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ABSTRACT

ONLINE CALIBRATION OF SENSOR ARRAYS USING HIGHER ORDER STATISTICS

AKTAŞ, Metin

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin TUNCER

January 2012, 118 pages

Higher Order Statistics (HOS) and Second Order Statistics (SOS) approaches have certain ad-

vantages and disadvantages in signal processing applications. HOS approach provides more

statistical information for non-Gaussian signals. On the other hand, SOS approach is more

robust to the estimation errors than the HOS approach, especially when the number of ob-

servations is small. In this thesis, HOS and SOS approaches are jointly used in order to take

advantage of both methods. In this respect, the joint use of HOS and SOS approaches are

introduced for online calibration of sensor arrays with arbitrary geometries. Three different

problems in online array calibration are considered and new algorithms for each of these prob-

lems are proposed. In the first problem, the positions of the randomly deployed sensors are

completely unknown except the two reference sensors and HOS and SOS approaches are used

iteratively for the joint Direction of Arrival (DOA) and sensor position estimation. Iterative

HOS-SOS algorithm (IHOSS) solves the ambiguity problem in sensor position estimation by

observing the source signals at least in two different frequencies and hence it is applicable

for wideband signals. The conditions on these frequencies are presented. IHOSS is the first

algorithm in the literature which finds the DOA and sensor position estimations in case of

randomly deployed sensors with unknown coordinates. In the second problem, narrowband

signals are considered and it is assumed that the nominal sensor positions are known. Mod-
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ified IHOSS (MIHOSS) algorithm uses the nominal sensor positions to solve the ambiguity

problem in sensor position estimation. This algorithm can handle both small and large errors

in sensor positions. The upper bound of perturbations for unambiguous sensor position esti-

mation is presented. In the last problem, an online array calibration method is proposed for

sensor arrays where the sensors have unknown gain/phase mismatches and mutual coupling

coefficients. In this case, sensor positions are assumed to be known. The mutual coupling ma-

trix is unstructured. The two reference sensors are assumed to be perfectly calibrated. IHOSS

algorithm is adapted for online calibration and parameter estimation, and hence CIHOSS al-

gorithm is obtained. While CIHOSS originates from IHOSS, it is fundamentally different in

many aspects. CIHOSS uses multiple virtual ESPRIT structures and employs an alignment

technique to order the elements of rows of the actual array steering matrix. In this thesis, a

new cumulant matrix estimation technique is proposed for the HOS approach by converting

the multi-source problem into a single source one. The proposed algorithms perform well

even in the case of correlated source signals due to the effectiveness of the proposed cumulant

matrix estimate. The iterative procedure in all the proposed algorithms is guaranteed to con-

verge. Closed form expressions are derived for the deterministic Cram´er-Rao bound (CRB)

for DOA and unknown calibration parameters for non-circular complex Gaussian noise with

unknown covariance matrix. Simulation results show that the performances of the proposed

methods approach to the CRB for both DOA and unknown calibration parameter estimations

for high SNR.

Keywords: Direction-of-Arrival Estimation, Sensor Localization, Higher-Order-Statistics, De-

terministic Cramér-Rao Bound, Cumulant Matrix
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ÖZ

YÜKSEK DERECELİ İSTATİSTİK KULLANARAK ALGILAYICI DİZİLERİNİN
ÇEVRİMİÇİ KALİBRASYONU

AKTAŞ, Metin

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin TUNCER

Ocak 2012, 118 sayfa

Sinyal işleme uygulamalarında Yüksek Dereceli İstatistik (HOS) ve İkinci Dereceli İstatistik

(SOS) yaklaşımları belirli avantaj ve dezavantajlara sahiptir. Gussian olmayan sinyaller için

HOS yaklaşımı daha fazla istatistiksel bilgi sağlamaktadır. Diğer açıdan SOS yaklaşımı

özellikle gözlem sayısı küçük olduğunda HOS yaklaşımına göre tahmin hatalarına karşı daha

dayanıklıdır. Bu tezde her iki yöntemin avantajlarından yararlanabilmek için HOS ve SOS

yaklaşımları birlikte kullanılmıştır. Bu açıdan HOS ve SOS yaklaşımlarının birlikte kullanımı

gelişigüzel geometrideki algılayıcı dizilimlerinin çevrimiçi kalibrasyonu için önerilmiştir. Çev-

rimiçi dizilim kalibrasyonunda üç farklı problem ele alınmış ve herbir problem için yeni al-

goritmalar önerilmiştir. İlk problemde, gelişigüzel dağıtılmış algılayıcıların konumları iki

referans sensor haricinde tamamen bilinmemektedir ve geliş yönü (DOA) ve algılayıcı ko-

numlarının birlikte bulunması için HOS ve SOS yaklaşımları yinelemeli olarak kullanılmıştır.

Yinelemeli HOS-SOS algoritması (IHOSS) algılayıcı konumları tahminindeki bilinmezlik

problemini kaynak sinyallerinin en az iki frekansta gözlemlenmesi ile çözmektedir ve bu

nedenle geniş-bantlı sinyaller için uygulanabilirdir. Frekanslardaki koşullar belirtilmiştir.

IHOSS, gelişigüzel dağıtılmış algılayıcıların konumlarının bilinmemesi durumunda DOA ve

algılayıcı konum tahmininin bulunmasında kullanılan literatürdeki ilk algoritmadır. İkinci
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problemde dar-bantlı sinyaller ele alınmış ve algılayıcı konumlarının anma değerlerinin bilin-

diği kabul edilmiştir. Değiştirilmiş IHOSS (MIHOSS) algoritması algılayıcı konumlarının

tahminindeki belirsizlik problemini çözmek için algılayıcı konumlarının anma değerlerini

kullanmaktadır. Bu algoritma algılayıcı konumlarındaki hem küçük hem de büyük hataları ele

alabilmektedir. Tam algılayıcı konum tahmini için sarsımların üst sınırı belirtilmiştir. En son

problemde, algılayıcıların kazanç/faz uyumsuzluğu ve karşılıklı bağlaşım katsayılarının bilin-

mediği durumdaki algılayıcı dizilimleri için çevrimiçi dizilim kalibrasyonu yöntemi önerilmiş-

tir. Bu durumda algılayıcı konumlarının bilindiği kabul edilmiştir. Karşılıklı bağlaşım ma-

trisi herhangi bir özel yapıya sahip değildir. İki adet referans algılayıcısının kalibrasyonunun

tam olduğu kabul edilmiştir. IHOSS algoritması çevrimiçi kalibrasyon ve parametre tahmini

için uyarlanmış ve böylece CIHOSS algoritması elde edilmiştir. CIHOSS, IHOSS algorit-

masından çıkmış olmasına rağmen birçok bakımdan temel farklılıklar göstermektedir. CI-

HOSS, birçok sanal ESPRIT yapısı kullanmakta ve gerçek dizilim steering matrisinin satırların-

daki eleman sıralarının hizalanmasını gerçekleştirmektedir. Birden fazla kaynak problem-

ini tek kaynak problemine çevirerek HOS ayaklaşımı için yeni bir cumulant matris tahmini

tekniği önerilmiştir. Önerilen algoritmalar, yeni cumulant matris tahmininin etkinliğinden

dolayı ilintili kaynak sinyallerinde dahi iyi performans segilemektedirler. Önerilen tüm algo-

ritmalardaki yinelemeli yöntemin yakınsaması garantilenmiştir. Bilinmeyen kovaryans ma-

trisine sahip çembersel olmayan karmaşık Gaussian gürültü sinyali durumu için sinyal geliş

yönü ve bilinmeyen kalibrasyon parametreleri kestirimi için kapalı formda belirlenimci Cram´er-

Rao bound (CRB) denklemleri elde edilmiştir. Benzetim sonuçları göstermiştir ki önerilen

yöntemlerin performansları DOA ve bilinmeyen kalibrasyon parametreleri tahmini için yüksek

SNR değerinde CRB değerine yaklaşmaktadır.

Anahtar Kelimeler: Geliş Yönü Kestirimi, Algılayıcı Konumlama, Yüksek Dereceli İstatistik,

Belirlenimci Cramér-Rao Bound, Cumulant Matrisi
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Objectives

In the last decade, the direction-of-arrival (DOA) estimation of sources with passive sensor

arrays has been widely investigated and many methods have been developed. Eigenstructure

based methods, such as the multiple signal classification (MUSIC) algorithm [1] and the es-

timation of signal parameter via rotation invariance techniques (ESPRIT) [2], have potential

advantages due to their high-resolution direction finding capabilities [3], [4]. However, they

require precise knowledge of the array model to achieve the theoretical performance and their

performances are highly sensitive to the modeling errors [29].

In practical applications, there are many factors that change the response of the sensor array

which generate imperfections in the array model. In certain applications, perfect knowledge

of the sensor locations is impractical as in the case when the antennas placed on the wing tips

of a plane or hydrophone arrays towed behind a ship. Identical sensors assumption is also not

realistic in many practical applications. The differences in the electronic circuitry between

the sensors or in receiving media such as the cables and antennas can result gain and phase

mismatches between the same types of sensors. In addition to these, the interaction among the

sensors especially for the antenna arrays is an important problem. In practical antenna arrays,

mutual coupling represents the interaction between antennas. These imperfections should be

mitigated in order to obtain satisfactory DOA estimations.

The DOA estimation in the presence of array imperfections is considered as an array calibra-

tion problem and many techniques are proposed in the literature. The proposed techniques

can be grouped in two categories, offline and online array calibration. Offline array calibration

1



is based on collecting data from the reference sources with known DOA angles and/or signals

and measuring array response [10], [11]. Then, the array imperfections are estimated by fit-

ting the measured and modeled array responses. However, this approach is time consuming

and very expensive to apply in practical systems, since the array imperfections usually change

in time. On the other hand, online array calibration does not require any reference source and

calibration parameters as well as DOA angles are estimated directly from the received signals.

In this thesis we investigated the online array calibration problem, since it is more applicable

to the practical systems.

1.2 Literature Overview

Many online array calibration algorithms have been proposed in the literature. Online array

calibration in the presence of sensor position errors is investigated in [6], [7], [8], [41] and

[42]. Previous methods in this context assume that the nominal sensor positions are known

and the errors in sensor positions are small [6], [7], [9], [41]. In addition, sources are assumed

to be spatially and temporally disjoint [8] or the source DOA angles are known [10], [11].

In small error approximation, the perturbations are assumed to be small and array calibra-

tion is performed by using a first order approximation. The first order approximation is not

applicable as the perturbations are increased. Large error approximation [42] is proposed to

circumvent the limitations of the small error approximation. However the DOA estimation

problem is considered for a uniform circular array and for some fixed DOA angles. There-

fore, array calibration algorithms for sensor position errors can only be applied with certain

limitations on the array structure and the source characteristics. Some of these limitations

are eliminated with the VESPA algorithm [12]. In [12], it is shown that the combination of

HOS approach and the ESPRIT algorithm allows the computation of the DOA estimates for

arbitrary sensor geometries without knowing the sensor positions. Therefore, the requirement

for a special array geometry for the ESPRIT algorithm as well as the requirement for the

nominal sensor positions for the array calibration algorithms are eliminated. In this approach,

the cumulant matrix, which has the same information as the correlation matrix of the ESPRIT

structure, is obtained from the cumulants of the array output. In [12], relative positions of the

two reference sensors are required to be known. Also it is assumed that the source signals

are independent. When this assumption is not satisfied, the cumulant matrix has error terms.
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These error terms become significant for finite length signals and decrease the accuracy of the

VESPA algorithm, generating the flooring effect for the multiple sources [13]. The approach

in [12] is extended to the case of dependent source signals in [14]. In this case, it is assumed

that the sensor array is composed of calibrated and uncalibrated sub-arrays where the cali-

brated sub-array is a uniform linear array. It is known that the method in [12] can only be

used to estimate the DOA angles. In other words, sensor positions cannot be found with the

approach in [12].

Online array calibration methods compensating the effect of gain/phase mismatch and/or mu-

tual coupling are also widely investigated in the literature. However, most of the proposed

techniques are based on some specific mutual coupling matrix structures and are only appli-

cable for the special array geometries. In [35], only the mutual coupling is considered for the

online array calibration and it is assumed that the mutual coupling matrix is a complex sym-

metric Toeplitz matrix. This method is applicable for only Uniform Linear Array (ULA). The

special mutual coupling structure for ULA is slightly modified and online array calibration

algorithms specialized for L-shaped [38] and Y-shaped [39] arrays are proposed. For Uniform

Circular Array (UCA), mutual coupling matrix is assumed to be complex symmetric circular

Toeplitz matrix [37], [40] and [29]. In [37] and [40] only the mutual coupling is considered

for an array imperfection and a direct solution for estimating both DOA angles and mutual

coupling coefficients is proposed by using Second Order Statistics (SOS) and Higher Order

Statistics (HOS) approaches, respectively. In [29], in addition to the mutual coupling coeffi-

cients, gain/phase mismatches and the errors in sensor positions are also considered and an

iterative method based on SOS approach is proposed for joint DOA and calibration parame-

ter estimations. The algorithms proposed in [29] are applicable for only ULA and UCA. In

[33], it is shown that DOA angle estimates can be found with a direct solution without be-

ing affected from the mutual coupling coefficients by using auxiliary sensors. The proposed

algorithm in [33] is applicable for only Uniform Rectangular Array (URA). In [36], the per-

formance of the online array calibration algorithms for ULA and UCA is investigated and it

is shown that the assumptions made on the structure of the coupling matrix of the ULA is

incorrect in practice.
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1.3 Thesis Overview

Previous online array calibration methods in the literature have certain limitations. They are

applicable to special array geometries and make small error assumptions. In this thesis, we

investigate three different problems in online array calibration and propose new algorithms

for each of these problems.

In the first problem, joint DOA and sensor position estimations are considered when the sen-

sor positions are not known except the two reference sensors. The algorithm for this purpose,

Iterative HOS-SOS (IHOSS), is presented. Gain/phase mismatches and mutual coupling pa-

rameters are ignored in this problem. The proposed technique finds the unknown parameters

using only the sensor array outputs and the positions of the two reference sensors. There

is no other a priori information including the nominal sensor positions in contrast to the ar-

ray calibration approaches [6], [7], [9]. To our knowledge, this is the only work that gives

a solution for this problem. IHOSS method has several advantages. It eliminates the need

to know the nominal sensor positions for the joint DOA and sensor position estimation. It

can perform well even for the correlated source signals unlike the work in [12]. Therefore,

IHOSS algorithm can be used for the joint DOA and sensor position estimations in a more

general problem setting. IHOSS algorithm considers the ambiguity problem in sensor posi-

tion estimation and solves the problem by using multiple frequencies. Hence it is applicable

for wideband signals.

In the second problem, the online array calibration in the presence of sensor position errors

is investigated for the narrowband signals. In this respect, IHOSS algorithm is modified for

the narrowband signals and the new algorithm, Modified IHOSS (MIHOSS), is proposed.

Gain/phase mismatches and mutual coupling parameters are again ignored in this problem.

Since the narrowband case is considered, MIHOSS needs to know the nominal sensor po-

sitions to solve the ambiguity problem in sensor position estimation. It is proved that the

ambiguity problem can be solved if the perturbations in sensor positions are bounded. Param-

eter estimation accuracy is better even for large perturbations in contrast to the alternatives in

the literature [6], [7], [9], [41], [42].

Online array calibration in the presence of gain/phase mismatch and mutual coupling is con-

sidered in the last problem. A new method, Calibration with IHOSS (CIHOSS), is proposed
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to estimate the DOA angles of multiple sources, gain/phase mismatch and mutual coupling

parameters jointly. The proposed method does not assume a special structure for mutual

coupling matrix and therefore it is applicable for any arbitrary but known sensor geometry.

It requires two reference sensors that are perfectly calibrated with known gain/phase mis-

matches and mutual coupling coefficients. There is no interaction between the reference and

the other sensors. The magnitude of the mutual coupling between sensors is inversely propor-

tional with the distance between sensors and may become negligible if the distance exceeds

a few wavelengths [29]. The reference sensors are placed far away from the remaining sen-

sors in order to be in accordance with the above assumption. Due to the perfectly calibrated

reference sensors assumption, the proposed algorithm can be categorized as partly calibrated

subarray [34]. But in [34], the interaction between calibrated subarrays is not considered and

the required calibrated sensors is much higher than that of the proposed algorithm in this the-

sis. As it is stated in [36], the iterative methods suffer from the poor initial estimates for the

DOA angles and calibration parameters. In CIHOSS, the initial estimates for DOA angles as

well as gain/phase mismatches and mutual coupling coefficients are obtained directly from

the sensor outputs. Therefore, CIHOSS does not take a fixed initial estimate.

All the proposed algorithms are applicable to arbitrarily deployed sensor arrays and use the

Higher-Order-Statistics (HOS) and Second-Order-Statistics (SOS) approaches in an iterative

framework in order to take advantage of both techniques. In HOS approach, the cumulant

matrices composed of the fourth-order cumulants are used. HOS approach can obtain more

information for the non-Gaussian signals as compared with the SOS approach. On the other

hand, SOS approach is more robust to the statistical estimation errors than the HOS approach.

In all the proposed algorithms, HOS approach is used as an initial estimator, since DOA angle

estimates can be found without being affected by the errors in calibration parameters. Fur-

thermore, the array steering matrix can be estimated directly from the sensor outputs even for

the multi-source case in HOS approach. In [30], it is shown that HOS can effectively be used

for the joint estimation of DOA angles, gain/phase mismatches and mutual coupling coeffi-

cients when the source signals are statistically independent. In this thesis, the source signals

are not assumed to be statistically independent and the performance degradation of the HOS

approach is compensated by developing a new cumulant matrix estimation technique, which

is more robust to the correlation between source signals. In this technique, the error terms in

the cumulant matrix due to the correlation between source signals are decreased by converting
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the multi-source problem into a single-source case [15], [16] using the array steering matrix

estimate. While this conversion is not perfect, it effectively decreases the undesired signal

components in the measurements. The performance of the proposed algorithms depends on

the accuracy of the array steering matrix estimate. If the array steering matrix is perfectly

known, the error terms in the cumulant matrix are completely eliminated. The accuracy of

the array steering matrix estimate is improved iteratively. SOS approach is more robust to the

estimation errors than the HOS approach especially when the number of observations is small

[13]. Therefore, SOS approach is used to improve the initial estimates obtained from the HOS

approach. The iterative procedure in all the proposed algorithms is guaranteed to converge.

Performance results show the effectiveness of the proposed algorithms. The deterministic

Cramér-Rao bound expressions for the DOA and calibration parameter estimations are de-

rived for the described problem settings. It is shown that the proposed algorithms perform

well for a variety of scenarios and closely follow the CRB at high SNR.

1.4 Contributions

The contributions of the thesis can be summarized as follows:

• A new cumulant matrix estimation technique, which is more robust to the correlation

between source signals is presented for HOS approach [5], [28].

• Joint use of HOS and SOS approaches in an iterative manner for the online array cali-

bration of arbitrarily deployed sensor arrays is presented [5], [28], [31].

• A new online array calibration algorithm for the joint DOA and sensor position estima-

tions when the sensor positions are unknown except the two reference sensors (IHOSS)

is proposed. IHOSS eliminates the need to know the nominal sensor positions for the

wideband signals [5], [28].

• An online array calibration in the presence of perturbations in sensor positions is in-

vestigated and a new algorithm, MIHOSS, [31] is presented that is applicable to large

sensor errors. It is shown that the upper bound for the perturbations to achieve accurate

parameter estimations is much higher than that of the alternatives in the literature.

• The ambiguity problem in sensor position estimation is considered and the conditions
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for the unambiguous sensor position estimation are presented for wideband [28] and

narrowband signals.

• A new online array calibration algorithm for estimating DOA angles in the presence of

gain/phase mismatches and mutual coupling, CIHOSS, is presented [30]. The proposed

algorithm does not assume a special structure for mutual coupling matrix and therefore

it is applicable for any arbitrary but known sensor geometry. CIHOSS estimates DOA

angles, gain/phase mismatch and mutual coupling parameters jointly.

• The deterministic Cramér-Rao bound expressions for the DOA and calibration param-

eter estimations are derived for the described problem settings. It is shown that the

proposed algorithms perform well for a variety of scenarios.

1.5 Organization of the Thesis

The remaining of this thesis is organized as follows. In Chapter 2, IHOSS algorithm is pre-

sented. The definition of the problem as well as the constraints for IHOSS algorithm are

given in Section 2.1. In Section 2.2.1, we introduce the cumulant matrix and blind DOA and

array steering matrix estimates with two reference sensors. Ambiguity problem in sensor po-

sition estimation is presented and a new method for unambiguous sensor position estimation

by using multiple frequencies is given in Section 2.2.2. The conditions on the frequencies

for unambiguous estimation are presented in this section. SOS approach and the algorithmic

steps of the IHOSS algorithm are presented in Section 2.2.3 and Section 2.2.4, respectively.

The expressions for the deterministic CRB for DOA and sensor position estimations are pre-

sented in Section 2.3. The performance results of the IHOSS algorithm for various scenario

is given in Section 2.4. The advantages of IHOSS algorithm are summarized in Section 2.5.

In Chapter 3, MIHOSS algorithm is presented. The problem and assumptions of the MIHOSS

algorithm are defined in Section 3.1. Unambiguous sensor position estimation with nominal

sensor positions is presented and also the conditions for the solution of ambiguity are given in

Section 3.2.1. The algorithmic steps of the MIHOSS algorithm are summarized in Section

3.2.2 and the performance results are given in Section 3.3. The advantages of MIHOSS

algorithm are summarized in Section 3.4.

In Chapter 4, CIHOSS algorithm is presented. The definitions of the problem and the as-
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sumptions for CIHOSS algorithm are given in Section 4.1. The cumulant matrix for different

sensor pair selections is presented in Section 4.2. HOS and SOS approaches used in CIHOSS

algorithm are explained in Section 4.3.1 and Section 4.3.3, respectively. The cost function

used for iterative process is explained in Section 4.3.2. In Section 4.3.4, we give the condi-

tions for the solvability of the CIHOSS algorithm. The expressions for the deterministic CRB

for DOA, gain/phase mismatch and mutual coupling are given in Section 4.4. The perfor-

mance results of the CIHOSS algorithm for various scenarios are given in Section 4.5. The

advantages of CIHOSS algorithm are summarized in Section 4.6.

In Section 5, conclusion for the thesis is presented. The proofs of the lemmas and theorem

are given in the Appendix A - G.

1.6 Notations in the Thesis

The notation used in this thesis is as follows. Matrices and vectors are represented by bold

uppercase and lowercase characters, respectively. (.)T , (.)H , (.)∗ and tr(.) stand for the trans-

pose, conjugate transpose, conjugate and trace operator, respectively. ⊗ and � represent the

Kronecker product and Hadamard matrix product, respectively. (.)† is used to define the

Moore-Penrose pseudoinverse. <(.) and =(.) are the real and the imaginary part operators.

dxe is the smallest integer not less than x and [x]r is the rounding operator that rounds x to

the nearest integer. vect(X) is the column vector containing all entries of the matrix X in a

column-wise order. diag(x1, x2, . . . , xN) is the N × N diagonal matrix whose diagonal entries

are xn, 1 ≤ n ≤ N. arg(x) is the argument of complex variable x. ‖X‖ is the Frobenious norm

of the matrix X. IK is used to define the K × K identity matrix.
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CHAPTER 2

ITERATIVE HOS-SOS (IHOSS) ALGORITHM FOR

DIRECTION-OF-ARRIVAL ESTIMATION AND SENSOR

LOCALIZATION

In this chapter, the online array calibration problem for finding the DOA angles as well as the

sensor positions when the sensors are randomly deployed with unknown positions is investi-

gated. For the solution of this problem a new technique, IHOSS, is presented. The proposed

technique finds the unknown parameters using only the sensor array output and the positions

of the two reference sensors. There is no other a priori information including the nominal

sensor positions in contrast to the array calibration approaches in [6], [7], [9]. To our knowl-

edge, this is the only work that gives a solution for this problem. IHOSS method has several

advantages. It eliminates the need to know the nominal sensor positions for the joint DOA

and sensor position estimation. It can perform well even for the correlated source signals

unlike the work in [12]. Therefore, IHOSS algorithm can be used for the unknown parameter

estimation in a more general problem setting.

IHOSS method uses the HOS and SOS approaches in an iterative framework in order to take

the advantage of both techniques. HOS approach is used to compute the DOA and array steer-

ing matrix estimates without knowing the sensor positions except the two reference sensors.

