir çalışmanın yeniden tasarlanarak FPGA donanım

yapısında gerçeklenmesini içermektedir. Tez kapsamında, boru hattı davranışlı

BRAM tabanlı 8x8 torus mimarinin Xilinx ISE ile tasarımı ve Modelsim Simulator

ile benzetimi gerçekleştirilmiştir. FPGA tasarımına yönelik bazı iyileştirmeler ve

gerekli değişiklikler yapılmıştır. Gerçek yönlendirici arama tabloları ve gerçek

zamanlı ağ trafiği ile çeşitli en iyileştirmeler ve denemeler de gerçekleştirilmiş ve

sonuçları sunulmuştur. Çalışmamız ve tasarım çabamız daha önce önerilmiş

tekniğin, elbette belirgin bir başarım kaybı karşılığında, FPGA gerçeklemesinin de

mümkün olduğunu göstermektedir.

Anahtar Kelimeler: IP arama, IP tarama, ağ yönlendiricisi, FPGA üzerinde IP

tarama

vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr.

Cüneyt F. Bazlamaçcı for his guidance, advice, criticism, encouragement, endless

patience and insight throughout the completion of the thesis.

I wish to thank my company ASELSAN A.Ş for giving me the opportunity of

continuing my thesis study and supporting me in my efforts to get the Master of

Science degree.

I would like to express my appreciation to all my friends and colleagues for their

contributions to my thesis with their continuous guidance, advice, encouragement

and for expanding my horizons.

Finally, my family. No word can suffice to express how I am grateful to my parents

but at least I can mention my sincere gratitude to them for their unwavering support,

continual confidence and endless and gratis love. I also wish to thank my wife for

her support on my thesis.

viii

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ ... V

ACKNOWLEDGEMENTS ... VII

LIST OF ABBREVIATIONS ... XIII

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND ... 1

1.1.1 Network Topology ... 3

1.1.2 Router Architecture ... 5

1.1.3 IP Lookup .. 6

1.2 MOTIVATION .. 6

1.3 CONTRIBUTIONS ... 7

1.4 OUTLINE .. 8

CHAPTER 2 IP LOOKUP APPROACHES .. 9

2.1 SOFTWARE BASED SOLUTIONS ... 9

2.2 HARDWARE BASED SOLUTIONS ... 11

2.2.1 SRAM Based Solutions ... 12

2.2.2 T-CAM Based Solutions .. 13

CHAPTER 3 ARRAY DESIGN FOR TRIE BASED IP LOOKUP AND UPDATE 15

3.1 INTRODUCTION ... 15

3.2 MOTIVATION .. 16

3.3 ARRAY ARCHITECTURE FOR FAST IP LOOKUP WITH UPDATE CAPABILITY 16

3.3.1 IP Lookup Process ... 19

3.3.2 IP Lookup Table Update and Propagate Process ... 21

3.3.3 Processing Element .. 22

3.3.4 Selector Unit .. 27

3.3.5 Contention Resolver .. 28

3.3.6 Congestion Control Unit .. 28

3.3.7 Ram Data Loader ... 29

CHAPTER 4 FPGA IMPLEMENTATION OF THE ARRAY ARCHITECTURE FOR FAST

IP LOOKUP WITH UPDATE CAPABILITY .. 30

4.1 PROCESSING ELEMENT ... 30

ix

4.1.1 Design .. 30

4.1.2 Simulation .. 36

4.2 SELECTOR UNIT ... 47

4.2.1 Design .. 47

4.2.2 Simulation .. 50

4.3 CONTENTION RESOLVER .. 52

4.3.1 Design .. 52

4.3.2 Simulation .. 56

4.4 CONGESTION CONTROL UNIT .. 61

4.4.1 Design .. 61

4.4.2 Simulation .. 63

4.5 RAM DATA LOADER ... 65

4.5.1 Design .. 65

4.5.2 Simulation .. 67

4.6 SYSTEM INTEGRATION .. 69

4.6.1 Design .. 69

4.6.2 Simulation .. 74

4.7 PERFORMANCE EVALUATION ... 87

4.7.1 Speedup and Throughput ... 87

4.7.2 Latency .. 87

4.8 OPTIMIZATION ... 88

CHAPTER 5 CONCLUSION ... 91

REFERENCES ... 92

APPENDIX A ... 95

APPENDIX B ... 101

APPENDIX C ... 109

x

LIST OF FIGURES

Figure 1-1 Example Forwarding Table ... 3

Figure 2-1 A Prefix Table and Corresponding Binary Trie 10

Figure 2-2 The Leaf Pushed Version of the Binary Trie in Figure 2-1 11

Figure 2-3 TCAM ... 14

Figure 3-1 A 4x4 Systolic Array ... 17

Figure 3-2 4x4 Torus ... 17

Figure 3-3 4x4 SAFIL Architecture [6] .. 18

Figure 3-4 SAFIL Frame ... 19

Figure 3-5 Propagation of a SAFIL frame during lookup 20

Figure 3-6 SAFIL Update Frame .. 21

Figure 3-7 Block Diagram of the Processing Element (PE) 22

Figure 3-8 Flowchart of Data Processing in PE .. 24

Figure 3-9 Detailed Block Diagram of a PE (Lookup Process) 25

Figure 3-10 Block Diagram of a PE (Update Process) ... 26

Figure 3-11 Block Diagram of a PE’s Propagate Process 27

Figure 4-1 FIFO Input and Output Signals ... 31

Figure 4-2 IP Core Menu for Block RAM Generation ... 33

Figure 4-3 Data Flow Manager Schematic View .. 34

Figure 4-4 Processing Element ... 35

Figure 4-5 Simulation Results for PE in Scenario 1 ... 37

Figure 4-6 Simulation Results for PE in Scenario 2 ... 39

Figure 4-7 Simulation Results for PE in Scenario 3 ... 41

Figure 4-8 Simulation Results for PE in Scenario 4 ... 43

Figure 4-9 Simulation Results for PE in Scenario 5 ... 46

Figure 4-10 Selector Unit Input and Output Signals ... 48

Figure 4-11 Simulation Results for SU in Scenario 1 ... 51

Figure 4-12 Block Diagram of CR .. 52

Figure 4-13 Block Diagram of Transition from CR to PE 54

xi

Figure 4-14 Contention Resolver Input and Output Signals 55

Figure 4-15 Simulation Results for CR in Scenario 1 ... 59

Figure 4-16 Simulation Results for CR in Scenario 1 (continued) 60

Figure 4-17 Congestion Controller Unit Input and Output Signals 61

Figure 4-18 Simulation Results for CCU in Scenario 1 .. 64

Figure 4-19 RDL Unit Input and Output Signals .. 66

Figure 4-20 Simulation Results for RDL in Scenario 1 .. 68

Figure 4-21 8x8 SAFIL System .. 70

Figure 4-22 Timing Diagram for the Whole System .. 71

Figure 4-23 System Input and Output Signals .. 72

Figure 4-24 Data Adapter .. 75

Figure 4-25 The Binary View of "file_data.in" ... 76

Figure 4-26 The Binary View of "traffic.in" .. 77

Figure 4-27 Simulation Results for the System in Scenario 1 80

Figure 4-28 Simulation Results for the System in Scenario 1 (continued) 81

Figure 4-29 Trace 1 Distribution ... 82

Figure 4-30 Port Results of Trace 1 .. 83

Figure 4-31 Trace 2 Distribution ... 84

Figure 4-32 Trace 1 Simulation Results .. 85

Figure 4-33 Trace 2 Simulation Results .. 86

Figure 4-34 State Diagram for Our Modified CR ... 90

Figure 4-35 Block Diagram of the Modified System .. 90

xii

LIST OF TABLES

Table 4-1 FIFO Signal Descriptions.. 32

Table 4-2 PE Signal Descriptions ... 35

Table 4-3 Initial Partitioning Conversion .. 47

Table 4-4 SU Signal Descriptions ... 49

Table 4-5 CR Signal Descriptions ... 54

Table 4-6 CCU Signal Descriptions .. 62

Table 4-7 RDL Signal Descriptions .. 66

Table 4-8 The System Signal Descriptions ... 72

Table 4-9 Design Requirements .. 73

Table 4-10 Attributes of Some Xilinx Family Members... 73

Table 4-11 Feasibiliy of SAFIL Implementations on Xilinx Family Members 74

Table 4-12 Effect of Threshold Level on Performance ... 88

Table 4-13 Effects of Removing FIFOs from CRs on Performance 90

xiii

LIST OF ABBREVIATIONS

BRAM Block RAM

CAM Content Addressable Memory

CAMP Circular, Adaptive and Monotonic Pipeline

CIDR Classless Inter Domain Routing

CCU Congestion Controller Unit

CR Contention Resolver

IP Internet Protocol

ISP Internet Service Provider

LPM Longest Prefix Matching

PE Processing Element

POLP Parallel Optimized Linear Pipeline

RDL RAM Data Loader

SAFIL Systolic Array Architecture for Fast IP Lookup

SU Selector Unit

TCAM Ternary Content Addressable Memory

1

CHAPTER 1

INTRODUCTION

In the developing environment of high performance IP networks, it is expected that

local and wide area backbones, enterprise networks, and ISPs will use multigigabit

and even terabit networking technologies, where IP routers will be used not only to

interconnect backbone segments but also to act as points of attachments to high

performance wide area links.

1.1 BACKGROUND

The primary role of IP routers is to forward packets to their final destination

address. For this purpose, a router must decide for each incoming packet where to

send it next. In other words, the forwarding decision consists of finding the address

of the next-hop router and the output port through which the packet should be sent.

This information is stored in a lookup table that the router computes based on the

information gathered by routing protocols. To consult the lookup table, the router

uses the incoming packet’s destination address as a key and this process is called

address lookup. Once the forwarding information is retrieved, the router can

transfer the packet from the incoming link to the appropriate outgoing link, in a

process called switching.

The rapid growth of the Internet has stressed its routing system. While the link rates

have kept pace with the increasing traffic, it has been difficult for the packet

processing capacity of routers to keep up with the increased data rates of the link.

2

The Classful Addressing Scheme

When Internet addressing was initially designed, a simple address allocation

scheme was defined, which is known today as the classful addressing scheme.

In IP version 4, IP addresses are 32 bit long and, when broken up into 4 groups of 8

bits, are normally represented as four decimal numbers separated by dots. The IP

address scheme initially used a simple two-level hierarchy, with networks at the top

level and hosts at the bottom level. This hierarchy is reflected in the fact that an IP

address consists of two parts, a network part and a host part. The network part

identifies the network to which a host is attached and thus all hosts attached to the

same network agree in the network part of their IP addresses.

Since the network part corresponds to the first bits of the IP address, it is called the

address prefix. We will write prefixes as bit strings of up to 32 bits in IPv4 followed

by a “*”. For example, prefix 1000001001010110* represents all 216 addresses that

begin with the bit pattern 1000001001010110. Alternatively, prefixes can be

indicated using the dotted-decimal notation, so the same prefix can be written as

130.86/16, where the number after the slash indicates the length of the prefix.

With a two-level hierarchy, IP routers forward packets based only on the network

part, until packets reach the destination network. As a result, a forwarding table

only needs to store a single entry to forward packets to all the hosts attached to the

same network. This technique is called address aggregation and allows using

prefixes to represent a group of addresses. Each entry in a forwarding table contains

a prefix (Figure 1-1). So, finding the forwarding information requires searching for

the prefix in the forwarding table that matches the corresponding bits of the

destination address.

3

Figure 1-1 Example Forwarding Table

1.1.1 Network Topology

Basically, three different sizes of networks were defined in the classful addressing

scheme, identified by a class name: class A, B, and C. Size of networks was

determined by the number of bits used to represent the network part and the host

part. Thus networks of class A, B or C consisted in an 8, 16 or 24-bit network part

and a corresponding 24, 16 or 8-bit host part (Figure 1-2).

Figure 1-2 Classful Addressing Scheme

With this scheme there were very few class A networks and their addressing space

represented 50% of the total IPv4 address space (231 addresses out of a total of 232).

There were 16,384 (214) class B networks with a maximum of 65,536 hosts per

network and 2,097,152 (221) class C networks with up to 256 hosts. This allocation

scheme worked well in the early days of the Internet. However, the continuous

growth of the number of hosts and networks has made apparent two problems with

this classful addressing architecture. First, with only three different network sizes to

4

choose, the address space was not used efficiently and the IP address space was

getting exhausted very rapidly, even though only a small fraction of the addresses

allocated were actually in use.

The CIDR Addressing Scheme

To allow for a more efficient use of the IP address space and to slow down the

growth of the backbone forwarding tables, a new scheme called Classless Inter-

domain Routing or CIDR was introduced.

In the classful addressing scheme, only 3 different prefix lengths are allowed: 8, 16

and 24 corresponding to the classes A, B and C, respectively. CIDR makes more

efficient use of the IP address space by allowing a finer granularity in the prefix

lengths. With CIDR, prefixes can be of arbitrary length rather than constraining

them to be 8, 16 or 24 bits long.

CIDR allows address aggregation at several levels. Consider the networks

represented by the network numbers from 208.12.16/24 through 208.12.31/24.

Suppose that in a router all these network addresses are reachable through the same

service provider. From the binary representation we can see that the leftmost 20 bits

of all the addresses in this range are the same. Thus, we can aggregate these 16

networks into one “super network” represented by the 20-bit prefix, which in

decimal notation gives 208.12.16/20 (Figure 1-3). Note that indicating the prefix

length is necessary in decimal notation, because the same value may be associated

to prefixes of different lengths, for instance 208.12.16/20 (11010000 00001100

0001*) is different from 208.12.16/22 (11010000 00001100 000100*).

