

A COMPLEX EVENT PROCESSING FRAMEWORK IMPLEMENTATION USING

HETEROGENEOUS DEVICES IN SMART ENVIRONMENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUAMMER ÖZGE KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2012

A COMPLEX EVENT PROCESSING FRAMEWORK IMPLEMENTATION

USING HETEROGENEOUS DEVICES IN SMART ENVIRONMENTS

Submitted by M. ÖZGE KAYA in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife Baykal

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assist.Prof.Dr. P. Erhan Eren _______

Supervisor, Informatics Institute

Examining Committee Members:

Assoc. Prof. Dr. Sevgi Özkan

IS, METU

Assist.Prof.Dr. P. Erhan Eren

IS, METU

Assist.Prof.Dr. Aysu Betin Can

IS, METU

Dr.Nail Çadallı

KAREL A.Ş.

Assoc. Prof. Dr. Altan Koçyiğit ____

IS, METU

 Date: 30.01.2012

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

 Name, Last name : Muammer Özge Kaya

 Signature : __________________

iv

ABSTRACT

A COMPLEX EVENT PROCESSING FRAMEWORK IMPLEMENTATION USING

HETEROGENEOUS DEVICES IN SMART ENVIRONMENTS

Kaya, Muammer Özge

M.S. , Department of Information Systems

Supervisor: Assist.Prof.Dr. P. Erhan Eren

January 2012, pages 83

Significant developments in microprocessor and sensor technology make wirelessly

connected small computing devices widely available; hence they are being used frequently

to collect data from the environment. In this study, we construct a framework in order to

extract high level information in an environment containing such pervasive computing

devices. In the framework, raw data originating from wireless sensors are collected using an

event driven system and converted to simple events for transmission over a network to a

central processing unit. We also utilize complex event processing approach incorporating

temporal constraints, aggregation and sequencing of events in order to define complex

events for extracting high level information from the collected simple events. We develop a

prototype using easily accessible hardware and set it up in a classroom within our

university. The results demonstrate the feasibility of our approach, ease of deployment and

successful application of the complex event processing framework.

Keywords : Complex Event Processing, Rule Engine, Wireless Sensor Networks, Pervasive

Computing, Event Driven Architecture

v

ÖZ

AKILLI ORTAMLARDA HETEROJEN CİHAZLAR KULLANARAK KARMAŞIK OLAY
İŞLEME UYGULAMA ÇATISI GERÇEKLEŞTİRİLMESİ

Kaya, Muammer Özge

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yard.Doç. Dr. P. Erhan Eren

Ocak 2012, sayfa 83

Mikroişlemci ve algılayıcı teknolojisindeki önemli gelişmeler kablosuz bağlantılı küçük bilişim

cihazlarının kolayca bulunabilmesine imkan sağladı; bu yüzden bir ortamdan veri toplanması

için bu cihazlar sıklıkla kullanılmaya başlandı. Bu çalışmada, bu tip yaygın bilişim cihazlarının

bulunduğu bir ortamdan yüksek seviye bilgi çıkarımı yapmak için bir uygulama çatısı

geliştiriyoruz. Bu uygulama çatısında, kablosuz algılayıcıların elde ettiği ham veri olay tetikli

bir sistem ile toplanıyor ve bir ağ üzerinden merkezi işleme birimine gönderilmek üzere

basit olaylara çevriliyor. Ayrıca bu basit olaylardan yüksek seviyede bilgi çıkartmak için

zamansal kısıtlamalar, kümeleme ve olayların sıralanması gibi özellikleri içeren karmaşık

olay işleme yaklaşımını kullanıyoruz. Kolayca erişilebilen donanımı kullanarak bir prototip

geliştiriyoruz ve onu üniversitemiz içerisinde bir sınıfa yerleştiriyoruz. Sonuçlar

yaklaşımımızın yapılabilirliğini, kolay konumlandırılmasını ve karmaşık olay işleme uygulama

çatısının başarıyla uygulandığını göstermektedir.

Anahtar Kelimeler : Karmaşık Olay İşleme, Kural Motoru, Kablosuz Algılayıcı Ağları, Yaygın

Bilişim, Olay Tetikli Mimari

vi

ACKNOWLEDGMENTS

I express sincere appreciation to my supervisor Assist.Prof.Dr. P. Erhan Eren for his

guidance and insight throughout the research.

The institute and my research assistant friends deserve special thanks for all the help they

have provided during the implementation of hardware components of the system. I would

also like to present my thanks to my lab friend Bilgin Avenoğlu for all the work he has done

to establish the “Wireless Lab” and for his unending help and support throughout my thesis

research.

I also would like to my colleagues Alper Çevik and Yusuf Sayıta for covering me at work

while I was busy with my thesis. My thanks also go to my employers who were always

understanding and provided me time for my thesis research.

My deepest thanks belong to my family, who were always by my side, for giving me the

best study environment and for always believing in me. I would like to thank my sister and

her husband for making my life bearable during this study. I would also stress my gratitude

to my grandmother who was always praying for my success.

vii

DEDICATION

To my grandma

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGMENTS .. vi

DEDICATION .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER

1 INTRODUCTION ... 1

1.1 Background .. 1

1.2 Outline.. 3

2 LITERATURE REVIEW ... 4

2.1 Wireless Sensor Networks ... 4

2.2 Event Detection and Complex Event Processing ... 6

2.3 Event Processing on Wireless Sensor Networks .. 8

2.4 Applications Areas.. 11

3 COMPLEX EVENT PROCESSING FRAMEWORK .. 15

3.1 Framework Overview ... 16

3.1.1 Conceptual Design .. 16

3.1.2 Complex Event Processing .. 17

3.2. Software Components .. 19

ix

3.2.1. Event Sources ... 20

3.2.2. Event Channel .. 22

3.2.3. Event Processing .. 23

3.3. Hardware Components ... 26

3.3.1. Design of Sensor Boards .. 27

3.3.2. Coding with Sensor Boards .. 34

3.3.3. Communication Interface .. 35

4 PROTOTYPING AND REAL LIFE APPLICATION .. 38

4.1. Classroom Environment Setup .. 38

4.1.1 Software Setup .. 40

4.1.2 Hardware Setup .. 41

4.2. Complex Events and Rules .. 47

4.3 Results and Discussion ... 50

4.3.1. Prototyping .. 50

4.3.2. Real Life Application ... 53

4.3.3. Discussion ... 57

5 CONCLUSION ... 60

5.1 Summary of Study .. 60

5.2 Future Work ... 63

REFERENCES ... 65

APPENDICES

Appendix A : Sensor Board Schematic For Arduino Uno .. 70

Appendix B : Microcontroller Codes ... 71

Appendix C : Rules in Drools Rule Language ... 77

x

LIST OF TABLES

Table 3.1- Sensor Type Characters Used In Messages ... 20

Table 3.2-Summary Information about Arduino Uno .. 27

Table 4.1- System Information of Computers Used in Implementation 39

Table 4.2- Sensor Usage Details ... 42

Table 4.3- Decisions for the Classroom .. 48

Table 4.4- Complex Event Detection Times ... 56

xi

LIST OF FIGURES

Figure 2.1- EP Reference Architecture. .. 6

Figure 2.2- High Level Architecture of Study. .. 9

Figure 2.3- Physical and semantic data flow in RFID-enabled hospital 11

Figure 2.4- The Components of a Smart Environment. ... 12

Figure3. 1 – Conceptual Design.. 17

Figure 3.2 – CEP Engine Modules ... 18

Figure3. 3 – EDA System Diagram .. 19

Figure 3.4 Class Diagram for SensorToJMS component .. 21

Figure 3.5 Class Diagram for StaticEventGenerator component ... 22

Figure 3.6 – Temporal Relations between Events ... 24

Figure 3.7 – Class diagram for JMSToSensor Component ... 26

Figure 3.8- Hall Effect Sensor (US1881) Connection on Development Board 28

Figure 3.9- Infrared Proximity Sensor (Sharp) Connection on Development Board 29

Figure 3.10- Optical Detector (QRD1114) Connection on Development Board 30

Figure 3.11- PIR Motion Sensor (SE-10) Connection on Development Board 31

Figure 3.12-Photoresistor Connection on Development Board .. 32

Figure 3.13 - Electret Microphone Connection on Development Board 32

Figure 3.14 - Temperature Sensor Connection on Development Board 33

Figure 3.15 – Microcontroller Network Schema .. 36

Figure 4.1 – Messaging between components .. 40

Figure 4.2 – Microcontrollers Schematic ... 42

Figure 4.3 – Microcontroller Setup - Door ... 43

xii

Figure 4.4 – Microcontroller Setup –Outside .. 44

Figure 4.5 – Microcontroller Setup –Inside, Wall .. 45

Figure 4.6 – Microcontroller Setup –Inside, Ceiling ... 46

Figure 4.7 - Redbee RFID Reader ... 46

Figure 4.8- Prototype Implementation In Wireless Lab-Ceiling ... 51

Figure 4.9- Prototype Implementation on the Wireless Lab-Door .. 52

Figure 4.10- Prototype Implementation In Classroom-Wall .. 54

Figure 4.11- Prototype Implementation in the Classroom-Door ... 54

Figure 4.12- Webpage showing the results of event processing ... 56

Figure 4.13- Number of Events for Five Days of Measurement .. 58

Figure 4.14- Noise Level Measurement in the Classroom ... 59

Figure 5.1- Hardware Cost of the Framework ... 61

xiii

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BRMS Business Rule Management System

CE Complex Event

CEP Complex Event Processing

DRL Drools Rule Language

ECA Event-Condition-Action

EDA Event Driven Architecture

EPTS Event Processing Technical Society

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IR Infrared

JMS Java Message Service

LAN Local Area Network

MOM Message-Oriented Middleware

PIR Passive Infrared

RFID Radio Frequency Identification

SQL Structured Query Language

xiv

USB Universal Serial Interface

WSN Wireless Sensor Networks

WSAN Wireless Sensor and Actor Networks

1

CHAPTER 1

INTRODUCTION

Pervasive computing, also referred to as ubiquitous computing, has become popular with

many mobile devices and computing units being used widely in our daily lives. With the

help of new wireless communication technologies most of these devices have the capability

to communicate with each other. Such networked computing devices let the users access

data anywhere, anytime.

1.1 Background

Mark Weiser defines [1] three different era for computing technology; main frame

computing era where one computer is used by many users, personal computing era where

one computer is used by one person and pervasive computing era where one user uses

many computers. A person can use the computers knowingly or can interact with

embedded devices unknowingly. Weiser also states that these computing units shall

become hidden until they become totally invisible to users [2]. Hidden devices monitoring

their environments and other computing units together can provide significant information

to users. The ease of access to data and using microcontrollers on everyday objects initiate

the pervasive computing application development. With pervasive computing we can

construct intelligent objects, context-aware spaces and smart environments.

When current technology was not available, pervasive computing was Weiser’s vision, but

today developments in computing technology have made it a much more viable research

2

area. There are still missing pieces to obtain a complete pervasive environment but new

computing approaches help us to progress towards it. In this study, we construct a

pervasive computing framework and for this we use currently available technology to test

its feasibility. We want to provide a complete framework that collects data and processes

them to obtain higher level information. We use Complex Event Processing paradigm to

obtain a smart environment with help of a Wireless Sensor Network (WSN).

Wireless Sensor Network (WSN) technology is beneficial to provide an infrastructure that

supports heterogeneous devices and wireless connection between them. Wireless Sensor

Networks are basic networks where more than one sensor is gathering data and

transmitting it through a wireless medium. Gathering environmental data and monitoring a

physical location are mostly done by WSN’s in recent research studies. Usually sensor nodes

in a WSN consist of a sensor, processor, transmitter and a power unit. The data from these

sensor nodes are transferred wirelessly to a sink node. This sink node acts as a gateway for

the other components of the system where further processing is done on the collected

data. WSN’s are densely deployed and do not have a fixed topology; the nodes transmit

data with multi-hop so that even if one of the nodes fails, the network still continues to

work correctly. There are ongoing researches for deployment, routing and other

networking problems related to WSN’s; on the other hand the researches about pervasive

applications use sensor nodes that are communicating wirelessly. Most of the current

pervasive computing applications use sensor networks but not all of them utilize these

characteristics of WSN’s. We also use a network of sensors but the topology of the network

is predefined and sensor nodes are communicating only with the sink node.

In pervasive computing, data gathered in an environment must be processed and converted

to meaningful information in order to obtain a smart environment. Event processing is an

approach generally used in event driven systems where computing is done over the simple

events gathered from various sources. In real life there are events that can be represented

as a set of other simple events which are called Complex Events. While event processing is

simply gathering, filtering and analyzing simple events, Complex Events need more

processing to be extracted. The events forming a complex event mainly have conjunctions,

disjunctions, sequences or temporal relationships with each other. The technology to

deduce them is called Complex Event Processing (CEP). Traditional event processing only

deals with simple events and gets basic information on those events. With CEP it’s possible

to gather more meaningful events happening in an environment, and high level information

is essential in order to develop pervasive computing applications.

3

1.2 Outline

The aim of this study is to implement an event driven system in a classroom environment

and to extract meaningful information from the raw data collected by the deployed

sensors, by using Complex Event Processing. The availability of current technology for the

purpose of making our environments smarter will be discussed.

This chapter provides background information regarding Wireless Sensor Networks and

Complex Event Processing which are used for pervasive computing scenarios for smart

environments. Chapter 2 gives more information about these technologies and applications

that use them by providing a review of previous work and related literature. Chapter 3

presents the design of our event driven framework that uses Complex Event Processing

technology. We also express the details about software-hardware components of the

system and software tools used in this chapter. After designing our system, we develop a

prototype to test it. Afterwards, we test our design in a real-life environment and discuss

the results. Chapter 4 provides the details of our prototype and real life implementation. It

also details limitations, shortcomings of our system and discussion about this case study.

Suggestions to improve our design are also discussed in this chapter. Finally, Chapter 5

presents the conclusions and further research venues.

4

CHAPTER 2

LITERATURE REVIEW

This chapter discusses previous studies and research carried out in Wireless Sensor

Networks and Complex Event Processing fields. In 2.1 literature about Wireless Sensor

Network (WSN) is mentioned in detail; the general ideas about WSN’s and their

characteristics, difficulties in development and different data acquiring techniques are

discussed. Section 2.2 clarifies some basics about complex event processing (CEP) and

event detection while section 2.3 mainly focuses on CEP in the area of WSN’s. Finally in

section 2.4, literature about applications in WSN and event processing area is discussed to

form a base for the implementation part of this thesis.

2.1 Wireless Sensor Networks

Wireless Sensor Networks are composed of sensor nodes which have sensing, processing,

transmitting and also power components. WSN’s are densely deployed, in most of the

applications their topologies are not predefined and can change by time, number of nodes

in a network is usually high and the sensor nodes are low cost, error prone and limited in

terms of processing capacity [3]. Because of the topology changes, the sensor nodes should

broadcast their existence to the neighboring nodes, a multi-hop network is needed for

energy efficiency and also to prevent network errors. Most of the time WNS’s are only used

to get information about phenomena but in some cases there can also be actuators

alongside sensors in the network. Wireless Sensor and Actor Networks (WSAN) also react to

the information they gather but this structure brings more requirements with it. First of all

5

the actors and sensors should be coordinated and also there should be low latency [4]

between sensing and actuating components.

