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ABSTRACT 

 

 

AN ADAPTIVE UNSCENTED KALMAN FILTER FOR 

TIGHTLY-COUPLED INS/GPS INTEGRATION 

 

Akça, Tamer 

 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

February 2012, 92 pages 

 

In order to overcome the various disadvantages of standalone INS and GPS, these 

systems are integrated using nonlinear estimation techniques and benefits of the two 

complementary systems are obtained at the same time. The standard and most widely 

used estimation algorithm in the INS/GPS integrated systems is Extended Kalman 

Filter (EKF). Linearization step involved in the EKF algorithm can lead to second 

order errors in the mean and covariance of the state estimate. Another nonlinear 

estimator, Unscented Kalman Filter (UKF) approaches this problem by carefully 

selecting deterministic sigma points from the Gaussian distribution and propagating 

these points through the nonlinear function itself leading third order errors for any 

nonlinearity. Scaled Unscented Transformation (SUT) is one of the sigma point 

selection methods which gives the opportunity to adjust the spread of sigma points 

and control the higher order errors by some design parameters. Determination of 

these parameters is problem specific. In this thesis, effects of the SUT parameters on 

integrated navigation solution are investigated and an “Adaptive UKF” is designed 

for a tightly-coupled INS/GPS integrated system. Besides adapting process and 
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measurement noises, SUT parameters are adaptively tuned. A realistic fighter flight 

trajectory is used to simulate IMU and GPS data within Monte Carlo analysis. 

Results of the proposed method are compared with standard EKF and UKF 

integration. It is observed that the adaptive scheme used in the sigma point selection 

improves the performance of the integrated navigation system especially at the end 

of GPS outage periods. 

 

Keywords: INS/GPS; Adaptive Nonlinear Estimation; EKF; UKF; Unscented 

Transformation   
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ÖZ 

 

 

SIKI BAĞLI ANS/KKS TÜMLEŞTİRMESİNDE 

UYARLAMALI KOKUSUZ KALMAN FİLTRESİ UYGULAMASI 

 

Akça, Tamer 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler 

 

Şubat 2012, 92 sayfa 

 

Tek başlarına çalıştırıldıklarında çeşitli dezavantajları bulunan ataletsel navigasyon 

sistemi (ANS) ve küresel konumlama sistemi (KKS), doğrusal olmayan kestirim 

algoritmaları kullanılarak tümleştirilmekte ve birbirini bütünler nitelikte olan bu iki 

sistemin ayrı ayrı getirileri tek bir sistemden elde edilmektedir. Bu uygulama için en 

çok ve en yaygın bir biçimde kullanılan kestirim algoritması genişletilmiş kalman 

filtresidir (EKF). EKF uygulamasında yer alan doğrusallaştırma işlemleri nedeniyle 

kestirim sonucunun ortalama ve standart sapma değerlerinde ikinci dereceden hatalar 

oluşabilmektedir. Bu uygulamada kullanılabilecek bir başka doğrusal olmayan 

kestirim algoritması ise kokusuz kalman filtresidir (UKF). UKF, Gaussian dağılım 

içerisinden belirli bir şekilde seçilen örnekleme noktalarını, doğrusal olmayan sistem 

ve ölçüm modelinden geçirir ve ikinci dereceden hatalara sahip kestirim sonucunu 

elde eder. Bahsi geçen örnekleme noktalarının seçiminde kullanılan yöntemlerden 

biri Orantılanmış Kokusuz Dönüşümdür (SUT). Bu yöntem dahilindeki bazı 

değişkenler ile örnekleme noktalarının dağılımını belirleme ve yüksek dereceden 

kestirim hatalarının kontrolünü sağlama imkanı elde edilir. Bu değişkenlerin 
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belirlenmesi ilgili probleme özgüdür. Bu tez kapsamında SUT değişkenlerinin 

tümleştirilmiş navigasyon sistemi üzerindeki etkileri değerlendirilmiş ve sıkı bağlı 

ANS/KKS tümleşik sistemi, “Uyarlamalı UKF” kullanılarak tasarlanmıştır. Bu 

uygulama kapsamında süreç ve ölçüm gürültülerinin dışında, SUT değişkenleri 

uyarlamalı olarak değiştirilmiştir. Gerçekçi bir savaş uçağı uçuş senaryosu ile, 

ataletsel ölçüm biriminin ve küresel konumlama sisteminin çoklu koşum analizi 

yöntemi dahilinde benzetimi yapılmıştır. Önerilen yöntem ile elde edilen sonuçlar, 

standart EKF ve UKF yöntemlerinin sonuçları ile kıyaslanmıştır. Sonuç olarak 

özellikle KKS sinyallerinin kesintiye uğradığı sürelerden sonra, önerilen yöntemin 

navigasyon sisteminin hassasiyetini arttırdığı gözlemlenmiştir. 

 

Anahtar Kelimeler: ANS/KKS; Uyarlamalı doğrusal olmayan kestirim; EKF; UKF; 

kokusuz dönüşüm 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

 

Inertial Navigation Systems (INS) are designed in order to determine the velocity, 

position and the attitude of a moving object. These systems are originally developed 

for navigating rockets during the Second World War and widely used in marine, 

aerospace and land navigation areas [1]. Such a system is mainly composed of 

accelerometers, gyroscopes and computers which make use of the outputs of these 

sensors. Both, accelerometers and gyroscopes operate on the inertial principles 

(Newton’s Laws of Motion) while forming linear acceleration and angular velocity 

measurements. For this reason, the system composed of these inertial sensors is 

named as Inertial Navigation System [2]. The sensor cluster formed by three 

accelerometers and three gyroscopes is called as inertial measurement unit which is 

the most significant component of INS. 

 

Global Positioning System (GPS) is a satellite based radio navigation system that 

provides three dimensional navigation solution. GPS project was developed in 1973 

to improve the performance of the previous navigation systems. The system became 

fully operational in 1994 and made freely available for the civilian use [3]. The basic 

operation of the GPS is obtaining user position and velocity using the radio signals 

broadcast by the satellites. Navigation solution is basically obtained by comparing 

the transmission and receiving times of the GPS signals. 

 

Both INS and GPS suffer from various error sources and deficiencies which propel 

the accompaniment of the two complementary systems. Inertial navigation systems 
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exhibit relatively low noisy outputs which tend to drift over time [4]. Contrary to 

INS, GPS outputs are relatively noisy but do not exhibit long-term drift [4]. Using 

both of these systems together results in a superior navigation performance than 

either alone. Integrating the outputs from each sensor results in a system which can 

be viewed as a drift free INS [5].  

 

1.1 Objectives of the Thesis 

 

In the process of INS/GPS integration, various estimation techniques have been 

utilized. The most widely used algorithm is the Extended Kalman Filter which is 

based on linearized system and measurement models [6]. In order to improve the 

performance of the integration, different methods are proposed and implemented. In 

the scope of this thesis, an Adaptive Unscented Kalman Filter implementation is used 

to overcome the deficiencies of the Extended Kalman Filter and improve the 

navigation performance of the INS/GPS integrated system. 

 

1.2 Outline of the Thesis 

 

Chapter 2 presents the fundamental information about the inertial navigation 

systems. The Earth and the gravity models, error model of the inertial measurement 

unit, the INS mechanization equations, and the linear error model of the INS are all 

included in this chapter. 

 

Chapter 3 provides the fundamental characteristics of the Global Positioning System. 

After the background information, methods for obtaining the GPS navigation 

solution are investigated. The definitions of the sources of measurement errors are 

discussed and a nonlinear measurement model is obtained at the end of the chapter. 

 

Chapter 4 discusses the benefits and drawbacks of the INS and the GPS in detail by 

considering their performance, cost and functionality. INS/GPS integration 

architectures, loosely coupled, tightly coupled and deeply coupled, are defined. 
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Specifications of the utilized sensor systems are supplied. Finally, the state space 

model and the measurement model for the INS/GPS integration process are 

constituted. 

 

Chapter 5 provides the background information about the nonlinear estimation 

algorithms, Extended Kalman Filter and Unscented Kalman Filter. The adaptive 

scheme utilized for the Unscented Kalman Filter is discussed. Pseudo codes for each 

algorithm are supplied in related sections.  

 

Chapter 6 presents overall results of the simulations, tests and discussions about the 

utilized methods. 

 

Chapter 7 provides a brief summary and conclusions of the thesis study. The 

comparison of the results and the future work of the thesis are mentioned. 
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CHAPTER 2 

 

2 INERTIAL NAVIGATION SYSTEMS 

 

 

 

This chapter provides the background information about the inertial navigation 

systems, which is necessary in order to understand the nature and principles of 

operation of the inertial navigation. Equations serving as the framework for INS/GPS 

integration are explained and clarified starting from the sensor level then proceeding 

to the system level. After making a brief introduction to inertial measurement units, 

basic design and production technologies for inertial sensors are considered. Then 

IMU error model is obtained using the predefined inertial sensor error source models. 

Remaining part of the chapter is devoted to the INS dynamics which includes the 

definitions of reference frames, the Earth and gravity models, INS mechanization 

equations, INS error model and state space error model for the INS/GPS integration 

process in turn. 

 

2.1 Inertial Measurement Unit 

 

An inertial measurement unit is composed of three gyroscopes and three 

accelerometers which are orthogonally mounted on a fixture. These sensors are 

mainly used to determine the current state of the system in three dimensional space. 

