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ABSTRACT 
 
 

VISION-ASSISTED OBJECT TRACKING 
 
 

Özertem, Kemal Arda 

M.Sc., Department of Electrical and Electronics Engineering 

                   Supervisor: Prof. Dr. A. Aydın Alatan 

 
 

February 2012, 150 Pages 
 
 
 

In this thesis, a video tracking method is proposed that is based on both computer 

vision and estimation theory. For this purpose, the overall study is partitioned into 

four related subproblems. The first part is moving object detection; for moving 

object detection, two different background modeling methods are developed. The 

second part is feature extraction and estimation of optical flow between video 

frames. As the feature extraction method, a well-known corner detector algorithm is 

employed and this extraction is applied only at the moving regions in the scene. For 

the feature points, the optical flow vectors are calculated by using an improved 

version of Kanade Lucas Tracker. The resulting optical flow field between 

consecutive frames is used directly in proposed tracking method. In the third part, a 

particle filter structure is build to provide tracking process. However, the particle 

filter is improved by adding optical flow data to the state equation as a correction 

term. In the last part of the study, the performance of the proposed approach is 

compared against standard implementations particle filter based trackers. Based on 

the simulation results in this study, it could be argued that insertion of vision-based 

optical flow estimation to tracking formulation improves the overall performance. 

 

Keywords: Moving object detection, background modeling, feature extraction, 

optical flow, particle filter, video tracking. 
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ÖZ 
 
 

GÖRME YARDIMLI NESNE TAKİBİ 
 
 

Özertem, Kemal Arda 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

                   Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

 
 

Şubat 2012, 150 Sayfa 
 
 
 

Bu tezde, bilgisayarla görme ve kestirim teorisine dayanan bir video takip yöntemi 

önerilmektedir. Bu amaçla, yapılan tüm çalışma birbiriyle ilişkili dört alt probleme 

ayrılmıştır. İlk bölüm hareketli nesne algılamasıdır; hareketli nesne algılaması için 

iki farklı arka plan modelleme yöntemi geliştirilmiştir. İkinci bölüm ise öznitelik 

çıkarımı ve video çerçeveleri arasındaki görsel akış tahmininden oluşmaktadır. 

Öznitelik çıkarımı yöntemi olarak, tanınan bir köşe algılayıcı algoritması 

kullanılmış ve bu çıkarım sadece sahnedeki hareketli bölgelere uygulanmıştır. 

Öznitelik noktaları için, görsel akış vektörleri Kanade Lucas takipçisinin 

geliştirilmiş sürümü kullanılarak hesaplanmıştır. Elde edilen ardışık çerçeveler 

arasındaki görsel akış alanı doğrudan önerilen takip yönteminde kullanılmıştır. 

Üçüncü bölümde, takip etme işlemini sağlaması için bir parçacık filtresi yapısı 

kurulmuştur. Fakat, parçacık filtresi durum denklemine düzeltme terimi olarak 

görsel akış verisinin eklenmesiyle geliştirilmiştir. Çalışmanın son bölümünde, 

önerilen yaklaşımın performansı standart parçacık filtresi tabanlı takipçilerle 

karşılaştırılmıştır. Elde edilen simülasyon sonuçlarına dayanarak, görsel akışın takip 

formülasyonunda kullanılmasının tüm performansı arttırdığı söylenebilir.  

 

Anahtar kelimeler: Hareketli nesne algılaması, arka plan modellemesi, öznitelik çıkarımı, 

görsel akış, parçacık filtresi, video takibi. 
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CHAPTER 1 
 
 
 

INTRODUCTION  
 
 
 
 

Especially for security and surveillance, traffic control and medical imaging 

systems, video tracking becomes vital in everyday life. Remarkable improvements 

have been achieved in video tracking systems in the last few decades. As the 

computer performances increase significantly, computationally expensive 

algorithms can be used in video tracking and this provides a significant increase in 

the robustness of trackers. Furthermore, the availability of high quality and 

inexpensive video cameras on the market enables the users to get test videos easily. 

Thus, the performance of trackers can be tested rapidly for many different test 

cases. 

 

Generally, most of the trackers suffer from noise in images, complex object motion, 

non-rigid structure of objects, the loss of information caused by projection of the 3D 

world into 2D image plane, partial or full occlusion, scene illumination changes and 

real-time processing requirements. A tracker cannot cope with all of these 

difficulties by itself. Therefore, according to the type of application, one should 

impose some constraints on the motion or appearance of objects and strengthen the 

tracking algorithm for the remaining problems. Furthermore, a tracker generally 

needs to know what to track in the scene. This step can be done automatically by 

the algorithm or manually by the user. Object detection algorithms help to trackers 

for detecting the objects in the scene automatically.  

 

In the literature, there are various types of algorithms with different tracking 

approaches. Tracking algorithms can be divided mainly into two categories; 

computer vision based algorithms [3] and estimation theory based algorithms [33]. 
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These two disciplines are different and slightly unaware of each other; however, 

their purposes are the same. In this thesis study, these two different approaches are 

examined and combined together for tracking problems.  

 

1.1 OVERVIEW OF THE THESIS 

In order to build a reliable tracker structure a synthesis of both computer vision 

based algorithms and estimation theory based algorithms are aimed in this study. 

Here, the background modeling, the optical flow calculation and feature extraction 

techniques are mostly accepted as computer vision based algorithms and the particle 

filter is a recent estimation theory based algorithm. 

 

In order to obtain information about the objects in the scene, moving object 

detection is done initially. For the moving object detection, background modeling 

techniques are applied. These are namely background modeling using 

nonparametric Kernel Density Estimation (KDE) and Bayesian approach for object 

detection. These two algorithms and the conventional temporal median estimator 

are implemented to test video, which has a nominal camera motion. Among the 

results, the best results are due to Bayesian approach for object detection algorithm. 

For this reason, Bayesian approach is chosen to use for moving object detection in 

the remaining parts of this thesis work. 

 

After the moving regions in the scene are determined, a well-known feature 

extraction algorithm, based on cornerness metrics for intensity images, is used. 

After the algorithm is test on the test video, the results show that the extracted 

feature points are quite satisfying. The reason behind the use of feature extraction 

approach arises from the necessity of the use of another computer vision based 

algorithm, optical flow. Since it would be computationally expensive to calculate 

optical flow for each pixel in every frame, it is calculated for only feature points. 

An improved version of Kanade Lucas Tracker (KLT) is employed to estimate 

optical flow vectors. 
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On the other hand, for the estimation theory based part, a generic particle filter 

structure is built. In order to test the reliability of the particle filter, a simple linear 

dynamic system is solved by both Kalman filter, which gives the optimal solutions, 

and the generic particle filter. The results are close enough for acceptable number of 

particles.  

 

The key idea of this thesis work is putting the optical flow vector into particle 

filter’s state equation as a correction term. The tracking performance is tested for 

three different cases. In the first case, the positions on x and y directions are used as 

two dimensional state vector. For the second case, the optical flow correction term 

is added to the first case. In the last case, the positions and the velocities on x and y 

directions are used as four dimensional state vector. The tracking results are 

compared in order to observe the effects of the optical flow term. 

 

As a summary, the chapters of this thesis work correlated with each other. In other 

words, the output of the Chapter 2 is used in Chapter 3. Similarly, the outputs of 

Chapter 3 and 4 are used for a comparative analysis of tracking process in Chapter 

5. 

 

1.2 OUTLINE OF THE THESIS 

The structure of the thesis follows the aforementioned four main steps. 

 

Chapter 2 focuses on background modeling for moving object detection. First, some 

background information about background modeling is reviewed, and then a 

literature survey on background modeling is given. KDE is expressed and two 

background modeling techniques are introduced. Simulation results for these 

techniques are also given. 

 

Chapter 3 is devoted to feature extraction and optical flow. Firstly, the optical flow 

is explained in detail, and then an improved version of KLT algorithm is 

introduced. Simulation results for this algorithm are presented also. Afterwards, as 

the feature extraction method “Shi-Tomasi corner detection” algorithm is presented 
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briefly. Lastly, the implementation results for “Shi-Tomasi corner detection” 

algorithm are stated. 

 

In Chapter 4, detailed explanation of the particle filter is given. This chapter begins 

with introducing some basic concepts for particle filters and then the commonly 

used particle filter algorithms are expressed. The problems of particle filters are also 

examined in detail. The implementation of a generic particle filter is achieved and 

its simulation results are presented.  

 

In Chapter 5, the methodology to combine these algorithms together is argued and 

the final method for video tracking is proposed. The tracking performance is 

investigated for three different cases. Especially, the effects of the optical flow term 

to tracking performance are observed.  

 

Finally, Chapter 6 gives a summary of the thesis and concluding remarks. 
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CHAPTER 2 
 
 
 

MOVING OBJECT DETECTION 
 
 
 
 

Almost all visual tracking systems start tracking process with moving object 

detection. Moving object detection aims to segment regions corresponding to 

moving objects from the rest of a given image. Subsequent processes such as 

tracking are greatly dependent on accurate detection of moving objects. A common 

approach for object detection is to use information in a single frame. However, 

some object detection methods make use of the temporal information computed 

from a sequence of frames to reduce the number of false detections. This temporal 

information is usually in the form of frame differencing, which highlights changing 

regions in consecutive frames. If the object regions in the image are defined, it is 

then the tracker’s task to perform object correspondence from one frame to the next 

to generate the tracks. 

 

2.1 Modeling the Background 

Accurate detection of moving objects is a necessary step to have a stable tracking 

and the process of moving object detection usually involves background modeling. 

In many vision systems (e.g. surveillance systems), typically, stationary cameras are 

used. Since the cameras are stationary, the detection of moving objects can be 

achieved by comparing each new frame with a representation of the scene 

background. This process is called background subtraction and the scene 

representation is called the background model. 

 

An important issue in building a reliable background representation is choosing the 

features to be used in this representation. In the literature, a variety of features have 
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been used for background modeling, including pixel-based features (e.g., pixel 

intensity, edges and disparity) and region-based features (e.g., block correlation). 

The selection of the features affects how the background model tolerates changes in 

the scene and the granularity of the detected foreground objects [1]. 

 

The fundamental assumption that the sensor remains stationary among each 

consecutive frame allows using statistical background modeling techniques for the 

detection of moving objects [2]. However, this assumption does not necessarily 

imply a stationary background. In any indoor or outdoor scene, there are changes 

that occur with time. It is important that the background model can tolerate these 

changes, either by being invariant to them or by adapting itself to them. The 

changes can be local, affecting only part of the background such as moving tree 

branches, or global, affecting the entire background such as changes in illumination. 

Recently, non-adaptive methods for background modeling become less popular 

because of the need for a manual initialization. Without reinitialization, errors in the 

background accumulate over time, and because of this reason; non-adaptive 

methods are useful only in highly supervised, short-term tracking applications 

without significant changes in the scene [3]. 

 

The changes in the scene clearly affect the performance of the background 

modeling algorithm, and the study of these changes is essential to understand the 

motivations behind different background modeling techniques. Illumination based 

changes may be gradual due to the location change of the sun. It also might be 

sudden due to switching the lights on/off, or a change between cloudy and sunny 

conditions. Motion based changes can occur due to small camera displacements, 

which is caused by wind or ground vibration. There also might be a motion in parts 

of the background; e.g., tree branches moving with the wind or rippling water. A 

robust background modeling algorithm should consider all of these conditions. 

 

2.1.1 Related Work on Background Modeling 

Since late 70’s, differencing of adjacent frames in a video sequence has been used 

for object detection in stationary cameras. However, later it was realized that 
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straightforward background subtraction was unsuitable for many of real-world 

situations; e.g., lightning conditions change over time and the background itself 

contains movement. Thus, some statistical techniques were introduced to model 

each background pixel in order to cope with these difficulties. 

 

Many researchers have proposed methods to address some of the issues with 

background modeling. The proposed methods can be classified into two main 

categories, as the methods which use pixel-based features and the methods which 

use region-based features. Most of the work on background modeling falls into the 

first category, since pixel-based features are more suitable for background 

modeling. In region-based approaches, the detection unit is a whole image block 

and therefore, they are only suitable for coarse detection. A brief review of relevant 

work is provided here. 

 

2.1.1.1 Pixel-Based Background Modeling Methods 

Among all the other features, pixel intensity is the most commonly used feature in 

background modeling. It became popular following the work of Wren et al. [4]. If 

the intensity value of a pixel is observed over time in a completely static scene, then 

the pixel intensity can be reasonably modeled with a Gaussian distribution. In [4], 

Wren et al. propose modeling the color of each pixel, I(x,y), of a stationary 

background with a single three dimensional Gaussian, I(x,y) ~ N(μ(x,y), Σ(x,y)), and 

the model parameters, the mean and the covariance can be learned from color 

observations in consecutive frames. Then, the pixel-wise background model is 

derived and the likelihood of each pixel color can be computed. Hence, each pixel 

can be labeled, whether it belongs to the background or not. This model can also be 

adapted to slow changes in the scene using a simple adaptive filter by recursively 

updating the model. Similar approaches that use Kalman Filtering for updating are 

also proposed in [5] and [6]. 

 

However, it was promptly realized that the single Gaussian PDF for modeling the 

uncertainty of each pixel color was unsuitable to most outdoor situations. In outdoor 

environments, the scene background is typically not completely static. Repetitive 
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motions of background objects, shadows or reflectance often causes multiple pixel 

colors which belong to the background. Therefore, a single Gaussian assumption for 

the PDF of the pixel intensity will not hold. A substantial improvement in 

background modeling is achieved by using multimodal statistical models to describe 

per-pixel background color [7]. Friedman and Russell, [8], and independently 

Stauffer and Grimson, [9], [3] proposed modeling the intensity of each pixel as a 

mixture of Gaussians. In [9], the pixel intensity was modeled by a mixture of K 

number of Gaussian distributions (K is typically a small number ranging from 3 to 

5). The mixture is weighted by the frequency with each of the Gaussians, which 

models each background pixel. In [3], a pixel in the current frame is compared to 

every Gaussian density in the background model. If these two parameters match, the 

mean and variance of the matched Gaussian distribution are updated. Otherwise, a 

new Gaussian with the mean, which is equal to the current pixel color and some 

initial variance, is added into the mixture. Thus, each pixel can be classified based 

on whether the matched distribution represents the background process. Similarly, 

in [8], a mixture of three Gaussian distributions is used to model the pixel value for 

traffic surveillance applications. The pixel intensity is modeled as a weighted 

mixture of three Gaussian distributions corresponding to road, shadow, and vehicle 

distribution, and the adaptation of the Gaussian mixture models can be achieved 

using an incremental version of the EM algorithm. Haritaoglu et al. [10] build a 

model of background variation that is a bimodal distribution constructed from order 

statistics of background values during a training period. The background modeling 

is achieved by representing each pixel by its minimum and maximum intensity 

values, and the maximum intensity difference between consecutive frames observed 

during the training period. For adaptation, these three values are updated 

periodically in time. 

