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ABSTRACT 
 

 

CAMERA ELECTRONICS AND IMAGE ENHANCEMENT SOFTWARE FOR 

INFRARED DETECTOR ARRAYS 

 

 

Küçükkömürler, Alper 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Tayfun Akın 

 

February 2012, 108 pages 
 

This thesis aims to design and develop camera electronics and image enhancement 

software for infrared detector arrays. It first discusses the camera electronics suitable 

for infrared detector arrays, then it concentrates on image enhancement software that 

are implemented including defective pixel correction, contrast enhancement, noise 

reduction and pseudo coloring. After that, testing and results of the implemented 

algorithms were presented.  

Camera electronics and circuit operation frequency are selected considering the 

available standard programmable devices and the output rate of the detector readout 

circuitry. The target device for implementation of algorithms was Xilinx Spartan – 3 

XC3S1500 which is used in the camera tests at METU-MEMS Research and Applications 

Center. Considering the real time operation, the target clocking frequency for operation 

of the circuitry was selected as 2MHz. Image enhancement algorithms primarily aim to 

be implemented for 320 x 240 resolution detectors, however with parametric 
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implementation, they aim to support other resolutions, including 160 x 120 and 

640 x 512.    In addition, all implementations aim to be modular and reusable.  

Various different approaches are used for image enhancement software: (i) 

defective pixel correction is achieved by using a selective median filtering approach, (ii) 

contrast enhancement is achieved by employing contrast stretching and histogram 

based methods, and (iii) noise reduction is achieved by implementing a spatial filter. In 

addition to these, four types of pseudo coloring methods were applied and tested. 

Test results show that defective pixel correction algorithm operates at 20.0 MHz, 

with 0.0 x 10-3 RMS error from its MATLAB prototype, and contrast enhancement 

algorithms are able to operate at 3.3 MHz, with an average of 545.0 x 10-3 RMS error. 

Spatial filtering for noise reduction operates at 20.0 MHz, with a 2.6 x 10-3 RMS.  

Pseudo-coloring 125.0 MHz, with a 0.0 x 10-3 RMS deviation from its MATLAB prototype 

 

Keywords: IR Imaging, Image Processing, Digital Design. 
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ÖZ 
 

 

KIZILÖTESİ DETEKTÖR DİZİNLERİ İÇİN KAMERA ELEKTRONİĞİ VE 

GÖRÜNTÜ İYİLEŞTİRME YAZILIMI 

 

 

Küçükkömürler, Alper 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Tayfun Akın 

 

Şubat 2012, 108 sayfa 

 

Bu tez kızılötesi detektör dizinleri için kamera elektroniği ve görüntü işleme yazılımı 

tasarlamayı hedefler. Tezde ilk olarak kızılötesi detektör dizinlerine uygun kamera 

elektroniği tartışılmış ve daha sonra etkisiz piksel düzeltme, zıtlık iyileştirme, gürültü 

azaltma ve sözde-renklendirme algoritmalarını içeren görüntü iyileştirme yazılımı 

üzerine odaklanılmıştır. Daha sonra bu algoritmaların test edilmesi  ve test sonuçları 

sunulmuştur. 

Kamera elektroniği ve devrelerin çalışma frekansı standart programlanabilir 

devreler ve okuma devresinin çıktı hızı gözönünde bulundurularak belirlenmiştir. Gerçek 

zamanlı çalışabilmesi için bütün devrelerin en az bu frekansta çalışabilmesi gerekir. 

Algoritmaların gerçekleneceği cihaz olarak, ODTÜ-MEMS Araştırma Merkezi’nde 

testlerde kullanılmakta olan Xilinx Spartan – 3 XC3S1500 cihazı seçilmiştir. Gerçek 

zamanlı çalışma gereksinimleri gözönünde bulundurularak hedef saat frekansı olarak 

2 MHz seçilmiştir. Görüntü iyileştirme algoritmaları birincil olarak 320 x 240 

çözünürlükteki detektör dizinleri ile çalışabilmeyi hedeflemektedir, ancak parametrik 
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yapısı sayesinde 160 x 120 ve 640 x 512 de dahil olmak üzere diğer çozünürlüklerde de 

çalışmayı amaçlamaktadır.  Bunlara ek olarak bütün tasarımlar modüler ve yeniden 

kullanılabilir olmayı hedeflemektedir.  

Görüntü iyileştirme için çeşitli yöntemler kullanılmıştır: (i) etkisiz piksel düzeltme,  

seçici medyan filtreleme yöntemi ile (ii) zıtlık iyileştirme, zıtlık genişletme ve histogram 

tabanlı yöntemlerle, (iii) gürültü azaltma, mekansal filtreleme yöntemiyle yapılmıştır. 

Son olarak dört çeşit sözde renklendirme yöntemi uygulanmış ve denenmiştir. 

Test sonuçları etkisiz pixel düzeltme yöntemi 20.0 MHz frekansında çalıştığı ve 

MATLAB prototipinden  0.0 x 10-3 RMS  farkla, ve zıtlık iyileştirme yöntemlerinin 3.3 

MHz frekansında çalıştığı ve ortalama 545.0 x 10-3 RMS farkla sonuç verdiğini 

göstermiştir. Mekansal filtreleme ile gürültü azaltma 20.0 MHz frekansında çalışarak 2.6 

x 10-3 RMS farkla sonuç verirken   sözde renklendirme göntemi 125.0 MHZ frekansında 

çalışarak MATLAB prototipinden  0.0 x 10-3 RMS farkla sonuç üretmiştir.  

 

Anahtar Kelimeler: Kızılötesi Detektörler, Görüntü İşleme, Sayısal Tasarım. 

  



 
 

vii 
 

 

 

 

 

 

 

 

 

 

 

To My Parents    

  



 
 

viii 
 

 

ACKNOWLEDGEMENTS 
 

 

I would like to express my sincere gratitude and appreciation towards my advisor 

Prof. Dr. Tayfun Akın; Dr Selim Eminoğlu, and Assoc. Prof. Dr. İlkay Ulusoy for their 

facilitation and guidance throughout my study and thesis work in METU. I also would like 

to thank Dr. Murat Tepegöz, Fırat Tankut, Ceren Tüfekçi, Alperen Toprak, and Dinçay 

Akçören for their assistance with the works related with this thesis. 

I also would like to thank my fellow members of METU  MEMS –VLSI Research Group 

for their friendship and for providing a supporting environment to work in. 

Last but not least, I would like to thank my family for their continuous support and 

encouragement through all my life. 

  

  



 
 

ix 
 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ................................................................................................ iii 

ÖZ…. ......................................................................................................... v 

ACKNOWLEDGEMENTS ........................................................................... viii 

TABLE OF CONTENTS ................................................................................ ix 

LIST OF FIGURES ...................................................................................... xii 

LIST OF TABLES ........................................................................................ xvi 

LIST OF ABBREVIATIONS ......................................................................... xvii 

CHAPTERS: 

1 INTRODUCTION ................................................................................. 1 

1.1 Significance of Flexible Electronic Structures ________________________ 2 

1.2 IR Image Acquisition ___________________________________________ 3 

1.3 Signal Processing Requirements of IR Images _______________________ 5 

1.4 Research Objectives and Thesis Organization _______________________ 6 

2 CAMERA ELECTRONICS ....................................................................... 9 

2.1 IR Image Acquisition Electronics __________________________________ 9 

2.2 Proper Operation of IR Detector Arrays ___________________________ 11 

2.3 Data Acquisition _____________________________________________ 13 

2.4 Camera Software ____________________________________________ 15 



 
 

x 
 

3 DEFECTIVE PIXEL CORRECTION ......................................................... 19 

3.1 Defective Pixels ______________________________________________ 19 

3.2 Median Filtering _____________________________________________ 20 

3.3 Selective Median Filtering ______________________________________ 20 

3.4 Implementation _____________________________________________ 26 

4 CONTRAST ENHANCEMENT .............................................................. 30 

4.1 Contrast Enhancement ________________________________________ 30 

4.2 Contrast Enhancement Methods ________________________________ 32 

4.2.1 Contrast Stretching .......................................................................................... 32 

4.2.2 Histogram Equalization.................................................................................... 32 

4.2.2.1 Characteristic Histogram for the Infrared Images ...................................... 36 

4.2.3 Plateau Equalization: Wang et. al. ................................................................... 37 

4.2.4 Plateau Equalization: Lai et. al. ........................................................................ 38 

4.2.5 Contrast Limited Adaptive Histogram Equalization (CLAHE) ........................... 41 

4.2.6 Successive Mean Quantization Transform(SMQT) .......................................... 41 

4.2.7 Unsharp Masking ............................................................................................. 45 

4.3 Implementation _____________________________________________ 51 

4.3.1 Contrast Stretching Module ............................................................................ 51 

4.3.2 Histogram Equalization Module ...................................................................... 53 

4.3.3 Image Statistics sub-module : .......................................................................... 53 

4.3.4 Equalization sub-module: ................................................................................ 55 

4.3.5 Plateau Method: Wang et al............................................................................ 58 

4.3.6 Plateau Method: Lai et al. ............................................................................... 60 

4.3.7 Contrast Enhancement Module ...................................................................... 62 

4.3.7.1 Structure of the module ............................................................................. 63 

5 NOISE REDUCTION ........................................................................... 66 

5.1 Sources of the Noise __________________________________________ 66 

5.2 Noise Reduction Methods______________________________________ 67 

5.2.1 Spatial Filtering ................................................................................................ 67 

5.2.2 Wavelet Based Methods ................................................................................. 69 



 
 

xi 
 

5.2.3 Time Domain Filtering ..................................................................................... 70 

5.3 Implementation _____________________________________________ 71 

6 PSEUDO - COLORING ........................................................................ 73 

6.1 Pseudo - Coloring ____________________________________________ 73 

6.2 Pseudo-Color Palettes _________________________________________ 75 

6.3 Implementation _____________________________________________ 83 

7 RESULTS .......................................................................................... 85 

7.1 Camera Electronics ___________________________________________ 85 

7.2 Image Enhancement __________________________________________ 86 

7.2.1 Test Setting ...................................................................................................... 86 

7.2.2 Results ............................................................................................................. 88 

7.2.2.1 Defective Pixel Correction .......................................................................... 88 

7.2.2.2 Contrast Enhancement ............................................................................... 90 

7.2.2.3 Noise Reduction ......................................................................................... 95 

7.2.2.4 Pseudo-Coloring ......................................................................................... 97 

8 DISCUSSIONS AND FUTURE WORK ................................................. 101 

References ............................................................................................ 106 

 

  



 
 

xii 
 

 

LIST OF FIGURES 

 

 
FIGURES 

Figure 1. 1 A suspended structure for infrared radiation detection[1]. ............................ 4 

Figure 2. 1 The camera hardware. ................................................................................... 11 

Figure 2. 2 The state machine for the SPI transfer. ......................................................... 12 

Figure 2. 3 Generation of the frame and line synchronization signals. ........................... 13 

Figure 2. 4 Generation of the ADC Clock. ........................................................................ 14 

Figure 2. 5 State machine of the metadata generating circuitry. .................................... 15 

Figure 2. 6 Image display window. ................................................................................... 16 

Figure 2. 7 Advanced settings window. ........................................................................... 17 

Figure 2. 8 Scope window. ............................................................................................... 18 

Figure 3.1 a) Raw image, b)Median filtered image. ......................................................... 21 

Figure 3. 2 a) Median filtered image, b) Selectively median filtered image. ................... 23 

Figure 3. 3 a) Original image, b) Selectively median filtered image. ............................... 24 

Figure 3. 4 a) Original image, b) Selectively median filtered image. ............................... 25 

Figure 3.5 High pass filter implementation. .................................................................... 27 

Figure 3.6 Median filter implementation. ....................................................................... 28 

Figure 3.7 Selective application of median filter. ............................................................ 29 

Figure 4.1 a) Raw image, b) Image enhanced with contrast stretching. ......................... 33 

Figure 4.2 a) Raw image, b) Image enhanced with histogram equalization. ................... 35 

Figure 4.3 Histograms of a) raw image, b) image result of histogram equalization, c) 

image result of plateau method proposed by Wang et al., d) image result of plateau 

method proposed by Lai et al. ......................................................................................... 37 

Figure 4.4 a) Raw image, b) Image enhanced with plateau method proposed by Wang et 

al. ...................................................................................................................................... 39 

Figure 4.5 a) Raw image, b) Image enhanced with plateau method proposed by Lai et al.