Also flight control systems and stabilized platforms make use of the IMU outputs 

[7]. 

 

Angular velocity of the system is measured by gyroscopes. Via integrating angular 

velocities in three axes, angular position of the system can be obtained considering 
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the initial conditions. Angular velocities can be regarded as the rate at which the 

system rotates around a given axis. 

 

Linear acceleration of the system is measured by accelerometers. Once integrating 

the linear acceleration, linear speed is obtained. By integrating the speed, change in 

the position can be found. With the use of initial conditions, current velocity and 

position of the system can be obtained. 

 

Literally, large number of designs exists for inertial measurement units. These units 

are classified according to their sensor technologies and areas of interests. In general, 

these systems are categorized into two groups, namely gimbaled systems and 

strapdown systems. 

 

2.1.1 Gimbaled Systems 

 

The sensor cluster consisting of three gyroscopes and three accelerometers is rigidly 

mounted to the gimbal part in gimbaled systems. In this setup, sensors are isolated 

from the rotations of the outer system. Attitude of the sensor cluster does not change 

even the vehicle rotates. The sensor cluster is stabilized by using feedback from the 

gyroscopes which sense the rotation of the outer system. By using sensors with 

precise measurement, very accurate results can be obtained from this system. One 

drawback of this system is the gimbal lock phenomena. When two of the gimbals 

align themselves parallel to each other, rotations of the sensor cluster around one of 

the three axes can not be eliminated. A fourth gimbal is required to overcome this 

problem [8]. 

 

Gimbals are very expensive and sophisticated devices. High cost can be considered 

as a disadvantage of this system. The advantage is that, many sensor errors are 

eliminated and more accurate results are obtained by stabilizing the inertial sensors. 

 



2.1.2 Strapdown Systems 

 

The sensor cluster is rigidly mounted to the axis of the moving object in strapdown 

systems. Therefore inertial sensors are not stabilized, in other words they follow the 

motion of the outer vehicle. They experience higher rotation rates than the gimbaled 

systems. Due to the higher rotation rates, outputs of the sensors become more 

erroneous and more complicated error correction mechanisms are needed to 

compensate for the deviations from the exact data.  

 

Strapdown systems can be preferred in wide range of applications as they have 

smaller size and lower weight. Most importantly, they reduce the cost, power 

consumption and complexity of the system drastically. As a result, with the 

accompaniment of the improvements in computation power of onboard computers 

since 70’s, strapdown systems became the most common configuration [8]. In this 

thesis work, a strapdown inertial navigation system is modeled. Diagram of the 

internal structure of two systems can be seen in the figure below. 

 

 

Figure 1 Inertial measurement units (Figure is adapted from [8]) 
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2.1.3 IMU Technology 

 

Basic operational principles and technological basis of accelerometers and 

gyroscopes are discussed in this section. 

 

2.1.3.1 Accelerometer Technology 

 

Most of the accelerometers are based on force feedback or vibrating beam 

technology. Both technologies share the same principle of measuring the force acting 

on a proof mass instead of the vehicle [9]. 

 

2.1.3.1.1 Force Feedback Accelerometer 

 

These types of accelerometers are also called as “pendulous mass”. A proof mass is 

connected to the accelerometer case by the help of a pendulous arm. The proof mass 

is made free to move only in the input axis direction by supporting it with a hinge in 

two dimensions. Acceleration of the vehicle causes a force to act on the proof mass 

which in turn results in a deflection in the position of the proof mass. An external 

force which is proportional to the acceleration is required to stabilize the proof mass. 

The deflection of the proof mass is detected by a pick-off system. The signal 

generated by this system is used in a torquer system in order to move the proof mass 

back to its null position. The force applied by the torquer system is proportional to 

the acceleration of the host system [10]. A simple schematic of a force feedback 

accelerometer can be seen in Figure 2 

 



 

Figure 2 Schematic of a force feedback accelerometer (Figure is adapted from [9]) 
 

Qualities of the components (hinge, pendulous arm, proof mass, torquer, pick-off 

system...) are main factors affecting the performance of sensors. Different grades of 

performance can be obtained at different prices by varying the component quality. 

Most of the high performance accelerometers are mechanical force feedback type of 

technology [9]. 

 

2.1.3.1.2 Vibrating Beam Accelerometer 

 

These types of sensors are also called as “resonant accelerometers”. Vibrating Beam 

accelerometer uses the same proof mass and pendulous arm structure as force 

feedback accelerometers. But the proof mass is supported along the sensitive axis by 

a vibrating beam at its resonant frequency. When there is acceleration along the 

sensitive axis, the proof mass deflects and compresses or tenses the vibrating beam 

which constrains its motion. The resonant frequency of the beam is decreased by 

compression and increased by the tension caused by proof mass. As a result, 

acceleration of the system can be obtained by measuring the resonant frequency of 

the vibrating beam [11]. 
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Figure 3 Schematic of a Vibrating beam accelerometer (Figure is adapted from [9]) 
 

2.1.3.1.3  MEMS Accelerometer 

 

Development of the low cost micro sensors and micro actuators became realizable 

with the arrival of MEMS technology. This technology enables locating complete 

systems on a single chip. Inertial sensors are typical modern applications of this 

technology. With the features of low cost, low power consumption and small size, 

these devices overcome most of the design requirements. MEMS accelerometers are 

quickly replacing conventional accelerometers. They are being developed and 

implemented in a wide range of commercial applications like automotive industry. 

Actually, MEMS accelerometers do not represent another measurement principle. It 

uses the same principles of operations but utilizes another production technique. 

Both pendulous-mass and vibrating beam types of accelerometers can be built by 

MEMS technology [10].  

 

By using silicon or quartz, very small mechanical structures are produced enabling 

three axis accelerometers and their electronics to be integrated in a common chip. 

However, as the size of the sensing instruments decreases, measurement performance 

and sensitivity decrease meaning a higher instrument error and noise level. In the 

case of low measurement quality, MEMS inertial sensors can not be used as a 

standalone navigation system [12]. Deterministic errors of the sensors should be 

compensated and random errors should be accurately estimated throughout the usage 

period in order to obtain an acceptable performance.  
  9
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In the scope of this study, MEMS accelerometers are selected as the linear 

acceleration measurement source and modeled accordingly. 

 

2.1.3.2 Gyroscope Technology 

 

Gyroscope technology is more complicated and more diverse than accelerometers. 

There have been many different solutions for the design and production of 

gyroscopes. Gyroscope technology can be discussed in four main types namely 

spinning mass, optical, coriolis and MEMS gyroscopes [10]. Also there are two types 

of optical gyroscopes, that is ring laser and fiber optic gyroscopes, using the same 

principle of operation but different technological basis. All of these technologies are 

handled separately in the following parts. 

 

2.1.3.2.1 Spinning Mass Gyroscope 

 

Gyroscopic theory is the fundamental method of measuring rotation of a body 

without using an external reference [10]. When a spinning mass is rotated around its 

input axis perpendicular to its spin axis, a reaction will take place in the third axis 

which is perpendicular to both. The amount of this reaction is an indicator for the 

rate of input rotation. This principle forms the basis for all mechanical gyroscopes 

[10].  

 

There exist different types of spinning mass gyroscopes such as dynamically tuned 

gyroscope, electrostatically suspended gyroscope, magnetically suspended gyroscope 

etc. A dynamically tuned gyroscope eliminates the movement in the reaction axis by 

using an electrical rebalance loop. The input rotation rate is proportional to the 

amount of required current for balancing the spinning mass. Different gyroscope 

performances can be obtained at different prices depending on the quality of control 

electronics, spin motor and torquers [9].  
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2.1.3.2.2 Ring Laser Gyroscope 

 

RLG consists of a triangular laser cavity with mirrors located at the vertices of closed 

loop with at least three arms. A beam of laser is split into two beams, one of which 

travels in the clockwise direction and the other in the counter-clockwise direction. 

Mirrors at the vertices are used to form a continuous light path. Laser beams 

generated travel around this path being reflected from each mirror, and return to its 

initial starting point. In case of the sensor being stationary, both beams have the same 

frequency. When the gyro rotates at some angular rate, optical path lengths change, 

i.e., the distance traveled by the beam travelling in the opposite direction of the 

rotation becomes shorter than the other one. The frequency of each beam changes to 

maintain the resonant condition. This results in a phase difference between two 

travelling waves. This phenomenon is called “Sagnac Effect”. The phase shift can be 

measured by an interferometer. This output is proportional to the rate of rotation 

[11].  

 

The drawback of this technology is the laser lock phenomena. At low rotation rates, 

the phase difference measured can be equal to zero as the result of back scattering. 

This causes the beams to synchronize and travel at the same rates in the lock-in state. 

At this state, the device will not accurately track its angular position over time 

meaning that no measurements are taken. One of the methods to lessen this problem 

is using mechanical oscillation. Angular vibrations are applied to the whole laser 

cavity at high frequency and low amplitude through small angles. Drawback of this 

method is an increase in size, weight and complexity of the system. The output 

should be compensated optically or electronically for the oscillatory motion. There 

are no moving parts in RLG structure meaning that there is no friction. Therefore 

there will not be inherent drift terms, which is an advantage of the system. 

Furthermore the entire unit is compact, light weighted and virtually indestructible. 

The primary disadvantage of RLG technology is the requirement for polishing the 

laser blocks and difficulties in producing the mirrors. High technology methods must 

be used to produce the mirrors that increase the cost of the device. RLG technology 

is still advancing, and it is at the practical limits of this technology [13]. 