A new cumulant matrix estimation technique, which is more robust to the correlation between

source signals, is presented for the HOS approach. In this technique, the error terms in the

cumulant matrix due to the correlation between source signals are decreased by converting

the multi-source problem into a single-source case [15], [16] using the array steering matrix

estimate. While this conversion is not perfect, it effectively decreases the undesired signal

components in the measurements. The performance of the IHOSS depends on the accuracy
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of the array steering matrix estimate. If the array steering matrix is perfectly known, the er-

ror terms in the cumulant matrix are completely eliminated. In IHOSS, the accuracy of the

array steering matrix estimate is improved iteratively with the joint use of the HOS and SOS

approaches. SOS approach is more robust to the estimation errors than the HOS approach

especially when the number of observations is small [13]. In order to use the SOS approach,

the sensor positions should be found. A new method to find the sensor positions unambigu-

ously is proposed by using multiple frequencies [17]. The conditions for unambiguous sensor

position estimation are given. IHOSS uses an iterative process which is guaranteed to con-

verge. The performance of the IHOSS algorithm is investigated in detail in order to show the

effectiveness of the iterative approach. The deterministic Cramér-Rao bound expressions for

the DOA and sensor position estimations are derived for the described problem setting. It is

shown that the proposed approach performs well for a variety of scenarios and closely follows

the CRB.

2.1 Problem Statement for IHOSS Algorithm

It is assumed that the array is composed of randomly deployed M sensors on a plane and there

are L far-field sources as shown in Fig. 2.1. The transmitting source signals are assumed to

Figure 2.1: Array model for IHOSS algorithm.

10



be wideband. The received signal at the mth sensor can be written as,

xm(t) =

L∑
i=1

si(t − τmi) + vm(t), m = 1, ...,M (2.1)

where si(t) and vm(t) are the source and noise signals, respectively. τmi is the propagation

delay from the ith source to the mth sensor and it can be written as [26],

τmi =
pm,xcos(θi) + pm,ysin(θi)

ϑs
(2.2)

where θi is the DOA angle of the ith source in azimuth. pm = [pm,x, pm,y] is the two dimen-

sional position of the mth sensor and ϑs is the speed of propagation.

It is assumed that multiple wideband signals are observed with overlapping spectra. Narrow-

band bandpass filters with different center frequencies, f j, j = 1, ..., F, are used to extract the

narrowband signals. If we assume that the frequency response of the filters is flat over the

passband and the signal spectrum varies over the filter passband, the output of the mth sensor

for the jth filter can be written as [25],

xm, f j(t) =

L∑
i=1

e− j2π f jτmi si, f j(t) + vm, f j(t) (2.3)

where si, f j(t) and vm, f j(t) are the outputs of the jth filter when the inputs are si(t) and vm(t),

respectively. By substituting (2.2) into (2.3), the received signal vector for the sensor array at

frequency f j can be written in a more compact form as,

x f j(t) = A f j(Θ,P)s f j(t) + v f j(t), t = 1, . . . ,N (2.4)

where N is the number of snapshots, s f j(t) = [s1, f j(t), ..., sL, f j(t)]
T is the L × 1 vector of L

source signals for the frequency f j. v f j(t) = [v1, f j(t), ..., vM, f j(t)]
T is the M × 1 vector of noise

for the frequency f j, which is assumed to be Gaussian. A f j(Θ,P) is the M × L array steering

matrix for the frequency f j. Source signals are assumed to be non-Gaussian and they can be

correlated but not coherent. Noise is assumed to be statistically independent with the source

signals. Given the DOA vector, Θ = [θ1, ..., θL], and the sensor positions, P = [pT
1 , ...,p

T
M]T ,

the array steering matrix for frequency f j is written as,

A f j(Θ,P) =


a f j(θ1,p1) . . . a f j(θL,p1)

...
. . .

...

a f j(θ1,pM) . . . a f j(θL,pM)

 (2.5)
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where the array steering matrix element for mth sensor and ith source at frequency f j is written

as,

a f j(θi,pm) = exp
{

j2π f j
pm,xcos(θi) + pm,ysin(θi)

ϑs

}
(2.6)

Two sensors are selected as the reference with known positions. In order to avoid the ambi-

guity problem in DOA estimation, it is also assumed that the distance between the reference

sensors is less than or equal to λ/2, where λ is the wavelength corresponding to the largest

frequency of interest, i.e., λ = ϑs/max
j

( f j).

The objective in IHOSS is to estimate the DOA angles of L sources and the positions of the

M − 2 sensors simultaneously given the array output and the positions of the two reference

sensors.

2.2 IHOSS Algorithm

In this section, IHOSS algorithm is introduced for a solution to the problem described in

Section 2.1. IHOSS is an iterative algorithm that jointly uses HOS and SOS approaches at

each iteration sequentially. The idea behind the IHOSS algorithm is to use the advantages of

both HOS and SOS approaches in order to improve the accuracy of the parameter estimation.

IHOSS uses HOS approach to find the DOA and array steering matrix estimates for the arbi-

trary sensor geometries without knowing the sensor positions except the two reference sen-

sors. In this respect, fourth-order cumulants are used together with the ESPRIT algorithm.

It is known that the ESPRIT algorithm can be employed for DOA estimation for the given

problem setting as long as the source signals are independent [12]. The performance of [12]

degrades significantly due to finite length effects and correlation between source signals [13].

This point is discussed in Section 2.2.1.

In order to overcome the limitations in [12], IHOSS proposes a new cumulant matrix estima-

tion technique. This technique is more robust to the correlation between source signals. It is

based on estimating the cumulant matrix as the sum of the cumulant matrices corresponding

to the case where each source is acting alone. SOS approach is known to be more robust to

the estimation errors than the HOS approach for finite length signals [13]. Therefore SOS

approach is used to improve the DOA and array steering matrix estimates obtained from HOS
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approach. Sensor positions should be found in order to use the SOS approach. A new sensor

position estimation algorithm is proposed for this purpose. The sensor positions are found

unambiguously using multiple frequencies [17]. The details of the sensor position estimation

algorithm is given in Section 2.2.2. Initially, IHOSS assumes that the array steering matrix is

zero. Then the array steering matrix estimation is iteratively improved with the joint use of

HOS and SOS approaches. A MUSIC cost function is used to select the best array steering

matrix at each iteration. This is done in such a way that the non-negative cost function is im-

proved at each iteration. Therefore IHOSS algorithm is guaranteed to converge. The details

of the iterative approach and the cost function are explained in Section 2.2.4.
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2.2.1 HOS Based Blind DOA Estimation

In IHOSS, HOS approach is used to estimate the DOA angles without knowing the sensor

positions except the two reference sensors. To this end, fourth order cumulants are used, since

for the non-Gaussian signals, more statistical information can be obtained as compared with

SOS approach. In IHOSS, the additional information provided by the fourth-order cumulants

is used to generate virtual sensors at certain locations and to obtain the relation between the

actual and virtual sensors. Virtual sensor generation concept is illustrated for a single source

case in Fig. 2.2. It is assumed that there are three sensors located at different positions to

measure the source signal, s(t). The measured signals are r(t), x(t) and y(t) and there is no

sensor to measure the signal v(t).

Figure 2.2: Virtual sensor concept.

In this case, the cross-correlation between the measured signal r(t) and the virtual signal v(t)

can be obtained from the fourth-order cumulants [12], i.e,

E
{
v(t)r∗(t)

}
=
σ2

s

γ4,s
Cum

(
x(t), r∗(t), y(t), r∗(t)

)
(2.7)

where

Cum
(
x(t), r∗(t), y(t), r∗(t)

)
= E

{
x(t)r∗(t)y(t)r∗(t)

}
−E

{
x(t)r∗(t)

}
E

{
y(t)r∗(t)

}
−E {x(t)y(t)} E

{
r∗(t)r∗(t)

}
−E

{
x(t)r∗(t)

}
E

{
r∗(t)y(t)

}
(2.8)
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σ2
s = E

{
s(t)s∗(t)

}
(2.9)

γ4,s = Cum
(
s(t), s∗(t), s(t), s∗(t)

)
(2.10)

In a similar way the cross correlation between two measured signals can also be found from

the fourth-order cumulants, i.e.,

E
{
y(t)r∗(t)

}
=
σ2

s

γ4,s
Cum

(
y(t), r∗(t), r(t), r∗(t)

)
(2.11)

The details of the “virtual cross-correlation computation” in (2.7) and (2.11) can be found

in [12]. Using this concept, it is possible to generate an ESPRIT structure for any arbitrary

sensor geometry as shown in Fig. 2.3, which is called as Virtual-ESPRIT (VESPA) in [12].

Figure 2.3: Virtual ESPRIT structure for randomly deployed sensors.

In this structure, one of the sub-arrays is composed of the actual sensors and the other sub-

array is composed of virtual sensors [18]. The virtual sub-array is aligned with the selected

sensor pairs and the distance between the actual and virtual sub-arrays is determined by the

distance between selected sensor pairs. By changing the sensor pairs, we can obtain M(M −

1)/2 distinct virtual sub-arrays. Four of the possible distinct virtual sub-arrays are illustrated

in Fig. 2.4.

In Virtual-ESPRIT structure, the relation between the actual and virtual sub-arrays is obtained

from the cumulant matrix instead of covariance matrix in SOS approach. Cumulant matrix is

composed of the fourth-order cumulants corresponding to the selected virtual sensors. When
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Figure 2.4: Different Virtual ESPRIT structures for different pairs of the actual sensors.

the sensors 1 and 2 are selected as the sensor pair, the cumulant matrix is written as,

C =



c11,11 c11,12 . . . c11,1M c12,11 c12,12 . . . c12,1M

c11,21 c11,22 . . . c11,2M c12,21 c12,22 . . . c12,2M
...

...
. . .

...
...

...
. . .

...

c11,M1 c11,M2 . . . c11,MM c12,M1 c12,M2 . . . c12,MM

c21,11 c21,12 . . . c21,1M c22,11 c22,12 . . . c22,1M

c21,21 c21,22 . . . c21,2M c22,21 c22,22 . . . c22,2M
...

...
. . .

...
...

...
. . .

...

c21,M1 c21,M2 . . . c21,MM c22,M1 c22,M2 . . . c22,MM



(2.12)
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where

c11,i j = Cum
(
x1(t), x∗1(t), xi(t), x∗j(t)

)
(2.13)

c12,i j = Cum
(
x1(t), x∗2(t), xi(t), x∗j(t)

)
(2.14)

c21,i j = Cum
(
x2(t), x∗1(t), xi(t), x∗j(t)

)
(2.15)

c22,i j = Cum
(
x2(t), x∗2(t), xi(t), x∗j(t)

)
(2.16)

Using the properties of cumulants in [12], the cumulant matrix in (2.12) can be written in a

more compact form [5], i.e.,

C =


(
A ⊗ a∗r1

)
Cs

(
A ⊗ a∗r1

)H (
A ⊗ a∗r1

)
Cs

(
A ⊗ a∗r2

)H(
A ⊗ a∗r2

)
Cs

(
A ⊗ a∗r1

)H (
A ⊗ a∗r2

)
Cs

(
A ⊗ a∗r2

)H

 (2.17)

where ari is the ith row of the array steering matrix, A, in (2.5) and Cs is the L2 × L2 source

cumulant matrix in the form of,

Cs(i, j) = Cum
(
sk(t), s∗l (t), sm(t), s∗n(t)

)
(2.18)

i = L(m − 1) + l, 1 ≤ m, l ≤ L

j = L(n − 1) + k, 1 ≤ n, k ≤ L

Note that the frequency dependency of the cumulant matrix in (2.17) is dropped for simplicity.

The same form of the cumulant matrix is obtained for each frequency, f j.

The source cumulant matrix in (2.17), Cs, involves an error term, Ce
s, due to the dependency

of the source signals, i.e.,

Cs = Cd
s + Ce

s (2.19)

In (2.19), Cd
s is the desired source cumulant matrix which represents the part assuming that

the source signals are statistically independent, i.e.,

Cd
s = diag(γ1, 0, . . . , 0, γ2, 0, . . . , 0, γL) (2.20)

and

γi = Cum(si(t), s∗i (t), si(t), s∗i (t)) (2.21)

= Cd
s (L(i − 1) + i, L(i − 1) + i), 1 ≤ i ≤ L

As shown in (2.21), the non-zero diagonal elements, γi, are located with the indices L(i−1)+ i

for 1 ≤ i ≤ L. The relation in (2.20) is based on the fact that if a subset of random variables
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are independent of the rest, then the cumulant of these random variables is equal to zero as

stated in [12] as [CP5]. When the source signals are independent, Ce
s = 0, and Cs in (2.17)

has the desired form.

When the source signals are not independent, (2.19) can be used in (2.17) to obtain the fol-

lowing cumulant matrix,

C = Cd + Ce (2.22)

Cd is the desired cumulant matrix assuming that the source signals are statistically indepen-

dent and Ce represents the error term due to the dependency of the source signals, i.e.,

Cd =

 ARHOS
s AH ARHOS

s DAH

ADHRHOS
s AH ADHRHOS

s DAH

 (2.23)

Ce =


(
A ⊗ a∗r1

)
Ce

s

(
A ⊗ a∗r1

)H (
A ⊗ a∗r1

)
Ce

s

(
A ⊗ a∗r2

)H(
A ⊗ a∗r2

)
Ce

s

(
A ⊗ a∗r1

)H (
A ⊗ a∗r2

)
Ce

s

(
A ⊗ a∗r2

)H

 (2.24)

where L × L diagonal matrices RHOS
s and D are defined as,

RHOS
s = diag(γ1, γ2, . . . , γL) (2.25)

D = diag
(
e j2π f j∆

cos(θ1)
ϑs , . . . , e j2π f j∆

cos(θL)
ϑs

)
(2.26)

The reference sensors are assumed to be located at (0, 0) and (∆, 0) on the coordinate system

for simplicity where ∆ ≤ λ/2.

Note that Cd in (2.23) has the similar form of a correlation matrix used in the ESPRIT algo-

rithm. Therefore, it can be used to find the DOA and array steering matrix estimates as in [2].

However, the desired cumulant matrix, Cd, can only be obtained when the source signals are

independent, i.e., Ce
s = 0. In practical situations, where there is limited number of observa-

tions, source signals cannot be assumed to be independent. In this case, the cumulant matrix

in (2.22) is not in the form of a correlation matrix suitable for the ESPRIT algorithm. In [12],

the error term, Ce, is assumed to be zero even for the limited number of observations and the

DOA estimates are found from the cumulant matrix in (2.22) by using the ESPRIT algorithm.

It is known that the nonzero Ce matrix significantly degrades the performance of the DOA

estimation [13].

In the IHOSS algorithm, a new cumulant matrix estimation technique, which is more robust

to the correlation between source signals, is proposed. In this technique, the effect of the error

term in (2.22) is decreased by exploiting the fact given in Lemma-1.
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Lemma-1: Assume that the noise is Gaussian and independent of the source signals. Then,

the desired cumulant matrix, Cd, in (2.23) can be written as the sum of the cumulant matrices,

C(i), 1 ≤ i ≤ L, i.e.,

Cd =

L∑
i=1

C(i) (2.27)

where C(i) corresponds to the cumulant matrix in (2.17) when only the ith source signal is

received.

Therefore, if the array outputs for each source is available, it is possible to obtain the desired

cumulant matrix, Cd in (2.23), even when the source signals are not independent. The proof

of Lemma-1 is given in Appendix A.

For the practical applications, IHOSS estimates the array outputs for each source by suppress-

ing the components of the other source signals in the measurements [15], [16]. If we assume

that Â is the array steering matrix estimate, IHOSS estimates the source signals as,

ŝ(t) = Â†x(t) (2.28)

Then, the array output for the ith source is found as,

x̂(i)(t) = x(t) −
L∑

j=1
j,i

â jŝ j(t) (2.29)

where â j is the jth column of the array steering matrix estimate, Â, and ŝ j(t) is the estimate

of the jth source signal found from (2.28). By substituting (2.28) into (2.29), the array output

for the ith source can be rewritten as,

x̂(i)(t) = Qix(t) (2.30)

where M × M matrix, Qi is defined as,

Qi = I − ÂZiÂ† (2.31)

Zi is the L × L diagonal matrix whose diagonal elements are one except the ith element. The

ith element is set to zero. The estimate of the desired cumulant matrix, Cd
est, is found from

(2.27) by using (2.30) for the computation of C(i), i.e.,

Cd
est =

L∑
i=1

 Q
(i)
1 Cx

(
Q

(i)
1

)H
Q

(i)
1 Cx

(
Q

(i)
2

)H

Q
(i)
2 Cx

(
Q

(i)
1

)H
Q

(i)
1 Cx

(
Q

(i)
1

)H

 (2.32)

19



where Q
(i)
j = Qi ⊗ q(i)∗

j and q(i)∗
j is the complex conjugate of the jth row of the matrix Qi. Cx

is the M2 × M2 cumulant matrix which contains all the cumulants of the array output, i.e.,

Cx(k, l) = Cum
(
xl1 , x

∗
k1
, xk2 , x

∗
l2

)
(2.33)

k = (k2 − 1)M + k1 , 1 ≤ k1, k2 ≤ M

l = (l2 − 1)M + l1 , 1 ≤ l1, l2 ≤ M

Cx can be written in matrix form as,

Cx =
(
A ⊗ A∗

)
Cs

(
A ⊗ A∗

)H (2.34)

The derivation of (2.32) is given in Appendix B.

IHOSS algorithm finds the DOA and array steering matrix estimates from the eigenvalue

decomposition of Cd
est, i.e., Cd

estS = SΛs as in the ESPRIT algorithm [2]. Λs is the diagonal

matrix composed of the L largest eigenvalues of the matrix Cd
est and 2M × L matrix S =

[ ST
1 ST

2
]T is obtained from the eigenvectors corresponding to these eigenvalues. S1 and S2

are M × L matrices. The DOA and the array steering matrix estimates are found by applying

the ESPRIT algorithm [2], i.e.,

θ̂i = cos−1
(
−
∠Φ(i, i)
2π f j∆

ϑs

)
(2.35)

A = S1Ψ (2.36)

where ∠Φ(i, i) is the phase angle of the ith diagonal element of the matrix Φ. L × L diagonal

matrix, Φ, and L × L matrix, Ψ, are related as,

S†1S2Ψ = ΨΦ (2.37)

As it can be seen from (2.37), Φ is the diagonal matrix composed of the eigenvalues of the

matrix S†1S2 and Ψ is the matrix whose columns are the corresponding eigenvectors.

Note that knowing the distance and the direction between the two reference sensors are suf-

ficient for the DOA estimation as in (2.35). However, it is not the case for the array steering

matrix estimation. In the ESPRIT algorithm the array steering matrix estimation is found up

to an unknown scale factor as in (2.36). To find the scale factor, in addition to the distance and

the direction between the two reference sensors, it is required to know one of the reference

sensor position. Since it is assumed that the first reference sensor is located at (0,0), the first
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row of the array steering matrix has to consist of all ones. Then, the actual array steering

matrix can be estimated from (2.36), i.e.,

Â = AH−1 (2.38)

where H = diag(a11, a12, . . . , a1L) and ai j is the ith row and jth column of matrix A.

Note that, the proposed cumulant matrix in (2.32) can be seen as the weighted sum of all the

possible cumulants that can be found from the given array output as in (2.33). The weight

terms, Qi ⊗ q(i)∗
j , j ∈ 1, 2 are determined from the array steering matrix estimation as in

(2.31). The effect of the weight terms can be easily seen by substituting (2.34) into (2.32),

which results,

Cd
est =

L∑
i=1

 A
(i)
1 Cs

(
A

(i)
1

)H
A

(i)
1 Cs

(
A

(i)
2

)H

A
(i)
2 Cs

(
A

(i)
1

)H
A

(i)
1 Cs

(
A

(i)
1

)H

 (2.39)

where A
(i)
j = QiA ⊗ q(i)∗

j A∗, j ∈ {1, 2}.

If Qi in (2.31) is obtained by taking the initial estimate for the array steering matrix as Â = 0

and substituted in (2.39), we obtain Cd
est = LC which is used in [12]. On the other hand,

the desired cumulant matrix, Cd, in (2.23), is obtained when Â = A, namely, Cd
est = Cd.

In this case, the desired cumulant matrix, Cd, is obtained even when the source signals are

dependent. In this respect, the proposed cumulant matrix estimate is a generalized cumulant

matrix estimate which improves the parameter estimates depending on the accuracy of the

array steering matrix estimation.

2.2.2 Unambiguous Sensor Localization

In this section, the algorithm for unambiguous sensor localization is introduced. It is assumed

that, the DOA and array steering matrix estimates are obtained for multiple frequencies [17].

The conditions for the frequencies for unambiguous localization are also given in this section.

Let f j, 1 ≤ j ≤ F, represent the frequencies, where the array output is observed for the same

sources. Then, the elements of the array steering matrix estimate corresponding to mth sensor

and ith source with frequency f j can be written in the following form,

â
(
θ̂i( f j),pm

)
= exp

{
j2π

f j

ϑs

(
pmu(θ̂i( f j)) −

ϑs

f j
k(i)

f j

)}
(2.40)
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where k(i)
f j

is an integer specified for the frequency f j and the ith source due to 2π ambiguity.

θ̂i( f j) is the DOA angle estimate of the ith source for frequency f j. u(θ̂i( f j)) is the unit direction

vector estimate, i.e., u(θ̂i( f j)) = [ cos(θ̂i( f j)) sin(θ̂i( f j)) ]T . When all the incoming signals

for frequency f j are considered, the following relation can be specified from (2.40),

pmU(Θ̂( f j)) =
ϑs

2π f j
Ξ̂m( f j) +

ϑs

f j
k f j , 1 ≤ j ≤ F (2.41)

where

U(Θ̂( f j)) =

[
u(θ̂1( f j)) u(θ̂2( f j)) . . . u(θ̂L( f j))

]
(2.42)

Ξ̂m( f j) =

[
ξ̂(1)

m ( f j) ξ̂(2)
m ( f j) . . . ξ̂(L)

m ( f j)
]

(2.43)

k f j =

[
k(1)

f j
k(2)

f j
. . . k(L)

f j

]
(2.44)

ξ̂(i)
m ( f j) is the phase term of the array steering matrix element in (2.40), i.e.,

ξ̂(i)
m ( f j) = ∠â

(
θ̂i( f j),pm

)
(2.45)

Then, the position of the mth sensor is found from (2.41) as

p̂m(k f j) =

(
ϑs

2π f j
Ξ̂m( f j) +

ϑs

f j
k f j

)
U†(Θ̂( f j)) (2.46)

Note that the position estimate in (2.46) takes different values for different k f j values. There-

fore, the mth sensor position estimate in (2.46) is ambiguous and k f j is defined as the ambi-

guity term for the frequency f j. The possible values of k f j is determined by considering the

error in least squares solution, ε, i.e.,

k f j =

k ∈ Z

∣∣∣∣∣∣∣
∥∥∥∥∥∥p̂m(k)U(Θ̂( f j)) −

ϑs

2π f j
Ξ̂m( f j) −

ϑs

f j
k
∥∥∥∥∥∥2

≤ ε

 (2.47)

Substituting (2.46) into (2.47) simplifies the relation as,

k f j =

k ∈ Z

∣∣∣∣∣∣∣
(
ϑs

2π f j
Ξ̂m( f j) +

ϑs

f j
k
) (

IL×L − U†(Θ̂( f j))U(Θ̂( f j))
) ( ϑs

2π f j
Ξ̂m( f j) +

ϑs

f j
k
)H

≤ ε


(2.48)

where IL×L is the L × L identity matrix. Note that when there are two sources, L = 2, all

integers satisfy the condition in (2.48) due to the fact that U†(Θ̂)U(Θ̂) = I2×2 as shown in Fig.

2.5-a. Ambiguous sensor positions are illustrated in Fig. 2.5-b for three sources. In this case,

as stated in (2.48) only certain integer values generate ambiguous sensor positions.

Therefore, different ambiguous sensor positions are obtained for different number of sources

as shown in Fig. 2.6.
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(a) (b)

Figure 2.5: Ambiguous sensor positions for (a) two and (b) three sources.

Figure 2.6: Different ambiguous sensor positions for two and three sources.

The ambiguity problem can only be solved by finding unique
{
k f j

}F

j=1
values for which the

right hand side of (2.41) is the same for different frequencies. When there are errors in esti-

mated parameters, ξ̂(i)
m ( f j), unambiguous sensor positions can be found as long as the errors

are bounded by a limiting value. This fact is discussed in Theorem-1 given below.