WSN’s have a layered architecture just like traditional networks. There are studies carried

out in different layers of WSN’s. In [5] different MAC protocols for WSN’s that are aimed to

be power efficient are surveyed. In the network layer, different approaches are researched,

while broadcasting approach is the most used one, flooding and gossiping are other

approaches to save battery on the nodes [3]. The research [6] takes a different approach

called “Directed Diffusion” and sends an interest to nodes and nodes send back information

by the same path back to the sink. With that, the routing back to the sink becomes data

centric.

The requirement of automatic generation of a network in WSN’s brings forth lots of

research in that area. In [7] a specific framework for assigning roles to WSN nodes is

described in order to give nodes specific roles automatically to form the WSN. Three

different algorithms are defined to form different types of networks: coverage to turn

on/off nodes for best coverage, clustering for better data delivery, in-network aggregation

to reduce communication for power saving. In the upper layers there are mostly

middleware examples. The research [8] suggests a rule-based middleware called FACTS.

Unlike mentioned in [3] all nodes have a unique ID and they produce facts which trigger

rules in the system. This approach allows application development with event based rule

language. While [7] separates WSN infrastructure and application layer, this research says

that network state changes should be covered by application developers. FACTS is an event

driven rule based system where there are facts created by the sensor nodes and rules that

are written by the application developer. Different than this study at hand, the system

described here is implemented inside the sensor network. Another study [9] relies on

query processing to get desired information from WSN’s. The proposed system called

TinyDB is implemented on the WSN as a distributed system and with statements similar to

SQL the data is queried to join, aggregate it. This study also focuses on different issues of

querying on WNS such as “What sensor nodes have data relevant to a particular query?”,

“In what order should samples for this query be taken, and how should sampling be

interleaved with other operations?” and “Is it worth expending computational power or

bandwidth to process and relay a particular sample?”. The study claims that with the

features of their system they are able to reduce power consumption by their acquisition

techniques.

6

 2.2 Event Detection and Complex Event Processing

In real life environments lots of atomic events happen which are the sources for bigger

events that are more meaningful and the users are more interested in those events. While

sensors are physically used to detect atomic events in an environment, event detection

paradigm becomes important to be able to develop event driven systems. To give users

more meaningful business level events the atomic events are aggregated, composed or

filtered in order to get these so called Complex Events. The research [10] defines a

reference architecture for Event Processing. They suggest that there should be 4 layers as

Event Originator, Event Modeler, Event Processing Medium and Event Consumer. Event

Originator is the source of events which can be both atomic and complex events while

Event Modeler is where the triggers of complex events are defined.

Figure 2.1- EP Reference Architecture (Paschke, A. & Vincent, P. 2009).

Event Processing Medium is the main platform to process events. This platform has the

infrastructure for event selection, aggregation, classification within hierarchies and event

abstraction to be able to generate higher level events. This platform can be a single agent

or a distributed event processing network. Finally the Event Consumer is defined as the

receiver of the high level events and it’s also stressed that the consumer might create

further events thus act as event originator. Current technologies and event-based

applications are examined in detail in [11]. Technologies such as active databases,

materialized views, stream processing, message oriented middleware and WSN are

7

explained within the context of event processing. A variety of applications like environment

monitoring, information dissemination, fraud detection, financial applications, smart

homes, ambient intelligence are analyzed and their event processing features are listed. In

conclusion they have stated the areas which require further research. They have explained

that most of the applications have their own event semantics which are not explicitly

defined. The event enrichment area is told as an open and difficult research area with the

combination of information from heterogeneous sources to produce events of higher level

of abstraction. They have examined that little experience exists in integrating low end

sensors with high end stream processing engines. They have also expressed that

performance modeling and benchmarking is another research area.

In research [12] an event-oriented approach is taken to process RFID data, by devising RFID

application logic into complex events. Two scenarios, historical tracking and real time

tracking by RFID tags, are examined and the raw data collected by RFIDs are transferred to

semantic data. To achieve this goal an RFID complex event detection engine that supports

temporal constraints is used. In another similar research [13] a complex event processing

engine is used to process RFID data. The details of event types, event operators and event

rule definitions are explained and after simulation and performance evaluations it’s stated

that with this method, time to process events can be reduced by 57%. In [14] CEP

technology is used in a mix middleware where not only RFIDs but also WSN’s are used. They

have adopted CEP that has the functions of filtering, grouping and aggregating event data in

real-time. By using temporal constraints and also membership relations more meaningful

reports are provided. Different than other studies a prototype of the designed system is

implemented.

Some researches are based on middleware solutions. In study [15] an adaptive middleware

which extends publish-subscribe paradigm to provide a complex event detection service is

designed. Events are defined by message filters to select relative events, composition

operators for combination of events and parameters to be able to satisfy mutual relations.

With the help of windows only messages published in the limited amount of time can also

be defined. In this middleware extension distributed detection of complex events inside a

network of brokers is presented. Another research [16] done on a middleware also use

distributed complex event detection. It’s stated that event receivers may be overwhelmed

by the number of primitive events and would benefit from higher level of events. CE

detectors used in this study are “simple automata with a regular structure which have the

ability to detect concurrent event patterns”. Study [17] also uses a middleware approach

8

that is based on CEP. They have extended a previous RFID middleware with CEP abilities

because they stated that the real advantage of RFID technology lays on real time

knowledge. They have used a cache strategy to improve the performance of data stream

and used active databases to query over historical, current and future data. The study is

based on an SQL like processing language and pub/sub system to deliver reports to users.

2.3 Event Processing on Wireless Sensor Networks

Wireless Sensor Networks or even only sensors are accepted to be the best technologies to

gather real life data, however the raw data are not meaningful for high level applications or

for end users. Event Processing is a decision system that takes the raw data from WSN’s

and turns it to information. Study [18] discusses the parameters influencing architecture of

an event processing system within wireless environments. Three different parameters are

examined: network load, delay of event recognition and the storage needed to reliably

detect and process events. They have stated that the cost of event processing in a

centralized manner depends neither on the event class, nor on the frequency of the

occurrence of events. Meanwhile for the distributed processing higher processing burden

and storage is needed for sensor nodes while the network load is depending on the number

of events. They have also discussed that higher temporal event complexities lead to a

greater energy consumption which directly affects networks and thus applications lifetime.

In [19] a different approach to detect events in WSN’s is presented. How complex filters can

be expressed as tables of conditions is shown. This approach adopts the same data model

and query semantics of TinyDB but extends the query language by allowing tables of filter

predicates. They have stated that their algorithms are capable of running with limited

memory and can distribute the storage burden of nodes while they are tolerant to message

loss and node failure. Another research [20] is pointing out the challenges of data

processing in Wireless Sensor Networks. Three major categories; data gathering, data

processing, data forwarding, are inspected. It’s stated that algorithms must consider lost

samples for data analysis and processing, also high storage requirements is another

problem because of hardware limitations of sensor nodes. The paper also suggests

solutions for a real life problem using WSN’s. The study [21] presents the ongoing work of

distributed event detection on WSN’s their algorithm is divided to 4 different phases. In

‘hello’ phase, sensor nodes detect neighboring nodes and in ‘calibration’ phase the nodes

are established by checking their position and the background noise. Different from other

research, this study uses a ‘training’ phase where new reference patterns are used for

9

future runs of ‘recognition’ phase that is the event detection phase of the algorithm. They

study current studies and express the points that should be taken into account to develop

suitable systems. State specifications, state detection algorithms, event ordering and event

delivery are some areas that are presented by that research. Research [22] is describing a

system that is observing the data obtained from WSN, comparing data to admissible

conditions and taking action if needed.

Figure 2.2- High Level Architecture of Study [22] (M. Marin-Perianu, N. Meratnia, M. Lijding, and P.

Havinga, 2006).

They state that requirements for such a system are: first heterogeneity which uses smart

tags, sensor nodes, mobile devices and gateways; second massive deployment and lastly

context-awareness. Their system uses rules both on a central system and also on sensor

nodes. The rules on sensor nodes are shown as converters in Figure 2.2 and business rules

are deployed in Rule Engine. Local Service Deployment is the administrative part of the

system that creates rules, actions or filters. An event-based architecture is given in [23] that

is used on RFID networks in hospitals. The system is used for data collection, filtering,

management and interpretation tasks between RFID sensors and hospital enterprise

applications. Different from other studies, a semantic representation is used to match

event patterns. It’s stated that the results indicate better management of available

equipment.

10

Complex Event processing takes event processing to a further level by deducing more

meaningful information from the gathered data. Some groups go on studying this paradigm

as an approach to get high level information. Study [24] is basically a middleware solution

with CEP support that is implemented in a WSN application. The main outcome that is

pointed out is that the system is programmable in the runtime. They have stated new rules

can be defined in the runtime and the distributed system will match for them. In another

research [25] a medical sensor network is inspected with usage of a rule based system to

detect events. A simple rule engine is used to define rules and infer data coming from the

sensor network. It is stated that a rule based engine can provide “a flexible and easily

extensible framework for processing, managing and contextualizing sign information from a

sensor network”. This rule based processing engine is not supported with CEP. A similar

research [26] also uses a sensor network but it extends the network capability by using a

CEP engine. It uses a simple scenario where a patient is using medical sensors that are

communicating with a centralized system. Medical information area is presented as a

critical area and it’s pointed out that CEP is ideal for this dynamic environment in contrast

to traditional database approach. Study [27] also presents a CEP system working on WSN’s

but this study differs by their definition of complex events. They define complex events as

“set of data points hiding interesting patterns that are difficult or even impossible to

capture using traditional techniques such as thresholds”. Their algorithm has 3 phases:

Learning, Initial Detection and Escalation phases. Learning phase acts as calibration by

listening to the surroundings for a given time and getting minimum, maximum and average

measurements. Initial Detection is the main part responsible to get measurements which

are different than the measurements sensed in the learning phase. Finally escalation phase

is responsible to distinguish true and false positives and is not necessary for most of the

detections. They have presented that their approach allows non-parametric event

detection and also approximate event detection by giving users the possibility to search for

different events by defining similar event patterns. Study [28] is proposing a CEP framework

to model surgical events and critical situations in an RFID automated hospital. They have

stated that for a surgery there are many actors and places and RFID plays an important role

to identify and track persons, objects that are needed for the surgery. The components of

the system are shown in Figure 2.3. Apart from the RFID’s some embedded sensors that are

monitoring patients’ health are used to derive complex events during the operation which

are very critical in that scenario.

11

Figure 2.3- Physical and semantic data flow in RFID-enabled hospital (Yao, W., Chu, C.-H. & Li, Z.

,2011).

A prototype is implemented and rules with temporal parameters are used in CEP engine to

track patients’ health during the operation which will help doctors react immediately when

needed. Another study [29] examines if an event based system with complex event

detection is a potential tool for supporting the detection of real world states in WSN.

Different from other research in this area, they have stated that CEP is still ill-suited to

support efficient specification and detection of complex events in real-world states.

2.4 Applications Areas

While the micro sensor technology led to implementation of small computers to everyday

objects and environments, the research interest in applications of pervasive computing has

increased. Most of them are event based but not all of them use CEP technology. Those

researches show different applications areas where pervasive computing can be used.

Research [30] details some areas for pervasive computing and presents some issues to

implement them. While healthcare, domiciliary care, environmental monitoring and

intelligent transport system are mentioned as main areas of application it’s stated that

current lack of low cost technology and power sources is the main issue. Also it’s told that

such systems gathering sensitive data may have implications for privacy, security and

safety. Likewise study [31] also gives a brief outline for WSN applications. The study claims

12

that “most researches do not have the resources to design, build, deploy and maintain a

WSN application”. On the other hand they encourage building new WSN applications by

stating that creating and deploying applications is a direct way to examine what users want.

They have also stated every developed application will help get better usage of WSN

applications. The main problems stated by that research are limitation of hardware, lack of

research different than energy consumption and network protocols for WNS’s. In research

[32] current applications that are targeting to make our environments smarter are

discussed and components for a smart environment are described (Figure 2.4).

Figure 2.4- The Components of a Smart Environment (Cook, D. J. & Das, S. K., 2007).

Sensors and other hardware are responsible for monitoring the environments and

communication components (Routers, WSN, etc.) are used to make this data available to

higher components which then transform data to information and make decisions by using

this information. A smart environment is described as “one that is able to acquire and

apply knowledge about the environment and its inhabitants in order to improve their

experience in that environment”. While sensors and other hardware are stated to be vital

13

to monitor the environment to build a fully automated system, a decision-making

component is suggested to be built upon these layers as shown in Figure 2.4.

While the previous research suggests components and architectures for such applications

there is also some research which implements WSN or event-based systems in a specific

area. Research [33] presents a smart home application specifically designed for elderly care.

They state that they use both WSN and RFID’s to be able to track and identify caregivers

inside the house. The experiments are done in a controlled lab environment and apart form

caregiver identification, automated lighting and playing personalized music is also

implemented in the application. They state that their approach is light-weight and stay

invisible while supplying necessary information. In the study [34] a remote surveillance and

monitoring application is detailed. WSN technology is used to enhance the detection

capabilities and improve alarm functionalities. The research attempts to track changes and

also give automated real-time alarms to the end users. A four tiered architecture is used

where the first tier is the sensor nodes which are responsible to track environment. The

second tier is the gateway tier and it forwards the information to upper layers. Another

responsibility of this tier is to use Video Surveillance System to get the visuals where

something is detected by the sensors. The third tier is the management tier where users

can define alarms and controls the system. The last tier is the alarming and display

subsystem. Simulation and real life implementation are both evaluated in that research.

Study [35] also uses a WSN for surveillance but mainly focuses on energy efficiency. They

state that this application requires some important points to be taken into account. First

one is Longevity, the system shall last for at least a few days. Stealth is the second

requirement because it’s crucial for military surveillance. They also declare that the system

shall have an adjustable sensitivity and effectiveness in terms of latency and precision. With

their WSN routing and event dissemination algorithms they claim that their system is

adaptable and achieves an improvement in network lifetime. A WSN system that is

monitoring the seabirds is described in [36]. Temperature, humidity and PIR sensors are

used in burrows of the birds and the gathered data are transferred to a central system with

the help of sensor nodes and gateways. To improve the quality of data and reliability, the

centralized software is improved; also RFID nodes are integrated into a WSN system. A

healthcare system using WSN’s is described in study [37]. Medical sensor nodes are

collecting data such as blood pressure, body temperature, blood sugar levels of patients.

The gathered data are then sent to a sink node which is a web server. The doctors are able

to track patients remotely with the proposed system. Different than the previously

14

discussed studies, research [38] is used in a bigger area aiming to prepare a city wide WSN

testbed. Their research describes the ongoing implementation that monitors wind-speed,

direction, relative humidity, temperature and pressure. The sensor nodes are fixed to street

lights which supply power to the nodes, the nodes communicate with Wi-Fi protocols and

use current security solutions developed for Wi-Fi. They have stated that with this testbed

they support innovation for WSN applications. On the other hand, research [39] states the

difficulties to establish an infrastructure for smart cities. Large number of sensor and

mobile devices and their heterogeneity are stated as two important factors that should be

taken into account during the design. The city is said to have simple, complex, temporal and

other types of context sensitive events together which it brings the need for event

composition and management services. They have pointed out that event-based

computing plays a centralized role in the realization of these applications.

