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ABSTRACT 
 
 

COMPRESSED SENSING BASED  
COMPUTERIZED TOMOGRAPHY IMAGING 

 
 
 

Biçer, Aydın 
Ph.D., Department of Electrical and Electronics Engineering 
Supervisor: Prof. Dr. Zafer Ünver 

 
 

February 2012, 114 pages 
 
 
 
 

There is no doubt that computerized tomography (CT) is highly beneficial for 

patients when used appropriately for diagnostic purposes. However, worries have 

been raised concerning the possible risk of cancer induction from CT because of the 

dramatic increase of CT usage in medicine. It is crucial to keep the radiation dose as 

low as reasonably achievable to reduce this probable risk. This thesis is about to 

reduce X-ray radiation exposure to patients and/or CT operators via a new imaging 

modality that exploits the recent compressed sensing (CS) theory. Two efficient 

reconstruction algorithms based on total variation (TV) minimization of estimated 

images are proposed. Using fewer measurements than the traditional filtered back 

projection based algorithms or algebraic reconstruction techniques require, the 

proposed algorithms allow reducing the radiation dose without sacrificing the CT 

image quality even in the case of noisy measurements. Employing powerful 

methods to solve the TV minimization problem, both schemes have higher 

reconstruction speed than the recently introduced CS based algorithms. 

 
 
 
Keywords:  Computerized tomography imaging, radiation absorption, 

compressed sensing, total variation. 
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ÖZ 
 
 

SIKIŞTIRILMIŞ ALGILAMA TABANLI  
BİLGİSAYARLI TOMOGRAFİK GÖRÜNTÜLEME 

 
 

Biçer, Aydın 
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 
Tez Yöneticisi: Prof. Dr. Zafer Ünver 

 
 

Şubat 2012, 114 sayfa 
 
 
 
 

Hastalık teşhisi için uygun olarak kullanıldığı takdirde Bilgisayarlı Tomografinin 

(BT) son derece yararlı olduğu tartışmasızdır. Ancak, tıpta kullanımının dramatik 

artışı sebebiyle BT’den kaynaklanan kanser riski ile ilgili endişeler artmaktadır. Söz 

konusu riskin azaltılmasında, radyasyon dozunun mümkün olan en düşük düzeyde 

tutulması çok önemlidir. Bu tez, güncel sıkıştırılmış algılama (SA) kuramından 

yararlanarak oluşturulmuş yeni bir imgeleme yöntemi ile hastaların ve/veya BT 

operatörlerinin maruz kaldığı X-ışını radyasyonunun azaltılması hakkındadır. 

Kestirilen imgenin toplam değişimini (TD) enküçültmeye dayalı iki verimli 

geriçatım algoritması önerilmektedir. Önerilen algoritmalar, süzgeçlenmiş geri 

izdüşüme dayalı geleneksel görüntü oluşturma algoritmalarından ve cebirsel 

geriçatım tekniklerinden daha az sayıda ölçüm kullanarak gürültülü ölçümlerde bile 

görüntü kalitesinden ödün vermeksizin radyasyon dozunu azaltmaya olanak 

sağlamaktadır. TD enküçültme problemini çözmek için güçlü yöntemler kullanan 

her iki yaklaşım, güncel SA tabanlı algoritmalardan daha yüksek geriçatım hızına 

sahiptir. 

 
 
Anahtar Kelimeler: Bilgisayarlı tomografik görüntüleme, radyasyon emilimi, 

sıkıştırılmış algılama, toplam değişim. 

v 



 

 

 

 

 

 

 

 

 

 

 

To my daughter, Zeynep… 
 

 

 

 

 

 

 

 

 

 

 

 

 

vi 



ACKNOWLEDGEMENTS 
 
 
 

The author whishes to express his deepest gratitude to his supervisor Prof. Dr. Zafer 

ÜNVER for his guidance, advice, criticism and insight throughout the research. 

The author would like to thank his wife and parents for love, freedom and support. 

This study was supported in part by Aselsan Inc., MGEO Division, Image 

Processing Department, Turkey. 

 

vii 



TABLE OF CONTENTS 
 
 
 

ABSTRACT........................................................................................................... iv 

ÖZ............................................................................................................................ v 

DEDICATION ....................................................................................................... vi 

ACKNOWLEDGEMENTS .................................................................................. vii 

TABLE OF CONTENTS..................................................................................... viii 

LIST OF TABLES ................................................................................................. xi 

LIST OF FIGURES............................................................................................... xii 

NOMENCLATURE............................................................................................. xiv 

CHAPTERS 

1.    INTRODUCTION............................................................................................ 1 

1.1    Data Acquisition ..................................................................................... 1 

1.2    Image Reconstruction ............................................................................. 2 

1.3    Cancer Risk in X-ray Imaging ................................................................ 4 

1.4    Risk Reduction........................................................................................ 5 

1.5    Compressed Sensing ............................................................................... 6 

1.6    Compressed Sensing Based CT Imaging................................................ 7 

1.7    Contributions .......................................................................................... 8 

1.8    Organization of the Thesis...................................................................... 9 

2.    COMPUTERIZED TOMOGRAPHY IMAGING......................................... 11 

2.1    Linear Imaging Model .......................................................................... 11 

2.2    Traditional Image Reconstruction ........................................................ 15 

viii 



2.3    Algebraic Reconstruction Techniques .................................................. 18 

2.3.1    ART .......................................................................................... 18 

2.3.2    SART ........................................................................................ 19 

2.3.3    Numerical Illustrations ............................................................. 20 

3.    COMPRESSED SENSING............................................................................ 24 

3.1    Introduction........................................................................................... 24 

3.2    The Theory of CS ................................................................................. 25 

3.3    Intuitive Examples of CS and Applications.......................................... 27 

4.    COMPRESSED SENSING BASED CT IMAGING..................................... 33 

4.1    Compressed Sensing for CT Imaging................................................... 33 

4.2    POCS Based Solution ........................................................................... 35 

4.3    Fourier Transform Based Solution ....................................................... 38 

5.    SECOND ORDER CONE PROGRAMMING.............................................. 40 

5.1    General Perspective .............................................................................. 40 

5.2    Problem Reformulation......................................................................... 41 

5.3    Solution Algorithm ............................................................................... 43 

5.4    Experimental Results ............................................................................ 45 

5.4.1    E1: Comparison with Conventional Techniques ...................... 46 

5.4.2    E2: Robustness Test in Large Scale Problems ......................... 49 

5.4.3    E3: Comparison with Other CS-Based Solutions..................... 51 

6.    FAST TOTAL VARIATION MINIMIZATION........................................... 56 

6.1    Problem Reformulation......................................................................... 56 

6.2    Quadratic Approximation ..................................................................... 59 

ix 



x 

6.3    Conjugate Gradient Based Algorithm................................................... 61 

6.4    Regularization Parameter...................................................................... 63 

6.5    Experimental Results ............................................................................ 66 

6.5.1    E1: Comparison with FBP........................................................ 68 

6.5.2    E2: Extended Comparison with FBP........................................ 72 

6.5.3    E3: Robustness to Additive Noise ............................................ 75 

6.5.4    E4: A Multi-Purpose Performance Test ................................... 78 

6.5.5    E5: Comparison with Other CS-Based Solutions..................... 81 

7.    CONCLUSIONS............................................................................................ 85 

REFERENCES...................................................................................................... 89 

APPENDICES 

A.     PROJECTION GEOMETRY ............................................................... 99 

A.1    Ray Equation............................................................................... 99 

A.2    Fan Beam Geometry ................................................................. 101 

B.     LOGARITHMIC BARRIER METHOD FOR SOCP......................... 105 

B.1    TV Minimization with Equality Constraints............................. 105 

B.2    TV Minimization with Quadratic Constraints .......................... 109 

CURRICULUM VITAE ..................................................................................... 114 

 



LIST OF TABLES 
 
 
 

TABLES 
 

Table 2.1 Relative amounts of radiation absorbed................................................ 17 

Table 3.1 1-D signal recovery errors, ||  - s||2 ....................................................... 28 

Table 3.2 PSNRs (dB) of the 2-D signal recoveries ............................................. 32 

Table 5.1 Total number of Newton iterations in SOCP ........................................ 47 

Table 5.2 Parameters set in ASD-POCS and ASD-FT ......................................... 52 

Table 6.1 FTV Parameters setting in experiments ................................................ 68 

Table 6.2 PSNR versus relative radiation absorbed (RRA) .................................. 74 

Table 6.3 PSNRs of images reconstructed by FTV using noisy measurements ... 75 

Table A.1.1 Projection line cases .......................................................................... 99 

Table A.2.1 Fan beam projection cases............................................................... 101 

 

xi 



LIST OF FIGURES 
 
 
 

FIGURES 
 

Fig. 1.1 X-ray penetration ....................................................................................... 2 

Fig. 2.1 Tomographic imaging model................................................................... 12 

Fig. 2.2 Images reconstructed by FBP .................................................................. 16 

Fig. 2.3 Sinogram illustrations .............................................................................. 17 

Fig. 2.4 Images reconstructed by ART (k = 1)...................................................... 21 

Fig. 2.5 Images reconstructed by SART (k = 1).................................................... 22 

Fig. 2.6 Images reconstructed by iterative techniques (k = 1, 10)......................... 23 

Fig. 3.1 1-D sparse signal reconstruction.............................................................. 28 

Fig. 3.2 1-D compressible signal reconstruction................................................... 29 

Fig. 3.3 Sparse representations of the phantom image.......................................... 30 

Fig. 3.4 Pilot of the magnitude sorted coefficients in Figs. 3.3(b)-(d).................. 30 

Fig. 3.5 CS reconstruction of the phantom image................................................. 31 

Fig. 5.1 A 32×32 test image .................................................................................. 46 

Fig. 5.2 Plot of PSNR versus radiation absorbed (SOCP, FBP, and SART) ........ 47 

Fig. 5.3 Plot of reconstruction time versus number of rays .................................. 48 

Fig. 5.4 Recoveries of the 32×32 test image ......................................................... 49 

Fig. 5.5 Recoveries of the phantom image (SOCP and FT).................................. 50 

Fig. 5.6 PSNR and time records in iterations of SOCP (c = 600, nnw = 50) ......... 53 

Fig. 5.7 PSNR and time records in iterations of ASD-POCS (kp = 200, nsd = 20)53 

Fig. 5.8 PSNR and time records in iterations of ASD-FT (kf = 200, nsd = 20) .... 54 

Fig. 5.9 PSNR and time records in iterations of DFP ........................................... 54 

Fig. 5.10 Performance comparison of SOCP with other CS-based solutions ....... 55 

Fig. 6.1 3-D illustration of TV (x), RS(x) and f(x) ................................................. 58 

Fig. 6.2 GMIs used in experimenting FTV ........................................................... 67 

Fig. 6.3 The Shepp-Logan image reconstructed in E1 .......................................... 69 

Fig. 6.4 Reconstructed image profiles in E1 ......................................................... 70 

xii 



xiii 

Fig. 6.5 Function values as FTV iterates in E1 ..................................................... 71 

Fig. 6.6 The cranial CT image reconstructed in E2 .............................................. 73 

Fig. 6.7 The Shepp-Logan image reconstructed in E3 .......................................... 76 

Fig. 6.8 Reconstructed image profiles in E3 ......................................................... 77 

Fig. 6.9 Function values as FTV iterates in E3 ..................................................... 77 

Fig. 6.10 The cranial CT image reconstructed in E4 (Part 1) ............................... 79 

Fig. 6.11 The cranial CT image reconstructed in E4 (Part 2) ............................... 80 

Fig. 6.12 PSNR and time records in iterations of FTV......................................... 82 

Fig. 6.13 PSNR and time records in iterations of SOCP....................................... 83 

Fig. 6.14 PSNR and time records in iterations of ASD-POCS ............................. 83 

Fig. 6.15 PSNR and time records in iterations of ASD-FT................................... 84 

Fig. 6.16 Performance comparison of FTV with other CS-based solutions ......... 84 

Fig. A.1.1 Ray equation, case 1............................................................................. 99 

Fig. A.1.2 Ray equation, case 2........................................................................... 100 

Fig. A.1.3 Ray equation, case 3........................................................................... 100 

Fig. A.1.4 Ray equation, case 4........................................................................... 101 

Fig. A.2.1 Fan geometry, case 1.......................................................................... 102 

Fig. A.2.2 Fan geometry, case 2.......................................................................... 102 

Fig. A.2.3 Fan geometry, case 3.......................................................................... 103 

Fig. A.2.4 Fan geometry, case 4.......................................................................... 103 

Fig. A.2.5 Fan geometry, case 5.......................................................................... 104 

Fig. A.2.6 Fan geometry, case 6.......................................................................... 104 

Fig. A.2.7 Fan geometry, case 7.......................................................................... 105 

Fig. A.2.8 Fan geometry, case 8.......................................................................... 105 

 



NOMENCLATURE 
 
 
 

ABBREVIATIONS 
 

ART  Algebraic Reconstruction Technique 

ASD  Adaptive Steepest Descent 

CG  Conjugate Gradient 

CS  Compressed Sensing 

CT  Computed (Computerized) Tomography 

CTI  Computerized Tomographic Imaging 

dB  Decibel 

DCT  Discrete Cosine Transform 

DFP  Davidon-Fletcher-Powel Method 

DWT  Discrete Wavelet Transform 

FBP  Filtered Back Projection 

FT  Fourier Transform 

FTV  Fast Total Variation Minimization Algorithm 

GMI  Gradient Magnitude Image 

mGy  mili-Gray 

MRI  Magnetic Resonance Imaging 

mSv  mili-Sievert 

POCS  Projection onto Convex Sets 

PSNR  Peak Signal to Noise Ratio 

SART  Simultaneous Algebraic Reconstruction Technique 

SMMLQ Symmetric LQ Algorithm 

SNR  Signal to Noise Ratio 

SOCP  Second Order Cone Programming 

TV  Total Variation 

UP  Unconstrained Problem 

 

xiv 



SYMBOLS 
 

c  Maximum number of CG or SMMLQ iterations in SOCP 

F(x)  Fourier operator acting on x 

kb  Maximum number of log-barrier iterations 

kc  Maximum number of CG iterations in FTV 

kf  Maximum number of main loop iterations of ASD-FT  

ko  Maximum number of main loop iterations of CG-based algorithm  

kp  Maximum number of main loop iterations of ASD-POCS  

μj  Attenuation coefficient at the jth image element 

μ(x,y)  Attenuation function of a two-dimensional object 

nnw  Maximum number of Newton iterations allowed 

nsd  Maximum number of steepest-descent iterations allowed 

pi  Projection data corresponding to ith ray 

pθ(t)  Projection function 

||x||p  lp-norm of a vector x 

||x||TV  TV-norm of a vector x 

W  Data acquisition (weighting) matrix 

wi  ith row vector of W 

wij  The element of W at the ith row and jth column 

 

xv 



CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

 The story of X-ray imaging started with the discovery of X-rays by Röntgen in 

1895. For his work, Röntgen received the first Nobel Prize in Physics in 1901. This 

discovery constitutes the historic starting point of medical imaging. The initial work 

ground for computerized tomography was laid by Radon in 1917 when he 

demonstrated that an object could be reconstructed from an infinite number of 

projections through that object [1]. In the 1960’s, Cormack began to apply Radon’s 

principles to medical applications. This led to the development of the first clinically 

useful computerized tomography (CT) scanner by Hounsfield in 1972 [2]. The 1979 

Nobel Prize in Medicine was shared between these two pioneers of CT. Since its 

inception, CT scanners have improved in many perspectives including data 

acquisition and image reconstruction [3]. 

1.1 Data Acquisition 

 CT relies on the fact that X-rays passing through an object are absorbed or 

scattered and the resulting loss in intensity is computed. Consider an incremental 

thickness of the slab shown in Fig. 1(a). It is assumed that N0 monochromatic 

photons cross the left layer of this slab and that only N0 – dN0 emerge from the 

other side. These N0 – dN0 photons, unaffected by either absorption or scattering, 

propagate in their original direction of travel. If the photon energies are the same, 

the number of photons as a function of space is given by N0(x) = N0e-μx [4], where 

the attenuation coefficient, μ, represents the constant photon loss rate on a per unit 

distance basis because of the photoelectric and Compton effects. When the width of 

the beam is sufficiently small, reasoning as in the one-dimensional case, the total 

number of photons entering and leaving an object, Nin and Nout (see Fig. 1(b)), 

respectively, are related by 

 1
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dsyx ),(Using the equation of line AB shown in Fig. 1(b), the integrand   can be 

replaced by dxdytyxyx )sincos(),(    . The natural logarithms of both sides 

in (1.1) results in the standard attenuation equation, 

 
ABrayout

in dxdytyxyx
N  

)sincos(),(ln 
N    (1.2) 

The ray integral above gives the projection data pθ(t) as a function of angle θ and 

distance t. Therefore, measurements like ln(Nin/Nout) taken for different rays at 

different angles can be used to generate projection data for reconstructing the 

function μ(x,y).  

 
 
 
 
 
 
 
 
 
 
 

         (a)     (b) 

Fig. 1.1: X-ray penetration. (a) N0 monochromatic X-ray photons passing through 
an incremental thickness of the slab. (b) Nin monochromatic X-ray photons passing 
through an object represented by the attenuation distribution or density function, 
μ(x, y). 

 
 

1.2 Image Reconstruction 

 The measurements obtained by a CT scanner result in a series of projection data. 

Image reconstruction algorithms exploit the projection data to estimate the 

attenuation density function, μ(x,y). The value of μ(x,y) is also called the attenuation 

coefficient at (x,y). The differences in attenuation coefficients at all locations 



provide the contrast on the X-ray film. One of the most popular algorithms in use 

today is the filtered back projection (FBP). It was invented by Bracewell and Riddle 

[5], and later independently with additional insights by Ramanchandran and 

Lakshminarayanan [6] who are also responsible for the convolution back-projection 

algorithm. This is the algorithm now used by almost all commercially available CT 

scanners [3].  

 The projection data corresponding to an X-ray keeps the attenuation faced by 

the X-ray on its trajectory. In back projection, this attenuation information is 

distributed back to the elements of the object through which the X-ray has passed. 

Each element takes the amount proportional to its interaction with the X-ray so as to 

recover its attenuation coefficient. The back projection operation is repeated for all 

projection data. The attenuation coefficient of a particular element will be built up 

from back projecting all X-rays’ projection passing through this element. In 

continuous time, these elements are called points whereas in discrete time they are 

called pixels. In practice, it is assumed that the object under reconstruction is 

composed of discrete elements. The contribution of individual pixels to the 

projection data can be modeled in many ways [7]. The back projection alone results 

in a blurred reconstruction. Filtering must be applied to correct it and obtain a more 

accurate recovery. Filtering and back projection are both linear operations, so the 

order in which they are performed does not matter. However, filtering in one 

dimension is a much simpler task than in two dimensions. For this reason, the 

filtering is applied on projection data prior to back projection. 