The desired
{
k f j

}F

j=1
values are found by solving the following minimization problem, i.e.,

{k f j}
F
j=1 = arg min

{k f j }
F
j=1

L∑
i=1

F∑
j=2

(
ϑs

2π f1
ξ̂(i)

m ( f1) +
ϑs

f1
k(i)

f1
−

ϑs

2π f j
ξ̂(i)

m ( f j) −
ϑs

f j
k(i)

f j

)2

(2.49)

Since the minimum value of the sum of positive quantities is obtained by minimizing each

quantity separately, (2.49) can be rewritten as,

{k
(i)
f j
}Fj=1 = arg min

{k(i)
f j
}Fj=1

F∑
j=2

(
ϑs

2π f1
ξ̂(i)

m ( f1) +
ϑs

f1
k(i)

f1
−

ϑs

2π f j
ξ̂(i)

m ( f j) −
ϑs

f j
k(i)

f j

)2

, 1 ≤ i ≤ L (2.50)
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Then, the unambiguous position of the mth sensor is found by substituting (2.50) into (2.41),

i.e.,

p̂m =

[
ϑs

2π f1
Ξ̂m( f1) +

ϑs
f1

k f1 . . . ϑs
2π fF

Ξ̂m( fF) +
ϑs
fF

k fF

]
.[

U(Θ̂( f1)) . . . U(Θ̂( fF))
]†

(2.51)

It is important to note that, the frequencies, f j, should satisfy certain conditions in order to

obtain unambiguous sensor position estimates. The constraints on the frequencies are given

in Theorem-1.

Theorem-1: Let the coordinate of the most distant sensor with respect to the reference sensor

positioned at (0, 0) is given as h = (hx, hy) and f1 be the minimum frequency, i.e., f1 <

f j, ∀ j ∈ {2, . . . , F}. Also let the ratio of the frequencies, f j/ f1, be bounded by,(
2hmax + 1
2hmax + 2

) [
f j

f1

]
r
<

f j

f1
<

(
2hmax + 2
2hmax + 1

) [
f j

f1

]
r

(2.52)

where hmax =

⌈
1
ϑs

max
j

( f j)
√

h2
x + h2

y

⌉
. Then, the ambiguity in sensor positions is resolved if

the following constraints on the frequencies and the estimation errors are satisfied, i.e.,

∣∣∣∣∣∣g j − g1
f j

f1

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣ f j

f1
−

[
f j

f1

]
r

∣∣∣∣∣∣ , ∀i ∈ {1, . . . , L}

∃ j ∈ {2, . . . , F}
(2.53)

ϑs
s

π2

F∑
j=2

∆ξ(i)
m ( f1)
f1

−
∆ξ(i)

m ( f j)
f j

2

<

F∑
j=2

(
ϑs

f j

∣∣∣∣∣∣ f j

f1
−

[
f j

f1

]
r

∣∣∣∣∣∣
)2

(2.54)

where 1 ≤ i ≤ L and g j, 1 ≤ j ≤ F, is the integer bounded by

−2
⌈

f j

ϑs

√
h2

x + h2
y

⌉
− 1 ≤ g j ≤ 2

⌈
f j

ϑs

√
h2

x + h2
y

⌉
+ 1 (2.55)

and ∆ξ(i)
m ( f j) is the estimation error for the phase term of the array steering matrix element for

mth sensor and ith source at frequency f j, i.e.,

∆ξ(i)
m ( f j) = ξ̂(i)

m ( f j) − ξ
(i)
m ( f j) (2.56)

As stated in Theorem-1, there are two constraints that should be satisfied for the solution of

ambiguity problem in sensor position estimation as given in (2.53) and (2.54). The constraint

in (2.53) guarantees that the sensor position estimates for each frequency coincide at a single

point. When this constraint is not satisfied, there are many possible solutions for the sensor
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positions for the given array steering matrix and the DOA angle estimates as shown in Fig.

2.7 for two frequencies. Fig. 2.7-a illustrates the sensor position estimates for the frequencies

f1 = 10MHz and f2 = 20MHz. Since these frequencies do not satisfy the constraint in

(2.53), all the sensor position estimates for f1 coincide with the sensor position estimates

for f2 and we can not find a single solution for the sensor position estimation. When the

second frequency is changed to f2 = 15MHz, even though the number of coinciding points is

decreased, there are still multiple possible sensor positions. When the frequencies are selected

such that the constraint in (2.53) is satisfied, i.e., f1 = 10MHz and f2 = 13MHz, the sensor

position estimates for each frequency coincide only at single point as shown in Fig. 2.8. In

this case, the sensor position estimate is found unambiguously.

(a) (b)

Figure 2.7: Ambiguous sensor positions for the frequencies that does not satisfy the condition
in (2.53). The selected frequencies are (a) f1 = 10MHz, f2 = 20MHz, (b) f1 = 10MHz,
f2 = 15MHz

Figure 2.8: Ambiguous sensor positions for the frequencies that satisfy the condition in (2.53).
The selected frequencies are f1 = 10MHz, f2 = 13MHz
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Note that, due to the estimation errors in phase terms, ξ̂(i)
m ( f j), the sensor position estimates for

each frequency may not coincide. In this case, we select the sensor position estimate such that

the sensor position estimates for each frequency are closest. Although the constraint in (2.53)

guarantees that the two sensor position estimates are closest at single point, the minimum error

in sensor position estimation is not guaranteed. To estimate the sensor position estimation

with minimum error, in addition to the constraint in (2.53) the estimation errors in phase terms

of array steering matrix should be bounded as given in (2.54). When the estimation errors are

bounded to satisfy the constraint in (2.54) for the frequencies that satisfy the constraint in

(2.53), it is guaranteed that the sensor position estimates for each frequency are closest at the

point that is closest to the actual sensor position as shown in Fig. 2.9-a. When the estimation

errors are increased such that the constraint in (2.54) is not satisfied, sensor position estimates

for each frequency may be closest at the point far away from the actual sensor position as

shown in Fig. 2.9-b. In this case, even though there is a single solution for the sensor positions

estimation, the estimation errors in sensor positions are large.

(a) (b)

Figure 2.9: Estimated sensor positions for the errors that (a) does not satisfy and (b) satisfy
the condition in (2.54). The selected frequencies are (a) f1 = 10MHz, f2 = 13MHz.

The proof of Theorem-1 is presented in Appendix C. While two frequencies constrained

as in Theorem-1 are sufficient for unambiguous sensor position estimation, more than two

frequencies can improve the performance especially at low SNR.
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2.2.3 SOS-Based MUSIC Algorithm

Sensor position matrix estimate, P̂, is constructed using (3.11) and used in the MUSIC algo-

rithm to generate the MUSIC pseudospectrum [1], i.e.,

Γ(θ) =
1

aH(θ, P̂)GGHa(θ, P̂)
(2.57)

G is the M × (M − L) matrix whose columns are composed of the eigenvectors corresponding

to M − L smallest eigenvalues of the correlation matrix obtained in the SOS approach. Note

that for the proposed IHOSS algorithm, MUSIC pseudospectrum is constructed for each fre-

quency separately as it is explained in Section 2.2.4. The DOA and the array steering matrix

estimates for the SOS approach are obtained by finding the L largest peaks of the MUSIC

pseudospectrum, i.e., {
θ̂i
}L

i=1
= arg max

θ
Γ(θ) (2.58)

Â =
[
a(θ̂1, P̂), a(θ̂2, P̂), . . . , a(θ̂L, P̂)

]
(2.59)

2.2.4 The Cost Function and The Algorithmic Steps

The iterative process used in IHOSS algorithm is composed of three steps. The first step is to

find the proposed cumulant matrix estimate, Cd
est, in (2.32) using the array output and the array

steering matrix estimate obtained from the previous iteration for each frequency. Then, using

the HOS approach, the DOA and array steering matrix estimates are found for each frequency

from (2.35) and (2.38), respectively. Note that the initial array steering matrix estimate is

selected as zero, i.e., Â = 0 for each frequency. The second step is to find the sensor position

estimates using the DOA and the array steering matrix estimates obtained from the first step

as given in (2.51). In the last step, SOS approach is used through the MUSIC algorithm to

find the DOA and array steering matrix estimates from (2.58) and (2.59), respectively. Then,

the cost function is used to select the best array steering vector estimates for each source and

frequency. The cost function is defined as the value of the MUSIC pseudospectrum for the

estimated array steering vector for each source, i.e.,

Γ(âi( f j)) =
1(

âi( f j)
)H

G f jGH
f j

âi( f j)
(2.60)

where âi( f j) is the array steering vector estimate for the ith source at the frequency f j. G f j

is the M × (M − L) matrix whose columns are composed of the eigenvectors corresponding
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to M − L smallest eigenvalues of the correlation matrix obtained for frequency f j in the SOS

approach [1]. In order to guarantee the convergence at each iteration, only the array steering

vectors that increase the cost function value over the previous iteration are selected. If the

cost function is not increased, the previous estimates are kept for the current iteration. The

iterations are terminated when there is no increment in the cost function for any source and

any frequency. After the iterations are completed, the final DOA angle estimate is selected

as the DOA angle estimate at the frequency where the cost function is maximum. The final

sensor position estimates are found by using the DOA and the array steering matrix estimates

at each frequency as in (2.51). This process can be described better as it is shown in Algorithm

2.1 where the algorithmic steps of the IHOSS algorithm are presented. As it is shown in Table

2.1, IHOSS algorithm takes only the sensor outputs as input. In this respect, there is no need

to know or estimate an initial value for the DOA or sensor positions except the two reference

sensors to start the iterations.

The convergence of the proposed IHOSS algorithm is essentially similar to the one in [27].

The cost function in (2.60) is non-negative and by checking the value of the cost function at

each iteration we are guaranteed to obtain non-decreasing function for the cost values, i.e.,

Γ(â(n)
i ( f j)) ≥ Γ(â(n−1)

i ( f j)) ≥ 0. Therefore, the proposed IHOSS algorithm is guaranteed to

converge to a certain value, Γ, at the end of the iterations. However, the convergence to this

value does not mean that the global optimum is reached as it is the general disadvantage of all

iterative algorithms [27].

2.3 Cramér-Rao Bound

CRB expressions for DOA estimation in case of known sensor positions and different noise

models are derived in [9], [20], [22], [23], [24]. In [9], the uncertainty on sensor positions

is considered and the CRB for sensor position estimation is presented. It is assumed that the

nominal sensor positions are known and the small displacement from the nominal locations is

modeled as Gaussian. In this work, there is no a priori information about the sensor positions

except the two reference sensors. Therefore, none of the previous CRB expressions in liter-

ature can be used for the DOA and sensor position estimations in this work, and a new CRB

expression is derived for the problem setting in this work.
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Algorithm 2.1: Pseudocode for IHOSS algorithm.

The sensor array output and the positions of the two reference sensors are given. Set1

the iteration counter to zero, i.e., n = 0. Initialize the array steering vector for each

source and frequency as zero, â(0)
i ( f j) = 0;

Set the iteration termination condition to true, i.e., Termination = true. Estimate the2

proposed cumulant matrix, Cd
est, from the array output and â(n)

i ( f j) as in (2.32). Then,

from the estimated cumulant matrix find DOA estimates, θ̂HOS
i ( f j) using (2.35) and

array steering matrix ÂHOS ( f j), using (2.38), for 1 ≤ i ≤ L and 1 ≤ j ≤ F;

Find the sensor position estimates, P̂, as in (2.51) using (2.42) and (2.50) with3

θ̂HOS
i ( f j) and ÂHOS ( f j), for 1 ≤ i ≤ L and 1 ≤ j ≤ F;

for j = 1 to F do4

Find θ̂(S OS )
i ( f j) using P̂ as in (2.58). Then, find â(S OS )

i ( f j) using P̂ and θ̂(S OS )
i ( f j) as5

in (2.59);

if Γ(â(S OS )
i ( f j)) ≥ Γ(â(n−1)

i ( f j)) then6

Update the DOA and the array steering vectors for the ith source and jth7

frequency, i.e., â(n)
i ( f j) = â(S OS )

i ( f j), θ̂
(n)
i ( f j) = θ̂(S OS )

i ( f j);

Update the cost function, i.e., Γ(â(n)
i ( f j)) = Γ(â(S OS )

i ( f j));8

Set the iteration termination condition to false, i.e., Termination = f alse;9

else10

Do not update the DOA and the array steering vectors for the ith source and jth11

frequency, i.e., â(n)
i ( f j) = â(n−1)

i ( f j), θ̂
(n)
i ( f j) = θ̂(n−1)

i ( f j);

end12

end13

if Termination = f alse then14

Increment the iteration counter, i.e., n = n + 1;15

Go to Step 2;16

else17

Find the final estimate of DOA as θ̂ f inal
i = θ̂(n)

i ( f j∗), where j∗ = arg max j Γ(â(n)
i ( f j));18

Find the final estimate of sensor positions using θ̂(n)
i ( f j∗) and â(n)

i ( f j),19

1 ≤ i ≤ L, 1 ≤ j ≤ F;

end20
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The signal waveforms are considered to be deterministic unknown process and the noise is as-

sumed to be temporally uncorrelated complex Gaussian process. It is also assumed that noise

is uncorrelated for different frequencies. In this work, CRB expressions are derived by con-

sidering a non-circular complex Gaussian distribution for the noise with unknown covariance

matrix. The modification for circular case is also given. Noise may be spatially correlated.

Then, the CRB for DOA, CRBθ, and sensor position estimation, CRBp, are given by,

CRBθ =
1
L

tr
(
K−1
θ

)
(2.61)

CRBp =
1

2Mu
tr

(
K−1

2 + K−1
2 KT

1 K−1
θ K1K−1

2

)
(2.62)

where Kθ = K3−K1K−1
2 KT

1 , Mu is the number of unknown sensor positions, and the matrices

K1, K2, and K3 are defined as,

K1 =

N∑
t=1

F∑
j=1

FIMT
Θ(t, f j)Π⊥(t, f j)FIMP(t, f j) (2.63)

K2 =

N∑
t=1

F∑
j=1

FIMT
P(t, f j)Π⊥(t, f j)FIMP(t, f j) (2.64)

K3 =

N∑
t=1

F∑
j=1

FIMT
Θ(t, f j)Π⊥(t, f j)FIMΘ(t, f j) (2.65)

The matrix, Π⊥(t, f j), is defined as in (2.68). 2M × 2M matrix R(t, f j) is the real covariance

matrix of the noise for time t and frequency f j defined as,

R(t, f j) = E


 <

(
v(t, f j)

)
=

(
v(t, f j)

)

 <

(
v(t, f j)

)
=

(
v(t, f j)

)

T (2.66)

The matrix A(c)( f j) is defined for real and complex source signals as,

A(c)( f j) =



 <
(
A( f j)

)
−=

(
A( f j)

)
=

(
A( f j)

)
<

(
A( f j)

)
 , complex <

(
A( f j)

)
=

(
A( f j)

)
 , real

(2.67)

The matrices FIMΘ(t, f j) and FIMP(t, f j) are defined in (2.69) and (2.70), respectively. I2×2
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Π⊥(t, f j) = R−1(t, f j) ×(
I − A(c)( f j)

(
A(c)T

( f j)R−1(t, f j)A(c)( f j)
)−1

A(c)T
( f j)R−1(t, f j)

)
(2.68)

FIMΘ(t, f j) =



 −1

1

 ⊗ΠL
1 ( f j)

 Ds(r)(t)

 �
 =

(
A( f j)

)
<

(
A( f j)

)
 −



 1

1

 ⊗ΠL
1 ( f j)

 Ds(i)(t)


�

 <
(
A( f j)

)
=

(
A( f j)

)
 (2.69)

FIMP(t, f j) =


 =

(
A( f j)

)
<

(
A( f j)

)
<

(
A( f j)

)
−=

(
A( f j)

)

 Ds(r)(t)

Ds(i)(t)

 [ Tc( f j) Ts( f j)
] (

I2×2 ⊗ 11×Mu

)
�


 −1 −1

1 1

 ⊗ Σ

 (2.70)

is the 2 × 2 identity matrix and 11×Mu is the 1 × Mu vector composed of all ones and,

Ds(r)(t) = < (diag (s1(t), s2(t), . . . , sL(t))) (2.71)

Ds(i)(t) = = (diag (s1(t), s2(t), . . . , sL(t))) (2.72)

ΠL
1 ( f j) =

2π f j

ϑs
P

 −sin(θ1) −sin(θ2) . . . −sin(θL)

cos(θ1) cos(θ2) . . . cos(θL)

 (2.73)

Ts( f j) =
2π f j

ϑs

[
sin(θ1) sin(θ2) . . . sin(θL)

]T
(2.74)

Tc( f j) =
2π f j

ϑs

[
cos(θ1) cos(θ2) . . . cos(θL)

]T
(2.75)

Σ is the M×Mu matrix whose columns contain only one nonzero element which is set to one.

The location of the nonzero element at each column is determined by the sensor index with un-

known positions. If it is assumed that the positions of the first two sensors are known and the

other sensor positions are unknown, the matrix Σ is composed of, Σ =

[
0T

2×Mu
IT

M−2×Mu

]T
.

The subscripts are used to define the sizes of the zero matrix, 0, and identity matrix, I.

Note that the Cramér-Rao bound expressions in (2.61) and (2.62) are given for non-circular

complex Gaussian noise case. When the noise is circular, expressions given above are valid

with the change in noise covariance matrix in (2.66). For circular noise case, the real covari-

31



ance matrix to be used in CRB expressions is found as [19],

R(t, f j) =
1
2

 <
(
Γ(t, f j)

)
−=

(
Γ(t, f j)

)
=

(
Γ(t, f j)

)
<

(
Γ(t, f j)

)
 (2.76)

where M × M matrix Γ(t, f j) is defined as,

Γ(t, f j) = E
{
v(t, f j)vH(t, f j)

}
(2.77)

Derivations of the CRB expressions in (2.63) - (2.65) are given in Appendix D.

2.4 Performance Results

The performance of the IHOSS algorithm is evaluated for different cases for both DOA and

position estimation. VESPA [12] is considered only for DOA estimation comparison since it

cannot estimate the sensor positions. The CRB expressions in (2.61) and (2.62) are used to

show the effectiveness of the IHOSS algorithm.

It is assumed that there are two far-field sources and M = 10. The received wideband source

signals are passed through three narrowband bandpass filters with center frequencies which

satisfy the conditions in Theorem-1, i.e., f1 = 9.85 MHz, f2 = 9.925 MHz and f3 = 10.0

MHz. Each sensor position except the two reference sensors is randomly selected from a

uniform distribution in the deployment area of 50x50 meters. The reference sensors are placed

at (0, 0) and (15, 0) in meters where the wavelength corresponding to the highest frequency

is λ = 30 meters. For the parameter estimation, N = 1000 snapshots are collected for each

frequency. The performance results are the average of 100 trials. At each trial, source signals,

noise, the sensor positions except the reference sensors and the DOA angles of source signals

are changed randomly. The difference between the DOA angles of the source signals is set

to 40 degrees. The source signals have a uniform distribution and the noise is additive white

Gaussian and uncorrelated with the source signals. In the simulations, source signals are

generated from a uniform distribution. Note that the fourth-order cumulants used in HOS

approach is zero for Gaussian signals. On the other hand, for the finite length signals, the

Gaussian assumption is not always satisfied especially for the small number of samples and

IHOSS algorithm can also be used for the source signals generated from Gaussian distribution.

The simulation parameters are summarized in Table 2.1.
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Table 2.1: Simuation parameters for IHOSS algorithm.

Number of sensors M = 10
Number of sources L = 2
Number of snapshots N = 1000
Frequencies [9.85, 9.925, 10.0] MHz
Deployment area [50 × 50] meters
Distance between reference sensors ∆ = 15 meters
Separation of source DOAs 40o

Number of trials 100

For the simulation, a maximum number of iterations, nmax, is defined for the iterative ap-

proach. When a predefined maximum number of iterations is reached, iterative approach is

terminated even if the termination condition given in Table 2.1 is not satisfied. The perfor-

mance results of the IHOSS algorithm are illustrated for three different maximum number of

iterations, namely, nmax = 4, nmax = 15, and nmax = 30 in order to show the convergence of

the IHOSS algorithm. In the simulations the effect of the additive noise on the performance is

controlled by the Signal-to-Noise Ratio (SNR) value. SNR is defined as the ratio of the signal

power and the noise power at the sensor outputs, i.e.,

S NR = 10 log10

∥∥∥ari, f jS f j

∥∥∥2∥∥∥vri, f j

∥∥∥2 ,
1 ≤ i ≤ M

1 ≤ j ≤ F
(2.78)

where ari, f j is the ith row of array steering matrix A f j(Θ,P) in (2.5), L×N matrix S f j and 1×N

vector vri, f j are the received source signals and noise for 1 ≤ t ≤ N as in (2.4), i.e.,

S f j =

[
s f j(1) s f j(2) . . . s f j(N)

]
(2.79)

vri, f j =

[
vi, f j(1) vi, f j(2) . . . vi, f j(N)

]
(2.80)

The parameter estimation errors in performance results are defined as the averaged root mean

squared error (RMSE), i.e.,

RMS E =

√√√√
1

NprNtr

Npr∑
pr=1

Ntr∑
tr=1

(βest − βcorr)2 (2.81)

where Npr and Ntr are the number of estimated parameters and the number of trials, respec-

tively. βest and βcorr are the estimated and correct value of the parameter β, respectively. In

the following performance results, β can be DOA angles or the x and y components of the

sensor positions.

33



The performance results for the DOA and sensor position estimations at different SNR values

and maximum number of iterations are illustrated in Fig. 2.10. In Fig. 2.10(a), it is seen that

VESPA has a flooring effect. This is due to the errors in the cumulant matrix for finite length

data and multiple sources. IHOSS performs well and closely follows the CRB as the number

of iterations is increased. This is due to the fact that IHOSS converts the multiple source

problem into a single source case and effectively uses HOS and SOS techniques with a robust

cumulant matrix (2.32). The position estimation accuracy in Fig. 2.10(b) is especially good at

high SNR, where the position ambiguity is solved accurately. The performance degradation at

low SNR is related with the condition in Theorem-1. In this case, the errors in array steering

matrix estimates are higher than the threshold given in Theorem-1. It is also seen that the

required number of iterations for the best result in DOA and sensor position estimation is

SNR dependent. As the SNR increases, IHOSS requires more iteration in order to follow the

CRB closely. As it is seen in Fig. 2.10, the performance results for nmax = 15 and nmax = 30,

are almost the same. Therefore, a small number of iterations is sufficient to get a satisfactory

performance.

In Fig. 2.11, the performance of the algorithm is shown when the number of snapshots is

changed. SNR is set to 20 dB. Fig. 2.11(a) shows that the IHOSS algorithm performs signifi-

cantly better than VESPA and approaches to the CRB even when N is small. In Fig. 2.11(b),

it is seen that IHOSS finds the sensor positions effectively and closely follows the CRB after

N = 250 snapshots. When N is small, the accuracy of the array steering matrix estimation is

not sufficient to satisfy the condition in Theorem-1 and a significant performance degradation

in sensor position estimation is observed as illustrated in Fig. 2.11(b).

The effect of the difference between the DOA angles of the sources on the performance of

DOA and sensor position estimations is illustrated in Fig. 2.12. In this example, two sources

are located randomly in a 100 degrees sector between 40 and 140 degrees. The difference

between the DOA angles of the two sources is changed from 1 to 50 degrees. SNR is set to

20 dB. As it is seen in Fig. 2.12(a), IHOSS follows the CRB after the DOA separation of

approximately 10 degrees and performs significantly better than VESPA whose performance

is also reported in [13]. The DOA RMSE of IHOSS increases as the source separation is

increased for four iterations (IHOSS, ItNum = 4). CRB also increases with the source separa-

tion even though the increase is small. Note that this is due to the fact that the source DOA’s
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are close to the endfire of the baseline determined by the two reference sensors as the source

separation increases. IHOSS makes larger errors for small number of iterations. This problem

is solved by increasing the maximum number of iterations. As it is seen in Fig. 2.12(a), a few

iterations are enough to obtain a good accuracy. The sensor position estimation performance

is illustrated in Fig. 2.12(b). It is seen that IHOSS solves the position ambiguity effectively

when two sources are separated by more than 18 degrees. For the closely spaced sources, the

condition on estimation errors in Theorem-1 is not satisfied and the ambiguity problem is not

solved accurately.