15

CHAPTER 3

COMPLEX EVENT PROCESSING

FRAMEWORK

In this study, we construct a framework to extract high level information in order to get

smart environments. This framework works with wireless sensors and other data sources; it

also utilizes complex event processing for information extraction. The software

components of our proposed framework support event driven architecture and we choose

to use a messaging system which lets the fusion of events in a structural but simple way.

The most important part of our system, the reasoning component is selected as a rule

based system that also allows Complex Event Processing of the events. This module is

capable of processing events with time dimension that lets us define more complex event

rules for our system.

The event driven system we aim to develop is meant to work in a wireless sensor

environment. The hardware components of our system are selected from a wide range of

electronics prototyping platforms. We want our nodes to be programmable and support

different kinds of communication interfaces. To make our system more generic we choose

our boards to be compatible with different types of sensors and be assembled as desired.

This chapter discusses the hardware and software design of the system we develop. In 3.1

an overview of the framework we construct is given while in 3.2 details about the software

components of the event driven system are explained. Section 3.3 clarifies the design of

selected hardware; sensor boards, sensors and communication interfaces.

16

3.1 Framework Overview

We aim to construct a complete framework to be able to extract high level information in a

pervasive computing environment. In such an environment there are numerous data

sources providing raw data; event processing paradigm deals with this data and tries to

make meaningful extractions. Complex Event Processing technology takes this approach

one step further and helps with extracting high level information. Our goal is to construct a

framework that will help gather data from sensors and other data sources and process this

data to be able to provide meaningful information for higher level applications. We want

our framework to be able to get data from both existing and also newly deployed data

sources. We believe currently easily accessible hardware and software can be used to

construct such a framework. This helps the deployment of the framework to be easy and at

the same time inexpensive. Also, with the help of available Complex Event Processing

software we aim to extract higher level information by using the available environmental

data.

The framework we present is used in a classroom environment where we have setup a set

of wireless sensors and an RFID reader. We first implement a prototype and we use a

classroom in our institute in order to test it in a real life environment; we carry out our

experiments when there is an ongoing class inside the classroom. Our goal is to present the

feasibility of our approach and for this we use sensor nodes that are available within our

institute. The prototyping and the real life application details will be discussed in Chapter 4.

3.1.1 Conceptual Design

Figure 3.1 gives a summary of our conceptual design. In this study we aim to gather simple

events from heterogeneous sources and by using a rule engine we extract high level

information. We use Wireless Sensors, RFID data and also supplementary data from a

database. In our framework, incorporating additional data sources as event producers is

always possible. The raw data provided by sensors are converted to simple events, these

and events from other data sources are transferred to a centralized processing unit. We

decide to use a publish/subscribe messaging system to get those simple events to the unit

where our Rule Engine resides. In order to add a new data source to our framework, we

define them as new publishers and change our processing engine to subscribe to their data.

The centralized processing unit is a rule engine that supports complex event processing.

With predefined rules that utilize temporal constraints, aggregation, sequencing and

17

filtering, we try to extract higher level information from the cloud of events produced. We

do not run queries over the events that happen; instead we define our queries beforehand

and let our system make detections whenever new events match the patterns. The main

component containing Event Producers, Messaging Service and Processing Engine in Figure

3.1 refers to our framework that converts raw data to simple events, simple events to

information and finally by Complex Event Processing into high level information.

Figure3. 1 – Conceptual Design

For this study we create a web page to demonstrate our high level information to end

users, for other scenarios it’s possible for other frameworks to subscribe to both high level

information and simple sensor events. Various other applications can use our framework

to get meaningful information from a pervasive environment without dealing with the low

level information present.

3.1.2 Complex Event Processing

Event processing is the most important part of our system because in this research we aim

to make our environments smarter by using a network of sensors and making meaningful

deductions with the use of complex event processing. This module subscribes to the topics

created by event generators and thus retrieves the messages as soon as they are produced.

The retrieved events are used by the reasoning engine to create knowledge from

information. This engine supports complex event processing with the help of temporal

reasoning and also sliding windows.

18

The Event Processing Technical Society (EPTS) has published a glossary to provide a

common language for event processing community [40]. The definitions given in this

glossary are presented below to clarify the difference between normal and complex events:

Event
‘Anything that happens, or is contemplated as happening.’

Complex event

‘An event that is an abstraction of other events called its members.’

Complex event processing (CEP)
‘Computing that performs operations on complex events, including reading, creating,
transforming, or abstracting them.’

This means that complex events are produced from the events that have already occurred.

A sensor reading is also a simple event and when all sensor events are gathered, a cloud of

events will be formed with each one having different timestamps. Complex Event

Processing is inspecting the cloud of events and deducing a new event composed of the

other events. With temporal reasoning, absence of events and other parameters, the

events that cannot be formed with simple sensing capabilities are derived by complex event

processing.

Figure 3.2 – CEP Engine Modules

Since CEP needs an inference engine to drive answers from the knowledge base, in this

study we use a rule-based engine for reasoning over events. This component is formed by

a rule base where all extraction rules are stored, an inference engine to run these rules and

a working memory to reason over the event cloud (Figure 3.2). CEP system uses event

matching, event abstraction, temporal-spatial reasoning and detecting relationships for

deriving complex events from simple events.

19

3.2. Software Components

We aim to implement a complex event processing framework to be able to gather

meaningful results from different sensor events and we utilize Event Driven Architecture

(EDA) to achieve this goal. Sensor readings are our events that will drive our system and

CEP component will make reasoning over these measurements. A conceptual model is

proposed in [41] and it offers three different components of EDA; event producers-

consumers, event channel and event processing agent. In this study an event producer

component, an event processing engine and the messaging channel between these

components are designed to work seamlessly with each other. Event generator layer is

formed by microcontrollers that convert raw sensor data into simple events and the

component that transmits the events. To make our messaging more flexible we implement

a publish-subscribe system as our Event Channel. The messaging system is used to make

communication between two components of the system loosely coupled. Finally we

implement a CEP system to reason over the sensor readings. We have chosen a rule engine

with temporal reasoning to form CEP rules. While data from the servers can be converted

to information by simple logical converters, CEP helps to convert information into

knowledge. This module gets sensor messages by the event channel and also publishes

results back again to the event channel. The published Complex Events are presented by a

simple webpage at the application layer.

Figure3. 3 – EDA System Diagram

The details of the components shown in Figure 3.3 are briefly explained in the next

subsections.

20

3.2.1. Event Sources

The sensor nodes used in this study are described in 3.3.1 and they are the main event

generators for our system. Since the microcontrollers let us format and send the output

messages according to our needs, we have sensor type, sensor ID and measurement

combined and sent as one string. This lets us to be able to identify which sensor sends the

data to our sink and what the last reading of that sensor is. The string message starts with

the type of the sensor denoted as a character, continues with the ID of the sensor and

finally following a colon it provides the measurement. There is a special character at the

end to specify the end of the message. Table 3.1 shows the characters used as sensor types.

Example messages then become:

 L0:762/r meaning, light sensor whose ID is 0 lastly measured 762.

 S1:24,6/r meaning , temperature sensor whose ID is 1 lastly measured 24,6.

Table 3.1- Sensor Type Characters Used In Messages

Character Sensor Type

H Hall Effect

I Infrared Proximity

L Light

S Temperature

T RFID

H Optical Detector

E Electret Microphone

M PIR Motion

These messages are the outputs of our event generators and we gather them in one place

with the help of a sink node. The sink node gets the messages through a wireless medium

and sends them to a virtual serial port via USB. In order not to throttle our one sink node

21

we have coded our microcontrollers to only send state changes for hall effect, infrared

proximity, optical detector and motion sensors while temperature, electret microphone

and light sensors are sending the measurements at fixed time periods.

Figure 3.4 Class Diagram for SensorToJMS component

The sink node sends all messages to our local server where we have implemented a simple

serial port reader to gather all messages sent by our WSN nodes. This module gathers the

messages and parses them according to their types and passes this information to our

Event Channel where the messages are disseminated to other components of our system.

Our component called SensorToJMS has four classes, the first one being the SerialListener

class which is responsible for gathering data, second is the main class which acts as a

controller and it also parses incoming messages and third one, JMSMessaging, is for

messaging between components which is described in the next subsection. The final class

DB serves the purpose of recording all messages in a persistent environment.

Apart from the sensor producers we have decided to use a static event generator to be able

to understand the timed events planned to occur in the environment where our sensors are

placed. In this study we want to get lecture hours and other simple facts from a given

schedule and send them over the event channel to the event processor. Our

StaticEventGenerator is a simple java program that runs on timed triggers with the help of

Windows Task Manager. The purpose of the program is to check the schedule database if

there is a lecture starting or ending at that time and if it’s the last lecture. The

22

corresponding information is sent to the Event Channel waiting to be consumed by the

subscribers and also it’s registered to a database.

Figure 3.5 Class Diagram for StaticEventGenerator component

3.2.2. Event Channel

Event channel in an EDA system makes different components of the system loosely coupled

which is a good practice for software engineering [42]. To provide this messaging system

more flexibility we use a publish-subscribe system for event channeling so that other

systems also can use our event generation system. Since we have developed our

components with Java coding language, Java Message Service (JMS) is a suitable tool to be

used as our Event Channel.

Java Message Service [43] is a middleware messaging system, also referred to as Message

Oriented Middleware (MOM), which enables loosely coupled connection between different

java applications. JMS supports two different message delivery models: point to point and

publish-subscribe. While the first model allows messaging between 2 clients, publish-

subscribe model allows 2 or more clients to communicate with each other. JMS API is

composed of a JMS Provider which implements all JMS specifications, JMS Clients that will

send/receive messages and JMS Messages that are used to communicate between clients.

Event channel used in our research is Apache ActiveMQ [44], which is an open source JMS

implementation. The two components Event Generator and Event Processing are JMS

Clients that are developed using Java language. The event generator publishes JMS

messages with every source being a different JMS Topic and the event processor subscribes

23

to all these topics to get sensor readings. Finally the outputs of the event processor are also

published to JMS for other components to get meaningful results without subscribing to

sensor topics.

We have arranged our JMS to have different topics for every sensor, this way a system that

wants to get only specific types of sensor readings will only need to subscribe to the topics

of these sensors. When a new reading is published to JMS by event generators, JMS

automatically forwards it to all the subscribers.

For this study we use a remote server for our JMS provider apart from the implementation

where our event generator is running. Both our event generator and event processor has

one class called JMSMessaging to utilize publish-subscribe model in both clients. Also we

have implemented a database to store all the messages published by topics in order to be

able to inspect the messaging history.

3.2.3. Event Processing

This study uses Drools Business Logic Integration Platform [45] which has started as a

business rule management system (BRMS) with a forward chaining inference based rules

engine and then renamed with the addition of more components. In 2009 with version 5,

developers added event processing and workflow capability to their system and after a few

years they renamed their product to turn it to a complete Logic Integration Platform. The

new component implemented for event processing is called Drools Fusion and as described

in their web page it adds some features for event processing while keeping the rule engine

fully active. The new features of Drools Fusion are:

 Understand and handle events as first class citizens of the platform

 Select a set of interesting events in a cloud or stream of events

 Detect the relevant relationships (patterns) among these events

 Take appropriate actions based on the patterns detected

The previous versions of the rule engine were only working with facts that are onetime

events that have no time parameters. With Drools Fusion, it’s now possible to define

events with time parameters and the engine will handle them knowing they are events not

facts. Another new feature of Drools Fusion lets the users define events with a timestamp

and duration so that temporal reasoning over events can be made. With all events having a

timestamp and duration, Drools makes it possible to find relationships between events by

24

using time constraints. Figure 3.6 shows different temporal relationships between events.

Drools fusion also supports making reasoning for absence of events while the presence of

events can be reasoned on a sliding window concept where the window size could be the

last number of happenings of the event or a defined time interval. While all the events are

stored in working memory, Drools Fusion implements a special garbage collector where the

unnecessary events that are not used in the rules are disposed.

Figure 3.6 – Temporal Relations between Events (Courtesy of JBoss Drools,

http://www.jboss.org/drools/drools-fusion.html)

Drools has its own rule language called Drools Rule Language (DRL). Like most of the rule

languages, it’s structured as Event Condition Action (ECA) rules. Events are the triggers for

the rules, conditions are checked if the rule is going to evaluate as true and actions are the

consequences of the rule if it returns true. For Drools Rule Language there are the when

and then operators, where the condition and action of the rules are coded consecutively.

The rule engine checks the ’when’ condition and if it’s evaluated true, continues with the

‘then’ part of the rule. The code-block shows the simple structure of a rule but the power of

CEP remains in the conditions where many different operators can be used. All the rules are

stored in a text file with the extension “.drl “ and then inserted into the knowledge base of

the rule engine.

http://www.jboss.org/drools/drools-fusion.html

25

Simple code-block for Drools Rule Language

For this study, we have implemented the Drools rule engine in a remote computer where

the sensor readings are accessible by subscribing to their topics on JMS. The rules are

written in Drools Rule Language (DRL) and stored in a “.drl” file which is then imported into

the knowledge base for the events to fire them. Whenever an event is inserted,

fireAllRules() function is called for our rule engine to process new events. This function lets

the rules to be checked whenever a new event is inserted into the working memory.

Our third component called JMStoDrools is responsible for subscribing to the topics of the

sensors, creating objects from the messages received and inserting them into the

knowledge base. With the Drools API, the events are reasoned over the rules we have

created and after that the results are published back again to JMS. We have Drools class for

reasoning, JMSMessaging class for publishing and subscribing, and the event classes for

forming the objects that are going to be inserted into the working memory. The rules are

created to be able to derive complex events from simple sensor readings. The next chapter

will briefly describe the system working in a sample environment and how the rules are

structured for such an application.

rule "ruleName"

when

 //Conditions

then

 //Actions

end

26

Figure 3.7 – Class diagram for JMSToSensor Component

The SensorEvent class is the class that represents the events detected by various sensors in

the classroom while RFIDEvent class is used only for RFID readings. DroolsEvent class is

used to insert the events extracted by the rule engine into the working memory. Finally we

have also created a class called CurrentState to be able to store current static condition of

the classroom in the working memory. Information about instructor, number of students

and lecture times are stored in this class in the working memory. When a state change

occurs we are updating this class inside the working memory and our rule engine is firing

the rules, checking them again according to the changes of the state. Drools class is our

event processing engine where we create our working memory using our rules. This class is

heavily dependent on the Drools API. JMSMessaging class is used to subscribe to the Sensor

and RFID Events and also to publish the deduced events to the JMS. Finally DB class is used

to record Drools Events to a database and also to simulate past values which are recorded

to the database.

3.3. Hardware Components

Recent progress in the technology of WSN has led to different types of WSN hardware to be

produced for both commercial use and research purposes. For our research we want to

use a flexible platform to be able to use different kind of sensors. Furthermore we need a

platform that is easily programmable to have control over the data that should be sent over

27

selected communication interfaces. We decided that the Arduino [46] platform satisfies all

the requirements we needed, thus the sensor boards and sensors are selected to be used

with this platform and coding of sensor boards are carried out using the Arduino language

which is a set of C/C++ functions that can be called within the code.

