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ABSTRACT 
 

 

ANALYSIS AND COMPARISON OF THE CONTRAST 

ENHANCEMENT TECHNIQUES FOR INFRARED IMAGES 
 

 

Turan, Arif Ergün 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gözde B. Akar 

 

February 2012, 126 pages  

 

Today, infrared cameras are used especially for target tracking and surveillance 

operations. However, they have a high dynamic range output, and the standard 

display devices cannot handle them. In order to show them on common devices, 

the dynamic range is cropped. Thus, the contrast of the image is reduced. This is 

called as the High Dynamic Range (HDR) Compression. Although several 

algorithms have been proposed for preserving details during the HDR 

compression process, it cannot be used to enhance the local contrasts of image 

contents. 

 

In this thesis, we compare the performances of contrast enhancement techniques, 

which are suitable for real time applications. The methods experimented are 

generally histogram based methods. Some modifications are also proposed in 

order to reduce computational complexity of the process. Performances of these 

methods are compared with common objective quality metrics on different image 

sets. 

 

 

Keywords: Infrared, Contrast Enhancement, High Dynamic Range Compression 
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ÖZ 
 

 

KIZILÖTESİ GÖRÜNTÜLER İÇİN KONTRAST 

ZENGİNLEŞTİRME TEKNİKLERİNİN ANALİZİ VE 

KARŞILAŞTIRILMASI 
 

 

Turan, Arif Ergün 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde B. Akar 

 

Şubat 2012, 126 sayfa  

 

Günümüzde, kızılötesi kameralar özellikle hedef takibi ve gözetimi işlemleri için 

kullanılmaktadır. Fakat bu cihazlar yüksek dinamik aralıkta çıkış verdikleri için 

standart görüntüleme cihazları bu çıkışları işleyemez. Bu çıkışları standart 

cihazlarda gösterebilmek için dinamik aralıkları kesilmektedir. Böylece 

görüntünün kontrastı azaltılmaktadır. Bu işleme Yüksek Dinamik Aralık 

Sıkıştırma adı verilmektedir. Yüksek Dinamik Aralık Sıkıştırma işlemi esnasında 

detayın korunması için birçok yöntem önerilmesine rağmen bu işlemler yerel 

kontrastı zenginleştirmek için kullanılamaz. 

 

Bu tezde, performansları açısından gerçek zamanlı uygulamalara uygun karşıtlık 

zenginleştirme tekniklerini karşılaştırıyoruz. İncelenen metodlar genellikle 

histogram tabanlı metodlardır. Ayrıca işlemlerin sayısal karmaşıklığını azaltmak 

için bazı değişiklikler önerilmiştir. Bu metodların performansı nesnel test 

metrikleri ile karşılaştırılmıştır. 
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Anahtar Kelimeler: Kızılötesi, Kontrast İyileştirme, Yüksek Dinamik Aralık 

Sıkıştırma 
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CHAPTER 1  
 

 
 

INTRODUCTION 
 

 

 

 

Human Visual System (HVS) is a good perception system with the aid of brain in 

the visible spectrum. However, this system also has its limits at night, and in 

adverse weather conditions. There are a lot of efforts in different areas to 

compensate this problem. For example, night vision and infrared systems are 

developed for improving the perception and data gathering in place of the human 

visual systems in such conditions. These systems operate in different spectral 

bands and have superior performance. Especially, infrared imaging systems have 

the tasks of target acquisition and tracking. These systems consist of sensors and 

digitalizing units. Sensors receive continuous heat radiation from the surface and 

target to produce electrical outputs. Digitalizing units produce pixel values at the 

output. 

 

Although infrared systems provide thermal information, which is impossible for 

human perception, they also have limitations. Thermal radiation from an object is 

affected from scattering due to the atmospheric conditions [1, 2]. Scattering 

decreases the radiation received by a detector. The net effect is the low visibility 

of scene and reduced contrast. The high dynamic range requirement of the 

infrared systems is another problem for standard display devices. These displays 

generally have 8-bit output dynamic range and cannot show raw infrared images. 

 

Dynamic range compression and contrast enhancement techniques are the main 

solution to the problems associated with IR images. Dynamic range compression 
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is performed in order to reduce bit size to the standard display level. These 

techniques are generally divided into two main branches. These are tone 

reproduction curve (TRC) and tone reproduction operator (TRO) methods [5].  

TRC methods use a simple transformation curve to obtain final pixel values while 

TRO methods use different transformation curves for the same pixel intensity 

depending on its neighbors or spatial location. TRC based methods are used in 

this thesis for their real time performance and low computational complexity. 

 

Contrast enhancement is a crucial operation for IR images due to their reduced 

contrast because of the scattering. These operations improve overall contrast and 

visibility of the details. In the literature, there are lots of contrast enhancement 

operations. They are divided into categories [9]. Histogram based methods use an 

input histogram to improve visibility and detail information. Unsharp masking 

based methods only improve edge details in given images, and so they are 

unsuitable for IR images, which already suffer from reduced visibility. They can 

be used as post-processing methods. There are also methods, which do not fit in 

these two categories. Enhancement with local frequency cues is proposed in [5], 

and authors tried enhancement of the target region determined with clustering 

operation based on the frequency information. 

 

1.1 Scope of the Thesis 

 

This thesis investigates histogram based enhancement techniques and 

enhancement with local frequency cues for infrared images. Histogram based 

techniques are preferred for their popularity, performance and computational 

complexity. They are ideal for real time applications. Modifications are also 

proposed for some of these methods in order to improve performance and solve 

problems associated with the local enhancement.  

 

Dynamic range compression is performed in order to reduce bit size to the 

standard display level. Contrast enhancement methods are applied to improve 
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visibility and detail information in 8-bit images after dynamic range compression 

operation. 

 

Different image sets are used to experiment on these techniques, and results are 

compared according to the objective quality metrics. All enhancement methods 

and quality metrics are implemented in Matlab environment.  

 

There are investigations in the literature in this area. However, none of them 

investigates all the enhancement techniques in this thesis with detail. 

 

1.2 Thesis Outline 

 

This thesis is composed of six chapters. Chapter 1 explains the general 

information about the necessity of contrast enhancement in infrared imaging and 

scope of the thesis. Chapter 2 gives brief information about infrared imaging and 

high dynamic range compression techniques. Chapter 3 covers contrast 

enhancement techniques. These techniques are summarized, and sample output 

images are presented for each algorithm. Some modification schemes are 

suggested in Chapter 4. In Chapter 5, brief information about objective quality 

metrics is given with experiment results. Chapter 6 gives a summary of this thesis 

with possible future studies and works. 
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CHAPTER 2  
 
 
 
INFRARED IMAGING AND HIGH DYNAMIC RANGE COMPRESSION 

 
 

 
 

2.1 Infrared Imaging Systems 
 

Human visual system (HVS) is a good sensor in the visible spectrum with aid of 

the brain. However, this system cannot adapt well to all environment conditions. 

Infrared imaging (IR) systems have satisfying performance at night, and in 

adverse weather conditions. They have the tasks of target acquisition and tracking 

in place of the human visual system in such conditions. 

 

IR imaging systems operate in a different spectral band than the human visual 

system. It is called infrared spectral band. It extends from 0.7 to 300 µm and can 

be divided into several imaging bands. They are presented in Table 2-1. 

Generally, three spectral bands are used for IR imaging. These are shortwave, 

midwave and longwave bands. IR detectors are available for these separate 

ranges. Each of them operates on one specific range due to the restrictions. These 

restrictions come out from the amount of thermal radiation, emissivity and 

transmission of atmosphere [1]. 

 

 
Table 2-1 Infrared Imaging Bands 

Spectral Band Symbol Wavelength Range (µm) 
Near infrared NIR 0.7-1 
Shortwave infrared SWIR 1-3 
Midwave infrared MWIR 3-5 
Longwave infrared LWIR 8-12 
Far Infrared FIR >12 
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2.2 Infrared Thermal Imaging Parameters 
 

Infrared spectrum bands are selected according to the specific application types. 

There are factors, which affect this choice [1]. These are: 

 

 Thermal Radiation 

 Emissivity 

 Atmospheric transmittance 

 

2.2.1 Thermal Radiation 
 

Thermal radiation is the continuous emission of energy from a surface [2]. The 

emitted energy depends upon the surface temperature and surface characteristics. 

Any object which is at a temperature above absolute zero temperature (0°K) emits 

thermal radiation [2].  

 

Thermal radiation from an object is attenuated via absorption or scattering, and 

then it is received by Infrared (IR) detectors. Apart from the object of interest, the 

atmosphere and warm objects in the background also emit radiation into the 

direction of IR detector. This radiation creates a varying electrical signal in the 

detector array. It is amplified to create a visible image at the output of the imaging 

system. 

 

2.2.2 Emissivity and Kirchhoff’s Law 

 

The thermal radiation is very important for imaging systems because it defines the 

signal quality at the output of an imaging system. The amount of thermal radiation 

emitted is defined with emissivity. For example, blackbody is called as the perfect 

emitter of thermal radiation. It can absorb incident radiation in any case and emits 

more radiation than any surface. Its absorption is independent of wavelength and 

direction. Therefore, emissivity is described with aid of blackbody. Emissivity of 



6 
 
 

an object is the ratio of the amount of radiation emitted from a surface and 

absorbed by blackbody at the same temperature [1]. 

 

Emissivity can be expressed with different parameters. Kirchhoff’s Law states the 

equality of  the amount of radiation emitted and absorbed by the same object [1]. 

It is expressed as follows: 

 

∈= 𝛼 ,                                                                 (2.1) 

 

where ∈ denotes the emissivity and 𝛼 denotes the absorptivity. According to the 

energy conservation law, any radiation incident on any object is either reflected, 

transmitted or absorbed [1]. It is expressed as follows: 

 

1 = 𝑟 + 𝑡 + 𝛼 ,                                                        (2.2) 

 

where r denotes reflectance, t denotes transmittance. They are the fractions of 

radiance, which are reflected and transmitted respectively. Equations (2.1) and 

(2.2) are combined as follows: 

   
∈= 1− (𝑟 + 𝑡)                                                        (2.3) 

 

Emissivity is expressed with the reflectance and transmittance. Clearly, emissivity 

is equal to 1 for reflectance and transmittance of 0. Infrared defectors have an 

average emission value for their respective spectral bands. They can operate at 

wider wavelength ranges to detect more object radiance. However, this will cause 

the problem for average emission value selection. Therefore, they use smaller 

spectral bands to define better emissivity value.   
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2.2.3 Atmospheric Transmittance 

 

The atmosphere is composed of numerous gases and aerosols. These constituents 

absorb and scatter radiation in its transmission path from target to IR system. 

Thus, thermal energy is reduced. This reduction in radiation is the result of 

atmospheric transmittance [2]. These constituents are at ambient temperature, and 

they also radiate energy. The radiation accumulated along the line of sight is 

called path radiance, and it prevents the visibility of the objects of interest in 

adverse weather conditions [2]. The effect of the low visibility is the reduced 

contrast in IR sensor. 

 

Atmospheric transmittance is a function of path length. It causes problems over a 

long distance due to the high reduction in the radiance, and so IR system will 

generate a low system response. If this response is lower than the system noise 

level, then the signal will be lost. 

 

Atmospheric conditions also affect IR system performance. For example, high 

humidity reduces atmospheric transmittance by causing aerosols to grow. 

Aerosols are invisible particles in the air, and they consist of dust, dirt, carbon, 

minute organism, sea salt, water droplets and, etc. Concentration of these particles 

differs from place to place. Scattering is directly proportional to the ratio of 

particle diameter to the wavelength. Scattering is minimum when the ratio is low 

and vice versa. This ratio increases with high humidity. Thus, it can lead a low IR 

system performance, although the weather is clear and visibility is high according 

to the human visual system (HVS). 

 

2.3 Imaging System Output 

 

Infrared systems consist of sensors and digitalizing units to produce pixel values 

at the output. Irradiance falling on a sensor is directly proportional to the scene 

radiance and produces electrical outputs [3]. The digitalizing units take these 
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analog signals and convert them to digital outputs. However, some restrictions are 

placed on the sensing devices. Sensing elements generally do not produce the 

same output value for the same image irradiance. This non uniformity is corrected 

for a specific sensing element with the formulation below.  

 

𝑃(𝑥, 𝑦, 𝑡) = 𝑔 × 𝐼(𝑥, 𝑦, 𝑡) + ∅ + 𝑛(𝑥, 𝑦, 𝑡) ,                            (2.4) 

 

where I and n are the irradiance falling on the sensing element and noise 

introduced by IR system at time t respectively; g is the gain, and ∅ is the offset 

values at pixel location (x, y). 

 

2.4 High Dynamic Range IR Imaging 

 

The real world exhibits a wide range of luminance values. The ratio between the 

maximum and minimum intensity values of the world scene image is called as 

high dynamic range. The main reason for using the HDR imaging is to show low 

and high contrast objects to the human observer simultaneously. Many system 

designs use the HDR imaging principles to produce output with competitive 

performance to the human visual system. 

 

Dynamic range is a very important problem for infrared imaging because the 

temperature difference between the target and background is a decisive parameter 

for system design. Both background and target radiate large amount of energy. If 

a low dynamic range (LDR) system is used for imaging, then the intensity 

difference between them will be low at the output. This leads to serious problems 

and requires careful settings of both gain and offset values to compensate [2]. 

Thus, HDR imaging is the main preference for many IR system designs. 

 

Another reason to use such a high dynamic range for IR imaging is to record more 

detailed temperature measurement for the analysis. It is a very important process 

to measure thermal sensitivity. Thermal sensitivity is the smallest differential 



9 
 
 

temperature which can be detected by the IR detector [2].  It is also called noise 

equivalent temperature difference (NEDT). If more levels are assigned to the 

noise measurement, then detail information will be lost for low dynamic range 

images. Therefore, output is expressed with more bits to examine all detail 

information. For example, the dynamic range of an 8-bit system with NETD value 

0.1℃ is calculated as follows [2]: 

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑎𝑛𝑔𝑒 = 256 �
0.1
4
� = 6.4℃                                 (2.5) 

 

In this example, the NETD range is divided into four levels for accurate noise 

measurement. The resulted output temperature range is insufficient for IR 

imaging. Therefore, more bits are assigned to the system.  

 

2.5 High Dynamic Range Compression  

 

High dynamic range imaging systems have resolutions between 12 and 16 bit. 

However, standard display devices generally use very low dynamic ranges. These 

devices are used in many areas by the human observers. This is possible due to the 

sensitivity of the human eye to the relative intensity changes rather than the 

amount of intensity changes. Figure 2-1 shows the dynamic range compression 

operation. There are lots of algorithms to reduce high dynamic range to the 

standard display level. They can be collected in two categories. These are tone 

reproduction curve (TRC) and tone reproduction operator (TRO) methods [5, 7].  

 

The TRC methods use a simple transformation curve to obtain final pixel values. 

They are also called global high dynamic range compression methods. These 

operations compress high input dynamic range to narrower ones at the output. The 

transformation is applied to each pixel independently, and so operation can be 

performed with a lookup table. The general formulation for an input image I and 

output image O is set up as follows: 
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𝑂 = 𝑇(𝐼) ,                                                                (2.6) 

 

where T is the one to one and monotonic tone reproduction curve. Curve function 

must be monotonic, or else it will change the color of the image parts such as 

edges. Traditional TRC curves can be implemented to all HDR images with single 

parameter changing. 

 

 

 
Figure 2-1 Dynamic Range Compression Operation 

 

 

Tone reproduction operations transform same pixel intensities to the different 

values depending on the spatial location and neighboring pixels. They are also 

called local high dynamic range compression methods. This transformation 

operation has several curves to produce display intensity values, and so it is not 

one to one. However, the TRO methods usually behave like TRC operations on 

small local regions. These methods use a model to express HDR images. The 

general concept of the model is formulated for an input image I as follows: 

 

𝐼(𝑥,𝑦) = 𝐿(𝑥,𝑦)𝑅(𝑥, 𝑦),                                             (2.7) 

 

where L and R are the illumination and scene reflectance components 

respectively. Illumination is the amount of light source incident on the scene 
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viewed, and scene reflectance is the amount of light source reflected by the 

objects [6]. Scene reflectance has low dynamic range in the absence of wide 

illumination variations. It contains all detail information about scene and 

determined by the characteristics of the objects. On the other hand, illumination is 

determined by the light source. Therefore, the main concern of TRO methods is to 

extract these two parts and then generate LDR image with reducing the dynamic 

range of illumination component. 