Fig. 2.13 shows the performance results of the DOA and sensor position estimations when

the sensor density is changed. The sensor density is defined as M/d2
a, where d2

a is the area

in square wavelength, i.e., d2
a = dxdy

(
1
ϑs

min
j

( f j)
)2

. dx and dy are the lengths of the sensor

deployment area in the x and y axes, respectively. The number of sensors is set as M = 10.

Two reference sensors are located at (0,0) and (15,0) coordinates in meters and the remaining

M − 2 sensors are randomly deployed. The positions of the randomly deployed M − 2 sensors

are scaled to change the sensor density without changing the sensor geometry. Two far-field

sources are located randomly in the range of 40-140 degrees with a DOA separation of 40

degrees. SNR is set to 20 dB. The sensor positions except the reference sensors and source

DOAs are changed at each trial. As it is seen in Fig. 2.13(a), IHOSS closely follows the

CRB for the DOA estimation. It is also seen that DOA RMSE increases by increasing the

sensor density. In this case, sensors are close to each other. When the sensors are very close

to each other, a small perturbation on sensor positions results large DOA deviations. The

sensor position estimation performance is shown in Fig. 2.13(b). Since sensor density is

varied by changing the deployment area, the sensor position estimation error is shown by

scaling with the size of the deployment area. It is seen that IHOSS closely follows the CRB

when the sensor density is greater than 1. For small sensor densities, the position estimation

performance is decreased due to the large errors in array steering matrix estimates as explained

in Theorem-1.

Since IHOSS uses multiple frequencies to resolve the ambiguity problem in sensor position

estimation, the effect of the frequency selection on DOA and sensor position estimations is

also investigated. For this example, it is assumed that there are two different frequencies that

the array output is observed for the same sources. SNR is set to 20 dB. The first frequency
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is fixed at 9.75 MHz and the second frequency is varied from 9.75 MHz to 10 MHz, in such

a way that the conditions in Theorem-1 are satisfied. The performance results are shown in

Fig. 2.14. As it is seen in Fig. 2.14(a), the frequency difference does not significantly affect

the DOA estimation performance of the IHOSS. On the other hand, the sensor position per-

formance is sensitive to the difference between the frequencies as seen in Fig. 2.14(b). The

ambiguity problem in position estimation is solved effectively when the frequency difference

is greater than 100 kHz. Note that as mentioned in section 2.2.2, the required frequency dif-

ference for the best position estimation performance can be decreased by using more than two

frequencies. When three frequencies are used, it is possible to decrease the overall frequency

difference to less than 50 kHz. As it is seen from Fig. 2.14, the CRB for both DOA and sen-

sor position estimation does not change with changing frequency difference. This observation

is reasonable, since in the CRB expressions, the contribution of each frequency component

is taken independent of the others. Therefore, the frequency difference does not affect the

CRB values as shown in Fig. 2.14-a. Also the CRB for the position estimation is a flat curve

as shown in Fig. 2.14-b, since the CRB formulation does not consider ambiguity in sensor

positions.

2.5 Advantages of IHOSS Algorithm

The advantages of the IHOSS algorithm can be summarized as follows:

• IHOSS algorithm jointly estimates the DOA angles and sensor positions when the sen-

sor positions are unknown except the two reference sensors. In this respect, IHOSS is

the first algorithm in the literature which finds the DOA and sensor position estimations

in case of randomly deployed sensors with unknown coordinates.

• The ambiguity problem in sensor position estimation is solved by observing the source

signals at least in two different frequencies.

• Sensor positions are estimated accurately.

– 4 cm accuracy in sensor position estimation is achieved at SNR = 30 dB for λ = 30

m.

• DOA angles are estimated accurately even for large error in sensor positions.
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– 0.025 degrees accuracy in DOA estimation is achieved at SNR = 30 dB.

• IHOSS algorithm is applicable to any sensor geometry.
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Figure 2.10: SNR performance for (a) DOA and (b) position estimation.
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Figure 2.11: (a) DOA and (b) position estimation for varying number of snapshots at SNR =

20 dB.
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Figure 2.12: (a) DOA and (b) position estimation performance for varying distance between
source DOAs at SNR = 20 dB.
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Figure 2.13: (a) DOA and (b) position estimation performance for varying sensor density at
SNR = 20 dB.
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Figure 2.14: (a) DOA and (b) position estimation performance for different frequency differ-
ences. SNR = 20 dB.
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CHAPTER 3

DIRECTION-OF-ARRIVAL ESTIMATION AND SENSOR

POSITION CALIBRATION WITH MODIFIED ITERATIVE

HOS-SOS (MIHOSS) ALGORITHM

In Chapter 2, IHOSS algorithm [5], [28] is presented, which jointly uses HOS and SOS ap-

proaches iteratively for the estimation of both source DOAs and sensor positions. In IHOSS

algorithm, except the two reference sensors there is no a priori information about the sen-

sor positions. The positions of the two reference sensors are assumed to be known. IHOSS

algorithm considers the ambiguity problem in sensor position estimation and solves the prob-

lem by using the source signals observed at multiple frequencies. Hence it is applicable for

wideband signals.

In this chapter, the DOA estimation problem in the presence of sensor position errors is inves-

tigated for the narrowband signals. Since the ambiguity in sensor position estimations can be

solved by observing the source signals at least in two different frequencies, IHOSS algorithm

can not be used directly for the narrowband signals. We have modified the sensor position

estimation method in IHOSS to solve the ambiguity problem for narrowband signals and the

new algorithm is called MIHOSS (Modified Iterative HOS-SOS). HOS and SOS approaches

for the DOA estimations are the same as in IHOSS algorithm. MIHOSS requires to know

the nominal sensor positions to solve the ambiguity problem. It is proved that the ambiguity

problem can be solved if the perturbations in sensor positions are bounded. The upper bound

for the perturbations is also presented.

In the literature, array calibration problem for the sensor position errors is investigated in two

settings, namely, small error [41] and large error approximations [42]. In small error approxi-
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mation, the perturbations are assumed to be small and array calibration is performed by using

a first order approximation. The first order approximation is not applicable as the perturba-

tions are increased. Large error approximation [42] is proposed to circumvent the limitations

of the small error approximation. However the DOA estimation problem is considered for a

uniform circular array and for some fixed source DOAs.

In MIHOSS, HOS approach can estimate the DOA angles and array steering matrix without

knowing the sensor positions except the two reference sensors. Therefore, MIHOSS does

not require small error assumptions and can handle the calibration problem for large position

errors. Furthermore, MIHOSS algorithm can be applied for any arbitrary sensor geometry.

3.1 Problem Statement for MIHOSS Algorithm

It is assumed that the array is composed of randomly deployed M sensors and there are L

far-field sources. Two sensors are selected as the reference sensors. The sensor positions are

randomly perturbed from their nominal positions except the two reference sensors. The array

model for MIHOSS algorithm is illustrated in Fig. 3.1 The positions of the reference sensors

Figure 3.1: Array model for MIHOSS algorithm. The circle with dashed line represents the
bound on the perturbations in sensor positions.

are assumed to be known and the distance between them is less than or equal to λ/2, where

λ is the wavelength of the incoming source signals. Under these assumptions, the received
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signal vector for the sensor array can be written as,

x(t) = A(Θ,P0 + P̃)s(t) + v(t), t = 1, 2, . . . ,N (3.1)

where, N is the number of snapshots, s(t) = [s1(t), ..., sL(t)]T is the L × 1 vector of L sources,

v(t) is the M × 1 vector of Gaussian noise. Source signals are assumed to be non-Gaussian

and they can be correlated but not coherent. Noise is assumed to be statistically independent

with the source signals. Θ = [θ1, ..., θL] is the source DOA vector, P0 = [p0
1

T
, ...,p0

M
T ]T

and P̃ = [p̃T
1 , ..., p̃

T
M]T are the nominal sensor positions and the perturbations in positions,

respectively. A(Θ,P) is the M × L array steering matrix, composed of,

[
A(Θ,P0 + P̃)

]
mi

= exp
{

j
2π
λ

[(
p0

m,x + p̃m,x
)

cosθi +
(
p0

m,y + p̃m,y
)

sinθi
]}

(3.2)

where, θi is the direction-of-arrival of ith source in azimuth, p0
m = [p0

m,x, p0
m,y] and p̃m =

[ p̃m,x, p̃m,y] are the 2D nominal position of the mth sensor and the 2D perturbation of the mth

sensor position, respectively. Since the positions of the two reference sensors are known, their

perturbations are zero, i.e., p̃m = 0, m = 1, 2. (.)T is the transpose operator.

The goal in MIHOSS is to estimate both DOAs of L sources and the perturbation parameters

of M − 2 sensors.

3.2 MIHOSS Algorithm

In this section, MIHOSS algorithm is introduced for a solution to the problem described in

Section 3.1. MIHOSS algorithm is based on the IHOSS algorithm [28], described in Sec-

tion 2.2, which uses the HOS and SOS approaches jointly. The basic differences between the

IHOSS and MIHOSS are the solution of the ambiguity in sensor positions and the parame-

ter updating process in the iteration mechanism. IHOSS algorithm requires observations at

multiple frequencies for solving the ambiguity problem in sensor position estimations. Also

the DOA and array steering matrix estimates obtained for each frequency are jointly used to

obtain the best parameter updates at each iteration. On the other hand, MIHOSS observes

the source signals in one frequency and updates the parameters at each iteration by using

the DOA and array steering matrix estimates obtained from single frequency. In MIHOSS,

the ambiguity problem in sensor position estimations is solved by using the nominal sensor

positions.
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The details of the sensor position estimation and the parameter update mechanism are given

in the following subsections.

3.2.1 Unambiguous Sensor Localization

Once the DOA and array steering matrix estimations are found using HOS approach as in

(2.35) and (2.38), sensor locations can be estimated using (3.2). Due to 2π ambiguity, the

elements of the array steering matrix in (3.2), corresponding to mth sensor and ith source can

be rewritten in the following form,

am,i = e j 2π
λ [(p0

m+p̃m)u(θi)−λkm,i] (3.3)

where u(θi) = [cos(θi), sin(θi)]T is the unit direction vector of the ith incoming source and km,i

is an integer specified for the mth sensor and the ith source. When all the incoming sources

are considered, the following relation can be written,(
p0

m + p̃m
)

U(Θ̂) =
λ

2π
Ξ̂m + λkm, 1 ≤ m ≤ M (3.4)

where

Ξ̂m =

[
∠

(
âm,1

)
∠

(
âm,2

)
. . . ∠

(
âm,L

) ]
(3.5)

km =

[
km,1 km,2 . . . km,L

]
(3.6)

U(Θ̂) =

[
u(θ̂1) . . . u(θ̂L)

]
(3.7)

x̂ stands for the estimation of x and ∠
(
âm,i

)
is the phase term of the array steering matrix

element estimate in (3.3).

The position perturbation of the mth sensor can easily be found from (3.4) in the least squares

sense as,

ˆ̃pm(km) =

(
λ

2π
Ξ̂m + λkm

)
U†(Θ̂) − p0

m, 1 ≤ m ≤ M (3.8)

where

U†(Θ̂) = UT (Θ̂)
(
UT (Θ̂)U(Θ̂)

)−1
(3.9)

Note that the position perturbation estimate in (3.8) takes different values for different km

values. Therefore, ˆ̃pm(km) values are considered as the ambiguous position perturbation es-

timates of the mth sensor. The possible values of km are determined in a similar way as in
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(2.48), i.e.,

km =

{
k ∈ Z

∣∣∣∣∣∣( λ2π Ξ̂m + λk
) (

IL×L − U†(Θ̂)U(Θ̂)
) ( λ

2π
Ξ̂m + λk

)H
≤ ε

}
(3.10)

If the position perturbation is limited, the ambiguity problem can be solved by selecting the

sensor position perturbation estimate with minimum norm, i.e.,

ˆ̃pm = arg min
km

∥∥∥ ˆ̃pm(km)
∥∥∥ (3.11)

Then, the sensor position matrix estimate, P̂ = P0 + ˆ̃P, is constructed using (3.11) for 3 ≤

m ≤ M with the nominal sensor positions. The upper bound of perturbations for unambiguous

sensor position estimations is given in Lemma-2.

Lemma-2: Let em be the error in position estimation of the mth sensor, i.e.,
∥∥∥ ˆ̃pm − p̃m

∥∥∥ = em.

Then, the ambiguity problem in sensor position estimation is solved if the perturbations in

sensor positions are bounded, i.e.,

‖p̃m‖ <
λ

2
min

km,k̂0
m

∥∥∥∥(km − k̂0
m

)
U†(Θ̂)

∥∥∥∥ − em , 1 ≤ m ≤ M (3.12)

When the condition in (3.12) is satisfied, it is guaranteed that the sensor position estimate that

is closest to the nominal sensor position is also closest to the actual sensor position. Note that,

“closest to the nominal sensor position” corresponds to the minimum position perturbation

estimation as in (3.11). This case is illustrated in Fig. 3.2-a. When the upper bound of

perturbations in sensor positions are increased such that the condition in (3.12) is no more

valid, the sensor position estimate with minimum perturbation estimation (3.11), may be far

away from the actual position of the sensor as shown in Fig. 3.2-b.

Note that em in (3.12) relates with the least squares error of the position estimation algorithm

that can be estimated from the CRB expressions and decreases with increasing SNR. The

term that is tried to be minimized in (3.12) depends on the distribution of DOA angles and

numerical results show that its value is approximately λ/2. Therefore, for the high SNR case,

MIHOSS algorithm can estimate the sensor positions unambiguously up to the perturbation

of λ/2, which is also high for the large error case in literature [42].

The proof of Lemma-2 is given in Appendix E.
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(a) (b)

Figure 3.2: Ambiguous sensor positions for the errors that (a) satisfy and (b) does not satisfy
the condition in (3.12).

3.2.2 The Cost Function and The Algorithmic Steps

MIHOSS algorithm iteratively updates the DOA and array steering matrix estimates using the

HOS and SOS approaches sequentially as summarized in Algorithm 3.1. The cost function

used at each iteration to select the best array steering vector estimates for each source is

defined by the MUSIC pseudospectrum, i.e.,

Γ(âi) =
(
âH

i GGH âi
)−1

(3.13)

where âi is the array steering vector estimate for the ith source and G is the M×(M−L) matrix

whose columns are composed of the eigenvectors corresponding to M−L smallest eigenvalues

of the correlation matrix obtained in the SOS approach. Note that the cost function, Γ(âi) is

non-negative. At each iteration, n, we have Γ(â(n)
i ) ≥ Γ(â(n−1)

i ) ≥ 0. Therefore, the proposed

MIHOSS algorithm is guaranteed to converge to a certain value, Γ, at the end of the iterations.

However, the convergence to this value does not mean that the global optimum is reached as

it is the general disadvantage of all iterative algorithms [27].

3.3 Performance Results

MIHOSS algorithm is compared with the MUSIC [1] and small error approximation [41],

illustrated as SmallError in the figures, for DOA and sensor position estimations. CRB [28]

is also evaluated for both DOA and sensor position estimation. While MIHOSS and Small-

Error algorithms are iterative methods, MUSIC algorithm is non iterative one. As stated in

48



Algorithm 3.1: Pseudocode for MIHOSS algorithm.

n = 0. Initialize the array steering vector for each source, â(0)
i , as zero vector. Initialize1

the cost function for each source to zero, Γ
(0)
i = 0 for 1 ≤ i ≤ L;

Termination = true. Estimate the proposed cumulant matrix from the array output and2

â(n)
i as in (2.39). Then, find the DOA estimates, θ̂HOS

i using (2.35) and the array

steering matrix ÂHOS , using (2.38), for 1 ≤ i ≤ L;

Find the sensor position estimates, P̂ = P0 + ˆ̃P, as in (3.11) using (3.7) and (3.5) with3

θ̂HOS
i and ÂHOS , for 1 ≤ i ≤ L;

Find θ̂(S OS )
i using P̂ as in (2.58). Then, find â(S OS )

i using P̂ and θ̂(S OS )
i as in (2.59);4

for i = 1 to L do5

if Γ(â(S OS )
i ) ≥ Γ

(n)
i then6

â(n+1)
i = â(S OS )

i , θ̂(n+1)
i = θ̂(S OS )

i , Γ
(n+1)
i = Γ(â(S OS )

i ), Termination = f alse;7

else8

â(n+1)
i = â(n)

i , θ̂(n+1)
i = θ̂(n)

i ;9

end10

end11

if Termination = f alse then12

n = n + 1, Go to Step 2;13

else14

Find the final estimate of sensor positions using θ̂(n)
i and â(n)

i , 1 ≤ i ≤ L;15

end16

Algorithm 3.1, MIHOSS starts with the SOS MUSIC algorithm and iterates HOS and SOS

approaches to update both DOA and sensor position estimations. Also SmallError [41] al-

gorithm starts with MUSIC algorithm and iteratively updates both DOA and sensor position

estimations using SOS approach. Therefore, comparing MUSIC algorithm with MIHOSS

and SmallError algorithms shows the effectiveness of the iteration processes. Note that for a

fair comparison, the sensor position estimation algorithm described in Section 3.2.1 is also

applied for the MUSIC algorithm.

It is assumed that there are two far-field sources and M = 10 sensors. Each sensor posi-

tion except the two reference sensors is randomly selected from a uniform distribution in the

deployment area of 2λ × 2λ. The reference sensors are placed at (0, 0) and (λ/2, 0). The
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positions of the sensors other than the reference sensors are arbitrarily perturbed. The pertur-

bation values are randomly selected with a uniform distribution. For the parameter estimation,

N = 1000 snapshots are collected. The performance results are the average of 100 trials. At

each trial, source signals, noise, the sensor positions except the reference sensors, the pertur-

bations and the DOA angles of source signals are changed randomly. The difference between

the DOA angles of the source signals is set to 40 degrees. The source signals have a uniform

distribution and the noise is additive white Gaussian and uncorrelated with the source signals.

The simulation parameters are summarized in Table 3.1.

Table 3.1: Simuation parameters for MIHOSS algorithm.

Number of sensors M = 10
Number of sources L = 2
Number of snapshots N = 1000
Wavelength λ = 30 meters
Deployment area [2λ × 2λ]
Distance between reference sensors ∆ = λ/2
Separation of source DOAs 40o

Number of trials 100

The performance results for the DOA and sensor position estimations at different SNR values

are illustrated in Fig. 3.3. The sensor position perturbation is limited to 0.1λ. It is seen

that both MUSIC and small error approach algorithm (SmallError) have a flooring effect for

both DOA and sensor position estimations. As it is seen in Fig. 3.3, SmallError algorithm

slightly improves the MUSIC performance. It is also seen that after approximately SNR = 7

dB MIHOSS algorithm significantly outperforms and closely follows CRB for both DOA and

sensor position estimations.

In Fig. 3.4, the performance of the algorithms is presented for different position perturba-

tions. SNR is set to 30 dB. As it is seen in Fig. 3.4, the parameter estimation performance of

MIHOSS algorithm is not affected from the value of perturbations and closely follows CRB.

It is also observed in Fig. 3.4-(b) that, MIHOSS algorithm effectively solves the ambiguity

problem up to a perturbation value of 0.42λ. The condition presented in Lemma-2 is not

satisfied for further increase in perturbations and sensor positions can not be found unam-

biguously. Note that DOA estimation is accurate and is not affected by the sensor position

ambiguity as shown in Fig. 3.4-(a). This is due to the fact that array steering matrix estimate
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is accurate while the positions are ambiguous. The performance of both MUSIC and Small-

Error algorithm degrade significantly for the large perturbation values. SmallError algorithm

slightly outperforms MIHOSS algorithm only for very small perturbations (less than 0.01λ).

For the perturbations less than 0.0016λ MUSIC outperforms both MIHOSS and SmallEror

algorithms as well as CRB. The reason for this fact is that iterative processes in MIHOSS

and SmallError algorithms decrease the estimation performances for the extremely small per-

turbations. As shown in (3.8), pseudoinverse operator is used for sensor position estimation,

which is not an exact solution. Iteratively updating sensor positions may result worse position

estimation than the nominal sensor positions when the perturbation is extremely small. The

similar explanation is also valid for the SmallError algorithm. While CRB does not specify

any algorithm for sensor position estimation, it uses perturbations as unknown parameters

and tries to find the minimum variance for both DOA and sensor position estimations jointly.

Hence, CRB assumes that there are always errors in sensor positions even if there is not. On

the other hand MUSIC algorithm finds the DOA and sensor position estimations in a single

step. It does not assume that there are errors in sensor positions and does not update the

estimations iteratively.

3.4 Advantages of MIHOSS Algorithm

The advantages of the MIHOSS algorithm can be summarized as follows:

• MIHOSS algorithm jointly finds the DOA and sensor position estimates when there are

perturbations in sensor positions except the two reference sensors.

• The ambiguity problem in sensor position estimation is solved by selecting the sensor

position closest to the nominal sensor position.

• Sensor positions are estimated accurately for larger perturbations compared to the pre-

vious works in literature [42].

– 12 m uncertainty in sensor positions can be reduced to 4 cm at SNR = 30 dB.

• DOA angles are estimated accurately even for large error in sensor positions.

– 0.025 degrees accuracy in DOA estimation is achieved at SNR = 30 dB.
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• MIHOSS algorithm is applicable to any sensor geometry.
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Figure 3.3: (a) DOA and (b) position estimation RMSE values for different SNR values and
sensor position perturbation of 0.1λ.
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Figure 3.4: (a) DOA and (b) position estimation RMSE values for different sensor position
perturbations and SNR = 30 dB.
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CHAPTER 4

ONLINE CALIBRATION WITH ITERATIVE HOS-SOS

ALGORITHM IN THE PRESENCE OF MUTUAL COUPLING

AND GAIN/PHASE MISMATCH

In this chapter, the online array calibration problem in the presence of mutual coupling and

gain/phase mismatches is investigated. For the solution of this problem, a new method, CI-

HOSS (Online Calibration with Iterative HOS-SOS) Algorithm, is proposed to estimate the

DOA angles of multiple sources, gain/phase and mutual coupling parameters jointly by using

HOS and SOS approaches in an iterative manner. The proposed method does not assume a

special structure for mutual coupling matrix and therefore it is applicable for any arbitrary but

known sensor geometry. It only requires two reference sensors that are perfectly calibrated

with known gain/phase mismatches and mutual coupling coefficients and no interaction be-

tween the reference sensors and the other sensors. Due to the perfectly calibrated reference

sensor assumption, the proposed algorithm can be categorized as partly calibrated subarray

[34]. But in [34], the interaction between calibrated subarrays is not considered and the re-

quired calibrated sensors are much higher than that of the proposed algorithm in this work.

As it is stated in [36] the iterative methods suffer from the poor initial estimates for the DOA

angles and calibration parameters. In CIHOSS, the initial guesses for DOA angles as well

as gain/phase mismatches and mutual coupling coefficients are estimated directly from the

sensor outputs using HOS approach. In [30], it is shown that HOS can effectively be used

for the joint estimation of DOA angles, gain/phase mismatches and mutual coupling coeffi-

cients when the source signals are statistically independent. In this work, the source signals

are not assumed to be statistically independent and the performance degradation of the HOS

approach is compensated by applying iterative SOS approach to improve the initial estimates.
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SOS approach is more accurate for the statistical estimation especially for the small number

of samples. Performance results show the effectiveness of the CIHOSS algorithm.

4.1 Problem Statement

A planar array with two reference sensors and K − 2 randomly deployed sensors is assumed.