 Alternative to filtered back projection, algebraic reconstruction techniques 

(ARTs) [8]-[12] can be used to iteratively solve the reconstruction problems arising 

from more complicated imaging models. Algebraic reconstruction techniques were 

used in early generation of CT scanners [13]. It was shown by Shepp and Logan 

[14] that the filtered back-projection method is much superior to other methods 

(especially the algebraic methods) in 1974 [3]. Today, iterative methods are to be in 

widespread clinical use, owing to improvements in computer power and 

development of efficient modeling techniques and fast reconstruction algorithms 

[7]. 
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1.3 Cancer Risk in X-ray Imaging 

 The literature on diagnostic imaging and its effects is enormous [15]-[33]. It is 

hard to end with reliable risk estimations in both qualitative [15]-[19] and 

quantitative [20]-[33] endless discussions, but the concrete truth is X-rays can cause 

damage to cells in the body, which in turn can increase the risk of developing 

cancer. This increase in risk associated with each X-ray procedure is low but does 

slowly increase with the increasing number of X-ray tests and cumulative radiation 

doses absorbed.  

 The use of CT has increased rapidly in all developed countries since 1970s. It is 

estimated that about 3 million CT scans per year were performed in the UK in 2005-

2006, compared with 0.25 million in 1980 [23]. The corresponding figures for the 

US are 69 million scans in 2007, compared with approximately 2 million scans in 

1980. The dramatic increase in the number of CT examinations concerns doctors 

about potential risks [25]-[27]. They notify three-quarters of the collective dose 

from radiology is the result of high-dose procedures, in particular CT, interventional 

radiology and barium enemas. For these procedures, the organ doses involved are 

sufficiently large that there is direct statistical evidence of small increased cancer 

risks [23]. Even a small individual radiation risk, when multiplied by a huge number 

of population, adds up to a significant long-term public health problem that will not 

become evident for many years. 

 The effective doses applied in computed tomography in particular is much 

higher than that in other diagnostic examinations [21]. For example, typical doses to 

the lung from a conventional chest X-ray range from about 0.01 mGy (mGy: mili-

Gray, the unit used to give absorbed dose) to 0.15 mGy, whereas a typical dose to 

an organ examined with CT is around 10 mGy to 20 mGy, and can be as high as 80 

mGy for 64-slice CT coronary angiography [22]. Brenner and Elliston [25] state 

that the effective dose, which is a weighted average of doses to all organs in a single 

full-body CT examination, is about 12 mSv (mSv: mili-Sievert, the unit used to give 

effective dose). If, for example, 10 such examinations were undertaken in a lifetime, 

the effective dose would be about 120 mSv. To put these doses in perspective, 
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individuals in survivors of the atomic bomb in the dose category from 5 to 100 mSv 

(mean, 29 mSv) show a statistically significant increase in solid cancer risk. 

 There is also additional risk from follow up CT examinations. Because of the 

nature of the full body screening, the high false-positive rate necessitates further 

evaluations of more than one third of those screened, whereas only a small fraction 

(a few percent) of the overall reveals cancer evidence [23]. The patients undergoing 

CT of neck, chest, abdomen, or pelvis in emergency departments have high 

cumulative rates of multiple or repeated imaging. Collectively, this patient subgroup 

may have a heightened risk of developing cancer from cumulative CT radiation 

exposure. Their increased risk of carcinogenesis is reflected in estimated lifetime 

attributable risks ranging from 1 in 625 to 1 in 17 [32].  

1.4 Risk Reduction 

 A consensus about the efficacy of the recent screening with CT applications has 

not been reached [19], [23]. The patient here is left to trade a small statistical risk of 

cancer in the distant future, or maybe in the near future for the case of a baby in the 

womb, for the immediate preservation of his life. Irrespective of the absolute levels 

of CT-associated risk, it is clearly desirable to reduce CT doses and/or usages. The 

latter is not an easy task. Physicians are often subject to significant pressures from 

the medical system, the medico-legal system and from the public to prescribe CT. In 

most scenarios, CT is the appropriate choice, but there are undoubtedly significant 

proportion of potential situations where CT is not medically justifiable or where 

equally effective alternatives exist [23]. The trend towards a somewhat less 

selective use of diagnostic CT due to underestimated radiation dose from a CT scan 

or unbelief of increased cancer risk by a great majority of the radiologist and/or 

emergency room physicians is unfortunately in considerable part responsible for the 

rapid increases in CT use.  

 Minimizing the radiation dose usually includes fine adjustment of, but not 

limited to, the following CT settings while scanning patients [20], [22], [34]:          

1) Tube voltage, 2) Tube current and exposure time, 3) Pitch. Reduction of the tube 

voltage is used for decreasing the average photon energy and thus the patient 

 5



exposure [20]. Being a measure of the amount of radiation, the product of X-ray 

tube current and exposure time is usually reduced for pediatric patients, because 

they are smaller in size and therefore easier to penetrate [22]. The pitch is the table 

movement per tube rotation/slice collimation. While keeping the other parameters 

constant, increasing the pitch spreads the radiation energy over a larger patient 

volume, thereby decreasing the patient dose [34].  

 In general, exposure control is based on the notion that lower CT image noise 

will typically be achieved at the cost of higher doses, so image noise level should be 

no better than sufficient for the diagnostic test. Given a desired noise level and the 

geometry of the patient, either manually or automated exposure control techniques 

can be used to generate a CT setting that will minimize the patient dose [23]. 

However, even with the same CT settings, different scanners will produce different 

doses and therefore different risks. In particular, the calculated organ dose to the 

lung is 15.5 mGy for the Siemens scanner, 16.1 mGy for the Philips scanner, and 

21.2 mGy for the GE Medical Systems scanner [25].  

1.5 Compressed Sensing 

 Image compression algorithms convert high-resolution images into a relatively 

short bit streams (while keeping the essential features unchanged), in effect turning 

a large digital data set into a substantially smaller one. There is an extensive body of 

literature on image compression; the principle is that the image is transformed into 

an appropriate basis and then only the significant expansion coefficients are coded. 

The main problem is to find a good transform, which has been studied extensively 

from both theoretical [35] and practical [36] standpoints. The most remarkable 

product of this research is the wavelet transform [37]-[38]; switching from sinusoid-

based representations to wavelets made a significant advance in image compression 

standards; namely from the classical JPEG [39] to modern JPEG2000 [40]. These 

standards are put into practice by acquiring the full signal at the beginning. 

Following the computation of transform coefficients, only a small fraction of the 

coefficients is encoded and the rest is discarded. While using this modality, one can 

fairly ask the question: Is there a way to avoid the large data set to begin with if the 
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majority of the collected data will be discarded at the end? Is there a way of 

building the data compression directly into the acquisition? The answer is yes 

exploiting the recently emerging compressed sensing (CS) theory [41].  

 CS, also known as compressive sampling or compressive sensing is a technique 

for finding sparse solutions to underdetermined linear systems. An underdetermined 

system of linear equations has more unknowns than equations and generally has an 

infinite number of solutions. However, if there is a unique sparse solution to the 

underdetermined system, then the recovery of that solution is allowed in the CS 

framework. It typically starts with taking a weighted linear combination of samples 

also called compressive measurements in a basis different from the basis in which 

the signal is known to be sparse. The results [41]-[42] found by Donoho, Candes, 

Romberg and Tao showed that the number of these compressive measurements can 

be small and still contain nearly all the useful information. Therefore, the task of 

converting the image back into the intended domain involves solving an 

underdetermined matrix equation since the number of compressive measurements 

taken is smaller than the number of pixels in the full image. Adding the constraint 

that the initial signal is sparse enables one to solve this underdetermined system of 

linear equations. 

 The field of compressive sensing is related to other topics in signal processing 

and computational mathematics, such as to error correction, inverse problems, 

compressive DSP, data compression, data acquisition [43]. 

1.6 Compressed Sensing Based CT Imaging 

 Different ways of decreasing the radiation dose [44]-[45] basically aim to use 

the most dose-efficient technique to achieve the target image quality for each 

diagnostic task. The dose efficiency in CT can be improved by optimizing dose 

performance of the CT system, using either manual or automated exposure control 

techniques, and also our interest in this thesis, improving data processing and image 

reconstruction. In CT imaging system, numerous X-ray beams and detectors rotate 

concurrently around a body, and the amount of radiation absorbed throughout the 

body is computed. Using these large data sets, the traditional FBP based image 
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reconstruction algorithms provide high contrast images at the expense of so called 

high radiation absorption. On the other hand, FBP is inefficient with insufficient 

coverage in the scanning configuration or under-sampling. The recent advances in 

image reconstruction techniques [42], [46]-[47] have shown that accurate image 

reconstruction from incomplete data sets is possible using sparseness prior based 

iterative methods. Based on the compressed sensing theory [47], [41], these 

methods employ incoherent measurements from an object of interest and, as a 

solution, seek the sparsest object or its most compressible representation in a 

sparsifying domain (e.g., Fourier, wavelet, etc.). The impressive results have 

immediately inspired applications in Magnetic Resonance Imaging (MRI) [48]-[51] 

and then in CT Imaging (CTI) [52]-[63]. The studies have shown that incorporating 

the sparsity feature of CT images into the reconstruction problem results in more 

accurate recoveries from few projection data. 

1.7 Contributions 

 Today, commercial CT scanners employ traditional FBP based algorithms for 

image reconstruction [64]. Many considerations including the communication 

problems between CT engineers and theoreticians, and economic conflicts for CT 

manufacturers can be stated as reasoning. In addition, that FBP based algorithms 

can be implemented to achieve high reconstruction speeds make them expedient as 

compared to iterative methods. In this thesis, we propose two CS based image 

reconstruction algorithms that allow reducing radiation dose without sacrificing the 

CT image quality even in the case of noisy measurements. The first one, log-barrier 

algorithm, recasts the optimization problem that aims to minimize the estimated 

image’s total variation (TV) as second order cone programming (SOCP) and solves 

it via a logarithmic barrier method. The second one, fast TV minimization 

algorithm, (FTV), reformulates the TV minimization problem as an unconstrained 

problem to solve it rapidly using the conjugate gradient (CG) method. Using few 

measurements, the proposed schemes provide better reconstructed images as 

compared to the solutions of the traditional FBP based algorithms or ARTs. 
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 Although complexity order of the log-barrier method is higher than the state-of-

the-art algorithms [57], [59], it is capable of converging faster to a better solution 

especially for small scale problems. It takes advantage of Newton’s method to end 

up with an accurate solution rapidly. When the problem size gets large, on the other 

hand, it suffers from huge matrix vector multiplications. To justify our claims, we 

performed numerical experiments involving performance comparisons of the log-

barrier algorithm with other CS based and traditional algorithms.  

 FTV offers faster reconstruction of images than the log-barrier algorithm. 

Keeping CG method [65] at its core, it has higher reconstruction speed than the 

recent algorithms [57], [59], [62] that have attracted broad interest in, but not 

limited to [52]-[62]. To justify our claims, we categorized these algorithms into 

three classes: Projection onto Convex Sets (POCS), Fourier Transform, and Second 

Order Cone Programming. They were investigated in detail to clarify their 

(dis)advantages. Our studies include those demonstrating both the performance of 

FTV on non-sparse images and the relations between the quality of reconstructed 

images and the amount of radiation absorbed; issues that hardly take part in 

literature in the field as far as we know.  

 We also brought intuitive examples of CS and discussions on CS integration 

into the CT system to better give the concept of CS based CTI in our study. 

1.8 Organization of the Thesis 

 The thesis is organized as follows: In Chapter 2, the traditional FBP algorithm 

and ARTs are reviewed together with the data acquisition model used in these 

reconstruction methods. Besides, constructions of data acquisition matrices that are 

used in experiments throughout the thesis, and example images reconstructed by 

FBP and ARTs are given. In Chapter 3, CS is reviewed from both theoretical and 

practical standpoints. In Chapter 4, we discuss the concept of CS based CT imaging, 

leading to the reconstruction problem reformulated in the CS framework. 

Furthermore, the state-of-the-art algorithms solving the CS problem are considered. 

In Chapter 5, SOCP and its solution via the log-barrier algorithm are presented. Its 

performance against FBP, SART (an effective iterative method), and the state-of-
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the-art algorithms are tested in three numerical experiments. In Chapter 6, we 

present FTV in detail and test its performance against FBP and the state-of-the-art 

algorithms in four numerical experiments. In the last chapter, the concluding 

remarks are given. 



CHAPTER 2 
 
 

COMPUTERIZED TOMOGRAPHY IMAGING 
 
 
 

2.1 Linear Imaging Model 

 A CT scanner measures the intensities of X-ray beams that pass through the 

body and generates the projection data pθ(t). The space parameters (t, θ) define the 

projection line t = x·cosθ + y·sinθ along which an X-ray beam travels as shown in 

Fig. 2.1(a). Assuming the beam width is infinitesimally narrow, the projection data 

is expressed by line integral of the body cross-sectional function μ(x,y) as 

  
 

dxdytyxyxtp )sincos(),()( 

 

N

    (2.1) 

 In a modern CT scanner, an X-ray fan beam and detector sweep around the 

patient and provide thousands of projections at different angles. The objective is to 

estimate μ(x,y) from all projections. The differences in values of μ(x,y) at different 

(x, y) coordinates provide the contrast on CT images. 

 For computing purposes, the reconstructed images cannot be represented by a 

continuous-domain function; instead a sampled version of the image described in a 

discrete domain is estimated. That is, a square grid is superimposed on the image 

μ(x,y) as shown in Fig. 2.1(b). It is assumed that the size of the grid cells is small 

and the function μ(x,y) is approximately constant within a cell. Let μj be this 

constant value in the jth cell and N be the total number of cells. Under the 

assumptions above, the line integral in (2.1) is expressed by 


j

jiji wp
1

       (2.2)
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            (a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
            (c)     (d) 
 
Fig. 2.1: Tomographic imaging model. (a) An object, μ(x, y) and its projection, pθ(t) 
along the projection line AB. The X-ray beam emerging from A to B is assumed to 
have infinitesimally narrow width, meaning that the beam has a single X-ray. CT 
scanner measures the amount of attenuation, pθ(t), of the X-ray traveling through 
the object. (b) Square grid is superimposed over the unknown body. Body values 
are assumed to be constant within each cell of the grid. (c) Fan beam projection 
geometry. The fan opening at source location (xs, ys) is defined by [γmin = -γm, γmax 
= +γm]. Each ray in the fan is identified by its angle γ from the central ray. d is the 
distance from the source to the origin over the central ray. β is the angle of central 
ray from y-axis. (d) Illustration of parallel beam projection. X-rays radiated from 
multiple sources are aligned in parallel. Typically, the projection angle θ ranges in 
the interval [θmin = 0, θmax = 2π). 
 
 
 

where pi denotes the ray sum value for the ith ray and wij is the weighting factor that 

represents the contribution of  the  jth  cell to the  ith  ray-sum. Assuming there are m 

number of X-ray projections, the set of linear equations, corresponding to 

i=1,2,3…,m, is written in matrix form:  
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 There are several different approaches for projecting a cell (see Appendices in 

[17]). Being a computationally efficient one, the line length approach defines wij as 

the length of the ray in the region bounded by the cell. Once wij’s are computed for 

a fixed scanning configuration, the matrix W is stored in memory, ensuring a time 

saving for the ongoing image recovery practices. Typically, for the fan projection 

geometry shown in Fig. 2.1(c) (see Appendix A for the detailed geometric 

interpretation), W can be constructed in the following manner:  

Method I:  Constructing the fan projection matrix. 
1 initialize d, βmin, βmax, γmin, γmax, u, v, W  
2 repeat for index u ← 1 to u 
3 β ← βu[βmin, βmax] 
4 xs ← dsinβ, ys ← dcosβ 
5 repeat for index v ← 1 to v 
6 γ ← γv[γmin, γmax] 
7 θ' ← –(β – γ) 
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9 t ← xscosθ + yssinθ 
10 W ← compute wij’s for this ray 
11 end 
12 end 

 

 In Method I, u and v are the number of source locations and rays in a fan beam, 

respectively. The outer loop localizes the point source whose coordinate (xs, ys) is 

computed at line 4. The inner loop serves the purpose of computing weighting 
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factors for each ray in the fan beam emerging from the source location (xs, ys). The 

ray projection angle θ and its distance to the origin t are computed at lines 8 and 9, 

respectively. Let the (t,θ) pair identify the ith projection line. All weighting factors 

along the ith ray are computed at line 10. Ordinarily, W is a large matrix. Consider 

the scanning of a discrete image of size 256×256. If fan beams are emitted from 180 

distinct locations with 1 degree angle of separation, m ≈ 46K measurements are 

collected by means of 256 detectors. For such an experiment, it is necessary to keep 

approximately 2.8 Gbytes of data (wij’s) forming a WR46,000 × 65,536 to recover the 

image. Keeping such huge data in memory is difficult and techniques should be 

developed to avoid the memory limitations and lessen its computation time for 

different data acquisition configurations. 

 Besides the fan beam projection, other projection methods like parallel or cone 

beam can be used to acquire data. Typically, for the parallel projection geometry 

illustrated in Fig. 2.1(d), W can be constructed in the following manner: 

Method II:  Constructing the parallel projection matrix. 
1 initialize θmin, θmax, tmin, tmax, u, v, W  
2 repeat for index u ← 1 to u 
3 θ ← θu[θmin, θmax] 
4 repeat for index v ← 1 to v 
5 t ← tv[tmin, tmax] 
6 W ← compute wij’s for this ray 
7 end 
8 end 

 

Method II has the same spirit with Method I such that u and v in both are used for 

indexing view angles and X-rays’ distance to the origin, respectively. Given a pair 

of (θ,t) parameters for an X-ray, the same function is used at lines 10 and 6 in 

Methods I and II, respectively, to compute the elements of W. Since the projection 

angle is fixed for all rays in a given view (parallel beam), constructing the parallel 

beam projection matrix is easier than implementing Method I. In this thesis, both 

parallel and fan beam projection data are used while experimenting the proposed 

schemes in Chapters 5 and 6, respectively. The fan beam projection is also 

considered within traditional and iterative image reconstruction algorithms 

discussed in the following subsections.  
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2.2 Traditional Image Reconstruction 

 The FBP is a commonly used technique in CTI today [64]. μj’s are estimated by 

the weighted back projection of filtered pi’s:  

mipw ,...,3,2,1,ˆ'        j
i

iij      (2.4) 

where pi′ and j̂  denote the filtered value of pi and the estimation for μj, 

respectively. Let P′ and M̂  be vectors of pi′’s and j̂ ’s, respectively. The equation 

set in (2.4) can be expressed in the closed form as 

MPW T ˆ       (2.5) 

The pi′’s belonging to the set of a view (fan beam) projection data are high pass 

filtered by a discrete time filter h [4] of the form: 


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
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

nh     (2.6)   

n = 0 
 

n ≠ 0, n is even 
 

n is odd 

where Δγ is the angle of ray separation in a fan beam. The high pass filtering or a 

certain amount of smoothing combined with (2.6) gets rid of very high 

amplification of low frequencies inherent in recoveries without filtering. The 

matrix-vector multiplication provides a very fast reconstruction in (2.5). Despite its 

speed of implementation, FBP requires a large m at the expense of increased 

radiation absorption so as to provide a high accuracy in reconstructed images. 

Consider the real image in Fig. 2.2(a) and some of its recoveries in Fig. 2.2(b)-(f). 