 

Computational complexities of these two methods are different. TRC methods use 

simple transformation curves to calculate LDR images, and their computational 

complexities are very simple. TRO methods use spatial processing and are 

computationally expensive.  

 

HDR compression is a step applied to obtain low dynamic range images before 

contrast enhancement operations, and HDR compression methods were not 

compared in this thesis. There are two types of dynamic range compression 

techniques used to obtain 8-bit images. These are: 

 

 HDR compression techniques used in contrast enhancement operation 

 HDR compression techniques applied before contrast enhancement 

operations 

 

Some contrast enhancement techniques have dynamic range compression 

operations merged with their algorithm. These types of enhancement methods 

generally use TRC based methods to compress high dynamic range of an input 

image. Balanced CLAHE method used in this thesis also has this feature [19]. 

This method is explained in Chapter 3. In this thesis, TRC based methods are used 

for other contrast enhancement techniques to obtain LDR images before 

enhancement procedures due to their performances and computational 

complexities. 
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There are also methods merging the properly exposed parts of the same scene to 

obtain a better result after dynamic range compression. This is accomplished by 

using the shorter or longer exposure times. Shorter exposure times give the details 

of bright parts of the image while longer exposure times give the details of darker 

parts. However, this process requires image fusion operation, and so these 

methods are out of scope for this thesis. 

 

2.5.1 HDR Compression Techniques Used In Thesis 

 

In the literature, there are lots of techniques to compress high dynamic range [7, 8, 

10]. Some of them are used in this thesis to produce LDR images before contrast 

enhancement operations. The operations used are: 

 

 Linear Scaling 

 Non-Linear Scaling 

 Histogram Adjustment 

 

2.5.1.1 Linear Scaling 

 

Linear scaling is a global operator and can be used to compress high dynamic 

range [7]. It is the simplest way to create a LDR image from HDR one. High input 

luminance value is linearly scaled to the lower output dynamic range. This is 

accomplished as follows: 

 

𝐼′ =  𝑘 �
𝐼(𝑥,𝑦) − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

� ,                                             (2.8) 

 

where k is the maximum intensity value of the display device; Imax and Imin are the 

maximum and minimum intensity values of an input image. IR images use only a 

small partition of the input dynamic range. However, histogram of an IR image 

generally has a noise component, which spreads to the dynamic range. It creates 



13 
 
 

confusion about the global maximum and minimum values of the given image. 

Therefore, linear scaling generates low contrast images. This problem leads to 

undesirable effects such as flattened structures. Images, which contain satisfying 

overall contrast, are achieved with introducing a clipping operation to this 

method. It forces the frequency values at the beginning and end of the histogram 

to zero. In other words, it forces the cumulative distribution function to saturation 

at these regions. This operation prevents the effect of noise component over linear 

scaling. The results of linear scaling with and without a clipping operation are 

presented in Figure 2-2. Clip limit is selected as 1% for both upper and lower 

partition of the histogram. 

 

 

 

 
Figure 2-2 Output Histograms of High Dynamic Range Compression with Linear Scaling (a) Original 

Histogram, (b) Final Histogram without a clipping operation, (c)  Final Histogram with a clipping operation 
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2.5.1.2 Non-Linear Scaling 

 

Non-Linear scaling is another one to one and monotonic global operator for high 

dynamic range compression. This method compresses an input image with an 

exponent value. It either compresses the lower or higher end of the image 

histogram while the other parts have low compression [7]. Non-Linear scaling is 

achieved with gamma value 𝛾 as follows: 

 

𝐼′ =  𝑘 �
𝐼(𝑥,𝑦) − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

�
𝛾

,                                              (2.9) 

 

where k is the maximum intensity value of the display device; Imax and Imin are the 

maximum and minimum intensity values of an input image. If gamma value is 

smaller than 1, then bright pixel values are amplified. If gamma value is greater 

than 1, then dark pixel values are amplified. Clipping operation can be used in 

non-linear scaling in order to suppress noise components in the histogram. The 

results of non-linear scaling with and without a clipping operation are presented in 

Figure 2-3. Clip limit is selected as 1% for both upper and lower partition of the 

histogram. 

 

 

 
Figure 2-3 Output Histograms of High Dynamic Range Compression with Non-Linear Scaling (a) Original 

Histogram, (b) Final Histogram without a clipping operation (gamma=0.75) 
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Figure 2-3 Output Histograms of High Dynamic Range Compression with Non-Linear Scaling (c)  Final 

Histogram without a clipping operation (gamma=2.2), (d) Final Histogram with a clipping operation 

(gamma=0.75), (e)  Final Histogram with a clipping operation (gamma=2.2) (continued) 

 

 

2.5.1.3 Histogram Adjustment 

 

Ward proposed a technique to compress high dynamic range images with a 

modified histogram equalization based method [8]. Histogram is used as a starting 

point to preserve contrast difference in the image after high dynamic range 

compression. 

 

Firstly, this method calculates the histogram and cumulative distribution functions 

from the original HDR image. Histogram is taken between the maximum and 

minimum intensity values. 100 histogram bins were found sufficient for the 

experiments of Ward. Cumulative distribution function is calculated from the 

frequency counts of the histogram as follows: 
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𝐶𝐷𝐹(𝑥) =
∑ 𝑝(𝑖)𝑖<𝑥

𝑇
 ,                                                     (2.10) 

 

where T is the total number of frequency counts, and it is calculated as follows: 

 

𝑇 = �𝑝(𝑥)
𝑁

𝑥=1

                                                            (2.11) 

 

In this formulation, N is the number of histogram bins and p(x) is the frequency 

count corresponding to the pixel value x. Cumulative distribution function is an 

integration function, and histogram equals to its derivative with appropriate 

normalization factor. It is calculated by Ward as follows: 

 
𝜕𝐶𝐷𝐹(𝑥)

𝜕𝑥
=
𝑝(𝑥)
𝑇∆𝑥

, ∆𝑥 =
(𝑙𝑜𝑔(𝐿𝑤𝑚𝑎𝑥) − 𝑙𝑜𝑔(𝐿𝑤𝑚𝑖𝑛))

𝑁
 ,          (2.12) 

 

where Lwmax and Lwmin are the maximum and minimum world luminance values 

for the scene respectively. Step size ∆x is calculated at the logarithmic scale. It is 

same for each histogram bin because histogram values with equal probabilities are 

desired at the output. Display luminance values are calculated with cumulative 

distribution function at the logarithmic scale. It is: 

 

log�𝐿𝑑(𝑥)� = log(𝐿𝑑𝑚𝑖𝑛) + [log(𝐿𝑑𝑚𝑎𝑥) − log(𝐿𝑑𝑚𝑖𝑛)]𝐶𝐷𝐹�log�𝐿𝑤(𝑥)�� ,   (2.13) 

 

where Ldmax and Ldmin are the maximum and minimum display luminance values. 

Equation (2.13) causes over enhancement at large object areas due to the property 

of histogram equalization. Histogram equalization technique is mentioned briefly 

in Chapter 3. Over enhancement is suppressed with a proper threshold value. 

Clearly, derivative of display luminance with respect to the real-world luminance 

is not greater than their ratio. Threshold value is found with this equation. It is: 
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𝜕𝐿𝑑
𝜕𝐿𝑤

≤
𝐿𝑑
𝐿𝑤

 ,                                                          (2.14) 

 

where Ld and Lw are display and real-world luminance values respectively. 

Equation (2.13) is placed in (2.14), and the new equation is: 

  

𝑒log (𝐿𝑑) 𝑝(𝐿𝑤)
𝑇∆𝑥

[log(𝐿𝑑𝑚𝑎𝑥) − log(𝐿𝑑𝑚𝑖𝑛)]
𝐿𝑤

≤
𝐿𝑑
𝐿𝑤

                      (2.15) 

 

This equation is reduced to a simpler form as follows: 

 

𝑝(𝐿𝑤) ≤
𝑇∆𝑥

log(𝐿𝑑𝑚𝑎𝑥) − log(𝐿𝑑𝑚𝑖𝑛)                                  (2.16) 

 

Equation (2.16) defines a restriction for histogram adjustment operation with a 

threshold. If all histogram frequency counts of HDR image are smaller or equal to 

the right side of this equation, then final histogram will not cause over 

enhancement. Ward’s method continues to iterate until fewer than 2.5 percent of 

the histogram frequencies exceed the threshold value. Output of histogram 

adjustment method is shown with different clipping percentages in Figure 2-4. 

 

 

 
Figure 2-4 Output Histograms of High Dynamic Range Compression with Histogram Adjustment (a) Final 

Histogram with 2.5% threshold, (b) Final Histogram with 10% threshold 
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Figure 2-4 Output Histograms of High Dynamic Range Compression with Histogram Adjustment (c) Final 

Histogram with 20% threshold, (d) Final Histogram with 40% threshold (continued) 

 

 

This method gives similar results to the linear scaling for small clipping 

percentages. If this value is increased, then the final histogram will spread more to 

the entire display range. 
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CHAPTER 3  
 

 
 

CONTRAST ENHANCEMENT METHODS 
 
 
 
 

3.1 Introduction 
 

High Dynamic Range Compression (HDRC) method reduces the perception of 

small targets or details. This result prevents the good understanding of the scene. 

The method which is used to improve visibility is called contrast enhancement. 

There are several algorithms in the literature for contrast enhancement. They can 

be grouped under three main branches [12]. These methods are: 

 

• Histogram equalization based methods HEBMs  

• Unsharp-masking-based methods UMBMs 

• Methods, which do not belong to any of these two categories 

 

HEBMs use the image statistics for contrast enhancement. Image histogram, 

probability density function (pdf), and cumulative distribution function (cdf) are 

the most-used parameters for these types of operations. These methods are very 

fast and have wide application areas. For example, a general framework based on 

histogram equalization is presented in [23] and authors proposed an enhancement 

technique based on histogram modification. 

 

UMBMs use the high and low frequency components of an input image. The 

general structure of these methods is represented as follows [12]: 

 

𝐼𝑜𝑢𝑡(𝑥,𝑦) =  𝐼𝑖𝑛(𝑥,𝑦)+∝ �𝐼𝑖𝑛(𝑥,𝑦) − 𝐼𝑎𝑣𝑔𝑖𝑛 (𝑥,𝑦)�                    (3.1) 
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In this formula, Iin and Iout denote the input and output images respectively; Iavg
in 

denotes the average image obtained by filtering the input image with smoothing 

filter. The primary objective of these methods is to enhance detail information 

rather than improving the visibility.  

 

3.2 Contrast Enhancement Methods 
 

Contrast enhancement methods used in this thesis are selected by considering the 

real time implementations. Therefore, some computationally complex methods are 

ignored and HEBMs are generally selected. The implemented methods are: 

Histogram Equalization Method [6], Histogram Matching (Histogram 

Specification) Method [6], Plateau Histogram Equalization Method [14], Tail-less 

Plateau Histogram Equalization Method [12], Adaptively Modified Histogram 

Equalization Method [15], Detail-Preserving Stretching Method [17], Contrast 

Limited Adaptively Modified Histogram Equalization (CLAHE) Method [18], 

Balanced Contrast Limited Adaptive Histogram Equalization Method [19], Detail 

Enhancement Method with Local Frequency Cues [24]. 

 

3.2.1 Histogram Equalization Method 

 

This method uses the concept of spreading pixel values in the given image to the 

entire histogram more uniformly [6]. This way, the unseen scene details are more 

visible to the observer. This method uses the histogram of the input image and 

brings it to its ideal uniform form. Histogram is constructed by calculating the 

pixel frequencies for the entire dynamic range of the input image. Pixel frequency 

represents the number of times a gray level seen in the input image. This 

frequency can be interpreted as the probability density function (pdf). It is 

calculated as follows: 

 

𝑃𝐷𝐹(𝑘) =
𝑝𝑘
𝑝

                      0 ≤ 𝑘 ≤ 2𝑚 − 1                       (3.2) 
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In this formulation, pk represents the frequency of the pixel level k with image 

depth m, and p is the total number of pixels in the input image. Pixel values in the 

input image are random variables. Thus, the probability of the pixel value k in the 

given image is less than or equal to the sum of probability density function up to 

pixel level k. This operation is called as cumulative distribution function (cdf) and 

it is calculated as follows: 

 

𝐶𝐷𝐹(𝑘) = �𝑃𝐷𝐹(𝑙)
𝑘

𝑙=0

                    0 ≤ 𝑘 ≤ 2𝑚 − 1                 (3.3) 

                                

Finally, the transformation of the pixel value from input to output is calculated as 

follows:    

 

𝑘′ = (2𝑛 − 1) × 𝐶𝐷𝐹(𝑘)                   0 ≤ 𝑘 ≤ 2𝑚 − 1 ,             (3.4) 

                            

where k’ denotes the value corresponding to the pixel value k in the enhanced 

image with depth n. 

 

The histogram equalization method has less computational complexity. However, 

it is also clear that this method converts the pixel values with higher-frequency 

counts to the very large gray level intervals. This means that small details 

disappear between the objects with high frequencies (background, large objects, 

etc.) at the output image. A sample input image and the output of histogram 

equalization operation can be seen in Figure 3-1.  
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Figure 3-1 Input and Output of Histogram Equalization Method (a) 14-bit Input, (b) Histogram of The Input 

Image, (c) 8-bit Output, (d) Histogram of The Output Image 
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3.2.2 Histogram Matching (Histogram Specification) Method 

 

This method produces an output image for applications, which needs a specific 

histogram distribution scheme. The histogram of an input image is converted to 

the desired output with matching of the histograms [6]. This method achieves its 

purpose with two-stage transformation. There are two values k and z, which 

correspond to the intensity values of the input and enhanced images respectively. 

The first step of the algorithm is to calculate the transformation function for input 

image. PDFI denotes the probability density function of the input image; CDFI 

denotes the cumulative distribution function of the input image, and T denotes the 

transformation function. 

 

𝑃𝐷𝐹𝐼(𝑘) =
𝑝𝑘
𝑝

                      0 ≤ 𝑘 ≤ 2𝑚 − 1                         (3.5) 

                              

𝐶𝐷𝐹𝐼(𝑘) = �𝑃𝐷𝐹𝐼(𝑙)
𝑘

𝑙=0

                    0 ≤ 𝑘 ≤ 2𝑚 − 1                   (3.6) 

             

𝑇(𝑘) = (2𝑚 − 1) × 𝐶𝐷𝐹𝐼(𝑘)                   0 ≤ 𝑘 ≤ 2𝑚 − 1               (3.7) 

            

The second step of the algorithm is to calculate the transformation function for the 

output image. PDFO denotes the probability density function of the output image; 

CDFO denotes the cumulative distribution function of the output image, and G 

denotes the transformation function for the desired output image. 

 

𝑃𝐷𝐹𝑂(𝑧) =
𝑝𝑧
𝑝

                      0 ≤ 𝑧 ≤ 2𝑛 − 1                         (3.8) 

                           

𝐶𝐷𝐹𝑂(𝑧) = �𝑃𝐷𝐹𝑂(𝑙)
𝑧

𝑙=0

                    0 ≤ 𝑧 ≤ 2𝑛 − 1                  (3.9) 

                     

𝐺(𝑧) = (2𝑛 − 1) × 𝐶𝐷𝐹𝑂(𝑧)                   0 ≤ 𝑧 ≤ 2𝑛 − 1            (3.10)                         
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The final step of the algorithm is to obtain the output image with inverse 

transformation. It is realized as follows: 

 

𝑧 = 𝐺−1�𝑇(𝑘)�                                                      (3.11) 

 

The output of histogram matching method applied to the image in Figure 3-1 (a), 

and the histogram of the output can be seen in Figure 3-2. The output in (a) has 

pixel intensity values in the range [30,220] while the output in (c) has pixel 

intensity values in the range [50,150].        

 

 
Figure 3-2 Output of Histogram Matching Method (a) 8-bit output with Interval [30,220], (b) Histogram of 

The Output in (a) 
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Figure 3-2 Output of Histogram Matching Method (c) 8-bit Output with Interval [50,150], (d) Histogram of 

The Output in (c) (continued) 

 

 

The primary aim of this method is to obtain uniform gray level distribution 

between the upper and lower limits. However, it gives similar results to the 

histogram equalization, because there is no control over higher histogram 

frequencies. Therefore, over enhancement is introduced at the final image. 

 

3.2.3 Plateau Histogram Equalization Method 

 

This method is the modified version of the histogram equalization. Histogram 

equalization method covers the entire dynamic range of the output histogram. 

