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VERSITY

Examining Committee Members:

Prof. Dr. Semih BİLGEN
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Electrical-Electronics Engineering Dept., METU

Prof. Dr. Kemal LEBLEBİCİOĞLU
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ABSTRACT

DEVELOPMENT OF STRATEGIES FOR REDUCING THE WORST-CASE MESSAGE
RESPONSE TIMES ON THE CONTROLLER AREA NETWORK

Çelik, Vakkas

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece GÜRAN SCHMIDT

Co-Supervisor : Assist. Prof. Dr. Klaus Schmidt

JANUARY 2012, 62 pages

The controller area network (CAN) is the de-facto standard for in-vehicle communication.

The growth of time-critical applications in modern cars leads to a considerable increase in

the message traffic on CAN. Hence, it is essential to determine efficient message schedules on

CAN that guarantee that all communicated messages meet their timing constraints. The aim of

this thesis is to develop offset scheduling strategies that find feasible schedules for higher bus

load levels compared to conventional CAN scheduling approaches. We formulate the offset

scheduling as a constraint optimization problem that maximizes the sum of message slacks

where slack is defined as the difference between the deadline and the worst-case response time

(WCRT) of a message. The constraint to ensure the feasibility of the schedules is keeping

all slacks positive. In this respect we propose two heuristic offset scheduling algorithms

which integrate an existing method for the WCRT analysis in the schedule computation. We

apply our algorithms to various examples and compare the results with a well-known offset

scheduling algorithm. The results show that our algorithms can generate feasible schedules at

significantly high loads with run times shorter than 5 minutes.

Keywords: CAN, Offset Scheduling, WCRT Analysis, Genetic Algorithm
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ÖZ

DENETLEYİCİ ALAN AĞI(CAN) ÜZERİNDEKİ EN KÖTÜ DURUMDAKİ MESAJ
TEPKİ SÜRELERİNİ AZALTMAK İÇİN STRATEJİLER GELİŞTİRME

Çelik, Vakkas

Yüksek Lisans, Elektrik-Elektronik Mühendislig̈i Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi : Y. Doç. Dr. Klaus Schmidt

Ocak 2012, 62 sayfa

Denetleyici Alan Ağı (CAN), araç içi iletişimde bilfiil kullanılan standarttır. Modern ara-

balardaki zaman-kritik uygulamaların artması CAN hattındaki mesaj trafiğinin artmasına ne-

den olmuştur. Bu yüzden, gönderilen mesajların adreslerine zamanlarında ulaştığını garanti

etmek için CAN trafiğinde mesaj çizelgelerinin verimli şekilde yapılması gerekmektedir.

Bu tezin amacı, bilinen CAN çizelgeleme yaklaşımlarına kıyasla daha fazla veriyolu yükü

altında uygulanabilir gecikme çizelgeleri geliştirmektir. Buna göre gecikme çizelgelemesi, bir

mesajın son varış süresi ile en kötü durumdaki tepki süresi arasındaki fark olarak tanımlanan

gevşekliği maksimuma çıkarmaya çalışan bir kısıtlı optimizasyon problemi olarak formüle

edilmektedir. Çizelgelerin uygulanabilirliğini sağlayan bu kısıtlama, tüm gevşeklikleri pozitif

tutmaktır. Bu bakımdan, gecikme çizelgesi hesaplamasında halihazırdaki gecikme çizelgeleme

yöntemini mesajların en kötü durumdaki tepki sürelerinin analiziyle bütünleştiren iki adet

sezgisel gecikme çizelgeleme algoritması önerilmektedir. Bu algoritmalar farklı örneklerle

denenerek, iyi bilinen gecikme çizelgeleme algoritması ile kıyaslanmaktadır. Elde edilen

sonuçlar tezde geliştirilen algoritmaların yoğun trafiklerde bile 5 dakikadan az sürede uygu-

lanabilir mesaj çizelgeleri ürettiğini göstermektedir.
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CHAPTER 1

INTRODUCTION

In contemporary vehicles a large number of electronic control units (ECU) exchange infor-

mation enclosed in messages, that are transmitted over a communication bus to realize the

controlling of the vehicle as well as supporting its safety. These messages can be periodic

as well as sporadic. The periodic messages contain regularly sampled data from the sensors

and information for their respective control actions while the sporadic messages are asso-

ciated with events triggered by the driving environment and the driver. Currently the most

widely used bus standard for in-vehicle communication is Controller Area Network (CAN)

bus [1]. CAN bus provides event-triggered communication with a non-preemptive priority

based arbitration among the messages released by the ECUs.

As the technology improves, the number of ECUs communicating on CAN bus and the

amount of data exchanged increase. This yields an increase of the CAN bus load; which

delays the messages including the time-critical ones. A car manufacturer has to make sure

that all messages in the network are schedulable; i.e. worst case response times of the mes-

sages are shorter than a pre-specified deadline to ensure that the freshness of the data is still

acceptable at the receiver side. In this case, the schedule is denoted as feasible. The worst-

case response times of the messages increase as the load on CAN bus increases, hence, the

bus utilization is supposed to be kept at low levels (up to %40) for contemporary vehicles

[3]. It has to be noted that new technologies, such as FlexRay [2], bring higher bandwidth

capability than CAN. However, CAN is still the most cost effective protocol and will most

likely be used for at least two more decades in automotive industry [3].

The design for the in-vehicle communication includes constructing the message set which de-

scribes the period, length and the deadlines of the messages to be exchanged. In this respect,
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the period for the sporadic messages indicates the smallest time between two consecutive

message releases. Then, the message priorities which are indicated by the CAN IDs are as-

signed. With the additional information about the release times of the messages, it is possible

to check if the messages will meet their deadlines for a given message set and the chosen

CAN ID assignment [4].

Considering a CAN message set, the length, the period and the deadline of each message are

decided according to the requirements of the application running on the ECUs. Then, the

schedulability of these messages depends on the assignment of the CAN IDs and the release

times of the messages from the ECUs. In principle, it is possible to algorithmically determine

a feasible schedule by applying the non-preemptive task scheduling method developed in [5].

Specializations of this algorithm for CAN networks are presented in [4, 6, 7]. However, it has

to be noted, that CAN IDs usually cannot be freely assigned in practical applications, since the

vehicle manufacturers maintain their messages and CAN ID assignments for compatibility.

Hence, it is a worthwhile task to find methods that enable the computation of feasible CAN

schedules without modifying the CAN IDs.

Such method was first introduced by Grenier, Havet and Navet [8] by observing that the

release times of messages impact on their worst-case response times. Here, the delay of

the release of the first instance of a message is called offset. Introducing such offsets in the

release times allows to reduce message response times, since worst-case scenarios, where

many messages are released at the same time, are avoided. To this end, for a given CAN ID

assignment, offset scheduling decides the offset for each message so as to achieve a feasible

schedule.

Although a scheduling algorithm runs offline, it has to terminate in a bounded amount of time.

Hence, a brute-force approach to find the offsets for CAN scheduling is not possible, since the

search space is too large to be fully explored. In particular, the runtime grows exponentially

with the number of messages as well as the periods of the messages. In order to overcome this

problem, Grenier et. al. proposed a heuristic solution that has low-complexity [3, 8]. We call

this algorithm Standard Offset Scheduling Algorithm (SOSA) in this thesis. The main purpose

of this algorithm is to distribute the message release times of individual CAN nodes (ECUs) as

uniformly as possible over time, in order to avoid synchronous message releases, since such

synchronous releases lead to traffic peaks and cause large message response times. Although
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the algorithm allows finding offset schedules for moderate traffic loads of about 50%, feasible

schedules for higher loads cannot be achieved. As is shown in this thesis, the main reason for

this deficiency is neglecting the dependencies among messages that are released from different

nodes. The algorithm in [3, 8] assigns the offsets for the messages of each node independently

and does not include any WCRT analysis in the schedule computation.

Objective of the thesis is to improve offset scheduling in order to find feasible offset schedules

for larger bus loads. In order to achieve this task, the WCRT analysis for offset schedules pro-

posed in [9] is used to get feedback about the offset schedule and so integrated in the schedule

computation. It is observed that the slacks of all messages have to be positive in order to

find a feasible schedule, where slack is defined as the difference between the deadline and the

WCRT of message. First contribution of this thesis is to reformulate the offset scheduling as

a constraint optimization problem that maximizes the sum of message slacks, while ensur-

ing that all slacks remain positive. As the second contribution, two heuristic algorithms are

proposed for the solution of this optimization problem. First one is called Local Neighbor-

hood Search Algorithm (LNSA) in this thesis. LNSA starts from Standard Offset Schedule and

proceeds by changing a single offset at each iteration while always keeping the best solution.

LNSA visits each message in the system one time, and tries all possible offsets of the message

one-by-one while keeping offsets of other messages the same. Second proposed algorithm is

an application of Genetic Algorithm for Offset Scheduling. We call this algorithm GAOS in

short. GAOS starts from generating an initial population based on the Standard Offset Sched-

ule and uses genetic operators such as mutation and crossover to generate new schedules in

order to reach a feasible solution by using the WCRT analysis for offset schedules to evaluate

the fitness of the schedules.

In this thesis, all algorithms are implemented as an extension of an existing C++-library for

automotive scheduling [10]. In order to evaluate the performances of the scheduling algo-

rithms, a large number of message sets are used for different bus loads. These messages are

generated by NETCARBENCH which allows users to define the parameters of the gener-

ated message sets [11]. Our experimental results verify that SOSA can easily find feasible

schedules for bus loads up to 50% as claimed in [3]. It is further shown that the developed

algorithms in this thesis significantly improve the offset schedule computation. They find a

schedulable solution for most of the message sets at bus loads up to 80%. It is deduced from

the results that GAOS is better suited for smaller bus load sets, while LNSA is better suited
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for larger bus loads because of run time. It is also indicated that concatenation of LNSA and

GAOS finds feasible schedules in 90% of the test cases for bus loads up to 80%. It has to

be noted that run times of the developed algorithms are obviously higher than run times of

SOSA; however, they are bounded by 5 minutes in our experiments which are conducted by

a standard personal computer. Hence, the developed algorithms in this thesis are well-suited

for practical applications.

The rest of the thesis is organized as follows. In Chapter 2, fundamental features of CAN

protocol are described. The scheduling model and notations that are used in the thesis are

defined. Moreover, the principles of generalized CAN scheduling algorithm and its schedula-

bility analysis is explained. Detailed description of the offset scheduling concept is provided

in Chapter 3. Furthermore, the first offset scheduling algorithm in the literature is discussed.

This chapter ends with the analysis methodology of the worst-case response time for the off-

set scheduling. Chapter 4, introduces the problems and challenges to be solved in this thesis.

