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ABSTRACT 

 

ROBABILISTIC-NUMERICAL MODELING OF STABILITY OF 

A ROCK SLOPE IN AMASYA-TURKEY 

 

Gheibie, Sohrab 

M.Sc., Department of Mining Engineering 

Supervisor:  Prof. Dr. H.Şebnem Düzgün 

Co-supervisor:  Assist. Prof. Dr. Aykut Akgün 

February 2012, 179 pages 

 

Rock slope stability is considered as one of the most important fields in 

rock engineering. Developments of computation facilities and increase in 

application of sophisticated mathematical concepts in engineering 

problems have also affected the methods of slope stability analysis. In 

recent years, the numerical modeling methods have extensively applied 

instead of limit equilibrium methods. Also, the probabilistic methods are 

considered in rock slope designs to quantify the uncertainties of input 

effecting variables. 

 

In this research, a probabilistic-numerical approach was developed by 

integration of three dimensional Distinct Element Method (DEM) and 

probabilistic approach to analyze the stability of discontinuous rock 

slopes. Barton models have been used to model the behavior of rock 

discontinuities and the shear strain was considered as failure indicator of 

discontinuities. 
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The proposed methodology was applied to a rock slope in Amasya, 

Turkey where the Joint Roughness Coefficient (JRC) was considered as 

the main random variable. The effect of basic friction angle and cohesion 

of joints infilling material and its strength reduction due to weathering were 

included in the analysis. In the slope the shearing behavior of fourteen 

discontinuities and the failure probability of each block were investigated, 

and the corresponding Reliability Index (β) was derived for each of the 

discontinuities. 

 

Keywords: Discontinuity, Joint Shear Stiffness, Probabilistic-Numerical 

Approach,3DEC, Reliability Index (β) 
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ÖZ 

 

 

AMASYA-TÜRKİYE’DEKİ BİR KAYA ŞEVİNİN DURAYLILIĞININ 

OLASILIK-SAYISAL MODELLEMESİ 

 

Gheibie, Sohrab 

Yuksek Lisans, Maden Mühendisliği Bölümü 

        Tez Yöneticisi       :  Prof. Dr. H. Şebnem Düzgün 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Aykut Akgün 

Şubat2012, 179 sayfa 

 

 

Kaya şev duraylılığı, kaya mühendisliğindeki en önemli alanlardan 

birisidir. Mühendislik problemlerinde modern matematiksel kavramların 

uygulamasındaki artış ve hesaplama imkanlarının gelişimi aynı zamanda 

şev duraylılık analizi yöntemlerini de etkilemiştir. Son yıllarda, limit denge 

yöntemlerinden çok sayısal modelleme yöntemleri geniş biçimde 

uygulanmaktadır. Ayrıca, değişkenleri etkileyen girdi parametrelerinin 

belirsizliğini sayısal olarak ifade etmek için kaya şevi tasarımında 

olasılıksal yöntemler de kullanılmaktadır. 

 

Bu çalışmada, süreksizlik içeren bir kaya şevinin duraylılığını analiz etmek 

için üç boyutlu Farklı Elemanlar Yöntemi (DEM) ve olasılık yöntemi’nin 

birleştirilmesi ile bir olasılıksal-sayısal yaklaşım geliştirilmiştir. Barton 

modelleri kaya süreksizliklerinin davranışını modellemek için kullanılmış 
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ve kesme dayanımı süreksizliklerin yenilme göstergeleri olarak dikkate 

alınmıştır. 

 

Önerilen yöntem, Amasya (Türkiye)’da bir kaya şevine uygulanmış, 

burada Süreksizlik Pürüzlülük Katsayısı (JRC) çalışmanın ana rastgele 

değişkeni olarak dikkate alınmış, bununla birlikte süreksizlik dolgu 

malzemesinin kohezyon ve temel içsel sürtünme açısının etkisi ve 

bozunmadan dolayı bu dolgu malzemesinin dayanım azalımı analize dahil 

edilmiştir. Şevde, on dört süreksizliğin kesme davranışı ve her bir bloğun 

yenilme olasılığı araştırılmış ve buna karşılık gelen Güvenilirlik İndeksi (β) 

süreksizliklerin her biri için elde edilmiştir. 

 

Anahtar Kelimeler: Süreksizlik, Süreksizlik Kesme stifnesi, Olasılıksal-

Sayısal Yaklaşım, 3DEC, Güvenilirlik İndeksi (β)      
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Δδ = shear displacement increment 

Δδp = plastic shear displacement increment  

F = tangent modulus factor (3DEC continuously yielding joint model) 

an = joint normal stiffness (3DEC continuously yielding joint model) 



xxv 
 

as = joint shear stiffness (3DEC continuously yielding joint model) 

en = joint normal stiffness exponent (3DEC continuously yielding joint 

model) 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1.1 Problem statement 

 

Rock slope stability is one of the most important concerns in rock 

engineering. Loss of lives of people living on hills near to mountain area, 

falling of blocks to the roads and loss of minerals in open pit mines have 

enhanced the necessity of using and developing much reliable methods to 

analyze the stability of those structures.  

 

Generally, rock slope stability analysis methods can be divided into two: 

Namely deterministic and probabilistic approaches. In deterministic 

approaches the input variables are assumed to have certain values. 

Depending on the judgment of engineer, minimum, maximum, average of 

a parameter is selected and used in the calculations. However, in 

probabilistic approaches the variables are considered to be random with 

associated probability distribution. 

   

Generally, the deterministic approach itself is divided into two as limit 

equilibrium and numerical methods. Commonly, in industrial design the 

limit equilibrium methods are applied for design of rock slopes. Hoek and 

Bray (1981) have formulated the rock slope instability problems in four 

distinct categories as planar, wedge, toppling and circular failures.  

However, limit equilibrium methods have been formulated based on some 
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assumptions. Such assumptions usually include elastic behavior, 

homogeneous, isotropic material, time independent behavior, quasi-static 

loading, etc. Geomaterials such as soils and rock masses display non-

linear behavior, either because this is inherent to the material or because 

it has been externally induced (e.g., past stress history). Rocks and soils 

may not be isotropic or homogeneous, and the loading may not be static, 

or the geometry of the problem may be complex (Bobet 2010). According 

to Krahn (2003) the fundamental shortcoming of limit equilibrium methods 

which only satisfy statics equation is that they do not consider strain and 

displacement compatibility.  

 

To solve the shortcomings of limit equilibrium methods, different 

numerical methods have been developed and applied extensively in rock 

mechanics. In Krahn’s (2003) opinion, this shortcoming can be overcome 

by using Finite Element Method (FEM) computed stresses inside 

conventional limit equilibrium framework. From the finite element stresses 

both the total shear resistance and the total mobilized shear stress on a 

slip surface can be computed and used to determine the factor of safety.  

 

Numerical methods have been extensively used in the past several 

decades due to advances in computing power. Generally, numerical 

methods can be classified into continuum and discontinuum methods 

(Jing and Hudson 2002, Jing 2003). There are quite a large number of 

numerical methods that have been used in the literature to estimate the 

behavior of geomaterials. The most important or at least the most used 

methods are: Continuum, Finite Difference Method (FDM), Finite Element 

Method (FEM) and Boundary Element Method (BEM); Discontinuum, 

Distinct Element Method (DEM), Discontinuous Deformation Analysis 

(DDA), and Bonded Particle Model (BPM). There are two other methods 

which do not follow this classification: Meshless Methods (MM) and 

Artificial Neural Networks (Bobet 2010). Jing and Hudson (2002) and 
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Bobet (2010) have discussed the different numerical methods applied in 

rock mechanics. 

 

However, rock mass parameters are always containing uncertainty, the 

utilization of probabilistic methods in rock engineering, permits a rational 

treatment of various uncertainties that significantly influence the safety of 

a rock slope. Moreover, probabilistic approaches offer a systematic way of 

treating uncertainties and quantifying the reliability of a design (Kirsten, 

1983). Düzgün (1994) and Düzgün et al. (1995) have applied advanced 

First Order Second Moment method (AFOSM) to a non-linear 

performance function with non-normal correlated variables to analyze the 

planer stability of a rock slope based on Mohr-Coulomb criterion. Düzgün 

et al. (2003) have proposed a methodology for reliability based design of 

rock slopes. In this study, a model is developed within the framework first-

order second-moment approach to analyze the uncertainties underlying 

the in situ shear strength properties of rock discontinuities. Düzgün and 

Özdemir (2006) have applied AFOSM and risk assessment to a planar 

failure of a rock mass in Konya to manage the risk by decision analytical 

procedure. Jimenez-Rodriguez et al. (2006) considered a sliding mass on 

an inclined plane with two blocks separated by a vertical tension crack. 

Two cases were defined, in which the two blocks may have interaction or 

not. The models were formulated by Limit Equilibrium Method for each 

case. It was assumed that when Safety Factor (SF) is lower than one a 

block will fail. Düzgün and Bhasin (2009) used first order reliability method 

(FORM) to model a plane failure of a slope with 734 m-height using the 

Barton-Bandis (1982) shear strength criterion for modeling the limit state 

function. The slope was consisting of three big blocks laying on each. 

They have defined possible failure scenarios and by using conditional 

probability theory the failure probability was calculated.   

 

Low (1997) calculated the safety factor for a wedge slope utilizing 

AFOSM. In addition, utilizing Excel spreadsheet he calculated the 
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reliability index and probability of failure for the slope. Low (1997) used 

Coulomb linear failure criterion and he assumed that all the parameters 

are normally distributed. Park and West (2001) have worked on 

probabilistic modeling of rock wedge failure in their work. First they have 

modeled the probability of kinematic instability in which planes dip and dip 

direction were considered as random variables, then probability of kinetic 

instability was modeled to provide a proper, combined evaluation for 

failure probability by Monte Carlo Simulation. Joint orientation, geometric 

parameters, such as length and spacing, shear strength parameters and 

pore water pressure in the discontinuity were considered to be 

probabilistic parameters.  

 

Also, Jimenez-Rodriguez and Sitar (2007) have modeled the stability of 

the wedge using a disjoint cut-set formulation, in which disjoint parallel 

sub-systems were used to represent the different failure modes of the 

slope, and the used random variables were strength parameters of joint 

planes and the geometry of wedge, they have concluded that the 

reliability results were found to be highly sensitive to variations in the 

geometry of the wedge and to variations in water level conditions, 

whereas variations in the unit weight of the slope were found to have 

almost no influence on the probability of failure.  

 

Fadlelmula (2007) in his study presents the results of probabilistic 

modeling of plane and wedge types of slope failures, based on the 

”Advance First Order Second Moment (AFOSM)” reliability method. In 

both of those failure types, two different failure criteria namely, Coulomb 

linear and Barton-Bandis non-linear failure criteria were utilized in the 

development of the probabilistic models.  

 

 Moreover, Li et al. (2009) has developed a probabilistic fault tree to 

model the system reliability of the rock wedges. The N-dimensional 

equivalent method was used to perform the system reliability analysis due 



  

5 
 

to its accuracy and efficiency. The proposed approach has the ability to 

quantify the relative importance of each failure mode which enables the 

designer to establish priorities and decision making for rock slope.  

 

Scavia et al. (1990) have developed a probabilistic model using 2-D limit 

equilibrium analysis of block toppling failure in rock, resting on a stepped 

failure surface was carried out including both Monte Carlo simulation 

procedure and Markov Chains theory.  

 

Tatone and Grasselli (2010) also have developed a new probabilistic 

method for analyzing the stability of rock slopes according to the limit 

equilibrium method developed by Goodman and Bray (1976) and 

introduced a Monte Carlo simulation procedure for the probabilistic 

analysis of block-toppling and described its implementation into a 

spreadsheet-based program (ROCKTOPPLE). The analysis procedure 

considers both kinematic and kinetic probabilities of failure. These 

probabilities are evaluated separately and multiplied to give the total 

probability of block toppling. 

 

All of the above mentioned works have used Limit Equilibrium Method to 

model the performance function, because by that method it is easy to 

formulate the performance of a rock mass.  

 

To consider the effects of uncertainties in numerical modeling the 

Stochastic Finite Element was proposed for continuum media and there 

are some works such as Wong (1985), Griffiths et al. (2005), Tan and 

Wang (2009) for soil slope. Also Hammah et al. (2009) applied stochastic 

finite element in analyzing the stability of a rock slope in which 

uncertainties were related to strength parameters and joint network 

geometry. In their work they used both Monte Carlo and Point Estimate 

Method (PEM) to calculate statistical moments. Furthermore, Wang et al. 

(2000) have used FLAC software which is based on Finite Difference 
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Method to assess the stability of a coal mine slope, in this study the 

stability of a coal mine slope was analyzed using numerical analysis 

considering reliability engineering concepts.  

 

However, none of these methods can be applied in rock slope stabilities 

which are discontinuous. To solve this lack Moarefvand and Verdel (2008) 

tried to contribute the probabilistic methods in Distinct Element Method in 

UDEC software and they named it as PUDEC. It was the first time that 

probabilistic numerical method was used in a discontinuous media in rock 

mechanics. In this method the statistical moments are given to software 

and the software solves the model by considering these uncertainties and 

simulation outputs are in statistical form. However, the performance of this 

method relies on a wrong assumption by which the plastic flow starts 

when E ( )>E (    ), where E ( ) is the mean of shear stress and E (    ) 

is the mean of shear strength. Also, in this research, reliability engineering 

concepts such as reliability index, probability of failure are not taken into 

account.  

 

1.2 Objectives and scope of the research 

 

Considering these features of all the previous studies done in reliability 

engineering related to rock slope stability, this thesis proposes a 

probabilistic numerical approach for stability assessment of rock slopes. 

The proposed approach uses the capabilities of numerical modeling 

method and simultaneously it considers the randomness of the rock slope 

stability parameters. For this purpose the probabilistic modeling approach 

is integrated with 3D distinct element method in 3DEC software by 

developing codes in FISH language of 3DEC.  

 

Generally, the failure mechanism in discontinuous rock slopes is 

controlled by existing rock discontinuities. Therefore, the shear behavior 

of the rock discontinuities plays a vital role in stability or instability of a 
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rock slope. Commonly, the linear Coulomb criterion is used in analyzing 

the stability of rock slopes either in limit equilibrium or numerical methods. 

However, it is clear that the Coulomb parameters do not have the 

sufficient ability to model the shear and normal behavior of the rock 

discontinuities. Therefore, it is much realistic to apply a series of models 

known as Barton models. In contrast to Coulomb, Barton models consider 

the surface conditions such as roughness, strength of joint walls and 

basic friction angle of the rock discontinuities and their dependency on 

stress level in its calculations. Hence nonlinear Barton models are used 

rather than linear Coulomb function. Since the distinct element code used 

in this thesis was 3DEC and it does not include the Barton model in 

contrast to UDEC (2D distinct element code), the approach is applied by 

developing codes in 3DEC.  

 

One of the drawbacks of limit equilibrium methods is not considering the 

strain of in their calculations. Therefore, the probabilistic approaches that 

use the limit equilibrium method do not consider the strain as a possible 

failure criterion. Instead, they work with the safety factor concept. Based 

on this concept, the structure fails when the stress applied is greater than 

the strength. However, in some circumstances, the deformation of a 

structure can be called as failure and the structure uses its applicability 

although the safety factor claiming a safe state. 

 

For this reason in this thesis strain is considered to be the indicator of 

failure as well as simultaneously taking the randomness of the rock 

mechanical parameters into account. Based on a definite strain value the 

failure or survival of the rock discontinuities is determined and the failure 

probability and the corresponding reliability index are obtained. Because 

of the importance of historical places in Turkey, a rock slope containing a 

historical grave in Amasya, Turkey was selected to implement the 

proposed methodology. Akgun and Kockar (2004) studied the stability of a 

sandy limestone rock slope under a historical castle in Turkey. 
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The present study is divided into six chapters. Chapter I covers a brief 

introduction of the thesis subject and previous works and scope of the 

thesis. In Chapter II the basic mechanics of rock discontinuity is 

discussed. The Distinct Element Method (DEM) and Probabilistic Method 

are reviewed in Chapter III. In Chapter IV the Proposed Numerical-

Probabilistic Approach is explained. Chapter V includes the 

implementation of the proposed approach in Amasya, Turkey and its 

results and discussions. At the end, the conclusions and the 

recommendation are presented at Chapter VI. 
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CHAPER II 

 

 

BASIC MECHANICS OF ROCK DISCONTINUITY 

 

 

 

2.1 Introduction 

 

Generally, rock masses contain discontinuities such as bedding planes, 

joints, shear zones and faults. At shallow depth, where stresses are low, 

the behavior of the rock mass is controlled by the discontinuities rather 

than rock mass itself. In order to analyze the stability of this system of 

individual rock blocks, it is necessary to understand the factors that 

control the shear strength of the discontinuities which separate the blocks 

(Hoek, 2007). In this Chapter, it is intended to overview the basic 

mechanics of discontinuities under normal and shear stresses. 

 

2.2 Shear Strength of Discontinuities 

 

A discontinuity is generally referred to all structural breaks in rocks which 

usually have zero to low tensile strength. Normally, joints, bedding, shear 

zones, contacts, veins, and faults are called as discontinuities. 

 

Shear behavior of rock discontinuities always plays important role in rock 

engineering. There are several discontinuity shear failure criterion 

developed for the past decade. The most common one is the linear 

Coulomb relation in which the peak shear     strength is expressed in 

terms of the effective normal stress (σn), cohesion (c) and angle of friction 

(Φ). The Mohr-Coulomb relation is given as; 
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 peak=c σn tanΦ        (2.1) 

 

This shear strength equation was developed by assuming that the 

discontinuity surface is planar. If a smooth planar surface is sheared at a 

constant normal stress, the surface will behave elastically, and the shear 

stress acting on the discontinuity surface increases rapidly till the peak 

shear strength is reached. After that the shear strength drops and 

becomes constant at the level which is called as residual shear strength. 

Equation (2.1) can be expressed to give the residual shear strength as; 

 

 residual=σn tanΦr                (2.2) 

 

Where, the residual friction angle (Φr) is approximately equal to the basic 

friction angle (Φb), which is usually measured with sawn rock surfaces. 

However, a natural rock discontinuity may probably have some asperities 

that directly affect the shear strength of the discontinuity. As the 

discontinuity is under shear loading, the shear displacement will be on 

these asperities that causes the block move upward on the inclined 

surfaces of the asperities (dilation). For this reason the roughness 

component (i) should be added to the basic friction angle (Φb), (Φb+i), 

where ‘i’ is the angle of the inclined surface of the asperities.  

 

Sliding along the wavy faces of discontinuity can occur only under very 

low normal stress. If the normal stress is increased, then the asperities 

may break or wear out and in such cases the discontinuity wall strength 

becomes important.  

 

Barton-Bandis (1982) failure criterion includes discontinuity surface 

properties besides the effective normal stress and friction angle of the 
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discontinuity. Barton (1973) derived an empirical relationship for 

determining the shear strength of discontinuities. It is written as follows:  

 

 =σn tan [JRC log
10

(
JCS

σn
) Φb]      (2.3) 

Where; 

σn = effective normal stress 

JRC = joint roughness coefficient 

JCS = joint wall compressive strength 

Φ b = basic friction angle (obtain from residual shear tests on flat 

unweathered rock surfaces) 

 

The joint wall compressive strength (JCS) generally reduces with water 

saturation compared to the dry state (Barton, 2007). This is because of 

the effect of moisture on the uniaxial compressive strength (σc). The value 

of is obtained from Schmidt hammer tests (ISRM, 1978). 

 

Another major component of the shear strength is the basic friction angle 

(Φb) of unweathered artificial, planar, dry rock surfaces and the residual 

friction angle (Φr) applying to flat, non-dilatant, saturated, well sheared 

surfaces, i.e. Φr ≤ Φb. The friction angles obtained from flat unweathered 

rock surfaces, which are most frequently prepared by diamond saw, will 

not be applicable to weathered rock discontinuities unless the effective 

normal stress is high enough for the thin layers of weathered rock to be 

worn away (Richards, 1975, in Barton and Choubey, 1977). Low levels of 

effective normal stress and the thin layers of weathered material, perhaps 

less than 1 mm in thickness, may continue to control the shear strength, 

post peak strength and even for displacements up to residual strength. 

Richards’ (1975) tests on weathered sandstone joints showed strong 

correlation between residual friction angles (Φ r) and Schmidt rebound 

value (Figure 2.1).  
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Figure 2. 1 Relation between residual 

friction angle with Schmidt rebound value 

(Richards, 1975, in Barton and Choubey, 

1977) 

 

Richards’ (1975) looked for a simple method of estimating Φ from 

Schmidt hammer rebound values. The first empirical relationship tried was 

as follows: 

Φr = 10°   (r/R) (Φb - 10°)                                  (2.4) 

Where; 

r = Schmidt rebound on weathered discontinuity surface  

R = Schmidt rebound on unweathered discontinuity surface 

 

Therefore the Eq. 2.3 for the general case of weathered and unweathered 

discontinuities was rewritten as (Barton and Choubey (1977) : 

 

 peak=σn tan [JRC log
10

(
JCS

σn
) Φr]      (2.5) 

In the work of Barton and Choubey (1977), eight different rock types with 

total of 136 individual discontinuities were studied. The specimens were 

sawn from larger blocks containing through going discontinuities. 
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Following this study another methodology for determining Φ by residual 

tilt test was introduced, which is basically a shear test under very low 

normal stress (Figure 2.2). In this test, pair of flat and sawn surfaces was 

mated, and the pair of blocks tilted until sliding occurred.  

