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ABSTRACT 

       A COMPARATIVE STUDY ON POSE ESTIMATION ALGORITHMS 
USING VISUAL DATA 

 

Çetinkaya, Güven 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. A. Aydın Alatan 

 

February 2012, 108 pages 

Computation of the position and orientation of an object with respect to a camera 

from its images is called pose estimation problem. Pose estimation is one of the 

major problems in computer vision, robotics and photogrammetry. Object tracking, 

object recognition, self-localization of robots are typical examples for the use of 

pose estimation. 

Determining the pose of an object from its projections requires 3D model of an 

object in its own reference system, the camera parameters and 2D image of the 

object. Most of the pose estimation algorithms require the correspondences between 

the 3D model points of the object and 2D image points.  

In this study, four well-known pose estimation algorithms requiring the 2D-3D 

correspondences to be known a priori; namely, Orthogonal Iterations, POSIT, DLT 

and Efficient PnP are compared. Moreover, two other well-known algorithms that 

solve the correspondence and pose problems simultaneously; Soft POSIT and Blind- 

PnP are also compared in the scope of this thesis study. In the first step of the 

simulations, synthetic data is formed using a realistic motion scenario and the 
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algorithms are compared using this data. In the next step, real images captured by a 

calibrated camera for an object with known 3D model are exploited.  

The simulation results indicate that POSIT algorithm performs the best among the 

algorithms requiring point correspondences. Another result obtained from the 

experiments is that Soft-POSIT algorithm can be considered to perform better than 

Blind-PnP algorithm. 

Keywords: 2D-3D Pose Estimation, 2D-3D Correspondence 
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ÖZ 

POS KESTİRİM ALGORİTMALARININ GÖRSEL VERİLER 
KULLANILARAK KARŞILAŞTIRILMASI 

Çetinkaya, Güven 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan 

 

 

Şubat 2012, 108 sayfa 

Bir nesnenin görüntülerini kullanarak o nesnenin kameraya gore pozisyon ve 

yöneliminin hesaplanmasına poz kestirim problemi denir. Poz kestirimi, bilgisayarla 

görü, robotik ve fotogrametri alanlarındaki önemli problemlerden birisidir. Nesne 

takibi, nesne tanıma, robotların kendi konumlarını bulması gibi uygulamalar poz 

kestirim probleminin kullanım alanlarına örnek olarak verilebilir. 

Bir nesnenin pozunu, o nesnenin görüntülerini kullanarak bulmak için nesnenin 

kendi referans sisteminde üç boyutlu modeline, kamera parametrelerine ve iki 

boyutlu görüntüye ihtiyaç duyulmaktadır. Poz kestirim algoritmalarının çoğu üç 

boyutlu model noktaları ile iki boyutlu görüntü noktaları arasındaki ilişkinin tam 

olarak bilinmesine ihtiyaç duyarlar.  

Bu çalışmada, önceden önerilmiş ve model noktaları ile görüntü noktaları 

arasındaki ilişkinin bilindiğini varsayan dört poz kestirim algoritması; Orthogonal 

Iterations, POSIT, DLT ve  Efficient PnP, kodlanmış ve karşılaştırılmıştır. Ayrıca 
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poz ve eşleştirme problemlerini aynı anda çözen iki bilinen algoritmanın; Soft-

POSIT ve Blind-PnP, kodlanması ve karşılaştırılması da bu çalışmada yer 

almaktadır. Simülasyonların ilkinde, gerçek hareket senaryoları kullanılarak 

sentetik veriler üretilmiş ve algoritmalar bu veriler kullanılarak karşılaştırılmıştır. 

Sonraki adımda, üç boyutlu modeli bilinen bir nesnenin kalibre edilmiş bir kamera 

ile çekilmiş gerçek görüntülerinden faydalanılmıştır. 

Simülasyon sonuçlarına göre, model noktaları ve görüntü noktaları arasındaki 

ilişkinin bilindiğini varsayan algoritmalar arasında POSIT algoritmasının en iyi 

performansı gösterdiği görülmüştür. Deneyler sonucu elde edilen bir başka sonuç da 

Soft-POSIT algoritmasının Blind-PnP algoritmasına göre daha iyi bir performans 

gösterdiğidir. 

Anahtar Kelimeler: 2B–3B Poz Kestirimi, 2B–3B Eşleştirme 
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  CHAPTER 1

  INTRODUCTION 

 Problem Definition and Motivation 1.1

This thesis study is dedicated to comparison of some well-known pose-estimation 

algorithms by using synthetic and real data. Pose is defined as the orientation and 

position of an object with respect to a camera. Pose estimation problem is the 

process of determining the pose of an object from its image. In order to calculate a 

pose at least a 2D image and a 3D object is required. Most of the algorithms also 

require some camera parameters and the correspondences between points on the 3D 

object and points on the 2D image. 

Pose estimation is widely used in robotics applications. In [1], the visual servoing 

application of a robot arm is realized. The robot arm can grasp three boxes one by 

one and place each one on top of the other. In another application example, the pose 

of the robot and the opening angles of its arms can be calculated using monocular 

images [2]. 
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Figure 1 : Visual Servoing Application 

Augmented reality applications also use pose estimation algorithms widely. In [3], a 

real-time tracking algorithm for helmet-mounted displays is proposed. The person 

wearing helmet-mounted display stands inside a box-like room surrounded by the 

cameras and the head movements of him are tracked by the system.  

 

Figure 2 : Real-Time Optical Head Tracker Application [3] 

The scope of this thesis is as follows: The algorithms compared in this thesis study 

use point features obtained from a single image. Comparison is performed 

according to pose accuracy and computational complexity of these algorithms. 

Visual and synthetic data are both utilized during the experiments for comparison. 
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Visual data is obtained by using images of infrared light emitting diodes (IR-LEDs) 

located on the head, whereas synthetic data is generated by using the realistic head 

motion data. Robustness of the algorithms against noise, occlusion and clutter cases 

are also investigated. The suitability of the algorithms for real time head tracking 

application is evaluated. 

 Related Work 1.2

 There are different approaches to pose estimation in computer vision literature. The 

algorithms can be classified in many different groups. 

One classification can be achieved according to the utilized features (points or lines) 

in the algorithm. Many algorithms use point features for pose estimation, but there 

are some algorithms [4, 5, 6] that also use line features. In this thesis study, 

algorithms using point features will be focused. 

Algorithms can also be classified with respect to their input requirements. Most of 

the algorithms [7-21] require 2D – 3D point correspondences for pose calculation. 

Some of the algorithms [22, 23] calculate both pose and correspondences at the 

same time. There are also algorithms [24, 25, 26] that do not need 3D model of the 

object to be known. These algorithms use motion information to estimate the 3D 

structure and the pose of the object at the same time.  

The computational method could be another issue during the classification of 

algorithms. Some algorithms [9, 11, 16] calculate pose from 2D-3D point 

correspondences iteratively. The other group consists of non-iterative algorithms [4, 

7, 8, 10, 12, 13, 14, 15 17, 18] which again calculate pose from 2D-3D point 

correspondences. 
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The DLT algorithm [7], which is published in 1971, is the earliest study for pose 

estimation. It is not directly designed for pose estimation problem, but it can be 

used for calculation of transformations between 2D-2D or 2D-3D point pairs. 

Studies about PnP problem start in 1981 with [10]. The other methods proposed for 

PnP problem are [17, 20] in 1989, [19] in 1991, [13, 14] in 1999, [12] in 2001, [4, 

18] in 2003 and [15] in 2008. Among these, [18, 13] are specialized for P3P 

problem and produce at most four solutions in general; and the others can handle 

arbitrary values of n. Algorithms for DLT and PnP problems are closed-form 

solutions and they are fast methods compared to iterative methods. But most of 

these algorithms are sensitive to noise and outliers.  

First iterative algorithms for pose estimation problem used variances of 

optimization algorithms such as Gauss-Newton or Gradient Descent. [21, 19] in 

1991 are the examples to these algorithms. In 1994, [5] came up with an algorithm 

based on constraints on image lines. POSIT algorithm [6], which was published in 

1995, came up with an idea of using weak-perspective approximation for 

initialization. Lu et.al. published Orthogonal Iterations algorithm in 2000, and 

formulated pose estimation as minimizing an error metric based on collinearity in 

object rather than image. These iterative algorithms are more accurate than closed 

formed solutions and they are less sensitive to noise and outlier. But they typically 

suffer from slow convergence when they are badly initialized or convergence to 

local minima. For stability and accuracy, the iterative algorithms require more point 

correspondences compared to non-iterative ones. 

First algorithms calculating pose and correspondences simultaneously worked out 

the problem by hypothesis and test approach such as RANSAC algorithm [10]. The 

problem is solved by hypothesizing small sets of 2D-3D correspondences between a 

number of 3D and 2D points. Using indexing methods such as geometric hashing is 

another method for determining pose and correspondences together. [27] in 1988 

and [28] in 1993 are examples of this kind of algorithms. [29] in 1997 and [30] in 
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1999 are pose clustering approaches to calculating pose and correspondences 

together. [31] in 1995, [32] in 1996 and Soft-POSIT [23] in 2004 are algorithms 

which solve pose and correspondences iteratively by minimizing a global cost 

function. In 2008, Blind-PnP algorithm [22], which models the priors for camera 

pose with Gaussian Mixture Model [33] and refines them by hypothesizing new 

correspondences, was published. 

The algorithms which are compared in this thesis study can be divided in two 

groups: algorithms that require point correspondences for pose estimation and 

algorithms which calculate pose and correspondences together. For the algorithms 

with known correspondences, two non-iterative and two iterative algorithms are 

selected. DLT algorithm is selected as the first non-iterative algorithm, because it is 

the simplest and oldest algorithm used in pose estimation. Efficient PnP algorithm 

is selected as the second non-iterative algorithm, because there is an immense study 

about PnP problem in the literature and it is the most recent among the proposed 

algorithms. POSIT algorithm is selected as one of the iterative algorithms, because 

it is one of the fastest and most accurate algorithms among the proposed algorithms. 

ORTHIT is selected as another algorithm with iterative nature, because of its 

accuracy and the different approach (minimizing errors in 3D space) used in pose 

calculation. Among the algorithms which calculate pose and correspondences 

simultaneously, Soft-POSIT is selected because it is considered as the most 

accurate, stable and fastest algorithm falling in this category. Blind-PnP is the other 

selected algorithm for comparison because it is one the most recent studies in this 

area. 
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 Outline of the Thesis 1.3

In this thesis the second chapter is devoted to the background information; first, 

information about perspective projection and pinhole camera model are given. Then 

camera calibration and lens distortion topics are explained.  