Performance metrics used in comparing different solutions are defined. Then, our two dif-

ferent proposed solutions which are GAOS and LNSA are presented. Chapter 5 is devoted to

the implementation of the scheduling algorithms and their evaluations. Finally, Chapter 6,

includes the discussions and concluding remarks.
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CHAPTER 2

CAN Protocol

2.1 Description of the CAN Protocol

CAN is an asynchronous multi-master serial vehicle bus that connects devices, sensors and ac-

tuators in a system or sub-system for real-time control applications. It was created by Robert

Bosch GmbH in 1983 to provide a cost-effective communications bus for in-car electron-

ics. The automotive industry quickly adopted CAN and, in 1993, it became the international

standard known as ISO 11898. Currently, CAN is de-facto standard for in-vehicle data trans-

mision. It is ensured that CAN will be used for many years because the multibillion dollar

infrastructure that exists to support CAN provides low-cost components and a large technical

support base [12].

The CAN communication protocol is a Carrier Sense Multiple Access/Collision Resolution

(CSMA/CR) protocol. It is required by the CAN protocol that nodes do not attemp transmiting

when bus is not idle. CAN is capable of operating at data rates of up to 1 Mbit/s on twisted

pair of copper wires.

The standard CAN 2.0A data frame contains start of frame (SOF) bit, 12 bits of arbitration

field with 11-bit ID, 6 bits of control field,up to 8 B of data, 15 bits of cyclic redundancy

check (CRC) field, 3 bits of acknowledgement slot (ACK) and 7 bits of end of frame (EOF)

field. Together, the frame duration t for b data bytes on network having D bit rate is [4]

t =
55 + 10b

D
( f or 11 − bit ID) and t =

80 + 10b
D

( f or 29 − bit ID).

In CAN network, each node is able to access to the bus and may begin to transmit if the bus
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is free. This conflict is handled by a non-destructive arbitration process. When more than one

node attempts to transmit a bit on the CAN bus at the same time, the bus transmits the result

of the logical AND of these bits. When a node observes same polarity as it sends, then it goes

on transmission; otherwise it stops transmission and starts waiting for the bus to be idle. This

behaviour is used to resolve collisions. The standard CAN frame contains identifier bits of

length 11 or 29 bits at the beginning of CAN frame and each CAN frame has an unique CAN

ID which determines the priority of the message when accessing the network. Lower CAN

IDs have higher priority and a CAN message that is transmitted with highest priority wins the

arbitration.

Figure 2.1: Standard CAN Frame

2.2 Schedulability Analysis and Generalized CAN Scheduling Algorithm

2.2.1 Scheduling Model Used in This Thesis

In this thesis, notations in Table 2.1 are used in order to be consistent in the whole document.

A CAN system is composed of a number of nodes connected via CAN bus and this number

is denoted by Nmax. Each node in the system ensures that highest priority message queued at

that node wins the arbitration at any time when arbitration starts.

Node where message m is assigned to is symbolized by Nm and each message is only gener-

ated by a unique node. Mapping of message m to priority level-m is indicated by Vm. Each

message m carries between 0-8 data bytes and number of data bytes carried by message m is

denoted by Gm.

The system contains a static set of hard real-time messages and this set is denoted by Z. Each

message in the network is statically assigned to a node on the network. M is the number of

messages in Z. Each message m has a fixed identifier, hence an unique priority. The longest

time taken to transmit a given message m is denoted as Cm.
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Each task has a minimum inter-arrival time termed the period. Note that the period is a

minimum time between subsequent arrivals, rather than a strict fixed interval. If the message

queued by a given task is potentially sent each time the task is invoked, then the message

inherits a period equal to the period of the task. We denote as Tm, the period of a given

message m.

Each message has a hard deadline Dm, corresponding to the maximum permitted time from

occurrence of the initiating event to the end of successful transmission of the message, at

which time the message data is assumed to be available on the receiving nodes that require it.

When a CAN message is generated, it can be transmitted directly if any CAN message is not

already being transmitted or there are not higher priority messages in the queue waiting to

be transmitted. In other case, it may wait the transmissions of higher priority messages in

the queue and already being transmitted message. It is important to know how much time

might be needed in the worst case in order to guarantee that the message will be transmitted

on time. The worst-case response time Rm, of a message is defined as the longest time from

the initiating event occurring to the message being received by the nodes that require it.

In the thesis, absolute slack time of message m is defined as the difference between the dead-

line (Dm) and the worst-case response time (Rm) and denoted by S tm; S tm = Dm − Rm. It

captures the margin of each messages that is left until the deadline. In this thesis we define

the relative slack of message as the ratio of slack time of a message to its deadline and nota-

tion of slack of message m is S m. The relative slack is introduced in order to make the slacks

of messages with different deadlines comparable.

S m = S tm/Dm = (Dm − Rm) /Dm (2.1)

A message is schedulable if Rm ≤ Dm or, equivalently, S m ≥ 0. The system is schedulable iff

all of the messages in the system are schedulable. Average slack of a system is the average of

the relative slacks of all messages in that system and is denoted by S avg.

S avg =

 ∑
1≤i≤M

S i

 /M (2.2)

In Section 4, we will try to maximize the average slack as a measure of the quality of a
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schedule.

Table 2.1: Key Notations in This Thesis

m message m and its priority

Nmax number of nodes in the giving network

Z message set in the network

M size of Z

Nm node message m is assigned to

Vm mapping of message m to priority level-m

Gm number of data bytes carried by message m

Cm transmission time of message m

Tm period or minimum inter-arrival time of message m

Jm release jitter of messaage m

Om offset of message m

Dm deadline of message m

Rm worst-case response time of message m

S tm absolute slack time of message m

S m relative slack of message m

S avg average of relative slacks of the system

Wm queuing delay of message m

lp (m) the set of messages with lower priority than m in message set Z

hp (m) the set of messages with higher priority than m in message set Z

lps (m, i) the set of messages that are sent by node i with lower priority than m

hps (m, i) the set of messages that are sent by node i with lower priority than m

Pi hyper-period of node i

2.2.2 Classical CAN Schedulability Analysis

In automotive applications, it is required that the ECUs such as the engine controller, the

battery control unit or the brake control unit exchange data via CAN messages. That is, an

application dependent set Z of CAN messages has to be transmitted on the CAN network.

In order to guarantee correct operation of the automotive application, it is required that each

message meets its deadline, which has to be achieved by an appropriate assignment of the
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unique message priorities. It has to be noted that, regarding CAN scheduling computations,

it is merely important to consider the order of the message priorities rather than the actual

priority values. Hence, in our work, we focus on the priority order represented by a map

V : m → {1, . . . ,M} that assigns a unique priority level between 1 and M to each message

in Z. We denote a priority assignment that ensures that each message meets its deadline as a

feasible CAN schedule and the set of all feasible priority orders for a message set Z asVS .

We now summarize the classical method for the verification and computation of feasible CAN

schedules that is the basis for our novel scheduling algorithms.

A given CAN schedulee is feasible if the worst-case response time Rm of each message m is

smaller than the message deadline Dm. The classical CAN schedulability analysis as intro-

duced in [7] and improved in [4] describes the worst-case response time of a message as made

up of three elements [4]:

Rm = Jm + Wm + Cm (2.3)

Here, Jm is the release jitter, Wm is the interference due to other messages, and Cm is the

transmission time of message m. Since the release jitter is a given constant for each mes-

sage, we assume that it is included in the deadline Dm of message m such that the equation

simplifies to Rm = Wm + Cm. Interference due to higher priority messages which may win

arbitration instead of message m is an important element contributing the queuing delay Wm

[4]. Because of the impossibility of preempting message transmissions, a message is also

subject to an initial blocking delay Bm from lower priority messages which is another element

of queuing delay [14]. Maximum blocking time occurs when a lower priority message begins

transmission just before message m is released.

Bm = max
k∈lp(m)

(Ck) (2.4)

The concept of busy period is introduced by Lehoczky(1990) [15]. Busy period is a contigu-

ous interval of time during which any lower priority message is not able to start transmission,

starts at some time when a message of priority m or higher is queued ready for transmission

and ends when the bus is idle. It is fundamental in worst-case response times analysis. The
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busy period for priority level−m starts with initial value t0
m = Cm and finishes when tn+1

m = tn
m

and its equation is following:

tn+1
m = Bm +

∑
k∈hep(m)

⌈
tn
m

Tk

⌉
Ck (2.5)

where hep(m) is the set of messages with priority higher than equal to m, and da/be is notation

for the ceiling function which returns the smallest integer greater than or equal to a/b.
⌈ tnm

Tk

⌉
indicates the number that message k which is in hep(m) set is queued during tn

m time. As

the right hand side is a monotonic non-decreasing function of tm, then the recurrence relation

converges if the bus utilization Um, for messages of priority m and higher, is less than 1 [4]:

Um =
∑

k∈hep(m)

Ck

Tk
(2.6)

There may be more than one message instances of m released during the busy period. In

order to determine the worst-case response time, each instance is considered seperately. The

maximum of these values give the worst-case response time [4]. The number of instances Qm

is given by:

Qm =

⌈
tm
Tm

⌉
(2.7)

The time the qth instance starting transmission is given by:

Wn+1
m = Bm + qCm +

∑
k∈hp(m)

⌈
Wn

m

Tk

⌉
Ck (2.8)

The recurrence relation starts with W0
m(q) = Bm + qCm and ends when Wn+1

m (q) = Wn
m(q) ,

or Jm + Wn+1
m (q) − qTm + Cm > Dm which implies message m is unschedulable. Worst-case

response time for qth instance of message m is Rm(q):

Rm(q) = Wm(q) − qTm + Cm (2.9)

The worst-case response time of message m:
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Rm = max
q=0,...,Qm−1

(Rm(q)) (2.10)

WCRT anlysis described in this section is for fixed-priority non-preemptive schedulings (FPNS).

Worst-case response time can be computed if CAN priorities, message lengths, message pe-

riods are known. Hence, this analysis can be used to check existing schedule.

2.3 Generalized CAN Scheduling Algorithm

Based on the described schedulability analysis, the literature suggests an algorithm that suc-

cessively computes a feasible CAN schedule if such schedule exists for a given message set

Z [5, 4]. K. W. Schmidt [6] proposes the following generalized version of this algorithm .