2.1.3.2.3 Fiber Optical Gyroscope 

 

Its principle operation depends on measuring the “Sagnac Effect” as in the case of 

RLG. An external laser source exists in the FOG which generates travelling beams 

both in the clockwise and in the counter-clockwise directions. In this setup, the light 

waves travel in a fiber-optic cable. When the device experiences inertial rotation, the 

distances travelled by two counter waves become different due to the sagnac effect. 

This operation results in two different frequencies for two beams which mean a 

phase difference between the laser beams. The output phase difference measured is 

proportional to the rotation rate of the device [11].  

 

Meanwhile, temperature changes and accelerations may disrupt the structure of the 

optical fiber. This is one of the sources of error which should be minimized by using 

design techniques. On the other hand fiber optic gyroscopes do not include mirrors or 

gas in their internal design. Furthermore, lock-in phenomena is not inherent in FOG 

technology unlike the RLG. These properties make the FOG technology cheaper 

compared to RLG. In these days FOGs are replacing RLGs in the lower performance 

tactical and commercial applications. Improvements in the FOG performance will 

make it possible to use these devices in strategic applications with performance 

requirements of 0,001 deg/h [10]. In the implementation of FOG; fiber-optic sensing 

coil, a light source and a photo detector is used. In the figure below, internal 

structures of two types of laser gyros (RLG, FOG) can be seen. 

 

Figure 4 Basic components of laser gyroscopes (Figure is adapted from [8]) 
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By the help of developments in the FOG technology, Interferromagnetic Fiber 

Optical gyroscope (IFOG) is invented. This device has brought substantial increases 

in the performance of gyroscopes. This technology has been used in many lower 

grade applications as unmanned vehicles, stabilization systems etc. [8]. Measurement 

accuracy of IFOGs is approaching to RLGs but due to high prices, it is not used 

widely. However with increasing industrial investments, the costs will decrease and 

IFOG is expected to replace RLG in high performance applications. With the 

implementation of IFOG technology, integrated guidance and navigation systems 

have the potential of having very low cost with high reliability and suitability for a 

wide range of military and commercial applications [13]. 

 

2.1.3.2.4 Coriolis Gyroscope 

 

Coriolis gyroscopes are also called as vibratory gyroscopes. In this type of sensors, 

there exists an element which undergoes a simple harmonic motion in a plane. The 

shapes of this vibrating element may be tuning fork, ring, hemisphere, cylinder, 

spring, beam or pair of beams [9]. All types of these gyroscopes have the same 

principle of operation, which can be summarized as detecting the coriolis 

acceleration of the vibrating element when it is subject to a rotation. A sinusoidal 

vibration is induced in a plane perpendicular to the vibration of the element when the 

gyroscope is rotated. The amount of the induced vibration is proportional to the 

rotation rate. Most of the coriolis gyroscopes have low performance specifications 

with a low price. Hemispherical resonator gyroscope is an exception that it can 

indeed offer high performance [10]. 

 

2.1.3.2.5 MEMS Gyroscope 

 

As stated in section 2.1.3.1.3 about MEMS accelerometers, MEMS gyroscopes do 

not represent a different measurement principle. They use the same principles of 

operations but utilize another production technique. MEMS gyroscopes are generally 

based on coriolis principles discussed in section 2.1.3.2.4. These gyroscopes are 
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produced in very small sizes and micro-machined directly on silicon or similar 

substrates. It is noted that better performances can be obtained by using quartz rather 

than silicon substrates [9]. Basic advantages of this technology are its mass 

production capability, very low cost with high quantity, very small size, minimal 

power requirements and resistance to very high shock. In the context of this thesis, a 

MEMS gyroscope with moderate performance is modeled.  

 

2.1.4 IMU Error Sources 

 

The outputs of the inertial sensors exhibit definite types of errors to some extent 

depending on their performance. Bias, scale factor, misalignment and noise are the 

basic systematic error sources of accelerometers and gyroscopes. Each of these error 

sources has four different characteristics namely, a deterministic fixed component, a 

temperature dependent component, a turn-on to turn-on component and an in-run 

variation component [9]. First two deterministic components of sensor errors can be 

compensated on the IMU processor by using the IMU calibration data. The 

procedures for obtaining the calibration database for inertial sensors are clearly 

defined by IEEE standards [14]. The remaining two other error components have a 

stochastic behavior which determines the performance of the IMU. In the context of 

this study, it is assumed that the deterministic errors of the IMU outputs are 

compensated perfectly. Since post calibration performance of the IMU is major in 

determining the inertial navigation performance, only stochastic errors are modeled 

while forming the inertial data [9]. Stochastic error characteristics of accelerometers 

and gyroscopes are discussed in detail. 

 

2.1.4.1 Bias 

 

Inertial sensor bias is defined as the constant error present in the average of the 

sensor output over a specified time measured at specified operating conditions [14]. 

Bias error is independent of the underlying acceleration or angular rate of the sensor. 

It is convenient to consider bias in two components as static and dynamic biases. 



Static bias is also known as turn-on to turn-on bias or bias repeatability. This 

component of the bias is set at the power up and it is constant throughout IMU 

operation period. But it varies from run to run. Bias repeatability also includes 

residual fixed bias remaining after the calibration of sensor [9]. The variation of the 

bias repeatability can be represented by a Gaussian distribution and this component 

can be modeled as a random constant as follows. 

 0

0
bias accbias

bias gyrobias

a 
 

 
 


  (2.1)

Where ,  zero mean gaussian white noiseaccbias gyrobias  
 

 

Dynamic bias is also known as in-run bias variation or bias stability. This component 

of the bias varies over periods of order of a minute depending on the characteristics 

of sensors. Bias stability also includes temperature dependent bias remaining after 

the calibration of sensor. Typical value of the bias stability is about 10 percent of 

bias repeatability [9]. Bias stability can be modeled as a first order Gaussian Markov 

process. 

 

2.1.4.2 Scale Factor 

 

Scale factor is a parameter that is used to obtain acceleration or angular rate values 

from the voltage outputs of accelerometers and gyroscopes. Scale factor is defined as 

the departure of slope of the input-output curve of an inertial sensor from unity after 

the unit conversion by IMU [14]. The scale factor errors of the accelerometers and 

gyroscopes are proportional to acceleration and angular rates along the sensitive axis 

respectively. Similar to bias, it is convenient to separate scale factor as static and 

dynamic components. 

 

Static component of the scale factor, namely scale factor repeatability is set at the 

power up of the instrument and remains constant throughout IMU operation period. 

It also includes the residual error left after the calibration of sensor. Scale factor 

repeatability can be modeled as a random constant [9]. 
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Dynamic component of the scale factor, namely scale factor stability is the dual of 

bias stability. This component includes temperature dependent scale factor error 

remaining after the calibration of sensor and represents the variation of the scale 

factor error over the operating periods. Scale factor stability can also be modeled as a 

first order Gaussian Markov process [9]. 

 

2.1.4.3 Misalignment 

 

Because of the manufacturing limitations, sensitive axis of the inertial sensors cannot 

be placed orthogonally. This makes each accelerometer and gyroscope sensitive to 

the accelerations and angular rates along other axis which results in a cross-coupling 

error. Scale factor and misalignment errors are unitless quantities which are typically 

expressed in parts per million (ppm). Misalignment errors can be modeled as random 

constants [7]. 

 

2.1.4.4 Noise 

 

Random noise is an additional error resulting from the internal structure of inertial 

sensors and sensor electronics. In general, random noise is a non-systematic, 

stochastic process which cannot be compensated by using deterministic models. 

Random noise of the inertial sensors can be modeled as zero mean additive white 

noise. Random noise of the accelerometers and gyroscopes is generally described as 

velocity random walk and angular random walk respectively. Noise on the 

accelerometer measurements is integrated to obtain velocity random walk. Similarly, 

noise on the gyroscope measurements is integrated to obtain angular random walk. 

Magnitudes of the random walk process are proportional to the square root of the 

integration time [9]. 

 

 

 



2.1.5 IMU Error Model 

 

Accelerometers and gyroscopes exhibit further error characteristics such as bias 

instability, g-dependent bias, g-square dependent bias, scale factor nonlinearity, 

quantization noise etc. [9]. But these errors have negligible effect on the system 

performance for a short period of operation time in the order of a few minutes and 

they are out of scope of this study. The major error sources which have significant 

contribution to the growth of errors in inertial navigation systems are bias 

repeatability, scale factor repeatability, misalignment and random noise [4]. In the 

simulations, first three parameters are set randomly at the beginning of each run and 

held constant through that individual run. Random noise is generated at each time 

step by randomly sampling from a zero mean Gaussian distribution whose standard 

deviation is determined by the sensor specifications. Bias and scale factor stability 

errors are not modeled since the simulation time is comparable with the correlation 

time of these errors. The mathematical models, constituted in order to represent 

realistic IMU errors by injecting predefined errors to the reference accelerometer and 

gyroscope outputs are given in equations (2.2) and (2.3) respectively. 