5

 Figure 1-3 Address Aggregation in CIDR Acheme

1.1.2 Router Architecture

The popularity of the Internet has caused the traffic on the Internet to grow

drastically every year for the last several years. It has also spurred the emergence of

many ISPs. To sustain growth, ISPs need to provide new differentiated services,

e.g., tiered service, support for multimedia applications, etc. The routers in the ISPs’

networks play a critical role in providing these services. IP traffic in private

enterprise networks has also been growing rapidly for some time. These networks

face significant bandwidth challenges as new application types, especially desktop

applications uniting voice, video, and data traffic need to be delivered on the

network infrastructure. This growth in IP traffic is beginning to stress the traditional

processor-based design of current-day routers and as a result has created new

challenges for router design.

Routers have traditionally been implemented purely in software. Because of the

software implementation, the performance of a router was limited by the

performance of the processor executing the protocol code. To achieve wire-speed

routing, high-performance processors together with large memories were required.

This translated into higher cost. Thus, while software-based wire-speed routing was

possible at low-speeds, for example, with 10 megabits per second (Mbps) ports, or

with a relatively smaller number of 100 Mbps ports, the processing costs and

6

architectural implications make it difficult to achieve wire-speed routing at higher

speeds using software-based processing.

Fortunately, many changes in technology (both networking and silicon) have

changed the landscape for implementing high-speed routers. Silicon capability has

improved to the point where highly complex systems can be built on a single

integrated circuit. The use of 0.35 µm and smaller silicon geometries enables

application specific integrated circuit implementations of millions gate-equivalents.

Embedded memory and microprocessors are available in addition to high-density

logic. This makes it possible to build single-chip, low-cost routing solutions that

incorporate both hardware and software as needed for best overall performance.

1.1.3 IP Lookup

Due to the rapid growth of traffic in the Internet, backbone links of several

Gigabit/sec are commonly deployed. To handle Gigabit/sec traffic rates, the

backbone routers must be able to forward millions of packets per second on each of

their ports. Fast IP address lookup in the routers, which uses the packets destination

address to determine for each packet the next hop, is therefore crucial to achieve the

packet forwarding rates required.

1.2 MOTIVATION

In hardware based IP Lookup solutions for network routers, there are two main

categories. These are namely ternary content addressable memory (TCAM) based

and random access memory (RAM) based solutions. RAM based solutions include

dynamic or static random access memories (DRAM or SRAM) or Block RAM

(BRAM) in FPGA or ASIC. Each prefix can be stored in a TCAM with not only

using 0's or 1's but also using don't care values. A seach key (i.e. IP address) is

compared to all entries cycle and only one matched result, which is the longest

matching prefix, appears at the output in one clock cycle. Therefore, TCAM based

solutions have been popular for implementing lookup functions in core routers [1].

However, they have high cost and high power consumption as major drawbacks in

7

addition to their unsuitability in adopting to new addressing and routing protocols

[2, 3].

On the other hand, RAM based solutions offer higher memory access speeds, lower

power consumption and higher density. To implement RAM based IP lookup

architectures, generally tree type data structures for finding LPM are used and the

trees are traversed appropriately during a search. However, multiple memory

accesses may be needed to search an IP addresses in such structures. For improving

the throughput, various pipelined architectures have been proposed [4, 5] the main

idea being the storage of a lookup table (represented for example as a binary tree) of

a router on seperate and multiple memory elements. When an IP search is in

progress in a pipeline, another incoming search key can be admitted into the system.

Although the throughput is improved in pipelined solutions, straightforward

mapping of the tree on the pipeline stages makes an unbalanced memory

distribution inevitable. One of the possible solutions to unbalanced memory

problem was proposed earlier using two dimensional, parallel, intersecting, circular

and variable length pipelines [6,26]. Our implementation within the scope of this

thesis provides minor modifications on the work of [6] to adapt it to be

implemented in an FPGA rather than an ASIC.

In [6], nothing was mentioned abour initializing RAM contents for each stage of the

pipeline and hence we also proposed loading and updating of RAM contents in each

processing element described in Section 4.1.

1.3 CONTRIBUTIONS

• We re-designed and adopted an existing SRAM based pipelined

architecture, named SAFIL [6] for FPGA implementation.

o We added load and update attributes to SAFIL.

o We utilized FIFOs in CRs in SAFIL to prevent possible head of line

blocking.

8

o We augmented SAFIL by designing a data flow manager (DFM)

module in each PE to manage different type of incoming SAFIL

frames.

• We implemented and simulated the modified SAFIL structure in the form of

a BRAM based pipelined 8x8 torus architecture on an FPGA using Xilinx

ISE and Modelsim Simulator.

1.4 OUTLINE

The rest of the thesis is organized as follows. Chapter 2 covers the background and

related work for IP lookup approaches. Our array design for trie-based IP lookup

and update is discussed in Chapter 3. Chapter 4 introduces the proposed IP lokup

architecture and its implementation on FPGA. Finally, Chapter 5 summarizes and

concludes our work.

9

CHAPTER 2

IP LOOKUP APPROACHES

In modern IP routers, Internet Protocol (IP) lookup forms a bottleneck in packet

forwarding because the lookup speed cannot catch up with the increase in link

bandwidth. To deal with this problem, various software and hardware based

solutions have been proposed for over 20 years. In this chapter, a brief overview of

prior work on IP lookup solutions will be presented.

2.1 SOFTWARE BASED SOLUTIONS

In IP lookup, the simplest and most popular data structure is binary trie. Each node

in trie contains two pointers, the left-child pointer and the right-child pointer.

Moreover if a trie node contains a valid prefix (corresponding to a routing table

entry), then a next hop information (port number) associated with that prefix is also

stored in a trie node. Figure 2-1 illustrates a sample prefix table and its corresponding

binary trie.

In the rest of this text, the following terms are used:

• Prefix node is any trie node that corresponds to a valid prefix (marked as

black)

• Leaf prefix node is a leaf node which is a valid prefix node (black leaf)

In a trie data structure, a node does not hold any prefix explicitly but the path from

the root to another node corresponds to a prefix implicitly.

10

Figure 2-1 A Prefix Table and Corresponding Binary Trie

Any search operation begins with the root node. According to the bits of the IP

address, operation continues traversing the trie from parent to child nodes. If

following bit of IP address is "0", search continues towards left child node,

otherwise right child node. While traversing, port result is updated if a valid node is

encountered. Search operation terminates if a null child node or a leaf node is

reached. The last matched prefix is selected as the longest matched prefix. For

instance, a search key starting with 1010 will match the leaf prefix node whose next

hop is P8 according to longest prefix mathing (LPM) rule in Figure 2-1. Update

operations such as prefix insertion, deletion and route changes are easy to

implement in a binary trie structure. On the other hand, search operation in a binary

trie needs 32 memory accesses for IPv4 and 128 memory accesses for IPv6 in the

worst case and hence lookup time gets longer.

When all the prefix nodes are pushed to leaves, then a binary trie is called a leaf-

pushed binary trie [7]. In a leaf-pushed binary trie, a non-leaf node contains only

pointers to its children and the leaf node contains only a next hop information

associated with the corresponding prefix. Figure 2-2 shows the leaf-pushed version

of the binary trie in Figure 2-1.

11

0 1

0 1 0 1

0 0 1 0 1

P8 P9

0 1

P7

0

P6

1

P5

0

P3

P2

P4
1

P1

1

P1

Figure 2-2 The Leaf Pushed Version of the Binary Trie in Figure 2-1

Software based IP lookup solutions are generally based on algorithms that use

binary trie. These software approaches are scalable but slow to work in line speeds

[8]. To accelarate software based lookup, various solutions were proposed. The

search time and the memory performance of a binary trie can be increased with path

compression technique, which was first proposed by [9]. With this method, any

node of a trie can be omitted if it has only one child node to make the path from

root node to leaf node shorten. In order to keep the record of removed internal

nodes, each node must store a skip value and bit string. The skip value stores the

number of bits to be skipped on the path. The bit string stores missing bits from the

last skip operation.

2.2 HARDWARE BASED SOLUTIONS

Altgough software based solutions are simple and scalable, they are slow to work in

line speeds [8]. To improve performance and especially the throughput, various

hardware based solutions were proposed using either SRAM or TCAM based

memory technologies. And recently, ASIC or FPGA based solutions have also

appeared in the literature [10, 11, 12, 13, 14].

12

2.2.1 SRAM Based Solutions

Single SRAM based IP lookup solutions are in need of multiple memory accesses

during the tree traversal for finding the matched port result. To increase the

throughput, various SRAM based pipelined solutions have been proposed. A binary

trie can be implemented in an SRAM based pipelined architecture using multiple

static random access memory elements. Each stage in binary trie is represented by

an SRAM block. Therefore, the number of stages should be equal to the SRAM

blocks utilized. The number of memory accesses is then determined by the average

depth of the trie that stores a part or all of the routing table. Each search operation

can access a seperate memory block only once during a search if each stage of the

binary trie is utilized seperately. During a search that checks whether an IP address

matches a prefix or not, a new incoming search request must wait for the on-going

lookup operation to finish up.

IP lookup in binary tries need multiple memory accesses in order to find LPM node.

In a pipelined architectures, the trie is mapped onto the stages of the pipelines. The

trie traversal is then performed on these separate and multiple memory elements

(SRAMs) through the pipeline. Enough memory stages exist and no stage is

accessed more than once during a search in a conventional one dimensional pipeline

architecture. Although throughput is improved using a pipeline, an ordinary

mapping of the binary trie onto the pipeline stages results in unbalanced memory

utilization. Unbalanced trie node distribution over pipeline stages decreases the

overall performance of the architecture. Various different solutions have been

proposed to address the memory balancing problem [4, 5, 15, 16].

In [4], a ring pipeline architecture, which allows search to start from any pipeline

stage, is proposed. This approach is based on dividing the binary trie into subtries

and choosing each subtrie starting point to a different pipeline stage to create a

balanced pipeline. In this approach, there are two different data path. First one is for

finding the starting pipeline stage and the second one is for lookup operation. The

matched port result propagates to the final pipeline stage to appear at the output.

The throughput of the described Baboescu et al. architecture is 0,5 lookups per

clock cycle.

13

In [5], the previous method is improved with an approach called Circular, Adaptive

and Monotonic Pipeline (CAMP). Apart from previous approach, at any pipeline

stage, there are two different input and one output stage. In this architecture,

maximum 0,8 lookups per clock cycle are possible.

The throughput of pipelined architectures can be improved by using multiple

pipelines. Jiang et al. [12] proposed the first parallel multipipeline architecture

Parallel Optimized Linear Pipeline (POLP) in which each pipeline can operate

concurrently to increase the speed up rate. POLP is improved further in later

studies. For example a bidirectional linear pipeline is introduced in [17]. To

improve POLP power effciency, a hybrid SRAM/TCAM selector unit is also

proposed in [18] and [19], the aim being shortening pipeline lengths by introducing

hybrid partitioning schemes.

2.2.2 T-CAM Based Solutions

Binary CAM is the simplest type of CAM which uses data search words consisting

entirely of 1s and 0s. Ternary CAM (TCAM) allows a third state of "Don't Care"

bits in the stored dataword, thus adding flexibility to the search. For example, a

ternary CAM might have a stored word of "10XX0" which will match any of the

four search words "10000", "10010", "10100", or "10110". The added search

flexibility comes at an additional cost over binary CAM as the internal memory cell

must now encode three possible states instead of the two of binary CAM. This

additional state is typically implemented by adding a mask bit ("care" or "don't

care" bit) to every memory cell. TCAM is more powerful because don’t cares may

act as wildcards during a search and hence LPM can be solved naturally in one

cycle [20].

As shown in Figure 2-3, in TCAM architectures, prefixes are stored in sorted order

based on prefix lengths. When a search key (i.e. an IP address) is admitted into

conventional TCAM, incoming bits are distributed to all the entries. The matched

entries activate outputs that are fed into a priority encoder. If more than one outputs

14

are activated, the priority encoder decides which entry is LPM and outputs the

longest matching one.

Prefix 0 P0

Prefix 1 P1

Prefix 2 P2

...

...

Prefix n Pn

IP Address

Output

Port

Figure 2-3 TCAM

Although TCAM-based solutions are straightforward and famous, they are

expensive, power consuming, and offer little scalability and adaptability to new

addressing and routing protocols [2, 3, 21, 22]. While a search is in progress, in

which every memory block of the entries are used in active state, TCAM modules

consumes high power. Moreover, updating a memory cell may require multiple

entry moves, which means that long updating progress may be needed.

Additionally, low scalability may arise in the case of changing the order in the

priority encoder when updating the contents of the memory cells.

15

CHAPTER 3

ARRAY DESIGN FOR TRIE BASED IP LOOKUP AND

UPDATE

3.1 INTRODUCTION

SRAM based IP lookup solutions are in need of multiple memory accesses to

traverse the tree to perform a single search request. Since only one memory access

is allowed during a lookup process for an IP address, a new incoming lookup

request should wait until previous search is completed. Several researchers have

explored various SRAM based pipelined architectures to improve the througput

[4,5].

In these architectures, only a single pipeline stage is used for mapping a binary trie.

This single pipeline stage is composed of multiple connected sub blocks that

represent a node in the trie. Each sub block utilizes an SRAM unit to store node

information. Each new search request starts in the boundary sub block and proceed

until the LPM node is encountered.

An SRAM based multi pipeline [13, 15, 16, 18, 19] approach improves the

throughput considerably by using parallel non-intersecting and costant length

pipelines having m different sub blocks that contains SRAM units. Each sub block

is connected to each other with n pipelines.

In this chapter, we review and present a Block RAM based array architecture for

fast IP lookup with update functionality, which is a slightly modified version of [6].

16

3.2 MOTIVATION

In this thesis, we implement a two dimensional multiple pipelined architecture

proposed in [6] that has parallel, circular search capabilities on intersecting and

variable length pipelines.