Algorithm 1 Input: message set Z, empty message m0, set F = ∅, initial priority level

l := M

for each priority level from l = M to l = 1 1

for each message m ∈ S 2

Compute Wm assuming that all m′ ∈ S − {m} have
higher priority than m 3
if Wm ≤ Dm 4

insert m in F 5

if F = ∅ 6

return Message set Z is not schedulable 7

else 8

m = chooseMsgForLevel l() 9
if m = m0 10

return Message set Z is not schedulable 11
else 12

Set V(m) = l, F = ∅ and S = S − {m} 13

return Feasible priority assignment o 14

The algorithm uses the fact that M priority levels, i.e., one priority per message, have to be

assigned for each message set Z. At each priority level, starting from the lowest priority

level M, it is determined in line 3 and 4 which messages meet their deadline if all remaining

unscheduled messages are assigned a higher priority level (this step is performed by apply-

ing the schedulability analysis in Section 2.2.2). One of these messages is then assigned

the current priority level (line 8 – 10) and the algorithm proceeds to the next higher priority
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level until all messages are assigned. Different from the previous literature [5, 4], general-

ized algorithm collects all schedulable messages at level l in the set F . Then, the function

chooseMsgForLevel l is used to determine one message from F for level l (if no such mes-

sage exists, a dummy message m0 is returned and the message set is not schedulable). Conse-

quently, different implementations of chooseMsgForLevel l will yield different schedules.

For example, the schedule according to [7, 4] is recovered if chooseMsgForLevel l always

returns the message that was first added to F . The algorithm is guaranteed to find a feasible

schedule if such schedule exists [5, 4] in at most
M(M + 1)

2
iterations since at each level l, at

most l messages have to be checked. An important property of this algorithms is, that it finds

a feasible schedule whenever such schedule exists [6], and hence yields the best scheduling

result if messages IDs can be freely assigned.
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CHAPTER 3

CAN Scheduling with Offsets

3.1 Offset Scheduling Description

CAN is an asynchronous bus which implies that any node may attempt to transmit a message

without considering other nodes. Morover, any message may be queued at any time if there

is not a criteria about release times of the messages. Hence, it has to be assumed that all

higher priority messages are released at the same time in the worst case scenario. However,

this assumption can be relaxed by controling the release times of messages of each node

without introducing synchronization among the nodes. This can be achieved by introducing

equally-spaced time windows in each node as is shown in Figure 3.1 for a window size of

2 ms. Then, the first instance of a message is released in a pre-specified window, that is called

offset. For example, M1 in Figure 3.1 is released by node N1 with an offset of 0 and M7 of

node N3 is released with offset 6 ms. Reference point of the offsets is the first time at which

the node is ready to transmit. Following instances of the message are then sent periodically

with accepting the first transmission as the time origin [13]. The assignment of offsets to all

messages of a CAN network is denoted as an offset schedule.

After offsets are assigned to the messages, only messages that are assigned to the same win-

dow can be released at the same time. There is always the possibility that frames of any two

or more messages coming from distinct nodes are released at the same time, inducing delays

for some frames [13]. Depending on the clock skew of the different nodes, messages from all

possible window combinations can be released at the same time. For example, it is possible

that M1 of N1 and M7 of N3 are released at the same time due to clock skew of N1 and N3.

However, in that case, for example message M3 of N3 cannot be released at the same time,
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since it has a different offset. That is, offset scheduling reduces the number of messages that

can be released at the same time.

Figure 3.1: An example CAN Network with Offset Assigned Messages

A low-complexity algorithm for deciding offsets, which has good performances for typical

automotive networks is proposed by N. Navet et. al. in [3]. Main purpose of this algorithm is

to distribute the workload as uniformly as possible over time, in order to avoid synchronous

releases leading to traffic peaks and thus to large frame response times. In other words, offset

scheduling makes the transmissions as far apart as possible. This algorithm is explained in

Seciton 3.2.

3.2 Standard Offset Scheduling Algorithm (SOSA)

Scheduling messages with offset is very beneficial in terms of worst-case response times. In

this scheduling, the first instance of the message is released with delay, which is called offset.

Subsequent instances are then sent periodically, with the first transmission as time origin. The

challenge is to assign offsets for each message, which influences on the WCRT.

In the following chapter, we show that the complexity of finding optimum offsets is too much.

A first approach in the literature is to spread the workload over time as much as possible, so

that traffic peaks and large frame response times are avoided [3]. Offset assignment algorithm

is applied to each node independently. We call this first aproach as Standard Offset Scheduling

Algorithm (SOSA). SOSA is a first heuristic approach proposed for offset scheduling in the
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literature.

3.2.1 Design Hypothesis and Notations

The SOSA is introduced with the following design hypotheses that are adopted from the prop-

erties of practical applications.

• There are only a few distinct values for the periods ( e.g. 5 to 10 ).

• The time is discrete with a certain granularity: the offsets of the messages, and their

periods are multiples of g.

3.2.2 Description of the Algorithm

Aim of the algorithm is to find offset Om of each message m in a node. In order to perform

the algorithm, it is essential to know periods Tm of each message m in the node. The choise

of the offset for message stream is made in the interval [0,Tm). To spread the traffic over

time, the offset of each message is chosen such that the release of its first message is ”as far

as possible” from other messages already scheduled. This is achieved by initially identifying

the longest interval with the smallest workload, and then assigning offset for m in the middle

of this interval.

Offsets are assigned based on an analysis performed over time interval [0,Tmax), where Tmax

is the maximum of message periods in the node. The release times of the frames in the interval

[0,Tmax) are stored in an array A having Tmax/g elements where ith element of A [i] is the set

of frames released at possible release time i.

For each message m assigned to the node, initialy the least load, lm, is calculated in the interval

[0,Tm). Then maximum of the least loaded intervals is found in the interval [0,Tm), where

least loaded intervals only comprise release times having a load equal to lm. The first and

last possible release time of the maximum of the least loaded intervals are denoted by Ik

and Ek. Then, offset Om is as the middle of the maximum of the least loaded intervals, the

corresponding possible release time is denoted by ak and ak = (Ik + Ek) /2. Algorithm is

applied to each node independently without considering messages of other nodes [3].
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3.2.3 The Algorithm

Algorithm 2 Input: message set Z, periods Tm of each message m, granularity length g

Store the messages with increasing value of their period. 1

Calculate Tmax 2

Create an empty release array having Tmax/g elements 3

for each message m1 to mn, Set offset for mk 4

Look for least load lk in the interval [0,Tk) 5

Look for one of the longest least loaded intervals in [0,Tk) 6

Set the offset Ok in the middle of the 2nd interval. 7

Update the release array A to store the frames of mk in the interval [0,Tmax) : 8

for each i ∈ N and ak + i ∗ (Tk/g) ≤ (Tmax/g)

A[rk + i ∗ Tk/g] = A[rk + i ∗ Tk/g] ∪ mk,i + 1 9

end

3.2.4 Application of the Algorithm

Consider a CAN Network having four different nodes and bandwidth of this network is 50

Kb/s. Messages of the network are described in the Table 3.1. In this example, assigning

offsets only to the messages of N1 is explained.

3 different messages are assigned to node N1; F = {m1,m5,m9}with periods T1 = 10, T5 = 20

and T9 = 20. Granularity of the system is g = 2 miliseconds. Initially, messages are stored by

increasing value of their period: m1, m5 and m9. Tmax is the maximum of the periods which

is 20; so array A has Tmax
g = 10 elements.

First, the algorithm decides for offset of message m1. Least load l1 is 0 in the interval [1, 5]

implies I1=1 and E1=5 a1 = (1 + 5)/2 = 3 ,so offset O1 is 2 · g. Array A is updated as

A[3] = m1,1 and A[8] = m1,2.

Then, the algorithm assigns offset to next message that is m5. Least load l5 is 0 and longest
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Table 3.1: Example CAN Network Messages and Their Properties

Message Node Transmission Time, Cm Period, Tm Deadline, Dm

in ms in ms in ms
m1 N1 0.6 10 5
m5 N1 0.5 20 10
m9 N1 1 20 10
m2 N2 0.6 6 20
m6 N2 1 8 20
m10 N2 0.5 12 40
m3 N3 1 4 50
m7 N3 0.8 10 7
m11 N3 0.6 20 5
m4 N4 1 4 20
m8 N4 0.5 24 20
m12 N4 1 24 10

least loaded interval is [4, 7] implies I5=4 and E5=7 a5 = (4 + 7)/2 = 5, so offset O5 is 4 · g.

So, array A is updated as A[5] = m5,1.

For message m9, least load l9 is 0 and longest least loaded interval is [9, 12] implies I9=9 and

E9=12 a9 = (9 + 12)/2 = 10, so offset O9 is 9 · g. Hence, array A is updated as A[10] = m9,1.

Final release array of N1 can be seen in Table 3.2.

Table 3.2: The release array A of node N1

Possible Release Time (ms) 0 2 4 6 8 10 12 14 16 18
Possible Release Node, i 1 2 3 4 5 6 7 8 9 10

Release Array A[i] m1,1 m5,1 m1,2 m9,1

Offsets of the messages of nodes N2, N3 and N4 are assigned in a similar way as shown above.

All offsets assigned to all messages in this network by applying SOSA can be seen in the Table

3.3.

SOSA proposed by Navet et. al. [3] is executed on each station independently without con-

sidering the streams of the other nodes. They show that SOSA provides better performance

in terms of response times. However, it does not guarantee the schedulability of the system.

The performance of offset assignments is evaluated over 1000 random sets of messages in

[3]. They generate random message sets by using NETCARBENCH which is described in

Section 5.4. The randomly generated networks in [3] have an average load equal to 35%,
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Table 3.3: Example CAN Network Messages and Their Properties

Message Node Transmission Time, Cm Period, Tm Deadline, Dm Offset, Om

in ms in ms in ms in ms
m1 N1 0.6 10 5 4
m5 N1 0.5 20 10 8
m9 N1 1 20 10 18
m2 N2 0.6 6 20 2
m6 N2 1 8 20 4
m10 N2 0.5 12 40 6
m3 N3 1 4 50 0
m7 N3 0.8 10 7 2
m11 N3 0.6 20 5 6
m4 N4 1 4 20 0
m8 N4 0.5 24 10 2
m12 N4 1 24 10 6

where load is percentage of bandwidth utilization by the messages in the whole network.

In their study, the WCRT of the messages are computed with the software NETCAR-Analyzer,

first developed at INRIA, then taken over by the company RealTime-at-Work, which imple-

ments exact and very fast WCRT on CAN with offsets [3]. NETCAR-Analyzer is not used in

this thesis, instead the algorithm proposed by Lei Du and Guoqing Xu in [9] is implemented

to compute the WCRT of the messages.

SOSA improves Classical Scheduling in which offsets are not considered in the sense that fea-

sible schedules can be found for higher loads. Related results that compare the performances

can be seen in Section 5.6. However, Standard Offset Scheduling Algorithm does not consider

what happens in other nodes and does not include any information from a worst-case response

time analysis as described in this section.