  17

x

z

w 





1 1 0 0

1 0 1 0

1 0 0 1

b acc acc acc b acc acc
x x xy xz x x
b acc acc acc b acc acc

y y yx yz y y y
acc acc acc b acc accb
z zx zy z zz

f b M M f S

f b M M f S w

b M M f S wf

          
          

             
                     





 

(2.2) 

Where , , , , ,b b acc acc acc accf f b M S w  stand for reference acceleration, accelerometer 

sensed acceleration, bias, misalignment, scale factor and noise parameters for 

modeled accelerometer respectively. 
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Where , , , , ,g g gyro gyro gyro gyrob M S w   stand for reference angular rate, gyroscope 

sensed angular rate, bias, misalignment, scale factor and noise parameters for 

modeled gyroscope respectively. 
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2.2 Inertial Navigation System (INS) Dynamics 

 

Main objective of the inertial navigation systems is obtaining position, velocity and 

attitude information of the host platform. While constituting this navigation 

information, onboard computer of the INS makes use of inertial data collected from 

IMU, gravity data obtained from the Earth model and gravity model. Collected data 

is processed by the help of kinematic INS mechanization equations and desired 

inertial solution is acquired. In this section of the thesis, dynamics of the inertial 

navigation system is discussed in detail. 

 

2.2.1 Coordinate Frames 

 

A coordinate frame is a reference that provides an origin and a set of axis in three 

dimensional space for a moving object [9]. Defining required number of orthogonal 

and right handed frames is the fundamental process of navigation. While navigating 

in the vicinity of the Earth, velocity and position with respect to the Earth are the 

main outputs [8]. At the same time, measurements of IMU are referenced to a non-

rotating inertial frame expressed in body axis of the vehicle. Therefore it is 

customary to define the coordinate frames before considering the navigation 

equations in order to prevent any confusion. 

 

2.2.1.1 Inertial Frame (I-Frame) 

 

Origin of the inertial frame is the centre of the Earth and its axes are non-rotating 

with respect to the fixed stars. Z-axis of the inertial frame is coincident with the 

Earth’s polar axis (z-axis). 

 

2.2.1.2 Earth Frame (E-Frame) 

 

Origin of the Earth frame is the center of the Earth and its axes are fixed with respect 

to the Earth (rotating around the Earth’s polar axis with Earth rate). X-axis of the 
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Earth frame points to the Greenwich meridian from the center of the Earth. Its Z-axis 

is coincident with the Earth’s polar axis. Y-axis of the Earth frame is defined along 

the equatorial plane forming a right handed orthogonal set with X-axis and Z-axis. 

 

2.2.1.3 Navigation Frame (N-Frame) 

 

Origin of the Navigation frame is at the center of navigation system which moves 

with the host platform. It is a locally level geographic frame whose X, Y, Z axes are 

aligned with the directions of north, east and down respectively. 

 

2.2.1.4 Body Frame (B-Frame) 

 

Origin of the body frame is at the center of navigation system. Orthogonal axes of 

the body frame are aligned with roll, pitch and yaw axes of the navigating platform. 

X-axis of the body frame is forward along the longitudinal axis of the navigating 

platform, Z-axis is directed downward and Y-axis is defined towards right side of the 

navigating platform forming a right handed orthogonal set with X-axis and Z-axis. 

2.2.2 Earth Model 

 

Since velocity and position with respect to Earth are the main outputs while 

navigating in the vicinity of the Earth [8], it is required to define an Earth model 

which makes realistic assumptions regarding the shape of the Earth. In most of the 

navigation systems, Earth is modeled as an ellipsoid which is defined by two radii 

[9]. The equatorial radius Ro is defined as the length of semi-major axis which is 

equal to the radius of the Earth’s equatorial plane. Polar radius Rp is defined as the 

length of semi-minor axis which is equal to the distance from earth center to either 

pole. 

 

In accordance with this model, the following parameters are defined in the WGS84 

standards as given below. The ellipsoid is represented by the equatorial radius and 



the flattening. Other Earth related parameters may be obtained using these two terms 

[15].  
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A meridian of curvature and a transverse radius of curvature, which will be used in 

defining the rates of change of latitude and longitude, may also be derived in 

accordance with the ellipsoidal definition of the Earth [8]. 

 

 
 

 

2
0

3 22 2

0
1 22 2

1
:Meridian radius of curvature

1 sin

 :Transverse radius of curvature
1 sin

N

E

R e
R

e L

R
R

e L









 (2.5)

For navigation purposes, rotation rate of the Earth is assumed as a constant according 

to the WGS84 standards. Value of the Earth rate is given in the equation (2.6) [15]. 

 57.292115 10ie rad s    (2.6)

Rotation of the Earth is in counter-clockwise direction around Z-axis of E-frame. 

Earth rotation vector can be expressed in E-frame as follows. 

  0 0
TE

IE IE   (2.7)

Earth rotation vector can be expressed in N-frame as a function of geodetic latitude. 

  cos 0 sin
TN

IE IE IEL L     (2.8)

 

2.2.3 Gravity model 

 

A relatively simple model of acceleration constituted by gravity at the ellipsoid as a 

function of latitude is given by WGS84 datum as in the Equation (2.9). This is a 

gravity field model called Somigliana. It is assumed that the gravity vector is 
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perpendicular to the predefined ellipsoid and its direction is downwards through the 

third axis of the N-frame [9]. 
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The variation of the gravitational field with height can be modeled using a scaling 

parameter which is a function of latitude and height above the ellipsoid as follows. 
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    22 2 2cos 1 sin  : Geocentric radiuse
eS Er L R L e L    (2.11)

Acceleration due to gravity which is also called “plumb-bob gravity” is composed of 

gravitational acceleration and centripetal acceleration [16].The formulas given above 

define magnitude of the acceleration due to gravity. Since the direction of this 

acceleration is downwards perpendicular to the predefined ellipsoid, vector form of 

the plumb-bob gravity can be represented in N-frame as given in equation (2.12). 

   0 0 ,
TN

pg g L h  (2.12)

 

2.2.4 INS Mechanization 

 

This section of the thesis focuses on the equations derived for obtaining navigation 

solution, namely attitude, velocity and position, using linear acceleration and angular 

rate outputs of IMU’s. Figure 5 shows a schematic of operations utilized in inertial 

navigation processing.  
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Figure 5 Schematic of the INS mechanization equations 
 

After the initialization of navigation states, attitude computation is done in order to 

transform the linear acceleration outputs of accelerometers from B-frame to N-frame. 

Then using gravity model and coriolis correction, velocity and position computations 

are done. INS mechanization is defined in the form of continuous time differential 

equations. Equations for attitude, velocity and position mechanizations are given in 

sections 2.2.4.1, 2.2.4.2 and 2.2.4.3 respectively. 

 

2.2.4.1 Attitude Mechanization 

 

Attitude is a significant parameter for strapdown inertial navigation processing since 

transformation of vectors between different reference frames is utilized by using this 

information. In the literature, there are miscellaneous methods for representing 

attitude [16]. In the context of this thesis, coordinate transformation matrix, in other 

words direction cosine matrix (DCM), is the selected notation for updating attitude 

solution. For visualization and evaluation of the results, Euler angles are computed 

from the DCM by a simple algorithm. 
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Differential equation describing the rate of change of DCM that is used to transform 

vectors represented in B-frame to vectors in N-frame is given below [17]. The 

variables defined as    x , xB N
IB IN   are skew-symmetric forms of the corresponding 

vectors. 

    x xN N B N
B B IB IN BC C C   N  (2.13)

Angular rates existing in the equation above are defined as follows.  
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Transport rate  N
EN is defined as the angular rate of the N-frame with respect to the 

E-frame represented in the N-frame. 
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Where ,L   stand for latitude, longitude and stand for east and north 

components of . Initial value for this differential equation is obtained by using 

initial Euler angles as follows. 
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(2.16) 

Where , ,    are roll, pitch and yaw angles respectively. Initial values of these 

angles are predefined depending on individual simulation trajectories. 

 

2.2.4.2 Velocity Mechanization 

 

As stated before, inertial navigation deals with the velocity of a moving object with 

respect to the Earth. Since position solution is expressed in curvilinear coordinates by 

latitude, longitude and altitude; velocity solution is supposed to be expressed in the 

N-frame. At the same time, linear accelerations are measured with respect to I-frame 
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and represented in B-frame. Therefore, starting from the I-frame, differential 

equations for velocity mechanization are derived in I-frame, E-frame and N-frame in 

turn [18]. 

 

Velocity in I-frame: 

  I I I I I I
IE IE IEV f g r V         I  (2.17)

Velocity in E-frame: 

   2E E E E E E
IE IE IEV f g r V         E  (2.18)

Velocity in N-frame: 

    2N N N N N N N
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 (2.19)

By substituting N N
Bf C f and plumb-bob gravity vector, conclusive equation for 

N-frame velocity mechanization is obtained.  

  2N N B N N N
B p IE ENV C f g V      N  (2.20)

 

2.2.4.3 Position Mechanization 

 

Position solution of inertial navigation systems is generally expressed in curvilinear 

coordinates by latitude, longitude and altitude for its simplicity and 

comprehensibility. The rate of change of the curvilinear position can be expressed as 

follows [19]. 
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Where;  stand for the north, east and down components of the N-frame 

velocity vector respectively. Definitions of  are given in the Earth model 

equation 
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(2.5). 
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In order to transform vectors defined in the N-frame to E-frame, a DCM is formed 

which is function of latitude and longitude. For instance, the Earth rate vector 

represented in E-frame is transformed to the N-frame via transpose of this DCM 

[19]. 