The third chapter contains detailed description of the algorithms compared in this 

thesis study. The chapter is divided in two parts. In the first part, algorithms with 

known point correspondences (DLT, Efficient PnP, ORTHIT and POSIT) are 

explained. In the second part, algorithms with unknown correspondences (Soft-

POSIT and Blind-PnP) are detailed.  

In the fourth chapter, information is given about the test environment used in the 

experiments. Later, the details about the experiments are given; finally, at the end of 

this chapter, the results of the experiments are given. 

In the last chapter, the conclusion remarks of this study are presented. 

 

  



 
7 

  CHAPTER 2

BACKGROUND TOPICS FOR POSE ESTIMATION 

In this chapter, basic information about pose estimation problem such as perspective 

projection, camera calibration and lens distortion are given.  

 Perspective Projection 2.1

A camera can be considered as the mapping between a 3D object and its 2D image. 

Pinhole camera model is the simplest of other camera models and it does not take 

into account the lens distortion, de-focusing, blurring etc. Pinhole camera model 

describes the perspective projection. 
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Figure 3 : Pinhole Camera Model 
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In Figure 3, pinhole camera model is shown. P is the 3D object point with 

coordinates (X, Y, Z) and p is its 2D projection onto the image plane with 

coordinates (x, y). The point O is the camera center. The distance between the 

camera center and image plane is called focal length. The relation between the 

coordinates of a 3D point and a 2D point is as shown below: 

     
 

 
             

 

 
 (2.1) 

The 2D image coordinates and 3D world coordinates can be represented in 

homogenous coordinates. The matrix representation of equation (2.1) in 

homogenous coordinates is shown below:  

 [
  
  
 

]   [
   
   
   

    
 
 
 
] [

 
 
 
 

] (2.2) 

Let x represent the homogenous image coordinates vector and X represent the 

homogenous world coordinates vector. The given 3x4 matrix in (2.2) is called the 

homogenous camera projection matrix and can be represented as P. Then equation 

(2.2) can be written as: 

       (2.3) 

In the equations for pinhole camera model above, the origin of image coordinates is 

considered as the center of image plane. However, for most of the cameras, this 

assumption is not exactly valid. If we represent the coordinates of center of image 
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plane (principal point) by (px, py), the generalized version of (2.2) can be written as 

in (2.4). 

   [
  
  
 

]    [
    

    

   

    
 
 
 
] [

 
 
 
 

] (2.4) 

In (2.4), the partial 3 x 3 matrix is represented as K and is called the camera 

calibration matrix [8].  

    [
    

    

   

] (2.5) 

In definition of pinhole camera model, the coordinates of 3D point is expressed in 

terms of camera coordinate frame where the origin is the camera center. However, 

in most applications, the object points are expressed in another reference system 

called as world coordinate frame. If one takes into account the rotation and 

translation relating the camera reference system and world reference system, the 

projection matrix for general pinhole camera model should be rewritten as: 

       [     ] (2.6) 

where K is the camera calibration matrix given in (2.5) and (R, t) gives the 

transformation between camera coordinate frame and world coordinate frames. 

In digital cameras, the image plane is digitized in small regions called as pixels. In a 

pinhole camera model, the pixels are considered to be square. However, in some 

CCD cameras, the pixels can also be rectangular; hence the number of pixels in unit 
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length can be different along x and y directions. Another issue is that the pixels can 

sometimes be skewed (i.e. the x- and y- axis of pixels are not perpendicular to each 

other). Representing the number of pixels in x direction by mx and the number of 

pixels in y direction by my and adding the effect of skew by s the camera calibration 

matrix in equation (2.5) can be modified as: 

    [

     

     

   
] (2.7) 

In equation (2.7),     = f mx and    = f my  are focal length of camera in terms of 

pixel dimensions in x- and y- axis.      mx   and    my   are principal point 

coordinates in terms of pixel dimensions [8].  

As a summary, the relation between a point in 3D world coordinates and its 

projection onto the image plane can be expressed by a 3 x 4 matrix called as 

projection matrix (P) in the form: 

       [

     

     

   
] [     ] (2.8) 

The projection matrix given in equation (2.8) has 11 unknowns: 5 for K matrix 

(       ,  ,          ), 3 for rotation matrix R (φ, θ, ψ) and 3 for translation (tx , ty 

,tz). The parameters for the camera calibration matrix K are called internal 

(intrinsic) camera parameters. The rotation and translation parameters are denoted 

as external (extrinsic) camera parameters. If intrinsic camera parameters are known 

for a camera, it is termed as a calibrated camera. The calibration parameters can be 

calculated using calibration tools as will be mentioned in Section 2.2. The extrinsic 

parameters should be calculated by using pose estimation algorithms. 
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 Camera Calibration 2.2

 Camera calibration is calculation of intrinsic parameters of a camera. Focal length, 

principal point and skew can be calculated using camera calibration algorithms. 

Camera calibration algorithms are beyond the scope of this thesis study; therefore, 

they will not be examined in detail. Instead, the Camera Calibration Toolbox for 

MATLAB which is used in calibration of test system’s camera will be mentioned. 

The calibration algorithm implemented in this toolbox is described in [34]. For 

calibration, several images of a calibration pattern shown in Figure 4 are used. 

 

Figure 4 Calibration Pattern utilized during simulations 

The calibration pattern is imaged from different view angles and distances. 

Approximately 20 images are used during calibration.  The resulting parameters are 

obtained for the camera that is utilized during simulations and kept fixed during the 

whole tests: 

Focal Length:          [      ] = [662.49534   664.67735]  

Principal point:       [      ] = [306.51289   241.75111]  

Skew:                      s = [0.00000]  
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 Lens Distortion 2.3

Pinhole camera model assumes that the projection of a 3D point falls on a straight 

line starting from 3D point, passing through the camera center and falling onto the 

image plane. However, for real cameras, lenses are used which cause deviations in 

their pixel locations. The deviations are caused by radial and tangential lens 

distortion. By knowing the non-linear relation between the ideal and distorted pixel 

locations, one might correct the effect of distortion [34]. Equations (2.9) and (2.10) 

describe the approximations for radial distortion and tangential distortion 

respectively. 

 [
   

   

   
   

]     [
 ̃        

        
    

 ̃        
        

    
] (2.9) 

where k1, k2, … are coefficients for radial distortion and      √ ̃ 
   ̃ 

 . 

 [
   

   

   
   

]     [
    ̃   ̃      (  

     ̃ 
  )

    ̃   ̃      (  
     ̃ 

  )
  ] (2.10) 

There are many algorithms for estimating the parameters for distortion. However, in 

this thesis study, as in camera calibration process, the Camera Calibration Toolbox 

for MATLAB is used for calculating distortion parameters. The toolbox outputs five 

parameters for lens distortion. Three of these parameters (k1, k2 and k5) are for radial 

distortion component and two of them (k3 k4) are for tangential distortion 

component. For the camera, utilized during simulations, distortion parameters 

calculated by the calibration pattern shown in Figure 4 are given as: 

k1 = -0.27908, k2 = 0.32025, k3 = 0.00050, k4 = 0.00028 and k5 = 0.00000 
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The distorted image coordinates xd (  
    

 ) and ideal image coordinates xn ( ̃   ̃ ) 

can be expressed as follows:  The relation between xd and xn is expressed in (2.11), 

where (   
       

   ) and (   
       

   ) can be calculated from (2.9) and (2.10) 

respectively [34]. 

 [
  

 

  
 ]   [

 ̃      
   

     
   

 

 ̃      
   

     
   

]  (2.11) 
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  CHAPTER 3

DETAILS OF THE ALGORITHMS 

In this chapter, the algorithms compared in this thesis study are explained in more 

detail. The compared algorithms can be classified in two groups: First group of 

algorithms are point-based pose estimation algorithms with known point 

correspondences, which are: Direct Linear Transformation (DLT) [7], Efficient 

Perspective-n-Point (EPnP) [15], Orthogonal Iterations (ORTHIT) [9] and Pose 

from Orthography and Scaling with Iterations (POSIT) [11]. The second group of 

methods consists of point based algorithms that calculate pose and correspondences 

simultaneously, listed as Simultaneous Pose and Correspondence Determination 

(Soft-POSIT) [23] and Blind-PnP [22]. 

 Algorithms with Known Correspondences 3.1

3.1.1 Direct Linear Transformation (DLT) 

Direct linear transformation (DLT) algorithm aims to calculate the linear 

transformation between given 2D and 3D point matches. It is also used to find the 

homography between given 2D images. DLT algorithm is first mentioned in 1971 

by Abdel-Aziz and Karara [7]. In this thesis study, the form of algorithm that is 

explained in the book of Hartley and Zisserman [8] will be investigated. 
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Assume that we are given a set of point correspondences between 2D image points 

and 3D world points. Let’s denote the homogenous coordinates of each 2D image 

point by xi and the homogenous coordinates of each 3D world point by Xi. The 

relation between xi and Xi is given in (3.1), where the 3x4 matrix P is called the 

projection matrix. 

         (3.1) 

The equation (3.1) can be expressed in terms of the vector cross-product as 

           . Denoting the elements of xi as (xi, yi, wi,), this cross-product equation 

can be rewritten as in (3.2). 

 [

       
     

 

    
        

 

     
     

   

] (
  

  

  

)      (3.2) 

In equation (3.2), the term    
 denotes a 4-vector which is the ith row of P. The three 

equations of (3.2) are linearly dependent, so the first two of them can be taken as in 

(3.3) [8]. 

 [
       

     
 

    
        

 ] (
  

  )    (3.3) 

For each point correspondences, one has 2 equations and the matrix in (3.3) has 2 

rows and 12 columns. Hence, for n point correspondences, the matrix will be of size 

2n x 12 and it can be denoted as A. The problem turns into the solution of a set of 

equations      , where p is a vector that contains the elements of projection 

matrix P [8].  
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Since the projection matrix P has 12 elements and 11 degrees of freedom, at least 11 

equations are required to solve (3.3). This requirement means that at least 5,5 

correspondences (5 correspondences with x- and y- coordinates, single 

correspondence with only x- or y- coordinate) is strictly needed. Using this 

minimum number of correspondences with noiseless 2D and 3D coordinates, the 

solution will be exact. However, if the data is noisy, 6 correspondences will not be 

sufficient. If more than 6 correspondences are utilized, the solution is over-

determined and can be obtained by minimizing ‖  ‖. 

The A matrix is formed by using the image and world point correspondences. The 

solution for the vector p that contains the elements of projection matrix can be 

obtained by using the singular value decomposition of matrix A. In (3.4), the last 

column of vector V gives the solution. 