The reference sensors are perfectly calibrated and there is no interaction between the refer-

ence sensors and the remaining sensors. Therefore, mutual coupling coefficients between the

reference sensors and K − 2 sensors are zero. The magnitude of the mutual coupling between

sensors is inversely proportional with the distance between sensors and may become negli-

gible if the distance exceeds a few wavelengths [29]. Hence, it is assumed that the distance

between the reference and remaining sensors is greater than the operating wavelength, λ. The

reference sensors are placed at (0, 0) and (∆, 0) coordinates in x − y plane without loss of

generality where ∆ ≤ λ/2. Sources are in the same plane as the sensors. The array model

for CIHOSS algorithm is illustrated in Fig. 4.1 It is also assumed that different number of

Figure 4.1: Array model for CIHOSS algorithm. There are mutual coupling effects between
sensors.

sources exist at different time slots. Hence, L number of sources are observed at H different
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time slots, i.e.,

L =

H∑
h=1

Lh (4.1)

where Lh is the number of sources at time slot h. It is assumed that the source signals have a

non-Gaussian distribution. Narrowband model is assumed and the array output vector for the

hth time slot, x(h)(t) = [x(h)
1 (t), ..., x(h)

K (t)]T , can be written as,

x(h)(t) = ΓA(h)(Θ(h))s(h)(t) + v(h)(t), t = 1, 2, . . . ,Nh (4.2)

= A
(h)

(Θ(h))s(h)(t) + v(h)(t)

where, Nh is the number of snapshots received at the hth time slot, s(h)(t) = [s(h)
1 (t), ..., s(h)

Lh
(t)]T

is the Lh × 1 vector of Lh sources, v(h)(t) = [v(h)
1 (t), ..., v(h)

K (t)]T is the K × 1 vector of Gaussian

noise. A(h)(Θ(h)) and A
(h)

(Θ(h)) are the nominal and actual array steering matrices for the hth

time slot, respectively. Θ(h) = [θ(h)
1 , ..., θ(h)

Lh
] is the DOA angles of Lh sources received at time

slot h. Γ is the array distortion matrix which is the product of K×K complex mutual coupling

matrix, M, and K × K diagonal gain/phase mismatch matrix, T, i.e.,

Γ = MT (4.3)

It is assumed that the total observation time, i.e., N =
H∑

h=1
Nh is short enough so that the array

distortion matrix parameters do not change for different time slots. The matrices A(h)(Θ(h)),

M and T are defined as

A(h)(Θ(h)) =



1 . . . 1

e j 2π
λ ∆cos(θ(h)

1 ) . . . e j 2π
λ ∆cos(θ(h)

Lh
)

e j 2π
λ p3u(θ(h)

1 ) . . . e j 2π
λ p3u(θ(h)

Lh
)

...

e j 2π
λ pKu(θ(h)

1 ) . . . e j 2π
λ pKu(θ(h)

Lh
)


(4.4)

M =



1 m12 0 0 0 . . . 0

m21 1 0 0 0 . . . 0

0 0 1 m34 m35 . . . m3K

0 0 m43 1 m45 . . . m4K

0 0 m53 m54 1 . . . m5K
...

...
...

...
...

. . .
...

0 0 mK3 mK4 mK5 . . . 1



(4.5)

T = diag
(

1 1 α3e jβ3 . . . αKe jβK

)
(4.6)
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where pm = [pm,x, pm,y] is the 2D position of the mth sensor, θ(h)
l is the direction-of-arrival

of lth source in azimuth at time slot h and u(θ(h)
l ) = [cos(θ(h)

l ), sin(θ(h)
l )]T is the unit direction

vector of the lth source at time slot h. mi, j is the complex mutual coupling coefficient between

sensor i and j. αi and βi are the gain and phase errors of the ith sensor, respectively. Since

the reference sensors are assumed to be perfectly calibrated, m12 and m21 are known and the

mutual coupling between the reference sensors and the other sensors are zero, as in (4.5). Note

that most of the works in literature assume that the mutual coupling matrix is symmetric due

to the reciprocity theorem [43]. On the other hand, nonreciprocal structures are investigated

in some works [44], [45]. Therefore, in order to deal with the most general case, we consider

the mutual coupling matrix to be non-symmetric in this thesis.

The goal in this work is to estimate both the DOAs of L sources, {θ(h)
l }

H,Lh
h=1,l=1, and the unknown

parameters in M and T matrices, {mi, j, αi, βi}
K
i, j=3 for a given sensor positions, sensor outputs

and the mutual coupling coefficients of the two reference sensors, m12 and m21. One important

feature of the above model is that the lower right matrix for M is unstructured corresponding

to a randomly deployed sensor array.

4.2 Cumulant Matrix

Due to the presence of mutual coupling and gain/phase mismatches, the Cumulant matrix

derived in Section 2.2.1 can not be directly used for the problem defined in Section 4.1. Note

also that in IHOSS and MIHOSS algorithms single cumulant matrix constructed from the

reference sensors 1 and 2. On the other hand CIHOSS algorithm uses multiple cumulant

matrices constructed from different sensor pairs. Therefore, the cumulant matrix, which is

different from the one in IHOSS and MIHOSS algorithms is introduced in this section.

When sensors i and j are selected as the sensor pairs, the cumulant matrix composed of the

fourth-order cumulants for the time slot h is written as [30],

C(h)
i j (k, l) =

 Cum
(
x(h)

i (t), x(h)
i
∗
(t), x(h)

k (t), x(h)
l
∗
(t)

)
Cum

(
x(h)

j (t), x(h)
i
∗
(t), x(h)

k (t), x(h)
l
∗
(t)

)
Cum

(
x(h)

i (t), x(h)
j
∗
(t), x(h)

k (t), x(h)
l
∗
(t)

)
Cum

(
x(h)

j (t), x(h)
j
∗
(t), x(h)

k (t), x(h)
l
∗
(t)

)
(4.7)

where x(h)
i (t) is the output signal of the ith sensor at time slot h. For the Gaussian noise
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assumption with the cumulant properties in [12], the cumulant matrix is simplified as,

C(h)
i j =


(
A

(h)
⊗ a(h)

ri
∗
)

C(h)
s

(
A

(h)
⊗ a(h)

ri
∗
)H (

A
(h)
⊗ a(h)

ri
∗
)

C(h)
s

(
A

(h)
⊗ a(h)

r j
∗
)H

(
A

(h)
⊗ a(h)

r j
∗
)

C(h)
s

(
A

(h)
⊗ a(h)

ri
∗
)H (

A
(h)
⊗ a(h)

r j
∗
)

C(h)
s

(
A

(h)
⊗ a(h)

r j
∗
)H

 (4.8)

where a(h)
ri is the ith row of the actual array steering matrix A

(h)
in (4.2) and C(h)

s is the L2
h × L2

h

source cumulant matrix [28] at time slot h as defined in (2.18).

When the source signals are statistically independent, there are only Lh nonzero elements in

the source cumulant matrix as defined in (2.20). Substituting (2.20) into (4.8) simplifies the

relation as

C(h)
i j =

 A
(h)

D(h)
ari

H
R(h)

s
HOS

D(h)
ari

A
(h)H

A
(h)

D(h)
ari

H
R(h)

s
HOS

D(h)
ar j

A
(h)H

A
(h)

D(h)
ar j

H
R(h)

s
HOS

D(h)
ari

A
(h)H

A
(h)

D(h)
ar j

H
R(h)

s
HOS

D(h)
ar j

A
(h)H

 (4.9)

where R(h)
s

HOS
and D(h)

ari
are Lh × Lh diagonal matrices. R(h)

s
HOS

is defined in (2.25) and D(h)
ari

is defined as

D(h)
ari

= diag
(
a(h)

ri (1), a(h)
ri (2), . . . , a(h)

ri (Lh)
)

(4.10)

Using the same approach in Section 2.2.1, the estimate of the desired cumulant matrix, C(h)
i j ,

is found as

Ĉ(h)
i j =

Lh∑
l=1


(
Q(h)

l ⊗ q(h)
l,i
∗)

C(h)
x

(
Q(h)

l ⊗ q(h)
l,i
∗)H (

Q(h)
l ⊗ q(h)

l,i
∗)

C(h)
x

(
Q(h)

l ⊗ q(h)
l, j
∗)H(

Q(h)
l ⊗ q(h)

l, j
∗)

C(h)
x

(
Q(h)

l ⊗ q(h)
l,i
∗)H (

Q(h)
l ⊗ q(h)

l, j
∗)

C(h)
x

(
Q(h)

l ⊗ q(h)
l, j
∗)H

 (4.11)

where C(h)
x is the K2 × K2 cumulant matrix which contains all the cumulants of the array

output, i.e.,

Cx =

(
A

(h)
⊗ A

(h)∗
)

Cs

(
A

(h)
⊗ A

(h)∗
)H

(4.12)

and q(h)
l, j
∗

is the complex conjugate of the jth row of the matrix Q(h)
l , that is defined as,

Q(h)
l = I − Â

(h)
Z(h)

l

(
Â

(h)
)†

(4.13)

Z(h)
l is the Lh×Lh diagonal matrix whose diagonal elements are one except the lth element and

Â
(h)

is the estimate of the actual array steering matrix, A
(h)

. When Â
(h)

= A
(h)

, the cumulant

matrices in (4.9) and (4.11) are identical [28], i.e., Ĉ(h)
i j = C(h)

i j . In this chapter, cumulant

matrix estimate in (4.11) is used for parameter estimation.
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Before presenting the mathematical expressions for CIHOSS algorithm in the following sub-

sections we introduced a lemma that is used in the derivations of the expressions, i.e.,

Lemma-3: Let X be a K × L matrix, Y be an L × M matrix and Z be a K × M matrix. Then,

the following equality is valid,

‖Z − XY‖2F = ‖vect(Z) − (IM ⊗ X) vect(Y)‖2 (4.14)

The proof of Lemma-3 is given in Appendix G.

4.3 CIHOSS Algorithm

In this section, a new online calibration algorithm, CIHOSS, is introduced for a solution to the

problem described in Section 4.1. CIHOSS algorithm uses both HOS and SOS approaches

in an iterative manner in order to take advantages of both approaches. Due to the perfectly

calibrated two reference sensors HOS approach can find the DOA angle estimates without

being affected by the unknown mutual coupling and gain/phase mismatch parameters. Fur-

thermore, the actual array steering matrix can be estimated directly from the sensor outputs.

Then, it is possible to find the mutual coupling and gain/phase mismatch parameters with a

closed form expression. When the source signals are statistically independent, it is shown

in [30] that HOS approach can effectively be used for the joint estimation of DOA angles,

gain/phase mismatch and mutual coupling parameters without requiring any iteration. Since

in this work, it is not assumed that the source signals are statistically independent, the param-

eter estimation performance will be degraded due to the errors in cumulant matrix estimates

as in (4.11) and (4.13). To improve the parameter estimation, we propose an iterative HOS

approach that updates the cumulant matrix estimates in (4.11) using the estimated actual ar-

ray steering matrix. The details of the iteration method for HOS approach are explained in

Section 4.3.1.4. We also propose to use SOS approach to improve the estimations of HOS

approach since SOS approach is more robust to statistical estimation errors especially for the

small number of samples. Therefore, in CIHOSS algorithm HOS approach is used for the

initial estimation of the DOA angles, gain/phase mismatch and mutual coupling parameters

directly from the sensor outputs and SOS approach is used to improve the initial parameter

estimates with more accurate statistical information. The details of HOS and SOS approaches

are explained in the following subsections.
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4.3.1 HOS Approach

The first step of the CIHOSS algorithm is to find the initial estimates of DOA angles, gain/phase

mismatches and mutual coupling coefficients using HOS approach. In HOS approach, the cu-

mulant matrices composed of the fourth-order cumulants are used. In Section 4.2, it is shown

that different sensor pairs (1 ≤ i, j ≤ K, i , j) result different cumulant matrices, C(h)
i j as in

(4.9). The DOA angles and actual array steering matrix are estimated by using the relations

between the cumulant matrices for different sensor pairs. Total of K(K − 1) distinct cumu-

lant matrices can be obtained for all possible sensor pairs, but 2K − 3 of them is sufficient

for the DOA angles and actual array steering matrix estimations. The selection of cumulant

matrices is explained in the following subsections. After finding the DOA angles the nominal

array steering matrix is obtained as in (4.4) and then the gain/phase mismatches and mutual

coupling coefficients are estimated using the relation between the actual and nominal array

steering matrices.

The relations between cumulant matrices for the DOA and actual array steering matrix esti-

mates is obtained from the eigenvalue decomposition of the cumulant matrices C(h)
i j , i.e., A

(h)
D(h)

ari

H
R(h)

s
HOS

D(h)
ari

A
(h)H

A
(h)

D(h)
ari

H
R(h)

s
HOS

D(h)
ar j

A
(h)H

A
(h)

D(h)
ar j

H
R(h)

s
HOS

D(h)
ari

A
(h)H

A
(h)

D(h)
ar j

H
R(h)

s
HOS

D(h)
ar j

A
(h)H


 B(h)

1

B(h)
2

 =

 B(h)
1

B(h)
2

 Λ
(h)
s (4.15)

where Λ
(h)
s is the diagonal matrix composed of the Lh largest eigenvalues of the matrix C(h)

i j

and 2K × Lh matrix B(h) =

[
B(h)

1
T

B(h)
2

T
]T

is composed of the eigenvectors corresponding

to these eigenvalues. B(h)
1 and B(h)

2 are both K × Lh matrices. From (4.15), the relations for

matrices B(h)
1 and B(h)

2 can be written as

A
(h)

D(h)
ari

H
Φ(h) = B(h)

1 (4.16)

A
(h)

D(h)
ar j

H
Φ(h) = B(h)

2 (4.17)

where Lh × Lh matrix Φ(h) is defined as

Φ(h) =

(
R(h)

s
HOS

D(h)
ari

A
(h)H

B(h)
1 + R(h)

s
HOS

D(h)
ar j

A
(h)H

B(h)
2

)
Λ

(h)
s
−1

(4.18)

Using (4.16) and (4.17), the following relation is obtained, i.e.,

B(h)
2 = B(h)

1 Φ(h)−1
(
D(h)

ari

H
)−1

D(h)
ar j

H
Φ(h)

B(h)
1
†
B(h)

2 Φ(h)−1
= Φ(h)−1D(h)

i j
H

(4.19)
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Above equation is simply the eigenvalue decomposition of the matrix B(h)
1
†
B(h)

2 . Φ(h)−1 is

the Lh × Lh matrix whose columns are composed of the eigenvectors and the corresponding

eigenvalues are in the Lh × Lh diagonal matrix D(h)
i j which is defined as

D(h)
i j = D(h)

ar j
D(h)

ari

−1

= diag
(
d(h)

i, j

)
(4.20)

where

d(h)
i, j =

a(h)
r j (1)

a(h)
ri (1)

,
a(h)

r j (2)

a(h)
ri (2)

, . . . ,
a(h)

r j (Lh)

a(h)
ri (Lh)

 (4.21)

Note that as it is seen from (4.21), the ratios of ith and jth rows of the actual array steering

matrix can be found from the eigenvalue decomposition of the cumulant matrix C(h)
i j using the

relations (4.15) - (4.21). DOA angles and the actual array steering matrix estimates can be

found by using the cumulant matrices for different sensor pairs (i, j). The details of the sensor

pair selection and estimating DOA angles and the actual array steering matrix are explained

in the following subsections.

4.3.1.1 DOA Estimation with HOS Approach

Since the reference sensors, specifically sensor 1 and sensor 2, are perfectly calibrated with

known gain/phase mismatch and mutual coupling coefficients, the cumulant matrix for the

sensor pairs 1 and 2, C(h)
12 , is used for the DOA angle estimations. The eigenvalue decompo-

sition of matrix C(h)
12 gives the ratios of the first and second rows of the actual array steering

matrix as in (4.21). After substituting (4.3) - (4.6) into (4.2), the first and the second rows of

the actual array steering matrix are written as

a(h)
r1 =

[
1 + m12e j 2π

λ ∆cos(θ(h)
1 ) 1 + m12e j 2π

λ ∆cos(θ(h)
2 ) . . . 1 + m12e j 2π

λ ∆cos(θ(h)
Lh

)
]
(4.22)

a(h)
r2 =

[
m21 + e j 2π

λ ∆cos(θ(h)
1 ) m21 + e j 2π

λ ∆cos(θ(h)
2 ) . . . m21 + e j 2π

λ ∆cos(θ(h)
Lh

)
]

(4.23)

Then, since m12 and m21 are assumed to be known, DOA angle corresponding to the kth

column of actual array steering matrix is found by substituting (4.22) and (4.23) into (4.21)

for i = 1 and j = 2, i.e.,

d(h)
12 (k) =

m21 + e j 2π
λ ∆cos(θ(h)

k )

1 + m12e j 2π
λ ∆cos(θ(h)

k1 )

θ(h)
k = cos−1

 λ

2π∆
arg

 d(h)
12 (k) − m21

1 − d(h)
12 (k)m12


 (4.24)
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where d(h)
12 (k) is the kth element of vector d(h)

12 . Note that the distance between the reference

sensors, ∆, is assumed to be less than λ/2, and there is no ambiguity problem in DOA angle

estimation in (4.24). It is also important to note that the DOA angle estimations are not

affected from the unknown gain/phase mismatches and mutual coupling coefficients.

4.3.1.2 Actual Steering Matrix Estimation with HOS Approach

Once the DOA angles are estimated as in (4.24), the first and second rows of the actual array

steering matrix are found by substituting (4.24) into (4.22) and (4.23), respectively. Then, the

jth row of the actual array steering matrix can be estimated by finding d(h)
1, j using the cumulant

matrix for sensor pair (1, j), C(h)
1 j , from the expressions (4.15) - (4.21) and multiplying it with

the estimated a(h)
r1 , i.e., a(h)

r j = d(h)
1, j � a(h)

r1 . It is important to note that since there is no a priori

information to guarantee that the pth eigenvalue corresponds to the pth source in the eigenvalue

decomposition process, the vector d(h)
1, j has a permutation ambiguity. In other words the ratios

of the jth row and first row of the actual array steering matrix can be arbitrary ordered in

the vector d(h)
1, j. Therefore, before finding the jth row of the actual array steering matrix, the

ordering of the elements in vector d(h)
1, j should be aligned with the order in a(h)

r1 . The alignment

process can be performed by searching the minimum value of the following cost function for

3 ≤ j ≤ K, i.e.,

{P̂1 j, P̂2 j} = arg min
{P1 j,P2 j}

∥∥∥∥(d(h)
2, jP2 j

)
� a(h)

r2 −
(
d(h)

1, jP1 j
)
� a(h)

r1

∥∥∥∥2
(4.25)

where P1 j and P2 j are the permutation matrices for arrangement and P̂1 j and P̂2 j are the

estimated versions. Note that the ordering of the elements in vectors a(h)
r1 and a(h)

r2 in (4.25) are

the same since they are found from the estimated DOA angles using (4.22) and (4.23). Then,

the actual array steering matrix is constructed by using (4.25) for 3 ≤ j ≤ K, i.e.,

A
(h)

=



a(h)
r1

a(h)
r2(

d(h)
1,3P̂13

)
� a(h)

r1
...(

d(h)
1,KP̂1K

)
� a(h)

r1


(4.26)

The details of the permutation ambiguity problem and the aligning process for the actual array

steering matrix estimation are explained in Appendix H.
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4.3.1.3 Calibration Parameter Estimation with HOS Approach

After finding the DOA angles,
{
θ(h)

k

}Lh

k=1
, as in (4.24) and the actual array steering matrix

estimate, A
(h)

, as in (4.26), the calibration parameters can be found from the relation between

actual and nominal array steering matrices given in (4.2), i.e.,

A
(h)

= ΓA(h) (4.27)

Since the sensor positions are known the nominal array steering matrix estimate, A(h), is found

by substituting (4.24) into (4.4) with the same column order as actual array steering matrix

estimate. Since it is assumed that the calibration parameters are not changed for the different

time slots, the calibration parameters are found using the relation in (4.27) for the time slots

1 ≤ h ≤ H in least square sense by minimizing the following cost function, i.e.,

ζ = ‖ΓA − A‖2F (4.28)

where

A =

[
A(1) A(2) . . . A(H)

]
(4.29)

A =

[
A

(1)
A

(2)
. . . A

(H)
]

(4.30)

Using Lemma-3, the cost function in (4.28) can be rewritten as

ζ =
∥∥∥∥(IK ⊗ AT

)
z − a

∥∥∥∥2
(4.31)

where z = vect(ΓT ) and a = vect(A
T

).

The cost function in (4.31) can be solved more effectively by considering the known parame-

ters of array distortion matrix, Γ, as seen from (4.5) and (4.6). Let zk and zu are the column

vectors composed of the known and unknown elements of vector z, respectively. Then, zu can

be found in least squares sense as

ẑu = F†u
(
a − Fkzk

)
(4.32)

where Fk and Fu are the KL × Uk and KL × (K2 − Uk) matrices composed of the columns of

matrix
(
IK ⊗ AT

)
corresponding to the indices of known and unknown elements of vector z.

Uk is the number of known array distortion parameters.
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After finding the unknown parameters in array distortion matrix, Γ, the matrices T and M can

be found as

T = diag(Γ) (4.33)

M = ΓT−1 (4.34)

The relation in (4.33) and (4.34) is written since the matrix T is diagonal and the diagonal

entries of matrix M is all one as given in (4.5) and (4.6).

4.3.1.4 HOS Iteration

As explained in the previous subsections HOS approach uses multiple cumulant matrices

defined for different sensor pairs to estimate both the DOA angles and calibration parameters.

For the given cumulant matrices, all the parameters are estimated directly, without requiring

any iteration. In CIHOSS, the cumulant matrices are estimated as in (4.11) and they depend

on the actual array steering matrix estimation. It is shown in [28] that the optimum cumulant

matrix can be obtained when the actual array steering matrix is known accurately. In CIHOSS,

we propose an iterative method for the HOS approach that updates the estimate of actual array

steering matrix as in (4.26) to increase the accuracy of the parameter estimations. Since there

is no a-priori information for the actual array steering matrix, we start with the zero matrix

and iteratively update. To guarantee the convergence, a cost function in (4.40) is evaluated

for each iteration and the iterative process is stopped when the cost function starts to increase.

The cost function used in the iterative process is defined in Section 4.3.2. The HOS iteration

process is summarized in Algorithm 4.1.

4.3.2 CIHOSS Cost Function

Since the statistical information can be estimated more accurately in SOS approach, SOS

based cost function is selected for the iterative process in CIHOSS. The covariance matrix for

the sensor output at time slot h, assuming zero mean signals, is

R(h) = E{x(h)(t)
(
x(h)(t)

)H
}

= MTA(h)R(h)
s

(
A(h)

)H
THMH + σ(h)

v
2
IK (4.35)
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Algorithm 4.1: Pseudocode for Iteration Process of HOS Approach.

Set the iteration counter to zero, i.e., k = 0;1

Initialize the gain/phase mismatch and mutual coupling matrices as identity matrix, i.e., T0 = I2

and M0 = I. Initialize the actual array steering matrix, Â
(h)

0 , as zero matrix for all time slots h,

1 ≤ h ≤ H;

Compute the initial value of the cost function, Q0, as in (4.49);3

for h = 1 to H do4

Find the cumulant matrix estimate, Ĉ(h)
i j using the actual array steering matrix estimate at5

kth iteration, Â
(h)

k , as in (4.11) and (4.13) for 1 ≤ i ≤ 2 and i + 1 ≤ j ≤ K;

Find the eigenvectors of Ĉ(h)
i j corresponds to the Lh largest eigenvalues and construct6

matrices B(h)
1 and B(h)

2 as in (4.15);

Find the eigenvalues of B(h)
1
†
B(h)

2 and construct the vector d(h)
i, j as in (4.20);7

Find the updated DOA angles, θ(h)
l,upd |

Lh
l=1, using d(h)

12 as in (4.24) and construct the nominal8

array steering matrix, A(h) using updated DOA angles as in (4.4);

Find the permutation matrix P̂1 j using the cost function in (4.25) and construct the updated9

actual array steering matrix estimate, A
(h)
upd as in (4.26);

end10

Construct the whole nominal and actual array steering matrices, A, A using A(h) and A
(h)
upd for11

1 ≤ h ≤ H as in (4.29) and (4.30), respectively;

Find the updated calibration parameters, Tupd and Mupd, using the relation between the actual12

and nominal array steering matrix using the equations (4.32) - (4.34);

Compute the matrix Sk as in (4.46) using Mupd, Tupd and A;13

Find the value of the cost function in (4.28) using the updated parameters, Tupd, Mupd, A, A14

i.e., Qk = ‖Es −MupdTupdASk‖
2
F ;

if Qk < Qk−1 then15

Increment the iteration counter, i.e., k = k + 1;16

Set the parameter estimates at kth iteration, i.e., θ(h)
l,k |

Lh
l=1 = θ(h)

l,upd |
Lh
l=1, Â

(h)

k = A
(h)
upd, Tk = Tupd,17

Mk = Mupd, for 1 ≤ h ≤ H;

Go to Step 4;18

else19

Set the final parameter estimates to the estimates at (k − 1)st iteration, i.e.,20

ΘHOS =
[
θ(1)

1,k−1, . . . , θ
(1)
L1,k−1, . . . , θ

(H)
LH ,k−1

]
, THOS = Tk−1, MHOS = Mk−1;

end21
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where σ(h)
v

2
is the noise variance at time slot h, R(h)

s = E{s(h)(t)
(
s(h)(t)

)H
} is the covariance

matrix of the source signals at time slot h and IK is the K × K identity matrix. Eigenvalue

decomposition of the matrix R(h) gives the following relation for the signal subspace, i.e.,

R(h)E(h)
s = E(h)

s Λ
(h)
s (4.36)

where Λs is the Lh × Lh diagonal matrix composed of the eigenvalues of the signal space and

E(h)
s is the K × Lh matrix whose columns are composed of the eigenvectors corresponding to

the signal space. Substituting (4.35) into (4.36) results the following relation, i.e.,

E(h)
s = MTA(h)S(h) (4.37)

where Lh × Lh matrix S(h) is defined as,

S(h) = R(h)
s

(
A(h)

)H
THMHE(h)

s

(
Λ

(h)
s − σ

(h)
v

2
ILh

)−1
(4.38)

and ILh is the Lh × Lh identity matrix. Note that, although the matrix S(h) has closed form

expression that contains the known and unknown parameters, we do not use this expression

in the estimation process. The reason for this fact is that using the closed form expression of

matrix S(h) makes the expressions more complex to solve analytically. Therefore, we assume

the matrix S(h) as an arbitrary Lh × Lh matrix for simplicity.