3.3.1. Design of Sensor Boards

The Arduino platform has different kinds of development boards that work with different

types of applications. For our study we decided that “Arduino Uno” will suit the best

because of its processing ability, output power variety and number of analog and digital

inputs. In our setup, we use two or more sensors on one board thus the need for more

power and more number of inputs was inevitable. Appendix A: Sensor Board Schematic For

Arduino Uno, shows the detailed design of the boards used in this research.

Table 3.2-Summary Information about Arduino Uno

Microcontroller

ATmega328

Operating Voltage 5V

Input Voltage 7-12V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB (Atmega328) of which 0.5 KB used by bootloader

SRAM 2 KB (Atmega328)

EEPROM 1 KB (Atmega328)

Clock Speed 16 MHz

This development board basically reads the voltage values from the input pins and converts

them to readable values. These pins are 10 bit analog to digital converters (ADC). For

analog input pins the output of this transfer is a value between 0 and 1023 while the output

values for digital input pins are 0 or 1. These input pins can also be used as output pins that

can provide a maximum of 40 mA, operating at 5V.

32 KB flash memory is sufficient enough to implement a simple measurement reading and

data transferring code block. A simple code block for this type of application can only be a

few KB’s in size. Furthermore Arduino Uno also has support for different libraries that can

28

be used for coding more complex applications on nodes, thus 32KB flash memory can be

used freely without any memory problems.

Arduino Uno boards can work with input voltages from 7 to 12V. We use 7.4V and 9V

batteries for our setup since we want to make our setup completely wireless. The power

for these boards can also be supplied by USB ports or power adapters. For communication

between a computer RX and TX pins on the board are used. The serial communication is

completed by using the USB port as a virtual serial port on the computer.

The following subsections describe the sensors used in this research and define how they

are designed to work with the development boards.

3.3.1.1. Hall Effect Sensor

Hall Effect sensors are used to detect magnetic fields; the output voltage of these sensors

will vary according to the magnetic field around them. The sensor used in this study,

Melexis US1881 [47], is a latching Hall Effect sensor. This makes the sensor to give the

same output until it senses a magnetic field of reverse polarity. The operating voltage of

this sensor is 3.5V to 24V. If the sensor is triggered by a magnetic field it will give same

output voltage as the input voltage while it will only output ground while resting still.

The 3 pins are used for input, ground and output connections. A 10KΩ resistor is used

between input and output pins.

Figure 3.8- Hall Effect Sensor (US1881) Connection on Development Board

29

3.3.1.2. Infrared Proximity Sensor

Proximity sensors are used to sense presence of an object. Infrared (IR) proximity sensor

has one IR receiver and an IR light. It senses the intensity of reflected IR that is sent by its

own IR light. The sensor output changes according to distance of the object reflecting the

IR. Our study uses two different IR proximity Sensors; Sharp GP2Y0A02YK0F [48] for sensing

long range (15cm to 150cm) and Optical Detector QRD1114 [49] to sense nearby objects

(0.5cm to 1 cm). Both sensors work with operating voltage of 5 V. Sharp sensor is

connected with 3 wires as input, ground and output while optical detector is connected

with 4 pin. Two wires used for ground connection and others are input and output pins. As

a pull up resistor a 5.6kΩ resistor is used between input and output connections and a

200kΩ resistance is used for input connection.

Figure 3.9- Infrared Proximity Sensor (Sharp) Connection on Development Board

30

Figure 3.10- Optical Detector (QRD1114) Connection on Development Board

3.3.1.3. Passive Infrared (PIR) Motion Sensor

PIR sensors are used to detect radiated IR measurements from the objects. The sensor

detects the changes around the sensor so it’s commonly used as motion detectors. When

an infrared source with one temperature passes in front of the previously sensed infrared

source with a different temperature the sensor sends a low signal from its output pins. The

sensor used in our study [50] is an open collector, works from 3.3 to 12 volts and needs a

resistor (10kΩ) between its input and output pins. The other pin is connected to ground.

31

Figure 3.11- PIR Motion Sensor (SE-10) Connection on Development Board

3.3.1.4. Photoresistor

Different from the previously discussed sensors, GL5528 [51] is only a resistor whose

resistance changes depending on the amount of light the sensor is exposed to. When the

resistance changes, the amount of voltage passing through changes, as a result ambient

light measurement can be detected. To measure the ambient light, one end is connected to

power and the other to a pull-down resistor to ground. By connecting point between the

fixed pulldown resistor (10kΩ) and the photocell resistor to the analog input the

measurements can be read.

32

Figure 3.12-Photoresistor Connection on Development Board

3.3.1.5. Electret Microphone

An electret microphone is a type of microphone which has an electret material to hold

electrical charge constantly thus removing the need a charge placed on it unlike the

condenser microphone. This sensor [52] has an amplifier to make the sounds convertible by

microcontrollers ADC. It works from 2.7V to 5.5V and 3 pins are connected as input, ground

and output.

Figure 3.13 - Electret Microphone Connection on Development Board

33

3.3.1.6. Temperature Sensor

Temperature sensors or thermometers are devices that are used to measure the

temperature through different principles of physics. The digital temperature sensor we use

in our study is an I²C (Inter-Integrated Circuit) device which makes it easier to use with our

development boards. TMP 102 [53] sensor is capable of measuring ambient temperature

from -25°C to +85°C and can be powered by voltages between 1.4V to 3.6V.

 Figure 3.14 - Temperature Sensor Connection on Development Board

3.3.1.7. RFID Reader and Tags

RFID (Radio Frequency Identification) is an identification system which uses radio waves to

identify electronic tags. Redbee RFID Reader [54] is selected for our study because of its

communication interface variety, it can be used via USB or Xbee interfaces. The reader is

compatible with all 125kHz RFID tags and can store up to 48 tags in its memory. With its 10

cm range and simple serial communication this reader is found to be suitable for our WSN

application. The reader can be powered by USB or external power supply of 6V to 12V.

Redbee RFID reader sends an acknowledgment or negative acknowledgment message over

the serial interface with the ID of the tag that is read.

34

3.3.2. Coding with Sensor Boards

Arduino development environment Arduino 1.0 [55] gives users the opportunity to use

their own code to have control over analog and digital input/outputs. With its C/C++ like

coding language it’s easy to get the measurements from the sensors and send them over a

serial connection. Arduino also has different libraries for more complex programming

scenarios; Ethernet library for web server applications, wire library to communicate with I2C

devices, servo for controlling servo motors, SD library to use SD card on applications and

many other libraries are also available.

Every Arduino code must have 2 main functions to be able to work. First one is the setup()

function where variables are initialized and libraries are included. This function will work

only once after a reset of power of the board. The second one is called the loop() and as the

name suggest this function runs as long as there is power on the board. All sensing and

communication functions must run in this function.

Main code-block for development boards

There are two functions to get readings from the digital and analog pins, DigitalRead() and

AnalogRead(). When the pin number is used as parameters with these functions, the result

of the corresponding pin is returned. With the same principle DigitalWrite() and

AnalogWrite() are used to give outputs. For our study, we only use input functions and

want to increase the reading periods as long as we can in order to obtain a longer battery

life. To give a break on this looping code, a function called delay() is used with desired

milliseconds passed as parameters.

Finally to send these readings to a remote machine, Serial class is used. This class is created

mainly to communicate through serial ports by using RX and TX pins. While begin() function

starts serial communication with the desired baud rate, print() and println() functions sends

void setup() {

//Initialize Variables

//Include Libraries

}

void loop() {

// Read Measurements

// Send Measurements

}

35

the output through serial ports. While the most common communication is done by USB,

we will discuss other communication interfaces in the next subsection.

In our research, we want our nodes to only read measurements and send them via wireless

communication to a remote machine. Thus we abstain from putting logic in these

development microcontrollers. Arduino lets us use all known control structures, but for this

study we only use them for simple operations. We plan that our codes only get the

measurements from the sensors and form a structured message, then send it over a

communication interface. While some of the sensors send readings constantly

(temperature, ambient light) we want others to send messages when a difference in the

measured phenomenon is detected (PIR Motion, Hall Effect). The code-block below is a very

simple example of our codes. The next chapter will explain more about the actual codes in a

real test environment. This code reads an analog input from pin 0 of the board and sends a

message over serial connection by using 9600 baud rate, then waits 2 seconds before

getting the reading again.

Simple code-block example for development boards

Using a software application provided by the Arduino platform, the code can be uploaded

to the microcontroller by selecting the serial port that the board is connected to. This

application also acts as a simple IDE to write and compile the Arduino code.

3.3.3. Communication Interface

The Arduino Uno has the ability to communicate with a computer or other

microcontrollers. As stated in 3.1.1, the communication is done over a serial interface,

void setup() {

 int reading = 0;

 Serial.begin(9600);

}

void loop() {

 reading = AnalogRead(0);

 Serial.print(“Sensed Measurement:”);

 Serial.println(reading);

 delay(2000);

}

36

ATmega328 provides serial communication, which is available on RX and TX pins. To

convert this serial communication to a USB interface an ATmega8U2 converter is used on

the board and USB connection on the computer appears as a virtual com port. This allows

access to the microcontroller using a USB cable.

To form a WSN, the microcontrollers need to communicate with each other over a wireless

medium. Arduino development boards support extendable modules such as Bluetooth,

Ethernet and ZigBee [56] (IEEE 802.15.4) modules. Since our applications do not need long

range communication and also battery usage is important, we have decided IEEE 802.15.4

to be our wireless communication interface. Special modules called Xbee Modules [57] are

available for use with Arduino microcontrollers. This module simply communicates with

the microcontroller via RX and TX pins, packages the messages and then sends them over

the wireless medium.

Figure 3.15 – Microcontroller Network Schema

For our study we use Xbee modules on every microcontroller as well as the RedBee RFID

reader, thus obtain a complete network of sensors communicating on ZigBee. We also use a

sink module that gathers the data over ZigBee and streams it through serial communication

by means of a virtual com port over USB. Our nodes are adjusted to work on 57600 baud

37

rate and they are communicating with the sink node while sink node is broadcasting to the

network. X-CTU [58] software by Digi is used to modify the properties of Xbee modules.

38

CHAPTER 4

PROTOTYPING AND REAL LIFE

APPLICATION

This chapter briefly explains the details of our case study where we have implemented our

sensors and CEP system. The design of the system that is explained in Chapter 3 is used in

this implementation. A classroom environment is selected for this study where daily class

activities take place. With the help of the sensors that are placed in a simple classroom, we

aim to detect complex events occurring throughout the day and help that classroom

become smarter. In addition, we want to automate daily routines; we detect the

automation cases where actions can be taken, although actuation part of the system is not

a part of this study.

In subsection 4.1, the setup for the smart environment is described starting with coding and

implementation and it continues with placement of sensors and microcontrollers.

Subsection 4.2 gives information about the complex events to be deduced and details the

rules used in this context. Finally in subsection 4.3, conclusion of the real life application is

discussed.

4.1. Classroom Environment Setup

The aim of the study requires a simple classroom to be monitored with sensors and simple

events occurring in this classroom should be collected and processed to get complex

events. The microcontrollers that are detailed in Chapter 3 are used to construct this setup

and the sensors are connected to the microcontrollers as detailed in that chapter. The

39

microcontrollers are coded to send the desired messages to the sink node and these

messages are processed to get complex events. We use three remote computers for this

setup. The first one is in the classroom where the sensors are placed and the sink node is

connected to that computer to get the readings from the sensors. The second one is

responsible for reasoning on all the events and facts and publishes the extractions back to

the JMS. For the Event Channel we use ActiveMQ JMS broker which is residing on the third

unit where we are also using mySQL [59] database to track all the JMS messages. We also

develop a webpage with AJAX technology that is also subscribing to the rule engine outputs

in order to represent the current extracted high level information. This web page is served

in the same computer where the event channel is implemented on Apache ActiveMQ. Jetty

[60] web server is used to publish the webpage and to interact with JMS server Active MQ

libraries are used. Table 4.1 shows the system information of all three computers used in

this study. We use Java programming language to code all of our components and

microcontrollers are programmed with their own coding language called Arduino.

Table 4.1- System Information of Computers Used in Implementation

 Computer 1

(Event Producer)

Computer 2

(Event Messaging)

Computer 3

(Rule Engine)

Processor Intel Pentium 4 Intel Core I7 Intel Core 2 Duo
P8600

Clock Speed 2.0 Ghz 1.73 Ghz 2.4 Ghz

RAM 736 Mb 4 Gb 4 Gb

Operating System Microsoft Windows
XP

Microsoft Windows
7 64 bit.

Microsoft Windows
7 32 bit.

Java jre version 1.6.0_26 1.6.0_25 1.6.0_26

Used Software
Libraries

RXTXComm.jar mysql-connector-
java-5.1.18-bin.jar

mysql-connector-
java-5.1.18-bin.jar

Database - mySQL 4.1 mySQL 4.1

Apache ActiveMQ - Version 5.5.0 -

JBoss Drools - - Version 5.3.0

40

4.1.1 Software Setup

To be able to use the framework generically in all environments, it’s intended that no

special setup is required for the components of the system. The main differences between

different scenarios are the rules and the complex events which are described in the next

subsection for the classroom environment.

As explained in Chapter 3, our system has two main software components; SensorToJMS

and JMStoDrools. The sensors are sending messages over Zigbee and the sink node is

gathering them to transmit over serial interface to our first component. SensorToJMS is

responsible to parse the messages and publish them to JMS which is running on a remote

computer. The second component, JMStoDrools, is subscribing to these topics from a

remote computer and inserts the incoming messages to the Event Processing Engine which

is running on another computer.

Figure 4.1 – Messaging between components

Microcontrollers are coded to be able to send messages over the wireless medium. While

the temperature, noise level, ambient light intensity sensors are sending messages over a

time period, the other sensors are only sending the state changes to preserve battery. To

make this available, simple logic is used on microcontrollers. The codes running on

microcontrollers are presented in Appendix B.

41

4.1.2 Hardware Setup

This case study is completed with 8 different types of sensors, one of them being an RFID

reader. We propose to get measurements from the classroom and from the outside of the

building to help us do the predictions. Our aim is to detect:

- State of the door (locked-unlocked, open-closed),

- People passing through the door,

- People’s ID’s who enter the classroom,

- Ambient temperatures both inside and outside,

- Ambient light intensity both inside and outside,

- Noise level in the classroom,

- Motion in the classroom.

With the help of these simple events and schedule information (facts about lectures) we

aim to deduce complex events by using the framework. The sensors that are described in

Chapter 3 are used to detect these simple events and these sensors are placed on the

microcontrollers in 4 different locations of the classroom (Figure 4.2). Table 3 shows details

about the usage of sensors for event detection. The following subsections tell about the

placement of sensors and microcontrollers. We have selected door, one wall and outside as

our microcontroller placeholders and those microcontrollers have multiple sensors on

them. To detect the ambient light inside the classroom at two different locations we use

two photoresistors. Likewise we need two different PIR Motion sensors to be used in our

setup to be able to cover a larger area.

42

Table 4.2- Sensor Usage Details

Event Detected Sensor Used

Door state- Open/Closed Hall Effect Sensor and Magnets on door.

Door state- Locked/Unlocked Optical Detector inside the lock to sense door

lock.