In our implementation, we added FIFOs to the system to prevent head of line

blocking in Contention Resolvers and a Ram Data Loader module to load or update

RAM contents of the system. We also modified the PE architecture slightly to adapt

it to Xilinx FPGAs and used BRAMs instead of seperate SRAMs.

3.3 ARRAY ARCHITECTURE for FAST IP LOOKUP WITH

UPDATE CAPABILITY

SRAM based array architecture for fast IP lookup (SAFIL) is composed of specially

designed processing elements (PEs) that are connected like a 2D torus topology but

is operated like a systolic array to benefit from multi-pipeline parallelism [6]. In the

following, the systolic array like structure and 2D torus network topology are

explained briefly:

Systolic array: A systolic array is a pipe network arrangement of processing units

called cells. It is a specialized form of parallel computing, where cells (i.e.

processors), compute data and store it independently of each other. Each processing

element inputs data from one or more neighbors (e.g. North and West) and

processes it. The output of the process is given to the neighbors in the opposite

direction (e.g. South and East). The task of one cell can be summarized as receive,

compute and transmit. The communication with the outside world occurs only at

boundary cells. The processing elements share the information with their neighbors

after performing the needed operations on the data. Figure 3-1 demonstrates an

example of 4x4 systolic array architecture. The systolic arrays have attractive

17

properties such as synchronization, modularity, regularity, locality, finite

connection, parallel pipelining and modular extendibility [6].

Figure 3-1 A 4x4 Systolic Array

2D-torus: 2D torus is a k-ary 2-cube network where k≥3. A k-ary n-cube network

where n is the dimension of the cube and k is the radix, is a well-known topology

used in communication networks and high performance computing architectures. It

consists of nkN = nodes arranged in n-dimensions, with k-nodes per dimension.

Figure 3-2 illustrates 4-ary 2-cube network or 4 x 4 torus.

Figure 3-2 4x4 Torus

18

The topology in SAFIL is like a k-ary 2-cube; in particular a 2D torus, where k≥3,

in which the wrap-around connections are not between PEs but rather between a PE

and a contention resolver (CR) (Figure 3-3). As a result, SAFIL can be regarded as

an array of PEs that are connected in a 2D torus topology and is operated like a

systolic array to benefit from multi-pipeline parallelism for trie-based IP lookup.

Figure 3-3 4x4 SAFIL Architecture [6]

In a systolic array in general;

 i) a PE is similar to a central processing unit except for a program counter,

 ii) the operations are synchronous and transport-triggered,

iii) the communication with the outside world occurs only at the array boundary,

 iv) there exist structured data parallelism, strict flows along rows/columns and

interaction of data streams at the PEs.

SAFIL is not exactly a systolic array since it has the above (i)-(iii) characteristics

but not (iv) [6].

19

3.3.1 IP Lookup Process

An IP Lookup Process starts at an available Selector Unit (SU). The searched IP

address arrives at input side of SU to start a new search operation. Then this SU,

using initial r bits of the IP address, finds the input stage PE and the memory

address of the corresponding subtrie root in this PE. Then a SAFIL Frame is

constructed as shown in Figure 3-4.

Figure 3-4 SAFIL Frame

A SAFIL Frame consists of the following four fields:

- A-field holds the least significiant (32-r) bits of the IP address being

searched (most significiant r bits are to be used for initial partitioning).

- I-field is a pointer to the Block RAM in PE.

- P-field holds the search result that the IP packet will use to reach to the next

router

- U-field holds the type of the frame (IP Lookup or IP Update).

Since more than one search requests may arrive at an input stage PE, in this case

contention occurs. The contention resolver (CR) is used to get a SAFIL frame that

20

contains the IP address to be processed into the system. When contention occurs,

only one of the contented packets is selected and the others are put on hold using a

suitable strategy. Each SU is connected to every other CR. Number of SUs is a

design choice and defines the maximum number of search requests that can be

admitted to the system simultaneously. The endpoints of each row and column are

connected to their corresponding CRs. Hence a pipeline corresponding to a branch

in prefix tree can be mapped onto the array of PEs by wrapping it around the

corresponding row or column. If a circulating search exists, other search requests

from SUs are accepted by CR into "inside FIFOs". The backplane obtains the search

result from any of the PEs.

Figure 3-5 Propagation of a SAFIL frame during lookup

Figure 3-5 illustrates the lookup process for two different addresses on an 8x8

SAFIL system assuming an initial stride for partitioning as r = 8. These two search

keys are assumed to enter into the system at the same time. While search key is

traversing through each PE, SAFIL frame is updated and mapped to one of the child

node according to MSB of it. If the stored prefix node is valid, the port number field

21

in the traversing SAFIL frame is updated. At the end of the search operation, port

number is output to the backplane.

3.3.2 IP Lookup Table Update and Propagate Process

A binary trie is initially partitioned into several disjoint subtries. These subtries are

then mapped on SAFIL starting from the input stage PE (to which CRs ans SUs are

connected). The Block RAM contents of each PE is loaded by Ram Data Loader by

constructing SAFIL Update Frames. This unit is connected to all CRs located in the

northern side of the structure.

A SAFIL Update Frame (shown in Figure 3-6) consists of four fields, namely m-bit

ram data (D), p-bit Block RAM index (I), n-bit PE ID code (PE) and 1-bit frame

type (U). D-field holds p-bit Block RAM data that will be updated, I-field holds

Block RAM Address, PE-field holds the identification code of the PE and U-field is

the type of the frame (if SAFIL Update Frame U='1' otherwise U='0').

Figure 3-6 SAFIL Update Frame

An update process begins at Ram Data Loader (RDL) by constructing SAFIL

update frame. This frame comes to the corresponding column (one of northern side

CRs). Since each PE in one column has a unique ID, only one ID of the update

packet will match the destination PE ID. The update packet propagates along with

the column until the mached ID's are encountered. The propagation of the update

packet between the PEs is named as "propagation process". If matching occurs in

any PE, this is named as "update process".

22

3.3.3 Processing Element

A PE consists of two FIFO queue blocks, a Block RAM, a Data Flow Manager and

additional combinational logic as shown in Figure 3-7.

Figure 3-7 Block Diagram of the Processing Element (PE)

Each block in the PE is explained below:

FIFO Block: This block is used for buffering data coming from west or north side

of the PE.

Block RAM: This memory element is used to store trie nodes.

Data Flow Manager: This unit is used for managing the data flow coming into PE. It

manages two FIFOs using a Round Robin Scheduler by enabling only one of the

FIFOs at each cycle. It also decides whether the incoming frame is a SAFIL Frame

or a SAFIL Update Frame. Then, according to frame type, it starts one of either

lookup, update or propagate processes.

Combinational Logic: This logic is used for deciding whether the IP address

searched encounter an LPM or not in the current node of the trie (LPM node: there

23

is a valid prefix and a match in the current node). With this decision, this logic can

modify the SAFIL Frame and put this frame at the output (either south or east) or

send the result (i.e., output port information) to the backplane.

A SAFIL Frame consists of four fields, namely t-bit address (A), p-bit Block RAM

index (I), q-bit port number (P) and 1-bit frame type (U). A-field holds the least

significant t-bits of the IP address being searched (most significant (32-t) bits are to

be used for initial partitioning, I-field is a pointer to the Block RAM in PE, P-field

holds the search result that the IP packet will use to reach to the next router and U-

field is the type of the frame. (if SAFIL Frame U='0', otherwise U='1')

In addition to the (t+p+q+1)-bits wide data bus connection, a single bit data

available (DAV) signal between two neighboring PEs is also used. Each Block

RAM unit stores (2p+q+1) bits in each entry, having two p-bit fields of south (SI)

and east (EI) Block RAM indices, a q-bit port number (PN) field and a valid (V) bit

(indicating whether the current trie node is a prefix or an intermediate node). A PE

modifies the P-field in SAFIL frame if the current node is a valid prefix node. A

SAFIL frame carries the latest longest matched port number through each traversed

PE not to backtrack from the last stage when a search terminates.

Each PE's behavioral structure is shown in Figure 3-8. In each two clock cycle, a PE

functions as follows:

i. SAFIL/SAFIL Update Frame arrives from northern or western input

ports

ii. Data Flow Manager finds the Frame type:

iii. If the frame is a SAFIL Frame, Combinational Logic decides if the

current node is an LPM node or not.

a. If LPM node, q-bits wide port result is output to backplane by

using the information read with a single access from Block

RAM.

b. If not, Combinational Logic modifies the frame by using the

information read with a single access from Block RAM and

this modified frame is guided to one of eastward or

southward output ports.

24

If the frame is a SAFIL Update Frame, Data Flow Manager modifies the data row

of the relevant Block RAM.

Figure 3-8 Flowchart of Data Processing in PE

25

Figure 3-9 Detailed Block Diagram of a PE (Lookup Process)

Figure 3-9 presents the block diagram of a Processing Element in SAFIL for lookup

process.

26

Figure 3-10 Block Diagram of a PE (Update Process)

Figure 3-10 presents the block diagram of a Processing Element in SAFIL for

update process.

27

Figure 3-11 Block Diagram of a PE’s Propagate Process

Figure 3-11 gives the block diagram of a SAFIL Processing Element’s propagate

process.

3.3.4 Selector Unit

This unit is used for initial partitioning and constructing SAFIL Frames. Selector

Unit is a combinational logic that inputs the destination IP address and processes its

initial r-bits (r is used for initial partitioning and was discussed in Section 3.3.1).

SU functions as follows:

i. It finds the input stage PE by checking the initial r-bits of the IP address.

ii. It constructs the SAFIL Frame by adding the memory address of the root

node of the corresponding subtrie.

28

iii. It puts the constructed SAFIL Frame on its output port.

3.3.5 Contention Resolver

This unit is used for buffering and arranging incoming data from different SU’s and

wrapped around eastern and southern PE’s. Since more than one search request may

arrive at an input stage PE, there is a need for a mechanism in order to accept an IP

address into the system to be searched. Therefore, only one search operation will be

accepted by a Contention Resolver. When contention occurs, only one of the

contented packets is selected and routed to the connected PE while the others being

stored in FIFO’s in each Contention Resolver.

Since more than one packet may arrive at each CR in one cycle, we implemented a

FIFO block in each port in a CR to accept incoming data. Since more than one

packet want to leave CR at the same time, there is also a need for arranging these

packets. A suitable strategy, such as Round Robin for example, can be employed for

this operation.

CR functions as follows:

i. SAFIL Frames or SAFIL Update Frames arrives at the input of the CR.

ii. At each input port, receiving data enters the corresponding FIFO.

iii. CR enables one of the FIFOs for taking data to the output port.

3.3.6 Congestion Control Unit

This unit is designed and used to prevent possible FIFO overflow in any PE. Since

FIFO’s in each PE have limited size, packet loss due to queue overflow is always

possible. Using a simple congestion control mechanism, one can control the

incoming traffic rate by activating or deactivating the input ports if any of the

FIFO’s is almost full. A one bit connection from each PE’s queue to congestion

control unit (CCU) is sufficient for this purpose. One possible congestion control

algorithm in activating and deactivating the SU’s is additive increase multiplicative

29

decrease strategy. If the FIFO queue usage exceeds the predefined threshold value,

then half of the SUs are deactivated to decrease the load at the input of the whole

system. SUs to be deactivated can be chosen arbitrarily because each SU may

receive packets from the input queue and has direct connections to each CR. If there

is no congestion, number of active SUs are increased by one at each cycle.

CCU functions as follows:

i. If one of the FIFO’s in any PE reaches to predefined threshold value, one bit

almost full signal becomes logic ‘1’.

ii. CCU deactivates SUs with multiplicative decrease strategy. For example, if

n SU’s are active at some time and one of the FIFO’s is almost full, CCU

deactivates half of the SU’s not to accept a search key (IP Address) anymore

having n/2 active SUs for the next cycle.

iii. CCU activates SUs with additive increase strategy. For example, if n SU’s

are active at some and none of the FIFO’s are almost full, CCU activates

one of the inactive SUs making a total of n+1 SU’s are active.

3.3.7 Ram Data Loader

This unit is used for loading and updating the contents of the Block RAM’s inside

each PE. Each load or update operation starts at Ram Data Loader (RDL). RDL

examines the incoming packet and finds the column, which contains the PE that will

be updated. Then, RDL constructs SAFIL Update Frame and sends it to CR of the

corresponding column. As was explained in Section 3.3.2, SAFIL Update Frame

travels through this column until the ID of the PE and Frame matches. If such a

match occurs, the selected PE content will be updated.

Since the update process can be performed while lookup processes are running, the

system can be modified without being stopped, which is very beneficial.

30

CHAPTER 4

FPGA IMPLEMENTATION OF THE ARRAY

ARCHITECTURE FOR FAST IP LOOKUP WITH

UPDATE CAPABILITY

Our Block RAM based array implementation of SAFIL is composed of 8x8

specially designed processing elements (PEs) that are connected like a 2D torus

topology, buffered CRs that connects all SUs to corresponding PE, Ram Data

Loader that is used for loading and updating RAM content and finally CCU that is

used to regulate the incoming traffic. In this chapter, all of these blocks and sub

modules will be explained and detailed including design and simulation studies.

4.1 PROCESSING ELEMENT

A PE consists of two FIFO blocks, a Block RAM, a Data Flow Manager and

additional combinational logic. The 49 bit input port of each PE is connected to

west and north neighbors. The 49 bit output port of each PE is connected to east and

south neighbors. Each PE is also connected to Congestion Control Unit (CCU) by

one bit data line.

4.1.1 Design

The PE unit is composed of blocks and sub-units explained below:

FIFO Block: This block is used for buffering data coming from western or northern

sides of the PE.

