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ABSTRACT

ROBABILISTIC-NUMERICAL MODELING OF STABILITY OF
A ROCK SLOPE IN AMASYA-TURKEY

Gheibie, Sohrab
M.Sc., Department of Mining Engineering
Supervisor: Prof. Dr. H.Sebnem Dizgun
Co-supervisor: Assist. Prof. Dr. Aykut Akgln

February 2012, 179 pages

Rock slope stability is considered as one of the most important fields in
rock engineering. Developments of computation facilities and increase in
application of sophisticated mathematical concepts in engineering
problems have also affected the methods of slope stability analysis. In
recent years, the numerical modeling methods have extensively applied
instead of limit equilibrium methods. Also, the probabilistic methods are
considered in rock slope designs to quantify the uncertainties of input

effecting variables.

In this research, a probabilistic-numerical approach was developed by
integration of three dimensional Distinct Element Method (DEM) and
probabilistic approach to analyze the stability of discontinuous rock
slopes. Barton models have been used to model the behavior of rock
discontinuities and the shear strain was considered as failure indicator of

discontinuities.



The proposed methodology was applied to a rock slope in Amasya,
Turkey where the Joint Roughness Coefficient (JRC) was considered as
the main random variable. The effect of basic friction angle and cohesion
of joints infilling material and its strength reduction due to weathering were
included in the analysis. In the slope the shearing behavior of fourteen
discontinuities and the failure probability of each block were investigated,
and the corresponding Reliability Index (B) was derived for each of the

discontinuities.

Keywords: Discontinuity, Joint Shear Stiffness, Probabilistic-Numerical
Approach,3DEC, Reliability Index ()



oz

AMASYA-TURKIYE'DEKI BIR KAYA SEVININ DURAYLILIGININ
OLASILIK-SAYISAL MODELLEMESI

Gheibie, Sohrab
Yuksek Lisans, Maden Muhendisligi Bolumu
Tez Yoneticisi : Prof. Dr. H. Sebnem Duzgun
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Aykut Akgln

Subat2012, 179 sayfa

Kaya sev durayliidi, kaya muhendisligindeki en o6nemli alanlardan
birisidir. Muhendislik problemlerinde modern matematiksel kavramlarin
uygulamasindaki artis ve hesaplama imkanlarinin gelisimi ayni zamanda
sev duraylilik analizi yontemlerini de etkilemistir. Son yillarda, limit denge
yontemlerinden c¢ok sayisal modelleme yontemleri genig bigimde
uygulanmaktadir. Ayrica, degiskenleri etkileyen girdi parametrelerinin
belirsizligini sayisal olarak ifade etmek icin kaya sevi tasariminda

olasiliksal yontemler de kullaniimaktadir.

Bu ¢calismada, sureksizlik iceren bir kaya sevinin duraylligini analiz etmek
icin ¢ boyutlu Farkli Elemanlar Yontemi (DEM) ve olasilik yontemi’nin
birlestiriimesi ile bir olasiliksal-sayisal yaklagsim gelistirilmistir. Barton

modelleri kaya sureksizliklerinin davranigini modellemek icin kullaniimig

Vi



ve kesme dayanimi sureksizliklerin yenilme gostergeleri olarak dikkate

alinmistir.

Onerilen ydéntem, Amasya (Tirkiye)da bir kaya sevine uygulanmis,
burada Sureksizlik Plruzllilik Katsayisi (JRC) calismanin ana rastgele
degigkeni olarak dikkate alinmig, bununla birlikte sureksizlik dolgu
malzemesinin kohezyon ve temel i¢sel surtinme acisinin etkisi ve
bozunmadan dolay! bu dolgu malzemesinin dayanim azalimi analize dahil
edilmistir. Sevde, on dort sureksizligin kesme davranisi ve her bir blogun
yenilme olasili§ arastiriimis ve buna karsilik gelen Givenilirlik indeksi (B)

sureksizliklerin her biri icin elde edilmigtir.

Anahtar Kelimeler: Sureksizlik, Sireksizlik Kesme stifnesi, Olasiliksal-
Sayisal Yaklagim, 3DEC, Giivenilirlik indeksi (B)

vii



To My Parents and love

viii



ACKNOWLEDGEMENT

| wish to express my sincerest gratitude to Prof. Dr. H. Sebnem Duzgln
for her kind supervision, invaluable support, friendship and help during my

study.

Moreover, | would like to express my appreciation to Assist. Prof. Dr.
Aykut Akgun for his, valuable comments and suggestions throughout the

study.

A special gratitude goes to my friend Sami Kilic who has always found in

assistance to me.

| also express my gratitude to Sanam Dehghan, Alvand Mehrabzadeh and
Shahin Takht Firouz for their helps during my study.

My special thanks also go to Onur Golbasi, I. Ferid Oge, Hakan Uysal,
Tahsin Isiksal for their continual friendship and help throughout the study.

| am grateful to all members of my great family: my mother Nazanin, my
father Jaber, my brothers Abulfazl, Mahammad, Bahman, my sister
Fatima, my niece Samira, my nephews Armin and Mahammad Husein,
my unclesHabil, Saleh, Valeh for their continual encouragement and

support in every stage of the entire of my life.

| would like to thank the Scientific and Technical Research Council of
Turkey (TUBITAK) and Middle East Technical University for providing

financial support for carrying out this research.

iX



Finally, | am deeply thankful to my love, Tarlan, for her continual love and
support. It would not be possible for me to achieve this goal without her
patience, understanding and unconditional support.



TABLE OF CONTENTS

ABSTRACT . \Y
O e Vi
ACKNOWLEDGEMENT ... e IX
TABLE OF CONTENTS ... e Xi
LIST OF TABLES. ... e Xiii
LIST OF FIGURES ... e XVi
LIST OF SYMBOLS ... XXili
CHAPTERS
1. INTRODUCTION ...ttt eenens 1
2. BASIC MECHANICS OF ROCK DISCONTINUITY ...cooviiiiiiiiiieeeeeie, 9
2.1 INTFOAUCTION .ttt e e e e 9
2.2 Shear Strength of DiSCONtiNUILIES ...........vvviiiiiieiiieice e, 9
2.3 Rock discontinuity deformation ................cceeeiiiiiiiiiiiiice e 20

3. NUMERICAL AND PROBABILISTIC METHODS IN ROCK SLOPE

STABILITY ANALYSIS ..o 24
3.2 Reliability Index Methods .........coooviiiiiiiiic e, 29
3.2.1 The Performance FUNCLION...........coooeeiiiiiieieeeee e 31

3. 2. 2 Linear Performance FUNCLIONS..............cooeeiiiiiie 34
3.2.3 Non-Linear Performance FUNCHONS ..., 36
3.2.4 Equivalent Normal Distributions .............ccccciiiiiiiiii, 38

Xi



4. THE DEVELOPED NUMERICAL-PROBABILISTIC APPROACH........ 41
4.1 MethodolOogy .......ccoooiiiiiiiii 41

5. IMPLEMENTATION OF PROPOSED PROBABILISTIC-NUMERICAL

METHODOLOGY ...ttt e e e e e e e e e eeanns 50
5.1 General information about the study region ..............cccoeeeeeeeeeeeeeee. 50
5.2 Field and laboratory StuUdies..........cooooeiiiiiiieee 51
5.3 RocK Slope Modeling ......ccooeeeeeeeeeeeeeeeeeee 68

5.3.1 Model CONSIIUCTION.......ccooiiiieeeeee e 70

5.3.2 Choice of Block and Joint Constitutive Models and Material

PIOPEITIES ..ttt 73
5.3.3 Different realization of random variables ................cccceeieiee. 74
5.4 RESUIS ... 76
5.5 Discussion of the RESUILS........ccoooeeiviiieie, 106
6. CONCLUSIONS AND RECOMMEDATIONS........cooiiiiiiieieeeiieeeeeeeen 109
REFERENGCES ...t 113
APPENDICES
A: FIELD DATA AND LABORATORIAL TESTS RESULTS................... 118
B: DISTRIBUTIONS OF SHEAR DISPLACEMENT .......ccooviiiiiiiiiiieees 133
C: WRITTEN CODES IN 3DEC ... 140

xii



LIST OF TABLES

TABLES

TABLE 5. 1 RECORDED DATA OF ROCK DISCONTINUITY FROM SCANLINE
FOR SECTION L.ttt e e e e e e 56
TABLE 5. 2 RECORDED DATA OF ROCK DISCONTINUITY FROM SCANLINE
FOR SECTION 2.t 58

TABLE 5. 3 RECORDED DATA OF ROCK DISCONTINUITY FROM SCANLINE

FOR TOE OF SECTION 3. .. 59
TABLE 5. 4 STATISTICALANALYSISDATA FOR JRC ....ccoiiiiiiiiiieeeeeeeee, 60
TABLE 5. 5 STATISTICAL DATA ANALYSIS FOR SCHMIDT HAMMER ......... 61

TABLE 5. 6 JOINTS GEOMETRY USED IN MODELING THE KING’S GRAVE 71
TABLE 5. 7 SHEAR DEFORMATION, PEAK SHEAR DEFORMATION OF
BARTON MODEL FOR FRICTION= 33, COH.=0.05 MPA, DIFFERENT
JCS, JRC AND KS.. et 86
TABLE 5. 8 SHEAR DEFORMATION, PEAK SHEAR DEFORMATION OF
BARTON MODEL FOR FRICTION= 33, COHESION=0.15 MPA, JCS=70
MPA AND DIFFERENT JRC VALUES AND JOINT SHEAR STIFFNESS
FOR EACH DISCONTINUITY ettt 89
TABLE 5. 9 SHEAR DEFORMATION, PEAK SHEAR DEFORMATION OF

BARTON MODEL FOR FRICTION= 33, COHESION=0.2 MPA, JCS =70

xiii



AND DIFFERENT JRC VALUES AND JOINT SHEAR STIFFNESS FOR
EACH DISCONTINUITY L. 91
TABLE 5. 10 SHEAR DEFORMATION, PEAK SHEAR DEFORMATION OF
BARTON MODEL FOR FRICTION= 33, COHESION=0.3 MPA, JCS=70
MPA, JRC=2 VALUES AND JOINT SHEAR STIFFNESS FOR EACH
DISCONTINUITY woetttettttitiettieisstesssssesssssessssssssesessssssssssssssssssssssssaesssssesnennne 93
TABLE 5. 11 SHEAR DEFORMATION, PEAK SHEAR DEFORMATION OF
BARTON MODEL FOR FRICTION= 33, COHESION=0.5 MPA, JCS=70
MPA, JRC=2 AND 5 VALUES AND JOINT SHEAR STIFFNESS FOR EACH
DISCONTINUITY Lttt e e e 94
TABLE 5. 12 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.05 MPA, JCS=70 AND DIFFERENT
JRC VALUES AND JOINT SHEAR STIFFNESS FOR EACH
DISCONTINUITY Lttt e e e 96
TABLE 5. 13 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.1 MPA, FRICTION ANGLE=30,
JRC=70 MPA, DIFFERENT JRC VALUES AND JOINT SHEAR STIFFNESS
FOR EACH DISCONTINUITY ..ceitiiisi e 99
TABLE 5. 14 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.15 MPA, JCS=70 MPA, JRC=9.5
AND JOINT SHEAR STIFFNESS FOR EACH DISCONTINUITY ............ 100
TABLE 5. 15 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.2 MPA, FRICTION ANGLE=30,
JCS=70 MPA AND DIFFERENT JRC AND JOINT SHEAR STIFFNESS

FOR EACH DISCONTINUITY .coriiiiiii e 102

Xiv



TABLE 5. 16 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.3 MPA, FRICTION ANGLE=30,
JCS=70 MPA AND DIFFERENT JRC AND JOINT SHEAR STIFFNESS
FOR EACH DISCONTINUITY ..oiiiiiiiiiiiiiiiiiiieieririiiesssiessnsseessssenenesenesnnnnenes 104

TABLE 5. 17 SHEAR DEFORMATION, ALLOWABLE PEAK SHEAR
DEFORMATION FOR COHESION=0.5 MPA, JCS=70 MPA, JRC=2 AND
JOINT SHEAR STIFFNESS FOR EACH DISCONTINUITY .......cccoeeeien. 105

TABLE 5. 18 FAILURE PROBABILITY AND CORRESPONDING RELIABILITY

INDEX (5) FOR AVERAGE, MINIMUM AND MAXIMUM VALUE OF &pgak

FOR EACH DISCONTINUITY ..ottt 108

XV



LIST OF FIGURES

FIGURES

FIGURE 2. 1 RELATION BETWEEN RESIDUAL FRICTION ANGLE WITH
SCHMIDT REBOUND VALUE (RICHARDS, 1975, IN BARTON AND
CHOUBEY, 1O77) ciitiiiiiiiit ettt e e 12

FIGURE 2. 2 MECHANISM OF RESIDUAL TILT TEST (BANDIS ET AL., 1983)

FIGURE 2. 3 LABORATORY SCALED JOINT ROUGHNESS PROFILES
(BARTON AND CHOUBEY, 1977)...eeeieeeeeeeeeeeeseeeeeeeeseeeeseeseeseeseeseesseneans 15
FIGURE 2. 4 MEASUREMENT OF ASPERITY AMPLITUDE FOR
DETERMINING JOINT ROUGHNESS (BARTON AND BANDIS (1982), IN
HOEK (2007)) ...eeeeeeeeeeeeeeeeeeeeeee e ee e s s s s seseesneneens 16
FIGURE 2. 5 CHART FOR DETERMINING JOINT ROUGHNESS
COEFFICIENT FROM ASPERITY AMPLITUDE AND PROFILE LENGTH
(BARTON AND BANDIS (1982), IN HOEK (2007)) .....coveevereereereesrrerrneen. 17
FIGURE 2. 6 GROUPS OF DISCONTINUITY TYPES ACCORDING TO THEIR
ROUGHNESS (BANDIS ET AL., 1981) ....evoveeeeieeeeeeseeereseeseeseseeseesseneens 19
FIGURE 4. 1 THE PROCESS OF DEVELOPMENT OF PROPOSED
PROBABILISTIC NUMERICAL APPROACH .......veiveeeeeeeeeeeeseeseseeseesrneens 42
FIGURE 4. 2 BARTON MODEL AND THE INSTANTANEOUS COHESION AND

FRICTION CONCEPRTS ... 44

XVi



FIGURE 5. 1 LOCATION OF AMASYA.......coivieeeeeeeeeeseeeeeseeseeseeseeseeseesesesnen. 51
FIGURE 5. 2 STUDIED FIELD AD FAILED STRUCTURES AND FAILURE

POTENTIAL oot 52
FIGURE 5. 3 BEDDING JOINTS OF SEC_1 ON STEREONET (064%42%) .......53

FIGURE 5. 4 JOINTS IN SEC_1 REGION IN AMASYA 175%75° AND 237%/66°

FIGURE 5. 5 JOINTS IN SEC_2 REGION IN AMASYA 180%73° 094%81° AND
OB0%ABY ...ttt 54
FIGURE 5. 6 JOINTS IN TOE OF SEC_3 REGION IN AMASYA 146%74°,
213%46° AND 028%35° ...ttt 55
FIGURE 5. 7 LOGNORMAL DISTRIBUTION OF JOINT ROUGHNESS
COEFFICIENT (JRC).viureieeteeeeeeieeeereeeetees et es et essaesees s sansess s eaneeennns 60
FIGURE 5. 8 RELATION BETWEEN THE SCHMIDT HARDNESS AND JOINT
WALL STRENGTH ...ttt es e en e s eenanneas 63
FIGURE 5. 9 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS S_2 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE 5. 10 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF S_2 TO OBTAIN THE BASIC FRICTION ANGLE OF JOINT
SURFACE WHICH IS 32.092°% ..o, 65

FIGURE 5. 11 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO
NORMAL STRESS IN SMOOTH JOINT PLANE (S_2)...cccoveveviererearennnnn. 65

FIGURE 5. 12 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT
SAMPLE N_1 FOR DIFFERENT NORMAL STRESS VALUES.................. 66

FIGURE 5. 13 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON

JOINT OF N L. e e e e 67


file:///E:/SOHRAB/ev_model/the%20newst%2028%20DEC/Thesis_Figure.docx%23_Toc318271729
file:///E:/SOHRAB/ev_model/the%20newst%2028%20DEC/Thesis_Figure.docx%23_Toc318271729

FIGURE 5. 14 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO

NORMAL STRESS IN ROUGH JOINT PLANE (N_1) ....cccciiiiiiiieeiiiie 67
FIGURE 5. 15 STRESS-STRAIN CURVE OF SAMPLE I.......cccoooiiiiiiiiii, 68
FIGURE 5. 16 KING’'S ROCK GRAVE, AMASYA, TURKEY .......cccoovviiiiiiinnnen. 69

FIGURE 5. 17 FALLEN BLOCKS, BIG FAILURE AND HANGING BLOCKS ON
THE GRAVE STRUCTURE ......coovvieececeeieeie e eses s enn e, 70
FIGURE 5. 18 CONSTRUCTED MODEL OF THE KING'S GRAVE................... 71
FIGURE 5. 19 FINAL MODEL OF THE GRAVE TO BE ANALYZED BY 3DEC 72
FIGURE 5. 20 MATERIAL NUMBER OF FOURTEEN DISCONTINUITIES TO
BE ANALYZED ..ottt n s n st enenenan 74
FIGURE 5. 21 STATE F THE STRUCTURE FOR JRC=18, JCS=70 MPA, ® =
33% AND NO INFILLING MATERIAL .....coovivieiieeeeeeeeeee s s 77
FIGURE 5. 22 SHEAR DISPLACEMENT OF DISCONTINUITY 1, FOR JCS=70,
C=50 KPA, ®=33% AND JRC=10 ......cocrevireeereeeeeeeeeeeeeee e e e, 79
FIGURE 5. 23 SHEAR DISPLACEMENT OF DISCONTINUITY 2, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cocoererrerereeeeeieeeeeeeieeeeeeeeeeenae, 79
FIGURE 5. 24 SHEAR DISPLACEMENT OF DISCONTINUITY 3, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cocoeverreeereeeeeieeeeeeeeeeeneieeeenae, 80
FIGURE 5. 25 SHEAR DISPLACEMENT OF DISCONTINUITY 4, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cc0cerererireeereeeereeneeereeeeeeennas 80
FIGURE 5. 26 SHEAR DISPLACEMENT OF DISCONTINUITY 5, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cc0ceevrrerirererreeeeeeeeeereeeeneeenas 81
FIGURE 5. 27 SHEAR DISPLACEMENT OF DISCONTINUITY 6, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......ccoeeerrrerererrreeeeeeeeeeseieeneenas 81
FIGURE 5. 28 SHEAR DISPLACEMENT OF DISCONTINUITY 7, FOR JCS=70

MPA, C=50 KPA, ®=33° AND JRC=10......ceeeeeeeeeeeeeeee e e eeeeeeeeeeeeaann, 82

XViii


file:///E:/SOHRAB/ev_model/the%20newst%2028%20DEC/Thesis_Figure.docx%23_Toc318271744
file:///E:/SOHRAB/ev_model/the%20newst%2028%20DEC/Thesis_Figure.docx%23_Toc318271744

FIGURE 5. 29 SHEAR DISPLACEMENT OF DISCONTINUITY 8, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10......ccveuerererereeereeeeeeeeeeeeeneeeenas 82
FIGURE 5. 30 SHEAR DISPLACEMENT OF DISCONTINUITY 9, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10......c.cocceevrererererereeeerereeeeneiereenann, 83
FIGURE 5. 31 SHEAR DISPLACEMENT OF DISCONTINUITY 10, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cocoeerrerereeereieeeeereeeeeseeeeeeae, 83
FIGURE 5. 32 SHEAR DISPLACEMENT OF DISCONTINUITY 11, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cocoeerererereeerereeeeeeeeeeeeeereenae, 84
FIGURE 5. 33 SHEAR DISPLACEMENT OF DISCONTINUITY 12, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cc0eeererrrererereeereeeereenereeneiennas 84
FIGURE 5. 34 SHEAR DISPLACEMENT OF DISCONTINUITY 13, FOR JCS=70
MPA, C=50 KPA, ®=33° AND JRC=10.......cc0cerrerrrererereeeereeeeeeneieeneeennas 85
FIGURE 5. 35 RELATION OF COHESION AND FAILURE PROBABILITY OF
DISCONTINUITIES ...t es ettt en s s 106
FIGURE 5.36 BETA DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. L....oiioieicieeeececeeeeees oo en s s, 107
FIGURE A.1 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS S_3 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE A.2 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF S_3 TO OBTAIN THE BASIC FRICTION ANGLE OF JOINT
SURFACE WHICH IS 32.23 ... 125

FIGURE A.3 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO NORMAL

STRESS IN SMOOTH JOINT PLANE (S_3) ...eeeeieeeeeeeeeereereseeeeseeneeeenn. 126

XiX



FIGURE A.4 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS S_4 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE A.5 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF S_4 TO OBTAIN THE BASIC FRICTION ANGLE OF JOINT
SURFACE WHICH IS 29.16 .....ccooiiiiiiiiiii 127

FIGURE A.6 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO NORMAL
STRESS IN SMOOTH JOINT PLANE (S_4) ..coiiiiiiiiieeeeeeiiiiiieeeee e 127

FIGURE A.7 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS S_5 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE A.8 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF S_5 TO OBTAIN THE BASIC FRICTION ANGLE OF JOINT
SURFACE WHICH IS 33,48 ... 128

FIGURE A.9 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO NORMAL
STRESS IN SMOOTH JOINT PLANE (S_5)...cciiiiiiiiiieei e 129

FIGURE A.10 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS S_5 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE A.11 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF S_5 TO OBTAIN THE BASIC FRICTION ANGLE OF JOINT
SURFACE WHICH IS 29 ... 130

FIGURE A.12 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO

NORMAL STRESS IN SMOOTH JOINT PLANE (S_5)..cccoeviiieiiiiieeeeee, 130

XX



FIGURE A.13 SHEAR STRESS/DISPLACEMENT CURVES FOR JOINT

SAMPLE NAMED AS N_2 FOR DIFFERENT NORMAL STRESS VALUES

FIGURE A.14 RELATION OF SHEAR AND NORMAL STRESSES ACTED ON
JOINT OF N 2.t e e e e e 131
FIGURE A.15 DEPENDENCY OF JOINT SHEAR STIFFNESS (KS) TO
NORMAL STRESS IN ROUGH JOINT PLANE (N_2) ....coooiciiiiiiiieeeeeee 132
FIGURE A.16 STRESS-STRAIN CURVE OF SAMPLE Il ......cccoiiiiiiiiiiniiiinnnn, 132
FIGURE B.1 BETA DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 2. it e e e e enenes 133
FIGURE B.2 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 3.t e e e e ennnes 134
FIGURE B.3 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 4. et e e eeeees 134
FIGURE B.4 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 5. e e enenes 135
FIGURE B.5 TRIANGULAR DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 6ot e e enenes 135
FIGURE B.6 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 7ottt e e e eeeees 136
FIGURE B.7 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 8.ttt eeeees 136
FIGURE B.8 TRIANGULAR DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 9. i 137
FIGURE B.9 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF

DISCONTINUITY NO. 10 e eennes 137

XXi



FIGURE B.10 STUDENT’S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. L. i e ennees 138
FIGURE B.11 STUDENT'S DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 12, .. 138
FIGURE B.12 LOGNORMAL DISTRIBUTION OF SHEAR DISPLACEMENT OF
DISCONTINUITY NO. 13 . 139
FIGURE B.13 NORMAL DISTRIBUTION OF SHEAR DISPLACEMENT OF

DISCONTINUITY NO. L4 ..o e 139

XXii



LIST OF SYMBOLS

Tpeak = P€aK shear strength

Tresidual = residual shear strength

Tu = Ultimate shear strength

Tm = bounding shear stress

¢ = cohesion

O, = normal stress

Onmax = Maximum normal stress

O¢ = uniaxial compressive strength

o; = initial normal stress

@, = peak friction angle of the discontinuity

@, = residual friction angle of the discontinuity
Jy, = basic friction angle of the discontinuity

Qp‘ = peak drained friction angle of the discontinuity
JRC, = lab scale joint roughness coefficient
JRC,, = insitu size joint roughness coefficient
JRCn0b = mobilized joint roughness coefficient
JCS, = lab scale joint wall compressive strength
JCS, = insitu size joint wall compressive strength
r = Schmidt rebound on weathered rock surface
R = Schmidt rebound on unweathered rock surface
dpeak = peak dilation angle

x = tilt angle

XXiii



y = rock density

K = bulk modulus

G = shear modulus

0 = shear displacement

Opeak = peak shear displacement

L, = lab scale block length

L, = insitu block length

Kn = joint normal stiffness

Kni = initial joint normal stiffness

Ks = joint shear stiffness

n; = shear stiffness exponent

AV = normal displacement

Vi = Maximum joint closure

a; = mechanical joint aperture

K; = shear stiffness number

R¢ = failure ratio

A; = Area of joint face

F" = normal force

AF" = normal force increment

F° = shear force

AF°® = shear force increment

AV' = normal displacement increment
Ad = shear displacement increment
ASP = plastic shear displacement increment
F = tangent modulus factor (3DEC continuously yielding joint model)

an = joint normal stiffness (3DEC continuously yielding joint model)

XXiv



as = joint shear stiffness (3DEC continuously yielding joint model)

en = joint normal stiffness exponent (3DEC continuously yielding joint
model)

XXV



CHAPTER |

INTRODUCTION

1.1 Problem statement

Rock slope stability is one of the most important concerns in rock
engineering. Loss of lives of people living on hills near to mountain area,
falling of blocks to the roads and loss of minerals in open pit mines have
enhanced the necessity of using and developing much reliable methods to

analyze the stability of those structures.