3.3 Schedulability Analysis for Offset Scheduling

3.3.1 Description of the Algorithm

In order to guarantee that a message, especially a lower priority message, would meet its

deadline, worst case response time (WCRT) has to be calculated. Classical WCRT analysis

assumes that all messages can be generated at the same time. In offset scheduling, this is
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avoided by controlling the release times of messages in the nodes even if the nodes are not

synchronized. Hence, the WCRT analysis for conventional CAN as described in Section 2.2.2

has to be modified. We now describe the algorithm for the WCRT computation as presented

in [9].

The worst-case response time of a message m is composed of two elements: the maximum

transmission time Cm and the queuing delay Wm. The queuing delay Wm is made up of two

items: blocking and interference. Blocking, Bm, is caused by lower priority messages, whose

transmission continues when message m is released due to non-preempting nature of CAN.

Interference is caused by higher-priority messages than m, that are transmitted before m can

be.

In offset scheduling, more than one message can be released at the same time from differ-

ent nodes. This causes lower priority messages to be interferred by higher priority messages

[9]. The maximum amount of blocking occurs when a lower priority message starts transmis-

sion immediately before message m is queued and ready to be transmitted on the bus [13].

This message is called blocking message. So the next job is to find the possible blocking

message instance named blocking message and message instances that are released simulta-

neously with message m and named synchronized messages. These synchronized messages

are obtained after an iterative process, which is explained in later.

Initially, the synchronized message is chosen for each node different from Nm such that it has

the longest transmission time among the set of messages that are sent by that node with higher

priority than m. The initial queuing delay, W0
m, is calculated with these interferences; however

these synchronized messages may change in later.

Message instance candidates for blocking and synchronized messages are looked in the inter-

val called feasible interval [9]. This interval starts at the maximum release offset of hps(m, i),

Oi
max, and ends at Oi

max+Pi where Pi is the hyper-period that is calculated as least common

multiple of the periods of the messages in hps(m, i). Property of feasible interval is that the

instances of messages in the next hyper-period are the replicate of instances in the feasible

interval.

Figure 3.2 illustrates feasible interval and hyper-period of message m8 defined in the net-

work which is described in Section 3.2.4. Higher priority messages released from node N1,
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hps(m8, 1), are message m1 and message m5. Maximum release offset of hps(m8, 1), O1
max,

is 8 ms and length of hyper-period P1 is the least common multiple of the message periods,

lcm(10, 20), which is 20. As can be seen from Figure 3.2, lighter gray painted area indicates

the feasible interval. Feasible interval starts at O1
max=8 ms and ends at O1

max + P1 =28 ms.

Instances of messages in darker gray painted area is the next hyper-period and the replicate of

the feasible interval.

Figure 3.2: Illustration of hyper-period and feasible interval

Assuming that all higher priority messages which has the longest transmission time of the

node are released simultaneously from other nodes. Since the aim is to calculate worst case

response time, maximum interference of node i for message m and initial synchronized win-

dow are found at each node different than Nm among hps(m, i).

Cmax (i) = max
k∈hps(m,i)

(Ck) (3.1)

Considering the network described in Section 3.2.4, worst-case response time of message m8

is analyzed as an example. In the example, maximum interferences of the nodes for message

m8 are found as Cmax (1) = 0.6 ms, Cmax (2) = 1 ms and Cmax (3) = 1 ms.

Blocking message of node i for message m, which is generated from different node than Nm

and has the longest transmission time of the node is found among the lower priority messages.

Bmax (i) = max
k∈lps(m,i)

(Ck) (3.2)

In the example, blocking messages of each node for message m8 are like following: Bmax (1)
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= 1 ms, Bmax (2) = 0.5 ms and Bmax (3) = 0.6 ms.

In the following term, maximum blocking time is calculated. While calculating this term,

synchronized message, Cmax(i), is subtracted since it will be added while calculating queu-

ing delay; so that synchronized message is not taken into account for the node from where

blocking message is released.

Bm = max
1≤i≤Nmax,i,Nm

(Bmax(i) −Cmax(i)) (3.3)

If Bm is negative, this means that lower priority messages do not contribute to worst-case

response time of message m, so:

Bm = 0

Blocking for message m8, Bm8 , is found like below:

Bm8 = max ((1 − 0.6) , (0.5 − 1) , (0.6 − 1)) = 0.4ms

In the example, blocking term is obtained from node N1 for message m8, so initial contribution

of node N1 to qeuing delay of message m8 becomes Ctrb0
1 = Bmax (1) = 1 ms.

Higher priority messages released simultaneously with message m from the same node Nm

may also interfere with message m and worst-case of this interference is symbolized by C.

These interference messages are denoted by eqr(m, i)

C = maxi=1...bP/Tmc

 ∑
k∈eqr(m,i)

Ck

 (3.4)

In the example, since there is no higher priority message than message m8 that are released

simultaneously with message m8 from node N4, which can be seen from the Figure 3.3; so

C = 0.

Real contributions of the nodes are obtained after an iterative process, which is explained

in later. The contribution of node i at nth iteration is notated by Ctrbn
i . Each node i may
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contribute to the initial queuing delay of m by a blocking message or synchronized messages

or higher priority messages released simultaneously with message m from the same node Nm.

Ctrb0
i =


C if i = Nm;

Bmax(i) if i , Nm and node i is where blocking message is assigned;

Cmax(i) else;

For the situation of the example, initial contributions of N1 is due to a blocking message and

Ctrb0
1 = 1 ms. Initial contributions of N2 and N3 are due to synchronized messages; Ctrb0

2

= 1 ms and Ctrb0
3 = 1 ms. N4 is the node where message m8 is assigned to; so it may only

contribute with term C. However, it does not contribute at this example, in other words Ctrb0
4

= 0.

The initial queuing delay, W0
m, is the sum of the blocking time, interference of higher priority

messages released from other nodes and interference of message instances released simulta-

neously with message m from the same node.

W0
m = C + Bm +

∑
1≤i≤Nmax,i,Nm

Cmax(i) (3.5)

In the example, initial queuing delay of message m8 is calculated as below:

W0
m8

= Bm8 + Cmax (1) + Cmax (2) + Cmax (3) = 0.6 + 1 + 1 + 0.4 = 3ms

Initially, it as assumed that contribution of each node is obtained from the messages having

highest transmission times. However, worst case response times may occur at different sit-

uations; so maximum contribution term is searched at each node with an iterative process.

Initial step is finished when initial queuing delay, W0
m, is calculated. By using initial queuing

delay, W0
m, real queuing delay is obtained after an iterative process. Stopping condition of the

iteration process at kth iteration is either when Wk
m = Wk−1

m or when queuing delay becomes

greater then the deadline, Dm < Wk
m.

Wk
m = W0

m +
∑

1≤i≤Nmax

Ctrbk
i (3.6)
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Now, by using initial queuing delay w0
m8

, contribution terms of each node are calculated at

each iteration and they are added to the queuing delay. Iteration stops either when queuing

delay does not change or queuing delay reaches to deadline of the message.

In the example, let’s examine the contributions of each node in detail. Initial contribution of

node N1, Ctrb0
1, is obtained from a blocking message that is shown above. Now, for each

instance in the feasible interval of N1 how the queuing delay is affected is examined as if that

instance is the synchronized message. Feasible intervals of each node for message m8 can be

seen in the Figure 3.3. In the figure, Ji,k indicates the kth possible synchronized instance of

node i. As can be seen from the Figure 3.3, any instance in the feasible of node N1 decreases

the queuing delay if they were the synchronized messages. Since node N1 does not make

positive contribution at this iteration, then Ctrb1
1 is 0.

Initial contribution of node N2, Ctrb2
0, is 1 ms. If J2,1 was the synchronized message from

node N2, it wouldn’t make an extra contribution to the queuing delay. If J2,2 was chosen,

queuing delay would decrease -0.4 ms. If J2,3 was the synchronized message from node N2,

J2,4 would also be included in the queuing delay; so J2,3 would contribute 0.6 ms. J2,4 would

also decrease the queuing delay -0.4 ms if that was the synchronized message from N2. J2,5

and J2,6 would contribute 0.6 ms to the queuing delay. As a result, contribution of node N2 at

this iteration, Ctrb2
1, is the maximum contribution of the instances which is 0.6 ms.

Figure 3.3: Possible Synchronized Messages of message m8
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Node N3 initially contributes to the queuing delay of message m8, Ctrb3
0, 1 ms. J3,1, J3,4

and J3,6 would make extra 0.8 ms contribution while J3,2, J3,3 and J3,5 does not make any

contribution to queuing delay. Hence, contribution of node N3 at this iteration, Ctrb3
1, is 0.8

ms.

For node N4, J4,2 is the only instance to be interested in because that is the only window where

message m8 is released. Instance J4,2 would also be included in at this iteration due to length

of initial queuing delay. Hence N4 contributes 1 ms to the queuing delay at this iteration.

Contributions of each node for first iteration are found, so new queuing delay can be calcu-

lated. w1
m8

= w0
m8

+ Ctrb1
1 + Ctrb2

1 + Ctrb3
1 + Ctrb4

1 = 3+0+0.6+0.8+1 = 5.4 ms. Since w1
m8

> w0
m8

, algorithm continues with next iteration.