31

FIFOs are implemented using distributed RAM's on FPGA. To achieve a high speed

IP lookup process, FIFO Blocks are designed with "first word fall through"

attribute. With this, data written to an empty FIFO appears on the read port at the

same clock cycle.

To avoid data overflow in FIFO, fifo_full output signal is used for warning CCU to

reduce incoming traffic rate. To do this, FIFO Block asserts this almost full signal

to high when FIFO memory usage reaches the predefined threshold level.

Since SAFIL Frame and SAFIL Update Frame are 49 bits wide, FIFO width is 49

bits and depth can be choosen as a result of some optimization trials. In our design,

FIFO depth was selected as 1024.

The schematic view of FIFO is given in Figure 4-1.

Figure 4-1 FIFO Input and Output Signals

Each in and out signals of FIFO are described in Table 4-1.

32

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the FIFO module into a state that is
ready to receive data.

clk In 1 bit The clock signal is used in order to
synchronize FIFO with other modules

fifo_rd In 1 bit The read enable signal
fifo_wr In 1 bit The write enable signal
fifo_wr_data In 49 bits Data written to FIFO
fifo_empty Out 1 bit Indication signal of fifo empty
fifo_full Out 1 bit Indication signal of fifo is almost full
fifo_rd_data Out 49 bits Output data of FIFO

The VHDL source code for designing FIFO is given in Appendix A.

Block RAM: This memory element is used to store trie nodes.

Each Block RAM has 32 bits width and 8192213
= bits depth. Total memory size

for one PE is 8k x 32 = 256 kbits. Since the whole system consists of 64 PEs, total

memory size is 64 x 256 kbits = 16,777,216 mbits ≅ 2 MByte.

Block RAM's were generated with IP CORE in Xilinx ISE as shown in Figure 4-2.

Table 4-1 FIFO Signal Descriptions

33

Figure 4-2 IP Core Menu for Block RAM Generation

Data Flow Manager (DFM): This unit is used for managing the data flow coming

into PE. It manages two FIFOs with respect to a round robin schedule by enabling

only one FIFO at each cycle. It also checks if the incoming frame is a SAFIL Frame

or a SAFIL Update Frame and then it starts either lookup, update or propagate

processes according to frame type.

The schematic view of Data Flow Manager is given in Figure 4-3.

34

Figure 4-3 Data Flow Manager Schematic View

The VHDL source code for designing DFM is given in Appendix B.

Combinational Logic: This logic is used for deciding whether the IP address

searched hits an LPM node or not. With this decision, the logic can modify the

SAFIL Frame and directs it to output (either south or east) or send the output port

information to backplane.

Combinational Logic inputs the outputs of the DFM.

All of these blocks and sub modules form the PE, whose input and output signals

are illustrated in Figure 4-4 Processing Element

Each in and out signals of PE are described in Table 4-2 and the VHDL source code

for designing PE is given in Appendix C.

35

Figure 4-4 Processing Element

Table 4-2 PE Signal Descriptions

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and
to bring the PE module into a state that
is ready to receive data.

clk In 1 bit The clock signal is used in order to
synchronize different parts of the PE
module (cycling at a rate less than the
worst-case internal propagation delays)

data_av_in_west In 1 bit The available signal of data from west
data_in_west In 49 bits The data coming from west side of the PE
data_av_in_north In 1 bit The available signal of data from north
data _in_north In 49 bits The data coming from north side of the

PE
data_av_out_east Out 1 bit The available signal of data to east
data _out_east Out 49 bits The data going out to east side of the PE
data_av_out_south Out 1 bit The available signal of data to south
data_out_south Out 49 bits The data going out to south side of the PE
data_backplane Out 5 bits The search result (port number) of the IP

address looked up
fifo_almost_full Out 1 bit The signal indicating one of FIFOs in the

PE is almost full

36

4.1.2 Simulation

SCENARIO 1

Aim: To show and verify southern and eastern port outputs for simultaneously

applied predefined input data from northern and western sides of the PE. (Lookup

Process)

Test Code:

wait for 100 ns;

rst<='1';

wait for clk_period*3;

rst<='0';

wait for clk_period*10;

data_in_west <= '0' & x"EEEEE7800044";

--011101110111011101110011110000 0000000000001 00010 0

data_av_in_west <= '1';

wait for clk_period;

data_av_in_west <= '0';

data_in_north <= '1' & x"F83E00780040";

 --111111000001111100000000001111 0000000000001 00000 0

data_av_in_north <= '1';

wait for clk_period;

data_av_in_north <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data from west and north is sent to the input ports consecutively. Since the

input data is of type SAFIL Frame, U-field is '0'. The Block RAM data content in

0000000000001 address is hex 000800EB (binary 0000000000001

0000000000011 10101 1). According to this scenario, the node that refers to tested

PE is an intermediate node. Therefore, there shouldn't be any backplane output.

Since 01 =−tA for the data from west, the southern available output should be high

for one clock cycle after some delay. Since 11 =−tA for the data from north, the

eastern available output should be high for one clock cycle after some delay.

37

Figure 4-5 Simulation Results for PE in Scenario 1

The result of the simulation is given in Figure 4-5. In this scenario, data_av_in_west appears at label 1 and data_av_in_north appears at label 2.

Since the input data is in the form of intermediate node data, at labels 3 and 4, data_av_out_south and data_av_out_east are activated after 2

clock cycles.

38

SCENARIO 2

Aim: To show and verify southern and eastern port outputs for simultaneously

applied predefined input data from northern and western sides of the PE and Round-

Robin Scheduler inside the DFM of the PE. (Lookup Process)

Test Code:

wait for 100 ns;

rst<='1';

wait for clk_period*3;

rst<='0';

wait for clk_period*10;

data_in_west <= '0' & x" EEEEE7800104";

-- 011101110111011101110011110000 0000000000100 00010 0

data_av_in_west <= '1';

data_in_north <= '1' & x" F83E00780100";

 -- 111111000001111100000000001111 0000000000100 00000 0

data_av_in_north <= '1';

wait for clk_period*3;

data_av_in_north <= '0';

data_av_in_west <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data from west and north is sent to the input ports concurrently for 3 clock

cycles. Since the input data is of type SAFIL Frame, U-field is '0'. The Block

RAM data content in 0000000000100 address is hex F4FFFFFF

(binary 1111010011111 1111111111111 11111 1). According to this scenario,

the node that refers to tested PE is an intermediate node. Therefore, there shouldn't

be any backplane output. Since 01 =−tA for the data from west, the southern

available output should be high for one clock cycle after some delay. Since 11 =−tA

for the data from north, the eastern available output should be high for one clock

cycle after some delay. Because there are data on both of the FIFO outputs at the

same time, it verifies that Round Robin Scheduler works well.

39

Figure 4-6 Simulation Results for PE in Scenario 2

The result of the simulation is given in Figure 4-6. In this scenario, data_av_in_west and data_av_in_north appear at labels 1 and 2 during 3

clock cycles. Since the input data is in the form of intermediate node data, at labels 3, 4, 5, 6, 7, 8; data_av_out_south and data_av_out_east are

activated by the Round Robin Scheduler.

40

SCENARIO 3

Aim: To show and verify backplane outputs for simultaneously applied predefined

input data from northern and western sides of the PE (Lookup Process)

Test Code:

wait for 100 ns;

rst<='1';

wait for clk_period*3;

rst<='0';

wait for clk_period*10;

data_in_west <= '0' & x"EEEEE7800004";

--011101110111011101110011110000 0000000000000 00010 0

data_av_in_west <= '1';

data_in_north <= '1' & x"F83E007800CE";

 --111111000001111100000000001111 0000000000011 00111 0

data_av_in_north <= '1';

wait for clk_period*3;

data_av_in_north <= '0';

data_av_in_west <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data from west and north is sent to the input ports concurrently for 3 clock

cycles. Since the input data is of type SAFIL Frame, U-field is '0'. The Block

RAM data content in 0000000000000 address is hex 0000000B (binary

0000000000000 0000000000000 00101 1) and in 0000000000011 address is hex

0000003F (binary 0000000000000 0000000000000 11111 1) . Since “SI= all 0's”

and “EI=all 0's” in both cases, the node that refers to the tested PE is an LPM node.

Therefore, there exists data at the backplane output.

41

Figure 4-7 Simulation Results for PE in Scenario 3

The result of the simulation is given in Figure 4-7. In this scenario, data_av_in_west and data_av_in_north appear at labels 1 and 2. Since the

input data is in form of longest prefix node data, at labels 3, 4, 5, 6, 7 and 8 data_backplane output is activated.

42

SCENARIO 4

Aim: To show and verify southern output for predefined input data applied from

northern side of the PE for IP update process (Propagate Process)

Test Code:

wait for 100 ns;

rst<='1';

wait for clk_period*3;

rst<='0';

wait for clk_period*10;

data_av_in_west <= '0';

data_in_north <= '1' & x"F83E00780003";

--11111100000111110000000000111100 0000000000000 001 1

data_av_in_north <= '1';

wait for clk_period*3;

data_av_in_north <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data from north is sent to the input port for 3 clock cycles. Since the input

data is of type SAFIL Update Frame, U-field is '1'. Therefore, PE decides which

process (Update or Propagate) to run. In this case, propagate process should run

because PE ID and ID of the incoming SAFIL Update Frame does not match.

Therefore, there exists data at the southern output port.

43

Figure 4-8 Simulation Results for PE in Scenario 4

The result of the simulation is given in Figure 4-8. In this scenario, data_av_in_north appears at label 1. Since the input data is in form of

propagate process data, at labels 2, and, 4 data_av_out_south output is activated.

44

SCENARIO 5

Aim: To verify and show that Block RAM data contents can be loaded/updated via

the update process (Update Process).

Test Code:

wait for 100 ns;

rst<='1';

wait for clk_period*3;

rst<='0';

wait for clk_period*10;

data_av_in_west <= '0';

data_av_in_north <= '0';

wait for clk_period;

data_in_west <= '1' & x"EEEEE7800040";

--111101110111011101110011110000 0000000000001 00000 0

data_av_in_west <= '1';

wait for clk_period;

data_av_in_west <= '0';

wait for clk_period;

data_in_north <= '1' & x"FFFFFFFE0011";

--11111111111111111111111111111111 0000000000001 000 1

data_av_in_north <= '1';

wait for clk_period;

data_av_in_north <= '0';

wait for clk_period;

data_in_west <= '1' & x"EEEEE7800040";

 --111101110111011101110011110000 0000000000001 00000 0

data_av_in_west <= '1';

wait for clk_period;

data_av_in_west <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data from west is sent to the input port for 3 clock cycles. First, a SAFIL

Frame arrives at the western side of the PE. After 2 clock cycles, a SAFIL Update

Frame appears in the Northen side. Since the input data is of type SAFIL Update

45

Frame, U-field is '1'. Therefore, PE decide which process (Update or Propagate) to

run. In this case, update process should run because PE ID and ID of the incoming

SAFIL Update Frame match. Finally, the same SAFIL Frame appears again at the

western side of the PE to observe that the same SAFIL Frame provides a different

SAFIL Frame output after ram update process.

46

Figure 4-9 Simulation Results for PE in Scenario 5

The result of the simulation is given in Figure 4-9. In this scenario, data_av_in_west appears for a lookup process at label 1. Then,

data_av_in_north appears for an update process at label 3. Then, data_av_in_west appears for a lookup process again at label 2. Before the

update process is completed, the corresponding output for data_out_east is activated at label 4. After the update process is completed, the

corresponding output for data_out_east is activated at label 5.

47

4.2 SELECTOR UNIT

This unit is designed and used for initial partitioning and for constructing SAFIL

Frames.

4.2.1 Design

Just a 4x16 line decoder is sufficient for initial partitioning (Table 4-3). Using

leftmost 4-bits of the key IP address, the seacrh is directed to the corresponding CR

and PE.

Initial 4 Bit Output Port of SU

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

The 32-bit input port of each SU is connected to incoming traffic port, i.e. the IP

address to be searched. The output ports of each SU are connected to all of the CR's

input ports.

Table 4-3 Initial Partitioning Conversion

48

The schematic view of SU is given in Figure 4-10.

Figure 4-10 Selector Unit Input and Output Signals

In and out signals of SU are described in Table 4-4.

49

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the SU module into a state that is
ready to receive data

clk In 1 bit The clock signal is used in order to
synchronize SU with other modules

data_av_in_SU In 1 bit The available signal of data incoming to SU
data_in_SU In 32 bits The data incoming to SU
data_av_out_X_SU Out 1 bit The available signal of data outgoing from

SU X
data _out_X_SU Out 49 bits The data outgoing from SU X

In each falling edge of a cycle, SU checks data available input. If data is available,

SU gets the 32-bit wide IP Address into the block. After initial partitioning stage,

SU finds the input stage CR and constructs the SAFIL Frame while outputing it at

the corresponding output port .

Table 4-4 SU Signal Descriptions

50

4.2.2 Simulation

SCENARIO 1

Aim: To show and verify that SU constructs SAFIL Frame and outputs it on the

corresponding output port.

Test Code:

wait for 100 ns;

rst <= '1';

wait for clk_period*3;

rst <= '0';

wait for clk_period*10;

data_av_in_SU <= '1';

data_in_SU <= x"ffffffff" ;

wait for clk_period;

data_in_SU <= x"cfffffff" ;

wait for clk_period;

data_in_SU <= x"0fffffff" ;

wait for clk_period;

data_in_SU <= x"2fffffff" ;

wait for clk_period;

data_av_in_SU <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, data that has different initial partitions at each cycle appears in the input port.

According to this scenario, different output ports of the SU be active at each cycle.

51

Figure 4-11 Simulation Results for SU in Scenario 1

The result of the simulation is given in Figure 4-9. In this scenario, data_av_in_su appears at label 1. Then, data_out_x_su appears

correspondingly at labels 2, 3, 4 and 5.