People passing through the door Infrared proximity sensor in door threshold

People ID’s RFID Reader

Ambient Temperature Temperature Sensor inside and outside of the

room

Ambient Light Intensity Photoresistor inside and outside of the room

Noise level in the classroom Electret Microphone inside the classroom

Motion in the classroom PIR Motion sensor in the classroom

Each of the microcontrollers is using an Xbee ZigBee radio to communicate wirelessly with

the sink node. Sink node is a convertor which gets the messages from ZigBee and sends

them over a serial interface to the event collector unit. Our first component called

SensortoJMS is residing on this computer.

Figure 4.2 – Microcontrollers Schematic

43

4.1.2.1. Door - Microcontroller Setup

Since three different sensors are directly related with the door of the classroom, we place

these sensors onto a microcontroller with a radio to communicate with the sink. We also

place a PIR Motion sensor near the door to be able to detect movements when an object

comes through the door. The door setup has:

- One Optical Detector

- One Infrared Proximity Sensor

- One Hall Effect Sensor with magnets on door

- One PIR Motion Sensor

- Two 7.4 V batteries to power microcontroller and sensors

- One ZigBee radio

Figure 4.3 – Microcontroller Setup - Door

44

4.1.2.2. Outside - Microcontroller Setup

We are interested in the values of temperature and ambient light intensity outside the

classroom so we can deduce events according to these values. The microcontroller is placed

outside and has:

- One temperature sensor

- One photoresistor

- One 4.7V battery to power microcontroller and sensors

- One ZigBee radio

Figure 4.4 – Microcontroller Setup –Outside

4.1.2.3. Inside, Wall - Microcontroller Setup

Inside the classroom we are interested in temperature, ambient light intensity and noise

level values. This setup has:

- One temperature sensor

45

- One photoresistor

- One Electret Microphone

- One 4.7V battery to power microcontroller and sensors

- One ZigBee radio

Figure 4.5 – Microcontroller Setup –Inside, Wall

4.1.2.4. Inside, Wall 2- Microcontroller Setup

Since we want to measure two different light values inside the classroom and also want to

increase the coverage area of motion detection, we place two sensors on the same wall of

the classroom. The setup has:

- One photoresistor

- One PIR Motion Sensor

- One 4.7V battery to power microcontroller and sensors

- One ZigBee radio

46

Figure 4.6 – Microcontroller Setup –Inside, Ceiling

4.1.2.5 RFID Reader

RedBee RFID reader is placed next to the entrance to get the ID’s of the students and

instructor in the classroom. 10 RFID tags are given to the students to be read when they are

entering or exiting the classroom. This module also communicates over Zigbee. With the

reader module an extra radio modem and 7.4V battery are also placed next to the door.

Figure 4.7 - Redbee RFID Reader

47

4.2. Complex Events and Rules

A classroom is a place where students attend lectures; the main actors for a classroom are

students and instructor. For this study we select a classroom as our application area

because lots of activities are taking place during the day around different actors. At first

glance, attending a class seems as the only activity for a classroom, but in realty there are

hidden actors for the classroom like institute personnel responsible for the security of the

classroom equipment. Students and instructor may be the main actors, but during a day the

classroom is used for different courses, thus making different people the main actors for

the activities.

For this study we want to deduce complex events in the classroom with the help of the

sensors that are placed in the classroom. A daily routine for a classroom is:

1. Institute personnel unlock the door for the classroom in the morning

2. Students enter the classroom for the lecture

3. Instructor enters the classroom and starts the lecture

4. A break may be given during the lecture

5. Lecture ends, instructor and students leave the classroom

6. If there are more lectures the routine repeats steps 2 to 5

7. If there are no more lectures, personnel check the classroom and lock the
doors

This routine is the main scenario but there may be different actions in a lecture day. The

lecture may start later than normal, the lecture may be extended or cancelled. The

personnel may forget opening the door or locking them when the day ends. With our

complex event detection, we want to make smart decisions and extract high level

information with the help of our rule engine.

As a second objective to practice pervasive computing, we want to make automated

decisions for simple activities in a classroom. Automated light and curtain control to

provide necessary lighting is an example for this. For this study we have decided that our

rules shall be grouped for 3 different time periods: start of the lecture, during the lecture

and end of the lecture. Table 4.3 shows the decisions the rule engine shall make.

48

Table 4.3- Decisions for the Classroom

Start Of the Lecture During The Lecture End of the Lecture

Will the lecture start on time? The lights and curtains

should be prepared

automatically

Did the lecture end? Is it the

last lecture?

Are the doors open for

students to enter? Do

personnel know this?

Is the temperature of the

classroom appropriate?

Should we open the

windows?

For the end of the day is the

classroom locked securely?

Did the lecture start? Is there a break during the

lecture? Did the break end?

These decisions are a cluster of both simple and complex events. We have separated the

complex events from this cluster and decided which simple events are forming these

complex events with the help of which temporal parameters. The corresponding rules in

the Drools Rule Language format are given in Appendix 3.

 CE 1: Lecture will be delayed

o Are most of the (30%) students in the classroom?

o Is the temperature inside over 17oC

o Is the door still locked when there is 1 minute left for lecture start time?

 CE 2: Lesson Started

o Lecture start time has passed

o Instructor is in the classroom

o Most of the students are in the classroom (60%)

o The door is closed

 CE 3 :Break given

o 30 to 90 minutes passed since the lecture started

o OR 30-90 minutes passed since the last break

o Door is open

49

o People passing through the door

 CE 4: Break ended

o 5 to 30 minutes passed since the break

o Door is closed

 CE5: Lecture Ended

o Less than 15 minutes remain for the lecture end or end time is passed

o Door is open

o People passing through the door

o Instructor leaves the classroom

o Most of the students leave the classroom (less than 30% remain)

 CE6: Lecture finished early

o Door is open

o People passing through the door

o More than 15 minutes remain before lecture finish time

o Instructor leaves the classroom

o Most of the students leave the classroom (less than 30% remain)

 CE7: Day ended

o CE 5 OR CE6 is deduced

o Current lecture was the last one in the schedule

o There is no movement inside the room

o Noise level is low

 CE8: Classroom Check

o CE7 is deduced

o The door is locked

o The noise level is low after the door is locked.

o There is no motion in classroom after the door is locked.

o The light intensity is low in classroom.

 CE9: Day started

o CE7 is deduced

o CE2 is deduced

50

There are also automation rules we also define as complex events

 AR1: Open the curtains

o Photoresistor values are low in the classroom

o Photoresistor values are high outside

 AR2 :Open the lights

o Photoresistor values are low in the classroom

o Photoresistor values are low outside

 AR3 : Open the window

o Temperature values are high in the classroom

o Temperature values are low outside

o Temperature values are above 19oC outside

 AR4 : Run air conditioner

o Temperature values are high in the classroom

o Temperature values are high outside

 AR5 : Run heater

o Temperature values are low in the classroom

o Temperature values are low outside

These complex events and automation rules are derived and fired by the system we have

implemented in this study. The results of our research are given in the next subsection.

4.3 Results and Discussion

A prototype of the designed system is completed to observe the shortcomings of the

system in a controlled environment. After making the necessary changes, a real life

application is developed in a classroom environment and the outcomes are observed. The

next subsections detail the experience we gained during prototyping and real life

application.

4.3.1. Prototyping

A test setup is first implemented in the “Wireless Lab” of Informatics Institute to see the

results of the implemented system on a prototype. Hardware components of the system

51

are prepared as sensor nodes and they are placed on the door, ceiling and wall of the

laboratory. The final set is placed outside the window to get the measurements of outside

temperature and ambient light intensity. (Figure 4.8 and Figure 4.9)

Figure 4.8- Prototype Implementation In Wireless Lab-Ceiling

During the hardware implementation, we have seen that power requirements for the

sensors may be overwhelming for the microcontrollers. The door setup has 4 different

sensors and two of them (PIR and Hall Effect) need to be powered externally to operate

robustly. We have also examined that low capacity batteries run out quickly when the

quantity of messages sent by one microcontroller is large in amount. This led us to use

some precautions; we have used 7.4V 1000mA batteries on microcontrollers and added

extra batteries to power the sensors when needed. As the processing power consumption

is lower than transmitting power consumption we have decided to use some control

structures to reduce the message sending frequency of the microcontrollers. The basic

design for this was to send the messages when a state change is detected. Opening a door,

motion detection, door unlocked are examples of this messages and the messages are only

sent once by the microcontroller. The photoresistor and temperature sensors are

measuring constantly changing phenomena but these measurements are not time critical

measurements so we have decided to use a time period to delay the message sending. For

this prototype sixty seconds was the delay time before another measurement is sent over

the wireless medium.

52

Figure 4.9- Prototype Implementation on the Wireless Lab-Door

This decision was important because we didn’t want to use any processing on the sensor

nodes. For this study our aim is to keep whole logic of the system at one point. When we

look at the system components, we can see that apart from Event Processing Engine other

components do not contain any logic. We use this design to be able to easily maintain the

processing module when needed. Thus the coding of the microcontrollers is carefully

adjusted that no logical reasoning is done over the measurements. The codes only detect

the measurements and send them when there is a state change. As described in Chapter 3

the microcontrollers’ output is either 1-0 or a value changing between 0-1023. Sensor

nodes are not aware of the meaning of the value they measure. The only exception for this

structure was the special I2C temperature sensor which changes the value to a decimal

53

showing the ambient temperature as Celsius degree. Even for this exception,

microcontroller is not aware that this value represents a meaningful measurement.

Another reason to decrease the volume of messages sent by the microcontrollers was the

reading capacity of our sink node. Buffer size for a serial connection is limited, thus high

volume of events should be taken into account. Since we are using a special character for

the end of the messages, getting wrong measurements is not possible for our system but

missing data may end up with defective reasoning in the real environment. There are two

possible solutions for this problem. First one is omitting missing data and reasoning over

the arrived data coming from the same sensor. Event processing engine may decide state

changes by inspecting all the messages coming from the sensors. Second solution is

reducing messages to send messages without any conflict by sending state changes only.

We apply the second solution which is more suitable because it is also a better practice for

power preservation.

The event processing component of our system is designed to work with the inputs of

events without any user interaction. Drools rule engine lets the users control when to fire

the rules and also makes it possible to run the processing engine in a loop until user decides

to stop it. For this research we have decided that rule engine should fire the rules whenever

a new event is added to the system. Since we are already using a messaging system, we are

aware of the incoming sensor events, thus running the rules at receiving time is a proper

solution. The complex events can be detected by any of the input coming from the sensors

so this way we are sure that none of the events are missed by the rule engine. This is the

right way to implement an event driven system because the system is reasoning over the

incoming events without any user input or by predefined actions.

4.3.2. Real Life Application

After we have successfully completed our prototyping in the laboratory, a real set-up is

established in a classroom in the Informatics Institute. (Figure 4.10 and Figure 4.11) The

four microcontroller setup and the RFID reader described in Chapter 3 are implemented in

the classroom where real lectures are given. The SensorToJMS component is resting on a

computer in the classroom which has the sink node attached. The gathered measurements

are then distributed to the ActiveMQ JMS server over the Local Area Network (LAN). The

remote computer running the JMS server lets our JMStoDrools component to subscribe to

the events and the reasoning is completed in the computer where this component is

54

residing. The outcome of our CEP engine is then shown on a webpage as an example of the

application layer (Figure 4.12).

Figure 4.10- Prototype Implementation In Classroom-Wall

Figure 4.11- Prototype Implementation in the Classroom-Door

We have run our system during a day where one lesson is taking place in the classroom we

have implemented our framework. The start and end of the day are thus only connected to

that one lesson. Some assumptions are needed to be able to detect complex events

55

happening in the classroom. These assumptions are implemented in the rules mainly as

temporal and also as other conditions. For a simple lesson we assume:

- It will last for 3 hours

- The first break could be given after 30-90 minutes of lecture start

- 30% of the students are needed for lecture start

- Lectures could start at 40th minute of the hour and end at 30th minute of the

hour.

- A break should as long as 5 to 30 minutes

- A normal lecture ending should happen if there is less than 15 minutes remaining

to the end time of the lecture.

The engine is running constantly and we can’t have any restriction over the frequency of

the events incoming in a real environment. We have observed that during the reasoning

there is not high amount of processer usage. Still we use a dedicated computer to operate

as the Event Processing part of our system. Also as we can’t be sure about the amount of

events in the cloud at a given moment, we need a high memory in our system. All the

events are inserted into the working memory and this causes memory problems when the

amount of events gets higher. Drools helps to solve this issue by removing the old, non

relative events from the working memory; by checking the rules in the rule base the engine

decides which events are not related with the rules. Also Drools API gives the possibility to

change events in the working memory. Programmer can design the system so that new

events with the same types are not inserted into the knowledgebase again, instead they

can update the parameters of an old event. With changing timestamp, the rules should be

fired again which is done automatically every time when any of the events in the working

memory are changed. This method is not used in our study because the volume of events is

not too much to cope with in our use case.

56

Figure 4.12- Webpage showing the results of event processing

In this real life application we develop a simple web page to show high level information to

end users (Figure 4.12). This web page is subscribed to both high level information and also

to low level data coming from the sensor nodes. This is a simple application that uses our

framework but it shows the availability of our framework for other applications.

Table 4.4- Complex Event Detection Times

 14.12.2012 20.12.2012 21.12.2012 28.12.2012 04.01.2012

Real
Time CEP

Real
Time CEP

Real
Time CEP

Real
Time CEP

Real
Time CEP

Lecture Started 13:52 13:52 13:53 13:53 13:48 13:48 13:48 13:48 13:46 13:46

Break Given 14:47 14:47 14:38 14:38 14:31 14:31 14:39 14:39 15:08 15:08

Break Ended 15:01 15:01 14:51 14:45 14:39 14:39 14:59 14:59 15:20 15:20

Break Given 15:36 15:36 15:45 N/A 15:42 N/A 15:44 15:44 16:10 16:10

Break Ended 15:55 15:55 15:57 N/A 16:03 N/A 16:05 16:05 16:15 N/A

Lecture Ended 16:34 16:35 16:41 16:45 16:38 16:43 16:40 16:40 16:45 16:45

We have completed our study by running our system on five different days and successfully

extracting high level information. Four hours of data collection for each day give us the

results presented in Table 4.4. Only six important complex events are listed in that table

while there are also other CE rules and automation rules. The real occurrence time of the

complex events and the deduction made by our framework is compared. Apart from three

CE all the others are deduced in the same minute; we can say that our framework is able to

extract high level information in the same minute whenever a complex event happens. As

57

seen in the Table 4.4, five of the complex events are not detected due to the reasons

discussed in the next subsection. As there are a total of 30 complex events presented in the

table we have observed that our framework is capable of detecting complex events with

83.3% of success ratio. We have reached our aim of deducing predefined complex events,

thus proved that a simple environment can be turned into a smarter one with the help of

WSN’s and CEP using the currently available software and hardware products. The

limitations and the observations experienced in this implementation are discussed in the

next subchapter.

4.3.3. Discussion

With this study we believe that we are able to use CEP technology on WSN’s to convert

information into knowledge. With current commercial WSN products and Business Rule

Engines, which are mostly used for banking applications or organizational decision making,

we are able to implement a sample system in our institute. This study shows that current

technology can be used to make smart environments which are the main actors for the

future pervasive computing scenarios.