 

All of the models mentioned above are based on statistical modeling of pixel 

intensity with the ability to adapt the model to the changes in the background. Pixel 

intensity is not invariant to illumination changes; model adaptation makes it 

possible for such techniques to adapt to gradual changes under illumination. 

However, a sudden change in illumination can cause problems for these models. 
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Another limitation of these approaches is the need to specify the number of 

Gaussians, for the EM algorithm or the K-means approximation. 

 

Furthermore, Gaussian mixture models do not explicitly model the spatial 

dependencies of neighboring pixel colors that may be caused by nominal motion. In 

order to deal with this problem, El Gammal et al. [1] propose nonparametric 

estimation methods for per-pixel background modeling. In [1], kernel density 

estimation (KDE) is used to establish foreground/background membership, and 

since KDE is a data-driven method, multiple modes in the intensity of the 

background are also handled naturally without any need for parameter tuning, e.g. 

the number of Gaussians in the Gaussian Mixture Model. Each pixel in the current 

frame is matched not only to the corresponding pixel in the background model, but 

also to the nearby pixel locations. Thus, this method can handle camera jitter or 

small movements in the background. Similarly in [2], the background data is 

modeled as a single distribution by using nonparametric density estimation methods 

over a joint domain-range representation. Therefore, the multi-modal spatial 

uncertainties can be directly handled. This method can provide high levels of 

detection accuracy in the presence of nominal camera motion and dynamic textures; 

however, they have the disadvantage that they require a significant amount of 

computational time, which limits their use in real-time systems in practice. 

 

An alternate approach for background modeling is to represent the intensity 

variations of a pixel in an image sequence as discrete states corresponding to the 

events in the environment [7]. Hidden Markov models (HMMs) have been used for 

this purpose in [11] and [12]. In [11], a three-state HMM is used to model the 

intensity of a pixel for a traffic-monitoring application, where the three states 

correspond to the background, shadow, and foreground. By using HMM, Rittscher 

et al. classified small blocks of an image as belonging to one of these three states. In 

[12], Stenger et al. used HMMs for making a decision in environments which have 

two global states that are the arrival and departure of a train for outdoor application 

and two positions of a light source for indoor application. Certain events, which are 

difficult to model by using unsupervised background modeling techniques, can be 

modeled by the help of HMMs by using supervised training samples. Additionally, 
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it imposes a temporal continuity constraint on the pixel intensity. Therefore, a 

foreground pixel is expected to remain as a part of the foreground for a period of 

time before it becomes a part of the background again. 

 

Alternatively, edge features have also been used to model the background. The 

advantage of using edge features is that edge features are less sensitive to 

illumination changes compared to color features. However, the major drawback of 

using edge features is that it would only be possible to detect edges of foreground 

objects instead of the dense connected regions. In [13], foreground edges are 

detected by comparing the edges in each new frame with an edge map of the 

background. 

 

2.1.1.2 Region-Based Background Modeling Methods 

The second category of methods uses region models of the background. Compared 

to the pixel-based methods, there are less publications in the literature that exploit 

region-based methods for background modeling. In [14], Toyama et al. proposed a 

three tiered algorithm that used region-based scene information in addition to per-

pixel background model, in which region and frame level information serve to 

verify pixel-level inferences. At the pixel level, the preliminary classifications of 

foreground versus background are achieved by Wiener filtering. Afterwards at the 

region level, inter-pixel relationships are considered and foreground regions 

consisting of homogeneous color are filled in. The frame level watches for a sudden 

change and if most of the pixels in a frame are exposed to a sudden change, it is 

assumed that the pixel-based color background models are no longer valid. 

 

Another global method proposed by Oliver et al. [15] employs eigendecomposition 

of sample images to detect objects. For k input frames of size n×m, a matrix B of 

size k×(nm) is formed by row-major vectorization of each frame and eigenvalue 

decomposition is applied to the covariance of B as given in below  
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The background is then represented by the most descriptive η eigenvectors that 

describe all possible illuminations in the field of view. Thus, this approach is much 

less sensitive to illumination. For the detection of the foreground objects, first 

current image is projected onto eigenspace, and then the Euclidean distance 

between the input image and the projected image is calculated and thresholded. 

 

In order to deal with time-varying background, Monnet et al. [16] and Zhong et al. 

[17] simultaneously proposed models of image regions as an autoregressive moving 

average (ARMA) process, which provide a methodology to learn (by using PCA) 

and predict the motion patterns in a scene. An ARMA process is a time series model 

that consists of sums of the autoregressive and the moving-average components, 

where an autoregressive process can be described as a weighted sum of its previous 

values and a white noise error [7].  

 

Block-based approaches have been also used for modeling the background. Block 

matching has been widely used for change detection between consecutive frames. 

Hsu et al. [18] fit each image block to a second-order bivariate polynomial, and the 

remaining variations are assumed as noise. In order to detect blocks with 

statistically significant changes, statistical likelihood is used. In [19], each block 

was represented with its median template over the background learning period and 

its block standard deviation. In order to detect the objects, each block is correlated 

with its corresponding template, and blocks, which have relatively higher deviation 

compared to the measured standard deviation, are considered to be foreground. 

 

2.1.2 Kernel Density Estimation 

Statistical modeling, where a process is modeled as a random variable in a feature 

space with an associated PDF, is a useful tool for background modeling. The PDF 

can be represented parametrically by using a specified statistical distribution that is 

assumed to approximate the actual distribution, with the associated parameters 

estimated from training data. Alternatively, nonparametric approaches, which 
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estimate the PDF directly from the data without any assumptions about the 

underlying distribution, can also be used. This feature prevents from choosing a 

model and to estimate its distribution parameters.  

 

KDE (also known as Parzen windowing) is a non-parametric way of estimating the 

PDF of a random variable. The disadvantages of histograms provide the motivation 

for kernel density estimators. As a problem, the histograms are not differentiable, 

and they depend on the width and the end points of the bins. For removal of the 

dependence on the end points of the bins, kernel estimators place a kernel function 

at the center of each data point. If a smooth kernel function is chosen, then the result 

will be a smooth density estimator, and for the bin-width problem, there are many 

methods for finding the optimum bandwidth of kernel density estimator [20], [21]. 

In this technique, the underlying PDF is estimated as 
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where K is a “kernel function” centered at the data points in feature space  xi,           

i = 1…n, and αi are weighting coefficients. In many applications, Gaussian kernel 

function and uniform weights are used. Kernel density estimators asymptotically 

converge to any density function and this property makes these techniques quite 

general and applicable to many vision problems, where the underlying data 

densities are not known. 

 
Given a sample S = {xi}i=1…N from a distribution with density function p(x), an 

estimate  of the density at x can be calculated using the relation: )(xp
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where Kσ is a kernel function (or a window function) with a bandwidth σ as shown 

below: 
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Kernel function is a non-negative symmetric function that integrates to one, and the 

bandwidth of the kernel is a smoothing parameter. A kernel function K(w) must 

satisfy the following conditions [41]:  
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The first equation given in (5) accounts for the fact that the sum of the kernel 

function over the whole region is unity. The second equation imposes the constraint 

that the means of the marginal kernels Ki(wi), are all zero. Finally, the third equation 

states that the marginal kernels are all pairwise uncorrelated and that each has unit 

variance. 

 

Equation (3) can be thought as estimating the PDF by averaging the effect of a set 

of kernel functions centered at each data point. Alternatively, since the kernel 

function is symmetric, this computation can also be thought as averaging the effect 

of a kernel function centered at the estimation point and evaluated at each data 

point. For KDE, the simplest approach would be to use a fixed bandwidth for all the 

samples. Although such an approach is a reasonable compromise between 

complexity and the quality of approximation, the use of variable bandwidth can 

usually lead to an improvement in the accuracy of the estimated density. Intuitively, 

it is desired to choose the bandwidth as small as the data allows; however, there is 

always a tradeoff between the bias of the estimator and its variance. Smaller 

bandwidth is more appropriate in regions of high density, since a larger number of 

samples enable a more accurate estimation of the density in these regions. On the 

other hand, a larger bandwidth is more appropriate in low density areas where few 

sample points are available. 

 

For higher dimensions, products of one dimensional kernels can be used as given in 

Equation 6, 
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where the same kernel function is used in each dimension with a suitable bandwidth 

σj for each dimension. A range of kernel functions have been commonly used in the 

literature: uniform, triangular, biweight, triweight, Epanechnikov, Gaussian, etc. 

Gaussian kernel is preferred for its continuity, differentiability, and ease of use. 

Selection of the Gaussian as a kernel function is different from fitting the 

distribution to a Gaussian model. Here, the Gaussian is only used as a function to 

weight the data points. Unlike parametric fitting of a mixture of Gaussians, KDE is 

a more general approach that does not assume any specific shape for the density 

function. The major drawback of using the nonparametric kernel density estimator 

is its computational cost, since evaluating the PDF value at any point in the feature 

space requires a summation over all data samples. 

 

2.2 Background Modeling Using Nonparametric Kernel Density 

Estimation 

In this section, a background modeling technique which is similar to the method in 

[1] is described. Pixel intensity is used as the basic feature for modeling the 

background. A sample of intensity values for each pixel in the frame is stored by the 

model. These samples are used to estimate the density function of the pixel intensity 

distribution. The model can also estimate the probability that a newly observed 

intensity value belongs to foreground/background. The model is updated 

periodically at each frame. Thus, it can deal with the cases where the background is 

not completely static; however, it contains small motions, such as camera jitter or 

moving objects in the background, like tree leaves, waves etc. 

 

Let x1, x2,…, xN be a sample of intensity values for a pixel. The pixel intensity PDF 

can be estimated by implementing kernel density estimation to these samples. Here, 

the Gaussian kernel is chosen. Therefore, the density can be estimated as, 
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where xt is a d-dimensional color feature and Kjjj  is a kernel function with 

bandwidth σj in the jth color space dimension. A pixel in the current frame is labeled 

as foreground if the probability estimate is under a threshold value. This threshold is 

global and applied over all the frames. Equation (7) is computationally expensive; 

however, since most of the image is covered with background, for most of the 

pixels, the partial sum will pass over the threshold quickly. This situation helps 

obtaining a faster implementation. The most recent N sample frames are used for 

kernel density estimation and the adaptation is achieved by accepting recent 

samples and forgetting earlier samples. 

 
Kernel bandwidth is a critical parameter for kernel density estimation. If the 

bandwidth is chosen too small or too high, then the result will be a ragged or an 

over-smoothed density estimate. Here, an adaptive bandwidth [1], which is based on 

intensity values of the samples, is used. By using the samples, the median m of    

xi-xi+1 for each consecutive pair (xi, xi+1) is calculated for each color channel 

independently. Using the median of the absolute deviation helps to handle with 

pixel intensity changes, which is caused from non-stationary background. 

Therefore, the adaptive bandwidth can be selected as [1] 

 

268.0

m
                                                                                                                         (8) 

 

As it is well known, 3 color channels; red, green and blue (RGB) are strongly 

correlated. Instead of using these 3 color channels, the same amount of color 

information could be carried by using only 2 color channels. This will also decrease 

the computational load, and leads to a faster implementation. For these reasons, 

chromaticity coordinates are defined in (9) by normalizing RGB channels [22]. 
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Therefore, for the kernel density estimation 2 dimensional color feature, (r, g) is 

only utilized. Employing chromaticity coordinates also helps for not detecting the 

small changes in illumination, which generally causes from shadows. On the other 

hand, using chromaticity coordinates has the disadvantage of losing information 

about illumination. Due to this reason, a measure of illumination at each pixel 

shown in (10) is included. The shadow removal is achieved by using a threshold to 

the ratio of the current lightness value and the expected lightness value.  

 

BGRs                                                                                                            (10) 

 
For suppressing the false detections due to small motion in the image, another 

measure is defined. Let xt be the observed value of the pixel x, which is detected as 

foreground at time t. If there is a background pixel in the neighborhood of x, then, 

the maximum probability PN (xt) is also checked. Therefore, a detected pixel x is 

considered to be a part of the background only if PN (xt) is above a certain threshold. 

8-neighborhood is used here for suppressing the false detections. A step-by-step 

implementation of this method is given in Table 1. 
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Table 1 – Main algorithm of background modeling using KDE 

 Import N sample frames 

 Calculate r, g and s (by using Equation (9) and (10)) individually for each 

pixel in the samples 

 For r and g dimensions, calculate the median of xi-xi+1 

 Calculate the bandwidth by using Equation (8) 

 Calculate the density by using kernel density estimation given in (7) 

 If the probability for a pixel is under a certain threshold, then the pixel is 

labeled as foreground 

 Perform shadow removal by using a threshold to the ratio scurrent/sexpected  

 Apply suppression of the false detection for each foreground pixel by 

using a threshold to PN (xt) 

 

2.3 A Bayesian Approach for Object Detection 

In this section, a Bayesian background modeling approach, which is similar to the 

method in [2] is described. The main idea is that there is a useful relation between 

the intensities of the neighboring pixels, and this dependency can be used for 

detection for the scenes which has a non-stationary background or nominal camera 

motion. As described in [2], a temporal persistence criterion is taken into 

consideration for accurate detection. According to temporal persistence, true 

foreground objects keep their colors and spatial positions in time, which means their 

color transformation and motion changes slowly. Additionally, the foreground 

information at time t will be used at time t+1. 

 
In this method, the background and the foreground are modeled individually. And 

the object detection is maintained by using a likelihood ratio classifier. The features 

are represented by a joint domain-range representation, where spatial coordinates 

(x,y) is the domain and color space (r,g,b) is the range. By using nonparametric 

kernel density estimation technique over the joint domain-range representation, the 

entire background can be modeled as a single distribution fR,G,B,X,Y (r,g,b,x,y). For 

building the background model, it is assumed that, before time t all pixels in the 

sample set b={y1, y2…yn} belong to the background. With the help of this sample 



 

set, the probability of each pixel belonging to the background at time t can be 

calculated by using kernel density estimator. As described in Section 2.2, the 

Gaussian function is selected as the kernel function; therefore, the kernel density 

estimator is similar to previous method given in (7). 

 
First, the initialization of the background model is set to zero and the initialization 

of the foreground model is set to a uniform function. Furthermore, the number of 

bins in each dimension is adjusted for background and foreground densities. The 

assumption is that there are no objects until time t, so that the background PDF can 

be learned by using the sample set of first t frames. During the initial learning stage, 

5 dimensional data for each pixel in the sample set is settled by putting ones in the 

background PDF. For taking into consideration of correlation in intensities of 

neighboring pixels, weighted values, which is smaller then one, are given to 

neighboring bins in the PDF. 