In all cases, the projection data are collected over a half angular range of π by 

equiangular set of detectors. The best recovery shown in Fig. 2.2(f) is obtained from 

a large data set: ~1.4 times the number of samples in the original image. When m is 

reduced a few orders, the reconstructed images have high degradations as perceived 

in Fig. 2.2(b)-(e). 
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          (a)         (b)     (c) 
 
 
 
 
 
 
 
 
 
 

          (d)         (e)     (f) 
 
Fig. 2.2: Images reconstructed by FBP. (a) 256×256 original image. The following 
images are recovered using FBP with (b) m = 7680 measurements (30 views × 256 
rays/view), (c) m = 15360 measurements (30 views × 512 rays/view), (d) m = 23040 
measurements (180 views × 128 rays/view), (e) m = 46080 measurements (180 
views × 256 rays/view), (f) m = 92160 measurements (180 views × 512 rays/view). 
The system settings in all recoveries are d = 1.5×256×√2, βmin = -π/2, βmax = π/2, 
γmin = -π/7, γmax = π/7. 
 
 
 

 The amount of radiation absorption by a body is related with the energy 

difference of photons that enter and leave the body. The contribution of a single X-

ray projection, eX-ray, to this amount is given by  

 )(exp1 tpe rayX            (2.7) 

which is normalized with respect to the number of incidence photons [47]. The 

overall radiation absorption is reduced by elimination of a ray (pθ(t) = 0), which 

necessitates decreasing m in a CTI system. The rays’ elimination is depicted on the 

sinograms in Fig. 2.3(a)-(b). The horizontal and vertical axes represent the detector 
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bin and projection angle θ, respectively. The fan beam scanning configuration in 

Fig. 2.3(b) leads to 91.6% missing dark portions of the data and a 91.6% reduction 

in the radiation absorption compared to the best recovery configuration in Fig. 

2.3(a). The relative absorption amounts for all configurations in Fig. 2.2 as well as 

the 30-fan × 128-ray are summarized in Table 2.1. 

 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 
 
Fig. 2.3: Sinogram illustrations. (a) Sinogram for 180 views × 512 rays/view 
configuration. It is used for the recovery in Fig. 2.2(f). (b) Sinogram for 30 views × 
256 rays/view configuration. It is used for the recovery in Fig. 2.2(b). 
 
 
 

Table 2.1: Relative amounts of radiation absorbed. 
 

 128-ray 256-ray 512-ray 
30-fan 0.5 1 2 
180-fan 3 6 12 

 
 
 

 Although the total number of rays used in each experiment changes linearly, the 

linear relationship among the values in Table 2.1 is a coincidence. In fact, the 

attenuation characteristics of the tissue that X-ray passes through and the physical 

characteristics of X-rays determine the output of (2.7). Regarding the X-ray 

absorption reduction, the significance of a ray cancellation is evident in any 

circumstances. When quality of the reconstructed images is considered, a more 

efficient algorithm than FBP is needed. The word efficient means it is capable of 

reconstructing the image fast and accurately by using less number of projections.   
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A good efficiency is achieved by exploiting CS, the theory we benefited from in this 

study. 

2.3 Algebraic Reconstruction Techniques 

 The reconstruction algorithms in the class of algebraic reconstruction techniques 

are iterative, i.e., they refine the estimated image progressively in a repetitive 

calculation. Contrary to FBP based algorithms that necessitate a large number of 

projections uniformly distributed over an angular range of π or 2π, the iterative 

methods have unique advantages especially in cases of incomplete, random data 

sets. Besides, they are able to solve more complicated problems than problem (2.3) 

as a result of the improved imaging models that allow a rich description of the noise 

and attenuation mechanisms. “The principle trade-off between iterative techniques 

and FBP is one of accuracy versus efficiency. Iterative algorithms require repeated 

calculations of projection and back projection operations. Thus, they can require 

substantially greater computation time than FBP. Accurate modeling of physical 

effects in iterative algorithms can improve accuracy, but this added refinement can 

further compound the processing time.” “There is not yet a consensus that iterative 

reconstructions are always superior to FBP images or, at least, that the benefits of 

iterative reconstructions always justify the increased computational costs; therefore, 

the two approaches will continue to coexist for some time.” [7]. The iterative 

methods that are used in this thesis are the algebraic reconstruction technique (ART) 

and the simultaneous algebraic reconstruction technique (SART). They are detailed 

in the following subsections.  

2.3.1 ART 

 ART updates the estimated image, )(ˆ kM  at iteration step k, according to the 

following formula:  

miw
ww

Mwp
MM i

ii

k
iik

art
kk ,.,2,1     ,  

,

ˆ,ˆ      ˆ
)(

)()()1( 



     (2.8) 

where wi is the ith row vector (the vector along the direction of ith ray) of matrix W 

and λart is a relaxation parameter. It can be inferred from the reformulation of (2.8) 
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that the error term  corresponding to the i ,ii Mwp

)(ˆ k

th projection data of the 

current image estimate, M , is first normalized with respect to wi and then back 

projected along the unit vector, 
2ii ww . Notice that the error in projection data is 

simply expressed by the difference between the observation pi and the estimation 

. At the outer iteration step k,  ,i Mw )(ˆ k )1(ˆ kM  is obtained after back projecting 

the error terms for all i. The order of rays involved in successive processing of the 

error terms may affect the convergence speed and therefore the maximum number 

of iterations required. For example, when the rays are orthogonal, the solution is 

reached in one step (k=1) no matter what the initial guess is. On the other hand, 

when the rays are more likely to be parallel, more and more iterations are needed to 

reach a solution [66]. The initial estimate )0(M̂  is usually set to uniform image of 

zero attenuation (see § 4 in [67]). 

2.3.2 SART 

 SART updates the jth image element,  at iteration step k, according to the 

following formula:  

)(kˆ j
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where wi and λart are as in ART, L is the number of views, and   is the set of rays 

in the  th view. The l0-norm denoted by II▪II0 is the sum of terms in wi, i.e., the 

length of the ith ray inside the object. In contrast to ART where the output image is 

updated using pi’s one by one, the average contribution of the rays in a view 

projection is computed, and then the output image is corrected in SART [67]. The 

back projection of the error terms corresponding to rays in the same view are given 

by the term 
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in the numerator of (2.10). If angle of ray separations is large, few rays penetrate the 

jth image element, i.e., the great majority of ’s become zero. As a result, few 

error terms contribute to the summation for the j

ijw

)(k

th image element. The idea behind 

SART is to reduce the background noise by averaging these contributions before 

correcting the output . An iteration of SART is completed when the rays in all 

views are processed. SART usually yields reconstructions of better quality and 

numerical accuracy than ART images [4]. The convergence speed is affected by 

view separation angles as analogous to the angular difference of rays in ART.  

ˆ j

2.3.3 Numerical Illustrations 

 The real image shown in Fig. 2.2(a) is recovered from different number of 

measurements used in the FBP experiment. The images reconstructed by ART and 

SART as a result of a single iteration are shown in Fig. 2.4 and Fig. 2.5, 

respectively. In both cases, the initial estimates started from the zero image. The 

relaxation parameters were updated according to λ(k+1) = r×λ(k) where r = 0.95 and 

λ(0)=0.9. Although it is not easy to realize the visual improvements on the quality of 

reconstructed images by SART, they have slightly higher PSNRs than those 

reconstructed by ART. The slight difference is due to large angle of ray separations. 

The X-ray point source which is located at d = 1.5×256×√2 in relative to pixel 

width away from the object center emits X-rays separated by γ = 2×(π/7)/(m/L-1) 

radians. Assuming the object has elements of unity length, two successive rays 

crosses the same image element closest to the point source only when                  

tanγ < 1/(d-128), meaning that the number of rays used in a view, m/L, should be 

greater than or equal to 374. In fact, it is the least amount and usually many more 

rays than that are preferred in practice. Therefore, the background noise reduction 

characteristic of SART can be realized for recoveries in the last column of Fig. 2.5 

when compared to the corresponding images in Fig. 2.4. 

 When the number of iterations is increased tenfold, better recoveries are 

obtained as shown in Fig. 2.6. In this particular case, the PSNR improvement is 
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          (a)         (b)      (c) 
 
 
 
 
 
 
 
 
 
 

          (d)         (e)      (f) 
 
Fig. 2.4: Images reconstructed by ART (k = 1). The original image is shown in Fig. 
2.2(a). The following images are recovered from (a) m = 3840 measurements (30 
views × 128 rays/view), (b) m = 7680 measurements (30 views × 256 rays/view), 
(c) m = 15360 measurements (30 views × 512 rays/view), (d) m = 23040 
measurements (180 views × 128 rays/view), (e) m = 46080 measurements (180 
views × 256 rays/view), (f) m = 92160 measurements (180 views × 512 rays/view). 
The system settings in all recoveries are d = 1.5×256×√2, βmin = -π/2, βmax = π/2, 
γmin = -π/7, γmax = π/7. 
 
 
 

approximately 5 dB in both ART and SART reconstructions. Further iterations lead 

to gradual improvements at the expense of linearly increasing reconstruction time.  

 Our final remark is about the recoveries via FBP and iterative techniques: The 

FBP recoveries in Fig. 2.2 have lower contrast resolution than those in Fig. 2.4 and 

Fig. 2.5. On the other hand, the spatial resolution provided by FBP is acceptable, 

and when the reconstruction speeds are considered, FBP is more attractive than the 

iterative techniques. While the reconstruction time required by ART or SART, in 
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          (a)         (b)      (c) 
 
 
 
 
 
 
 
 
 
 

          (d)         (e)      (f) 
 
Fig. 2.5: Images reconstructed by SART (k = 1). The original image is shown in 
Fig. 2.2(a). The following images are recovered from (a) m = 3840 measurements 
(30 views × 128 rays/view). (b) m = 7680 measurements (30 views × 256 
rays/view). (c) m = 15360 measurements (30 views × 512 rays/view). (d) m = 23040 
measurements (180 views × 128 rays/view). (e) m = 46080 measurements (180 
views × 256 rays/view). (f) m = 92160 measurements (180 views × 512 rays/view). 
The system settings in all recoveries are d = 1.5×256×√2, βmin = -π/2, βmax = π/2, 
γmin = -π/7, γmax = π/7. 
 
 
 

particular, extends to an hour, FBP has much higher reconstruction speed; 

completes its operation in a few seconds. 

 
 
 
 
 
 
 
 
 

 22



 
 
 
 
 
 
 
 
 
 
 
 

    (a)          (b) 
 
 
 
 
 
 
 
 
 
 
 
 

    (c)          (d) 
 
Fig. 2.6: Images reconstructed by iterative techniques (k = 1, 10). m = 15360 
measurements (30 views × 512 rays/view) are used by (a) ART (k = 1), (b) ART    
(k = 10), (c) SART (k = 1), (d) SART (k = 10).  
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CHAPTER 3 
 
 

COMPRESSED SENSING 
 
 
 

3.1  Introduction 

 CS enables the accurate recovery of signals, images, and other data from much 

fewer samples than those obeying the Nyquist criterion [68]-[69]. There are two 

crucial observations in the CS framework. The first is that most objects we are 

interested in acquiring are sparse or compressible in the sense that they can be 

encoded with just a few numbers without much numerical or perceptual loss. The 

second observation is that the useful information content in sparse or compressible 

signals can be captured via sampling or sensing protocols that condense signals into 

a small amount of data. Surprisingly, many such protocols do nothing more than 

linearly correlate the signal with a fixed set of signal-independent waveforms. These 

waveforms, however, need to be incoherent with the family of waveforms in which 

the signal is compressible. One then typically uses numerical optimization to 

reconstruct the signal from the linear measurements of the form, 

bAx       (3.1) 

which is an underdetermined system of equations. Having the measurements b and 

the acquisition model A, the aim is to find a solution for the unknown x. The least-

squares solution to such problems is to minimize the l -norm2 , i.e., the minimization 

of the amount of energy in the system. This is usually simple mathematically, 

involving only a matrix multiplication and pseudo-inversion. However, this leads to 

poor results for many practical applications for which the unknown elements have 

nonzero energy. To enforce the sparsity constraint when solving for the 

underdetermined system of linear equations, one can minimize the number of 

nonzero components of the solution. Recall that the function counting the number of 
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non-zero components of a vector is called the l0-norm. Solving the problem of l0-

norm minimization usually requires combinatorial optimization. Donoho [41] 

proved that for many problems it is probable that l1-norm is equivalent to l0-norm in 

a technical sense: This equivalence result allows one to solve the l1 problem, which 

is easier than the l0 problem. Finding the candidate with the smallest l1-norm can be 

expressed relatively easily as a linear program for which efficient solution methods 

already exist [70]. 

3.2 The Theory of CS 

 Suppose s is an unknown vector (a discrete time signal) in RN and compressible 

by transform coding using a known transform (e.g., wavelet, Fourier). All we have 

about s are m linear measurements of the form 

symksy kk  or        ,...,1   ,     (3.2) 

where φkRN are known measurement vectors. The CS theory [41] asserts 

reconstructing s using these m observations under certain assumptions. Of special 

interest is the vastly underdetermined case, mN, where there are many more 

unknowns than observations.  

 Let Ψ be an N×N unitary transformation matrix with basis vector ψi as the ith 

column. Suppose that s has a sparse representation in basis ψi, meaning that K most 

important coefficients in the representation allow a reconstruction with l2 error, 

  
22 KKss      (3.3) 

where ς is the transform coefficient vector, ςK is the vector of K most important 

coefficients appearing in ς and zeros elsewhere, and sK is the reconstruction from 

ςK. In this framework, s is said to be compressible when the error ||s-sK||2 is less 

than a tolerable noise level ε. It is possible to reconstruct s from m = O(Klog(N)) 

measurements through (3.2) with accuracy comparable to that which would be 

possible if the K most important coefficients of s were directly observable [41]. 

Moreover, a good approximation to the K important coefficients can be extracted 

from the m measurements by solving the convex optimization problem: 
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yx      xΨ
x

Φsubject tomin
1

T     (3.4) 

provided that the matrix ФRm×N obeys the uniform uncertainty principle (UUP) 

[46] or equivalently the restricted isometry property (RIP) [71]. In words, we seek 

an x having coefficients ξ = ΨTx with smallest l1-norm that is consistent with the 

information yk = Ψ Ts, φk  . In transform domain, a good approximation to ςK can 

also be sought explicitly by solving 

y


   subject to   min
1

    (3.5) 

When the sought vector itself is exactly K-sparse, meaning that only K of its 

elements are non-zero, an almost exact recovery from the m measurements is 

possible with minimum l1-norm,  

yxx
x

   subject to   min
1

     (3.6) 

 In most practical situations, observations are imperfect, i.e., measurements are 

noisy: y = Фs + e. It is assumed that the perturbation is bounded by a known amount 

||e||2 < ε. Having inaccurate observations and incomplete information, a stable 

recovery of sparse s is possible by solving 


21

   subject to   min yxx
x

    (3.7) 

When s is compressible, x in the l1-norm minimization problem is replaced by ΨTx 

and    is set so as to bound the error in (3.3) as well [68]. 

 It is compulsory to design a measurement matrix that obeys UUP or RIP in 

(3.4)-(3.7) for a good recovery. It is notable to say that random matrices with 

independent identically distributed entries, matrices with rows from the discrete 

Fourier transform matrix, and more generally matrices with rows from an 

orthonormal matrix obey such properties [46]. Depending on the obedience of Ф, 

the success of a recovery, i.e., the approximation to s (or sK) is a probabilistic issue 

[47]. It may be necessary to get more measurements than the theory suggests in 
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order to fetch useful information content in ς (or ςK). For practical purposes, the 

probability of failure is zero [68] as long as m is sufficiently large.  

3.3 Intuitive Examples of CS and Applications 

 Let  be a reconstruction for s (either sparse or compressible) with constraint     

y = Φs or y = Φs+e. A popular choice for  is the solution of the least norm, 

2
min yx

x
        (3.8) 

i.e., (ΦTΦ)-1ΦTy. Given the constraint, the CS based approach extracts the one which 

is the most sparse (or the most compressible in the case of compressible s) among 

all solutions in the set {Null(Φ) + } where Null(Φ) denotes the null space of Φ. As 

an illustration, consider the cases listed in Table 3.1: 20-sparse and compressible 

signals are recovered from compressive measurements. Both signals have equal 

length 512 and norm 4.47. Entries of ΦR128×512 are selected from N(0,1) 

distribution, i.e., zero mean Gaussian ensembles with unit variance (σ2 = 1). The 

noise pattern in the measurements is additive: yk =  s, φk   + ek with ek ~ N(0, 

0.25). Table 3.1 also summarizes the recovery errors in different configurations.  

 For noisy configurations,  is 6.32, a little bit larger than the error norm,        

||e||2 = 5.58; the SNR values, ||Φs||2/||e||2, are 9.08 and 9.27, respectively in the 1st 

and 2nd rows of Table 3.1. The same signal is used in all sparse cases. The 

recoveries shown in Figs. 3.1 and 3.2 are consistent with the error results. Namely, 

the least norm solution in Fig. 3.1(b) does not provide a reasonable approximation 

to the desired s. Fig. 3.1(c) shows an almost perfect recovery of the 20-sparse signal 

in the noiseless case. Even with significant noise perturbations, (SNR: 9.08 ≡ ~19.1 

dB, 9.27 ≡ ~19.3 dB), the CS based solutions provide good approximations to 

significant terms in Fig. 3.1(d) and Fig. 3.2(b).  
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Table 3.1: 1-D signal recovery errors, ||  - s||2. 
 

case solution of ||  - s||2 

20-sparse, noisy (13) 1.08 
compressible, noisy (13) 0.95 
20-sparse, noiseless (12) 1.69×10-5 
20-sparse, noiseless (14) 3.87 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c)      (d) 
 
Fig. 3.1: 1-D sparse signal reconstruction. (a) Original sparse signal. There are         
K = 20 non-zero coefficients taking values ±1. (b) Minimum error norm solution 
from noiseless measurements by using ФT(ФTФ)-1y. (c) Sparse signal recovered 
from noiseless measurements by l1-norm minimization in (3.6). (d) Sparse signal 
recovered from noisy measurements (σ = 0.5) by l1-norm minimization in (3.7). 
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(a)      (b) 
 
Fig. 3.2: 1-D compressible signal reconstruction. (a) Original compressible signal. 
(b) Compressible signal recovered from noisy measurements (σ = 0.5) by l1-norm 
minimization in (3.7). 
 
 
 

 Extension of the 1-D CS based reconstruction examples to 2-D signals or 

images is made simply by representing images as a single column vector provided 

that the images have good sparse representations. Many natural images are not 

sparse, but they are compressible in the sense that they have concise representations 

when expressed in the proper basis. The selection of basis is important to exploit the 

compressibility of an image. For example, consider the 256×256 non-sparse head 

phantom image shown in Fig. 3.3(a) and some of its representations in Fig. 3.3(b)-

(d). The gradient magnitude image (GMI) which is defined by the l2-norm of its 

discrete gradient is the most compressible representation. It has less number of 

terms that are closer to zero as compared to other transform coefficients (see Fig. 