 ......................................................................................................................................... 40 

Figure 4.6  Successive Mean Quantization Transform (SMQT) algorithm. ...................... 42 



 
 

xiii 
 

Figure 4.7  a) Original image, b)Image Enhanced with CLAHE. ........................................ 43 

Figure 4.8 a) Raw image, b) Image enhanced with SMQT. .............................................. 44 

Figure 4.9 Unsharp masking............................................................................................. 45 

Figure 4.10 a) Raw image, b) Image enhanced with Unsharp Masking. .......................... 46 

Figure 4.11  Results of contrast enhancement methods a) raw image, b) image result of 

contrast stretching, c) image result of histogram equalization, d) image result of plateau 

method proposed by Wang et al., e) image result of plateau method proposed by Lai et 

al., f) CLAHE, g) SMQT, and h) Unsharp masking. ............................................................ 47 

Figure 4.12  Results of contrast enhancement methods a) raw image, b) image result of 

contrast stretching c) image result of histogram equalization, d) image result of plateau 

method proposed by Wang et al., e) image result of plateau method proposed by Lai et 

al., f)CLAHE, g) SMQT, and h) Unsharp masking. ............................................................. 48 

Figure 4.13  Results of contrast enhancement methods a) raw image, b) image result of 

contrast stretching c) image result of histogram equalization, d) image result of plateau 

method proposed by Wang et al., e) image result of plateau method proposed by Lai et 

al., f) CLAHE, g) SMQT, and h) Unsharp masking. ............................................................ 49 

Figure 4.14  Results of contrast enhancement methods a) raw image, b) image result of 

contrast stretching c) image result of histogram equalization, d) image result of plateau 

method proposed by Wang et al., e) image result of plateau method proposed by Lai et 

al., f) CLAHE, g) SMQT, and h) Unsharp masking. ............................................................ 50 

Figure 4.15 Contrast stretching implementation. ........................................................... 52 

Figure 4.16 Histogram extraction circuitry. ..................................................................... 54 

Figure 4.17 Timing of two RAM blocks in histogram extraction circuitry. ....................... 55 

Figure 4.18 Cumulative histogram calculation and look-up circuitry. ............................. 56 

Figure 4.19 Timing of two RAM blocks in histogram equalization circuitry. ................... 56 

Figure 4.20 Co-operation of two RAM blocks in histogram extraction circuitry and two 

blocks in histogram equalization circuitry. ...................................................................... 57 

Figure 4.21 Imlementation of plateau methods. ............................................................. 58 

Figure 4.22 Imlementation of plateau method proposed by Wang et al. ....................... 59 

Figure 4.23 Imlementation of plateau method proposed by Lai et al. ............................ 61 

Figure 4.24 Architecture of the contrast enhancement module. .................................... 63 

Figure 4.25 Contrast enhancement module in Contrast Streching mode. ...................... 64 

Figure 4.26 Contrast enhancement module in Histogram Equalization mode. .............. 65 



 
 

xiv 
 

Figure 4.27 Contrast enhancement module in Histogram Equalization with Plateau 

mode . .............................................................................................................................. 65 

Figure 5.1 a) Raw image, b)Spatially filtered image. ....................................................... 68 

Figure 5.2 Wavelet analysis. ............................................................................................ 69 

Figure 5.3 Thresholding of details and wavelet synthesis. .............................................. 70 

Figure 5.4 Time domain filtering. ..................................................................................... 71 

Figure 5.5 Spatial filter implementation. ......................................................................... 72 

Figure 6.1 Rainbow scale pseudo coloring with a linearly interpolated palette a)The 

palette used for transformation, b)Raw image, c)Pseudo colored image. ...................... 76 

Figure 6.2 Rainbow scale pseudo coloring with a sinusoidally interpolated palette a)The 

palette used for transformation, b)Raw image, c)Pseudo colored image. ...................... 77 

Figure 6.3 a) Raw image, b) Pseudo colored image by directly mapping gray levels to 

green channel. ................................................................................................................. 78 

Figure 6.4 Hot-metal scale pseudo coloring with a linearly interpolated palette: a) The 

palette used for transformation, b) Raw image, and c) Pseudo colored image. ............. 79 

Figure 6.5 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored image 

rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, e) Direct green 

mapping. .......................................................................................................................... 80 

Figure 6.6 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored image 

rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, and e) Direct 

green mapping. ................................................................................................................ 81 

Figure 6.7 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored image 

rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, e) Direct green 

mapping. .......................................................................................................................... 82 

Figure 6.8 Pseudocolor implementation by using Block RAM as look up table. ............. 83 

Figure 6.9 Generic implementation of pseudo coloring algorithm. ................................ 84 

Figure 7.1 Opal Kelly XEM3010 Board. ............................................................................ 87 

Figure 7.2 Defective pixel correction results: a) Original image, b) MATLAB prototype, c) 

Output of the device. ....................................................................................................... 89 

Figure 7.3 Contrast stretching method results: a)Original image, b) MATLAB prototype, 

c) Output of the device. ................................................................................................... 91 

Figure 7.4 Histogram equilization results: a) Original image, b) MATLAB prototype, c) 

Output of the device. ....................................................................................................... 92 



 
 

xv 
 

Figure 7.5 Results of plateau method proposed by Wang et al. a) Original image, b) 

MATLAB prototype, c) Output of the device. .................................................................. 93 

Figure 7.6 Results of plateau method proposed by Lai et al.: a) Original image, 

b) MATLAB prototype, c) Output of the device. .............................................................. 94 

Figure 7.7 Noise reduction method results: a) Original image, b) MATLAB prototype, c) 

Output of the device. ....................................................................................................... 96 

Figure 7.8 Results of pseudo coloring: a) Original image, b) Rainbow scale linear palette 

MATLAB prototype, c) Output of the device, d) Rainbow scale sinusoidal palette 

MATLAB prototype, e) Output of the device, f) Hot metal scale linear palette MATLAB 

prototype, g) Output of the device, h) Direct green mapping MATLAB prototype, i) 

Output of the device. ....................................................................................................... 99 

Figure 8.1 Improved defective pixel correction algorithm. ........................................... 102 

Figure 8.2 a) Raw image, b) Image result of improved defective pixel correction 

algorithm. ....................................................................................................................... 103 

Figure 8.3 Wavelet based  denoising method on GPU .................................................. 104 

Figure 8.4 GPU implementation of Wavelet processing, and loss of shape geometry a) 

Original image, b)Re-rendered image ............................................................................ 105 

 

  



 
 

xvi 
 

 

LIST OF TABLES 

 

 

TABLES 

Table 7.1 Comparison of the implementation results with MATLAB prototypes. .. 100 

Table 7.2 Operating frequencies of  the implementations. .................................... 100 

 

  



 
 

xvii 
 

 

LIST OF ABBREVIATIONS 

 

 

A/D : Analog to Digital 

CDF : Cumulative Density Function 

CS :  Chip Select 

D/A :  Digital to Analog 

EPROM :  Electrically Programmable Read Only Memory 

FIFO :  First in First out 

FPA:  Focal Plane Array 

FPGA : Field Programmable Gate Array 

GPU :  Graphics Processing Unit 

IC :   Integrated Circuit 

IR :   Infrared 

MCU :  Micro Controller Unit 

MSPS : Mega Sample Per Second 

PCB : Printed Circuit Board 

PDF :  Probability Density Function 

PLD :  Programmable Logic Device 

PLL :  Phase Locked Loop 

RAM : Random Access Memory 

RGB :  Red, Green, Blue 

RMS :  Root Mean Square 

SCK : SPI Clock 

SDI : Serial Data In 

SDRAM : Synchronous Dynamic Random Access Memory  

SE :  Shift Enable 

SMQT : Successive Mean Quantization Transform 

SPI : Serial Peripheral Interface  

USB : Universal Serial Bus 



 
 

1 
 

 

CHAPTER 1  

 

1 INTRODUCTION 

 
 

 

Electromagnetic waves have a wide spectrum, from relatively low frequencies, that 

we call radio waves, to higher frequencies, that we call light, to even higher frequencies 

that are high energy particles.  Human eyes can sense the waves with wavelengths of 

400 nanometers to 760 nanometers, the longest being perceived as red and the 

shortest being perceived as violet colors. Light with shorter wavelengths than that of 

violet are called ultraviolet and ones with longer wavelengths than that of red are called 

infrared lights.   

Infrared light has some significant properties. For example its refraction properties 

in some materials are different than visible light. Some objects that are visible or 

opaque in visible light might appear transparent or even invisible in infrared light.  A 

large part of thermal radiation, especially around room temperature, falls into infrared 

spectrum.  In other words the objects around these temperatures emit light in infrared 

spectrum. 

These properties of infrared light give it unique uses for a variety of applications. 

For example dust particles that block the visibility in space observations are invisible to 

lights in infrared spectrum. Different refraction of infrared lights at different cloud types 

allows weather satellites to see through some clouds and distinguish between them. 

Thermal radiation also makes infrared light useful for night vision since objects emit 

thermal light by themselves,  no outside light sources are necessary for viewing them. In 

addition, thermal vision allows fault finding in circuits, detection of some health 

problems in humans, and automated target tracking in military applications. 
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For thermal vision, there is not only a need for proper IR image acquisition 

electronics, but also image processing algorithms for enhancing the captured image in 

order for the user to make best use of it. This thesis focuses on both developing camera 

electronics for proper IR image acquisition and implementing image processing 

algorithms for enhancement of these images. 

Section 1.1 emphasizes the significance of flexible electronic structures and states 

why the FPGAs are central to both the camera electronics and image enhancement 

software. Section 1.2 provides more information on IR image acquisition and 

requirements of the camera electronics. Section 1.3 states and discusses the signal 

processing requirements of IR images, and what algorithms are used for these 

requirements. Finally, Section 1.4 provides a summary of the research objectives and a 

description of the organization of the thesis. 

 

1.1 Significance of Flexible Electronic Structures 

 

As the technology advances, the need for intermediary communication and signal 

processing hardware also increases. Since the communication and signal processing 

requirements of each circuit is different than one another, these hardware need to be 

flexible to address these needs. 

In order to address these requirements, several approaches were used throughout 

the history of development of electronic circuits. Early devices in this category were 

Programmable Logic Devices (PLDs). These devices were designed in a way to allow user 

to fuse and burn the unnecessary connections between the arrays of gates, leaving the 

desired logic on de chip. Of course, these devices could only be programmed once and 

used for a single purpose only. 

Around that time, another approach was to use memory units. Rather than their 

default usage, Electrically Programmable Read-Only Memories (EPROMs) were used as 

look up tables of logical operations. This way, complex logical operations could be 
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implemented by the user with a single device. Since these memory chips were already 

available, this was rather a more practical and cost sensitive approach.  

Later, techniques for controlling the interconnections of gate arrays with electric 

fields were developed. These devices are called Field Programmable Gate Arrays 

(FPGAs). They are both flexible and reprogrammable, so they can be used and modified 

according to the needs of circuitry. 

Today, modern FPGAs contain millions of gates, large memories, and complex 

arithmetical and logical blocks, and some FPGAs even contain several Central Processing 

Units (CPUs). They are an integral part of both the development cycle and life cycle of 

many circuits.  

The ability of FPGAs to execute multiple processes simultaneously makes them a 

very useful platform for controlling digital circuits and signal processing operations.  

They can be specialized for the requirements of specific data transmission and signal 

processing requirements. Their weakness in the form of lower operation frequencies 

are compensated by ability to process data in a parallel manner.  This is especially true 

for data driven applications where large chunks of data are manipulated by the device. 

Consequently, FPGA is preferred for the implementation of both camera electronics for 

the IR image acquisition and image enhancement due to the reasons mentioned above. 

 

1.2 IR Image Acquisition 

 

There are many methods of infrared image acquisition, and these can be grouped in 

two main categories: thermal detectors and photon detectors. In principle, thermal 

detectors use the heating properties of infrared radiation, and employ the changes in 

circuit characteristics such as resistance or diode potential in the target side affected by 

the infrared radiation. On the other hand, the photon detectors exploit the electron 

excitation due to the incoming photons in low bandgap semiconductors. 

METU MEMS Research and Applications Center specializes on microbolometer type 

thermal infrared detectors. Microbolometers consist of a suspended structure for heat 
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isolation and an active material, which is a resistance or a diode, on it for sensing. When 

infrared radiation arrives at the suspended structure, it begins heating the structure. 

Being suspended prevents the structure from cooling off immediately and allows it to 

keep its temperature long enough to be read out. Figure 1.1 illustrates a suspended 

structure for IR detection.  

As the temperature of the suspended structure increases, the temperature of the 

active material increases too. Due to this increase in the temperature, resistance or 

diode threshold of the active material will change depending on the type of the 

material. This will result in changing the output voltage of the sensor. This changing 

output voltage is later read out by a CMOS circuitry, and it’s multiplexed to the output 

of the chip. 

 

 

 

Figure 1. 1 A suspended structure for infrared radiation detection[1]. 
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In METU MEMS Research and Applications Center, resistive type microbolometers 

are designed and produced for high performance imagery. Also more recently, diode 

type microbolometers, with relatively lower performance, but with a very easy 

fabrication, are developed for low cost imagery [2-8].    

The infrared detector arrays are placed on some camera electronics that is 

controlled by an FPGA. The camera electronics must provide necessary power, proper 

biasing, and required digital signals in order for the detector array to operate properly. 

The output data of the array must be converted to a digital signal via A/D converters. 

This digital data then, needs to be collected in a buffer with additional metadata before 

being transferred to the host computer. Then, accompanying camera software must 

receive this data and construct an image.  

 

1.3 Signal Processing Requirements of IR Images 

 

After being captured, images from IR cameras are not always in the best format to 

be understood by humans and made meaning out from. The images may have noise 

introduced by sensors, readout electronics, or external circuitry. The output values of 

the IR camera may not be distributed on histogram evenly, thus they are not using it 

effectively. Some pixels in the image may be poorly responding or not responding at all. 