         (3.4) 

In order to avoid the effects of arbitrary choices of coordinate systems and 

similarity transformation, it is better to normalize the inputs of DLT algorithm. For 

normalization, image points are translated, so that their centroid is at origin and 

scaled so that their root-mean-squared (RMS) distance from the origin is √ . 

Similarly for world points, their centroid is carried to origin and they are scaled to 

make their RMS distance from origin equal to √ . The result obtained by DLT 

algorithm using normalized inputs should be de-normalized [8]. 

DLT algorithm computes the internal calibration parameters of the camera and the 

pose (external parameters) at the same time. If internal camera calibration 

parameters are known, then these parameters can be inserted in the algorithm. This 

version of DLT algorithm is called Clamped DLT [15]. 
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Typically, the output of DLT algorithm is given to an optimization algorithm 

minimizing the re-projection error (the error between image points and projection of 

world points). Levenberg-Marquardt or Gauss-Newton algorithms can be used for 

optimization. The Gold Standard algorithm given in [8] includes the normalization 

and optimization processes with DLT algorithm and it can be summarized as 

follows: 

 (i). Linear Solution: Compute an initial estimate of P by using a linear method. 

a) Normalization: Normalize the 2D and 3D points using the similarity 

transformations T and U respectively as in (4.5) 

 
 ̃      

 ̃      
(4.5) 

where,  ̃  and  ̃ denotes normalized image points and normalized world points 

respectively. 

b) DLT: Form the 2n x 12 matrix A by using the correspondences. Obtain 

SVD of A as        . The unit singular vector corresponding to the smallest 

singular value (the last column of V vector) is the required solution. 

(ii). Minimize geometric error: Using the linear estimate obtained in step (i) as 

starting point minimize the error between the image points and the projection of 

world points (re-projection error) as depicted in (4.6). Levenberg-Marquardt 

algorithm can be used to minimize this error function. The obtained resulting     ̂is 

the projection matrix for the normalized coordinates. 
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∑ ( ̃   ̂ ̃ )
 

 

∑ ( ̃    ̂ ̃ )
 

 

 (4.6) 

iii. De-normalization: The projection matrix for the original coordinates can be 

calculated as below: 

           ̂  (4.7) 

where T and U are the similarity transformations used during normalization step. 

3.1.2 Efficient Perspective-n-Point Algorithm (EPnP)  

Perspective-n-Point (PnP) problem is calculation of pose of a calibrated camera 

from n 3D-2D point correspondences. In the literature there are many methods 

proposed for PnP problem [10, 13, 14, 17, 18, 19, 20]. At least three 

correspondences are required for pose calculation. P3P (PnP with three 

correspondences), produces four solutions to the pose problem. A unique solution 

can be found by adding one more correspondence (P4P). Detailed description about 

P3P algorithm is given in APPENDIX A. 

Efficient PnP algorithm was published by Lepetit et.al. in 2008 [15]. It is a non-

iterative solution and is claimed to be as accurate as iterative algorithms but much 

faster.  

The object points are represented by the combination of four control points. By this 

way, the problem is reduced to calculate the coordinates of these four control points 

in camera coordinate system. Since the relation between control points and object 

points are known, rotation and translation of object points can be calculated. In 

(4.8), the relation between object points and control points is given. 
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  ∑      

  
           ∑        

      (4.8) 

where; 

 Xi
w
 , i=1,…, n are the 3D coordinates of object points in world coordinate system.  

Cj
w
 , j=1,…, 4 are the 3D coordinates of control points in world coordinate system. 

αij  are homogenous Barycentric coordinates, uniquely defined and can easily be 

estimated.  

The relation between reference points and control points is valid and same in both 

camera coordinate frame and world coordinate frame. The selection of control 

points may be arbitrary, but it is claimed that selecting one of the points as the 

centroid of object points and the other three points to form a basis aligned with the 

principal directions of object, would increase stability. 

The relation between the object points and image points can be expressed as 

follows: 

         [
  

 
]     

    ∑     
 

 

   

 (4.9) 

Here,    are 2D image points and   
  are the object points in camera coordinate 

system.   denotes the internal camera calibration matrix and    are scalar 

projective parameters. Equation (4.10) gives an open form of the formula in (4.9).  
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     [
  

  

 
]  [

     

     

   

]∑   

 

   

[

  
 

  
 

  
 

]         (4.10) 

In (4.18), fx and fy are focal length of camera in x- and y- axes respectively. (x0, y0) 

denotes the principal point. The unknowns in this equation are: 

i. Coordinates of control points (12 unknowns) 

ii. N projective parameters    (N is number of object points) 

As it can be seen in (4.10), the projective parameters can be expressed as in (4.11). 

    ∑     
 

 

   

 (4.11) 

Placing this expression in (4.10), two equations (4.12) and (4.13) can be obtained 

for each object point.  

 ∑       
             

 

   

  
    (4.12) 

 ∑       
             

 

   

  
    (4.13) 

Equations (4.12) and (4.13) can be re-written in matrix form as in equation  
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       (4.14) 

where M is a 2n x 12 matrix containing the coefficients in (4.12) and (4.13), c is a 

vector containing the 12 unknown parameters. The solution belongs to the null 

space of the matrix M and can be expressed as in (4.15). 

   ∑    

 

   

 (4.15) 

   are the eigenvectors corresponding to the N null singular values of M. The values 

of    can be calculated from MT
M matrix. The dimension of null-space of MT

M can 

vary from 1 to 4 depending on the configuration of the reference points, the focal 

length of the camera and the amount of noise. In the algorithm, solutions for all 

cases are calculated and the one producing the smallest re-projection error is 

chosen. N is fixed to 1, 2, 3 and 4 respectively and solutions for   
   are calculated 

for each value independently. After calculating   
  , the coordinates of control 

points in camera coordinate frame can be calculated from (4.15). Then the 

coordinates of object points in camera coordinate frame can be calculated from 

control points. The absolute orientation between object coordinates in world 

coordinate frame and object coordinates in camera coordinate frame gives the 

rotation and translation between the object and the camera.  

Efficient PnP algorithm can be summarized as follows: 

i. Equations (4.12) and (4.13) are formed and M matrix is generated.  

ii. The null eigenvectors of MT
M are calculated. For N= 1, 2, 3, 4 the values of 

  
   are calculated and the solution giving the smallest re-projection error is 

chosen. 
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iii. With known values of   
   and null eigenvectors, the coordinates of control 

points in camera reference system can be calculated from equation (4.15).  

iv. The coordinates of object points in camera reference frame can be calculated 

from equation (4.8). 

v. The coordinates of object points in both camera reference system and world 

reference system are available. Solving the absolute orientation between 

these two point sets gives the rotation and translation between the object and 

camera. 

3.1.3 Orthogonal Iterations (ORTHIT) 

Orthogonal Iterations algorithm is an iterative pose estimation algorithm that is 

proposed by Chien-Ping Lu in 2000 [9]. Most of the pose estimation algorithms 

deal with the problem in 2D domain, whereas Lu’s algorithm tries to solve the 

problem in 3D domain. Starting from an initial pose, the object points in 3D 

coordinates are estimated from the 2D image points and the distances between the 

real 3D coordinates and these estimated 3D coordinates are tried to be minimized. 

This problem is known as absolute orientation problem.  

Let’s denote the 2D image points by xi and 3D object points defined in object 

reference frame by Xi. Let  ̃  denote the object points defined in camera reference 

frame. The relation between Xi and   ̃  is as depicted in (4.16). 

  ̃        (4.16) 

where R is a rotation matrix and t is a translation vector. If ith row of R is expressed 

by    and translation in x-, y- and z- coordinates is expressed by tx, ty and tz, 

respectively, the relation between xi and Xi is shown in (4.17). 
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         (4.17) 

The line-of-sight projection matrix is the transformation that projects an object 

point to the line of sight defined by an image point. The line-of-sight projection 

matrix can be calculated as in (4.18). 

    
    

 

  
   

 (4.18) 

The orthogonal iterations algorithm uses the fact that, the orthogonal projection of 

  ̃  on xi must be equal to itself [9].  The problem is reduced to find the optimal 

rotation matrix (R) and translation vector (t) that minimizes the distance between 

object points in camera reference frame and their orthogonal projection on the 

image points. The error function is shown in (4.19). 

                      (4.19) 

The orthogonal iterations algorithm calculates R matrix and t vector that minimizes 

the squared error as depicted in (4.20). 

         ∑ ‖  ‖
   ∑ ‖               ‖  

     
     (4.20) 

The solution of the least squares problem defined in (4.20) can be obtained by using 

singular value decomposition. The sample cross-covariance matrix (M) between Xi 

and   ̃  is calculated by 
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   ∑  ̃ 
 
    

  
     (4.21) 

where   ̃ 
 denotes the object points defined in camera reference system with 

centroids subtracted and     is the object points defined in object reference system 

and centroid is subtracted. The solution to the minimization problem in (4.20) is 

identical to finding the rotation matrix maximizing        . The solution can be 

obtained using the singular value decomposition of M that is        . Rotation 

matrix can be calculated by (4.22). 

       (4.22) 

The translation can be calculated from R by (4.23). 

      
 

 
 (  

 

 
∑  
 

)

  

∑(    ) 

 

   (4.23) 

The summary of the Orthogonal Iterations algorithm is as follows: 

i. Using an initial estimate of R, calculate t from (4.23). 

ii. From (4.16), calculate the object points in camera reference frame. 

iii. Calculate the sample cross-covariance matrix from (4.21) and find SVD of 

M. 

iv. Calculate the next estimate of R using (4.22).  

This is an iterative process and the iterations are performed until the squared error 

in (4.20) falls below a threshold or no improvement occurs between two 

consecutive iterations. 
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3.1.4 Pose from Orthography and Scaling with Iterations (POSIT) 

POSIT is a pose estimation algorithm that is first published by Daniel F. 

DeMenthon et.al. in 1995 [11], and is an iterative algorithm that requires at least 

four correspondences between 2D image points and 3D object points. POSIT 

algorithm consists of two steps. The first step is “Pose from Orthography and 

Scaling (POS)” algorithm that calculates rotation and translation using linear 

equations from scaled-orthographic projection approximation. The second step 

iteratively refines the rotation and translation calculated by the POS algorithm. One 

of the main properties of POSIT algorithm that differs it from other iterative 

algorithms is that it does not require an initial estimate of the pose. 

Scaled orthographic projection (also known as weak perspective projection) is an 

approximation to the perspective projection that assumes the distance between the 

object points is much smaller than the distance of object from the camera center. In 

scaled orthographic projection, the points are assumed to be on the same plane 

parallel to the image plane. The depth (distance from camera center in z- axis) of all 

the object points is assumed to be fixed and equal to Z0. Then the relation between 

image points and object points can be obtained for scaled orthographic projection as 

below:  

      
 

  
              

 

  
 (4.24) 

where    
 
  

⁄  is a constant called “scaling factor”. 