3.4). Having the least l1-norm, the vector of GMI is utilized in (3.6) to recover the 

original image from few Fourier measurements:  

yxFg rx
x

)(   subject to   min
1

    (3.9) 

where gx is the GMI of xR256×256 in vector form and Fr(●) is the row deficient 

Fourier operator. The data acquisition matrix ΦR5482×65536 which consists of a 

randomly shifted delta spike in its rows is inherent in Fr(●). yR5482 whose 

distribution is shown in Fig. 3.5(a) is the vector of under-sampled Fourier 
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       (a)            (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)            (d) 
 
Fig. 3.3: Sparse representations of the phantom image. (a) 256×256 synthetically 
generated head phantom image. (b) Imaging of (Haar) DWT coefficients. It is 4765-
sparse. (c) GMI. It is 2184-sparse (d) Imaging the DCT coefficients. All coefficients 
are non-zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4: Plot of the magnitude sorted coefficients in Fig. 3.3(b)-(d). The l1-norm 
values are 2985, 1460 and 4137 for DWT, GMI and DCT, respectively. 

magnitude 

index 
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       (a)            (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)            (d) 
 
Fig. 3.5: CS reconstruction of the phantom image. (a) The sampling pattern of 
Fourier coefficients on 2-D Fourier space. The display area is [0, 2π) × [0, 2π). Only 
the sampled coefficients are used for recoveries in (b)-(d). (b) Image recovered from 
noise-free Fourier coefficients by using l1-norm minimization in (3.9). (c) Image 
recovered from noisy Fourier coefficients (σ=5×10-3) by using l1-norm 
minimization in (3.10) (ε=1). (d) Image recovered from noise-free Fourier 
coefficients by inverse FT. 
 
 
 

coefficients of x. An almost perfect recovery shown in Fig. 3.5(b) is obtained by 

solving (3.9). When y is perturbed by an additive Gaussian ensemble with          

N(0, 25×10-6), the stable recovery shown in Fig. 3.5(c) is obtained through 


21

)(   subject to   min yxFg rx
x

   (3.10) 
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Even with noisy coefficients, the CS solution has better visual quality than the 

noise-free solution of the inverse Fourier transform shown in Fig. 3.5(d). Table 3.2 

summarizes the PSNR values in recoveries for different noise power and error 

bounds in (3.10). No stable recovery is obtained for the parameter settings 

corresponding to the striped cells. 

 
 

Table 3.2: PSNRs (dB) of the 2-D signal recoveries. 
 

σ↓, ε→ 0.05 0.5 1 2 4 
5×10-4 96.16 92.11 89.95 87.01 83.22 
5×10-3  88.59 87.59 85.30 82.22 
5×10-2     76.48 

 
 

 The examples above essentially serve the purpose of giving insights about the 

CS theory and its applications. A large collection of resources where CS has been 

studied from both theoretical and practical standpoint can be found in 

http://dsp.rice.edu/cs. Similar to our image reconstruction example, the initial 

applications in MRI [48]-[51] are based on recovering from few Fourier coefficients 

in k-space. In addition to GMI, they include studies considering image 

representations in wavelet and Fourier domains. More recently, the sparsity of CT 

images has also been exploited in image reconstruction algorithms [52], [54], [57], 

[59], [62]. Both the data acquisition system which is expected to provide incoherent 

measurements and the image reconstruction algorithm having high convergence 

speed are crucial for integration of CS into CTI systems. Regarding these issues, we 

discuss the recent modalities in the next Chapter before proceeding with the 

proposed algorithms. 

http://dsp.rice.edu/cs


CHAPTER 4 
 
 

COMPRESSED SENSING BASED  
COMPUTERIZED TOMOGRAPHY IMAGING 

 
 
 

4.1 Compressed Sensing for CT Imaging 

 Using less than 10% of the coefficients, the CS solution reveals a significant 

improvement over the recoveries from 2-D inverse Fourier transform. In a CTI 

system, we are supplied with projection data only, not the Fourier samples of the 

original image. At first glance, it can be thought that the 2-D Fourier space can be 

filled by the coefficients of view projection data with the aid of Fourier Slice 

Theorem (FST) [4]. The acquired data has the fidelity 

      (4.1) CWxF )( 

where F is the Discrete Fourier Transform (DFT) operator, and C is the vector of 

DFT coefficients of pi’s. The overall measurement system F(W●) operates on x in 

the following order:  

 1) compute pi’s for each parallel beam, 

 2) compute DFT coefficients of pi’s in each beam.  

 The F(W●) operates similar to Fr(●) in (3.9) since WRm×N is a row deficient 

matrix. The DFT coefficients constitute radial samples on the 2-D Fourier space. 

These samples can be considered as random measurements from the original image 

if view angles are aligned randomly. Defining the data acquisition system as the row 

deficient Fourier operator is reasonable in the sense that the forward/backward Fast 

Fourier Transform (FFT) routines are available in a regular coordinate system and 

few Fourier measurements suffice for recovery. The processing load and time are 

reduced by using FFT routines without creating large DFT matrices explicitly. To 
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exploit FFT algorithms, however, Fourier measurements should be mapped into the 

regular rectangular system. The estimation of Fourier samples on the rectangular 

system is error prone due to interpolations. It is possible to keep error at a lower 

level if the 2-D forward/backward Fourier transform is defined directly on the polar 

system and conversion to the rectangular system is avoided. However, there is no 

such a well defined transformation on the polar coordinate system as far as we 

know. Since the density of radial points becomes sparser as one gets farther away 

from the center, the interpolation error also becomes larger. This implies that there 

is greater error in the calculation of high frequency components in an image than in 

low frequency ones. To reduce the interpolation errors, the sampling rate along the 

radial and angular directions should be high enough. However, the high sampling 

rate requires using more beams and/or rays at the expense of high radiation 

absorption.  

 Instead of employing an effective interpolation method or searching a suitable 

FFT routine for the polar coordinate system, only W can be used in  

       (4.2) PWx 

which is the same as equation (2.3). Dropping DFT operator out of (4.1) does not 

violate incoherence which says that unlike x the sensing waveforms have very dense 

representation in a sparsifying domain such as GMI. The stack of noise-like row 

vectors of W forms a random measurement matrix such that the sparsity basis need 

not even be known [68], [72]. Therefore, it is possible to have a good recovery with 

the CS based solution to  

PWxgx
x

   subject to   min
1

    (4.3) 

If the projection data P is contaminated, the data fidelity is relaxed by ||Wx-P||2  . 

If the number of rows obeys  

 NKOm log      (4.4) 
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then with probability very close to one W obeys UUP [73]. That is to say, while x is 

entirely concentrated on a small set in the sparsifying domain, it is spread out more 

or less evenly in the measurement domain. The number of measurements that we 

need to reconstruct an image depends on how different the two domains are. For 

example, more than 10520 rays are required to reconstruct the image in Fig. 3.3(a) 

by minimizing the l1-norm of its GMI. If the number of rays is kept constant at 512, 

very few numbers of beams seem to suffice. Most practices including our numerical 

studies, however, necessitate more views than the theory suggests.  

 Switching from (4.1) to (4.2) has the following benefits: 1) The interpolation 

errors imposed by polar to rectangular conversion are avoided. 2) Contrary to the 

necessity of handling the imaginary parts of DFT coefficients, we are free to use up 

our quota for the number of measurements by getting all real and only desired 

projections. 3) W can be formed for any scanning configuration including the 

common fan beam projection. (It is not limited to the parallel beam.) 

 The l1-norm of GMI is commonly known as the TV of the reconstructed image: 

  
cr

crcrcrcr xxxx
,

,1,,,1

22
    (4.5) 

where r and c denote the image pixel coordinates at row and column axes, 

respectively. Simply denoting (4.5) with the TV-norm, (4.3) can be equivalently 

expressed as 

PWxx
x

   subject to   min
TV

    (4.6) 

The following sub-sections discuss the recently introduced CS based algorithms that 

try to seek an x having the minimum TV and being subject to the constraint dictated 

by (4.2). 

4.2 POCS Based Solution 

 The originally proposed ASD-POCS algorithm [59] solves the optimization 

problem (4.6) with an extension of the constraint x ≥ 0. It alternates an iteration of 
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POCS with the steepest-descent step, while adapting the steepest-descent step-size 

to ensure that the image constraints are satisfied. POCS and ASD run consecutively 

in the following manner: 1) POCS enforces non-negativity and ensures data 

consistency that estimated image satisfies the measurements by a tolerable distance, 

i.e., ||Wx-P||2  . 2) ASD nudges the image toward the minimum-TV solution by 

changing the gradient-step-size λasd adaptively. POCS followed by ASD defines a 

single iteration of the ASD-POCS algorithm. The iterations cease when various 

controls pass: the optimality conditions derived from the necessary Karush-Kuhn-

Tucker conditions are satisfied (see Section 2.3 of [59]); the distance to projection 

data is negligible or the POCS step size, λart (also called the ART relaxation-

parameter), is too small. The steps of ASD-POCS algorithm are summarized below: 

Method III:  Pseudo code for ASD-POCS algorithm 
1 initialize λart, λasd, rart, rasd, rmax, r, ε, x  
2 repeat until stopping criteria is satisfied 
3 f0 ← x 
4 x ← compute ART with POCS step size λart 
5 xj ← 0 if xj < 0, j  
6 λart  ← λart · rart 
7 return x if last iteration 
8 dp ← ||f - x||2 

9 dd ← ||Wx - P||2 

10 f0 ← x  
11 λasd ← dp · r, if 1st iteration  
12 x ← compute steepest-descent with step-size λasd 
13 ds ← ||f0 - x||2 

14 λasd ← λasd · rasd, if (ds / dp) > rmax and dd > ε 
15 end 

 

 The image vector f0 at lines 3 and 10 is used as a place-holder image in order to 

compute changes in the image after POCS and ASD steps. The sets of lines {4, 5, 

6} and {11, 12, 14} correspond to execution lines of POCS and ASD, respectively. 

At line 4, POCS employs ART which is working simply based on Kaczmarz-

method (see Chapter 7 of [4]). The number of ART iterations is controlled by λart 

which is decreased steadily by rart < 1 at line 6. False image elements are negated at 

line 5. Line 10 initializes the steepest-descent step-size with the aid of a multiplier   

r < 1 in the 1st iteration. Lines 12 and 14 are used to implement the steepest-descent 

algorithm and to adapt its step-size, respectively. The number of ASD iterations, 
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nsd, is determined based on the product nsd×r which is expected to be greater than or 

equal to 1 in order to make the change in the image due to the steepest-descent, ds, 

and the change in the image due to POCS, dp, are comparable. The adaptation rule 

is steadily decrease the steepest-descent step-size by rasd < 1 when the ratio of ds to 

dp is greater than rmax ≈ 1 except when the data residual computed at line 9 remains 

within the tolerance, ε. Once the current image satisfies the data-tolerance condition, 

the steepest descent step-size is not reduced any more. Therefore, it is allowed to 

become larger than POCS step-size, because POCS step-size decreases always as 

iterations proceed. As a result, the image drifts more toward the lower-TV images. 

This adaptation balances the POCS and steepest-descent steps in a controlled 

manner and lets the algorithm converge faster than those not having this balance 

[52]. ASD-POCS ensures the constraints by retaining the convergence properties of 

ART [74]. Given the set of images complying with these constraints, the algorithm, 

however, does not guarantee the minimum-TV image. The solution of the 

constrained TV-minimization problem depends on the initialization of the 

parameters at line 1. If the optimality conditions are violated, it should be rerun with 

new parameters.  

 There are some advantages coming with using ASD-POCS. Varied constraints 

and alternative methods are easily incorporated. For example, POCS steps can be 

extended by additional physical constraints to image non-negativity. The ART 

operator can be substituted entirely by superior techniques such as SART [56], [75]. 

ASD steps can be tailored to simply use a small constant step-size [54] or a step-

size computed by back-tracking line-search. ASD can be also replaced by more 

effective gradient-descent methods. Another advantage of ASD-POCS is its 

usability to solve large linear systems. It does not require explicit knowledge of the 

system matrix. Only a row vector of WRm×N is processed at each iteration of ART. 

If the gradient of TV-norm needed by ASD is approximately computed by 

TV

1,,11,,1,

TV
, x

x
x

crcrcrcrcr

cr

 )4( xxxxx   





   (4.7) 

no matrix-vector multiplication except the residue at line 9 remains in Method III.  
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 Assuming the main loop of ASD-POCS ends up with kp iterations, the total 

number of operations (multiplication and addition) is of the order O(kp(m+nsd)N). 

The processing load is dominated by ART since m is usually greater than nsd. 

Although ART is conceptually simpler than FBP, it lacks speed of implementation. 

Similarly, despite its simplicity, the steepest-descent method has also low 

convergence rate. Therefore, the slow convergence speed is the major drawback of 

the ASD-POCS algorithm. 

4.3 Fourier Transform Based Solution 

 Fourier transform based algorithm brings the projection data into the image’s 

Fourier space, ensuring the consistency of the transformed projection data with the 

reconstructed image’s Fourier transform. Mathematically, 


2

)( CxFr      (4.8) 

where Fr(●) and C are, respectively, as defined in (3.9) and (4.1). Having the same 

spirit with ASD-POCS, Fourier transform based algorithms that we call ASD-FT 

hereafter, consist of two major steps: ASD and FT. It minimizes the image TV 

reckoning with the constraints (4.8) and  

0)Im(     ,0)Re(  xx     (4.9) 

in the following manner: 1) FT enforces constraints (4.8)-(4.9) and ASD reduces the 

total variation of the reconstructed image, 2) FT and ASD alternate inside the main 

loop of the algorithm. The major difference of ASD-FT as compared to ASD-POCS 

is the inspection of data consistency in the Fourier space. In particular, lines 4, 5 and 

9 in Method III are replaced by the corresponding lines in Method IV. 

Method IV:  Pseudo code differing in ASD-FT. 
4.1 X ← compute image transform, F(x)  
4.2 Xr ← C 
4.3 x ← compute inverse transform, F-1(X) 
5.1 xj ← 0 if xj < 0, j  
5.2 xj ← 0 if Im(xj)   0, j  
9 dd ← ||Fr(x) - C||2 
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 The FT consists of the five sub-steps at lines 4.1-5.2 in Method IV. At line 4.1, 

the Fourier transform coefficients of the current estimate are computed. Being a 

reduced set of X, Xr represents the set of transform coefficients only at frequencies 

corresponding to the locations on Fourier space of the transform coefficients in C. 

The elements of Xr are replaced by corresponding elements of C at line 4.2, 

enforcing the data consistency given by (4.8). The image estimation is updated by 

inverse Fourier transform at line 4.3. These ordered sub-steps, i.e., (4.1)-(4.3) 

correspond to ART computation in Method III. Positivity and realness of image 

elements are satisfied at lines 5.1 and 5.2, respectively. The POCS step-size in 

Method III may optionally be used in ASD-FT as a relaxation parameter at line 4.2: 

Instead of direct substitution of elements in Xr and C, the value of λartC + (1-λart)Cc 

can be assigned to Xr [57]. (Cc represents the Fourier transform coefficients of the 

projection of current estimate.) The data residual is computed at line 9 where Fr(x) 

gives new Xr as a consequence of the FT step.  

 39



 Due to the parallelism between the steps of ASD-FT and ASD-POCS, the 

advantages discussed in Section 4.2 are shared with ASD-FT as well. Moreover, the 

use of FFT routines at lines 4.1 and 4.3 reduces operations in data consistency steps 

and accelerates the convergence speed. Assuming kf iterations are performed in the 

main loop, the total number of operations are of the order O(kf(log2N+nsd)N) 

(usually N 2m). Despite the acceleration in the implementation, ASD-FT suffers 

from the mismatched samples of Fr(x) and C. For example, in non-diffracting 

parallel beam CT, FST places the transform coefficients of the projection data along 

the radial lines over the image’s Fourier space. The linear imaging model is 

appropriate for this particular case and C obeys exactly (4.1). In diffraction 

tomography [57], on the other side, the transform coefficients are placed along 

semicircles rather than straight lines by Fourier diffraction projection theorem [76]. 

Since the contribution proportion of each image element to projection data is not 

explicit, C should be rather expressed by F(P) instead of F(Wx). The critical issue in 

computing ||Fr(x) - C||2 is to match the samples of Fr(x) and C accurately. 

Considering the discussions on interpolations in Section 4.1, the best matching 

samples should be corrected to improve the data consistency. Otherwise, solutions 

of ASD-FT show higher degradations than FBP. 



CHAPTER 5 
 
 

SECOND ORDER CONE PROGRAMMING 
 
 
 

 The integration of CS theory within the CT imaging system has been discussed 

in Chapter 4, and the recently introduced POCS and FT based algorithms have been 

gone over in this regard. Generally speaking, these algorithms have two parts 

running independently and sequentially in a repeated manner. While data fidelity to 

the constraints is satisfied in the first part, a lower TV image, i.e., a sparser gradient 

image representation is sought in the second part. Since the only interaction 

between them is using the one’s output in the other, the reconstruction speeds are 

not as high as desired. In this chapter, we reformulate the original problem as 

second order cone programming and solve it via a generic logarithmic-barrier 

method. This scheme allows minimizing an unconstrained problem alone while 

staying inside the feasible region as iterations lead to the optimum solution. 

Therefore, it allows a closer approach to the solution rapidly than offered by other 

CS based algorithms. 

5.1 General Perspective 

 A second order cone program (SOCP) is a convex optimization problem of the 

form, 

NjdxcbxAxf jjjj
x

,...,2,1    ,  subject to  min
2

 TT



 n

  (5.1) 

where xRN is the optimization variable, and the problem parameters are f  RN, 

Aj
NjR , bj jn

R , cj NR , and djR. The constraint 

jjjj dxcbxA 
2

T       (5.2) 

 40



is called the second order cone constraint of dimension nj-1. The SOCP (5.1) is a 

convex programming since the objective is a convex function and the constraints 

define a convex set [77]. 

 Second order cone constraints can be used to represent several common convex 

constraints. For example, when Aj = 0 for j = 1,2,…,N, the SOCP reduces to a linear 

program (LP). When cj = 0 for j = 1,2,…,N, the SOCP is equivalent (assuming        

dj ≥ 0) to the convex quadratically constraint quadratic program (QCQP), 

NjdbxAxf jjj
T

x
,...,2,1    ,  subject to  min 2

2


2

 Nn j

   (5.3) 

Many other nonlinear convex optimization problems can be reformulated as SOCP 

[77]-[78]. A special kind of these problems is that involving sums of norms. For 

Fj R  and gj
n jR , the unconstrained problem 

 
j

jj
x

gxF
1 2

min
N

 N

      (5.4) 

can be expressed as a SOCP by introducing auxiliary variables, tj R  

NjtgxFt jjj
j

j
x

,...,2,1    ,  subject to  min
21




N
   (5.5) 

Other second order cone constraints can be incorporated in problem (5.5), e.g., 

linear equalities on x. In the next subsection, we reformulate the TV minimization 

problem as SOCP. 