 

An empirical equation was obtained from residual tilt tests that enable to 

relate Φ  to Φb; 

 

Φr = (Φb - 20°)   20(r/R)        (2.6) 

 

Where; 

Φ b = basic friction angle estimated from residual tilt tests on dry 

unweathered sawn surfaces  

r = Schmidt hammer rebound value on the saturated joint wall, 

R = Schmidt hammer rebound value on the dry, artificially cut rock 

surfaces 

 

Figure 2. 2 Mechanism of 

residual tilt test (Bandis et 

al., 1983) 
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Eq. 2.6 is preferred since it allows for a range of Φr values even when the 

discontinuity is highly weathered. Eq. 2.3 tends to discount mineralogical 

differences since Φr tends to a single minimum value of 10° when r value 

is zero. 

 

The strength measured along individual discontinuities by direct shear 

methods is strongly dependent on the roughness of the discontinuity 

surfaces (Barton, 1973). The roughness parameter represents an index of 

the unevenness and waviness of the adjacent discontinuity rock wall 

(Giani, 1992). Barton (1973) defined the term joint roughness coefficient 

(JRC), which varies from 0 to 20. Unlikely the JCS parameter, the JRC 

parameter is not significantly affected by the dry or wet condition, since it 

essentially represents geometry (Barton, 2007). Figure 2.3 presents the 

laboratory-scale joint roughness profiles with their measured JRC values 

defined by Barton and Choubey (1977). 

 

Besides the joint roughness profiles, simple residual tilt test may help to 

obtain JRC indirectly. In a tilt test on a rough joint, the angle (α) at which 

sliding occurs may be 40° or 50° more than Φb (higher than compared to 

Φr) (Barton and Choubey, 1977). This additional shear strength is a result 

of discontinuity surface roughness. 

 

The maximum dilation angle (do) when sliding occurs is probably given by 

the following simple relationship derived by Barton and Choubey, 1977). 

do = α - Φr          (2.7) 

The tilt angle (α) is a function of shear stress and normal stress acting on 

the joint is given as: 

 

Φ=arctan (
 

σn
)         (2.8) 
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The effective normal stress generated by the gravitational force acting on 

the upper half of the block is given as: 

 

σn= .h. cosα           (2.9) 

 

Where; 

h = thickness of the top block (m) 

  = rock density (kN/m3) 

 

Figure 2. 3 Laboratory scaled joint roughness profiles (Barton and 

Choubey, 1977) 
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The JRC value is estimated from tilt tests using Eq. 2.5, by substituting   

and σn results in: 

 

JRC=
α-Φr

log10(
JCS

σn
)
       (2.10) 

 

Barton and Choubey (1977) recommended “push” or “pull” tests in order 

to determine the JRC values of rougher discontinuities. In “push” or “pull” 

test the top block is pushed or pulled parallel to the discontinuity plane. 

First applying a dry tilt test then a dry push or pull test, it was found to be 

possible to test whole spectrum of joint roughness (0-20). However, they 

mentioned the fact that, discontinuous joints and discontinuities with cross 

jointing cannot be tested by such methods. 

 

Another method for determining JRC was presented by Barton and 

Bandis (1982) by considering the amplitudes of the asperities of the 

discontinuity surface as shown in Figure 2.4.  

 

 

Figure 2. 4 Measurement of asperity amplitude for determining 

joint roughness (Barton and Bandis (1982), in Hoek (2007)) 

 

After determining the asperity amplitude and the sample length the chart 

which is shown in Figure 2.5 can be used to determine JRC. 
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The chart of Barton and Bandis (1982) is a useful tool for determining joint 

roughness coefficient. From the chart the relation between asperity 

height, discontinuity length and joint roughness coefficient can be 

summarized as; 

 

Asperity height = 2 x JRC x Discontinuity length                     (2.11) 

 

 

Figure 2. 5 Chart for determining joint roughness coefficient from 

asperity amplitude and profile length (Barton and Bandis (1982), 

in Hoek (2007)) 
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If the shearing of a non-planar discontinuity occurs, the asperities on 

either side of the discontinuity slide over each other and cause an 

increase in aperture which is called dilation. This process requires a finite 

displacement to get started, and occurs at an increasing rate as peak 

strength is approached (Barton et al., 1985). The peak dilation angle, 

dpeak, is the maximum dilation angle which occurs more or less at the 

same time with peak shear resistance (Barton and Choubey, 1977) and it 

is defined as: 

dpeak=
1
2⁄  JRC log

10
(
JCS

σn
)                       (2.12) 

 

The choice of an appropriate discontinuity size during a shear strength 

investigation is generally based on both economic and technical 

considerations (Bandis et al., 1981).  

 

Pratt et al. (1974) (in Bandis et al. (1981)) studied the effect of scale on 

shear strength and concluded that the reduction in peak shear strength 

was due to the decrease in actual contact area. Their prediction was that, 

the scale effect would be negligible if the discontinuities are unweathered, 

perfectly mating under high normal stresses. Barton (1976) also 

interpreted similar results of scale effect on joint wall compressive 

strength (JCS). The study of Barton and Choubey (1977) showed that 

different lengths of discontinuities affect joint roughness coefficient (JRC) 

and thus the shear strength of the discontinuity. 

 

Bandis et al. (1981) studied the scale effect on the shear strength of 

discontinuities with eleven types of discontinuities, of which was divided 

into four groups according to their roughness (Figure 2.6).  
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Figure 2. 6 Groups of discontinuity types according to their roughness (Bandis et 

al., 1981) 

 

Barton and Bandis (1982) suggested some empirical relations for the 

scale effects on the joint wall compressive strength; joint roughness 

coefficient and peak shear displacement. They developed some empirical 

relations for predicting the large scale joint wall compressive strength 

(JCSn), joint roughness coefficient (JRCo) from lab scale values (JCSo, 

JRCo) and the peak shear displacement (δpeak) of the discontinuity.  

The effects of scale on the dry or saturated state of the discontinuities are 

expressed below; Large-scale joint wall compressive strength (Barton and 

Bandis (1982), in Barton et al. (1985)) is: 

JCSn=JCSo (
Ln

Lo
)

-0.03JRCo

                 (2.13) 

Large-scale joint roughness (Barton and Bandis (1982), in Barton et al. 

(1985)) is: 
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JRCn=JRCo (
Ln

Lo
)

-0.02JRCo

                 (2.14) 

 

Displacement at the peak strength (Barton and Bandis (1982), in Barton 

et al. (1985)) is: 

δpeak=
Ln

500
 (

JRCn

L 
)

1

3
                 (2.15) 

 

2.3 Rock discontinuity deformation 

 

Discontinuity deformation is a principal component of the behavior of the 

discontinuous rock mass (Bandis et al., 1983). The terms of joint normal 

stiffness and joint shear stiffness were defined in order to analyze the 

deformation characteristics of the joints. 

 

Normal stiffness (Kn) is defined as the normal stress increment required 

for a small closure of a joint or fracture, at a given level of effective stress. 

Similarly the shear stiffness (Ks) is taken as the average slope up to the 

shear strength-peak shear displacement curve. The units of joint stiffness 

values are stress/displacement (e.g. MPa/mm, MPa/m etc.). Therefore it 

is usually expected that Kn values are larger than the shear stiffness Ks 

values (Barton, 2007). While the stress level is low the normal 

deformation of the discontinuities are not discussed in this study. 

 

The non-linear stress - shear displacement behaviorof sheared 

discontinuities in the pre-peak range were frequently expressed by 

hyperbolic functions (Bandis et al., 1983). Kulhaway (1975, in Bandis et 

al., 1983) refers to the relation; 

 

 =
δ

m nδ
                   (2.16) 
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Where δ is the shear displacement at a given shear stress level and m 

and n are constants of the hyperbola. Constant m is the reciprocal of the 

initial shear stiffness and constant n is the reciprocal of the horizontal 

asymptote  ult to the hyperbolic  -δ curve. Development of Eq. 2.16 results 

with the following relation for shear stiffness; 

 

Ks=Kj σn 
nj (1-

 Rf

 p
)
2

                (2.17) 

 

Where; 

Kj = stiffness number, 

nj = stiffness exponent, 

Rf = failure ratio =   ult⁄   

   = peak shear strength. 

 

The indices Rf, nj and Kj describes the non-linearity in discontinuity shear 

behavior. The stiffness exponent nj is the slope of log-log relation 

between initial shear stiffness Ksi and σn with a unit of (MPa)2/mm. Also 

the experimental studies Bandis et al. (1983) showed that stiffness 

number Kj (intercept of the log-log relation between initial shear stiffness 

Ksi and σn) can be written empirically as; 

 

Kj=-17.19 3.86 JRC               (2.18) 

With R = 0,835 for JRC > 4, 5. 

 

However, for calculation of the value of joint shear stiffness (Ks) 

theEq.2.17 is dependent on the current shear stress acting on the joint 

plane, from other side, in this research, the analysis are done based on 

distinct element method, therefore, the unbalanced forces in the model 

will cause instability in shear stress then the joint shear stiffness derived 
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from the Eq. 2.17 will not be reliable. To overcome this problem, it is 

possible to calculated the Ks from relation between shear displacement δ 

(peak) and the peak shear strength. According to Barton and Choubey 

(1976) the shear displacement δ (peak) required to reach the peak shear 

strength determines the stiffness of joints in shear. As Barton and 

Choubey (1976) admitted that joint shear stiffness is extremely important 

input data in finite element analyses of joints, since joints are very 

deformable in shear compared to normal direction and compared to intact 

rock (Barton 1972).  

 

Since the reliable method of estimating shear strength was developed for 

any given values of JCS, JRC, Φr and σn, it only remains to estimate the δ 

(peak) for an estimate of Ks to be obtained (Barton and Choubey, 1976). 

Barton and Choubey (1976) assumed δ (peak) as 1% of joint length (L) 

and estimated the Ks based on following relations: 

 

    
     

⁄                                                                                         (2.19) 

 

   
   

 
     [         (

   
  

⁄ )   
 
]                                          (2.20) 

 

In Eq. 2.20 Barton and Choubey (1976) assumed that a joint reaches to 

its peak shear strength after about 1% of its length (L). Ks is strongly 

dependent on scale. A review of laboratory and insitu shear tests (Barton 

1972) indicated that shear stiffness was indeed inversely proportional to 

joint length. However, it seems clear that δ (peak) will eventually reduce 

to less than 1% L as the joint length increases to several meters (Barton 

and Choubey 1976). Later, Barton et al. (1985) suggested Eq. 

2.21estimate the δ (peak) value as: 

 

δpeak=
Ln

500
 (

JRCn

L 
)

1

3
        (2.21) 
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Therefore, it is possible to estimate the δ (peak) and then Ks value by 

substitution of Eq. 2.21into Eq. 2.19. 
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CHAPTER III 

 

 

NUMERICAL ANDPROBABILISTIC METHODS IN ROCK 

SLOPE STABILITY ANALYSIS 

 

 

 

3.1 The Distinct Element Method 

 

The Distinct Element Method (DEM) was introduced by Cundall (1971) as 

a model to simulate large movements in blocky rock masses, and then 

used for soils which were modeled as discs (Cundall and Strack 1979). 

Later, the method has been applied to spherical and polyhedral blocks 

(Pande et al.  1990, Cundall 1988 and Potyondy and Cundall 2004) for 

both soils and rocks. 

 

The DEM belongs to the family of Discrete Element Methods, which 

Cundall and Hart (1998) define as those that: (1) allow finite 

displacements and rotations of discrete bodies, including detachment; and 

(2) automatically recognize new contacts between bodies during 

calculations. Discrete Element Methods need to address three key issues: 

(1) representation of contacts; (2) representation of solid material; and (3) 

detection and revision of contacts during execution. An in-depth 

discussion of these issues is provided by Cundall and Hart (1998). 

 

The distinct element technique was originally developed by Cundall 

(1971) and has resulted in formulation and development of three 
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dimensional distinct element code (3DEC) and it progressed over a period 

of 35 years (Anon, 2007). 

 

3DEC is three-dimensional numerical software based on the distinct 

element method for modeling discontinuous medium subjected to static or 

dynamic loading. A discontinuous medium is distinguished from a 

continuous medium by the existence of contacts between the discrete 

bodies that comprise the system (Anon, 2007).  

 

3DEC is based on a dynamic (time-domain) algorithm that solves the 

equations of motion of the block system by an explicit finite difference 

method. At each time step, the law of motion and the constitutive 

equations are applied. For both rigid and deformable blocks, sub-contact 

force-displacement relations are prescribed. The integration of the law of 

motion provides the new block positions, and therefore the contact 

displacement increments (or velocities). The sub-contact force-

displacement law is then used to obtain the new sub-contact forces, which 

are to be applied to the blocks in the next time step. The cycle of 

mechanical calculations is illustrated in Figure 3.1(Anon, 2007). 

 

3DEC also has a built in programming language called FISH which can be 

used for user specific purposes. 

 

3DEC has two constitutive models for analyzing discontinuity behavior. 

The first one is the generalization of Coulomb friction law. This law works 

similarly for sub-contacts between both rigid and deformable blocks. Both 

shear and tensile failure is considered. In elastic range the model 

behavior is governed by discontinuity normal stiffness and discontinuity 

shear stiffness.  
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Figure 3.1 The calculation cycle of 3DEC program (Anon, 2007) 

 

 

The force increments are found by using displacement increment and the 

input discontinuity stiffness. The normal force increment     is found as; 

 F
n
=-Kn V

i
Ac                               (3.1) 

And the shear force increment is found as; 

 F
s
=-Ks δAc                    (3.2) 

Where; 

 V
i
 = Normal displacement increment 

Sub-Contact 

Force Update 

Block Centroid 

Forces or 

Gridpoint Forces 

Block/Gridpoint 

Motion Update 

Relative Contact 

Velocities 

Equation 

of 

motion 

Nodal velocities 

Strain rates 

Constitutive  

law 

Equation 

of 

motion 
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Ac= Area of contact 

 δ = Shear displacement increment 

 

The total normal and shear forces, Fn and Fs are then updated for the next 

cycle as; 

F
n
=F

n
  F

n
                    (3.3) 

And, 

F
s
=F

s
  F

s
                    (3.4) 

For tensile failure; 

F
n
 Tmax,  then  F

n
=Tresidual                             (3.5) 

Where; 

Tmax=-TAc                    (3.6) 

Tresidual=-TresidualAc                    (3.7) 

Tmax = Peak tensile strength 

Tresidual = Residual tensile strength 

For shear failure; 

F
s
 Fmax

s
,  then  F

s
=F

s (
Fmax
s

F
s )                  (3.8) 

Where; 

Fmax
s

=cAc F
n
tan                     (3.9) 

Shear displacement leads to a dilation that is; 

 V dil = δ tan (d)                                      (3.10) 

Where d is the dilation angle specified. 

Then the normal force is corrected to consider the effect of dilation as; 
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F
n
=F

n
 KnAc δ tan (d)                                               (3.11) 

 

The second constitutive model of 3DEC for discontinuities is the 

continuously yielding joint model. The model attempts to account for some 

nonlinear behavior observed in physical tests. The model generates the 

discontinuity shearing damage, normal stiffness dependence and 

decrease in dilation angle with plastic shear displacement.  

 

The normal stress is found incrementally as; 

 σn=Kn V
i
                          (3.12) 

Where the normal stiffness Kn is given by; 

Kn=anσn
en                  (3.13) 

Where an and en are model input parameters 

For shear loading, the shear stress increments calculated as; 

  =Fks δ                  (3.14) 

Where the shear stiffness Ks is given by; 

Ks=asσn
es                  (3.15) 

And where esand as are model input parameters and F is the tangent 

modulus factor which depends on the distance from the actual stress 

curve to the target or bounding strength; 

F = 
(1-  m⁄ )

1-r
                 (3.16) 

Where;  
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r is the stress ratio at the last reversal and it is limited to 0.75 in order to 

avoid numerical noise. 

 mis the bounding strength and found as; 

 m=σn tan m δ        (3.17) 

 m  is the friction angle at which the discontinuity is dilating at the 

maximum dilation angle and it is continuously reduced according to the 

equation; 

  m=-
1

R
( m- ) δp                  (3.18) 

R is the model input parameter defines the surface roughness, 

The plastic increment  δ
p
 is found as; 

 δ
p
=(1-F)| δ|                  (3.19) 

 

Studies related to 3DEC were mostly conducted by Coulomb slip model 

rather than continuously yielding joint model (Kulatilake et al. 1993, 

Konietzky et al. 2001, Hutri and Antikainen 2002, Corkum and Martin 

2004). The main reason is the easiness of the parameter determination. 

Only the discontinuity cohesion and discontinuity friction angle should be 

determined for the Coulomb slip model. 

 

3.2 Reliability Index Methods 

 

In these methods the safety of a slope is measured by a reliability index, 

rather than the classical safety factor. Engineering reliability problems can 

generally be reduced to comparison of demand and supply in meeting a 

specified performance requirement. For example, the safety of a structure 

depends on the strength of the structure, (supply) and the applied load 

(demand) (Düzgün et al. 2003). The calculation of probability of survival or 
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failure, requires the knowledge of the distribution of supply, denoted by 

fX(x), and demand, denoted by fY(y) or their joint distribution fXY(x,y), if X 

and Y are correlated. In practice, however, it is difficult to assess these 

distributions due to insufficient data. Moreover, even if the required 

distributions are available, the exact evaluation of probabilities is 

impractical due to the numerical integrations involved (Düzgün and 

Özdemir 2006). 

 

Frequently, the available information and data are sufficient only to 

calculate the first and second moments, in other words the means, the 

variances and the covariances of the respective random variables. In 

such cases, practical measure of safety or reliability is limited to functions 

of these first two moments (Düzgün and Özdemir 2006). 

 

Two similar procedures are used for the computation of the reliability 

index. These are the first-order second-moment (FOSM) and advanced 

first-order second-moment (AFOSM) methods. In both methods, random 

variables are described only by their first and second statistical moments 

(i.e. mean, variance and correlation characteristics). 

 

Although these two methods have been proposed long time ago, their 

application to rock slope stability is quite recent. Genske and Walz (1991), 

Kimmance and Howe (1991), Muralha (1991), Trunk (1993) applied 

FOSM method to rock slopes. Slope stability studies using AFOSM 

method in rock engineering are very few. However, the more recent 

probabilistic slope stability studies prefer this method (Düzgün et al., 

1994, Düzgün et al., 1995, Quek and Leung, 1995, Chen at al., 1998) 

since it is free from some of the disadvantages of previously mentioned 

methods (Ang and Tang, 1984). 

 The formulation of a performance function (failure function) or a limit state 

equation is the first step in both methods, and is explained in the following 

section. 
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3.2.1 The Performance Function 

 

The reliability assessment of an engineering structure usually involves the 

consideration of many variables. In particular, the supply and demand 

generally depend on several other variables. In FOSM approach, the 

reliability index, P, is similar to the safety factor used in the deterministic 

analysis. It gives the mean safety margin in multiples of the standard 

deviation of the safety margin. The mean safety margin is the mean 

difference between the mean capacity and the mean demand. The higher 

this difference, the higher is the value indicating a higher safety. It is to be 

noted that this difference is normalized with respect to the standard 

deviation of the safety margin. Accordingly, the uncertainties in demand 

and capacity are also reflected in the reliability index (Duzgun et al. 1995). 

 

For the purpose of generalized formulation, it is necessary to define a 

performance function or a state function as shown below: 

 

g (x) = g(x1,x2, x3, ...,xn)                                                                 (3.20) 

 

Where, { }  {             } is the vector of basic variables which are 

involved in the physical problem such as strength, load and geometrical 

parameters. The function g(x) determines the performance or state of the 

structure. Accordingly, the limiting performance is defined as g(x) = 0 

which is the "limit-state" of the system. As a result it follows that: 

 

g(x)>0      The "safe state" 

 

g(x)<0     The "failure state" 

 

Geometrically, the limit state equation, g(x) = 0, forms an n-dimensional 

surface which is called as the "failure surface ". One side of the failure 

surface is called the safe state, g(x) > 0; while the other side g(x) < 0 is 
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the failure state. Figure 3.2 illustrates the safe and failure states for the 

two-dimensional case. 

 

 

Figure 3.2 Safe and failure states for the variables x1 and x2 

 

If the joint p.d.f. of the basic variables, X1, X2, X3, … , Xn is                                        

f X1, X2, X3, … , Xn (X1, X2, X3, … , Xn) the probability of safe state is 

 

(3.21) 

 

 

The 

above equation is simply the volume integral of fX (x) over the safe region 

g(x) > 0. On the other hand, the failure state probability or p is the 

corresponding volume integral over the failure region g(x) < 0:  

 

0)(

 ...dx)dxX , … ,X ,X ,(X  f..... n1n321Xn , … X3, X2, X1,



  
xg

Pf
(3.22) 

 

0)(

 ...dx)dxX , … ,X ,X ,(X  f..... n1n321Xn , … X3, X2, X1,



  
xg

Ps
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In FOSM modeling, mean and standard deviation of the limit state or 

performance function is found for any continuous mathematical form of 

the limit state equations. If the function is non-linear, the approximate first 

and second moments of the limit state function are obtained by Taylor 

series expansion of the faction around the mean values of the basic 

variables (µI). This approximation is called as "mean point expansion 

method" and proposed by Cornell (1969). The linearized failure function is 

given as 

 

   
i

i

n

i

iin
X

g
Xgz



 













 

1

21 ,...,,

                                        

(3.23) 

 

Where the vector µi= (µ1, µ2, µ3, …, µn) is the linearizing point. The 

reliability analysis is carried out according to the function z. The mean (µz) 

and standard deviation (σz) of z is approximated by (Düzgün and Özdemir 

2006): 

 

 nz g  ,...,, 21
                                                                                                         

(3.24) 
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(3.25) 

 

The accuracy of the approximation depends on the degree of non-

linearity, effect of neglecting higher order terms in failure function z and 

the magnitudes of coefficients of variation of x¡'s. It is obvious that if the 

function g (X1, X2, X3, … , Xn) is linear then the approximation of the mean 

and the standard deviation of z is exact. In the FOSM method the 

reliability index β as defined by Cornell (1969) is
z

z




   

The FOSM method which is based on the mean point expansion using       

Taylor series approximation has two basic shortcomings. First, the 
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performance (unction is linearized at the mean values of the basic 

variables. When performance junction is non-linear, significant errors may 

arise at increasing distances from the linearizing point by neglecting the 

higher order terms. Second, the Taylor series expansion around the mean 

values fails to be invariant under different but mechanically equivalent 

formulations of the same problem (Hasofer and Lind, 1974). In other 

words, it lacks the desirable property of being failure function invariant. 