The POSIT coordinate system is shown in Figure 5. X0 is the center of object and Xi 

is a point on object. x0 is the perspective projection of X0 and xi
’  is the scaled 
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orthographic projection of Xi.  G is the image plane and K is the plane where all the 

object points are assumed to be on for scaled orthographic projection.                     

(w-, v-, u-) are the axes of object coordinate system and (x-, y-, z-) are the axes of 

camera coordinate system. 

 

 

 

          

 

 

 

 

 

 

 

 

The rotation matrix can be written as (4.25). 

   [

         

         

         

]  [

  
 

  
 

  
 

] (4.25) 
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Figure 5 : POSIT Coordinate System 
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The coordinates of 3D object point Xi with respect to object coordinate system is 

(X0u, X1u, X2u). If R1 and R2 are obtained, R3 can be calculated from the cross-

product of R1 and R2 (R1 x R2). X0O is the vector between the origin of object 

coordinate system and center of projection and it defines the translation vector T. 

The relation between object points and image points can be written as in equation 

(4.26). The parameter w is the scale factor, whereas f is the focal length. 

 [
   

   

 
]  [

   
    

   
    

  
   

] [
    

 
] (4.26) 

If both sides of (4.26) are multiplied by (   
⁄ ) and letting     

 
  

⁄ , then the 

resulting relation is obtained: 

 [
   

   
]  [

   
    

   
    

] [
    

 
] (4.27) 

where w in (4.27) can be calculated from (4.28), and         is the projection of 

     onto the optical axis.  

    
       

   
⁄    (4.28) 

When the depth between object points is quite small compared to the distance 

between camera center and object, w value can be estimated as 1. This is the scaled 

orthographic projection (equation (4.29)). When s value is equal to 1, this case is 

called “orthographic projection”. 
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 [
  

  
]  [

   
    

   
    

] [
    

 
] (4.29) 

Equation (4.29) gives a set of linear equations where the image point and object 

point coordinates are known parameters, whereas sR1, sR2, sTy and sTz are 

unknown. After solving this linear equation, we can calculate rotation (R1, R2, R3) 

and translation (Tx, Ty, Tz) from (4.30) 

 

  √             

      
     

 ⁄           
     

 ⁄           

      
     

 ⁄            
(   )

 ⁄              
 

 ⁄    

(4.30) 

The general perspective equation can be obtained as: 

 [    ] [
   

    
 

      
]  [    ] (4.31) 

 

The summary of POSIT algorithm is as follows: 

i. Initially set w to 1. 

ii. Estimate the pose by solving (4.29) and (4.30). 

iii. Update w by (4.28). 

iv. If improvement of w is smaller than a threshold or maximum iteration 

number is reached, stop iterations; else, go back to step (ii). 
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 Pose Estimation Algorithms with Unknown Correspondences 3.2

3.2.1 Simultaneous Pose and Correspondence Determination (Soft-POSIT) 

Soft-POSIT algorithm is published by Philip David, et.al. in 2004 [23]. It is a pose 

estimation algorithm that requires an initial estimate of the pose and solves both 

pose and correspondence problems at the same time. Soft-POSIT algorithm 

combines two iterative algorithms: Gold’s SoftAssign algorithm [35] for the 

correspondence problem and POSIT algorithm [11] for the pose estimation 

problem.  

The details of POSIT algorithm are already given in Section 3.1.4. In this section, 

the POSIT algorithm is investigated in terms of geometry and derivation of an 

objective function is given. In Figure 6, another illustration of scaled orthographic 

projection is given. 

 

 

 

 

 

 

 

 
Figure 6 : Scaled Orthographic Projection 
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For the pose estimation problem, 3D coordinates of object points and 2D 

coordinates of image points are available. If Figure 6 is examined, x denotes an 

image point coordinate and X denotes an object point coordinate. x` is the scaled 

orthographic projection of object point X and XL is an object point on the line of 

sight of image point x. The scaled orthographic projection of XL is denoted by x``. 

The idea here is that x` and x`` must be superposed, so that X will fall on the line of 

sight of image point x. This condition can be satisfied by minimizing the distance 

between x` and x``. This distance can be expressed as           . 

If we have a set of 3D object points and 2D image points, this condition must be 

satisfied for all point pairs. By minimizing a global objective function as given in 

(4.32), one can find a solution.  

 

       ∑  
 

 

 ∑           

 

                         

               ∑              
              

  
 

 

(4.32) 

where Q1 and Q2 are pose vectors with length four in homogenous coordinates as 

given in (4.33). Xi denotes the vector denoting the homogenous coordinates of 

object points. 

 
            

    (     ) 
(4.33) 

Minimizing (4.32) means minimizing the sum of squared distances of object points 

to line of sight. The objective is to find the pose vectors minimizing this cost 

function. 
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If the correspondences are unknown, the objective function in (4.32) can be 

modified as in (4.34) where the number of image points is N and number of object 

points is M. 

 

  ∑ ∑    (   
   )                                                                     

 

   

 

   
 

 ∑ ∑    ((          )
 
  (          )

 
  )

 

   

 

   
 

(4.34) 

In (4.34), mji are the correspondence variables that define the assignments between 

the object points and image points. The parameter α is a penalty term that moves the 

minimum away from the trivial solution mji=0. The global objective function is 

minimized iteratively with the initial estimation of the pose is given and initial 

value for    is selected as 1. The summary for Soft-POSIT algorithm is as follows: 

i. Compute the correspondence variables assuming everything else (Q1, Q2 and 

wi) is fixed (described in Section 3.2.1.1) 

ii. Compute pose vectors (Q1 and Q2) assuming everything else (mji and wi) is 

fixed (described in Section 3.2.1.2). 

iii. Compute the correction term wi using Q1 and Q2 by (4.35). 

    
     

  
⁄    (4.35) 
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3.2.1.1 Calculating Correspondences 

If the parameters dji
2 in expression E of (4.34) are known, optimal values for the 

correspondence variables mji can be calculated. An assignment matrix (m) that has 

one row for each image point and one column for each object point is formed. An 

extra row called slack row and an extra column, namely slack column, are added to 

this assignment matrix. The sum of each row and each column of assignment matrix 

must be equal to 1. The aim here  is to form an assignment matrix that consists of 

1’s and 0’s in each row and coloumn.  

The elements of assignment matrix are initialized to exp(-β(dji
2
- α)) and the slack 

elements are initialized to a very small number. In this equation, β is a very small 

number and α = 9.21 x σ
2, where σ is the standard deviation of the image noise. 

The values for dji
2
 are calculated using the initial estimates of pose variables. The 

value of β is initialized at the beginning of the algorithm and it depends on the 

quality of the initial pose. If there is no idea of the initial pose, β can be selected as 

0.0004 and if the initial pose can be guessed β can be chosen larger. 

The assignment matrix can be calculated iteratively by performing these two steps 

at each iteration step: 

i. Matrix normalization with Sinkhorn’s method [36]. 

ii. Deterministic annealing known as softmax [37]. Increasing β at each 

iteration step, the term mji with the smallest dji
2 tends to converge to 1 and 

the other elements tend to converge to 0. The iterations are stopped when the 

value of β exceeds 0.5. 
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3.2.1.2 Calculating Pose 

When the correspondence variables are known, the pose variables Q1 and Q2 can be 

calculated by using (4.36). 
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(4.36) 

The scale factor, rotation vectors and translation vector can be calculated from Q1 

and Q2 as given in (4.37). 
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(4.37) 

where   
  is kth is row of Q1 and   

  is the kth row of Q2. 
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3.2.2 Blind-PnP 

Blind-PnP algorithm is a pose estimation algorithm that is proposed by Francesc 

Moreno, et.al. in 2008 [22]. This algorithm determines the pose and 

correspondences simultaneously in two steps. In the first step pose priors are 

calculated by using some clues about the constraints on the camera position and the 

3D model of the object. Pose priors are calculated offline for one time and the 

parameters are stored. In the second step, by using these pose priors, the final pose 

and correspondences are calculated.  

3.2.2.1 Calculating Pose Priors 

The pose priors are obtained by forming a torus that is composed of possible camera 

locations around an arbitrary object. Then, these pose priors are modeled as the sum 

of a number of Gaussian distributions and the most probable pose priors are 

selected. During the experiments, in this thesis study, the pose priors are modeled 

by 20 Gaussian distributions to obtain 20 pose priors. These pose priors are given as 

input to the algorithm.  

For the formation of the torus, two radius parameters Rmajor and Rminor are used. In 

the experiments, Rmajor is determined as the arithmetic mean of the minimum and 

maximum camera distances from the center of object points (The COG of the object 

model points is {0, 0, 0} during the simulations). The minimum distance is assumed 

as 10mm and maximum distance is thought as 800mm; hence, Rmajor is determined 

as 405mm, whereas Rminor is assumed to be 100mm. 
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Figure 8 : A sample torus shape 

The other parameters for the generation of pose priors are the number of samples 

for each axis (n1, n2, nsamples_rotation). A point is selected inside a sphere containing 

the model points, and another point is selected on the torus. Then the orientation of 

the vector pointing from the point on the torus to the point on the sphere is 

calculated and this is taken as pose sample. This process is applied for a number of 

sample points on the sphere (n1) and for a number of points on the torus (n2). (In 

this case, a small modification is performed during the selection of points on the 

sphere: it was guaranteed that one of the selected points is exactly at the center of 

the model points). The model points are projected onto the image plane for each 

                Figure 7 : Torus Parameters 
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pose calculated in this manner and if the number of points falling into the image 

plane is below a threshold, then the corresponding pose is eliminated. During the 

experiments n1 is selected as 10 whereas n2 is selected as 1000; finally nsamples_rotation 

is set to 60. 

After the formation of torus, maximum n1 x n2 x nsamples_rotation pose samples are 

obtained. These pose samples are approximated by a number of Gaussian 

distributions. After modeling, the same number of pose priors with Gaussian 

distributions is left and there is 6x6 covariance matrix for each pose prior.  

As a summary, the parameters for the formation of pose priors are the radius values 

for the torus, the number of samples for each axis and the number of Gaussians. 

Once these parameters are determined, the pose priors can be calculated once and 

can be saved into a file. There is no need to calculate the pose priors in every 

experiment unless the model points and possible camera locations do not change.  

3.2.2.2 Calculating Pose and Correspondences 

The pose and correspondences are calculated using a hypothesis and test approach 

in Blind-PnP algorithm. The aim of the algorithm is to find the correct 

correspondences between 2D points and 3D points and also the correct pose. For 

this purpose the cost function given in (4.38) is minimized. 