Therefore, it provides a fine contrast enhancement. However, histogram 

equalization method assigns a large gray level interval to the objects with high 

frequencies (background, large objects, etc.). This method introduces a plateau 

threshold value to the histogram equalization algorithm in order to suppress over 

enhancement in the final image [14]. 
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If the frequency of an object background is limited to a threshold value, then the 

gray level spectrum of the object background will be less than the expected 

values. This process provides better enhancement of the targets in the final image. 

 

An appropriate threshold value T is used to limit the frequencies of the objects in 

the input histogram. Any frequency which is greater than the threshold value T is 

made equal to T. If it is smaller than T, then it is left unchanged. It is implemented 

in the probability density function as follows: 

 

𝑃𝐷𝐹𝑇(𝑘) = �𝑃𝐷𝐹(𝑘),𝑃𝐷𝐹(𝑘) ≤ 𝑇
𝑇,𝑃𝐷𝐹(𝑘) > 𝑇              0 ≤ 𝑘 ≤ 2𝑚 − 1 ,        (3.12) 

                             

where k denotes the pixel value in the input image; PDF(k) denotes the 

occurrence value of pixel level k in the original histogram, and PDFT(k) denotes 

the probability density function after thresholding operation. The cumulative 

distribution function is calculated as follows: 

 

𝐶𝐷𝐹(𝑘) = �𝑃𝐷𝐹𝑇(𝑙)
𝑘

𝑙=0

                    0 ≤ 𝑘 ≤ 2𝑚 − 1 ,              (3.13) 

                           

where k’ denotes the value corresponding to the k in the enhanced image, and it is 

calculated as follows: 

 

𝑘′ = �
(2𝑛 − 1) × 𝐶𝐷𝐹(𝑘)
𝐶𝐷𝐹(2𝑚 − 1)

�       0 ≤ 𝑘 ≤ 2𝑚 − 1  𝑎𝑛𝑑 0 ≤ 𝑘′ ≤ 2𝑛 − 1    (3.14) 

               

3.2.3.1 Selection of the Threshold Value 

 

The threshold value of the plateau histogram equalization affects the output 

performance of the algorithm. It is very clear that this algorithm turns into the 

histogram projection if T equals to 1, and it turns to histogram equalization if T 

equals to the maximum frequency value in the histogram. It is very likely that this 
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maximum value corresponds to the background of the image because the 

background generally has the higher frequency in the original histogram. An 

appropriate threshold value prevents the excessive gray level stretching for 

background area. Therefore, objects in the original image will be enhanced greatly 

while suppressing the object background.  

 

Apart from a manual threshold selection, an adaptive method for the calculation 

of the threshold value T is proposed in [14]. The processes of this algorithm are as 

follows: 

 

• Histogram is calculated from the input image. 

• Median filter is applied to the histogram for the window size 3. This 

operation smooths the rapid frequency change in the histogram.   

• Nonzero histogram values are obtained from the smoothed histogram. 

• F(l) denotes the nonzero frequency value in the histogram, and L denotes 

the total number of nonzero frequencies. Local minimum values are 

calculated as follows: 

 

𝐹𝑑𝑖𝑓(𝑙) = 𝐹(𝑙) − 𝐹(𝑙 − 1)                    0 ≤ 𝑙 ≤ 𝐿                  (3.15)                            

|𝐹𝑚𝑖𝑛(𝑙)| = 𝑚𝑖𝑛{𝐹𝑑𝑖𝑓(𝑙),𝐹𝑑𝑖𝑓(𝑙 + 1)}         0 ≤ 𝑙 ≤ 𝐿             (3.16)         

                  

• The median value of the local minimum vector is selected as the threshold 

value.  

 

The output of plateau histogram equalization method applied to the image in 

Figure 3-1 (a) with an adaptive threshold value and the histogram of the output 

can be seen in Figure 3-3. 
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Figure 3-3 Output of Plateau Histogram Equalization Method (a) 8-bit Output, (b) Histogram of The 

Output 

 

 

3.2.4 Tail-less Plateau Histogram Equalization Method 

 

This method is the modified version of the plateau histogram equalization. It 

forces the frequency values at the beginning and end of the histogram to zero, thus 

forces the cumulative distribution function to saturation [12].  Therefore, resulting 

histogram gives a better dynamic range for the remaining input values and further 

enhances the image compared to the plateau histogram equalization method. The 

performance of this operation depends on the clipping percentage. This 

percentage, tmax, takes a value between 0 and 0.5. PDFT(k) denotes the frequency 

value in the histogram after the plateau threshold value is applied, and CDFT(k) 

denotes the cumulative distribution value corresponding to the PDFT(k). This 

operation is applied as follows: 
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𝑃𝐷𝐹𝑇(𝑘) = �𝑃𝐷𝐹𝑇(𝑘),    𝐶𝐷𝐹𝑇(𝑘) ∈ [𝑡𝑚𝑎𝑥 , 1 − 𝑡𝑚𝑎𝑥]
0,                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              0 ≤ 𝑘 ≤ 2𝑚 − 1    (3.17) 

 

The output of tail-less plateau histogram equalization method applied to the image 

in Figure 3-1 (a), and the histogram of the output can be seen in Figure 3-4. The 

output images are calculated for the clipping percentages 0.05, 0.1 and 0.17. This 

method uses the same adaptive threshold value with plateau method. 

 

 

 
Figure 3-4 Output of Tail-Less Plateau Histogram Equalization Method (a) 8-bit Output with clipping 

percentage 0.05, (b) Histogram of The Output in (a)  
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Figure 3-4 Output of Tail-Less Plateau Histogram Equalization Method (c) 8-bit Output with clipping 

percentage 0.1, (d) Histogram of The Output in (c), (e) 8-bit Output with clipping percentage 0.17,  

(f) Histogram of The Output in (e) (continued) 
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It is clear from the Figure 3-4 (e) that high clipping percentages damage the 

natural structure of the image. Therefore, an appropriate clipping percentage can 

be selected with experiments. 

 

3.2.5 Adaptively Modified Histogram Equalization Method 

 

A method is proposed in [15] to control enhancement rate and preserve the shape 

of the histogram. This method is named as Adaptively Modified Histogram 

Equalization. PDF denotes the probability density function of the input image. 

The length of the PDF function depends on the depth of an input image. 

Minimum, maximum and mean frequency values of the PDF function are found 

as follows: 

 

𝑃𝐷𝐹𝑀𝐴𝑋 = max (𝑃𝐷𝐹)                                            (3.18)                 

   

𝑃𝐷𝐹𝑀𝐼𝑁 = min (𝑃𝐷𝐹)                                             (3.19)        

                  

𝑃𝐷𝐹𝑀𝐸𝐴𝑁 =
𝑃𝐷𝐹𝑀𝐴𝑋 + 𝑃𝐷𝐹𝑀𝐼𝑁

2
                                      (3.20) 

                               

This mean PDF value is used to divide an image into two sub images. After this, 

new PDF function is calculated by modifying the upper and lower sub images 

with their gradient information. The probability density function of the input 

image is modified as follows: 

 

𝑃𝐷𝐹𝐴𝐻𝑀𝐸(𝑘) = �
PDF𝑀𝐸𝐴𝑁 + 𝛼 × (𝑃𝐷𝐹(𝑘)−𝑃𝐷𝐹𝑀𝐸𝐴𝑁)2

(𝑃𝐷𝐹𝑀𝐴𝑋−𝑃𝐷𝐹𝑀𝐸𝐴𝑁)
 ,𝑃𝐷𝐹(𝑘) > 𝑃𝐷𝐹𝑀𝐸𝐴𝑁   

PDF𝑀𝐸𝐴𝑁 − 𝛼 × �𝑃𝐷𝐹𝑀𝐸𝐴𝑁−𝑃𝐷𝐹(𝑘)�
2

(𝑃𝐷𝐹𝑀𝐸𝐴𝑁−𝑃𝐷𝐹𝑀𝐼𝑁)
  ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

   (3.21) 

               

The variable 𝛼 determines the enhancement rate, and it is calculated adaptively. 

Mean frequency count also corresponds to the mean pixel intensity value. 

Therefore, these sub images contain intensity values, which are smaller and 
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greater than the mean intensity value (km) of the input image respectively. 𝛼 is 

calculated for these two sub images as follows: 

 

𝛼 =
𝑘𝑚 − 𝑘𝑚𝑙
𝑘𝑚𝑢 − 𝑘𝑚𝑙

 ,                     0 ≤ 𝑘 ≤ 𝑘𝑚                           (3.22) 

                                

𝛼 =
𝑘𝑚𝑢 − 𝑘𝑚
𝑘𝑚𝑢 − 𝑘𝑚𝑙

 ,         𝑘𝑚 < 𝑘 ≤ 2𝑚 − 1                          (3.23) 

                                  

The constants kmu and kml denote the mean values of the first and second sub 

images respectively. Clearly, the variable has a value for each half of image. 

 

The modified pdf function is set to zero when the equation is negative. The 

cumulative distribution function (cdf) and final mapping are obtained as follows: 

 

𝐶𝐷𝐹𝐴𝐻𝑀𝐸(𝑘) = �𝑃𝐷𝐹𝐴𝐻𝑀𝐸(𝑙)
𝑘

𝑙=0

,                    0 ≤ 𝑘 ≤ 2𝑚 − 1        (3.24) 

                             

𝑘′ =
𝐶𝐷𝐹𝐴𝐻𝑀𝐸(𝑘)

𝐶𝐷𝐹𝐴𝐻𝑀𝐸(2𝑚 − 1) × (2𝑛 − 1) ,                    0 ≤ 𝑘′ ≤ 2𝑛 − 1 ,      (3.25) 

                               

where k’ denotes the value corresponding to the k in the enhanced image. The 

constants m and n represents the depth of input and output images respectively.  

 

AMHE method divides an input image to two sub images based on the mean 

histogram frequency value and enhances them separately. It can enhance contrast 

by preventing the significant change in gray level. This method has better output 

performance compared to HE. However, it has a higher computational load. The 

output of AMHE method applied to the image in Figure 3-1 (a) and histogram of 

the output can be seen in Figure 3-5. 
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Figure 3-5 Output of AHME Method (a) 8-bit Output, (b) Histogram of The Output 

 

 

3.2.6 Detail-Preserving Stretching Method 

 

This operation combines the contrast stretching and gradient domain processing 

operations to obtain a better contrast enhancement scheme for IR images. Contrast 

stretching is an easy method to apply any input image. However, stretching 

operation causes to the loss of detail information. Gradient domain processing 

compensates this problem. This method has two stages of operation [17], and it is 

explained below.  

 

The output of detail-preserving stretching method applied to the image in Figure 

3-1 (a) and histogram of the output can be seen in Figure 3-7. 
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3.2.6.1 Contrast Stretching Operation 

 

The contrast stretching operation uses a piecewise straight transformation 

operation. This is shown in the Figure 3-6. The straight-line segments show the 

transformation from input image to the output image. These lines are modified in 

order to change the mapping operation. The region which contains the detail 

information is given a large gray level interval and the region which contains less 

detail information is given a small grey level interval. The values k1, k2, s1 and s2 

determines the shape and position of the lines, and they are constants. 

 

 

 
Figure 3-6 Contrast Streching Operation 

 

 

Detail-Preserving Stretching method uses the mean based stretching operation for 

contrast enhancement. The mean based stretching uses mean and standard 

deviation values of the input image to find k1 and k2 values. They are calculated 

as follows: 

 

𝑘1 = 𝑚− 𝛼 × 𝜎                                                   (3.26) 

                               

𝑘2 = 𝑚 + 𝛽 × 𝜎                                                   (3.27) 
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In this formula, m denotes the mean and 𝜎 denotes the standard deviation of the 

input image. 𝛼 and 𝛽 are the coefficients, which are used to calculate k1 and k2. 

They are determined according to the experiment results and selected as 3 for 

Figure 3-7. The complete operation for the contrast stretching is defined as 

follows: 

 

𝑠(𝑘) = �
𝑠1,                                             𝑝(𝑘) < 𝑘1
𝑠2,                                             𝑝(𝑘) > 𝑘2
𝐾 × [𝑝(𝑘) − 𝑘1] + 𝑠1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                        (3.28) 

                               

In this formula, s(k) denotes the output pixel value and p(k) denotes the input 

pixel value. The constants s1 and s2 denote the lower and upper saturation limits 

for the output histogram. K is the stretching gain, and it is calculated adaptively as 

follows: 

 

𝐾 =
𝑠2 − 𝑠1
𝑘2 − 𝑘1

                                                       (3.29) 

                                

3.2.6.2 Gradient Domain Process 

 

The low and high partitions of the histograms are saturated with contrast 

stretching operation. Thus, the details at these parts are not visible anymore. 

Gradient domain approach uses the gradient information of the original image, 

and the stretching gain K obtained by mean based contrast stretching. It is a local 

approach with gradient information extracted from pixel locations and their 

neighbors. The gradient of the stretched image is equal to the gradient of input 

image multiplied by K for the pixel values between [k1,k2]. It is either zero or 

smaller than the gradient of input image multiplied by K for the pixel values 

excluding the interval [k1,k2]. This causes a loss of information at the output 

image. Therefore, the gradient of the output image is made equal to the gradient of 

the input image multiplied by K. This causes the output image to differ from 

stretched image. An additional constraint is added to compensate for this 
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difference. This constraint is placed to minimize the difference between contrast 

stretched image v and output image f. The minimization function is set up as 

follows: 

 

�𝐸 = �(𝐸𝑑 + 𝐸𝑔)
𝑘∈𝑓𝑘∈𝑓

                                                  (3.30) 

                    

In this formula, E is the energy function; Ed is the data cost function and Eg is the 

gradient cost function. The data and gradient cost functions are defined as 

follows: 

 

𝐸𝑑 = 𝜆𝑑(𝑓 − 𝑣)2                                                (3.31) 

                    

𝐸𝑔 = 𝜆𝑔[(𝑓𝑥 − 𝐺𝑥)2 + �𝑓𝑦 − 𝐺𝑦�
2

]                                     (3.32) 

                   

In these formulas, fx and fy are the horizontal and vertical derivatives of the output 

image f; 𝜆𝑑 and 𝜆𝑔 are the weight values; Gx and Gy are the horizontal and vertical 

parts of the gradient of the input image multiplied by K. This energy function 

satisfies the Euler-Lagrance equation [17]. 

 
𝜕𝐸
𝜕𝑓

−  
𝜕
𝜕𝑥

𝜕𝐸
𝜕𝑓𝑥

−
𝜕
𝜕𝑦

𝜕𝐸
𝜕𝑓𝑦

= 0                                         (3.33) 

                   

The final equation is represented as follows. 

 
𝜆𝑑
𝜆𝑔
𝑓 − �𝑓𝑥𝑥 + 𝑓𝑦𝑦� = 𝜆𝑑

𝜆𝑔
𝑣 − (𝐺𝑥 + 𝐺𝑦)                             (3.34)             

        

In this final formula, fxx and fyy are the horizontal and vertical components of the 

Laplacian operator. Therefore, this formula can be expressed as follows: 

 
𝜆𝑑
𝜆𝑔
𝑓 − ∇2𝑓 =

𝜆𝑑
𝜆𝑔
𝑣 − ∇𝐺                                              (3.35) 
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Figure 3-7 Output of Detail-Preserving Stretching Method (a) 8-bit Output, (b) Histogram of The Output         

 

 

In equation (3.35), weight values are generally set to 1 by authors to get 

affordable visual quality.    
            

3.2.7 Contrast Limited Adaptively Modified Histogram Equalization 

(CLAHE) Method 
 

This method uses the same principle with plateau method. Background or large 

objects have bigger intensity intervals at the output due to their high-frequency 

counts in the input histogram. The plateau method uses a thresholding operation 

to limit frequencies of these regions. The excess frequency counts are not used. 

Thus, over enhancement of the background or large objects are prevented. 

However, Plateau method does not generate a uniform distribution. Because the 

input values are spread over to the whole available dynamic range after 

thresholding operation.   
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The CLAHE method calculates the histogram of the whole image, and then the 

histogram is clipped according to the threshold value [18]. After this, it uses the 

excess frequency counts and distributes them uniformly over the input histogram 

interval. This operation adds the unused histogram bins of the input image to the 

mapping calculation and limits the enhancement operation. This way, the resulting 

image looks more natural.  