Due to these shortcomings of the FOSM formulation, the AFOSM method 

proposed by Hasofer and Lind (1974) became the most widely used 

method of reliability determination. In the following sections the principles 

of AFOSM is explained in detail 

 

3. 2. 2 Linear Performance Functions 

 

The performance function may be a linear function. A linear performance 

function can be represented as 

 

  



n

i

ii XaaXg
1

0

                                                                               
(3.26) 

 

Where a0 and ai are constants.  

 

Here the variables are assumed to be uncorrelated and hive a normal 

distribution. The reduced (standardized) variables are defined as follows: 

 

0
1

0 


n

i

ii Xaa

                                                                                     
(3.27) 

 

Here the variables are assumed to be uncorrected and have a normal 

distribution. The reduced (standardized) variables are defined as follows 
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i

ii
i

X
X




'                                                                                          (3.28) 

Then 

iiii XX   '

                                                                                                
(3.29) 
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For instance, for three dimensions the minimum distance of origin of 

reduced variates 
'

iX is: 
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Then, the following generalization can be made. If the random variables       

X1,…, Xn are uncorrelated normal variate, the probability of being in the 

safe state is: 
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(3.34) 

 

 

Where Φ ( ) is the cumulative distribution function (c.d.f.) of the standard 

normal variate. As observed the probability Ps is a function of the distance 

from the failure plane g(x) = 0 to the origin of the reduced variates. Hence, 

in the general case of n uncorrelated normal variates the probability of 

being in the safe state Ps=Φ (β) and the probability of failure is Pf= 1 - Φ 

(β). 

  

3.2.3 Non-Linear Performance Functions 

 

Generally, the performance functions are non-linear. Accordingly, the limit 

state equation g (X) = 0 will also be non-linear. Unlike the linear case, 

there is no unique distance from the failure surface to the origin of the 

reduced variates.However, Shinozuka (1983) identified the point 

 '*'*

1 ,..., nXX on the failure surface with minimum distance to the origin of 

the reduced variates as the most probable failure point. Hence, the 

tangent plane to the failure surface at  '*'*

1 ,..., nXX can be used to 

approximate the actual failure surface and to evaluate the reliability index. 

The tangent plane at  '*'*

1 ,..., nXX  is   
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Thus, the minimum distance from the tangent plane to the origin of the 

reduced variates is taken as the reliability index β. This is illustrated in 

Figure 4.1 for the two-variable case. This minimum distance to tangent 

plane on the failure surface can be determined through the Lagrange 

multiplier method as explained by Tang (1984). The following summarizes 

this numerical procedure, which is an iterative algorithm for calculating the 

reliability index ß, (Ang and Tang, 1984): 

 

i. Define the appropriate limit-state function.  

ii. Make an initial guess of the reliability index β. 

iii. Set the initial checking point values xi* = µi for all i = 1, .., n. 

iv. Compute the mean and the standard deviation of the equivalent 

normal distributions for those variables that are non-normal  

v. Obtain reduced variates as 

iX

ii
i

X
X






*

'* . 

vi. Evaluate

*

' 
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g
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iX . 

vii. Compute the direction cosines αi as 
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viii. Calculate new values of *

iX from ''*

iiiiX    

ix. ix. Substitute above *

iX in g (
'*

1X ,...,
'*

nX  ) = 0 and solve for β 

x.  Using β obtained in step ix, re-evaluate iiX *  

xi. Repeat step v through x until convergence is reached. 
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3.2.4 Equivalent Normal Distributions 

 

If the probability distributions of the random variables X1,..., Xn are not 

normal, the probability Pf and Ps can also be calculated. The equivalent 

normal distribution for a non-normal variate can be obtained in such a way 

that the cumulative probability as well as the probability density ordinate 

of the equivalent normal distribution are equal to those of the 

corresponding non-normal distribution it the design point 
*

iX  (Ang and 

Tang, 1984). Accordingly the following can be obtained: 

 

 *

*

iXN

X

N

Xi
XF

X

i

i

i 












 






                                                                         

(3.37) 

 

Where; 

 

 
N

X i
 , 

N

X i
 =The mean value and the standard deviation, respectively, of 

the equivalent normal distribution of Xi. 

 

 *

iX XF
i

The original cumulative density function (c.d.f) of Xi, 

evaluated at
*

iX . 

 

  The c.d.f. of the standard normal distribution  

 

From Eq. 3.37 it is obtained: 
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On the other hand, equating the corresponding probability density 

functions at 
*

iX  yields to: 
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Where,   is the probability density function (p d f.) of the standard 

normal variable. From this it can be obtained 
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For a linear performance function, the appropriate point on the failure 

surface can be given in terms of direction cosines, αi, and safety index, ß, 

in the following way: 
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(3.42) 

 

Where the superscript N denotes the statistics for the equivalent normal 

distribution. 

 

Accordingly, the design point is: 
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It is obvious that replacing the actual distribution with an equivalent 

normal distribution requires replacing the actual mean and the standard 

deviation with those of the equivalent normal distribution. The safety index 

β and the probabilities Ps and Pf are then calculated in terms of the mean 

and standard deviation of the equivalent normal distribution.  
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CHAPTER IV 

 

 

THE DEVELOPED NUMERICAL-PROBABILISTIC 

APPROACH 

 

 

 

4.1 Methodology 

 

In probabilistic modeling of rock slopes, the performance function is 

constructed based on the ratio of strength to the stress acting over rock 

discontinuity. Therefore, for calculating the Reliability Index (β) and 

consequently the failure probability, the procedure discussed in section 

3.2 of Chapter III is used.  

 

However, the displacement of the structure is an important parameter that 

controls the stability of the structures. Limit equilibrium methods does not 

have the capability to obtain the displacement of rock mass; therefore, the 

numerical methods are required. 

 

For analyzing the stability of rock slopes, different numerical methods are 

applied, however, the commonly acceptable method for discontinuous 

rock slopes is Distinct Element Method. The main output of the DEM is 

the displacement of blocks. Hence, the shear strain or shear displacement 

of rock discontinuities is considered as the failure indicator in this study. 

The flowchart in Figure 4.1 indicates the process for development of the 

proposed probabilistic numerical approach for analyzing of rock slope 

stability. 

 



  

42 
 

 

Figure 4.1 The process of development of proposed probabilistic numerical 

approach 

 

As seen in Figure 4.1, there are different stages that should be followed in 

application of the proposed approach for a rock slope. The stages are 

described in detail as below: 
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 Model construction (I) 

 

As indicated in Figure 4.1, the first step is to construct the geometry of 

slope in 3DEC. For this purpose, the shape of the slope is surveyed then 

constructed in the software and the rock discontinuities are added. The 

constructed shape must be meshed by using different zoning commands 

available in the software. The other step is to define the boundary 

condition which is dependent on geometry of the rock slope. In 

discontinuous media, the model has two separate components which are 

blocks and the contact face between blocks. Both of these components 

are given material properties based on the obtained data in the laboratory 

and the field. In most of the cases when the stress level is low the failure 

occurs in discontinuities rather than intact rock body. Therefore, the intact 

rock is modeled elastically for the sake of simplicity. However, the rock 

discontinuities are modeled plastically. To calculate and assign the 

material properties of the rock discontinuities the stage II and III are 

followed. 

 

 Discontinuity material properties calculations and their 

assignment (II and III) 

 

As indicated in Figure 4.1, in stages II and III FISH functions were written 

to calculate the rock discontinuity material properties and to assign to the 

model. In the proposed methodology, the Barton models discussed in 

Chapter II are used to model the rock discontinuities. The Barton model 

does not include as material model in 3DEC library; therefore, the Barton 

model should be applied indirectly to the model. Barton suggested 

instantaneous cohesion and friction angle concepts by which the 

nonlinear behavior of normal and shear stress ( -σn) relation can be 

equalized by drawing tangents to the  -σn curve for defined σn values. 

Figure 4.2 shows the concept of instantaneous cohesion and friction 
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angle. The instantaneous cohesion and friction angle are obtained from 

Eqs. 4.1 to 4.3:  
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inic  tan                                                                                     (4.3) 

 

By applying Eqs. 4.1, 4.2 and 4.3 the relevant cohesion and friction angle 

for a definite stress level and consequently for any discontinuity are 

calculated. Therefore, the calculated values for cohesion and friction 

angle are applied by using Coulomb slip model. The joint material 

parameters required to apply Coulomb slip are Joint Normal Stiffness 

(kn), Joint Shear Stiffness (ks), Friction Angle (Jfriction), Cohesion 

(Jcohesion), Joint Tensile Strength (Jten) and Dilatancy Angle (dil).  

 

 

 

Figure 4.2 Barton model and the instantaneous cohesion and friction concepts 
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Shear 

Stress       
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According to Eqs. 4.2 and 4.3, both the cohesion and friction angle are 

function of normal stress applied on discontinuity surface. Therefore, a 

FISH function was written to calculate the average normal stress on each 

plane. It is to be noted that the FISH is a programming language 

embedded within 3DEC that enables the user to define new variables and 

functions. These functions may be used to extend 3DEC’s usefulness or 

add user defined features. An example of the FISH function written is as 

below for one discontinuity:                                                      

 

Def av_str1 

      whilestepping 

       nstav1 = 0 

      Are1=0 

      ic1 = c_near(x1, y1, z1)  

      icsub1 = c_cx(ic1)  

          Loop while icsub1 # 0 

              ncono1 = ncono1 + 1 

              Are1=Are1 + cx_area(icsub1) 

              nstav1 = nstav1 +cx_nforce (icsub1) 

              icsub1 = cx_next(icsub1) 

         Endloop 

         If ncono1 # 0 

              nstav1 = nstav1 / Are1 

          Endif 

end 

 

In this function, for any discontinuity, the normal force and the area (Are1) 

of contact and the average normal stress (nstav1) are calculated and 

saved to be used in calculation of cohesion and friction angle. The ic1, 

icsub1 and (x1, y1, z1) are related to the ID and the coordinate of location 

of discontinuity in 3DEC.  
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The failure criterion in this methodology is shear displacement; and the 

Joint Shear Stiffness (ks) is one of the most important factors that directly 

controls the shear displacement. According to the Eq. 2.17 the Ks is 

dependent on normal stress, length, JRC, JCS and basic friction angle of 

any discontinuity. As discussed in Chapter II, the Eq. 2.17 is not a suitable 

formula to calculate the Ks for analysis being done by 3DEC. For this 

purpose, Eq. 2.19 is used which is the ratio of Eq. 2.3, the Barton’s 

empirical shear strength formula, to Eq. 2.21, the estimated peak shear 

displacement value.  

 

In 3DEC the joint parameters must be assigned to relevant location or 

discontinuity. Commonly, the models are complex and the material 

properties should be assigned by FISH coding. One sample of written 

FISH for calculating and assigning the joint parameters is as below: 

 

Def prop1 

 

  Fi (basic friction angle) 

 

  L1 (discontinuity length) 

  JCS (Joint Compressive Strength) 

  JRC (Joint Roughness Coefficient) 

  

fric_1=abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/nstav1))+Fi)))degrad*

JRC*(1/ln(10))*  ((tan(degrad*(JRC*log(abs(jcs/ nstav1))+Fi)))^2+1))) 

 

  

coh_1=nstav1*abs(tan(degrad*(JRC*log(abs(jcs/nstav1))+Fi)))nstav1*abs(tan(deg

rad*fric_1))) 

 

  d_peak1=(L1*(JRC/L1)^0.33)/500 

 

  J_ks_1=((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)^0.33) 
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  ic1=c_near(34.43,57.22,80.4) 

End 

 

Hide dip 87 dd 180 org 0 61 20 below 

Hide dip 75 dd 288 org 14.8 46.9 40 above  

Hide range z 0 65   

Change jmat=1 

 

 Recording the shear displacement (IV)  

 

As indicated in Figure 4.1, the fourth stage in this methodology is to 

record the history of displacement of discontinuities during shearing which 

is the failure indicator in the proposed methodology. For this purpose, 

another FISH function was written to obtain the shear displacement of the 

discontinuity as below: 

 

      whilestepping 

           ncono1= 0 

           xsd1=0 

           ysd1=0 

           zsd1=0 

       ic1= c_near(x1,y1, z1) 

       icsub1 = c_cx(ic1)  

       Loop while icsub1 # 0 

               ncono1= ncono1 + 1 

               ssdisp1 = cx_sdis(icsub1) 

xsd1= xsd2+ xcomp(ssdisp1) 

               ysd1= ysd2+ ycomp(ssdisp1) 

               zsd1= zsd2+ zcomp(ssdisp1)  

              icsub1 = cx_next(icsub1) 

       Endloop 

             If ncono1 # 0 

Sheardisp1 = sqrt((xsd1)^2+(ysd1)^2+(zsd1)^2) / ncono1 
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            Endif 

 

In this function, the ssdisp1 is the shear displacement vector and the 

xsd1, ysd1 and zsd1 are its components and the Sheardisp1 is the final 

shear displacement scalar. From the beginning up to the end of the 

solution, the shear displacement of a discontinuity with ID of ic1 is 

recorded and can be plotted if necessary. After, the model is executed 

and the equilibrium state is reached the final shear displacement of the 

discontinuity is obtained.  

 

 Stages V, VI, VII, VIII and IX  

 

As indicated in Figure 4.1, the processes of stages from I to IV should be 

followed to prepare the model to be executed. In stage V, the realization 

of random variables are selected from their distribution and input to the 

model. These variables are transformed to rock discontinuity properties 

using FISH function discussed in stage II and III of the methodology in           

Figure 4.1, such as instantaneous cohesion and friction angle, Ks and etc. 

Then the model is executed and the shear displacement (δ) of each 

discontinuity is recorded as described in stage IV. According to            

Figure 4.1, in stage VI, the shear displacement obtained in stage IV is 

compared to the peak shear displacement estimated by Eq. 2.21. In the 

proposed methodology, it is assumed that if the shear displacement is 

greater than the estimated peak shear displacement (δpeak) it is called as 

failure. The boundary of the failure and survival is called the limit state 

condition in the proposed approach. For example, if for certain realization 

of cohesion, JCS and friction angle for JRC=10 the shear displacement 

(δ) is greater than the estimated peak shear displacement (δpeak) and for 

JRC=11 the δ is lower than δpeak, the 10<JRC<11 is considered as limit 

state condition depending on the opinion of the user.  
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This methodology was developed for one or more random variables. For 

one random variable like JRC, suppose that the limit sate is JRC=10, and 

the discontinuity fails for JRC<10. Therefore, the probability of failure 

equals to the area of region less than 10 in density function of distribution 

of JRC.  

 

However, when the number of random variables is more than one, for 

different realization of random variables the model is run and the shear 

displacement of each discontinuity is recorded and according to stage VI 

the failure state is obtained. Then an appropriate distribution function is 

fitted to the shear displacement. Then, area for which δ> δpeak is the 

failure probability and the corresponding Reliability Index is obtained from 

Pf=1-Φ (β), Where Φ () is the cumulative distribution function of the 

standard normal variate. (Stages VIII and IX).  
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CHAPTER V 

 

 

IMPLEMENTATION OF PROPOSED PROBABILISTIC-

NUMERICAL METHODOLOGY 

 

 

 

5.1 General information about the study region 

 

The case study is selected as the Kings Rock Grave in Amasya, Turkey, 

which was carved on a rock mass containing bedding planes and joints 

and generally discontinuities. The host rock is limestone and 

discontinuities cut the Grave, and simply the rock grave can be 

considered as a rock slope. Figure 5.1 is shows the location of Amasya in 

map of Turkey.  

 

Amasya is located between 41° 04’ 54” -40° 16’ 16” North Latitude and       

34° 57’ 06”-36° 31’ 53” East Longitude in the Yesilirmak Valley of the 

Central Black Sea Region . The surface area of Amasya is 5,701 km2 and 

the population is 133,000, of which 74,000 live in the city and in 

surrounding towns and villages. The average altitude is 592 m. Amasya 

was a fortified city high on the cliffs above the river. It has a long history 

as provincial capital, a wealthy city producing kings and princes, artists, 

scientists, poets and thinkers, from the kings of Pontus, through Strabo 

the geographer, to many generations of the Ottoman imperial dynasty, 

and up to being the location of an important moment in the life of Ataturk. 

With its Ottoman period wooden houses and the tombs of the Pontus 

kings carved into the cliffs overhead, Amasya is attractive to visitors.  

 

http://en.wikipedia.org/wiki/Pontus
http://en.wikipedia.org/wiki/Strabo
http://en.wikipedia.org/wiki/Ataturk
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Figure 5.1 Location of Amasya 

 

5.2 Field and laboratory studies 

 

The Harsena Mountain was surveyed to understand the problem in the 

region. There are sliding, and rock fall problems in Harsena region.    

Figure 5.2 indicates the potential locations suffering from rock slope 

problem.  
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Figure 5.2 studied field ad failed structures and failure potential 
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The rock discontinuities were recorded by a compass either individually or 

massively by scan line. In joint mapping operation, geometrical 

parameters like, dip, dip direction, spacing and location of the joint and 

the mechanical parameters such as Joint Roughness Coefficient (JRC), 

Joint Wall Compressive Strength (JCS) for each joint were recorded. 

Tables 5.1 to 5.3 indicate the scanline data recorded in the field for 

different study regions. Figures 5.3to 5.6 indicate the rock joint distribution 

in the studied regions. 

 

Figure 5.3 Bedding joints of sec_1 on stereonet (0640/420) 
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Figure 5.4 Joints in sec_1 region in Amasya 1750/750 and 2370/660 

 

 

 

Figure 5.5 Joints in sec_2 region in Amasya 1800/730, 0940/810 and 0300/450 
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Figure 5.6 Joints in toe of sec_3 region in Amasya 1460/740, 2130/460 and 

0280/350 

 

Figures 5.3 to 5.6 indicate that there are almost three joint sets in each 

section. In section 1, the dominant joint sets have dip and dip direction of 

0640/420, 1750/750 and 2370/660. Also, three joint sets of section 2 had 

orientations 1800/730, 0940/810 and 0300/450, and for section 3 the dip and 

dip direction of joint sets were recorded as 1460/740, 2130/460 and 

0280/350. 