      ∑ ‖           ‖

             

                 (4.38) 

In (4.38), X is the set of 3D object points, x is the set of 2D points and Proj(p; X) is 

the projection of X with pose p. Not Detected is the set of 3D points which do not 



 
37 

have corresponding 2D points and τ is the constant penalty term. The aim here is to 

minimize the re-projection error and increase the number of found correspondences.  

For each Gaussian component (pose prior) and for each 3D object point, a 

corresponding 2D point is searched. Each pose prior corresponds to a small 

elliptical region on the image plane for a 3D point and the corresponding 2D point 

must be on this elliptical region. Hence, the search region is reduced from the entire 

image to a small region. This is one of the most critical points of the algorithm. The 

possible matches for a 3D point are 2D points satisfying the condition in (4.39), 

where   ̂  is the projection of 3D object point Xi. 

 ( ̂    )
 
∑  ( ̂    )

 ̂
       (4.39) 

In (4.39), ∑   ̂
 is the covariance of 3D the object point Xi and can be calculated from 

(4.40). 

 ∑  
 ̂

 
      ∑ (     )

  

 
 (4.40) 

In (4.40),  J(Xi) is the Jacobian of projection of Xi. ∑  
 
 is the covariance matrix of 

pose prior and ∑   ̂
  determines a search region for point Xi. 

Among the 3D points that have at least one potential match, we chose the one with 

smallest number of matches. By taking the 3D point and taking one of its potential 

matches, the pose prior and its covariance matrix is updated by using Kalman filter 

by using (4.41) and (4.42) respectively. 
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This updated pose prior and its covariance matrix is used for determining the 

second correspondence. This time, since the pose prior has improved, the search 

region is smaller and it is easier to find the second match. 

This process continues till the number of correspondences reaches to the value of 3. 

When the number of correspondences is larger than or equal to 3, the remaining 

correspondences can be obtained by projecting the model points onto the image 

plane. This situation coincides by the fact that pose can be calculated from at least 

three correspondences. 

The iterations continue until the error in the cost function given in (4.38) decreases 

below a threshold value. 
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  CHAPTER 4

EXPERIMENTS 

The algorithms compared in this thesis study are divided into two groups. First 

group consists of algorithms requiring 2D-3D point correspondences to be known. 

The other group of algorithms can solve both 2D-3D point correspondences and 

pose at the same time. For comparing each group of algorithms, the experiments are 

designed separately.  

For the experiments, a 3D object that can be attached to a person’s head is used. 

There are 24 infrared light emitting diodes (IR LEDs) on the object. Each LEDs 

position is known preciously with respect to the center of gravity of LED locations. 

The 3D object that is used in the experiments is shown in Figure 9. 

 

Figure 9 : Object used in the experiments 
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The IR-LEDs placed on the object are imaged by a near-IR camera. Mikrotron’s 

EoSens CL camera is used for this purpose during the experiments. The IR-LEDs 

used during the experiments have wave-length beyond visible light and a band-pass 

filter that does not pass visible light is placed in front of the camera. By this 

combination, only the LEDs can be seen by the camera and this reduces the 

segmentation effort in feature extraction process. The images are taken in 50 fps 

and the size of the images is 640 x 512 pixels. In Figure 10, the camera and optical 

filter used in the experiments are illustrated. 

 

Figure 10 : Mikrotron’s EoSens CL Camera and Filter Used in Experiments 

For visual test data, the object shown in Figure 9 is attached to the back of a helmet. 

While wearing the helmet and making real head movements, the images are 

captured behind the helmet. The test bench is designed as shown in Figure 11. An 

example of taken images is shown in Figure 12. 

The experiments are performed using MATLAB environment. Personal computers 

with Intel Core2-Quad Q9400 2.66 GHz CPU, 4GB RAM and 500 GB memory are 

utilized during the experiments. 
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Figure 11 : Test Bench Designed for Taking Visual Data 

 

 

Figure 12 : An Example of Visual Data 
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  Comparison of Algorithms with Correspondence 4.1

In this part of experiments, four well-known algorithms that calculate rotation and 

translation from 2D-3D point correspondences are compared. These algorithms are 

POSIT, Orthogonal Iterations (ORHIT), Efficient PnP (EPnP) and Direct Linear 

Transformation (DLT). The experiments are carried out in two steps: first using 

synthetic data, and then, using real visual data. 

4.1.1 Experiments Using Synthetic Data 

Inputs of pose estimation algorithms are 3D model points and corresponding 2D 

image points. The performance of algorithms is affected by the amount of noise in 

both model points and image points. The mismatch between model points and 

image points affects the performance of the algorithms, too. Synthetic data is 

generated for each of these cases to see how algorithms are affected. A set of 

previously collected realistic head movement data is used for synthetic data 

generation. Flow-chart for experiments using synthetic data is given in Figure 13. 

 

 

 

 

Synthetic data is generated by projecting model points onto the image plane by a 

realistic head pose data. When investigating the effect of model point noise, first 

noise is added to the model points then the model points are projected to form 

synthetic image points. If effect of image noise is being investigated, first original 

model points are projected, then noise is added to the 2D points obtained. When 

Figure 13 : Synthetic Data Experiment Flow Chart 
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investigating outlier effect, original model points are projected to form image points 

and then coordinates of desired number of image points are changed. The visible 

model points at a given pose are calculated by using the method in [38]. Flow-chart 

for synthetic data generation is shown in Figure 14. 
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Figure 14 : Flow-Chart of Synthetic Data Generation 
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4.1.1.1 Effect of Image Noise 

The effect of image noise to the performance of pose estimation algorithms is 

investigated by performing several experiments. For each experiment, zero-mean 

Gaussian distributed noise with different standard deviations (0, 1, 2, 3, 4 pixels) is 

added to the image points given to the algorithms. An example of synthetic image 

points with zero mean and 3 pixels standard deviation noise is shown in Figure 15.                 

Re-projection error, rotation error in x-, y-, z- axes, translation error in x-, y-, z- axes 

and execution time values are recorded for each case. The results are summarized in 

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. 

 

Figure 15 : Image Points with Mean = 0, Variance = 9 Noise 
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Table 1 : Re-projection Error (pixel) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.03 1.13 2.26 3.38 4.51 

ORTHIT 2.0e-5 1.16 2.32 3.48 4.65 

EPnP 2.4e-9 1.61 3.25 5.19 7.94 

DLT 6.9e-13 2.59 5.37 8.28 11.61 

Table 2 : Rotation Error around X-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.42 6.52 13.08 19.15 25.92 

ORTHIT 2.7e-4 4.24 8.49 12.96 17.45 

EPnP 2.9e-8 13.85 26.80 81.08 81.08 

DLT 4.6e-12 16.85 42.04 159.71 159.71 

Table 3 : Rotation Error around Y-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.70 10.28 20.64 30.41 41.65 

ORTHIT 7.2e-4 6.61 13.26 20.03 27.42 

EPnP 6.9e-8 25.49 49.64 74.32 98.71 

DLT 7.3e-12 23.49 49.04 82.08 111.78 
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Table 4 : Rotation Error around Z-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.52 13.00 25.90 39.01 52.11 

ORTHIT 3.2e-4 8.56 17.14 26.13 34.73 

EPnP 4.7e-8 31.70 62.39 95.20 127.70 

DLT 7.5e-12 27.10 57.71 92.32 122.13 

Table 5 : Translation Error along X-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.02 0.26 0.52 0.78 1.04 

ORTHIT 9.0e-6 0.22 0.44 0.68 0.92 

EPnP 1.2e-9 0.60 1.19 1.89 2.71 

DLT 3.6e-13 1.11 2.51 5.08 8.08 

Table 6 : Translation Error along Y-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.01 0.27 0.55 0.82 1.11 

ORTHIT 1.0e-5 0.24 0.48 0.74 1.03 

EPnP 1.3e-9 0.66 1.35 2.13 3.01 

DLT 2.8e-13 1.00 2.25 4.88 8.00 
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Table 7 : Translation Error along Z-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.04 2.64 3.30 4.90 6.57 

ORTHIT 6.4e-5 1.30 2.68 4.19 5.95 

EPnP 9.8e-9 4.42 9.16 14.74 21.23 

DLT 2.9e-12 9.28 20.73 42.64 68.23 

Table 8 : Execution Time (msec) vs. Image Noise 

 0 pixel 1 pixel 2 pixels 3 pixels 4 pixels 

POSIT 0.76 0.68 0.68 0.68 0.68 

ORTHIT 237.36 122.94 111.14 105.00 101.39 

EPnP 1.60 1.20 1.23 1.51 1.24 

DLT 0.30 0.30 0.30 0.30 0.30 

 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-

,z- axes), translation error (norm of translation errors in x-, y-, z- axes) and 

execution time with different amounts of image noise can be seen from graphs 

shown in Figure 16, Figure 17, Figure 18 and Figure 19. 
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Figure 16 : Re-projection Error vs. Image Noise 

 

Figure 17 : Rotation Noise vs. Image Noise 
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Figure 18 : Translation Error vs. Image Noise 

 

Figure 19 : Execution Time vs. Image Noise 
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4.1.1.2 Effect of Model Point Noise 

The effect of the noise in model points to the performance of pose estimation 

algorithms is investigated by performing several experiments. For each experiment, 

zero-mean Gaussian distributed noise with different standard deviations (0, 0.5, 1, 

1.5, 2 mm) is added to the model points and synthetic image points are generated 

using these noisy points. An example of synthetic image points generated from 

model points with zero mean and 1.5 mm standard deviation noise is shown in 

Figure 20. Re-projection error, rotation error, translation error and execution time 

values are recorded for each case. The results are summarized in Table 9, Table 10, 

Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16. 