Generally, rock slope stability analysis methods can be divided into two:
Namely deterministic and probabilistic approaches. In deterministic
approaches the input variables are assumed to have certain values.
Depending on the judgment of engineer, minimum, maximum, average of
a parameter is selected and used in the calculations. However, in
probabilistic approaches the variables are considered to be random with

associated probability distribution.

Generally, the deterministic approach itself is divided into two as limit
equilibrium and numerical methods. Commonly, in industrial design the
limit equilibrium methods are applied for design of rock slopes. Hoek and
Bray (1981) have formulated the rock slope instability problems in four
distinct categories as planar, wedge, toppling and circular failures.

However, limit equilibrium methods have been formulated based on some



assumptions. Such assumptions usually include elastic behavior,
homogeneous, isotropic material, time independent behavior, quasi-static
loading, etc. Geomaterials such as soils and rock masses display non-
linear behavior, either because this is inherent to the material or because
it has been externally induced (e.g., past stress history). Rocks and soils
may not be isotropic or homogeneous, and the loading may not be static,
or the geometry of the problem may be complex (Bobet 2010). According
to Krahn (2003) the fundamental shortcoming of limit equilibrium methods
which only satisfy statics equation is that they do not consider strain and
displacement compatibility.

To solve the shortcomings of limit equilibrium methods, different
numerical methods have been developed and applied extensively in rock
mechanics. In Krahn’s (2003) opinion, this shortcoming can be overcome
by using Finite Element Method (FEM) computed stresses inside
conventional limit equilibrium framework. From the finite element stresses
both the total shear resistance and the total mobilized shear stress on a
slip surface can be computed and used to determine the factor of safety.

Numerical methods have been extensively used in the past several
decades due to advances in computing power. Generally, numerical
methods can be classified into continuum and discontinuum methods
(Jing and Hudson 2002, Jing 2003). There are quite a large number of
numerical methods that have been used in the literature to estimate the
behavior of geomaterials. The most important or at least the most used
methods are: Continuum, Finite Difference Method (FDM), Finite Element
Method (FEM) and Boundary Element Method (BEM); Discontinuum,
Distinct Element Method (DEM), Discontinuous Deformation Analysis
(DDA), and Bonded Particle Model (BPM). There are two other methods
which do not follow this classification: Meshless Methods (MM) and
Artificial Neural Networks (Bobet 2010). Jing and Hudson (2002) and



Bobet (2010) have discussed the different numerical methods applied in

rock mechanics.

However, rock mass parameters are always containing uncertainty, the
utilization of probabilistic methods in rock engineering, permits a rational
treatment of various uncertainties that significantly influence the safety of
a rock slope. Moreover, probabilistic approaches offer a systematic way of
treating uncertainties and quantifying the reliability of a design (Kirsten,
1983). Duzgun (1994) and Duzgun et al. (1995) have applied advanced
First Order Second Moment method (AFOSM) to a non-linear
performance function with non-normal correlated variables to analyze the
planer stability of a rock slope based on Mohr-Coulomb criterion. Dlizgln
et al. (2003) have proposed a methodology for reliability based design of
rock slopes. In this study, a model is developed within the framework first-
order second-moment approach to analyze the uncertainties underlying
the in situ shear strength properties of rock discontinuities. Dizgin and
Ozdemir (2006) have applied AFOSM and risk assessment to a planar
failure of a rock mass in Konya to manage the risk by decision analytical
procedure. Jimenez-Rodriguez et al. (2006) considered a sliding mass on
an inclined plane with two blocks separated by a vertical tension crack.
Two cases were defined, in which the two blocks may have interaction or
not. The models were formulated by Limit Equilibrium Method for each
case. It was assumed that when Safety Factor (SF) is lower than one a
block will fail. Dizglin and Bhasin (2009) used first order reliability method
(FORM) to model a plane failure of a slope with 734 m-height using the
Barton-Bandis (1982) shear strength criterion for modeling the limit state
function. The slope was consisting of three big blocks laying on each.
They have defined possible failure scenarios and by using conditional

probability theory the failure probability was calculated.

Low (1997) calculated the safety factor for a wedge slope utilizing
AFOSM. In addition, utilizing Excel spreadsheet he calculated the
3



reliability index and probability of failure for the slope. Low (1997) used
Coulomb linear failure criterion and he assumed that all the parameters
are normally distributed. Park and West (2001) have worked on
probabilistic modeling of rock wedge failure in their work. First they have
modeled the probability of kinematic instability in which planes dip and dip
direction were considered as random variables, then probability of kinetic
instability was modeled to provide a proper, combined evaluation for
failure probability by Monte Carlo Simulation. Joint orientation, geometric
parameters, such as length and spacing, shear strength parameters and
pore water pressure in the discontinuity were considered to be

probabilistic parameters.

Also, Jimenez-Rodriguez and Sitar (2007) have modeled the stability of
the wedge using a disjoint cut-set formulation, in which disjoint parallel
sub-systems were used to represent the different failure modes of the
slope, and the used random variables were strength parameters of joint
planes and the geometry of wedge, they have concluded that the
reliability results were found to be highly sensitive to variations in the
geometry of the wedge and to variations in water level conditions,
whereas variations in the unit weight of the slope were found to have

almost no influence on the probability of failure.

Fadlelmula (2007) in his study presents the results of probabilistic
modeling of plane and wedge types of slope failures, based on the
"Advance First Order Second Moment (AFOSM)” reliability method. In
both of those failure types, two different failure criteria namely, Coulomb
linear and Barton-Bandis non-linear failure criteria were utilized in the

development of the probabilistic models.

Moreover, Li et al. (2009) has developed a probabilistic fault tree to
model the system reliability of the rock wedges. The N-dimensional
equivalent method was used to perform the system reliability analysis due
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to its accuracy and efficiency. The proposed approach has the ability to
guantify the relative importance of each failure mode which enables the

designer to establish priorities and decision making for rock slope.

Scavia et al. (1990) have developed a probabilistic model using 2-D limit
equilibrium analysis of block toppling failure in rock, resting on a stepped
failure surface was carried out including both Monte Carlo simulation

procedure and Markov Chains theory.

Tatone and Grasselli (2010) also have developed a new probabilistic
method for analyzing the stability of rock slopes according to the limit
equilibrium method developed by Goodman and Bray (1976) and
introduced a Monte Carlo simulation procedure for the probabilistic
analysis of block-toppling and described its implementation into a
spreadsheet-based program (ROCKTOPPLE). The analysis procedure
considers both kinematic and kinetic probabilities of failure. These
probabilities are evaluated separately and multiplied to give the total
probability of block toppling.

All of the above mentioned works have used Limit Equilibrium Method to
model the performance function, because by that method it is easy to
formulate the performance of a rock mass.

To consider the effects of uncertainties in numerical modeling the
Stochastic Finite Element was proposed for continuum media and there
are some works such as Wong (1985), Griffiths et al. (2005), Tan and
Wang (2009) for soil slope. Also Hammah et al. (2009) applied stochastic
finite element in analyzing the stability of a rock slope in which
uncertainties were related to strength parameters and joint network
geometry. In their work they used both Monte Carlo and Point Estimate
Method (PEM) to calculate statistical moments. Furthermore, Wang et al.

(2000) have used FLAC software which is based on Finite Difference
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Method to assess the stability of a coal mine slope, in this study the
stability of a coal mine slope was analyzed using numerical analysis

considering reliability engineering concepts.

However, none of these methods can be applied in rock slope stabilities
which are discontinuous. To solve this lack Moarefvand and Verdel (2008)
tried to contribute the probabilistic methods in Distinct Element Method in
UDEC software and they named it as PUDEC. It was the first time that
probabilistic numerical method was used in a discontinuous media in rock
mechanics. In this method the statistical moments are given to software
and the software solves the model by considering these uncertainties and
simulation outputs are in statistical form. However, the performance of this
method relies on a wrong assumption by which the plastic flow starts
when E (7)>E (1,,41), Where E () is the mean of shear stress and E (7,,4)
is the mean of shear strength. Also, in this research, reliability engineering
concepts such as reliability index, probability of failure are not taken into

account.

1.2 Objectives and scope of the research

Considering these features of all the previous studies done in reliability
engineering related to rock slope stability, this thesis proposes a
probabilistic numerical approach for stability assessment of rock slopes.
The proposed approach uses the capabilities of numerical modeling
method and simultaneously it considers the randomness of the rock slope
stability parameters. For this purpose the probabilistic modeling approach
is integrated with 3D distinct element method in 3DEC software by

developing codes in FISH language of 3DEC.

Generally, the failure mechanism in discontinuous rock slopes is

controlled by existing rock discontinuities. Therefore, the shear behavior

of the rock discontinuities plays a vital role in stability or instability of a
6



rock slope. Commonly, the linear Coulomb criterion is used in analyzing
the stability of rock slopes either in limit equilibrium or numerical methods.
However, it is clear that the Coulomb parameters do not have the
sufficient ability to model the shear and normal behavior of the rock
discontinuities. Therefore, it is much realistic to apply a series of models
known as Barton models. In contrast to Coulomb, Barton models consider
the surface conditions such as roughness, strength of joint walls and
basic friction angle of the rock discontinuities and their dependency on
stress level in its calculations. Hence nonlinear Barton models are used
rather than linear Coulomb function. Since the distinct element code used
in this thesis was 3DEC and it does not include the Barton model in
contrast to UDEC (2D distinct element code), the approach is applied by
developing codes in 3DEC.

One of the drawbacks of limit equilibrium methods is not considering the
strain of in their calculations. Therefore, the probabilistic approaches that
use the limit equilibrium method do not consider the strain as a possible
failure criterion. Instead, they work with the safety factor concept. Based
on this concept, the structure fails when the stress applied is greater than
the strength. However, in some circumstances, the deformation of a
structure can be called as failure and the structure uses its applicability
although the safety factor claiming a safe state.

For this reason in this thesis strain is considered to be the indicator of
failure as well as simultaneously taking the randomness of the rock
mechanical parameters into account. Based on a definite strain value the
failure or survival of the rock discontinuities is determined and the failure
probability and the corresponding reliability index are obtained. Because
of the importance of historical places in Turkey, a rock slope containing a
historical grave in Amasya, Turkey was selected to implement the
proposed methodology. Akgun and Kockar (2004) studied the stability of a

sandy limestone rock slope under a historical castle in Turkey.
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The present study is divided into six chapters. Chapter | covers a brief
introduction of the thesis subject and previous works and scope of the
thesis. In Chapter Il the basic mechanics of rock discontinuity is
discussed. The Distinct Element Method (DEM) and Probabilistic Method
are reviewed in Chapter Ill. In Chapter IV the Proposed Numerical-
Probabilistic Approach is explained. Chapter V includes the
implementation of the proposed approach in Amasya, Turkey and its
results and discussions. At the end, the conclusions and the

recommendation are presented at Chapter VI.



CHAPER Il

BASIC MECHANICS OF ROCK DISCONTINUITY

2.1 Introduction

Generally, rock masses contain discontinuities such as bedding planes,
joints, shear zones and faults. At shallow depth, where stresses are low,
the behavior of the rock mass is controlled by the discontinuities rather
than rock mass itself. In order to analyze the stability of this system of
individual rock blocks, it is necessary to understand the factors that
control the shear strength of the discontinuities which separate the blocks
(Hoek, 2007). In this Chapter, it is intended to overview the basic

mechanics of discontinuities under normal and shear stresses.

2.2 Shear Strength of Discontinuities

A discontinuity is generally referred to all structural breaks in rocks which
usually have zero to low tensile strength. Normally, joints, bedding, shear

zones, contacts, veins, and faults are called as discontinuities.

Shear behavior of rock discontinuities always plays important role in rock
engineering. There are several discontinuity shear failure criterion
developed for the past decade. The most common one is the linear
Coulomb relation in which the peak shear (1) strength is expressed in
terms of the effective normal stress (o,), cohesion (c) and angle of friction

(®). The Mohr-Coulomb relation is given as;
9



Tpeak=C*+0,, tan @ (2.1)

This shear strength equation was developed by assuming that the
discontinuity surface is planar. If a smooth planar surface is sheared at a
constant normal stress, the surface will behave elastically, and the shear
stress acting on the discontinuity surface increases rapidly till the peak
shear strength is reached. After that the shear strength drops and
becomes constant at the level which is called as residual shear strength.

Equation (2.1) can be expressed to give the residual shear strength as;

Tresidual =On tan ®; (2.2)

Where, the residual friction angle (®;) is approximately equal to the basic
friction angle (®y), which is usually measured with sawn rock surfaces.
However, a natural rock discontinuity may probably have some asperities
that directly affect the shear strength of the discontinuity. As the
discontinuity is under shear loading, the shear displacement will be on
these asperities that causes the block move upward on the inclined
surfaces of the asperities (dilation). For this reason the roughness
component (i) should be added to the basic friction angle (®y), (Ppti),

where i’ is the angle of the inclined surface of the asperities.

Sliding along the wavy faces of discontinuity can occur only under very
low normal stress. If the normal stress is increased, then the asperities
may break or wear out and in such cases the discontinuity wall strength

becomes important.

Barton-Bandis (1982) failure criterion includes discontinuity surface

properties besides the effective normal stress and friction angle of the

10



discontinuity. Barton (1973) derived an empirical relationship for

determining the shear strength of discontinuities. It is written as follows:

=0, tan [JRC xlog,, (ﬁ) +CDb] (2.3)

On
Where;

o, = effective normal stress

JRC = joint roughness coefficient

JCS = joint wall compressive strength

@, = basic friction angle (obtain from residual shear tests on flat

unweathered rock surfaces)

The joint wall compressive strength (JCS) generally reduces with water
saturation compared to the dry state (Barton, 2007). This is because of
the effect of moisture on the uniaxial compressive strength (o;). The value
of is obtained from Schmidt hammer tests (ISRM, 1978).

Another major component of the shear strength is the basic friction angle
(Pp) of unweathered artificial, planar, dry rock surfaces and the residual
friction angle (®,) applying to flat, non-dilatant, saturated, well sheared
surfaces, i.e. @, < ®,,. The friction angles obtained from flat unweathered
rock surfaces, which are most frequently prepared by diamond saw, will
not be applicable to weathered rock discontinuities unless the effective
normal stress is high enough for the thin layers of weathered rock to be
worn away (Richards, 1975, in Barton and Choubey, 1977). Low levels of
effective normal stress and the thin layers of weathered material, perhaps
less than 1 mm in thickness, may continue to control the shear strength,
post peak strength and even for displacements up to residual strength.
Richards’ (1975) tests on weathered sandstone joints showed strong
correlation between residual friction angles (®;) and Schmidt rebound

value (Figure 2.1).
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Figure 2. 1 Relation between residual
friction angle with Schmidt rebound value
(Richards, 1975, in Barton and Choubey,

1977)

Richards’ (1975) looked for a simple method of estimating ®, from
Schmidt hammer rebound values. The first empirical relationship tried was

as follows:
®, = 10° + (r/R) (Py, - 10°) (2.4)

Where;
r = Schmidt rebound on weathered discontinuity surface

R = Schmidt rebound on unweathered discontinuity surface

Therefore the Eq. 2.3 for the general case of weathered and unweathered

discontinuities was rewritten as (Barton and Choubey (1977) :

Tpeak=0n tan [JRC log,, (E) +Cbr] (2.5)

On

In the work of Barton and Choubey (1977), eight different rock types with
total of 136 individual discontinuities were studied. The specimens were
sawn from larger blocks containing through going discontinuities.

12



Following this study another methodology for determining ®.by residual
tilt test was introduced, which is basically a shear test under very low
normal stress (Figure 2.2). In this test, pair of flat and sawn surfaces was

mated, and the pair of blocks tilted until sliding occurred.

An empirical equation was obtained from residual tilt tests that enable to
relate @, to Op;

®, = (dp - 20°) + 20(r/R) (2.6)

Where;

@, = basic friction angle estimated from residual tilt tests on dry
unweathered sawn surfaces

r = Schmidt hammer rebound value on the saturated joint wall,

R = Schmidt hammer rebound value on the dry, artificially cut rock

surfaces

‘

j
Py USUAL RANGE
2 OF (), =26°~35°

Figure 2. 2 Mechanism of

residual tilt test (Bandis et
al., 1983)
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Eq. 2.6 is preferred since it allows for a range of ®, values even when the
discontinuity is highly weathered. Eq. 2.3 tends to discount mineralogical
differences since @, tends to a single minimum value of 10° when r value

is zero.

The strength measured along individual discontinuities by direct shear
methods is strongly dependent on the roughness of the discontinuity
surfaces (Barton, 1973). The roughness parameter represents an index of
the unevenness and waviness of the adjacent discontinuity rock wall
(Giani, 1992). Barton (1973) defined the term joint roughness coefficient
(JRC), which varies from 0 to 20. Unlikely the JCS parameter, the JRC
parameter is not significantly affected by the dry or wet condition, since it
essentially represents geometry (Barton, 2007). Figure 2.3 presents the
laboratory-scale joint roughness profiles with their measured JRC values
defined by Barton and Choubey (1977).

Besides the joint roughness profiles, simple residual tilt test may help to
obtain JRC indirectly. In a tilt test on a rough joint, the angle (a) at which
sliding occurs may be 40° or 50° more than ®, (higher than compared to
®,) (Barton and Choubey, 1977). This additional shear strength is a result

of discontinuity surface roughness.

The maximum dilation angle (d,) when sliding occurs is probably given by
the following simple relationship derived by Barton and Choubey, 1977).

do=a-d, (2.7)

The tilt angle (a) is a function of shear stress and normal stress acting on

the joint is given as:
®=arctan ( ) (2.8)

T
an
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The effective normal stress generated by the gravitational force acting on

the upper half of the block is given as:
o,=Y.h.cosa (2.9)
Where;

h = thickness of the top block (m)
vy = rock density (kN/m®)

— JRC=0-2
— ~ JRC=2-4
— — JRC=4-6
- JRC=6-8

————e——— T T ——— JRC=8-10

m JRC=10-12
w JRC=12-14
w JRC=14-16
wm JRC=16-18

M“\ JRC=18-20

Figure 2. 3 Laboratory scaled joint roughness profiles (Barton and
Choubey, 1977)
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The JRC value is estimated from tilt tests using Eq. 2.5, by substituting

and o, results in:

JRC=—2%

W (2.10)

Barton and Choubey (1977) recommended “push” or “pull” tests in order
to determine the JRC values of rougher discontinuities. In “push” or “pull”
test the top block is pushed or pulled parallel to the discontinuity plane.
First applying a dry tilt test then a dry push or pull test, it was found to be
possible to test whole spectrum of joint roughness (0-20). However, they
mentioned the fact that, discontinuous joints and discontinuities with cross

jointing cannot be tested by such methods.

Another method for determining JRC was presented by Barton and
Bandis (1982) by considering the amplitudes of the asperities of the

discontinuity surface as shown in Figure 2.4.

, Straight edge

,-’ Asperity amplitude - mm
Y
!

B Length of profile - m .._!

Figure 2. 4 Measurement of asperity amplitude for determining
joint roughness (Barton and Bandis (1982), in Hoek (2007))

After determining the asperity amplitude and the sample length the chart

which is shown in Figure 2.5 can be used to determine JRC.
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The chart of Barton and Bandis (1982) is a useful tool for determining joint
roughness coefficient. From the chart the relation between asperity
height, discontinuity length and joint roughness coefficient can be

summarized as;

Asperity height = 2 x JRC x Discontinuity length (2.11)
400 20
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Figure 2. 5 Chart for determining joint roughness coefficient from
asperity amplitude and profile length (Barton and Bandis (1982),
in Hoek (2007))
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If the shearing of a non-planar discontinuity occurs, the asperities on
either side of the discontinuity slide over each other and cause an
increase in aperture which is called dilation. This process requires a finite
displacement to get started, and occurs at an increasing rate as peak
strength is approached (Barton et al., 1985). The peak dilation angle,
dpeak, 1S the maximum dilation angle which occurs more or less at the
same time with peak shear resistance (Barton and Choubey, 1977) and it
is defined as:

dpeak= 1/, xJRCx log, ("f—s) (2.12)
The choice of an appropriate discontinuity size during a shear strength

investigation is generally based on both economic and technical
considerations (Bandis et al., 1981).