 
At any time instance, the probability of observing a foreground pixel at any location 

(i,j) of any color is uniform. Once a foreground region is been detected at time t, 

there is an increased probability of observing a foreground region at time t+1 in the 

same neighborhood with similar color distribution. Therefore the foreground 

probability consists of a mixture of a uniform density function and the kernel 

density function that is estimated from the samples of the foreground as given 

below [2]: 
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where <<1 is the mixture weight and  is a random variable with uniform 

probability. If an object is detected in the previous frame, then  becomes a quite 

small number (in the implementation of the algorithm 0.01 is used) and the 

probability of observing the same colors of that object in the same neighborhood 

increases with respect to the second term in (11). If there are no detected objects in 

the previous frame, then  remains being a relatively large number, which makes 

foreground probability a nearly uniform function. Very similar to initial learning 

stage, for the background probability, ones are given to 5 dimensional data, where 



 

the background is detected and some weighted values are given to their neighboring 

bins. Therefore, both background and foreground models are updated at each frame. 

Two forgetting factors; one for foreground f and another one for background b are 

introduced to keep the algorithm adaptive to the changes in the scene. In order to 

obtain adaptation, foreground and background models do not memorize all the past 

frames; they forget the frames with respect to their forgetting factors. Since the 

foreground changes faster than the background; f is typically higher thanb. 

 
For deciding whether a pixel belongs to foreground, a likelihood ratio classifier is 

used as follows.  
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If this likelihood ratio is less than a threshold value, the pixel is labeled as 

foreground. The threshold also balances the trade-off between sensitivity and 

robustness. A step-by-step implementation of the method is given below. 

 

Table 2 – Main algorithm of Bayesian approach for object detection 

 Initialize the background and foreground models 

 Train the background by using the frames until time t, where there are 

no objects in the scene 

 Decide foreground pixels by using likelihood ratio classifier as (12) 

 Adjust the parameter  whether there is an object in the scene or not. 

Update the foreground probability with respect to (11) 

 Remove the frame that was f frames before from the foreground 

model 

 Update the values of the background pdf with respect to the detected 

background area and its neighborhood 

 Remove the frame that was b frames before from the background 

model 
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2.4 Comparative Analysis of Moving Object Detection 

In this section, evaluation results of different moving object detection methods are 

presented. An uncompressed test video, which has a dimension of 360 by 240 

pixels, a frame rate of 15 fps and duration of 33 seconds, is selected for simulations. 

The same test video has been used during the experimental evaluations in [2]. The 

algorithms are tested in the presence of nominal camera motion, which consists of 

approximately 12 pixels. In the test video, there is a railroad scene, which has no 

foreground objects in the first 250 frames. Then a man and a car enter the scene 

from different sides. In addition, an occlusion occurs as they move towards each 

other. The test video is introduced in Figure 1. 

 

   

   
  

Figure 1 - Scenes from test video 
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Three different moving object detection methods are compared here. The first 

method is a simple temporal median estimator. It assumes the temporal median of 

the video as being the background model and subtracts current frame from this 

background model. By using a threshold to the result, it simply detects moving 

objects in the scene. The median size is an important parameter for temporal median 

estimator. If the median size is selected too small then the results would be very 

noisy. On the other hand, selecting a too large median size slows down the 

algorithm because sorting a large number of frames is computationally high. 

Additionally, it requires a lot of memory. Because of these reasons, after some 

experiments the median size is selected as 20 for this simulation. The results for 

temporal median estimator are shown in Figure 2. 



 

 

 

Figure 2 – Simulation results for temporal median estimator 

 

When the simulation results for temporal median estimator are analyzed one can 

observe that temporal median estimator cannot handle nominal camera motion 

sufficiently. Especially, in the beginning of the video, when there are no objects in 

the scene, the detection performance is quite poor and a lot of false alarms occur 

due to camera motion. Additionally, there are some large holes in the foreground 

objects, which is also not quite desirable. 

 

The results for background modeling using nonparametric KDE method are 

presented in Figure 3. 

 

 

Figure 3 - Simulation results for background modeling using nonparametric KDE 
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First 200 frames of the test video are given as samples for background modeling 

using nonparametric KDE method. The simulation results have similarity with 

previous method. The results are still noisy, mainly due to the nominal camera 

motion. While the algorithm tries to get rid of the effects of nominal camera motion, 

it loses some object points. Similarly, the objects are not detected as a whole block; 

contrarily, there are still big holes in the objects. However, it gives better results if it 

is compared to temporal median estimator, especially when there are no objects in 

the scene. 

 

The results for Bayesian approach for object detection method are given Figure 4. 

 



 

 

Figure 4 – Simulation results for Bayesian approach for object detection 

 

Similarly, first 200 frames are assumed to be a sample set for Bayesian approach for 

object detection method. Background and foreground log likelihood results with 

respect to (12) are also presented in the simulation results. When both the 

foreground and the background are modeled by KDE simultaneously, the results 

show a clear improvement over the two earlier methods. First, the simulation results 

show that, the method is robust for nominal camera motion. Other methods, 

temporal median estimator and background modeling using KDE, have some 

difficulties to handle the nominal camera motion and misclassify some background 
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points, as foreground. However, Bayesian approach remains robust against such 

false alarms for the whole video sequence and has a misdetection rate near zero. 

Furthermore, the objects in the scene are detected as a whole block with no large 

holes. This property provides also an important advantage for extracting the features 

by using optical flow data for object tracking. 

 

To sum up the simulation results, the performance of temporal median estimator 

and background modeling using nonparametric KDE methods are relatively poor as 

compared to Bayesian approach that models both foreground and background 

densities at each frame. Bayesian approach provides a high detection rate, and has a 

very reasonable false alarm rate even in the presence of nominal camera motion. 

Due to these reasons, Bayesian approach is preferred for moving object detection 

part of this thesis work and the results presented in the following sections are based 

on this method. 
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CHAPTER 3 
 
 
 

FEATURE EXTRACTION & KANADE LUCAS FEATURE 
TRACKER 

 
 
 
 

Optical flow is a commonly used technique in object detection and tracking. 

However, it is computationally expensive and also unreliable to calculate optical 

flow for each pixel in every frame, which makes it unsuitable for real-time 

applications since dense estimation slows down the speed of the whole tracking 

system. In order to overcome this difficulty, a common approach to estimate optical 

flow only at sparse feature points will be utilized in this thesis. Feature extraction is 

simply transforming the input data into a reduced representation set of features. 

Feature extraction algorithm is only implemented to the output of previous chapter; 

the regions of moving objects. Additionally, optical flow is calculated only for 

feature points, which speeds up the tracking system significantly. For feature 

extraction, among many other alternatives, a well-known algorithm, namely ‘Shi-

Tomasi corner detection’ will be used. Moreover, for the optical flow calculations, 

an improved version of Kanade Lucas Feature Tracker (KLT) will be used. In this 

chapter, first some brief information about related concepts are given and then the 

algorithms for feature extraction and optical flow are presented in full detail along 

with simulation results. 

 

3.1 Image Pyramid Representation 

Scenes may contain objects of many sizes or objects can be at various distances 

from the viewer. Naturally, these objects will have features of many sizes. 

Therefore, if the images are used only at a single scale for processing, then some 

information may be missed at other scales. 
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The image pyramid is a data structure designed to support efficient scaled 

convolution through reduced image representation. It consists of a sequence of 

copies of an original image in which both sample density and resolution are 

decreased in regular steps [23]. In other words, image pyramid representation is a 

multi-scale representation, in which images are exposed to repeated smoothing and 

subsampling. G0, the bottom of the pyramid, is equal to original image and higher 

levels of the pyramid, which have a reduced resolution at every level, are obtained 

through a highly efficient iterative algorithm. G0 is lowpass filtered and subsampled 

by a factor of two to obtain the next pyramid level, G1. The remaining pyramid 

levels are generated with the same repetitions of the filter or subsample steps. 

 

There are two main types of pyramids; lowpass pyramids and bandpass pyramids. 

In lowpass pyramid, firstly, to eliminate potential aliasing effects, the image is 

convolved by a smoothing filter to remove high frequency signal components. After 

this step the image is subsampled by a factor of two along each coordinate 

direction. From the bottom to the top of the pyramid, at every level the spatial 

sampling density decreases and the result will be a set of gradually more smoothed 

images. On the other hand, for the bandpass pyramid the difference between 

adjacent levels are used. To take the pixelwise difference between adjacent levels, 

there is an interpolation process between representations at adjacent levels of 

resolution. 

 

Pyramid construction is equivalent to convolving the original image with a set of 

Gaussian-like weighting functions [23]. The weighting functions of lowpass 

pyramid closely resemble Gaussian density function. Due to this reason, lowpass 

pyramids are also known as Gaussian pyramids. Similarly, the weighting functions 

of bandpass pyramid are similar to Laplacian operator and bandpass pyramids are 

also known as Laplacian pyramids. Weighting functions of Gaussian and Laplacian 

pyramids for three successive levels are shown in Figure 5. 

 



 

 

Figure 5 – Equivalent weighting functions. The functions for Gaussian pyramid are 

shown in (a) and the functions for Laplacian pyramid are shown in (b). 

 

Let G0, G1,… are the levels of a Gaussian pyramid. To calculate the levels of 

Laplacian pyramid, one should obtain further level from current Gaussian pyramid 

level, and then predict current Gaussian level from further level. The error in this 

prediction gives the current Laplacian pyramid level. In other words, current 

Gaussian pyramid level Gl is reduced to Gl+1, and then Gl is estimated by expending 

Gl+1. The result of this estimation is G'
l and the difference between Gl and G'

l is 

equal to Ll, which is current Laplacian pyramid level. The typical outputs for 

Gaussian and Laplacian pyramids are given in Figure 6. The effects of lowpass 

filtering are clearly apparent for Gaussian pyramid. For the Laplacian pyramid, the 

edge features are enhanced and become more salient by size.  
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Figure 6 – Image pyramids for first six levels (a) Gaussian pyramid and (b) Laplacian 
pyramid 

 

The pyramid offers a useful image representation for many areas. It is widely used 

in image enhancement, data compression, image analysis and computing multi-

scale image features. In summary, image pyramid representation provides a 

convenient and useful multi-resolution format for the multiple scales in the visual 

scenes in all its aspects. 

 

3.2 Optical Flow 

Optical flow is the distribution of apparent velocities of movement of brightness 

patterns in an image [24]. In other words, optical flow is an approximation of the 

local image motion based upon local derivatives in a given sequences of images. It 

specifies how much each image pixel moves between adjacent images. Optical flow 

can be understood as a motion field; however, it is a totally different concept. To 

illustrate, assume a rotating Lambertian sphere with a static light source producing a 

static image. In this case, there is a nonzero motion field but the calculated optical 

flow is zero. Similarly, a stationary sphere with a moving light source produces 

drifting intensities. In this case, there is a zero motion field however; the calculated 

optical flow is nonzero. These examples are illustrated in Figure 7. 
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Figure 7 – In (a) the scene has nonzero motion field with zero optical flow field, in (b) 
the scene has zero motion field with nonzero optical flow field 

 

Optical flow is based on the fundamental idea that, image radiance keeps the same 

at the next time instant for the corresponding point. It can be formulated as: 

 

),,(),,( tyxEtttvytuxE                                                                                 (13) 

 
where E(x,y,t) denotes the intensity for location (x,y) at time t and (u,v) is the 

unknown velocity of the point at location (x,y). Since the motion field is continuous, 

first order Taylor Series Expansion can be used; this could be a valid assumption, if 

there is not a rapid motion in the scene, since all the higher order terms ‘e’ in the 

first order Taylor Series Expansion are assumed to be zero. By using first order 

Taylor Series Expansion given in (14), optical flow constraint equation shown in 

(16) can be easily obtained. 
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If the terms on the left hand side given in the 3rd condition in (14) are rearranged as 

given in (15) and inserted again into the 3rd condition in (14), finally, Equation (16) 

is obtained. 
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0 tyx EvEuE                                                                                                            (16) 

 

The aim of the optical flow is to estimate the (u,v) vector, which is shown in Figure 

8. Unfortunately, the component of (u,v) vector, that is perpendicular to brightness 

gradient direction can not be observed; this is a physical phenomenon named 

aperture problem. Figure 9 shows one typical example for the aperture problem, 

where a line is moving up and to the right direction, is viewed through a circular 

aperture. In this case, it is impossible to recover the correct full image velocity, 

however, only the image velocity normal to the line [25].  

 

 

Figure 8 – Illustration of optical flow vector 
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Figure 9 – An illustration for aperture problem 

 
Since there is one equation with two unknowns, extra constraints, such as rigid 

body and smoothness of neighboring motion vectors assumptions should be 

introduced. Rigid body assumption assumes that all objects in the scene are rigid 

and no shape changes allowed. Smoothness assumption arises from the observation 

that neighboring pixels generally belong to the same surface. Therefore, it is 

assumed that neighboring pixels have nearly the same image motion. However, 

smoothness assumption usually fails at moving object boundaries. In that case, 

smoothness assumption, in the direction perpendicular to the boundary, can be 

stopped and directional smoothness constraint can be used. After these assumptions 

the problem is reduced to minimization of the relation below:  

 

cs eee                                                                                                                          (17) 

 

where es and ec can be expressed as below 
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Here es is the smoothness term and ec is the error term. λ is a user defined 

regularization parameter. Minimization of (17) can be achieved by applying some 

calculus variations, such as Euler equations to (17) directly. Alternatively and more 

commonly, a discrete version of this integral equation can also be minimized. There 

are two well known approaches to minimize this equation and estimate the optical 



 

flow. These are namely Horn and Schunk method [24] and Kanade-Lucas method 

[42]. In the next section, these methods are explained in detail. 

 

3.2.1 Horn and Schunk Method 

The Horn and Schunk method is an optical flow estimator which estimates motion 

based on the local gradient and local difference of two consecutive frames. To solve 

the aperture problem, a global smoothness constraint, which assumes smoothness in 

the flow over the whole image, is imposed. Horn and Schunk method achieves 

solutions, which show more smoothness, by minimizing the distortions in the flow. 

In order to achieve this aim, the cost function in (19), which is an extended version 

of (17), should be minimized. 

 

    dxdyvuEvEuEe tyx  222                                                              (19) 

 

To go any further, the partial derivatives Ex, Ey, Et and the Laplacian of the flow 

velocities2u, 2v are required. Firstly, the derivatives of brightness are estimated 

by using eight brightness measurements. It is crucial to estimate these derivatives 

consistently, which means they should refer to same point at the same time [24]. 

Therefore, the estimation of horizontal, vertical and time derivatives can be 

obtained as shown in (20), (21) and (22). 
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In these equations, j corresponds to the x direction in the image, i corresponds to the 

y direction and k stands for the time domain. As mentioned before, the Laplacian of 
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the flow velocities should be also estimated. One convenient approximation takes 

the following forms given in (23) and (24). 
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cal averageswhere the lo  u  and v  are given below in (25) and (26). 
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he Laplacian is estimated by subtracting the value at a point from a weighted T

average of the values at neighboring points. Figure 10 illustrates the assignment of 

weights to neighboring points. 