During the study we have encountered some difficulties while extracting our complex

events. The first issue we had to deal with was the volume of the events happening in the

classroom environment. Although we have decided to transmit only the state changes,

some sensors must be active and transmit the events whenever they occur (PIR Motion,

Electret Microphone). This may cause a large amount of transmission according to the

sensed area. Figure 4.13 shows the number of events in the classroom and it’s clearly seen

that when only state changes are sent, volume of events greatly decrease. For our study we

have seen that electret microphone senses a large number of events during a lecture which

causes a lot of transmission and brings forth the problem of missing events. Also these

electret data are not included in the figure because the number of electret microphone

data is 1000 times more than the next highest value. The volume problem will be seen

more frequently when the number of sensors in the environment is increased. The solution

for this shortcoming might be using another sink node to decrease the volume of events on

one sink node or implementing some more logic on the sensors to decrease the volume of

events. We think that adjusting sensors to send state changes and also some reminders

within a fixed interval will be a practical solution for the missing events.

58

Figure 4.13- Number of Events for Five Days of Measurement

Another issue examined was specific to our case because our scenario was heavily

dependent on deduced events. Some complex events were pre-conditions of other

complex events like the “CE 3: Break given”. In order to decide the break given, the lecture

must have been already started. When everything works without any problem this issue

was not seen, but in an uncontrolled environment there may be some difficulties apart

from the shortcomings of the system. In our case, our sensors were removed from their

places, sensor cables were unplugged by accident in the classroom. These issues cause

events not to be extracted if they are dependent on these sensors. And furthermore the

other complex events cannot be deduced either, if the lost complex event is in their pre-

conditions. This study was dependent on the number of sensors and sensor types thus

these problems were to be faced during the implementation. To be more precise and

overcome this issue, we suggest increasing the sensor types and number in the

environment in order to gather more events. By using different types of sensors we can

sense more things within the environment which may help writing alternative rules to

detect the same complex event. For this implementation we think using pressure sensors

under chairs, using a color light sensor for projector, using accelerometers carried by

students are some examples of improving the sensing capability of the system used. Using

more sensors will apparently lead us to the first issue that is discussed so it is essential that

both issues must be solved together.

59

Apart from the shortcomings, we believe that it’s possible to extract high level information

in a classroom by using the methodology of this research. The sensor numbers and types

are limited for this study, but with the events we have gathered from the classroom we

have successfully deduced our Complex Events. We have discussed that with more types

and number of sensors we can improve the precision of our system. However this does not

mean we are not able to extract Complex Events with our system. By definition of the

complex events [40] there must be other events as the member of the Complex Event.

More members in the defined event do not always mean a better extraction of the

Complex Event. In this study we have seen that measuring the noise level in the classroom

was not beneficial for our Complex Events. Figure 4.14 presents the noise level

measurements in the classroom on 28.12.2011. Before we started our implementation, we

predicted that noise level would increase during break times and decrease when lecture

started. In our institute we have seen that during the break times, the classroom noise

level does not change significantly, thus making our sensor irrelevant for our Complex

Event. By looking at the figure we can say that noise level has both high and low peeks

during the lecture, even when there is no break. Because of this irrelevancy, Electret

Microphone sensor prevents us to match the defined event while we can detect them at

the right time without the usage of this sensor. We believe that while deciding the

members of the complex event, relevant events must be carefully inspected and without

complicating the rules the right events must be added as members of the event. More

events may be used as alternative rules to deduce the same event or to increase precision

of the Complex Event.

 Figure 4.14- Noise Level Measurement in the Classroom

60

CHAPTER 5

CONCLUSION

This chapter summarizes the study and highlights findings and limitations. It also details

the topics which are left out of the scope of this study for future studies.

5.1 Summary of Study

Our aim in this study is to extract high level information using simple readings from the

sensors. The rules given in Chapter 4 are implemented using DRL and by inserting the

incoming events (sensor readings for our case) to the knowledgebase, where the rules are

defined, rules are fired. Without manual input, we let the sensors detect the state changes

in the environment, as a result we have an event driven system which is capable of making

smart deductions. With our simple sensors and complex event processing technique, we

have achieved our goal of making an environment smarter as described in [32]. This result

shows us that by using currently available technology, a simple environment can become

smarter. Study [31] explains limitation of hardware as a main issue in pervasive computing

applications; by using available and inexpensive hardware we claim that it’s possible to

construct a smart environment. Figure 5.1 shows approximate values of our hardware costs

for the real life implementation. We also present that our approach is feasible to be used

with any hardware as data sources with help of our publish/subscribe system. In addition,

we have utilized readily available open source software.

61

RFID Reader
and Tags

Sensors Development
Boards

Communication
Modules

Batteries Total

$90 $55 $240 $125 $50 $560

Figure 5.1- Hardware Cost of the Framework

An event-based system with sensors being the event generators is designed and the event

processing module of the system is supported by a Complex Event Processing engine. Event

generators and event processing engine is loosely coupled with help of an event

messenger. The event processing engine is subscribed to the sensors who are publishing

the detected events. While study [27] is also using a CEP engine to reason over WSN data,

we use a rule based complex event processing engine to correlate the relationships among

simple events by using temporal constraints on the rules. The same rule engine is also used

in [28] for a medical sensor network. Our designed system is then implemented as a

prototype to extract high level information in a classroom environment. Like the

architecture defined in [10] our system takes atomic events and by using our CEP engine

turns them into business events. Our sensors are Event Originators, while Event Modeler

and Event Processing Medium correspond to to our CEP engine component. After

successfully completing prototyping, a real life implementation is deployed in a classroom

in order to detect Complex Events occurring in that classroom. By looking at the challenges

of large area deployments ([38],[39]) we have decided to use a more controlled area in our

real life implementation. Eight different types of sensors are placed at four different

locations of the classroom to gather simple events. We have also used RFID tags in order to

obtain a heterogenic system described as a requirement in [22]. With predefined rules the

gathered events are used to deduce Complex Events by using the system implemented.

After five different experiments, the system is found to be successful to be able to detect

the Complex Events within the same minute of real happening time. The result are

obtained with 83,3% success rate.

During the prototyping process, we have seen that the high frequency and high volume of

the events may throttle the sink node leading to loss of the events. We have chosen our

system to be a centralized one unlike [15], [16]. It’s stated in [18] that in a centralized

system the event processing is not dependent on the frequency events and also distributed

processing needs more power and system requirements on the sensor nodes. We tried to

reduce the volume of the events by designing sensors to only send state changes when

applicable. While making those changes we took care not to put any logic on the sensor

62

nodes because the aim of the study was to keep all logic in one place. Another point we

have observed was the power consumption of the sensor nodes. For this study we have

used 4 different sensor nodes with at least 2 sensors attached to them. We have seen some

sensors need more power than the power supplied by the development boards. Adding

more battery capacity to our sensor implementation was seen necessary. Although we

think that decreasing the message volume will decrease the power consumption, using

more sensors consumes power of the development boards more quickly. With this study

we implement a pervasive computing example in the classroom where the system is

running in the background without any input from the users. The event based architecture

is found to be suitable because we want the system to automatically check all the rules

whenever a new event is detected. By using a publish/subscribe event messaging service,

we design our system so that it publishes the events to our subscriber component, the

event processing engine. After making necessary changes on our prototype

implementation we find out that we can detect our Complex Events with the designed

setup.

Study [28] is very similar to our approach; they use a prototype in a hospital environment

where RFID is the main data source. We try our approach with a real life application where

sensor data, RFID and data from other information systems are equally used. We have

completed our real life implementation in a classroom on five different days. We are able

to detect our complex events at the same time when they occur in the classroom. While

CEP is presented as ill-suited in [29], we claim that it is possible to use CEP technology in

pervasive environments to obtain smart environments.

During this implementation, we have seen that volume of events is still a problem even

after we have changed our design after the prototyping phase. Some sensors that are used

in the implementation have to send all events continuously like PIR motion, electret

microphone and proximity sensors. These sensors send events whenever they sense

anything in the classroom. This increases the volume of events and leads to loss of events

detected. The shortcoming of event loses are already stated in [20]. We propose two

solutions for this shortcoming; the first one is putting more logic in the sensor nodes to

make them send both state changes and also reminders about their states in a fixed time

period. While this solution decreases the volume of events, it also helps missing events to

be detected when a reminder is sent. Second solution is to use more sink nodes to be able

to deal with the high volume of events. We also suggest using more sensors in the

classroom, thus this solution will be beneficial even if the first solution is used. Our

63

complex event rules were dependent on each other. That caused the system to lose all its

ability to detect the events if a previous event was not detected. We suggest that by using

more types of sensors, we will be able to write more rules that can detect the same

complex event which can be used as alternatives to other rules. We also believe more

sensor types will help detection of more complex events which are not implemented in this

study. We observed that our complex events were detected successfully with relevant

simple events by using time constraints between simple events. Increasing the number of

sensors will make rules more reliable, but increasing the type of sensors will not affect a

simple rule if they are irrelevant for that complex event.

This study was limited to the sensor types and numbers available to us during the

implementation phase. We designed our system to support more types of sensors but our

sensor selection was limited to the sensors available in the Wireless Lab of METU

Informatics Institute. This limitation is stated as a difficulty in pervasive computing

applications in [31]. We believe that with more types and number of sensors our system

will become more stable and will be able to deduce more Complex Events which are not

implemented in this study. The shortage of sensor types led to high dependency on these

sensors for our study. Removing any of the sensors from our implementation would cause

it to function improperly. During the real life implementation, we use one classroom in the

Informatics Institute. Using the system for all the classrooms will be a better practice in the

pervasive computing domain. We do not use any actuators in our implementation, even

though we have used some actuation rules which only warn about the action to be taken.

Our study uses a simple network of sensors which are communicating with the sink node

wirelessly, although this setup does not have all the characteristics of a Wireless Sensor

Network.

5.2 Future Work

A direction for future studies is to increase the number of sensors and sensor types and to

observe the outcomes including the performance evaluations. The computational

performance of the system would be evaluated according to events in the knowledgebase

and the number of rules that are implemented. Our study shows that with the current

setup, a single computer being the event processor we do not need any significant

processing power. Our CEP engine removes the events in the knowledgebase when they

are not necessary according to their timestamp and the temporal constraints used in the

64

rules. We did not observe any memory problems during this study but with more events

and rules the memory usage needs to be examined.

As another study different Complex Event Processing Engines can be used with the system

implemented in the classroom and the advantages and disadvantages of them can be

expressed. For this study we have chosen a rule based open source complex event

processing engine, but by the end of 2011 more CEP engines became available with

different mechanisms [61].

The development boards used in this study can be arranged to work like a wireless sensor

network by using the newer versions of ZigBee modems that are deployed on boards.

Another future study can use a WSN to examine the event dissemination in the current

setup. The power consumption statistics and results of development board failures on the

network would be observed.

As another venue for future work, different pervasive computing applications can be

implemented on our EDA framework. We believe that by implementing this test bed in the

Institute, we have made this setup available for future studies. Simple sensor events and

also the Complex Events detected by the engine can be used by subscribing to all of them.

Also security of the system should be provided to prevent any attacks to the system and to

be sure proper messages are received by the subscribers.

65

REFERENCES

[1] Weiser, M. (1999). The computer for the 21st century. SIGMOBILE Mob. Comput.
Commun. Rev. 3, 3--11. (Doi: http://doi.acm.org/10.1145/329124.329126.) Retrieved
from http://doi.acm.org/10.1145/329124.329126.

[2] Weiser, M. (1993). Hot topics-ubiquitous computing. Computer 26 (10), 71 -72. (Doi:
10.1109/2.237456.)

[3] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. & Cayirci, E. (2002). A survey on sensor
networks. Communications Magazine, IEEE 40 (8), 102--114. (Doi:
10.1109/MCOM.2002.1024422.)

[4] Akyildiz, I. F. & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: research
challenges. Ad Hoc Networks 2 (4), 351 - 367. (Doi: 10.1016/j.adhoc.2004.04.003.)
Retrieved from http://www.sciencedirect.com/science/article/B7576-4CDWMMM-
1/2/8c25ac6ebd5ab2e50ce172498c2add9a.

[5] Demirkol, I., Ersoy, C. & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a
survey. Communications Magazine, IEEE 44 (4), 115--121. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1632658.

[6] Intanagonwiwat, C., Govindan, R. & Estrin, D. (2000). Directed Diffusion: A scalable and
robust communication paradigm for sensor networks. In MOBICOM (pp. 56--67). ACM.

[7] Römer, K., Frank, C., Marrón, P. J. & Becker, C. (2004). Generic role assignment for
wireless sensor networks. In Proceedings of the 11th workshop on ACM SIGOPS European
workshop. ACM. Retrieved from http://doi.acm.org/10.1145/1133572.1133588.

[8] Terfloth, K., Wittenburg, G. & Schiller, J. (2006). FACTS- A Rule-based Middleware
Architecture for Wireless Sensor Networks. In Communication System Software and
Middleware, 2006. Comsware 2006. First International Conference on (pp. 1 -8).

[9] Madden, S. R., Franklin, M. J., Hellerstein, J. M. & Hong, W. (2005). Tinydb: An
acquisitional query processing system for sensor networks. ACM Trans. Database Syst 30,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1632658
http://doi.acm.org/10.1145/1133572.1133588

66

2005.

[10] Paschke, A. & Vincent, P. (2009). A reference architecture for Event Processing. In
Proceedings of the Third ACM International Conference on Distributed Event-Based
Systems (pp. 25:1--25:4). ACM. (ISBN: 978-1-60558-665-6.) Retrieved from
http://doi.acm.org/10.1145/1619258.1619291.

[11] Hinze, A., Sachs, K. & Buchmann, A. (2009). Event-based applications and enabling
technologies. In Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems (pp. 1:1--1:15). ACM. (ISBN: 978-1-60558-665-6.) Retrieved from
http://doi.acm.org/10.1145/1619258.1619260.

[12] Wang, F., Liu, S. & Liu, P. (2009). Complex RFID event processing. The VLDB Journal 18,
913--931. (Doi: http://dx.doi.org/10.1007/s00778-009-0139-0.) Retrieved from
http://dx.doi.org/10.1007/s00778-009-0139-0.

[13] Son, B.-K., Lee, J.-H., Park, K.-L., Kim, C.-G., Kim, H.-C. & Kim, S.-D. (2007). An efficient
method to create business level events using complex event processing based on RFID
standards. In Proceedings of the 5th IFIP WG 10.2 international conference on Software
technologies for embedded and ubiquitous systems (pp. 1--10). Springer-Verlag. (ISBN: 3-
540-75663-9, 978-3-540-75663-7.) Retrieved from
http://portal.acm.org/citation.cfm?id=1778978.1778980.

 [14] Wang, W., Sung, J. & Kim, D. (2008). Complex Event Processing in EPC Sensor Network
Middleware for Both RFID and WSN. In Object Oriented Real-Time Distributed Computing
(ISORC), 2008 11th IEEE International Symposium on (pp. 165 -169).

[15] Cugola, G. & Margara, A. (2009). RACED: an adaptive middleware for complex event
detection. In Proceedings of the 8th International Workshop on Adaptive and Reflective
Middleware (pp. 5:1--5:6). ACM. (ISBN: 978-1-60558-850-6.) Retrieved from
http://doi.acm.org/10.1145/1658185.1658190.