 

Since the region is a folded structure, there are some differences between 

the dip and the direction of the joint sets. The direction of the joint sets is 

such a way that rock fall and rock sliding is probable.  
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Table 5.1 Recorded data of rock discontinuity from scanline for section 1 

No. Distance Rock type DIP DIRECTION DIP Discontinuity type JRC 
Schmidt Hammer 

value 
Infilling 

Thickness 
(mm) 

1 210 Limestone 080
0 

36
0
 Bedding - 26-38-42 - - 

2 242 Limestone 080
0
 36

0
 Bedding - 34-26 Calcite 190 

3 285 Limestone 072
0
 40

0
 Bedding - 29 Calcite 5 

4 340 Limestone 072
0
 40

0
 Bedding - 34 - - 

5 520 Limestone 064
0
 47

0
 Bedding - 27 Calcite 10 

6 542 Limestone 064
0
 47

0
 Bedding - 40 - - 

7 625 Limestone 055
0
 40

0
 Bedding - - - - 

8 850 Limestone 062
0
 45

0
 Bedding - 50-30 Calcite 30 

9 1100 Limestone 060
0
 52

0
 Bedding - - - - 

10 1150 Limestone 060
0
 45

0
 Bedding - 18 - - 

11 1405 Limestone 062
0
 45

0
 Bedding - - - - 

12 1440 Limestone 065
0
 45

0
 Bedding - - - - 

13 1730 Limestone 062
0
 40

0
 Bedding - - - - 

14 1820 Limestone 064
0
 44

0
 Bedding - 48-34 Calcite 10 

15 1930 Limestone 064
0
 45

0
 Bedding - - - - 

16 1980 Limestone 064
0
 44

0
 Bedding - - - - 

17 2040 Limestone 068
0
 45

0
 Bedding - - - - 

18 2170 Limestone 062
0
 45

0
 Bedding - - - - 

19 2225 Limestone 060
0
 45

0
 Bedding - - - - 

20 2265 Limestone 064
0
 44

0
 Bedding - - - - 
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Continuining table 5.1 

No. Distance Rock type DIP DIRECTION DIP Discontinuity type JRC 
Schmidt Hammer 

value 
Infilling Thickness (mm) 

21 2310 Limestone 062
0
 43

0
 Bedding - - - - 

22 2375 Limestone 062
0
 45

0
 Bedding - - - - 

23 2600 Limestone 065
0
 40

0
 Bedding - - - - 

24 2670 Limestone 062
0
 44

0
 Bedding - - - - 

25 2775 Limestone 062
0
 45

0
 Bedding - - - - 

26 2825 Limestone 065
0
 40

0
 Bedding - - - - 

27 2880 Limestone 062
0
 44

0
 Bedding - - - - 

28 3000 Limestone 065
0
 47

0
 Bedding - - - - 

There are also two joint sets that could not be recored directly by scanline which are 175
0
/75

0
 and 237

0
/66

0 
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Table 5.2 Recorded data of rock discontinuity from scanline for section 2 

No. Distance 
Rock 
type 

DIP 
DIRECTION 

DIP 
Discontinuity 

type 
JRC 

Schmidt Hammer 
value 

Infilling 
Thickness 

(mm) 

1 0 Limestone 015
0
 36

0
 Bedding - 20-25-40 Calcite 5-10 

2 400 Limestone 100
0
 86

0
 Joint - 30-39 Calcite 20 

3 400 Limestone 200
0
 65

0
 Joint - 22—24-38 Calcite 20 

4 1090 Limestone 040
0
 55

0
 Bedding - 33-36-43 Calcite 20 

5 1190 Limestone 093
0
 85

0
 Joint - 43-38 Calcite 10 

6 1640 Limestone 020
0
 84

0
 Joint - 34-37-39 - - 

7 2410 Limestone 090
0
 75

0
 Joint - 27-38-39-40 - - 

There is a joint set parallel to surface which is 180
0
/73

0
 with spacing of 1.5 m that could not be recorded in scanline 
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Table 5.3 Recorded data of rock discontinuity from scanline for toe of section 3 

No. Spacing (cm) Rock type 
DIP 

DIRECTION 
DIP 

Discontinuity 
type 

JRC 
Schmidt Hammer 

value 
Infilling 

Thickness 
(mm) 

1 70 Limestone 31 32 Bedding - 21-35-39 - - 

2 115 Limestone 31 32 Bedding - 35 - - 

3 100 Limestone 142 80 Joint - - Calcite 10 

4 65 Limestone 20 45 Bedding - 24 - - 

5 100 Limestone 152 72 Joint - 20-21-40 Calcite 60 

6 120 Limestone 148 75 Joint - - - - 

7 100 Limestone 145 70 Joint - - - - 

8 50 Limestone 25 40 Bedding - - Calcite 30 

9 90 Limestone 30 35 Bedding - - - - 

10 90 Limestone 140 78 Joint - - - - 

11 60 Limestone 28 33 Bedding - - - - 

12 50 Limestone 33 34 Bedding - - - - 

13 140 Limestone 153 74 Joint - - - - 

14 60 Limestone 25 45 Bedding - - Calcite - 

15 Were parallel 
to surface and 

spacing is 
ranging from 
30 cm to 80 

cm 

Limestone 200 50 Joint - 

22-22-24-34-42-36 

- - 

16 Limestone 200 60 Joint - - - 

17 Limestone 215 50 Joint - - - 

18 Limestone 215 50 Joint - - - 

19 Limestone 215 45 Joint - - - 

20 Limestone 215 47 Joint - - - 

 

  

 

 

5
9

 



  

60 
 

Surface of the studied joints were drawn on paper and compared with 

standard profiles suggested by Barton and Choubey (1977) and rated 

(Figure 2.3). Table 5.4 indicates the statistical descriptions of gathered 

JRC values. Among the best fitting distributions to JRC value Lognormal 

distribution was found to be appropriate (Figure 5.7). Table A-1 indicates 

the goodness of fit obtained in Easyfit software for JRC value. 

 

Table 5.4 Statistical analysis data for JRC 

Statistic Value Percentile Value 

Sample Size 46 Min 2 

Range 18 5% 3.35 

Mean 9.1087 10% 4 

Variance 21.966 25% (Q1) 6 

Std. Deviation 4.6868 50% (Median) 8 

Coef. of Variation 0.51454 75% (Q3) 11 

Std. Error 0.69102 90% 16.3 

Skewness -0.80172 95% 18 

Excess Kurtosis -0.49338 Max 20 
 

 
 
 
 
 
 

 

 

Figure 5.7 Lognormal distribution of joint roughness coefficient (JRC) 

 

Also, joint compressive strength (JCS) values for discontinuity surfaces 

were obtained by Schmidt hammer. Table 5.5 indicates the distribution of 
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raw data for JCS, and Figure 5.8 indicates the frequency of joint wall 

compressive strength (Schmidt Hammer). The raw data obtained by 

Schmidt hammer are transformed to JCS by Figure 5.9 which integrates 

the hammer usage direction and density of the rock. Table A-1 indicates 

the goodness of fit obtained in Easyfit software for JRC value and the 

appropriate distribution was found to be Beta. 

Table 5.5 Statistical data analysis for Schmidt Hammer 

Statistic Value Percentile Value 

Sample Size 83 Min 8 

Range 41 5% 16.4 

Mean 32.181 10% 20 

Variance 78.028 25% (Q1) 24 

Std. Deviation 8.8333 50% (Median) 35 

Coef. of Variation 0.27449 75% (Q3) 39 

Std. Error 0.96959 90% 42 

Skewness -0.50298 95% 43 

Excess Kurtosis -0.51933 Max 49 
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Figure 5.7 The frequency of joint wall compressive strength (Schmidt 

value, i.e. not transformed) 
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Figure 5.8 Relation between the Schmidt hardness and joint wall strength 

 

One of the most important parameters in the analysis is the basic friction 

angle of the rock. Five direct shear tests were done to obtain basic friction 

angle. For S_2, S_3, S_4, S_5 and S_7 samples the obtained basic 

friction angles were, 32.09, 32.23, 29.16, 33.48 and 29.01, respectively. 
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The Figures 5.10 to 5.12 indicate the shear stress-shear displacement 

curves for different applied normal stresses, shear and normal stress 

relation and relation of joint shear stiffness and normal stress for sample 

S_2, respectively. It is to be noted that the joints sheared in S_2, S_3, 

S_4, S_5 and S_7 samples were sawn joints. Figures A.5 to A.16 in 

appendix A indicate the shear stress-shear displacement curves for 

different applied normal stresses, shear and normal stress relation and 

relation of joint shear stiffness and normal stress for other four samples.  

 

 

Figure 5.9 Shear stress/displacement curves for joint sample named as S_2 for 

different normal stress values 
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Figure 5.10 Relation of Shear and Normal stresses acted on joint of 

S_2 to obtain the basic friction angle of joint surface which is 

32.0920 

 

 

Figure 5.11 Dependency of joint shear stiffness (Ks) to normal 

stress in smooth joint plane (S_2) 
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Also, two natural joints were tested by direct shear box and Figures 5.13 

to 5.15 indicate the shear stress-shear displacement curves for different 

applied normal stresses, shear and normal stress relation and relation of 

joint shear stiffness and normal stress for sample N_1, respectively. 

Figures A.1 to A.15in Appendix A indicate the shear stress-shear 

displacement curves for different applied normal stresses, shear and 

normal stress relation and relation of joint shear stiffness and normal 

stress for sample N_2.  

 

 

Figure 5.12 Shear stress/displacement curves for joint sample N_1 for different 

normal stress values 
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Figure 5.13 Relation of Shear and Normal stresses acted on joint of N_1 

 

 

 

Figure 5.14 Dependency of joint shear stiffness (Ks) to normal 

stress in rough joint plane (N_1) 
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Moreover, two axial compressive tests were done to obtain the elastic 

modulus, Poisson’s ratio and compressive strength of the intact rock. The 

elastic modulus, UCS and Poisson’s ratio were 25.15 GPa, 90.28 MPa 

and 0.1 for sample I, respectively, and 28 GPa, 95.26 MPa and 0.116 for 

sample II. Figure 5.16 indicates the result of axial compressive loading vs. 

axial and lateral strains. Figure A.16 indicates the result of axial 

compressive loading vs. axial and lateral strains sample II in Appendix A. 

 

 

Figure 5.15 Stress-strain curve of sample I 

 

5.3 Rock Slope Modeling 

 

Field studies demonstrated that the rock mass in Amasya region is 

discontinuous and for modeling the rock structure the Discrete Element 

Modeling should be utilized. As indicated in Figure 5.2, there are different 

regions in Amasya that suffers from rock slope problems; however, to 

apply the probabilistic-numerical methodology proposed in this thesis, the 

Sec_3 was selected.   
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This structure, King’s Rock Grave, was carved in a limestone cliff 

containing two dominated discontinuities, the bedding planes and steep 

joints parallel to the slope face. These discontinuities have increased the 

potential of planar failure of the King’s Grave. Figure 5.17indicates a view 

of the Kind’s Grave. The grave is visited by hundreds of visitors daily and 

there is a restaurant close to the grave. There are some fallen blocks and 

considerably hanging block which may fall. Moreover, a failure has been 

occurred on top of the entrance of the grave which has destroyed the half 

of grave’s entrance. Figure 5.19 shows the samples of fallen blocks and a 

big failure and hanging blocks on the grave structure. 

 

 

Figure 5.16 King’s rock grave, Amasya, Turkey 
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5.3.1 Model construction 

 

The first step was to construct the shape of the structure, since the shape 

of the structure is complex, the best method would be using laser 

scanning method and import it to 3DEC medium as a DXF. However, 

laser scanning is too expensive to be afforded. Instead, combination of 

laser surveying and differential GPS were applied to obtain the 

coordinates of the selected points on the structure. As estimation, some 

planes were defined to draw the schematic of model. The discontinuities 

also applied to the structure based on data gathered in joint mapping 

 

 

Figure 5.17 Fallen blocks, big failure and hanging blocks on the grave structure 
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studies. The geometrical parameters considered in model construction 

were given in Table 5.6. Figure 5.19indicates the constructed model of the 

King’s Grave structure. 

 

 

Figure 5.18 Constructed model of the King's Grave 

 

Table 5.6 Joints geometry used in modeling the king’s grave 

Type of joint Bedding Joint 1 Jset 2 Jset 3 

Dip (0) 350 870 550 750 

Dip Direction (0) 0280 1800 2000 2880 

 

However, three dimensional numerical analyses especially those 

including the discontinuity requires high performance computers. 

Therefore, the bedding planes were omitted and only the joints parallel to 

the slope face were included in analysis.  Figure 5.20indicates the final 

model of the grave to be analyzed by 3DEC. No displacement             
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(velocity = 0) were applied as boundary conditions in appropriate 

directions.  

 

 

Figure 5.19 Final model of the grave to be analyzed by 3DEC 
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5.3.2 Choice of Block and Joint Constitutive Models and Material 

Properties 

 

The model constructed is defined with appropriate constitutive laws for 

both intact rock and discontinuities. Constitutive models are mathematical 

equations describing the relationship between stress and strain. Since the 

structure is on the surface and the stress level is low, it was appropriate to 

use elastic Hook’s Law as constitutive model for intact rock. The elastic 

model also reduces the analysis time.  

 

For modeling a material elastically, three parameters of density, bulk 

modulus (K) and shear modulus (G) are required. Eqs. 6.1 and 6.2 are 

used to calculate K and G from Young’s modulus and Poisson’s ratio: 

  
 

       
                                                                                             (5.1) 

 

  
 

      
                                                                                              (5.2) 

 

Based on the laboratory tests the elastic modulus and Poisson’s ratio are 

26.5 GPa, and 0.11, respectively. K and G were calculated by Eqs. 5.1 and 

5.2 and their value are 11.32 GPa and 11.94 GPa respectively. The density was 

obtained to be 2600 Kg/m3. 

 

Fourteen numbers of discontinuities were applied to behave plastically. 

The other joints behaved elastically and no slip was permitted. Figure 

5.21 indicates the ID’s of the discontinuity to be analyzed as their material 

number. It is to be noted that the material number 20 was not permitted to 

slip however, other joints were model based on Coulomb slip model.  
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Figure 5.20 Material number of fourteen discontinuities to be analyzed 

 

Before starting analysis, the model should be run to achieve the 

equilibrium state, for initial loading high ks, kn, cohesion, tensile strength 

and friction angle values were assigned and model run where, all of the 

joints were behaving elastically, this led the model to reach the equilibrium 

state. 

 

5.3.3 Different realization of random variables 

 

As mentioned in Chapter V, different combination of JRC, JCS, basic 

friction angle and cohesion variables can be applied to model. The first 

group of analysis were done with one random variable JRC, in this group 

it was assumed that the JCS and friction angle are constant for joints and 

the joints do not have any infilling (added Cohesion=0). 
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For the second group, the infilling material effect was applied to the model 

by adding cohesion to the strength of the joint or the discontinuity. This 

group itself was assessed in two different cases. In one of the cases, the 

basic friction angle was considered to be 330 and this was done for 

JCS=50 MPa and 70 MPa and different values for JRC and cohesion. In 

the other case, the basic friction angle was considered to be 300 and this 

was done for JCS=70 MPa and different values for JRC and cohesion. 

The considered cases are as follows: 

 

1. C=50 kPa, basic friction angle=330 and JCS=70 MPa 

 

2. C=50 kPa, basic friction angle=330 and JCS=50 MPa 

 

3. C=100 kPa, basic friction angle=330 and JCS=70 MPa 

 

4. C=150 kPa, basic friction angle=330 and JCS=70 MPa 

 

5. C=200 kPa, basic friction angle=330 and JCS=70 MPa 

 

6. C=300 kPa, basic friction angle=330 and JCS=70 MPa 

 

7. C=500 kPa, basic friction angle=330 and JCS=70 MPa 

 

8. C=50 kPa, basic friction angle=300 and JCS=70 MPa 

 

9. C=100 kPa, basic friction angle=300 and JCS=70 MPa 

 

10. C=150 kPa, basic friction angle=300 and JCS=70 MPa 

 

11. C=200 kPa, basic friction angle=300 and JCS=70 MPa 

 

12. C=300 kPa, basic friction angle=300 and JCS=70 MPa 
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13. C=500 kPa, basic friction angle=330 and JCS=70 MPa 

 

According to the methodology explained in Chapter IV, the model requires 

normal stress, instantaneous cohesion and friction angle and Ks to be 

calculated for each discontinuity. For example for discontinuity number 5, 

the normal stress, instantaneous cohesion and friction angle, estimated 

peak shear displacement and Ks were obtained 0.197149 MPa, 53.560, 

0.1547 MPa, 0.03423 m and 12.32 MPa/m for sample number 3 when the 

JRC=10. All the samples were analyzed based on proposed probabilistic-

numerical approach described in Chapter IV and the following section 

discusses the results obtained for each sample. 

 

5.4 Results 

 

In this thesis, a selected rock slope was modeled and run for different 

samples of combination of cohesion, friction angle, JCS and JRC values 

reviewed in previous section. The main random variable in this study was 

the JRC value of the discontinuities existing in structure. First, it was 

assumed that the discontinuities do not have infilling material, therefore, 

the friction angle, the JRC and the JCS were input in Barton model to 

obtain the instantaneous cohesion and friction angle and the shear 

stiffness. However, the structure collapsed even with high JRC. Figure 

5.22 indicates the state of structure when JRC =18 and the calcite infilling 

material has not been taken into account. However, this does not seem a 

reliable result; although there are some failures in the structure it stays 

stable.  

 



  

77 
 

 

Figure 5.21 State f the structure for JRC=18, JCS=70 MPa, Φ = 330 and 

no infilling material 

 

Some of the joints existing in the structure were filled by calcite and in 

some parts the filled material has been washed by fluids. The filled 

material certainly increases the strength of the discontinuity. Therefore, 

the effect of infilling material must be exerted in the analysis. It was 

assumed that some portion of the joint plane area has calcite as filled 

material and the other portion is the contact to two walls of joint. For 

taking this into account, the model was run by assuming different 

cohesion values such as 50, 100, 150, 200, 300 and 500 kPa.  
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5.4.1 Realizations 

 

1. C=50 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 50 kPa was added to run the model for different 

JRC values. A definite JRC value changes the Ks and the shear strength 

of each discontinuity. For C=50 kPa, the JRCs of 15, 13, 11, 10 were 

given. In cases where JRCs, were 15, 13, 11 the shear displacements are 

very low in comparison to the allowable peak shear displacement (δpeak). 

However, when the JRC reduces to lower than 11, the discontinuity no. 1, 

2, 3, 4, 7, 11, 12 displaces considerably. However, discontinuity no. 5, 6, 

8, 9, 10, 13, and 14 displaced less than δpeak. Therefore, if it is assumed 

that the shear displacement greater than δpeak is called as failure, JRC= 

11 can be considered as the limit state condition for discontinuities when 

C=50 kPa. Table 5.7 indicates the shear displacement, peak shear 

displacement and the values calculated for Ks for each discontinuity.  

 

Figures 5.23 to 5.35 indicate the shear displacement for JRC=10 for 

fourteen discontinuities. Also, Figures B.1 to B.13 in Appendix B indicate 

the shear displacement history of each discontinuity for JRC=11 values. 

 

Since the limit state condition for this realization for discontinuities  no. 1, 

2, 3, 4, 7, 11, 12 is JRC=11, the failure probability for these discontinuities 

is 76.26% for Lognormal distributions of JRC value, with mean=9.1 and 

standard deviation of 6.68. 
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Figure 5.22 Shear displacement of discontinuity 1, for JCS=70, 

C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.23 Shear displacement of discontinuity 2, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 
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Figure 5.24 Shear displacement of discontinuity 3, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.25 Shear displacement of discontinuity 4, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 
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Figure 5.26 Shear displacement of discontinuity 5, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.27 Shear displacement of discontinuity 6, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 
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Figure 5.28 Shear displacement of discontinuity 7, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.29 Shear displacement of discontinuity 8, for JCS=70 

MPa,  C=50 kPa, Φ=330 and JRC=10 
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Figure 5.30 Shear displacement of discontinuity 9, for JCS=70 

MPa,  C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.31 Shear displacement of discontinuity 10, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 
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Figure 5.32 Shear displacement of discontinuity 11, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 

 

Figure 5.33 Shear displacement of discontinuity 12, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10 



  

85 
 

 

Figure 5.34 Shear displacement of discontinuity 13, for JCS=70 

MPa, C=50 kPa, Φ=330 and JRC=10
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Table 5.7 Shear deformation, peak shear deformation of Barton model for friction= 33, coh.=0.05 MPa, different JCS, JRC and Ks 

*Not in Equilibrium state ** In Equilibrium state Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

5
0
 

J
R
C 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

1
1
 

δ(m) 0.7 0.202 0.14 0.164 0.03 0.0001 0.155 0.023 3.3e-5 0.019 0.136 0.156 0.021 7.5e-5 

** 

0
.0

5
 M

P
a
 

δpeak (m) 0.006 0.037 0.04 0.036 0.04 0.04 0.08 0.07 0.06 0.03 0.03 0.033 0.023 0.023 

Ks 
(MPa/m) 

13.06 3.65 5.53 8.22 10.87 13.68 2.65 3.65 3.23 6.31 7.23 9.04 15.52 21.84 

1
2
 

δ(m) 9.8e-6 0.0001 3.5e-5 1.2e-5 0.0005 3.4e-5 3.1e-5 
0.000

5 
9.9e-6 0.0006 4.6e-5 1.9e-5 0.0006 4.5e-5 

** δpeak (m) 0.006 0.038 0.04 0.037 0.036 0.036 0.078 0.074 0.0661 0.031 0.028 0.034 0.024 0.024 

Ks 
(MPa/m) 

14.01 3.95 5.96 8.75 11.51 14.41 2.84 3.9 3.47 6.79 7.77 9.62 16.46 22.99 

7
0
 

1
0
 

δ(m) 0.505 0.177 0.16 0.176 0.025 0.0001 0.166 0.023 2.9e-6 0.0197 0.148 0.167 0.021 7.9e-5 

** δpeak (m) 0.006 0.036 0.04 0.035 0.034 0.0342 0.073 0.07 0.0623 0.0288 0.0265 0.032 0.022 0.022 

Ks 
(MPa/m) 

12.8 3.57 5.47 8.17 10.86 13.73 2.61 3.62 3.19 6.22 7.13 8.99 15.48 21.94 

1
1
 

δ(m) 1.0e-5 0.0001 7.2e-5 1.9e-5 0.001 4.1e-5 7.1e-5 0.001 1.2e-5 0.0014 0.0001 3.7e-5 0.001 4.5e-5 

** δpeak (m) 0.006 0.037 0.04 0.036 0.035 0.036 0.075 0.072 0.0643 0.0297 0.0273 0.033 0.023 0.023 

Ks 
(MPa/m) 

13.15 3.7 5.65 8.42 11.17 14.08 2.7 3.73 3.29 6.43 7.37 9.26 15.93 22.5 

1
3
 

δ(m) 1.7e-6 0.0001 1.7e-5 1.9e-5 3.4e-5 9.8e-6 1.8e-5 
2.3e-

5 
2.9e-6 1.9e-5 1.3e-5 1.8e-5 3.5e-5 1.5e-5 

** δpeak (m) 0.006 0.039 0.04 0.038 0.037 0.037 0.08 0.076 0.0679 0.0314 0.0289 0.035 0.024 0.024 

Ks 
(MPa/m) 

89.44 4.83 7.03 10.22 13.29 16.49 3.39 4.57 4.12 8.11 9.26 11.23 19.07 26.27 

 
 

 

 
 

                8
6
 



  

87 
 

2. C=50 kPa, basic friction angle=330 and JCS=50 MPa 

 

To investigate the effect of JCS variation on model, the JCS values also 

reduced to 50 MPa in this case, Table 5.8 indicates the shear 

displacement of each discontinuity for this condition. For this case the 

JRC lower that 12 can be considered as limit state function based on the 

shear displacement and its comparison with peak shear displacement 

estimated by Barton. 

 

Since the limit state condition for this sample for discontinuities no. 1, 2, 3, 

4, 7, 11, 12 is JRC=12, therefore, the failure probability for these 

discontinuities is 81.75%. 

 

Comparing the sample number 1 and 2 indicates that if for constant C=50 

kPa, basic friction angle=330 the JCS reduced from 70 MPa to 50 MPa, 

failure probability increases about 5.5 %.  