 

3.2.7.1 Local Approach 
 

In Local CLAHE operation, the input image is divided into several non-

overlapping regions. The histogram of each region is calculated, and these 

histograms are clipped according to the appropriate threshold value. The clipped 

frequency values are stored for each region and then redistributed to their 

histograms. This operation is done in a way that it does not exceed the threshold 

value. Therefore, resulting histogram will be more linear due to the uniform 

distribution of the excess pixels. Finally, cumulative distribution function (cdf) is 

calculated by using the resulting histogram. This cdf is used to calculate pixel 

mapping function of the respective block. The pixels are mapped to their final 

value in each block by using the pixel mapping functions of its neighbors. 

However, there are some special considerations for these mapping operations, and 

they will be explained later.  

 

The output of CLAHE method applied to the image in Figure 3-1 (a) and 

histogram of the output can be seen in Figure 3-8. The input image is divided into 

four blocks in (a), and the threshold value is selected as 27.5% of the total pixels. 

In other words, 72.5% of the total pixels are trimmed, and they are treated as 

excess pixels. 16 blocks is used in Figure 3-8 (c). The threshold value selected as 

24% of the total pixels. Clearly, local contrast improves with the increment of the 

block number. However, further increment of the block number causes problem 
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for CLAHE method. Main problem is the over enhancement of the noise 

component in the blocks.   

 

 

 
Figure 3-8 Output of CLAHE Method (a) 8-bit Output with 4 block, (b) Histogram of The Output in (a) 
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Figure 3-8 Output of CLAHE Method  (c) 8-bit Output with 16 block, (d) Histogram of The Output in (c) 

(continued) 

 

 

3.2.8 Balanced Contrast Limited Adaptive Histogram Equalization 

 

This method uses an improved version of CLAHE approach. CLAHE method 

uses a threshold value to limit enhancement of the large objects. It uses the excess 

frequency counts to limit the spreading of the histogram. However, CLAHE 

method also distributes excess pixels to the unused histogram bins. This operation 

limits the enhancement of important details while suppressing background. 

Balanced CLAHE method makes an improvement to solve this problem. This 

method distributes excess pixels to the nonzero histogram bins according to the 

percentage which they have in the histogram after clipping operation. Therefore, 

shape of the original histogram is preserved. Algorithm ensures that no histogram 

bin exceed the threshold value. This operation improves the detail enhancement 
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while suppressing over enhancement of the objects like background, which have 

less information, to get more intensity intervals. This method uses an approach 

which is a combination of the histogram and unsharp masking based methods 

[19].  

 

Firstly, histogram of each block is calculated, and then it is clipped with the 

threshold T. The formula for this operation is set up as follows: 

 

ℎ𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑘) = � ℎ(𝑘),        ℎ(𝑘) < 𝑇
𝑇,        ℎ(𝑘) > 𝑇                          0 ≤ 𝑘 ≤ 2𝑚 − 1            (3.36) 

                     

The excess frequency counts of the histogram are stored and then the 

contributions of each nonzero block in the clipped histogram are calculated. After 

this operation, new histogram is calculated with adding excess frequency counts 

to the histogram with the percentage of each block in the histogram. 

 

𝑝(𝑘) =
ℎ(𝑘)

∑ ℎ(𝑘)𝑘∈𝐶
 ,𝐶 = �𝑘: ℎ𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑘) < 𝑇�                          (3.37) 

                         

ℎ𝑛𝑒𝑤(𝑘) = �
ℎ𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑘) + 𝑝(𝑘) × 𝐸,      ℎ(𝑘) < 𝑇
ℎ𝑐𝑙𝑖𝑝𝑝𝑒𝑑(𝑘),                        ℎ(𝑘) > 𝑇

                      (3.38)                        

 

In this formula, hnew denotes the final histogram and E denotes the total sum of the 

excess frequency counts after the threshold is applied. If new histogram value 

exceeds the threshold T again, the algorithm will continue to run in order to 

prevent this condition. This is one of the main drawbacks of this method. The 

output of Balanced CLAHE method applied to the image in Figure 3-1 (a) and the 

histogram of the output can be seen in Figure 3-9. The input image is divided into 

four blocks, and the threshold value is selected as 21.5% of the total pixels. 

Further increment of the block number causes problems for Balanced CLAHE 

method. These problems are explained in Chapter 4. 
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Figure 3-9 Output of Balanced CLAHE Method (a) 8-bit Output, (b) Histogram of The Output 

 

 

3.2.8.1 Dynamic Range Compression with Balanced CLAHE Method 
 

In this method, Balanced CLAHE operation performs high dynamic range 

compression task besides contrast enhancement. IR image is concentrated on a 

small partition of the input histogram. Balanced CLAHE operation is applied to 

this region. The cumulative distribution function takes the value of zero before 

this region and the value of 1 after this region. It is used to calculate final pixel 

mapping function with the aid of further enhancement determined with the ratio of 

input image and its average version. This ratio improves edge details. These two 

components constitute a transformation function to scale input dynamic range to 

the standard display level. The transformation curve takes several shapes 

depending on ∝. The formulation for this operation is set up as follows [19]:  

 

𝑓𝑜𝑢𝑡 = 𝑝 �𝑓𝑖𝑛(𝑥,𝑦)� 𝑥 �
𝑓𝑖𝑛(𝑥,𝑦)
𝑓𝑀𝑖𝑛(𝑥, 𝑦)

�
∝

                                    (3.39) 
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This formula is the linear version. fin and fout denote the input and output images 

of the algorithm. fM
in is the average image obtained by filtering the input image 

with an averaging filter. p denotes the non-decreasing linear version of the 

Balanced CLAHE operation. The logarithm of this formula is obtained as follows: 

 

𝐹𝑜𝑢𝑡(𝑥, 𝑦) = 𝑃 �𝐹𝑖𝑛(𝑥,𝑦)�+∝× �𝐹𝑖𝑛(𝑥, 𝑦)− 𝐹𝑀𝑖𝑛(𝑥, 𝑦)�          (3.40) 

                        

The capital letters represent the logarithmic versions of input image, output 

image, average image and contrast enhancement method. This representation 

resembles to the unsharp-masking based methods. The high-frequency component 

(detail image) is added to the enhanced image with factor ∝. This operation 

further enhances the detail information. 

 

3.2.8.2 Local Approach 

 

In local Balanced CLAHE operation, the input image is divided into several non-

overlapping regions. The histogram of each region is calculated. These histograms 

are clipped according to the appropriate threshold value. The clipped histogram 

frequency values are stored for each region, and then redistributed to the nonzero 

bins of the histogram according to their contribution. This operation is done in a 

way that it does not exceed the threshold value. Operation is repeated until this 

condition is satisfied. Finally, cumulative distribution function of each region is 

calculated by using the resulting histogram. This cdf is used to calculate a 

transformation curve for each block. All regions are merged with the 

transformation functions of their neighbors to prevent blocking artifacts. 

 

3.2.9 Detail Enhancement with Local Frequency Cues 

 

This method mainly focuses on the detail enhancement operation rather than the 

contrast enhancement [24]. The input image is divided into the smaller blocks, 

and each block is labeled as either target or background region according to the 
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clustering operation. The clusters are separated according to the frequency-

domain information of each block. 

 

Firstly, this method divides an input image with dimensions M and N into 

reasonable b blocks. B1 and B2 are x and y dimensions of each block. After this 

operation, the Discrete Fourier Transform of each block is computed as follows 

[24]: 

 

𝐹𝑖(𝑢,𝑣) =
1

𝐵1 × 𝐵2
� � 𝐼𝑖(𝑥,𝑦)𝑒𝑗2𝜋[(𝑢𝑥 𝐵1)+(𝑣𝑦 𝐵2⁄ )⁄ ]

𝐵2−1

𝑦=0

𝐵1−1

𝑥=0

         (3.41) 

                 

The background region has a more smooth frequency response than the target 

region. The target region has a different frequency response due to its detail 

information. After the calculation of DFT data, the distances of each block from 

others are calculated according to the Fourier transform matrix. The cost of this 

operation is very high. It is also clear that the Fourier transform is a symmetric 

operation. Therefore, the half of Fourier transform data is used for distance 

calculation operation. For this purpose, Fi matrix is converted to the 1-D vector by 

zigzag scanning. Zigzag scanning converts a two-dimensional matrix to one-

dimensional vector. It is a very useful technique to convert Fourier transform 

matrix to one-dimensional vector. The zero-frequency component is shifted to 

center of the spectrum before this operation. The example of zigzag scanning, 

which converts 8x8 matrix to the 1x64 vector is shown at Figure 3-10. 

 

 
Figure 3-10 Mapping of 8 x 8 matrix to a 1 x 64 vector 
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The next operation is clustering, and it is done according to the cluster tree. This 

tree is constructed with the nearest distance as follows: 

 

𝑑𝑟𝑠 = (𝑉𝑟 − 𝑉𝑠)(𝑉𝑟 − 𝑉𝑠)𝑇                                             (3.42) 

                                         

In this equation, drs denotes the distance from the block r to block s, and Vi 

denotes the 1-D Fourier transform with half-length corresponding to the block i. 

The distance of each block from the others is calculated and then a distance matrix 

is constructed with these values. This distance matrix is used to find specified 

number of clusters. Clusters are groups, which contain similar elements to each 

other in some sense. In this method, similarity is measured by the frequency 

difference. If the frequency difference is small between two blocks, then they are 

grouped under same cluster. 

 

Secondly, cluster centers are computed by averaging 1-D vectors, which belong to 

the same cluster. After this operation, normalized cluster centers are calculated 

with the median filtering. Normalization is done with the energy of each cluster. 

The median filtering with window size 3 is used for noise reduction. The formulas 

for these operations are described as follows: 

 

𝑇𝐸𝑗 = � [𝐶𝐶𝑗(𝑛)]2
𝐵1𝐵2 2⁄

𝑛=1

                                              (3.43) 

                                        

𝐶𝐶𝚥����(𝑛) =
[𝐶𝐶𝑗(𝑛 − 1)]2 + [𝐶𝐶𝑗(𝑛)]2 + [𝐶𝐶𝑗(𝑛 + 1)]2

𝑇𝐸𝑗
                  (3.44) 

                            

In these equations, j denotes the cluster number. CCj and 𝐶𝐶𝚥����(𝑛) denote the 

cluster center and normalized cluster center respectively. Then, a weight for each 

cluster is calculated using the equation as follows: 
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𝑤𝑗 = � 𝐶𝐶𝚥����(𝑛) × 𝑛
𝐵1𝐵2 2⁄

𝑛=1

                                              (3.45) 

 

It can be seen from the above equation that the weight is increased for high-

frequency components by multiplying them with high values of n, since they have 

most of the detail information about targets. Then, these weight values are used to 

decide target and background regions and assigned to the blocks at each cluster. 

Each block will have the weight value of the cluster which it belongs. The blocks 

with low weight values are labeled as background while blocks with high weight 

values are labeled as targets. After that, a gain matrix is calculated from these 

weight values. Gain matrix has the same dimensions with input image. Each 

member of the gain matrix is found by using its distance to all block centers with 

distance transformation operation. This operation ensures that each block has 

contributions from its neighbors to decide its final gain value. This results in 

smooth transition from one block to another. It is performed as follows: 

 

𝐷𝑘(𝑥, 𝑦) =
1

�(𝐵𝑊𝑘(𝑥𝑐) − 𝑥)2 + (𝐵𝑊𝑘(𝑦𝑐) − 𝑦)2+ ∈
                   (3.46) 

 

𝐺(𝑥,𝑦) = �
𝐷𝑘(𝑥,𝑦)

∑ 𝐷𝑙(𝑥,𝑦)𝑏
𝑙=1

𝐵𝑊(𝑘) ,                                 (3.47)
𝑏

𝑘=1

 

 

where xc and yc are the center coordinates of the blocks; BWk is the weight value 

of the kth block, and b denotes the number of blocks. The small variable ∈ is used 

to prevent division by zero at the cluster centers. The gain matrix is used to 

calculate two different matrices. These matrices are constructed with the equations 

below: 

 

𝐺𝑚𝑖𝑑(𝑥, 𝑦) =
(𝐺(𝑥,𝑦) − 𝐺𝑚𝑖𝑛) ∝𝑚𝑖𝑑

(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)
+ 𝛽𝑚𝑖𝑑                             (3.48) 
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𝐺ℎ𝑖𝑔ℎ(𝑥, 𝑦) =
(𝐺(𝑥, 𝑦) − 𝐺𝑚𝑖𝑛) ∝ℎ𝑖𝑔ℎ

(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)
+ 𝛽ℎ𝑖𝑔ℎ                       (3.49) 

   

Gmax and Gmin are the maximum and minimum values of the gain matrix G 

respectively. ∝𝑚𝑖𝑑, ∝ℎ𝑖𝑔ℎ, 𝛽𝑚𝑖𝑑 and 𝛽ℎ𝑖𝑔ℎ are coefficients used to calculate gain 

matrices. Matrices in equation (3.48) and (3.49) denote enhancement factors of 

the mid-frequency and high-frequency partitions of the input image. They are 

used for the calculation of the final image as follows: 

 

𝐼𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑙𝑜𝑤 + 𝐺𝑚𝑖𝑑(𝑥, 𝑦) × 𝐼𝑚𝑖𝑑(𝑥,𝑦) + 𝐺ℎ𝑖𝑔ℎ(𝑥,𝑦) × 𝐼ℎ𝑖𝑔ℎ(𝑥, 𝑦)       (3.50) 

 

In this formulation, Ilow denotes the average image. It is calculated by passing the 

original image from 25x25 averaging filter. Ihigh denotes the high-frequency 

image. It is calculated by first passing input image from 5x5 averaging filter and 

then subtracting the resulted image from the input. The mid-frequency image Imid 

is calculated according to the equation (3.51) as follows: 

 

𝐼𝑚𝑖𝑑 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐼𝑙𝑜𝑤 − 𝐼ℎ𝑖𝑔ℎ                                           (3.51) 

 

Finally, the values of the output image, which are outside the output dynamic 

range, are set to either 0 or 255. The output of this method for the image in Figure 

3-1 (a) is presented in Figure 3-11. Additionally, the input and output of this 

method for another image can be seen in Figure 3-12. B1 and B2 are both selected 

as 25. The cluster number is selected as 2. Experiments showed that 0.5, 3, 0.5, 

0.5 were good approximations for ∝𝑚𝑖𝑑, ∝ℎ𝑖𝑔ℎ, 𝛽𝑚𝑖𝑑 and 𝛽ℎ𝑖𝑔ℎ. Clearly, this 

operation only improves edge details. The overall contrast of the image does not 

change. 
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Figure 3-11 Output of Enhancement with Local Frequency Cues Method (a) Output Image, (b) Output 

Histogram 

 

 

 
Figure 3-12 Output of Enhancement with Local Frequency Cues Method (a) Input Image 
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Figure 3-12 Output of Enhancement with Local Frequency Cues Method (b) Output Image (continued) 

 

 

3.3 Contrast Enhancement Operations Before High Dynamic Range 

Compression 

 

In this thesis, contrast enhancement operations are performed after high dynamic 

range compression operation. Therefore, enhancement operations are used to 

improve visual quality of 8-bit IR images. These operations can be performed on 

14-bit IR images. However, there is one special consideration for them. 

 

IR systems exhibit random temperature fluctuations in their histogram due to the 

heat exchange in the  environment. This is known as thermal noise. A clipping 

operation is performed in order to suppress this noise component and give a better 

dynamic range for the middle pixel values. Percentages of the histogram from 

beginning and end are saturated. Contrast enhancement operations can be 

performed in this new image. After this, linear scaling can be used to obtain a 8-
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bit image for standard display devices. An example operation can be seen in 

Figure 3-13. Standard CLAHE operation with 4 blocks is selected as the contrast 

enhancement operation, and it is applied to the image in Figure 3-1 (a). Linear 

scaling is used to obtain a 8-bit image after contrast enhancement. 

 

 

 
Figure 3-13 Output of CLAHE Method on IR Image with 14-bit Depth (a) Output Image, (b) Output 

Histogram 
 

 

Clearly, this image has more contrast compared to the CLAHE operation 

performed on 8-bit image. However, detail information is flattened in some 

regions due to the linear scaling operation. Because contrast enhancement is 

performed to improve flattened detail information after linear scaling operation, 

Figure 3-8 has more detail information compared to Figure 3-13. Therefore, a 

better HDRC method can be used to improve output performance. 
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Contrast enhancement operations, which are performed on 8-bit images, are 

preferred to get more detail information. Real time considerations are another 

reason for this selection. Histogram calculations will be performed on 14-bit depth 

histogram instead of 8-bit depth, and storage problems will arise. External storage 

devices can be used to store image statistics like histogram, pdf, and cdf. 