52

4.3 CONTENTION RESOLVER

This unit is designed and used for buffering and arranging incoming data from

different SU’s and eastern and southern PE’s.

4.3.1 Design

The 49-bit input ports of each Contention Resolver (CR) is connected to the output

ports of SUs and to the western or northern sides of the PE.

The block diagram of CR is given in Figure 4-12. Data from any SU or RDL arrives

into the relevant FIFO. Round Robbin Scheduler then selects one of the incoming

data and directs it to CR out by taking into account that data coming from PE has

higher priority.

Figure 4-12 Block Diagram of CR

53

The size of each FIFO depends on the size of FIFO in each PE. In high load, some

FIFOs may overflow and to prevent this, incoming traffic should be accepted with a

slower rate. As will be explained in CCU design section below, almost full signals

in each buffer in PEs goes high when one of the FIFOs reaches the predefined

threshold level. Each CR is connected to a neighbour PE and hence if a FIFO in any

PE asserts such almost full signel to the CCU, input traffic rate will be reduced.

Therefore, the load of neighbouring CR will drop until the FIFO that has reached to

its threshold in the PE deasserts almost full signal again

We utilized a ratio of (CR FIFO size/PE FIFO size) which ensures that no CR will

reach its full capacity.

Considering the worst case scenario illustrated in Figure 4-13, assume that CR is

highly loaded but PE is not. In other words, all incoming traffic is directed to one

CR and PE. Since PE is not highly loaded, the other input side of the PE should be

idle. Also assume that CR FIFO size is m, PE FIFO size is n and the number of

FIFOs in a CR is S . After t cycles, the examined FIFO in the CR will have load of

S

t
t − . At this cycle, the working FIFO in PE will have a load of

2

t
t − since PE is

designed (due to other reasons) in such a way that it produces one output every two

cycle. Then free capactiy in PE should be lower then CR, i.e.,

)(
S

t
tm −− >)

2
(

t
tn −−

Since in the 8x8 torus architecture, S = 17. If t is choosen as m, using the above

inequality

78.1
19

34
≅>

n

m

54

When m is at least 1.78 x n , the free area in a CR FIFO will always be lower than

PE FIFO. Because of having a CCU which regulates input traffic by controlling PE

FIFO, CR FIFOs will never overflow.

...

C
R

 O
U

T

Figure 4-13 Block Diagram of Transition from CR to PE

In and out signals of CR are described in Table 4-5.

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the CR module into a state that is
ready to receive data

clk In 1 bit The clock signal is used in order to
synchronize CR with other modules

data_av_in_X In 1 bit The available signal of data incoming to CR
data_in_X In 49 bits The data incoming to CR
data_av_out_X_SU Out 1 bit The available signal of data outgoing from

CR X
data _out_X_SU Out 49 bits The data outgoing from CR X

The schematic view of CR is given in Figure 4-14.

Table 4-5 CR Signal Descriptions

55

Figure 4-14 Contention Resolver Input and Output Signals

56

4.3.2 Simulation

SCENARIO 1

Aim: To show and verify that CR outputs incoming data according to round robin

scheduling.

Test Code:

wait for 100 ns;

rst <= '1' ;

wait for clk_period*3;

rst <= '0' ;

wait for clk_period*10;

data_in_3 <= '1' & x"ffffffffffff";

data_av_in_3 <= '1';

wait for clk_period;

data_av_in_3 <= '0';

data_in_7 <= '1' & x"eeeeeeeeeeee";

data_av_in_7 <= '1';

wait for clk_period;

data_av_in_7 <= '0';

data_in_1 <= '1' & x"cccccccccccc";

data_av_in_1 <= '1';

data_av_in_8 <= '1';

data_in_8 <= '1' & x"aaaaaaaaaaaa";

wait for clk_period;

data_av_in_1 <= '0';

data_av_in_8 <= '0';

wait for clk_period;

data_av_in_0 <= '1';

data_av_in_1 <= '1';

data_av_in_2 <= '1';

data_av_in_3 <= '1';

data_av_in_4 <= '1';

57

data_av_in_5 <= '1';

data_av_in_6 <= '1';

data_av_in_7 <= '1';

data_av_in_8 <= '1';

data_av_in_9 <= '1';

data_av_in_10 <= '1';

data_av_in_11 <= '1';

data_av_in_12 <= '1';

data_av_in_13 <= '1';

data_av_in_14 <= '1';

data_av_in_15 <= '1';

data_av_in_16 <= '1';

data_av_in_17 <= '1';

data_in_0 <= '1' & x"000000000000";

data_in_1 <= '1' & x"111111111111";

data_in_2 <= '1' & x"222222222222";

data_in_3 <= '1' & x"333333333333";

data_in_4 <= '1' & x"444444444444";

data_in_5 <='1' & x"555555555555";

data_in_6 <= '1' & x"666666666666";

data_in_7 <= '1' & x"777777777777";

data_in_8 <='1' & x"888888888888";

data_in_9 <= '1' & x"999999999999";

data_in_10 <= '1' & x"101010101010";

data_in_11 <= '1' & x"111111111111";

data_in_12 <= '1' & x"121212121212";

data_in_13 <='1' & x"131313131313";

data_in_14 <= '1' & x"141414141414";

data_in_15 <= '1' & x"151515151515";

data_in_16 <='1' & x"161616161616";

data_in_17 <='1' & x"171717171717";

58

wait for clk_period;

data_av_in_0 <= '0';

data_av_in_1 <= '0';

data_av_in_2 <= '0';

data_av_in_3 <= '0';

data_av_in_4 <= '0';

data_av_in_5 <= '0';

data_av_in_6 <= '0';

data_av_in_7 <= '0';

data_av_in_8 <= '0';

data_av_in_9 <= '0';

data_av_in_10 <= '0';

data_av_in_11 <= '0';

data_av_in_12 <= '0';

data_av_in_13 <= '0';

data_av_in_14 <= '0';

data_av_in_15 <= '0';

data_av_in_16 <= '0';

data_av_in_17 <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, all of the CR input ports have SAFIL or SAFIL Update Frame data. In this

scenario, data on the output ports should appear with respect to round robin

scheduling except for high priority input port 16.

59

Figure 4-15 Simulation Results for CR in Scenario 1

60

Figure 4-16 Simulation Results for CR in Scenario 1 (continued)

The result of the simulation is given in Figure 4-15 and Figure 4-16. In this scenario, data_av_in_x appears at labels 1, 2, 3 and 4. Then,

data_out_cr appears is generated by the Round Robin Scheduler in order.

61

4.4 CONGESTION CONTROL UNIT

This unit is designed and used to prevent possible FIFO overflow in any PE.

4.4.1 Design

The input ports of the Congestion Control Unit (CCU) are connected to all of the

FIFOs in each PE.

The schematic view of CCU is given in Figure 4-17.

Figure 4-17 Congestion Controller Unit Input and Output Signals

In and out signals of CCU are described in Table 4-6.

62

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the CCU module into a state that is
ready to receive data

clk In 1 bit The clock signal is used in order to
synchronize CCU with other modules

fifo_X_full In 1 bit The signal indicating that relevant FIFO is
almost full

SU_Control Out 16 bits The output signal showing that how many
incoming traffic port will be enabled

Table 4-6 CCU Signal Descriptions

63

4.4.2 Simulation

SCENARIO 1

Aim: To show and verify that CCU works with additive increase, multiplicative

decrease strategy.

Test Code:

wait for 100 ns;

rst <= '1' ;

wait for clk_period*3;

rst <= '0' ;

wait for clk_period*10;

fifo_0_full<='1';

wait for clk_period;

fifo_14_full<='1';

wait for clk_period;

fifo_35_full<='1';

wait for clk_period;

fifo_0_full<='0';

fifo_14_full<='0';

fifo_35_full<='0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, some of the FIFOs assert full messages. In this scenario, when fifo full signals

appear at the input port, SU control output port changes according to additive

increase multiplicative decrease strategy. When there are no full messages, output

should be hex "FFFF" while the output changes to hex "FFOO" if one of the FIFOs

sends full.

64

Figure 4-18 Simulation Results for CCU in Scenario 1

The result of the simulation is given in Figure 4-18. In this scenario, fifo_x_full signals appear at labels 1, 2 and 3. Then su_control output

changes according to FIFO full alert signals.

65

4.5 RAM DATA LOADER

This unit is designed and used for loading and updating the contents of the Block

RAM’s located inside each PE. To achieve this, SAFIL Update Frame is

constructed by this unit.

4.5.1 Design

Each Block RAM has a width of 32 bits and a depth of 8192213
= bits, making the

total memory size for one PE 8k x 32 = 256 kb. Since the whole system consists of

64 PEs, the total memory required is 64 x 256 kb = 16,777,216 mb ≅ 2 MB.

RAM Data Loader (RDL) unit is connected to all Contention Resolver’s located on

the northern side. The input port has 52 bits width. The first 32 bits holds BRAM

contents, the next 13 bits holds the address of the relevant BRAM and the following

6 bits holds PE ID that will be modified while the last bit indicates the Update

operation. If Block RAM Data Load or Update Operation is started, this bit should

be ‘1’; otherwise ‘0’.

The schematic view of RDL is given in Figure 4-19.

In and out signals of RDL are described in Table 4-7.

66

Figure 4-19 RDL Unit Input and Output Signals

Signal Name
Signal
Type

Signal
Length

Signal Description

rst In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the RDL module into a state that is
ready to receive data

clk In 1 bit The clock signal is used in order to
synchronize RDL with other modules

data_update_av_in In 1 bit The available signal of data incoming to
RDL

ram_data_in In 32 bits RAM content to be stored
ram_address_in In 12 bits RAM address that will be updated
pe_id_in In 6 bits The processing element ID whose RAM

content will be updated
data_update_av_out Out 1 bit The available signal of data incoming to

RDL
data_update _out Out 49 bits SAFIL Update Frame constructed

Table 4-7 RDL Signal Descriptions

67

4.5.2 Simulation

SCENARIO 1

Aim: To show and verify that RDL constructs SAFIL Update Frame and presents

this data on its output.

Test Code:

wait for 20 ns;

rst<='1';

wait for 100 ns;

rst <='0';

ram_data_in <= x"ffffffff";

ram_address_in <= "1010101010101";

pe_id_in <= "111010";

data_update_av_in <= '1';

wait for clk_period;

data_update_av_in <= '0';

Pre-Statement: Initially, reset input is set to "high" for 100 ns. After reset state,

RAM update data signals appear at input ports. In this scenario, SAFIL Update

Frame is constructed and appears at the output port.

68

Figure 4-20 Simulation Results for RDL in Scenario 1

The result of the simulation is given in Figure 4-20. In this scenario, data_update_av_in signal appears at label 1. Then data_update_out_2

output is activated at label 2.

69

4.6 SYSTEM INTEGRATION

In this present subsection, the blocks designed in the preceding subsections are

integrated into a whole system to fulfill the following requirements:

• IP addresses that are to be searched should be admitted to the system via

SUs at any time.

• Search keys should be mapped to correct CR and PE using initial

partitioning.

• The incoming SAFIL or SAFIL update frames should to be buffered in CRs

first.

• At any time SAFIL frames and SAFIL update frames, if exist, should be

admitted to the system simultaneously.

• The latency encountered at each PE should be as small as possible.

• The system should be capable of initializing the RAM contents or updating

them using RDL.

• The search results (i.e. port number) should be observed at the backplane.

• The traffic load should be regulated via CCU.

4.6.1 Design

Overall system is composed of the following modules:

• 8 x 8 = 64 PEs

• 8 + 8 = 16 SUs

• 8 + 8 = 16 CRs

• 1 CCU

• 1 RDL

70

As will be explained at the end of this section, the available resources on the

currently selected FPGA target board allows an 8 x 8 SAFIL system (illustrated in)

as the largest that can be implemented for the time being.

SU is connected to CRs. Incoming traffic arrives at the input ports of the SU, in

which SAFIL frames are constructed and mapped to corresponding CR. These

search keys are then directed to the boundary.

PE PE PE PE PE PE PE PE

CR CR CR CR CR CR CR CR

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

CR

CR

CR

CR

CR

CR

CR

CR

CCU

8

8

8

8

8

8

8

8

49

49
SU Block

16

RDL

Figure 4-21 8x8 SAFIL System

Data arrive to each PE either from west or north side. In each PE, using the

corresponding bit in the search key the incoming data is modified and directed to

either eastern or southern neighbours. Search operation terminates when a null

pointer is reached.

71

RAM contents of the system can be initially loaded and updated via our RDL unit.

This module is connected to CRs located at the northern side. The update packets

propagate through the corresponding column until the PE to be updated is reached.

All PEs are connected to CCU with a control line of one bit. When one of the PEs

becomes almost full, this bit goes high and CCU regulates the incoming traffic

using "multiplicative decrease additive increase" strategy.

The active signal duration between each module is one clock cycle. As shown in

Figure 4-22, the searched IP address is admitted into the SU at a rising edge of the

clock. With the falling edge of the clock, SAFIL frame is constructed and mapped

to the corresponding CR. At each falling edge of the clock, PE accepts an incoming

frame. In each PE, the latency between data arrival and departure processes is 2

clock cycles.

Figure 4-22 Timing Diagram for the Whole System

The schematic view of the system is given in Figure 4-23.

72

SYSTEM

data_in_0

data_in_1

data_in_15

data_in_enable

16

port_0

port_1

port_63

update_data

52...

Figure 4-23 System Input and Output Signals

In and out signals of the system are described in Table 4-8.