In addition, translating the output values of an imager to a gray scale might not be the 

best way to make meaning out of them.  

For improving the condition due to defective pixels methods for defective pixel 

replacement including median filtering and selective median filtering can be employed. 

Noise on the image can be reduced using noise reduction methods such as spatial, 

temporal, or wavelet domain filtering. Contrast of the image can be enhanced either by 

contrast stretching or by histogram based methods like histogram equalization, plateau 

equalization, or adaptive histogram equalization. Furthermore pseudo-coloring can be 

employed in order for the user to more easily make meaning out of the images. This 

thesis focuses on the implementation of the methods on an FPGA.   
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1.4 Research Objectives and Thesis Organization 

 

Two main objectives of this research are: 

1. To develop proper IR image acquisition electronics for IR detector arrays with 

320 x 240 resolution, but also include various resolutions such as: 160 x 120 and 

640 x 512. 

2. To implement image processing algorithms, including defective pixel correction, 

contrast enhancement, noise reduction, and pseudo-coloring that processes the 

output of the image acquisition electronics in real-time. 

The imagers that are designed at the METU – MEMS Research and Applications 

Center require some biasing and some digital signals in order to operate properly, 

which need to be provided via an external circuitry.  They scan the image in a horizontal 

order, producing their analog outputs as horizontal lines read one after another. This 

analog data requires to be converted to digital levels and organized in a manner so that 

it can be reorganized, before being transmitted to the host computer. 

 There are some requirements for an FPGA implementation that needs to be 

matched for image processing algorithms. In order for the system to produce images in 

real time, the incoming images need to be processed at the rate that the imaging 

system outputs it. Generally the imaging systems output the image data sequentially as 

one pixel at a time, and scanning lines or rows of the image depending on the design of 

the readout circuitry.  

A recent readout circuitry designed in METU – MEMS Research and Applications 

Center [9] recommends a maximum clocking frequency of 2 MHz. This thesis uses that 

frequency as a design goal for the clocking frequency to be met by the implemented 

image enhancement methods. 

The resolution of analog to digital conversion is another factor to be considered in 

the design. Although 14 bit A/D converters are used in most of the imagers in METU – 

MEMS Research and Applications Center, this thesis takes its design goal to implement 

generic methods that can be used in systems with different A/D conversion resolution.   
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The imaging devices in METU – MEMS Research and Applications Center use 

Spartan 3 family XC3S1500 FPGAs from Xilinx for timing of the circuits and data transfer. 

This is a large enough FPGA to fit some simple image enhancement methods in. Since 

this FPGA is already being used, this thesis takes its area as the area goal to be met.  

As a resolution target 320 x 240 was selected, however designs are intended to be 

generic and be able to run for any resolution, including 160 x 120 and 640 x 512.  

Since the FPGA is not a very large one, fixed point mathematics is chosen as a 

design criterion. All of the mathematical operations are implemented as fixed point 

operations. In the operations like division or square root which could result fractional 

numbers, any multiplication operations after them were referred back before these 

operations in order for minimum loss of data  

As for any good design, the designs in this thesis aim to be reusable and modular. 

Parametric design is aimed for most of the modules, their bit lengths and buffer sizes 

are designed to be changed parametrically. Also designs need to be device generic; they 

need to be able to be used in various devices without much modification. 

This thesis is organized as follows: 

In Chapter 2 camera electronics is discussed in depth. In this chapter requirements 

of the imaging chip and how they are provided is presented. In addition to that, data 

transfer to the host computer and the accompanying camera software are presented. 

Chapter 3 focuses on defective pixel correction methods, including median filtering 

and selective median filtering, and discusses the implementation of the latter.  

Chapter 4 discusses contrast enhancement methods. In this chapter, methods such 

as contrast stretching, histogram equalization and its variations, successive mean 

quantization, and unsharp masking are presented. After that, implementations of four 

of these, including contrast stretching, histogram equalization, and two plateau 

equalization techniques are discussed.   
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Chapters 5 states the sources of the noise on the image and discusses how the 

noise can be reduced using spatial or temporal filters, or in the wavelet domain. After 

that it presents implementation of a spatial filter. 

Chapter 6 is about pseudo-color methods. This chapter presents various palettes of 

pseudo-coloring, and how they are implemented on the FPGA.  

Chapter 7 describes the test procedure by which the methods are tested, 

furthermore it provides the results and states the limiting factors.  

Finally Chapter 8 discusses shortcoming of some algorithms and bottlenecks in the 

implementation, and presents a road map for future improvements.  
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CHAPTER 2 

 

2 CAMERA ELECTRONICS 

 

 

 

This chapter gives an overview of camera electronics. It describes how the chip is 

operated properly; data is captured, and transferred to the host computer, and it briefly 

mentions the camera software that interfaces with this camera electronics. Section 2.1 

states the requirements of the camera electronics and describes the hardware. Section 

2.2 describes how the IR detector arrays are operated properly. Section 2.3 describes 

the data acquisition and necessary components for it. Finally, Section 2.4 provides the 

details of the camera software.   

 

2.1 IR Image Acquisition Electronics  

 

IR detector arrays generally have a readout circuitry consisting of an analog part 

that detects changes of the voltage of the active material and amplifies it with as little 

noise as possible, and a digital part that controls multiplexers that output the analog 

signal of the corresponding pixels. This readout circuitry needs some analog voltages for 

biasing and some digital signals for synchronization, in addition to sufficient power in 

order to operate. [10] provides an in-depth discussion of the camera electronics, and 

how it relates to readout circuitry. 

After the changes on the sensor are converted to voltage values via the readout 

circuitry, these analog voltages need to be converted to digital values in order for them 

to be transferred to the host computer. For this conversion an A/D converter and its 

FPGA interface is necessary.  
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But before the data is transferred to the host computer some additional 

information needs to be added in order to ensure the right value is displayed at the 

right place. With some additional metadata the system will be able to correctly 

reconstruct image correctly, furthermore it will be more robust in terms of data 

transmission losses. 

As a final step, the captured image needs to be displayed on a screen through a 

camera software. Moreover, the software will enable the user to control the biasing of 

the circuitry, sampling the data and image processing operations.  

The hardware that contains circuitry for powering and biasing the detector array 

and data acquisition, consists of several layers of printed circuit boards (PCBs). Figure 

2.1 demonstrates the camera hardware. The topmost PCB contains the sensor and 

provides connections to it from the other layers. The following board contains the A/D 

converter and the two D/A converters; this board provides the necessary biasing for the 

imager chip and the A/D conversion of its output data. The following card holds the 

power circuitry for powering the previous boards. The final board provides the 

connection to the FPGA board.  

For the transfer of the data to the host computer via USB XEM 3010 board from 

Opal Kelly was used. The board hosts a Spartan3 XC3S1500 FPGA, a MCU for USB data 

transfers.  The FPGA is responsible for programming the chip and the D/A converters, 

clocking and sampling the A/D converter and transferring the image data to the host 

computer.  
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Figure 2. 1 The camera hardware. 

 

 

2.2 Proper Operation of IR Detector Arrays 

 

As for any circuitry IR detector arrays requires sufficient powering with as little 

noise or regulation possible. The power for the components in the circuitry is provided 

by several low dropout regulators. The regulator that was selected LT1762 by Linear 

Technology because of its low noise characteristics.   

The analog circuitry requires some biasing both in terms of voltage and current in 

order to operate the active material and the amplification circuitry. The biasing that’s 

required can be either implemented inside the readout chip, or be provided from an 

outside source. When implemented inside the chip, biasing can be controlled by means 

of digitally programming the chips corresponding digital circuitry. When it’s not 

implemented inside the chip, it needs to be provided by external means, such as D/A 

converters. Generally, implementation strategy which is composed of a combination of 

the former and the latter is used. 
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For digitally programming the chip the SPI (Serial Peripheral Interface) protocol was 

used. This protocol employs three wires for the serial transfer of data: SDI, SE, and SCK. 

SDI (Serial Data In) is the wire that carries the data from the FPGA to the chip. 

SE (Shift Enable) acts as chip-select signal for marking the communication interval. Data 

transfers are synchronized with SCK (SPI Clock), at each SCK cycle if SE is high a bit of 

data is transferred via SDI from the FPGA to the IR detector array chip. A total of 16 bits 

are transmitted, first 8 bits carry the address data while the following 8 bits biasing 

information.  

AD7304 from Analog Devices, which is an 8 bit, quad, rail-to-rail D/A converter, 

provides the external biasing. Similar to the imaging chip this device is programmed via 

the SPI protocol. Instead of SE this chip has a chip select (CS) signal that has the same 

function with the SE signal, when this signal is driven low, the 12 bit data transfer 

occurs. The first 2 bits are for power down of the device. The following 2 bits carry the 

address information that determines which one of the four channels will be 

programmed. The final 8 bits determine the value of the selected output. 

Figure 2.2 demonstrates the State-machine diagram of the SPI programming 

module. 

 

Figure 2. 2 The state machine for the SPI transfer. 

 

In addition to analog biasing requirements, the imaging chips also require some 

digital signals in order to output the pixel data in the correct order. Some of the chips 
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require a clock signal together with the signals for synchronizing the line scanning and 

the frame scanning operations. There are also some imaging chips with integrated 

synchronizing circuitry that require only a main clock and generate required signals 

internally. 

This synchronization can be implemented on an FPGA with two simple counters. 

The cooperation of these counters is summarized in Figure 2.3. 

 

 

Figure 2. 3 Generation of the frame and line synchronization signals. 

 

2.3 Data Acquisition 

 

Imaging chips produce an output that consists of a series of sequentially 

multiplexed analog values, which are related to the illumination of the pixels. These 

values need to be converted to digital values via an A/D converter in order to be 

transferred to a host computer.  

AD9240, a 14-bit 10 MSPS A/D converter from Analog Devices converts the analog 

data to digital values. The device samples the analog data at the positive edge of the 

clock and produces its output after a 3 clock cycle pipeline delay. For this reason, FPGA 

needs to generate a clock signal with an adjustable phase in order to have control over 

sampling. 
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Figure 2. 4 Generation of the ADC Clock. 

 

Figure 2.4 demonstrates the generation of ADC clock. The circuitry for generating 

ADC clock, counts the pixel clock as a function of system clock; this way it’s ensured that 

the generated clock is at an exact phase with the pixel clock. ADC clock is generated as a 

function of the value of the second counter. The comparator compares the value of this 

second counter with the previously counted pixel clock and produces an ADC clock 

signal, and it adjusts the phase according to the additional delay input. For a slow pixel 

clock around 0.5 MHz, ADC clock generated with a 100 MHz system clock will have a 

0.5% precision in terms of frequency.  

After that the captured data needs to be sent to a host computer; however before 

this transmission, it’s necessary to add some metadata to the bulk of captured pixel 

data for arranging them on the host computer. To achieve this, an additional tagging 

module is used. The module inserts tag data in the beginning of each frame and each 

line signaling which frame and which line the following data belongs to. A simple state 

machine which is implemented on the FPGA handles this operation. Generation of the 

metadata is illustrated in Figure 2.5. 
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Figure 2. 5 State machine of the metadata generating circuitry. 

 

Every time a pixel data is captured, the module checks if the data belongs to a new 

frame or new line. It adds a frame number and/or a line number if this is a new frame 

or a new line to the buffer that holds the pixel data.  

 

2.4 Camera Software 

 

The camera software is the host computer side complementary to the camera 

electronics. The user adjusts the biasing, and programs the camera circuitry using the 

camera software. In addition to that, the camera software displays the image captured 

by the sensor. 

The software consists of three user interface windows: image display window, 

advanced settings window, and scope window. 

Image display window is where the captured infrared image is displayed. This 

window communicates with the image transfer channel of the USB communication 

module. Each time the window is rendered, it checks the transfer buffer on the camera 
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for whether a complete image is captured or not. When there’s a complete image in the 

transfer buffer this window transfers the image data into a memory using the metadata 

added by the FPGA, and then de-interlaces and does offset correction on it. Image 

drawing window is demonstrated in Figure 2.6.  

 

 

Figure 2. 6 Image display window. 
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Figure 2. 7 Advanced settings window. 
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Figure 2.7 demonstrates the advanced settings window. The advanced settings 

window is responsible for programming the camera board components. It interfaces 

with transfer channel that interacts with the imaging chip, D/A, and A/D converters; and 

other general components of the FPGA. This window is, also the interface for some 

basic functions like saving data as a file, or activating or deactivating image processing 

functions.   

The next component of the camera software is the scope window. This window acts 

as a virtual oscilloscope for observing the data output from the sensors. The window is 

implemented as a means to test the system without additional oscilloscopes, which 

would introduce additional load to the output buffers and change the observed data. 

The scope window is able to display the output of different lines, individual pixels or 

display the overall histogram of all sensor data. For each mode it can measure their 

mean values or noise levels instantly. Figure 2.8 demonstrates the scope window. 