 

 

Figure 10 – Assignment of weights to neighbors 

 
ow the cost function e can be minimized by differentiating it with respect to u and N

v and equating the derivatives to zero. After this minimization process, the results 

are given in (27) and (28). 
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Solving (27) and (28) by using on

ifficult, since the corresponding matrix would be quite large. Therefore, the 

e of the standard mathematical methods would be 

d

velocity estimations can be computed by using estimated derivatives and the 

average of the previous velocity estimations. Eventually, the velocity vectors of the 

optical flow are obtained through an iterative approach by using (29) and (30). 
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3.2.2 Kanade Lucas Method 

Kanade Lucas method is a two frame differential method for optical flow 

 almost 30 years, since the method was first 

                                                                                        (31) 

In order to make this mini

spect to u and v, and equate them to zero. 

estimation. Although it has been

proposed, it is still one of the most popular methods for calculating the optical flow. 

The additional constraint, which is needed for the estimation of the optical flow, is 

introduced by assuming that the flow in a local neighborhood around the central 

pixel is constant. To obtain this structure, Kanade Lucas method generally uses 

blocks for every pixel in the image. And it tries to minimize the optical flow 

equation within these blocks. 
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After some mathematical manipulations the estimation for optical flow vector can 

be obtained as [26]. 
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The advantage of Kanade Lucas method is its robustness in presence of noise with 

compared to the point-wise methods. On the other hand, the flow information that 

Kanade Lucas method provides fades out quickly across motion boundaries. 

Additionally, it provides little or no flow information in the inner parts of uniform 

regions of the image, because it is an entirely local method. 

 

3.3 An Improved Version of KLT 

Kanade Lucas Tracker is a feature tracker algorithm, which is commonly used in 

the literature. In this thesis work, an improved version of KLT [27] will be used. In 

this section, first the details of the implementation are given and then the 

improvements of the algorithm are explained. Finally, the simulation results of the 

algorithm are presented. 

 

3.3.1 Pyramidal Feature Tracking 

This algorithm uses two grayscale images as inputs, namely I and J. These two 

images usually correspond to two consecutive frames for a video. Let u = [ux uy]
T 

be an image point on the first image I. The aim of the feature tracking algorithm is 

to find the corresponding point, v = u + d = [ux+dx uy+dy]
T, on the second image J, 

which is similar to the point on I. The vector d = [dx dy]
T is the optical flow vector. 

The optical flow vector can be defined as the vector that minimizes the cost 

function which is given below: 
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where wx and wy determines the size of the integration window, which is referred as 

block in Kanade Lucas method. For the first step of the algorithm, the pyramidal 

representation should be built for the two input images. Let L be the pyramid level 

and the 0th level of the pyramid be equal to the original image itself. Then, the 

pyramid representation is built recursively as shown in Equation 35, 
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Maximum value of L or the pyramid height is picked heuristically yet, 2, 3 or 4 are 

practical values. Since the image size will be too small, going beyond level 4 does 

not make much sense for typical image sizes. 

 

In order to obtain pyramidal feature tracking, the optical flow is computed at the 

deepest pyramid level firstly and then the result is propagated to the upper level as 

an initial guess. The same process is repeated iteratively until the 0th level is 

reached. Accordingly, the cost function defined in Equation 34 should be modified. 

 

  








x
L
x

x
L
x

y
L
y

y
L
y

wu

wux

wu

wuy

L
y

L
y

L
x

L
x

LLL
y

L
x

L dgydgxJyxIdd 2)),(),((),(                    (36) 

 

Here, gL=[gx
L gy

L]T is the initial guess for optical flow at level L and dL=[gx
L dy

L]T is 

the residual optical flow vector at level L. While passing to upper level, L to L-1, 

the new initial guess would be 

 

)(21 LLL dgg                                                                                                     (37) 
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After reaching to the 0th level, the final optical flow d can be calculated by using the 

following relation. 

 

00 dgd                                                                                                                         (38) 

 

Using image pyramid structure helps each residual optical flow vector dL to be kept 

small, due to the effect of each initial guess gL. This provides the algorithm to 

handle large pixel motions in the scene, while keeping the size of integration 

window relatively small.  

 

3.3.2 Iterative Kanade Lucas Optical Flow Calculation 

At each pyramid level, the algorithm tries to calculate optical flow vector by using 

Kanade Lucas method iteratively. Here, the superscript L is not used for simplicity. 

For clarity purposes, new images A and B are defined as follows, 
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where A(x,y) is defined over a window size (2wx+3)×(2wy+3) instead of 

(2wx+1)×(2wy+1). This change will provide an advantage while calculating the 

spatial derivatives. The displacement vector and the image position vector are also 

renamed as v=[vx vy]
T=dL, and p=[px py]

T=uL, respectively. With respect to this 

new notation, minimized cost function can be rewritten as 
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In order to find the displacement vector v=[vx vy]
T that minimizes the cost 

function, one should take the first derivative of cost function and equate it to zero as 

shown in Equation 41. 
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First order Taylor series expansion can be applied to Equation 41. 
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Here, the difference between A(x,y) and B(x,y) is the temporal image derivative 

I(x,y) and the matrix 
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derivatives can be calculated from A(x,y) as given below 
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After some mathematical manipulations [27], (42) can be rewritten in terms of 

image derivatives. 
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For simplicity, the first term in the paranthesis given in (44) is symbolized by G, 

whereas the second term is symbolized by b. Accordingly, (44) becomes, 
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The optimum optical flow vector can be calculated by using: 
 

bGvopt
1                                                                                                                         (46) 

 

Equation 46 is the main relation for the well-known Kanade Lucas optical flow 

equation. However, it is valid only if the motion or the pixel displacement in the 
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scene is relatively small. Otherwise, the first order Taylor series expansion, which is 

used in (42), will not hold. Therefore, one should follow an iterative way and 

calculate the optical flow vector multiple times to get a more accurate solution. For 

the iterative version of the algorithm, let k be the iterative index and let the previous 

iterations provide an initial guess as vk-1=vx
k-1 vy

k-1T. Then, the translated image 

considering vk-1 will be 
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Similar to Equation 40, the aim is to find the residual pixel motion vector k=[x
k 

y
k] which minimizes the cost function given below  
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For finding the solution, one should follow the same steps, which is given in 

Equations 41-46 and do the one step Kanade Lucas optical flow computation. 

Eventually, the residual pixel motion can be computed by using Equation 49. 
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where bk is the image mismatch vector, which is defined as 
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In (50), the spatial derivatives are calculated only once by using (43). The matrix G 

also stays constant; however, kth image difference Ik should be calculated as 

follows: 
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By using residual pixel motion vector, which is calculated in (49), new pixel 

displacement guess for the next iteration step k+1 will be calculated as follows, 

 

kkk
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The number of iterations is a user selected parameter; however, practically in 5 

iterations the convergence can be reached [27]. While choosing the number of 

iterations, one should always remember that there is a tradeoff between accuracy 

and computation time. Finally, the final solution for the optical flow vector is 

obtained as 
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where K is the total iteration number. It should be finally noted that this overall 

procedure should be repeated for all levels of image pyramids of the input images. 

 

3.3.3 Summary of the Algorithm 

In this part, the important steps of the algorithm are summarized to present the 

entire algorithm. There are two input images namely I and J, which correspond to 

two consecutive frames of a video. The main purpose is to find the corresponding 

point in the second image of a point in the first image. First of all, the pyramid 

representations for two input images are built up and pyramidal guesses are 

initialized. The algorithm has two for loops; the outer for loop is for pyramid levels 

and inner for loop is for the calculation of the optical flow vectors iteratively. The 

algorithm starts with the top of the pyramid or smallest image to processing, in 

which motion will be expressed with less number of pixels. It is also meaningful for 

not violating Taylor series expansion. Then, the horizontal and vertical derivatives 

are calculated with the help of (43). After that by using these derivatives, the spatial 

gradient matrix G can be constituted. 

 
In the inner for loop, the optical flow vectors are calculated iteratively. To do this, 

firstly, the difference between the 1st and 2nd image are taken; however, pyramidal 
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guess (gx
L and gy

L) and optical flow guess (vx
k-1 and vy

k-1) are also taken into 

consideration by using (39) (2nd condition in (39)), (47) and (51). Therefore, these 

calculations are made in sub pixel accuracy. Then, by using image differences and 

horizontal and vertical derivatives, the image mismatch vector bk can be 

constituted. Finally, by the help of (49), the optical flow vector, which will be used 

as an estimate for the next iteration can be calculated. After the overall procedure is 

repeated for all the levels of the pyramid, a final optical flow vector for 

corresponding location can be obtained. Surely, the output of this algorithm is only 

for a single pixel. If one wants the results for all the pixels, then the algorithm 

should be repeated for each pixel. 

 
In order to provide complete understanding, the main algorithm of KLT is presented 

in the Appendix. 

 

3.3.4 Improvements of the Algorithm 

In this part, the advantages of improved version KLT algorithm are explained. First, 

using the image pyramid approach provides the algorithm not to violate Taylor 

series expansion assumption, because for higher levels of image pyramid the 

probability of having a relatively rapid motion in the scene becomes smaller and 

smaller. By using image pyramid one can also handle more motion, e.g. relatively 

fast objects in the scene. That is because while going from top to bottom of the 

pyramid the result of the upper level is always given to the bottom level as an initial 

estimate. Besides, the optical flow vectors are calculated in an iterative way. In 

other words, one can get better results at every step, but the tradeoff is computation 

time. In addition, these calculations are made in sub pixel accuracy; therefore this 

makes the algorithm more robust. 

 

3.3.5 Simulation Results for Improved Version of KLT Algorithm 

In this section, simulation results of the improved version of KLT algorithm are 

presented. For the implementation of improved version of KLT algorithm, the 

number of pyramid levels is selected as 3 and the window size is selected as 5 x 5. 

First, the algorithm is tested against a moving car scene. The car is moving in 
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horizontal direction and there is also a camera pan. In Figure 11, the input frames 

for moving car scene are shown. The picture sizes of these frames are 320×240. 

 

 

Figure 11 – A moving car scene 

 

For all pixels, the optical flow vectors are calculated and illustrated in Figure 12 as 

a needlegram. To observe the vectors clearly, it is also zoomed into the moving car 

region. As one can easily observe from Figure 13, the optical flow vectors show 

mainly the correct direction for the zoomed region. Moreover, to show the outputs 

‘quiver’ function of MATLAB is used. The ‘quiver’ function makes some 

normalization because of this reason if all the background is moving; ‘quiver’ is not 

an optimal way to visualize the results. Beacuse in that case the movements of the 

objects are not emphasized. But if not, it is suitable to visualize the results. 

 

 

Figure 12 – Calculated optical flow vectors 
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Figure 13 – Zoomed into the moving car region 

 

Second, the algorithm is tested against a crowded airport scene. As one can easily 

see from Figure 14, the blonde lady in the foreground and the lady in the 

background are moving significantly. In this video clip, sizes of these frames are 

720×576. 

 

 

Figure 14 – A crowded airport scene 

 

Similarly, for all the pixels, the optical flow vectors are calculated and it is zoomed 

near the head of the blonde lady to see the vectors clearly. The results are shown in 

Figure 15 and Figure 16. 
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Figure 15 – Calculated optical flow vectors 

 

 

Figure 16 – Zoomed into near the head of blonde lady 

 

Similarly, the results of the improved version of KLT algorithm are satisfying for 

zoomed region. However, if the optical flow vectors for each pixel in the scene are 

investigated, it can be observed that the results are noisy and there are also some 

false alarms. In other words, the performance of improved version of KLT 

algorithm is not stable for the overall scene. Because of this reason, improved 
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version of KLT algorithm can not be used by itself for tracking purposes; it needs a 

tracker algorithm to perform reliably.    

 

3.4 Finding the Features 

In some cases, input data may be quite large to be processed and it may have 

redundant data in it. In these circumstances, the input data should be transformed 

into a set of features and expressed with these features. This transformation process 

is called feature extraction. In other words, feature extraction is a special form of 

dimensionality reduction. 

 

For a visual tracking system, calculating the optical flow vector for each pixel in 

every frame brings about a huge computation load. Moreover, this computation load 

causes to slow down the speed of the tracking system. In order to avoid this, the 

feature extraction algorithm is implemented only to moving regions in a frame, 

which is the output of previous chapter. Additionally, the optical flow vector is 

calculated only for the feature points. As a result, one gets the feature points in 

moving regions with their optical flow vectors in the end. 

 

For feature extraction step, an algorithm called ‘Shi-Tomasi corner detection’ [28] 

is used. The algorithm proposes a feature selection criterion. The process of 

discovering regularities, which can be made easier and less time consuming by 

removing features of the data that are irrelevant or redundant, is named feature 

selection [29]. In the next part feature extraction algorithm ‘Shi-Tomasi corner 

detection’ is explained in full detail. 

 

3.4.1 Shi-Tomasi Corner Detection 

Theoretically, having more features provides one more discriminating power. 

However, in practice, this is not always the case. The key point in machine learning 

algorithms is that finding the good and sufficient number of features. Due to many 

and useless features cause slow down the algorithm and may even mislead it. 

Selecting the right features for tracking and selecting the features, which correspond 

to reasonable physical points in the real world is a difficult job to do. Feature 



 

selection methods are based on some measure of texturedness or cornerness. 

Corners, standard deviation in spatial intensity and zero crossings of the Laplacian 

of image intensity are commonly used in the literature. These interest operators are 

usually based on a preconceived idea and the resulting features are not guaranteed 

to be best for tracking algorithm to produce good results [28]. 

 

This algorithm proposes a principled feature selection criterion rather than 

traditional interest or cornerness measures. Specifically, it chooses the features, 

which make the tracker work best. In this formulation, G matrix from previous topic 

will be used. As a reminder G matrix is as given below. 
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                                                                                  (54) 

 

If the eigenvalues of G are analyzed, two relatively small eigenvalues correspond to 

a constant intensity profile within a window. A relatively large and a relatively 

small eigenvalue represent a texture pattern. Two relatively large eigenvalues clues 

corners or salt and paper textures within a window. The intensity variation within a 

window is limited by maximum pixel value, accordingly the larger eigenvalue 

cannot be arbitrary large. 
 

In the light of the foregoing, the feature selection criterion of this algorithm will be 

min (1,2)>, where 1,2 are the eigenvalues of G and  is a predefined threshold. 

Therefore, if the minimum eigenvalue of G matrix is above a threshold then the 

window is accepted. 