Signal Name
Signal
Type

Signal
Length

Signal Description

reset In 1 bit Reset signal is used in order to set all
configuration registers to zero (low) and to
bring the system into a state that is ready
to receive and send data

clock In 1 bit The clock signal is used in order to
synchronize system with modules inside it.

data_ in_X In 32 bit The IP address that will be searched.
data_ av_in_X In 1 bit The available signal of data incoming to

the system
port_X Out 5 bits The port number result of the searched IP

address
data_ in_enable Out 16 bits The signal that indicates maximum

allowable search is

The system is designed and implemented in Xilinx ISE Design Suite 12.4 and 13.3

NT 64 release version. VHDL is used to implement all the modules and the whole

Table 4-8 The System Signal Descriptions

73

system. In selecting a suitable Xilinx device, constraints such as the number of I/O

banks, the total capacity of Block RAMs and distributed RAMs, etc. were taken into

consideration. Table 4-9 gives the design requirements for the whole system. As

was explained in section 4.1 and 4.3, FIFOs used in CRs and PEs are implemeted

using distributed RAM and RAMs in PEs are implemented using Block RAMs.

Type
The Source of
Requirement

Requirement Size

I/O Pin data_in_X 32 bit x 16 512
I/O Pin data_av_in_X 1 bit x 16 16
I/O Pin port_X 5 bit x 64 320
I/O Pin data_in_enable 16 bit 16
Total Capacity of
Block RAM Blocks

Block RAMs in PEs 256 Kbit x 64 16384 Kbit

Total Capacity of
Distributed RAM
Blocks

FIFOs inside PEs and CRs (16 Kbit x 49) +
(64 Kbit x 49)

3920 Kbit

Table 4-10 gives device attributes for some Xilinx family members.

Family Device Max I/O Size
Block RAM

Blocks

Max
Distributed

RAM
Virtex-5 XC5VLX330 1200 10368 Kbit 3420 Kbit
Virtex-5 XC5VLX330T 960 11664 Kbit 3420 Kbit
Virtex-5 XC5VSX240T 960 18576 Kbit 4200 Kbit
Virtex-6 XC6VLX550T 1200 22752 Kbit 6200 Kbit
Virtex-6 XC6VLX760 1200 25920 Kbit 8280 Kbit
Artix-7 XC7A350T 600 18540 Kbit 4638 Kbit
Kintex-7 XC7K480T 400 34380 Kbit 6788 Kbit
Virtex-7 XC7V2000T 1200 46512 Kbit 21550 Kbit

Comparing Table 4-9 and Table 4-10, we observe that there exist devices in Virtex-

5, Virtex-6 or Virtex-7 families, which fulfills our requirements. Since the listed

devices are the latest and the most advanced in their own categories, Block RAM

capacity and number of I/O pins is the limiting constraints and hence a 8 x 8 SAFIL

Table 4-9 Design Requirements

Table 4-10 Attributes of Some Xilinx Family Members

74

implementation is the largest possible for the time being. For example, if one

requires a 16 x 16 SAFIL System similar to the one proposed and simulated using

Visual C++ in [6], the whole system cannot fit in any Virtex family device. Table 4-

11 demonstrates that at most a 10 x 10 SAFIL system can fit in XC6VLX760 or

XC7V2000T Xilinx device. A larger architecture can not be implemented in the

current state of the art Xilinx devices using a single FPGA only. However,

implementation of a larger architecture such as 16 x 16 is always possible using

more than one Virtex devices.

SAFIL
System

Virtex Device Max I/O Size
Block RAM

Blocks

Max
Distributed

RAM
8 x 8 XC6VLX760
8 x 8 XC7V2000T
9 x 9 XC6VLX760
9 x 9 XC7V2000T
10 x 10 XC6VLX760
10 x 10 XC7V2000T
11 x 11 XC6VLX760
11 x 11 XC7V2000T
12 x 12 XC7V2000T
13 x 13 XC7V2000T
14 x 14 XC7V2000T

4.6.2 Simulation

We performed overall system simulations using real life backbone IP packet traces

from [23] and by constructing the corresponding routing tables using real life prefix

length distributions [25]. In our simulations, the routing table was composed of

150K prefixes. Our incoming traffic traces are composed of 1200K IP packets.

Table 4-11 Feasibiliy of SAFIL Implementations on Xilinx Family Members

75

First, the routing table was adapted to our system to be loaded via the RDL unit. To

achieve this, a "Data Adapter" program is written in Microsoft Visual C#. Figure

4-24 shows the form view of the "Data Adapter".

Figure 4-24 Data Adapter

When "RAM DATA" button on the main form is pressed, the RAM contents of the

whole system is adapted to SAFIL Update Frame type. This adopted adat can then

be loaded via RDL input port into our system. To insert data into RDL, this

program also creates "file_data.in" shown in Figure 4-25. To use this file as an

input in our simulation, "textio" library has been utilized in Xilinx ISE platform.

76

Figure 4-25 The Binary View of "file_data.in"

When "TRAFFIC DATA" button on the main form is pressed, the 32-bit IP

addresses are converted into binary form. To insert this data into any SU, our

program also creates "traffic.in" shown in Figure 4-26.

77

Figure 4-26 The Binary View of "traffic.in"

These files created are used as inputs in our simulations.

78

SCENARIO 1

Aim: To show and verify that RDL loads RAM contents into the whole system and

one IP lookup operation produces the port result correctly in accordance with the

trie mapped onto the system.

Test Code:

stim_proc: process

file input : TEXT open READ_MODE is "file_data.in";

variable input_line : LINE;

variable temp : std_logic_vector(51 downto 0) := x"0000000000000";

variable i_temp : integer ;

file input2 : TEXT open READ_MODE is "traffic_onepacket.in";

variable input_line2 : LINE;

variable temp2 : std_logic_vector(31 downto 0) := x"00000000";

variable i_temp2 : integer ;

begin

wait for clk_period*3;

rst <= '1';

load_done <= '0';

wait for clk_period*2;

rst <= '0';

wait for clk_period*2;

loop

exit when endfile(input);

readline(input, input_line);

read(input_line,temp);

update_data <= temp;

writeline(output, input_line);

wait for clk_period;

update_data<=x"0000000000000";

wait for clk_period;

end loop;

load_done <= '1';

79

update_data <= x"0000000000000";

wait for clk_period;

loop

exit when endfile(input2);

wait until falling_edge(clk);

if (su_enable_out(0)='1') then

 readline(input2, input_line2);

read(input_line2,temp2);

data_in_0 <= temp2;

data_av_in_0 <= '1';

else

data_av_in_0 <= '0';

end if;

end loop;

wait for clk_period;

data_av_in_0 <= '0';

Pre-Statement: Initially, reset input is set to "high" for 3 clock cycles. After reset

state, RAM contents are loaded into the system. "update_data" is an input signal of

the RDL unit. After load operation is completed, only one search key (32-bit IP

address) is admitted into the Selector Unit 1. Figure 4-27 shows the simulation

wave window for update data coming from "file_data.in" into RDL. After load

operation finishes "load_done" signal goes high as shown in Figure 4-28. Then one

search key is addmitted to the system for finding its corresponding port result. The

IP address (1.37.59.207) to be searched starts with "0000" and is therefore directed

to SU # 0. The SAFIL frame travels along the structure using the following 0's or

1's until null pointer is reached. The last PE produces the matched port output.

80

Figure 4-27 Simulation Results for the System in Scenario 1

81

Figure 4-28 Simulation Results for the System in Scenario 1 (continued)

82

SCENARIO 2

Aim: To show and verify that IP lookup operation produces corresponding the port

results correctly when 1200K IP packet traces are admitted into the system.

Pre-Statement: In this scenario, incoming traffic is generated by using real life

backbone IP packet traces. The traces are composed of 1200K IP packets. Trace-1,

which was obtained using [25], is admitted to the system first. Then, trace-2, which

was derived from trace-1 is admitted to the system to make the input traffic almost

even with respect to prefix distribution. Each packet's arrival time to the system is

saved in a text file. Each port result and time of assertion of this result are also

saved in another text file. Using this data that contains input arrival time and output

assertion time for each packet, total average latency can be calculated.

Figure 4-29 gives the prefix distribution in trace-1. The majority of the incoming

traffic is in the form of prefix 0.

Figure 4-29 Trace 1 Distribution

0

100000

200000

300000

400000

500000

600000

700000

Trace 1

Prefix Distribution in Trace 1

Prefix 0 (0000)

Prefix 1 (0001)

Prefix 2 (0010)

Prefix 3 (0011)

Prefix 4 (0100)

Prefix 5 (0101)

Prefix 6 (0110)

Prefix 7 (0111)

Prefix 8 (1000)

Prefix 9 (1001)

Prefix 10 (1010)

Prefix 11 (1011)

Prefix 12 (1100)

Prefix 13 (1101)

Prefix 14 (1110)

Prefix 15 (1111)

83

After trace-1 was admitted into the system, the port results and corresponding

timing data were written into the files. Figure 4-30 gives the corresponding port

results for trace 1. Figure 4-32 gives part of the simulation waveform for the trace-

1.

Figure 4-30 Port Results of Trace 1

Figure 4-31 gives the prefix distribution in trace-2. The incoming traffic is almost

equally distributed with respect to the initial four bits.

84

Figure 4-31 Trace 2 Distribution

After trace-2 was admitted into the system, the port results and corresponding

timing data were written into the files. Figure 4-33 gives part of this simulation

waveform for the trace-2.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Trace 2

Prefix Distribution in Trace 2

Prefix 0 (0000)

Prefix 1 (0001)

Prefix 2 (0010)

Prefix 3 (0011)

Prefix 4 (0100)

Prefix 5 (0101)

Prefix 6 (0110)

Prefix 7 (0111)

Prefix 8 (1000)

Prefix 9 (1001)

Prefix 10 (1010)

Prefix 11 (1011)

Prefix 12 (1100)

Prefix 13 (1101)

Prefix 14 (1110)

Prefix 15 (1111)

85

6 7 85

4

3

1

2

Figure 4-32 Trace 1 Simulation Results

In this scenario, incoming traffic starts with labels 1 and 2, ends with label 4. The backplane results are started to be observed at label 3.

86

Figure 4-33 Trace 2 Simulation Results

87

4.7 PERFORMANCE EVALUATION

Our simulation is based on the experiment which admits the 1200K incoming IP

packet stream into the system.

4.7.1 Speedup and Throughput

The first experiment was carried out using trace-1 shown in Figure 4-29. The total

1200K incoming IP addresses are searched through the 8 x 8 SAFIL System and the

mathced port results are observed in the backplane during 26,863,800 ns (clock

cycle was choosen as 10 ns). Therefore,

Speed up = cyclepackets
ns

packets
/447,0

2683757

1200000

570,837,26

000,200,1
≈=

With minimum size (40-byte) IP packets, 788.1
10

40447,0
=

ns

bytex
GBps = 14.3 Gbps

throughtput has been achieved.

The second experiment was carried out using trace-2 shown in Figure 4-31. For this

case, total time passed between the start of incoming IP address admission and final

outgoing port result observation is found to be 7,135,730 ns. Hence

Speed up = cyclepackets
ns

packets
/681,1

713573

1200000

730,135,7

000,200,1
≈=

With minimum size (40-byte) IP packets, 724.6
10

40681,1
=

ns

bytex
Gbps = 53.79 Gbps

throughtput has been achieved.

4.7.2 Latency

The average latency is also calculated. For this, all incoming packet arrival times

and the time at which its corresponding port result appears at the backplane were

saved and averaged over all packets.

For the first experiment using trace-1, average latency is calculated to be 97,57

clock cycles.

88

For the other experiment using trace-2, average latency is calculated to be 60,67

clock cycles.

These performance metrics are far below the values acheied in the ASIC

architecture prposed in [6] since we have a much higher latency in each Processing

Element (PE), a high latency I/O in the FPGA board and a limit in memory capacity

and also on the synthesizable maximum clock speed. To achieve terabit

performance IP lookup our FPGA architecture, there should be FPGA devices with

higher operating frequencies and with more I/O pin capabilities. Use of techniques

such as zero or one skip clustering and use of cache [6] should also be implemented

to improve the throughput.

4.8 OPTIMIZATION

After the above initial simulations, some optimization steps have been carried out

on the system in order to decrease the average latency and increase the speedup

further. For this, minor modifications on PE, CR and SU blocks have been carried

out as are explained below.

The first optimization is based on the threshold level used in PE FIFOs. This value

plays an important role since it directly affects CCU in regulating the incoming

traffic. When this value is low, the system operates relatively slowly. On the other

hand selecting this value high may cause packet drops. Although CCU slows down

the incoming traffic, there may still be packets waiting in CR and PE FIFOs, which

will travel to other PEs that may have already reached the threshold level. Selection

of this level affects latency and speedup directly. We performed some trials to

choose the right FIFO threshold level (in percentage of the FIFO size) as shown in

Table 4-12. The highlighted rows in Table 4-12 give the optimum threshold level.

Trace
Threshold

Level
Speed up

Packet Drop
Rate

Trace-1 % 75 0,490 % 4.5
Trace-1 % 60 0,455 % 0.6
Trace-1 % 50 0,447 % 0.07

Table 4-12 Effect of Threshold Level on Performance

89

Trace-1 % 40 0,441 % 0.06
Trace-1 % 34 0,438 % 0
Trace-2 % 75 2,178 % 2.8
Trace-2 % 60 2,166 % 0.7
Trace-2 % 58 2,154 % 0
Trace-2 % 50 1,681 % 0
Trace-2 % 40 1,672 % 0

The second optimization is based on CRs. While designing CRs in section 4.3.1, we

already used FIFO modules to buffer the incoming data. When simulating the whole

system, the buffer capacity plays an important role as was explained above in the

first optimization. At this point, we removed all FIFOs inside the CRs and turned

CR into a state machine. To implement CR without FIFOs, we also modified the SU

to communicate in both directions.

The state diagram of our modified CR is given in Figure 4-34. In addition to the

"data_av_in" signal, "data_need" signal has been added. When data is available in

SU and CR needs data from SU, available data arrives to the input port of the CR in

one clock cycle. Figure 4-35 gives the block diagram of the connection from one

SU to one PE.