 

 

Figure 2. 8 Scope window. 
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CHAPTER 3 

 

3 DEFECTIVE PIXEL CORRECTION 

 

 

 

This chapter focuses on defective pixels and correction these pixels using median 

filtering and selective median filtering. Section 3.1 provides a discussion of defective 

pixels, and Section 3.2 describes median filtering. Then, Section 3.3 describes selective 

median filtering and states its advantages compared to median filtering, and finally 

Section 3.4 discusses the implementation of this method.  

 

3.1 Defective Pixels 

 

Uncooled Infrared detectors usually have an active material, a resistor or a diode 

depending on the type of detector; and a recess, created by a MEMS process, in order 

to prevent it from cooling. The voltage changes across the terminals of this active 

material due to infrared heating are measured by a readout circuitry. This readout 

circuitry outputs an analog value proportional to the change of the voltage across the 

terminals of the active material. 

During the creation of these structures some imperfections may occur that change 

either electrical or thermal characteristics of these structures. Those changes cause 

them to respond to infrared radiation too weakly, too strongly or not respond at all. In 

addition to that, some defects may occur in the readout circuitry rendering the active 

material useless. 
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 [11] discusses and characterizes the problem of defective pixels in depth. It 

classifies different kinds of defective pixels. Most important three of these 

classifications are: stuck at low, stuck at high, abnormal sensitivity. Stuck at low and 

high pixels provide an output that is at the low or high end of the voltage spectrum 

respectively irrespective of the incoming infrared stimulus. Similarly abnormal 

sensitivity pixels provide outputs with too much or too little sensitivity compared to 

other pixels. In this study all of these three kinds were observed.  

 

3.2 Median Filtering 

 

In basic image processing terms the noise introduced by defective pixels, where 

pixels give only black or white outputs, is called as salt and pepper noise since it 

resembles salt and pepper that stands on the image.  

A simple and effective solution for decreasing salt and pepper noise is using a 

morphological filtering method. A moving average would help decrease the noise 

however this kind of noise would still be effective. Median filtering would yield better 

results since median of a series with extremes would better characterize it than its 

mean. 

Median filtering can simply be applied by sorting the values and choosing the 

median value in an n by n kernel, for each pixel. Figure 3.1 demonstrates the result of 

median filtering. 

 

3.3 Selective Median Filtering 

 

The median filter is effective in situations like this. However, current infrared 

cameras can provide low resolution images at the range of, from 160 x 120 to 320 x 240 

and 640 x 512 pixels. At these resolutions, detail lost by median filtering is too much 

compared to overall image size.  
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Figure 3.1 a) Raw image, b)Median filtered image. 

 

a 

b 
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Furthermore, median filtering might filter out important image details that are too 

small with respect to filter kernel size. For example a detail with size of a few pixels 

would be lost even with the smallest kernel. 

An alternative to this method is to use median filtering in a selective manner, i.e., 

only to pixels that are known or estimated to be defective. After whether the pixel is 

effective or not is determined, the original pixel is replaced with the median of 

neighboring pixels.  

For estimation of whether pixels are defective or not, another morphological filter, 

high pass filter namely, can be used. This way, defective pixels that are very different 

from their neighbors can be replaced with an estimated value, in this case median of 

the neighboring pixels. The defective pixels, on the other hand, which are very close to 

the mean of their neighboring pixels wouldn’t be replaced. 

This approach would preserve more details of original image compared to 

straightforward median filtering. However it would still cause a loss of important details 

when there are sudden spatial changes in the incoming image. Figure 3.2 provides 

comparison of the results of median filtering and selective median filtering.  

Figure 3.3 and Figure 3.4 demonstrate the result of selective median filtering. 

Since pixels defects are the result of imperfections in production, number of these 

pixels won’t change during the usage of device. Knowing this, a better solution than this 

would be to measure the response of the pixels and keep a memory of effective and 

defective pixels. This kind of characterization of pixel responsivity is already being done 

in the production phase of the infrared camera chips.  

After this initial characterization only the defective pixels can be replaced with an 

estimation whereas effective pixels remain unchanged. This would be a more robust 

technique compared to previous ones discussed. In addition none of the important 

details would be lost since all of the original values of effective sensors are kept 

unchanged. This can be implemented on a computer software, where memory isn’t 

limited. For FPGA applications however, lack of memory may be a problem. 
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Figure 3. 2 a) Median filtered image, b) Selectively median filtered image. 
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Figure 3. 3 a) Original image, b) Selectively median filtered image. 

 

a 
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Figure 3. 4 a) Original image, b) Selectively median filtered image. 
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3.4 Implementation  

 

The hardware implementation consists of a high pass filter and a median filter, 

working in parallel. Both of these filters require a kernel to work on. In software 

applications generally, an image stays stationary in the memory and a kernel moves on 

it to apply the filter. In hardware applications however, it’s more compact and useful to 

keep the kernel stationary and pass the image data over it. [12] discusses a fast 

implementation for a convolution kernel. 

The way a kernel is implemented is with an array of shift registers that holds the 

values of pixels that will be used for the calculation of the elements of the kernel and a 

series of fixed length FIFO buffers that hold the data of the remaining pixels in the line.  

The pixels that enter the first row of shift registers form the first row of the kernel. 

Output of the first row is connected to the input of the first fixed length FIFO buffers. 

The length of this buffer must be shorter than the width of the image by the width of 

the shift registers. This buffer, together with the next row shift register, input of which 

is connected to this buffer, keep a number of pixel data which resembles a row of 

image. Following that, as many fixed length buffer – shift register pairs as necessary for 

the kernel is connected, one after another.   

A high pass filter can simply be calculated as one minus a low pass filter.  To keep 

the images’ brightness level constant, generally low pass image filters have unity sum, 

and similarly high pass filters have zero sum. And to have zero sum the coefficients of 

the kernel are selected as floating point numbers, this is undesirable for this 

implementation since it will consume too much FPGA space. Rather than multiplying 

elements with floating point coefficients, they were multiplied with fixed point 

coefficients and then divided by the sum of these coefficients in order to get around 

this issue. Implementation of the high pass filter is demonstrated in Figure 3.5. 
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Figure 3.5 High pass filter implementation. 

 

However, implementing division also has its drawbacks. Pipelined dividers also take 

up too much FPGA space. A better solution than implementing a pipelined divider is to 

divide the number with a power of two. Due to binary implementation of this operation 

it is enough to simply shift bitwise the value to be divided by the power to be divided 

by.  

It was observed that high pass filters of size 3 by 3, elements of which are 1 except 

the center, yielding a total of 8 for low pass part of the kernel, provided satisfying 

results at the same time not requiring an additional divider. For this reasons this kernel 

was selected for implementation. 

The high pass filter multiplies the elements in the kernel by one, and sums the 

elements around the center. It then divides this sum by eight and subtracts this value 

from the element in the center. This operation results in a high-pass image in which 

sudden spatial changes are represented with higher values.  

The median filter similarly, consists of a kernel and a sorting network. The filter uses 

the same kernel that’s already implemented for the high pass filter. The values in the 

kernel are fed into the sorting network where they will be sorted and the median is 

selected. Figure 3.6 demonstrates the implementation of the median filter. 
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Figure 3.6 Median filter implementation. 

 

The sorting network is made up of sub units called sorters. A sorter simply 

compares the numbers and swaps them if the number at the second input is larger than 

the number at the first input. Sorting is done in a manner that in software engineering 

terms, is called a bubble sort. Each element is compared to the nearby element and 

swapped if necessary. This operation is repeated as many times as the number of 

elements in the kernel. This repetition is implemented as pipelined layers so that in 

spite of the sorting delay it works with the same frequency that image data is input. 

After the elements in the kernel are selected and sorted, the median can be found 

simply by selecting the middle item. The median value is selected as the output of the 

array, which is output from the sorting network, with the index that is half of the 

numbers in the kernel. 
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Figure 3.7 Selective application of median filter. 

 

From this point on, a decision logic takes on the task of choosing whether to output 

the raw image data or the output of the median filter. The logic makes this decision 

according to the output of the high pass filter. The output value of the high pass filter is 

passed through a threshold, producing a binary result. This binary result indicates 

whether the related pixel is estimated to be a defective pixel or not. This operation is 

illustrated in Figure 3.7. The threshold can be either input from a top module, or can be 

a fixed number defined by a parameter. This choice is done during the synthesis time. 

The median filter produces its result with a sorting delay. In order to select the 

corresponding pixels in the raw and the median filtered images, an additional delay is 

introduced on the raw image data in order to compensate for the delay of median 

filtering. The binary result generated by thresholding the output of the high pass filter 

controls a multiplexer, inputs of which are the median filtered image and the raw 

image. The output of this multiplexer forms the result of defective pixel correction. 

 

 



 
 

30 
 

 

CHAPTER 4 

 

4 CONTRAST ENHANCEMENT 

 

 

This chapter discusses contrast enhancement, algorithms for the enhancement of 

contrast and implementation of selected algorithms.  Section 4.1 provides an overview 

of contrast enhancement. Section 4.2 presents and discusses commonly used contrast 

enhancement methods, including contrast stretching, histogram equalization, plateau 

equalization, contrast limited adaptive histogram equalization, successive mean 

quantization, and unsharp masking. Then, Section 4.3 presents implementations of 

contrast stretching, histogram equalization, and two plateau equalization methods, and 

then it discusses a contrast enhancement module capable of these four modes. 

 

4.1 Contrast Enhancement 

 

Generally, infrared images are captured in order to be seen and made meaning of 

by human users. An infrared image could be used to increase a driver’s vision through 

the fog, or in order to detect relatively hotter objects in a field. Often, infrared images 

are used for seeing living creatures in the night. In cases like those, dynamic ranges of 

the original images, which is determined by the design of the sensor and the analog-to-

digital circuitry around it, might not be always enough or in the best shape. 

Infrared values that are read out by the camera are converted to gray levels relative 

to a reference and the dynamic range of readout circuitry. Often, images from the 

cameras employ less than the whole spectrum of the gray levels that the camera is 
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designed to have. More often than not, these images don’t make the most efficient use 

of their histogram. 

With some image processing, images can be modified to use the complete 

spectrum of all gray levels available, and to make better use of its histogram compared 

to unprocessed images. Image processing methods can also aid in improving the 

visibility of the background or foreground details, when necessary. 

Both from the experience at the METU-MEMS Research and Applications Center 

and from the literature [13-18], some accurate assumptions for infrared images can be 

made. One accurate assumption is that, these images generally consist of a background, 

where there are some relatively cold objects and a foreground where there are hotter 

objects or agents. In more applications than not, the relatively hotter objects are the 

points of interest or more important than background details.   

There are some well-known methods for image contrast enhancement such as 

contrast stretching and histogram equalization. And there are some less common 

methods that use image properties or geometric operations to enhance the contrast of 

the images. 

Some examples in literature [13-18] use some modifications on the histogram 

equalization method using these assumptions to obtain better results. In addition to 

that there are some examples of using morphological operations [19] or image statistics 

and re-quantization [20] for enhancing the contrast of the image.  
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4.2 Contrast Enhancement Methods 

 

4.2.1 Contrast Stretching 

 

The simplest approach to use whole spectrum of the image is to stretch its values 

between the minimum and maximum of the displayable values. This is simply, done by 

transforming each pixel value by equation 

     
          

           
                   (4.1) 

Where      and      are the minimum and maximum intensity values in the image, 

and                  is the maximum displayable value by the system. Figure 4.1 

provides an example of contrast stretching. 

 

4.2.2 Histogram Equalization 

 

Histogram or probability density function (pdf) of a discrete valued image indicates 

the occurrence of an intensity level in the image and is denoted by: 

         
  

      
  (4.2) 

Where    is the number of pixels in the     intensity level (      ,   is the 

number of intensity levels) and        is the total number of the pixels in the image.  
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Figure 4.1 a) Raw image, b) Image enhanced with contrast stretching. 

 

 

a 

b 



 
 

34 
 

The aim of the histogram equalization method is to find a positive and 

monotonically increasing transform function that transforms the input image to an 

output image  

        (4.3) 

 

Such that 

          
      

 

      
 

 

 
 (4.4) 

Also for both of these functions, their sum over all gray levels will be equal to 1. 

∫           
 

 
 ∫            

 

 
    (4.5) 

Since the          is constant relative to   and is equal to 
 

 
 

           
 

 
   (4.6) 

          
  

  
  (4.7) 

                  (4.8) 

 

Hence, the function that transforms   to    will be 

               ∫           
 

 
 (4.9) 

For discrete valued images the integral will be equal to cumulative sum of the 

values of histogram up to ith level, which is also known as cumulative density function. 

        ∑          
     (4.10) 

Figure 4.2 demonstrates the result of histogram equalization. 
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Figure 4.2 a) Raw image, b) Image enhanced with histogram equalization. 
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4.2.2.1 Characteristic Histogram for the Infrared Images 

 

As discussed earlier in this chapter, the assumption that infrared images consist of 

two main parts, the background and the foreground, namely, is accurate for most of the 

images. This situation can also be observed in a characteristic histogram of these 

images in general. 

In a characteristic histogram generally, there is a peak at lower levels and, there are 

one or a few peaks at higher levels that, in most situations is the region of interest. 