 

sin cos sin cos cos

sin sin cos cos sin

cos 0 sin

E
N

L

C L L

L L

   
  

   
    
  

 (2.22)

A summary of the INS mechanization equations is given in the table below. 

 

Table 1 INS mechanization equations 

Attitude    x xN N B N
B B IB IN BC C C   N  

Velocity  2N N B N N N
B p IE ENV C f g V      N  

Position ;  ;  N E
D

N E

V V
L h V

R h R h
  

 
   

 

2.2.5 INS Error Model 

 

In the context of this thesis, an error state system model will be constituted for the 

integration of INS and GPS. Position, velocity, attitude errors and inertial sensor 

biases are selected as the state space variables. Therefore nonlinear equations for 

position, velocity and attitude given in the previous section need to be linearized 

about the most recent navigation solution. For this linearization operation, nonlinear 

equations are perturbed for the state space variables [9]. In the derivation step of this 

model, second order terms in the error quantities are dropped [19]. 

 

2.2.5.1 Attitude Error Model 

 

For the attitude errors, small angle attitude error model is utilized. The attitude 

mechanization equation [equation (2.13)] is linearized with respect to the state space 

variables and the following results are obtained [9].  
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  x N B N B
IN IN BC IB           (2.23)

Where;    is the attitude error present in the state estimate. 

 B IB  is the gyroscope error vector represented in the B-frame. 

 N
IN  is the error in the angular rate of the N-frame with respect to the I-frame 

which is composed of earth rate error and transport rate error as given below. 

 N N N
IN IE EN     (2.24)

Earth rate error  N
IE  is obtained by perturbing the Earth rate  N

IE  by latitude error 

 L . Assuming that perturbation of the Earth rate is equal to zero  

  sin 0 cos
TN

IE L L L     L



 (2.25)

Transport rate error   is similarly obtained by perturbing N
EN  N

EN  by four of the 

state space variables EV , NV , h , L . 
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h
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 

 

L  

 
 

  
 
   
  
 
     

 (2.26)

 

Attitude error model can be represented in state space form as follows. Definitions 

for the elements of the state space are given in Section 2.2.5.4. 

    N B
P V B I

P

F F F V C



B  


  

 
    
  

   (2.27)
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2.2.5.2 Velocity Error Model 

 

Similarly, velocity error model is obtained by perturbing the velocity mechanization 

equation given in the equation (2.20) by state vectors, Earth rate and transport rate 

errors. The rate of change of velocity error is given below as a function of state 

variables and gravity error [9]. 

     
 

02
2 2N N B N B N N N N N N

B B IE EN IE EN e
eS

g L
V C f C f V V

r L
h                

 

(2.28) 

Velocity error model can be represented in state space form as follows. Definitions 

for the elements of the state space are given in section 2.2.5.4 state space error 

model. 

 N
VP VV VV F P F V F        (2.29)

 

2.2.5.3 Position Error Model 

 

Analogous to velocity error model, position error model is obtained by perturbing the 

position mechanization equation given in the equation (2.21) by position and velocity 

error states [9]. 
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  

  

 

 
 

  
  

 







  (2.30)

 

Position error model can be represented in state space form as follows. Definitions 

for the elements of the state space are given in section 2.2.5.4 state space error 

model. 

    PP PV P

P

P F F F V


 




 
   
  

  (2.31)
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2.2.5.4 State Space Error Model 

 

State space for the INS/GPS integration process is composed of fifteen elements 

namely position, velocity and attitude errors, accelerometer biases and gyroscope 

biases. Each of these states is a three dimensional vector. This state space model will 

be utilized as the basis for linearized system model of the estimators of INS/GPS 

integration process. State transition matrix is obtained by using the state space forms 

of individual error models for each state space variable as follows. 
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

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
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 (2.32)

 

Components of this state transition matrix are given in the equations (2.33) to (2.41) 

[9] 
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 3 30PF    (2.35)
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CHAPTER 3 

 

3 GLOBAL POSITIONING SYSTEM (GPS) 

 

 

 

The global positioning system is a satellite based navigation system that provides the 

users three dimensional position and velocity solution by using passive radio signals. 

Accurate time information is also provided in addition to the navigation solution 

when there is an unobstructed line of sight to four or more satellites. GPS project was 

developed in order to get through the deficiencies of the previous navigation systems 

in 1973 by U.S. Department of Defense. The system became fully operational in 

1994 and made freely available for the civilian use [3]. Several improvements and 

modernizations are made to the system in order to meet the military and civilian 

users' needs. There are ongoing studies which aim to increase performance and 

accuracy of the system [10]. 

 

The basic operation of the GPS is obtaining user position and velocity using radio 

navigation signals broadcast by the orbiting satellites. These signals include the 

position and velocity information of each satellite and the time of transmission of the 

signal from the satellite. By comparing the transmission and receiving times of the 

GPS signals, the range between satellites and the GPS receiver antenna is measured 

assuming that the signal travels with the speed of light. Geometrically, position of the 

user should be on a sphere centered at the corresponding satellite with a radius 

defined by the range information obtained. Each ranging data gathered from 

individual satellites defines a similar sphere for the position of the user. When two 

satellites are available, position solution is confined on a circle formed by the 

intersection of two spheres. By using the information from a third satellite, two 
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possible points are determined to define the user position. Therefore, signals from at 

least four satellites are required in order to obtain navigation solution of a GPS user. 

When there exists an obstruction of line of sight to the satellites or a signal loss 

resulting in access to less than four satellites, standalone GPS cannot provide 

navigation solution to its users [19]. 

 

In this chapter, fundamental characteristics of the GPS are considered first. Then 

techniques for obtaining the GPS navigation solution for position are investigated. 

After defining the sources of measurement errors, a nonlinear measurement model is 

obtained at the end of the chapter. 

 

3.1 GPS Fundamentals 

 

GPS consists of three main segments namely the space segment, the control segment 

and the user segment. The space and control segments are maintained and operated 

by the US Air Force [20]. The user segment consists of GPS receiver and receiver 

antenna which are commercial off-the-shelf products.  

 

The space segment is composed of the GPS satellites which rotate in Earth centered 

approximately circular orbits. The set of satellites in orbit providing the ranging 

signals and data messages to the user segment is called the satellite constellation. 

Standard constellation consists of twenty-four satellites which are positioned in six 

orbital planes with four satellites in each plane [21]. The orbits are equally spaced 

around the equatorial plane with a nominal inclination angle which provides an all-

day long global navigation capability. The subsystems of the satellites perform some 

functions such as maintaining the solar panels pointing to the sun and satellites 

pointing to the Earth [21]. 

 

The control segment is physically composed of the master control station, monitor 

stations and the ground antennas. Basic operation of the control segment is 

maintaining the orbital configuration of satellites, monitoring the health of satellites 

and signals broadcast. Moreover, satellite clock corrections, ephemerides, almanac 
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and other control parameter updates are sent to the constellation at least once per day 

by the control segment. Command and control of the GPS constellation is provided 

by the master control station centrally. All of the six monitor stations and four 

ground antennas are also controlled remotely by the master control station [20]. 

 

The user segment comprises the GPS receiver and also the receiver antenna. The 

radio frequency signals transmitted from GPS constellation are converted to 

electronic signals by receiver antenna and processed by the receiver in order to 

obtain position, velocity and time information. A GPS receiver processor consists of 

two main components. First one is the ranging processor which determines the 

transmission time of the received signal and forms the GPS observables. Second one 

is the navigation processor which obtains GPS navigation solution by using the GPS 

observables [9]. In the next section, basic operations used in the navigation processor 

are summarized. 

 

3.2 GPS Navigation Solution 

 

In order to calculate the position of a GPS receiver, at least four satellites should be 

available since there are four parameters to be determined to find the user position in 

the E-frame; three parameters for X, Y, Z coordinates and receiver clock bias term. 

In order to obtain these four unknowns four independent equations are needed. 

Position calculations are done by using the ranging signals and data messages which 

are acquired from individual GPS signals broadcast by the satellites [19]. 

 

Position computation of the receiver is done by making use of the pseudo range 

observable which is obtained from the ranging signals. Pseudo range is the receiver 

calculated erroneous range between each satellite and the receiver antenna. It is 

obtained by comparing the transmission and receiving time of the GPS signals and 

multiplying by the speed of light [22]. 

 

Pseudo ranges can be modeled as: 



  i r i iP t t c c    (3.1)

Where; i stands for the number of satellite, i  is the travelling time of the signal from 

satellite i to the receiver, and c  represents speed of light. 

 

Atomic clocks in each satellite and clocks in the receivers do not run exactly aligned 

with the true GPS time which is represented by . There exists a clock offset in 

each clock of the satellites and the receiver. Clock offsets of the GPS satellites are 

determined by the control segments and sent to each satellite. This correction term is 

present in the data message broadcast by each satellite 

GPSt

[9]. 

 

The clock offsets of GPS satellites and the receiver can be defined as: 

 
: i'th satellite time

: receiver time

GPS
i i

GPS
r r

t t t

t t t





 

 
 (3.2)

 

3.2.1 Measurement Equation 

 

The most common algorithm used in the position calculations of receivers using 

pseudo ranges is the least squares estimator (LSE) [23]. This method can easily be 

used for over determined systems where the number of equations is more than the 

number of unknowns. First of all, measurement equation for the GPS position should 

be written in order to use LSE. 