Pratt et al. (1974) (in Bandis et al. (1981)) studied the effect of scale on
shear strength and concluded that the reduction in peak shear strength
was due to the decrease in actual contact area. Their prediction was that,
the scale effect would be negligible if the discontinuities are unweathered,
perfectly mating under high normal stresses. Barton (1976) also
interpreted similar results of scale effect on joint wall compressive
strength (JCS). The study of Barton and Choubey (1977) showed that
different lengths of discontinuities affect joint roughness coefficient (JRC)

and thus the shear strength of the discontinuity.
Bandis et al. (1981) studied the scale effect on the shear strength of

discontinuities with eleven types of discontinuities, of which was divided

into four groups according to their roughness (Figure 2.6).
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No. Surface profiles Description of "prototype” joint types
|
2
3
Vertical tension joints
4 in siltstone
5 Bedding plane in slightly
metamorphosed fine-
grained sandstone
6 Bedding plane in limestone
7 1
Bedding planes in course
grained sondstone
8 o) 1
2 1
Bedding planesin slightly
metamorphosed fine—
10 grained sandstone
e e R . R Shear jointin slightly met-
I RSN S N NN NN OS] amorphosed sandstone
0 10 15 20 25 30 35 '
SCALE Il 1 1 1 L 1 1 % ol
(cm)

Figure 2. 6 Groups of discontinuity types according to their roughness (Bandis et
al., 1981)

Barton and Bandis (1982) suggested some empirical relations for the
scale effects on the joint wall compressive strength; joint roughness
coefficient and peak shear displacement. They developed some empirical
relations for predicting the large scale joint wall compressive strength
(JCSy), joint roughness coefficient (JRC,) from lab scale values (JCS,,

JRC,) and the peak shear displacement (dpeax) Of the discontinuity.

The effects of scale on the dry or saturated state of the discontinuities are
expressed below; Large-scale joint wall compressive strength (Barton and
Bandis (1982), in Barton et al. (1985)) is:

-0.03JRC,
=) (2.13)

JCS,=JCS, (L—

Large-scale joint roughness (Barton and Bandis (1982), in Barton et al.
(1985)) is:
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JRC,=JRC,x (% )-O.OZJRCO

(0]

(2.14)

Displacement at the peak strength (Barton and Bandis (1982), in Barton
et al. (1985)) is:

]
L, _ (JRC/\3
6Peakzﬁx( L )3 (2.15)

2.3 Rock discontinuity deformation

Discontinuity deformation is a principal component of the behavior of the
discontinuous rock mass (Bandis et al., 1983). The terms of joint normal
stiffness and joint shear stiffness were defined in order to analyze the

deformation characteristics of the joints.

Normal stiffness (Kn) is defined as the normal stress increment required
for a small closure of a joint or fracture, at a given level of effective stress.
Similarly the shear stiffness (Ks) is taken as the average slope up to the
shear strength-peak shear displacement curve. The units of joint stiffness
values are stress/displacement (e.g. MPa/mm, MPa/m etc.). Therefore it
is usually expected that Kn values are larger than the shear stiffness Ks
values (Barton, 2007). While the stress level is low the normal

deformation of the discontinuities are not discussed in this study.

The non-linear stress - shear displacement behaviorof sheared
discontinuities in the pre-peak range were frequently expressed by
hyperbolic functions (Bandis et al., 1983). Kulhaway (1975, in Bandis et
al., 1983) refers to the relation;

T= (2.16)

m+nd
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Where & is the shear displacement at a given shear stress level and m
and n are constants of the hyperbola. Constant m is the reciprocal of the
initial shear stiffness and constant n is the reciprocal of the horizontal
asymptote Ty to the hyperbolic 1-6 curve. Development of Eq. 2.16 results

with the following relation for shear stiffness;

Ks=K;(0)" (1 T—Rf)z 2.17)

p

Where;
K = stiffness number,
n; = stiffness exponent,

R; = failure ratio = T/Tult’

T, = peak shear strength.

The indices Ry, nj and K; describes the non-linearity in discontinuity shear
behavior. The stiffness exponent nj is the slope of log-log relation
between initial shear stiffness Kg and o, with a unit of (MPa)’mm. Also
the experimental studies Bandis et al. (1983) showed that stiffness
number K| (intercept of the log-log relation between initial shear stiffness

Ksi and 0,,) can be written empirically as;

K;=-17.19+3.86 JRC (2.18)

With R = 0,835 for JRC > 4, 5.

However, for calculation of the value of joint shear stiffness (Ks)
theEQq.2.17 is dependent on the current shear stress acting on the joint
plane, from other side, in this research, the analysis are done based on
distinct element method, therefore, the unbalanced forces in the model

will cause instability in shear stress then the joint shear stiffness derived
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from the Eq. 2.17 will not be reliable. To overcome this problem, it is
possible to calculated the Ks from relation between shear displacement &
(peak) and the peak shear strength. According to Barton and Choubey
(1976) the shear displacement & (peak) required to reach the peak shear
strength determines the stiffness of joints in shear. As Barton and
Choubey (1976) admitted that joint shear stiffness is extremely important
input data in finite element analyses of joints, since joints are very
deformable in shear compared to normal direction and compared to intact
rock (Barton 1972).

Since the reliable method of estimating shear strength was developed for
any given values of JCS, JRC, ®,and oy, it only remains to estimate the &
(peak) for an estimate of Ks to be obtained (Barton and Choubey, 1976).
Barton and Choubey (1976) assumed & (peak) as 1% of joint length (L)
and estimated the Ks based on following relations:

Ks = /(Speak (219)

100

Ks = — - optan (2.20)

JRClog 10 (]CS/JH> +2,

In Eg. 2.20 Barton and Choubey (1976) assumed that a joint reaches to
its peak shear strength after about 1% of its length (L). Ks is strongly
dependent on scale. A review of laboratory and insitu shear tests (Barton
1972) indicated that shear stiffness was indeed inversely proportional to
joint length. However, it seems clear that & (peak) will eventually reduce
to less than 1% L as the joint length increases to several meters (Barton
and Choubey 1976). Later, Barton et al. (1985) suggested Eq.
2.21estimate the & (peak) value as:

1
_ Ly _ (JRCh\3
Bpeak= 535 % (1) (2.21)
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Therefore, it is possible to estimate the & (peak) and then Ks value by
substitution of Eq. 2.21into Eq. 2.19.
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CHAPTER IlI

NUMERICAL ANDPROBABILISTIC METHODS IN ROCK
SLOPE STABILITY ANALYSIS

3.1 The Distinct Element Method

The Distinct Element Method (DEM) was introduced by Cundall (1971) as
a model to simulate large movements in blocky rock masses, and then
used for soils which were modeled as discs (Cundall and Strack 1979).
Later, the method has been applied to spherical and polyhedral blocks
(Pande et al. 1990, Cundall 1988 and Potyondy and Cundall 2004) for

both soils and rocks.

The DEM belongs to the family of Discrete Element Methods, which
Cundall and Hart (1998) define as those that: (1) allow finite
displacements and rotations of discrete bodies, including detachment; and
(2) automatically recognize new contacts between bodies during
calculations. Discrete Element Methods need to address three key issues:
(1) representation of contacts; (2) representation of solid material; and (3)
detection and revision of contacts during execution. An in-depth

discussion of these issues is provided by Cundall and Hart (1998).

The distinct element technique was originally developed by Cundall

(1971) and has resulted in formulation and development of three
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dimensional distinct element code (3DEC) and it progressed over a period
of 35 years (Anon, 2007).

3DEC is three-dimensional numerical software based on the distinct
element method for modeling discontinuous medium subjected to static or
dynamic loading. A discontinuous medium is distinguished from a
continuous medium by the existence of contacts between the discrete

bodies that comprise the system (Anon, 2007).

3DEC is based on a dynamic (time-domain) algorithm that solves the
equations of motion of the block system by an explicit finite difference
method. At each time step, the law of motion and the constitutive
equations are applied. For both rigid and deformable blocks, sub-contact
force-displacement relations are prescribed. The integration of the law of
motion provides the new block positions, and therefore the contact
displacement increments (or velocities). The sub-contact force-
displacement law is then used to obtain the new sub-contact forces, which
are to be applied to the blocks in the next time step. The cycle of

mechanical calculations is illustrated in Figure 3.1(Anon, 2007).

3DEC also has a built in programming language called FISH which can be

used for user specific purposes.

3DEC has two constitutive models for analyzing discontinuity behavior.
The first one is the generalization of Coulomb friction law. This law works
similarly for sub-contacts between both rigid and deformable blocks. Both
shear and tensile failure is considered. In elastic range the model
behavior is governed by discontinuity normal stiffness and discontinuity

shear stiffness.
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Figure 3.1 The calculation cycle of 3DEC program (Anon, 2007)

The force increments are found by using displacement increment and the

input discontinuity stiffness. The normal force increment AF" is found as;

AF"=-K, AV'A, (3.1)
And the shear force increment is found as;

AF°=-K ABA, (3.2)

Where;

AV' = Normal displacement increment
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A:= Area of contact

Ad = Shear displacement increment

The total normal and shear forces, F" and F° are then updated for the next

cycle as;

F'=F"+AF" (3.3)
And,

F°=F°+AF® (3.4)

For tensile failure;

F'<T .. then F"=Teqgua (3.5)
Where;

Tmax=-TAc (3.6)
Tresidual= TresidualAc (3.7)

Tmax = Peak tensile strength

Tresidual = Residual tensile strength

For shear failure;

Frax
F°<Fhax then F°=F°(2) (3.8)
Where;
Frax=CA.+F" tan @ (3.9)

Shear displacement leads to a dilation that is;
AV(dil)=Adtan (d) (3.10)
Where d is the dilation angle specified.

Then the normal force is corrected to consider the effect of dilation as;
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F"=F"+K,A.AS tan (d) (3.11)

The second constitutive model of 3DEC for discontinuities is the
continuously yielding joint model. The model attempts to account for some
nonlinear behavior observed in physical tests. The model generates the
discontinuity shearing damage, normal stiffness dependence and

decrease in dilation angle with plastic shear displacement.

The normal stress is found incrementally as;

AG,=K,AV' (3.12)
Where the normal stiffness K, is given by;

Kn=a,op" (3.13)
Where a, and e, are model input parameters

For shear loading, the shear stress increments calculated as;

AT=FKksAD (3.14)
Where the shear stiffness Ks is given by;

Ke=as0p° (3.15)

And where esand as are model input parameters and F is the tangent
modulus factor which depends on the distance from the actual stress

curve to the target or bounding strength;

_ (1)

F 1-r

(3.16)

Where;
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r is the stress ratio at the last reversal and it is limited to 0.75 in order to

avoid numerical noise.
Tmis the bounding strength and found as;
Tm=0,tan ®,Ad (3.17)

@n is the friction angle at which the discontinuity is dilating at the
maximum dilation angle and it is continuously reduced according to the

equation;

AD=-= (Dm-0)AS" (3.18)
R is the model input parameter defines the surface roughness,

The plastic increment A3® is found as;

ABP=(1-F)|A5| (3.19)

Studies related to 3DEC were mostly conducted by Coulomb slip model
rather than continuously yielding joint model (Kulatilake et al. 1993,
Konietzky et al. 2001, Hutri and Antikainen 2002, Corkum and Martin
2004). The main reason is the easiness of the parameter determination.
Only the discontinuity cohesion and discontinuity friction angle should be
determined for the Coulomb slip model.

3.2 Reliability Index Methods

In these methods the safety of a slope is measured by a reliability index,
rather than the classical safety factor. Engineering reliability problems can
generally be reduced to comparison of demand and supply in meeting a
specified performance requirement. For example, the safety of a structure
depends on the strength of the structure, (supply) and the applied load

(demand) (DUzgln et al. 2003). The calculation of probability of survival or
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failure, requires the knowledge of the distribution of supply, denoted by
fx(x), and demand, denoted by fy(y) or their joint distribution fxy(x,y), if X
and Y are correlated. In practice, however, it is difficult to assess these
distributions due to insufficient data. Moreover, even if the required
distributions are available, the exact evaluation of probabilities is
impractical due to the numerical integrations involved (Duzglin and
Ozdemir 2006).

Frequently, the available information and data are sufficient only to
calculate the first and second moments, in other words the means, the
variances and the covariances of the respective random variables. In
such cases, practical measure of safety or reliability is limited to functions

of these first two moments (Diizgiin and Ozdemir 2006).

Two similar procedures are used for the computation of the reliability
index. These are the first-order second-moment (FOSM) and advanced
first-order second-moment (AFOSM) methods. In both methods, random
variables are described only by their first and second statistical moments

(i.e. mean, variance and correlation characteristics).

Although these two methods have been proposed long time ago, their
application to rock slope stability is quite recent. Genske and Walz (1991),
Kimmance and Howe (1991), Muralha (1991), Trunk (1993) applied
FOSM method to rock slopes. Slope stability studies using AFOSM
method in rock engineering are very few. However, the more recent
probabilistic slope stability studies prefer this method (Duzgin et al.,
1994, Duzgln et al.,, 1995, Quek and Leung, 1995, Chen at al., 1998)
since it is free from some of the disadvantages of previously mentioned
methods (Ang and Tang, 1984).

The formulation of a performance function (failure function) or a limit state
equation is the first step in both methods, and is explained in the following
section.
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3.2.1 The Performance Function

The reliability assessment of an engineering structure usually involves the
consideration of many variables. In particular, the supply and demand
generally depend on several other variables. In FOSM approach, the
reliability index, P, is similar to the safety factor used in the deterministic
analysis. It gives the mean safety margin in multiples of the standard
deviation of the safety margin. The mean safety margin is the mean
difference between the mean capacity and the mean demand. The higher
this difference, the higher is the value indicating a higher safety. It is to be
noted that this difference is normalized with respect to the standard
deviation of the safety margin. Accordingly, the uncertainties in demand

and capacity are also reflected in the reliability index (Duzgun et al. 1995).

For the purpose of generalized formulation, it is necessary to define a

performance function or a state function as shown below:

g (X) = g(X1,X2, X3, ..., Xn) (3.20)

Where, {X} = {X;, X5, X3, ...,X;} is the vector of basic variables which are
involved in the physical problem such as strength, load and geometrical
parameters. The function g(x) determines the performance or state of the
structure. Accordingly, the limiting performance is defined as g(x) = 0

which is the "limit-state" of the system. As a result it follows that:

g(x)>0  The "safe state"

g(X)<O0  The "failure state"

Geometrically, the limit state equation, g(x) = 0, forms an n-dimensional
surface which is called as the "failure surface ". One side of the failure

surface is called the safe state, g(x) > O; while the other side g(x) < 0 is
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the failure state. Figure 3.2 illustrates the safe and failure states for the

two-dimensional case.

b,
failure domain
Ar
-—__-_-_-_‘_-_‘-‘_‘_"‘—\—
safe domain x
As S*=p
X1
0 Gs (x)=0
=0
Gy(x) =0 G (x)

Figure 3.2 Safe and failure states for the variables x; and x,

If the joint p.d.f. of the basic variables, X;, X;, Xz, ... , X, is
fx1,x2 x3. ... xn X1, X2, X3, ..., X)) the probability of safe state is

(3.21)
Po= ([ [ xasexaxn (Ko Xou Xg, oy X, )dXy 0,

The
above equation is simply the volume integral of fx (x) over the safe region
g(x) > 0. On the other hand, the failure state probability or p is the

corresponding volume integral over the failure region g(x) < O:

Poo= [ ] T xixoixs,xn O X0 X,y X, )dX,.dX, 3.22)
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In FOSM modeling, mean and standard deviation of the limit state or
performance function is found for any continuous mathematical form of
the limit state equations. If the function is non-linear, the approximate first
and second moments of the limit state function are obtained by Taylor
series expansion of the faction around the mean values of the basic
variables (ul). This approximation is called as "mean point expansion
method" and proposed by Cornell (1969). The linearized failure function is

given as

i=1

% 0
= Qe e 1)+ 3 (X )[af] (3.23)
"

Where the vector pi= (U1, M2, M3, ..., Mn) IS the linearizing point. The
reliability analysis is carried out according to the function z. The mean (u,)
and standard deviation (o,) of z is approximated by (Diizgiin and Ozdemir
2006):

=9, e 1) (3.24)

o, = ZH:[STQ] o’ (3.25)

The accuracy of the approximation depends on the degree of non-
linearity, effect of neglecting higher order terms in failure function z and
the magnitudes of coefficients of variation of xj's. It is obvious that if the
function g (X1, Xz, X3, ..., Xp) is linear then the approximation of the mean
and the standard deviation of z is exact. In the FOSM method the

reliability index B as defined by Cornell (1969) is f = He

z

The FOSM method which is based on the mean point expansion using

Taylor series approximation has two basic shortcomings. First, the
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performance (unction is linearized at the mean values of the basic
variables. When performance junction is non-linear, significant errors may
arise at increasing distances from the linearizing point by neglecting the
higher order terms. Second, the Taylor series expansion around the mean
values fails to be invariant under different but mechanically equivalent
formulations of the same problem (Hasofer and Lind, 1974). In other
words, it lacks the desirable property of being failure function invariant.
Due to these shortcomings of the FOSM formulation, the AFOSM method
proposed by Hasofer and Lind (1974) became the most widely used
method of reliability determination. In the following sections the principles
of AFOSM is explained in detalil

3. 2. 2 Linear Performance Functions

The performance function may be a linear function. A linear performance

function can be represented as

g(X)=ao+Zn:aiXi (3.26)

i=1
Where agand a; are constants.

Here the variables are assumed to be uncorrelated and hive a normal
distribution. The reduced (standardized) variables are defined as follows:

ao+zn:aixi:0 (3.27)
=)

Here the variables are assumed to be uncorrected and have a normal

distribution. The reduced (standardized) variables are defined as follows
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X = XA (3.28)

Oj
Then
X = Xilo_i + 4 (3.29)
8, +.8, (x;axi + U ): 0 (3.30)

i=1

For instance, for three dimensions the minimum distance of origin of

reduced variates X; is:

a + Zn: a; Uy,
B= i-1 (3.31)

n

Z(aiO'X. )2

i=1

Then, the following generalization can be made. If the random variables
Xi,..., Xp are uncorrelated normal variate, the probability of being in the

safe state is:

P = P[aO ot Zai (X i'o-xi + )>— Oj (3.32)
i=1

8+ Zaiﬂx,j

P=1-0 ( =

Bk

(3.33)

i=1
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n
a, + E l,ai/lei
i—1

Zl:(aiaxi )2

=D

(3.34)

Where & () is the cumulative distribution function (c.d.f.) of the standard
normal variate. As observed the probability Ps is a function of the distance
from the failure plane g(x) = O to the origin of the reduced variates. Hence,
in the general case of n uncorrelated normal variates the probability of

being in the safe state Ps=® () and the probability of failure is Pi=1 - @
(B).

3.2.3 Non-Linear Performance Functions

Generally, the performance functions are non-linear. Accordingly, the limit
state equation g (X) = 0 will also be non-linear. Unlike the linear case,
there is no unigue distance from the failure surface to the origin of the

reduced variates.However, Shinozuka (1983) identified the point
(Xl'*,...,x'n*)on the failure surface with minimum distance to the origin of
the reduced variates as the most probable failure point. Hence, the

tangent plane to the failure surface at (x,-,...,x)can be used to

approximate the actual failure surface and to evaluate the reliability index.

The tangent plane at (Xf X:) is

*

L 8_9 _
(X, - X, {ax;] 0 (3.35)

*

In which the partial derivatives (%} :
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Thus, the minimum distance from the tangent plane to the origin of the

reduced variates is taken as the reliability index B. This is illustrated in

Figure 4.1 for the two-variable case. This minimum distance to tangent

plane

on the failure surface can be determined through the Lagrange

multiplier method as explained by Tang (1984). The following summarizes

this numerical procedure, which is an iterative algorithm for calculating the
reliability index B, (Ang and Tang, 1984):

Vi.

Vii.

2

Define the appropriate limit-state function.

. Make an initial guess of the reliability index 3.

iii. Set the initial checking point values xi* = pi foralli=1, .., n.

Compute the mean and the standard deviation of the equivalent

normal distributions for those variables that are non-normal

Xi*_ﬂi
Oy .

Obtain reduced variates as X; =

Evaluate a_g atX; .
oX

Compute the direction cosines a; as

*

(3.36)

*2

(| 99
i=1 axil

viii. Calculate new values of X; from X; = . — o, 8o,

iX.

X.

Xi.

3

ix. Substitute above X;ing ( X, ..., X, )=0 and solve for

Using B obtained in step ix, re-evaluate X, = -«

Repeat step v through x until convergence is reached.
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3.2.4 Equivalent Normal Distributions

If the probability distributions of the random variables Xy,..., X, are not
normal, the probability P and Ps can also be calculated. The equivalent
normal distribution for a non-normal variate can be obtained in such a way
that the cumulative probability as well as the probability density ordinate

of the equivalent normal distribution are equal to those of the
corresponding non-normal distribution it the design point Xi* (Ang and

Tang, 1984). Accordingly the following can be obtained:

@[ﬂ} —F (X}) (3.37)
Ox

,uQ'i : o-Q'i =The mean value and the standard deviation, respectively, of

the equivalent normal distribution of X;.

Fyx, (Xi*)z The original cumulative density function (c.d.f) of X

evaluated at X .

@( )=The c.d.f. of the standard normal distribution

From Eq. 3.37 it is obtained:

*

y =X —olot|F, (X)) (3.38)
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On the other hand, equating the corresponding probability density

functions at X, vyields to:

L ¢[X‘*_N”XNi ]: £ (X)) (3.39)

Oy

Where, @( )is the probability density function (p d f.) of the standard

normal variable. From this it can be obtained

(3.40)

For a linear performance function, the appropriate point on the failure
surface can be given in terms of direction cosines, a;, and safety index, B3,

in the following way:

o =% (3.41)

f=—ot (3.42)

Where the superscript N denotes the statistics for the equivalent normal

distribution.
Accordingly, the design point is:
X7 =ol X +u, = o) + w3 (3.43)
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It is obvious that replacing the actual distribution with an equivalent
normal distribution requires replacing the actual mean and the standard
deviation with those of the equivalent normal distribution. The safety index
B and the probabilities Ps and P; are then calculated in terms of the mean

and standard deviation of the equivalent normal distribution.
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CHAPTER IV

THE DEVELOPED NUMERICAL-PROBABILISTIC
APPROACH

4.1 Methodology

In probabilistic modeling of rock slopes, the performance function is
constructed based on the ratio of strength to the stress acting over rock
discontinuity. Therefore, for calculating the Reliability Index (B) and
consequently the failure probability, the procedure discussed in section
3.2 of Chapter Ill is used.

However, the displacement of the structure is an important parameter that
controls the stability of the structures. Limit equilibrium methods does not
have the capability to obtain the displacement of rock mass; therefore, the

numerical methods are required.