Most of the times, pixel numbers are larger under the peak that is associated with 

background, which means more pixels are related with background objects. With the 

histogram equalization method these levels are extended more than others. In other 

words background pixels are multiplied with larger gains.  

In some cases this method might useful however; in some specific cases it’s not 

very useful. Because it will decrease the visibility of foreground details since foreground 

pixels are multiplied with a relatively low gains. Furthermore it will increase the visibility 

of noise in the image. 

To get around these some modifications of the image histogram can be used in 

histogram equalization. A simple method that can be employed is to use a point-wise 

linear histogram modification in which more important parts, such as foreground 

objects, of histogram are highlighted whereas less important parts, such as background, 

can be amplified less. This method would be especially useful when user adjusts the 

parts of the histogram that is the point of concern. A more generalized solution to get 

around would be to create plateaus in the places of large peaks. Those plateaus would 

reduce the effects of the peaks at the resulting image. Figure 4.3 demonstrates an IR 

image histogram and results of various histogram correction operations. 
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4.2.3 Plateau Equalization: Wang et. al. 

 

Wang et. al. [14] proposed a straightforward algorithm and its hardware 

implementation for creating plateaus with adaptively calculating a threshold. Their 

proposed algorithm detects peaks first, and then sorts them; finally it chooses the 

median of the peaks as a threshold. The algorithm then reshapes the histogram by 

assigning the value of the threshold to the items that are larger than it.  The 

thresholded parts in the histogram no longer causes disproportionately high gains 

allowing other parts to be better emphasized. Figure 4.4 provides an example of this 

operation. 

 

  

Figure 4.3 Histograms of a) raw image, b) image result of histogram equalization, 

c) image result of plateau method proposed by Wang et al., d) image result of plateau 

method proposed by Lai et al.  
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4.2.4 Plateau Equalization: Lai et. al. 

 

Lai et al. [16] uses another technique for creating plateaus. Rather than 

thresholding the image histogram they scaled it. To do this they calculated the power of 

each value in the histogram divided by the maximum value of the histogram to a 

constant that is larger than zero and smaller than one.  

        *
      

                 
 +
    

 (4.11) 

Here, 0.31 is a value found empirically by a series of iterations that maximizes 

entropy in the resulting image. 

By scaling the histogram, instead of thresholding, the algorithm keeps 

proportionality between values in the histogram, while at the same time reducing the 

effects of the larger peaks in the resulting image. Figure 4.5 provides an example of this 

operation. 
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Figure 4.4 a) Raw image, b) Image enhanced with plateau method proposed by 

Wang et al. 
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Figure 4.5 a) Raw image, b) Image enhanced with plateau method proposed by Lai 

et al. 
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4.2.5 Contrast Limited Adaptive Histogram Equalization (CLAHE) 

 

Another approach that takes the properties of histogram into account is to 

adaptively enhance the contrast of the image by separating it into sub-regions is 

proposed by [17]. For each of these sub-regions then, a histogram is calculated and 

thresholded according to a desired contrast limit. In this method different from the 

plateau methods, the excess pixels that are clipped in thresholding phase are 

redistributed by taking into account the pixel distributions of neighboring pixels. The 

study in [18] also proposed and discussed an FPGA implementation for this method. 

Figure 4.7 provides an example of this operation. 

 

 

4.2.6 Successive Mean Quantization Transform(SMQT) 

 

The study in [19] suggested another method for contrast enhancement based on 

the image statistics. This method re-quantizes the image by levels determined by 

successively calculating the means of image and its sub regions.  

The algorithm calculates the mean of the incoming image and assigns this value as 

the threshold for the most significant bit of re-quantization. After that, it divides the 

image into two regions as the pixels with values greater than the mean, and the ones 

with values lower than the mean. Following this step, the algorithm assigns these values 

as the threshold for the second most significant bit. This iteration continues as many 

times as the number of desired bits. The motivation behind this algorithm is to find a 

representation that is robust in terms of offset and gain applied to this image.  The 

algorithm is illustrated in Figure 4.6. Figure 4.8 provides an example of this operation. 
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Figure 4.6  Successive Mean Quantization Transform (SMQT) algorithm. 

 

This method can be especially useful in situations in which the temperature of both 

the environment and the observed object changes too much during the observation. 
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Figure 4.7  a) Original image, b)Image Enhanced with CLAHE. 

a 
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Figure 4.8 a) Raw image, b) Image enhanced with SMQT. 

 

a 
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4.2.7 Unsharp Masking 

 

A widely used technique that is adopted from analog photography methods is 

unsharp masking.  This method depends on the idea that when a low pass filtered 

image is subtracted from the original image, the resulting image will have amplified 

details. 

 

 

 

 

Figure 4.9 Unsharp masking. 

 

 

Digital implementation of this filter is similar to the analog application. The input 

image is passed through a low pass filter, and then this low pass filtered image is 

subtracted from the original image with appropriate weights. This will result in an image 

with amplified details. This operation is illustrated in Figure 4.9. Figure 4.9 provides an 

example of this operation.  Figure 4.11, Figure 4.12, Figure 4.13, and Figure 4.14 provide 

comparisons of the methods, which were discussed in this section. 
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Figure 4.10 a) Raw image, b) Image enhanced with Unsharp Masking. 
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Figure 4.11  Results of contrast enhancement methods a) raw image, b) image 

result of contrast stretching, c) image result of histogram equalization, d) image result 

of plateau method proposed by Wang et al., e) image result of plateau method 

proposed by Lai et al., f) CLAHE, g) SMQT, and h) Unsharp masking. 
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Figure 4.12  Results of contrast enhancement methods a) raw image, b) image 

result of contrast stretching c) image result of histogram equalization, d) image result 

of plateau method proposed by Wang et al., e) image result of plateau method 

proposed by Lai et al., f)CLAHE, g) SMQT, and h) Unsharp masking. 
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Figure 4.13  Results of contrast enhancement methods a) raw image, b) image 

result of contrast stretching c) image result of histogram equalization, d) image result 

of plateau method proposed by Wang et al., e) image result of plateau method 

proposed by Lai et al., f) CLAHE, g) SMQT, and h) Unsharp masking. 
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Figure 4.14  Results of contrast enhancement methods a) raw image, b) image 

result of contrast stretching c) image result of histogram equalization, d) image result 

of plateau method proposed by Wang et al., e) image result of plateau method 

proposed by Lai et al., f) CLAHE, g) SMQT, and h) Unsharp masking. 
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4.3 Implementation 

 

Four methods are selected to be implemented for contrast enhancement because 

of their relatively better performances and suitability for FPGA implementation. These 

are: contrast stretching, histogram equalization, and histogram equalization with 

plateau methods proposed by Lai et al [16] and Wang et al [14].  These methods will 

have different uses in different situations. 

The four methods that are implemented have some functions in common. For the 

optimum use of space they can combined into a single unit in which these common 

functions are shared between the methods. Because only one of the methods will be 

active in a given time, this sharing of functions can be facilitated. 

The major bottlenecks, in terms of area, are memory and pipelined division. Using 

these modules in a shared manner would reduce the area that overall implementation 

consumes and allow the implementation of multiple contrast enhancement methods to 

be implemented on the same device. 

 

4.3.1 Contrast Stretching Module 

 

Contrast Stretching module consists of a maxima and a minima finder, a frame 

buffer, and the arithmetic operations.  The maxima and minima finders are circuitry for 

detecting minima and maxima, the frame buffer is a memory unit and is controlled via a 

FIFO circuitry, and arithmetic operations circuitry is the circuitry for making the 

operation in the equation (4.1). 

The maxima finder takes the value of incoming data, when the incoming data is 

larger than its current maximum value, and it’s value is reset to zero every time a new 

frame signal is received so that the maxima belongs to the incoming frame and 

incoming frame only. Similarly minima finder takes the value of incoming data, when 
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the data is smaller than its current value, and it is preset to maximum value allowed for 

that ADC resolution range.  

 

Figure 4.15 Contrast stretching implementation. 

 

Frame buffer consists of a memory that is large enough to hold a complete frame 

and a circuitry to control it it in a First in - First out (FIFO) manner.  This part of the 

circuitry is generically designed so that it can use the Block RAM of the FPGA or an 

external RAM, depending on the parameter input in the synthesis time. When using 

Block RAM, it generates the addressing and accesses the RAM accordingly during the 

synthesis. Conversely, in the external mode, it only generates addressing and outputs 

the addresses only. 

These circuits that are described prepare the values in the equation (4.1). Since only 

fixed point operations are available, multiplication was implemented before division.  

After that, arithmetic operations are done on them. First, the minimum value is 

subtracted from each incoming value, then resulting number is multiplied with the 

absolute maximum value of the system; finally, result of this multiplication and the 

difference between the maximum and the minimum is sent to pipelined division 

module. Figure 4.15 illustrates contrast stretching operation. 

This completes one cycle of processing, however when one frame is being 

processed, another frame is also being captured. There are two ways that the second 

frame can be handled. One of the ways is to hold a secondary FIFO buffer to keep the 

second frame, when the first one is being processed. The other way is to extract its 
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maximum and minimum values with a secondary detector set. The secondary detector 

set will extract the maximum and minimum of the second frame, while the data of the 

first set is being used for processing the first frame. For implementation, this second 

solution was used, for the reason that it would be more economical, in terms of FPGA 

space. 

 

4.3.2 Histogram Equalization Module 

 

Histogram equalization problem consists of two main parts. One of the parts is 

extracting the histogram, and the other part is calculating the lookup table and look up 

operation. The paper in [21] provides an in-depth discussion about histogram 

equalization with FPGAs. 

Histogram Equalization module consists of two sub modules, namely Image 

Statistics sub-module and Equalization sub-module. In addition to those, the module 

includes a frame buffer, similar to one used in the Contrast Stretching module. Image 

Statistics sub-module extracts the histogram of the incoming frame, whereas 

Equalization sub-module calculates the cumulative density function from the histogram 

that Image Statistics sub-module extracted, and then uses it as a look-up table for the 

incoming image to be processed. 

 

4.3.3  Image Statistics sub-module :  

 

The purpose of the Image Statistics sub-module is to extract the histogram of the 

incoming frame. The module uses a Block RAM compound to extract and keep the 

histogram data. To do this, incoming image data is connected to the address port of the 

RAM block. Each time a pixel arrives, the data at this address is incremented. At the end 

of the frame, the data in the Block RAM would indicate the number of pixels in the gray 

level, at the corresponding address. 
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 Xilinx FPGAs provide Block RAMs with Read First mode for simplifying operations 

like this. In Read First mode, an additional register is connected to the output of the 

RAM so that the data of the corresponding address is output at the first clock edge, and 

then at the second clock edge the data can be modified and re-written on the same 

address. This implementation uses this property to increment the data at the RAM 

associated with histogram.  It should be also noted that this implementation requires 

twice the clock frequency of the incoming pixel data. This operation is illustrated in 

Figure 4.16. 

After a complete frame is passed through Image Statistics sub-module, the module 

outputs the histogram data beginning from the lowest value, zero, and incrementing 

until the highest value, the number of gray levels. After that, data at all the addresses of 

Block RAM is cleared for the preparation for the next frame. 

 

 

Figure 4.16 Histogram extraction circuitry. 

 

For sequential frames, the situation discussed in the Contrast Stretching module 

applies for this module too. The contents of a RAM block needs to be output and 

cleared at the end of each frame. Again, to handle this delay an additional buffer or a 
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secondary RAM block can be used. The additional buffer must have a size that is large 

enough to keep image, while data is output and RAM is cleared. This requires twice the 

memory of Block RAM that’s used for histogram, on the contrary adding another Block 

RAM for histogram, would use half of the memory that additional buffer would use. For 

that reason, the module includes two RAM blocks for histogram extraction. The timing 

of these blocks is summarized in Figure 4.17. 

 

 

Figure 4.17 Timing of two RAM blocks in histogram extraction circuitry. 

 

While the first RAM bock is busy extracting the statistics of one frame the second 

RAM block is at sleep state. At the end of a frame second RAM block begins to extract 

histogram of the next frame while first RAM block outputs the data and then clears 

itself. After the contents of the RAM are cleared, the RAM block then goes to sleep 

mode. 

 

4.3.4 Equalization sub-module:  

 

Equalization sub-module is responsible for calculating the cumulative sum of the 

histogram that is output by the previous module. The module then, uses this 

cumulative histogram as a look-up table for calculating output values of the image.  

After one frame completes passing through Image Statistics sub-module, the 

module outputs the histogram of the image. Equalization sub-module inputs this data. 

For each data that is output by Image Statistics sub-module, it sums the incoming 

histogram data with the cumulative sum data of the previous gray level and writes is to 

the cumulative sum data of the next gray level. It should also be noted that Block RAM 

RAM 1 Output Data Clear Sleep

RAM 2 Output Data Clear Sleep
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Extract Histogram

Extract Histogram

Image 1 Image 2



 
 

56 
 

for keeping cumulative histogram needs to operate at the same frequency that Block 

RAM for keeping histogram operates at, whereas the counter for addressing the RAM 

block operates at the same frequency that pixel data is being captured.  

 

 

Figure 4.18 Cumulative histogram calculation and look-up circuitry. 