 

3.5 Simulation Results 

As mentioned before, the feature extraction process will be applied only the moving 

regions in the scene, which is the output of previous chapter. So the two chapters 

are connected with each other. In this section, the simulation results of this 

combination are presented. The same test video, which is used in previous chapter, 

is selected here for comparison of the results.  
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The test video, which is illustrated in Figure 1, has 360×240 dimensions, 15 fps 

frame rate, 33 seconds duration and an average of 12 pixels nominal camera 

motion. In the first 250 frames, there are no foreground objects in the scene and first 

200 frames are used in the training part of the background modeling. Therefore, the 

simulation here starts from 201th frame. Before the simulation, the expectation is to 

obtain the features, which are only from moving regions in the scene. In other 

words, the features should be extracted from white regions in Figure 4. The 

simulation results are given in Figure 17. 
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Figure 17 – Simulation results for feature extraction 
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It is clear that the simulation results align well with the expectation. The feature 

points are extracted only from moving regions, plus they are quite satisfying. A 

silhouette of a walking man and a moving car can be easily seen. In addition to this, 

the optical flow information of these feature points is also available. This optical 

flow information of these feature points will be used in the next chapter. 
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CHAPTER 4 
 
 
 

TRACKING USING PARTICLE FILTER  
 
 
 
 

Since they are introduced into the literature, particle filters have become very 

popular as a solution of tracking problem. It owes its popularity to its treatment to 

the tracking problem with a different approach. The methods like Kalman filters 

deal with a simplified version of the actual complex model. They can achieve an 

exact solution by using the simplified model. Kalman filters achieve optimal results 

for linear systems. Therefore, finding an exact solution for the simplified model can 

be advantageous for some systems, which are linear or almost linear. However, a 

simplified model may also be inadequate for some real-life cases. If the non-

linearity of the system is high, simplified models do not reflect the actual conditions 

of the systems. To obtain exact analytic solution for non-linear and non-Gaussian 

cases, the particle filter offers an approximate solution by using actual complex 

model instead of an exact solution by using simplified model. Therefore, the 

selection of the filter is directly related with the system. On the other hand, the 

assumptions of the methods like Kalman filters are generally strong. Particle filter 

does not rely on any local linearization technique or any functional approximation. 

The trade-off for this flexibility is increase in the computational cost. 

 

The particle filters are widely used in visual and radar tracking, navigation, 

communication, econometrics and image restoration. In this thesis work, a synthesis 

of particle filter and the all visual data from previous chapters will be used for 

visual tracking. In this chapter the particle filter is treated exhaustively. Firstly, 

some basic concepts related with particle filter are provided. Afterwards, the 

particle filter is given in full details and finally the implementation details and 

results are explained. 
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4.1 Particle Filter 

4.1.1 Basic Concepts 

Estimation problems can be categorized into three main groups, namely filtering, 

smoothing and prediction. Filtering involves the derivation of information about the 

quantity of interest at time t by using all the data available up to and including t. In 

smoothing, which is an a posteriori form of estimation, some past value of the 

quantity of interest is estimated with the data available up to and including t. The 

aim of prediction is to extract some information about the future value of the 

quantity of interest. Prediction is an a priori form of estimation. 

 

A dynamic system can be analyzed with the help of at least two important models. 

Without these models a dynamic system would be meaningless and it would be very 

hard to make inference about the system. These models are the system model, 

which describes the evolution of the state with time, and the measurement model, 

which relates the noisy measurements to the state [30]. Real world systems 

commonly require estimation, when a measurement is received. Using a recursive 

filter would be the appropriate solution for this kind of problems. For recursive 

filtering approach there is no need to store complete data, because the received data 

will be processed sequentially. There is no reprocessing step for the existing data, if 

a new measurement becomes available. Beginning with Kalman filter, all the 

recursive filters rely on two stages: prediction and update. In the prediction stage, 

the state PDF is predicted by the help of the system model from one measurement 

time to the next. Usually prediction makes a translation and deformation to the state 

PDF because of the random noise. In the update stage, the latest measurement is 

used to modify the prediction PDF. 

 

Prediction and update stages arise from Bayes rule, which denotes the filtering 

distribution by using the likelihood and the predictive density. The first term in (55) 

is the filtering distribution, the next term is the likelihood and the third term is the 

predictive density. 
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In many cases the likelihood function is usually known, however the predictive 

distribution of the state is an integral, which depends on the filtering density of 

previous period. The predictive distribution is stated in (56). 

 

ttttttt dxyxpxxpyxp )|()|()|( :11:11                                                                        (56) 

 

In practice, computing these densities is quite difficult. Generally, the filtering 

density of previous period is a complicated function of potentially high dimensional 

vector yt and that prevents apply general Bayesian updating methods. Analytical 

solutions can be achieved for a few cases e.g. linear and Gaussian models. For all 

other cases, simulation based methods are frequently preferred. 

 

Monte Carlo methods are stochastic sampling approaches, which are based on the 

use of random numbers and probability statistics. These methods are widely used in 

computer simulations of physical and mathematical systems. Monte Carlo methods 

aim to tackle the complex systems, which are analytically intractable, and allow one 

to examine with them. In mathematics, the Monte Carlo methods are ordinarily used 

to evaluate complicated integrals like the integral, which is given in (56). This 

process is called Monte Carlo integration. 

 

Importance sampling is a general Monte Carlo integration method. It approximates 

the filtering density of previous period, thus Equation 56 becomes a sum over the 

individual particles instead of an integral. 
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Importance sampling approach forms the basis of particle filter that is expressed in 

Section 4.1.2 in more detail. 
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4.1.2 Sequential Importance Sampling 

The sequential importance sampling (SIS) algorithm is a Monte Carlo method, 

which lay a groundwork for most sequential Monte Carlo filters. The sequential 

Monte Carlo approach is based on implementation of a recursive Bayesian filter by 

Monte Carlo simulations. This approach is also known as condensation algorithm, 

bootstrap filtering, interacting particle approximations, survival of the fittest and 

particle filtering. The basic idea of particle filter is to represent posterior density by 

using a number of independent random variables called particles, which are 

sampled directly from state space, and their associated weights. The posterior 

density is then updated by involving the new observations. Thereby, particle filter 

solves the integral computation problem of Equation 56 by a discrete approximation 

to the filtering density. This approximation becomes an equivalent representation of 

the posterior PDF and the SIS filter approaches the optimal Bayesian estimator as 

the number of particles becomes very large. That obtains flexibility for non-

Gaussian, multi-modal PDFs, because any arbitrary distribution can be easily 

represented with this approach. 

 

For the details of SIS algorithm, let Xk be the sequence of all states up to time k, 

p(Xk|Zk) be the joint posterior density at time k and p(xk|Zk) be its marginal density. 

The weights are also normalized for the sum of them to equal 1. The joint posterior 

density at k can be approximated by using (58) [30]: 
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The discrete approximation is good enough if the samples are drawn from the 

posterior PDF. However, in practice one can not use the posterior PDF for 

sampling, because there is no explicit representation of posterior PDF. The solution 

of this problem is choosing the weights using the principle of importance sampling. 

This principle relies on sampling from another importance density, called prior 

belief q(.) that the samples can be easily generated. In that case, the approximation 

in (58) is still correct up to a normalization constant, unless the particles are 

weighted according to (59). 
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To derive the weight update equation, it is assumed that an approximation to     

p(Xk-1|Zk-1) is formed with the samples at time step k-1. In order to approximate 

p(Xk|Zk) with the new samples at time k, the importance density will be chosen 

according to (60). 
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y using Bayes rule, p(Xk|Zk) can be also expressed as given below. B
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ne can easily notice that, the denominator of Equation 61 does not depend on x. 

                                                         (62) 

 

onsequently, the weight update equation can be achieved by substituting the (60), 

O

For this reason the term in the denominator can be thought as a normalizing variable 

such that the probability sums up to 1. 
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(61) and (62) into the Equation 59. 
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 only the filtered estimate of posterior p(xk|Zk) is required at each time step, one 

k-1 

k-1

modified approximation about the posterior filtered density are stated successively 

If

can easily assume that the importance density is independent from the path Xi and 

the history of observations Z . In that case, there is no need to store all the history 

of observation, storing i  is enough. The final weight update equation and the 

in (64) and (65). 

kx
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The performance of SIS algorithm depends on the selection of the importance 

density and the accuracy of the importance sampling approximation [31]. SIS 

algorithm is quite important and most of the particle filter algorithms are based on 

it. Pseudo-code of SIS algorithm is given in Table 3 [32]. 

 

Table 3 – Pseudo-code of SIS algorithm 
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 FOR i = 1 : N 
- Draw i

kx ~ ),  |( 1 k
i
kk zxxq 

- Update the importance weight according to Equation 64 

 END FOR 

Calculate total weight:  
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 FOR i = 1 : N 
- Normalize i  k

i
k wtw ~1

 END FOR 
 

4.1.3 Degeneracy Problem 

Using another importance density instead of the posterior distribution may cause an 

increase of the unconditional variance of importance weights over time. Importance 

weights with large variances bring about inaccurate estimates. This problem is 

called weight degeneracy problem. In practice, after a few iterations, most particles 

have negligible weights; the weights are concentrated on a few particles only. This 

is disadvantageous since a lot of computational effort is wasted to updating those 

trivial particles, whose contribution to the approximation of posterior density is 
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almost zero. To calculate the degree of degeneracy of an algorithm, effective 

sample size can be introduced. 
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However effective sample size cannot be evaluated exactly, because of true weight, 

which is given in (67). For this reason, an estimate of effective sample size can be 

used as a measure of degeneracy. 
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Here wi
k is the normalized weight, which can be obtained by using (63). For two 

extreme cases, if the weights are uniform Neff will reach its maximum value, N, and 

if all the weights equal to zero except only one weight, then Neff will take its 

minimum value which is equal to 1. As a result, one can easily claim that: 

 

NNeff 1                                                                                                                      (69) 

 

Having a small Neff indicates that, the algorithm has a severe degeneracy level. 

Clearly, it is an undesirable effect for particle filters. In order to cope with this 

situation, one can use too many samples; therefore the effect of degeneracy will be 

reduced naturally. However, this brute force approach is impractical. Instead of this, 

resampling can also fix the degeneracy problem more practically. 

 

4.1.4 Resampling 

The basic idea of resampling is to eliminate particles that have small weights and to 

concentrate on particles with large weights [30]. In other words, the total number of 



 

particles is kept the same, while increasing the number of particles in high 

probability regions and decreasing the number of particles in low probability 

regions. Resampling process involves a mapping from {xi
k, w

i
k} into {xk

i*, 1/N} with 

uniform weights. Then, the approximation about the posterior filtered density is 

made with this new set of random samples, which is generated by resampling. 

 

SIS algorithm needs a resampling process, whenever a significant degeneracy is 

observed. This decision can be given by threshold the effective sample size. SIS 

algorithm with resampling approach constitutes the generic particle filter. The 

working principle of generic particle filter is illustrated in Figure 18 [32]. 

 

 

Figure 18 – The working principle of generic particle filter 

 

4.1.5 Sample Impoverishment Problem 

Resampling process reduces the negative effects of degeneracy; however it brings 

another problem. If a vast of majority of the weights is placed on a few particles, 
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these particles with high weights are statistically sampled many times. This causes a 

loss of diversity among the particles, which is also known as sample 

impoverishment problem. Sample impoverishment problem simply arises from 

resampling process, where the samples are drawn from a discrete distribution 

instead of a continuous distribution. 

 

If the process noise of the system is very small, then the negative effects of sample 

impoverishment are perceived easily. Because having a very small process noise 

leads all particles to collapse to a single point after a few iterations. Introducing an 

additional noise to the samples, which is called jittering or roughening, can reduce 

the effect of sample impoverishment. However, in general, when process noise in 

the state dynamics is zero, using a particle filter is not entirely appropriate [32]. 

 

To deal with sample impoverishment problem, there are two commonly used 

techniques namely; resample-move algorithm and regularization. These techniques 

are mentioned in forthcoming parts. In Section 4.1.6, the importance of selection of 

importance density is explained. Selecting an appropriate importance density will 

also protect the particle filter algorithm from negative effects of sample 

impoverishment. 

 

4.1.6 Selection of Importance Density 

Selection of the importance density directly affects the performance of a particle 

filter. In order to find the optimal importance density function, one should choose 

the function, which maximizes the variance of importance weights. 
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By substituting Equation 70 into (64), one can find the weight update equation for 

optimal importance density case. 
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d case is a system, where 

e state dynamics are nonlinear and the measurements are linear and the noises are 

additive Gaussian. Su

ero-mean white Gaussian sequences 

ith the covariances Qk-1 and Rk. For such system, both the optimal importance 

density and p(zk|xk-1) would be 
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This choice of importance density would be optimal since the conditional variance 

of the true weight would be zero in this case. Equation 71 also indicates that the 

importance weights at time k should be computed before the particles are 

propagated to time k. However, evaluating an integral over the new state can rarely 

be done. There are two cases that one can use the optimal importance density. If xk 

is a member of a finite set, then the integral in (71) becomes a sum. In this case, 

sampling from p(xk|xk-1
i, zk) would be possible. The secon

th

ch a system can be summarized as; 
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where the noises are mutually independent z

w

Gaussian [32]. 
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or other cases, one must tend to a suboptimal choice of importance density. Local 

An alternative convenient su

ansitional prior. This choice is commonly preferred since it is intuitive and easy to 

implement. Howeve

                                                                                                         (81) 

The selection of importance density is a critical design step for particle filters, 

ics and 

easurement functions are given and sampling from process noise can be done. The 

ike SIS filter, the choice of importance density plays a crucial role in the 

performance of SIR

eeded for the selection of importance density. To meet this requirement, a process 

F

linearization techniques can be used to obtain a suboptimal approximation to the 

optimal importance density. These techniques are generally based on a Gaussian 

approximation to p(xk|x
i
k-1, zk). 

 

boptimal choice is to select the importance density as 

tr

r, it does not take measurements into account. 
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which should be emphasized by the users. 

 

4.1.7 Sampling Importance Resampling Filter 

The sampling importance resampling (SIR) filter, which is also known as bootstrap 

filter, is another Monte Carlo method that is commonly used for recursive Bayesian 

filtering problems. SIR filter has mild requirements that the likelihood function is 

available and the states can be simulated. It also assumes that state dynam

m

difference between SIS and SIR filters is that in SIR filter; resampling step is 

performed at every time index; whereas in SIS filter, resampling is taken whenever 

needed. Because of this reason, SIS filter is less computationally expensive. 

 

L

 filter. According to Equation 80, samples from p(xk|x
i
k-1) are 

n

noise sample,vi
k-1, is generated by using the process noise PDF and set: 
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In this case the weights will be as given in (80), however because of the resampling 

process at every time index the equation will simplify to: 
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IR filter can be inefficient and sensitive to outliers, since the importance density of 

SIR filter is independ tage of SIR filter is 

that it can be exposed to sample impoverishment easily, because it has a resampling 

step every time index. However, SIR algorithm is easy to implement, like SIS 

algor s given in Table 4. 

 

ble 4 – Pseudo-code of SIR algorithm 
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4.1.8 Other Related Particle Filters 

Because of this reason, the remaining algorithms are explained in general terms. 

In the literature, there are many different particle filter and most of them are based 

on SIS algorithm. The differences between these algorithms are generally the choice 

of the importance sampling density and the modification of the resampling step. 
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iliary SIR (ASIR) filter is proposed to correct some imperfections of SIR 

rforms a resampling process at time k-1, before the particles are 

propagated at time k and new samples points will be closer to true state because of 

the use of current measurement. The weight update equation of ASIR filter is given 

 (84). 
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he regularized particle filter (RPF) uses a continuous approximation of the 

posterior density at resampling step instead o

remaining algorithm is identical to SIR algorithm. RPF draws samples from the 

pproximation given below. 