5.2 Problem Reformulation 

 It is possible to solve problem (4.6) after recasting it as SOCP, 

PWx

uxDu jj
j

j
xu





                                 

  subject to  min
2,      (5.6) 
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where the index j = 1,2,…N stands for the jth image element and holds the row and 

column indices (r,c) implicitly. The 2-vector Djx can be interpreted as a kind of 

discrete gradient of the image vector x at the (r, c) pixel: 





 












crcr

crcr

vj

hj
j xxxD
xD

,1,

,,1   xxxD
      (5.7) 

where the row vectors, Dhj and Dvj, act as horizontal and vertical difference 

operators for the jth pixel, respectively. The norm ||Djx||2 represents the gradient 

magnitude or the image variation at the jth pixel. If the measurements are polluted, 

(5.6) is replaced by 





PWx

uxDu jj
j

j
xu

                                 

,  subject to  min
,      (5.8) 

where ε ≥ 0 helps numerical convergence as in ASD-POCS and ASD-FT, and uj ≥ 0 

represents the jth entry in vector uRN. The objective is a function of (x,u). Its 

dependency on x can be seen more clearly if the objective is written as the inner 

product, [0T  1T][xT  uT]T. The use of a single vectorial variable for [xT  uT]T requires 

Dh, Dv, and W matrices to be appended by zeros. To get rid of unnecessary matrix 

vector multiplications, it is rather preferred to keep current variables and write the 

objective as 1Tu. One straight-forward technique to solve SOCP is to implement it 

using a log-barrier method [70]. The standard log-barrier method combines the 

inequality constraints with the objective by utilizing a penalty function of the form –

log(–f(x)) which is infinite when the constraint f(x)0 is violated. Using the penalty 

function, SOCP (5.6) turns out to be a linear constraint program (see Appendix B 

for details). It is further recast as an unconstrained program by incorporating the 

Lagrange multipliers vRm with the linear constraint Wx = P, 

 







 





  PWxvxDufu T

j
jjk

T

xu

2

2,
)(

2

1
log

1
-1min


    (5.9) 

The incorporation of all inequality constraints into the objective in (5.8) also makes 

it a generic unconstrained program, 
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


 (5.10) 

The functional fj(u) is uTδjδj
Tu, giving the scalar value uj

2; and δj is the Kronecker 

vector that is 1 at the jth entry and zero elsewhere. As the log-barrier iterations, k, 

proceed, τk τk-10 gets larger, ensuring the solution to (5.9) and (5.10) to approach 

the solution of (5.6) and (5.8), respectively (see §11.2.2 in [79]).  

5.3 Solution Algorithm 

 At each log-barrier iteration, a series of quadratic approximations to the 

objective in (5.9)-(5.10) is minimized based on the Newton’s method, which is 

again iterative. The exception is that the Lagrangian term is not included in the 

quadratic approximation to the objective in (5.9). A set of linear equations as a 

result of the minimization of quadratic approximations is solved to find the Newton 

step-direction. It might be necessary to modify the step-size to stay inside the 

feasible region defined by the inequality constraints. If a sufficient decrement is not 

achieved with optimal step-size, the set of equations, or equivalently the quadratic 

approximations, are updated using the current (x,u) value for the next Newton 

iteration. The derivations leading to the set of linear equations are mathematically 

intensified. A very good introduction of the key mathematical insights can be found 

in [70], and an explicit presentation of details is ranked in Appendix B. In order to 

present the solution algorithm plainly, only the major steps of the complete log-

barrier implementation are summarized in Method V.  

Method V:  Pseudo code for the log-barrier algorithm. 
1 initialize τ1, r, kb, ε, nnw, x, u  
2 repeat for index k ← 1 to kb 

3 repeat until ||f0 - f(x, u)||2  ε  
4 f0 ← f(x, u) 
5 (H, h) ← compute linearized system parameters 
6 (Δx, Δu) ← compute Newton step-direction  
7 λnw ← compute Newton step-size 
8 (x, u) ← (x+ λnwΔx, u+ λnwΔu) 
9 end 
10 τk ← r·τk 

11 end 
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 Method V is given as a common algorithm for both (5.9) and (5.10). The outer 

and inner loops are designed for the log-barrier and Newton iterations, respectively. 

The number of log-barrier iterations, kb, is calculated in advance using the relation 

 (see §11.5.3 in [79]) where  /r N bk N   is the number of inequality constraints, 

either N or N+1 depending on the problem (5.6) or (5.8), and r 1 is a multiplicative 

constant increasing τ


k in succeeding iterations at line 10. The functional f at line 4 

gives the value of objective function without the Lagrangian term. The scalar f0 is 

used as a placeholder cost in order to compute the Newton decrements at line 3. The 

set of equations is expressed in closed form, Hz=h, where H has sizes of 

(2N+m)×(2N+m) and 2N×2N, respectively, for the problems (5.9) and (5.10). It is 

symmetric in both cases but not necessarily positive definite. Depending on the 

system characteristics, either SYMMLQ [80] or CG [65] method is employed at line 

6 to solve Hz=h iteratively for z = [ΔxT ΔuT vT]T, where v is nonexistent in case of 

(5.10). Considering the possibility that unit step-length along [ΔxT ΔuT]T, i.e., the 

Newton step-direction, may violate the inequality constraints, an optimum step-size, 

λnw 1 that ensures the new point (x+sΔx, u+sΔu) to stay in the interior is searched 

at line 7. Newton iterations proceed until the decrement in the current iteration is 

less than a predefined tolerance, ε, or additionally the maximum number of 

iterations, nnw is completed.  

 The log-barrier algorithm is efficient for achieving very good solutions in 

polynomial time [62]. Its outer loop does not change with the increased number of 

measurements, m, but the number of CG iterations and its operation time. Most of 

the processing time is spent for solving Hz=h. Extra Newton iterations because of 

starting from an infeasible point also prolongs the convergence time. The 

elimination of Δu from z in the implementation reduces the problem size to 

(N+m)×(N+m) and N×N, respectively, for (5.9) and (5.10), which in turn relaxes the 

computations. Despite the elimination, the use of iterative techniques is still 

compulsory for large scale problems, e.g., N is 65536 for a typical 256×256 image 

and m maybe ~N/5. If c is assumed to be the number of SYMMLQ or CG iterations 

in one iteration of Newton’s method, the total number of operations required to 

solve the problems (5.9) and (5.10) are of the order O(kbnnwc(N+m)2) and 
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O(kbnnwcN2), respectively. Although complexity order of the log-barrier algorithm 

is higher than POCS or Fourier transform based methods, it is capable of 

converging faster to a better solution especially for small scale problems. Roughly 

speaking, kp nsd k  and b N  c m nsd  nnw  log2N. Considering the 

proportionality of m with N as well, the log-barrier algorithm takes the advantage of 

Newton’s method to end up with an accurate solution rapidly. When the problem 

size gets large, on the other hand, it suffers from huge matrix vector multiplications. 

The adverse effect of nested loops on convergence time becomes clearer. The 

auxiliary variables such as u and v also increase the problem size by a factor of two 

or more. Their involvement in mid-processing cannot be avoided completely even if 

the problem size is reduced. 

5.4 Experimental Results 

 The performance of the SOCP is investigated in three experiments: The first 

experiment (E1) aims to compare SOCP with conventional image reconstruction 

techniques. The second experiment (E2) aims to investigate the robustness of SOCP 

against additive white Gaussian noise. Finally, the third experiment (E3) aims to 

compare SOCP with other CS based solutions. The projection data are obtained 

using projection matrices that are constructed according to Method II in all 

experiments. PSNR is used as an objective quality measure in all recoveries. The 

displayed images are scaled arbitrarily for illustrative purposes. All algorithms are 

run on Intel® Core™ i7-2630QM CPU @ 2.00 GHz processor running 

Windows®7 OS. 

 In order not to be frustrated by long processing times or memory limitations due 

to large sized W, a 32×32 test image shown in Fig. 5.1(a) is used in E1 and E3. A 

large scale problem such as the reconstruction of the 256×256 head phantom image 

introduced in Fig. 3.3(a) is considered in E2 where the sparseness of W is utilized. A 

modified Hamming window is used in E1 to filter the projection data in the 

frequency domain.  
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           (a)   (b)             (c) 
 
Fig. 5.1: A 32×32 test image. (a) Original image. (b) Gradient magnitude image. It 
is 129-sparse. (c) Plot of the magnitude sorted coefficients in (b). Its l1-norm is 133. 
 
 
 

5.4.1 E1: Comparison with Conventional Techniques 

 E1 has two parts: The first one comprises the performance comparison of 

SOCP, FBP, and SART based on number of measurements. In the second part, the 

visual results are given for a certain number of measurements. As a consequence of 

the performance comparison, the quality of images with respect to the amount of X-

ray radiation absorbed plus the reconstruction times with respect to the number of 

rays used in the experiment are given in Fig. 5.2 and Fig. 5.3, respectively. The 

relation (2.7) was benefited with unity proportionality constant to estimate the 

amount of absorption. Our main observations on Fig. 5.2 are: 1) As more X-rays are 

used to yield more measurements, all reconstruction algorithms provide better 

solutions at the expense of increased radiation absorption in general; 2) Given a 

certain amount of radiation absorbed, i.e., a fixed number of rays, higher PSNR 

values are obtained for images reconstructed by SOCP. However, we observed in 

Fig. 5.3 that the lowest reconstruction speed belongs to SOCP. Since increasing the 

number of measurements causes the problem size to enlarge, the solution comes to a 

conclusion in a long period of time after performing a lot of operations. On the other 

hand, the reason of the fluctuation in Fig. 5.3 when L is changed from 13 to 17 is 

that if the measurements are too many, less Newton iterations suffice to come to a 

solution rapidly in a given log-barrier iteration. For example, in our experiment, 

totally 76 and 49 Newton iterations took place, respectively, for m = 13 × 32 and    
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17 × 32 measurements, until completing kb = 8 log-barrier iterations. In the latter 

case, additional Newton iterations do not provide significant decrements on the cost 

function. Therefore, it is allowed to exit from the Newton iterations earlier for time 

saving purpose. The total number of iterations realized in the first part of the 

experiment is given in Table 5.1. These recordings are consistent with the 

reconstruction times plotted in Fig. 5.3 such that both additional number of 

iterations and measurements cause the reconstruction time to increase. The Newton 

tolerance parameter, ε becomes the major factor on determining the number of 

Newton iterations required when the maximum allowable number, nnw, is high. The 

values nnw = 50 and ε = 10-3 used in E1 validated this fact.  

 
 

Table 5.1: The total number of Newton iterations in SOCP  
 

m (×32) 5 7 9 11 13 17 
number of iterations 36 49 48 65 76 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2: Plot of PSNR versus radiation absorbed (SOCP, FBP, and SART). The test 
image shown in Fig. 5.1 is reconstructed using m = L views × 32 rays/view 
measurements for L = {5, 7, 9, 11, 13, and 17}. While SART outer loop iterations is 
limited to 10, the maximum numbers of Newton and SYMMLQ iterations allowed 
in SOCP are fixed at 50 and 600, respectively.  
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Fig. 5.3: Plot of reconstruction time versus number of rays (SOCP, FBP, and SART 
(k = 10)). The test image shown in Fig. 5.1 is reconstructed using m = L views × 32 
rays/view measurements for L = {5, 7, 9, 11, 13, and 17}. While SART outer loop 
iterations is limited to 10, the maximum numbers of Newton and SYMMLQ 
iterations allowed in SOCP are fixed at 50 and 600, respectively. 
 
 
 

 The test images reconstructed from m = 8 views × 32 rays/view measurements 

in the second part of the experiment are shown in Fig. 5.4. While an almost perfect 

recovery is obtained via SOCP, FBP and SART solutions are not satisfactory. 

Although the solution of SOCP is obtained at the expense of a prolonged 

reconstruction time, neither FBP nor SART offers an almost perfect recovery in a 

moderate period of time. The performance of traditional techniques can be 

improved significantly only if a much larger data set is used. On the other hand, a 

high PSNR value (~97 dB) is attained for the recovery via SOCP after 68 Newton 

iterations in about 40 seconds. Although more iterations than recorded in                

m = 11 × 32 case are performed, less reconstruction time is required to get a better 

solution than the latter. Because the problem size is not very large in the former 

case, fewer operations were completed in a shorter period of time.  
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(a)       (b) 
 
 
 
 
 
 
 
 
 

(c)       (d) 
 
Fig. 5.4: Recoveries of the 32×32 test image. m = 256 measurements (8 views × 32 
rays/view) obtained from equiangular (full) scanning of the test image are used for 
all reconstructions. (a) Original test image. (b) Image reconstructed by FBP, PSNR 
= 55.95 dB. (c) Image reconstructed by SART (k=10), PSNR = 58.51 dB. (d) Image 
reconstructed by SOCP (c = 600), PSNR = 97.84 dB. 
 
 
 

5.4.2 E2: Robustness Test in Large Scale Problems 

 A CS based solution may require the size of W matrix to be as large as 20,000 × 

65,536 to typically recover a 256 × 256 image such as the head phantom shown in 

Fig. 3.3(a). The number of wij’s that is non-zero in a row of W can be up to 512, and 

therefore the total number of non-zero terms in W corresponds to a ratio of 1 to 128 

with respect to the image size. Keeping only these non-zero terms and their 

locations allows deallocating 99% of the memory as compared to case of keeping 

every row element. In this regard, we recover the phantom image considering both 

noisy and noiseless measurements in E2. A zero mean white Gaussian noise with 

variance 25×10-6 is used to contaminate m = 22 views × 256 rays/view 

measurements (SNR = ~77 dB) obtained from equiangular (full) scanning of the 

phantom image. The reconstructed image via SOCP is shown in Fig. 5.5(d). 
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       (a)             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)             (d) 
 
Fig. 5.5: Recoveries of the phantom image (SOCP and FT). (a) The sampling 
pattern of Fourier coefficients on 2-D Fourier space. The display area is [-π, π) ×     
[-π, π). (b) Image reconstructed by inverse FT using Fourier coefficients in (a). 
PSNR = 65.66 dB. (c) Image reconstructed by SOCP using m = 5632 measurements 
(22 views × 256 rays/view) from equiangular (full) scanning of the original image. 
PSNR = 101.6 dB. The number of SYMMLQ iterations is 5,000. (d) Image 
reconstructed by SOCP using m = 5632 noisy measurements (22 views × 256 
rays/view) from equiangular (full) scanning of the original image. PSNR = 85.56 
dB. The noise pattern is additive Gaussian with N(0, 25×10-6) characteristics. The 
data fidelity relaxation parameter, ε, is set to 5×10-3. The number of CG iterations is 
10,000. The maximum number of Newton iterations allowed is fixed at 50 in both 
(c) and (d). 
 
 
 

The noise-free solutions via SOCP and inverse FT are also given in Fig. 5.5. 

Although it is not feasible to get true Fourier coefficients of the original image, we 

exploit them to illustrate theoretically the best solution of FBP or SART. The 

Fourier coefficients are selected randomly on equally separated radial trajectories. 
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In fact, a better recovery than shown in Fig. 5.5(b) is possible by sorting the 

coefficients and then selecting the most significant ones. However, it would not be a 

fair comparison with CS based solutions since the measurements input to SOCP are 

not obtained using a special scanning pattern that are designed for providing 

significant information from the object. Under noisy circumstances, the 

reconstruction is performed using 10,000 CG iterations which is twice the number 

of SYMMLQ iterations in the noiseless case where c = 5000 is sufficient to 

decrease the residue reasonably such as below the same predefined value, e.g., 0.5, 

set in both cases. Increasing the noise power, however, necessitates more CG 

iterations to help reducing the residue. Although the noise contamination causes the 

contrast resolution to decrease slightly as perceived in Fig. 5.5(c) and (d), the 

recovery from noisy measurements via SOCP still outweighs the noise free solution 

of the inverse Fourier transform. Considering spatial and contrast resolutions, the 

difference between the recoveries in Fig. 5.5(b) and (d) can be realized clearly. It is 

also remarkable that less reconstruction time is spent for recovery from noisy 

measurements although more CG iterations are required. In noisy situation, the 

problem size can be reduced more, and therefore, fewer operations are performed as 

explained in Section 5.3.  

5.4.3 E3: Comparison with Other CS based Solutions 

 The solution of SOCP is compared with those of ASD-POCS, ASD-FT, and 

Davidon-Fletcher-Powel method (DFP). DFP is used for solving the following 

unconstrained reformulation of problem (4.6):  

 
2TV

)1(min    : UP PWxx
x

      (5.11) 

where 0< λ < 1 regulates the cost function such that depending on its value UP may 

turn out to be the minimization of either the TV-norm or the Euclidian norm of the 

residue completely. Employing the cubic interpolation method in its line search 

step, DFP is implemented with λ = 0.15. The implementations of ASD-POCS and 

ASD-FT were performed as described in Methods III and IV, respectively. 

Exceptionally, the true Fourier coefficients which have been computed analytically 
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once from the original image are used in place of the coefficients of the estimated 

images. Therefore, we are able to run ASD-FT at its best performance 

theorethically. The parameters set in both ASD-POCS and ASD-FT are given in 

Table 5.2. In Method V, r = 5 is used to scale τ at every logarithmic barrier iteration. 

 
 

Table 5.2: Parameters set in ASD-POCS and ASD-FT. 
 

λart rart rasd rmax r* ε 
1.0 0.995 0.95 0.95 0.2 0.1 

 
* r is set to 0.02 for ASD-FT in E3. 

 
 

 The 32 × 32 test image is reconstructed by each algorithm using the same         

m = 256 measurements (8 views × 32 rays/view) obtained from equiangular (half) 

scanning of the image. The PSNRs of images estimated at every outer loop iteration 

are computed and time spent until then is recorded for each algorithm. Figs. 5.6-5.9 

show the PSNRs and the cumulative times with respect to the number of iterations 

together. The information given in these figures is combined in Fig 5.10 where 

instead of iteration numbers the plots of PSNRs versus cumulative times are shown 

all together. According to Figs. 5.6 and 5.9, both SOCP and DFP converge to a 

better solution faster than ASD-POCS shown in Fig. 5.7. On the other hand, the 

analytic computation of the true Fourier coefficients allows better PSNR in a less 

period of time for the ASD-FT algorithm. 

 The CS based solutions including our proposed scheme are efficacious in 

recovering from few projection data over the traditional methods. Essentially, 

reformulating the original problem as an unconstrained optimization problem allows 

having more accurate recoveries in a short time. In particular, the solution of the 

SOCP problem and the UP in (5.11) results in more qualified estimations at any 

moment during the reconstruction period. Instances of poor performance of the 

proposed scheme and the DFP method are observed for large-scale problems. Huge 

matrix vector multiplications and estimations of large Hessian matrices prolong the 

processing time and allocate a large memory space.  
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Fig. 5.6: PSNR and time recordings in iterations of SOCP (c = 600, nnw = 50). The 
upper (green) line shows the PSNR versus number of iterations. The lower (blue) 
line shows cumulative reconstruction times versus number of iterations. m = 256 
measurements (8 views × 32 rays/view) obtained from equiangular (half) scanning 
of the test image are used in the reconstruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.7: PSNR and time recordings in iterations of ASD-POCS (kp = 200, nsd = 
20). The upper (green) line shows the PSNR versus number of iterations. The lower 
(blue) line shows cumulative reconstruction times versus number of iterations.       
m = 256 measurements (8 views × 32 rays/view) obtained from equiangular (half) 
scanning of the test image are used in the reconstruction.  
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Fig. 5.8: PSNR and time recordings in iterations of ASD-FT (kf = 200, nsd = 20). 
The upper (green) line shows the PSNR versus number of iterations. The lower 
(blue) line shows cumulative reconstruction times versus number of iterations.       
m = 256 measurements (8 views × 32 rays/view) obtained from equiangular (half) 
scanning of the test image are used in the reconstruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.9: PSNR and time recordings in iterations of DFP. The upper (green) line 
shows the PSNR versus number of iterations. The lower (blue) line shows 
cumulative reconstruction times versus number of iterations. m = 256 measurements 
(8 views × 32 rays/view) obtained from equiangular (half) scanning of the test 
image are used in the reconstruction. 