A nonlinear least-squares problem for the time slot h can be formulated as the following cost

function, i.e.,

Q(h) =
∥∥∥∥E(h)

s −MTA(h)S(h)
∥∥∥∥2

F
(4.39)

Considering all the cost functions for time slot 1 ≤ h ≤ H, and using the addition property of

norms, the overall cost function can be written as,

Q =

H∑
h=1

Q(h)

= ‖Es −MTAS‖2F (4.40)
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where

Es =

[
E(1)

s E(2)
s . . . E(H)

s

]
(4.41)

A =

[
A(1) A(2) . . . A(H)

]
(4.42)

S =



S(1) 0L1×L2 . . . 0L1×LH

0L2×L1 S(2) . . . 0L2×LH

...
...

. . .
...

0LH×L1 0LH×L2 . . . S(H)


(4.43)

where 0i× j is the zero matrix with i rows and j columns. Note that, the matrix S includes the

unknown parameters and they are computed from either an initial value at the beginning or

from the values computed at the previous iteration.

The estimation of complex matrix S is found by minimizing the cost function in (4.40) with

respect to the parameters in matrix S and the last estimates of the parameters in matrices M,

T and A are kept fixed during the minimization. Using the fact in Lemma-3, the cost function

in (4.40) can be rewritten as,

Q =
∥∥∥es − (IL ⊗MTA) s

∥∥∥2 (4.44)

where es = vect(Es) and s = vect(S). As it is seen from (4.43), L2 −
H∑

h=1
L2

h number of

parameters of complex matrix S are zero. By considering these known parameters, (4.44) can

be rewritten as

Q =
∥∥∥es − Ysu

∥∥∥2 (4.45)

where su is
(

H∑
h=1

L2
h

)
×1 column vector composed of the unknown elements of vector s and Y is

the KL ×
(

H∑
h=1

L2
h

)
matrix composed of the columns of the matrix (IL ⊗MTA) corresponding

to the indices of unknown elements of vector s. The unknown parameters in matrix S are

estimated in least squares sense as

su = Y†es (4.46)

Then, the estimate of the matrix S can easily be constructed from su and known indices of zero

elements in matrix S. After the matrix S is estimated, the cost value for the current iteration

is found by using the estimated matrices, M, T, A and S in (4.40).
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For the initial cost value, the nominal array steering matrix is estimated using MUSIC spec-

trum [1] with identity matrix for gain/phase mismatch and mutual coupling matrices, i.e.,

Ω(θ(h)) =
1

aH(θ(h))G(h)G(h)Ha(θ(h))
(4.47)

where a(θ(h)) is the nominal array steering vector for the source DOA angle of θ(h) and G(h) is

the K × (K − Lh) matrix whose columns are composed of the eigenvectors corresponding to

the noise space of covariance matrix for sensor output at time slot h. Then, the initial value of

the nominal array steering matrix for time slot h is computed as

A(h)
0 =

[
a(θ̂(h,spc)

1 ) a(θ̂(h,spc)
2 ) . . . a(θ̂(h,spc)

Lh
)

]
(4.48)

where θ̂(h,spc)
i , for 1 ≤ i ≤ Lh is the DOA angle estimates corresponding to the Lh largest peaks

in MUSIC spectrum, Ω(θ(h)). The initial cost value is computed as

Q0 = ‖Es −M0T0A0S0‖
2
F (4.49)

where A0 =

[
A(1)

0 A(2)
0 . . . A(H)

0

]
and S0 is the initial value of matrix S computed from

(4.46) using M0, T0 and A0.

4.3.3 SOS Approach

As explained in Section 4.3.1, HOS approach gives a direct solution for the DOA angles,

gain/phase mismatch and mutual coupling parameter estimations as given in (4.24), (4.33)

and (4.34), respectively. It is important to note that the accuracy of the Cumulant matrix

estimation (4.11) used in the HOS approach is affected by the dependency between source

signals and the accuracy of the actual array steering matrix estimation as in (4.13). Since

there is no a priori information about the actual array steering matrix, zero matrix is used

as the initial estimate of the actual array steering matrix in (4.13). As compared with the

HOS approach, SOS approach can estimate the second order statistics more accurately for

finite length signals. Therefore, in CIHOSS we propose to apply SOS approach to improve

the initial parameter estimations obtained in HOS approach. Iterative use of HOS and SOS

approaches is repeated until the minimum value of a cost function is obtained. Note that,

at each iteration the value of the cost function is evaluated and whenever the cost function

increases, the iteration is stopped. Therefore, CIHOSS is guaranteed to converge.
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In SOS approach, the cost function, Q, in (4.40) is minimized for each parameter separately

to improve the parameter estimations obtained from the HOS approach given in Section 4.3.1.

While minimizing the cost function Q with respect to one of the parameters, the last estimates

of the other parameters are used as constants. The minimization steps are repeated iteratively

to obtain the minimum value of the cost function. Note that, at each iteration the value of the

cost function is evaluated and whenever the cost function increases, the iteration is stopped

and the parameters corresponding to the minimum cost function are used as the final parameter

estimations. Therefore, the iterative approach used in SOS is guaranteed to converge. The

details of each parameter estimation are explained in the following subsections.

4.3.3.1 DOA Estimation with SOS Approach

In this step, the DOA estimations are found by minimizing the cost function in (4.40) with

respect to the DOA angles and the last estimates of the parameters, M, T and S are kept fixed

during the minimization. Since minimizing the cost function with respect to the DOA angles

is a nonlinear optimization problem, Newton method [32] is used to update the last DOA

angle estimates, i.e.,

Θ j+1 = Θ j − µH−1
j g j (4.50)

where µ ≥ 0 is the step size and H j and g j are the Hessian matrix and gradient vector for the

DOA angles at iteration j, Θ j, respectively. L × 1 column vector Θ is defined as

Θ =

[
θ(1)

1 θ(1)
2 . . . θ(1)

L1
θ(2)

1 . . . θ(2)
L2

. . . θ(H)
LH

]T
(4.51)

Derivations of Hessian matrix and the gradient vector are given in Appendix F. Note that Θ0

is the initial estimate of the DOA angles and they are obtained from the HOS approach as

given in (4.24) for 1 ≤ h ≤ H.

4.3.3.2 Gain/Phase Mismatch Parameter Estimation with SOS Approach

In this step, the gain/phase mismatch matrix, T, is estimated by minimizing the cost function

in (4.40) with respect to parameters in matrix T and the last estimates of the parameters in

matrices M, A and S are kept fixed during the minimization. The cost function in (4.40) can
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be rewritten as,

Q =

L∑
l=1

(el −MTAsl)H (el −MTAsl)

=

L∑
l=1

‖el‖
2 − eH

l MTAsl − sH
l AHTHMHel + sH

l AHTHMHMTAsl (4.52)

where K × 1 vectors el and sl are the lth column of matrices Es and S, respectively. Since the

gain/phase mismatch matrix , T, is a diagonal matrix, using the Lemma 1 in [29], (4.52) is

simplified as,

Q =

L∑
l=1

‖el‖
2 − eH

l MDlt − tHDH
l MHel + tHDH

l MHMDlt

= z0 − zH
1 t − tHz1 + tHZ2t (4.53)

where Dl is the K×K diagonal matrix whose diagonal elements are composed of the elements

of the vector Asl, t is the K × 1 column vector whose elements are composed of the diagonal

elements of gain/phase mismatch matrix T and

z0 =

L∑
l=1

‖el‖
2 (4.54)

z1 =

L∑
l=1

DH
l MHel (4.55)

Z2 =

L∑
l=1

DH
l MHMDl (4.56)

Since the gain/phase mismatch parameters of the sensor 1 and sensor 2 are fixed to 1 as in

(4.6), the vector t can be rewritten as

t =

 12×1

tu

 (4.57)

where tu is the (K − 2) × 1 column vector whose elements are composed of the unknown

gain/phase mismatch parameters and 12×1 is the 2×1 column vector with all one. Substituting

(4.57) into (4.53), further simplifies the cost function, i.e.,

Q = z̄0 − z̄H
1 tu − tH

u z̄1 + tH
u Z2,3tu (4.58)

where

z̄0 = z0 − zH
1,112×1 − 1T

2×1z1,1 + 1T
2×1Z2,112×1 (4.59)

z̄1 = z1,2 − ZH
2,212×1 (4.60)
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and z1,1 is the 2 × 1 column vector, z1,2 is the (K − 2) × 1 column vector, Z2,1 is the 2 × 2

matrix, Z2,2 is the 2 × (K − 2) matrix and Z2,3 is the (K − 2) × (K − 2) matrix defined as

z1 =

 z1,1

z1,2

 (4.61)

Z2 =

 Z2,1 Z2,2

ZH
2,2 Z2,3

 (4.62)

Then, the unknown gain/phase mismatch parameters, tu can be found by taking the derivative

of the cost function in (4.58) with respect to tu and setting it to zero, i.e.,

∂Q
∂tu

= −z̄1 + Z2,3tu = 0

tu = Z−1
2,3z̄1 (4.63)

Then, the estimate of the gain/phase mismatch matrix can easily be constructed from (4.63)

and (4.57).

4.3.3.3 Mutual Coupling Parameter Estimation with SOS Approach

In this step, the mutual coupling matrix estimate, M, is found by minimizing the cost function

in (4.40) with respect to the parameters in matrix M and the last estimates of the parameters

in matrices T, A and S are kept fixed during the minimization. Using the fact in Lemma-3,

the cost function in (4.40) can be rewritten as,

Q =
∥∥∥∥es −

(
IK ⊗ ST AT TT

)
m

∥∥∥∥2
(4.64)

where es = vect(ET
s ) and m = vect(MT ). As given in (4.5), some elements of the matrix M

are known a priori. Considering these known elements, (4.64) can be solved more effectively.

Let mk and mu are the column vectors composed of the known and unknown elements of

vector m, respectively. Then, (4.64) can be rewritten as

Q = ‖es −Gkmk −Gumu‖
2 (4.65)

where Gk and Gu are the KL × (KL − Vu) and KL × Vu matrices composed of the columns

of matrix
(
IK ⊗ ST AT TT

)
corresponding to the indices of known and unknown elements of

vector m. Vu is the number of unknown mutual coupling parameters. The unknown mutual

coupling parameters are then estimated in least squares sense as

mu = G†u (es −Gkmk) (4.66)
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Then, the estimate of the mutual coupling matrix can easily be constructed from (4.66).

4.3.3.4 SOS Iteration

As explained in the previous subsections, SOS approach updates the three parameter estimates

sequentially by minimizing the cost function defined in (4.40). In the updating process only

one parameter is changed while the others are kept fixed. All the parameter estimates except

the DOA angle estimates, are found using a linear set of equations. Due to the nonlinearity of

DOA angle estimate equation, Newton method is used to update the DOA angle estimates. To

guarantee the convergence, the cost function in (4.40) is evaluated for the updated parameter

estimates and the iteration is stopped when the cost function starts to increase. Since only

the DOA angles are updated using a nonlinear set of equations the convergence time depends

only on the selected stepsize in Newton method. The stepsize in DOA estimation is dynami-

cally selected to decrease the convergence time. The SOS iteration process is summarized in

Algorithm 4.2.

4.3.4 Solvability

CIHOSS algorithm iteratively solves different types of equations for each parameter estima-

tion. The relation between the number of sensors and the number of sources required to have

a solution changes for each equation. In this section, the solvability criterion of the CIHOSS

algorithm is investigated and the relation between the number of sources and the number of

sensors as well as the number of unknowns is determined.

4.3.4.1 Solvability of HOS approach

In HOS approach the DOA angles at each time slot are estimated from the eigenvalue de-

composition of the matrix C(h)
i j in (4.9). As it is seen in (4.19), for the solution of the DOA

angle estimations, the Lh × Lh matrix Φ(h) defined in (4.18) is required to be nonsingular or

in other words the rank of Φ(h) should be equal to Lh. Since the matrices R(h)
s

HOS
, D(h)

ari
, D(h)

ar j

and Λ
(h)
s are all Lh × Lh diagonal matrices whose diagonal elements are non-zero, their ranks

are Lh. The rank of the K × Lh matrices A
(h)

, B(h)
1 and B(h)

2 are min(K, Lh). Using these facts

and the rank properties, the solvability criterion for DOA angle estimates with HOS approach
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Algorithm 4.2: Pseudocode for Iteration Process of SOS Approach.

Set the iteration counter to zero, i.e., k = 0 and set the initial value of the cost function, Q0, to1

the last cost function obtained from HOS approach;

Set the initial DOA angle estimates to the estimates found from HOS approach, ΘHOS , defined2

in Table 4.1, i.e., Θ0 = ΘHOS , and find the initial nominal array steering matrix, A0, using Θ0;

Set the initial gain/phase and mutual coupling matrices as T0 = THOS and M0 = MHOS ,3

respectively;

Find the initial complex matrix S0 as in (4.46) using A0 and the parameters M0, T0 found from4

the HOS approach;

Find the Hessian matrix, Hk, defined in (F.6) and gradient vector, gk, defined in (F.1) using the5

DOA angle estimates at kth iteration and find the delta update of DOA angles, i.e.,

∆Θk = H−1
k gk;

Define the minimum and maximum values of the step size using ∆Θk . µmin is selected as 0 and6

µmax is selected as 3
max
1≤l≤L

∆Θk (l) ;

for µ = µmin to µmax do7

Find the updated DOA angles as Θupd(µ) = Θk − µ∆Θk and construct the updated nominal8

array steering matrix, Aupd(µ), using Θupd(µ) and sensor positions as in (4.4);

Find the updated gain/phase mismatch matrix, Tupd(µ), as in (4.63) using Aupd(µ), Mk and9

Sk;

Find the updated mutual coupling matrix, Mupd(µ), as in (4.66) using Aupd(µ), Tupd(µ) and10

Sk;

Find the updated matrix S, Supd(µ), as in (4.46) using Aupd(µ), Tupd(µ) and Mupd(µ);11

Evaluate the cost function in (4.40) and find12

γ(µ) =
∥∥∥Es −Mupd(µ)Tupd(µ)Aupd(µ)Supd(µ)

∥∥∥2
F

end13

Find the optimum value of the stepsize that results minimum cost value, i.e., µopt = arg min
µ
γ(µ)14

and find the cost value at kth iteration, Qk = γ(µopt);

if Qk < Qk−1 then15

Set the parameter estimates at kth iteration, i.e., Θk+1 = Θk − µopt∆Θk , Mk+1 = Mupd(µopt),16

Tk+1 = Tupd(µopt);

Increment the iteration counter, i.e., k = k + 1;17

Go to Step 5;18

else19

Set the final parameter estimates to the estimates at (k − 1)st iteration, i.e., ΘS OS = Θk−1,20

MS OS = Mk−1 and TS OS = Tk−1;

end21
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is obtained as

2 min(K, Lh) ≥ rank(Φ(h))

2 min(K, Lh) ≥ Lh (4.67)

The inequality in (4.67) is satisfied when the number of sensors is greater than the number of

sources at time slot h, i.e., K ≥ Lh, which is the condition for the DOA estimation in SOS

approach. Due to the virtual sensors, HOS approach can find the DOA angles that is larger

than the number of sensors. The minimum number of sensors required to find Lh number of

DOA angles can be found from (4.67), as

K ≥
Lh

2
(4.68)

The elements of the array distortion matrix, Γ, are estimated from (4.32). As it is seen in

(4.32) for a valid solution, KL × (K2 − Uk) matrix Fu should be full column rank, which

requires KL ≥ (K2−Uk). From (4.3), (4.5) and (4.6), it can be easily found that the minimum

value of Uk is 4K − 4. Therefore, the following relation should be satisfied to have a solution

for the array distortion matrix, i.e.,

L ≥
(K − 2)2

K
(4.69)

4.3.4.2 Solvability of CIHOSS

For the problem defined in Section 4.1, there are L number of unknowns for DOA angles, K−2

number of complex unknowns for gain/phase mismatch parameters, K2 − 5K + 6 number of

complex unknowns for mutual coupling parameters and
H∑

h=1
L2

h number of complex unknowns

for parameters of the matrix S. Therefore, there are L + 2(K − 2)2 + 2
H∑

h=1
L2

h total number of

real unknown parameters. These unknown parameters are estimated by minimizing the cost

function in (4.40), which results 2KL number of real equations. Then, the condition for the

solvability of these equations is

KL ≥
L
2

+ (K − 2)2 +

H∑
h=1

L2
h (4.70)

Even though the condition in (4.70) is not satisfied, a valid solution for the parameter esti-

mations in HOS and SOS approaches can be found depending on the solvability conditions
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of each parameter. But in this case there are infinitely many solutions since the overall set of

equations is underdetermined. Therefore, to obtain the solvability criterion for the parameter

estimations in CIHOSS algorithm the condition for each parameter estimation in HOS and

SOS approaches and the condition for the overall set of equations in (4.70) should be con-

sidered together. Note that in SOS approach, the different types of parameters are estimated

by minimizing the same cost function in (4.40) with respect to the selected parameter. While

minimizing the cost function with respect to one of the parameters, the last estimates of the

other parameters are used as known quantities in the equations. Hence, the condition in (4.70)

also satisfies the solvability conditions of each parameter in SOS approach and the conditions

in (4.68) and (4.69) since both K and L are positive quantities. Therefore, substituting (4.1)

into (4.70) gives the condition for the solvability of CIHOSS algorithm as

H∑
h=1

Lh ≥
(K − 2)2

K − 1
2

+

H∑
h=1

L2
h

K − 1
2

(4.71)

Note that when Lh = 1 for h = 1, 2, . . . ,H, the condition in (4.71) is always satisfied when

L ≥ K − 2.

4.4 Cramér Rao Bound

In this section, the Cramér Rao bound (CRB) expressions are given for the defined problem in

Section 4.1. The signal waveforms are considered to be deterministic unknown process and

the noise is assumed to be temporally uncorrelated complex Gaussian process. In this section,

CRB expressions are derived by considering a non-circular complex Gaussian distribution for

the noise with unknown covariance matrix. The modification for circular case is also given.

Noise may be spatially correlated. The unknown parameter set is defined as

Ω =
{
θl,mg,i j,mp,i j, αi, βi,<

(
s(h)

lh
(t)

)
,=

(
s(h)

lh
(t)

)
,R(h)

}
(4.72)

for 1 ≤ l ≤ L, 3 ≤ i ≤ K, 3 ≤ j ≤ K, 1 ≤ t ≤ N and 1 ≤ h ≤ H. mg,i j and mp,i j are the

gain and phase terms of mutual coupling coefficient, mi j, respectively. Then, the CRB for the
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DOA and calibration parameters are given by

CRBΘ =
1
L

L∑
i=1

F−1
i,i (4.73)

CRBmg =
1

K2 − 5K + 6

L+K2−5K+6∑
i=L+1

F−1
i,i (4.74)

CRBmp =
1

K2 − 5K + 6

L+2K2−10K+12∑
i=L+1+K2−5K+6

F−1
i,i (4.75)

CRBα =
1

K − 2

L+2K2−9K+10∑
i=L+1+2K2−10K+12

F−1
i,i (4.76)

CRBβ =
1

K − 2

L+2K2−8K+8∑
i=L+2K2−9K+11

F−1
i,i (4.77)

where F−1
i,i is the ith row and ith column of the inverse of Fisher Information matrix, F, defined

as

F =



FΘ,Θ FΘ,mg FΘ,mp FΘ,α FΘ,β FΘ,s 0L×4K2

FT
Θ,mg

Fmg,mg Fmg,mp Fmg,α Fmg,β Fmg,s 0Vu×4K2

FT
Θ,mp

FT
mg,mp

Fmp,mp Fmp,α Fmp,β Fmp,s 0Vu×4K2

FT
Θ,α FT

mg,α
FT

mp,α
Fα,α Fα,β Fα,s 0(K−2)×4K2

FT
Θ,β FT

mg,β
FT

mp,β
FT
α,β Fβ,β Fβ,s 0(K−2)×4K2

FT
Θ,s FT

mg,s FT
mp,s FT

α,s FT
β,s Fs,s 02L×4K2

04K2×L 04K2×Vu
04K2×Vu

04K2×(K−2) 04K2×(K−2) 04K2×2L FR,R



(4.78)

where 0i× j is the zero matrix with i row and j column and Vu = (K2 − 5K + 6) is the number

of unknown mutual coupling parameters.

L × L Fisher Information submatrix corresponding to the DOA angles, FΘ,Θ, is defined as

FΘ,Θ =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1FΘ(h, th) (4.79)

where 2K × 2K matrix R(h) is the real covariance matrix of the noise for the time slot h, i.e.,

R(h) =

Nh∑
th=1

 <
{
v(h)(th)

}
=

{
v(h)(th)

}

 <

{
v(h)(th)

}
=

{
v(h)(th)

}

T

(4.80)

and 2K × L matrix FΘ(h, th) is found as

FΘ(h, th) =

[
f
θ(1)

1
(th) f

θ(1)
2

(th) . . . f
θ(1)

L1
(th) f

θ(2)
1

(th) . . . f
θ(H)

LH
(th)

]
(4.81)
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and 2K × 1 vector f
θ(h)

n
(th) for 1 ≤ n ≤ Lh is defined as

f
θ(h)

n
(th) =

 −< {MT}Dn,h=
{
s(h)

n (th)a(h)
n

}
− = {MT}Dn,h<

{
s(h)

n (th)a(h)
n

}
<{MT}Dn,h<

{
s(h)

n (th)a(h)
n

}
− = {MT}Dn,h=

{
s(h)

n (th)a(h)
n

}
 (4.82)

where a(h)
n is the nth column of the nominal array steering matrix in time slot h, A(h) in (4.4)

and K × K diagonal matrix Dn,h is defined as

Dn,h =
2π
λ

diag
(
−p1,xsin(θ(h)

n ) + p1,ycos(θ(h)
n ) . . . −pK,xsin(θ(h)

n ) + pK,ycos(θ(h)
n )

)
(4.83)

L×(K2−5K+6) matrix FΘ,mg corresponding to DOA angles and gain terms of mutual coupling

is defined as

FΘ,mg =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1Fmg(h, th) (4.84)

where 2K × (K2 − 5K + 6) matrix Fmg(h, th) is found as

Fmg(h, th) =

[
fmg,34(h, th) . . . fmg,3K (h, th) fmg,43(h, th) fmg,45(h, th) . . . fmg,K(K−1)(h, th)

]
(4.85)

where 2K × 1 vector fmg,i j(h, th) is defined as

fmg,i j(h, th) =



0(i−1)×1

<
{
tr jA(h)e jmg,i js(h)(th)

}
0(K−1)×1

=
{
tr jA(h)e jmg,i js(h)(th)

}
0(K−i)×1


(4.86)

and tr j is the jth row of gain/phase mismatch matrix T in (4.6).