[16] Pietzuch, P. R., Shand, B. & Bacon, J. (2004). Composite Event Detection as a Generic
Middleware Extension. IEEE Network 18 (1), 44-55. Retrieved from http://dblp.uni-
trier.de/db/journals/network/network18.html#PietzuchSB04.

[17] Fei, Y., Hu, J., Hua, E. & Luo, Z. (2009). RFID Middleware Event Processing Based on
CEP. In Proceedings of the 2009 IEEE International Conference on e-Business Engineering
(pp. 481--486). IEEE Computer Society. (ISBN: 978-0-7695-3842-6.) Retrieved from
http://dx.doi.org/10.1109/ICEBE.2009.76.

[18] Terfloth, K., Hahn, K. & Voisard, A. (2007). On the Cost of Shifting Event Processing
within Wireless Environments. In M. Chandy, O. Etzion & R. von Ammon (ed.),Event
Processing. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany. Retrieved from
http://drops.dagstuhl.de/opus/volltexte/2007/1141.

[19] Abadi, D. J., Madden, S. & Lindner, W. (2005). REED: robust, efficient filtering and
event detection in sensor networks. In Proceedings of the 31st international conference on
Very large data bases (pp. 769--780). VLDB Endowment. (ISBN: 1-59593-154-6.) Retrieved
from http://portal.acm.org/citation.cfm?id=1083592.1083681.

http://doi.acm.org/10.1145/1619258.1619260
http://dx.doi.org/10.1007/s00778-009-0139-0
http://portal.acm.org/citation.cfm?id=1778978.1778980
http://doi.acm.org/10.1145/1658185.1658190
http://dblp.uni-trier.de/db/journals/network/network18.html#PietzuchSB04
http://dblp.uni-trier.de/db/journals/network/network18.html#PietzuchSB04
http://drops.dagstuhl.de/opus/volltexte/2007/1141

67

[20] Marrón, P. J., Sauter, R., Saukh, O., Gauger, M. & Rothermel, K. (2006). Challenges of
Complex Data Processing in Real World Sensor Network Deployments. In: Proceedings of
the ACM Workshop on Real-World Wireless Sensor Networks (REALWSN’06 (pp. 43--48).

[21] Dziengel, N., Wittenburg, G. & Schiller, J. (2008). Towards Distributed Event Detection
in Wireless Sensor Networks. In DCOSS

[22] M. Marin-Perianu, N. Meratnia, M. Lijding, and P. Havinga. (2006). Being aware in
wireless sensor networks. In 15th IST Mobile and Wireless Communication Summit,
Capturing Context and Context Aware Systems and Platforms Workshop, 2006.

[23] Wu, B., Liu, Z., George, R. & Shujaee, K. (2005). eWellness: Building a Smart Hospital by
Leveraging RFID Networks. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS
2005. 27th Annual International Conference of the (pp. 3826 -3829).

[24] Fei, X. & Magill, E. (2008). Rule Execution and Event Distribution Middleware for
PROSEN-WSN. In Sensor Technologies and Applications, 2008. SENSORCOMM '08. Second
International Conference on (pp. 580 -585).

[25] Manjanatha, S., Bestavros, A., Gaynor, M. & Moulton, S. (2007). A Rule-Based Decision
Framework for Medical Sensor Networks. In High Confidence Medical Devices, Software,
and Systems and Medical Device Plug-and-Play Interoperability, 2007. HCMDSS-MDPnP.
Joint Workshop on (pp. 192 -193).

[26]Churcher, G. E. & Foley, J. (2010). Applying Complex Event Processing and Extending
Sensor Web Enablement to a Health Care Sensor Network Architecture. In O. Akan, P.
Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. (S.
Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, S. Hailes, S. Sicari & G. Roussos
(ed.),Sensor Systems and Software, Vol. 24 (pp. 1-10). Springer Berlin Heidelberg. (ISBN:
978-3-642-11528-8.) Retrieved from http://dx.doi.org/10.1007/978-3-642-11528-8_1.

[27] Zoumboulakis, M. & Roussos, G. (2007). Escalation: complex event detection in
wireless sensor networks. In Proceedings of the 2nd European conference on Smart sensing
and context (pp. 270--285). Springer-Verlag. (ISBN: 3-540-75695-7, 978-3-540-75695-8.)
Retrieved from http://dl.acm.org/citation.cfm?id=1775377.1775399.

[28] Yao, W., Chu, C.-H. & Li, Z. (2011). Leveraging complex event processing for smart
hospitals using RFID. J. Netw. Comput. Appl. 34, 799--810. (Doi:
http://dx.doi.org/10.1016/j.jnca.2010.04.020.) Retrieved from
http://dx.doi.org/10.1016/j.jnca.2010.04.020.

[29] Romer, K. & Mattern, F. (2004). Event-based systems for detecting real-world states
with sensor networks: a critical analysis. In Intelligent Sensors, Sensor Networks and
Information Processing Conference, 2004. Proceedings of the 2004 (pp. 389 - 395).

[30] Pinkerton, A. (2006). Pervasive Computing (PostNote). Parliamentary Office of Science
and Technology.

[31] Lifton,J.&Laibowitz,M. (2005). Application-led Research in Ubiquitous Computing: A
Wireless Sensor Network Perspective, UbiApp Workshop, 2005.

68

[32] Cook, D. J. & Das, S. K. (2007). How smart are our environments? An updated look at
the state of the art. Pervasive Mob. Comput. 3, 53--73. (Doi: 10.1016/j.pmcj.2006.12.001.)
Retrieved from http://portal.acm.org/citation.cfm?id=1225943.1226005.

[33] Hussain, S., Schaffner, S. & Moseychuck, D. (2009). Applications of Wireless Sensor
Networks and RFID in a Smart Home Environment. In Proceedings of the 2009 Seventh
Annual Communication Networks and Services Research Conference (pp. 153--157). IEEE
Computer Society. (ISBN: 978-0-7695-3649-1.) Retrieved from
http://portal.acm.org/citation.cfm?id=1545008.1545208.

[34] Pramod, P., Srikanth, S., Vivek, N., Patil, M. & Sarat, C. (2009). Intelligent Intrusion
Detection System (In2DS) using Wireless Sensor Networks. In Networking, Sensing and
Control, 2009. ICNSC '09. International Conference on (pp. 587 -591).

[35] He, T., Krishnamurthy, S., Stankovic, J. A., Abdelzaher, T., Luo, L., Stoleru, R., Yan, T. &
Gu, L. (2004). Energy-Efficient Surveillance System Using Wireless Sensor Networks. In
Mobisys (pp. 270--283). ACM Press.

[36] Naumowicz, T., Freeman, R., Heil, A., Calsyn, M., Hellmich, E., Brдndle, A., Guilford, T.
& Schiller, J. (2008). Autonomous monitoring of vulnerable habitats using a wireless sensor
network. In Proceedings of the workshop on Real-world wireless sensor networks (pp. 51--
55).

[37] Zhang, P. & Chen, M. (2008). A remote health care system based on wireless sensor
networks. In Computer Supported Cooperative Work in Design, 2008. CSCWD 2008. 12th
International Conference on (pp. 1102 -1106).

[38] Murty, R., Mainland, G., Rose, I., Chowdhury, A., Gosain, A., Bers, J. & Welsh, M.
(2008). CitySense: An Urban-Scale Wireless Sensor Network and Testbed. In Technologies
for Homeland Security, 2008 IEEE Conference on (pp. 583 -588).

[39] Buchmann, A. P. (2007). Infrastructure for Smart Cities: The Killer Application for
Event-Based Computing. In Dagstuhl Seminars

[40] Luckham, D. & Schulte, R. (2008). Event Processing Glossary - Version 1.1 (Glossary).
epts - Event Processing Technical Society. Retrieved from http://www.ep-
ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/.

[41] Edwards, M. (2010). A Conceptual Model for Event Processing Systems. Nanoscale 3
(5), 1--47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21547279.

[42] Brenda M. Michelson. (2006). Event-Driven Architecture Overview: Event-Driven SOA Is
Just Part of the EDA Story. Patricia Seybold Group / Business-Driven Architecture SM,
Retrieved from: http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf

[43] JMS – Available at: http://www.oracle.com/technetwork/java/index-jsp-142945.html
(Accessed: 24 August 2011)

[44] Apache ActiveMQ– Available at: http://activemq.apache.org/ (Accessed: 22 September
2011)

http://www.ep-ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
http://www.ep-ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf

69

[45] JBoss-Drools The Business Logic Integration Platform – Available at.
http://www.jboss.org/drools (Accessed: 30 August 2011)

[46] Arduino – Available at: http://www.arduino.cc (Accessed: 24 August 2011)

[47] Melexis US1881 - Available at: http://www.melexis.com/Hall-Effect-Sensor-ICs/Hall-
Effect-Latches/US1881-140.aspx (Accessed: 15 December 2011)

[48] Sharp GP2Y0A02YK0F - Available at: http://www.sharpsma.com/webfm_send/1487
(Accessed: 15 December 2011)

[49] QRD114 Reflective Object Sensor - Available at:
http://www.fairchildsemi.com/pf/QR/QRD1114.html (Accessed: 15 December 2011)

[50] Passive Infrared (PIR) Detector SE-10- Available at:
http://www.pololu.com/catalog/product/1635 (Accessed: 15 December 2011)

[51] Photocell GL5528 - Available at: http://us.100y.com.tw/ChanPin.asp?MNo=53901
(Accessed: 15 December 2011)

[52] MD9745APZ-F Electret Microphone- Available at:
http://www.knowles.com/search/prods_pdf/MD9745APZ-F.pdf (Accessed: 15 December
2011)

[53] TMP 102 Temperature Sensor – Available at: http://www.ti.com/product/tmp102
(Accessed: 15 December 2011)

[54] RedBee RFID Reader – Available at: http://www.roboticsconnection.com/p-99-redbee-
rfid-reader-v11.aspx (Accessed: 15 December 2011)

[55] Arduino 1.0 – Available at: http://www.arduino.cc/en/Main/Software (Accessed: 24
August 2011)

[56] ZigBee Alliance –Available at: http://www.zigbee.org/ (Accessed: 29 August 2011)

[57] Digi - XBee-PRO® 802.15.4 OEM RF Modules – Available at:
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-
modules/point-multipoint-rfmodules/xbee-series1-module#overview (Accessed: 29 August
2011)

[58] Digi -Product: XCTU - Available at:
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=0&s=316&tp=5&tp2=0
(Accessed: 29 August 2011)

[59] MySQL Community Server– Available at:
http://www.mysql.com/downloads/mysql/ (Accessed: 22 September 2011)

[60] JETTY– Available at: http://www.eclipse.org/jetty/ (Accessed: 22 September 2011)

[61] The CEP Market at the end of 2011– Available at:
http://tibcoblogs.com/cep/2011/12/06/the-cep-market-at-the-end-of-2011/ (Accessed: 25
December 2011)

http://www.jboss.org/drools
http://www.arduino.cc/
http://www.fairchildsemi.com/pf/QR/QRD1114.html
http://www.pololu.com/catalog/product/1635
http://us.100y.com.tw/ChanPin.asp?MNo=53901
http://www.knowles.com/search/prods_pdf/MD9745APZ-F.pdf
http://www.ti.com/product/tmp102
http://www.zigbee.org/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#overview
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-series1-module#overview
http://www.digi.com/support/productdetl.jsp?pid=3352&osvid=0&s=316&tp=5&tp2=0

70

APPENDICES

Appendix A : Sensor Board Schematic For Arduino Uno

71

Appendix B : Microcontroller Codes

Microcontroller Code -Door

/* Uno 5

/* Halleffect,proximity,pressure sensors

/* Used at clasroom door

/* M.Ozge Kaya; Informatics Institute,METU

 */

int hallEffectPin = 8;

int proximityPin = A5;

int opticalPin =A0;

int proximityThreshold = 200;

int proximityReading = 0;

int hallReading = 0;

int hallSwitch=0;

int optical =0;

int lockCounter = 0;

int unlockCounter = 0;

int lockSwitch =3;

int timer = 500;

int alarmPin = A3;

int alarmValue = 0;

long previousMillis = 0;

long interval = 2000;

void setup(){

 Serial.begin(57600);

 pinMode(buzzerPin, OUTPUT);

 pinMode(alarmPin, INPUT);

 delay (3000);

}

void loop(){

 optical = analogRead(opticalPin);

 hallReading = digitalRead(hallEffectPin);

 proximityReading = analogRead(proximityPin);

 //just to slow down the output - remove if trying to catch

an object passing by

 delay(180);

 // Selected Readings

 if (proximityReading >= proximityThreshold) {

 /*If lenght changes(An object passing) ,

 /*I0: Infrared at door.

 /*Send value 1 meaning there is movement.*/

 Serial.print("I0:1");

 Serial.print("\r");

 }

 /* Detect if door is open or closed

 /* H0: HallEffect at door.

 /* Send 1 for open,send 0 for closed

 /* HallSwitch is used for sending open and close messages fo

r once

 */

72

Microcontroller Code –Door Cont.

if(hallReading == 1 && hallSwitch==0){ //Door is open

 Serial.print("H0:1");

 Serial.print("\r");

 hallSwitch=1;

 }

if (hallReading == 0 && hallSwitch==1) { //Door is closed

 Serial.print("H0:0");

 Serial.print("\r");

 hallSwitch=0;

 }

/* Detect if door is locked or not

 /* P0: Pressure at door.

 /* Send 1 for locked,send 0 for unlocked

 /* Counter is used to get last 10 measurement

 */

 if (lockSwitch != 1) {

 if (optical < 900 && lockCounter ==10) {

 Serial.print("O0:1");

 Serial.print("\r");

 lockCounter=0;

 lockSwitch=1;

 }

 else if (optical <900 && lockCounter < 10) {

 lockCounter++;

 }

 }

 if (lockSwitch != 0) {

 if (optical >= 900 && unlockCounter ==10){

 Serial.print("O0:0");

 Serial.print("\r");

 unlockCounter=0;

 lockSwitch = 0;

 }

 else if (optical >= 900 && unlockCounter < 10) {

 unlockCounter++;

 }

 }

 /* Detect if there is movement

 /* M0: Motion inside first.

 /* Send 1 for motion

 /* Counter is used to delay 5 secs after every movement

 */

 alarmValue = analogRead(alarmPin);

 unsigned long currentMillis = millis();

 if(currentMillis - previousMillis > interval) {

 previousMillis = currentMillis;

 if (alarmValue < 100){

 Serial.print("M0:1");

 Serial.print("\r");

 }

 }

}

}

73

Microcontroller Code -Outside

/* Uno 4

/* Ambient Temp,Photosensor

/* Used at outside

/* M.Ozge Kaya; Informatics Institute,METU

 */

#include <Wire.h>

int tmp102Address = 0x48;

byte res;

int val;

int photoPin =A0;

int photoRead =0;

void setup(){

 Serial.begin(57600);

 Wire.begin();

}

void loop(){

 /* Detect outside temp.

 /* T1: Outside temperetaure

 /* Send every 8 sec.