 

                                                                                     (85) 

 

Here, ij corresponds to the index of the particle at time k-1. ASIR filter is a more 

robust algorithm in the case of small process noise; however its performance 

degrades in the case of high process noise. 
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Here, Kh is rescaled kernel density and nx is the dimension of the state vector. Using 

e dimension of the state is low. In 

practice, RPF performs better than SIR filter especially when the sample 

le 

kernel approximation is reasonable when th

impoverishment is severe. 

 

4.1.9 The Problems of Particle Filters 

Except degeneracy and sample impoverishment, particle filters have also some 

other problems. The optimal number of particles, which is needed for partic
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s, is always unknown. Using too few particles may cause that the improbable 

computational cost increases enormously. In addition, lots of 

omputation power is wasted on the states, which already have many particles. That 

ved error falls to a 

teady level [34]. The system model and the noise are also related to the number of 

he non-Gaussian noises increase, 

hapter 4. In order to check, whether the algorithm 

orks well enough or not, a simple linear dynamic system is solved by Kalman 

ystem, that is chosen to use here, has a constant velocity. The state 

ector indicates the position and the velocity on x and y directions, therefore it is 

four dimensional. The measurements are two dimensional; only the positions on x 

filter

states have very few or no particles. This leads a lag time between the occurrence of 

the event and the response of the states as becoming more likely. Additionally, 

using few particles increases the variance, thus the estimations will be inaccurate. 

 

Therefore the number of particles should be increased in order to make sure that all 

states are represented well. However, in that case the algorithm needs too many 

particles to represent very small probabilities. Therefore, each state gets more 

particles and 

c

will obviously affects the performance of particle filter negatively. Additionally, the 

performance of particle filters also degrades quickly as the state dimension 

increases [33]. 

 

To determine the sufficient number of samples, trial and error method should be 

followed; the number of particles is increased until the obser

s

particles. If the nonlinearity in system model or t

then potentially more particles are needed. In conclusion, the number of particles in 

a particle filter can be regarded as a tuning parameter for users. 

 

4.2 The Implementation of Particle Filter 

For this thesis work, a generic particle filter structure is built according to the 

information given throughout C

w

filter and generic particle filter. If the results are close enough, one can say that the 

particle filter algorithm works well, because for linear dynamic systems Kalman 

filter gives the optimal results. 

 

The dynamic s

v
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and y directions

7) and (88). 

 

                                                                                                                 (87) 

ere, wk is process noise which is normally distributed, with zero mean and Q 

covariance. Similarly, measurement noise vk is also normally distributed, with zero 

mean and R covaria

 

                                                                                                          

 

. The state and measurement equations of such a system are given in 
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n as 0.5 for this implementation. The next 

tep is generating the measurements until k = 100 by using (87) and (88). 
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T is the sampling time, which is chose

s
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orithm, which is given in Table 3, is 

pplied. If the effective sample size, which is expressed in (68), falls below the half 

of the number of particles, then resampling process is done. The results for different 

number of particles are stated in Figure 19-24. 

 

Afterwards, by applying standard Kalman filter equations one can easily get the 

Kalman filter solution to this problem. 

 

In order to reach to particle filter solution, first the weights are initialized as a 

uniform distribution. Then the standard SIS alg

a

 

Figure 19 – The comparison between Kalman filter and particle filter with 50 particles 

 



 

 

Figure uence  20 – Zoomed into the blob in the middle of the seq

 

Figure 21 – Zoomed into the end of the sequence 
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Figu 150 

 

re 22 – The comparison between Kalman filter and particle filter with 
particles 

 

Figure 23 – Zoomed into the same blob in the middle of the sequence 
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Figure 24 – The comparison between Kalman filter and particle filter with 500 
particles 

 

Before analyzing the results, it is necessary to clarify that the blue line stands for the 

measurements with noise, red points stand for the measurements without noise, the 

e stands for the output of Kalman filter and the dashed green line stands for 

le filter with 50 particles clearly moves away from the optimal Kalman 

 most cases. Therefore one can conclude that 50 particles were 

efinitely not enough for this task. 

 

The results are shown in Figure 22, when of particles increases up to 

150. There a us improvements e results, spec ly in the 

problematic regions with 50 particles. The convergence to the optimal Kalman filter 

red lin

the output of particle filter with different number of particles. The aim of both 

Kalman filter and particle filter is to reach the measurements without noise 

sequence. Certainly, the Kalman filter gives the optimal results here and the particle 

filter algorithm proves to be effective, since its results are close to the optimal 

results provided by the Kalman filter. 

 

The partic

filter result especially in the middle and at the end of the sequence. These regions 

are shown in Figure 20 and Figure 21. Generally, the results in Figure 19 are 

unsatisfactory for

d

the number 

re some obvio  in th ifical
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result mmary, the r ith 150 

parti

 

To understand whether the observed error reaches to a steady level or not, the 

num p to 500 e results with 5 ticles are 

tudied carefully, one can easily say that there are minor improvements, especially 

 the beginning of the sequence, with respect to results with 150 particles. In some 

 the particles to performance, MSE is 

calculated for particle filters with different number of particles. The results are 

given in Table 5. 

 

Table 5 – The MSE results for Kalman filter and particle filter 

MSE Position X Position Y 

 can be easily seen from the Figure 23. In su esults w

cles are quite satisfactory. 

ber of particles is increased again u . If th 00 par

s

in

cases, even these minor improvements may be important for a particle filter. There 

is a trade-off between the accuracy and the computation time.  

 

To observe the effects of the number of

Kalman Filter 4.61 5.52 

Particle Filter with 50 particles 11.09 13.86 

Particle Filter with 150 particles 6.34 7.99 

Particle Filter with 500 particles 5.67 6.79 

Particle Filter with 1000 particles 4.99 5.86 

 
 

The results show that the results of particle filter converge to the optimal Kalman 

filter results as the number of particles increases. Additionally, observed error 

reaches a steady level, after some increment in the number of particles. Finally, it is 

shown that the generic particle filter algorithm works well enough with acceptable 

number of particles. 
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CHAPTER 5 
 
 
 

PROPOSED VISION ASSISTED TRACKING SYSTEM 
 
 
 
 

In this chapter, details of how the methods presented in the previous chapters are 

combined to build an end-to-end object tracking system, and experimental results 

on different videos that present different type of challenges are presented. 

 

The parts, such as data association, which is crucial to make the system perform 

correctly, does not belong to the optical flow step neither to the particle filtering 

step. Therefore, Section 5.1 gives implementation details on how the methods 

presented in the previous chapters are combined. Combining the information in the 

previous chapters is very important to make the system work. The videos selected 

for experiments [35], and various challenges in the videos are explained in Section 

5.2. Results of the intermediate steps and the final tracking results are presented in 

Section 5.3. 

 

5.1 Object Tracking System 

The overall object tracking system consists of three main parts that were presented 

in the previous chapters, (i) background extraction and detection of foreground 

objects (ii) optical flow estimation and feature extraction on the foreground objects 

(iii) particle filter tracking. The following sections briefly explain how these steps 

are connected to each other to build the object tracking system. 

 

5.1.1 Connecting the Background Extraction and Optical Flow 

Connection of background extraction and optical flow is straightforward. Since the 

optical flow information is needed for Shi-Tomasi corner detection and improving 
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the tracking performance (by adding it as a correction term to the tracking result), 

only the optical flow vectors for the foreground objects are evaluated. Therefore, 

the input of the optical flow estimation step is the original video sequence and the 

binary masks for each frame obtained in the background extraction step, to 

determine where in each frame the optical flow should be computed.  

 

5.1.2 Connecting Optical Flow with the Particle Filter Tracking 

There are two outputs of the optical flow step: (i) the optical flow vectors (ii) 

features (Shi-Tomasi corner detection) of the foreground objects. Experimental 

results with and without using the optical flow vectors in the tracking step will be 

presented, however, eventually the optical flow information is not crucial for the 

tracking since tracking step can be executed without the optical flow vectors too. 

However, the features detected by Shi-Tomasi corner detection algorithm during 

optical flow step are crucial for the particle filter tracking step, since the feature 

centroids play a critical role constituting the measurements of the tracking step. One 

problem here is to assign the features in a given frame, to the features in the next 

frame to obtain the measurement trajectories of each object individually and 

generate the measurements for each object. In general there might be multiple 

objects in the video. Furthermore, objects that enter, or leave the video frame in the 

middle of the video sequence should also be handled. 

 

5.1.2.1 Data Association 

In videos, where multiple objects are being tracked simultaneously, it is important 

to avoid confusion of distinct objects and keep measurement updates of each object 

separately; otherwise particle filtering step would fail. This is called the data 

association problem. A visualization of the data association problem can be seen in 

Figure 25. 

 



 

 

Figure 25 – Visualization of data association problem 

 
Assume that each circle represents an object which is going to be tracked with the 

particle filter. When the foreground objects in the new frame are detected, these 

need to be assigned to the objects in the previous frames. This is not a 

straightforward problem because additional problems occur when (i) objects leave 

the frame, (ii) new objects enter the frame, (iii) some false alarms in background 

extraction creates non-existent foreground objects (iv) if objects temporarily 

disappear due to occlusion of multiple objects, misdetection in the background 

extraction step, or when objects move behind the foreground objects (e.g. passing 

behind a tree). 

 

To solve these problems the following rules are used in this thesis: 

1. Target initiation: When a K number of features appear at least M pixels 

away from all existing objects for at least N frames continuously, a new 

object is initialized. K, M and N are predefined numbers and parameters to 

the algorithm. Selecting these parameters is important, since if K or N is 

selected too low, the final results are more susceptible to misdetections in 

the background extraction step due to small (very low K) non-existent 

objects that are misdetections in the background extraction model and 

appear in the video sequence for a brief period (very low N). 

2. Data Association: Measurement updates of all features in a given frame are 

the closest feature in the next frame in the (X, Y, R, G, B, U, V) space. X and 

Y are the positions, R, G, B denotes the color channels and U, V indicates the 

optical flow information. Therefore the feature point should be close in 

optical flow sense, in the spatial and in the color dimensions. There are two 

assumptions here: 
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 The objects move continuously. Consequently, X, Y, U and V for the 

same feature are not very different between two frames. 

 The objects do not change color. Therefore, for each feature R, G, 

and B values are similar between two frames. 

3. Losing an Object: When the objects are lost due to various reasons (e.g. 

last 10 previous frames all have three objects and the current frame has only 

one) perhaps because the object has left the frame or there is a misdetection 

in the object detection step, the detected objects in the current frame are 

assigned to the closest ones in the previous frame (as explained in the data 

association step) and the remaining objects are marked as lost. Losing an 

object more commonly occurs when an occlusion of two objects or 

occlusion with a background object happens. 

4. Re-finding an Object: If the current frame has more objects than the 

previous frame, either there is a new object entered to the frame or an object 

that was lost a few frames ago has found again. First, the discovered objects 

in the current frame are assigned to the closest ones on the previous frame. 

Then, the remaining is either a new object, or a previously lost object. 

Therefore, before initializing a brand new object, it is checked that if this 

remaining object is close to a previously lost object in (X,Y,R,G,B,U,V) 

space, and if so it is assigned to the previously lost object, otherwise the 

target initialization logic is used as given in Step 1. An object that is lost for 

10 frames is forgotten and removed from the list of comparisons, 

consequently if an object is lost for this many frames or more, it is assigned 

to a new object. 

 

5.1.2.2 Feature Clustering 

Another problem with the measurement updates is the features are not stable, e.g. 

the same object has 10 features, and 20 features in the next frame, and 15 features in 

the next frame and so on. Therefore, tracking each feature separately is quite hard, 

and furthermore, if the final goal is to track each object, tracking each feature 

separately is unnecessary.  
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For the results given in the following sections, a clustering of the features is 

performed and the cluster centers are tracked with the particle filter models and 

each object is represented by its feature cluster center in the (X,Y,R,G,B,U,V) space; 

hence, the above data association rules are applied to the feature cluster centers, not 

to the individual features separately. This approach is considered more successful, 

since the feature clustering gets rid of the different number of features per object 

type problems completely, and in addition it makes the assumptions in Step 2 of 

data association rules more reliable. The feature cluster centers are more continuous 

in the (X, Y, R, G, B, U, V) space than the individual features. 

 

For clustering, the well-known mean shift algorithm is used [36]. Previously, some 

experiments with K-means [37], [38] are also performed, and the following 

problems have been examined: 

 K, the number of clusters needs to be manually entered. For this, selecting K 

as the number of foreground objects in the image for each frame is tried. 

Such an approach only works well, if there is no occlusion in the frame (if 

two objects are very close to each other they will be assigned to a single 

cluster). In addition, running a connected components algorithm at each 

frame is computationally expensive. 

 K-means needs a good initialization at each frame to perform reliably. In 

this work, using the cluster centers of the previous frame as the initialization 

is tried. Such an approach only works well, if the number of objects does not 

change throughout the video. Furthermore, the initialization in the beginning 

of the video cannot be handled with this approach. 

 

After observing these problems it is decided to use mean-shift instead of K-means 

since it does not require the number of clusters as a parameter (it decides the 

number of clusters itself), and it does not require an initialization. It has only one 

parameter, the Parzen window bandwidth. 

 



 

5.1.2.3 Mean Shift Clustering 

Mean shift considers the feature points as sampled from an underlying probability 

density function and tries to model this distribution by using a smooth continuous 

non-parametric probability density model. The aim of mean shift is finding the 

peaks in this data distribution without computing the complete function. These peak 

points are assumed as the cluster centers. For the general framework of mean shift 

algorithm, mean shift defines a window around each data point and computes the 

mean. Then, it shifts the center of the window to the mean point and repeats the 

same procedure until the convergence is reached. Iterations shift the window to a 

denser region of the dataset until it converges to the densest region. 

 

To estimate the density function of a random variable non-parametrically, the first 

step of mean shift algorithm is the kernel density estimation or Parzen window 

technique [39]. Kernel density estimator is stated in Equation 92. 
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In this equation, xi denotes the input samples; k(r) is the kernel function or Parzen 

window and h is fixed kernel bandwidth. After f(x) is computed its local maxima 

can be obtained by using gradient ascent technique. The gradient of f(x) can be 

calculated by using (93). The terms in (93) are clarified in (94) and (95). 
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Here m(x) is the mean shift vector. Finally, the estimation of the mode, which is 

stated in (96), can be achieved iteratively by replacing its locally weighted mean. 
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Mean shift algorithm is sensitive to the selection of the bandwidth h. A small h 

slows down; a large h speeds up the convergence, and also it affects the 

performance of the algorithm. However, as compared to the parameter selection 

problem in K-means, the parameter selection problem is considered much simpler. 