For analyzing the stability of rock slopes, different numerical methods are
applied, however, the commonly acceptable method for discontinuous
rock slopes is Distinct Element Method. The main output of the DEM is
the displacement of blocks. Hence, the shear strain or shear displacement
of rock discontinuities is considered as the failure indicator in this study.
The flowchart in Figure 4.1 indicates the process for development of the
proposed probabilistic numerical approach for analyzing of rock slope

stability.
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Figure 4.1 The process of development of proposed probabilistic numerical

approach

As seen in Figure 4.1, there are different stages that should be followed in
application of the proposed approach for a rock slope. The stages are

described in detail as below:
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e Model construction (I)

As indicated in Figure 4.1, the first step is to construct the geometry of
slope in 3DEC. For this purpose, the shape of the slope is surveyed then
constructed in the software and the rock discontinuities are added. The
constructed shape must be meshed by using different zoning commands
available in the software. The other step is to define the boundary
condition which is dependent on geometry of the rock slope. In
discontinuous media, the model has two separate components which are
blocks and the contact face between blocks. Both of these components
are given material properties based on the obtained data in the laboratory
and the field. In most of the cases when the stress level is low the failure
occurs in discontinuities rather than intact rock body. Therefore, the intact
rock is modeled elastically for the sake of simplicity. However, the rock
discontinuities are modeled plastically. To calculate and assign the
material properties of the rock discontinuities the stage Il and Ill are

followed.

e Discontinuity material properties calculations and their

assignment (Il and II)

As indicated in Figure 4.1, in stages Il and Ill FISH functions were written
to calculate the rock discontinuity material properties and to assign to the
model. In the proposed methodology, the Barton models discussed in
Chapter Il are used to model the rock discontinuities. The Barton model
does not include as material model in 3DEC library; therefore, the Barton
model should be applied indirectly to the model. Barton suggested
instantaneous cohesion and friction angle concepts by which the
nonlinear behavior of normal and shear stress (t7-0,) relation can be
equalized by drawing tangents to the t-o, curve for defined o, values.

Figure 4.2 shows the concept of instantaneous cohesion and friction

43



angle. The instantaneous cohesion and friction angle are obtained from
Eqgs. 4.1t04.3:

ot JCs RC JCS
—— =tan| JRClog,, —= +¢, |- ————| tan’| JRClogl0—=+¢, |+1|(4.1
oo ( o5 ¢*’j 180In10{ ( S ¢b] }( )

n n n

@ = arctan(ﬁJ (4.2)
oo,
c, =7—o,tang, (4.3)

By applying Egs. 4.1, 4.2 and 4.3 the relevant cohesion and friction angle
for a definite stress level and consequently for any discontinuity are
calculated. Therefore, the calculated values for cohesion and friction
angle are applied by using Coulomb slip model. The joint material
parameters required to apply Coulomb slip are Joint Normal Stiffness
(kn), Joint Shear Stiffness (ks), Friction Angle (Jfriction), Cohesion
(Jcohesion), Joint Tensile Strength (Jten) and Dilatancy Angle (dil).

Shear
Stress
T

Normal Stress oy
Figure 4.2 Barton model and the instantaneous cohesion and friction concepts
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According to Egs. 4.2 and 4.3, both the cohesion and friction angle are
function of normal stress applied on discontinuity surface. Therefore, a
FISH function was written to calculate the average normal stress on each
plane. It is to be noted that the FISH is a programming language
embedded within 3DEC that enables the user to define new variables and
functions. These functions may be used to extend 3DEC’s usefulness or
add user defined features. An example of the FISH function written is as

below for one discontinuity:

Def av_str;
whilestepping
nstav, =0
Are;=0
ic, = c_near(Xy, Y1, Z1)
icsub; = ¢_cx(ic,)
Loop while icsub, # 0
ncono; = ncono; + 1
Are;=Are; + cx_area(icsub,)
nstav, = nstav; +cx_nforce (icsub,)
icsub; = cx_next(icsub;)
Endloop
If ncono; #0
nstav,; = nstav, / Are;
Endif

end

In this function, for any discontinuity, the normal force and the area (Are;)
of contact and the average normal stress (nstav;) are calculated and
saved to be used in calculation of cohesion and friction angle. The ic;,
icsubl and (X1, y1, Z1) are related to the ID and the coordinate of location

of discontinuity in 3DEC.
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The failure criterion in this methodology is shear displacement; and the
Joint Shear Stiffness (ks) is one of the most important factors that directly
controls the shear displacement. According to the Eq. 2.17 the Ks is
dependent on normal stress, length, JRC, JCS and basic friction angle of
any discontinuity. As discussed in Chapter II, the Eq. 2.17 is not a suitable
formula to calculate the Ks for analysis being done by 3DEC. For this
purpose, Eq. 2.19 is used which is the ratio of Eq. 2.3, the Barton’s
empirical shear strength formula, to Eq. 2.21, the estimated peak shear

displacement value.

In 3DEC the joint parameters must be assigned to relevant location or
discontinuity. Commonly, the models are complex and the material
properties should be assigned by FISH coding. One sample of written
FISH for calculating and assigning the joint parameters is as below:

Def prop;

Fi (basic friction angle)

L, (discontinuity length)

JCS (Joint Compressive Strength)

JRC (Joint Roughness Coefficient)
fric_1=abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/nstav,))+Fi)))degrad*
JRC*(1/In(10))* ((tan(degrad*(JRC*log(abs(jcs/ nstav,))+Fi)))"2+1)))
coh_1=nstav,*abs(tan(degrad*(JRC*log(abs(jcs/nstav,))+Fi)))nstav,*abs(tan(deg
rad*fric_1)))

d_peak1=(L1*(JRC/L1)"0.33)/500

J_ks_1=((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)"0.33)
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ic;=c_near(34.43,57.22,80.4)
End

Hide dip 87 dd 180 org 0 61 20 below
Hide dip 75 dd 288 org 14.8 46.9 40 above
Hide range z 0 65

Change jmat=1

e Recording the shear displacement (IV)

As indicated in Figure 4.1, the fourth stage in this methodology is to
record the history of displacement of discontinuities during shearing which
is the failure indicator in the proposed methodology. For this purpose,
another FISH function was written to obtain the shear displacement of the

discontinuity as below:

whilestepping
ncono,= 0
xsd;=0
ysd;=0
zsd;=0
ic,= c_near(Xy,Y1, Z1)
icsub; = c_cx(ic,)
Loop while icsub, # 0
ncono;= ncono; + 1
ssdisp; = cx_sdis(icsub,)
xsd;= xsd2+ xcomp(ssdisp;)
ysd,;= ysd2+ ycomp(ssdisp,)
zsd;= zsd2+ zcomp(ssdispy)
icsub; = cx_next(icsub;)
Endloop
If ncono, #0
Sheardisp; = sqrt((xsd;)*2+(ysd;)"2+(zsd;)"2) / ncono,
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Endif

In this function, the ssdispl is the shear displacement vector and the
xsdl, ysdl and zsdl are its components and the Sheardispl is the final
shear displacement scalar. From the beginning up to the end of the
solution, the shear displacement of a discontinuity with ID of icl is
recorded and can be plotted if necessary. After, the model is executed
and the equilibrium state is reached the final shear displacement of the

discontinuity is obtained.

e Stages V, VI, VI, VIIl and IX

As indicated in Figure 4.1, the processes of stages from | to IV should be
followed to prepare the model to be executed. In stage V, the realization
of random variables are selected from their distribution and input to the
model. These variables are transformed to rock discontinuity properties
using FISH function discussed in stage Il and Ill of the methodology in
Figure 4.1, such as instantaneous cohesion and friction angle, Ks and etc.
Then the model is executed and the shear displacement (8) of each
discontinuity is recorded as described in stage IV. According to
Figure 4.1, in stage VI, the shear displacement obtained in stage IV is
compared to the peak shear displacement estimated by Eq. 2.21. In the
proposed methodology, it is assumed that if the shear displacement is
greater than the estimated peak shear displacement (dpeax) it is called as
failure. The boundary of the failure and survival is called the limit state
condition in the proposed approach. For example, if for certain realization
of cohesion, JCS and friction angle for JRC=10 the shear displacement
(®) is greater than the estimated peak shear displacement (dpeak) and for
JRC=11 the d is lower than Jpeak, the 10<JRC<11 is considered as limit
state condition depending on the opinion of the user.
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This methodology was developed for one or more random variables. For
one random variable like JRC, suppose that the limit sate is JRC=10, and
the discontinuity fails for JRC<10. Therefore, the probability of failure
equals to the area of region less than 10 in density function of distribution
of JRC.

However, when the number of random variables is more than one, for
different realization of random variables the model is run and the shear
displacement of each discontinuity is recorded and according to stage VI
the failure state is obtained. Then an appropriate distribution function is
fitted to the shear displacement. Then, area for which &> &peak iS the
failure probability and the corresponding Reliability Index is obtained from
P=1-® (B), Where ® () is the cumulative distribution function of the
standard normal variate. (Stages VIII and 1X).
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CHAPTER V

IMPLEMENTATION OF PROPOSED PROBABILISTIC-
NUMERICAL METHODOLOGY

5.1 General information about the study region

The case study is selected as the Kings Rock Grave in Amasya, Turkey,
which was carved on a rock mass containing bedding planes and joints
and generally discontinuities. The host rock is limestone and
discontinuities cut the Grave, and simply the rock grave can be
considered as a rock slope. Figure 5.1 is shows the location of Amasya in
map of Turkey.

Amasya is located between 41° 04’ 54” -40° 16’ 16” North Latitude and
34° 57’ 06”-36° 31’ 53” East Longitude in the Yesilirmak Valley of the
Central Black Sea Region . The surface area of Amasya is 5,701 km? and
the population is 133,000, of which 74,000 live in the city and in
surrounding towns and villages. The average altitude is 592 m. Amasya
was a fortified city high on the cliffs above the river. It has a long history
as provincial capital, a wealthy city producing kings and princes, artists,
scientists, poets and thinkers, from the kings of Pontus, through Strabo
the geographer, to many generations of the Ottoman imperial dynasty,
and up to being the location of an important moment in the life of Ataturk.
With its Ottoman period wooden houses and the tombs of the Pontus

kings carved into the cliffs overhead, Amasya is attractive to visitors.
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Figure 5.1 Location of Amasya

5.2Field and laboratory studies

The Harsena Mountain was surveyed to understand the problem in the
region. There are sliding, and rock fall problems in Harsena region.
Figure 5.2 indicates the potential locations suffering from rock slope
problem.
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The rock discontinuities were recorded by a compass either individually or
massively by scan line. In joint mapping operation, geometrical
parameters like, dip, dip direction, spacing and location of the joint and
the mechanical parameters such as Joint Roughness Coefficient (JRC),
Joint Wall Compressive Strength (JCS) for each joint were recorded.
Tables 5.1 to 5.3 indicate the scanline data recorded in the field for
different study regions. Figures 5.3to 5.6 indicate the rock joint distribution

in the studied regions.
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Figures 5.3 to 5.6 indicate that there are almost three joint sets in each
section. In section 1, the dominant joint sets have dip and dip direction of
064°%/42°, 175%75° and 237%66°. Also, three joint sets of section 2 had
orientations 180%73°, 094%81° and 030°%/45°, and for section 3 the dip and
dip direction of joint sets were recorded as 146%74° 213%46° and
028°/35°.

Since the region is a folded structure, there are some differences between

the dip and the direction of the joint sets. The direction of the joint sets is

such a way that rock fall and rock sliding is probable.
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Table 5.1 Recorded data of rock discontinuity from scanline for section 1

No. | Distance | Rock type | DIP DIRECTION | DIP | Discontinuity type | JRC Schmidt Hammer Infilling Thickness
value (mm)
1 210 Limestone 080° 36° Bedding - 26-38-42 - -
2 242 Limestone 080° 36° Bedding - 34-26 Calcite 190
3 285 Limestone 072° 40° Bedding - 29 Calcite 5
4 340 Limestone 072° 40° Bedding - 34 - -
5 520 Limestone 064° 47° Bedding - 27 Calcite 10
6 542 Limestone 064° 47° Bedding - 40 - -
7 625 Limestone 055° 40° Bedding - - - -
8 850 Limestone 062° 45° Bedding - 50-30 Calcite 30
9 1100 | Limestone 060° 52° Bedding - - - -
10 1150 | Limestone 060° 45° Bedding - 18 - -
11 1405 | Limestone 062° 45° Bedding - - - -
12 1440 | Limestone 065° 45° Bedding - - - -
13 1730 | Limestone 062° 40° Bedding - - - -
14 1820 | Limestone 064° 44° Bedding - 48-34 Calcite 10
15 1930 | Limestone 064° 45° Bedding - - - -
16 1980 | Limestone 064° 44° Bedding - - - -
17 2040 | Limestone 068° 45° Bedding - - - -
18 2170 | Limestone 062° 45’ Bedding - - - -
19 2225 | Limestone 060’ 45’ Bedding - - - -
20 2265 Limestone 064° 44° Bedding - - - -
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Continuining table 5.1

Schmidt Hammer

No. | Distance | Rock type | DIP DIRECTION | DIP | Discontinuity type | JRC value Infilling | Thickness (mm)
21 2310 | Limestone 062° 43° Bedding - - - -
22 2375 Limestone 062° 457 Bedding - - - -
23 2600 | Limestone 065° 40° Bedding - - - -
24 2670 | Limestone 062° 44° Bedding - - - -
25 2775 Limestone 062° 457 Bedding - - - -
26 2825 Limestone 065° 40° Bedding - - - -
27 2880 | Limestone 062° 44° Bedding - - - -
28 3000 | Limestone 065° 47° Bedding - - - -

There are also two joint sets that could not be recored directly by scanline which are 175%75° and 237°/66°
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Table 5.2 Recorded data of rock discontinuity from scanline for section 2

. Rock DIP Discontinuit Schmidt Hammer - Thickness

No. | Distance type DIRECTION DIP type y JRC value Infilling (mm)

1 0 Limestone 015’ 36’ Bedding - 20-25-40 Calcite 5-10

2 400 Limestone 100° 86" Joint - 30-39 Calcite 20

3 400 Limestone 200° 65’ Joint - 22—24-38 Calcite 20

4 1090 | Limestone 040° 55° Bedding - 33-36-43 Calcite 20

5 1190 Limestone 093° 85’ Joint - 43-38 Calcite 10

6 1640 Limestone 020° 84" Joint - 34-37-39 - -

7 2410 Limestone 090° 75° Joint - 27-38-39-40 - -

There is a joint set parallel to surface which is 180°%/73° with spacing of 1.5 m that could not be recorded in scanline
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Table 5.3 Recorded data of rock discontinuity from scanline for toe of section 3

No. | Spacing (cm) | Rock type DIREDCIZEI)'ION DIP Dlsc?ynr;tlenwty JRC SChm'\(/j; I::mmer Infilling Thl(ﬁ]krgt)ass
1 70 Limestone 31 32 Bedding - 21-35-39 - -
2 115 Limestone 31 32 Bedding - 35 - -
3 100 Limestone 142 80 Joint - - Calcite 10
4 65 Limestone 20 45 Bedding - 24 - -
5 100 Limestone 152 72 Joint - 20-21-40 Calcite 60
6 120 Limestone 148 75 Joint - - - -
7 100 Limestone 145 70 Joint - - - -
8 50 Limestone 25 40 Bedding - - Calcite 30
9 90 Limestone 30 35 Bedding - - - -
10 90 Limestone 140 78 Joint - - - -
11 60 Limestone 28 33 Bedding - - - -
12 50 Limestone 33 34 Bedding - - - -
13 140 Limestone 153 74 Joint - - - -
14 60 Limestone 25 45 Bedding - - Calcite -
15 Were parallel Limestone 200 50 Joint - - -
16 | to surface and | Limestone 200 60 Joint - - -
17 spacing is Limestone 215 50 Joint - - -
18 | ranging from | Limestone 215 50 Joint - 22-22-24-34-42-36 - -
19 30cmto 80 Limestone 215 45 Joint - - -
20 cm Limestone 215 47 Joint - - -




Surface of the studied joints were drawn on paper and compared with
standard profiles suggested by Barton and Choubey (1977) and rated
(Figure 2.3). Table 5.4 indicates the statistical descriptions of gathered
JRC values. Among the best fitting distributions to JRC value Lognormal
distribution was found to be appropriate (Figure 5.7). Table A-1 indicates

the goodness of fit obtained in Easyfit software for JRC value.

Table 5.4 Statistical analysis data for JRC

Statistic Value Percentile Value
Sample Size 46 Min 2

Range 18 5% 3.35
Mean 9.1087 10% 4
Variance 21.966 25% (Q1) 6
Std. Deviation 4.6868 50% (Median) 8
Coef. of Variation 0.51454 75% (Q3) 11

Std. Error 0.69102 90% 16.3
Skewness -0.80172 95% 18
Excess Kurtosis -0.49338 Max 20

Probability Density Function of JRC
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Figure 5.7 Lognormal distribution of joint roughness coefficient (JRC)

Also, joint compressive strength (JCS) values for discontinuity surfaces

were obtained by Schmidt hammer. Table 5.5 indicates the distribution of
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raw data for JCS, and Figure 5.8 indicates the frequency of joint wall
compressive strength (Schmidt Hammer). The raw data obtained by
Schmidt hammer are transformed to JCS by Figure 5.9 which integrates
the hammer usage direction and density of the rock. Table A-1 indicates
the goodness of fit obtained in Easyfit software for JRC value and the

appropriate distribution was found to be Beta.

Table 5.5 Statistical data analysis for Schmidt Hammer

Statistic Value Percentile Value
Sample Size 83 Min 8

Range 41 5% 16.4
Mean 32.181 10% 20
Variance 78.028 25% (Q1) 24
Std. Deviation 8.8333 50% (Median) 35
Coef. of Variation 0.27449 75% (Q3) 39
Std. Error 0.96959 90% 42
Skewness -0.50298 95% 43
Excess Kurtosis -0.51933 Max 49
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Figure 5.8 Relation between the Schmidt hardness and joint wall strength

One of the most important parameters in the analysis is the basic friction
angle of the rock. Five direct shear tests were done to obtain basic friction
angle. For S 2, S 3, S 4, S 5 and S_7 samples the obtained basic
friction angles were, 32.09, 32.23, 29.16, 33.48 and 29.01, respectively.
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The Figures 5.10 to 5.12 indicate the shear stress-shear displacement
curves for different applied normal stresses, shear and normal stress
relation and relation of joint shear stiffness and normal stress for sample
S_2, respectively. It is to be noted that the joints sheared in S_2, S_3,
S 4, S 5 and S_7 samples were sawn joints. Figures A5 to A.16 in
appendix A indicate the shear stress-shear displacement curves for
different applied normal stresses, shear and normal stress relation and

relation of joint shear stiffness and normal stress for other four samples.
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. ’/I—I

25 / P atnd
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Figure 5.9 Shear stress/displacement curves for joint sample named as S_2 for

different normal stress values
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Figure 5.10 Relation of Shear and Normal stresses acted on joint of
S_2 to obtain the basic friction angle of joint surface which is
32.092°
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Figure 5.11 Dependency of joint shear stiffness (Ks) to normal

stress in smooth joint plane (S_2)
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Also, two natural joints were tested by direct shear box and Figures 5.13
to 5.15 indicate the shear stress-shear displacement curves for different
applied normal stresses, shear and normal stress relation and relation of
joint shear stiffness and normal stress for sample N_1, respectively.
Figures A.1 to A.15in Appendix A indicate the shear stress-shear
displacement curves for different applied normal stresses, shear and
normal stress relation and relation of joint shear stiffness and normal

stress for sample N_2.
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Figure 5.12 Shear stress/displacement curves for joint sample N_1 for different
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Moreover, two axial compressive tests were done to obtain the elastic
modulus, Poisson’s ratio and compressive strength of the intact rock. The
elastic modulus, UCS and Poisson’s ratio were 25.15 GPa, 90.28 MPa
and 0.1 for sample I, respectively, and 28 GPa, 95.26 MPa and 0.116 for
sample Il. Figure 5.16 indicates the result of axial compressive loading vs.
axial and lateral strains. Figure A.16 indicates the result of axial

compressive loading vs. axial and lateral strains sample Il in Appendix A.
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Figure 5.15 Stress-strain curve of sample |

5.3Rock Slope Modeling

Field studies demonstrated that the rock mass in Amasya region is
discontinuous and for modeling the rock structure the Discrete Element
Modeling should be utilized. As indicated in Figure 5.2, there are different
regions in Amasya that suffers from rock slope problems; however, to
apply the probabilistic-numerical methodology proposed in this thesis, the
Sec_3 was selected.
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This structure, King’'s Rock Grave, was carved in a limestone cliff
containing two dominated discontinuities, the bedding planes and steep
joints parallel to the slope face. These discontinuities have increased the
potential of planar failure of the King’s Grave. Figure 5.17indicates a view
of the Kind’s Grave. The grave is visited by hundreds of visitors daily and
there is a restaurant close to the grave. There are some fallen blocks and
considerably hanging block which may fall. Moreover, a failure has been
occurred on top of the entrance of the grave which has destroyed the half
of grave’s entrance. Figure 5.19 shows the samples of fallen blocks and a

big failure and hanging blocks on the grave structure.

Figure 5.16 King’s rock grave, Amasya, Turkey
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Figure 5.17 Fallen blocks, big failure and hanging blocks on the grave structure

5.3.1 Model construction

The first step was to construct the shape of the structure, since the shape
of the structure is complex, the best method would be using laser
scanning method and import it to 3DEC medium as a DXF. However,
laser scanning is too expensive to be afforded. Instead, combination of
laser surveying and differential GPS were applied to obtain the
coordinates of the selected points on the structure. As estimation, some
planes were defined to draw the schematic of model. The discontinuities

also applied to the structure based on data gathered in joint mapping
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studies. The geometrical parameters considered in model construction
were given in Table 5.6. Figure 5.19indicates the constructed model of the

King’s Grave structure.

3DEC DP 4.10

@007 hasca Consuhting Group, Inc.

Step 0
1/28/2012 30513 PM

Block
Colorby: Block

Figure 5.18 Constructed model of the King's Grave

Table 5.6 Joints geometry used in modeling the king’s grave

Type of joint Bedding Joint 1 Jset 2 Jset 3
Dip (°) 35° 87° 55° 75°
Dip Direction (°) 028° 180° 200° 288°

However, three dimensional numerical analyses especially those
including the discontinuity requires high performance computers.
Therefore, the bedding planes were omitted and only the joints parallel to
the slope face were included in analysis. Figure 5.20indicates the final

model of the grave to be analyzed by 3DEC. No displacement
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(velocity = 0) were applied as boundary conditions in appropriate

directions.
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Figure 5.19 Final model of the grave to be analyzed by 3DEC
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5.3.2 Choice of Block and Joint Constitutive Models and Material

Properties

The model constructed is defined with appropriate constitutive laws for
both intact rock and discontinuities. Constitutive models are mathematical
equations describing the relationship between stress and strain. Since the
structure is on the surface and the stress level is low, it was appropriate to
use elastic Hook’s Law as constitutive model for intact rock. The elastic

model also reduces the analysis time.

For modeling a material elastically, three parameters of density, bulk
modulus (K) and shear modulus (G) are required. Egs. 6.1 and 6.2 are

used to calculate K and G from Young’'s modulus and Poisson’s ratio:

_E
T 3(1-29)

(5.1)

_E
T 2(1+9)

(5.2)

Based on the laboratory tests the elastic modulus and Poisson’s ratio are
26.5 GPa, and 0.11, respectively. K and G were calculated by Egs. 5.1 and
5.2 and their value are 11.32 GPa and 11.94 GPa respectively. The density was
obtained to be 2600 Kg/m?®.

Fourteen numbers of discontinuities were applied to behave plastically.
The other joints behaved elastically and no slip was permitted. Figure
5.21 indicates the ID’s of the discontinuity to be analyzed as their material
number. It is to be noted that the material number 20 was not permitted to

slip however, other joints were model based on Coulomb slip model.
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Figure 5.20 Material number of fourteen discontinuities to be analyzed

Before starting analysis, the model should be run to achieve the
equilibrium state, for initial loading high ks, kn, cohesion, tensile strength
and friction angle values were assigned and model run where, all of the
joints were behaving elastically, this led the model to reach the equilibrium

State.