 

3. C=100 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 100 kPa was added to run the model for different 

JRC values. For C=100 kPa, the JRCs of 2, 3, 5, 9, 9.8 and 10 were given 

to the model. For JRCs, equal to 9.8 and 10 the shear displacements are 

very low in comparison to the allowable peak shear displacement. 

However, when the JRC reduces to lower than 9.8, the discontinuities no. 

1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13 displaced considerably. However, 

discontinuity no. 6 and 14 displaced less than estimated peak shear 

displacement. Therefore, if it is assumed that the shear displacement 

greater than peak is called as failure, JRC= 9.8 can be considered as the 

limit state criterion for our discontinuity for this sample. 
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Since the limit state condition for this sample for the discontinuities no. 1, 

2, 3, 4, 5, 7, 8, 10, 11, 12, 13 is JRC=9.8, the failure probability for these 

discontinuities is 68.07%. 

 

Comparing the sample number 1 and 3 indicates that if for constant       

JCS=70 MPa, basic friction angle=330 the cohesion increased from 50 

kPa to 100 kPa, the failure probability decreases about 8.2 %.  

 

4. =150 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 150 kPa was added to run the model for different 

JRC values. For C=150 kPa, the JRCs of 7, 7.4, 8 and 9 were given to the 

model. For JRC=9 all the discontinuities’ displacements are negligible. 

However, for JRCs of 7.4 and 8 only discontinuity no. 1 displaced more 

than estimated peak shear displacement However, when the JRC 

reduces to lower than 7.4, all the discontinuities except discontinuity no. 6, 

9 and 14 displaced considerably. Therefore, if it is assumed that the shear 

displacement greater than peak is called as failure, for discontinuity no. 1 

JRC= 9 and for others except discontinuity no.6, 9 and 14 the JRC=7.4 

can be considered as the limit state criterion for this sample. Table 5.9 

indicates the shear displacement, peak shear displacement and the 

values calculated for Ks for each discontinuity.  

 

Since the limit state condition for this sample for the discontinuities no. 1, 

2, 3, 4, 5, 7, 8, 10, 11, 12, 13 is JRC=7.4, the failure probability for these 

discontinuities is 41.47%. 

 

Comparing the samples number 3 and 4 indicates that if for constant       

JCS=70 MPa, basic friction angle=330 the cohesion increased from 100 

kPa to 150 kPa, the failure probability decreases about 26.6. %.  
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Table 5.8 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.15 MPa, JCS=70 MPa and 

different JRC values and joint shear stiffness for each discontinuity 

*Not in 
Equilibri

um 
state 

** In 
Equilibrium 

state 
Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

7
 

δ(m) 1.31 1.306 0.49 0.17 0.153 0.0001 0.16 0.15 3.2e-5 0.131 0.469 0.155 0.148 0.0001 

* 

0
.1

5
 M

P
a
 

7
0
 

δpeak (m) 0.005 0.032 0.034 0.031 0.031 0.03 0.065 0.062 0.055 0.023 0.024 0.029 0.02 0.02 

Ks (MPa/m) 31.45 6.33 7.73 10.4 12.9 15.52 3.84 4.78 4.6 9.37 10.51 11.39 18.72 24.64 

7
.4

 

δ(m) 0.011 0.001 8.7e-5 0.0003 0.002 7e-5 0.001 0.002 1.5e-5 0.002 7.6e-5 0.001 0.002 6.8e-5 

** δpeak (m) 0.005 0.033 0.035 0.032 0.032 0.031 0.066 0.063 0.056 0.026 0.024 0.029 0.020 0.020 

Ks (MPa/m) 31.07 6.3 7.74 10.43 12.95 15.6 3.83 4.79 4.6 9.36 10.51 11.42 18.8 24.77 

8
 

δ(m) 0.012 0.001 5.9e-5 1.7e-5 0.002 6.3e-5 2.9e-5 0.001 1.6e-5 0.001 5.8e-5 1.7E-5 0.001 6.1e-5 

** δpeak (m) 0.005 0.033 0.036 0.033 0.032 0.032 0.068 0.065 0.058 0.027 0.025 0.03 0.021 0.021 

Ks (MPa/m) 30.58 6.27 7.77 10.5 13.07 15.76 3.84 4.82 4.62 9.37 10.53 11.51 18.96 25.03 

9
 

δ(m) 4.8e-6 8e-5 1.6e-5 2.2e-5 2.8e-5 3.3e-5 1.9e-5 2.2e-5 6.9e-6 2e-5 1.1e-5 2e-5 3e-5 4.e-5 

** δpeak (m) 0.006 0.035 0.038 0.034 0.034 0.034 0.072 0.069 0.061 0.028 0.026 0.032 0.022 0.022 

Ks (MPa/m) 29.9 6.31 7.97 10.86 13.56 16.38 3.93 4.97 4.73 9.57 10.77 11.9 19.66 26.01 

 

  

                        8
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5. C=200 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 200 kPa was added to run the model for different 

JRC values. For C=200 kPa, the JRCs of 2, 5 and 7 were given to the 

model. For JRC=7 all the discontinuities’ displacements are negligible. 

However, for JRCs of 5 only discontinuity no. 1displaced more than 

estimated peak shear displacement However, when the JRC reduces to 

lower than 5, all the discontinuities except discontinuity no.6, 9 and 14 

displaced considerably. Therefore, if it is assumed that the shear 

displacement greater than peak is called as failure, for discontinuity no. 1 

JRC= 7 and for others except discontinuity no. 6, 9 and 14 the JRC=5 can 

be considered as the limit state criterion for this sample. Table 5.9 

indicates the shear displacement, peak shear displacement and the 

values calculated for Ks for each discontinuity. 

 

Since the limit state condition for this sample for the discontinuities no. 1, 

2, 3, 4, 5, 7, 8, 10, 11, 12, 13 is JRC=5, the failure probability for these 

discontinuities is 18.88% Lognormal distribution of JRC value. 

 

Comparing the sample number 1 and 5 indicates that if for constant       

JCS=70 MPa, basic friction angle=330 the cohesion increased from 50 

kPa to 200 kPa, the failure probability decreases about 57%.  
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Table 5.9 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.2 MPa, JCS =70 and different 

JRC values and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In Equilibrium 
state 

Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.2

 k
P

a
 

7
0
 

2 

δ(m) 0.596 0.596 0.531 0.178 0.156 0.0002 0.166 0.140 4e-5 0.132 0.519 0.164 0.15 0.0001 

** δpeak (m) 0.004 0.021 0.023 0.021 0.02 0.02 0.043 0.041 0.037 0.017 0.016 0.019 0.013 0.013 

Ks 
(MPa/m) 

59.98 10.85 11.88 14.95 17.62 20.42 6.02 7.05 7.16 14.91 16.53 16.33 25.96 32.23 

5 

δ(m) 0.042 0.002 4.7e-5 0.001 0.003 0.0001 0.002 0.003 2e-5 0.002 2.8e-5 0.002 0.003 8.3e-5 

** δpeak (m) 0.005 0.029 0.031 0.028 0.027 0.027 0.058 0.056 0.05 0.023 0.021 0.0257 0.018 0.018 

Ks 
(MPa/m) 

45.09 8.44 9.58 12.33 14.78 17.34 4.82 5.77 5.75 11.89 13.23 13.48 21.67 27.42 

7 

δ(m) 3e-6 0.0004 6.6e-5 5e-5 5.3e-5 6.2e-5 4e-5 4e-5 1e-5 2e-5 2.4e-5 4.5e-5 6e-5 6.2e-5 

** δpeak (m) 0.005 0.032 0.034 0.031 0.03 0.0304 0.065 0.062 0.055 0.026 0.024 0.0287 0.02 0.0198 

Ks 
(MPa/m) 

41.06 7.9 9.2 12.01 14.53 17.17 4.61 5.59 5.51 11.32 12.64 13.13 21.25 27.17 

 

 

 

 9
1
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6. C=300 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 300 kPa was added to run the model for different 

JRC values. For C=300 kPa, for JRC=2 all the discontinuities’ 

displacements are negligible and since the range of JRC is greater than 2, 

therefore, for C=300 the model can be called safe and failure probability is 

zero. Table 5.10 indicates the shear displacement, peak shear 

displacement and the values calculated for Ks for each discontinuity. 

 

7. C=500 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 500 kPa was added to run the model for different 

JRC values. For C=500 kPa, for JRC=2 and 5 all the discontinuities’ 

displacements are negligible and since the range of JRC is greater than 2, 

therefore, for C=500 the model can be called safe and failure probability is 

zero. Table 5.11 indicates the shear displacement, peak shear 

displacement and the values calculated for Ks for each discontinuity.  
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Table 5.10 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.3 MPa, JCS=70 

MPa, JRC=2 values and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 
** In Equilibrium state Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.3

 k
P

a
 

7
0
 

2 

δ(m) 2 e-6 0.0002 1.7e-5 1e-5 0.0004 8e-5 9e-6 0.0004 2e-5 0.0004 2e-5 1e-5 0.0004 7e-5 

** δpeak (m) 0.003 0.021 0.02 0.02 0.02 0.02 0.04 0.04 0.037 0.017 0.02 0.019 0.013 0.013 

Ks 
(MPa/m) 

89.01 15.59 16.32 19.82 22.59 25.4 8.35 9.49 9.89 20.81 22.9 21.6 33.61 39.88 
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Table 5.11 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.5 MPa, JCS=70 MPa, 

JRC=2 and 5 values and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In 
Equilibrium 

state 
Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 
0

.5
 k

P
a
 

7
0
 

2 

δ(m) 1.1e-6 2.5e-5 2.8e-6 7e-6 1.3e-5 1e-5 5e-6 8e-6 3e-6 6e-6 2e-6 6e-6 1e-5 1.9e-5 

** δpeak (m) 0.003 0.02 0.022 0.02 0.02 0.02 0.043 0.041 0.037 0.017 0.016 0.019 0.013 0.013 

Ks 
(MPa/m) 

147.1 25.1 25.2 29.55 32.53 35.35 13.01 14.35 15.35 32.62 35.81 32.15 48.92 55.19 

5 

δ(m) 1.4e-6 3.3e-5 3.9e-6 8.7e-6 1.6e-5 9e-6 6e-6 1e-5 3e-6 7e-6 3e-6 8e-6 2e-5 1.2e-5 

** δpeak (m) 0.005 0.03 0.03 0.028 0.027 0.027 0.06 0.06 0.05 0.023 0.021 0.026 0.018 0.018 

Ks 
(MPa/m) 

109.5 18.96 19.42 23.12 25.79 28.37 9.99 11.16 11.8 24.97 27.47 25.17 38.64 44.39 

 

 

 

 

9
4
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8. C=50 kPa, basic friction angle=300 and JCS=70 MPa 

 

In this case, cohesion of 50 kPa was added to run the model for different 

JRC values. For C=50 kPa and friction angle of 300 the JRCs of 11 and 

12 were given. For JRCs, equal to 12 the shear displacements are very 

low in comparison to the allowable peak shear displacement. However, 

when the JRC reduces to 11, the discontinuity no. 1, 2, 3, 4, 5, 7, 8, 10, 

11, 12 and 13 displaces considerably. However, discontinuity no. 6, 9 and 

14 displaced less than estimated peak shear displacement. Therefore, if it 

is assumed that the shear displacement greater than peak is called as 

failure, JRC= 12 can be considered as the limit state criterion for our 

discontinuity when C=50 kPa and friction angle of 300. Table 5.12 

indicates the shear displacement, peak shear displacement and the 

values calculated for Ks for each discontinuity.  

 

Since the limit state condition for this sample for discontinuities  no. 1, 2, 

3, 4, 7, 11, 12 is JRC=12, the failure probability for these discontinuities is 

81.75%. 

 

Comparing the sample number 1 and 8 indicates that if for constant       

JCS=70 MPa, cohesion= 50 kPa the basic friction angle reduced from 330 

to 300, the failure probability increases about 5 %.  

 

. 
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Table 5.12 Shear deformation, allowable peak shear deformation for cohesion=0.05 MPa, JCS=70 and different JRC 

values and joint shear stiffness for each discontinuity 

*Not in  
Equilibrium 

state 

** In Equilibrium 
state 

Discontinuity ID 

C
o

h
e

s
io

n
 

F
ri

c
ti

o
n

  

J
C

S
 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.0

5
 M

P
a
 

3
0

  

7
0
 

1
1
 

δ(m) 1.70 1.70 0.69 0.167 0.142 0.0002 0.16 0.136 4e-5 0.118 0.646 0.159 0.135 0.0001 

* δpeak (m) 0.006 0.037 0.04 0.036 0.035 0.035 0.075 0.072 0.064 0.03 0.027 0.033 0.023 0.023 

Ks 
(MPa/m) 

12.65 3.495 5.29 7.84 10.37 13.04 2.53 3.482 3.09 6.03 6.91 8.62 14.8 20.82 

1
2
 

δ(m) 1.1e-5 0.0002 6e-5 1e-5 0.001 5e-5 8e-5 0.002 1e-5 0.002 9e-5 4e-5 0.002 5.e-5 

*
* 

δpeak (m) 0.006 0.0381 0.04 0.037 0.036 0.036 0.08 0.074 0.066 0.031 0.028 0.034 0.024 0.024 

Ks 
(MPa/m) 

13.54 3.773 5.67 8.363 11.0 13.77 2.72 3.72 3.31 6.49 7.42 9.2 15.73 21.98 

 

               9
6
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9. C=100 kPa, basic friction angle=300 and JCS=70 MPa 

 

In this case, cohesion of 100 kPa was added to run the model for different 

JRC values. For C=100 kPa and friction angle of 300 the JRCs of 10, 10.5 

and 11 were given. For JRCs, equal to 10.5 and 11 the shear 

displacements are very low in comparison to the allowable peak shear 

displacement. However, when the JRC reduces to 10, the discontinuity 

no. 1, 2, 3, 4, 7, 8, 10, 11 and 12 displaces considerably. However, 

discontinuity no. 6, 9, 13 and 14 displaced less than estimated peak shear 

displacement. Therefore, if it is assumed that the shear displacement 

greater than peak is called as failure, JRC= 10.5 can be considered as 

the limit state condition when C=100 kPa and friction angle of 300. Table 

5.13 indicates the shear displacement, peak shear displacement and the 

values calculated for Ks for each discontinuity.  

 

Since the limit state condition for this sample for discontinuities no. 1, 2, 3, 

4, 7, 11, 12 is JRC=10.5, the failure probability for these discontinuities is 

73.08%. 

 

Comparing the sample number 3 and 9 indicates that if for constant       

JCS=70 MPa, cohesion= 100 kPa the basic friction angle reduced from 

330 to 300, the failure probability increased about 4-5%. 

 

Comparing the sample number 8 and 9 indicates that if for constant       

JCS=70 MPa, basic friction angle=300 the cohesion increased from 50 

kPa to 100 kPa, the failure probability decreases about 8%. 

 

10. C=150 kPa, basic friction angle=300 and JCS=70 MPa 

 

In this case, cohesion of 150 kPa was added to run the model for different 

JRC values. For C=150 kPa and friction angle of 300 the JRC of 9.5 was 

given. For JRC=9.5 the shear displacements for all discontinuities except 
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no. 1 are very low in comparison to the allowable peak shear 

displacement. Therefore, if it is assumed that the shear displacement 

greater than peak is called as failure, JRC= 10 can be considered as the 

limit state condition when C=150 kPa and friction angle is 300. Table 5.14 

indicates the shear displacement, peak shear displacement and the 

values calculated for Ks for each discontinuity.  

 

Since the limit state condition for this sample for discontinuities no. 1, 2, 3, 

4, 7, 11, 12 is JRC=10, therefore, the failure probability for these 

discontinuities is 69.57%. 

 

Comparing the sample number 4 and 10 indicates that if for constant       

JCS=70 MPa, cohesion= 150 kPa the basic friction angle reduced from 

330 to 300, the failure probability increases about 28%. 

 

Comparing the sample number 9 and 10 indicates that if for constant       

JCS=70 MPa, basic friction angle=300 the cohesion increased from 100 

kPa to 150 kPa, the failure probability decreases about 3%. 
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Table 5.13 Shear deformation, allowable peak shear deformation for cohesion=0.1 MPa, friction angle=30, JRC=70 MPa, different JRC 

values and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In Equilibrium 
state 

Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

F
ri

c
ti

o
n

 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.1

 M
P

a
 

7
0
 

3
0
 

1
0
 

δ(m) 0.59 0.146 0.189 0.165 0.019 0.0001 0.156 0.017 3e-5 0.014 0.19 0.159 0.016 8e-5 

** δpeak (m) 0.006 0.036 4e-2 0.035 0.034 0.034 0.073 0.07 0.062 0.029 0.026 0.032 0.022 0.022 

Ks 
(MPa/m) 

20.66 4.69 6.29 8.85 11.3 13.89 3.07 4.01 3.71 7.42 8.40 9.71 16.29 22.10 

1
0
.5

 

δ(m) 0.0001 0.0003 7e-5 0.0001 0.002 6.3e-5 0.0003 0.002 2e-5 0.002 9.8e-5 0.0003 0.002 6e-5 

** δpeak (m) 0.006 0.036 0.039 0.036 0.035 0.035 0.074 0.071 0.063 0.029 0.027 0.033 0.023 0.023 

Ks 
(MPa/m) 

20.74 4.76 6.41 9.03 11.53 14.16 3.13 4.08 3.78 7.55 8.56 9.90 16.62 22.53 

1
1
 

δ(m) 6e-6 8.2e5 8e-5 8e-5 0.0002 5.1e-5 9.5e-5 0.0002 1e-5 0.0002 7.9e-5 9.8e-5 0.0002 5e-5 

** δpeak (m) 0.006 0.037 0.04 0.036 0.035 0.035 0.075 0.072 0.064 0.03 0.027 0.033 0.023 0.023 

Ks 
(MPa/m) 

20.92 4.85 6.55 9.23 11.78 14.46 3.19 4.18 3.86 7.71 8.74 10.12 16.98 23 

 

 

 

 

                                                                       9
9
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Table 5.14 Shear deformation, allowable peak shear deformation for cohesion=0.15 MPa, JCS=70 MPa, JRC=9.5 and joint 

shear stiffness for each discontinuity 

*Not in 
Equilibriu
m state 

** In Equilibrium 
state 

Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

F
ri

c
ti

o
n

 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.1

5
 M

P
a
 

7
0
 

3
0
 

9
.5

 

δ(m) 0.013 0.0005 5e-5 0.0002 0.001 7e-5 0.0003 0.001 
2e-
5 

0.001 6e-5 0.0003 0.001 
6.4e-

5 

** 
δpeak (m) 0.006 0.035 0.037 0.034 0.033 0.033 0.071 0.068 0.06 0.028 0.03 0.031 0.022 0.022 

Ks 
(MPa/m) 

29.55 6.051 7.46 10.04 12.44 14.9 3.69 4.62 4.44 9.02 10.13 11 18.1 23.7 

 

     1
0
0
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11. C=200 kPa, basic friction angle=300 and JCS=70 MPa 

 

In this case, cohesion of 200 kPa was added to run the model for different 

JRC values. For C=200 kPa and friction angle of 300 the JRCs of 5, 7 and 

8 were given.  For JRCs, equal to 8 the shear displacements are very low 

in comparison to the allowable peak shear displacement. However, when 

the JRC reduces to 7 only discontinuity 1 and when JRC reduces to 8, the 

discontinuity no. 1, 3, 4, 7, 11 and 12 displaces considerably. However, 

discontinuity no. 6, 9, 13 and 14 displaced less than estimated peak shear 

displacement. Therefore, if it is assumed that the shear displacement 

greater than peak is called as failure, JRC= 8 for discontinuity 1 and 

JRC=7 for others can be considered as the limit state condition when 

C=200 kPa and friction angle of 300. Table 5.15 indicates the shear 

displacement, peak shear displacement and the values calculated for Ks 

for each discontinuity. 

 

Since the limit state condition for this sample for discontinuities no. 1, 3, 4, 

7, 11 and 12 is JRC=7, therefore, the failure probability for these 

discontinuities is 30.08%. 

 

Comparing the sample number 5 and 11 indicates that if for constant       

JCS=70 MPa, cohesion= 200 kPa the basic friction angle reduced from 

330 to 300, the failure probability increases about 27%. 

 

Comparing the sample number 10 and 11 indicates that if for constant       

JCS=70 MPa, basic friction angle=300 the cohesion increased from 150 

kPa to 200 kPa, the failure probability decreases about 39.5%. 
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Table 5.15 Shear deformation, allowable peak shear deformation for cohesion=0.2 MPa, friction angle=30, JCS=70 MPa and different 

JRC and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In 
Equilibrium 

state 
Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

F
ri

c
ti

o
n

 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.2

 M
P

a
 

7
0
 

3
0
 

5 

δ(m) 0.29 0.016 0.064 0.18 0.012 0.0001 0.16 0.01 2.8.e-5 0.007 0.073 0.16 0.01 8.7e-5 

*
* 

δpeak (m) 0.005 0.029 0.030 0.028 0.027 0.027 0.058 0.056 0.05 0.023 0.021 0.026 0.018 0.018 

Ks 
(MPa/m) 

44.86 8.3 9.28 11.82 14.04 16.35 4.68 5.55 5.58 11.57 12.86 12.91 20.64 25.82 

7 

δ(m) 0.039 0.001 0.0001 0.0002 0.002 8.1e-5 0.0003 0.002 1.7e-5 0.001 9.1e-5 0.0004 0.002 7e-5 

*
* 

δpeak (m) 0.005 0.032 0.034 0.031 0.030 0.03 0.065 0.062 0.055 0.026 0.024 0.029 0.02 0.02 

Ks 
(MPa/m) 

40.76 7.73 8.86 11.44 13.73 16.11 4.45 5.35 5.31 10.96 12.21 12.51 20.13 25.46 

8 

δ(m) 3e-6 0.0004 6.1e-5 6.5e-5 9.1e-5 6.3e-5 7e-5 0.0001 1.3e-5 9e-5 3.9e-5 6.3e-5 9.6e-5 6.3e-5 

*
* 

δpeak (m) 0.005 0.033 0.036 0.032 0.032 0.032 0.068 0.065 0.058 0.027 0.025 0.03 0.021 0.021 

Ks 
(MPa/m) 

39.4 7.58 8.8 11.43 13.78 16.22 4.41 5.33 5.27 10.84 12.09 12.5 20.19 25.65 

 

          1
0
2
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12. C=300 kPa, basic friction angle=300 and JCS=70 MPa 

 

In this case, cohesion of 300 kPa was added to run the model for different 

JRC values. For C=300 kPa and friction angle of 300 the JRCs of 3 and 5 

were given. For JRC=5 all the discontinuities’ displacements are 

negligible. However, for JRC=3 only discontinuity no. 1 displaced more 

than estimated peak shear displacement Table 5.16 indicates the shear 

displacement, peak shear displacement and the values calculated for Ks 

for each discontinuity. 