Table 3.4: Iteration 1

Node Instance Contribution of Instance Contribution of Node
N1 J1,1 -0.5 ms

Ctrb1
1 is 0N1 J1,2 -0.4 ms

N1 J1,3 -0.4 ms
N2 J2,1 0

Ctrb2
1 is 0.6 ms

N2 J2,2 -0.4 ms
N2 J2,3 0.6 ms
N2 J2,4 -0.4 ms
N2 J2,5 0.6 ms
N2 J2,6 0.6 ms
N3 J3,1 0.8 ms

Ctrb3
1 is 0.8 ms

N3 J3,2 0
N3 J3,3 0
N3 J3,4 0.8 ms
N3 J3,5 0
N3 J3,6 0.8 ms
N4 J4,1 1 ms Ctrb4

1 is 1 ms

w1
m8

= w0
m8

+ Ctrb1
1 + Ctrb2

1 + Ctrb3
1 + Ctrb4

1 = 3+0+0.6+0.8+1 = 5.4 ms
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Table 3.5: Iteration 2

Node Instance Contribution of Instance Contribution of Node
N1 J1,1 -0.5 ms

Ctrb1
2 is 0.1 msN1 J1,2 -0.4 ms

N1 J1,3 0.1 ms
N2 J2,1 0.6 ms

Ctrb2
2 is 0.6 ms

N2 J2,2 0.6 ms
N2 J2,3 0.6 ms
N2 J2,4 -0.4 ms
N2 J2,5 0.6 ms
N2 J2,6 0.6 ms
N3 J3,1 0.8 ms

Ctrb3
2 is 1.8 ms

N3 J3,2 1 ms
N3 J3,3 1.8 ms
N3 J3,4 1.8 ms
N3 J3,5 1 ms
N3 J3,6 1.8 ms
N4 J4,1 1 ms Ctrb4

2 is 1 m

w2
m8

= w0
m8

+ Ctrb1
2 + Ctrb2

2 + Ctrb3
2 + Ctrb4

2 = 3+0.1+0.6+1.8+1 = 6.5 ms

Table 3.6: Iteration 3

Node Instance Contribution of Instance Contribution of Node
N1 J1,1 0.1 ms

Ctrb1
3 is 0.1 msN1 J1,2 -0.4 ms

N1 J1,3 0.1 ms
N2 J2,1 0.6 ms

Ctrb2
3 is 1.2 ms

N2 J2,2 1.2 ms
N2 J2,3 0.6 ms
N2 J2,4 -0.4 ms
N2 J2,5 1.2 ms
N2 J2,6 1.2 ms
N3 J3,1 0.8 ms

Ctrb3
3 is 1.8 ms

N3 J3,2 1 ms
N3 J3,3 1.8 ms
N3 J3,4 1.8 ms
N3 J3,5 1 ms
N3 J3,6 1.8 ms
N4 J4,1 2 ms Ctrb4

3 is 2 ms

w3
m8

= w0
m8

+ Ctrb1
3 + Ctrb2

3 + Ctrb3
3 + Ctrb4

3 = 3+0.1+1.2+1.8+2 = 8.1 ms
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Table 3.7: Iteration 4

Node Instance Contribution of Instance Contribution of Node
N1 J1,1 0.1 ms

Ctrb1
4 is 0.1 msN1 J1,2 -0.4 ms

N1 J1,3 0.1
N2 J2,1 0.6 ms

Ctrb2
4 is 1.2 ms

N2 J2,2 1.2 ms
N2 J2,3 0.6 ms
N2 J2,4 1.2 ms
N2 J2,5 1.2 ms
N2 J2,6 1.2 ms
N3 J3,1 1.8 ms

Ctrb3
4 is 2.8 ms

N3 J3,2 1 ms
N3 J3,3 2.8 ms
N3 J3,4 2.8 ms
N3 J3,5 2.8 ms
N3 J3,6 2.8 ms
N4 J4,1 2 ms Ctrb4

4 is 2 ms

w4
m8

= w0
m8

+ Ctrb1
4 + Ctrb2

4 + Ctrb3
4 + Ctrb4

4 = 3+0.1+1.2+2.8+2 = 9.1 ms

Table 3.8: Iteration 5

Node Instance Contribution of Instance Contribution of Node
N1 J1,1 0.1 ms

Ctrb1
5 is 0N1 J1,2 -0.4 ms

N1 J1,3 0.1 ms
N2 J2,1 1.6 ms

Ctrb2
5 is 2.2 ms

N2 J2,2 1.2 ms
N2 J2,3 2.2 ms
N2 J2,4 1.2 ms
N2 J2,5 2.2 ms
N2 J2,6 1.2 ms
N3 J3,1 1.8 ms

Ctrb3
5 is 2.8 ms

N3 J3,2 1 ms
N3 J3,3 2.8 ms
N3 J3,4 2.8 ms
N3 J3,5 2.8 ms
N3 J3,6 2.8 ms
N4 J4,1 2 ms Ctrb4

5 is 2 ms

w5
m8

= w0
m8

+ Ctrb1
5 + Ctrb2

5 + Ctrb3
5 + Ctrb4

5 = 3+0.1+2.2+2.8+2 = 10.1 ms

Since w5
m8

= 10.1 ms > Dm8 = 10 ms , iteration stops here; message m8 is not schedulable. So,

it can be concluded that system is also not schedulable.
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3.3.2 The Algorithm

The worst-case response time analysis for offset scheduling algorithm described above is

summarized in the following procedure.

Algorithm 3 Input: Priority, Period Tm, Transmission time Cm and Offset Om of each

message m;

for each node i calculate

Calculate, T i
max, period of the message which has longest period

Calculate, Pi, hyper-period

end

end message m, m = 1 to Mm

for each node i = 1 to Nmax

Find Cmax(i) and Bmax(i)
Find release time of instances in feasible interval

end
Calculate Bm, w0

m and Ctrb0
i

wn
m = 0

while wn
m , w0

m

wn
m = w0

m

for each node i = 1 to Nmax

for each instance j, j = 1 to Nins(m, i) in feasible interval in node i
Compute Ctrb j for instance j with initial value wn

m

end
Ctrbn

i = max1≤ j≤Nins(m,i)(Ctrb j)
return the synchronized message
wn

m = w0
m + Ctrbn

i
end

end
Rm = wm + Cm

return Rm

end

The worst-case response time analysis for offset scheduling algorithm described in this section

is implemented and used to analyze the performances of the offset scheduling algorithms in

this thesis.
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CHAPTER 4

Developed Algorithms for Offset Scheduling

4.1 Problems and Challenges

4.1.1 Problem

In this thesis, we aim to find a feasible offset schedule for a given message set on CAN

whenever it exists. Standard Offset Scheduling Algorithm (SOSA) assigns offsets as described

in Section 3.2 by trying to distribute the workload as uniformly as possible over time for each

node without including any worst-case response time analysis. As the main contribution of

this thesis, we develop two different algorithms that improve the performances of SOSA in the

sense of schedulability at higher loads. The first algorithm is denoted as Local Neighborhood

Search Algorithm (LNSA). It starts from the results of SOSA and tries to vary the message

offsets, while retaining best solution. The second algorithm is a genetic algorithm that evolves

along random variations of message offsets.

4.1.2 Challenges

In offset scheduling, the search space is too large to find a feasible schedule for message sets

of realistic sizes. In order to illustrate this claim, consider a message set in which there are

M messages released from N different nodes. Tm/g is the number of possible offsets that

can be assigned to message m, where Tm is the period of message m and g is the length of a

window in the offset schedule and calculated as the gcd of the periods in the system. Each

offset schedule is defined by the assignment of one unique offset to each message. Hence,

the number of different possible schedules for a message set is given by the product of the
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number of offsets for each message. We denote this number as S CHDmax, and compute:

S CHDmax =

Nmax∏
i=1

Ti/g (4.1)

If Omax denotes the maximum number of possible offsets, then the size of the search space

is bounded by OmaxN
max. Accordingly, an exhaustive search for a feasible schedule has a

complexity O((Omax)Nmax) which is exponential in the number of messages.

The main objective of offset scheduling is to assign message offsets in order to achieve a

feasible schedule. Since the search space is very large, any practically applicable scheduling

algorithm must employ a heuristic seach strategy in order to avoid scanning the whole search

space. For instance, for a small message set composed of 10 messages whose periods are

10 ms and granularity of the system is 2 ms; there are (10/2)10, 9765625, different possi-

ble schedulings. In practice, number of messages is actually order of 50 or more; so it is

inpractical to analyze all possible schedulings.

The heuristic of the SOSA is to assign offsets such that as few messages of each node are re-

leased at the same time. This heuristic is computationally very efficient, since it only requires

computations on the small message sets for each invdividual node. However, the method does

not consider the interference and blocking caused by messages of other nodes as discussed

in Section 3.3. Hence, as is confirmed in Section 5.6, a satisfactory performance of this

algorithm cannot be expected.

The aim of this thesis is the development of offset scheduling algorithms for CAN, that in-

corporate information about the dependencies between nodes. As will be shown in Chapter

5, neglecting these dependencies, as is done in the SOSA, significantly reduces the network

load, where feasible schedules can be found. The main idea of the thesis is to introduce the

slack for each message, and to reformulate the offset scheduling problem as a constraint op-

timization problem that maximizes the sum of message slacks, while ensuring that all slacks

remain positive. The following sections elaborate this idea.
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4.1.3 Offset Scheduling as Optimization Problem

If a message meets its deadline despite a worst-case release pattern of other messages, that

message is schedulable. A system is schedulable if all messages in the system are schedulable.

The main purpose of the scheduling algorithms are to guarantee that all messages arrive at the

destination node before their deadlines. So, the most important constraint for the scheduling

algorithms is the schedulability.

∀m = 1, . . . ,M : Rm ≤ Dm

Absolute slack time of message m is denoted by S tm and is the difference between the deadline

and the worst-case response time; S tm = Dm − Rm. If absolute slack time of a message is

low, this indicates that message is close to be unschedulable. The higher the absolute slack

time, the less critical that message to be unschedulable. So, it is desirable to obtain high

absolute slack times for the messages. In order to use absolute slack time of message with

long deadline and absolute slack time of message with small deadline at the same time, it is

more preferable to use relative slack slack of the messages which is the ratio of slack time of

a message to its deadline, S m = S tm/Dm. In order to compare the performances of solutions;

average of relative slacks of the system, S avg is used.

S avg =

 ∑
1≤m≤M

S i

 /M (4.2)

If S i
avg denotes the average of relative slacks of the system for the schedule S CHDi, then the

constraint optimization problem can be formulated like following:

max
1,...,S CHDmax

(
S avg

)
sub ject to ∀m = 1, . . . ,M : S m ≥ 0

where S avg is the objective function as defined in (4.2), S m ≥ 0 are the constraints and the

maximization is performed over all possible schedules 1, . . . , S CHDmax.

In the next sections, we present two heuristic optimization strategies in order to estimate an

optimal solution. It has to be noted that our main goal is not finding a global optimum for
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S avg but finding a large value for S avg while meeting the schedulability constraint.

4.2 Local Neighborhood Search Algorithm (LNSA)

4.2.1 Description of LNSA

In the thesis, two different heuristics are proposed to solve the optimization problem. The first

one is named as Local Neighborhood Search Algorithm (LNSA) which starts from the solution

of SOSA with using different message sorting strategies.

SOSA does not care about dependencies among nodes but schedules each node independently.

From point of view of node i where message m is released, contributions of other nodes to

WCRT of message m are unpredictable. So, distributing the workload as uniformly as possible

over time may not give good solution every time. In our approach, we use the SOSA as a basis

and then do the WCRT analysis to successively verify schedulability and then change the

schedule by keeping the best solution.

Initially, LNSA assigns offsets to the messages with SOSA. Then, it sorts the messages in the

message set according to three optional strategies. These strategies are by slacks, by IDs

and by deadlines of the messages. When messages are sorted by slacks of the messages,

algorithm starts from the message having minimum slack according to the SOSA. Small slack

indicates that message is critical to be unschedulable and zero slack states that message is

unschedulable.