 */

 Wire.requestFrom(tmp102Address,2);

 byte MSB = Wire.receive();

 byte LSB = Wire.receive();

 int TemperatureSum = ((MSB << 8) | LSB) >> 4; //it's a 12bit

int, using two's compliment for negative

 float celsius = TemperatureSum*0.0625;

 Serial.print("T1:");

 Serial.print(celsius);

 Serial.print("\r");

 delay(4000);

 /* Detect outside ambient light.

 /* L1: Outside light.

 /* Send every 8 sec.

 */

 photoRead= analogRead(photoPin);

 Serial.print("L1:");

 Serial.print(photoRead);

 Serial.print("\r");

 delay(4000);

}

74

Microcontroller Code –Inside Wall

/* Uno 3

/* Ambient Temp,Photosensor,Electret Microhpone

/* Used at inside

/* M.Ozge Kaya, Informatic Institute,METU

 */

#include <Wire.h>

int tmp102Address = 0x48;

byte res;

int val;

const int ledPin = 13;

const int electret = A0;

const int photo =A1;

int electretReading = 0;

int photoReading =0;

int electretMax = 0;

int electretMin = 1023;

int electretThresholdHIGH =100;

int electretThresholdMED =50;

int electretThresholdLOW ;

int noiseLevel;

int lastNoiseLevel=50;

long previousMillis = 0;

long interval = 8000;

void setup() {

 Serial.begin(57600);

 Wire.begin();

 //Calibration for Electret

 while (millis() < 3000) {

 electretThresholdLOW = analogRead(electret);

 // record the maximum sensor value

 if (electretThresholdLOW > electretMax) {

 electretMax = electretThresholdLOW;

 }

 }

 // signal the end of the calibration period

 electretThresholdLOW = electretMax;

 Serial.println("Calibration Completed");

 Serial.print("Background Noise Level:");

 Serial.println(electretThresholdLOW,DEC);

}

75

Microcontroller Code –Inside Wall Cont.

void loop() {

 /* Detect inside noise.

 /* E0: Inside Noise

 /*

 */

 electretReading = analogRead(electret);

 if ((electretReading >= electretThresholdLOW)) {

 Serial.print("E0:");

 Serial.print(electretReading-electretThresholdLOW);

 Serial.print("\r");

 delay(500);

 }

 unsigned long currentMillis = millis();

 if(currentMillis - previousMillis > interval) {

 previousMillis = currentMillis;

 /* Detect inside ambient light.

 /* L0: Inside light.

 /* Send every 8 sec.

 */

 photoReading=analogRead(photo);

 Serial.print("L0:");

 Serial.print(photoReading);

 Serial.print("\r");

 /* Detect inside temp.

 /* T0: Outside temperetaure

 /* Send every 8 sec.

 */

 Wire.requestFrom(tmp102Address,2);

 byte MSB = Wire.receive();

 byte LSB = Wire.receive();

 int TemperatureSum = ((MSB << 8) | LSB) >> 4; //it's a

12bit int, using two's compliment for negative

 float celsius = TemperatureSum*0.0625;

 Serial.print("S0:");

 Serial.print(celsius);

 Serial.print("\r");

 }

}

76

Microcontroller Code –Inside, Ceiling

/* Uno 2 Ic2

/* PIR,Photosensor

/* Used at inside

/* M.Ozge Kaya;Informatics Intstitute,METU

 */

int timer = 500;

int alarmPin = A0;

int alarmValue = 0;

long previousMillis = 0;

long interval = 6000;

int photoReading =0;

const int photo =A1;

void setup(){

 Serial.begin(57600);

 pinMode(alarmPin, INPUT);

 delay (3000);

}

void loop(){

 /* Detect motion

 /* M1: PIR Motion

 /* Send every 2 sec.

 */

 alarmValue = analogRead(alarmPin);

 if (alarmValue < 100){

 Serial.print("M1:1");

 Serial.print("\r");

 delay(2000);

 }

 unsigned long currentMillis = millis();

 if(currentMillis - previousMillis > interval) {

 previousMillis = currentMillis;

 /* Detect inside ambient light.

 /* L2: Inside light.

 /* Send every 8 sec.

 */

 photoReading=analogRead(photo);

 Serial.print("L2:");

 Serial.print(photoReading);

 Serial.print("\r");

 }

}

77

Appendix C : Rules in Drools Rule Language

CE 1: Lecture will be delayed

rule "dersGecikecek"

when

 CurrentState(timeOfLecture=="S1") from entry-point

DEFAULT

 CurrentState(numberOfStudents <= 3) from entry-point

DEFAULT ||

 Number(doubleValue < 17) from accumulate(

 SensorEvent(sensorName == "Temp0",$data : data) over

window:length(4) from entry-point classroom,

 average($data)) ||

 $eventA : SensorEvent(sensorName == "Optical0") over

window:length (1) from entry-point classroom

 SensorEvent(data == 1) from $eventA

then

 System.out.println("DROOLS:Ders Gecikecek");

 Main.sendDroolsJMS("DROOLS:Ders Gecikecek");

end

CE 2: Lesson Started

rule "dersBasladi"

 when

 not(DroolsEvent(event == "dersBasladi") from entry-point

DEFAULT)

 $eventA : SensorEvent(sensorName=="Hall0") over

window:length(1) from entry-point classroom

 SensorEvent(data == 1) from $eventA

 $state : CurrentState(numberOfStudents >= 6,timeOfLecture ==

"ST",isInstructerThere==true) from entry-point DEFAULT

 then

 System.out.println("DROOLS:Ders Basladi");

 Main.sendToJMSText("DERS BASLADI","state");

 Main.sendDroolsJMS("DROOLS:Ders Basladi");

 Main.addEventDersBasladi();

 Main.retractEventAraBitti();

 Main.retractEventDersBitti();

end

78

CE 3 :Break given

rule "araVerildi"

 when

 not(CurrentState(timeOfLecture=="E15") from entry-point

DEFAULT)

 not(DroolsEvent(event == "araVerildi") from entry-point

DEFAULT)

 not(DroolsEvent(event == "dersBitti") from entry-point

DEFAULT)

 not(DroolsEvent(event=="araBitti") from entry-point DEFAULT)

 $eventB : DroolsEvent(event=="dersBasladi") from entry-point

DEFAULT

 $eventA : SensorEvent(sensorName=="Hall0",data == 0,this

after[30m,90m] $eventB) from entry-point classroom

 $eventD : SensorEvent(sensorName == "Infrared0",data ==

1,this after[1s,120s] $eventA) from entry-point classroom

 then

 System.out.println("DROOLS:Ara Verildi");

 Main.sendToJMSText("ARA VERILDI","state");

 Main.sendDroolsJMS("DROOLS:Ara Verildi");

 Main.retractEventAraBitti();

 Main.addEventAraVer();

end

CE 4: Break ended

rule "araBitti"

 when

 not(DroolsEvent(event=="araBitti") from entry-point DEFAULT)

 $eventB : DroolsEvent(event == "araVerildi") from entry-point

DEFAULT

 $eventA : SensorEvent(sensorName=="Hall0",data == 1,this

after[5m,30m] $eventB) over window:length(1) from entry-point

classroom

 then

 System.out.println("DROOLS:Ara Bitti");

 Main.sendToJMSText("ARA BITTI","state");

 Main.sendDroolsJMS("DROOLS:Ara Bitti");

 Main.addEventAraBitti();

 Main.retractEventAra();

End

79

CE5: Lecture Ended

rule "dersBitti"

 when

 not(DroolsEvent(event=="dersBitti") from entry-point

DEFAULT)

 $eventA : DroolsEvent(event == "dersBasladi") from entry-

point DEFAULT

 (CurrentState(timeOfLecture=="E15") from entry-point DEFAULT

||

 CurrentState(timeOfLecture=="ET") from entry-point DEFAULT)

 $eventB : SensorEvent(sensorName=="Hall0") over

window:legth(1) from entry-point classroom

 $eventD : SensorEvent(data == 0) from $eventB

 $eventC : SensorEvent(sensorName == "Infrared0",data ==

1,this after[1s,120s] $eventB) from entry-point classroom

 CurrentState(isInstructerThere==false) from entry-point

DEFAULT

 CurrentState(numberOfStudents <= 3) from entry-point DEFAULT

 then

 System.out.println("DROOLS:Ders Bitti");

 Main.sendToJMSText("DERS BITTI","state");

 Main.sendDroolsJMS("DROOLS:Ders Bitti");

 Main.addEventDersBitti();

 Main.retractEventAraBitti();

 Main.retractEventDersBasladi();

end

CE6: Lecture finished early

rule "dersErkenBitti"

 when

 not(CurrentState(timeOfLecture=="E15"))

 not(CurrentState(timeOfLecture=="ET"))

 not(DroolsEvent(event=="dersBitti") from entry-point

DEFAULT)

 $eventA : DroolsEvent(event == "dersBasladi") from entry-

point DEFAULT

 $eventB : SensorEvent(sensorName=="Hall0",data == 0) from

entry-point classroom

 $eventC : SensorEvent(sensorName == "Infrared0",data ==

1,this after [1s] $eventB) from entry-point classroom

 CurrentState(isInstructerThere==false)

 CurrentState(numberOfStudents <= 3)

 then

 System.out.println("DROOLS:Ders Erken Bitti");

 Main.sendToJMSText("DERS ERKEN BITTI","state");

 Main.sendDroolsJMS("DROOLS:Ders Erken Bitti");

 Main.addEventDersBitti();

 Main.retractEventAraBitti();

 Main.retractEventDersBasladi();

end

80

CE7: Day ended

rule "gunBitti"

 when

 $eventC : DroolsEvent(event=="dersBitti") from entry-point

DEFAULT

 $eventA : CurrentState(isLastCourse==true) from entry-

point DEFAULT

 not(SensorEvent(sensorName == "Motion0",data >= 0,this after

[10m,15m] $eventC) from entry-point classroom)

 not(SensorEvent(sensorName == "Motion1",data >= 0,this after

[10m,15m] $eventC) from entry-point classroom)

 Number(doubleValue < 50) from accumulate(

 SensorEvent(sensorName == "Electret0",$data : data) over

window:time(60s) from entry-point classroom,

 average($data))

then

 System.out.println("DROOLS:GUN Bitti");

 Main.sendToJMSText("GUN BITTI","state");

 Main.sendDroolsJMS("DROOLS:Gun Bitti");

 Main.retractEventDersBitti();

 Main.addEventGunBitti();

 Main.changeCurrentState("false","isLastLecture");

 System.out.println("görevliyi kilit için çağır");

end

CE8: Classroom Check

rule "sınıfKontrol"

 when

 $eventA : DroolsEvent(event=="gunBitti") from entry-point

DEFAULT

 $eventB : SensorEvent(sensorName=="Optical0",this after

[10m,60m] $eventA) over window:length (1) from entry-point

classroom

 SensorEvent(data == 1) from $eventB

 $eventC : SensorEvent(sensorName=="Motion0",data >= 0,this

after [0h,8h] $eventB) from entry-point classroom ||

 $eventD : SensorEvent(sensorName=="Motion1",data >= 0,this

after [0h,8h] $eventB) from entry-point classroom ||

 Number(doubleValue > 50) from accumulate(

 SensorEvent(sensorName == "Electret0",$data : data,this after

$eventB) over window:time(60s) from entry-point classroom,

 average($data)) ||

 not(SensorEvent(sensorName=="Light0",data <= 200,this after

[0h,8h] $eventB) from entry-point classroom) ||

 not(SensorEvent(sensorName=="Light2",data <= 200,this after

[0h,8h] $eventB) from entry-point classroom)

 then

 System.out.println("DROOLS:SINIFI KONTROL ET");

 Main.sendToJMSText("SINIFI KONTROL ET","state");

 Main.sendDroolsJMS("DROOLS:SINIFI KONTROL ET");

end

81

CE9: Day started

rule "gunbasladi"

 when

 $eventA : DroolsEvent(event=="gunBitti") from entry-point

DEFAULT

 $eventB : DroolsEvent(event=="dersBasladi") from entry-point

DEFAULT

 then

 System.out.println("DROOLS:Gun Basladi");

 Main.sendDroolsJMS("DROOLS:Gün Basladi");

 Main.addEventGunBasladi();

 Main.retractEventGunBitti();

end

AR1: Open the curtains

rule "perdeAc"

when

 Number(doubleValue < 500) from accumulate(

 SensorEvent(sensorName == "Light0",$data : data) over

window:length(10) from entry-point classroom,

 average($data)) || Number(doubleValue < 500) from

accumulate(

 SensorEvent(sensorName == "Light2",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue > 600) from accumulate(

 SensorEvent(sensorName == "Light1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

then

 System.out.println("DROOLS:Dış ortam aydınlık perdeleri

açın.");

 Main.sendDroolsJMS("DROOLS:perdeleri acin.");

end

82

AR2 :Open the lights

rule "isikAc"

when

 Number(doubleValue < 500) from accumulate(

 SensorEvent(sensorName == "Light0",$data : data) over

window:length(10) from entry-point classroom,

 average($data)) || Number(doubleValue < 500) from

accumulate(

 SensorEvent(sensorName == "Light2",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue < 600) from accumulate(

 SensorEvent(sensorName == "Light1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

then

 System.out.println("DROOLS:Dış ortam karanlık ışıkları

açın."); //Main.sendDroolsJMS("DROOLS:isiklari acin.");

 Main.sendDroolsJMS("DROOLS:Isiklari acin.");

end

AR3 : Open the window

rule "camAc"

when

 Number(doubleValue >= 28) from accumulate(

 SensorEvent(sensorName == "Temp0",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue <= 24) from accumulate(

 SensorEvent(sensorName == "Temp1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue <= 19) from accumulate(

 SensorEvent(sensorName == "Temp1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 then

 System.out.println("DROOLS:İçerisi çok sıcak camı

açın.");

 Main.sendDroolsJMS("DROOLS:Cami acin.");

end

83

AR4 : Run air conditioner

rule "klimaAc"

when

 Number(doubleValue >= 28) from accumulate(

 SensorEvent(sensorName == "Temp0",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue >= 24) from accumulate(

 SensorEvent(sensorName == "Temp1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 then

 System.out.println("DROOLS:İçerisi çok sıcak klima

açın.");

 Main.sendDroolsJMS("DROOLS:Klima acin.");

end

AR5 : Run heater

rule "isiticiAc"

when

 Number(doubleValue <= 20) from accumulate(

 SensorEvent(sensorName == "Temp0",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 Number(doubleValue <= 22) from accumulate(

 SensorEvent(sensorName == "Temp1",$data : data) over

window:length(10) from entry-point classroom,

 average($data))

 then

 System.out.println("DROOLS:İçerisi çok soğuk ısıtıcı

açın.");

 Main.sendDroolsJMS("DROOLS:Isıtıcı acin.");

end

84

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı: KAYA

Adı : MUAMER ÖZGE

Bölümü : BİLİŞİM SİSTEMLERİ

 TEZİN ADI (İngilizce): A Complex Event Processing Framework

Implementation Using Heterogeneous Devices In Smart Environments

TEZİN TÜRÜ : Yüksek Lisans Doktora

1. Tezimin tamamından kaynak gösterilmek şartıyla fotokopi alınabilir.

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir

bölümünden kaynak gösterilmek şartıyla fotokopi alınabilir.

3. Tezimden bir bir (1) yıl süreyle fotokopi alınamaz.

TEZİN KÜTÜPHANEYE TESLİM TARİHİ:..