L×(K2−5K +6) Fisher Information submatrix corresponding to DOA angles and phase terms

of mutual coupling coefficients, FΘ,mp , is defined as

FΘ,mp =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1Fmp(h, th) (4.87)

where 2K × (K2 − 5K + 6) matrix Fmp(h, th) is found as

Fmp(h, th) =

[
fmp,34(h, th) . . . fmp,3K (h, th) fmp,43(h, th) fmp,45(h, th) . . . fmp,K(K−1)(h, th)

]
(4.88)
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where 2K × 1 vector fmp,i j(h, th) is defined as

fmp,i j(h, th) =



0(i−1)×1

−=
{
tr jA(h)mi js(h)(th)

}
0(K−1)×1

<
{
tr jA(h)mi js(h)(th)

}
0(K−i)×1


(4.89)

L × (K − 2) Fisher Information submatrix corresponding to DOA angles and gain mismatch

parameters, FΘ,α, is defined as

FΘ,α =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1Fα(h, th) (4.90)

where 2K × (K − 2) matrix Fα(h, th) is found as

Fα(h, th) =

[
fα3 fα4 . . . fαK

]
(4.91)

fαi =

 <
{
e jβimia(h)

ri s(h)(th)
}

=
{
e jβimia(h)

ri s(h)(th)
}

 (4.92)

where mi is the ith column of mutual coupling matrix, M, and a(h)
ri is the ith row of the nominal

array steering matrix at time slot h, A(h).

L × (K − 2) Fisher Information submatrix corresponding to DOA angles and phase mismatch

parameters, FΘ,β, is defined as

FΘ,β =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1Fβ(h, th) (4.93)

where 2K × (K − 2) matrix Fβ(h, th) is found as

Fβ(h, th) =

[
fβ3 fβ4 . . . fβK

]
(4.94)

fβi =

 −=
{
αie jβimia(h)

ri s(h)(th)
}

<
{
αie jβimia(h)

ri s(h)(th)
}

 (4.95)

L × 2L Fisher Information submatrix corresponding to DOA angles and source signals, FΘ,s,

is defined as

FΘ,s =

H∑
h=1

Nh∑
th=1

FT
Θ(h, th)R(h)−1Fs(h, th) (4.96)
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where 2K × 2L matrix Fs(h, th) is found as

Fs(h, th) =

 0K×z1 <
{
MTA(h)

}
0K×z2 −=

{
MTA(h)

}
0K×z3

0K×z1 =
{
MTA(h)

}
0K×z2 <

{
MTA(h)

}
0K×z3

 (4.97)

where z1 =
h−1∑
i=1

Li, z2 = L − Lh and z3 =
H∑

i=h+1
Li.

4K2 × 4K2 Fisher Information submatrix corresponding to noise covariance elements, FR,R,

is defined as

FR,R =



FR(1) 04K2×4K2 . . . 04K2×4K2

04K2×4K2 FR(2) . . . 04K2×4K2

...
...

. . .
...

04K2×4K2 04K2×4K2 . . . FR(H)


(4.98)

FR(h) =

[
R(h)−T

⊗ r(h)
1 R(h)−T

⊗ r(h)
2 . . . R(h)−T

⊗ r(h)
K

]
(4.99)

where r(h)
i is the ith column of matrix R(h)−1.

4.5 Performance Results

The performance of CIHOSS algorithm is evaluated for the DOA, gain/phase mismatch and

mutual coupling coefficient parameter estimations. Mutual coupling coefficients are complex

valued. Since to the best of our knowledge, there is no online calibration algorithm in the

literature for the defined problem in Section 4.1, the CRB expressions in (4.73) - (4.77) are

used to show the effectiveness of the CIHOSS algorithm.

It is assumed that there are K = 6 sensors and L = 6 far field sources. The number of sources

at each time slot is selected by satisfying the condition in (4.71). K − 2 sensor positions are

randomly selected from a uniform distribution in the deployment area of 2λ×2λ. The distance

between the two reference sensors is adjusted to be λ/2. N = 1000 snapshots are collected

for each time slot. The performance results are averaged over 100 trials. At each trial, source

signals, noise, the sensor positions, the gain/phase mismatch and mutual coupling parameters

and the DOA angles of source signals are changed randomly. The DOA angles are selected

randomly in the range of [10, 170] degrees and the difference between the DOA angles of

the source signals is set to 30 degrees. The phase terms of gain/phase mismatch and mutual

coupling coefficients are selected randomly in the range of [−60, 60] degrees. The gain terms

80



of gain/phase mismatch and mutual coupling coefficients are selected randomly in the range

of [0.8, 1.2] and [0.1, 0.3], respectively. The simulation parameters are summarized in Table

4.1.

Table 4.1: Simuation parameters for CIHOSS algorithm.

Number of sensors K = 6
Total number of sources L = 6
Number of snapshots Nh = 1000,∀h
Wavelength λ = 30 meters
Deployment area [2λ × 2λ]
Distance between reference sensors ∆ = λ/2
DOA range [10o, 170o]
Separation of source DOAs 30o

Phase terms of gain/phase mismatch [−60o, 60o]
Phase terms of mutual coupling coefficients [−60o, 60o]
Gain terms of gain/phase mismatch [0.8, 1.2]
Gain terms of mutual coupling coefficients [0.1, 0.3]
Number of trials 100

Two different scenarios are evaluated for the performance of CIHOSS algorithm. In the first

scenario, there are H = 4 time slots and the number of the sources at each time slot is selected

as, {L1 = 1, L2 = 2, L3 = 2, L4 = 1}. In the second scenario, it is assumed that there are

H = 6 time slots and the number of sources at each time slot is selected as Lh = 1 , for

h = 1, 2, 3, 4, 5, 6.

The DOA estimation performance of CIHOSS algorithm is presented in Fig. 4.2.

The performance of the CIHOSS algorithm for estimating the gain/phase mismatch parame-

ters is presented in Fig. 4.3 for the two scenarios. In Fig. 4.3-a, the estimation performance

for the gain terms is presented while Fig. 4.3-b is for the phase terms.

Fig. 4.4 shows the performance of the CIHOSS algorithm for estimating the mutual coupling

coefficients. The estimation performance of the gain terms of the mutual coupling coefficients

is shown in Fig. 4.4-a, while the performance of the phase terms is shown in Fig. 4.4-b.

As it can be seen from Fig. 4.2 - Fig. 4.4, CIHOSS estimates all the unknown parameters

accurately after S NR = 5 dB for both scenarios. It is also seen that, the performance of
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Figure 4.2: SNR performance for the DOA estimation.

the CIHOSS algorithm in scenario-2 is better than the performance in scenario-1, which is

consistent with the performance of CRBs. There are mainly two reasons for this fact. The first

reason is, since the same number of sources are observed at more time slots, the total number

of unknowns in scenario-2 is less than the unknowns in scenario-1. The second reason is that

the accuracy of the estimation in HOS approach decreases as the number of sources received

in the same time slot increases, which can be seen in Fig. 4.5. In Fig. 4.5-a, the values of

the cost function in (4.40) for the iterations are given for scenario-1 and Fig. 4.5-b shows the

values for scenario-2. As it is seen from these figures, the cost function values are decreased

more rapidly and reach the final cost value with less number of iterations in scenario-2 than

that of scenario-1, since the initial estimates in HOS approach is more accurate in scenario-2.

The effectiveness of the HOS approach for the initial estimate is shown in Figs. 4.6 - 4.9.

We compare the CIHOSS algorithm with the algorithm proposed in [32] and labeled as

Abramovich in the figures. For the fair comparison we assume that only the DOA angles

and mutual coupling coefficients are unknown and mutual coupling matrix, M, is symmetric
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and satisfies the constraints in (4.5). In Fig. 4.6 and Fig. 4.7, “Large Error” is used for the

mutual coupling coefficients whose gain terms are in the range of [0, 0.5] and the phase terms

are in the range of [−60o, 60o]. “Small Error” is used for the mutual coupling coefficients

whose gain terms are in the range of [0, 0.05] and the phase terms are in the range of [−5o, 5o]

in Fig. 4.8 and Fig. 4.9, respectively. In [32], the initial mutual coupling matrix is assumed to

be identity matrix and the initial DOA angles are estimated with Bartlett spectrum using the

initial mutual coupling matrix. Then, the DOA angles and the calibration parameters are iter-

atively updated similar to SOS approach in CIHOSS algorithm. The results of this algorithm

is shown as “Abramovich with Bartlett” in the legend of the figures. Therefore, comparing

CIHOSS with the algorithm in [32] shows the effect of using HOS approach in the calibration.

As it is seen from these figures, the algorithm in [32] can not be used effectively for the online

array calibration. We modified the algorithm in [32] to find the initial DOA estimates from

MUSIC spectrum and its performances are given with legend “Abramovich with MUSIC”.

As it is seen from Fig. 4.8 and Fig. 4.9, using MUSIC spectrum instead of Bartlett spectrum

can improve the performance of the algorithm in [32]. However, as it is seen from Fig. 4.6

and Fig. 4.7, when the mutual coupling coefficients are large, it can not provide a solution

even for large SNR values. On the other hand, CIHOSS algorithm can effectively be used for

small and large mutual coupling coefficients.

4.6 Advantages of CIHOSS Algorithm

The advantages of the CIHOSS algorithm can be summarized as follows:

• CIHOSS algorithm jointly estimates the DOA angles, gain/phase mismatches and mu-

tual coupling coefficients when the sensor positions are known and the two reference

sensors are perfectly calibrated.

• CIHOSS algorithm does not assume any special structure for mutual coupling matrix

and therefore CIHOSS algorithm is applicable to any sensor geometry.

• CIHOSS algorithm does not need initial estimate of gain/phase mismatch and mutual

coupling coefficients, since these parameters are estimated directly from the sensor
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outputs by using HOS approach.

• CIHOSS can accurately estimates the parameters even for large errors in gain/phase

mismatches and mutual coupling coefficients.

– 0.016 degrees accuracy in DOA estimation is achieved at SNR = 30 dB.

– 0.0013 accuracy in the gain mismatches and gain terms of mutual coupling coef-

ficients is achieved at SNR = 30 dB.

– 0.09 degrees accuracy in the phase mismatch is achieved at SNR = 30 dB

– 0.36 degrees accuracy in the phase terms of mutual coupling coefficients is achieved

at SNR = 30 dB.
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Figure 4.3: SNR performance for the estimation of the (a) gain and (b) phase terms of the
gain/phase mismatch parameters.
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Figure 4.4: SNR performance for the estimation of the (a) gain and (b) phase terms of the
mutual coupling coefficients.
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Figure 4.5: Cost function values in iteration for cluster distribution of (a) Lh = {1, 2, 2, 1} and
(b) Lh = {1, 1, 1, 1, 1, 1} at SNR = 15 dB.
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Figure 4.6: SNR performance for the DOA estimation for “Large Error” in mutual coupling
coefficients.
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Figure 4.7: SNR performance for the estimation of the (a) gain and (b) phase terms of the
mutual coupling coefficients for “Large Error” in mutual coupling coefficients.
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Figure 4.8: SNR performance for the DOA estimation for “Small Error” in mutual coupling
coefficients.
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Figure 4.9: SNR performance for the estimation of the (a) gain and (b) phase terms of the
mutual coupling coefficients for “Small Error” in mutual coupling coefficients.
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CHAPTER 5

CONCLUSION

Calibration is an important process for any device. Sensor arrays usually require a calibration

process in order to correct several imperfections. Some of the main sources of error are

the sensor position errors, gain/phase imperfections and mutual coupling between antennas.

Calibration can be performed online or offline. In this thesis, online sensor array calibration

problem is investigated where the calibration is performed during the parameter estimation.

A new online array calibration approach that uses both Higher-Order-Statistics (HOS) and

Second-Order-Statistics (SOS) iteratively to estimate the unknown calibration parameters has

been presented. The proposed approach exploits the advantages of both HOS and SOS ap-

proaches for the parameter estimation. HOS approach is used to obtain an initial parameter

estimate, since it can estimate the DOA angles without being affected by the unknown calibra-

tion parameters. In addition, it can be used to find the array steering matrix estimate directly

from the sensor outputs even for the multi-source case. A new cumulant matrix estimate has

been proposed for the effective implementation of the HOS approach when the source signals

are statistically dependent. This cumulant matrix estimate can be seen as a generalization of

the approaches known in the literature. SOS approach is used to improve the initial estimates

obtained from the HOS approach, since it is more robust to the statistical estimation errors

for finite length observations. In the proposed online array calibration approach, it is assumed

that the two reference sensors are perfectly calibrated with known positions, gain/phase mis-

match and mutual coupling. Proposed iterative approach is guaranteed to converge since the

cost function is non-negative and improved at each iteration. The proposed approach has been

applied for three different online array calibration problems and new algorithms for each of

these problems have been introduced.
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In the first problem, joint DOA and sensor position estimation when the sensor positions are

unknown except the two reference sensors has been investigated and a new algorithm, IHOSS,

has been presented. IHOSS eliminates the need to know the nonimal sensor positions for the

online array calibration in the presence of errors in sensor positions. In this respect, IHOSS

is the first algorithm in the literature which finds the DOA and sensor position estimations

in case of randomly deployed sensors with unknown coordinates. The ambiguity problem

in sensor position estimation due to the wrap around in array steering matrix phase terms

has been considered in the IHOSS algorithm and a new method for unambiguous sensor

position estimation has been proposed. The proposed method solves the ambiguity problem in

sensor position estimation by observing the source signals at least in two different frequencies.

Hence, IHOSS algorithm is applicable for wideband signals.

In the second problem, the online array calibration in the presence of errors in sensor posi-

tions has been investigated for narrowband signals and a new algorithm, MIHOSS, has been

presented. The sensor position estimation method in IHOSS algorithm has been modified

for the narrowband signals. In this case, it is assumed that the nominal sensor positions are

known and there are perturbations in sensor positions. The upper bound of perturbations in

sensor positions for unambiguous sensor position estimation has been presented. It has been

shown that the upper bound for the perturbations to achieve parameter estimations is much

higher than the alternatives in the literature. Therefore, MIHOSS algorithm can handle both

small and large errors in sensor positions.

In the last problem, the effect of gain/phase mismatch and mutual coupling on the DOA esti-

mation performance has been investigated and a new algorithm, CIHOSS, has been proposed

for the joint parameter estimation. In this problem, the sensor positions are assumed to be

known. It is also assumed that the two reference sensors are perfectly calibrated and placed

far away from the other sensors. Therefore, there is no interaction between the reference

sensors and the other sensors. The proposed algorithm does not assume a special structure

for the mutual coupling matrix and therefore, it is applicable for arbitrary sensor geometries.

CIHOSS uses multiple cumulant matrices generated by different sensor pairs to estimate the

calibration parameters. The ambiguity problem in the permutation of columns of the actual

array steering matrix estimate has been considered and an alignment technique has been in-

troduced to order the elements of rows of the actual array steering matrix.
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Deterministic CRB expressions for the DOA and array calibration parameter estimations have

been derived. Several simulations have been done and it has been shown that all the proposed

algorithms perform well for multiple sources and closely follow the CRB for both DOA and

calibration parameters at high SNR.

Some of the future works for this research can be summarized as follows:

• The proposed algorithms in this thesis require two reference sensors that are perfectly

calibrated. The effects of the errors in parameters of the reference sensors can be inves-

tigated and the proposed algorithms can be improved to be robust to these errors.

• In this thesis, it is assumed that the source signals are non-Gaussian, since the fourth-

order cumulants are zero for Gaussian signals. Although this fact is true asymptotically,

for the finite length signals it is not always satisfied. In other words, the fourth-order

cumulant of the finite length signals generated from the Gaussian distribution may be

non-zero. Using this fact, a method can be found to modify the received source signals

such that the fourth order cumulants are not zero. We can select a subset of the received

signals to be used in the HOS approach such that the fourth-order cumulants of these

modified signals are not zero. Transforming the received signals into a new frame

by preserving the relations between sensor outputs may also be the solution of using

Gaussian signals in HOS approach.

94



REFERENCES

[1] R. Schmidt, Multiple emitter location and signal parameter estimation, Proc. RADC
Spectrum Estimation Workshop, pp. 243–258, 1979.

[2] R. Roy and T. Kailath, ESPRIT - Estimation of Signal Parameters Via Rotational Invari-
ance Techniques, IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. 37,
No. 7, pp. 984–995, July 1989.

[3] P. Stoica and A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: Fur-
ther results and comparisons, IEEE Trans. Acoust., Speech, Signal Process., Vol. 38,
No. 12, pp. 2140–2150, December 1990.

[4] B. Ottersten, M. Viberg and T. Kailath, Performance analysis of the total least squares
ESPRIT algorithm, IEEE Trans. on Signal Proc., Vol. 39, No. 5, pp. 1122–1135, May
1991.
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APPENDIX A

Proof of Lemma-1

By substituting (2.26) and (2.25) into (2.23), the desired cumulant matrix, Cd, is rewritten as,

Cd =

L∑
i=1

 γiaiaH
i γidiaiaH

i

γid∗i aiaH
i γiaiaH

i

 (A.1)

where ai is the ith column of array steering matrix, A and di is the ith diagonal element of

matrix D in (2.26). When it is assumed that only the ith source is received, the cumulant

matrix for the array output is written as in the same form of (2.17), i.e.,

C(i) =

 C(i)
xx C(i)

xy

C(i)
xy

H
C(i)

xx

 (A.2)

C(i)
xx(k, l) = Cum

(
x(i)

1 (t), x(i)
1
∗
(t), x(i)

k (t), x(i)
l
∗
(t)

)
C(i)

xy(k, l) = Cum
(
x(i)

2 (t), x(i)
1
∗
(t), x(i)

k (t), x(i)
l
∗
(t)

)
where x(i)

m (t) = am,isi(t) + vm(t) is the mth sensor output for the ith source. a j,i is the jth

row and ith column of array steering matrix, A. It is assumed that the noise is Gaussian

and independent with the source signals. Using this fact and the cumulant properties [CP1]

and [CP4] in [12], the matrix elements in (A.2) can be rewritten in a more compact form by

substituting (4.4), (2.26), and (2.20) into (A.2) such as,

C(i)
xx(k, l) = ak,ia∗l,iγi ⇒ C(i)

xx = aiaH
i γi

C(i)
xy(k, l) = diak,ia∗l,iγi ⇒ C(i)

xy = diaiaH
i γi

(A.3)

Substituting (A.3) into (A.2) and summing up for all of the sources gives us the desired cu-

mulant matrix in (A.1).
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APPENDIX B

Derivation of (2.32)

The cumulants corresponding to the ith source are found by substituting (2.30) into (A.2), i.e.,

Ĉ(i)
xx(k, l) = Cum

(
x(i)

1 (t),
(
x(i)

1 (t)
)∗
, x(i)

k (t),
(
x(i)

l (t)
)∗)

Ĉ(i)
xy(k, l) = Cum

(
x(i)

2 (t),
(
x(i)

1 (t)
)∗
, x(i)

k (t),
(
x(i)

l (t)
)∗) (B.1)

where x(i)
k (t) =

M∑
m=1

q(i)
kmxm(t) and q(i)

kl is the kth row and lth column of matrix Qi in (2.30). From

the cumulant properties [CP1], [CP2] and [CP4] in [12], Ĉi
xx and Ĉi

xy in (B.1) can be written

as,

Ĉi
xx =

(
Qi ⊗ q(i)∗

1

)
Cx

(
Qi ⊗ q(i)∗

1

)H

Ĉi
xy =

(
Qi ⊗ q(i)∗

1

)
Cx

(
Qi ⊗ q(i)∗

2

)H (B.2)

where q(i)∗
j is the complex conjugate of the jth row of the matrix Qi and Cx is defined in (2.33).

Substituting (B.2) into (A.2) and summing up for all of the incoming sources results (2.32),

which is the estimate of desired cumulant matrix in (2.23).
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APPENDIX C

Proof of Theorem-1 in IHOSS

Let {ḱ(i)
f j
}Fj=1 and {k

(i)
f j
}Fj=1 be the correct ambiguity terms for the unambiguous sensor positions

and the estimated ambiguity terms as in (2.50) for 1 ≤ i ≤ L. To resolve the ambiguity in

sensor positions, the minimization problem in (2.50) should have unique solution, which is

{k
(i)
f j
}Fj=1 = {ḱ(i)

f j
}Fj=1.

The minimization in (2.50) is done over the summation of positive terms. Therefore, the

uniqueness of only one term of the summation is sufficient for the overall uniqueness. This

fact results that (2.50) has a unique solution, if the following inequality is satisfied for at least

one of the frequencies, f j, j ∈ {2, . . . , F} for 1 ≤ i ≤ L,

(
K(i)

m, j

)2
,

(
ϑs

2π f1
ξ̂(i)

m ( f1) +
ϑs

f1
k̃(i)

f1
−

ϑs

2π f j
ξ̂(i)

m ( f j) −
ϑs

f j
k̃(i)

f j

)2

(C.1)

where K(i)
m, j corresponds to the minimum distance between possible dot products of the posi-

tion vector of the mth sensor and the propagation vector of the ith source for f1 and f j, i.e.,

K(i)
m, j =

ϑs

2π f1
ξ̂(i)

m ( f1) +
ϑs

f1
k

(i)
f1 −

ϑs

2π f j
ξ̂(i)

m ( f j) −
ϑs

f j
k

(i)
f j

= τ(i)
m,1

(
k

(i)
f1

)
− τ(i)

m, j

(
k

(i)
f j

)
, 1 ≤ i ≤ L (C.2)

and k̃(i)
f j

is an integer, i.e.,

k̃(i)
f j

= k
(i)
f j
− g(i)

j , such that g(i)
j ∈ Z,

F∑
j=1

∣∣∣∣g(i)
j

∣∣∣∣ , 0 (C.3)

Substituting (C.2) and (C.3) into (C.1) simplifies the inequality and the required condition on

the frequencies to satisfy (C.1) for all possible values of K(i)
m, j is found as,∣∣∣∣∣∣∣∣

g(i)
j

f j
−

g(i)
1

f1

∣∣∣∣∣∣∣∣ > 2
ϑs

∣∣∣∣K(i)
m, j

∣∣∣∣ , ∀i ∈ {1, . . . , L}

∃ j ∈ {2, . . . , F}
(C.4)
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Note that for the error free case, the dot products for the two frequencies are the same at the

correct ambiguity terms, ∀ j ∈ {1, . . . , F}, i.e.,

ϑs

2π f1
ξ(i)

m ( f1) +
ϑs

f1
ḱ(i)

f1
=

ϑs

2π f j
ξ(i)

m ( f j) +
ϑs

f j
ḱ(i)

f j
(C.5)

When there are errors in estimated parameters, ξ̂(i)
m ( f j), the equality in (C.5) is not satisfied and

a non-zero K(i)
m, j value is obtained. Since the possible values of the dot product are symmetric

with the correct ambiguity term, it is found that the maximum value of K(i)
m, j is bounded, i.e.,

β(i)
j =

ϑs

f j

∣∣∣∣∣∣ f j

f1
−

[
f j

f1

]
r

∣∣∣∣∣∣ ≥ 2
∣∣∣∣K(i)

m, j

∣∣∣∣ (C.6)

The inequality in (C.6) is valid, if the following conditions are satisfied for all values of

k ∈ Z > 1,

β(i)
j <


∣∣∣∣ϑs

f1
− kβ(i)

j

∣∣∣∣ , for
[ f j

f1

]
r
<

f j
f1∣∣∣∣ϑs

f j
− kβ(i)

j

∣∣∣∣ , for
[ f j

f1

]
r
>

f j
f1

(C.7)

Substituting (C.6) into (C.7) simplifies the inequalities, i.e.,[
f j

f1

]
r
<

f j

f1
<

k + 1
k

[
f j

f1

]
r

or
k

k + 1

[
f j

f1

]
r
<

f j

f1
<

[
f j

f1

]
r

(C.8)

Substituting (C.6) into (C.4) results,∣∣∣∣∣∣g(i)
j − g(i)

1

f j

f1

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣ f j

f1
−

[
f j

f1

]
r

∣∣∣∣∣∣ , ∀i ∈ {1, . . . , L}

∃ j ∈ {2, . . . , F}
(C.9)

Note that the equality in (C.9) is due to the fact that the ambiguity in sensor positions cannot

be solved via frequency selection when
∣∣∣∣K(i)

m, j

∣∣∣∣ = 1
2β

(i)
j . There are two possible ambiguity terms

at which
∣∣∣∣K(i)

m, j

∣∣∣∣ = 1
2β

(i)
j whatever the selected frequencies are, i.e.,

ϑs
2π f1

ξ̂(i)
m ( f1) +

ϑs
f1

k
(i)
f1 −

ϑs
2π f j

ξ̂(i)
m ( f j) −

ϑs
f j

k
(i)
f j

= 1
2

(
ϑs
f1
−

ϑs
f j

[ f j
f1

]
r

)
ϑs

2π f1
ξ̂(i)

m ( f1) +
ϑs
f1

(
k

(i)
f1 − 1

)
−

ϑs
2π f j

ξ̂(i)
m ( f j) −

ϑs
f j

(
k

(i)
f j
−

[ f j
f1

]
r

)
= 1

2

(
ϑs
f j

[ f j
f1

]
r
−

ϑs
f1

) (C.10)

This problem can be solved by constraining K(i)
m, j. In this case, there is no two ambiguity terms

which return the same
∣∣∣∣K(i)

m, j

∣∣∣∣ terms. This constraint which guarantees the correct ambiguity

resolution is given as, ∣∣∣∣K(i)
m, j

∣∣∣∣ < 1
2
β(i)

j =
1
2
ϑs

f j

∣∣∣∣∣∣ f j

f1
−

[
f j

f1

]
r

∣∣∣∣∣∣ (C.11)

Since the value of K(i)
m, j is determined by the errors of the estimated parameters in (2.50), to

satisfy the condition in (C.11), the estimation errors should also be bounded. For this case,
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the term that is tried to be minimized in (2.50) can be written for the correct ambiguity term

by substituting (2.56) into (2.50), i.e.,

K =

F∑
j=2

(
ϑs

2π f1

(
ξ(i)

m ( f1) + ∆ξ(i)
m ( f1)

)
+
ϑs

f1
ḱ(i)

f1
−

ϑs

2π f j

(
ξ(i)

m ( f j) + ∆ξ(i)
m ( f j)

)
−
ϑs

f j
ḱ(i)

f j

)2

(C.12)

Using the relation in (C.5), (C.12) can be simplified as,

K =

F∑
j=2

(
ϑs

2π f1
∆ξ(i)

m ( f1) −
ϑs

2π f j
∆ξ(i)

m ( f j)
)2

(C.13)

For the unique solution of (2.50) to be the correct ambiguity term, i.e., {k
(i)
f j
}Fj=1 = {ḱ(i)

f j
}Fj=1, K

should be equal to the solution of the minimization problem in (2.50), i.e., K =
F∑

j=2

(
K(i)

m, j

)2
.