While messages are sorted according to IDs of the messages, LNSA starts analyzing the mes-

sages beginning from maximum ID message; i.e. lowest priority message. Sorting the mes-

sages by deadlines indicates that messages are put in the order as message having smallest

deadline is used first. In order to differentiate which sorting strategy is used with the algo-

rithm, name of the sorting strategy is written in the paranthesis after LNSA. For instance,

LNSA (by ID) indicates that messages are sorted according to IDs of the messages in LNSA.

Algorithm visits each message once in the order of how they are sorted. When a message

is visited, algortihm does the WCRT analysis for all possible offsets of that message while

keeping offsets of other messages the same. Then, slacks of all messages in the message

set are summed and offset which gives the maximum of the sum of slacks is assigned to
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the current message. This means that schedule is modified to a new schedule and algorithm

continues with the modified schedule for the remainig messages.

The procedure described above is summarized in the following algorithm. If Omax denotes

the maximum number of possible offsets, then complexity of algorithm is O(Omax · M).

Algorithm 4 Input: message set Z

Do offset scheduling with SOSA for Z 1

Sort the messages by ID or Slack or Deadline 2

stdS umS lack = sum of slacks of Standard Offset Schedule 3

maxS umS lack = stdS umS lack 4

for each message m in sorted message set Z 5

currentS umS lack = 0 6

for each possible offset o of message m 7

assign the offset to current message 8
do WCRT analysis and remember the slack S m of each message m 9
for each message m in set Z 10

currentS umS lack = currentS umS lack + S m 11
end 12
if currentS umS lack > maxS umS lack 13

maxS umS lack = currentS umS lack 14
offset of the message m, Om = o 15

end 16

end 17

end 18

4.2.2 Illustration of LNSA

Consider a network with 3 nodes N1, N2 and N3. Granularity, g, of the system is 200 us.

3 different messages are assigned to N1; which are m1,m2,m3 with periods T1 = 600ms,

T2 = 1200ms, T3 = 1200ms. SOSA assigns offsets to these message as described in Section

3.2; O1 = 200ms, O2 = 400ms, O3 = 0ms.

LNSA initially analyzes WCRTs of each message in the system and calculates the sum of

slacks of all messages then saves the result in stdS umS lack variable. Suppose that sum of

slacks of the system that SOSA assigned its offsets is initially calculated as stdS umS lack =

8050. So, maxS umS lack is initialized to 8050. Assume that all messages in the system are
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sorted with respect to their periods.

Messages are analyzed in the order of how they are sorted. Without considering other two

nodes and their messages in the system, assume that present order is for messaage m2. Mes-

sage m2 has T2/g=1200/200=6 different possible offsets which are O1
2 = 0, O2

2 = 200,

O3
2 = 400, O4

2 = 600, O5
2 = 800 and O6

2 = 1000. Each possible offset is assigned to mes-

sage m2 one-by-one, and WCRTs of m2 and rest of the messages in the system are analyzed.

Then, slacks of all messages are summed for each offset. If the sum of slacks is greater than

stdS umS lack, then that offset is included in possible new offset set. Assume that sum of

slacks are calculated like 8000, 8100, 8050, 7950, 8250 and 8050 for each possible offset of

m2. It is seen that when offsets O2
2 or O5

2 are assigned to message m2, better performance is

obtained. New offset is chosen as the offset resulting in the maximum of the sum of slacks

value if greater than stdS umS lack. So; new offset of message m2 is O5
2 implying O2 = 800

ms and maxS umS lack becomes 8250.

Message m3 also has 6 different possible offsets. Assume that maxS umS lack is still 8250

and following sum of slack values are calculated for corresponding offsets: 8250, 7950, 8000,

8050, 7800 and 7900. It can be seen that none of these values is greater than maxS umS lack.

Hence, offsets of message m3 remains same, which is O3 = 0 ms.

Suppose that maxS umS lack is 8400 when present order is for messaage m1 and m1 is the

final message. m1 has 600/200 = 3 different possible offsets and sum of slack values are

calculated for corresponding offsets: 8450, 8450 and 8000. O1
1 and O2

1 are both greater than

maxS umS lack, but O1
1 is chosen as the new offset to be assigned to m1 because it comes

earlier. So, O1 = 0.

As illustrated in the example above, main goal is to find a large value for S avg, which implies

the decrease in the total WCRT of the system. As shown in Section 5.6, this also results in

performance boost in terms of schedulability. On the contrary, LNSA changes one offset at a

time to find a better schedule; however, a better solution may be obtained by modifying two

or more offsets at the same time.
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4.3 Genetic Algorithm Approach

4.3.1 General Description

Genetic Algorithm (GA) is an optimization algorithm that mimics the process of natural evo-

lution, such as inheritance, mutation, selection and crossover. GA simulates processes in

natural system necessary for evolution, specifically survival of the fittest. GAs show good

performance even for large search spaces, and potentially find good solutions rapidly.

GA starts with a randomly generated set of solutions called population. In order to generate a

new population, solutions from the previous population are taken and processed. In particular,

the fitness of every individual in the population is evaluated. Individuals having better fitness

are selected as parents to form new individuals. Genetic operators such as mutation and

crossover are applied to evolve the solutions in order to find the best one. The new population

is used in the next iteration of the algorithm. The GA terminates either if a satisfactory solution

is obtained or if the maximum number of iterations is reached. It has to be noted that, if the

algorithm has terminated due to maximum number of iterations, a satisfactory solution may

or may not have been obtained. The general procedure for a GA is shown in Algorithm 5.

Algorithm 5 Input:Offset Schedule, mutation probability, crossover probability

Generate random population of n individuals 1

Evaluate the fitness of each individual in the population 2

Create new population by repeating following steps until the new population is complete 3

Select two parent individuals from the population according to their fitness. 4

Cross over the parents with a crossover probability to generate new children. 5

Make mutations with a mutation probability. 6

Put new children into the population. 7

Use new generated population for a further run of algorithm 8

if the end condition is satisfied 9

stop and return the best solution in current population 10

else

Go to step 2 11

In order to use GA, some parameters have to be adjusted before. maxIterationNo is the max-

imum number of iterations that GA can make. Population size is denoted by populationNo.
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Maximum number of child schedules that can be generated from parents at each iteration is

indicated by maxChildrenNo. parentNo indicates the number of parent schedules that are

chosen among the schedules and have the best fitness. Amount of the offsets to be mutated

is determined by some ratio of messages in the schedule, which is called mutation probabil-

ity (ratio) and denoted by mutationRatio. These messages are chosen randomly among all

messages. Crossover probability (ratio) describes the ratio of offsets obtained from one of the

parents and remaining offsets are obtained from the other parent. crossover probability (ratio)

is denoted as crossoverRatio.

4.3.2 Genetic Algorithm for Offset Scheduling (GAOS)

Since the search space is too large for offset scheduling, GAOS is applied as an alternative

to LNSAs defined in Section 4.2. In the LNSAs, we always change a single offset and we

always keep the ”best” solution. Now for GAOS , we keep a set of ”fittest” solutions and

evolve the optimization from there. It has to be noted that we do not use the GAOS in order to

find an optimal feasible solution, but we use the GAOS in order to determine search directions

that move solution schedules from the infeasible to feasible solutions. Hence, the GAOS is

applied to search in the infeasible space by maximizing the fitness of individuals to move into

the feasible space. If a feasible solution is found, GAOS stops.

In offset scheduling case, we define an individual as an offset schedule which is composed of

assigned offsets for each message in the message set; i.e. individuals of the population are the

offset schedules. In our solution, we generally use the solution of SOSA in order to generate

initial population. Precisely, the Standard Offset Schedule constitutes one individual of the

initial population, and other individuals of the initial population are generated by mutations

of the Standard Offset Schedule. Here, a mutation is obtained by randomly assigning offsets

to chosen message among all possible offsets of that message.

Figure 4.1 (a) shows an example schedule generated by SOSA. Schedule is composed of fif-

teen messages and offsets assigned to these messages. (b), (c) and (d) are the other schedules

obtained by applying mutations to Standard Offset Schedule. In this example, mutation ratio

is 20% which means 3 of 15 messages are chosen randomly to apply mutation.

Fitness of each schedule in the population is evaluated by doing worst-case response time
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Figure 4.1: Example initial population to use in Genetic Algorithm

analysis which gives performance metrics of a schedule which are the schedulability and sum

of slack times of a schedule. Then, parentNo number of parent schedules having the best

fitness are chosen from the population in order to generate new individuals. In the imple-

mentation of GAOS, parentNo is adjusted to 2. Number of new indidual schedules are deter-

mined randomly between one and maxChildrenNo at each iteration. maxChildrenNo is set

to 5 in the implementation of GAOS. Offsets of new children schedules are initially assigned

by crossing over the parents with a crossover probability. Then, some number of message

offsets which is described by mutation ratio are mutated. Fitness of new child schedules are

evaluated, and if a schedulable solution is obtained the algorithm stops; otherwise weakest so-

lutions are eliminated to keep the population size at populationNo and algorithms continues

at most for predefined maximum iteration number.

Figure 4.2: Illustration of Crossover Used for Generating New Schedules. (a) and (b) are the

parent schedules, and (c), (d) and (e) are the child schedules generated from (a) and (b)

How parent schedules are crossovered to generate new child schedules are illustrated in Fig-

ure 4.2. (a) and (b) are the parent schedules which are chosen from the population because

they have the best fitness. In this example, three child schedules are generated which are

(c), (d) and (e) and crossover ratio is 3/7. As shown, each message offset of child sched-
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ules is produced by randomly choosing the parent schedule and then assigning its offset to

corresponding message.

Figure 4.3 shows an example of mutation that is applied to the schedules. Initially, number

of messages that are used for mutation is determined according to the mutation ratio. In this

example, one of the seven messages is chosen for mutation. This message is chosen randomly

from the message set. The mutation is performed by randomly assigning a new offset to the

message from the possible offsets.

Figure 4.3: Illustration of mutation applied to child schedules. (a), (b) and (c) are the child

schedules which mutation is applied with 1/7 mutation probability.