 54



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.10: Performance comparison of SOCP with other CS based solutions. It is a 
combination of all plots in Figs. 5.6-5.9. 
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CHAPTER 6 
 
 

FAST TOTAL VARIATION MINIMIZATION 
 
 
 

 In Chapter 5, it has been shown that the logarithmic barrier and DFP methods 

that solve the SOCP problem and the UP, respectively, outweigh the POCS based 

solutions especially in small-scale problems. Although FT based solutions seem to 

be superior to all in numerical experiments, having true Fourier coefficients is 

infeasible in practice and using estimated values are prone to poorer recoveries than 

offered by the unconstrained problem solvers. In this chapter, we address the issue 

of solving large-scale problems in less period of time. For this reason, the original 

problem is reformulated as an unconstrained problem and solved via a CG-based 

algorithm. The proposed scheme does not require handling large Hessian matrices 

or intermediate parameters that are faced with in the DFP or logarithmic barrier 

methods. Besides, the value of the regularization parameter that is proposed in the 

unconstrained problem definition is determined reasonably. Therefore, instead of 

using a suboptimal value as in the DFP method, a generic solution to image 

reconstruction problems is obtained. 

6.1 Problem Reformulation 

 The solution  to problem (4.6) can be obtained by x̂

)(minˆ xfx 
x

       (6.1) 

where  

  2

2TV 2
)( PWxxxf 

1


     (6.2) 

 56



The regularization parameter 0  λ 1 linearly combines the two functions: the TV-

norm, TV(x), and the residue-norm square, RS(x). Specifically, 

TV
)( xxTV         (6.3) 

2

2
5.0)( PWxxRS        (6.4) 

Contrary to RS(x), TV(x) is neither strictly convex nor differentiable everywhere. 

Accordingly, the objective function f(x) is convex, but not strictly so, and 

differentiable except where the TV(x) is non-smooth. The three functions are shown 

in Fig. 6.1 where different values of λ reshape f(x), allowing it to look like more to 

one of its functional components. Because the descent direction over the surface of 

f(x) changes based on λ selection, it is important to make a proper selection for 

convergence to the true solution rapidly. Later, we will explain exactly how the 

weighting of TV(x) and RS(x) should be considered reasonably while strengthening 

the data fidelity (Wx=P) and minimizing the total variation. 

 Problem (6.1) can be solved iteratively by a variety of unconstrained 

optimization methods. For example, the Davidon-Fletcher-Powel method converges 

faster to a better solution than that of ASD-POCS, but it is only usable for small-

scale problems [62]. The necessity of computing large Hessian updates is a common 

difficulty met in such quasi-Newton methods. The steepest-descent method, on the 

other hand, is easy to implement. However, its lower convergence rate constitutes 

the major adversity of gradient descent methods. Having a much quicker 

convergence than that of the steepest-descent method, the CG method seems to be 

useful for large scale problems such as (6.1) where it may not be feasible to run 

even N iterations. Although the conjugacy gets lost during the execution because of 

the accumulated floating point round-off errors, the lack of an algorithm to solve 

(6.1) exactly brings the CG method still forward to be benefited from its rapid 

convergence. CG is effective for solving systems of the form, Hx=h, where H is a 

square matrix. The solution is equivalent to minimizing the quadratic function of the 

form, 

bxhHxx TT 
2

1
      (6.5) 

 57



 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c)       (d) 
 
Fig. 6.1: 3-D illustration of TV(x), RS(x) and f(x). (a) TV(x), (b) RS(x) with              
W = (1/4)×[√17 √17] and P = (1/2)×√17. (c) f(x) with λ = 0.3. (d) f(x) with λ = 0.7. 
In all plots, the elements of xR2 take values on intervals [0,3] and [0,2], 
respectively, on the two axes. Notice that TV(x) has two planar surfaces and RS(x) 
has parabolic cross-sections. TV(x) has zero values where x’s elements are equal 
(x1=x2). RS(x) has zero values where the sum of x’s elements are two (x1+x2=2). 
The weighted sum of TV(x) and RS(x) more resembles either of them depending on 
the weighting factor. The minimum value of f(x) is positioned at x = [1  1]T in (c) 
and (d). 
 
 
 
since its gradient,  

hHxxH T 
2

1

2

1
      (6.6) 

can be reduced to Hx-h when H is symmetric. Therefore, the solution to Hx=h is a 

critical point of the quadratic function (6.5). The solution is the minimum if H is 

positive-definite at the same time. Likewise, it is possible to minimize f(x) 
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effectively using the CG method after defining a reasonable quadratic 

approximation. 

6.2 Quadratic Approximation 

 Since RS(x) is already quadratic, expressing TV(x) in a quadratic form is 

sufficient to define a quadratic approximation for f(x). Assuming the entries of x are 

not the same, i.e., TV(x) 0, the TV-norm can be expressed by 

TT DxDx        (6.7) 

where Σ is a diagonal and D is a composite difference operator matrix. The proof 

that DTΣD is both symmetric and positive-definite follows from the definitions at 

(5.7): 
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and 
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Using (6.8) and rewriting 
TV

x explicitly for all j:  
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Let Dh and Dv be horizontal and vertical difference operator matrices, respectively 

and ΣDx be the diagonal matrix with entries 1/||Djx||2,  j = 1,2,…,N.  
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Then, the expression (6.10) ends up with  
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where it is clear that 
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The equations starting from (6.9) and leading to (6.13) prove the expression (6.7) to 

be a quadratic function under the assumption TV(x)≠0. Clearly, DTΣD is symmetric 

since Σ is diagonal. It is also positive-definite because, by definition, the TV-norm 

is always positive for any x. Thus, the proof is complete.  

 RS(x) can be expressed explicitly by 

).2(
2

PPPWxWxWx TTTTT 
1

    (6.15) 

Using (6.7) and (6.15), f(x) is written in quadratic form likewise (6.5) with the 

analogy that  

  WWDDH TT   12      (6.16) 

  PWh T 1       (6.17) 

 
PPb T
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1 
       (6.18) 
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where offset b has no importance for the solution. (1/2)xTHx-hTx+b is an 

approximation to f(x) since Σ and hence H is x-dependent. It is possible to minimize 

f(x) iteratively at successive approximation points based on a CG algorithm, which 

is explained in detail in Section 6.3. 

6.3 Conjugate Gradient Based Algorithm 

 Suppose Σ=Σ0 is computed for a certain value of x=x0, and H is computed using 

Σ0. The solution to Hx=h minimizes the quadratic approximation at point x0 and so 

does f(x). A new approximation for f(x) is defined at the current solution and its 

minimum is sought again. The minimization of approximations is a repeated 

procedure until satisfying a little residue norm. The steps of the solution algorithm 

are summarized in Method VI.  

Method VI:  Pseudo code for CG-based algorithm. 
1 initialize λ, ko, εo, x 
2 h ← compute h using (6.17) 
3 repeat for index k ← 1 to ko or until ||Hx-h||2/||h||2<εo 
4 H ← compute H using (6.16) 
5 x ← compute CG to solve Hx=h 
6 end 

 

 A great majority of the processing time is spent while running the CG algorithm 

at line 4. It is detailed in Method VI(a) for the sake of completeness. The parameters 

r, d, and α keep the usual residue, conjugate-gradient-direction and step-size, 

respectively. Both r and d are set to negative of the gradient, h-Hx, initially at line 2 

and updated at lines 8 and 9, respectively. A fast recursive computation of the 

residue, r-αHd, is replaced by recalculation of the exact value, h-Hx, at every √N 

CG iteration to remove the accumulated floating point errors. δ is used as a 

placeholder parameter to compute the ratio of the residue-norm square before and 

after its update at line 8. The residue decrement is not guaranteed in a CG iteration. 

Therefore, x values computed only in iterations where a (residue) decrement occurs 

are subject to return. The output parameter x' at line 10 keeps the final x value saved 

in occurrences of such decrements. CG iterations are ceased if the maximum 

number of iterations, kc, is completed or the final residue-norm is smaller than εc 
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fraction (usually ≤ 1) of the initial value, √δ0. The implementation can be optimized 

reusing previously computed rTr and Hd values in following lines, e.g., rTr at lines 

6, 10, or Hd at line 8. 

Method VI(a):  Pseudo code for CG algorithm. 
1 initialize kc, εc 
2 (d, r) ← h – Hx 
3 δ0 ← rTr 
4 repeat for index kc ← 1 to kc or until ||r||2/√δ0 < εc 
5 δ ← rTr 
6 α ← rTr / dTHd 
7 x ← x + αd 

8 







Hdr

Hxr
r

 otherwise

 mod   if ,0Nk  

9 d ← r + (rTr / δ)d 
10 x' ← x if rTr < δ 
11 end 

 

 Turning briefly away from the CG algorithm, there is no need of forming H 

explicitly at line 4 in Method VI. In fact, Σ is updated using x', and all Hx and Hd 

computations in Method VI are implemented by sequential matrix vector 

multiplications according to (6.16). The matrices W, D and Σ are not kept entirely in 

memory. Since they are highly sparse, only the non-zero entries and their locations 

are kept. The execution speed of the CG algorithm can be increased further by 

subtracting the elements of a vector z involved in a Dz multiplication instead of 

performing the matrix vector multiplication directly. For example, the row vector 

Dv1 in (6.11) is [-1,1,0,…,0] according to definition (5.7) and calculating Dv1z is 

equivalent to the subtraction, z2 - z1. If direct matrix vector multiplications are 

preferred, it is possible to simplify the implementation by working with smaller 

matrices Dh, Dv, and ΣDx rather than D and Σ in R2N×N. The CG-based algorithm has 

an operational complexity of O(kokcN
2). The stop condition when the relative reside 

norm is smaller than εo  1 is usually determined by the maximum number of outer 

loops, ko, which is comparable with kb in SOCP. The number of CG iterations, on 

the other hand, is limited by εc ≈ 1 in practice. The setting of εc close to 1 is 

reasonable because stopping the CG iterations earlier than kc ≈ c (the number of CG 

iterations in SOCP) allows Σ to be updated frequently, resulting in better 

approximations for f(x). These early stops usually keep kc below log2N and 
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therefore make the CG-based algorithm quite faster than SOCP. It is effective 

especially when we are far away from the solution. The latency time to get fewer 

residues, however, prolongs nearby the solution where the CG-based algorithm may 

be replaced completely by the steepest-descent method with a small, constant step-

size. That the conjugate directions lead to the minimum point rapidly over a better 

regulated f(x) is also possible by tuning λ, which is the subject of the next section. 

6.4 Regularization Parameter 

 Consider the original constraint Wx=P in problem (4.6). All points satisfying 

Wx=P are also solutions to RS(x)=0. Therefore, the original problem can be 

reformulated as 

0
2

   subject to   min
2

2TV
 PWxx

x

1

  )()(, xRSxTVx

   (6.19) 

The constraint minima of ||x||TV is a critical point of the Lagrange function,  

     (6.20)    

where the Lagrange multiplier τR is a scalar. Using a single constraint in (6.19) 

instead of Wx-P=0 allows solving a reduced system of N+1 equations derived from 

setting the partial derivatives of Λ to zero:  

,0    ,0 




 

x

      (6.21) 

or equivalently,  

0)( )(  PWxWxTV T      (6.22) 

0    
2

2
 PWx      (6.23) 

where  is the x-gradient operator. The nonlinear system defined by (6.22)-(6.23) 

can be solved for (x, τ) using iterative techniques. Alternatively, a solution for τ can 

be inferred by multiplying (6.22) with x



T from the left side: 
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0)( )(  PWxWxxTVx  TTT

T

    (6.24) 

Using the relation , )()( xTVxTVx 

)()( PWxWx T 
 )(xTV

      (6.25) 

where τ is to be calculated only for x values satisfying (6.23). As x approaches any 

vector x′′ in the solution set, Wx′′ gets closer to P, and τ goes to infinity provided 

that TV(x′′)≠0. Among critical points (x′′, ∞), the desired x′′ is the one that provides 

the minimum TV. On the other side, equation (6.22) can be solved for x by replacing 

values of τ right on the solution. However, an infinite value makes the expression 

unstable and the equation irresolvable, causing us to stay alone with (6.23) again. 

Thus situated, accessing all possible solutions of (6.23), without considering its 

feasibility, makes the actual value of τ insignificant.  

 Although f is declared in (6.2) as a function of x only, the right expression is  

  )(1)(),( xRSxTVxf     (6.26)     

and its minimization with respect to x and λ should be considered together for 

converging to the solution of (4.6). Instead of solving two-argument minimization 

of (6.26), one can benefit from interpretations of the method of Lagrange multipliers 

above. An analogy between Λ and f is established by setting τ = λ-1(1-λ), (τ = ∞ is 

equivalent to λ=0). Since f(x, λ) is an approximately quadratic function, f(x′′,0)=0 is 

the minimum. Replacing λ=0 in advance on (6.26) is useless, because there are 

infinitely many solutions of RS(x)=0, and among them it is infeasible to seek an x′′ 

that minimizes TV(x). λ is actually desired to act as the Lagrange multiplier right on 

the solution only. No matter what the initial value of λ is, it should decay towards 

zero as x gets closer to x′′. The CG-based algorithm in Method V is based on a fixed 

regularization parameter which is assumed to be suboptimal. In practice, this 

suboptimal value is decided based on satisfactory estimations after running the 

algorithm with different λ values. Too small or large values of λ may cause 

oscillations over the valley of RS(x) or at the vertex of TV(x) in noisy situations.     
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A reasonable initialization of the regularization parameter and its updates as 

analogous to the steepest-descent step-size adaptation in ASD-POCS are given by 

the fast TV-minimization algorithm (FTV) in Method VII. 

Method VII:  Pseudo code for FTV. 
1 initialize τmin, τmax, ko, r, εd 
2 x ← compute CG to solve RS(x)=0 
3 λ ← (1+τmin)-1 
4 (tv0, rs0) ← (TV(x), RS(x)) 
5 repeat for index k ← 1 to ko 
6 h ← compute h using (6.17) 
7 H ← compute H using (6.16) 
8 x0 ← x 
9 x ← compute CG to solve Hx=h 
10 dtv ← |TV(x0) – TV(x)| 
11 drs ← |RS(x0) – RS(x)| 
12 return x if (dtv/tv0) < εd and (drs/rs0) < εd  
13 λ ← median {(1+τmax)-1, r·λ, (1+τmin)-1} 
14 end 

 

 Having the same spirit with the CG-based algorithm, FTV differs only in 

insertion of the required steps into Method V to handle dynamic λ. In system 

configuration, τmin and τmax are defined at line 1 to limit the value of regularization 

parameter, 

minmax τ1τ1 



 11

     (6.27) 

so that oscillations are avoided. Considering the initial point as a solution of 

RS(x)=0, the initialization of λ with the upper bound value (1+τmin)-1 at line 3 

weights TV(x) more compared to RS(x). Thus, the decrement in f after the first 

iteration is contributed primarily by TV(x). In fact, it is the only contributor because 

the value of RS(x) increases at the new point. Clearly, the CG algorithm at line 8 

ensures a decrement in f but not necessarily in both functional components. This 

occurs seldom following an iteration in which the current estimate minimizes only 

one of the functional components. The variable x0 is used as a placeholder 

parameter to compute changes in TV(x) and RS(x) at lines 10 and 11. The additional 

exit condition at line 12 allows FTV to stop earlier than the CG-based algorithm 
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where the number of main loops is dominated by ko only. The exit criterion is based 

on changes in functional components relative to their initial values computed at line 

4. When both relative changes fall below εd 

)(xRS

1, the current estimate is considered 

to be sufficiently close to the minimum TV solution. The usage of εo introduced in 

Method VI is not required any more in FTV, because εd participates in handling the 

exit condition. λ is updated by r; r is less than 1 but close to unity. At line 13 where 

too small values exceeding the lower bound are prohibited as well. Starting with a 

moderate value by configuring τmin=1, as λ decays in successive iterations, the 

conjugate directions drift more towards the direction of  . 

 Although additional steps increase the number of operations in FTV, the 

complexity remains the same with the CG-based algorithm. The convergence speed 

is even accelerated stably with the way λ is updated. It is remarkable that our initial 

assumption TV(x)≠0 can be verified in almost all practices. Even with all flat 

images, the floating point round-off errors cause nonzero estimates in FTV 

iterations. Moreover, the setting ||Djx||2=ε (a small, constant positive value) in 

occasions of ||Djx||2=0 eases computations of Σ without bothering the convergence. 

Another important detail about the implementation is the way of constructing pixel 

difference operators on boundaries. The mirror imaging of the signal of interest 

results in zero valued Dhjx and Dvjx on horizontal and vertical ends, and DNx=0 for 

sure. Considering x as a periodic signal rather than its mirror imaging avoids zero 

occurrences and therefore relieves the implementation. 

6.5 Experimental Results  

 Numerical studies are performed in four experiments to validate FTV and 

demonstrate its performance. Experiments are tagged with EX where X denotes the 

experiment number 1 to 5. The standard 256×256 Shepp-Logan phantom image 

shown in Fig. 3.3(a) is taken as true object in all experiments except E2 and E4 

where a real cranial CT image shown in Fig. 2.2(a) is used. The latter is hosted in 

www.flickr.com and can be accessed from different medical sites as well. Neither 

the Shepp-Logan phantom image nor the cranial CT image has sparse object 

function but their GMIs shown in Fig. 6.2. The number of zero terms owns a ratio 
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of 42% in the cranial CT image and 97% in the Shepp-Logan phantom image. 

Assuming roughly 25% of the display area in Fig. 6.2(a) and (b) correspond to the 

exterior of actual objects, the GMI of cranial CT image itself can reasonably be 

considered non-sparse. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
        (a)          (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Fig. 6.2: GMIs used in experimenting FTV. (a) GMI of cranial CT (head scan) 
image. It has 38162 non-zero elements. (b) GMI of Shepp-Logan phantom image. It 
is 2184-sparse, (same as Fig. 3.3(c)). (c) Plot of the magnitude sorted coefficients in 
(a)-(b). The l1-norm values are 4126 and 1460 for the cranial CT image and Shepp-
Logan phantom image, respectively. 

 
 
 

magnitude 

index 
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 In experiments, data is acquired through either a half or full scan of true object 

using projection matrices that are calculated according to Method I. The parameters 

d, γmin and γmax are set to 1.038×256×√2, -π/7 and π/7, respectively, in all 

computations. Equiangular set of detectors are presumed over an angular range of 

[βmin= /2, βπ- π π- π 2πmax= /2] and [βmin= , βmax= - ( /number of views)] for half and 

full scan configurations, respectively. It is assumed that projection data is obtained 

without any loss, meaning that there is always a detector reserved for capturing an 

individual ray-sum value (projection data). A 13-tap, symmetric high-pass filter 

defined in (2.6) is used to reconstruct images via FBP. Unless otherwise specified, 

the parameters used in FTV are set as given in Table 6.1. 

 
 

Table 6.1: FTV parameters setting in the experiments. 
 

 τmin τmax ko r εd 

E1,3*-4 1 99 18 0.8 10-3 
E2** 1.5 99 22 0.8 10-4 
E4*** 1.5 9 26 0.8 10-8 

 
*    E3 includes an additional study with τmax=9. 
**  E2 includes an additional study with τmax=999, ko=66, εd=10-8. 
***E4 includes an additional study with ko=14, 17, and 34. 