 

Figure 20 : Image Points with Mean = 0, Variance = 2.25 Model Point Noise 
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Table 9 : Re-projection Error (pixel) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.03 0.32 1.29 2.91 5.17 

ORTHIT 2.0e-5 0.33 1.32 2.99 5.33 

EPnP 2.4e-9 0.45 1.82 4.24 9.20 

DLT 6.9e-13 0.74 2.98 6.93 13.52 

Table 10 : Rotation Error around X-Axis (mrad) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.42 1.87 7.26 16.29 29.53 

ORTHIT 2.7e-4 1.20 4.85 10.81 20.12 

EPnP 2.9e-8 3.97 15.47 35.39 93.96 

DLT 4.6e-12 4.79 19.43 61.83 190.19 

Table 11 : Rotation Error around Y-Axis (mrad) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.70 2.94 11.51 25.95 46.31 

ORTHIT 7.2e-4 1.86 7.42 16.77 30.33 

EPnP 6.9e-8 7.29 28.42 62.82 109.80 

DLT 7.3e-12 6.76 26.60 62.99 125.69 
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Table 12 : Rotation Error around Z-Axis (mrad) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.52 3.71 14.56 32.81 58.87 

ORTHIT 3.2e-4 2.42 9.70 22.00 39.71 

EPnP 4.7e-8 8.94 35.65 77.97 142.83 

DLT 7.5e-12 7.55 30.93 73.92 139.28 

Table 13 : Translation Error along X-Axis(mm) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.02 0.07 0.29 0.66 1.17 

ORTHIT 9.0e-6 0.06 0.24 0.57 1.06 

EPnP 1.2e-9 0.17 0.67 1.55 3.15 

DLT 3.6e-13 0.32 1.26 3.64 9.76 

Table 14 : Translation Error along Y-Axis (mm) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.01 0.07 0.30 

0 

0.69 1.21 

ORTHIT 1.0e-5 0.06 0.26 0.60 1.13 

EPnP 1.3e-9 0.18 0.73 1.71 3.35 

DLT 2.8e-13 0.27 1.11 3.15 8.86 
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Table 15 : Translation Error along Z-Axis (mm) vs. Model Point Noise 

 0 mm 1 mm 2 mm 3 mm 4 mm 

POSIT 0.04 0.46 1.82 4.18 7.34 

ORTHIT 6.4e-5 0.37 1.48 3.47 6.89 

EPnP 9.8e-9 1.25 5.01 12.07 24.72 

DLT 2.9e-12 2.69 10.66 29.98 81.77 

Table 16 : Execution Time (msec.) vs. Model Point Noise 

 0 mm 0.5 mm 1 mm 1.5 mm 2 mm 

POSIT 0.76 0.70 0.70 0.7132 0.71 

ORTHIT 237.36 151.76 126.10 112.12 205.32 

EPnP 1.6054 1.26 1.25 1.57 1.29 

DLT 0.30 0.30 0.30 0.30 0.30 

 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-

,z- axes), translation error (norm of translation errors in x-, y-, z- axes) and 

execution time with different amounts of model point noise can be seen from graphs 

shown in Figure 21, Figure 22, Figure 23 and Figure 24. 
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Figure 21 : Re-projection Error vs. Model Point Noise 

  

Figure 22 : Rotation Error vs. Model Point Noise 
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Figure 23 : Translation Error vs. Model Point Noise 

 

Figure 24 : Execution Time vs. Model Point Noise 
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4.1.1.3 Effect of Outlier 

The effect of the mismatch between model points and image points to the 

performance of pose estimation algorithms is investigated by performing several 

experiments. For each experiment, different amount of outlier case is generated. 

Outlier ratio defines the percentage of model points and image points that match 

incorrectly. Outlier case is generated by changing the coordinates of an amount of 

image points obtained by projecting model points. An example of synthetic image 

points generated from model points with % 16 outlier ratios is shown in Figure 25. 

Re-projection error, rotation error, translation error and execution time values are 

recorded for each case. The results are summarized in Table 17, Table 18, Table 19, 

Table 20, Table 21, Table 22, Table 23 and Table 24 

 

Figure 25 : Synthetic Image Points with %16 Outlier 
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Table 17 Re-projection Error (pixel) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.03 11.17 17.26 22.46 27.57 

ORTHIT 2.0e-5 14.37 24.95 33.01 41.43 

EPnP 2.4e-9 66.30 78.23 106.27 119.53 

DLT 6.9e-13 233.66 903.26 1631.30 2834.50 

Table 18 : Rotation Error around X-Axis (mrad) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.42 117.82 144.41 165.76 188.15 

ORTHIT 2.7e-4 105.36 154.13 205.95 253.96 

EPnP 2.9e-8 803.30 808.02 869.26 887.22 

DLT 4.6e-12 1.40e3 1.48e3 1.49e3 1.46e3 

Table 19 : Rotation Error around Y-Axis (mrad) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT POSIT 169.85 215.19 255.05 283.22 

ORTHIT ORTHIT 185.31 304.49 395.66 468.77 

EPnP EPnP 339.02 364.28 403.92 419.15 

DLT DLT 702.49 782.69 793.79 763.38 
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Table 20 : Rotation Error around Z-Axis (mrad) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.52 218.76 282.00 342.78 393.98 

ORTHIT 3.2e-4 205.31 315.27 429.71 542.83 

EPnP 4.7e-8 505.30 544.69 582.61 609.37 

DLT 7.5e-12 965.77 1.56e3 1.79e3 1.81e3 

Table 21 : Translation Error along X-Axis (mm) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.02 3.97 5.76 7.44 9.24 

ORTHIT 9.0e-6 4.01 6.40 8.63 10.59 

EPnP 1.2e-9 15.01 16.88 19.65 20.93 

DLT 3.6e-13 57.19 56.43 53.66 51.18 

Table 22 : Translation Error along Y-Axis (mm) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.01 3.83 5.01 5.93 6.83 

ORTHIT 1.0e-5 6.92 11.24 15.04 18.27 

EPnP 1.3e-9 15.81 18.68 21.14 22.62 

DLT 2.8e-13 59.01 59.68 58.38 56.78 
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Table 23 :  Translation Error along Z-Axis (mm) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.04 26.81 35.06 41.74 48.31 

ORTHIT 6.4e-5 56.42 97.01 132.27 162.18 

EPnP 9.8e-9 115.77 140.04 161.50 173.97 

DLT 2.9e-12 540.19 558.69 541.87 521.98 

Table 24 : Execution Time (msec.) vs. Outlier 

 %0 %4 %8 %12 %16 

POSIT 0.76 0.61 0.65 0.61 0.62 

ORTHIT 237.36 91.03 94.94 85.93 75.52 

EPnP 1.60 2.61 2.66 2.50 2.54 

DLT 0.30 0.26 0.27 0.26 0.26 

 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-

,z- axes), translation error (norm of translation errors in x-, y-, z- axes) and 

execution time with different amounts of outlier can be seen from graphs shown in 

Figure 26, Figure 27, Figure 28 and Figure 29. 
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Figure 26 : Re-projection Error vs. Outlier 

 

Figure 27 : Rotation Error vs. Outlier 
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Figure 28 : Translation Error vs. Outlier 

 

Figure 29 : Execution Time vs. Outlier 
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4.1.2 Experiments Using Visual Data 

The algorithms are also tested with real images taken from the system shown in 

Figure 11. In this case, the noise in model points and image points is unknown. 

Testing with real visual data helps us to understand the behavior of algorithms with 

realistic inputs. The 2D image points are obtained by calculating the centroids of the 

LED points seen on the image. The centroids are corrected by removing the effect 

of lens distortion.  

When the image points are obtained, the 2D-3D point correspondences are not 

known. Hence, the corresponding model point for each image point must be 

calculated first. Soft-Posit algorithm is used for this purpose. At first, model points 

and obtained image points are given to Soft-Posit to calculate the correspondences, 

and then the obtained correspondences are preserved by tracking the visible LEDs 

in each frame. As the LEDs disappear from the view-angle of the camera, they 

cannot be tracked anymore. This causes a decrease in the number of known 

correspondences according to the head movements. When the number of 

correspondences falls below 6, Soft-Posit algorithm is again called to calculate new 

correspondences. 

 The correct pose of the object is not known, while capturing the images. It requires 

very accurate mechanical test benches to obtain ground-truth data for this kind of 

tests. Hence, the only error metric that can be used in comparison of the algorithms 

when working with real data is re-projection error. Execution time is another 

performance metric for comparison.  

Flow-chart of the visual data experiments for comparison of the pose algorithms 

requiring correspondences is given in Figure 30. 
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Figure 30 : Flow-Chart for Visual Experiments 
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The algorithms were tested on 2500 sequential frames. For each frame, rotation and 

translation is calculated. For the comparison of the algorithms, re-projection error 

and execution time is calculated for each frame. In Table 25, the mean values of re-

projection errors and execution times for each algorithm are given.  

Table 25 : Results for Experiments using Visual Data 

 Re-projection Error 

(pixel) 

Execution Time 

(msec) 

POSIT 0.31 0.81 

ORTHIT 0.33 179.65 

EPnP 0.91 1.39 

DLT 6.08 0.30 

For visualizing, the results are shown with bar graphs, giving information about the 

mean values and standard deviation for re-projection errors and execution times. 

The graph for re-projection error is given in Figure 31 and the graph for execution 

time is given in Figure 32. 
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Figure 31 : Re-projection Error for Visual Data Experiment 

 

 

Figure 32 : Execution Time for Visual Data Experiment 
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 Comparison of Algorithms without Correspondence 4.2

In this part of experiments, two well-known algorithms that solve both pose and 

correspondence simultaneously are compared. These algorithms are Soft-POSIT 

and Blind-PnP. The experiments are carried out in two steps: first using synthetic 

data and then using real visual data. 

4.2.1 Experiments Using Synthetic Data 

Soft-Posit and Blind-PnP algorithms get image points and model points as input and 

calculate rotation and translation between object and camera. The image points and 

model points can be in any order and they do not need to be in pairs. The 

performance of algorithms are affected by the noise in image and model points, the 

number of image points without corresponding model points (clutter) and the 

number of model points without corresponding image points (occlusion). Each of 

these cases is generated by using synthetic data. Synthetic data is formed by 

projecting model points by previously collected head pose data. The experiments 

using synthetic data are performed just as the experiments performed for the 

algorithms with correspondences. Flow-chart of experiments is given in Figure 13. 

However, there are some differences in synthetic data generation. The model point 

noise and image point noise cases are generated by the same way. Clutter case is 

generated by projecting model points onto the image plane and adding additional 

points to obtained image points. Occlusion case is generated by projecting model 

points onto the image plane and removing some of the obtained image points. The 

flow chart for synthetic data generation is given in Figure 33. 
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4.2.1.1 Effect of Image Noise 

The effect of image noise to the performances of Soft-Posit and Blind-PnP 

algorithms is investigated by performing several experiments. In each experiment, 

different amount of white Gaussian noise is added to the projections of model 

points. The created cases are the same as the experiments performed for the 

algorithms with correspondences. For each experiment, re-projection error, rotation 

error in x-, y-, z- axes, translation error in x-, y-, z- axes and execution time are 

recorded. When the correspondences are calculated correctly, the algorithm is 

marked as converged. The convergence ratio indicates the number of experiments 

that the algorithms converged. An example of the 2D noisy input is given in Figure 

15. The results for the performed experiments are given in Table 26, Table 27, 

Table 28, Table 29, Table 30, Table 31, Table 32, Table 33 and Table 34 . 