The overall GA for offset scheduling, that is developed in this thesis is shown in Algorithm

6. It follows the general procedure of a GA in Algorithm 5, with our particular definitions of

the crossover, mutation, etc.
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Algorithm 6 Input: message set Z, maxIterationNo, populationNo, mutationRatio,

crossoverRatio, maxChildrenNo

Include Standard Offset Schedule to initial population 1

for i=1 to populationNo-1 2

Generate a schedule by applying mutation to Standard Offset Schedule and include to
initial population 3

end 4

for each schedule in the population 5

Do the Offset WCRT analysis and check the schedulability of the schedule 6

if schedulable 7

stop and return the schedulable solution 8

else 9

evaluate the fitness of the schedule as sum of the slack of the messages 10

end 11

for iteration x=1 to maxIterationNo 12

Select two parent schedules from the population having best fitness. 13

Cross over the parent schedules with crossoverRatio to generate new schedules. 14

Make mutations to new schedules with mutationRatio. 15

for each new schedule 16

Do the Offset WCRT analysis and check the schedulability of the schedule 17
if schedulable 18

stop and return the schedulable solution 19
else 20

Evaluate the fitness of the schedule as sum of the slack of the messages 21
Put new schedule into the population 22

end 23

Keep the amount of populationNo schedules having best fitness 24

end 25

return the best solution in current population 26
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CHAPTER 5

Experimental Evaluation of the Developed Offset Scheduling

Algorithms

5.1 Development Environment

The algorithms are implemented in the C++ programming language, and compiled with Mi-

crosoft Visual Studio as a Console Application for the Windows operating system. Imple-

mentations are built on Automotive Scheduler C++ API which is created by Assist. Prof. Dr.

Klaus Schmidt [10]. As a C++ implementation, the natural application interface of the Auto-

motive Scheduler is given by C++ class and function declarations. The Automotive Scheduler

is organized in four components, namely CAN Tools for the simulation of CAN networks,

FlexRay Tools, Automotive Tools and Basic Functions for providing basic functionality.

5.2 Existing Functionality of the Automotive Scheduling Software

In the implementations of the thesis, mainly Message and CANScheduler classes of the

Automotive Scheduler are used. Message class is used to define the CAN messages of

the network. This message model describes the properties of a message that are relevant for

CAN scheduling. ID, station number, period, length, offset etc. properties of the message can

be set and be accessed by the respective member functions.

The CANScheduler class takes a set of CAN messages and either analyses if a given priority

assignment is schedulable or tries to find a schedulable priority assignment. The existing

Scheduler is limited to the classical case where offsets are not considered. Analyze function

of The CANScheduler class analyses whether the given message set is schedulable or not by
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using the algorithm described in 2.2.2. The AnalyzeMessage function is called for each

message in order to analyze the schedulability of a specific message.

5.3 Implemented Functions in the Scope of the Thesis

The offset scheduling algorithms developed in this thesis and the algorithm which performs

worst-case response time analysis for CAN messages with offsets are implemented as the

functions of the CANScheduler class.

Standard Offset Scheduling Algorithm (SOSA) explained in Section 3.2 is implemented in

function offsetSchedule. Input of the function is a message vector. Even though offsets are

already assigned to any message, this function independently assigns offset for each message

in the vector. Messages are grouped according to their nodes and then SOSA is applied to

each group independently.

offsetWCRTanalyze function is the implementation of the algorithm described in Section

3.3. This function takes a message vector as input whereby, it is assumed that offsets are

pre-assigned, for example according to the SOSA. It analyzes the worst-case response times of

each message and determines whether the message is schedulable or not. If all the messages

are schedulable, then function returns true; otherwise if any message is unschedulable then it

returns false. In addition, the function can return the respective worst-case response times.

offsetSchedulingGA function finds an offset schedule as performing a genetic algorithm

explained in the Section 4.3. Input of the function is a message vector. offsetSchedulingGA

searches for a schedulable solution at most for a predefined number of iterations. It stops

when it finds a schedulable solution and returns it; otherwise it returns the best solution in the

population.

The proposed solution to find an offset schedule which is described in Section 4.2 is imple-

mented in offsetLNSA function. Initially, offsets are assigned to the messages with the SOSA

because the Standard Offset Schedule is used as a basis and then do the WCRT analysis to

successively verify schedulability and then change the schedule by keeping the best solution.

Finally, it returns the best solution it can find.
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5.4 Description of NETCARBENCH

In order to test the scheduling algorithms, we need to generate message sets. We generate the

message sets by using NETCARBENCH tools that are developed to be used in the design of

in-vehicle communication networks [16].

NETCARBENCH allows users to define the parameters of the generated message sets in a

configuration [16]. The outcomes of NETCARBENCH are satisfactorily close to the input

specifications. User can define the characteristics of messages and the network: such as load

and bandwidth of the network, number of nodes in the network, periods and length of the

message with defined weight, load of the stations, etc [11]. NETCARBENCH also assigns

the IDs of the messages randomly among the interval defined in the configuration file.

5.5 Generated Message Sets

In order to test the performances of the algorithms, we define five different classes of message

sets to be generated by NETCARBENCH. We name these classes as ClassA, ClassB, ClassC,

classD and ClassE. Main difference between these classes is the load configuration of the

network. ClassA has the minimum load configuration, while classE has the maximum.

Main property of ClassA is to have very low utilization so that all combinations of offsets,

all search space, can be explored in a reasonable time. Periods used in ClassA are 6, 8 and

10 ms. Load of the network is defined as 17%-18% and number of the ECUs is 3. The

granularity configuration is set to 2 ms. Bandwidth of the network is 200 Kb/s. According

to the conducted experiments, NETCARBENCH generates average 10,87 messages per a test

with this configuration.

All configurations of ClassB, ClassC, ClassD and ClassE are same except for the load config-

uration of the network. These classes are created by using the message properties of Society

of Automotive Engineers (SAE) benchmark [17]. The SAE report describes a total of 53 mes-

sages assigned to seven different subsystem in a prototype car. It provides a good example to

illustrate the application of CAN. Periods of the messages defined in this benchmark are 5,

10, 20, 50, 100 and 1000 ms. The granularity configurations of these classes are set to 2 ms.

Number of the ECUs is 5-7 and bandwidth of the network is 500 Kb/s. Weight of the periods

41



and weight of the message lengths are assigned according to SAE benchmark data.

load of ClassB is set to 25%-30%. Average number of messages generated with this class

is 30.71. ClassB has low utilization and different algorithms can easily find a schedulable

solution. load configurations of ClassC, ClassD and ClassE are set to 45%-50%, 65%-70%

and 75%-80% in order. For each test, NETCARBENCH generates some number of messages

in order to satisfy the defined parameters. With these load configurations, NETCARBENCH

generates average of 54.42, 77.14 and 88.56 messages per a test for ClassC, ClassD and

ClassE respectively.

Table 5.1: Configuration of the Message Sets Used in the Experiments

Network Load (%) # ECUs Average # of Messages Bandwidth Frame Periods
Class A 17-18 3 10.87 200 kbps 6 ms -10 ms
Class B 25-30 5-7 30.71 500 kbps 5 ms - 1 s
Class C 45-50 5-7 54.42 500 kbps 5 ms - 1 s
Class D 65-70 5-7 77.14 500 kbps 5 ms - 1 s
Class E 75-80 5-7 88.56 500 kbps 5 ms - 1 s

5.6 Comparison and Discussion

In order to test the performances of the scheduling algorithms described in the thesis, message

sets are generated by using NETCARBENCH for each message set class defined in Section

5.5. For each message set, all scheduling algorithms are applied and then their performances

are evaluated in terms of schedulability, number of unscheduled messages, average of average

slacks and run time. Message sets are generated for each class until every simulation results of

every algorithms are stabilized in other words until 90% confidence interval is achieved [18].

For each class, between 500-1000 message sets are generated. In this section, we compare

the results of different algorithms with respect to schedulability ratio, average number of

unschedulable messages, average of average slacks and average run-time.

5.6.1 Test Results Obtained for Class A

Although the load configuration of this class is low, period configurations of this class are

chosen to be so small such that it is difficult to find a schedulable solution. The reason why

42



load of the bus and lengths of the periods are kept low is that the whole search space can be

explored in a reasonable time, in order to obtain optimum schedule having the maximum aver-

age slack with schedulability constraint. Thus, the performance of the scheduling algorithms

can be compared with the optimum schedule.

Figure 5.1: Schedulability Performance of the Algorithms for Class A

Since the most important performance metric is the schedulability of the system, plots for

the schedulability ratio give major idea about the performances of the algorithms. Figure

5.1 indicates that GAOS produces good results when the number of message is small, and

performance of GAOS is very close to the optimum solution in terms of schedulability which

means, almost whenever a feasible schedule exists, it is found by GAOS.
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Figure 5.2: Average Number of Unscheduled Messages for Class A

Average number of unschedulable messages is obtained by averaging the number of messages

which are not made schedulable by the corresponding scheduling algorithm over the number

of tests conducted for the corresponding class. Hence, this number gives parallel idea that how

much an algorithm is successful to make messages schedulable. As can be seen from Figure

5.1 and Figure 5.2, number of unscheduled messages per algorithm is inversely proportional

to schedulability performance of that algorithm.

Figure 5.3: Average Slacks for Class A

As can be seen from Figure 5.3, although schedulability performance of the algorithms are
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very different, average slacks of different algorithms are not very different. So, it can be

concluded that to have a good distribution of the available slack among the different messages

is very important.

Figure 5.4: Average Run-Time for Class A

Run times of the algorithms developed in this thesis are always higher than Classical and

SOSA because the complexity of the developed algorithms is higher when compared to Clas-

sical and SOSA because of the integration of the WCRT analysis in the schedule computation.

Run times of LNSAs of different sorting strategies are always close to each other for any con-

figuration because LNSA tries the same number of schedules and hence performs the same

number of WCRT analysis for the same message set. It can also be seen that Genetic Algo-

rithm runs longer than LNSAs for Class A. However, average number of WCRT analysis of

GA is 19 while it is 35 for LNSA. This indicates that GA also spends time to perform mutation,

crossover, etc. which influences the average run time for a schedule when compared to LNSA.

5.6.2 Test Results Obtained for Class B

Class B is configured such that the bus utilization is adjusted low, and so the scheduling

algorithms can easily find a schedulable solution.
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Figure 5.5: Schedulability Performance of the Algorithms for Class B

As can be seen from the results above, it is confirmed that offset scheduling algorithms have

importantly higher performance when compared to Classical Scheduling in which offsets are

not considered. For the configuration of this class, any offset scheduling algorithm finds a

schedulable solution.

Figure 5.6: Average Number of Unscheduled Messages for Class B

There are not any unscheduled messages for any offset scheduling algorithms because they

always make the messages meet their deadlines at this low traffic load, however; Classical

Scheduling may still not succeed as can be seen from Figure 5.6.
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Figure 5.7: Average Slacks for Class B

Figure 5.7 shows that average slacks of the messages are high. This indicates that worst

case response times of the messages are low, which is expected because bus utilization of this

Class is low.