5.3.3 Different realization of random variables

As mentioned in Chapter V, different combination of JRC, JCS, basic
friction angle and cohesion variables can be applied to model. The first
group of analysis were done with one random variable JRC, in this group
it was assumed that the JCS and friction angle are constant for joints and
the joints do not have any infilling (added Cohesion=0).
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For the second group, the infilling material effect was applied to the model
by adding cohesion to the strength of the joint or the discontinuity. This
group itself was assessed in two different cases. In one of the cases, the
basic friction angle was considered to be 33° and this was done for
JCS=50 MPa and 70 MPa and different values for JRC and cohesion. In
the other case, the basic friction angle was considered to be 30° and this
was done for JCS=70 MPa and different values for JRC and cohesion.
The considered cases are as follows:
1. C=50 kPa, basic friction angle=33° and JCS=70 MPa

2. C=50 kPa, basic friction angle=33° and JCS=50 MPa

3. C=100 kPa, basic friction angle=330 and JCS=70 MPa

4. C=150 kPa, basic friction angle=33° and JCS=70 MPa
5. C=200 kPa, basic friction angle=33° and JCS=70 MPa
6. C=300 kPa, basic friction angle=33° and JCS=70 MPa
7. C=500 kPa, basic friction angle=33° and JCS=70 MPa
8. C=50 kPa, basic friction angle=30° and JCS=70 MPa

9. C=100 kPa, basic friction angle=30° and JCS=70 MPa
10.C=150 kPa, basic friction angle=30° and JCS=70 MPa
11.C=200 kPa, basic friction angle=30° and JCS=70 MPa

12.C=300 kPa, basic friction angle=30° and JCS=70 MPa
75



13.C=500 kPa, basic friction angle=33° and JCS=70 MPa

According to the methodology explained in Chapter IV, the model requires
normal stress, instantaneous cohesion and friction angle and Ks to be
calculated for each discontinuity. For example for discontinuity number 5,
the normal stress, instantaneous cohesion and friction angle, estimated
peak shear displacement and Ks were obtained 0.197149 MPa, 53.56°,
0.1547 MPa, 0.03423 m and 12.32 MPa/m for sample number 3 when the
JRC=10. All the samples were analyzed based on proposed probabilistic-
numerical approach described in Chapter IV and the following section

discusses the results obtained for each sample.

5.4 Results

In this thesis, a selected rock slope was modeled and run for different
samples of combination of cohesion, friction angle, JCS and JRC values
reviewed in previous section. The main random variable in this study was
the JRC value of the discontinuities existing in structure. First, it was
assumed that the discontinuities do not have infilling material, therefore,
the friction angle, the JRC and the JCS were input in Barton model to
obtain the instantaneous cohesion and friction angle and the shear
stiffness. However, the structure collapsed even with high JRC. Figure
5.22 indicates the state of structure when JRC =18 and the calcite infilling
material has not been taken into account. However, this does not seem a
reliable result; although there are some failures in the structure it stays

stable.
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Figure 5.21 State f the structure for JRC=18, JCS=70 MPa, ® = 33° and

no infilling material

Some of the joints existing in the structure were filled by calcite and in
some parts the filled material has been washed by fluids. The filled
material certainly increases the strength of the discontinuity. Therefore,
the effect of infilling material must be exerted in the analysis. It was
assumed that some portion of the joint plane area has calcite as filled
material and the other portion is the contact to two walls of joint. For
taking this into account, the model was run by assuming different
cohesion values such as 50, 100, 150, 200, 300 and 500 kPa.
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5.4.1 Realizations

1. C=50 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 50 kPa was added to run the model for different
JRC values. A definite JRC value changes the Ks and the shear strength
of each discontinuity. For C=50 kPa, the JRCs of 15, 13, 11, 10 were
given. In cases where JRCs, were 15, 13, 11 the shear displacements are
very low in comparison to the allowable peak shear displacement (dpeak)-
However, when the JRC reduces to lower than 11, the discontinuity no. 1,
2,3,4,7,11, 12 displaces considerably. However, discontinuity no. 5, 6,
8, 9, 10, 13, and 14 displaced less than dpeax. Therefore, if it is assumed
that the shear displacement greater than dpea is called as failure, JRC=
11 can be considered as the limit state condition for discontinuities when
C=50 kPa. Table 5.7 indicates the shear displacement, peak shear

displacement and the values calculated for Ks for each discontinuity.

Figures 5.23 to 5.35 indicate the shear displacement for JRC=10 for
fourteen discontinuities. Also, Figures B.1 to B.13 in Appendix B indicate

the shear displacement history of each discontinuity for JRC=11 values.

Since the limit state condition for this realization for discontinuities no. 1,
2,3,4,7,11, 12 is JRC=11, the failure probability for these discontinuities
is 76.26% for Lognormal distributions of JRC value, with mean=9.1 and

standard deviation of 6.68.
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Figure 5.22 Shear displacement of discontinuity 1, for JCS=70,
C=50 kPa, ®=33° and JRC=10
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Figure 5.23 Shear displacement of discontinuity 2, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.24 Shear displacement of discontinuity 3, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.25 Shear displacement of discontinuity 4, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.26 Shear displacement of discontinuity 5, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.27 Shear displacement of discontinuity 6, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.28 Shear displacement of discontinuity 7, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.29 Shear displacement of discontinuity 8, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.30 Shear displacement of discontinuity 9, for JCS=70

MPa,

C=50 kPa, ®=33° and JRC=10
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Figure 5.31 Shear displacement of discontinuity 10, for JCS=70

MPa,

C=50 kPa, ®=33° and JRC=10
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Figure 5.32 Shear displacement of discontinuity 11, for JCS=70

MPa,

C=50 kPa, ®=33° and JRC=10
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Figure 5.33 Shear displacement of discontinuity 12, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Figure 5.34 Shear displacement of discontinuity 13, for JCS=70
MPa, C=50 kPa, ®=33° and JRC=10
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Table 5.7 Shear deformation, peak shear deformation of Barton model for friction= 33, coh.=0.05 MPa, different JCS, JRC and Ks

98

*Not in Equilibrium state | ** |n Equilibrium state Discontinuity ID
c J [0)
g R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |8
[} C ]
=
o
(@]
5(m) 07 | 0202 | 014 | 0164 | 003 | 0.0001 | 0.155 | 0.023 | 3.3e-5 | 0019 | 0136 | 0.156 | 0021 | 7.5e-5
—
| &pem(m | 0006 | 0037 | 004 | 0036 | 004 | 004 | 008 | 007 | 006 | 003 | 003 | 0033 | 0023 | 0023 |
o
i Ks 13.06 | 365 | 553 | 822 | 1087 | 1368 | 265 | 365 | 323 | 631 | 7.23 | 904 | 1552 | 21.84
(MPa/m)
5(m) 9.8¢-6 | 0.0001 | 35e-5 | 1.2e-5 | 0.0005 | 3.4e-5 | 3.le-5 O'%OO 9.9e-6 | 0.0006 | 4.6e-5 | 1.9e-5 | 0.0006 | 4.5e-5
8| &pew(m | 0006 | 0038 | 004 | 0037 | 0036 | 0036 | 0078 | 0074 | 00661 | 003L | 0028 | 0.034 | 0024 | 0024 | *
Ks 1401 | 395 | 596 | 875 | 1151 | 1441 | 284 | 39 | 347 | 679 | 777 | 962 | 1646 | 22.99
" (MPa/m)
9 5(m) 0505 | 0177 | 016 | 0.76 | 0025 | 00001 | 0.166 | 0.023 | 2.9e-6 | 0.0197 | 0148 | 0.167 | 0.021 | 7.9e-5
S| Speam | 0006 | 0036 | 004 | 0035 | 0034 | 00342 | 0073 | 007 | 0.0623 | 0.0288 | 0.0265 | 0.032 | 0.022 | 0.022 | =
Ks
ey | 128 | 357 | sa7 | 817 | 1086 | 1373 | 261 | 362 | 319 | 622 | 713 | 899 | 1548 | 2194
5(m) 1.0e-5 | 0.0001 | 7.2e5 | 1.9e-5 | 0001 | 41e5 | 7.1e5 | 0.001 | 1.2e-5 | 0.0014 | 0.0001 | 3.7e-5 | 0.001 | 4.5e-5
o3| spewm | 0006 | 0037 | 004 | 0036 | 0035 | 0036 | 0075 | 0.072 | 0.0643 | 0.0297 | 0.0273 | 0033 | 0023 | 0.023 | **
Ks
wbamy | 1315 37 565 | 842 | 1117 | 1408 | 27 | 373 | 329 | 643 | 737 | 926 | 1593 | 225
5(m) 1.7e-6 | 0.0001 | 1.7e-5 | 1.9e-5 | 3.4e5 | 9.8¢-6 | 1.8e-5 z.ge- 29e-6 | 1.9e-5 | 13e-5 | 1.8e-5 | 3.5e-5 | 1.5e-5
9| &peam | 0006 | 0039 | 004 | 0038 | 0037 | 0037 | 008 | 0076 | 0.0679 | 0.0314 | 0.0289 | 0.035 | 0.024 | 0024 | =
Ks 89.44 | 483 | 703 | 1022 | 1329 | 1649 | 339 | 457 | 412 | 811 | 926 | 1123 | 1907 | 26.27

(MPa/m)




2. C=50 kPa, basic friction angle=33° and JCS=50 MPa

To investigate the effect of JCS variation on model, the JCS values also
reduced to 50 MPa in this case, Table 5.8 indicates the shear
displacement of each discontinuity for this condition. For this case the
JRC lower that 12 can be considered as limit state function based on the
shear displacement and its comparison with peak shear displacement

estimated by Barton.

Since the limit state condition for this sample for discontinuities no. 1, 2, 3,
4, 7, 11, 12 is JRC=12, therefore, the failure probability for these

discontinuities is 81.75%.

Comparing the sample number 1 and 2 indicates that if for constant C=50
kPa, basic friction angle=33° the JCS reduced from 70 MPa to 50 MPa,

failure probability increases about 5.5 %.
3. C=100 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 100 kPa was added to run the model for different
JRC values. For C=100 kPa, the JRCs of 2, 3, 5, 9, 9.8 and 10 were given
to the model. For JRCs, equal to 9.8 and 10 the shear displacements are
very low in comparison to the allowable peak shear displacement.
However, when the JRC reduces to lower than 9.8, the discontinuities no.
1, 2, 3, 4,5, 7,8, 10, 11, 12, 13 displaced considerably. However,
discontinuity no. 6 and 14 displaced less than estimated peak shear
displacement. Therefore, if it is assumed that the shear displacement
greater than peak is called as failure, JRC= 9.8 can be considered as the

limit state criterion for our discontinuity for this sample.
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Since the limit state condition for this sample for the discontinuities no. 1,
2,3,4,5,7,8, 10, 11, 12, 13 is JRC=9.8, the failure probability for these

discontinuities is 68.07%.

Comparing the sample number 1 and 3 indicates that if for constant
JCS=70 MPa, basic friction angle=33° the cohesion increased from 50
kPa to 100 kPa, the failure probability decreases about 8.2 %.

4. =150 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 150 kPa was added to run the model for different
JRC values. For C=150 kPa, the JRCs of 7, 7.4, 8 and 9 were given to the
model. For JRC=9 all the discontinuities’ displacements are negligible.
However, for JRCs of 7.4 and 8 only discontinuity no. 1 displaced more
than estimated peak shear displacement However, when the JRC
reduces to lower than 7.4, all the discontinuities except discontinuity no. 6,
9 and 14 displaced considerably. Therefore, if it is assumed that the shear
displacement greater than peak is called as failure, for discontinuity no. 1
JRC= 9 and for others except discontinuity no.6, 9 and 14 the JRC=7.4
can be considered as the limit state criterion for this sample. Table 5.9
indicates the shear displacement, peak shear displacement and the

values calculated for Ks for each discontinuity.

Since the limit state condition for this sample for the discontinuities no. 1,
2,3,4,5,7,8, 10, 11, 12, 13 is JRC=7.4, the failure probability for these

discontinuities is 41.47%.
Comparing the samples number 3 and 4 indicates that if for constant

JCS=70 MPa, basic friction angle=33° the cohesion increased from 100
kPa to 150 kPa, the failure probability decreases about 26.6. %.
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Table 5.8 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.15 MPa, JCS=70 MPa and
different JRC values and joint shear stiffness for each discontinuity

*Not in  In
quljr'TI]lb” Equilibrium Discontinuity ID
state state
c Q (]
o 04 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Q
) 20 ®
<) ]
c | =
3
o(m) 1.31 1.306 0.49 0.17 0.153 0.0001 0.16 0.15 3.2e-5 | 0.131 0.469 0.155 0.148 | 0.0001
™ Opeak (M) 0.005 | 0.032 | 0.034 0.031 0.031 0.03 0.065 0.062 0.055 | 0.023 | 0.024 0.029 0.02 0.02 i
Ks (MPa/m) 31.45 6.33 7.73 10.4 12.9 15.52 3.84 4.78 4.6 9.37 10.51 11.39 18.72 24.64
d(m) 0.011 | 0.001 | 8.7e-5 | 0.0003 | 0.002 7e-5 0.001 0.002 1.5e-5 | 0.002 | 7.6e-5 | 0.001 | 0.002 | 6.8e-5
< *%k
~ Opeak (M) 0.005 | 0.033 | 0.035 0.032 0.032 0.031 | 0.066 0.063 0.056 | 0.026 | 0.024 0.029 | 0.020 | 0.020
© Ks (MPa/m) 31.07 6.3 7.74 10.43 12.95 15.6 3.83 4.79 4.6 9.36 10.51 11.42 18.8 24.77
o
E e 5(m) 0.012 | 0.001 | 5.9e-5 | 1.7e-5 | 0.002 | 6.3e-5 | 2.9e-5 | 0.001 1.6e-5 | 0.001 | 5.8e-5 | 1.7E-5 | 0.001 | 6.1e-5
—l
= © Opeak (M) 0.005 | 0.033 | 0.036 0.033 0.032 0.032 | 0.068 0.065 0.058 | 0.027 | 0.025 0.03 0.021 | 0.021 | **
Ks (MPa/m) 30.58 6.27 707 10.5 13.07 15.76 3.84 4.82 4.62 9.37 10.53 11.51 18.96 25.03
o(m) 48e-6 | 8e-5 | 1.6e-5 | 2.2e-5 | 2.8e-5 | 3.3e-5 | 1.9e-5 | 2.2e-5 | 6.9e-6 | 2e-5 | 1l.1le-5 2e-5 3e-5 4.e-5
o Opeak (M) 0.006 | 0.035 | 0.038 0.034 0.034 0.034 | 0.072 0.069 0.061 | 0.028 | 0.026 0.032 | 0.022 | 0.022 |
Ks (MPa/m) 29.9 6.31 7.97 10.86 13.56 16.38 3.93 4.97 4.73 9.57 10.77 11.9 19.66 26.01




5. C=200 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 200 kPa was added to run the model for different
JRC values. For C=200 kPa, the JRCs of 2, 5 and 7 were given to the
model. For JRC=7 all the discontinuities’ displacements are negligible.
However, for JRCs of 5 only discontinuity no. ldisplaced more than
estimated peak shear displacement However, when the JRC reduces to
lower than 5, all the discontinuities except discontinuity no.6, 9 and 14
displaced considerably. Therefore, if it is assumed that the shear
displacement greater than peak is called as failure, for discontinuity no. 1
JRC= 7 and for others except discontinuity no. 6, 9 and 14 the JRC=5 can
be considered as the limit state criterion for this sample. Table 5.9
indicates the shear displacement, peak shear displacement and the
values calculated for Ks for each discontinuity.

Since the limit state condition for this sample for the discontinuities no. 1,
2,3,4,5,7, 8,10, 11, 12, 13 is JRC=5, the failure probability for these
discontinuities is 18.88% Lognormal distribution of JRC value.

Comparing the sample number 1 and 5 indicates that if for constant

JCS=70 MPa, basic friction angle=33° the cohesion increased from 50

kPa to 200 kPa, the failure probability decreases about 57%.
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Table 5.9 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.2 MPa, JCS =70 and different
JRC values and joint shear stiffness for each discontinuity

*Not in - S
Equilibrium In Equiliorium Discontinuity 1D

state
c
o
nl]l N O )
[} O x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 L
< Law} L] (0]
@]
O

o(m) 0.596 | 0.596 0.531 0.178 | 0.156 | 0.0002 | 0.166 0.140 4e-5 0.132 0.519 0.164 0.15 0.0001

2 Opeak (M) | 0.004 | 0.021 0.023 0.021 0.02 0.02 0.043 0.041 0.037 | 0.017 0.016 0.019 0.013 0.013 ok

(MF*f;‘/m) 59.98 | 10.85 | 11.88 | 14.95 | 17.62 | 20.42 | 6.02 7.05 716 | 1491 | 1653 | 16.33 | 2596 | 32.23
s 3(m) 0.042 | 0.002 | 4.7e-5 | 0.001 | 0.003 | 0.0001 | 0.002 | 0.003 | 2e-5 | 0.002 | 2.8¢-5 | 0.002 | 0.003 | 8.3e-5
4
% 2| 5 | Sea(m 0005 0020 | 0031 | 0028 | 0027 | 0027 | 0058 | 0056 | 005 | 0.023 | 0021 | 0.0257 | 0.018 | 0018 | =
1y
o Ks

(MPa/m) 45.09 8.44 9.58 12.33 | 14.78 17.34 4.82 5.77 5.75 11.89 13.23 13.48 21.67 27.42

o(m) 3e-6 | 0.0004 | 6.6e-5 5e-5 | 5.3e-5 | 6.2e-5 4e-5 4e-5 le-5 2e-5 2.4e-5 4.5e-5 6e-5 6.2e-5

7 Bpea (M) | 0.005 | 0.032 0.034 0.031 0.03 0.0304 | 0.065 0.062 0.055 | 0.026 0.024 0.0287 0.02 0.0198 o

Ks
(MPa/m)

41.06 7.9 9.2 12.01 | 14.53 17.17 4.61 5.59 5.51 11.32 12.64 13.13 21.25 27.17




6. C=300 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 300 kPa was added to run the model for different
JRC values. For C=300 kPa, for JRC=2 all the discontinuities’
displacements are negligible and since the range of JRC is greater than 2,
therefore, for C=300 the model can be called safe and failure probability is
zero. Table 5.10 indicates the shear displacement, peak shear

displacement and the values calculated for Ks for each discontinuity.

7. C=500 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 500 kPa was added to run the model for different
JRC values. For C=500 kPa, for JRC=2 and 5 all the discontinuities’
displacements are negligible and since the range of JRC is greater than 2,
therefore, for C=500 the model can be called safe and failure probability is
zero. Table 5.11 indicates the shear displacement, peak shear

displacement and the values calculated for Ks for each discontinuity.
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Table 5.10 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.3 MPa, JCS=70

MPa, JRC=2 values and joint shear stiffness for each discontinuity

*Not in
Equilibrium | ** In Equilibrium state Discontinuity 1D
state
c
2 %) ®) 2
| Ol 1 2 3 4 5 6 7 8 9 10 1 | 12 13 14 |
< L L) n
@]
O
o(m) 2e-6 | 0.0002 | 1.7e-5 | 1le-5 | 0.0004 | 8e-5 | 9e-6 | 0.0004 | 2e-5 | 0.0004 | 2e-5 | le-5 | 0.0004 | 7e-5
o
g Q 2 | Spea(m) | 0.003 | 0.021 | 0.02 | 0.02 | 002 | 002 | 004 | 0.04 |0.037 | 0.017 | 0.02 | 0.019 | 0.013 | 0.013 | *
(42]
e Ks 89.01 | 1559 | 16.32 | 19.82 | 2259 | 254 | 835 | 9.49 | 9.89 | 2081 | 229 | 21.6 | 33.61 | 39.88
(MPa/m)
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Table 5.11 Shear deformation, peak shear deformation of Barton model for friction= 33, cohesion=0.5 MPa, JCS=70 MPa,
JRC=2 and 5 values and joint shear stiffness for each discontinuity

*Not in **n
Equilibrium Equilibrium Discontinuity ID
state state
c
el w|lo @K
2| O |x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
- Law] Law] ()
(e}
O

o(m) l.1le-6 | 2.5e-5 | 2.8e-6 7e-6 13e-5 | le5 5e-6 8e-6 3e-6 6e-6 2e-6 6e-6 le-5 1.9e-5

2 | Opeak (M) 0.003 0.02 0.022 0.02 0.02 0.02 0.043 | 0.041 | 0.037 | 0.017 | 0.016 | 0.019 | 0.013 0.013 ok

Ks
(MPa/m)

o(m) l.4e-6 | 3.3e-5 | 3.9e-6 | 8.7e-6 | 1.6e-5 | 9e-6 6e-6 le-5 3e-6 7e-6 3e-6 8e-6 2e-5 1.2e-5

1471 25.1 25.2 29.55 3253 | 3535 | 13.01 | 1435 | 1535 | 32.62 | 3581 | 32.15 | 48.92 55.19

0.5 kPa
70

5 | Opeak(m) 0.005 0.03 0.03 0.028 0.027 | 0.027 0.06 0.06 0.05 | 0.023 | 0.021 | 0.026 | 0.018 0.018 *k

Ks
(MPa/m)

109.5 18.96 19.42 23.12 25.79 | 28.37 9.99 11.16 | 11.8 | 24.97 | 27.47 | 25.17 | 38.64 44.39




8. C=50 kPa, basic friction angle=30° and JCS=70 MPa

In this case, cohesion of 50 kPa was added to run the model for different
JRC values. For C=50 kPa and friction angle of 30° the JRCs of 11 and
12 were given. For JRCs, equal to 12 the shear displacements are very
low in comparison to the allowable peak shear displacement. However,
when the JRC reduces to 11, the discontinuity no. 1, 2, 3, 4, 5, 7, 8, 10,
11, 12 and 13 displaces considerably. However, discontinuity no. 6, 9 and
14 displaced less than estimated peak shear displacement. Therefore, if it
is assumed that the shear displacement greater than peak is called as
failure, JRC= 12 can be considered as the limit state criterion for our
discontinuity when C=50 kPa and friction angle of 30°. Table 5.12
indicates the shear displacement, peak shear displacement and the
values calculated for Ks for each discontinuity.

Since the limit state condition for this sample for discontinuities no. 1, 2,
3,4,7,11, 12 is JRC=12, the failure probability for these discontinuities is
81.75%.