Table 26 : Re-projection Error (pixel) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.02 1.14 2.39 3.75 5.04 

Blind-PnP 0.78 1.29 3.28 4.08 5.59 

Table 27 : Rotation Error around X-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.24 21.43 44.14 74.06 90.11 

Blind-PnP 6.31 23.47 46.74 63.03 120.80 
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Table 28 : Rotation Error around Y-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.31 18.11 21.00 46.67 70.52 

Blind-PnP 7.29 16.36 71.55 62.36 75.06 

Table 29 : Rotation Error around Z-Axis (mrad) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.17 10.93 14.24 39.00 57.66 

Blind-PnP 0.58 8.74 35.17 31.58 39.87 

Table 30 : Translation Error along X-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.24 0.30 0.62 1.24 1.32 

Blind-PnP 0.25 0.81 1.14 2.34 4.86 

Table 31 : Translation Error along Y-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 7.7e-2 0.48 0.94 1.47 1.41 

Blind-PnP 0.25 0.45 1.21 1.69 2.77 
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Table 32 : Translation Error along Z-Axis (mm) vs. Image Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.01 1.88 3.66 4.80 7.15 

Blind-PnP 0.25 1.44 6.90 4.13 9.26 

Table 33 : Execution Time (sec) vs. Image Noise 

 0 pixel 

pixel 

1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.91 0.88 0.82 0.80 0.73 

Blind-PnP 41.78 39.31 35.65 40.48 42.16 

Table 34 : Convergence Rate (%) vs. Image Noise 

 0 pixel 

pixel 

1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit %76 %74 %72 %70 %72 

Blind-PnP %60 %68 %68 %68 %64 

 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-

,z- axes), translation error (norm of translation errors in x-, y-,z- axes), execution 

time and convergence rate with different amounts of image noise can be seen from 

graphs shown in Figure 34, Figure 35, Figure 36, Figure 37 and Figure 38. 
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Figure 34 : Re-projection Error vs. Image Noise 

 

Figure 35 : Rotation Error vs. Image Noise 
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Figure 36 : Translation Error vs. Image Noise 

 

Figure 37 : Execution Time vs. Image Noise 
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Figure 38 : Convergence Rate vs. Image Noise 
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Table 35 :  Re-projection Error (pixel) vs. Model Point Noise 

 0 mm 0.5 mm 1 mm 1.5 mm 2 mm 

Soft-Posit 0.02 0.37 1.43 3.32 5.76 

Blind-PnP 0.78 0.92 1.64 3.52 5.80 

Table 36 :  Rotation Error around X-Axis (mrad) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.24 5.45 29.08 56.87 65.63 

Blind-PnP 6.31 7.45 18.74 61.51 94.63 

Table 37 :  Rotation Error around Y-Axis (mrad) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.31 3.85 15.35 46.50 52.39 

Blind-PnP 7.29 15.68 11.41 43.56 68.51 

Table 38 : Rotation Error around Z-Axis (mrad) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.17 2.52 14.33 40.89 33.90 

Blind-PnP 0.58 5.36 6.89 32.98 66.49 
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Table 39 : Translation Error along X-Axis (mm) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.24 0.26 0.77 1.71 1.74 

Blind-PnP 0.09 0.34 0.29 1.39 2.58 

Table 40 : Translation Error along Y-Axis (mm) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 7.7e-2 0.14 0.49 0.78 1.90 

Blind-PnP 0.25 0.34 0.53 0.98 1.81 

Table 41 : Translation Error along Z-Axis (mm) vs. Model Point Noise 

 0 pixel 1 pixel 2 pixel 3 pixel 4 pixel 

Soft-Posit 0.01 0.62 2.41 5.39 4.58 

Blind-PnP 0.25 0.96 1.15 4.40 9.38 

Table 42 : Execution Time (sec) vs. Model Point Noise 

 0 mm 0.5 mm 1 mm 1.5 mm 2 mm 

Soft-Posit 0.91 0.92 0.89 0.71 0.97 

Blind-PnP 41.78 46.93 48.12 36.37 50.91 
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Table 43 : Convergence Rate vs. Model Point Noise 

 0 mm 0.5 mm 1 mm 1.5 mm 2 mm 

Soft-Posit %76 %76 %68 %68 %76 

Blind-PnP %60 %60 %64 %72 %64 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-

,z- axes), translation error (norm of translation errors in x-, y-,z- axes), execution 

time and convergence rate with different amounts of model point noise can be seen 

from graphs shown in Figure 39, Figure 40, Figure 41, Figure 42 and Figure 43. 

 

Figure 39 : Re-projection Error vs. Model Point Noise 
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Figure 40 : Rotation Error vs. Model Point Noise 

 

Figure 41 : Translation Error vs. Model Point Noise 
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Figure 42 : Execution Time vs. Model Point Noise 

 

Figure 43 : Convergence Rate vs. Model Point Noise 
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4.2.1.3 Effect of Clutter 

The image points that have no corresponding model points are called clutter. Clutter 

is caused by the errors during segmentation and feature extraction process. In order 

to investigate the effect of clutter level to the performance of Soft-Posit and Blind-

PnP algorithms, several experiments are performed. In each experiment different 

amount of clutter cases are generated by projecting model points onto the image 

plane and then inserting additional points. An example for synthetic image points 

with %30 clutter level is shown in Figure 44. The clutter level is the ratio of 

additive image points to the number of projected model points. The results for the 

performed experiments are given in Table 44, Table 45, Table 46, Table 47, Table 

48, Table 49, Table 50, Table 51 and Table 52. 

 

Figure 44 : Image Points with %30 Clutter Level 
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Table 44 : Re-projection Error (pixel) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.02 0.02 0.02 0.03 0.03 

Blind-PnP 0.78 0.61 0.84 1.29 1.04 

Table 45 : Rotation Error around X-Axis (mrad) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.24 0.32 0.58 0.31 0.66 

Blind-PnP 6.31 4.10 6.74 9.24 7.92 

Table 46 : Rotation Error around Y-Axis (mrad) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.31 0.29 0.61 0.36 0.65 

Blind-PnP 7.29 4.19 5.51 7.92 4.53 

Table 47 : Rotation Error around Z-Axis (mrad) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.17 0.19 0.38 0.18 0.36 

Blind-PnP 0.58 0.50 0.72 5.32 3.76 
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Table 48 : Translation Error along X-Axis (mm) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.24 0.25 0.25 0.25 0.25 

Blind-PnP 0.09 0.08 0.74 1.14 0.19 

Table 49 : Translation Error along Y-Axis (mm) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 7.7e-2 7.8e-2 0.01 70.e-2 0.01 

Blind-PnP 0.25 0.14 0.58 0.74 0.32 

Table 50 : Translation Error along Z-Axis (mm) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.01 0.01 0.02 0.03 0.03 

Blind-PnP 0.25 0.20 0.60 0.83 1.16 

Table 51 : Execution Time (sec) vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit 0.91 0.88 1.29 1.41 1.69 

Blind-PnP 41.78 35.90 36.72 42.64 44.04 
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Table 52 : Convergence Rate vs. Clutter 

 %0 %10 %20 %30 %40 

Soft-Posit %70 %70 %70 %80 %40 

Blind-PnP %60 %70 %80 %60 %60 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-, 

z- axes), translation error (norm of translation errors in x-, y-, z- axes), execution 

time and convergence rate with different amounts of clutter can be seen from graphs 

shown in Figure 45, Figure 46, Figure 47, Figure 48 and Figure 49. 

 

Figure 45 : Re-projection Error vs. Clutter 
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Figure 46 : Rotation Error vs. Clutter 

 

Figure 47 : Translation Error vs. Clutter 
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Figure 48 : Execution Time vs. Clutter 

 

Figure 49 : Convergence Rate vs. Clutter 
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4.2.1.4 Effect of Occlusion 

The model points without corresponding image points are called as occluded points. 

The occlusion appears when the model points are not observed by the camera, since 

they are blocked by another object or the object itself. In order to examine the effect 

of occlusion to performance of Soft-Posit and Blind-PnP algorithms, several 

experiments are performed. Occlusion case is generated by projecting model points 

onto the image plane and then removing some of the obtained points. In Figure 50, 

the occlusion case, when %30 of the model points cannot be observed is shown. 

The results for the performed experiments are given in Table 53, Table 54, Table 

55, Table 56, Table 57, Table 58, Table 59, Table 60 and Table 61. 

 

Figure 50 : Image Points with %30 Occlusion Level 
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Table 53 : Re-projection Error (pixel) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.02 0.02 0.04 0.05 0.06 

Blind-PnP 0.78 0.56 0.95 1.22 1.30 

Table 54 : Rotation Error around X-Axis (mrad) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.24 0.69 0.54 1.62 0.84 

Blind-PnP 6.31 3.94 3.77 

.88 

13.57 12.06 

Table 55 : Rotation Error around Y-Axis (mrad) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.31 0.39 0.33 1.24 0.61 

Blind-PnP 7.29 3.59 0.84 15.20 3.74 

Table 56 : Rotation Error around Z-Axis (mrad) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.17 0.18 0.36 1.22 0.35 

Blind-PnP 0.58 3.47 3.30 8.07 1.60 
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Table 57 : Translation Error along X-Axis (mm) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.24 0.25 0.24 0.27 0.25 

Blind-PnP 0.09 0.14 0.02 0.33 0.04 

Table 58 : Translation Error along Y-Axis (mm) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 7.7e-2 0.02 0.01 0.02 0.02 

Blind-PnP 0.25 0.17 0.04 0.62 0.22 

Table 59 : Translation Error along Z-Axis (mm) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.01 0.06 0.04 0.06 0.07 

Blind-PnP 0.25 0.62 0.39 1.55 1.21 

Table 60 : Execution Time (sec) vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit 0.91 0.87 0.91 0.77 0.74 

Blind-PnP 41.78 33.87 28.69 22.87 17.88 
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Table 61 : Convergence Rate vs. Occlusion 

 %0 %10 %20 %30 %40 

Soft-Posit %76 %72 %52 %44 %20 

Blind-PnP %60 %64 %56 %52 %40 

The variation of re-projection error, rotation error (norm of rotation errors in x-, y-, 

z- axes), translation error (norm of translation errors in x-, y-, z- axes), execution 

time and convergence rate with different amounts of clutter can be seen from graphs 

shown in Figure 51, Figure 52, Figure 53, Figure 54 and Figure 55. 