 

Since the limit state condition for this sample for discontinuity no. 1 is 

JRC=3, therefore, the failure probability for these discontinuities is 

0.297%. 

 

Comparing the sample number 6 and 12 indicates that if for constant       

JCS=70 MPa, cohesion= 300 kPa the basic friction angle reduced from 

330 to 300, the failure probability increases about 0.3%. Comparing the 

sample number 11 and 12 indicates that if for constant JCS=70 MPa, 

basic friction angle=300 the cohesion increased from 200 kPa to 300 kPa, 

the failure probability decreases about 30%. 

 

13. C=500 kPa, basic friction angle=330 and JCS=70 MPa 

 

In this case, cohesion of 500 kPa was added to run the model for different 

JRC values. For C=500 kPa and friction angle of 300 for JRC=2 and 5 all 

the discontinuities’ displacements are negligible and since the range of 

JRC is greater than 2, therefore, for C=500 kPa the model can be called 

safe and failure probability is zero.Table 5.17 indicates the shear 

displacement, peak shear displacement and the values calculated for Ks 

for each discontinuity. 
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Table 5.16 Shear deformation, allowable peak shear deformation for cohesion=0.3 MPa, friction angle=30, JCS=70 MPa and 

different JRC and joint shear stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In Equilibrium 
state 

Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

F
ri

c
ti

o
n

 

J
R

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.3

 M
P

a
 

7
0
 

3
0
 

3
 

δ(m) 0.025 0.0006 2.9e-5 3.6e-5 0.0006 8.3e-5 4e-5 0.0006 12e-5 0.0005 2.e-5 3e-5 0.0006 7.4e-5 

*
* 

δpeak (m) 0.004 0.024 0.026 0.023 0.023 0.023 0.049 0.047 0.042 0.019 0.018 0.022 0.015 0.015 

Ks 
(MPa/m) 

77.93 13.65 14.27 17.29 19.65 22.02 7.3 8.28 8.65 18.21 20.08 18.84 29.27 34.57 

5
 

δ(m) 2e-6 0.0002 4e-6 4.4e-6 6.1e-5 7.4e-5 9e-6 5.3e-5 2e-5 2.9e-5 1e-5 3e-6 7e-5 7.2e-5 

*
* 

δpeak (m) 0.005 0.029 0.03 0.028 0.027 0.027 0.058 0.056 0.05 0.023 0.021 0.026 0.018 0.018 

Ks 
(MPa/m) 

66.32 11.8 12.56 15.42 17.71 20.02 6.41 7.35 7.6 15.93 17.61 16.81 26.3 31.47 

 

 

 

1
0
4
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Table 5.17 Shear deformation, allowable peak shear deformation for cohesion=0.5 MPa, JCS=70 MPa, JRC=2  and joint shear 

stiffness for each discontinuity 

*Not in 
Equilibrium 

state 

** In 
Equilibrium 

state 
Discontinuity ID 

C
o

h
e

s
io

n
 

J
C

S
 

F
ri

c
ti

o
n

 

J
R

C
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S
ta

te
 

0
.5

 M
P

a
 

7
0
 

3
0
 

2
 

δ(m) 1e-6 3e-5 3e-6 7e-6 1e-5 1 e-5 4.e-6 9e-6 3 e-6 6e-6 2e-6 6e-6 1e-5 2e-5 

** δpeak (m) 0.003 0.021 0.023 0.02 0.02 0.02 0.043 0.04 0.037 0.017 0.016 0.019 0.013 0.013 

Ks 
(MPa/m) 

146.9 24.94 24.89 29. 31.73 34.3 12.87 14.1 15.18 32.3 35.43 31.55 47.82 53.44 

 

      1
0
5
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5.5 Discussions of the Results 

 

The main variable considered in this study was JRC, however, the effect of 

other influential parameters such as friction angle; JCS and cohesion of the 

filled material have been studied. The samples were planned such a way 

that can be also considered as the effect of weathering process on 

discontinuity planes. As the weathering reduces the values of friction angle, 

JCS and the strength of filled material the sample also considers the status 

of the structure in future. 

 

The analysis indicated that the increase of cohesion decreases the 

displacements and failure probability of the structure. Also, reduction of 

basic friction angle and joint wall compressive strength increase the 

probability of failure and increases the displacement. Figure 5.36 indicates 

the reduction of failure probability due to increase in cohesion value for both 

basic friction angle of 330 and 300.  

 

 

Figure 5.35 Relation of cohesion and failure probability of discontinuities 
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The model was run about thirty five times for different cohesion, basic friction 

angle, JCS and JRC values. The shear displacements of each discontinuity 

for all of the runs were fitted appropriate distribution functions and the 

probability of δ>δpeak was calculated that is the probability of failure of 

corresponding discontinuity. Figure 5.37 indicates that Beta distribution is 

fitted for shear displacement of discontinuity no. 1.  

 

 

Figure 5.36 Beta distribution of shear displacement of discontinuity no. 1 

 

Figures C.1 to C.13 indicate the statistical distribution of shear displacement 

for discontinuities no. 2 to 14 respectively in Appendix C. Since for different 

cohesion, basic friction angle, JCS and JRC values the δpeak changes, the 

average, minimum and maximum value of δpeak were used to calculate the 

probability of failure and its corresponding reliability index. Table 5.18 

indicates the average, minimum and maximum value of δpeak, the probability 

of failure and its corresponding reliability index for each discontinuity. 

 

The β 1 is considered as failure state therefore, the discontinuities no. 1, 2, 

10, 11 and 13 have failed and other discontinuities are in safe condition. 
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Table 5.18 Failure probability and corresponding reliability index (β) for average, minimum and maximum value of δpeak for each 

discontinuity 

The ID of 
discontinuities 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

δPeak_Avreage (cm) 0.52 3.22 3.42 3.13 3.07 3.07 6.56 6.26 5.57 2.58 2.42 2.89 2.00 2.00 

δPeak_min (cm) 0.3 2 2 2 2 2 4 4 3.7 1.7 1.6 1.9 1.3 1.3 

δPeak_max (cm) 0.7 4 4 4 3.9 3.9 8.3 8 7.1 3.14 3 3.7 2.5 2.5 

Pf(δ>δPeak_Avreage) 
% 

47.683 21.26 3.798 4.445 4.586 0 4.813 5.04 0 11.765 12.463 10.602 18.576 0 

Pf(δ>δPeak_max) % 50.458 23.84 9.175 9.175 9.175 0 2.86 2.86 0 16.925 17.781 15.421 22.593 0 

Pf(δ>δpeak_min) % 46.15 20.04 2.86 2.86 2.995 0 3.817 3.958 0 9.814 10.242 8.402 16.704 0 

β_Ave 0.058 0.797 1.7746 1.7012 1.6864 INF 1.663 1.641 INF 1.1868 1.1521 1.248 0.8936 INF 

β_min - 0.712 1.3301 1.3301 1.3301 INF 1.902 1.9018 INF 0.9571 0.9237 1.0185 0.7523 INF 

β_max 0.0966 0.84 1.9018 1.9018 1.8815 INF 1.772 1.7556 INF 1.2922 1.2679 1.3785 0.9659 INF 

 

                 

1
0
8
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CHAPTER VI 

 

 

CONCLUSIONS AND RECOMMEDATIONS 

 

 

 

In this research, three dimensional distinct element method using 3DEC 

software was combined with probability for analyzing of rock slope stability 

and a probabilistic-numerical approach has been developed. To follow the 

methodology practically, a slope containing a historical grave in Amasya 

Turkey was selected to be analyzed. The shear behavior of rock 

discontinuities were modeled plastically by applying Barton models. 

 

The model of rock slope was given different samples of realization of 

random variables such as JRC, cohesion, JCS and friction angle. The 

analysis indicated that if the calcite as the infilling of the rock joints is not 

included in the analysis, even for a higher value for JRC the slope fails 

tremendously. Although there are some failed discontinuities in the field, 

however, tremendous failure of model without calcite effect is not rational.  

To take the infilling material’s effect into account it was assumed that the 

joint planes are controlled by both frictional parameters like JRC and 

cohesion of the calcite. For this purpose, for different values of cohesion the 

model was run for different JRC values. The variation of JRC and cohesion 

were controlling the stability of the model. Because, both the shear strength 

and joint shear stiffness are dependent on JRC and cohesion.  

 

In field, it was observed that the weathering of the infilling material might be 

one of the parameters that were affected the instabilities, to model this, the 

range of 50 kPa to 500 kPa was considered to be used in the model. Model 
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was totally stable for cohesion bigger that 300 kPa even for lower JRC like 

JRC=2. However, by decreasing the cohesion the discontinuity displaced 

considerably.  

 

To calculate the failure probability of the discontinuities, for definite values of 

JCS, friction angle and cohesion, the realization of JRC (random variable) 

was varied and the stability condition of the structure was investigated. And 

for any sample, the failure probability of each discontinuity was obtained. 

 

The study indicated that for constant values of cohesion, basic friction angle 

and joint wall’s compressive strength the reduction of joint roughness (JRC) 

increases the failure probability, because, it reduces the strength and the 

shear stiffness of the joint plane and consequently the increment of shear 

displacement. Furthermore, the reduction of compressive strength of joint 

wall (JCS) from 70 MPa to 50 MPa increases the failure probability about 

8%. Also, the reduction of basic friction angle from 330 to 300 for constant 

cohesion and JCS values increases the failure probability from 0.3% to 28% 

depending on the different pairs of cohesion and JCS. 

 

Moreover, results indicated that for a case in which the JCS=70 MPa and the 

basic friction angle is 330, reduction of cohesion of infilling material due to 

weathering from 300 kPa to 200, 150, 100 and 50 kPa has increased the 

failure probability about 18.88%, 41.47%, 68.07% and 76.26% respectively, 

which indicates that during time the weathering that reduces the strength of 

the infilling material increases the possibility of failure of the slope. Also, for 

a case in which the JCS=70 MPa and the basic friction angle is 30, reduction 

of cohesion of infilling material due to weathering from 500 kPa to 300, 200, 

150, 100 and 50 kPa has increased the failure probability about 0.3%, 30%, 

69.57%, 73% and 81.75% respectively. These results confirm the 

importance of the weathering effects on stability of the slope. 
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In this research, the thirty five realizations of random variables were run; the 

shear displacements of each discontinuity for all thirty five realizations were 

fitted appropriate distribution functions. For shear displacements lower than 

estimated peak shear displacement by Barton formula the failure probability 

and the corresponding reliability index (β) were obtained. By assuming β 1 

as failure, the discontinuities number 1, 2, 10 and 11 are in failure state. 

Also, the results indicated that the discontinuities number 6, 9 and 14 are 

totally safe. 

 

For future works the following recommendations are made: 

 

The study area has a complex topography; therefore it is difficult to construct 

the model of the rock slope. According to the Barton models the strength 

parameters of the rock discontinuity are dependent on normal stress acting 

on the discontinuities. Therefore, the shape of the model affects the normal 

stress and shear stress therefore the behavior of the rock discontinuities. 

Thus, application of the laser scanning and the photogrammetric methods to 

achieve more precise results is recommended. 

 

In this study, some of Barton models were used to model the behavior of the 

rock discontinuities, and the Barton models were equalized by Coulomb 

model that assumes perfect Elastic-Plastic behavior. However, it is clear that 

the Joint Shear Stiffness is nonlinear and the strength of the rock 

discontinuity reduces to lower than its peak value after shearing. Also, 

existence of asperities on the discontinuity plane increases the role of 

dilatancy in stability of the discontinuities. Therefore, it is recommended to 

use other models of Barton in future works. 

 

Moreover, in this thesis the role of bedding planes were omitted, due to the 

heavy computational load in DEM, however, the existence of bedding planes 

reduce the size of blocks that influences the displacement of the blocks. 
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Thus, it is also recommended to apply more joint sets to derive more realistic 

results. 
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APPENDIX A: 

 

 

FIELD DATA AND LABORATORIAL TESTS RESULTS 

 

 

 

Table A 1 Goodness of Fit for JRC 

# Distribution  

Kolmogorov 

Smirnov  

Anderson 

Darling  

Chi-Squared  

Statistic Rank Statistic Rank Statistic Rank 

1 Beta  0.16392 38 1.2237 29 8.0468 15 

2 Burr  0.13243 21 0.77664 8 9.131 33 

3 Burr (4P)  0.1263 6 0.97813 23 8.6035 18 

4 Cauchy 0.16028 36 2.6619 43 7.4223 14 

5 Chi-Squared  0.15296 33 1.235 30 2.8066 3 

6 Chi-Squared (2P)  0.15791 34 2.1859 40 3.1091 5 

7 Dagum  0.12937 15 0.72097 2 8.977 21 

8 Dagum (4P)  0.13139 18 0.79967 10 9.1487 35 

9 Erlang  0.25747 52 5.012 47 6.5777 13 

10 Erlang (3P)  0.17329 41 1.337 34 3.4504 6 

11 Error  0.19426 45 2.0759 38 5.9883 9 

12 Error Function  0.75982 59 79.811 59 235.33 54 
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13 Exponential  0.31373 55 5.7404 51 17.634 49 

14 Exponential (2P)  0.23558 50 3.4396 45 13.259 47 

15 Fatigue Life 0.11729 3 0.75408 5 8.9858 23 

16 Fatigue Life (3P)  0.12787 10 0.80935 15 9.1142 31 

17 Frechet  0.15904 35 1.0889 28 1.1611 1 

18 Frechet (3P)  0.13343 23 0.80527 13 9.1387 34 

19 Gamma 0.13238 20 0.97779 22 9.1114 29 

20 Gamma (3P)  0.12885 14 0.87724 21 9.6288 41 

21 Gen. Extreme Value  0.13358 24 0.84422 17 9.3357 38 

22 Gen. Gamma 0.14214 27 1.0451 26 8.9287 20 

23 Gen. Gamma (4P)  0.12884 13 0.87348 20 9.6262 40 

24 Gen. Pareto  0.12705 7 8.2742 54 N/A 

25 Gumbel Max  0.14445 30 1.0362 25 2.9899 4 

26 Gumbel Min  0.2493 51 5.7022 50 12.058 46 

27 Hypersecant  0.19713 46 2.5946 42 6.1971 12 

28 Inv. Gaussian  0.13812 25 0.87273 19 9.0077 24 

29 Inv. Gaussian (3P)  0.12827 11 0.80594 14 9.1117 30 

30 Johnson SB  0.16085 37 8.3345 55 N/A 

31 Kumaraswamy 0.17223 40 5.2802 49 N/A 

32 Laplace  0.21735 49 3.0293 44 11.674 45 

         

             Table A.1- Continued  
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Table A.1 Continued  

33 Levy 0.44556 58 11.545 57 49.255 53 

34 Levy (2P)  0.37176 56 7.659 53 24.874 51 

35 Log-Gamma 0.11446 2 0.75633 6 8.7722 19 

36 Log-Logistic  0.11233 1 0.75169 4 9.2407 37 

37 Log-Logistic (3P)  0.12984 16 0.73749 3 8.9831 22 

38 Log-Pearson 3  0.12838 12 0.80377 12 9.1195 32 

39 Logistic  0.18212 43 2.3688 41 6.1619 11 

40 Lognormal 0.12482 5 0.76242 7 9.0087 25 

41 Lognormal (3P)  0.12999 17 0.80311 11 9.1002 27 

42 Nakagami 0.14525 31 1.2567 31 9.8069 42 

43 Normal 0.18546 44 2.129 39 6.1104 10 

44 Pareto  0.37477 57 10.356 56 21.051 50 

45 Pareto 2  0.29285 54 5.1989 48 30.011 52 

46 Pearson 5  0.1216 4 0.72086 1 1.4887 2 

47 Pearson 5 (3P)  0.13178 19 0.79548 9 9.1008 28 

48 Pearson 6  0.13333 22 0.84084 16 9.1644 36 

49 Pearson 6 (4P)  0.12705 8 0.8675 18 9.6236 39 

50 Pert  0.14225 28 1.0808 27 8.3214 16 

51 Power Function  0.20182 47 6.1407 52 N/A 

52 Rayleigh  0.14892 32 1.2586 32 9.8586 44 
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Table A 2 Goodness of Fit  for Schmidt Hammer value 

 

Distribution  

Kolmogorov 

Smirnov  

Anderson 

Darling  

Chi-Squared  

Statistic Rank Statistic Rank Statistic Rank 

1 Beta  0.10715 9 0.86793 5 10.287 4 

2 Burr  0.12986 18 1.438 12 14.414 15 

3 Burr (4P)  0.10077 5 0.89059 7 10.18 3 

4 Cauchy 0.15071 26 3.6726 37 22.403 28 

Table A.1 Continued  

53 Rayleigh (2P)  0.16862 39 1.5638 36 5.8743 8 

54 Reciprocal  0.28924 53 4.7135 46 14.717 48 

55 Rice  0.14328 29 1.2611 33 9.8121 43 

56 Student's t  0.93053 60 153.64 60 1778.3 55 

57 Triangular  0.1801 42 1.5744 37 5.6397 7 

58 Uniform  0.20597 48 13.243 58 N/A 

59 Weibull 0.13934 26 1.5409 35 9.0295 26 

60 Weibull (3P)  0.12775 9 0.98776 24 8.5932 17 

61 Johnson SU No fit 
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Table A.2 Continued  

5 Chi-Squared  0.19053 44 3.9163 40 24.898 32 

6 Chi-Squared (2P)  0.15857 27 2.122 22 14.894 21 

7 Dagum  0.08591 2 0.55436 1 5.3414 2 

8 Dagum (4P)  0.6739 58 100.07 58 313.43 53 

9 Erlang  0.20104 47 3.517 36 22.849 29 

10 Erlang (3P)  0.1389 19 1.7239 18 15.043 23 

11 Error  0.12885 17 1.3678 11 13.779 14 

12 Error Function  0.94086 59 521.59 60 N/A 

13 Exponential  0.38022 52 20.011 52 93.524 49 

14 Exponential (2P)  0.30743 51 15.285 50 55.683 46 

15 Fatigue Life 0.17918 37 3.1686 32 31.134 38 

16 Fatigue Life (3P)  0.14439 23 1.6948 17 14.891 17 

17 Frechet  0.22001 50 5.8142 46 27.672 34 

18 Frechet (3P)  0.19033 43 8.8348 48 N/A 

19 Gamma 0.17397 35 2.8411 28 33.046 41 

20 Gamma (3P)  0.14918 25 1.7966 21 14.893 19 

21 Gen. Extreme Value  0.08925 3 4.699 43 N/A 

22 Gen. Gamma 0.16911 31 2.5228 26 28.793 36 

23 Gen. Gamma (4P)  0.11685 13 1.1314 10 10.756 7 
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Table A.2 Continued  

24 Gen. Pareto  0.11727 14 12.198 49 N/A 

25 Gumbel Max  0.20684 48 5.3378 45 37.801 44 

26 Gumbel Min  0.10773 10 0.9709 9 5.2253 1 

27 Hypersecant  0.17136 32 2.7557 27 23.664 31 

28 Inv. Gaussian  0.18956 42 3.9743 41 25.011 33 

29 Inv. Gaussian (3P)  0.14257 20 1.6544 16 14.933 22 

30 Johnson SB  0.08186 1 4.6906 42 N/A 

31 Kumaraswamy 0.1055 8 0.84197 3 10.314 6 

32 Laplace  0.19969 46 3.8253 39 27.711 35 

33 Levy 0.55744 57 28.689 56 190.4 52 

34 Levy (2P)  0.4958 56 21.994 54 109.75 50 

35 Log-Gamma 0.18261 40 3.4312 34 31.428 39 

36 Log-Logistic  0.17803 36 3.1913 33 32.036 40 

37 Log-Logistic (3P)  0.12089 15 1.6091 14 16.527 24 

38 Log-Pearson 3  0.10171 6 0.86383 4 13.068 11 

39 Logistic  0.15889 28 2.2115 24 11.535 10 

40 Lognormal 0.17367 34 2.9871 31 30.372 37 

41 Lognormal (3P)  0.14622 24 1.7513 20 14.718 16 

42 Nakagami 0.15973 29 2.9237 30 16.528 25 

43 Normal 0.14327 21 1.6368 15 14.893 20 
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Table A.2 Continued  

44 Pareto  0.40952 54 24.803 55 35.379 43 

45 Pareto 2  0.39654 53 21.439 53 117.62 51 

46 Pearson 5  0.17985 38 3.7343 38 34.649 42 

47 Pearson 5 (3P)  0.1641 30 2.1772 23 18.999 26 

48 Pearson 6  0.18098 39 2.8939 29 23.023 30 

49 Pearson 6 (4P)  0.14431 22 1.7451 19 14.892 18 

50 Pert  0.10807 11 0.88244 6 13.104 12 

51 Power Function  0.18634 41 3.4831 35 19.703 27 

52 Rayleigh  0.20989 49 7.3287 47 56.528 47 

53 Rayleigh (2P)  0.19638 45 5.0816 44 44.758 45 

54 Reciprocal  0.42406 55 31.557 57 63.937 48 

55 Rice  0.1725 33 2.2236 25 13.757 13 

56 Student's t  0.99237 60 514.78 59 54758.0 54 

57 Triangular  0.09243 4 0.69343 2 11.308 9 

58 Uniform  0.11028 12 16.407 51 N/A 

59 Weibull 0.12659 16 1.4756 13 10.309 5 

60 Weibull (3P)  0.10193 7 0.93133 8 11.251 8 

61 Johnson SU No fit 
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Figure A. 1 Shear stress/displacement curves for joint sample named as 