90

Figure 4-34 State Diagram for Our Modified CR

Figure 4-35 Block Diagram of the Modified System

When these modified modules were used in the system, two different traces were

admitted into the system. Table 4-13 gives the effects of removing FIFOs from CRs

on performance. When both Tables 4-12 and 4-13 are compared, speed up is

decreased by approximately 10% in the case of 50% threshold level. However,

latency is improved by approximately 40% when both results in Table 4-13 and

Section 4.7.2 are compared in the case of 50% threshold level.

Trace
Threshold

Level
Speed up Latency

Packet Drop
Rate

Trace-1 %50 0,411 45,12 % 0
Trace-2 %50 1,505 36,36 % 0

Table 4-13 Effects of Removing FIFOs from CRs on Performance

91

CHAPTER 5

CONCLUSION

In this thesis study, prototype development and verification for an IP lookup engine

on FPGAs is carried out. The system is evaluated experimentally and the results are

exhibited including detailed discussions.

We first focused on the feasibility of the FPGA implementation of the SRAM based

pipelined architecture proposed earlier originally for ASIC. We made some minor

modifications and improvements on the architecture for FPGA adaptation. We then

carried out other optimizations to improve the speed up and latency. The proposed

prototype achieves a sustained throughput of 57 Gbps in case of uniform traffic load

without any packet drop. In our system design, we utilized an existing FPGA board

to realize an 8x8 torus architecture . In this architecture maximum 2 MB entries of

the router lookup table could have be stored in BRAMs. A larger lookup engine can

not be implemented in the current state of the art XILINX devices using a single

FPGA only. However, implementation of a larger engine such as 16 x 16 is always

possible using more than one virtex devices.

As a future work, further study can be carried out for improving the performance

with trying to reduce the latency in each PE with the latest Virtex devices. Using

more than one Virtex device or latest devices coming in the future to support larger

router lookup tables can be experimented. Moreover, some techniques to improve

the performance for example cache using and zero skipping can be utilized in our

architecture.

92

REFERENCES

[1] D. Pao, Z. Lu and Y.H. Poon, ”Bit-Shuffled Trie: IP Lookup with Multi-

 Level Index Tables” In Proc. of IEEE International Conference on

 Communications (ICC'11), pp. 1-5, June 2011.

[2] K. Pagiamtzis and A. Sheikholeslami, ”Content-addressable memory

 (CAM) circuits and architectures: A tutorial and survey” IEEE Journal of

 Solid-State Circuits, vol. 41, no.3, pp. 712-727, March 2006.

[3] A.J. McAuley and P. Francis, ”Fast routing table lookup using CAMs” In

 Proc. of the 12th Annual Joint Conference of the IEEE Computer and

 Communications Societies (INFOCOM’93), vol. 3, pp. 1382-1391, April

 1993.

[4] F. Baboescu, D.M. Tullsen, G. Rosu and S. Singh, ”A tree based router

 search engine architecture with single port memories” In Proc. of the 32nd

 Annual International Symposium on Computer Architecture (ISCA’05), pp.

 123-133, June 2005.

[5] S. Kumar, M. Becchi, P. Crowley and J. Turner, ”Camp: fast and e_cient IP

 lookup architecture” In Proc. of the 2nd Symposium on

 Architectures for Networking and Communications Systems (ANCS’06),

 pp. 51-60, December 2006.

[6] O. Erdem and C.F. Bazlamaçcı, ”Array design for trie-based IP lookup”

 IEEE Communications Letters, vol.14, no.8, pp. 773-775, August 2010.

[7] V. Srinivasan and G. Varghese, ”Fast address lookups using controlled

 prefix expansion” ACM Transaction on Computer Systems, vol. 17, no. 1,

 pp. 1-40, February 1999.

[8] H. Mohammadi, N. Yazdani, B. Robatmili and M. Nourani, ” HASIL:

 Hardware Assisted Software-based IP Lookup for Large Routing Tables” In

 Proc. of the 11th IEEE International Conference (ICON 2003),pp. 99-104,

 September 2003.

93

[9] D. R. Morrison, ”Patricia: practical algorithm to retrieve information coded in

 alphanumeric” Journal ACM, vol. 15, no.4, pp. 514-534, October 1968.

[10] H. Le, W. Jiang and V. K. Prasanna, ” A SRAM Based Architecture for Trie-based

 IP Lookup Using FPGA” In Proc. of the 16th Annual International Symposium on

 Field- Programmable Custom Computing Machines (FCCM '08), pp. 33-42, April

 2008.

[11] Y.H. E. Yang, O. Erdem and V. K. Prasanna, ”High performance IP lookup on

 FPGA with combined length infix pipelined search” In Proc. of the 19th Annual

 International Symposium on Field-Programmable Custom Computing Machines

 (FCCM’11), pp. 77- 80, May 2011.

[12] O. Erdem, H. Le and V. K. Prasanna, ”Clustered hierarchical search structure for

 largescale packet classification on FPGA” In Proc. of the 21st International

 Conference on Field Programmable Logic and Applications (FPL’11), pp. 201-

 206, September 2011.

[13] H. Le and V. K. Prasanna, ”Scalable high throughput and power effcient IP-lookup

 on FPGA” In Proc. of 17th Annual IEEE Symposium on Field-Programmable

 Custom Computing Machines (FCCM’09), pp. 167-174, April 2009.

[14] H. Le, W. Jiang and V.K. Prasanna, ”Scalable high-throughput SRAM-based

 architecture for IP-lookup using FPGA” In Proc. of International Conference on

 Field Programmable Logic and Applications (FPL’08), pp.137-142, September

 2008.

[15] W. Jiang, Q. Wang and V.K. Prasanna, ”Beyond TCAMs: An SRAM-based

 parallel multi-pipeline architecture for terabit IP lookup” In Proc. of the 27th

 Annual Joint 125 Conference of the IEEE Computer and Communications

 Societies (INFOCOM’08), pp. 2458-2466, April 2008.

[16] W. Jiang and V. K. Prasanna, ”A memory-balanced linear pipeline architecture for

 triebased IP lookup” In Proc. of the 15th IEEE Hot Interconnects Symposium

 (HOTI’07), pp. 83-90, August 2007.

[17] W. Jiang and V.K. Prasanna, ”Multi-terabit IP lookup using parallel bidirectinal

 pipelines” In Proc. of the 5th conference on Computing Frontiers (CF’08), pp.

 241-250, May 2008.

[18] W. Jiang and V.K. Prasanna, ”Multi-way pipelining for power effcient IP lookup”

 In Proc. of IEEE Global Communications Conference (GLOBECOM’08), pp. 1-5,

 December 2008.

[19] W. Jiang and V.K. Prasanna, ”Towards green routers: Depth bounded multi

 pipeline architecture for power effcient IP lookup” In Proc. of the 27th IEEE

94

 International Performance Computing and Communications Conference

 (IPCCC’08), pp. 185-192, December 2008.

[20] M.J. Akhbarizadeh, M. Nourani and C.D. Cantrell, ”Prefix segregation scheme for

 a TCAM based IP forwarding engine” IEEE Micro, vol. 25, pp. 48-63, no. 4,

 August 2005.

[21] M. J. Akhbarizadeh, M. Nourani, R. Panigrahy and S. Sharma. ”A TCAM-based

 parallel architecture for high-speed packet forwarding” IEEE Transaction on

 Computers, vol. 56, no.1, pp. 58-72, January 2007.

[22] D. Lin, Y. Zhang, C. Hu, B. Liu, X. Zhang and D. Pao, ”Route table partitioning

 and load balancing for parallel searching with TCAMs” In Proc. of the 21st IEEE

 International Parallel and Distributed Processing Symposium (IPDPS’07), pp. 1-

 10, March 2007.

[23] ”AMPATH-I Traces” http://pma.nlanr.net, last visited date, 10/05/2010.

[24] ”CACTI tool” http://quid.hpl.hp.com:9081/cacti, last visited date, 16/08/2011.

[25] ”BGP Routing Table Analysis Reports” http://bgp.potaroo.net, last visited date,

 16/08/2011.

 [26] “High performance IP lookup engine with compact clustered trie search”,

 Computer Journal, (2012), (in print), doi: 10.1093/comjnl/bxs008.

95

APPENDIX A

SOURCE CODE for FIFO IMPLEMENTATION

--

-- Company:

-- Engineer:

--

-- Create Date: 17:20:35 09/12/2010

-- Design Name:

-- Module Name: fifo - arch

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

96

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity fifoCR is

 generic (

 Data_Bits: natural:=49; -- number of data bits

 Address_Bits: natural:=12 -- number of address bits

);

 Port (

 clk : in std_logic;

 reset : in std_logic;

 fifo_rd : in std_logic;

 fifo_wr : in std_logic;

 fifo_wr_data : in std_logic_vector (Data_Bits-1 downto 0);

 fifo_empty : out std_logic;

 fifo_full : out std_logic;

 fifo_rd_data : out std_logic_vector (Data_Bits-1 downto 0)

);

end fifoCR;

97

architecture arch of fifoCR is

 type register_type is array ((2**Address_Bits)-1 downto 0) of

 std_logic_vector(Data_Bits-1 downto 0);

 signal t_array_reg : register_type;

 signal write_ptr_now : std_logic_vector(Address_Bits-1 downto 0);

 signal write_ptr_next : std_logic_vector(Address_Bits-1 downto 0);

 signal write_ptr_inc : std_logic_vector(Address_Bits-1 downto 0);

 signal read_ptr_now : std_logic_vector(Address_Bits-1 downto 0);

 signal read_ptr_next : std_logic_vector(Address_Bits-1 downto 0);

 signal read_ptr_inc : std_logic_vector(Address_Bits-1 downto 0);

 signal read_data_now : std_logic_vector(Data_Bits-1 downto 0);

 signal read_data_next : std_logic_vector(Data_Bits-1 downto 0);

 signal write_data : std_logic_vector(Data_Bits-1 downto 0);

 signal fifo_operator : std_logic_vector(1 downto 0);

 signal fifo_full_now : std_logic;

 signal fifo_full_next : std_logic;

 signal fifo_empty_now : std_logic;

 signal fifo_empty_next : std_logic;

 signal write_enable : std_logic;

begin

 -- Clocking Process

 process(clk,reset)

 begin

 if (reset='1') then

 t_array_reg <= (others =>(others=>'0'));

 write_ptr_now <= (others => '0');

98

 read_ptr_now <= (others => '0');

 fifo_full_now <= '0';

 fifo_empty_now <= '1';

 elsif (clk'event and clk='1') then

 read_ptr_now <= read_ptr_next;

 read_data_now <= read_data_next;

 fifo_empty_now <= fifo_empty_next;

 fifo_full_now <= fifo_full_next;

 write_ptr_now <= write_ptr_next;

 if (write_enable='1') then

 t_array_reg(to_integer(unsigned(write_ptr_now))) <=

write_data;

 end if;

 end if;

 end process;

 fifo_rd_data <= read_data_now;

 fifo_full <= fifo_full_now;

 fifo_empty <= fifo_empty_now;

 -- Inputs

 write_data <= fifo_wr_data;

 write_enable <= fifo_wr and (not fifo_full_now);

 -- This computes the next pointer values

 write_ptr_inc <= std_logic_vector(unsigned(write_ptr_now)+1);

 read_ptr_inc <= std_logic_vector(unsigned(read_ptr_now)+1);

 fifo_operator <= fifo_wr & fifo_rd;

99

process(fifo_empty_next, read_ptr_next, t_array_reg,

 fifo_empty_now,fifo_wr_data)

 begin

read_data_next <= t_array_reg(to_integer(unsigned(read_ptr_next)));

 if (fifo_empty_next = '1') then

 -- if fifo is empty output '0'

 read_data_next <= (others => '0');

 else

 if (fifo_empty_now = '1') then

 -- If fifo empty next = 0 and fifo empty now = 1 then

 -- feed data straight through to output on this clock cycle

 -- (First Word Fall Through)

 read_data_next <= fifo_wr_data;

 end if;

 end if;

 end process;

 process (write_ptr_now, write_ptr_inc, read_ptr_now, read_ptr_inc,

 fifo_operator, fifo_empty_now, fifo_full_now)

 begin

 write_ptr_next <= write_ptr_now;

 read_ptr_next <= read_ptr_now;

 fifo_full_next <= fifo_full_now;

 fifo_empty_next <= fifo_empty_now;

 case fifo_operator is

 when "00" => -- This means no operation

 when "01" => --read

100

 if (fifo_empty_now /= '1') then --not empty

 read_ptr_next <= read_ptr_inc;

 fifo_full_next <= '0';

 if (read_ptr_inc=write_ptr_now) then

 fifo_empty_next <= '1';

 end if;

 end if;

 when "10" => -- write

 if (fifo_full_now /= '1') then -- not full

 write_ptr_next <= write_ptr_inc;

 fifo_empty_next <= '0';

 if (write_ptr_inc=read_ptr_now) then

 fifo_full_next <= '1';

 end if;

 end if;

 when others => --read/write

 write_ptr_next <= write_ptr_inc;

 read_ptr_next <= read_ptr_inc;

 end case;

 end process;

end arch;

101

APPENDIX B

SOURCE CODE for DATA FLOW MANAGER

--

-- Company:

-- Engineer:

--

-- Create Date: 12:55:43 10/23/2011

-- Design Name:

-- Module Name: DataFlowManager - Behavioral

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

102

use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity DataFlowManager_111 is

 generic (safil : Integer := 49);

 Port (fifo1_data : in STD_LOGIC_VECTOR (safil-1 downto 0);

 fifo1_empty : in STD_LOGIC;

 fifo2_data : in STD_LOGIC_VECTOR (safil-1 downto 0);

 fifo2_empty : in STD_LOGIC;

 fifo1_en : out STD_LOGIC;

 fifo2_en : out STD_LOGIC;