 

Figure 51 : Re-projection Error vs. Occlusion 
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Figure 52 : Rotation Error vs. Occlusion 

 

Figure 53 : Translation Error vs. Occlusion 
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Figure 54 : Execution Time vs. Occlusion 

 

Figure 55 : Convergence Rate vs. Occlusion 
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4.2.2 Experiments Using Visual Data 

Soft-Posit and Blind-PnP algorithms are also tested with some real video sequences 

captured from the test setup shown in Figure 11. The advantage of experiments 

using real images is that, one can see the performance of algorithms with realistic 

inputs. The 2D feature points are obtained by calculating the centroids of the LED 

points seen on the image. The distortion caused by the lens is removed to calculate 

the exact centroid locations. In this case, there is no need to give model points and 

image points in pairs because Soft-Posit and Blind-PnP algorithms can calculate 

correspondences.  

The exact rotation and translation of the head are unknown when the images are 

taken. Hence, there is no ground-truth information for comparison. The algorithms 

are compared with respect to their re-projection error and execution time.  Flow-

chart for experiment using visual data is given in Figure 56  

 

 

 

 

 

If the algorithm calculates the correspondences correctly, it is marked as converged. 

Convergence rate defines the ratio of experiments that the algorithm converged to 

the total number of experiments. The results of the performed experiments are given 

in Table 62. 

 

Get new frame, 

calculate centroid and 

correct distortion.   

Calculate Pose for 

each Algorithm 

Calculate Error and 

Time Metrics for 

Each Pose 

Figure 56 : Flow-Chart for Experiments Using Visual Data 
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Table 62 Results for Experiments Using Visual Data 

 Re-projection 

Error  (pixel) 

Execution Time 

(sec) 

Convergence 

Rate (%) 

Soft-POSIT 2.31 1.23 52 

BPnP 3.96 38 396 64 

 

For visualizing, the results are shown with bar graphs, giving information about the 

mean values and standard deviation for re-projection errors, execution times and 

convergence rates Bar graph for re-projection error is given in Figure 57, the graph 

for execution time is given in Figure 58 and the graph for convergence rate is given 

in Figure 59. 

 

Figure 57 : Re-projection Errors for Visual Data Experiment 
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Figure 58 : Execution Times for Visual Data Experiment 

 

Figure 59 : Convergence Rates for Visual Data Experiment 
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  CHAPTER 5

CONCLUSIONS 

The purpose of this thesis study is to compare some well-known pose estimation 

algorithms and investigate their performance under several circumstances such as 

image noise, model point noise and outlier. The compared algorithms can be 

classified in two groups: algorithms with known correspondences and algorithms 

without correspondences. The experiments for comparison of the algorithms are 

performed in two steps: first using synthetic data and then using real visual images. 

The algorithms with known correspondences are POSIT, DLT, EPnP and ORTHIT. 

POSIT and ORTHIT algorithms are iterative algorithms, which coarsely minimize 

re-projections errors. EPnP and DLT algorithms are closed form algorithms, which 

approach the solution of the pose estimation problems by forming linear equations 

and solving them. Several amounts of image point noise, model point noise and 

outlier are introduced to the algorithms and their performances under these 

conditions are observed. The conclusions based on simulation results can be 

summarized as follows: 

 In ideal case, when there is no image noise, no model point noise and no 

outlier, it is observed that closed form algorithms perform better than 

iterative ones. From the results it can be said that DLT is the best algorithm 

according to the error values and POSIT algorithm could be the worst.  
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 As the image noise level is increased, the re-projection, rotation and 

translation error values for all algorithms also increase. It can be observed 

that closed form algorithms are affected more than iterative algorithm. The 

performances of POSIT and ORTHIT algorithms are nearly the same, but it 

can be said that ORTHIT algorithm performs best under noisy conditions. 

The performance of DLT algorithm decreased dramatically with increasing 

noise level and it can be considered as the worst algorithm in noisy cases. As 

expected, the noise in model points affects the algorithms just as the image 

noise does. 

 The performances of all algorithms are mostly affected by outlier level. A 

small increase in outlier level causes huge degradations in performances. 

The most affected algorithm is DLT as expected. Again it can be stated that 

iterative algorithms are less susceptible to outlier level than closed form 

algorithms. POSIT algorithm can be considered to perform best with 

increasing outlier level. 

 The experiments using visual data is expected to give the most reliable 

results for comparison of algorithms. The problem while using real image is 

that, the ground-truth values for rotation and translation values are not 

known, and hence, errors in rotation and translation cannot be calculated. 

The only error metric that can be used for comparison is re-projection error. 

It can be observed from the results that with a realistic input, POSIT 

performs better than any of the compared algorithms. The performance of 

ORTHIT algorithm is slightly inferior to POSIT, but still be considered to 

perform well. The DLT algorithm can be stated to be the worst algorithm 

with realistic input.  

 If the algorithms will be used in real-time applications, the execution times 

are also important. From the experiment results, it can be said that DLT 
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algorithm has the best real-time performance of all. Although the accuracy 

of ORTHIT algorithm is good, the real-time performance of it is very poor 

compared to the others. 

 As a summary, considering the accuracy and real-time performances, POSIT 

algorithm can be stated as the best algorithm among the compared 

algorithms. In terms of the accuracy, DLT can be said to be the worst 

algorithm, whereas with real-time concern, ORTHIT algorithm can be 

considered to be the worst performing method. 

The algorithms which calculate the pose and correspondences simultaneously are 

Soft-POSIT and Blind-PnP. These two algorithms are compared using synthetic 

data with different amounts of circumstances such as image noise, model point 

noise, clutter and occlusion. Experiments with real images are also used for 

comparison purpose. The conclusions can be summarized as follows: 

 The comparison of algorithms without correspondences is more problematic. 

This is due to the fact that the pose estimation performances of the 

algorithms are also affected by their correspondence calculation 

performances. If an algorithm calculates the correspondences erroneously, 

then the re-projection, rotation and translation error values become 

meaningless for comparison. Hence, the metrics for comparison of the 

algorithms are calculated only when the algorithms succeeds to calculate 

enough number of correspondences. Convergence Rate metric shows the 

performances of algorithms for correspondence problem. 

 As the noise levels in image and model point increase, the re-projection, 

rotation and translation error values also tend to increase for both 

algorithms. The convergence rate of Soft-POSIT algorithm decreases as the 

noise level increases while convergence of Blind-PnP algorithm can be 
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stated as irresponsive. The accuracy of Soft-Posit algorithm can be 

considered to be slightly better than Blind-PnP according to results. 

 The increasing occlusion and clutter levels make the correspondence 

problem harder for both algorithms. The error metrics are calculated when 

the algorithms calculates correspondences successfully; hence, it can be 

observed that error values are slightly affected by occlusion and clutter 

levels.  The convergence performance of Soft-POSIT algorithm is more 

susceptible to occlusion and clutter levels. Considering the convergence rate, 

Blind-PnP can be stated as immune to clutter, but with increasing levels of 

occlusion, its convergence rate decreases.  

 The experiments using real images can give more reliable results. According 

to the results, the accuracy of the calculated pose values can be stated to be 

better for Soft-POSIT algorithm. The dominant disturbance case while 

working with real images of such a curved 3D object is the occlusion. It can 

be seen from the results that the convergence rate for Blind-PnP algorithm is 

better than Soft-POSIT.  

 While using the algorithms in real-time applications, execution time is one 

of the main concerns. According to the results, Blind-PnP execution time 

performance can be considered to be unacceptable for a real-time 

application. Soft-POSIT real time performance is much better. 

 Both algorithms are tested without prior knowledge of initial pose of the 

object. For Blind-PnP, only the pose prior values are used and for Soft-Posit 

an arbitrary initial pose value is given. During the experiments, it is 

observed that, the performances of both algorithms are very dependent on 

the initial pose values given. When the real rotation and translation values 

get far away from the initial values, the algorithms usually fail to compute 

the correspondence and pose values. It can be concluded that, the accuracy 
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and real-time performances of both algorithms can be improved by giving 

meaningful initial pose estimates. 

 As summary, considering accuracy and real-time performances, Soft-POSIT 

algorithm can be stated to perform better than Blind-PnP. According to the 

experience gained from the experiments, both algorithms are inappropriate 

for the use in head tracking applications directly. Further processes on input 

data must be performed before using these algorithms. Occlusion cases must 

be minimized by removing the model points which cannot be seen by the 

cameras. The previously calculated pose value can be given as an initial 

estimate to the algorithms. With these improvements in the input data, both 

algorithms should perform better for both accuracy and time concerns. 
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APPENDIX A 

SOLUTION OF P3P PROBLEM 

Determining the positions of the three vertices of a triangle from their 

projections is called the P3P problem. Positions of the vertices with respect to 

each other, the image coordinate for each vertex and internal parameters of the 

camera are known values for the P3P problem [10].  

 

 

 

 

 

 
Figure 60 : The P3P Problem 
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In Figure 60, X1, X2 and X3 are the scene points, O is center of projectivity. Let α 

denote the angle between v1-v2, β denote the angle between v2-v3 and γ denote the 

angle between v1 and v3. The distance between X1-X2 is represented by Rab, distance 

between X2-X3 is represented by Rbc and distance between X1-X3 is represented by 

Rac. The aim is to calculate the distances,     ‖    ‖ ,    ‖    ‖ and 

   ‖    ‖. One can form three set of quadratic equations using the law of 

cosines as in (A.1) [10]. 

 

   
                   

   
                   

   
                   

(A.1) 

 

By introducing new variables x and y such that         and       , one can 

rewrite (A.1) as below: 

 

   
                      

   
                      

   
                         

(A.2) 

(A.2) can be written as in (A.3). 

 
   

                    
                  

   
                    

                 
(A.3) 
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Denote             ⁄    and             ⁄     

 
         

                           

                [                    ] 
(A.4) 

By replacing the polynomials in x with m, p, q, m’, p’, q’, the following equation is 

obtained [10]:  

 
           

              
(A.5) 

Eliminating the terms with y2 and then eliminating y yields: 

                                  (A.6) 

After regrouping the terms, the following equation is obtained 

      
     

     
         (A.7) 

where, 
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(A.8) 
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The solution of the P3P problem can be summarized as follows: 

i. Compute G0, G1, G2, G3, G4 by using (A.8). 

ii. Find the roots of (A.7) by companion matrix method [39]. Up to four real 

solutions are obtained. 

iii. Compute a by using (A.2), compute y by using (A.5) and compute b, c. 

iv. Compute the point O from a, b, c by using trilateration [10]. 

v. Compute λ1 by using the equation below: 

     ‖  ‖  ‖    ‖                    (A.9) 

vi. Compute matrix R by using the following equation: 

                                 (A.10) 

Multiple solutions can be obtained from this solution. The correct solutions can be 

selected by using the physical properties of the camera, scene and images. 