For K-means the number of clusters should be entered correctly, which is quite 

difficult to estimate in practice. For choosing the bandwidth of mean shift 

algorithm, one should consider the distance in the feature space, that two points are 

assumed to be similar. For example if one knows usually how big (in pixel 

dimensions) the objects are, one can easily select a reasonable bandwidth, which by 

nature is much simpler than deciding for the number of clusters as in K-means. In 

practice, h can be selected empirically by examining the output of the mean-shift 

algorithm. A smaller h will result in more number of smaller clusters (where h=0 

each data point is a cluster by itself), and a bigger h will result in smaller number of 

bigger clusters (as h gets bigger, eventually all points will be a single cluster).  
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To show the effects of bandwidth selection to the mean shift algorithm, feature 

clustering is implemented with two inappropriate bandwidths. In order to observe 

the differences, one can compare the results shown in Figure 26. 

 

 

Figure 26 – Feature clustering with small bandwidth 
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Figure 26 – Continued 

 

 

Figure 27 – Feature clustering with high bandwidth 
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Figure 27 – Continued 

 

5.1.3 Using Optical Flow Data as a Correction Term  

Optical flow information can be a good guide in tracking problems. The main idea 

of this thesis is using the optical flow data as a correction term in particle filter 

tracking to improve the performance. A similar idea is used in [40]. Before particle 

 92



 

filter tracking, the same approach is implemented to Kalman filter tracking to see 

the effects of using the optical flow data, where the problem is linear.  

 

Optical flow vector is added directly to the state equation like a noise term. 

However, optical flow vector is not random as a noise; it acts like a correction term, 

since the optical flow vector guides the correct direction. Therefore, for this method 

the state equation in (87) is modified to Equation 97. 

 

kkkk uwFxx  1                                                                                                                 (97) 

 

Here uk denotes the optical flow vector. The effects of using (97) instead of (87) 

will be shown in experimental results part.  

 

5.1.4 Implementation Details of the Compared Kalman Filter Models  

In order to investigate the effects of using optical flow vector to tracking 

performance, firstly the performance of three Kalman filter based trackers are 

compared. Since the problem is linear for this case, standard Kalman procedure is 

implied to achieve the tracking results. 

 

The first of the Kalman filter based trackers is the one that is used in Section 4.2. 

The state vector of this Kalman filter is four dimensional, which contains the 

position and the velocity on x and y directions. And the measurements consists of 

only the positions of feature cluster centroids along x and y directions. This Kalman 

filter is referred as KF4D, the four dimensional Kalman filter. The state and 

measurement equations for KF4D are given in (87) and (88). The terms in these 

equations are also clarified in (89). 

 

The second Kalman filter based tracker is referred as KF2D, the two dimensional 

Kalman filter. To compare the effects of the dimension of state vector and not 

tracking the velocities in each dimension, the dimension of state is reduced to two. 

Therefore, the state vector of KF2D contains only the positions along x and y 

directions. Similar to KF4D, the measurements of KF2D are the positions of feature 
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cluster centoids on x and y directions. The state and measurement equations are also 

the same, which is given in (87) and (88). However, the matrixes in these equations 

for KF2D are identity matrixes for this case. 

 

The idea, which is covered in Section 5.1.3 is used in the last Kalman filter based 

tracker. It is two dimensional Kalman filter with optical flow correction and 

referred as KF2D-OF. The state and the measurement vector of KF2D-OF consist 

of the positions along x and y directions. The position information of feature cluster 

centorids is used as measurements again. Equation 97 is used as state equation and 

Equation 88 is used as measurement equation of KF2D-OF. 

 

The performance results of these three Kalman filter based trackers are compared in 

Section 5.3. The effects of using optical flow data as a correction term can be also 

observed. 

 

5.1.5 Implementation Details of the Compared Particle Filter Models  

In order to investigate the effects of using optical flow information to particle filter 

tracking, again three particle filters are employed. In Kalman filter based tracking, 

the x and y positions of feature cluster centroids are used as measurements. For 

particle filter based tracking a distance measure is constituted by using the position 

information of the feature cluster centroids and the intensity information near the 

feature cluster centroids. Specifically, the distance measure is constituted by using 

five dimensional (x, y, R, G, B) space. First, N x N windows are taken near the 

feature cluster centroid in previous frame and near each particle in current frame. 

Then, the sum of square difference of the mean intensity value of each color 

channel between the window near the feature cluster centroid and the window near 

each particle are calculated. The spatial distance between the feature cluster 

centroid and each particle are also considered. By using this distance measure, the 

weights of each particle can be calculated. The weight of each particle is 

proportional to its distance to the feature cluster centorid. To formalize, the 

measurement equation, which is used in particle filter based tracking is stated in 

(98). 
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In Equation 98, vk denotes the measurement noise. All the three particle filter based 

trackers are using (98) as measurement equation. 

 

For a comparative analysis, similar to Kalman filter based tracking, three particle 

filters are employed. The first particle filter is identical to the one that is expressed 

in Section 4.2. It has a four dimensional state vector, which contains the position 

and the velocity on x and y directions. Because of this reason it is referred as PF4D. 

The state equation of PF4D is given in Equation 87 and the measurement equation 

is given in Equation 98. 

 

The second particle filter has a two dimensional state vector and it is referred as 

PF2D. Similar to KF2D, to compare the effects of the dimension of state vector and 

not tracking the velocities in each dimension, the dimension of state vector is 

reduced to two. It contains only the positions on x and y directions. The state and 

measurement equations are (87) and (98) respectively.  

 

Optical flow data is used as a correction term in PF2D-OF, which is the two 

dimensional particle filter with the optical flow correction. State vector of PF2D-OF 

consists of the positions along x and y directions. The state equation of PF2D-OF is 

Equation 97 and the measurement equation of PF2D-OF is Equation 98.  

 

The performance results of these three particle filter based trackers will be 

compared in the Section 5.3. The effects of using optical flow data as a correction 

term can be also observed. 
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5.2 Datasets 

Datasets that are used for this thesis work are taken from an open source in [35], 

and are video sequences that have been used before in other publications. There are 

three datasets namely St. George sequence, PETS 2000 sequence and PETS 2001 

sequence. Here, it is presented the results with 352 by 288 pixels versions of all 

video sequences. These datasets are quite challenging because they contain 

occlusion between the objects and the background, unstable background and 

excessively small objects due to the distance between the camera and the object. 

Further details of the dataset and challenges in each video are presented here. 

5.2.1 St. George Sequence  

The first dataset is St. George sequence, in which two pedestrians are walking 

across the crosswalk. St. George sequence, which is introduced in Figure 28, 

consists of 79 frames. 

 

 

 

Figure 28 – St. George dataset sequence 
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The difficulties related with St. George dataset are; 

1. The branches of the trees are unstable therefore it has a moving 

background.  

2. There is an occlusion between two objects, which is a difficult situation, 

both moving object detection and data association. 

3. There is also an occlusion between an object and background. 

4. There is a small intensity difference between one of the objects and the 

background. 

5.2.2 PETS 2000 Sequence 

The second dataset is PETS 2000 sequence, which includes different objects in size 

and in velocity. Two cars, one pedestrian and one bird come into the scene. PETS 

2000 sequence, which is illustrated in Figure 29, is made up of 520 frames. 

 

 

 

Figure 29- PETS 2000 dataset sequence 
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Figure 29 – Continued 

 
The difficulties for PETS 2000 sequence are as follows: 

1. The difference between the pedestrian and the camera is large; therefore that 

object consists of only few pixels. 

2. A bird comes into and gets out of the scene suddenly, which is challenging 

for object detection if it is wanted to detect as an object as well. 

3. There is a small intensity difference between one of the cars and the 

background. 

 

5.2.3 PETS 2001 Sequence 

The last dataset, PETS 2001 sequence, consist different objects as two cars and 

three pedestrians. PETS 2001 sequence, which is presented in Figure 30, includes 

800 frames. 

 

 

Figure 30 – PETS 2001 dataset sequence 
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Figure 30 – Continued 

 
The difficulties of PETS 2001 sequence can be listed as follows: 

1. Similarly, the camera is far away from the scene and because of this reason 

the pedestrian in the beginning of the sequence hardly recognized. 

2. There is an occlusion between the pedestrian and the car, which complicates 

moving object detection and data association. 
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5.3 Experimental Results 

5.3.1 Results on Moving Object Detection 

Moving object detection, which is expressed in Chapter 2, is implemented to these 

three datasets. The achieved results are stated in Figure 31 respectively. 

 

 

 

 

Figure 31 – Moving object detection results of St. George sequence 
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Moving detection results of St. George sequence is satisfactory. The first 15 frames 

are used for training of the background. Even there is a non-stationary background, 

because of the branches of the trees; the false alarm rate is very small. Except the 

occlusion in the end of the sequence, two pedestrians are detected successfully even 

they occlude each other in the middle of the sequence. Furthermore, the background 

detection algorithm copes well with the small contrast difference between the 

pedestrian and the road. 

 

 

 

 

Figure 32 – Moving object detection results of PETS 2000 sequence 
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Figure 32 – Continued 

 

For PETS 2000 sequence, again the first 15 frames are used to train the background. 

The false alarm is as small as a few pixels. The detection performance is well 

enough to detect a flying bird in the 172nd frame which enters the video frame for 

only a few seconds. All the moving objects are detected from beginning to end 

except the loss of detection of the pedestrian near 417th frame. However, in a few 

frames later, it is detected again. In the end of the sequence, some frames later after 

the car stops; it begins to disappear and starts merging into background.  

 

 

Figure 33 – Moving object detection results of PETS 2001 sequence 
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Figure 33 – Continued 

 
PETS 2001 sequence is a challenging dataset. Since the distance between the 

camera and the objects is quite large, fewer pixels fall to the objects. Therefore the 

moving object detection performance decreases inevitably. In the beginning of the 

sequence, the walking pedestrian is not detected for a while because of the small 

contrast difference between pedestrian and the background. Except this all objects 

managed to detect. Similar to previous dataset, some frames later after the green car 
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parks, it begins to merge into the background. For this sequence 100 frames are 

used for training the background. 

 

According to results, all the objects in three datasets can be detected successfully. 

Moving object detection algorithm suffers from occlusions, small contrast 

difference between the background and objects with very few number of pixels; 

however it is able to detect them after a while. Furthermore the false alarm rate is 

very small for all the three datasets. 

 

5.3.2 Results on Feature Extraction 

The feature extraction method, which is expressed in Chapter 3, is implemented to 

these three datasets. As expressed before, features are extracted only from the 

moving regions in the scene, which is shown in the previous part. The achieved 

results for these three sequences are stated in Figure 34, 35 and 36 respectively. 

 

 

 

Figure 34 – Feature extraction results of St. George sequence 
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Figure 34 – Continued 

 
The results show that quite sufficient number of features is extracted from moving 

regions. During the occlusion of the pedestrian, first the moving detection algorithm 

loses the object; in that case no features can be extracted naturally. However, in a 

few frames later moving detection algorithm catches the legs of the pedestrian and 

in that case several features are extracted.  

 

 

 

Figure 35 – Feature extraction results of PETS 2000 sequence 

 105



 

 

 

Figure 35 – Continued 

 
Similarly, quite sufficient number of features is achieved for PETS 2000 sequence. 

At the 172nd frame, features can be extracted even from a flying bird. However, 

extracting features from the pedestrian, which is far away from the camera is not so 

easy for the algorithm. 

 

 

Figure 36 – Feature extraction results of PETS 2001 sequence 
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Figure 36 – Continued 
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Since, the walking pedestrian is not detected for a while by the object detection 

algorithm; features can not be extracted in the beginning of the sequence naturally. 

At the rest of the sequence, sufficient number of features extracted from the objects. 

 

5.3.3 Results on Clustering 

After the feature extraction step, the features should be clustered since feature 

cluster centers will be tracked, not the individual features all together. As explained 

above in Feature Clustering part, features are clustered by using mean shift 

algorithm. The achieved results for all the three datasets are introduced in Figure 

37, 38 and 39 and the center of each cluster in each frame is marked. 

 

  

 

Figure 37 – Feature clustering results of St. George sequence 
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Figure 37 – Continued 

 
The results show that feature clustering can be problematic in case of two objects 

occluding each other. Additionally, if the distance between the features is large 

enough, the features from the same object can be clustered as two different clusters. 

 

 

Figure 38 – Feature clustering results of PETS 2000 sequence 
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Figure 38 – Continued 

 
The results are quite satisfactory. There are only several false alarms, mainly caused 

by the high distance between the features.  
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Figure 39 – Feature clustering results of PETS 2001 sequence 
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Figure 39 – Continued 

 
If the results are investigated, except the occlusion moment, they are quite 

successful. There is one persistent false alarm in the background.  

 

5.3.4 Results on Kalman Filter Tracking 

To understand if the optical flow information would be sufficient by itself for 

tracking without any tracking step (Kalman or particle), the following experiment is 

done. 

 

 The object is initialized to the first frame it appears in the video sequence, 

note that this corresponds to the measurement in the first time instance for 

the Kalman/particle filter implementations. 

 Afterwards, instead of executing the Kalman/particle filter update equation, 

the measurement is updated by adding the optical flow vector at that point to 

the measurement. 
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Figure 40 – Tracking results with only optical flow information 

 
The problem with this approach is that without the Kalman/particle filter update 

error accumulation is unavoidable, and also once the tracker makes a single mistake 

and moves on the background, it cannot recover. For example, at any time instance 

an imperfect optical flow vector can send the tracker to a background pixel where 

there is almost no movement and optical flow vectors are all zero, hence the tracker 
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will not be able to find the object any more. The results obtained with this method 

are shown on the St.George dataset in Figure 40.  

 

The results show that, in the beginning of the sequence optical flow information 

tries to track the objects for a few frames. However after a few frames, optical flow 

information sends the tracker to the background and tracker stuck into background. 

In summary, although it improves the tracking performance, it is obvious that the 

optical flow vector based tracking by itself is not a good idea.  

 

After all of these preprocessing steps, the idea that using optical flow data as a 

correction term is implemented to Kalman filter tracking firstly. As mentioned 

before, three different Kalman filter models, namely KF2D, KF2D-OF and KF4D, 

are compared. Tracking process is implemented to the datasets with these three 

Kalman filters and the results are compared here. The tracking results for St. 

George sequence are stated in Figure 41, 42 and 43. 

 

 

Figure 41 – Tracking results of St. George sequence with KF2D 
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Figure 41 – Continued 
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Figure 42 – Tracking results of St. George sequence with KF2D-OF 
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Figure 42 – Continued 

 

 

 

Figure 43 – Tracking results of St. George sequence with KF4D 
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Figure 43 – Continued 

 
If the results are analyzed carefully, it can be easily observed that KF2D-OF and 

KF4D show a much better performance throughout the sequence comparing with 

KF2D. Additionally, these two filters cope with the occlusion between the object 

and the background better than KF2D does. Therefore, it is clear that using optical 

flow data as a correction term improves both the tracking performance and 

capability of handling the occlusion. Tracking performance of KF2D-OF and KF4D 

are comparable in general. However, KF4D can handle the occlusion better than the 

KF2D-OF does. Therefore, KF4D gives the best tracking results for St. George 

sequence. The tracking results for PETS 2000 sequence are introduced in Figure 44, 

45 and 46. 
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Figure 44 – Tracking results of PETS 2000 sequence with KF2D 
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Figure 44 – Continued 

 

 

 

Figure 45 – Tracking results of PETS 2000 sequence with KF2D-OF 
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Figure 45 – Continued 

 

 

Figure 46 – Tracking results of PETS 2000 sequence with KF4D 
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Figure 46 – Continued 

 

If the results of KF2D and KF2D-OF are compared, it can be observed that, optical 

flow clearly improves the tracking results. By the help of optical flow data, the 

tracking results are more consistent especially for the pedestrian which walks at the 

background. Similar to KF2D-OF, KF4D results are better than KF2D results. 