 

The geometric range between the satellites and the receiver can be defined as: 

      2 2

i i i iX X Y Y Z Z       2
 (3.3)

Where , ,i i iX Y Z  and  correspond to ECEF position of the ith satellite and true 

position of the GPS receiver respectively. ECEF positions and velocities of the 

satellites are present in the data message broadcast by each satellite therefore these 

variables are given. 

, ,X Y Z
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By adding the measurement errors of the GPS receiver to the geometric range, 

equation for the measured pseudo range can be obtained as follows: 

  i i r i i iP c t t T I        ie  (3.4)

Undefined variables in the measured pseudo range equation above can be clarified as 

: Tropospheric delay

: Ionospheric delay

: Pseudo range measurement residual

i

i

i

T

I

e

 

Atmospheric delay parameters are included in the data message broadcast by each 

satellite as correction terms. Definitions of these measurement error parameters are 

given in detail in section 3.3. 

 

Combining the geometric range equation with the previous equation, conclusive 

expression for the measured pseudo range can be obtained as follows. 

        2 2 2

i i i i r i i iP X X Y Y Z Z c t t T I            ie  (3.5)

There are only four unknowns in the equation above, namely receiver position 

 and receiver clock bias, ,X Y Z rt . 

 

3.2.2 Least Squares Estimate of The Navigation Solution 

 

Measurement residual term  should be minimized using the least square estimator 

for obtaining the unknown receiver position. In order to use this estimator, the 

nonlinear equation for the pseudo range measurement needs to be linearized for 

receiver position  coordinates and receiver clock bias as follows. 

k
ie

, ,X Y Z

Starting point of the linearization can be chosen to be the center of the Earth as a rule 

of thumb [23].  

    0 0 0, , 0,0,0X Y Z   (3.6)
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The estimated user position is used as the linearization point of the next iteration. 

After a number of iterations using the same GPS measurements, user navigation 

solution is obtained.  

 

Define geometric range function as,  

  36

       2 2
, , i i i

2
f X Y Z X X Y Y Z Z       (3.7)

Define    1 1 1 0 0 0, , , ,X Y Z X X Y Y Z Z       

First order Taylor series expansion of the function can be obtained as follows: 

         0 0 0 0 0 0 0 0 0
1 1 1 0 0 0

0 0 0
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f X Y Z f X Y Z X Y Z

X Y Z

  
      
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(3.8) 

After taking the partial derivatives, the first order linearized equation is obtained as: 

 0 0 0i i i
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

 

(3.9) 

Where     2 2

i i i iX X Y Y Z Z       2
 

 

The equation for pseudo ranges can be written in matrix from as; 
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(3.10) 

 

Rearranging this equation in the standard form for LSE  Ax b , the following result 

is obtained. In this equation, n stands for the number of satellites. Therefore A is a 

 matrix  4n  [23]. 
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(3.11) 

Note that, least squares estimation for the system  Ax b  is 

       12min || || min
T T T

ie b Ax b Ax x A A


     A b  (3.12)

 

3.3 Measurement Errors 

 

The essential measurements made by the GPS receivers are pseudo range and pseudo 

range rates. These measurements are subject to time-correlated and noise like errors 

[9]. Each of these errors will be defined and their effects to the GPS navigation 

solution will be discussed in this section. 

 

The satellite clock errors originate from the oscillator noise of the precise atomic 

clocks. This source of errors can be calibrated by using the coefficients in the data 

message. The residual clock error which depends on the stability of the satellite clock 

and control segment's monitoring network results in about 1 meter of range error on 

the average [24]. 

 

The ephemeris prediction errors arise due to the errors in the control segment's 

prediction of the satellite positions. The effects of ephemeris errors vary with 

different satellite geometries, but it results in an average range error of 0.45 meter 

[9]. 

 

The ionosphere layer of the atmosphere refracts GPS signals due to its dispersive 

medium. This refraction causes a delay in the carrier of the GPS signal. The effect of 

ionospheric delay on range error changes with the time of the day and satellite 

geometry.  

  37



 

Troposphere is a nondispersive layer of atmosphere which extends about 12 km 

above the Earth surface. The tropospheric delay can be corrected by using models 

which are functions of elevation and height of the user. These corrections of the 

troposhperic delay give up residual errors resulting in about 0.2m of range error in 

pseudo range measurements [9]. 

 

Multipath error occurs when the GPS antenna receives reflected signals from a given 

satellite in addition to the direct signals. In most cases, GPS signals are reflected 

from the host body, ground, buildings and trees. These signals are always delayed 

compared to the direct signals. 

 

Modeling and evaluation of these separate error sources are not in the context of this 

thesis. Therefore, measurement errors of GPS are modeled as additive zero mean 

Gaussian noise for simplicity. The resulting measurement equation is as follows. 

   ky h x v   (3.13)

Where  20,kv N 
 
and  h x  is the nonlinear measurement function defined in the 

next section. Designation of the variance of the measurement noise  2  is 

considered in section 4.3.  

 

3.4 Nonlinear Measurement Model 

 

In the tightly coupled INS/GPS integration architecture, which is discussed in 

Section 4.2.2, pseudo range and pseudo range rate observables are used as GPS 

measurements. The nonlinear equations relating the measurements to the state 

variables are the geometric range and range rate functions. 

        2 2

1 , , i i ih X Y Z X X Y Y Z Z      2



 (3.14)

       2 2

2 , ,
i i iX Y Z X X Y Y Z Zh V V V V V V V V V     

2
 (3.15)
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



Where  and   correspond to ECEF position and velocity of the 

ith satellite. This information is acquired from the GPS data signal for each visible 

satellite.  and 

 , ,i i iX Y Z

 , ,X Y Z

, ,
i i iX Y ZV V V

 , ,X Y ZV V V  correspond to the estimated user ECEF position 

and velocity. The estimated navigation solution can be obtained after the feedback 

step involved in the error state Kalman filter implementation. 
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CHAPTER 4 

 

4 INS/GPS INTEGRATION 

 

 

 

Inertial navigation systems exhibit relatively low noisy outputs which tend to drift 

over time. A typical aviation grade INS errors grow at rates about 1-10 nmi/h (1.8-18 

km/h) during normal operation [25]. Contrary to INS, GPS outputs are relatively 

noisy but do not exhibit long-term drift [4]. Using both of these systems results in a 

superior navigation performance than either alone. Integrating the outputs from each 

sensor results in a system which can be visualized as a drift free INS. Benefits of 

integrating these two navigation systems can be realized by first considering 

advantages and disadvantages of individual systems. In section 4.1, benefits and 

drawbacks of two systems are discussed in detail. The subsequent section focuses on 

the INS/GPS integration architectures, namely loosely coupled, tightly coupled and 

deeply coupled architectures. Each of these architectures determines the amount of 

interaction of two separate systems and the attribute of data used in the integration 

process. 

 

4.1 Benefits and Drawbacks of Each System 

 

Each of INS and GPS has a number of advantages and disadvantages. INS operation 

is not dependent on outer signals or systems. It is a self-contained system operating 

continuously in all external conditions and provides high bandwidth output at high 

rates. Outputs of the INS, namely position, velocity and attitude, exhibit low short-

term noise. INS also provides linear acceleration and angular rates which are used by 

stabilization and flight control systems [4]. On the other hand, as the instrument 
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errors are continuously integrated in the INS mechanization equations, accuracy of 

the navigation solution degrades with time. For a relatively long operation periods of 

navigation, in the order of minutes, high performance INS’s are required which have 

high cost about 100000$, high power consumption and large size restricting the 

platform settlement [9]. 

 

In contrast to the INS, GPS is dependent on the signals broadcast by the satellites. 

External conditions, namely weather conditions, visibility of the satellites, satellite 

geometry, multipath of the signals and jamming have significant effects on the 

performance of the navigation solution. Standalone GPS provides high long-term 

position accuracy with limited errors to a few meters. Navigation solution of the GPS 

includes just position and velocity of the platform. These navigation states are output 

at very low rates, around 1-10Hz, and exhibit short-term high frequency noise. 

Attitude solution, linear acceleration and angular rate signals are not provided by this 

system. GPS signals are also subject to obstruction and interference which make the 

system unreliable for continuous navigation. The benefits and drawbacks of the INS 

and standard GPS are summarized in the following table for comparison [8]. 

 

Table 2 Benefits and drawbacks of INS and GPS 
Technical Properties INS GPS 

Error propagation with 

time 
Increases with time Limited errors in time 

Attitude Solution Available Not availble 

Flight control signals Available Not availble 

Data rate High rate (100-1000 Hz) Low rate(1-10 Hz) 

Bandwidth High bandwidth Low bandwidth 

Interference Resistent Vulnerable 

Dependency to environment 
Independent of the outer 

world 

Environment 

dependent 

Initial value assignment Not available Available 
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4.2 Integration Architectures 

 

There are three main points that determine the architecture of INS/GPS integrated 

navigation systems namely feedback structure, types of measurements and aiding of 

GPS receiver. Although these aspects are largely independent of each other, there 

exist three widely used definitions for the integration architecture.  

 

Feedback structure is the way that the estimated error states are used in the 

navigation solution. Either closed loop or open loop feedback can be used in the 

INS/GPS integration process. The choice of feedback structure mainly depends on 

the quality of inertial sensors. Since low cost MEMS inertial sensors are utilized in 

the simulations, a closed-loop feedback structure is applied. In this structure, 

integrated navigation solution is obtained by correcting the INS navigation solution 

using the estimated error states and the INS solution is updated with the corrected 

navigation solution at each time step. This architecture eliminates the accumulation 

of errors in the INS solution. 