 DFM_ram_ad_out : out STD_LOGIC_VECTOR (12 downto 0);

 DFM_port_out : out STD_LOGIC_VECTOR (4 downto 0);

 DFM_data_out : out STD_LOGIC_VECTOR (31 downto 0);

 DFM_action_type : out STD_LOGIC_VECTOR (1 downto 0);

 ram_wr_en : out std_logic_vector(0 downto 0);

 DFM_pe_id_out : out std_logic_vector(2 downto 0);

 clk : in STD_LOGIC;

 rst : in STD_LOGIC);

end DataFlowManager_111;

architecture Behavioral of DataFlowManager_111 is

signal counter_data : std_logic_vector (1 downto 0) ;

begin

CONTROLLER: process (clk)

begin

 if rst ='0' then

103

 if clk'event and clk='0' then

 if counter_data = "00" then

 if fifo1_empty='0' then

 fifo1_en <= '1';

 fifo2_en <= '0';

 counter_data <= "01";

 if fifo1_data(0) = '1' and fifo1_data(3 downto 1) = "111" then

 DFM_action_type <= "11";

 ram_wr_en <="1";

 DFM_data_out <= fifo1_data (48 downto 17);

 DFM_ram_ad_out <= fifo1_data (16 downto 4);

 elsif fifo1_data(0) = '1' and fifo1_data(3 downto 1) /= "111" then

 DFM_action_type <= "10";

 DFM_data_out <= fifo1_data (48 downto 17);

 DFM_ram_ad_out <= fifo1_data (16 downto 4);

 DFM_pe_id_out <= fifo1_data (3 downto 1);

 ram_wr_en <="0";

 else

 DFM_action_type <= "01";

 DFM_data_out <= fifo1_data (48 downto 19) & "00";

 DFM_ram_ad_out <= fifo1_data (18 downto 6);

 DFM_port_out <= fifo1_data (5 downto 1);

 ram_wr_en <="0";

 end if;

 elsif fifo2_empty='0' then

 fifo1_en <= '0';

104

 fifo2_en <= '1';

 counter_data <= "11";

 if fifo2_data(0) = '1' and fifo2_data(3 downto 1) = "111" then

 DFM_action_type <= "11";

 ram_wr_en <="1";

 DFM_data_out <= fifo2_data (48 downto 17);

 DFM_ram_ad_out <= fifo2_data (16 downto 4);

 elsif fifo2_data(0) = '1' and fifo2_data(3 downto 1) /= "111" then

 DFM_action_type <= "10";

 DFM_data_out <= fifo2_data (48 downto 17);

 DFM_ram_ad_out <= fifo2_data (16 downto 4);

 DFM_pe_id_out <= fifo2_data (3 downto 1);

 ram_wr_en <="0";

 else

 DFM_action_type <= "01";

 DFM_data_out <= fifo2_data (48 downto 19) & "00";

 DFM_ram_ad_out <= fifo2_data (18 downto 6);

 DFM_port_out <= fifo2_data (5 downto 1);

 ram_wr_en <="0";

 end if;

 else

 fifo1_en <= '0';

 fifo2_en <= '0';

 DFM_action_type <= "00";

 counter_data <= "10";

 ram_wr_en <="0";

105

 end if;

 elsif counter_data = "01" then

 DFM_action_type <= "00";

 fifo1_en <= '0';

 fifo2_en <= '0';

 counter_data <= "10";

 ram_wr_en <="0";

 elsif counter_data = "10" then

 if fifo2_empty='0' then

 fifo1_en <= '0';

 fifo2_en <= '1';

 counter_data <= "11";

 if fifo2_data(0) = '1' and fifo2_data(3 downto 1) = "111" then

 DFM_action_type <= "11";

 ram_wr_en <="1";

 DFM_data_out <= fifo2_data (48 downto 17);

 DFM_ram_ad_out <= fifo2_data (16 downto 4);

 elsif fifo2_data(0) = '1' and fifo2_data(3 downto 1) /= "111" then

 DFM_action_type <= "10";

 DFM_data_out <= fifo2_data (48 downto 17);

 DFM_ram_ad_out <= fifo2_data (16 downto 4);

 DFM_pe_id_out <= fifo2_data (3 downto 1);

 ram_wr_en <="0";

 else

 DFM_action_type <= "01";

 DFM_data_out <= fifo2_data (48 downto 19) & "00";

106

 DFM_ram_ad_out <= fifo2_data (18 downto 6);

 DFM_port_out <= fifo2_data (5 downto 1);

 ram_wr_en <="0";

 end if;

 elsif fifo1_empty='0' then

 fifo1_en <= '1';

 fifo2_en <= '0';

 counter_data <= "01";

 if fifo1_data(0) = '1' and fifo1_data(3 downto 1) = "111" then

 DFM_action_type <= "11";

 ram_wr_en <="1";

 DFM_data_out <= fifo1_data (48 downto 17);

 DFM_ram_ad_out <= fifo1_data (16 downto 4);

 elsif fifo1_data(0) = '1' and fifo1_data(3 downto 1) /= "111" then

 DFM_action_type <= "10";

 DFM_data_out <= fifo1_data (48 downto 17);

 DFM_ram_ad_out <= fifo1_data (16 downto 4);

 DFM_pe_id_out <= fifo1_data (3 downto 1);

 ram_wr_en <="0";

 else

 DFM_action_type <= "01";

 DFM_data_out <= fifo1_data (48 downto 19) & "00";

 DFM_ram_ad_out <= fifo1_data (18 downto 6);

 DFM_port_out <= fifo1_data (5 downto 1);

 ram_wr_en <="0";

 end if;

107

 else

 fifo1_en <= '0';

 fifo2_en <= '0';

 DFM_action_type <= "00";

 counter_data <= "00";

 ram_wr_en <="0";

 end if;

 elsif counter_data = "11" then

 DFM_action_type <= "00";

 fifo1_en <= '0';

 fifo2_en <= '0';

 counter_data <= "00";

 ram_wr_en <="0";

 end if;

 end if;

 else

 counter_data <= "00";

 ram_wr_en <="0";

 DFM_action_type <="00";

 fifo1_en <= '0';

 fifo2_en <= '0';

 DFM_data_out <= x"00000000";

 DFM_ram_ad_out <= "0000000000000";

 DFM_port_out <= "00000";

 DFM_pe_id_out <= "000";

 end if;

108

end process;

end Behavioral;

109

APPENDIX C

SOURCE CODE for PE IMPLEMENTATION

--

-- Company:

-- Engineer:

--

-- Create Date: 20:40:20 10/18/2011

-- Design Name:

-- Module Name: pe - module

-- Project Name:

-- Target Devices:

-- Tool versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--

library IEEE;

110

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity pe_111 is

generic (safil : Integer := 49);

 Port (data_in_west : in STD_LOGIC_VECTOR (safil-1 downto 0);

 data_av_in_west : in STD_LOGIC;

 data_in_north : in STD_LOGIC_VECTOR (safil-1 downto 0);

 data_av_in_north : in STD_LOGIC;

 data_out_east : out STD_LOGIC_VECTOR (safil-1 downto 0);

 data_av_out_east : out STD_LOGIC;

 data_out_south : out STD_LOGIC_VECTOR (safil-1 downto 0);

 data_av_out_south : out STD_LOGIC;

 data_backplane : out STD_LOGIC_VECTOR (4 downto 0);

 fifo_almost_full : out STD_LOGIC;

 clk : in STD_LOGIC;

 rst : in STD_LOGIC

);

end pe_111;

 architecture module of pe_111 is

signal rd_en_fifo1, rd_en_fifo2, empty_fifo1, empty_fifo2, il_data_out_pr,

prpg_data_out_pr : std_logic;

signal ram_wr : std_logic_vector (0 downto 0);

signal dataout_fifo1, dataout_fifo2, dataout_buffer : std_logic_vector (safil-1

downto 0);

111

signal DFM_data, ram_out_data : std_logic_vector (31 downto 0);

signal ram_address : std_logic_vector (12 downto 0);

signal dfm_port : std_logic_vector (4 downto 0);

signal dfm_action : std_logic_vector (1 downto 0);

signal pe_id : std_logic_vector (2 downto 0);

signal fifo1_full, fifo2_full : std_logic;

COMPONENT fifo

 PORT(

 clk : IN std_logic;

 reset : IN std_logic;

 i_fifo_rd : IN std_logic;

 i_fifo_wr : IN std_logic;

 i_fifo_wr_data : IN std_logic_vector(48 downto 0);

 o_fifo_empty : OUT std_logic;

 o_fifo_full : OUT std_logic;

 o_fifo_rd_data : OUT std_logic_vector(48 downto 0)

);

 END COMPONENT;

 COMPONENT DataFlowManager_111

 PORT(

 fifo1_data : IN std_logic_vector(48 downto 0);

 fifo1_empty : IN std_logic;

 fifo2_data : IN std_logic_vector(48 downto 0);

 fifo2_empty : IN std_logic;

 clk : IN std_logic;

 rst : IN std_logic;

112

 fifo1_en : OUT std_logic;

 fifo2_en : OUT std_logic;

 DFM_ram_ad_out : OUT std_logic_vector(12 downto 0);

 DFM_port_out : OUT std_logic_vector(4 downto 0);

 DFM_data_out : OUT std_logic_vector(31 downto 0);

 DFM_action_type : OUT std_logic_vector(1 downto 0);

 ram_wr_en : OUT std_logic_vector(0 to 0);

 DFM_pe_id_out : OUT std_logic_vector(2 downto 0)

);

 END COMPONENT;

 component ram

 port (

 clka: in std_logic;

 ena: in std_logic;

 wea: in std_logic_vector(0 downto 0);

 addra: in std_logic_vector(12 downto 0);

 dina: in std_logic_vector(31 downto 0);

 douta: out std_logic_vector(31 downto 0));

 end component;

 begin

 fifo1: fifo PORT MAP(

 clk => clk,

 reset => rst,

 i_fifo_rd => rd_en_fifo1,

113

 i_fifo_wr =>data_av_in_west,

 i_fifo_wr_data => data_in_west,

 o_fifo_empty => empty_fifo1,

 o_fifo_full => fifo1_full,

 o_fifo_rd_data => dataout_fifo1

);

 fifo2: fifo PORT MAP(

 clk => clk,

 reset => rst,

 i_fifo_rd => rd_en_fifo2,

 i_fifo_wr => data_av_in_north,

 i_fifo_wr_data => data_in_north,

 o_fifo_empty => empty_fifo2,

 o_fifo_full => fifo2_full,

 o_fifo_rd_data => dataout_fifo2

);

 DFM_111: DataFlowManager_111 PORT MAP(

 fifo1_data => dataout_fifo1,

 fifo1_empty => empty_fifo1,

 fifo2_data => dataout_fifo2,

 fifo2_empty => empty_fifo2,

 fifo1_en => rd_en_fifo1,

 fifo2_en => rd_en_fifo2,

 DFM_ram_ad_out => ram_address,

 DFM_port_out => dfm_port,

 DFM_data_out => DFM_data,

114

 DFM_action_type => dfm_action,

 ram_wr_en => ram_wr,

 DFM_pe_id_out => pe_id,

 clk => clk,

 rst => rst

);

 bram : ram

 port map (

 clka => clk,

 ena => dfm_action(0),

 wea => ram_wr,

 addra => ram_address,

 dina => DFM_data,

 douta => ram_out_data

);

data_out: process (clk)

begin

 if rising_edge(clk) then

 fifo_almost_full <= fifo1_full or fifo2_full;

 if dfm_action= "01" then

 il_data_out_pr <= '1';

 prpg_data_out_pr<='0';

 elsif dfm_action= "10" then

 prpg_data_out_pr<='1';

 il_data_out_pr<='0';

 else

115

 il_data_out_pr<='0';

 prpg_data_out_pr<='0';

 end if;

 end if;

end process;

combinational: process (clk)

variable index_mux : std_logic_vector(12 downto 0);

variable index_mux_null_det : std_logic;

variable port_mux : std_logic_vector(4 downto 0);

begin

if falling_edge (clk) then

 if il_data_out_pr='1' then

 c1: case DFM_data(31) is

 when '0' => index_mux := ram_out_data (31 downto 19);

 when '1' => index_mux := ram_out_data (18 downto 6);

 when others => index_mux:= "0000000000000";

 end case;

 c2: case ram_out_data(0) is

 when '0' => port_mux := dfm_port ;

 when '1' => port_mux := ram_out_data (5 downto 1);

 when others => port_mux:= "00000";

 end case;

 if index_mux = "0000000000000" then

 index_mux_null_det := '1';

 else

 index_mux_null_det := '0';

116

 end if;

 if index_mux_null_det = '1' then

 data_backplane <= port_mux;

 data_av_out_south <= '0';

 data_av_out_east <= '0';

 else

 if DFM_data(31) = '0' then

 data_av_out_south <= '1';

 data_av_out_east <= '0';

 data_out_south <= DFM_data(30 downto 2) & '0' & index_mux(12 downto

0) & port_mux(4 downto 0) & '0';

 elsif DFM_data(31) = '1' then

 data_av_out_south <= '0';

 data_av_out_east <= '1';

 data_out_east <= DFM_data(30 downto 2) & '0' & index_mux(12 downto 0)

& port_mux(4 downto 0) & '0';

 end if;

 end if;

 elsif prpg_data_out_pr='1' then

 data_av_out_south <= '1';

 data_av_out_east <= '0';

 data_out_south <= DFM_data & ram_address & pe_id & '1';

 else

 data_av_out_south <= '0';

 data_av_out_east <= '0';

117

 data_backplane <= "00000";

 end if;

end if;

end process;

end module;