Comparing the sample number 1 and 8 indicates that if for constant

JCS=70 MPa, cohesion= 50 kPa the basic friction angle reduced from 33°

to 30°, the failure probability increases about 5 %.
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Table 5.12 Shear deformation, allowable peak shear deformation for cohesion=0.05 MPa, JCS=70 and different JRC

values and joint shear stiffness for each discontinuity

*Not in . _

Equilibrium in Equilorium Discontinuity 1D

state
c
HIE 0 o
A E 1 2 3 4 | 5 6 7 8 | 9 | 10 | 11 | 12 | 13 | 14 |B
E=3 SN e ) %)
@] ey
(@) L

6(m) 1.70 1.70 0.69 0.167 | 0.142 | 0.0002 0.16 0.136 4e-5 0.118 | 0.646 | 0.159 | 0.135 | 0.0001
: 6peak (m) 0.006 0.037 0.04 0.036 | 0.035 0.035 0.075 0.072 | 0.064 0.03 0.027 | 0.033 | 0.023 0.023 *

12.65 3.495 5.29 7.84 | 10.37 | 13.04 2.53 3.482 | 3.09 6.03 6.91 8.62 14.8 20.82

o(m) 1l.1e-5 0.0002 6e-5 le-5 | 0.001 5e-5 8e-5 0.002 | 1e-5 | 0.002 | 9e-5 4e-5 | 0.002 | 5.e-5

0.05 MPa
30
70

12

Opeak (M) 0.006 0.0381 0.04 0.037 | 0.036 | 0.036 0.08 0.074 | 0.066 | 0.031 | 0.028 | 0.034 | 0.024 | 0.024 | ,

Ks

13.54 3.773 5.67 8.363 11.0 13.77 2.72 3.72 3.31 6.49 7.42 9.2 15.73 21.98
(MPa/m)




9. C=100 kPa, basic friction angle=30° and JCS=70 MPa

In this case, cohesion of 100 kPa was added to run the model for different
JRC values. For C=100 kPa and friction angle of 30° the JRCs of 10, 10.5
and 11 were given. For JRCs, equal to 10.5 and 11 the shear
displacements are very low in comparison to the allowable peak shear
displacement. However, when the JRC reduces to 10, the discontinuity
no. 1, 2, 3, 4, 7, 8, 10, 11 and 12 displaces considerably. However,
discontinuity no. 6, 9, 13 and 14 displaced less than estimated peak shear
displacement. Therefore, if it is assumed that the shear displacement
greater than peak is called as failure, JRC= 10.5 can be considered as
the limit state condition when C=100 kPa and friction angle of 30°. Table
5.13 indicates the shear displacement, peak shear displacement and the

values calculated for Ks for each discontinuity.

Since the limit state condition for this sample for discontinuities no. 1, 2, 3,
4,7,11, 12 is JRC=10.5, the failure probability for these discontinuities is
73.08%.

Comparing the sample number 3 and 9 indicates that if for constant
JCS=70 MPa, cohesion= 100 kPa the basic friction angle reduced from
33° to 30°, the failure probability increased about 4-5%.

Comparing the sample number 8 and 9 indicates that if for constant
JCS=70 MPa, basic friction angle=30° the cohesion increased from 50

kPa to 100 kPa, the failure probability decreases about 8%.
10. C=150 kPa, basic friction angle=30° and JCS=70 MPa

In this case, cohesion of 150 kPa was added to run the model for different
JRC values. For C=150 kPa and friction angle of 30° the JRC of 9.5 was
given. For JRC=9.5 the shear displacements for all discontinuities except
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no. 1 are very low in comparison to the allowable peak shear
displacement. Therefore, if it is assumed that the shear displacement
greater than peak is called as failure, JRC= 10 can be considered as the
limit state condition when C=150 kPa and friction angle is 30°. Table 5.14
indicates the shear displacement, peak shear displacement and the

values calculated for Ks for each discontinuity.

Since the limit state condition for this sample for discontinuities no. 1, 2, 3,
4, 7, 11, 12 is JRC=10, therefore, the failure probability for these

discontinuities is 69.57%.

Comparing the sample number 4 and 10 indicates that if for constant
JCS=70 MPa, cohesion= 150 kPa the basic friction angle reduced from
33 to 30°, the failure probability increases about 28%.

Comparing the sample number 9 and 10 indicates that if for constant

JCS=70 MPa, basic friction angle=30° the cohesion increased from 100
kPa to 150 kPa, the failure probability decreases about 3%.
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Table 5.13 Shear deformation, allowable peak shear deformation for cohesion=0.1 MPa, friction angle=30, JRC=70 MPa, different JRC

values and joint shear stiffness for each discontinuity

66

“Notin ** |n Equilibrium
Equilibrium 4 Discontinuity 1D
state
state
5 c
alwnlglo 2
olOo|lBlx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]
.g =1 B~ Ex) n
O LL
d(m) 0.59 0.146 0.189 | o0.165 0.019 | 0.0001 | 0.156 | 0.017 | 3e-5 | 0.014 | 0.9 0.159 0.016 8e-5
S| Bpear(m) 0.006 0.036 4e-2 0.035 0.034 0.034 | 0073 | 007 | 0062 | 0.029 | 0.026 | 0.032 0.022 0.022 |
Ks
(MPa/m) 20.66 4.69 6.29 8.85 11.3 13.89 3.07 4.01 3.71 7.42 8.40 9.71 16.29 22.10
» &(m) 0.0001 | 0.0003 7e-5 | 0.0001 | 0002 | 6.3e-5 | 0.0003 [ 0.002 | 2e-5 | 0.002 | 9.8e-5 | 0.0003 0.002 | 6e-5
o
SlelglE] deam) 0.006 0.036 0.039 | 0.036 0.035 0.035 | 0.074 | 0.071 | 0.063 | 0.029 | 0.027 | 0.033 0.023 0.023 |
— -
S Ks
(MPa/m) 20.74 4.76 6.41 9.03 11.53 14.16 3.13 4.08 3.78 7.55 8.56 9.90 16.62 22.53
&(m) 6e-6 8.2e5 8e-5 8e-5 | 0.0002 | 5.1e-5 | 9.5e-5 | 0.0002 | 1e-5 | 0.0002 | 7.9e-5 | 9.8e-5 0.0002 5e-5
A Bpeac(m) 0.006 0.037 0.04 0.036 0.035 0.035 | 0.075 | 0.072 | 0.064 | 003 | 0.027 | 0.033 0.023 0.023 |
Ks
(MPa/m) 20.92 4.85 6.55 9.23 11.78 14.46 3.19 4.18 3.86 7.71 8.74 10.12 16.98 23
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Table 5.14 Shear deformation, allowable peak shear deformation for cohesion=0.15 MPa, JCS=70 MPa, JRC=9.5 and joint

shear stiffness for each discontinuity

Discontinuity 1D

*Not in - S
Equilibriu In Es‘t‘:t'gb”“m
m state
c
o c
I ) 1 o0 9
210 |5)|e 1 2 3 4 5 6 7 8 9 | 10 | 11 12 13 | 14 | &
< - ol ) n
8 LC

7e-5 | 0.0003 | 0.001 25e' 0.001 | 6e-5 | 0.0003 | 0.001 Gée'

o(m) 0.013 | 0.0005 | 5e-5 | 0.0002 | 0.001

0.06 | 0.028 | 0.03 0.031 | 0.022 | 0.022 .

Opeak (M) 0.006 | 0.035 | 0.037 | 0.034 | 0.033 | 0.033 | 0.071 | 0.068

9.5

0.15 MPa
70
30

14.9 3.69 462 | 444 | 9.02 | 10.13 11 18.1 23.7

(Mgaslm) 29.55 | 6.051 7.46 10.04 | 12.44




11. C=200 kPa, basic friction angle=30° and JCS=70 MPa

In this case, cohesion of 200 kPa was added to run the model for different
JRC values. For C=200 kPa and friction angle of 30° the JRCs of 5, 7 and
8 were given. For JRCs, equal to 8 the shear displacements are very low
in comparison to the allowable peak shear displacement. However, when
the JRC reduces to 7 only discontinuity 1 and when JRC reduces to 8, the
discontinuity no. 1, 3, 4, 7, 11 and 12 displaces considerably. However,
discontinuity no. 6, 9, 13 and 14 displaced less than estimated peak shear
displacement. Therefore, if it is assumed that the shear displacement
greater than peak is called as failure, JRC= 8 for discontinuity 1 and
JRC=7 for others can be considered as the limit state condition when
C=200 kPa and friction angle of 30°. Table 5.15 indicates the shear
displacement, peak shear displacement and the values calculated for Ks
for each discontinuity.

Since the limit state condition for this sample for discontinuities no. 1, 3, 4,
7, 11 and 12 is JRC=7, therefore, the failure probability for these
discontinuities is 30.08%.

Comparing the sample number 5 and 11 indicates that if for constant
JCS=70 MPa, cohesion= 200 kPa the basic friction angle reduced from
33° to 30°, the failure probability increases about 27%.

Comparing the sample number 10 and 11 indicates that if for constant

JCS=70 MPa, basic friction angle=30° the cohesion increased from 150
kPa to 200 kPa, the failure probability decreases about 39.5%.
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Table 5.15 Shear deformation, allowable peak shear deformation for cohesion=0.2 MPa, friction angle=30, JCS=70 MPa and different

JRC and joint shear stiffness for each discontinuity

*Not in ** |n
Equilibrium Equilibrium Discontinuity 1D
state state
5 c
o lwnlglo 2
o |O)lG|x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]
-g 2l n
O LL
o(m) 0.29 0.016 0.064 0.18 0.012 0.0001 0.16 0.01 2.8.e-5 0.007 0.073 0.16 0.01 8.7e-5
5| Opeak (m) 0.005 0.029 0.030 0.028 0.027 0.027 0.058 0.056 0.05 0.023 0.021 0.026 0.018 0.018 *
*
= Ks 44.86 8.3 9.28 11.82 14.04 16.35 4.68 5.55 5.58 11.57 12.86 12.91 20.64 25.82
o (MPa/m)
N © o(m) 0.039 0.001 0.0001 0.0002 0.002 8.1e-5 0.0003 0.002 1.7e-5 0.001 9.1e-5 0.0004 0.002 7e-5
o
= E 8 7 Opeak (M) 0.005 0.032 0.034 0.031 0.030 0.03 0.065 0.062 0.055 0.026 0.024 0.029 0.02 0.02 *
o *
e Ks 40.76 7.73 8.86 11.44 13.73 16.11 4.45 5.35 531 10.96 12.21 12.51 20.13 25.46
(MPa/m)
o(m) 3e-6 0.0004 | 6.1e-5 6.5e-5 9.1e-5 6.3e-5 7e-5 0.0001 1.3e-5 9e-5 3.9e-5 6.3e-5 9.6e-5 | 6.3e-5
8| Opeak(m) 0.005 0.033 0.036 0.032 0.032 0.032 0.068 0.065 0.058 0.027 0.025 0.03 0.021 0.021
Ks 39.4 7.58 8.8 11.43 13.78 16.22 4.41 5.33 5.27 10.84 12.09 12.5 20.19 25.65
(MPa/m)




12. C=300 kPa, basic friction angle=30° and JCS=70 MPa

In this case, cohesion of 300 kPa was added to run the model for different
JRC values. For C=300 kPa and friction angle of 30° the JRCs of 3 and 5
were given. For JRC=5 all the discontinuities’ displacements are
negligible. However, for JRC=3 only discontinuity no. 1 displaced more
than estimated peak shear displacement Table 5.16 indicates the shear
displacement, peak shear displacement and the values calculated for Ks

for each discontinuity.

Since the limit state condition for this sample for discontinuity no. 1 is
JRC=3, therefore, the failure probability for these discontinuities is
0.297%.

Comparing the sample number 6 and 12 indicates that if for constant
JCS=70 MPa, cohesion= 300 kPa the basic friction angle reduced from
33° to 30°, the failure probability increases about 0.3%. Comparing the
sample number 11 and 12 indicates that if for constant JCS=70 MPa,
basic friction angle=30° the cohesion increased from 200 kPa to 300 kPa,

the failure probability decreases about 30%.
13. C=500 kPa, basic friction angle=33° and JCS=70 MPa

In this case, cohesion of 500 kPa was added to run the model for different
JRC values. For C=500 kPa and friction angle of 30° for JRC=2 and 5 all
the discontinuities’ displacements are negligible and since the range of
JRC is greater than 2, therefore, for C=500 kPa the model can be called
safe and failure probability is zero.Table 5.17 indicates the shear
displacement, peak shear displacement and the values calculated for Ks

for each discontinuity.

103



70T

Table 5.16 Shear deformation, allowable peak shear deformation for cohesion=0.3 MPa, friction angle=30, JCS=70 MPa and

different JRC and joint shear stiffness for each discontinuity

*Notin ** In Equilibrium
Equilibrium d Discontinuity ID
state
state
S c
9 ) o (]
(%] = g —
210l 5|5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 S
il n
o
O L
o(m) 0.025 | 0.0006 | 2.9e-5 | 3.6e-5 | 0.0006 | 8.3e-5 4e-5 | 0.0006 | 12e-5 | 0.0005 2.e-5 3e-5 | 0.0006 | 7.4e-5
| Opeak(m) | 0.004 | 0.024 0.026 0.023 0.023 0.023 0.049 0.047 0.042 0.019 0.018 0.022 0.015 0.015 | *
*
< Ks 77.93 13.65 14.27 17.29 19.65 22.02 7.3 8.28 8.65 18.21 20.08 18.84 29.27 34.57
CEL ol @ (MPa/m)
™
™ ~ o(m) 2e-6 | 0.0002 4e-6 4.4e-6 | 6.1e-5 | 7.4e-5 9e-6 5.3e-5 2e-5 2.9e-5 le-5 3e-6 7e-5 7.2e-5
o
| Opeak (M) | 0.005 0.029 0.03 0.028 0.027 0.027 0.058 0.056 0.05 0.023 0.021 0.026 | 0.018 0.018 | *
*
Ks 66.32 11.8 12.56 15.42 17.71 | 20.02 | 6.41 7.35 7.6 1593 | 1761 | 1681 | 26.3 31.47
(MPa/m)
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Table 5.17 Shear deformation, allowable peak shear deformation for cohesion=0.5 MPa, JCS=70 MPa, JRC=2 and joint shear

stiffness for each discontinuity

*Not in **1n
Equilibrium Equilibrium Discontinuity ID
state state
5 c
ol wlelo 2
3|l olslz 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | &
g el Bl Rav) 4]
O LL
o(m) le-6 3e-5 3e-6 | 7e-6 le-5 | 1le5| 4e-6 | 9e-6 3e-6 6e-6 2e-6 6e-6 le-5 2e-5
&
EE S~ Bpeak (M) 0.003 | 0.021 | 0.023 | 0.02 0.02 0.02 | 0.043 | 0.04 | 0.037 | 0.017 | 0.016 | 0.019 | 0.013 | 0.013 | **
o
Ks 146.9 24.94 24.89 29. 31.73 34.3 12.87 14.1 15.18 32.3 35.43 31.55 47.82 53.44
(MPa/m)




5.5 Discussions of the Results

The main variable considered in this study was JRC, however, the effect of
other influential parameters such as friction angle; JCS and cohesion of the
filled material have been studied. The samples were planned such a way
that can be also considered as the effect of weathering process on
discontinuity planes. As the weathering reduces the values of friction angle,
JCS and the strength of filled material the sample also considers the status

of the structure in future.

The analysis indicated that the increase of cohesion decreases the
displacements and failure probability of the structure. Also, reduction of
basic friction angle and joint wall compressive strength increase the
probability of failure and increases the displacement. Figure 5.36 indicates
the reduction of failure probability due to increase in cohesion value for both

basic friction angle of 33° and 30°.
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Figure 5.35 Relation of cohesion and failure probability of discontinuities
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The model was run about thirty five times for different cohesion, basic friction
angle, JCS and JRC values. The shear displacements of each discontinuity
for all of the runs were fitted appropriate distribution functions and the
probability of 8>8,cac Was calculated that is the probability of failure of
corresponding discontinuity. Figure 5.37 indicates that Beta distribution is

fitted for shear displacement of discontinuity no. 1.

Probability Density Function

0.56

0.48

0.4

0.32

(%)

0.24
0.16

0.08

D_PDUH | 1 m

1} 8 16 24 32 40 48 56 64
% (cm)

O Histogram — Beta

Figure 5.36 Beta distribution of shear displacement of discontinuity no. 1

Figures C.1 to C.13 indicate the statistical distribution of shear displacement
for discontinuities no. 2 to 14 respectively in Appendix C. Since for different
cohesion, basic friction angle, JCS and JRC values the dpecak Changes, the
average, minimum and maximum value of d,eax Were used to calculate the
probability of failure and its corresponding reliability index. Table 5.18
indicates the average, minimum and maximum value of dpea, the probability

of failure and its corresponding reliability index for each discontinuity.

The B<1 is considered as failure state therefore, the discontinuities no. 1, 2,

10, 11 and 13 have failed and other discontinuities are in safe condition.
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Table 5.18 Failure probability and corresponding reliability index (B) for average, minimum and

discontinuity

maximum value of Jpeax for

each

The ID of

discontinutties 1 2 3 4 5 6 | 7 8 9 | 10 11 12 13 | 14
Sreak_Avreage (cm) | 052 | 3.22 | 342 | 313 | 3.07 |3.07| 656 | 626 |557| 258 | 242 | 289 | 200 |2.00
Speak_Min (cm) 0.3 2 2 2 2 2 | 4 4 | 37| 17 | 16 | 19 | 13 | 13
Bpea_Max (cm) 0.7 4 4 4 39 | 39| 83 8 |71/ 314 3 37 | 25 |25
Pf(5>5P9a§%A‘”eage) 47.683 | 21.26 | 3.798 | 4.445 | 4586 | O |4.813| 504 | 0 |11.765|12.463 | 10.602 | 18.576 | O
P(8>8pea_Max) % | 50.458 | 23.84 | 9175 | 9175 | 9175 | 0 | 2.86 | 2.86 | 0 |16.925 |17.781 | 15.421 | 22593 | 0
P{(8>8pek_min) % | 46.15 | 20.04 | 2.86 | 2.86 | 2.995 | 0 |3.817| 3.958 | O | 9.814 |10.242 | 8.402 | 16.704 | 0
B_Ave 0.058 | 0.797 | 1.7746 | 1.7012 | 1.6864 | INF | 1.663 | 1.641 | INF | 1.1868 | 1.1521 | 1.248 | 0.8936 | INF
B_min - | 0.712/{ 1.3301 | 1.3301 | 1.3301 | INF | 1.902 | 1.9018 | INF | 0.9571 | 0.9237 | 1.0185 | 0.7523 | INF
B_max 0.0966 | 0.84 | 1.9018 | 1.9018 | 1.8815 | INF | 1.772 | 1.7556 | INF | 1.2922 | 1.2679 | 1.3785 | 0.9659 | INF




CHAPTER VI

CONCLUSIONS AND RECOMMEDATIONS

In this research, three dimensional distinct element method using 3DEC
software was combined with probability for analyzing of rock slope stability
and a probabilistic-numerical approach has been developed. To follow the
methodology practically, a slope containing a historical grave in Amasya
Turkey was selected to be analyzed. The shear behavior of rock

discontinuities were modeled plastically by applying Barton models.

The model of rock slope was given different samples of realization of
random variables such as JRC, cohesion, JCS and friction angle. The
analysis indicated that if the calcite as the infilling of the rock joints is not
included in the analysis, even for a higher value for JRC the slope fails
tremendously. Although there are some failed discontinuities in the field,
however, tremendous failure of model without calcite effect is not rational.
To take the infilling material’s effect into account it was assumed that the
joint planes are controlled by both frictional parameters like JRC and
cohesion of the calcite. For this purpose, for different values of cohesion the
model was run for different JRC values. The variation of JRC and cohesion
were controlling the stability of the model. Because, both the shear strength

and joint shear stiffness are dependent on JRC and cohesion.

In field, it was observed that the weathering of the infilling material might be
one of the parameters that were affected the instabilities, to model this, the

range of 50 kPa to 500 kPa was considered to be used in the model. Model
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was totally stable for cohesion bigger that 300 kPa even for lower JRC like
JRC=2. However, by decreasing the cohesion the discontinuity displaced

considerably.

To calculate the failure probability of the discontinuities, for definite values of
JCS, friction angle and cohesion, the realization of JRC (random variable)
was varied and the stability condition of the structure was investigated. And

for any sample, the failure probability of each discontinuity was obtained.

The study indicated that for constant values of cohesion, basic friction angle
and joint wall’'s compressive strength the reduction of joint roughness (JRC)
increases the failure probability, because, it reduces the strength and the
shear stiffness of the joint plane and consequently the increment of shear
displacement. Furthermore, the reduction of compressive strength of joint
wall (JCS) from 70 MPa to 50 MPa increases the failure probability about
8%. Also, the reduction of basic friction angle from 33° to 30° for constant
cohesion and JCS values increases the failure probability from 0.3% to 28%
depending on the different pairs of cohesion and JCS.

Moreover, results indicated that for a case in which the JCS=70 MPa and the
basic friction angle is 330, reduction of cohesion of infilling material due to
weathering from 300 kPa to 200, 150, 100 and 50 kPa has increased the
failure probability about 18.88%, 41.47%, 68.07% and 76.26% respectively,
which indicates that during time the weathering that reduces the strength of
the infilling material increases the possibility of failure of the slope. Also, for
a case in which the JCS=70 MPa and the basic friction angle is 30, reduction
of cohesion of infilling material due to weathering from 500 kPa to 300, 200,
150, 100 and 50 kPa has increased the failure probability about 0.3%, 30%,
69.57%, 73% and 81.75% respectively. These results confirm the
importance of the weathering effects on stability of the slope.
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In this research, the thirty five realizations of random variables were run; the
shear displacements of each discontinuity for all thirty five realizations were
fitted appropriate distribution functions. For shear displacements lower than
estimated peak shear displacement by Barton formula the failure probability
and the corresponding reliability index () were obtained. By assuming <1
as failure, the discontinuities number 1, 2, 10 and 11 are in failure state.
Also, the results indicated that the discontinuities number 6, 9 and 14 are

totally safe.

For future works the following recommendations are made:

The study area has a complex topography; therefore it is difficult to construct
the model of the rock slope. According to the Barton models the strength
parameters of the rock discontinuity are dependent on normal stress acting
on the discontinuities. Therefore, the shape of the model affects the normal
stress and shear stress therefore the behavior of the rock discontinuities.
Thus, application of the laser scanning and the photogrammetric methods to

achieve more precise results is recommended.