However, this will increase operation time of the contrast enhancement algorithm. 

 

3.4 Distance Transformation Function 

 

Local contrast enhancement methods use a block based approach. This results in a 

better enhancement for images. These methods can be implemented with a sliding 

window approach. However, this will lead a higher computational load for real 

time systems. Thus, the nonoverlapped block based approach is developed in the 

literature to decrease computation time [29]. This operation divides an input 

image to blocks, which do not cross each other. Then, the final mapping function 

is calculated for each block by using its own pixels. The neighboring blocks have 

different mapping functions, and discontinuities will appear at the borders 

between blocks. This is named as blocking effect. 

 

Blocking effect has a great impact on the output image quality, and it can be 

prevented by distance transformation operations. These operations merge adjacent 

blocks in a way that there is no clear boundary between them. It is accomplished 

by changing the image pixel values in order to create smooth transition between 

block boundaries. Block centers have their original pixel values. However, the 

pixel values use the gray level mapping function of their neighbors when they 

move away from the pixel centers. The contributions of neighbors are determined 

according to the distance of current pixel location to all block centers [27]. It is 

calculated as follows: 
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𝑀𝑓�𝐼(𝑥,𝑦)� =
∑ 1

𝑑𝑖(𝑥, 𝑦)𝑀𝑖�𝐼(𝑥,𝑦)�𝐵
𝑖=1

∑ 1
𝑑𝑖(𝑥,𝑦)

𝐵
𝑖=1

 ,                                  (3.52) 

 

where 𝑀𝑓 is the weighted average mapping function obtained with distance 

transformation operation; B is the total number of the blocks and d is the distance 

value between pixel location and corresponding block center. There are several 

methods used for this purpose. Experimented methods are: 

 

• Chessboard distance transformation 

• Cityblock distance transformation 

• Euclidean distance transformation 

 

These methods are experimented to find the best one for elimination of the block 

boundaries. 

 

3.4.1 Chessboard Distance Transformation 

 

Chessboard distance transformation assumes an image as a chess board. It 

calculates the horizontal and vertical distances between a block center and a pixel 

location. Then, the maximum of these two values is assigned as the distance 

between them. It is calculated as follows [26]: 

 

𝑥 = �𝑥𝑝 − 𝑥𝑐� , 𝑦 = �𝑦𝑝 − 𝑦𝑐�                                         (3.53)  

 

𝑑 = max(𝑥, 𝑦) +∈                                                    (3.54)  

 

In this formulation, xp and yp denote the horizontal and vertical positions of the 

pixel; xc and yc denote the horizontal and vertical positions of the block centers; d 

is the chessboard distance between pixel and block center, and ∈ is a small 

constant to prevent division by zero at the block center. The distance calculation 
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for 5x5 image with the center located at location (3,3) is shown in Figure 3-14, 

and its two-dimensional representation is shown in Figure 3-15. 

  

 

 
Figure 3-14 Chessboard Distance Transformation Calculation for 5x5 Image 

 

 

 
Figure 3-15 2D Representation of Chessboard Distance Transformation 
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It is clear from Figure 3-15 that this transformation does not show the true 

distance at diagonal locations. Therefore, the final mapping has errors at these 

locations. These locations do not merge well with their surrounding pixels.  

 

3.4.2 City-Block Distance Transformation 

 

City-Block distance transformation is also known as Manhattan distance. It 

calculates the distance between two points by adding the absolute differences of 

their coordinates. It is calculated as follows [26]: 

 

𝑑 = �𝑥𝑝 − 𝑥𝑐� + �𝑦𝑝 − 𝑦𝑐�+∈                                           (3.55)  

 

In this formulation, xp and yp denote the horizontal and vertical positions of the 

pixel; xc and yc denote the horizontal and vertical positions of the block centers; d 

is the city-block distance between pixel and block center, and ∈ is a small 

constant to prevent division by zero at the block center. The distance calculation 

for 5x5 image with the center located at location (3,3) is shown in Figure 3-16, 

and its two-dimensional representation is shown in Figure 3-17.  

 

 

 
Figure 3-16 City-Block Distance Transformation Calculation for 5x5 Image 
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Figure 3-17 2D Representation of City-Block Distance Transformation 

 

 

It is clear from Figure 3-17 that the distance matrix saturates rapidly at the 

locations excluding the horizontal and vertical locations starting from the block 

center due to the sum of horizontal and vertical locations. This causes an error at 

the distance matrix.  

 

3.4.3 Euclidean Distance Transformation 

 

Euclidean distance transformation calculates the distance between two points by 

adding the squared differences of their coordinates [30]. It is calculated as 

follows: 

 

𝑑 = �𝑥𝑝 − 𝑥𝑐�
2

+ �𝑦𝑝 − 𝑦𝑐�
2

+∈                                         (3.56)  

 

In this formulation, xp and yp denote the horizontal and vertical positions of the 

pixel; xc and yc denote the horizontal and vertical positions of the block centers; d 
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is the euclidean distance between pixel and block center, and ∈ is a small constant 

to prevent division by zero at the block center. The distance calculation for 5x5 

image with the center located at location (3,3) is shown in Figure 3-18, and its 

two-dimensional representation is shown in Figure 3-19.  

 

 

 
Figure 3-18 Euclidean Distance Transformation Calculation for 5x5 Image 

 

 
Figure 3-19 2D Representation of Euclidean Distance Transformation 
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It is clear from Figure 3-19 that the distance matrix saturates more uniformly with 

a circular approach. This produces a more smooth estimation for the mapping of 

pixel values. In this thesis, Euclidean distance transform is used to merge 

nonoverlapping blocks of the local enhancement methods.  
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CHAPTER 4  
 
 
 

IMPROVEMENTS FOR CONTRAST ENHANCEMENT OPERATIONS 
 
 
 
 

4.1 Introduction 
 

There are two types of implementations for contrast enhancement operation. 

These are global and local implementations. The global implementation handles 

an input image as a whole while the local implementation divides the image to 

smaller sub regions. These regions generally have same dimensions. The local 

approach is more convenient to extract details in the smaller regions. However, it 

suffers from several aspects. Thus, some modifications are experimented to 

improve output image quality. 

 

4.2 Problems in Balanced Contrast Limited Adaptive Histogram 

Equalization (BCLAHE) Method 
 

Balanced CLAHE method is based on the histogram modification of an input 

image. The authors tried this algorithm with a block based approach to improve 

local image quality. It is very important to determine the appropriate number of 

blocks which the input image is divided, because some quality problems arise 

from the image under operation. The most important problem is the block size. 

The block size which is determined for one image may not be appropriate for one 

other. Thus, some regions contain only background information after the input 

image is divided into several sub regions. These regions do not have any 

information about the target such as edges or details. Histogram is modified using 

only the background information. Therefore, all gray level intervals are assigned 

to the background and natural texture of the image is damaged. Figure 4-2 (c) is 
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an example of the background region for the image in Figure 4-1 (c). Clearly, 

there is no target information in this region and noise information is amplified. 

 

Clearly, the background partition of the image at Figure 4-1 (c) is mapped to a 

more whitish gray level interval, and the transition between the two adjacent 

regions is not smooth. Intensity change between the two regions is obvious, and it 

spreads to a very large area. This leads to a clear separation between two 

backgrounds at the top right side. The natural look is damaged at this image. 

Several methods are proposed and experimented in the thesis to prevent this 

situation. 

 

 

 
Figure 4-1 Output Images and Histograms for Balanced CLAHE Method (a) Output Image with 4 Block, (b) 

Output Histogram with 4 Block 
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Figure 4-1 Output Images and Histograms for Balanced CLAHE Method (c) Output Image with 9 Block,  

(d) Output Histogram with 9 Block (continued)   

 

 

Figure 4-2 Block Representation of The Image in Figure 4-1 
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Proposed modifications are: 

 

• Modification 1: Changing the contrast enhancement method of 

background region 

• Modification 2: Changing the mapping function of background region 

 

4.2.1 Proposed Modification 1 
 

First modification proposed in this thesis is to change the contrast enhancement 

method of background region. A different mapping function is used to prevent 

over enhancement of this region. The standard CLAHE operation is suitable for 

this operation. Because, it distributes the clipped frequency values to all available 

output values in order to generate a uniform distribution. This prevents over 

enhancement of the background. The main problem is to determine which regions 

to apply this method. It is determined by the nonzero frequency counts of the 

region histograms before contrast enhancement operations. This value shows the 

spread of the pixel values and can be interpreted as contrast information of the 

region. The background has smaller contrast compared to the target region due to 

its uniform nature. This assumption leads to the conclusion that the blocks with 

fewer nonzero histogram bins are the background regions, and the others are the 

object regions. The background region is also assumed darker than the target 

region for infrared images because infrared radiation emitted from the background 

is smaller than the target region. 

 

First, nonzero histogram bins are calculated for each region and then a small 

percentage of the nonzero bins of original image is assigned as the image contrast 

threshold. Experiments show that 25% is a good assumption to detect background 

regions. After this, standard CLAHE or other contrast enhancement operations are 

applied to the regions, which have lower nonzero histogram bins than the 

specified threshold value. This operation improves the enhancement of 
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background with its approach. However, experiments show that its effect is 

limited. Some of the experimented images suffer from the same problem, but the 

contrast difference is smaller than the previous case. This operation improves the 

natural appearance of the output image. However, problem is unsolved for some 

images. 

 

An example of this operation is presented in Figure 4-3 for image in Figure 4-1. 

Balanced CLAHE operation is applied for 9 blocks with threshold value of 200, 

and outputs are presented. Top right part of the image is marked as the 

background region. Different methods are applied to this region to improve 

contrast. Best approach is the standard CLAHE operation in Figure 4-3 (d). 

 

 

 
Figure 4-3 Output Images for Balanced CLAHE Method (a) Fault Locations Enhanced with Histogram 

Equalization Method, (b) Fault Locations Enhanced with Plateau Histogram Equalization Method 
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Figure 4-3 Output Images for Balanced CLAHE Method (c) Fault Locations Enhanced with Tail-Less Plateau 

Histogram Equalization Method, (d) Fault Locations Enhanced with CLAHE Method (continued)   

 

 

4.2.2 Proposed Modification 2 

 

The other method to improve natural looking of the image is to change mapping 

function of the background region. Over enhancement problem can be solved by 

replacing the final mapping function of the background region with its neighbors. 

However, this neighbor should have more contrast. 

 

Firstly, the image is divided into the blocks with same dimensions, and these 

regions are classified according to their positions in the image. These are: 

 

• Corner regions (CR) are the four blocks on the image corners.  

• Border regions (BR) consist of all blocks on the image border, excluding 

the corner regions.  

• Inner regions (IR) consist of the remaining blocks. 

 

Its example is shown for 16 blocks in Figure 4-4.  
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Figure 4-4 Image Regions for 16 Blocks 

 

 

After this, the blocks with lower nonzero frequencies are marked as the 

background region. Background selection method is same with the previous 

method. Then, the mapping functions of these blocks are replaced with the 

neighbors with more contrast. In other words, mapping function of fault block is 

replaced with the region, which has higher nonzero frequencies. Algorithm 

searches at the three neighbors of the corner region, five neighbors of the border 

region or eight neighbors of the inner region depending on the situation. It is 

shown in Figure 4-5. The yellow regions show the example of search areas on the 

image for three classes, and BG denotes the background region. If some neighbors 

of the background region are also labeled as background, then the mapping 

functions of these blocks are replaced with the neighbor of them with more 

contrast. An example of this situation is shown at Figure 4-6. 
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Figure 4-5 Search Areas for Single Background 

 

 

 
Figure 4-6 Search Areas for Two Backgrounds 

 

 

Second, all image blocks are merged with the distance calculation methods in 

order to prevent blocking effect at the final image. An example of this operation is 

presented in Figure 4-7 for the image in Figure 4-1. Same parameters are used 

with method 1 to obtain this result. 

 

Experiments showed that this method has more promising results compared to the 

previous one. Its outputs have natural look, and no blocking artifacts are 

presented. Clearly, output in Figure 4-7 also has more local contrast than the four-

block approach. 
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Figure 4-7 Output Image and Histogram for Modified Balanced CLAHE Method (a) Output Image with 9 

Block, (b) Output Histogram with 9 Block 

 

 

4.3 Problems in Detail Enhancement with Local Frequency Cues 

 

Some modifications are necessary for the enhancement with local frequency cues 

method to decrease the computational load of operations. The main focus is to 

change the calculation of complex parts and make improvements to the algorithm. 

Modifications are proposed for the parts of the algorithm listed below. These are: 

 

• Fourier Transform of each block,  

• Cluster tree operations and distance transformation 

 

The Fourier transform can be implemented with Field-Programmable Gate Array 

(FPGA) and has a fast implementation. However, clustering operation performed 

with Fourier coefficients has limited performance according to the experimental 
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results. In addition to this, cluster center and block weight calculations depends on 

the length of Fourier coefficients.  

 

Cluster tree operations are complex due to the number of blocks, which image is 

separated. A distance matrix is constructed with the distances from one block to 

another. Thus, the size of the distance matrix is determined by the total number of 

blocks. For example, the size of the distance matrix is 20x20 for 20 blocks. 

Hence, the complexity of cluster tree operations is directly proportional to the 

block size. On the other hand, if the number of blocks is decreased, then the 

resulting clustering will have a poor performance. Because the small details blend 

to large blocks, they can be assigned to a cluster which it does not belong 

originally.  

 

Distance values are calculated from one pixel to all cluster centers for gain matrix. 

This calculation is repeated for each pixel, and this brings excessive 

multiplications, square root, division and summation operations as described in 

the equation (3.52). The number of blocks must be reduced to decrease this 

excessive load. Thus, a better distance calculation performance is achieved by 

forsaking the clustering performance. The optimum number of blocks for image 

can be decided according to the experimental result. However, this is a very time-

consuming process. Clearly, it is also very hard to implement the number of 

blocks determined for one image to other and achieve same performance. 

 

In this thesis, two types of modifications are proposed. The first modification is 

performed for the cluster tree operations. Fourier coefficients are replaced with 

mean-standard deviation values and wavelet coefficients. Mean and standard 

deviation values are used to improve clustering performance of the algorithm. On 

the other hand, wavelet coefficients are used to experiment clustering operation 

based on edge similarity. The second modification is performed by adding K-

Means clustering method to the algorithm. 
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4.3.1  Modifications for Cluster Tree Operations 

 

The Fourier Transform is replaced with other processes to improve clustering 

performance. These are: 

 

• Mean-Standard Deviation calculations 

• Wavelet calculations  

 

These calculations are repeated for each block, and then their outputs are used to 

set up a cluster tree. This thesis mainly focused on the clustering of image 

according to the target and texture. Hence, two clusters are sufficient for expected 

results. 

 

4.3.1.1 Proposed Modification Based on Mean and Standard Deviation 

Calculations 

 

The clustering tree approach of the original algorithm uses Fourier coefficients to 

perform clustering operation. The blocks at the same cluster have closer Fourier 

coefficients, and the distance between them will be smaller. However, the 

difference will increase for the blocks at different clusters. This concept can be 

implemented with the mean and standard deviation information of the blocks. The 

clustering is performed with these values instead of Fourier coefficients. 

Therefore, the mean and standard deviation of each block are calculated. These 

calculations have small computational loads. 

 

The distance between the mean and standard deviation of each block is used for 

the distance matrix calculations. The resulted clustering has satisfying outputs. 

Besides of simplifying the distance matrix, this change also affects the gain matrix 

calculation. The new equations are:   
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𝑇𝐸𝑗 = �[𝐶𝐶𝑗(𝑛)]2
2

𝑛=1

                                                    (4.1) 

 

𝐶𝐶𝚥����(𝑛) =
[𝐶𝐶𝑗(𝑛)]2

𝑇𝐸𝑗
                                                    (4.2) 

 

𝑤𝑗 = �𝐶𝐶𝚥����(𝑛) × 𝑛
2

𝑛=1

                                                  (4.3) 

 

There are only two parameters and the repetition is decreased from half block 

dimension ((B1×B2))⁄2 to two. It is also clear that the median filtering is not 

necessary. Output of this method for the images in Figure 3-1 and Figure 3-12 can 

be seen in Figure 4-8 and Figure 4-9. Parameters are selected same with Figure 3-

11. 