 
 

 The displayed images are scaled arbitrarily for illustrative purposes. PSNR is 

used as an objective quality measure for reconstructions. All implementations are 

performed in Matlab. Only the non-zero elements of W, Dh and Dv matrices are kept 

in memory allowing us to deallocate about 99% of the physical memory as 

compared to the case of their explicit declarations. Experiments are detailed 

individually in separate subsections below. 

6.5.1 E1: Comparison with FBP 

 Few data, namely m = 30 views × 256 rays/view measurements were collected 

by half scanning the Shepp-Logan phantom image. The measurements were used by 

FTV, yielding the reconstructed image shown in Fig. 6.3(b). The elliptic objects in 
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the recovery are clearly distinguished with nice contrast resolution. The sampled 

horizontal and vertical profiles of the reconstructed image match well to those of the 

true one as shown in Fig. 6.4(a)-(b). A significant degradation is only realized at the 

end of vertical profile, which corresponds to the bottom of head skeleton in Fig. 

6.3(b). Since the X-ray source trajectory circulates only over the upper part of the 

object, the ray separations enlarge at lower portions, causing less information to be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a)            (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)            (d) 
 
Fig. 6.3: The Shepp-Logan phantom image reconstructed in E1. (a) Original 
256×256 image. The horizontal and vertical lines are positioned respectively at the 
96th row and the 128th column. The images in (b)-(d) are reconstructed using 30 
view × 256 rays/view measurements that are obtained by either half or full scan of 
the original image. (b) Image reconstructed by FTV, PSNR = 79.0 dB (half scan). 
(c) Image reconstructed by FBP, PSNR = 57.1 dB, (full scan). (d) Image 
reconstructed by FTV, PSNR = 88.5 dB (full scan). 
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             (a)        (b) 
 
 
 
 
 
 
 
 
 
             (c)        (d) 
 
Fig. 6.4: Reconstructed image profiles in E1. (a) Horizontal profile at 96th row of 
the reconstruction in Fig. 6.3(b). (b) Vertical profile at 128th column of the 
reconstruction in Fig. 6.3(b). (c) Horizontal profile at 96th row of the reconstruction 
in Fig. 6.3(d). (d) Vertical profile at 128th column of the reconstruction in Fig. 
6.3(d). The solid (blue) lines in (a)-(d) belong to the original image and the dashed 
(red) lines belong to FTV reconstructions. 
 
 
 

acquired from the bottom regions. The advantage of getting sufficient information 

can be inferred from the analysis of reconstructed image shown in Fig. 6.3(d) where 

measurements obtained by full scanning the same object are used. The new vertical 

profile has significant improvements (see Fig. 6.4(d)). The data acquisition matrix 

W constructed in full scan geometry, from CS point of view, obeys UUP better than 

the one used in the half scan. That is, more information from the true object is 

gathered into the same number of measurements. In any configuration, FTV 

provides better recoveries than FBP. Having lower PSNR, the FBP solution shown 

in Fig. 6.3(c) especially suffers from the contrast resolution. The lower spatial 

resolution also causes small objects to be unrealized. However, it is remarkable that 

in many trials with less or more measurements than m, FBP outputted in no more 

than a few seconds in general. On the other hand, considering the same 
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measurements, FTV ended in a few minutes. The behavior of functional 

components as FTV iterates is analyzed by recording their values at each iteration. 

Their plots in Fig. 6.5(a)-(b) reveal parallelism in both scanning configurations. 

Since the initial point only minimizes RS(x), its value increases, and f(x, λ) (or f(x) 

in short) decreases after the first iteration. As iterations proceed, it is a common 

tendency here and in other experiments that TV(x), RS(x) and f(x) are stabilized at 

their minimums. Here, in this particular experiment, iterations are halted by the 

decision mechanism at line 12 of Method VII. The additional iterations result in 

lower values in Fig. 6.5(b).  

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 6.5: Function values as FTV iterates in E1. The values of functional 
components are placed on the y-axis as iterations proceed on the x-axis. The plots 
belong to experiments in (a) Fig. 6.3(b) and (b) Fig. 6.3(d). 
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6.5.2 E2: Extended Comparison with FBP 

 The Shepp-Logan phantom image does not have fortuitous properties to which 

FTV is uniquely suited. CS based algorithms including FTV simply requires the 

object to have a conceivably sparse GMI. Instead of retesting FTV on an additional 

piece-wise constant phantom, the cranial CT image which does not fulfill the CS 

requirement properly is used for testing the performance of FTV. It is reconstructed 

first using full scan m = 7680 (30 views × 256 rays/view) measurements. The 

resultant FTV reconstruction shown in Fig. 6.6(e) has higher spatial and contrast 

resolution than the FBP solution in Fig. 6.6(b). As compared to the true image, 

however, spatial resolution is not satisfactory especially in regions where high 

frequency components dominate. A much better resolution is obtained when the 

number of measurements is doubled. Specifically, the reconstructed images in Fig. 

6.6(c) and (f) are outputs of FBP and FTV that exploited 2m = 15360 (60 views × 

256 rays/view) measurements, respectively. The visual improvements relative to 

their recoveries from 30 views are significant, even much better than the solution of 

inverse FT shown in Fig. 6.6(d). The reconstruction through randomly selected 2m 

coefficients, which can be considered analytically the best recovery without 

regularization, is behind the FTV reconstruction. Analyzing the horizontal and 

vertical profiles in Fig. 6.6(g)-(h), FTV reasonably traces the true trajectory, 

averaging the frequent changes in general. Because of its smoothing characteristics, 

FTV resulted in a lower TV image. It gets closer to the actual TV or a better 

estimate of the true image is attained when the number of measurements is 

increased (see the difference between Fig. 6.6(e) and (f)). FTV is initially run with 

slightly lower λ value to prevent over smooth images at the end. The execution is 

allowed to complete its maximum number of iterations by decreasing εd tenfold, 

which serves the purpose of achieving lower RS(x). The extra time needed for 

processing additional iterations is compensated by fast completion of iterations at 

the beginning. It is our experience that CG executes faster, i.e., exits early especially 

when the object of interest is non-sparse. Hereby, the execution time of FTV is 

almost the same in E1 and E2.  

 



 
 
 
 
 
 
 
 
 
 

          (a)         (b)      (c) 
 
 
 
 
 
 
 
 
 
 

          (d)         (e)      (f) 
 
 
 
 
 
 
 
 
 

(g)       (h) 
 

Fig. 6.6: The cranial CT image reconstructed in E2. (a) Original 256×256 image. 
The horizontal and vertical lines are positioned respectively at the 128th row and the 
96th column. The images in (b)-(c) and (e)-(f) are reconstructed using different 
number of measurements obtained from a full scan of the original image. (b) Image 
reconstructed by FBP using 30 view × 256 rays/view measurements, PSNR=58.9 
dB. (c) Image reconstructed by FBP using 60 view × 256 rays/view measurements, 
PSNR=59.1 dB. (d) Image reconstructed by inverse FT using 2×7680 noise-free 
Fourier coefficients, PSNR = 66.4 dB. (e) Image reconstructed by FTV using 30 
view × 256 rays/view measurements, PSNR = 70.1 dB. (f) Image reconstructed by 
FTV using 60 views × 256 rays/view measurements, PSNR = 75.2 dB. (g) 
Horizontal profile at the 128th row of FTV reconstruction. (h) Vertical profile at the 
96th column of FTV reconstruction. The solid (blue) lines in (g)-(h) belong to 
original image and the dashed (red) lines belong to FTV reconstruction in (f). 
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 As a second part of E2, we investigate the improvement in PSNR relative to the 

amount of radiation absorption in the cranial CT image. FTV is reconfigured using 

different parameter values and executed unusually for various full scan view 

configurations. Particularly, starting from a reference m = 7680 (30 views × 256 

rays/view) measurements, they are increased at every reconstruction by adding 8 

views × 256 rays/view data until reaching 94 views × 256 rays/view measurements. 

The same initial point computed for the reference reconstruction is used in the 

others. As a consequence, the CG iterations exit early, decreasing f faster in the 

subsequent reconstructions. It is probable that maximum number of iterations is 

used up without approaching the true object sufficiently, requiring more iterations 

than set in the first part. Therefore, ko=66, τmax=999, and εd=10-8 are used to make a 

consistent configuration for all. The amount of radiation absorbed is computed 

using (2.7). They are expressed in Table 6.2 relative to the amount belonging to the 

reference reconstruction. FTV results in monotonic increases in PSNR and reliable 

reconstructions as the dose absorbed increased. FBP has small fluctuations at a 

lower PSNR level although recoveries show visual improvements gradually. These 

fluctuations arise mainly from striking artifacts outside the object. They can be 

removed significantly using much more measurements, e.g., hundredfold, 

unfortunately. 

 
 

Table 6.2*: PSNR versus relative radiation absorbed (RRA). 
 

RRA 1 1.26 1.53 1.80 2.06 2.33 2.59 2.86 3.13 
FBP 58.93 59.06 58.48 59.24 59.13 58.89 59.17 59.17 59.28 
FTV 70.17 70.27 73.09 73.88 73.89 74.74 76.50 76.89 76.99 

 
* The first row displays the relative values of the absorbed radiation amount. The 
second and third rows display corresponding PSNR values of the images 
reconstructed via FBP and FTV, respectively. The information given in the first 
column belongs to the reference reconstruction that is obtained using                       
m = 30 views × 256 rays/view measurements from the full scanning of cranial CT 
image. 
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6.5.3 E3: Robustness to Additive Noise 

 E1 is essentially repeated with full scan measurements that are contaminated by 

the zero-mean white Gaussian noise. Many reconstructions are performed at 

different noise levels. The resultant PSNRs are given in Table 6.3. The reason that 

the PSNR values corresponding to lower noise levels (σ = 0.005 or 0.01) are greater 

than the value computed in E1 is that, in a noisy situation, FTV executes the 

maximum allowable number of iterations since the relative change of TV(x) do not 

fall below εd. As the noise power gets strengthened, i.e., σ2 ≥ 4×10-2, degradations 

become perceivable. For instance, consider the recovery in Fig. 6.7(c) where 

variations within objects are noticeable. But then, the resolution is much better than 

the solution of noise-free inverse FT shown in Fig. 6.7(b). The better identification 

of objects within the recovery in Fig. 6.7(c) is also verified by its sampled profiles. 

Analyzing these profiles in Fig. 6.8(a)-(b), it is observed that true intensity levels 

are stably obtained with little ripples. It would be possible to further improve the 

recovery by truncating pixels outside the feasible region, [0, 1]. Because of noise, 

stabilization of TV(x) gets hard. It tends to increase (see Fig. 6.9(a)) as iterations 

proceed with a lower regularization parameter. In order to enforce TV(x) to steadily 

approach the desired minimum, we rerun FTV by setting τmax = 9. Thus, the lowest 

value that λ could take is increased tenfold, preventing conjugate directions to move 

far away from TV(x). The new reconstructed image that is shown in Fig. 6.7(d) 

is obtained with better TV(x) (see Fig. 6.9(b)) and hence PSNR.  



 
 

Table 6.3**: PSNR of images reconstructed by FTV using noisy measurements.  
 

σ 0.005 0.01 0.02 0.05 0.1 0.2 0.2 0.5 0.5 
||Wx||2/||e||2 75.88 69.86 63.84 55.88 49.86 43.84 43.84 35.88 35.88 

PSNR 89.28 88.83 87.31 84.34 81.10 78.02 81.13 73.17 73.69 

 

** The first row displays values of standard deviations for additive Gaussian white 
noise e having N(0,σ2) characteristics. The second and third rows display 
corresponding signal to noise ratios and PSNR values of reconstructed images, 
respectively. All reconstructions are obtained by FTV with τmax = 99 except the 
dashed columns for which τmax is set to 9. m = 30 view × 256 rays/view 
measurements from a full scan of the Shepp-Logan phantom image are used. 
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       (a)             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (c)             (d) 
 
Fig. 6.7: The Shepp-Logan phantom image reconstructed in E3. A white Gaussian 
noise having the characteristics of N(0, 4×10-2) is added to the measurements in (c)-
(d). (a) The sampling pattern of Fourier coefficients on 2-D Fourier space. The 
display area is [-π, π) × [-π , π). The sampled coefficients are used for the recovery 
in (b). (b) Image recovered from 7680 noise-free Fourier coefficients by inverse FT, 
PSNR = 63.3 dB. (c) Image recovered from noisy measurements via FTV with 
τmax=99. (d) Image recovered from noisy measurements via FTV with τmax=9.         
m = 30 views × 256 rays/view measurements from full scan of the original Shepp-
Logan phantom image are used for both reconstructions in (c) and (d). PSNRs are 
given in Table 6.3. 
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             (a)        (b) 
 
Fig. 6.8: Reconstructed image profiles in E3. A white Gaussian noise having the 
characteristics of N(0, 4×10-2) is added to measurements in Fig. 6.7(c)-(d). (a) 
Horizontal profile at the 96th row of the recovery in Fig. 6.7(c). (b) Vertical profile 
at the 128th column of the recovery in Fig. 6.7(c). Solid (blue) lines in (a)-(b) belong 
to the original Shepp-Logan image and dashed (red) lines belong to the FTV 
reconstruction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 6.9: Function values as FTV iterates in E3. The values of functional 
components are placed on the y-axis as iterations proceed on the x-axis. The plots 
belong to experiments in (a) Fig. 6.7(c) and (b) Fig. 6.7(d). 
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6.5.4 E4: A Multi-Purpose Performance Test 

 The performance of FTV is tested against the additive white Gaussian noise and 

the images recovered from the same number of measurements that are acquired 

under different scanning configurations are analyzed in two respective parts of E4. 

Regarding these aims, part one and two can be considered as extensions of E3 and 

E1, respectively. The major difference of E4 is the use of cranial CT image in both, 

plus the projection of few X-rays in many views instead of projecting many X-rays 

in few views in the second part. The details of the experiment are as follows: 

 The cranial CT image is reconstructed from 2m = 60 views × 256 rays/view 

measurements that are contaminated by zero-mean white Gaussian noise of σ = 0.5. 

The noise contamination constitutes a SNR of 43.1 dB. Although the GMI of cranial 

CT image is hardly sparse, a high valued τmax=9 is used to smooth the fluctuations 

because of noise. The maximum number of outer loop iterations allowed is limited 

to ko=26 which is slightly higher than the value used in E2. A low valued εd=10-8 is 

used to make the stopping criterion which is based on ko come into prominence in 

particular. While the spatial and contrast resolutions of the reconstructed image 

shown in Fig. 6.10(b) are poorer than the noise-free recovery shown in Fig. 6.10(a), 

they are much higher than those of the noise-free FBP solution in Fig. 6.10(c). 

Regarding the spatial resolution, a similar performance under the same SNR is 

observed in Fig. 6.10(d) where the recovery is obtained by FBP using 12m = 180 

views × 512 rays/view measurements corresponding to a sixfold increase in the 

amount of radiation absorbed. On the other hand, it is remarkable that FBP is not 

sensitive to noise as much as FTV because images are smoothed naturally in back 

projection. For example, considering the image shown in Fig. 6.10(d), the noise is 

hardly perceived until the SNR falls below 30 dB. Its contrast resolution and PSNR 

can also be improved by tuning the filter parameters so as to suppress the low 

frequency components more.  

 In the second part of E4, the cranial CT image is reconstructed by FTV and FBP 

using noise-free 2m = 120/60/30 views × 128/256/512 rays/view measurements. 

The reconstructed images are shown in Fig. 6.11 where an illustration of the 



 
 
 
 
 
 
 
 
 
 
 
 
      (a)            (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (c)            (d) 
 
Fig. 6.10: The cranial CT image reconstructed in E4 (Part 1). (a) The image 
reconstructed by FTV using noise-free 2m = 60 views × 256 rays/view (full scan) 
measurements, PSNR = 75.2 dB. It is the same recovery shown in Fig. 6.6(f). (b) 
The image reconstructed by FTV using noisy 2m = 60 views × 256 rays/view (full 
scan) measurements, PSNR = 72.5 dB. A white Gaussian noise having the 
characteristics of N(0, 0.25) is added to the measurements, SNR = 43.1 dB. (c) The 
image reconstructed by FBP using noise-free 2m = 60 views × 256 rays/view (full 
scan) measurements, PSNR = 59.1 dB. The recovery is the same as shown in Fig. 
6.6(c). (d) The image reconstructed by FBP using noisy 12m = 180 views × 512 
rays/view (full scan) measurements, PSNR = 58.7 dB. The additive zero mean white 
Gaussian noise constitutes the same SNR = 43.1 dB. 
 
 
 

scanning configurations is given as well. The numbers of X-rays depicted in Fig. 

6.11(a)-(c) are proportional with the actual number of measurements used in the 

experiment. For each configuration, a different value of ko is used to let FTV run 

for about a minute. Our main observation on the reconstructed images is the more 
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 Some of the X-ray source locations.

 
 
 
 
 
 
 
 
 
 
 

          (a)         (b)      (c) 
 
 
 
 
 
 
 
 
 
 

          (d)         (e)      (f) 
 
 
 
 
 
 
 
 
 
 

          (g)         (h)      (i) 
 
Fig. 6.11: The cranial CT image reconstructed in E4 (Part 2). Each column 
corresponds to a different scanning configuration. An illustration of (a) 120 views × 
128 rays/view configuration, (b) 60 views × 256 rays/view configuration, (c) 30 
views × 512 rays/view configuration. (d) The image reconstructed by FBP using  
2m = 120 views × 128 rays/view measurements, PSNR = 59.8 dB. (e) The image 
reconstructed by FBP using 2m = 60 views × 256 rays/view measurements,     
PSNR = 59.1 dB. (f) The image reconstructed by FBP using 2m = 30 views × 512 
rays/view measurements, PSNR = 58.5 dB. (g) The image reconstructed by FTV 
(ko=34) using 2m = 120 views × 128 rays/view measurements, PSNR = 74.1 dB. (h) 
The image reconstructed by FTV (ko=17) using 2m = 60 views × 256 rays/view 
measurements, PSNR = 74.7 dB. (i) The image reconstructed by FTV (ko=14) using 
2m = 30 views × 512 rays/view measurements, PSNR = 70.4 dB. 
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the information from the object is, the better the recoveries are. As an example, the 

numbers of X-rays passing through the red square regions shown in Fig. 6.11(a)-(c) 

are 31, 32, and 22, respectively. The amount of information from these regions is 

proportional with the number of X-rays passing through them. Therefore, the best 

recovery shown in see Fig. 6.11(h) is obtained in the case of 60 × 256 

measurements. It is notable that incoherent measurements are crucial for FTV to 

provide satisfactory recoveries. Consider the 14 X-rays in Fig. 6.11(a); they emerge 

from different sources, pass through the red region, and also coincide. Therefore, 

only 7 of them make reasonable contributions to the measurements; 24 X-rays are 

sufficient to be utilized in FTV. On the other hand, the back projection of the same 

or coherent information changes the contrast resolution of the reconstructed image. 

They are illuminated more. The filter needs adjustment to compensate it. Like FTV, 

FBP provides better recoveries as more information is gathered from the object.  