Using (C.11) and (C.13) in this relation simplifies the conditions on estimation errors for

unambiguous sensor positions as in (2.54).

To complete the proof, we should specify the possible ranges of g(i)
j and k, which depend

on the search region for k(i)
f j

. The limiting value for the search region is found from (3.3) by

considering the position of the most distant sensor with respect to the reference sensor defined

as h = (hx, hy) in Theorem-1, i.e.,

f j

ϑs
h

(i)
− 1 ≤ k(i)

f j
≤

f j

ϑs
h

(i)
, ∀ j ∈ {1, . . . , F} (C.14)

where h
(i)

= hxcos(θi) + hysin(θi). Note that the inequality in (C.14) is based on the fact that

(3.3) is in the range of [0, 2π]. The limits of k(i)
f j

satisfied for all values of θi are found by using

simple trigonometric identities for j ∈ {1, . . . , F}, i.e.,

−

⌈
f j

ϑs

√
h2

x + h2
y + 1

⌉
≤ k(i)

f j
≤

⌈
f j

ϑs

√
h2

x + h2
y

⌉
(C.15)

Then, the possible ranges for g(i)
j , j ∈ {1, . . . , F}, can be found from (C.15) and (C.3) such as,

−

⌈
f j

ϑs

√
h2

x + h2
y

⌉
+ k

(i)
f j,min ≤ g(i)

j ≤

⌈
f j

ϑs

√
h2

x + h2
y + 1

⌉
+ k

(i)
f j,max

−2
⌈

f j

ϑs

√
h2

x + h2
y

⌉
− 1 ≤ g(i)

j ≤ 2
⌈

f j

ϑs

√
h2

x + h2
y

⌉
+ 1 (C.16)

Since conditions in (C.7) should be satisfied for all possible dot product values, τ(i)
m, j

(
k(i)

f j

)
, in

the deployment area, the maximum value of k is found from (C.15) as,

max{k} =
1

2
⌈

1
ϑs

max
j

( f j)
√

h2
x + h2

y

⌉
+ 1

(C.17)

Substituting (C.17) into (C.8) gives the condition in (2.52).
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APPENDIX D

Cramér-Rao Bound

In this section, we derive the general deterministic CRB expressions for the DOA and sensor

position estimations. Source signals are assumed to be deterministic unknown processes and

noise is temporally uncorrelated zero-mean Gaussian process. It is also assumed that the

array output is available at multiple frequencies for the same sources. Noise is uncorrelated

for different frequencies. There is no circularity and spatial correlation assumption about the

complex Gaussian noise.

The complex valued array output given in (2.4) can be rewritten in terms of real and imaginary

parts for 1 ≤ t ≤ N and 1 ≤ j ≤ F as,

x(c)
f j

(t) =

[
x(c)

f1

T
(1) . . . x(c)

fF

T
(1) . . . x(c)

fF

T
(N)

]T

x(c)
f j

(t) = A(c)
f j

s(c)
f j

(t) + v(c)
f j

(t) (D.1) <
(
x f j(t)

)
=

(
x f j(t)

)
 =

 <
(
A f j

)
−=

(
A f j

)
=

(
A f j

)
<

(
A f j

)

 <

(
s f j(t)

)
=

(
s f j(t)

)
 +

 <
(
v f j(t)

)
=

(
v f j(t)

)


Then according to the given assumptions, the distribution of x(c) can be expressed as Normal

distribution, N {m(Ω),R(Ω)}. MNF×1 vector m(Ω) and MNF×MNF block diagonal matrix

R(Ω) are defined as,

m(Ω) =

[ (
A(c)

f1
s(c)

f1
(1)

)T
. . .

(
A(c)

fF
s(c)

fF
(1)

)T
. . .

(
A(c)

fF
s(c)

fF
(N)

)T
]T

(D.2)

R(Ω) = diag
(
R f1(1), . . . ,R fF (1), . . . ,R fF (N)

)
(D.3)

R f j(t) is defined for non-circular and circular noise cases in (2.66) and (2.76), respectively.

Ω is a real-valued parameter vector that completely and uniquely specifies the distribution of

x(c) and in our case it is defined as,

Ω =

{
θi, pmu,x, pmu,y,<

(
si, f j(t)

)
,=

(
si, f j(t)

)
,
(
R f j(t)

)
k,l

}
(D.4)
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for, mu ∈ {sensor indices with unknown positions}, 1 ≤ i ≤ L, 1 ≤ t ≤ N, 1 ≤ k ≤ l ≤ 2M

and 1 ≤ j ≤ F.
(
R f j(t)

)
k,l

is the kth row and lth column of the matrix R f j(t).

Using the definitions in (D.2) and (D.3), the Fisher information matrix corresponding to the

distribution of x(c) is written as in [20], i.e.,

FIMm,k =

F∑
j=1

N∑
t=1


∂A(c)

f j
s(c)

f j
(t)

∂Ωm


T

R−1
f j

(t)
∂A(c)

f j
s(c)

f j
(t)

∂Ωk
+

1
2

tr
(
R−1

f j
(t)
∂R f j(t)

∂Ωm
R−1

f j
(t)
∂R f j(t)

∂Ωk

)
(D.5)

where Ωi denotes the ith component of Ω.

Note that, since the vector A(c)
f j

s(c)
f j

(t) is independent of the elements of covariance matrix

R f j(t) and R f j(t) is depends on only its elements, the following relations are satisfied,

∂A(c)
f j

s(c)
f j

(t)

∂
(
R f j (t)

)
k,l

= 0;
∂R f j (t)
∂θi

= 0;
∂R f j (t)
∂pmu ,x

= 0;

∂R f j (t)
∂pmu ,y

= 0;
∂R f j (t)

∂<
(
si, f j (t)

) = 0;
∂R f j (t)

∂=
(
si, f j (t)

) = 0
(D.6)

When all the unknown parameters in (D.4) are considered with the relations in (D.6), the

Fisher Information matrix can be expressed as,

FIM =



FIMΘ,Θ FIMΘ,P FIMΘ,s 0

FIMT
Θ,P FIMP,P FIMP,s 0

FIMT
Θ,s FIMT

P,s FIMs,s 0

0 0 0 FIMR,R


(D.7)

FIMΘ,Θ is the Fisher Information sub-matrix corresponding to the DOA angles and obtained

by substituting (D.6) into (D.5) for {Ωm,Ωk} ∈ {θi}
L
i=1, i.e.,

FIMΘ,Θ =

F∑
j=1

N∑
t=1

FIMT
Θ(t, f j)R−1

f j
(t)FIMΘ(t, f j) (D.8)

where 2M × L matrix FIMΘ(t, f j) is found as,

FIMΘ(t, f j) =

[
∂A(c)

f j
s(c)

f j
(t)

∂θ1
. . .

∂A(c)
f j

s(c)
f j

(t)

∂θL

]
(D.9)

Taking the derivative of A(c)
f j

s(c)
f j

(t) with respect to θi for 1 ≤ i ≤ L simplifies the expression in

(D.9) as in (2.69).

The Fisher Information sub-matrix corresponding to the DOA angles and unknown sensor

positions, FIMΘ,P, is obtained by substituting (D.6) into (D.5) for Ωm ∈ {θi}
L
i=1 and Ωk ∈
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{
pmu,x, pmu,y

}Mu

u=1
, i.e.,

FIMΘ,P =

F∑
j=1

N∑
t=1

FIMT
Θ(t, f j)R−1

f j
(t)FIMP(t, f j) (D.10)

where Mu is the number of sensors with unknown positions and 2M×2Mu matrix FIMP(t, f j)

is found as,

FIMP(t, f j) =

[
∂A(c)

f j
s(c)

f j
(t)

∂pm1 ,x
. . .

∂A(c)
f j

s(c)
f j

(t)

∂pmMu ,x
. . .

∂A(c)
f j

s(c)
f j

(t)

∂pmMu ,y

]
(D.11)

Taking the derivative of A(c)
f j

s(c)
f j

(t) with respect to the position of the mth sensor for m ∈ {

sensor indices with unknown positions } simplifies the expression in (D.11) as in (2.70).

The Fisher Information sub-matrix corresponding to the DOA angles and source signals,

FIMΘ,s, is obtained by substituting (D.6) into (D.5) for Ωk ∈
{
<

(
si, f j(t)

)
,=

(
si, f j(t)

)}
and

Ωm ∈ {θi}
L
i=1, 1 ≤ i ≤ L and 1 ≤ j ≤ F, i.e.,

FIMΘ,s =

F∑
j=1

N∑
t=1

FIMT
Θ(t, f j)R−1

f j
(t)FIMs(t, f j) (D.12)

where 2M × 2NLF matrix FIMs(t, f j) is found by taking the derivative of A(c)
f j

s(c)
f j

(t) with

respect to the real and imaginary parts of the source signals at each frequency, i.e.,

FIMs(t, f j) =

[
0(t−1)2LF+( j−1)2L A(c)

f j
0(N−t)2LF+(F− j)2L

]
(D.13)

where 0b is the 2M × b zero matrix. Substituting (D.13) into (D.12) simplifies the relation

as in (D.14). In a similar way, the other Fisher Information sub-matrices are obtained as in
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(D.15), D.16 and (D.17).

FIMΘ,s =



(
FIMT

Θ(1, f1)R−1
f1

(1)A(c)
f1

)T

...(
FIMT

Θ(1, fF)R−1
fF

(1)A(c)
fF

)T

...(
FIMT

Θ(N, fF)R−1
fF

(N)A(c)
fF

)T



T

(D.14)

FIMP,P =

F∑
j=1

N∑
t=1

FIMT
P(t, f j)R−1

f j
(t)FIMP(t, f j) (D.15)

FIMP,s =



(
FIMT

P(1, f1)R−1
f1

(1)A(c)
f1

)T

...(
FIMT

P(1, fF)R−1
fF

(1)A(c)
fF

)T

...(
FIMT

P(N, fF)R−1
fF

(N)A(c)
fF

)T



T

(D.16)

FIMs,s = diag
(
A(c)

f1

T
R−1

f1 (1)A(c)
f1
, . . . ,A(c)

fF

T
R−1

fF (1)A(c)
fF
, . . . ,A(c)

fF

T
R−1

fF (N)A(c)
fF

)
(D.17)

Applying the partitioned matrix inversion formula [21], we can obtain the sub-matrices of

inverse Fisher Information matrix corresponding to the DOA and sensor position estimation,

i.e.,

FIM−1
Θ =

(
K3 −K1K−1

2 KT
1

)−1
(D.18)

FIM−1
P = K−1

2 + K−1
2 KT

1 FIM−1
Θ K1K−1

2 (D.19)

where

K1 = FIMΘ,P − FIMΘ,sFIM−1
s,s FIMT

P,s (D.20)

K2 = FIMP,P − FIMP,sFIM−1
s,s FIMT

P,s (D.21)

K3 = FIMΘ,Θ − FIMΘ,sFIM−1
s,s FIMT

Θ,s (D.22)

Substituting (D.8), (D.10), (D.14), (D.15), (D.16) and (D.17) into (D.20), (D.21) and (D.22)

results a more compact form of K1, K2 and K3 as in (2.63) - (2.65).
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APPENDIX E

Proof of Lemma-2

To find the best sensor position estimate among the possible sensor position estimates, p̂m(km) =

ˆ̃pm(km) + p0
m, unambiguously, it should be guaranteed that the sensor position estimate closest

to the nominal sensor position is also closest to the actual sensor position. It is also necessary

that there is only one sensor position estimate closest to the nominal sensor position. Let k̂0
m

and k̂a
m be the ambiguity terms for which the position estimates are closest to the nominal and

actual sensor positions, respectively, i.e,

k̂0
m = arg min

km

∥∥∥p̂m(km) − p0
m

∥∥∥2

= arg min
km

∥∥∥ ˆ̃pm(km)
∥∥∥2 (E.1)

k̂a
m = arg min

km

∥∥∥∥p̂m(km) −
(
p̃m + p0

m

)∥∥∥∥2

= arg min
km

∥∥∥ ˆ̃pm(km) − p̃m
∥∥∥2 (E.2)

Then, the necessary conditions for the best unambiguous sensor position estimate can be

expressed as,

k̂0
m = k̂a

m (E.3)∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
<

∥∥∥ ˆ̃pm(km)
∥∥∥2
, ∀km , k̂0

m (E.4)

The position perturbation of the mth sensor can be written in polar form as

p̃m = ‖p̃m‖uT (βm) (E.5)

where βm is the angle of direction vector between the actual and nominal positions of the mth

sensor relative to the x-axis, respectively and u(βm) is defined as,

u(βm) =

[
cos(βm) sin(βm)

]T
(E.6)
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Substituting (E.5) into (E.2) and considering that all the parameters are real, simplifies the

relation as,

k̂a
m = arg min

km

(∥∥∥ ˆ̃pm(km)
∥∥∥2

+ ‖p̃m‖
2 − 2 ‖p̃m‖ ˆ̃pT

m(km)u(βm)
)

= arg min
km

(∥∥∥ ˆ̃pm(km)
∥∥∥2
− 2 ‖p̃m‖ ˆ̃pT

m(km)u(βm)
)

(E.7)

The necessary condition on ambiguity terms in (E.3) and (E.4) is satisfied when the term that

is tried to be minimized in (E.7) takes its minimum value at k̂0
m. This relation can be specified

as,

2 ‖p̃m‖
(
ˆ̃pm(km) − ˆ̃pm(k̂0

m)
)T

u(βm) <
∥∥∥ ˆ̃pm(km)

∥∥∥2
−

∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
, ∀km , k̂0

m (E.8)

Then, for the worst case scenario the upper bound of ‖p̃m‖ can be expressed as,

‖p̃m‖ <
1
2

min
km

(∥∥∥ ˆ̃pm(km)
∥∥∥2
−

∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
)

max
km,βm

((
ˆ̃pm(km) − ˆ̃pm(k̂0

m)
)T

u(βm)
) , ∀km , k̂0

m (E.9)

The term in the denominator in (E.9) can be simplified as

max
km,βm

((
ˆ̃pm(km) − ˆ̃pm(k̂0

m)
)T

u(βm)
)

= max
km,βm,γm

(∥∥∥ ˆ̃pm(km) − ˆ̃pm(k̂0
m)

∥∥∥ uT (γm)u(βm)
)

= max
km

∥∥∥ ˆ̃pm(km) − ˆ̃pm(k̂0
m)

∥∥∥ max
βm,γm

(
uT (γm)u(βm)

)
= max

km

∥∥∥ ˆ̃pm(km) − ˆ̃pm(k̂0
m)

∥∥∥ (E.10)

where γm is the angle of the direction vector between ˆ̃pm(km) and ˆ̃pm(k̂0
m) relative to the x-axis

and u(γm) is defined as,

u(γm) =

[
cos(γm) sin(γm)

]T
(E.11)

Note that, the last relation in (E.10) is due to the fact that the maximum value of the dot

product of two unit vector is equal to one.

Due to the definition in (E.1), the term in the numerator in (E.9) is greater than or equal to

zero and it can be rewritten using (3.8) as,

min
km

(∥∥∥ ˆ̃pm(km)
∥∥∥2
−

∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
)

= min
km

(∥∥∥p̂m(km) − p0
m

∥∥∥2
−

∥∥∥p̂m(k0
m) − p0

m

∥∥∥2
)

(E.12)

where p̂m(km) =
(
λ
2π Ξ̂m + λkm

)
U†(Θ̂). Let ϕm be the angle between the direction vectors of(

p̂m(km) − p̂m(k0
m)

)
and

(
p0

m − p̂m(k0
m)

)
. Then, the distance between p̂m(km) and p0

m can be

expressed as∥∥∥p̂m(km) − p0
m

∥∥∥ =

√
d2

12(km) + d2
13(km) − 2d12(km)d13(km)cos (ϕm) (E.13)
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where

d12(km) =
∥∥∥p̂m(km) − p̂m(k0

m)
∥∥∥

=
∥∥∥∥( ˆ̃pm(km) + p0

m

)
−

(
ˆ̃pm(k0

m) + p0
m

)∥∥∥∥
=

∥∥∥ ˆ̃pm(km) − ˆ̃pm(k0
m)

∥∥∥ (E.14)

d13(km) =
∥∥∥p̂m(k0

m) − p0
m

∥∥∥
=

∥∥∥∥( ˆ̃pm(k0
m) + p0

m

)
− p0

m

∥∥∥∥
=

∥∥∥ ˆ̃pm(k0
m)

∥∥∥
= em (E.15)

Substituting (E.13), (E.14) and (E.15) into (E.12) simplifies the expression as

min
km

(∥∥∥ ˆ̃pm(km)
∥∥∥2
−

∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
)

= min
km,ϕm

(d12(km) (d12(km) − 2d13(km)cos (ϕm))) (E.16)

Since d12(km) and d13(km) are positive quantities, (E.16) can be simplified as

min
km

(∥∥∥ ˆ̃pm(km)
∥∥∥2
−

∥∥∥ ˆ̃pm(k̂0
m)

∥∥∥2
)

= min
km

(d12(km) (d12(km) − 2d13(km))) (E.17)

Substituting (E.14), (E.15), (E.17) and (E.10) into (E.9) simplifies the relation, i.e.,

‖p̃m‖ <
1
2

min
km,k̂0

m

∥∥∥ ˆ̃pm(km) − ˆ̃pm(k0
m)

∥∥∥ − em (E.18)

Substituting (3.8) into (E.18) results the condition of Lemma-2 in (3.12)
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APPENDIX F

Derivation of Hessian Matrix and Gradient Vector in (4.50)

The L × 1 gradient vector for the DOA angles at iteration j is g j(k) =
∂Q

∂Θ j(k) and the L × L

Hessian matrix is H j(k,m) =
∂2Q

∂Θ j(k)∂Θ j(m) , where Q is the overall cost function in (4.52) and

Θ j is the L × 1 vector composed of DOA angles at iteration j.

Then from (4.52), the kth element of gradient vector is found as

g j(k) =

L∑
l=1

−eH
l MTȦksl − sH

l ȦH
k THMHel + sH

l ȦH
k THMHMTAsl + sH

l AHTHMHMTȦksl

= 2<

 L∑
l=1

(
−eH

l + sH
l AHTHMH

)
MTȦksl

 (F.1)

where

Ȧk =
∂A

∂Θ j(k)
= DkAnknT

k (F.2)

nk is the L × 1 vector with all zero but the kth element one and

Dk = j
2π
λ

diag
(
−xsin(Θ j(k)) + ycos(Θ j(k))

)
(F.3)

x =
[
p1,x, p2,x, . . . , pK,x

]T (F.4)

y =
[
p1,y, p2,y, . . . , pK,y

]T
(F.5)

From (F.1) kth row and mth column of Hessian matrix is found as

H j(k,m) =
∂g j(k)
∂Θ j(m)

= 2<

 L∑
l=1

sH
l ȦH

mTHMHMTȦksl − eH
l MTÄk,msl + sH

l AHTHMHMTÄk,msl


= 2<

 L∑
l=1

sH
l ȦH

mTHMHMTȦksl +
(
−eH

l + sH
l AHTHMH

)
MTÄk,msl

 (F.6)
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where

Äk,m =
∂Ȧk

∂Θ j(m)
=


(
Dk + DkDk

)
AnknT

k , k = m

0K×K , k , m
(F.7)

Dk = − j 2π
λ diag

(
xcos(Θ j(k)) + ysin(Θ j(k))

)
and 0K×K is K × K zero matrix.
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APPENDIX G

Proof of Lemma-3

The left hand side of equation in (4.14) can be rewritten as

‖Z − XY‖2F =

∥∥∥∥∥[ zc1 zc2 . . . zcM

]
−

[
Xyc1 Xyc2 . . . XycM

]∥∥∥∥∥2

F
(G.1)

where yci and zci are the column vectors composed of the ith column of matrices Y and Z,

respectively. Since Frobenious norm can be written as vector norm, the right hand side of

(G.1) can be rewritten as

‖Z − XY‖2F =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



zc1

zc2
...

zcM


−



Xyc1

Xyc2
...

XycM



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



zc1

zc2
...

zcM


−



X 0K×L . . . 0K×L

0K×L X . . . 0K×L
...

...
. . .

...

0K×L 0K×L . . . X





yc1

yc2
...

ycM



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= ‖vect(Z) − (IM ⊗ X) vect(Y)‖2 (G.2)
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APPENDIX H

Permutation Ambiguity in CIHOSS

As stated in Section 4.3.1.2, each row of the actual array steering matrix is estimated sepa-

rately from the eigenvalue decomposition of cumulant matrix for different sensor pair as in

(4.15) - (4.21). The eigenvalue decomposition gives us the ratios of the elements in the two

rows of the actual array steering matrix estimate as in (4.21). The two rows are determined

by the selected sensor pair and the ratios corresponding to the different sensor pair are arbi-

trarily ordered. This problem is defined as the permutation ambiguity and for the solution, a

cost function in (4.25) is proposed. To explain the proposed cost function in a better way, we

illustrate the aligning process in the following figures. We illustrate the actual array steering

matrix in Fig. H.1 for four sensors and three sources. In Fig. H.1, the red, green and blue

colors are used to represent the first, second and third sources, respectively.

Figure H.1: The actual array steering matrix.

When the eigenvalue decomposition of the cumulant matrices for the sensor pairs (1, j) and

(2, j), 1 ≤ j ≤ 4, is performed, we can obtain the actual array steering matrix in the form such

as in Fig. H.2. As it can be seen, while the first two rows are in the same order, the remaining
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rows are arbitrarily ordered. Note that, the first and second rows of the actual array steering

matrix are found by using the DOA angles as explained in Section 4.3.1.2. On the other hand,

the elements in the remaining rows are the ratios of the elements corresponding to the selected

sensor pair. For example, the third row is composed of the ratios of the third and first rows of

the actual array steering matrix.

(a) (b)

Figure H.2: The results of the eigenvalue decomposition of the cumulant matrix for sensor
pairs (a) (1,j) and (b) (2,j), 1 ≤ j ≤ 4.

Since the numerators and denominators are the elements of the first and second rows of the ac-

tual array steering matrix, the scale factor on the other rows can be eliminated by multiplying

them with the elements in the first or second row of the matrix in Fig. H.2. Since the elements

in each row are ordered arbitrarily, we should align the rows before the multiplication. To de-

cide that the alignment is correct or not we use a cost function in (4.25), which measures the

difference between the two vectors. When the elements of the rows are not aligned correctly,

the two vectors are completely different as shown in Fig. H.3 and the cost function results a

large value. On the other hand when the alignment is correct, the two vectors are almost the

same as shown in Fig. H.4 and a smaller cost value is obtained.
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Figure H.3: The cost function evaluation for the aligning process when the alignment is not
correct.

Figure H.4: The cost function evaluation for the aligning process when the alignment is cor-
rect.
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