 

 

 
Figure 4-8 Output of Modification Based on Mean-Standard Deviation Calculations (a) Output Image, (b) 

Output Histogram 
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Figure 4-9 Output of Modification Based on Mean-Standard Deviation Calculations (a) Output Image,  

(b) Output Histogram 

 

 

4.3.1.2 Proposed Modification Based on Wavelet Calculations 

 

Wavelet transform was developed at 1980s, and 1990s as an alternative to the 

Fourier transform. In the aspect of the image processing, two-dimensional wavelet 

transform is used to decompose images to approximation and detail coefficients 

[6]. It constructs an image pyramid with continuously decreasing size of two from 

both dimensions. The bottom level consists of the original image while the top 

level is the final image of wavelet transform at level j. It is realized for an image 

as follows: 

 

• ℎ𝜑 is a half-band low pass filter ,and ℎ𝜓 is a half-band high pass filter.  
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• Columns of the image at level j+1 are filtered with digital filters ℎ𝜑(−𝑛) 

and ℎ𝜓(−𝑛). Horizontal resolution of the image is reduced by factor 2 

after this operation. 

•  Rows of resulted image at step 1 are filtered with digital filters ℎ𝜑(−𝑛) 

and ℎ𝜓(−𝑛). Vertical resolution of the image is reduced by factor 2 after 

this operation. 

 

The block diagram of the wavelet transform can be observed at Figure 4-10. 

𝑊𝜑(𝑗 + 1,𝑚, 𝑛) and 𝑊𝜑(𝑗,𝑚, 𝑛) are the images at the level j+1 and j respectively. 

𝑊𝜑(𝑗,𝑚,𝑛) is the approximation image obtained by filtering an image at the level 

j+1 with both horizontal and vertical low pass filters. 𝑊𝜓
𝐷(𝑗,𝑚,𝑛), 𝑊𝜓

𝐻(𝑗,𝑚,𝑛) 

and 𝑊𝜓
𝑉(𝑗,𝑚,𝑛) are diagonal, horizontal and vertical coefficients respectively. 

They correspond to the high-frequency details or variations alongside diagonals, 

columns and rows of image [6]. The depth of the image pyramid depends on the 

type of application. In our case, 1 or 2 depth is enough due to the real time 

computation and storage conditions.  

 

 
Figure 4-10 - 2D Wavelet Transform 

 

 

The one-level wavelet transform is used instead of the Fourier transform as 

modification. If one of the three coefficients is used, then clustering performance 
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will be based on the selected coefficients. For example, if horizontal detail 

coefficients which contain the edge and corner details alongside the columns are 

selected, then clustering is affected by these edges. If all detail coefficients are 

used, then clustering performance will increase. The filter coefficients used for 

this application are based on the Haar and Symlet coefficients. Output of this 

method for the images in Figure 3-1 and Figure 3-12 (a) can be seen in Figure 4-

11 and Figure 4-12 with same parameters. 

 

This operation does not reduce the computation time and complexity. Therefore, 

high image pyramid depth causes problems for real time processes such as extra 

computational load and storage. It is also clear from the figures that this operation 

does not improve detail visibility for the images used in this thesis.  

 
Figure 4-11 Output of Modification Based on Wavelet Calculations (a) Output Image, (b) Output 

Histogram 
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Figure 4-12 Output of Modification Based on Wavelet Calculations (a) Output Image, (b) Output 

Histogram 

 

 

4.3.2 Proposed Modification for Clustering Based on the K-Means 

Algorithm 

 

K-Means clustering is very popular for image and video-based applications due to 

its simplicity. The algorithm puts the input data points into classes according to 

their distance to the class centers [32]. The minimization of this distance is done 

as follows: 

𝐷 = � � (𝐼(𝑖, 𝑗) − 𝜇𝑙)2
𝐼(𝑖,𝑗)𝜖𝑆𝑙

𝑘

𝑙=1

                                               (4.4) 

 

In this equation, I(k,l) denotes the pixel value at cluster Sl; the constant k denotes 

the number of clusters, and µl denotes the center value at cluster l. This 

minimization is done using pixel intensity values at traditional K-Means 
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clustering algorithm. The algorithm stops when there is no change in the 

minimization function. 

 

In this thesis, K-Means method is used to separate image into two clusters. There 

are two variations in the algorithm based on the K-Means clustering operations.  

 

Firstly, Fourier transform is calculated for k blocks and the image is clustered 

using K-Means method instead of the cluster tree operation. K-Means algorithm is 

applied at the pixel level using intensity values, and so the upper limit of the block 

number can be increased. Each block is assigned to either target or background 

clusters depending on the dominant cluster. If most of the pixels in the block 

belong to background, then block is labeled as the background cluster. Otherwise, 

block is labeled as the target region. Random selection is performed for the equal 

distribution of clusters on the block members. Then, the gain matrix calculation is 

performed with Fourier coefficients and clustering data provided by K-Means 

method. In other words, the coefficients calculated by Fourier transform are used 

with the clustering results of K-Means algorithm. This method eliminates the 

cluster tree operation based on Fourier coefficients. Output of this method for the 

images in Figure 3-1 and Figure 3-12 (a) can be seen in Figure 4-13 and Figure 4-

14. 

 

The second case uses the mean and standard deviation information instead of 

Fourier transform. The K-Means clustering is also performed by using them. It 

has satisfying outputs. However, K-Means algorithm has high iteration levels to 

complete its clustering. Because of this, it can be performed at the block level. 

The block level application reduces the computational load of the algorithm. 

Output of this method for the images in Figure 3-1 and Figure 3-12 (a) can be 

seen in Figure 4-15 and Figure 4-16. Parameters are selected same with Figure 3-

11.  
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Figure 4-13 Output of the First Case (a) Output Image, (b) Output Histogram 

 

 

 
Figure 4-14 Output of the First Case (a) Output Image, (b) Output Histogram 
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Figure 4-15 Output of the Second Case (a) Output Image, (b) Output Histogram 

 

 

Figure 4-16 Output of the Second Case (a) Output Image, (b) Output Histogram 
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CHAPTER 5  
 
 
 

RESULTS AND COMPARISONS 
 
 
 
 

5.1  Introduction 

 

Image quality measurement is a very important and challenging operation. It is 

used to determine usability of the images after they have undergone any kind of 

operation. The end users of these applications are human observers. Therefore, 

people are used to evaluate the performance of image or video processing 

operations. These performance evolution operations are called as subjective tests. 

They provide very accurate assessment of image quality. However, they are very 

time and resource consuming operations. Thus, test methods which evaluate the 

performance of any operation with automated operations are developed. They are 

named as objective tests. Most of these methods base on the human visual system 

(HVS), and they can consist of complex algorithms. 

 

In this thesis, objective methods are used to evaluate the performance of contrast 

enhancement operations.  

 

5.2 Objective Image Quality Metrics 

 

The success rates of the quality measurement methods are limited to the specific 

types of operations. For example, the peak signal-to-noise ratio (PSNR) and mean 

square errors (MSE) methods are very good references for the applications which 

purpose the preservation of the original image. They are very popular for their low 

complexity. Mean square error measures the similarity between input and output 

images. This value shows how much output image deviates from the original one. 
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PSNR is the ratio between the power of signal and corrupting noise introduced by 

the applied method. Their structure makes them very suitable for applications 

such as video compression. Therefore, these two methods are unsuitable image 

quality metrics for contrast enhancement operation. 

 

The main purpose of the contrast enhancement operations is to change the 

intensity distribution of an input image. The quality metrics used in literature for 

image quality are explained below. Some of these techniques are used in this 

thesis to measure quality of the contrast enhancement operations. The other 

metrics are not used, because they measure the similarity between input and 

output images. They are: 

 

• Discrete Entropy 

• Quality Metrics Used by Chen 

• Universal Image Quality Index 

• Absolute Mean Brightness Error 

• Image Contrast 

 

5.2.1 Discrete Entropy Function 

 

Discrete entropy is the sum of the multiplication of probability distribution 

function (pdf) value and log of the inverse of pdf value [45, 46]. It is formulated 

as follows: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = �𝑃𝐷𝐹(𝑖)𝑙𝑜𝑔2 �
1

𝑃𝐷𝐹(𝑖)
�

𝑘

𝑖=0

,        𝑘:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒              (5.1) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −�𝑃𝐷𝐹(𝑖)𝑙𝑜𝑔2�𝑃𝐷𝐹(𝑖)�,
𝑘

𝑖=0

   𝑘:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒              (5.2) 
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It is clear from the equation (5.2) that discrete entropy value is always 

nonnegative. It does not give any information about the enhancement procedure. 

It rather shows the richness of the output image. This is accomplished by showing 

the number of bits which an image can be expressed. The minimum entropy value 

is zero. The maximum entropy value is obtained with an image with uniform 

histogram distribution. For example, if the output dynamic range is 8-bits, then 

the maximum discrete entropy value can be 8 as follows: 

 

𝑃𝐷𝐹(𝑖) =
1

256
, 0 ≤ 𝑖 ≤ 255                                           (5.3) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −�𝑃𝐷𝐹(𝑖)𝑙𝑜𝑔2�𝑃𝐷𝐹(𝑖)� = 8
255

𝑖=0

                               (5.4) 

 

The discrete entropy produces values from 0 to log2(k+1), and k denotes the 

maximum intensity value at the output image. 

 

5.2.2  Relative Entropy Function 

 

Relative entropy function is also known as the Kullback-Leibler distance. It shows 

the relative distance of one image from the other one [45, 46]. If two discrete 

probability distribution functions of the input and output images are expressed 

with PDFI and PDFO, then the relative entropy is formulated as follows: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = �𝑃𝐷𝐹𝐼(𝑖)𝑙𝑜𝑔2 �
𝑃𝐷𝐹𝐼(𝑖)
𝑃𝐷𝐹𝑂(𝑖)

�
𝑘

𝑖=0

,        𝑘:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒              (5.5) 

 

The equation (5.5) shows the distribution of the output image with respect to the 

input image. It is equal to zero for the same probability distribution functions. Its 

value will be closer to zero for the images with similar distribution, and it will 

increase for the distinct images. Therefore, it gives information about the 
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similarity between input and output images after contrast enhancement operation. 

There is also a limitation associated with this function. The relative entropy is not 

a symmetric function. If the values of PDFO and PDFI are replaced, then its value 

will be different. 

 

5.2.3  Mutual Information Function 

 

The mutual information between two variables is described as the reduction of 

uncertainty in one variable due to the other one [45, 46]. This same concept can 

be used in image quality measurement. It shows the connection and similarity 

between input and output images after image or video processing operations. It is 

formulated as follows: 

 

𝐼(𝑋;𝑌) = �𝑃𝐷𝐹𝑋(𝑋)𝑙𝑜𝑔2�
𝑃𝐷𝐹𝑋𝑌(𝑋,𝑌)

𝑃𝐷𝐹𝑋(𝑋)𝑃𝐷𝐹𝑌(𝑌)�
𝑋,𝑌

                        (5.6) 

 

𝐼(𝑋;𝑌) = −∑ 𝑃𝐷𝐹𝑋(𝑋)𝑙𝑜𝑔2(𝑃𝐷𝐹𝑋(𝑋)) +𝑋,𝑌   ∑ 𝑃𝐷𝐹𝑋(𝑋)𝑙𝑜𝑔2�𝑃𝐷𝐹𝑋𝑌(𝑋,𝑌)
𝑃𝐷𝐹𝑋(𝑋)

�𝑋,𝑌       (5.7) 

 

𝐼(𝑋;𝑌) = 𝐻(𝑋) −𝐻(𝑋|𝑌)                                               (5.8) 

 

In this formulation, I(X;Y) denotes the mutual information; H(X) and H(X|Y) 

denote entropy and conditional entropy values, and PDFXY denotes joint 

probability distribution. This function shows the similarity between the 

distribution functions. Therefore, the higher mutual information values indicate 

that the edge and structural information are preserved at the output images. 

 

5.2.4 Quality Metrics Used by Chen 

 

Qiang Chen proposed two methods to measure image quality [47]. The first 

method is named as intensity contrast. It is applied to both original and final 

image after image processing operations. The main purpose of this method is to 
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measure a local contrast difference for input and output images. This value shows 

the contrast improvement after image enhancement operation. The intensity 

contrast method calculates the gray level co-occurrence matrix. This matrix uses a 

pixel and its right-side neighbor with specified offset in a given image. In other 

words, it shows the local contrast change. It contains the frequency counts of the 

pixel differences, and it is calculated as follows. 

 

𝑝̂(𝑖, 𝑗) = � ��1,  𝐼𝑚𝑔(𝑥,𝑦) = 𝑖 𝑎𝑛𝑑 𝐼𝑚𝑔(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁−1

𝑦=0

𝑀−1

𝑥=0

      (5.9) 

 

In this formulation, Img denotes the given image. The gray level co-occurrence 

matrix 𝑝�(𝑖, 𝑗) is used to calculate the intensity contrast as follows: 

 

𝐶𝑜𝑛 = �|𝑖 − 𝑗|2𝑝̂(𝑖, 𝑗),
𝑖,𝑗

  0 ≤ 𝑖, 𝑗 ≤ 𝑘  𝑎𝑛𝑑 𝑘:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒    (5.10) 

 

The second method is the discrete entropy calculated with the gray level co-

occurrence matrix. This method only replaces the probability distribution function 

with co-occurrence matrix. It shows the amount of information which the local 

contrast of the image holds. It is formulated as follows: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −�𝑝̂(𝑖, 𝑗)𝑙𝑜𝑔2�𝑝̂(𝑖, 𝑗)�
𝑖,𝑗

,       0 ≤ 𝑖, 𝑗 ≤ 𝑘                  (5.11) 

 

Intensity contrast and discrete entropy values reflect the image enhancement 

quality. Therefore, the higher values represent better enhancement results. 

 

5.2.5 Structural Similarity and Universal Image Quality Index 

 

Structural similarity (SSIM) is another method for image quality assessment. It 

uses the assumption that human visual system is most sensitive to the structural 
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information in a given image [48, 49]. Therefore, the structure information is used 

as the quality metric to measure similarity between input and output images. This 

parameter is divided into three categories. These are the luminance, contrast and 

structure. They are formulated as follows: 

 

𝑙(𝑥,𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥2 + 𝜇𝑦2 + 𝐶1
                                                  (5.12) 

 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥2 + 𝜎𝑦2 + 𝐶2
                                                  (5.13) 

 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3
𝜎𝑥𝜎𝑦 + 𝐶3

 ,                                                          (5.14) 

 

where µx and µy denote the mean values of the discrete nonnegative input and 

output images. 𝜎𝑥2 is the variance of the input image; 𝜎𝑦2 is the variance of the 

output image, and 𝜎𝑥𝑦 is the covariance of the input and output images. They are 

calculated as: 

 

𝜇 =  
1
𝑛
��𝐼(𝑖, 𝑗)

𝑗𝑖

                                                  (5.15) 

 

𝜎2 =  
1

𝑛 − 1
��(𝐼(𝑖, 𝑗)− 𝜇)2

𝑗𝑖

                                      (5.16) 

 

𝜎𝑥𝑦 =  
1

𝑛 − 1
��(𝐼𝑥(𝑖, 𝑗) − 𝜇𝑥)(𝐼𝑦(𝑖, 𝑗)− 𝜇𝑦)

𝑗𝑖

                      (5.17) 

 

C1, C2 and C3 are small constants, and they are calculated as follows: 

 

𝐶1 = (𝐾1𝐿)2,  𝐾1 ≪ 1, 𝐿:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒                 (5.18) 

 

𝐶2 = (𝐾2𝐿)2,  𝐾2 ≪ 1, 𝐿:𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒                 (5.19) 
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𝐶3 =
𝐶2
2

                                                              (5.20) 

 

The First component in equation (5.12) is the luminance information between the 

two images. It measures the similarity between two images with their mean 

intensity values. The second component in equation (5.13) is the contrast. This 

part of the formula uses the standard deviation to compare contrast information of 

two images. The third component in equation (5.14) is the structure information. 