S_3 for different normal stress values 

 

 

Figure A. 2 Relation of Shear and Normal stresses acted on joint of S_3 

to obtain the basic friction angle of joint surface which is 32.23 
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Figure A. 3 Dependency of joint shear stiffness (Ks) to normal stress in 

smooth joint plane (S_3) 

 

Figure A.4 Shear stress/displacement curves for joint sample named as S_4 

for different normal stress values 
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Figure A.5 Relation of Shear and Normal stresses acted on joint of S_4 to obtain 

the basic friction angle of joint surface which is 29.16 

 

 

Figure A.6 Dependency of joint shear stiffness (Ks) to normal stress in smooth joint 

plane (S_4) 
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Figure A.7 Shear stress/displacement curves for joint sample named as S_5 for 

different normal stress values 

 

 

Figure A.8 Relation of Shear and Normal stresses acted on joint of S_5 to 

obtain the basic friction angle of joint surface which is 33.48 
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Figure A.9 Dependency of joint shear stiffness (Ks) to normal stress in 

smooth joint plane (S_5) 

 

 

Figure A.10 Shear stress/displacement curves for joint sample named as S_5 for 

different normal stress values 
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Figure A.11Relation of Shear and Normal stresses acted on joint of S_5 

to obtain the basic friction angle of joint surface which is 29 

 

 

Figure A. 12Dependency of joint shear stiffness (Ks) to normal stress in 

smooth joint plane (S_5) 
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Figure A. 13 Shear stress/displacement curves for joint sample named as 

N_2 for different normal stress values 

 

 

Figure A.14 Relation of Shear and Normal stresses acted on joint of N_2 
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Figure A.15 Dependency of joint shear stiffness (Ks) to normal stress in 

rough joint plane (N_2) 

 

 

Figure A.16 Stress-strain curve of sample II 
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APPENDIX B 

 

 

DISTRIBUTIONS OF SHEAR DISPLACEMENT 

 

 

 

 

Figure B.1 Beta distribution of shear displacement of discontinuity no. 2 
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Figure B.2 Student’s distribution of shear displacement of discontinuity no. 3 

 

 

Figure B.3 Student’s distribution of shear displacement of discontinuity no. 4 

 



  

135 
 

 

Figure B.4 Student’s distribution of shear displacement of discontinuity no. 5 

 

 

Figure B.5 Triangular distribution of shear displacement of discontinuity no. 6 
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Figure B.6 Student’s distribution of shear displacement of discontinuity no. 7 

 

 

Figure B.7 Student’s distribution of shear displacement of discontinuity no. 8 
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Figure B.8 Triangular distribution of shear displacement of discontinuity no. 9 

 

 

Figure B.9 Student’s distribution of shear displacement of discontinuity no. 10 
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Figure B.10 Student’s distribution of shear displacement of discontinuity no. 11 

 

 

Figure B.11 Student’s distribution of shear displacement of discontinuity no. 12 
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Figure B.12 Lognormal distribution of shear displacement of discontinuity no. 13 

 

 

Figure B.13 Normal distribution of shear displacement of discontinuity no. 14 
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APPENDIX C:  

 

 

WRITTEN CODES IN 3DEC 

 

 

 

C.1 The master code 

 

new  

poly brick 0 67 0 110 0 95 

pl bl 

jset dip 0 dd 0 org 0 0 20  id 6 

hide dip 0 dd 0 org 0 0 20 below 

jset dip 90 dd 180 org 0 47 20 id 2 

hide dip 90 dd 180 org 0 47 20  above 

seek 

hide dip 90 dd 180 org 0 47 20 above 

hide dip 0 dd 0 org 0 0 40 below    

jset dip 87 dd 180 org 0 61 20 id 1 

jset dip 75 dd 288 org 14.8 46.9 40 id 8 

hide dip 87 dd 180 org 0 61 20 above  

hide dip 0 dd 0 org 0 0 40 below  

jset dip 75 dd 288 org 53.68 60.85 40 id 9 

seek  

hide dip 87 dd 180 org 0 61 20 below  
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hide dip 87 dd 180 org 0 47 20 above  

jset dip 0 dd 0 org 0 0 80.4  id 4 

seek  

del bl 217 

seek 

del bl 2137 

del bl 4353 

hide dip 75 dd 288 org 14.8 46.9 40 above 

hide dip 0 dd 0 org 0 0 40 below 

jset dip 90 dd 197 org 40 47 40 id 11 

del bl 5891 

jset dip 90 dd 161 org 40 47 40 id 12 

del bl 4353 

seek 

hide dip 0 dd 0 org 0 0 40 below 

hide dip 87 dd 180 org 0 61 20 below  

hide dip 75 dd 288 org 14.8 46.9 40 below 

jset dip 0 dd 0 org 0 0 72.4  id 3 

seek 

del bl 6693 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 0 dd 0 org 0 0 40 below 

jset dip 55 dd 90 org 65.75 47 40 id 10 

del bl 5891 

seek 

hide dip 0 dd 0 org 0 0 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 below 
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hide dip 87 dd 180 org 0 61 20 below 

jset dip 90 dd 196 org 16.5 52.45 40  

jset dip 80 dd 240 org 14.976 54 40  id 18 

del bl 5891 

del bl 4353  

del bl 217 

seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 0 dd 0 org 0 0 40 below 

hide dip 75 dd 288 org 14.8 46.9 40 above 

jset dip 70 dd 196 org 40 47  58.4 id 15 

del bl 6693 

jset dip 70 dd 159 org 40 47  58.4 id 16 

del bl 217 

seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 0 dd 0 org 0 0 40 below  

jset dip 60 dd 288 org 12 62 56 id 19 

del bl 2137 

seek 

hide dip 0 dd 0 org 0 0 20 below 

jset dip 80 dd 240 org 14.976 54 40  id 18 

del bl 2845 

hide dip 87 dd 180 org 0 61 20 above 

hide dip 0 dd 0 org 0 0 40 below 

jset dip 80 dd 288 org 40.22 65.5 79.2 id 20 

seek 
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hide dip 0 dd 0 org 0 0 20 below 

jset dip 55 dd 200 id 17 n 25 org 10.32 62 40 sp 5 

seek 

del bl 67155 

del bl 63281 

del bl  5165 

del bl 2137 

del bl 70311 

del bl 217 

del bl 68321 

del bl 67633 

del bl 69669 

del bl 3551 

del bl 63801 

del bl 58903 

del bl 2845 

del bl 66497 

del bl 53811 

del bl 59625 

del bl 57561 

 

hide dip 87 dd 180 org 0 61 20 below 

gen edge 5 range z 20 100 

seek  

hide dip 87 dd 180 org 0 61 20 above 

gen edge 10 range z 20 100 

seek 
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gen edge 10 range z 0 20  

Prop mat=1 den=0.0026  k=16e4 g=10.0e4 

change jcons 7 

prop jmat=1 jkn=1e5 jks=5e4  

change jmat=1 

bound xvel=0 range  x -0.1 0.1    y -0.1 110.1    z -0.1 40.1 

bound xvel=0 range  x 66.6 66.75  y -0.1 110.1    z -0.1 40.1 

bound yvel=0 range  x -0.1 67     y 109.9 110     z -0.1 95 

bound yvel=0 range  x -0.1 67     y -0.1 0.1      z -0.1 20 

bound zvel=0 range  x -0.1 67     y -0.1 110.1    z -0.1 0.1 

gravity 0 0 -10 

hist unbal 

damp auto 

his @shea1 @nstav1 @njdisp1 @sheardisp1 

his @shea2 @nstav2 @njdisp2 @sheardisp2 

 

his @shea3 @nstav3 @njdisp3 @sheardisp3 

his @shea4 @nstav4 @njdisp4 @sheardisp4 

 

his @shea5 @nstav5 @njdisp5 @sheardisp5 

his @shea6 @nstav6 @njdisp6 @sheardisp6 

 

his @shea7 @nstav7 @njdisp7 @sheardisp7 

his @shea8 @nstav8 @njdisp8 @sheardisp8 

his @shea9 @nstav9 @njdisp9 @sheardisp9 

his @shea10 @nstav10 @njdisp10 @sheardisp10 
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his @shea11 @nstav11 @njdisp11 @sheardisp11 

his @shea12 @nstav12 @njdisp12 @sheardisp12 

his @shea13 @nstav13 @njdisp13 @sheardisp13 

his @shea15 @nstav15 @njdisp15 @sheardisp15 

 

C.2 Code to obtain normal stress and shear displacement for each 

discontinuity 

 

def av_str1 

      whilestepping 

      sstav1 = 0 

      nstav1 = 0.01 

      njdisp1 = 0 

      sjdisp1 = 0 

      ncono1 = 0 

      xsf1=0 

      ysf1=0 

      zsf1=0 

      xsd1=0 

      ysd1=0 

      zsd1=0 

      shear1=0 

      sheardisp1=0 

      Are1=0 

      ic1 = c_near(34.43,57.22,80.4)  

      icsub1 = c_cx(ic1)  

        Loop while icsub1 # 0 
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            ncono1 = ncono1 + 1 

            Are1=Are1 + cx_area(icsub1) 

            nstav1 = nstav1 +cx_nforce(icsub1) 

            njdisp1 = njdisp1 + cx_ndis(icsub1) 

            ssss1 = cx_sforce(icsub1) 

            ssdisp1 = cx_sdis(icsub1) 

            xsf1= xsf1+ xcomp(ssss1) 

            ysf1= ysf1+ ycomp(ssss1) 

            zsf1= zsf1+ zcomp(ssss1)  

           xsd1= xsd1+ xcomp(ssdisp1) 

            ysd1= ysd1+ ycomp(ssdisp1) 

            zsd1= zsd1+ zcomp(ssdisp1)  

            icsub1 = cx_next(icsub1) 

         Endloop 

         if ncono1 # 0 

 

           shea1=sqrt((xsf1)^2+(ysf1)^2+(zsf1)^2)/Are1 

           sheardisp1 =  sqrt((xsd1)^2+(ysd1)^2+(zsd1)^2) / ncono1 

           nstav1 = nstav1 / Are1 

           njdisp1 = njdisp1 / ncono1 

             Endif 

end 

;;;;;;;;;;;;;;;;;;;;;;; 

def av_str2 

   whilestepping 

      sstav2 = 0 

      nstav2 = 0 
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      njdisp2 = 0 

      sjdisp2 = 0 

      ncono2 = 0 

      xsf2=0 

      ysf2=0 

      zsf2=0 

        xsd2=0 

      ysd2=0 

      zsd2=0 

          shear2=0 

      sheardisp2=0 

      Are2=0 

   ic2 = c_near(40.87,57.2,75.53) 

      icsub2 = c_cx(ic2)  

        Loop while icsub2 # 0 

            ncono2 = ncono2 + 1 

            Are2=Are2 + cx_area(icsub2) 

            nstav2 = nstav2 +cx_nforce(icsub2) 

            njdisp2 = njdisp2 + cx_ndis(icsub2) 

            ssss2 = cx_sforce(icsub2) 

            ssdisp2 = cx_sdis(icsub2) 

 

            xsf2= xsf2+ xcomp(ssss2) 

            ysf2= ysf2+ ycomp(ssss2) 

            zsf2= zsf2+ zcomp(ssss2)  

            xsd2= xsd2+ xcomp(ssdisp2) 

            ysd2= ysd2+ ycomp(ssdisp2) 
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            zsd2= zsd2+ zcomp(ssdisp2)  

            icsub2 = cx_next(icsub2) 

         Endloop 

         if ncono2 # 0 

 

           shea2=sqrt((xsf2)^2+(ysf2)^2+(zsf2)^2)/Are2 

           sheardisp2 =  sqrt((xsd2)^2+(ysd2)^2+(zsd2)^2) / ncono2 

           nstav2 = nstav2 / Are2 

           njdisp2 = njdisp2 / ncono2 

 

         Endif 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

def av_str3 

   whilestepping 

      sstav3 = 0 

      nstav3 = 0 

      njdisp3 = 0 

      sjdisp3 = 0 

      ncono3 = 0 

      xsf3=0 

      ysf3=0 

      zsf3=0 

      xsd3=0 

      ysd3=0 

      zsd3=0 
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      shear3=0 

      sheardisp3=0 

      Are3=0 

   ic3 = c_near(46.24,55.64,67.86) 

   icsub3 = c_cx(ic3)  

        Loop while icsub3 # 0 

            ncono3 = ncono3 + 1 

            Are3=Are3 + cx_area(icsub3) 

            nstav3 = nstav3 +cx_nforce(icsub3) 

            njdisp3 = njdisp3 + cx_ndis(icsub3) 

            ssss3 = cx_sforce(icsub3) 

            ssdisp3 = cx_sdis(icsub3) 

            xsf3= xsf3+ xcomp(ssss3) 

            ysf3= ysf3+ ycomp(ssss3) 

            zsf3= zsf3+ zcomp(ssss3)  

             xsd3= xsd3+ xcomp(ssdisp3) 

            ysd3= ysd3+ ycomp(ssdisp3) 

            zsd3= zsd3+ zcomp(ssdisp3)  

             icsub3 = cx_next(icsub3) 

         Endloop 

         if ncono3 # 0 

shea3=sqrt((xsf3)^2+(ysf3)^2+(zsf3)^2)/Are3 

           sheardisp3 =  sqrt((xsd3)^2+(ysd3)^2+(zsd3)^2) / ncono3 

           nstav3 = nstav3 / Are3 

           njdisp3 = njdisp3 / ncono3 

 

         Endif 
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end 

;;;;;;;;;;;;;;;;;;; 

def av_str4 

   whilestepping 

      sstav4 = 0 

      nstav4 = 0 

      njdisp4 = 0 

      sjdisp4 = 0 

      ncono4 = 0 

      xsf4=0 

      ysf4=0 

      zsf4=0 

      xsd4=0 

      ysd4=0 

      zsd4=0 

      shear4=0 

      sheardisp4=0 

      Are4=0 

   ic4 = c_near(36.49,55.85,53.24) 

   icsub4 = c_cx(ic4)  

   Loop while icsub4 # 0 

            ncono4 = ncono4 + 1 

            Are4=Are4 + cx_area(icsub4) 

            nstav4 = nstav4 +cx_nforce(icsub4) 

            njdisp4 = njdisp4 + cx_ndis(icsub4) 

            ssss4 = cx_sforce(icsub4) 

            ssdisp4 = cx_sdis(icsub4) 
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            xsf4= xsf4+ xcomp(ssss4) 

            ysf4= ysf4+ ycomp(ssss4) 

            zsf4= zsf4+ zcomp(ssss4)  

            xsd4= xsd4+ xcomp(ssdisp4) 

            ysd4= ysd4+ ycomp(ssdisp4) 

            zsd4= zsd4+ zcomp(ssdisp4)  

            icsub4 = cx_next(icsub4) 

    Endloop 

         if ncono4 # 0 

            shea4=sqrt((xsf4)^2+(ysf4)^2+(zsf4)^2)/Are4 

           sheardisp4 =  sqrt((xsd4)^2+(ysd4)^2+(zsd4)^2) / ncono4 

           nstav4 = nstav4 / Are4 

           njdisp4 = njdisp4 / ncono4 

 

         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

def av_str5 

   whilestepping 

      sstav5 = 0 

      nstav5 = 0 

      njdisp5 = 0 

      sjdisp5 = 0 

      ncono5 = 0 

      xsf5=0 

      ysf5=0 
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      zsf5=0 

      xsd5=0 

      ysd5=0 

      zsd5=0 

      shear5=0 

      sheardisp5=0 

      Are5=0 

   ic5 = c_near(37.06,  56.05,  45.08) 

   icsub5 = c_cx(ic5)  

     Loop while icsub5 # 0 

            ncono5 = ncono5 + 1 

            Are5=Are5 + cx_area(icsub5) 

            nstav5 = nstav5 +cx_nforce(icsub5) 

            njdisp5 = njdisp5 + cx_ndis(icsub5) 

            ssss5 = cx_sforce(icsub5) 

            ssdisp5 = cx_sdis(icsub5) 

            xsf5= xsf5+ xcomp(ssss5) 

            ysf5= ysf5+ ycomp(ssss5) 

            zsf5= zsf5+ zcomp(ssss5)  

            xsd5= xsd5+ xcomp(ssdisp5) 

            ysd5= ysd5+ ycomp(ssdisp5) 

            zsd5= zsd5+ zcomp(ssdisp5)  

            icsub5 = cx_next(icsub5) 

    Endloop 

         if ncono5 # 0 

           shea5=sqrt((xsf5)^2+(ysf5)^2+(zsf5)^2)/Are5 

           sheardisp5 =  sqrt((xsd5)^2+(ysd5)^2+(zsd5)^2) / ncono5 
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           nstav5 = nstav5 / Are5 

           njdisp5 = njdisp5 / ncono5 

 

         Endif 

end 

;;;;;;;;;;;;;;;;;;; 

 

def av_str6 

   whilestepping 

      sstav6 = 0 

      nstav6 = 0 

      njdisp6 = 0 

      sjdisp6 = 0 

      ncono6 = 0 

      xsf6=0 

      ysf6=0 

      zsf6=0 

      xsd6=0 

      ysd6=0 

      zsd6=0 

      shear6=0 

      sheardisp6=0 

      Are6=0 

   ic6 = c_near(45.18, 48.78, 41.3) 

   icsub6 = c_cx(ic6)  

  Loop while icsub6 # 0 

            ncono6 = ncono6 + 1 
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            Are6=Are6 + cx_area(icsub6) 

            nstav6 = nstav6 +cx_nforce(icsub6) 

            njdisp6 = njdisp6 + cx_ndis(icsub6) 

            ssss6 = cx_sforce(icsub6) 

            ssdisp6 = cx_sdis(icsub6) 

            xsf6= xsf6+ xcomp(ssss6) 

            ysf6= ysf6+ ycomp(ssss6) 

            zsf6= zsf6+ zcomp(ssss6)  

            xsd6= xsd6+ xcomp(ssdisp6) 

            ysd6= ysd6+ ycomp(ssdisp6) 

            zsd6= zsd6+ zcomp(ssdisp6)  

            icsub6 = cx_next(icsub6) 

    Endloop 

         if ncono6 # 0 

           shea6=sqrt((xsf6)^2+(ysf6)^2+(zsf6)^2)/Are6 

           sheardisp6 =  sqrt((xsd6)^2+(ysd6)^2+(zsd6)^2) / ncono6 

           nstav6 = nstav6 / Are6 

           njdisp6 = njdisp6 / ncono6 

 

         Endif 

end 

;;;;;;;;;;;;;;;;;;; 

 

def av_str7 

   whilestepping 

      sstav7 = 0 

      nstav7 = 0 



  

155 
 

      njdisp7 = 0 

      sjdisp7 = 0 

      ncono7 = 0 

      xsf7=0 

      ysf7=0 

      zsf7=0 

      xsd7=0 

      ysd7=0 

      zsd7=0 

      shear7=0 

      sheardisp7=0 

      Are7=0 

      ic7 = c_near(40.96,69.77,75.72) 

      icsub7 = c_cx(ic7)  

 

   Loop while icsub7 # 0 

            ncono7 = ncono7 + 1 

            Are7=Are7 + cx_area(icsub7) 

            nstav7 = nstav7 +cx_nforce(icsub7) 

            njdisp7 = njdisp7 + cx_ndis(icsub7) 

            ssss7 = cx_sforce(icsub7) 

            ssdisp7 = cx_sdis(icsub7) 

            xsf7= xsf7+ xcomp(ssss7) 

            ysf7= ysf7+ ycomp(ssss7) 

            zsf7= zsf7+ zcomp(ssss7)  

            xsd7= xsd7+ xcomp(ssdisp7) 

            ysd7= ysd7+ ycomp(ssdisp7) 
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            zsd7= zsd7+ zcomp(ssdisp7)  

            icsub7 = cx_next(icsub7) 

    Endloop 

         if ncono7 # 0 

           shea7=sqrt((xsf7)^2+(ysf7)^2+(zsf7)^2)/Are7 

           sheardisp7 =  sqrt((xsd7)^2+(ysd7)^2+(zsd7)^2) / ncono7 

           nstav7 = nstav7 / Are7 

           njdisp7 = njdisp7 / ncono7 

 

         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

 

def av_str8 

   whilestepping 

      sstav8 = 0 

      nstav8 = 0 

      njdisp8 = 0 

      sjdisp8 = 0 

      ncono8 = 0 

      xsf8=0 

      ysf8=0 

      zsf8=0 

      xsd8=0 

      ysd8=0 

      zsd8=0 
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      shear8=0 

      sheardisp8=0 

      Are8=0 

   ic8 = c_near(37.74,  75.99,  72.17) 

   icsub8 = c_cx(ic8)  