Figure 5.8: Average Run-Time for Class B

For this class, run time of Genetic Algorithm is less than LNSAs. Average number of WCRT

analysis of GA is 15 while it is 938 for LNSA. The reason is that GA uses solution of Standard

Offset Scheduling to generate initial population, which is already schedulable for this class;

GA immediately finds a schedulable solution so does not need to make any iterations. It should

be noted that GA always tries at least 15 schedules since the number of initial population is
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set to 15.

5.6.3 Test Results Obtained for Class C

Load of the network increases 20% when compared to Class B, so it becomes more difficult

to make the messages meet their deadlines for this message set configuration.

Figure 5.9: Schedulability Performance of the Algorithms for Class C

As can be seen from Figure 5.9, Classical Scheduling can not find a schedulable solution

at loads of 45%-50%. On the other hand, SOSA usually finds a feaible schedule, where

developed algorithms always do.
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Figure 5.10: Average Number of Unscheduled Messages for Class C

Figure 5.10 also validates that Classical Scheduling is weak when compared to offset schedul-

ing in terms of schedulability of the messages and so the systems. Moreover, it can be deduced

that developed algorithms always make the messages meet their deadlines for this message

set configuration, while SOSA does not.

Figure 5.11: Average Slacks for Class C

Figure 5.11 states that the worst case response times of the messages increase as bus utiliza-

tion increases, which is expected.
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Figure 5.12: Average Run-Time for Class C

Run times of LNSAs are comparably high when compared to GAOS because LNSA explores

average 1674 different schedules while GAOS does 15 that corresponds to the number of

initial population. Average number of schedules that LNSA explores is linearly proportional

to average number of messages. However, when Figure 5.8 and Figure 5.12 are considered,

run times of LNSAs are not directly proportional to average number of messages because run

time of WCRT analysis also increases as number of messages increases.
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5.6.4 Test Results Obtained for Class D

Load of the network is now increased to 65%-70% for Class D.

Figure 5.13: Schedulability Performance of the Algorithms for Class D

Even for this class which has configuration of 65%-70% load; developed algorithms can easily

find a schedulable solution, while SOSA can hardly find a schedulable solution. This already

indicates the limitations of SOSA.

Figure 5.14: Average Number of Unscheduled Messages for Class D

Average number of unscheduled messages are not zero but very low for the developed al-

gorithms, while it is very high for Classical Scheduling. This confirms that controlling the
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release times of the messages is very beneficial in terms of the worst-case response times.

Figure 5.15: Average Slacks for Class D

Average slacks for the different algorithms are still very close to each other, while schedula-

bility performances of the developed algorithms are significantly higher than performance of

SOSA. Hence, it can be concluded that some messages get large slacks while other messages

fail in the SOSA.

Figure 5.16: Average Run-Time for Class D

For this class, run time of GAOS visibly increases because GAOS does not terminate in the

first iterations, as was observed for the previous traffic classes. Instead, GAOS makes average

number of 143 iterations until termination.

52



5.6.5 Test Results Obtained for Class E

Bus utilization, load, of Class E is adjusted to 75%-80%, which is very high. For the tests

done for Class E, GAOS is tested with different maximum number of iterations. In pre-

vious tests, maximum number of iterations, maxIterationNo, is adjusted to 500, which is

sufficient for low utuilization. However, this number is low for GAOS to explore search

space at high utilizations as can be seen from the results below. For the following figures,

maxIterationNo of GAOS is indicated inside the paranthesis after GAOS; such as GAOS(500)

where maxIterationNo=500.

Figure 5.17: Schedulability Performance of the Algorithms for Class E

As can be seen from Figure 5.17, Standard Offset Scheduling almost can not find a schedu-

lable solution for this class. LNSA (by slack) and LNSA (by deadline) can find a schedula-

ble solution most of the time. Another issue to be considered is that when maxIterationNo

increases, schedulability of GAOS increases. This is due to the fact that, GAOS has more

opportunity to explore the search space if maxIterationNo is higher.
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Figure 5.18: Average Number of Unscheduled Messages for Class E

Figure 5.18 confirms the arguments mentioned above about the performances of the algo-

rithms. In particular, number of unschedulable messages for the developed algorithms is

much lower than for the existing algorithms.

Figure 5.19: Average Slacks for Class E

As can be seen from the Figure 5.19, it is confirmed that to have a good distribution of

the available slack among the different messages is very important. Because average slacks

of different algorithms are not very different, although schedulability performances of the

algorithms are very different.
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Figure 5.20: Average Run-Time for Class E

Run time of GAOS shows a significant increase with the maximum iteration number, if the

bus utilization is high. Figure 5.20 shows that run time of GAOS increases as the maximum

iteration number increases and so passes over run times of LNSAs. However, the run time for

the developed algorithms is less than 5 minutes which is practically feasible.

5.6.6 Test Results Obtained for GAOS with the Solution of LNSA

For the previous tests, Standard Offset Schedule is used to generate initial population to be

used in GAOS. In this test, it is aimed to evaluate the performances of GAOS by using the solu-

tion of LNSA(deadline). In this test we name this combination as LNSA(deadline)+GAOS(16000).

It is expected to obtain better performances because LNSA(deadline) produces better sched-

ules than SOSA as shown in previous results. Due to the nature of Genetic Algorithm, GAOS

has more opportunity to find a schedulable solution if it starts evolving the optimization from

a better schedule. Network properties used in this network is as defined in Class E and maxi-

mum iteration number of GAOS is adjusted to 16000.
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Figure 5.21: Schedulability Performance of the Algorithms for Class E

As can be seen from Figure 5.21, combination of LNSA and GAOS(16000) produces the

best result among the overall experiments for Class E conducted in this thesis. Actually,

GAOS(16000) and LNSA(deadline)+GAOS(16000) are the applications of GAOS with same

parameters; however; schedulability performance of LNSA(deadline)+GAOS(16000) is %90,

while %79 for GAOS(16000) which uses Standard Offset Schedule to generate initial popu-

lation. This indicates that GAOS reaches a schedulable solution more successfully if it starts

with better initial population.

Figure 5.22: Average Run-Time for Class E

Figure 5.22 shows that runtime of LNSA(deadline)+GAOS(16000) is about 110 seconds while
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it is 250 seconds for GAOS. This also confirms that starting with a better initial population

improves effectiveness of GAOS.

5.6.7 General Observation on the Results

Experimental results confirm that offset scheduling is beneficial in terms of the worst-case

response time and so the schedulability. Nicolas Navet et. al. concentrates on WCRT of

the lowest priority messages while comparing the performances of Classical Scheduling and

Standard Offset Scheduling [3]. On the contrary, we have compared the different scheduling

algorithms especially in terms of schedulability and average slack of the system. However,

results obtained in this thesis are parallel to obtained in [3] in sense that both show how the

worst-case response times dramatically decrease with offset scheduling. Moreover, the results

clearly indicate that Standard Offset Scheduling can be used for low utilizations up to 50%

and realistic message properties (period,length) as in the SAE set [17].

Experimental results show that the developed algorithms clearly outperform the SOSA, espe-

cially for high utilizations. In particular, for utilizations between 65%-75%, the developed

algorithms find a feasible schedule in more than 95% of the test case, whereas the SOSA is

succesful in only 27% of the test cases. The improvement is even higher for utilizations be-

tween 75%-80%. Here, the developed algorihtms find feasible solutions in about 90% of the

test cases, whereas the SOSA finds a solution in only 4% of the test cases. It further has to be

noted that in all of the experiments, the run time for the developed algorithms is less than 5

minutes, and hence suitable for practical applications.

Considering the developed algorithms, it is observed that GAOS is very suitable for small

messages sets and low utilizations because of its small run time. The run time of the GAOS

increases considerably for large utilizations about 90% if a good schedulability performance

shall be achieved. The performance of GAOS increases if it starts with better initial population

which is expected due to the nature of Genetic Algorithm. Among the LNSA algorithms, the

best schedulability peformance is achieved when sorting by slacks or sorting by deadline.

Both sorting strategies give similar results.

In this thesis, schedulability performance of GAOS is evaluated by adjusting its parameters

to the values as mentioned in Section 4.3.2. However, the parameters used in GAOS such as
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population size, maximum number of child schedules, number of parent schedules, mutation

probability and crossover probability can be tested with different values and better perfor-

mances than obtained in this thesis may be obtained.

The disadvantages of the offset scheduling algorithms developed in this thesis are that their

complexities and run times considerably high when compared to SOSA. However; as dis-

cussed in this section, the developed algorithms are suitable for practical applications.
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CHAPTER 6

CONCLUSION

Technological improvements in the automotive industry increase the demands for usage of

CAN bus more efficiently. Currently, only about 40% of the bus is utilized in order to make

the messages meet their deadlines at worst-case. In order to overcome this problem, Nicolas

Navet et. al. proposed a low-complexity and high performance solution [8, 3]. Main property

of this solution is to control the release times of the messages, in which the first instance of a

message is released with offset. Main purpose of this algorithm is to distribute the messages

as uniformly as possible over time, in order to avoid synchronous releases. As shown in

this thesis, this algorithm can find feasible schedules for loads of about 50%, but not higher

loads. The main reason for this deficiency is that the algorithm in [8, 3] does not consider

the dependencies among messages that are released from different nodes by not including any

WCRT analysis in the schedule computation.

It is stated that search space of offset scheduling is too large to compute all of them in a

reasonable time for realistic message sets. Consequently, offset scheduling problem is con-

sidered as an optimization problem which maximizes overall slack time of the system with

schedulability constraint. Two different algorithms are developed to solve this optimization

problem. The first one is Local Neighborhood Search Algorithm which always changes a

single offset and keeps the ”best” solution. The second one is Genetic Algorithm for Offset

Scheduling which is inspired by natural evolution and keeps a set of ”fittest” solutions and

evolve the optimization from there.

In this thesis, in addition to developed algorithms which are LNSA and GAOS, SOSA and

worst-case response time analysis for offset scheduling are implemented in C++ by using

Automotive Simulator C++ API [10]. In order to test the performances of the algorithms,
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messages are generated with NETCARBENCH which is used in the design of in-vehicle

communication networks. In the experiments, it is cared that 90% of confidence interval is

achieved for each scheduling result.

In this thesis, five different experiments are conducted for five different network configuration

in order to evaluate the performances of the scheduling algorithms at different situations. First

conclusion deduced from the experimental results is the confirmation of the performance

increase with offset scheduling as claimed in [3]. Experimental results also show that the

developed algorithms definitely produces better results than SOSA. The improvement can

clearly be seen especially at high loads, in which developed algorithms can find a feasible

schedule about 90% of the test cases while SOSA is successful in only 4% of the cases. It

should be noted that run times of the developed algorithms are bounded by 5 minutes in our

experiments which are conducted by a standard personal computer. Hence, the developed

algorithms in this thesis can be used in practical applications.
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