KF4D can also cope with the tracking of the pedestrian, which is difficult for PETS 

2000 sequence. The tracking performances of KF2D-OF and KF4D are almost 
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identical; the tracking performances for the moving cars are the same for these 

filters. However for the tracking of the pedestrian KF4D shows a slightly better 

performance with respect to KF2D-OF. Therefore, KF4D gives the best tracking 

results for PETS 2000 sequence. The tracking results for PETS 2001 sequence are 

presented in Figure 47, 48 and 49. 

 

 

 

 

Figure 47 – Tracking results of PETS 2001 sequence with KF2D 
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Figure 47 – Continued 

 

 

 

Figure 48 – Tracking results of PETS 2001 sequence with KF2D-OF 
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Figure 48 – Continued 

 

 

Figure 49 – Tracking results of PETS 2001 sequence with KF4D 
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Figure 49 – Continued 

 

As compared with KF2D, KF2D-OF shows a better tracking performance 

throughout the PETS 2001 sequence. Particularly, optical flow data helps the 

Kalman filter while tracking the pedestrian after the occlusion. In comparison with 

KF2D, KF4D clearly has more reasonable tracking results. The tracking results of 

KF2D-OF and KF4D are comparable again. There are slightly differences between 

the performance of two Kalman filters however if the results are carefully analyzed, 
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it can be observed that KF2D-OF has better tracking results especially when 

occlusions occur. Therefore, KF2D-OF gives the best tracking results for PETS 

2001 sequence. 

 

5.3.5 Results on Particle Filter Tracking 

Finally, the idea that using optical flow data as a correction term is implemented to 

particle filter tracking. As mentioned before, three different particle filter models 

namely PF2D, PF2D-OF and PF4D, are compared. The details of the particle filter 

are as follows: 

 

 500 particles are used in all experiments 

 Resampling if the effective sample size is less than half of the number of 

particles. 

 The measurement update is done based a five dimensional feature space as 

given in Section 5.1.5 with 5 x 5 windows. 

 

Tracking process is implemented to the datasets with these three particle filters and 

the results are compared here. To visualize the feature points, small yellow dots are 

used. The tracking results for St. George sequence are introduced in Figure 50, 51 

and 52. 

 

 

Figure 50 – Tracking results of St. George sequence with PF2D 
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Figure 50 – Continued 
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Figure 51 – Tracking results of St. George sequence with PF2D-OF 
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Figure 51 – Continued 

 

 

 

Figure 52 – Tracking results of St. George sequence with PF4D 
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Figure 52 – Continued 

 
The results show that, PF2D-OF and PF4D perform a better tracking performance 

throughout the St. George sequence. Especially, PF2D can not handle the 

occlusions between two pedestrians and between the pedestrian and the 

background. The general tracking performance of PF2D-OF and PF4D are 

comparable. However, with the help of optical flow information PF2D-OF copes 

the occlusion better than PF4D does. Therefore PF2D-OF shows the best tracking 

performance for St. George sequence. The tracking results for PETS 2000 sequence 

are presented in Figure 53, 54 and 55. 
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Figure 53 – Tracking results of PETS 2000 sequence with PF2D 
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Figure 53 – Continued 

 

 

 

Figure 54 – Tracking results of PETS 2000 sequence with PF2D-OF 
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Figure 54 – Continued 

 

 

Figure 55 – Tracking results of PETS 2000 sequence with PF4D 
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Figure 55 – Continued 

 

For PETS 2000 sequence, all three particle filter based trackers show satisfactory 

results. However, PF2D slightly suffers while tracking the pedestrian. The tracking 

performance of PF2D-OF and PF4D are almost identical throughout the PETS 2000 

sequence. However, if the results are carefully analyzed, it can be seen that PF4D 

can track the pedestrian better than PF2D-OF does. Therefore, PF4D gives the best 
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tracking results for PETS 2000 sequence. The tracking results for PETS 2001 

sequence are introduced in Figure 56, 57 and 58. 

 

 

 

 

Figure 56 – Tracking results of PETS 2001 sequence with PF2D 
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Figure 56 – Continued 

 

 

 

Figure 57 – Tracking results of PETS 2001 sequence with PF2D-OF 
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Figure 57 – Continued 

 

 

Figure 58 – Tracking results of PETS 2001 sequence with PF4D 
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Figure 58 – Continued 

 
If the results are analyzed carefully, it can be easily observed that PF2D-OF and 

PF4D show a much better performance throughout the sequence comparing with 

PF2D. The tracking results of PF2D-OF and PF4D are comparable again for PETS 

2001 sequence. There is a minor performance difference between these two particle 

filters. However, PF2D-OF has slightly better tracking results with respect to PF4D. 

Therefore, PF2D-OF shows the best tracking performance for PETS 2001 sequence. 
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5.3.6 Quantitative Analysis of Trackers 

To compare the performance of three Kalman filter based trackers, MSE for these 

Kalman filters is calculated for each dataset. Ground truth data for each dataset is 

constituted manually by selecting the position of each object in every four frames. 

The results are given in Table 6. 

 

Table 6 – The MSE results for Kalman filter tracking  

MSE St. George PETS 2000 PETS 2001 

KF2D 424.5 266.9 380.8 

KF2D-OF 388.4 128.6 288.6 

KF4D 258.7 122.2 310.4 

 

Similarly, to compare the performance of three particle filter based trackers, MSE 

for these particle filters is calculated for each dataset. Similarly, ground truth data 

for each dataset is constituted manually by selecting the position of each object in 

every four frames. The results are given in Table 7. 

 

 Table 7 – The MSE results for particle filter tracking 

MSE St. George PETS 2000 PETS 2001 

PF2D 793.0 126.6 431.6 

PF2D-OF 662.2 119.6 303.4 

PF4D 667.5 111.3 307.1 

 

 

5.3.7 Summary 

 

In this chapter, firstly the general framework of the object tracking system is 

expressed and the connections between the main parts of this thesis are clarified. 

For the feature clustering step, the differences between two approaches; K-means 
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and mean shift algorithm are stated. Then, mean shift algorithm is explained in 

detail and the clustering results are shown for two inappropriate bandwidths. Three 

datasets, which are used for this thesis work, are introduced and the difficulties of 

these datasets are also stated. 

 

After that, the experimental results on moving object detection, feature extraction, 

clustering, Kalman filter tracking and particle filter tracking are given for each 

dataset. The tracking results show that two dimensional Kalman filter KF2D gives 

the worst tracking performance among the three Kalman filters. Two dimensional 

Kalman filter with optical flow data KF2D-OF and four dimensional Kalman filter 

KF4D show a comparable tracking performance and there are slightly differences 

between the results of these Kalman filters. For St. George and PETS 2000 

sequences, KF4D gives the best results and for PETS 2001 sequence, KF2D-OF 

gives the best results.  

 

Particle filter based tracking results are similar to Kalman filter based tracking 

results. The tracking results show that two dimensional particle filter PF2D gives 

the worst tracking performance for all datasets. Two dimensional particle filter with 

optical flow data PF2D-OF and four dimensional particle filter PF4D are again 

comparable and there are slightly differences between the results of these particle 

filters. For St. George and PETS 2001 sequences, PF2D-OF gives the best results 

and for PETS 2000 sequence, PF4D gives the best results. 

 

To conclude, the results show that, using optical flow data as a correction term in 

Kalman filter and particle filter clearly improves the tracking performance of two 

dimensional Kalman filter or two dimensional particle filter and reaches them 

comparable with four dimensional Kalman or particle filter tracking performance. 

Therefore, the positive effects of using optical flow as a correction term in Kalman 

and particle filters are clearly shown in these experiments. 
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CHAPTER 6 
 
 
 

CONCLUSIONS 
 
 
 
 

In this thesis work, two different disciplines; computed vision based algorithms and 

estimation theory based algorithms, are evaluated together for tracking problems. 

The main objective is to investigate the effects to tracking performance in the case 

of using these algorithms interactively. Specifically the optical flow term is added 

to the particle filter tracker as a correction term and the tracking results are checked, 

whether there is an improvement or not. In order to constitute an object tracking 

system three major chapters are devoted to moving object detection, optical flow 

and feature extraction and particle filter. In the previous chapter, the connections 

between these chapters are also detailed, along with many experimental results. 

 

6.1 Summary of the Thesis 

 

For moving object detection, three different approaches are implemented. The 

conventional temporal median estimator is simply based on subtracting the current 

frame from the temporal median of the sequence. The second approach is 

background modeling using nonparametric KDE. To decide whether a pixel in the 

current frame belongs to the background or foreground, KDE is implemented to the 

sample frames. For KDE, a Gaussian kernel and an adaptive bandwidth are chosen 

to use. The third approach is a Bayesian approach for object detection. This model 

utilizes the useful correlation in the intensities of neighboring pixels and assumes 

that true foreground objects keep their colors and spatial positions in time. It also 

models the background and the foreground individually and obtains the object 

detection by using a likelihood ratio classifier. These three approaches are 
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compared by using a test video, which has nominal camera motion. According to 

simulation results, Bayesian approach for object detection method is certainly 

superior against other two methods in terms of detection and false alarm rates. 

 

For calculating the optical flow, an improved version of KLT is employed. Unlike 

the conventional optical flow calculation techniques, KLT includes the image 

pyramid approach. Using the image pyramid approach provides the algorithm not to 

violate Taylor series expansion assumption, therefore KLT can also handle 

relatively fast objects in the scene. In addition, optical flow vectors are calculated 

iteratively and in sub-pixel accuracy, therefore KLT is more reliable with compared 

to the conventional optical flow calculation methods. For feature extraction, an 

algorithm called “Shi-Tomasi corner detection” is used. This algorithm uses the 

eigenvalues of spatial gradient matrix in order to decide the feature points. 

According to simulation results, optical flow calculation and feature extraction 

work well enough for object tracking system that is constituted in this thesis work.  

 

The particle filter is considered for the main component of the object tracking 

system. For this reason, particle filter is studied in detail, the problems of particle 

filter and the solutions for them are clarified. A generic particle filter is 

implemented and its performance is tested against a Kalman filter, which gives 

optimal results for linear dynamic systems. With appropriate number of particles, 

the particle filter that is developed shows almost identical performance to optimal 

Kalman filter. 

 

In order to obtain a robust object tracking system, data association and feature 

clustering problems should be solved. For data association problem, some rules 

about target initiation, data association and losing / re-finding the objects are put 

and followed. To solve the feature clustering problem, K-means and mean shift 

algorithms are employed. Both of these algorithms are implemented and the 

experiments show that mean shift algorithm is more suitable for this thesis work 

since it does not require an initialization and has only one parameter; Parzen 

window bandwidth. The importance of bandwidth selection is visualized by 

implementations with inappropriate bandwidths.  
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Optical flow calculation and feature extraction are implemented only moving 

regions in the image that reduces computation time significantly. Tracking process 

can be also done without optical flow information however the features are crucial 

for particle filter since they constitute the measurements. To improve the tracking 

performance, the idea of using the optical flow data as a correction term in particle 

filter is also expressed. Before particle filter based tracking, the idea is tested with 

Kalman filter based tracking. All the implementation details are clarified for 

Kalman filter tracking and particle filter based tracking.   

 

6.2 Conclusions 

 

Experiments are conducted by using three different challenging datasets that were 

used in other object tracking papers in the literature. All the studies that are 

mentioned in this thesis work are applied to these datasets step by step and all the 

results are presented. Although the scene in datasets has difficulties such as having 

a moving background such as tree branches, occlusion between the objects and 

between the object and the background, small intensity difference between the 

objects and the background and relatively small objects due to the distance between 

the objects and the camera, the results on moving object detection, feature 

extraction and clustering are quite satisfactory and good enough to use in particle 

filter tracking. 

 

Since PF4D shows better performance for all the datasets with compared to PF2D, 

it is observed that including the velocity information to state vector is necessary for 

a robust particle filter tracker. Experimental results also show that using optical 

flow information clearly improves the tracking performance. As compared with 

PF2D, PF2D-OF gives more reliable results in general. Additionally, the optical 

flow data also helps the algorithm to cope with the occlusions in the scene. 

Although PF2D-OF does not use the velocity information, the optical flow 

information keeps the performance of PF2D-OF at a level that is comparable with 

PF4D. 
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The results of Kalman filter based tracking are quite similar with particle filter 

based tracking. KF2D performs the worst tracking results with compared to KF2D-

OF and KF4D. Similar to particle filter based tracking results, the performance of 

KF2D-OF and KF4D are comparable again. Therefore, optical flow information 

improves the general tracking performance and helps the tracker to handle the 

occlusion. 

 

To conclude, in this thesis work, computed vision based algorithms are utilized 

together with estimation theory based algorithms in order to have a robust object 

tracking system. The experimental results show that, using optical flow information 

clearly improves the tracking performance. Although computing the optical flow 

vectors is computationally expensive, the idea of limiting the optiacal flow 

computation on the foreground objects significantly decreases the computational 

cost. This vision-assisted object tracking idea can be used for any object tracking 

systems like surveillance systems. 
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APPENDIX A 
 
 
 

MAIN ALGORITHM OF KLT 
 
 
 
 

The method of using KLT algoritms in this study is given in Chapter 3. In Table 8 

detailed information of KLT algorithm is provided. 

 

Table 8 –Detailed explanation of KLT algorithm [27] 

Assume that u be a point on image I. Find its corresponding location v on image J; 

Build pyramid representations of I and J:    
mm LL

L
LL

L JandI ,...,0,...,0   

Initialize the pyramidal guess:    TTL
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L
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L mmm ggg 00  

FOR L = Lm down to 0 with the step of -1 

Location of point u on image IL:   L
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L uppu
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Derivative of IL with respect to x: 
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Derivative of IL with respect to y: 
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Spatial gradient matrix:   
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FOR k = 1 to K with the step of 1 (or until a threshold level) 

Image difference:  ),(),(),( 11   k
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Image mismatch vector: 
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Residual pixel motion: k
k bG 1   

Guess for next iteration: kkk
vv 

1
 

END of the for loop on k 

Final optical flow at level L: KL vd   

Guess for next level L-1:   )(2111 LLTL
y

L
x

L dgggg    

END of the for loop on L 

Final optical flow vector:  00 dgd 

Location of point on J: duv   

 