 

In sections 4.2.1 to 4.2.3, most widely used architectures for INS/GPS integration are 

discussed and compared to each other in performance, simplicity and robustness 

aspects. 

 

4.2.1 Loosely Coupled 

 

Loosely coupled integration is most widely used architecture due to its simplicity and 

redundancy. Simplicity of this architecture stems from the fact that it treats INS and 

GPS as separated systems which produce their standalone navigation solutions as 

shown in Figure 6 



 

Figure 6 Flowchart of loosely coupled architecture 
 

Position and/or velocity information computed by GPS navigation filter is used as 

the measurement of the integration filter in order to estimate the INS errors. 

Standalone INS solution is corrected using the estimated error states and integrated 

navigation solution is obtained  

 

This architecture can be utilized with any commercial off-the-shelf INS and GPS 

user equipment. Redundancy of this architecture stems from the fact that, in addition 

to the integrated solution, each of the INS and GPS produces its independent 

solution. This enables integrity monitoring of the utilized INS/GPS Kalman filter 

[12]. 

 

4.2.2 Tightly Coupled 

 

Tightly coupled integration eliminates the usage of cascaded filters unlike loosely 

coupled integration. Therefore, correlation of the measurements in GPS navigation 

filter is prevented. Instead of navigation solution of GPS, pseudo range and/or 

pseudo range rates obtained from Doppler data is used as the measurements of 

INS/GPS integration Kalman filter. Choice of these measurements brings 

nonlinearity to the measurement model of the integration filter. Figure 7 shows the 

flowchart of this architecture.  
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Figure 7 Flowchart of tightly coupled architecture 
 

Similar to the loosely coupled case, integration filter estimates the errors of INS 

navigation solution. Integrated navigation solution is obtained by correcting the INS 

output by the state estimate. Furthermore, this system does not require a full GPS 

solution to aid the INS. Even when less than four satellites are available, integration 

filter will keep on operating. Compared to the loosely coupled case, tightly coupled 

integration has better performance and it is more robust given the same inertial 

instruments and GPS receiver [3]. 

 

4.2.3 Ultra Tightly Coupled 

 

Ultra tightly coupled integration is more complex and most beneficial architecture 

which handles INS/GPS integration at the GPS tracking loop level. Traditional 

structure of the tracking loops is adjusted by the usage of inertial data [3]. Figure 8 

shows the flowchart of an ultra tightly coupled integration architecture. 

 

Figure 8 Flowchart of ultra tightly coupled integration 
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This architecture can improve acquisition time and tracking performance of the GPS 

signals. The most important profit of this method is its ability to operate at lower 

signal to noise ratio levels. In this architecture, in-phase and quadrature samples of 

the GPS correlators can be used as measurement for the INS/GPS estimator [26]. 

 

In the context of this thesis study, a tightly-coupled INS/GPS integration architecture 

is utilized due to its higher performance than loosely coupled integration and relative 

simplicity compared to ultra-tightly coupled integration. 

 

4.3 IMU/GPS Specifications 

 

In the context of this thesis, a MEMS accelerometer and a MEMS gyroscope based 

low performance IMU is chosen as the basic component of the navigation system. 

The utilized MEMS IMU, MTi is a commercial off-the-shelf stabilization grade 

instrument produced by the Xsens Technologies Company. The performance 

specifications of this unit are gathered from its datasheet issued by the company and 

given in the following table. 

 

Table 3 Specifications of the MEMS IMU 
Specifications Gyroscope Accelerometer 

Bias repeatability 200 deg/ h  40 mg 

Scale factor repeatability 1000 ppm  1000 ppm  

Misalignment 0.1 deg  0.1 deg  

Noise 0.05 deg/ /h hz  0.002 2/ /m s hz  
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In order to obtain realistic results from the simulations, aiding measurement system 

is also modeled using specifications of a commercial off-the-shelf GPS receiver. In 

the process of forming GPS measurements, reference pseudo range and pseudo range 

rate observables are calculated using reference satellite positions, velocities and 

reference user position, velocity. Zero mean Gaussian random noise is added to the 

reference pseudo range and pseudo range rate measurements to obtain realistic GPS 

measurements. Standard deviation parameters of the Gaussian distributions are 



gathered from commercial off-the-shelf GPS receiver’s common specifications and 

given in Table 4. 

 

Table 4 Specifications of the GPS receiver observables 
Pseudo range error 1  10  m

Pseudo range rate error 1  0.1  /m s

 

The reference satellite positions and velocities are acquired by using the satellite 

navigation toolbox of Matlab. Time specific data message (almanac) of GPS 

satellites is gathered from the official website of NASA [27]. The time specific data 

message is interpreted by the help of the toolbox and required information is 

recorded. Throughout the INS/GPS integration simulation, recorded satellite position 

and velocity data are used in an offline fashion. 

 

4.4 System Model 

 

An error state Kalman filter in a closed loop configuration is utilized for the 

INS/GPS integration process due to its lower processor load and simplicity [25]. The 

estimated error states are fed back at each time step to the nominal trajectory formed 

by processing inertial measurements and error states are reset after this feedback 

operation.  

 

In the context of this setup, a state space which is composed of fifteen elements, 

namely three dimensional position, velocity and attitude errors, accelerometer biases 

and gyroscope biases, is exploited. The error state system model is obtained by 

linearizing the nonlinear navigation mechanization equations about the most recent 

navigation solution as given in Section 2.2.5. The following equation defines the 

system model for the designed estimators which can be written in the standard form 

as x Fx Gv  . 

 

  46



 

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0

0

0 0 0 0 0

0 0 0 0 0

aN
B

gN
B

ab

BiasBias
gb

BiasBias

PP PV P
N

VP VV V B
N

P V B

PP
v

V CV
v

C
v

a Ia
v

I

F F F

F F F C

F F F C





 







     
      
      
             
      
          





















 (4.1)

Where    20, , 0,
aa v gv N v N 2

gv    are accelerometer and gyroscope noise 

parameters respectively.    2 , 0,
gbgb vv N  20,

abab vv N  are accelerometer bias and 

gyroscope bias noise parameters respectively. 

 

The entries of the state transition matrix are given by equations from (2.33) to (2.41) 

in Section 2.2.5.4. 

 

4.5 Discrete Time Equivalent System Model 

 

Inertial navigation is a discrete-time process since the analog outputs of the inertial 

sensors are converted to digital form by sampling at discrete time steps. Also the 

measurements from the GPS are acquired at discrete time points. Because of this 

nature of the navigation systems, discrete time difference equations for the system 

model and measurement model should be obtained instead of continuous-time 

differential equations as in the following format [28]. 

 X FX Gw   (4.2)

 1k k k kX X w     (4.3)

Where kX  is the state vector at time step k and k  is the state transition matrix. 

The solution of the continuous time differential equation (4.2) can be denoted by the 

equation (4.3) and obtained as follows [29]. 

 
   

1

1 1

1 ( )
k

k k k k

k

t
F t t F t t

k k

t

X e X e Gw d 


   
     (4.4)

Where  is the discrete time step. 1kt t t   k
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Assuming that the system dynamics matrix F is constant over a time period of t , 

the state transition matrix can be simply obtained by matrix exponential of F t [28]. 

  2

2!
F t

k

F t
e I F t 

         (4.5)

The numerical evaluation of the discrete-time equivalent of process noise is more 

difficult than the state transition matrix. The following method proposes a simplified 

algorithm for the evaluation of the discrete-time process noise [28]. In this method, 

the matrix exponential of the matrix A is evaluated at first.  

 
0

T

T

F GWG
A

F

 
  
 

 

 
1

0
Ak

T

Q
B e

  
  

 
 (4.6)

 1*k kQ Q    (4.7)

Where is the power spectral density matrix of the process noise and G is the 

scaling matrix of the process noise defined in Equation 

W

(4.2).  

 

Then, by using the upper right and lower right parts of the matrix B, discrete-time 

equivalent process noise matrix  is obtained. kQ

 

4.6 Measurement Model 

 

The nonlinear measurement functions relating the state space variables and GPS 

measurements, namely pseudo range and pseudo range rates are given again in the 

equations (4.8) and (4.9) respectively for the sake of completeness. 

        2 2

1 , , i i ih X Y Z X X Y Y Z Z      2



 (4.8)

       2 2

2 , ,
i i iX Y Z X X Y Y Z Zh V V V V V V V V V     

2
 (4.9)
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Where  and   correspond to ECEF position and velocity of the 

ith satellite. 

 , ,i i iX Y Z , ,
i i iX Y ZV V V

 , , ZX Y  and  , ,X Y ZVV V  correspond to the estimated user ECEF 

position and velocity.  

 

However, a linear measurement model is required in the measurement update step of 

the extended Kalman filter for calculating the Kalman gain. The nonlinear 

measurement equations given are linearized with respect to the state space variables 

as given in Section 3.2.1. 

 

Attitude error states and inertial sensor error states have negligible effects on the 

measurement innovation. Therefore the partial derivatives of the nonlinear 

measurement function with respect to these state variables are approximated as zero 

[9]. The following linearized measurement model is obtained as a function of partial 

derivatives of the measurement functions with respect to the positions and velocities. 