The covariance of the image is divided by the standard deviations of the input and 

output images. This produces a normalized output value. This value measures the 

degree of linear correlation between input and output image. It is named as 

structure information between two images. The structural similarity (SSIM) is set 

up with multiplication of these three components. The most important point is the 

independence of them. The structural similarity formula is set up as follows: 

 

𝑆𝑆𝐼𝑀(𝑥,𝑦) = 𝐼(𝑥,𝑦)𝑐(𝑥,𝑦)𝑠(𝑥,𝑦)                                     (5.21) 

 

The structural similarity is calculated with a sliding window. The window with a 

predefined size is passed on the both images at the same time and then a structure 

similarity value is calculated for each location. The mean of these values is 

assigned as a final structural similarity value. The value of the three components 

of structural similarity is in the range of [0, 1]. Hence, the final value of the SSIM 

is also in the range of [0, 1]. It is calculated for the image with horizontal and 

vertical dimension M and N as follows: 

 

𝑆𝑆𝐼𝑀 =
1
𝑀𝑁

��𝑆𝑆𝐼𝑀(𝑥,𝑦)
𝑁

𝑦=0

𝑀

𝑥=0

                                      (5.22) 

 

The universal image quality index (UIQI) is proposed by the same authors, and it 

is a special case of structural similarity. The UIQI assumes C1, C2 and C3 

constants as zero. The main concept is same with the SSIM. These three 
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coefficients work as limiting factors in the SSIM. Therefore, the SSIM is an 

improved version of the UIQI. It is given by: 

 

𝑈𝐼𝑄𝐼 =
𝜎𝑥𝑦
𝜎𝑥𝜎𝑦

2𝜇𝑥𝜇𝑦
𝜇𝑥2 + 𝜇𝑦2

2𝜎𝑥𝜎𝑦
𝜎𝑥2 + 𝜎𝑦2

                                      (5.23) 

 

5.2.6 Absolute Mean Brightness Error 

 

Absolute Mean Brightness Error (AMBE) examines the loyalty of the output 

image to the input image in point of contrast enhancement. This method uses the 

difference between mean intensity values of the input and output images [51]. The 

difference is the absolute value, and it is always positive. The smaller difference 

means that the output image contains similar brightness information with the input 

image. The higher values indicate the distinction between input and output 

images. IR images have low contrast, and mean intensity value is generally shifted 

after contrast enhancement operation. However, higher value does not always 

improve the contrast. The natural appearance can be distorted by the output 

operation. This is the main drawback of this quality assessment method. The 

AMBE is formulated as follows: 

 

𝐴𝑀𝐵𝐸 = |𝐸(𝑋) − 𝐸(𝑌)|                                                (5.24) 

 

In this formulation, E is the expected value, and it is calculated as follows: 

 

𝐸 = �𝑖 × 𝑃𝐷𝐹(𝑖)
𝑘

𝑖=0

, 0 ≤ 𝑃𝐷𝐹(𝑖) ≤ 1 ,                               (5.25) 

 

where k is the maximum output value.  
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5.2.7 Image Contrast 

 

Contrast of the image is simply its standard deviation [24]. It is calculated as 

follows: 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = �
1
𝑀𝑁

��(𝐼(𝑖, 𝑗) − 𝜇)2
𝑁

𝑗=1

𝑀

𝑖=1

 ,                               (5.26) 

 

where M and N are the image dimensions; µ is the mean of image. Higher value 

indicates better enhancement results. 

 

5.3 Outputs of Contrast Enhancement Algorithms 

 

Outputs of five image sets are presented in Figure 5-1 through Figure 5-5. Figures 

contain original images and outputs of the 9 contrast enhancement algorithms. 

Outputs of the improved methods, which contain proposed modifications for 

Balanced CLAHE and Enhancement with Local Frequency Cues methods, are 

also presented. First image set in Figure 5-1 contains an input image with 8-bit 

dynamic range. Second and third images in Figure 5-2 and Figure 5-3 contain 

input images with 14-bit dynamic range. These images are not visible due to very 

high dynamic range, and so they are converted to 8-bit with Linear Scaling 

operation. Image sets in Figure 5-4 and Figure 5-5 also contain 8-bit input images. 

 

Experimented methods contain both global and local enhancement methods. 

Especially, CLAHE and Balanced CLAHE methods are implemented by using the 

local approach and appropriate threshold values. These threshold values are 

selected between 20% and 53.5% of the total pixels. In other words, CLAHE and 

Balanced CLAHE methods clip between 47.5% and 80% of the total pixels, and 

clipped values are treated as excess pixels. Same values are used for CLAHE and 

Balanced CLAHE operations to examine results under similar conditions. Other 
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parameters are selected according to the experiment results and preserved for all 

image sets. They are presented in Table 5-1. These values are selected according 

to the experiment results. 

 
Table 5-1 Parameter Values Used in Experiments 

Enhancement Method Parameter Value 

HM 
Lower Limit 30 
Upper Limit 220 

TPHE Clipping Percentage 5% 

DPS 
α 3 
β 3 

BCLAHE α 2 

EWLFC 

αmid 0.5 
αhigh 3 
βmid 0.5 
βhigh 0.5 

 

 

Abbreviations of the contrast enhancement algorithms are listed in Table 5-2. 

Enhancement operations performed with local frequency clues, and its variations 

proposed in this thesis are also presented in this table. These methods are used 

only to improve target detail information, but there is no drastic change in the 

overall image contrast. 
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Table 5-2 Abbreviations of the Enhancement Algorithms 

Abbreviation Full Name 
HE Histogram Equalization 
HM Histogram Matching 
PHE Plateau Histogram Equalization 

TPHE Tail-Less Plateau Histogram Equalization 
DPS Detail Preserving Stretching 

AHME Adaptively Modified Histogram Equalization 
CLAHE Contrast Limited Adaptive Histogram Equalization 

BCLAHE Balanced Contrast Limited Adaptive Histogram Equalization 
EWLFC Enhancement with Local Frequency Cues 

EWLFC-M-SD 
Frequency information is replaced with Mean and Standard Deviation 
in EWLFC 

EWLFC-KM 
Distance matrix calculation is replaced with K-Means operation in 
EWLFC 

EWLFC-WTC 
Frequency information is replaced with Wavelet Transform 
Coefficient in EWLFC 

EWLFC-KMMSD 
Enhancement with Mean and Standard Deviation by using K-Means 
operation 

 

 

 

 
Figure 5-1 Outputs of Contrast Enhancement Algorithms on Image Set 1 (a) Original Image, (b) Histogram 

Equalization Output 
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Figure 5-1 Outputs of Contrast Enhancement Algorithms on Image Set 1 (c)  Histogram Matching Output, 

(d) Plateau Histogram Equalization Output, (e) Tail-Less Plateau Histogram Equalization Output, (f) Detail-
Preserving Stretching Output, (g) AHME Output, (h) CLAHE Output with 4 blocks (continued) 
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Figure 5-1 Outputs of Contrast Enhancement Algorithms on Image Set 1 (i) CLAHE Output with 9 blocks,  

(j) Balanced CLAHE Output with 4 blocks, (k) Balanced CLAHE Output with 9 blocks, (l) Balanced CLAHE 

Output with PM1, (m) Balanced CLAHE Output with PM2, (n) EWLFC Output (continued) 
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Figure 5-1 Outputs of Contrast Enhancement Algorithms on Image Set 1 (o) EWLFC-M-SD Output,  

(p) EWLFC-KM Output, (r) EWLFC-WTC Output, (s) EWLFC-KMMSD Output (continued) 

 

 

 
Figure 5-2 Outputs of Contrast Enhancement Algorithms on Image Set 2 (a) Original Image, (b) Histogram 

Equalization Output 
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Figure 5-2 Outputs of Contrast Enhancement Algorithms on Image Set 2 (c) Histogram Matching Output, 

(d) Plateau Histogram Equalization Output, (e) Tail-Less Plateau Histogram Equalization Output, (f) Detail-
Preserving Stretching Output (continued) 
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Figure 5-2 Outputs of Contrast Enhancement Algorithms on Image Set 2 (g) AHME Output, (h) CLAHE 

Output with 4 blocks, (i) CLAHE Output with 9 blocks, (j) Balanced CLAHE Output with 4 blocks (continued) 
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Figure 5-2 Outputs of Contrast Enhancement Algorithms on Image Set 2 (k) Balanced CLAHE Output with 9 

blocks, (l) Balanced CLAHE Output with PM1, (m) Balanced CLAHE Output with PM2, (n) EWLFC Output 

(continued) 
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Figure 5-2 Outputs of Contrast Enhancement Algorithms on Image Set 2 (o) EWLFC-M-SD Output,  

(p) EWLFC-KM Output, (r) EWLFC-WTC Output, (s) EWLFC-KMMSD Output (continued) 
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Figure 5-3 Outputs of Contrast Enhancement Algorithms on Image Set 3 (a) Original Image, (b) Histogram 

Equalization Output, (c)  Histogram Matching Output, (d) Plateau Histogram Equalization Output 
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Figure 5-3 Outputs of Contrast Enhancement Algorithms on Image Set 3 (e) Tail-Less Plateau Histogram 

Equalization Output, (f) Detail-Preserving Stretching Output, (g) AHME Output, (h) CLAHE Output with 4 

blocks (continued) 
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Figure 5-3 Outputs of Contrast Enhancement Algorithms on Image Set 3 (i) CLAHE Output with 9 blocks,  

(j) Balanced CLAHE Output with 4 blocks, (k) Balanced CLAHE Output with 9 blocks, (l) Balanced CLAHE 

Output with PM1 (continued) 
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Figure 5-3 Outputs of Contrast Enhancement Algorithms on Image Set 3 (m) Balanced CLAHE Output with 

PM2, (n) EWLFC Output, (o) EWLFC-M-SD Output, (p) EWLFC-KM Output (continued) 
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Figure 5-3 Outputs of Contrast Enhancement Algorithms on Image Set 3 (r) EWLFC-WTC Output,  

(s) EWLFC-KMMSD Output (continued) 

 

 

 

 
Figure 5-4 Outputs of Contrast Enhancement Algorithms on Image Set 4 (a) Original Image, (b) Histogram 

Equalization Output, (c)  Histogram Matching Output, (d) Plateau Histogram Equalization Output 
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Figure 5-4 Outputs of Contrast Enhancement Algorithms on Image Set 4 (e) Tail-Less Plateau Histogram 

Equalization Output, (f) Detail-Preserving Stretching Output, (g) AHME Output, (h) CLAHE Output with 4 

blocks, (i) CLAHE Output with 9 blocks, (j) Balanced CLAHE Output with 4 blocks (continued) 

 



101 
 
 

 

 
 

 
Figure 5-4 Outputs of Contrast Enhancement Algorithms on Image Set 4 (k) Balanced CLAHE Output with 9 

blocks, (l) Balanced CLAHE Output with PM1, (m) Balanced CLAHE Output with PM2,  (n) EWLFC Output, 

(o) EWLFC-M-SD Output, (p) EWLFC-KM Output (continued) 
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Figure 5-4 Outputs of Contrast Enhancement Algorithms on Image Set 4 (r) EWLFC-WTC Output,  

(s) EWLFC-KMMSD Output (continued) 

 

 

 

 
Figure 5-5 Outputs of Contrast Enhancement Algorithms on Image Set 5 (a) Original Image, (b) Histogram 

Equalization Output, (c)  Histogram Matching Output, (d) Plateau Histogram Equalization Output 
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Figure 5-5 Outputs of Contrast Enhancement Algorithms on Image Set 5 (e) Tail-Less Plateau Histogram 

Equalization Output, (f) Detail-Preserve Stretching Output, (g) AHME Output, (h) CLAHE Output with 4 

blocks, (i) CLAHE Output with 9 blocks, (j) Balanced CLAHE Output with 4 blocks (continued) 
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Figure 5-5 Outputs of Contrast Enhancement Algorithms on Image Set 5 (k) Balanced CLAHE Output with 9 

blocks, (l) Balanced CLAHE Output PM1, (m) Balanced CLAHE Output PM2,  (n) EWLFC Output, (o) EWLFC-

M-SD Output, (p) EWLFC-KM Output (continued) 
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Figure 5-5 Outputs of Contrast Enhancement Algorithms on Image Set 5 (r) EWLFC-WTC Output,  

(s) EWLFC-KMMSD Output (continued) 

 

 

5.4 Results of The Objective Quality Metrics 

 

Objective test results are obtained in order to evaluate performances of contrast 

enhancement methods. Gray scale images and their enhanced versions are used as 

test images. There are about 12 image sets used throughout this thesis. However, 

only the results of five image sets are given for visual comparison due to space 

drawback. Some quality metrics are also calculated for the original test images in 

order to compare them with the results of enhanced images.  

 

All objective quality metrics used to evaluate performances of the contrast 

enhancement operations produce higher values for better enhancement results. 

Two image sets contain 14-bit images, and DRC methods are applied them to 

obtain 8-bit images. These low dynamic range images are used for contrast 

enhancement operations. Thus, contrast of the original image is measured with 

these 8-bit images to compare performance of the enhancement method with its 

true input.  
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Abbreviations of the objective quality metric methods are listed in Table 5-3. 

Table 5-2 and Table 5-3 are used in order to explain enhancement and quality 

metric names used in this thesis. 

 

 

Table 5-3 Abbreviations of the Objective Quality Metrics 

Abbreviation Full Name 
DE Discrete Entropy 
RE Relative Entropy 
MI Mutual Information 

ICUBC Intensity Contrast Used by Chen 
EUBC Entropy Used by Chen 
SSIM Structural Similarity 
UIQI Universal Image Quality Index 

AMBE Absolute Mean Brightness Error 
 

 

The first quality results are obtained from the images in Figure 5-1. Image (a) is 

the original image with 8-bit dynamic range. It was taken by a midwave detector 

with 3-5 µm spectral band. It has very low contrast and target information is not 

visible. Images in (b) through (s) are the enhanced versions obtained with 

different methods. Objective quality values of the image set in Figure 5-1 are 

presented in Table 5-4. This table gives the performance values according to 

different enhancement methods. For each quality metric column, the best and 

worst three methods are marked with yellow and red colors respectively. 

 

The second and third quality results are obtained from the images in Figure 5-2 

and Figure 5-3. The original images have 14-bit dynamic range. These images 

were also taken by a midwave detector with 3-5 µm spectral band in laboratory 

environment. The target information is not visible due to the very high dynamic 

range of the infrared system. Enhancement algorithms suppress this high dynamic 

range to the standard display level. Objective quality values of the original and 

enhanced images are presented in Table 5-5 and Table 5-6 respectively. 
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The fourth and fifth quality results are obtained from the images in Figure 5-4 and 

Figure 5-5. Original images have 8-bit dynamic range and washout appearance. 

They were taken by a midwave detector with 3-5 µm spectral band in a real-world 

environment. Image quality values of the original and enhanced images are 

presented in Table 5-7 and Table 5-8 respectively. 

 

Results of quality metrics are also drawn in Figure 5-6 through Figure 5-11. In 

these plots, each line represents the objective quality results of an enhancement 

method according to different image sets.  