6.5.5 E5: Comparison with Other CS based Solutions 

 The performance of FTV configured in E1 is compared with other CS based 

algorithms given in Chapters 4 and 5. For this reason, the full-scan measurements 

(m = 30 views × 256 rays/view) and initial estimate of the Shepp-Logan phantom 

image in E1 are used in all algorithms running on Intel® Core™ i7-2630QM CPU 

@ 2.00 GHz processor running Windows®7 OS. In SOCP, the numbers of Newton 

and SYMMLQ iterations are fixed at nnw = 20 and c = 5000, respectively. In ASD-

POCS and ASD-FT, the number of steepest-descent iterations are set to nsd = 20. 

While SOCP ends after kb = 10 iterations, ASD-POCS and ASD-FT are allowed to 

execute kp = 120 iterations. Since data collected in fan scan geometry has no 

counterpart in image’s Fourier space, we exploit ASD-FT in a different manner: 

The discrete Fourier transform coefficients of the estimated image shown in Fig. 

6.7(a) are replaced by the true ones that have been analytically computed once from 

the original image. Regarding its impracticality, putting this implementation into 

comparison is in fact unfair. However, we approve of it as a golden solution for 

applications in parallel or diffraction beam tomography and consider useful in 

comparison with FTV. The results shown in Figs. 6.12-6.15 are based on PSNRs in 

current estimation and cumulative processing times as iterations proceed. The main 
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observation is FTV approaches more rapidly to the true object in a less period of 

time. Although SOCP converges to a better solution in less number of iterations, the 

processing time of its main loop is longer and its overall execution time is more 

than that of ASD-POCS. The slowest convergence rate in a single iteration belongs 

to ASD-POCS and ASD-FT. In particular, ASD-FT hardly provides high PSNR no 

matter how much iterations are performed. Another observation about the 

convergence of FTV is its incompleteness in Fig. 6.12. Higher PSNRs could be 

expected with more iterations. However, this could be achieved only at the expense 

of prolonged execution time of CG iterations. Recall that when the current estimate 

gets closer to the true object, more CG iterations and hence time is required to 

minimize f. But then, the overall execution time of FTV is at most one tenth of 

others concerning a high PSNR. The results given in Figs. 6.12 - 6.15 are combined 

in a single plot shown in Fig. 6.16 where FTV and SOCP come into prominence 

regarding the higher reconstruction speed and more accurate recovery, respectively. 

The poor performance of ASD-FT is because of the randomly selected coefficients 

that are mostly insignificant. It will be poorer if the coefficients are estimated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.12: PSNR and time recordings in iterations of FTV. The upper subplot shows 
PSNR (in dB) versus number of iterations. The lower subplot shows cumulative 
processing times (in minutes) versus the number of main loop iterations. The plot 
belongs to the reconstruction of the Shepp-Logan phantom image using (full-scan) 
30 views × 256 rays/view measurements. 
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Fig. 6.13: PSNR and time recordings in iterations of SOCP. The upper subplot 
shows PSNR (in dB) versus number of iterations. The lower subplot shows 
cumulative processing times (in minutes) versus the number of main loop iterations. 
The plot belongs to the reconstruction of the Shepp-Logan phantom image using 
(full-scan) 30 views × 256 rays/view measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6.14: PSNR and time recordings in iterations of ASD-POCS. The upper subplot 
shows PSNR (in dB) versus number of iterations. The lower subplot shows 
cumulative processing times (in minutes) versus the number of main loop iterations. 
The plot belongs to the reconstruction of the Shepp-Logan phantom image using 
(full-scan) 30 views × 256 rays/view measurements. 
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Fig. 6.15: PSNR and time recordings in iterations of ASD-FT. The upper subplot 
shows PSNR (in dB) versus number of iterations. The lower subplot shows 
cumulative processing times (in minutes) versus the number of main loop iterations. 
The plot belongs to the reconstruction of the Shepp-Logan phantom image using 
(full-scan) 30 views × 256 rays/view measurements. 
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Fig. 6.16: Performance comparison of FTV with other CS based solutions. It is a 
combination of all plots in Figs. 6.12 - 6.15. 
 



CHAPTER 7 
 
 

CONCLUSIONS 
 
 
 

 In this study, we aimed to reduce X-ray radiation exposure in CT imaging and 

therefore decrease the amount of radiation absorbed by patients and/or operators 

during CT examinations. We concentrated on the notion of compressed sensing 

based computerized tomography imaging. Among various dose reduction strategies, 

CS based CT imaging takes participate in improving the image reconstruction 

algorithms. Namely, the proposed schemes in Chapters 5 and 6 of this thesis 

provide better recoveries under low dose radiation as compared to traditional 

methods. To summarize, this thesis involves: 

 the review of CT imaging and traditional image reconstruction algorithms, 

 the review of CS from theoretical and practical standpoints, 

 the discussion of CS integration into the CT imaging systems, 

 the review of CS based reconstruction algorithms, 

 the proposal of SOCP, 

 the proposal of FTV. 

 The image reconstruction algorithms in commercial CT scanners today are 

based on processing huge projection data that are obtained by making use of many 

X-ray beams passing through the object of interest. The efficacy of traditional FBP 

based algorithms or ARTs used for image reconstruction is remarkable if the 

number of beams is very high. However, too many beams passing through the body 

may induce cancer together with the consideration of the fact that the radiation dose 

in CT is usually higher than those used in other diagnostic imaging. Since every 

examination causes the risk of cancer induction to increase, it is crucial to decrease 

 85



the number of beams and therefore the radiation exposure during examinations. 

Unfortunately, using less number of beams or measurements from the body causes 

degradations in reconstructed images. It is possible to get rid of these degradations 

by exploiting the CS theory. It requires the objects of interest to be sparse or have 

an approximately sparse representation to recover images from few measurements. 

Moreover, these measurements should be obtained randomly and carry as much 

information from the object as possible. Therefore, the objects can be recovered 

from few measurements by solving a convex optimization problem.  

 It is possible to fulfill the CS requirements in CT imaging: Most CT images 

have sparse representation in various transform domains, e.g., Fourier, wavelet, etc. 

In particular, the image gradient representation is sparser than representations in 

other domains. The data acquisition model constructed in CT imaging allows 

incoherent measurements such that it is unlikely that the measurement vectors 

formed at rows of the projection matrix W match to the object structure. Therefore, 

the CS based CT imaging problem can be defined as the l1-norm minimization of 

the image gradient magnitude considering the measurements from the object. Its 

solution provides better recoveries from fewer measurements than those required by 

traditional image reconstruction algorithms.  

 In the first part of our study, we reformulated the CS based CT imaging problem 

as SOCP and proposed a generic log-barrier algorithm to solve it. The Newton’s 

method which is embedded in the log-barrier algorithm allows accurate solutions. 

Using few X-ray projections, the CT images are reconstructed almost exactly via 

SOCP whereas the same visual quality is hardly obtained by traditional methods. 

Since the X-ray radiation absorption is lowered by decreasing the number of 

projections, the risk of cancer induction in CT examinations is reduced a lot. 

Although, the solution algorithm for SOCP has higher convergence rate, its 

reconstruction time prolongs at large scale problems because of its high order of 

operational complexity. While the gap between the reconstruction times of FBP and 

SOCP may extend to an hour especially for large scale problems, it provides 

solutions faster than POCS based algorithms especially for small scale problems. 
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SOCP requires more iterations to solve Newton approximations as the size gets 

larger.  

 In the second part of our study, we introduced a faster CS based image 

reconstruction algorithm FTV for recovering CT images from few X-ray 

projections. Instead of operating nested or consecutive loops as in SOCP or ASD-

POCS/ASD-FT, FTV benefits from the CG method which participates as a single 

block of operation in iterations. Like SOCP, FTV provides more qualified images 

using less number of measurements than FBP requires. The realizations under noisy 

circumstances are better than the noise-free solution that is obtained by the inverse 

Fourier transform of the true coefficients. The operational complexity of FTV is less 

than the POCS based algorithms. It reconstructs images faster, which becomes 

evident especially in large scale problems. Instances of poor performance of FTV is 

observed when the estimate at the current iterate is close to the optimum solution. 

Then, the execution time of the succeeding iterations prolongs. Optionally, 

iterations may be ceased in such instances, or, the minimization of the objective 

function can be continued using the steepest-descent method with a small constant 

step-size in place of CG. It is possible to improve the proposed scheme also by 

adapting the stopping criterion to timing constraints. 

 Currently, none of the CS based algorithms matches the speed of FBP yet. If 

speeds are put in perspective, we can roughly say that FBP, FTV and others 

reconstruct a typical 256×256 image in a few seconds, minutes, and hours, 

respectively. Exceptionally, the reconstruction speeds of the FT based algorithms 

are close to FTV due to the availability of fast FT routines. However, they cannot 

provide recoveries accurate as much as the recoveries obtained by other CS based 

algorithms. Although in our study we implement the ASD-FT algorithm using the 

true FT coefficients, one has to estimate them via interpolations in iterations in 

practice. The interpolation errors cause degradations at the output images. It is also 

remarkable that images reconstructed by FBP show less degradation under the same 

noise power as compared to the CS based algorithms. The back projections smooth 

noise naturally, making recoveries look better. 
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 Finally, we conclude that the CS based algorithms including our proposed 

SOCP and FTV are very attractive for CT imaging systems due to their applicability 

to use fewer measurements from random scanning geometries as opposed to 

traditional FBP based algorithms or ARTs. Since they are based on iterative 

techniques, their reconstruction time is much higher than FBP. SOCP takes 

prominence regarding the accuracy of the reconstructed images. Although its 

reconstruction speed is higher than POCS based algorithms in small scale problems, 

it suffers from huge matrix vector multiplications in large scale problems. FTV 

takes prominence regarding the image reconstruction speed no matter the problem 

size is. It would be beneficial to validate the performance of the proposed schemes 

in clinical use. Besides, the theoretical studies can be extended by including a more 

thorough experimental evaluation involving wider classes of noise. Moreover, 

constructing the optimum projection matrix and so the scanning configuration 

seems to remain as an open research subject. 
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APPENDIX A 
 
 

PROJECTION GEOMETRY 
 
 
 

A.1 Ray Equation 

We give illustrations of the following cases: 

Table A.1.1: Projection line cases. 
 

Case 1 0 ≤ θ ≤ π/2 t ≥ 0 
Case 2 0 ≤ θ ≤ π/2 t < 0 
Case 3 π/2 < θ ≤ π/2 t ≥ 0 
Case 4 π/2 < θ ≤ π/2 t < 0 

 
 
 
 
 

Case 1: t 0    ,
2

0
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1.1: Ray equation, case 1 
 
 

tyx    sincos  00          (A.1.1) 

 
 
 

99



Case 2: 0    ,
2

0  t
  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1.2: Ray equation, case 2 
 
 

tyx   sincos 00          

tyx    sincos  00          (A.1.2) 

 
 
 
 

Case 3: t 0    ,
2


 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1.3: Ray equation, case 3 
 
 

tyx   sincos 00          

tyx   sincos  00         (A.1.3) 
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Case 4: 0    ,
2

 t
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.1.4: Ray equation, case 4 
 
 

tyx   sincos   00          

tyx   sincos 00          

tyx    sincos  00          (A.1.4) 

The resultant ray equations in four cases are the same. Given a fixed θ and t value in 

any case, any point on the ray line satisfies the ray equaitons. Therefore, (A.1.1)-

(A.1.4) can be written in more general form as 

tyx      (A.1.5) 
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 sincos  

A.2 Fan Beam Geometry 

We give illustrations of the cases in Table A.2.1. Angular unit is taken as degrees. 

Table A.2.1: Fan beam projection cases. 
 

Case 1 β ≥ 0 t ≥ 0 γm ≥ 0 
Case 2 β ≥ 0 t ≥ 0 γm < 0 
Case 3 β ≥ 0 t < 0 γm ≥ 0 
Case 4 β ≥ 0 t < 0 γm < 0 
Case 5 β < 0 t ≥ 0 γm ≥ 0 
Case 6 β < 0 t ≥ 0 γm < 0 
Case 7 β < 0 t < 0 γm ≥ 0 
Case 8 β < 0 t < 0 γm < 0 

 



Case 1: 0    ,0    ,0  mγt  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.1: Fan geometry, case 1 
 
 

)())90((90 mm           

)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt          (A.2.1) 

 
 
 
Case 2: 0    ,0    ,0  mγt  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.2: Fan geometry, case 2 
 
 

)(1809090 m          

)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt          (A.2.2) 
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ase 3:C  0    ,0    ,0  mγt  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.3: Fan geometry, case 3 
 
 

     )(180)9090(180180 mm  
)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt    

 

ase 4:

      (A.2.3) 

 
 
C  0    ,0    ,0  mγt  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.4: Fan geometry, case 4 
 
 

     )(360)90))(90((180180 mm  
)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt    

 
 

      (A.2.4) 
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ase 5: 0    ,0    ,0  mγt  C

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.5: Fan geometry, case 5 

 
 

          

)cos  ,

)( m 
sin()  ,( dyx ss  d          

 sicos ss yxt          (A.2.5) n
 
 

ase 6:
 

 0    ,0    ,0  mγt  C

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.6: Fan geometry, case 6 

 
 

       )(180)()(90 mm  
)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt     

 
 

     (A.2.6) 



 
 
 

105

Case 7:   ,0    ,0  t 0  mγ  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.7: Fan geometry, case 7 
 
 

)(180 m))90(90 m           
)cos  ,sin()  ,(  ddyx ss           

 sincos ss yxt          (A.2.7) 

 
 
 

ase 8: 0    ,0    ,0  mγt  C

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. A.2.8: Fan geometry, case 8 
 
 

     (90(9090 )())))(180()( mm   
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 sincos ss yxt          (A.2.8) 
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LOGARITHMIC BARRIER METHOD FOR SOCP 
 
 
 

B.1 Total Variation Minimization with Equality Constraints 

Consider the problem, 

APPENDIX B 

PWx
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  subject to  min
2,      (B.1.1) 

After defining the inequality functions as second order conic 
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the inequality constraints are incorporated into the objective function by means of 

the logarithmic barrier method: 
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We turn briefly away from solving (B.1.3) to investigate the solution of a more 

general problem,  

bAzzzf
z





     subject to   )(

1
)(min 


    (B.1.4) 

where z is a vectorial variable and )(z  is the logarithmic barrier function. The 

equality constraints are incorporat  the objective function using the Lagrange 

multipliers v, 

ed into







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1
)(min bAzvzzf T

z



     (B.1.5) 

Problem (B.1.5) can be solved using Newton’s method. The quadratic 

approximation of the objective function 

)  ()(
1

)()( bAzvzzfzg T  


    (B.1.6) 

around a point z is given by  

)(
2

)()( zzqzHzgzzgzzg z
T

z
T 

1
   (B.1.7) 

where gz is the gradient and Hz is the Hessian matrix, 

vAzzfg T )(
1

)(      z 
  (B.1.8) 

)(2 z

       (B.1.9) 

1
)(2 zfH z 

The Δz that minimizes q(z+Δz) in (B.1.7) is obtained by setting its derivative to 

zero:  

0)( 


zHgzzq


z zz      (B.1.10) 

Suppose z is a feasible point, i.e., Az=b. The new point, (z+Δz) should also satisfy 

wing system of linear equations:  

the constraint, i.e., A(z+Δz)=b, requiring AΔz=0. Therefore, Δz and v are obtained 

by solving the follo

zz gzH        (B.1.11) 
0  zA       (B.1.12) 

Let the term )()1()( zzf    in the right hand side of (B.1.8) be expressed by 

g0. Then, (B.1.11)-(B.1.12) can be written in matrix form: 
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Suppose )(zf  and )(z  are in the form of 

zczf T
0)(        (B.1.14) 

or second-order conic function. Then, (B.1.13) defines 

a symmetric but not necessarily positive definite system. It can be solved using 

SMMLQ algorithm when the problem is large-scale. The 

requires solving (B.1.13) repeatedly with a new τk τk-10 (k is the log-barrier 

the new point z+Δz is set as a 

starting point of the next iteration. 

For future reference, we note that the gradients of )(zf  and )(z
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j
j zgz
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where gj(z) is either a linear 

minimization of (B.1.4) 

iteration index). Using the Newton step direction Δz, 
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and the Hessians are given by 
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As analogous to the way of solvin

two-vectorial variable z = [xT, uT]

      (B.1.20) 

with  

g problem (B.1.4), (B.1.3) can be solved for a 
T. That is, (B.1.3) is rewritten as 

),(min uxg
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and expressions needed for the Hessian are given by 
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jj

The expressions (B.1.25)-(B.1.29) are used to form system of equations in (B.1.13) 

hich is solved for Δz = [ΔxT, ΔuT]T. It is possible to reduce the size of the Newton 

system by elimiating Δu from (B.1.13) (see [70]). 

ts 

Consider the problem, 

w

B.2 Total Variation Minimization with Quadratic Constrain
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After defining the inequality functions as second order conic 






  2

22 jj uxD      
21

  (B.2.2) 

 22

22

1  PWx  

the inequality constraints are incorporated

the logarithmic barrier method: 

      (B.2.3) 

 into the objective function by means of 
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We turn briefly away from solving

general problem,  

 (B.2.4) to investigate the solution of a more 
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where z is a vectorial variable and )(z  is the logarithmic barrier function. Problem 

uadratic approximation of the 

objective function, 

(B.2.5) can be solved using Newton’s method. The q
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around a point z is given by  
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where gz is the gradient and Hz is the Hessian matrix, 
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tting its derivative to 

zero:  

The Δz that minimizes q(z+Δz) in (B.2.7) is obtained by se

0)( 


zHgzzq


z zz     (B.2.10) 

Therefore, Δz are obtained by solving the following system of linear equations:  

zz gzH         (B.2.11) 

Suppose )  and (zf )(z  are in the form of 

       (B.2.12) 

    (B.2.13) 

where gj(z) and gε(z) are either linear or second-order conic functions. Then, 

(B.2.11) defines a symmetric, positive

algorithm when the problem is large-scale. The minimization of (B.2.5) requires 

ation. 

For future reference, we note that the 
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 definite system. It can be solved using CG 

solving (B.2.11) repeatedly with a new τk τk-10 (k is the log-barrier iteration 

index). Using the Newton step direction Δz, the new point z+Δz is set as a starting 

point of the next iter

gradients of )(zf  and )(z  are  
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and the Hessians are given by 
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ctorial variable z = [xT, uT]T. That is, (B.2.4) is rewritten as 

   

with  

As analogous to the way of solving problem (B.2.5), (B.2.4) can be solved for a 

two-ve
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The gradients are 
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and expressions needed for the Hessian are given by 

  (B.2.28) 















 T

jj
TT

jjj
T

j
TT

jj

T
jj

T
j

T
jj

T
j

T
j

T
jT

jj
uuDDux

xuDDDDxxDD
uxguxg




),(),(

   
    

























 T
jj

j
T

j

juujxu

juxjxx
j

DD

uxguxg

uxguxg
uxg

0

0

),(),(

),(),(
),(2  (B.2.29) 










 


00

0))((
),(),(

WPWxPWxW
uxguxg

TT
T

    (B.2.30) 

   
 











),(

),(),(
),(2 WW

uxg

uxguxg
uxg

T

uuxu

xx




   






 00

0

),( uxg
ux    (B.2.31) 

The expressions (B.2.28)-(B.2.31) are used to form system of equations in (B.2.11) 

which is solved for Δz = [ΔxT, ΔuT]T. It is possible to reduce the size o

system by elimiating Δu from (B.2.11) (see [70]). 
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