In this study, some of Barton models were used to model the behavior of the
rock discontinuities, and the Barton models were equalized by Coulomb
model that assumes perfect Elastic-Plastic behavior. However, it is clear that
the Joint Shear Stiffness is nonlinear and the strength of the rock
discontinuity reduces to lower than its peak value after shearing. Also,
existence of asperities on the discontinuity plane increases the role of
dilatancy in stability of the discontinuities. Therefore, it is recommended to

use other models of Barton in future works.
Moreover, in this thesis the role of bedding planes were omitted, due to the
heavy computational load in DEM, however, the existence of bedding planes

reduce the size of blocks that influences the displacement of the blocks.
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Thus, it is also recommended to apply more joint sets to derive more realistic

results.
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APPENDIX A:

Table A 1 Goodness of Fit for JRC

FIELD DATA AND LABORATORIAL TESTS RESULTS

Kolmggorov Anderson Chi-Squared

# Distribution Smirnov Darling

Statistic | Rank | Statistic | Rank | Statistic | Rank

1 Beta 0.16392 38 1.2237 29 8.0468 15
2 Burr 0.13243 21 0.77664 8 9.131 33
3 Burr (4P) 0.1263 6 0.97813 23 8.6035 18
4 Cauchy 0.16028 36 2.6619 43 7.4223 14
5 Chi-Squared 0.15296 33 1.235 30 2.8066 3
6 Chi-Squared (2P) 0.15791 34 2.1859 40 3.1091 5
7 Dagum 0.12937 15 0.72097 2 8.977 21
8 Dagum (4P) 0.13139 18 0.79967 10 9.1487 35
9 Erlang 0.25747 52 5.012 47 6.5777 13
10 Erlang (3P) 0.17329 41 1.337 34 3.4504 6
11 Error 0.19426 45 2.0759 38 5.9883 9
12 Error Function 0.75982 59 79.811 59 235.33 54
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13 Exponential 0.31373 55 5.7404 51 17.634 49
14 Exponential (2P) 0.23558 50 3.4396 45 13.259 a7
15 Fatigue Life 0.11729 3 0.75408 5 8.9858 23
16 Fatigue Life (3P) 0.12787 | 10 | 0.80935 | 15 9.1142 31
17 Frechet 0.15904 35 1.0889 28 1.1611 1
18 Frechet (3P) 0.13343 23 0.80527 13 9.1387 34
19 Gamma 0.13238 20 0.97779 22 9.1114 29
20 Gamma (3P) 0.12885 14 0.87724 21 9.6288 41
21 Gen. Extreme Value 0.13358 24 0.84422 17 9.3357 38
22 Gen. Gamma 0.14214 27 1.0451 26 8.9287 20
23 Gen. Gamma (4P) 0.12884 13 0.87348 20 9.6262 40
24 Gen. Pareto 0.12705 7 8.2742 54 N/A

25 Gumbel Max 0.14445 30 1.0362 25 2.9899 4
26 Gumbel Min 0.2493 51 5.7022 50 12.058 46
27 Hypersecant 0.19713 46 2.5946 42 6.1971 12
28 Inv. Gaussian 0.13812 25 0.87273 19 9.0077 24
29 Inv. Gaussian (3P) 0.12827 11 0.80594 14 9.1117 30
30 Johnson SB 0.16085 37 8.3345 55 N/A

31 Kumaraswamy 0.17223 40 5.2802 49 N/A

32 Laplace 0.21735 49 3.0293 44 11.674 45
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Table A.1 Continued

33 Levy 0.44556 58 11.545 57 49.255 53
34 Levy (2P) 0.37176 56 7.659 53 24.874 51
35 Log-Gamma 0.11446 2 0.75633 6 8.7722 19
36 Log-Logistic 0.11233 1 0.75169 4 9.2407 37
37 Log-Logistic (3P) 0.12984 | 16 | 0.73749 3 8.9831 22
38 Log-Pearson 3 0.12838 12 0.80377 12 9.1195 32
39 Logistic 0.18212 43 2.3688 41 6.1619 11
40 Lognormal 0.12482 5 0.76242 7 9.0087 25
41 Lognormal (3P) 0.12999 17 0.80311 11 9.1002 27
42 Nakagami 0.14525 31 1.2567 31 9.8069 42
43 Normal 0.18546 44 2.129 39 6.1104 10
44 Pareto 0.37477 57 10.356 56 21.051 50
45 Pareto 2 0.29285 54 5.1989 48 30.011 52
46 Pearson 5 0.1216 4 0.72086 1 1.4887 2
47 Pearson 5 (3P) 0.13178 19 0.79548 9 9.1008 28
48 Pearson 6 0.13333 22 0.84084 16 9.1644 36
49 Pearson 6 (4P) 0.12705 8 0.8675 18 9.6236 39
50 Pert 0.14225 28 1.0808 27 8.3214 16
51 Power Function 0.20182 47 6.1407 52 N/A

52 Rayleigh 0.14892 32 1.2586 32 9.8586 44
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53 Rayleigh (2P) 0.16862 39 1.5638 36 5.8743 8
54 Reciprocal 0.28924 53 4.7135 46 14.717 48
55 Rice 0.14328 29 1.2611 33 9.8121 43
56 Student's t 0.93053 60 153.64 60 1778.3 55
57 Triangular 0.1801 42 1.5744 37 5.6397 7
58 Uniform 0.20597 48 13.243 58 N/A
59 Weibull 0.13934 26 1.5409 35 9.0295 26
60 Weibull (3P) 0.12775 9 0.98776 24 8.5932 17
61 Johnson SU No fit
Table A 2 Goodness of Fit for Schmidt Hammer value
Kolmggorov Ande_rson Chi-Squared
Distribution Smirnov Darling
Statistic | Rank | Statistic | Rank | Statistic |Rank
1 Beta 0.10715 9 0.86793 5 10.287 4
2 Burr 0.12986 18 1.438 12 14.414 15
3 Burr (4P) 0.10077 5 0.89059 7 10.18 3
4 Cauchy 0.15071 26 3.6726 37 22.403 28
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5 Chi-Squared 0.19053 44 3.9163 40 24.898 32
6 Chi-Squared (2P) 0.15857 27 2.122 22 14.894 21
7 Dagum 0.08591 2 0.55436 1 5.3414 2
8 Dagum (4P) 0.6739 58 100.07 58 313.43 53
9 Erlang 0.20104 47 3.517 36 22.849 29
10 Erlang (3P) 0.1389 19 1.7239 18 15.043 23
11 Error 0.12885 17 1.3678 11 13.779 14
12 Error Function 0.94086 59 521.59 60 N/A

13 Exponential 0.38022 52 20.011 52 93.524 49
14 Exponential (2P) 0.30743 51 15.285 50 55.683 46
15 Fatigue Life 0.17918 37 3.1686 32 31.134 38
16 Fatigue Life (3P) 0.14439 | 23 1.6948 17 14.891 | 17
17 Frechet 0.22001 50 5.8142 46 27.672 34
18 Frechet (3P) 0.19033 43 8.8348 48 N/A

19 Gamma 0.17397 35 2.8411 28 33.046 41
20 Gamma (3P) 0.14918 25 1.7966 21 14.893 19
21 Gen. Extreme Value 0.08925 3 4.699 43 N/A

22 Gen. Gamma 0.16911 31 2.5228 26 28.793 36
23 Gen. Gamma (4P) 0.11685 13 1.1314 10 10.756 7
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Table A.2 Continued

24 Gen. Pareto 0.11727 14 12.198 49 N/A

25 Gumbel Max 0.20684 48 5.3378 45 37.801 44
26 Gumbel Min 0.10773 10 0.9709 9 5.2253 1
27 Hypersecant 0.17136 32 2.7557 27 23.664 31
28 Inv. Gaussian 0.18956 42 3.9743 41 25.011 33
29 Inv. Gaussian (3P) 0.14257 20 1.6544 16 14.933 22
30 Johnson SB 0.08186 1 4.6906 42 N/A

31 Kumaraswamy 0.1055 8 0.84197 3 10.314 6
32 Laplace 0.19969 46 3.8253 39 27.711 35
33 Levy 0.55744 57 28.689 56 190.4 52
34 Levy (2P) 0.4958 56 21.994 54 109.75 | 50
35 Log-Gamma 0.18261 40 3.4312 34 31.428 39
36 Log-Logistic 0.17803 36 3.1913 33 32.036 40
37 Log-Logistic (3P) 0.12089 15 1.6091 14 16.527 24
38 Log-Pearson 3 0.10171 6 0.86383 4 13.068 11
39 Logistic 0.15889 28 2.2115 24 11.535 10
40 Lognormal 0.17367 34 2.9871 31 30.372 37
41 Lognormal (3P) 0.14622 24 1.7513 20 14.718 16
42 Nakagami 0.15973 29 2.9237 30 16.528 25
43 Normal 0.14327 21 1.6368 15 14.893 20
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Table A.2 Continued

44 Pareto 0.40952 54 24.803 55 35.379 43
45 Pareto 2 0.39654 53 21.439 53 117.62 51
46 Pearson 5 0.17985 38 3.7343 38 34.649 42
47 Pearson 5 (3P) 0.1641 30 21772 23 18.999 26
48 Pearson 6 0.18098 39 2.8939 29 23.023 30
49 Pearson 6 (4P) 0.14431 22 1.7451 19 14.892 18
50 Pert 0.10807 11 0.88244 6 13.104 12
51 Power Function 0.18634 41 3.4831 35 19.703 27
52 Rayleigh 0.20989 49 7.3287 47 56.528 47
53 Rayleigh (2P) 0.19638 | 45 5.0816 44 44758 | 45
54 Reciprocal 0.42406 55 31.557 57 63.937 48
55 Rice 0.1725 33 2.2236 25 13.757 13
56 Student's t 0.99237 60 514.78 59 54758.0 | 54
57 Triangular 0.09243 4 0.69343 2 11.308 9
58 Uniform 0.11028 12 16.407 51 N/A

59 Weibull 0.12659 16 1.4756 13 10.309 5
60 Weibull (3P) 0.10193 7 0.93133 8 11.251 8
61 Johnson SU No fit
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Figure A. 1 Shear stress/displacement curves for joint sample named as

S 3 for different normal stress values
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Figure A. 2 Relation of Shear and Normal stresses acted on joint of S_3

to obtain the basic friction angle of joint surface which is 32.23
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Figure A. 3 Dependency of joint shear stiffness (Ks) to normal stress in
smooth joint plane (S_3)
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Figure A.4 Shear stress/displacement curves for joint sample named as S_4

for different normal stress values
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Figure A.5 Relation of Shear and Normal stresses acted on joint of S_4 to obtain
the basic friction angle of joint surface which is 29.16
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Figure A.6 Dependency of joint shear stiffness (Ks) to normal stress in smooth joint
plane (S_4)
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Figure A.7 Shear stress/displacement curves for joint sample named as S_5 for

different normal stress values
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Figure A.8 Relation of Shear and Normal stresses acted on joint of S_5 to

obtain the basic friction angle of joint surface which is 33.48
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Figure A.9 Dependency of joint shear stiffness (Ks) to normal stress in
smooth joint plane (S_5)
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Figure A.10 Shear stress/displacement curves for joint sample named as S_5 for

different normal stress values
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Figure A.11Relation of Shear and Normal stresses acted on joint of S_5
to obtain the basic friction angle of joint surface which is 29
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Figure A. 12Dependency of joint shear stiffness (Ks) to normal stress in

smooth joint plane (S_5)
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Figure A. 13 Shear stress/displacement curves for joint sample named as

N_2 for different normal stress values
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Figure B.7 Student’s distribution of shear displacement of discontinuity no. 8
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Figure B.9 Student’s distribution of shear displacement of discontinuity no. 10
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Figure B.10 Student’s distribution of shear displacement of discontinuity no. 11
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Figure B.11 Student’s distribution of shear displacement of discontinuity no. 12
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Figure B.12 Lognormal distribution of shear displacement of discontinuity no. 13
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APPENDIX C:

WRITTEN CODES IN 3DEC

C.1 The master code

new
poly brick 0 67 0 110 0 95

pl bl

jsetdip0ddOorg0020 id6

hide dip 0 dd 0 org 0 0 20 below

jset dip 90 dd 180 org 047 20id 2

hide dip 90 dd 180 org 0 47 20 above
seek

hide dip 90 dd 180 org 0 47 20 above
hide dip 0 dd 0 org 0 0 40 below

jset dip 87 dd 180 org 0 61 20 id 1

jset dip 75 dd 288 org 14.8 46.9 40id 8
hide dip 87 dd 180 org 0 61 20 above
hide dip 0 dd 0 org 0 0 40 below

jset dip 75 dd 288 org 53.68 60.85 40id 9
seek

hide dip 87 dd 180 org 0 61 20 below
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hide dip 87 dd 180 org 0 47 20 above
jsetdip0dd Oorg0080.4 id 4

seek

del bl 217

seek

del bl 2137

del bl 4353

hide dip 75 dd 288 org 14.8 46.9 40 above
hide dip 0 dd 0 org 0 0 40 below

jset dip 90 dd 197 org 40 47 40id 11

del bl 5891

jset dip 90 dd 161 org 40 47 40id 12

del bl 4353

seek

hide dip 0 dd 0 org 0 0 40 below

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 below
jsetdip0ddOorg0072.4 id 3

seek

del bl 6693

hide dip 87 dd 180 org 0 61 20 below

hide dip 0 dd 0 org 0 0 40 below

jset dip 55 dd 90 org 65.75 47 40 id 10

del bl 5891

seek

hide dip 0 dd 0 org 0 0 20 below

hide dip 75 dd 288 org 14.8 46.9 40 below
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hide dip 87 dd 180 org 0 61 20 below
jset dip 90 dd 196 org 16.5 52.45 40

jset dip 80 dd 240 org 14.976 54 40 id 18
del bl 5891

del bl 4353

del bl 217

seek

hide dip 87 dd 180 org 0 61 20 below
hide dip 0 dd 0 org 0 0 40 below

hide dip 75 dd 288 org 14.8 46.9 40 above
jset dip 70 dd 196 org 40 47 58.4id 15
del bl 6693

jset dip 70 dd 159 org 40 47 58.4 id 16
del bl 217

seek

hide dip 87 dd 180 org 0 61 20 below
hide dip 0 dd 0 org 0 0 40 below

jset dip 60 dd 288 org 12 62 56 id 19

del bl 2137

seek

hide dip 0 dd 0 org 0 0 20 below

jset dip 80 dd 240 org 14.976 54 40 id 18
del bl 2845

hide dip 87 dd 180 org 0 61 20 above
hide dip 0 dd 0 org 0 0 40 below

jset dip 80 dd 288 org 40.22 65.5 79.2 id 20

seek
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hide dip 0 dd 0 org 0 0 20 below
jset dip 55 dd 200id 17 n 25 org 10.32 62 40 sp 5
seek

del bl 67155

del bl 63281

del bl 5165

del bl 2137

del bl 70311

del bl 217

del bl 68321

del bl 67633

del bl 69669

del bl 3551

del bl 63801

del bl 58903

del bl 2845

del bl 66497

del bl 53811

del bl 59625

del bl 57561

hide dip 87 dd 180 org 0 61 20 below
gen edge 5 range z 20 100

seek

hide dip 87 dd 180 org 0 61 20 above
gen edge 10 range z 20 100

seek
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gen edge 10 range z 0 20

Prop mat=1 den=0.0026 k=16e4 g=10.0e4

change jcons 7

prop jmat=1 jkn=1e5 jks=5e4

change jmat=1

bound xvel=0 range x-0.10.1 y-0.1110.1 z-0.140.1
bound xvel=0 range x 66.6 66.75 y-0.1110.1 z-0.140.1
bound yvel=0 range x-0.167 y109.9110 z-0.195
bound yvel=0 range x-0.167 y-0.10.1 z-0.120
bound zvel=0 range x-0.167 y-0.1110.1 z-0.10.1
gravity 0 0 -10

hist unbal

damp auto

his @sheal @nstavl @njdispl @sheardispl

his @shea2 @nstav2 @njdisp2 @sheardisp2

his @shea3 @nstav3 @njdisp3 @sheardisp3

his @shea4 @nstav4 @njdisp4 @sheardisp4

his @shea5 @nstavs @njdisp5 @sheardisp5

his @shea6 @nstav6 @njdisp6 @sheardisp6

his @shea7 @nstav7 @njdisp7 @sheardisp7
his @shea8 @nstav8 @njdisp8 @sheardisp8
his @shea9 @nstav9 @njdisp9 @sheardisp9

his @sheal0 @nstavl0 @njdispl0 @sheardispl0

144



his @sheall @nstavll @njdispll @sheardispll
his @sheal2 @nstavl2 @njdispl2 @sheardispl2
his @sheal3 @nstavl3 @njdispl3 @sheardispl3

his @sheal5 @nstavl5 @njdispl5 @sheardispl5

C.2 Code to obtain normal stress and shear displacement for each
discontinuity

def av_strl
whilestepping
sstavl =0
nstavl = 0.01
njdispl =0
sjdispl =0
nconol =0
xsf1=0
ysf1=0
zsf1=0
xsd1=0
ysd1=0
zsd1=0
shearl=0
sheardisp1=0
Arel=0
icl = c_near(34.43,57.22,80.4)
icsubl = c_cx(icl)

Loop while icsubl # 0
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nconol = nconol + 1
Arel=Arel + cx_area(icsubl)
nstavl = nstavl +cx_nforce(icsubl)
njdispl = njdispl + cx_ndis(icsubl)
ssssl = cx_sforce(icsubl)
ssdispl = cx_sdis(icsubl)
xsfl= xsfl+ xcomp(ssssl)
ysfl=ysfl+ ycomp(ssssl)
zsfl= zsfl+ zcomp(ssssl)
xsd1= xsd1+ xcomp(ssdispl)
ysd1=ysd1+ ycomp(ssdispl)
zsd1= zsd1+ zcomp(ssdispl)
icsubl = cx_next(icsubl)

Endloop

if nconol # 0

sheal=sqrt((xsf1)"2+(ysf1)"2+(zsf1)"2)/Arel

sheardispl = sqrt((xsd1)"2+(ysd1)"2+(zsd1)*2) / nconol
nstavl = nstavl / Arel

njdispl = njdispl / nconol

Endif

:::::::::::::::::::::::

def av_str2
whilestepping
sstav2 =0
nstav2 =0
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njdisp2 = 0

sjdisp2 = 0

ncono2 =0

xsf2=0

ysf2=0

zsf2=0

xsd2=0
ysd2=0
zsd2=0
shear2=0
sheardisp2=0
Are2=0
ic2 = c_near(40.87,57.2,75.53)
icsub2 = c¢_cx(ic2)
Loop while icsub2 # 0

ncono2 = ncono2 + 1
Are2=Are2 + cx_area(icsub2)
nstav2 = nstav2 +cx_nforce(icsub?2)
njdisp2 = njdisp2 + cx_ndis(icsub2)
ssss2 = cx_sforce(icsub2)

ssdisp2 = cx_sdis(icsub2)

xsf2= xsf2+ xcomp(ssss2)
ysf2=ysf2+ ycomp(ssss2)
zsf2= zsf2+ zcomp(ssss2)
xsd2= xsd2+ xcomp(ssdisp2)
ysd2=ysd2+ ycomp(ssdisp2)
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zsd2= zsd2+ zcomp(ssdisp2)
icsub2 = cx_next(icsub2)
Endloop

if ncono2 # 0

shea2=sqrt((xsf2)"2+(ysf2)"2+(zsf2)"2)/Are2
sheardisp2 = sqrt((xsd2)"2+(ysd2)"2+(zsd2)"2) / ncono2
nstav2 = nstav2 / Are2

njdisp2 = njdisp2 / ncono2

Endif

I333399999999939999999399933339393)

def av_str3
whilestepping
sstav3 =0
nstav3 =0
njdisp3 =0
sjdisp3 =0
ncono3 =0
xsf3=0
ysf3=0
zsf3=0
xsd3=0
ysd3=0
zsd3=0
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shear3=0
sheardisp3=0
Are3=0
ic3 = c_near(46.24,55.64,67.86)
icsub3 = c_cx(ic3)
Loop while icsub3 # 0
ncono3 = ncono3 + 1
Are3=Are3 + cx_area(icsub3)
nstav3 = nstav3 +cx_nforce(icsub3)
njdisp3 = njdisp3 + cx_ndis(icsub3)
ssss3 = cx_sforce(icsub3)
ssdisp3 = cx_sdis(icsub3)
xsf3= xsf3+ xcomp(ssss3)
ysf3=ysf3+ ycomp(ssss3)
zsf3= zsf3+ zcomp(ssss3)
xsd3= xsd3+ xcomp(ssdisp3)
ysd3= ysd3+ ycomp(ssdisp3)
zsd3= zsd3+ zcomp(ssdisp3)
icsub3 = cx_next(icsub3)
Endloop
if ncono3 # 0
shea3=sqrt((xsf3)"2+(ysf3)"2+(zsf3)"2)/Are3
sheardisp3 = sqrt((xsd3)"2+(ysd3)"2+(zsd3)"2) / ncono3
nstav3 = nstav3 / Are3

njdisp3 = njdisp3 / ncono3

Endif
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def av_str4
whilestepping
sstav4 =0
nstav4 = 0
njdisp4 =0
sjdisp4 =0
ncono4 =0
xsf4=0
ysf4=0
zsf4=0
xsd4=0
ysd4=0
zsd4=0
shear4=0
sheardisp4=0
Are4=0
ic4 = ¢_near(36.49,55.85,53.24)
icsub4 = c¢_cx(ic4)
Loop while icsub4 # 0
ncono4 = ncono4 + 1
Ared=Are4 + cx_area(icsub4)
nstav4 = nstav4 +cx_nforce(icsub4)
njdisp4 = njdisp4 + cx_ndis(icsub4)
ssss4 = cx_sforce(icsub4)
ssdisp4 = cx_sdis(icsub4)
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xsf4= xsf4+ xcomp(ssss4)
ysfd= ysf4+ ycomp(ssss4)
zsf4= zsf4+ zcomp(ssss4)
xsd4= xsd4+ xcomp(ssdisp4)
ysd4= ysd4+ ycomp(ssdisp4)
zsd4= zsd4+ zcomp(ssdisp4)
icsub4 = cx_next(icsub4)
Endloop
if ncono4 # 0
shead=sqrt((xsf4)"2+(ysf4)"2+(zsf4)"2)/Ared
sheardisp4 = sqrt((xsd4)"2+(ysd4)"2+(zsd4)"2) / ncono4
nstav4 = nstav4 / Are4

njdisp4 = njdisp4 / ncono4

Endif

end

def av_str5

whilestepping

sstav5 =0
nstavs = 0
njdisp5 = 0
sjdisp5 =0
ncono5=0
xsf5=0

ysf5=0
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zsf5=0
xsd5=0
ysd5=0
zsd5=0
shear5=0
sheardisp5=0
Are5=0
icb = c_near(37.06, 56.05, 45.08)
icsub5 = ¢_cx(ic5)
Loop while icsub5 # 0
ncono5 = ncono5 + 1
Areb5=Are5 + cx_area(icsub5)
nstavb = nstav5 +cx_nforce(icsubb)
njdisp5 = njdisp5 + cx_ndis(icsubb)
ssssb = cx_sforce(icsubb)
ssdisp5 = cx_sdis(icsub5)
xsf5= xsf5+ xcomp(ssssb)
ysfb= ysfb+ ycomp(ssssb)
zsfb5= zsf5+ zcomp(ssssbh)
xsd5= xsd5+ xcomp(ssdisp5)
ysd5= ysd5+ ycomp(ssdispb)
zsd5= zsd5+ zcomp(ssdisp5b)
icsub5 = cx_next(icsubb)
Endloop
if ncono5 # 0
sheab5=sqrt((xsf5)"2+(ysf5)"2+(zsf5)"2)/Are5
sheardisp5 = sqrt((xsd5)"2+(ysd5)"2+(zsd5)*2) / ncono5
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nstavb = nstavb / Areb

njdisp5 = njdisp5 / ncono5

Endif

IRRRERRRRRRERERRRRE]

def av_str6
whilestepping
sstave = 0
nstavé = 0
njdisp6 =0
sjdisp6 =0
ncono6 =0
xsf6=0
ysf6=0
zsf6=0
xsd6=0
ysd6=0
zsd6=0
shear6=0
sheardisp6=0
Are6=0
ic6 = c_near(45.18, 48.78, 41.3)
icsub6 = c_cx(ic6)
Loop while icsub6 # 0
ncono6 = ncono6 + 1
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Are6=Are6 + cx_area(icsub6)

nstavé = nstavé +cx_nforce(icsubb)

njdisp6 = njdisp6 + cx_ndis(icsub6)

ssss6 = cx_sforce(icsubb)

ssdisp6 = cx_sdis(icsub6)

xsf6= xsf6+ xcomp(ssss6)

ysf6= ysf6+ ycomp(ssss6)

zsf6= zsf6+ zcomp(ssss6)

xsd6= xsd6+ xcomp(ssdisp6)

ysd6=ysd6+ ycomp(ssdisp6)

zsd6= zsd6+ zcomp(ssdisp6)

icsub6 = cx_next(icsubb)