 

Similar to Image Statistics sub-module, Equalization sub-module contains two RAM 

blocks. At the beginning of a frame, first RAM block begins to calculate cumulative 

histogram, while second block processes remainder of the previous image. As the 

calculation of the cumulative histogram completes, processing of the previous image 

completes too. After this point, first RAM block begins to process the image, while the 

other RAM block goes to sleep. The roles of these blocks reverse with the beginning of 

the incoming frame. Figure 4.19 summarizes the timing of these RAM blocks. 

 

 

Figure 4.19 Timing of two RAM blocks in histogram equalization circuitry. 

Again, similar to the Contrast Stretching module, the pixel data is stored in a frame 

buffer after passing through the Image Statistics sub module. In this module however, 

the buffer needs to be longer than a frame, by the number of the gray levels.  This 
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additional length is necessary in order to compensate for the delay that occurs during 

the transfer of histogram data from Image Statistics sub module to Equalization sub 

module. 

Cooperation between the RAM blocks Image Statistics and Equalization sub-

modules are summarized in the 4.20.  

 

 

Figure 4.20 Co-operation of two RAM blocks in histogram extraction circuitry and 

two blocks in histogram equalization circuitry. 

 

As the image pixels arrive to the module, the data first passes through Image 

Statistics sub module first RAM of the module extracts the histogram of the image. At 

the same time second RAM of the module transfers its contents to next module, after 

this transfer its contents are cleared and it’s put into sleep mode. Simultaneously, the 

pixel data are also written into frame buffer.  

At the end of the frame, Image Statistics module finishes extracting its histogram, 

and begins transferring it. The complementary RAM Equalization sub module takes in 

the histogram data, while at the same time calculating a cumulative histogram with it. 

When calculation of cumulative histogram is completed, pixel data of the current image 

is output from the frame buffer. At this point, the RAM related with cumulative 

histogram begins to behave as a look up table. With each pixel output from the frame 

buffer, the RAM outputs the corresponding cumulative histogram output, which is then 

transferred to pipelined divider for the final division operation. Figure 4.18 illustrates 

cumulative histogram calculation and look-up circuitry. 
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4.3.5 Plateau Method: Wang et al. 

 

Plateau method proposed by Wang et al. was implemented as an extension to the 

Histogram Equalization module. The module uses the same Image Statistics and 

Equalization sub modules as classical histogram equalization. In addition to those sub 

modules, a Plateau sub-module is introduced for the implementation of this method. 

Placement of plateau sub-module is illustrated in Figure 4.21 

The operation of this module begins with extraction of histogram of the incoming 

image by the Image Statistics sub module. At the end of a frame, different from the 

classical histogram equalization, the histogram is passed through the Plateau sub 

module, before reaching the Equalization sub module. 

 

 

Figure 4.21 Imlementation of plateau methods. 

 

The Plateau sub-module consists of four parts: maxima detection, histogram buffer, 

sorting network, and output thresholding. With the beginning of the input of the 

histogram into the module, maxima detection circuitry detects the peaks in the 

histogram. At the same time the histogram data is stored into the histogram buffer, 
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which is a FIFO type buffer. Sorting network, then sorts the peaks from greatest to 

smallest. Finally, the thresholding circuitry, thresholds the histogram by the median of 

the peaks. Figure 4.22 illustrates the operation of this module. 

 

Figure 4.22 Imlementation of plateau method proposed by Wang et al. 

Maxima finder circuitry detects maxima by first, calculating the first derivative of 

histogram, and then applying two criteria that Wang et al. [15] proposed. The derivative 

is calculated by simply subtracting each sequential elements of the histogram. After it 

was calculated for each value in the derivative it is checked whether the derivative of 

each element is smallest between its nearest neighbors, and whether the derivative of 

the previous element is negative whereas the derivative of the next element is positive. 

Each time a maxima is detected it’s recorded into a register array. The index of the 

array to be written on is determined by a counter which is also incremented. Also all 

the values of the array is reset to zero each time the maxima detection begins to ensure 

the residue of previous frames don’t affect the current threshold calculation. These 

zeros will stay at the bottom during the sorting operation and won’t affect the result. 

The array that’s holding the maxima is input to the sorting network. The sorting 

network consists of a matrix of compare and swap operations and it behaves like an 

equivalent of bubble sorting algorithm in programming. At each layer of the sorting 

network the neighboring elements of the array that hold maxima values are compared 

and swapped if the one in the higher index is larger than the one in lower index. After a 

number of iterations the items in the array will be ordered from largest to smallest.  
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The number of iterations required for complete sorting is equal to the number of 

the items of the array. For the sake of implementation modularity maximum number of 

items is limited to a fixed number. During the software prototyping of the algorithm 

maximum number of maxima that is observed was around 20 for most of the images. 

With a 50% safety margin the limit is set to be 30. Yet, this matrix of compare and swap 

circuitry consumes a considerable amount of FPGA space, and it can be reduced 

parametrically.           

The final modification of histogram is thresholding. The threshold is found as the 

median of the maxima, which is the value at the output of the sorting network with the 

index that’s the half of the value in the counter that counts the number of the maxima. 

At the time that threshold calculation operation is complete the histogram buffer 

begins to output the histogram data.  For each value of the histogram if it’s larger than 

the threshold it is set to the value of threshold. 

After thresholding, the modified histogram is output from Plateau sub module and 

input to Equalization module. In the Equalization sub module this output is treated the 

same as the output of the Image Statistics sub module. Also, the length of the frame 

buffer is larger than classical histogram equalization method by the delay of sorting 

network.  

 

 

4.3.6 Plateau Method: Lai et al. 

 

Plateau method proposed by Lai et al. is implemented in a similar manner to 

plateau method of Wang et al. The implementation again, consists of an Image 

Statistics sub module, a Plateau sub module and an Equalization sub module. Similar to 

previous implementation, Plateau sub module inputs the histogram data from Image 

Statistics sub module and outputs the modified histogram into the Equalization sub 

module. 
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Plateau sub module consists of four main parts: maximum detector, histogram 

buffer, square root calculation circuitry, and pipelined divider. With the input of the 

histogram data, the maximum detector finds the maximum value of the histogram by 

comparing the value of each element in the histogram to its content. At the same time, 

the histogram data is recorded in to histogram buffer which again, is a FIFO buffer. The 

values of the histogram are then passed through a division operation, and then through 

a square root operation for an approximation of the equation (4.11). Finally, the 

resulting modified histogram is output to be used for equalization operation.  Figure 

4.22 illustrates the operation of this module. 

 

Figure 4.23 Imlementation of plateau method proposed by Lai et al. 

 

This method also requires a frame buffer, long enough to compensate for the delay 

of pipelined division and square root operations. 

The division operation uses a pipelined divider. Since the divider is a fixed point 

implementation, any multiplication operations need to be implemented before the 

division. For this method specifically, since there is a square root after division, the 

value to be divided is multiplied with the square of the number of gray levels.  

The challenge with implementing this method is to implement the power operation 

in (4.11). A very close approximation for it might be cube root approximation. There are 

numeric methods for Newton – Raphson (4.12) iterations or Hailey (4.13) iterations 

such as: 
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) (4.13) 

However, these operations require additional dividers, which consume too much 

FPGA space to be implemented. Using square root approximation wouldn’t give results 

as good as a cube root approximation, but square roots can be calculated 

algorithmically via a series of shift and subtract operations, and it will consume much 

less space. Therefore, square root approximation was selected for implementation. 

Square root circuitry was implemented in a pipelined manner. It inputs the result of 

the division circuitry and outputs the result of the equation (4.11).  The output is sent to 

Equalization sub module where according to this output, cumulative histogram 

calculation and look-up operations are performed.  

 

4.3.7 Contrast Enhancement Module 

 

All of these implementations mentioned above have different advantages and 

disadvantages depending on the situation. In some situations one may give a more 

useful output than the others, while in some other situations using another may be 

more advantageous. For example histogram equalization would improve the visibility of 

the region of interest, when the number of pixels of this region is larger than other 

regions. On the other hand, when it is smaller than the other regions a plateau method 

would work to balance the disproportionately low gains for the region of interest. Other 

times, there may be situations that may require preservation of the proportionality 

between the values, these situations would require contrast stretching. So, it would be 

more useful to implement the mentioned methods in a module in which the method 

can be selected by the user, during the run-time rather than implementing a single 

module.  

Implementing a contrast enhancement module that wouldn’t use too much 

additional resources since the modules have a lot of similar properties. First of all, all 

the implementations require a frame buffer, though with different lengths. They also 

require at least one division operation. These two modules use the most space in all of 
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the implementations. In addition to that, histogram based methods share the Image 

Statistics and Equalization methods. Those overlaps allow a compact design that 

includes all the methods in a single module.   

 

4.3.7.1 Structure of the module 

 

The module has four modes that are controlled via an outer select signal. 

Depending on the mode selection, enable signals of the modules are set or reset, and 

inputs and outputs are multiplexed to necessary sub-modules.  

The module is structured to share the frame buffer in all modes, so it’s enabled 

regardless of the select signal if main module is enabled. It allows either using an 

external memory or internally allocating a Block RAM which is selecting in the synthesis-

time. Different methods require different FIFO buffer sizes. To handle this, the 

controller dynamically selects the length of the buffer according to the select signal. 

Figure 4.24 illustrates the structure of the module. 

 

 

Figure 4.24 Architecture of the contrast enhancement module. 
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The pipelined divider consumes the most area by comparison to other circuitry so 

it’s also shared between the methods. At any given time, maximum number of division 

operations is two, therefore two pipelined dividers are implemented. One of the 

pipelined dividers is shared by all the methods, whereas the other is specifically 

allocated for the Plateau sub module of the method proposed by Lai et al.  

 

Figure 4.25 Contrast enhancement module in Contrast Streching mode. 

As expected, histogram based methods also share the Image Statistics and 

Equalization module. Plateau methods proposed by Lai et al. and Wang et al. are 

implemented between these two modules. In addition, for the Contrast Stretching 

method an additional maxima and a minima finder is implemented. 

When the select signal indicates that current mode is Contrast Stretching, minima 

and maxima finder is enabled, frame buffers length is set to an exact frame length and 

inputs of the pipelined divider is connected to the output of the maxima and the 

subtraction of the minima from the frame buffer. Figure 4.25 illustrates the active parts 

in contrast stretching mode. 

When, on the other hand, select signal indicates histogram based methods Image 

Statistics and Equalization circuitry is enabled, frame buffers length is set to the 

addition of the delay of the selected method to one frame, and inputs of pipelined 

divider is connected the look up result from and the maximum value of the cumulative 

histogram. Figure 4.26 illustrates the active parts in histogram equalization mode, and 

Figure 4.27 illustrates the active parts in histogram equalization with plateau modes. 
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Figure 4.26 Contrast enhancement module in Histogram Equalization mode. 

The control logic at the Contrast Enhancement module disables the unused 

modules, this way it doesn’t consume any extra power. All the modules are 

parametrically connected as sub modules the main module. This allows the main 

module to keep genericity of the sub modules at a top level. 

 

 

Figure 4.27 Contrast enhancement module in Histogram Equalization with Plateau 

mode . 
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CHAPTER 5 

 

5 NOISE REDUCTION 

 

 
 

This chapter discusses sources of noise in the image, and algorithms to reduce the 

noise. First, Section 5.1 states the sources of noise, which gives hints about the 

characteristics of the noise, and then Section 5.2 discusses three noise reduction 

methods, namely spatial filtering, wavelet based methods, and time domain filtering. 

Finally, Section 5.3 provides the implementation of the spatial filtering method. 

 

5.1 Sources of the Noise 

 

The image is produced from the incoming infrared radiation, as a result of a 

complex process. First, the radiation falls onto an active material, and then the material 

responds to incoming radiation with changing resistance or diode voltage. After that 

this change is read out by an electronic circuitry. Finally, the output of the readout 

electronics is converted to a digital value via an analog to digital converter. All of these 

steps introduce some level of noise to the image. 

The noise on the image may be a source disturbance in the user experience. 

Disturbance may vary from a simple discomfort for the user to leading user to miss or 

discard important details. In order to get around this, well known methods for noise 

reduction can be employed. 
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It was observed tjat the noise on the image was evenly distributed in time domain. 

On the other hand, it may have some space domain characteristics as a result of 

readout methods. The algorithm that readout circuitry uses for multiplexing and 

outputting pixel data, can lead relatively low frequency noise to appear as patterns on 

the image. 

In METU MEMS Research and Applications Center, the readout circuitry of the 

infrared detectors is designed in a way that reads out the pixel data in the horizontal 

direction. For that reason the noise on the image appears as horizontal lines. This 

knowledge about the spatial characteristics of the noise makes it easier to develop and 

use spatial filters, specifically designed for this case. 