 

 
Table 5-4 Outputs of the Quality Metrics for Images in Figure 5-1 

Method Name DE ICUBC EUBC UIQI AMBE Contrast 
Org Img 3,9334 0,7653 4,4784 - - 6,5137 
HE 3,8951 50,7169 4,4255 0,0779 124,1224 74,4275 
HM 3,8824 27,9148 4,4090 0,0755 119,1857 55,4072 
PHE 3,9179 17,8980 4,4583 0,0821 101,4893 50,8972 
TPHE 3,7908 24,7642 4,2954 0,0735 100,6672 53,8464 
DPS 6,2614 187,4994 9,1585 0,0476 92,4963 33,9203 
AHME 3,9308 10,1850 4,4754 0,2856 39,2263 30,3764 
CLAHE (4 block) 4,4893 0,8787 5,1008 0,8565 5,3074 8,1828 
CLAHE (9 block) 6,2957 4,1582 7,0762 0,2085 31,6932 22,0832 
BCLAHE (4 block) 7,3925 25,2238 9,4916 0,1131 78,5053 49,0748 
BCLAHE (9 block) 7,5439 19,5264 10,5106 0,0283 102,1772 49,1636 
BCLAHE (PM1) 5,6249 3,4614 7,2929 0,2299 17,4154 14,5342 
BCLAHE (PM2) 7,0175 4,5444 8,8865 0,1322 46,1288 39,7839 
EWLFC 3,8968 1,5433 4,4260 0,8436 0,0067 6,3142 
EWLFC-M-SD 3,8968 1,7448 4,4293 0,8456 0,0066 6,3686 
EWLFC-KM 3,9712 2,8358 5,0846 0,7701 0,0003 6,6611 
EWLFC-WTC 3,8968 0,8354 4,4094 0,8292 0,0059 6,0668 
EWLFC-KMMSD 3,9809 0,8615 5,0500 0,2014 0,0567 6,1218 
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Table 5-5 Outputs of the Quality Metrics for Images in Figure 5-2 

Method Name DE ICUBC EUBC UIQI AMBE Contrast 
Org Img 7,1029 15,4031 9,9928 - - 75,0354 
HE 6,7707 64,7583 9,3877 0,5647 42,8266 72,2268 
HM 6,5826 35,4500 9,0544 0,5399 40,3893 53,8126 
PHE 7,0873 15,7471 9,9665 0,9894 0,7106 74,6187 
TPHE 5,3721 20,1341 7,2331 0,5765 4,6007 80,8787 
DPS 7,3587 85,1600 11,8668 0,6226 0,2073 75,4819 
AHME 7,0419 21,8079 9,8833 0,8103 11,5066 73,0063 
CLAHE (4 block) 7,2978 16,9688 10,3940 0,9634 1,5474 73,4343 
CLAHE (9 block) 7,5255 32,4608 11,1350 0,7079 5,4463 69,2223 
BCLAHE (4 block) 7,1120 14,4845 10,0140 0,9498 0,4993 71,6525 
BCLAHE (9 block) 7,8092 154,8407 12,2429 0,4251 18,5479 72,5434 
BCLAHE (PM1) 7,4439 41,0621 11,3480 0,5486 7,6966 79,6370 
BCLAHE (PM2) 7,4500 20,5955 10,7912 0,6607 6,9461 79,9412 
EWLFC 7,3215 16,4392 10,5537 0,8390 0,0673 74,5185 
EWLFC-M-SD 7,3221 20,4263 10,7371 0,8516 0,0667 74,5148 
EWLFC-KM 7,2204 28,7146 10,4684 0,8429 0,0245 74,6583 
EWLFC-WTC 7,2051 8,1906 9,6208 0,7923 0,0414 74,1406 
EWLFC-KMMSD 7,2016 26,3386 10,5711 0,1627 1,9033 75,9213 

 

 
Table 5-6 Outputs of the Quality Metrics for Images in Figure 5-3 

Method Name DE ICUBC EUBC UIQI AMBE Contrast 
Org Img 5,4811 5,5153 7,3684 - - 38,3418 
HE 5,2887 177,2458 7,0568 0,3418 53,2116 68,8341 
HM 5,1944 98,4246 6,8938 0,3746 49,6362 51,2467 
PHE 5,4432 13,7362 7,3106 0,6809 7,3659 65,9549 
TPHE 5,2375 30,5910 7,0475 0,5929 8,1093 67,2815 
DPS 6,1330 59,2344 9,9510 0,4599 23,9266 46,5444 
AHME 5,4585 31,0504 7,3338 0,5538 30,8551 48,2600 
CLAHE (4 block) 5,7301 6,7677 7,8219 0,9312 1,4873 44,0943 
CLAHE (9 block) 6,7258 11,4959 9,2843 0,7003 3,9313 48,5312 
BCLAHE (4 block) 6,6218 15,2249 9,4686 0,4458 14,7782 75,1503 
BCLAHE (9 block) 7,4280 52,2791 11,0442 0,2832 0,2050 72,0340 
BCLAHE (PM1) 7,2734 25,1769 10,3705 0,3429 3,1314 68,4919 
BCLAHE (PM2) 6,9718 16,7715 9,8261 0,3253 13,3410 76,3943 
EWLFC 5,4950 3,9954 7,1359 0,7681 0,0411 37,7297 
EWLFC-M-SD 5,4947 4,0748 7,1392 0,7698 0,0402 37,7399 
EWLFC-KM 5,5186 9,0828 7,6048 0,8489 0,0106 38,1485 
EWLFC-WTC 5,5099 3,6629 7,0831 0,7397 0,0237 37,6199 
EWLFC-KMMSD 5,5720 8,0358 7,6196 0,1260 0,9072 38,7381 
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Table 5-7 Outputs of the Quality Metrics for Images in Figure 5-4 

Method Name DE ICUBC EUBC UIQI AMBE Contrast 
Org Img 4,8587 3,8882 6,6523 - - 11,0525 
HE 4,8062 91,6769 6,5705 0,2452 6,6712 72,7463 
HM 4,7780 50,6757 6,5211 0,3357 3,2213 54,1925 
PHE 4,8584 31,1194 6,6520 0,4174 57,2105 36,2362 
TPHE 4,6588 46,9632 6,3429 0,3755 60,1331 40,7639 
DPS 7,1216 300,9483 12,3418 0,1917 1,3472 43,9300 
AHME 4,8552 20,7016 6,6487 0,5975 0,4655 29,2402 
CLAHE (4 block) 5,6722 7,5179 7,8336 0,8569 4,3699 14,9193 
CLAHE (9 block) 6,7055 50,5696 9,6968 0,3316 1,4829 27,5573 
BCLAHE (4 block) 6,4941 45,8349 9,4128 0,3484 69,3251 27,5867 
BCLAHE (9 block) 7,1044 87,7990 10,6651 0,2578 39,3131 39,1604 
BCLAHE (PM1) 6,8907 63,4574 10,4373 0,3037 42,0107 32,9389 
BCLAHE (PM2) 7,2438 52,0278 10,3755 0,2476 64,6442 43,7826 
EWLFC 5,0733 5,3014 6,7659 0,8033 0,0282 10,8386 
EWLFC-M-SD 5,0736 5,3466 6,7753 0,8059 0,0282 10,8442 
EWLFC-KM 5,1815 12,5143 7,8246 0,7885 0,0014 11,7588 
EWLFC-WTC 5,0740 2,2266 6,5108 0,7269 0,0380 10,5570 
EWLFC-KMMSD 5,2121 6,8853 7,9955 0,0365 0,6382 10,9507 

 

 

Table 5-8 Outputs of the Quality Metrics for Images in Figure 5-5 

Method Name DE ICUBC EUBC UIQI AMBE Contrast 
Org Img 4,3643 5,2824 6,6034 - - 7,4372 
HE 4,3291 580,0714 6,5503 0,1578 10,4565 74,5056 
HM 4,3133 320,8815 6,5227 0,2371 5,9057 55,5312 
PHE 4,3586 127,2075 6,5987 0,3373 11,3996 38,3410 
TPHE 4,2981 138,0254 6,5021 0,3311 11,6123 39,5210 
DPS 7,3043 722,6384 13,2288 0,1534 1,2501 46,9530 
AHME 4,3623 126,9541 6,6018 0,4621 4,0014 31,0330 
CLAHE (4 block) 5,2843 12,6056 7,8551 0,8710 0,2086 11,8330 
CLAHE (9 block) 6,9733 97,0107 10,3625 0,3466 4,1479 32,2792 
BCLAHE (4 block) 7,2937 87,5316 11,1200 0,3748 31,1053 43,3820 
BCLAHE (9 block) 7,3059 121,1893 11,2200 0,2882 45,1640 44,9003 
BCLAHE (PM1) 7,2907 122,3606 11,1999 0,2926 45,0484 41,7829 
BCLAHE (PM2) 7,2812 101,8669 10,9342 0,3068 45,1984 41,3364 
EWLFC 4,4584 2,9390 6,4432 0,7719 0,0315 6,3747 
EWLFC-M-SD 4,4584 2,9384 6,4416 0,7714 0,0319 6,3743 
EWLFC-KM 4,6333 6,8818 7,3096 0,8498 0,0308 7,1297 
EWLFC-WTC 4,4625 2,2716 6,4706 0,7786 0,0321 6,2702 
EWLFC-KMMSD 4,8488 17,6166 8,1909 0,0833 0,1969 8,4365 
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Figure 5-6 Discrete Entropy Results of Enhancement Methods With Different Image Sets 

 

 
Figure 5-7 Intensity Contrast Results of Enhancement Methods With Different Image Sets 
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Figure 5-8 Entropy Results of Enhancement Methods With Different Image Sets 

 

 
Figure 5-9 UIQI Results of Enhancement Methods With Different Image Sets 
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Figure 5-10 AMBE Results of Enhancement Methods With Different Image Sets 

 

 

Figure 5-11 Image Contrast Results of Enhancement Methods With Different Image Sets 
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5.5  Summary of Objective Quality Metric Results 

 

First image set contains an 8-bit original image with narrow gray level interval. 

The target information is almost invisible. Outputs of the contrast enhancement 

methods are presented in Figure 5-1. Histogram equalization method produces an 

over enhanced output image. The detail information is mostly saturated.  

Histogram matching method also gives a close result to the histogram equalization 

method. PHE and TPHE with tail value of 5% have similar outputs, and their 

outputs have better visibility compared to the previous two methods. It is clear 

from the results that DPS and AHME methods produce unnatural looking images. 

DPS particularly damages the output image and gives an image with granular 

parts. CLAHE method is used with 4 and 9 blocks. An appropriate threshold value 

is also selected. It gives better enhancement results compared to the other ones. 

Especially, CLAHE method with 9 blocks has improved overall contrast. 

Balanced CLAHE method is also applied with a local approach by using 4 and 9 

blocks. This method produces a darker part at the top left of image for local 

implementation with 4 blocks. This problem associated with Balanced CLAHE 

method is mentioned in Chapter 4. The other parts are fairly satisfying. Balanced 

CLAHE with 9 blocks and proposed modifications for this method produce better 

results. The method based on the local frequency clues, and its modified versions 

produce an image with enhanced detail information. However, they do not 

improve overall contrast as mentioned before. 

 

Quality metric results for image set 1 are presented in Table 5-4. Discrete entropy 

values show that Balanced CLAHE method with 9 blocks produces an image with 

highest bit rate. Balanced CLAHE method with 4 blocks and proposed 

modification 2 for this method also have higher values. The other histogram based 

methods does not improve visibility according to the discrete entropy metric, 

although they improve the contrast.  
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The method based on the local frequency clues enhances edge information, and so 

output bit rate does not change excessively. Its modified versions have the same 

effect. Entropy used by Chen also gives a similar result to discrete entropy metric. 

Intensity contrast metric shows that DPS has better contrast while HE has better 

contrast with respect to AMBE and Contrast metrics. However, visual results 

show that these methods produce unnatural looking and saturated images. 

 

Second image set in Figure 5-2 contains a 14-bit original image with narrow gray 

level interval. The image is invisible due to very high dynamic range. Balanced 

CLAHE method converts this high dynamic range to 8-bit display format with its 

algorithm. However, other methods do not have this type of operation. Therefore, 

input dynamic range is compressed with linear scaling to produce 8-bit input 

images for these algorithms. Once again, HE and HM methods produce over 

enhanced output images. The detail information is mostly saturated.  PHE output 

has a better visibility compared to the previous two methods. TPHE method with 

tail value of 5% produces a saturated image, and DPS gives an image with 

granular parts. Balanced CLAHE method with 4 blocks and proposed 

modifications produce good enhancement results compared to the other ones. 

Balanced CLAHE with 9 blocks suffers from the problem mentioned in Chapter 

4. However, it is suppressed with proposed modifications. CLAHE method also 

has a satisfying output. The method based on the local frequency clues, and its 

modified versions proposed in this thesis produce an image with enhanced detail 

information except EWLFC-WTC. These methods also use 8-bit input image 

obtained from HDR image with gamma and linear transforms. Therefore, outputs 

have better contrast compared to the original image. EWLFC-WTC method has a 

washout appearance with respect to the other four outputs in Figure 5-2 (j), Figure 

5-2 (k), Figure 5-2 (l) and Figure 5-2 (n).  

 

Quality metric results for image set 2 are presented in Table 5-5. It is very clear 

from this table that objective quality metrics favor Balanced CLAHE and 

proposed modifications for this method.  
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Third image set in Figure 5-3 also contains a 14-bit original image with narrow 

gray level interval. HE and HM methods have unsatisfying output images, and the 

detail information is mostly saturated. PHE output has a better visibility compared 

to the previous two methods. TPHE method saturates 5% of frequency counts 

from the beginning and end of the histogram. Therefore, other pixel intensities get 

more gray level. This produces a granular background. Higher tail values produce 

unnatural looking output images while lower tail values produce results close to 

PHE method. DPS and AHME produce images with washout appearances. 

AHME method also has rough appearance. This gives a bad impression. Balanced 

CLAHE method and proposed modifications produce better enhancement results 

compared to the other ones. Proposed modification 2 for Balanced CLAHE 

method corrects the problem in 9 blocks approach. It has a satisfying contrast and 

edge details between all enhancement methods according to the visual inspection. 

CLAHE method also has a satisfying output. Images in Figure 5-3 (l) and Figure 

5-3 (n) have very good edge details, but they have a washout appearance due to 

the lack of contrast improvement of this method. 

 

Quality metric results for the image set in Figure 5-3 are presented in Table 5-6. 

Metric values which depend on the contrast difference between neighbor pixels 

favor HE method while entropy based methods favors Balanced CLAHE, 

Balanced CLAHE PM1, Balanced CLAHE PM2 and DPS methods. However, 

high-contrast difference does not always give good enhancement results. This was 

seen in the experiments.  

 

Fourth and fifth image sets contain 8-bits original images with narrow gray level 

interval and washout appearance. They are presented in Figure 5-4 and Figure 5-5. 

Clearly, PHE and Balanced CLAHE with 4 blocks have best enhancement results 

for visual inspection. Discrete entropy and quality metrics used by Chen favor the 

DPS methods for these two images. Balanced CLAHE with 9 blocks also has 

better enhancement results according to the quality metrics. Quality metric results 

for these two image sets are presented in Table 5-7 and Table 5-8 respectively. 
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Experiments showed that Balanced CLAHE is the best enhancement method for 

the most of the image sets. It has satisfying results according to the visual 

inspection. Entropy based quality metrics also supports these results. These 

quality metrics have consistent results with visual results. It is also clear that 

proposed methods EWLFC-KM and EWLFC-KMMSD have superior 

performance compared to the original method EWLFC according to both visual 

inspection and quality metrics. In addition to these, proposed modifications 1 and 

2 for Balanced CLAHE method improve the visual quality and solve the problem 

with 9 blocks approach. This can be seen in images sets 2 and 3.  
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CHAPTER 6  
 
                                             
 

CONCLUSIONS AND FUTURE WORK 
 
 
 
 

Infrared imaging systems have wide application area from target acquisition to 

tracking operations. They operate at different spectral bands and provide 

information, which is impossible for human perception. However, they have high 

dynamic range outputs, and they generally use only a small partition of this 

dynamic range. Therefore, careful attention is required to display these images. 

This is achieved with high dynamic range compression and contrast enhancement 

operations. In the literature, there are approaches for infrared image enhancement. 

Even so, most of these methods are limited to specific applications.   

 

This thesis investigates histogram based enhancement methods and enhancement 

with local frequency cues for infrared image enhancement.  Different image sets 

with 8-bit and higher dynamic range are used to experiment on these techniques, 

and results are compared according to the objective quality metrics. Experiments 

showed that contrast enhancement operation performs better on low dynamic 

range images because the histogram based methods spreads all available dynamic 

range. Therefore, dynamic range compression method is applied to infrared 

images with high dynamic range to reduce noise component and obtain 8-bit 

images for contrast enhancement operations. Some of the contrast enhancement 

techniques use block based approach. Appropriate block size must be defined to 

obtain better results. Some modifications are proposed and experimented to select 

higher block dimensions to obtain better local enhancement.     

 

Results show that Balanced CLAHE and proposed modifications for this method 

are the best techniques for enhancement of infrared images. Balanced CLAHE 
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method extracts details better than the other enhancement methods and uses all 

available output dynamic range. Enhancement method based on local frequency 

cues is also investigated. Some modifications are proposed and experimented for 

this technique in order to reduce computational complexity. They show better 

performance to improve target and edge details. However, quality metrics and 

visual results showed that overall contrast does not improve with these methods at 

all.   

 

As future work, hardware implementation of the Balanced CLAHE algorithm can 

be implemented. Although it is a histogram based method, its excess pixel 

redistribution and dynamic range compression operations are limiting factors for 

real time applications. These operations can be modified to decrease hardware 

resource consumption. Thus, this method can be realized with FPGA and other 

storage resources. FPGA is considered as the main implementation platform for 

its timing accuracy. This platform is also very ideal for experimenting on the final 

behavior of the system with its advanced pre and post layout simulations. In 

addition to the real time implementation of Balanced CLAHE algorithm, 

subjective tests will be conducted.  

 

This thesis uses TRC based dynamic range compression algorithms for their 

simplicity. More complex algorithms can be implemented to improve detail 

preservation after DRC operations. These methods will improve visual quality of 

the investigated contrast enhancement algorithms. 
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