 

   Loop while icsub8 # 0 

            ncono8 = ncono8 + 1 

            Are8=Are8 + cx_area(icsub8) 

            nstav8 = nstav8 +cx_nforce(icsub8) 

            njdisp8 = njdisp8 + cx_ndis(icsub8) 

            ssss8 = cx_sforce(icsub8) 

            ssdisp8 = cx_sdis(icsub8) 

            xsf8= xsf8+ xcomp(ssss8) 

            ysf8= ysf8+ ycomp(ssss8) 

            zsf8= zsf8+ zcomp(ssss8)  

            xsd8= xsd8+ xcomp(ssdisp8) 

            ysd8= ysd8+ ycomp(ssdisp8) 

            zsd8= zsd8+ zcomp(ssdisp8)  

            icsub8 = cx_next(icsub8) 

    Endloop 

         if ncono8 # 0 

           shea8=sqrt((xsf8)^2+(ysf8)^2+(zsf8)^2)/Are8 

           sheardisp8 =  sqrt((xsd8)^2+(ysd8)^2+(zsd8)^2) / ncono8 

           nstav8 = nstav8 / Are8 

           njdisp8 = njdisp8 / ncono8 
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         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

 

def av_str9 

   whilestepping 

      sstav9 = 0 

      nstav9 = 0 

      njdisp9 = 0 

      sjdisp9 = 0 

      ncono9 = 0 

      xsf9=0 

      ysf9=0 

      zsf9=0 

      xsd9=0 

      ysd9=0 

      zsd9=0 

      shear9=0 

      sheardisp9=0 

      Are9=0 

 

   ic9 = c_near(55.53,76.17,72.39) 

   icsub9 = c_cx(ic9)  

 

   Loop while icsub9 # 0 

            ncono9 = ncono9 + 1 
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            Are9=Are9 + cx_area(icsub9) 

            nstav9 = nstav9 +cx_nforce(icsub9) 

            njdisp9 = njdisp9 + cx_ndis(icsub9) 

            ssss9 = cx_sforce(icsub9) 

            ssdisp9 = cx_sdis(icsub9) 

            xsf9= xsf9+ xcomp(ssss9) 

            ysf9= ysf9+ ycomp(ssss9) 

            zsf9= zsf9+ zcomp(ssss9)  

            xsd9= xsd9+ xcomp(ssdisp9) 

            ysd9= ysd9+ ycomp(ssdisp9) 

            zsd9= zsd9+ zcomp(ssdisp9)  

            icsub9 = cx_next(icsub9) 

    Endloop 

         if ncono9 # 0 

           shea9=sqrt((xsf9)^2+(ysf9)^2+(zsf9)^2)/Are9 

           sheardisp9 =  sqrt((xsd9)^2+(ysd9)^2+(zsd9)^2) / ncono9 

           nstav9 = nstav9 / Are9 

           njdisp9 = njdisp9 / ncono9 

 

         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

def av_str10 

   whilestepping 

      sstav10 = 0 

      nstav10 = 0 
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      njdisp10 = 0 

      sjdisp10 = 0 

      ncono10 = 0 

      xsf10=0 

      ysf10=0 

      zsf10=0 

      xsd10=0 

      ysd10=0 

      zsd10=0 

      shear10=0 

      sheardisp10=0 

      Are10=0 

 

   ic10 = c_near(15.26, 82.87, 70.43) 

   icsub10 = c_cx(ic10)  

 

   Loop while icsub10 # 0 

            ncono10 = ncono10 + 1 

            Are10=Are10 + cx_area(icsub10) 

            nstav10 = nstav10 +cx_nforce(icsub10) 

            njdisp10 = njdisp10 + cx_ndis(icsub10) 

            ssss10 = cx_sforce(icsub10) 

            ssdisp10 = cx_sdis(icsub10) 

            xsf10= xsf10+ xcomp(ssss10) 

            ysf10= ysf10+ ycomp(ssss10) 

            zsf10= zsf10+ zcomp(ssss10)  

            xsd10= xsd10+ xcomp(ssdisp10) 
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            ysd10= ysd10+ ycomp(ssdisp10) 

            zsd10= zsd10+ zcomp(ssdisp10)  

            icsub10 = cx_next(icsub10) 

    Endloop 

         if ncono10 # 0 

           shea10=sqrt((xsf10)^2+(ysf10)^2+(zsf10)^2)/Are10 

           sheardisp10 =  sqrt((xsd10)^2+(ysd10)^2+(zsd10)^2) / ncono10 

           nstav10 = nstav10 / Are10 

           njdisp10 = njdisp10 / ncono10 

 

         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

def av_str11 

   whilestepping 

      sstav11 = 0 

      nstav11 = 0 

      njdisp11 = 0 

      sjdisp11 = 0 

      ncono11 = 0 

      xsf11=0 

      ysf11=0 

      zsf11=0 

      xsd11=0 

      ysd11=0 

      zsd11=0 
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      shear11=0 

      sheardisp11=0 

      Are11=0 

 

   ic11 = c_near(18.9, 58.57,57.03) 

   icsub11 = c_cx(ic11)  

 

   Loop while icsub11 # 0 

            ncono11 = ncono11 + 1 

            Are11=Are11 + cx_area(icsub11) 

            nstav11 = nstav11 +cx_nforce(icsub11) 

            njdisp11 = njdisp11 + cx_ndis(icsub11) 

            ssss11 = cx_sforce(icsub11) 

            ssdisp11 = cx_sdis(icsub11) 

            xsf11= xsf11+ xcomp(ssss11) 

            ysf11= ysf11+ ycomp(ssss11) 

            zsf11= zsf11+ zcomp(ssss11)  

            xsd11= xsd11+ xcomp(ssdisp11) 

            ysd11= ysd11+ ycomp(ssdisp11) 

            zsd11= zsd11+ zcomp(ssdisp11)  

            icsub11 = cx_next(icsub11) 

    Endloop 

         if ncono11 # 0 

           shea11=sqrt((xsf11)^2+(ysf11)^2+(zsf11)^2)/Are11 

           sheardisp11 =  sqrt((xsd11)^2+(ysd11)^2+(zsd11)^2) / ncono11 

           nstav11 = nstav11 / Are11 

           njdisp11 = njdisp11 / ncono11 
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         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

def av_str12 

   whilestepping 

      sstav12 = 0 

      nstav12 = 0 

      njdisp12 = 0 

      sjdisp12 = 0 

      ncono12 = 0 

      xsf12=0 

      ysf12=0 

      zsf12=0 

      xsd12=0 

      ysd12=0 

      zsd12=0 

      shear12=0 

      sheardisp12=0 

      Are12=0 

 

   ic12 = c_near(17.18, 57.70, 46.29) 

   icsub12 = c_cx(ic12)  

 

   Loop while icsub12 # 0 

            ncono12 = ncono12 + 1 
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            Are12=Are12 + cx_area(icsub12) 

            nstav12 = nstav12 +cx_nforce(icsub12) 

            njdisp12 = njdisp12 + cx_ndis(icsub12) 

            ssss12 = cx_sforce(icsub12) 

            ssdisp12 = cx_sdis(icsub12) 

            xsf12= xsf12+ xcomp(ssss12) 

            ysf12= ysf12+ ycomp(ssss12) 

            zsf12= zsf12+ zcomp(ssss12)  

            xsd12= xsd12+ xcomp(ssdisp12) 

            ysd12= ysd12+ ycomp(ssdisp12) 

            zsd12= zsd12+ zcomp(ssdisp12)  

            icsub12 = cx_next(icsub12) 

    Endloop 

         if ncono12 # 0 

           shea12=sqrt((xsf12)^2+(ysf12)^2+(zsf12)^2)/Are12 

           sheardisp12 =  sqrt((xsd12)^2+(ysd12)^2+(zsd12)^2) / ncono12 

           nstav12 = nstav12 / Are12 

           njdisp12 = njdisp12 / ncono12 

 

         Endif 

end 

 

;;;;;;;;;;;;;;;;;;; 

 

def av_str13 

   whilestepping 

      sstav13 = 0 
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      nstav13 = 0 

      njdisp13 = 0 

      sjdisp13 = 0 

      ncono13 = 0 

      xsf13=0 

      ysf13=0 

      zsf13=0 

      xsd13=0 

      ysd13=0 

      zsd13=0 

      shear13=0 

      sheardisp13=0 

      Are13=0 

   ic13 = c_near(14.78,  57.74,  36.46) 

   icsub13 = c_cx(ic13)  

 

   Loop while icsub13 # 0 

            ncono13 = ncono13 + 1 

            Are13=Are13 + cx_area(icsub13) 

            nstav13 = nstav13 +cx_nforce(icsub13) 

            njdisp13 = njdisp13 + cx_ndis(icsub13) 

            ssss13 = cx_sforce(icsub13) 

            ssdisp13 = cx_sdis(icsub13) 

            xsf13= xsf13+ xcomp(ssss13) 

            ysf13= ysf13+ ycomp(ssss13) 

            zsf13= zsf13+ zcomp(ssss13)  

            xsd13= xsd13+ xcomp(ssdisp13) 
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            ysd13= ysd13+ ycomp(ssdisp13) 

            zsd13= zsd13+ zcomp(ssdisp13)  

            icsub13 = cx_next(icsub13) 

    Endloop 

         if ncono13 # 0 

           shea13=sqrt((xsf13)^2+(ysf13)^2+(zsf13)^2)/Are13 

           sheardisp13 =  sqrt((xsd13)^2+(ysd13)^2+(zsd13)^2) / ncono13 

           nstav13 = nstav13 / Are13 

           njdisp13 = njdisp13 / ncono13 

 

         Endif 

end 

 

 

def av_str15 

   whilestepping 

      sstav15 = 0 

      nstav15 = 0 

      njdisp15 = 0 

      sjdisp15 = 0 

      ncono15 = 0 

      xsf15=0 

      ysf15=0 

      zsf15=0 

      xsd15=0 

      ysd15=0 

      zsd15=0 
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      shear15=0 

      sheardisp15=0 

      Are15=0 

   ic15 = c_near(12.38,  57.78,  26.62) 

   icsub15 = c_cx(ic15)  

 

   Loop while icsub15 # 0 

            ncono15 = ncono15 + 1 

            Are15=Are15 + cx_area(icsub15) 

            nstav15 = nstav15 +cx_nforce(icsub15) 

            njdisp15 = njdisp15 + cx_ndis(icsub15) 

            ssss15 = cx_sforce(icsub15) 

            ssdisp15 = cx_sdis(icsub15) 

            xsf15= xsf15+ xcomp(ssss15) 

            ysf15= ysf15+ ycomp(ssss15) 

            zsf15= zsf15+ zcomp(ssss15)  

            xsd15= xsd15+ xcomp(ssdisp15) 

            ysd15= ysd15+ ycomp(ssdisp15) 

            zsd15= zsd15+ zcomp(ssdisp15)  

            icsub15 = cx_next(icsub15) 

    Endloop 

         if ncono15 # 0 

           shea15=sqrt((xsf15)^2+(ysf15)^2+(zsf15)^2)/Are15 

           sheardisp15 =  sqrt((xsd15)^2+(ysd15)^2+(zsd15)^2) / ncono15 

           nstav15 = nstav15 / Are15 

           njdisp15 = njdisp15 / ncono15 
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         Endif 

end 

 

 

C.3 Codes to calculate joint material properties and assign the joint 

material to each discontinuity 

 

new 

def prop1   

  NS11 =0.00378813  

Φ=30 

  L1=1.6 

  jcs=70 

  JRC=15 

  fric_14= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))^2+1))) 

  coh_14= 0.05+(NS11*abs(tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))- 

NS11*abs(tan(degrad*fric_1))) 

  d_peak1=L1*(JRC/L1)^0.33 

  J_kk_14=500*((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)^0.33) 

  ic1=c_near(34.43,57.22,80.4) 

  Tp1=m_jcohesion(14)+abs(NS11*tan(degrad*m_jfriction(14))) 

end 

====== 

def prop2    

  NS21  = 0.0347388  

  jcs=70 
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  JRC=15 

Φ=30 

  L2=23.9 

  ic2=c_near(40.87,57.2,75.53) 

  fric_2= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))^2+1))) 

  coh_2= 0.05+(NS21*abs(tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))- 

NS21*abs(tan(degrad*fric_2))) 

  d_peak2=(L2)*(JRC/L2)^0.33 

  J_kk_2=500*((coh_2)+abs(NS21*tan(degrad*fric_2)))/d_peak2 

end 

========= 

def prop3      

  NS31  = 0.0841634  

  jcs=70 

  JRC=15 

Φ=30 

  L3=26.4 

  ic3=c_near(46.24,55.64,67.86) 

  fric_3= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))^2+1))) 

  coh_3= 0.05+ (NS31*abs(tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))- 

NS31*abs(tan(degrad*fric_3))) 

  d_peak3=(L3)*(JRC)^0.33/(L3)^0.33 

  J_kk_3=500*((coh_3)+abs(NS31*tan(degrad*fric_3)))/d_peak3 

  Tp3=m_jcohesion(3)+abs(NS31*tan(degrad*m_jfriction(3))) 

end 
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====== 

def prop4  

  NS41  = 0.135121  

  jcs=70 

  L4=23 

  JRC=15 

Φ=30 

  ic4=c_near(36.49,55.85,53.24) 

  fric_4= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))^2+1))) 

  coh_4= 0.05 + (NS41*abs(tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))-   

 NS41*abs(tan(degrad*fric_4))) 

  d_peak4=(L4)*(JRC)^0.33/(L4)^0.33 

  J_kk_4=500*(coh_4+abs(NS41*tan(degrad*fric_4)))/d_peak4 

  Tp4=m_jcohesion(4)+abs(NS41*tan(degrad*m_jfriction(4))) 

end 

======= 

def prop5    

  NS51  = 0.197149  

  L5=22.3 

  jcs=70 

  JRC=15 

Φ=30 

  fric_5= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))^2+1))) 

  coh_5=0.05+ (NS51*abs(tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))- 

NS51*abs(tan(degrad*fric_5))) 
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  d_peak5=(L5)*(JRC/L5)^0.33 

  J_kk_5=500*(coh_5+abs(NS51*tan(degrad*fric_5)))/d_peak5 

  Tp5=m_jcohesion(5)+abs(NS51*tan(degrad*m_jfriction(5))) 

end 

def prop6  

  NS61 = 0.270908  

  jcs=70 

  L6=22.25 

  JRC=15 

Φ=30 

  ic6=c_near(45.18, 48.78, 41.3) 

  fric_6= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))^2+1))) 

  coh_6= 0.05 + (NS61*abs(tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))- 

NS61*abs(tan(degrad*fric_6))) 

  d_peak6=(L6)*(JRC/L6)^0.33 

  J_kk_6=500*(coh_6+abs(NS61*tan(degrad*fric_6)))/d_peak6 

  Tp6=m_jcohesion(6)+abs(NS61*tan(degrad*m_jfriction(6))) 

end 

====== 

def prop7 

  NS71  = 0.0719441  

  L7=69 

  jcs=70 

  JRC=15 

Φ=30 

  ic7=c_near(40.96,69.77,75.72) 
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  fric_7= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))^2+1))) 

  coh_7= 0.05 + (NS71*abs(tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))- 

NS71*abs(tan(degrad*fric_7))) 

  d_peak7=(L7)*(JRC)^0.33/(L7)^0.33 

  J_kk_7=500*(coh_7+abs(NS71*tan(degrad*fric_7)))/d_peak7 

  Tp7=m_jcohesion(7)+abs(NS71*tan(degrad*m_jfriction(7))) 

end 

======= 

def prop8    

 NS81  = 0.112938  

 L8=64.8 

 jcs=70 

 JRC=15 

Φ=30 

 ic8=c_near(37.74, 75.99, 72.17) 

 fric_8= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))^2+1))) 

 coh_8= 0.05+(NS81*abs(tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))- 

NS81*abs(tan(degrad*fric_8))) 

 d_peak8=(L8)*(JRC/L8)^0.33 

 J_kk_8=500*(coh_8+abs(NS81*tan(degrad*fric_8)))/d_peak8 

 Tp8=m_jcohesion(8)+abs(NS81*tan(degrad*m_jfriction(8))) 

end 

========================= 

def prop9 

 NS91  = 0.0770756  
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 L9=54.5 

 jcs=70 

 JRC=15 

Φ=30 

 ic9=c_near(55.53,76.17,72.39) 

 fric_9= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))^2+1))) 

 coh_9= 0.05+ (NS91*abs(tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))- 

NS91*abs(tan(degrad*fric_9))) 

 d_peak9=(L9)*(JRC/L9)^0.33 

 J_kk_9=500*(coh_9+abs(NS91*tan(degrad*fric_9)))/d_peak9 

 Tp9=m_jcohesion(9)+abs(NS91*tan(degrad*m_jfriction(9))) 

 

end 

========= 

def prop10  

  NS101= 0.0648886  

  jcs=70 

  JRC=15 

Φ=30 

  L10=17.25 

  ic10=c_near(15.26, 82.87, 70.43)  

  fric_10= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))^2+1))) 

  coh_10= 0.05+ (NS101*abs(tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))- 

NS101*abs(tan(degrad*fric_10))) 

  d_peak10=(L10)*(JRC/L10)^0.33 
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  J_kk_10=500*(coh_10+abs(NS101*tan(degrad*fric_10)))/d_peak10 

  Tp10=m_jcohesion(10)+abs(NS101*tan(degrad*m_jfriction(10))) 

end 

======== 

def prop11    

 

  NS111 = 0.0708899  

  L11=15.2 

  jcs=70 

  JRC=15 

Φ=30 

  ic11=c_near(18.9, 58.57,57.03) 

  fric_11= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))^2+1))) 

  coh_11= 0.05+ (NS111*abs(tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))- 

NS111*abs(tan(degrad*fric_11))) 

  d_peak11=(L11)*(JRC/L11)^0.33 

  J_kk_11=500*(coh_11+abs(NS111*tan(degrad*fric_11)))/d_peak11 

  Tp11=m_jcohesion(11)+abs(NS111*tan(degrad*m_jfriction(11))) 

end 

======== 

def prop12    

  NS121 = 0.138155  

  jcs=70 

  L12=20.4 

  JRC=15 

Φ=30 
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  ic12=c_near(17.18, 57.70, 46.29) 

  fric_12= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))^2+1))) 

  coh_12= 0.05+ (NS121*abs(tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))- 

NS121*abs(tan(degrad*fric_12))) 

  d_peak12=(L12)*(JRC/L12)^0.33 

  J_kk_12=500*(coh_12+abs(NS121*tan(degrad*fric_12)))/d_peak12 

  Tp12=m_jcohesion(12)+abs(NS121*tan(degrad*m_jfriction(12))) 

End 

===== 

def prop13  

  NS131 = 0.176823  

  jcs=70 

  L13=11.7 

  JRC=15 

Φ=30 

  ic13=c_near(14.78,  57.74,  36.46) 

  fric_13= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))^2+1))) 

  coh_13= 0.05+ (NS131*abs(tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))- 

NS131*abs(tan(degrad*fric_13))) 

  d_peak13=(L13)*(JRC/L13)^0.33 

  J_kk_13=500*(coh_13+abs(NS131*tan(degrad*fric_13)))/d_peak13 

  Tp13=m_jcohesion(13)+abs(NS131*tan(degrad*m_jfriction(13))) 

end 

======= 

def prop15  
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  NS151  =  0.285152  

  jcs=70 

  L15=11.7 

  JRC=15 

Φ=30 

  ic15=c_near(12.38,  57.78,  26.62) 

  fric_15= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))- 

degrad*JRC*(1/ln(10))*((tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))^2+1))) 

  coh_15= 0.05+ (NS151*abs(tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))- 

NS151*abs(tan(degrad*fric_15))) 

  d_peak15=(L15)*(JRC/L15)^0.33 

  J_kk_15=500*(coh_15+abs(NS151*tan(degrad*fric_15)))/d_peak15 

  Tp15=m_jcohesion(15)+abs(NS151*tan(degrad*m_jfriction(15))) 

end 

 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 0 65   

change jmat=14 

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 75 85  

hide range z 0 58 

change jmat=2 

Seek 

hide dip 87 dd 180 org 0 61 20 below 
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hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 65 85  

hide range z 0 50 

change jmat=3 

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 58 85  

hide range z 0 42 

change jmat=4    

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 50 85  

hide range z 0 36 

change jmat=5 

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range z 42 85   

hide range z 0 33 

change jmat=6  

Seek 

;; Assigning Jmaterial 7 

hide dip 87 dd 180 org 0 61 20 above 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range x 45 67   
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hide range z 0 68 

change jmat=7  

Seek 

;; Assigning Jmaterial 8 

hide dip 87 dd 180 org 0 61 20 above 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range x 45 67   

hide range z 0 63 

hide range z 78 80 

change jmat=8  

Seek 

hide dip 87 dd 180 org 0 61 20 above 

hide dip 75 dd 288 org 14.8 46.9 40 above  

hide range x 0 40   

hide range z 0 67 

change jmat=9  

Seek 

hide dip 87 dd 180 org 0 61 20 above 

hide dip 75 dd 288 org 14.8 46.9 40 below  

hide range z 0 67 

change jmat=10  

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 below 

hide range z 45 85  

hide range z 0 25 

change jmat=13 
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Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 below 

hide range z 60 85  

hide range z 0 35 

change jmat=12 

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 below 

hide range z 0 50 

change jmat=11 

Seek 

hide dip 87 dd 180 org 0 61 20 below 

hide dip 75 dd 288 org 14.8 46.9 40 below 

hide range z 36 80  

hide range z 0 21 

change jmat=15 

Seek 