 

5.2 Noise Reduction Methods 

5.2.1 Spatial Filtering 

 

Since the noise on the image appears mostly as horizontal lines, a low pass filter 

with vertical components can be employed to suppress it. This filter will smooth line to 

line changes in the image, reducing the effect of the noise on the image. The filter can 

be applied using a convolution operation. This is a simple and fast solution and can be 

implemented within relatively small FPGA space. It provides a smooth image and 

reduces the noise on it. However, this method has some drawbacks. It does not 

suppress the noise as much as other methods. In addition to that, it loses too much 

detail in the vertical direction. This may be unaffordable in a small image.  Figure 5.1 

provides an example of spatial filtering. 
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Figure 5.1 a) Raw image, b)Spatially filtered image. 

 

a 

b 



 
 

69 
 

 

5.2.2 Wavelet Based Methods 

 

Another approach for reducing the noise is using wavelets. As the noise appears as 

horizontal lines, there is vertical spatial frequency that is associated with it. Using this 

property, noise can be suppressed more effectively without filtering out too much 

detail.  

There are examples in the literature that use wavelet based methods for noise 

reduction [22-24]. Generally, images are analyzed into their low pass and high pass 

images, after that, high pass images, which contain the noise component are filtered. A 

simple and effective way to free these high pass images from noise is to threshold 

them. With thresholding weak details, which are mostly noise, much of the noise is 

eliminated.  Figure 5.2 and Figure 5.3 illustrate wavelet analysis, thresholding, and 

synthesis. 

 

 

Figure 5.2 Wavelet analysis. 
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The wavelet thresholding operation can be iterated further by analyzing low pass 

image into its low pass and high pass details. This way, noise components with lower 

spatial frequency can also be filtered out.  

However, this method has its drawbacks too. It is calculation intense, and it 

requires a lot of memory. Several levels of analysis and synthesis pairs would require 

too much memory to be implemented on a small FPGA. In addition, the wavelet 

analysis and synthesis filters have different frequency responses. After aggressive 

filtering, frequency responses of the filters might result in patterns that are visible on 

the image.   

 

Figure 5.3 Thresholding of details and wavelet synthesis. 

 

5.2.3  Time Domain Filtering 

 

As an alternative to, or complimentary method for spatial filtering is time domain 

filtering. Sequential values of each pixel can be passed through a one dimensional low 

pass filter, in order to create a noise suppressed image. The kernel can be implemented 

in a similar manner to a space domain filter kernel and it would be simple and fast. 

Figure 5.4 illustrates time domain filtering. 
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This method provides relatively better noise reduction performance, since it would 

have a lower cut off frequency than the low frequency noise that is appearing in the 

image as lines.  

 

Figure 5.4 Time domain filtering. 

 

However, this method also requires too much memory. It needs to keep several 

frames in the memory to be effective enough. Also, it increases the response time of 

the system and causes a motion blur. This may cause the system to lose some 

important data when fast response is necessary.  

 

5.3 Implementation  

 

Since there are limited resources, in terms of FPGA space only spatial filtering 

method was implemented. The implementation is similar to the one discussed in 

Chapter 3. It consists of a kernel and several FIFO buffers to hold data associated with 

the lines. The implementation is illustrated in Figure 5.5. 

The width of the kernel is set parametrically to be a single pixel. The remaining 

pixels on the line are stored in fixed length FIFO buffers. The lengths of the buffers are 

one pixel shorter than the width of the image. The input of each buffer is connected to 

the output of a line, and its output is connected to the input of the next line in the 

kernel. The number of buffers is one less than the number of lines in the kernel. 
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Figure 5.5 Spatial filter implementation. 

 

In order not to add an additional divider, sum of the coefficients in the kernel are 

chosen to be a power of two. The coefficients are selected by MATLAB trials as 

{1,2,2,2,1} which has a sum of 8. The output is formed by a division operation of shifting 

the weighted sum of the kernel by 3 bits. 
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CHAPTER 6 

  

6 PSEUDO - COLORING 

 

 

This chapter focuses on pseudo-coloring of IR images. It discusses pseudo-coloring 

briefly, and then it provides some pseudo-color palettes, finally it discussions a static 

and a generic implementation. Section 6.1 provides an overview pseudo-coloring, and 

Section 6.2 presents commonly used palettes for IR images. Finally, Section 6.3 

discusses implementations of these palettes. 

 

6.1 Pseudo - Coloring 

 

Infrared sensors respond to radiation intensity with variations in their output 

voltages. This voltage levels are then converted to digital values in A/D converters, and 

these values are put together in a display according to their relative position in order to 

form images. Often, the values are converted to gray levels directly, after some 

processing. This is a straightforward process where higher intensity signals are 

presented with higher intensity light in the display. 

Another approach to display values with varying signal levels is to assign colors to 

intensity values. It is called pseudo-color or false-color since the signals represented 

with different colors, aren’t signals with different frequencies, but rather signals with 

different intensity levels  This technique is also employed in some areas like medical 

magnetic resonance imagery (MRI), satellite and radar image reconstruction, and x-ray 

imaging.  In these fields intensity values from the sensing devices are matched to some 

colors, rather than intensity levels. This allows viewers a more natural experience, and 
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more importantly it provides the viewers with the environment in which they can use 

their intuitive senses.   

In the nature, it is safe to assume that some objects or places with relatively high or 

low temperatures have linkage with certain colors, so humans evolved visual 

interpretation systems that make temperature meanings out of colors. By the nature of 

the infrared radiation, the hotter the object that is radiating infrared light, the more 

intense the radiation is.  For this reason, matching increasing infrared radiation 

intensity with colors with increasing heat would make it easier for the viewer to make 

sense. 

There is also another advantage to use pseudo color methods, which is a more 

efficient use of the dynamic range of the display. In a classical RGB type display, there 

are only as many gray levels as the resolution of a single color. However, when a 

pseudo color method is employed this number is multiplied by the number of color 

gradients used. In a sense, signal is amplified by the number of color gradients that are 

used. 

The book in [25] discusses two main ways to apply pseudo color onto images, 

namely intensity slicing and intensity to color conversion. Intensity slicing is basically 

separating image into blocks and coloring blocks, whereas intensity to color conversion 

is assigning a color to every value in the image. 

Intensity slicing is the method, in which the intensity of the incoming image is 

divided into slices, and then these slices are assigned different colors. This is particularly 

useful for detecting regions with large changes with respect to the environment. 

Intensity slicing is employed in many applications like medical x-rays and geographical 

imagery. 

The other alternative is the generalized form of intensity slicing, which is called 

intensity to color conversion. In this method, RGB color values of the output are 

produced from the intensity of the image via three transforms. These transforms are 

often referred to as pseudo color palettes or scales. Palettes are generated as piecewise 

linear or sinusoidal functions, and colors are generated by combinations of these 

functions. 
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6.2 Pseudo-Color Palettes 

 

One of the commonly used palettes is rainbow color scale which is named after the 

color distribution of a rainbow. This scale starts with blue color, then progresses to red 

finally, reaching yellow at the end. Figure 6.1 demonstrates this palette and an image 

pseudo-colored using this palette. 

The same palette can be generated with a sinusoidal interpolation. This palette would 

give a smoother look to the image. However, it should be noted that some colors are 

used twice, and this might give the user a wrong impression about the temperature. 

Figure 6.2 demonstrates this palette and an image pseudo-colored using this palette. 

Another useful palette, specifically for infrared pseudo coloring, is hot-metal scale. 

In this scale, colors are organized in the order that would imitate the light radiation of 

metals with increasing temperature. This scale starts with blue color, then progresses to 

yellow, and approaches to red at the end. Figure 6.4 demonstrates this palette and an 

image pseudo-colored using this palette. 
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Figure 6.1 Rainbow scale pseudo coloring with a linearly interpolated palette 

a)The palette used for transformation, b)Raw image, c)Pseudo colored image.  
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Figure 6.2 Rainbow scale pseudo coloring with a sinusoidally interpolated palette 

a)The palette used for transformation, b)Raw image, c)Pseudo colored image. 
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A last alternative that can be implemented is to directly copy the intensity level of 

the incoming image to a single channel, for example to green. Although it wouldn’t 

introduce any additional visibility for details, it would provide a smoother view.  

Figure 6.3 provides an example of the result of directly mapping gray levels to green 

color channel. 

 

Figure 6.3 a) Raw image, b) Pseudo colored image by directly mapping gray levels 

to green channel. 

a 
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Figure 6.4 Hot-metal scale pseudo coloring with a linearly interpolated palette: 

a) The palette used for transformation, b) Raw image, and c) Pseudo colored image. 
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Figure 6.5, Figure 6.6, and Figure 6.7 provide comparisons of the pseudo-color palettes 

discussed in this section. 

 

 

 

Figure 6.5 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored 

image rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, 

e) Direct green mapping. 
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Figure 6.6 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored 

image rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, and 

e) Direct green mapping. 
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Figure 6.7 Results of pseudocoloring methods:  a) Raw image, b) Pseudo colored 

image rainbow scale (linear), c) Rainbow scale (sinusoidal),  d) Hot metal scale, 

e) Direct green mapping. 
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6.3 Implementation 

 

Pseudo color methods are implemented for two possible uses. The first 

implementation assumes a fixed color resolution, which is true for almost all displays. It 

builds on this assumption and uses a fixed implementation, which is both small and fast. 

The second implementation, on the other hand employs a generalized implementation. 

It is flexible, generic, and it can be adapted to various color resolutions. However, it 

uses more FPGA resources and it’s slower. 

Most color displays are designed with 8 – bit color resolution per color channel. This 

knowledge is useful when building fixed coloring implementations. For pseudo color 

transformations, when the size is fixed, look-up tables can be used instead of 

calculation circuitry since the values of the transformation functions wouldn’t change as 

well as the resolution. 

 

 

Figure 6.8 Pseudocolor implementation by using Block RAM as look up table. 

 

This method implements a look-up table using Block RAMs in FPGA. Xilinx FPGAs 

allow presetting of Block RAM data during programming. It also allows a “Read Only” 

mode, in which contents of the RAM cannot be changed during run time.  
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Implementation includes three RAM blocks corresponding to red, green, and blue 

channels. RAMs are divided into sectors for look up values of different palettes. The 

lookup values in these RAMs are calculated and initialization files were generated with 

an outside software.  Address inputs of the RAMs are used as input. With the selection 

of the palette an additional offset is added to the input that addresses the 

corresponding sector for the palette. Outputs of the RAMs are used as the final output 

of the module.  Figure 6.8 illustrates this Block RAM based implementation. 

Second implementation is more generic. The idea behind this implementation is to 

implement the point wise linear transformation equations for three color channels. It 

inputs the color resolution and the number of intensity levels as parameters. Then it 

divides the number of intensity levels to the number of colors and generates regions in 

synthesis time.   Figure 6.9 illustrates this generic implementation. 

 

 

Figure 6.9 Generic implementation of pseudo coloring algorithm. 

During the run time the module decides which region the input image value falls 

into and calculates output in accordance with the point wise linear transformation 

function. At each region only one division is necessary, so only one divider would be 

enough for all the calculations. Finally, the multiplexers at the output would decide 

which value to be output for each color channel according to the region that incoming 

image data falls into.  
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CHAPTER 7 

 

7 RESULTS 

 

 

 

This chapter provides the verification of the camera electronics, and results of the 

implementation of the image processing algorithms. The testing and verification of 

camera electronics were done by simple measurements. The testing of the 

implementation of the image processing algorithms, on the other hand were done by 

sending data to, and receiving data from the FPGA. The camera electronics are fully 

functional, and image enhancement software fits the frequency and the area 

constraints. Section 7.1 discusses verification of the camera electronics. Section 7.2 

presents the results of image enhancement. 

 

7.1 Camera Electronics  

 

The camera the hardware requires the testing of the biasing and the programming 

of board components and the testing of data acquisition. Correct biasing and 

programming of the hardware was tested and verified via simple measurements. 

Furthermore, correctness of data acquisition is verified by the comparison of the output 

of the scope mode of the software with oscilloscope measurements. 

D/A converters on the camera board were tested by sending values of 

0V (minimum), 5V (maximum), and random values in between, measuring the output 

with a multimeter.  The SPI programming module that programs the IR detector array 

was verified by observing its output with an oscilloscope. 
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The available A/D converter was tested by giving random values to its input via an 

external voltage supply and observing the scope window of the camera software. 

Finally, tagging module of the data acquisition was tested and verified by comparing 

corner pixels of the image with the corner pixels of the detector array. 

 

7.2 Image Enhancement 

 

7.2.1 Test Setting 

 

For testing, the XEM 3010 evaluation board from Opal Kelly was used. The board 

includes a Spartan 3 series XC3S1500 FPGA, which was chosen to be the platform for 

the designs. It includes an additional micro controller unit (MCU) for USB 

communication, a PLL for clock generation, and an SDRAM for data storage. Figure 7.1 

demonstrates Opal Kelly XEM 3010 board. 

The board connects to a host computer through USB port, where interfacing 

software handles data transfers to and from the board. Data transfers to and from the 

FPGA are handled as endpoints, in the standard libraries provided by Opal Kelly. In 

terms of behavior, Opal Kelly libraries provide three types of endpoints. Trigger type 

endpoints when activated from the complimentary side stay high for one clock 

duration. Wire type endpoints, on the other hand keep the data that it is programmed 

with until the complimentary side changes it. The third type is for bulk transfers of data, 

and it is called pipe.  