Endloop
if ncono6 # 0

sheab=sqrt((xsf6)"2+(ysf6)"2+(zsf6)"2)/Are6
sheardisp6 = sqrt((xsd6)"2+(ysd6)"2+(zsd6)"2) / ncono6
nstavé = nstavé / Are6

njdisp6 = njdisp6 / ncono6

Endif

def av_str7
whilestepping
sstav7 =0
nstav7 =0
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njdisp7 = 0
sjdisp7 = 0
ncono7 =0
xsf7=0
ysf7=0
zsf7=0
xsd7=0
ysd7=0
zsd7=0
shear7=0
sheardisp7=0
Are7=0

ic7 = c_near(40.96,69.77,75.72)

icsub7 = c_cx(ic7)

Loop while icsub7 # 0
ncono?7 = ncono7 + 1
Are7=Are7 + cx_area(icsub7)
nstav7 = nstav7 +cx_nforce(icsub7)
njdisp7 = njdisp7 + cx_ndis(icsub7)
ssss7 = cx_sforce(icsub?)
ssdisp7 = cx_sdis(icsub7)
xsf7= xsf7+ xcomp(ssss7)
ysf7=ysf7+ ycomp(ssss7)
zsf7= zsf7+ zcomp(ssss7)
xsd7= xsd7+ xcomp(ssdisp7)
ysd7=ysd7+ ycomp(ssdisp7)
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zsd7= zsd7+ zcomp(ssdisp7)
icsub7 = cx_next(icsub7)
Endloop
if ncono7 # 0
shea7=sqrt((xsf7)"2+(ysf7)"2+(zsf7)"2)/Are7
sheardisp7 = sqrt((xsd7)"2+(ysd7)"2+(zsd7)"2) / ncono7
nstav7 = nstav7 / Are7

njdisp7 = njdisp7 / ncono7

Endif

end

def av_str8
whilestepping
sstav8 =0
nstav8 = 0
njdisp8 =0
sjdisp8 =0
ncono8 =0
xsf8=0
ysf8=0
zsf8=0
xsd8=0
ysd8=0
zsd8=0
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shear8=0
sheardisp8=0
Are8=0
ic8 = c_near(37.74, 75.99, 72.17)

icsub8 = c_cx(ic8)

Loop while icsub8 # 0
ncono8 = ncono8 + 1
Are8=Are8 + cx_area(icsub8)
nstav8 = nstav8 +cx_nforce(icsub8)
njdisp8 = njdisp8 + cx_ndis(icsub8)
ssss8 = cx_sforce(icsub8)
ssdisp8 = cx_sdis(icsub8)
xsf8= xsf8+ xcomp(ssss8)
ysf8= ysf8+ ycomp(ssss8)
zsf8= zsf8+ zcomp(ssss8)
xsd8= xsd8+ xcomp(ssdisp8)
ysd8= ysd8+ ycomp(ssdisp8)
zsd8= zsd8+ zcomp(ssdisp8)
icsub8 = cx_next(icsub8)
Endloop
if ncono8 # 0
shea8=sqrt((xsf8)"2+(ysf8)"2+(zsf8)"2)/Are8
sheardisp8 = sqrt((xsd8)"2+(ysd8)"2+(zsd8)"2) / ncono8
nstav8 = nstav8 / Are8

njdisp8 = njdisp8 / ncono8
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Endif

end

def av_str9
whilestepping

sstavd =0
nstavd = 0
njdisp9 =0
sjdisp9 = 0
ncono9 =0
xsfo9=0
ysfo=0
zsf9=0
xsd9=0
ysd9=0
zsd9=0
shear9=0
sheardisp9=0

Are9=0

ic9 = c_near(55.53,76.17,72.39)

icsub9 = c_cx(ic9)

Loop while icsub9 # 0
ncono9 = ncono9 + 1
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Are9=Are9 + cx_area(icsub9)

nstav9 = nstav9 +cx_nforce(icsub9)

njdisp9 = njdisp9 + cx_ndis(icsub9)

ssss9 = cx_sforce(icsub9)

ssdisp9 = cx_sdis(icsub9)

xsf9= xsf9+ xcomp(ssss9)

ysf9= ysfo+ ycomp(ssss9)

zsf9= zsf9+ zcomp(ssss9)

xsd9= xsd9+ xcomp(ssdisp9)

ysd9= ysd9+ ycomp(ssdisp9)

zsd9= zsd9+ zcomp(ssdisp9)

icsub9 = cx_next(icsub9)

Endloop
if ncono9 # 0

shea9=sqrt((xsf9)"2+(ysf9)"2+(zsf9)"2)/Are9
sheardisp9 = sqrt((xsd9)"2+(ysd9)"2+(zsd9)"2) / ncono9
nstav9 = nstav9 / Are9

njdisp9 = njdisp9 / ncono9

Endif

end

def av_strl0
whilestepping
sstavl0 =0
nstavli0 =0
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njdisp10 =0
sjdisp10=0
nconol0 =0
xsf10=0
ysf10=0
zsf10=0
xsd10=0
ysd10=0
zsd10=0
shear10=0
sheardisp10=0

Arel0=0

icl0 = c_near(15.26, 82.87, 70.43)

icsubl10 = ¢_cx(ic10)

Loop while icsub10 # 0
nconol0 = nconol0 + 1
Arel0=Arel0 + cx_area(icsubl10)
nstavl0 = nstav10 +cx_nforce(icsub10)
njdisp10 = njdisp10 + cx_ndis(icsub10)
ssss10 = cx_sforce(icsub10)
ssdispl10 = cx_sdis(icsub10)
xsf10= xsf10+ xcomp(ssss10)
ysf10= ysf10+ ycomp(ssssl10)
zsf10= zsf10+ zcomp(ssssl10)
xsd10= xsd10+ xcomp(ssdisp10)
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ysd10=ysd10+ ycomp(ssdisp10)
zsd10= zsd10+ zcomp(ssdispl0)
icsub10 = cx_next(icsub10)

Endloop

if ncono10 # 0

shealO=sqrt((xsf10)"2+(ysf10)"2+(zsf10)"2)/Arel0
sheardisp10 = sqrt((xsd10)"2+(ysd10)"2+(zsd10)"2) / nconol0
nstavl0 = nstav10 / Arel0

njdisp10 = njdisp10 / nconol10

Endif

end

def av_strll
whilestepping

sstavll =0
nstavll =0
njdisp11 =0
sjdispll =0
nconoll =0
xsf11=0
ysf11=0
zsf11=0
xsd11=0
ysd11=0
zsd11=0
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shear11=0
sheardisp11=0

Arel1=0

icll = c_near(18.9, 58.57,57.03)

icsubll = c_cx(icll)

Loop while icsubl11 # 0
nconoll = nconoll + 1
Arell=Arell + cx_area(icsubll)
nstavll = nstavll +cx_nforce(icsubl1l)
njdisp11 = njdisp11 + cx_ndis(icsub11)
ssssll = cx_sforce(icsubll)
ssdispll = cx_sdis(icsubl11l)
xsfl1= xsfl1l+ xcomp(ssssll)
ysfll=ysfll+ ycomp(ssssll)
zsfll= zsfl1l+ zcomp(ssssll)
xsd11l= xsd11l+ xcomp(ssdispll)
ysd11l=ysd11l+ ycomp(ssdispll)
zsd11= zsd11+ zcomp(ssdispll)
icsubl1l = cx_next(icsubl11)
Endloop
if nconoll # 0
sheall=sqrt((xsf11)"2+(ysf11)"2+(zsf11)"2)/Arell
sheardispll = sqrt((xsd11)*2+(ysd11)"2+(zsd11)"2) / nconoll
nstavll = nstavll / Arell
njdisp11 = njdisp11 / nconoll
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Endif

end

def av_strl2
whilestepping

sstavl2 =0
nstavl2 =0
njdispl2 =0
sjdispl2 =0
nconol2 =0
xsf12=0
ysf12=0
zsf12=0
xsd12=0
ysd12=0
zsd12=0
shear12=0
sheardisp12=0

Arel2=0

icl2 = c_near(17.18, 57.70, 46.29)

icsubl12 = c_cx(ic12)

Loop while icsub12 # 0
nconol?2 = nconol2 +1
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Arel2=Arel2 + cx_area(icsub12)

nstavl2 = nstavl2 +cx_nforce(icsubl12)

njdisp12 = njdisp12 + cx_ndis(icsub12)

ssss12 = cx_sforce(icsub12)

ssdispl2 = cx_sdis(icsub12)

xsfl2= xsfl2+ xcomp(ssssl2)

ysfl2=ysfl2+ ycomp(ssssl2)

zsf12= zsf12+ zcomp(ssss12)

xsd12= xsd12+ xcomp(ssdispl2)

ysd12=ysd12+ ycomp(ssdispl2)

zsd12= zsd12+ zcomp(ssdispl2)

icsub12 = cx_next(icsub12)

Endloop
if ncono12 # 0

sheal2=sqrt((xsf12)"2+(ysf12)"2+(zsf12)"2)/Arel2
sheardispl2 = sqrt((xsd12)"2+(ysd12)"2+(zsd12)"2) / nconol2
nstavl2 = nstavl2 / Arel2

njdisp12 = njdisp12 / nconol2

Endif

end

def av_strl3
whilestepping
sstavl3 =0
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nstavl3 =0
njdispl3 =0
sjdisp13=0
nconol3 =0
xsf13=0
ysf13=0
zsf13=0
xsd13=0
ysd13=0
zsd13=0
shear13=0
sheardisp13=0
Arel3=0

icl3 =c_near(14.78, 57.74, 36.46)

icsubl13 = ¢_cx(icl3)

Loop while icsub13 # 0
nconol3 = nconol3 + 1
Arel3=Arel3 + cx_area(icsubl3)
nstavl3 = nstavl3 +cx_nforce(icsubl13)
njdisp13 = njdisp13 + cx_ndis(icsub13)
ssss13 = cx_sforce(icsub13)
ssdispl3 = cx_sdis(icsub13)
xsf13= xsf13+ xcomp(ssss13)
ysfl3=ysf13+ ycomp(ssssl3)
zsf13= zsf13+ zcomp(ssssl3)
xsd13= xsd13+ xcomp(ssdispl3)
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ysd13=ysd13+ ycomp(ssdispl3)
zsd13= zsd13+ zcomp(ssdispl3)
icsub13 = cx_next(icsub13)

Endloop

if nconol13 # 0

sheal3=sqrt((xsf13)"2+(ysf13)"2+(zsf13)"2)/Arel3
sheardispl3 = sqrt((xsd13)"2+(ysd13)"2+(zsd13)"2) / nconol3
nstavl3 = nstavl3 / Arel3

njdisp13 = njdisp13 / nconol3

Endif

end

def av_strl5
whilestepping

sstavl5 =0
nstavl5 =0
njdisp15 =0
sjdisp1l5=0
nconol5=0
xsf15=0
ysf15=0
zsf15=0
xsd15=0
ysd15=0
zsd15=0
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shear15=0
sheardisp15=0
Arel5=0
ic15 = c_near(12.38, 57.78, 26.62)

icsub15 = c_cx(icl15)

Loop while icsub15 # 0
nconol5 = nconol5 + 1
Arel5=Arel5 + cx_area(icsublb)
nstavl5 = nstavl5 +cx_nforce(icsubl15)
njdisp15 = njdisp15 + cx_ndis(icsub15)
ssss15 = cx_sforce(icsub15)
ssdispl5 = cx_sdis(icsub15)
xsf15= xsf15+ xcomp(sssslb)
ysfl5=ysf15+ ycomp(sssslb)
zsf15= zsf15+ zcomp(sssslb)
xsd15= xsd15+ xcomp(ssdisplb)
ysd15=ysd15+ ycomp(ssdisplb)
zsd15= zsd15+ zcomp(ssdisplb)
icsub15 = cx_next(icsubl15b)
Endloop
if nconol5 # 0
sheal5=sqrt((xsf15)"2+(ysf15)"2+(zsf15)"2)/Arel5
sheardispl15 = sqrt((xsd15)*2+(ysd15)"2+(zsd15)"2) / nconol5
nstavl5 = nstavl5 / Arel5

njdisp15 = njdisp15 / nconol5
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Endif

end

C.3 Codes to calculate joint material properties and assign the joint
material to each discontinuity

new
def propl
NS11 =0.00378813
®=30
L1=1.6
jcs=70
JRC=15
fric_14= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))"2+1)))
coh_14= 0.05+(NS11*abs(tan(degrad*(JRC*log(abs(jcs/NS11))+Fi)))-
NS11*abs(tan(degrad*fric_1)))
d_peak1=L1*(JRC/L1)"0.33
J_kk 14=500*((coh_14)+abs(NS11*tan(degrad*fric_14)))/(L1*(JRC/L1)"0.33)
icl=c_near(34.43,57.22,80.4)
Tpl=m_jcohesion(14)+abs(NS11*tan(degrad*m_jfriction(14)))

end

def prop2
NS21 =0.0347388

jcs=70
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JRC=15
®=30

L2=23.9

ic2=c_near(40.87,57.2,75.53)

fric_2= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))"2+1)))

coh_2= 0.05+(NS21*abs(tan(degrad*(JRC*log(abs(jcs/NS21))+Fi)))-
NS21*abs(tan(degrad*fric_2)))

d_peak2=(L2)*(JRC/L2)"0.33

J_kk 2=500*((coh_2)+abs(NS21*tan(degrad*fric_2)))/d_peak2

end

def prop3
NS31 =0.0841634
jcs=70
JRC=15
®=30
L3=26.4
ic3=c_near(46.24,55.64,67.86)
fric_3= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))"2+1)))
coh_3= 0.05+ (NS31*abs(tan(degrad*(JRC*log(abs(jcs/NS31))+Fi)))-
NS31*abs(tan(degrad*fric_3)))
d_peak3=(L3)*(JRC)"0.33/(L3)"0.33
J_kk_3=500*((coh_3)+abs(NS31*tan(degrad*fric_3)))/d_peak3
Tp3=m_jcohesion(3)+abs(NS31*tan(degrad*m_jfriction(3)))
end
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def prop4
NS41 =0.135121
jcs=70
L4=23
JRC=15
®=30
ic4=c_near(36.49,55.85,53.24)
fric_4= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))"2+1)))
coh_4=0.05 + (NS41*abs(tan(degrad*(JRC*log(abs(jcs/NS41))+Fi)))-
NS41*abs(tan(degrad*fric_4)))
d_peak4=(L4)*(JRC)"0.33/(L4)"0.33
J_kk _4=500*(coh_4+abs(NS41*tan(degrad*fric_4)))/d_peak4
Tp4=m_jcohesion(4)+abs(NS41*tan(degrad*m_jfriction(4)))

end

def prop5

NS51 =0.197149

L5=22.3

jcs=70

JRC=15
®=30

fric_5= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))"2+1)))

coh_5=0.05+ (NS51*abs(tan(degrad*(JRC*log(abs(jcs/NS51))+Fi)))-
NS51*abs(tan(degrad*fric_5)))
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d_peak5=(L5)*(JRC/L5)"0.33
J_kk 5=500*(coh_5+abs(NS51*tan(degrad*fric_5)))/d_peak5
Tp5=m_jcohesion(5)+abs(NS51*tan(degrad*m_jfriction(5)))
end
def prop6
NS61 = 0.270908
jcs=70
L6=22.25
JRC=15
®=30
ic6=c_near(45.18, 48.78, 41.3)
fric_6= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))"2+1)))
coh_6=0.05 + (NS61*abs(tan(degrad*(JRC*log(abs(jcs/NS61))+Fi)))-
NS61*abs(tan(degrad*fric_6)))
d_peak6=(L6)*(JRC/L6)"0.33
J_kk _6=500*(coh_6+abs(NS61*tan(degrad*fric_6)))/d_peak6
Tp6=m_jcohesion(6)+abs(NS61*tan(degrad*m_jfriction(6)))

end

def prop7
NS71 =0.0719441
L7=69
jcs=70
JRC=15
®=30
ic7=c_near(40.96,69.77,75.72)
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fric_7= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))"2+1)))

coh_7=0.05 + (NS71*abs(tan(degrad*(JRC*log(abs(jcs/NS71))+Fi)))-
NS71*abs(tan(degrad*fric_7)))

d_peak7=(L7)*(JRC)"0.33/(L7)"0.33

J_kk_7=500*(coh_7+abs(NS71*tan(degrad*fric_7)))/d_peak7

Tp7=m_jcohesion(7)+abs(NS71*tan(degrad*m_jfriction(7)))

end

def prop8

NS81 =0.112938

L8=64.8

jcs=70

JRC=15

®=30

icB=c_near(37.74, 75.99, 72.17)

fric_8= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))"2+1)))
coh_8= 0.05+(NS81*abs(tan(degrad*(JRC*log(abs(jcs/NS81))+Fi)))-
NS81*abs(tan(degrad*fric_8)))

d_peak8=(L8)*(JRC/L8)"0.33
J_kk_8=500*(coh_8+abs(NS81*tan(degrad*fric_8)))/d_peak8
Tp8=m_jcohesion(8)+abs(NS81*tan(degrad*m_jfriction(8)))

end

def prop9
NS91 =0.0770756
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L9=54.5

jcs=70

JRC=15

®=30

ic9=c_near(55.53,76.17,72.39)

fric_9= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))"2+1)))
coh_9= 0.05+ (NS91*abs(tan(degrad*(JRC*log(abs(jcs/NS91))+Fi)))-
NS91*abs(tan(degrad*fric_9)))

d_peak9=(L9)*(JRC/L9)"0.33
J_kk_9=500*(coh_9+abs(NS91*tan(degrad*fric_9)))/d_peak9

Tp9=m_jcohesion(9)+abs(NS91*tan(degrad*m_jfriction(9)))

def propl0

NS101= 0.0648886

jcs=70

JRC=15
®=30

L10=17.25

ic10=c_near(15.26, 82.87, 70.43)

fric_10= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))"2+1)))

coh_10= 0.05+ (NS101*abs(tan(degrad*(JRC*log(abs(jcs/NS101))+Fi)))-
NS101*abs(tan(degrad*fric_10)))

d_peak10=(L10)*(JRC/L10)"0.33
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J_kk_10=500*(coh_10+abs(NS101*tan(degrad*fric_10)))/d_peakl0
Tpl0=m_jcohesion(10)+abs(NS101*tan(degrad*m_jfriction(10)))

end

def propl1l

NS111 = 0.0708899

L11=15.2

jcs=70

JRC=15
®=30

icll=c_near(18.9, 58.57,57.03)

fric_11= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))"2+1)))

coh_11=0.05+ (NS11l1*abs(tan(degrad*(JRC*log(abs(jcs/NS111))+Fi)))-
NS111*abs(tan(degrad*fric_11)))

d_peak11=(L11)*(JRC/L11)"0.33

J_kk 11=500*(coh_11+abs(NS111*tan(degrad*fric_11)))/d_peakll

Tpll=m_jcohesion(11)+abs(NS111*tan(degrad*m_jfriction(11)))

end

def propl12
NS121 = 0.138155
jcs=70
L12=20.4
JRC=15
®=30

174



icl2=c_near(17.18, 57.70, 46.29)

fric_12= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))"2+1)))

coh_12=0.05+ (NS121*abs(tan(degrad*(JRC*log(abs(jcs/NS121))+Fi)))-
NS121*abs(tan(degrad*fric_12)))

d_peak12=(L12)*(JRC/L12)"0.33

J_kk_ 12=500*(coh_12+abs(NS121*tan(degrad*fric_12)))/d_peakl2

Tpl2=m_jcohesion(12)+abs(NS121*tan(degrad*m_jfriction(12)))

End

def propl3
NS131 =0.176823
jcs=70
L13=11.7
JRC=15
®=30
ic13=c_near(14.78, 57.74, 36.46)
fric_13= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))"2+1)))
coh_13= 0.05+ (NS131*abs(tan(degrad*(JRC*log(abs(jcs/NS131))+Fi)))-
NS131*abs(tan(degrad*fric_13)))
d_peak13=(L13)*(JRC/L13)"0.33
J_kk_13=500*(coh_13+abs(NS131*tan(degrad*fric_13)))/d_peakl3
Tp1l3=m_jcohesion(13)+abs(NS131*tan(degrad*m_jfriction(13)))

end

def propl5
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NS151 = 0.285152

jcs=70

L15=11.7

JRC=15
®=30

icl5=c_near(12.38, 57.78, 26.62)

fric_15= abs((180/pi)*atan(abs(tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))-
degrad*JRC*(1/In(10))*((tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))"2+1)))
coh_15= 0.05+ (NS151*abs(tan(degrad*(JRC*log(abs(jcs/NS151))+Fi)))-
NS151*abs(tan(degrad*fric_15)))

d_peak15=(L15)*(JRC/L15)"0.33
J_Kkk_15=500*(coh_15+abs(NS151*tan(degrad*fric_15)))/d_peakl5
Tpl5=m_jcohesion(15)+abs(NS151*tan(degrad*m_jfriction(15)))

end

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 0 65

change jmat=14

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 75 85

hide range z 0 58

change jmat=2

Seek

hide dip 87 dd 180 org 0 61 20 below

176



hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 65 85

hide range z 0 50

change jmat=3

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 58 85

hide range z 0 42

change jmat=4

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 50 85

hide range z 0 36

change jmat=5

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range z 42 85

hide range z 0 33

change jmat=6

Seek

;; Assigning Jmaterial 7

hide dip 87 dd 180 org 0 61 20 above

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range x 45 67
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hide range z 0 68

change jmat=7

Seek

;; Assigning Jmaterial 8

hide dip 87 dd 180 org 0 61 20 above
hide dip 75 dd 288 org 14.8 46.9 40 above
hide range x 45 67

hide range z 0 63

hide range z 78 80

change jmat=8

Seek

hide dip 87 dd 180 org 0 61 20 above

hide dip 75 dd 288 org 14.8 46.9 40 above
hide range x 0 40

hide range z 0 67

change jmat=9

Seek

hide dip 87 dd 180 org 0 61 20 above

hide dip 75 dd 288 org 14.8 46.9 40 below
hide range z 0 67

change jmat=10

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 below
hide range z 45 85

hide range z 0 25

change jmat=13
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Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 below
hide range z 60 85

hide range z 0 35

change jmat=12

Seek

hide dip 87 dd 180 org 0 61 20 below
hide dip 75 dd 288 org 14.8 46.9 40 below
hide range z 0 50

change jmat=11

Seek

hide dip 87 dd 180 org 0 61 20 below

hide dip 75 dd 288 org 14.8 46.9 40 below
hide range z 36 80

hide range z 0 21

change jmat=15

Seek
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