 
 

87 
 

 

Figure 7.1 Opal Kelly XEM3010 Board. 

 

For this test, trigger type endpoints were employed for synchronization signals such 

as the beginning of a new frame or change of a signal. Wire type endpoints were 

employed for selection signals such as threshold of defective pixel correction or type 

contrast enhancement method. Finallyimage was transferred through pipe type 

endpoints into and out from the FPGA to the software.   

Although it is possible to combine them, separate methods such as defective pixel 

correction or contrast enhancement were tested separately. First, the host computer 

sent the image data to the FPGA. After that the FPGA processed the image with the 

relevant method. Finally the host computer transferred back the result back from the 

FPGA in order to display or save it.  

Throughout the testing clocking frequency was kept constant at 2 MHz, which was 

the desired frequency for the systems to work with. It is hard to determine whether the 

errors are occurring due to clocking circuitry with higher frequencies or not. They can 

settle with or, due to round off or sign errors in the arithmetics by looking at the results 

only. For this reasons performance characteristics of the circuits were determined by 

simulation results. 
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The Xilinx ISE design suite provides accurate post-route simulations for 

characterization of clocking performance.  It provides a 2ns resolution for clock signal 

generation, 1 ns for on and 1 ns for off time assuming symmetric clocking.   

For verification of the proposed implementation, the RMS difference between the 

results of the hardware and software implementations and the MATLAB prototype was 

compared. The measure was taken to be the second order norm of the difference of 

two images.  For cancelling out effects of shifting the image to be compared was shifted 

as many times as necessary and minimum of the resulting differences was taken. The 

result was taken as parts per thousand (1/10-3) 

 

7.2.2 Results  

 

7.2.2.1 Defective Pixel Correction 

 

The first method to be tested was the defective pixel correction algorithm. FPGA 

implementation of this algorithm produced almost identical results as the MATLAB 

prototype. This was expected since there are no extensive arithmetical calculations in 

the algorithm. In the median filter there are only complete pixel value replacements so 

it wouldn’t produce results with round of errors. Results of the test verified this 

expectation the deviance of the results from MATLAB prototype was 0.0 x 10-3. 

The clocking performance of the circuitry was quite above the target frequency. It 

performed without any problems up to 20 MHz, ten times the desired frequency. After 

this frequency shift registers in the kernel began to produce timing violations. Figure 7.2 

demonstrates the result of defective pixel correction and its comparison to MATLAB 

prototype.  
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Figure 7.2 Defective pixel correction results: a) Original image, b) MATLAB 

prototype, c) Output of the device. 
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7.2.2.2 Contrast Enhancement 

 

For the contrast enhancement results are satisfyingly similar to the results of 

MATLAB prototypes except for plateau method proposed by Lai et. al. In other methods 

the error can be associated with the round off errors in the fixed point operations. The 

RMS errors of contrast stretching and histogram equalization were 0.2 x 10-3 and 

0.6 x 10-3 respectively.  Figure 7.3 demonstrates the result of contrast stretching, and 

Figure 7.4 demonstrates the result of histogram equalization. 

Plateau method proposed by Lai et al. is performing relatively poorer than the 

MATLAB prototype. This quality drop is due to the square root approximation used in 

place of the power of 0.31 operation proposed by the article. Its deviance from MATLAB 

prototype was 2155.4 x 10-3. Figure 7.6 demonstrates the result of this method and its 

comparison to MATLAB prototype.  

Plateau method proposed by Wang et al. suffered discontinuities and caused 

flashes when the maximum number of the maxima that can be kept in the memory fell 

below 25. However over this number the method functioned properly. Its deviance 

from MATLAB prototype was 23.6 x 10-3. Figure 7.5 demonstrates the result of this 

method and its comparison to MATLAB prototype.  
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Figure 7.3 Contrast stretching method results: a)Original image, b) MATLAB 

prototype, c) Output of the device. 
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Figure 7.4 Histogram equilization results: a) Original image, b) MATLAB prototype, 

c) Output of the device. 
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Figure 7.5 Results of plateau method proposed by Wang et al. a) Original image, 

b) MATLAB prototype, c) Output of the device. 
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Figure 7.6 Results of plateau method proposed by Lai et al.: a) Original image, 

b) MATLAB prototype, c) Output of the device. 
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The major limiting factor frequency in these methods is the pipelined divider. Since 

all the methods require at least one division operation, their operating frequencies are 

limited with the bottleneck of the system which is division. The maximum frequency 

that could be achieved with these methods was 3.3 MHz. It’s faster than the desired 

frequency with a safe 65% margin.  

The cause of the bottleneck in the division circuitry is the asynchronous path in 

subtract and compare operation. This path can be retimed to have a better clocking 

performance. However such an operation will increase the FPGA space requirements. 

Of all the image processing operations discussed here, only contrast enhancement 

module came close to exceed the area limitations. Whereas the other operations used a 

few RAM blocks and a small percentage of the logic, contrast enhancement module 

consumes 25% of RAM blocks 93% of logic slices in 12 – bit operation, and it uses 100% 

of RAM blocks and 98% of logic slices in 14 bit operations. 

 

7.2.2.3 Noise Reduction 

 

Noise reduction too produced a similar output to MATLAB prototypes. Since it was 

using a division by shifting it was expected to have some rounding errors. However 

these errors are not severe enough to be seen by an observer. Its RMS error compared 

to MATLAB prototype was 2.6 x 10-3. Figure 7.7 demonstrates the result of this 

implementation of spatial filtering and its comparison to MATLAB prototype.  
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Figure 7.7 Noise reduction method results: a) Original image, b) MATLAB 

prototype, c) Output of the device. 
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The noise reduction circuitry works on the same kernel structure that defective 

pixel correction does and it is limited with 20 MHz similar to the defective pixel 

correction circuitry. 

7.2.2.4 Pseudo-Coloring 

 

The look up table implementation for pseudo color method produced the same 

results as the MATLAB prototype since the look up table contents are generated with 

MATLAB. And the results of generic implementation were identical. 

Xilinx claims that Block RAMs are capable at working with frequencies up to 333 

MHz [24]. In simulation also fixed pseudo color module worked without any problems 

up to 125 MHz.   

Generic implementation on the other hand, is again limited with the frequency 

bottleneck of divider module. For this reason it is limited with its maximum frequency 

of 3.3 MHz. 

Figure 7.8 provides the results of pseudo-coloring and their comparisons to 

MATLAB prototypes.  
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Figure 7.8 Results of pseudo coloring: a) Original image, b) Rainbow scale linear 

palette MATLAB prototype, c) Output of the device, d) Rainbow scale sinusoidal 

palette MATLAB prototype, e) Output of the device, f) Hot metal scale linear palette 

MATLAB prototype, g) Output of the device, h) Direct green mapping MATLAB 

prototype, i) Output of the device. 

In addition to previously mentioned specifications the design is completely generic 

in terms of bit length. All the modules reconfigure themselves with the input of bit 

length as a parameter during the synthesis time. Furthermore the modules which have 

internal memory can adjust their size of memory according to the same input. The 

circuitries are divided into modules and operational blocks in terms of their functions. 

These properties make the implementation reusable in many different conditions with 

different requirements.  

Table 7.1 provides the errors of the implemented method compared to MATLAB 

prototypes. This can be used as a good measure for correct implementation of the 

algorithms. Table 7.2 summarizes clock frequencies of the implemented methods. 
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Table 7.1 Comparison of the implementation results with MATLAB prototypes. 

Method  RMS Error(x10-3) 

Defective Pixel 

Correction 
0.0 

Contrast Streching 0.2 

Histogram Equalization 0.6 

Plateau Equalization 

(Wang et. al.)  
23.6 

Plateau Equalization 

(Lai et. al.) 
2155.4 

Pseudo Coloring 

(Rainbow Scale) 
0.0 

Noise Reduction 

(Spatial Filtering) 
2.6 

 

Table 7.2 Operating frequencies of  the implementations. 

Method  Frequency(MHz) 

Defective Pixel 

Correction 
20.0 

Contrast Stretching 3.3 

Histogram Equalization 3.3 

Plateau Equalization 

(Wang et. al.)  
3.3 

Plateau Equalization 

(Lai et. al.) 
3.3 

Pseudo Coloring  125.0 / 3.3 

Noise Reduction 

(Spatial Filtering) 
20.0 
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CHAPTER 8 

 

 

8 DISCUSSIONS AND FUTURE WORK 

 
 
 
 
 
Within the scope of this, thesis camera electronics for properly operating the 

detector arrays and image enhancement algorithms were implemented. The 

requirements for IR detector arrays were discussed, and how they are provided was 

presented. Moreover, methods for defective pixel correction, contrast enhancement, 

noise reduction, and pseudo coloring were presented; their implementations were 

discussed, then the results of these implementations were evaluated. In this chapter, 

possible improvements for these methods are discussed.   

Throughout the work of thesis, although the design criteria are met, some 

shortcomings of both algorithms and implementations were observed. Some of these 

shortcomings are tolerated due to area and performance tradeoffs. Some of them can 

be improved with additional input or components. 

One shortcoming that was observed on defective pixel correction algorithms is that 

when there are clusters of defective pixels on the imager, median filter with a small 

kernel cannot come up with an estimation that is an effective pixel value. When a large 

kernel is used on the other hand, it filters out the important details of the image. 

To get around this issue the author of this thesis developed and implemented a 

software algorithm. The algorithm uses a memory of defective pixels which is calculated 

earlier in the software. In the algorithm for each defective pixel the software counts the 

number of effective pixels in the 3 by 3 neighborhood. If there is at least one effective 

pixel the algorithm takes their median as the value for the output.  If all the pixels in the 

kernel are defective the algorithm enlarges the kernel and counts the number of 
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effective pixels in the new kernel. This enlargement of kernel continues until at least 

one effective pixel is included in the kernel or kernel reaches a predetermined 

maximum value. This algorithm can be implemented in a hardware both fast and small, 

however in order to do this defective pixels in the imager must be know beforehand. 

Figure 8.1 illustrates this algorithm, and Figure 8.2 provides an example of its result. 

 

Figure 8.1 Improved defective pixel correction algorithm. 
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Figure 8.2 a) Raw image, b) Image result of improved defective pixel correction 

algorithm.  

Another improvement to be made is on contrast stretching method. Author of this 

thesis observed that this algorithm is quite sensitive to noise since a small noise on the 

device would change the gain more than necessary. To get around this a percentage of 

the pixels can be excluded from the calculation of maxima and minima. This can be 

done if the maxima and minima are extracted from the histogram rather than detecting 

by simple maxima and minima detectors. This property could be added to the current 

contrast enhancement module since there is already a histogram extraction sub module 

present in it. Of course this would require a larger FPGA.  

The author also observed that wavelet based noise reduction algorithms have 

better noise reduction, and less detail is lost with these methods. However these 

b a a 
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methods require a considerable amount of memory. In a project with larger FPGAs they 

would increase noise reduction performance. 

Implementing them on a computer is an alternative to the FPGA implementation of 

wavelet based methods. Computers don’t have very restricted memories like FPGAs 

however sequential implementation of wavelet based methods may be too slow for 

real-time operation. Another alternative is using another specialized hardware, GPU. 

GPUs are commercially available and have a considerable amount of parallel processing 

power. [27] suggested and provided a method for implementing wavelet thresholding 

on a GPU. The method uses three color channels and one alpha channel for average and 

detail images. After that it thresholds the detail channels and combines them back into 

a denoised image. Figure 8.3 illustrates the implementation of multi-level wavelet 

thresholding on GPU. 

 

Figure 8.3 Wavelet based  denoising method on GPU 

The author this thesis also tried this approach as an alternative to hardware 

implementation. The method used by the author uses wavelet analysis to separate the 

average and the detail images and renders them into a smaller texture which has half 

the sizes of the initial image. It, then repeats this analysis step as many times as 

necessary, thresholds the detail images, and then combines them back into a denoised 

image.  
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However this method fails to provide a correct image. The rendering the image to a 

small texture and then rendering it back to a larger texture causes losses in the shape 

geometry of the image. This property makes this method not suitable for this 

application. Figure 8.4 demonstrates this error. 

 

Figure 8.4 GPU implementation of Wavelet processing, and loss of shape geometry a) Original 

image, b)Re-rendered image 

The largest factor affecting the performance of the implemented modules in terms 

of clocking frequency is the bottleneck caused by the pipelined divider. The source of 

the bottleneck is the long asynchronous path of shift, subtract, check-if-negative 

operation. This bottleneck can be overcome by retiming. But this will come with the 

price of using more FPGA resources. This trade off can be done if there are more free 

resources available on the FPGA. 

Also, one can improve both the size and the clocking performance of the pipelined 

divider by using well known algorithms like Radix - 4 division. However for some of the 

generic implementation would be sacrificed with this decision. 

    Similarly by compromising from generic implementation, another bottleneck in 

terms of size can be overcome. Algorithms for smaller and relatively faster sorting [28-

30] exist in the literature. One can implement such an algorithm when necessary. 

Last but not least, there are some algorithms that use a considerable amount of 

memory only for compensating the delays on the longest path. For less memory 

consumption these paths could be clock with a secondary and higher frequency clock 

signal.  
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