 1 1k kY H Xk   (4.10)

Where   corresponds to the state vector of the estimator. kX
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 (4.11)

Where  is the transpose of the unit vector pointing from the user to the ith 

satellite defined in the N-frame. North, east and down components of this unit vector 

for each satellite are represented as 

 T
iu

 , ,N E D
i i iu u u  respectively.  Component of 

the measurement matrix can be calculated as follows 

 T
ih 

[9]. 

    T N E
i N i E ih R h u R h u u     

D
i  (4.12)

 



 

CHAPTER 5 

 

5 ESTIMATION TECHNIQUES 

 

 

 

This chapter of the thesis provides background information about the nonlinear 

estimation algorithms used in the INS/GPS integration process. In the first section, a 

short review of the Kalman Filtering is given with the mathematical models 

involved. In section 5.2 and 5.3, the Extended and Unscented Kalman Filters are 

discussed in detail, respectively. The adaptive scheme utilized for the Unscented 

Kalman Filter is described in the last section.  

 

5.1 The Kalman Filter 

 

The Kalman Filter (KF) is an optimal, recursive, minimum mean-square error 

estimator which can be utilized for the estimation of finite dimensional linear 

dynamic systems [30]. Discrete-time system and measurement models of the linear 

dynamic systems can be expressed in the following form. 
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k 1k k kx F x w    (5.1)

 k k k ky H x v   (5.2)

Where kx is the state vector,  is the state transition matrix, and  is the process 

noise matrix. 

kF kw

ky  is the measurement vector,  is the measurement matrix and  is 

the measurement noise vector. The equation 

kH kv

(5.1) represents the system model which 

defines the evolution of the state with time. System model is used in the time update 



step of the KF. Time update is the step where the state is predicted and expected 

measurements are formed. Equation (5.2) represents the measurement model which 

defines the observables in terms of the state variables. Measurement model is used in 

the measurement update step of the KF. Measurement update is the step where the 

predicted state is corrected using incoming measurements. 

 

  51



The KF uses the basic assumptions of  and  being independent, zero-mean, 

additive Gaussian noise processes. These zero mean Gaussian processes can be 

denoted by  and 

kw kv

0,k kw N Q  kv N R 0, k  where and kQ kR  are the covariance 

matrices of the process and the measurement noise respectively. The standard KF 

algorithm is summarized in Table 5 [29]. 

 

Table 5 The Kalman Filter Algorithm 
 

State Space Model 

 
1k k k

k k k k

kx F x w

y H x v
  
 

 (5.3)

Initialization Of The Filter 

 
 
   

0 0

0 0 0 0 0

ˆ

ˆ ˆ T

x E x

P E x x x x



  
 (5.4)

For k=0:end 

Time Update 

 
1| |

1| |

ˆ ˆk k k k k

T
k k k k k k k

x F x

P F P F



 Q



 
 (5.5)

Kalman Gain 

   1

1 1| 1| 1
T T

k k k k k k k k kK P H H P H R


      (5.6)

Measurement Update 

 
 

 
1| 1 1| 1 1 1|

1| 1 1 1|

ˆ ˆ ˆk k k k k k k k k

k k k k k k

x x K y H x

P I K H P

     

   

  

 
 (5.7)



5.2 The Extended Kalman Filter 

 

Standard KF focuses on the estimation of linear dynamic systems. However by the 

constitution of linearization procedure, the use of the KF can be extended to 

estimation of nonlinear systems. The resulting filter is referred as the Extended 

Kalman Filter [30]. The nonlinear system model and measurement model can be 

defined as in equations (5.8) and (5.9) respectively. 

  1k k k kx f x w    (5.8)

  k k ky h x vk   (5.9)

Where kx  is the state vector,  k kf x

k

 is the nonlinear state transition function, and 

 is the process noise matrix. kw y  is the measurement vector,  is the 

nonlinear measurement function and  is the measurement noise matrix. The basic 

assumption of  and  being independent, zero-mean, additive Gaussian noise 

processes also holds for the EKF. 

 k kh x

kv

kw kv

 

The EKF uses the basic idea of linearizing the nonlinear functions k k f x and 

 around the most recent state estimate  k kh x |ˆk kx  at each time step to calculate the 

related covariance matrices. The most vital drawback of the EKF is the linearization 

step of the nonlinear functions by calculating the Jacobian matrices as given in 

equation (5.10). 
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








 (5.10)

Linearization procedure involved in the EKF algorithm by using first order Taylor 

series expansion can lead to second order errors in the mean and covariance of the 

state estimate depending on the order of nonlinearity of the system [31].  
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After obtaining the linearized system and measurement models, standard KF 

equations can be applied to the nonlinear system as given in Table 6 [30]. 

 

Table 6 The Extended Kalman Filter Algorithm 
 

State Space Model 
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Initialization Of The Filter 
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For k=0:end 

Calculate Jacobians 
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Time Update 
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Kalman Gain 
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Measurement Update 
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5.3 The Unscented Kalman Filter 

 

The state distribution is approximated as a Gaussian random variable in the EKF 

implementation. Mean and covariance matrix of the state vector are propagated 

through the first order linearization of the nonlinear system model. Large 

linearization errors can be introduced in the mean and covariance of posterior 

distribution leading to suboptimal performance and even divergence of the filter [29].  

 

Another nonlinear estimator, Unscented Kalman Filter (UKF) approaches this 

problem by carefully selecting deterministic sigma points from the Gaussian 

distribution completely capturing mean vector and covariance matrix. These points 

are propagated through the nonlinear function itself leading to third order errors for 

any nonlinearity. Therefore, the assumption of state being Gaussian distributed holds 

for both the EKF and UKF, but representation of this distribution by the help of 

deterministic sigma points instead of mean and covariance matrix makes the UKF 

superior in performance [32] . 

 

The basic operation of the UKF is Unscented Transformation (UT) which is a 

method of calculating the statistics of a random variable undergoing a nonlinear 

transformation [30]. The sigma points are determined by the help of UT. In the 

literature, there are various methods utilized for the UT. The Scaled Unscented 

Transformation (SUT) is one of the sigma point selection methods which gives the 

opportunity to adjust the spread of sigma points and control the higher order errors 

by some design parameters [33].  

 

The algorithm for the SUT is given in Table 7 [33]. There are three design 

parameters in the given algorithm. The parameter  determines the spread of sigma 

points around the given state. It is usually set to a small value. The parameter   is 

used to incorporate the prior knowledge about the distribution of the state space 

variables. The optimal value of this parameter for Gaussian distributions is asserted 

as 2. The parameter , which is a secondary constant controlling higher order effects, 

is usually set to 0. In the literature, there is not a compromised method for the 


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selection of these parameters. Therefore, determination of these parameters is 

problem specific [34]. 

 

Table 7  Scaled Unscented Transformation Algorithm 
 

Select Sigma Points 

   
  
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Weights of Sigma Points 
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The Parameters Of The Scaled Unscented Transformation 

 

 2

4

:  Dimension of the state space

:10 1,  Usually set to a small positive value

: 3 ,  A secondary scaling parameter

: 2,  Optimal for Gaussian distributions

N N

N

N

  

 
 
 



  

 
 


 (5.19)

 

According to the SUT method given above, 2N+1 sigma points are generated from 

the Gaussian distribution where N is the dimension of the state space [35]. The UKF 

makes use of these sigma points by propagating them through the nonlinear system 

and measurement models [36]. A generic algorithm for the UKF is given in Table 8.  

 

In the context of this study, an error state space model is utilized as the system model 

which is given in Equation (4.1). The system model of the INS/GPS integration filter 

is linear. Therefore, the time update step of the UKF is done using the state 

propagation routine of the KF. 
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Table 8 The Unscented Kalman Filter Algorithm [32] 
 

State Space Model 
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 (5.20)

Initialization of the filter 
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For k=0:end 

Calculate the sigma points 

  ˆ ˆ ˆ        k k k k k kX x x P x P     (5.22)

Time Update 
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Measurement Prediction 
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Kalman Gain 
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Measurement Update 
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5.4 The Adaptive Unscented Kalman Filter 

 

As mentioned in Section 5.3, the underlying routine for the UKF is the UT which 

determines the sigma points representing the related Gaussian distributions. Since the 

SUT gives the opportunity to adjust the spread of sigma points and control the higher 

order errors by some design parameters, it is selected as the UT method in the 

context of this thesis. 

 

When the effects of the SUT parameters on integrated navigation solution are 

investigated, it is observed that the performance of the UKF is dependent on these 

design parameters. Selection of different parameters for the same navigation scenario 

results in varying navigation accuracy [37]. Also, in-flight performance of the 

integration filter changes for different parts of the trajectory for a given set of SUT 

parameters. 

 

The parameter , which is usually set to a small value between 0 and 1, determines 

the spread of sigma points around the given state. The parameter , whose optimal 

value for Gaussian distributions is 2, is used to incorporate the prior knowledge 

about the distribution of the state space variables. The parameter , which is a 

secondary constant controlling higher order effects, is usually set to 0.  



 

Among these three parameters,  is the most influential one in affecting the UKF 

performance. When the parameters   and   are set to their default values as 2 and 

0, respectively, different values of  changes the spread of sigma points explicitly.  

 

In Table 9, the spread of the sigma points from the mean value of the state can be 

observed as a function of the standard deviation of the state estimate   . Also 

related weights of the sigma points are given in the same table. 
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Table 9 Spread of -points  for different  parameters 
Value of alpha 

   
Distinction of 
-points wrt.mean 

Weight  
 

0
mW  

Weight 
 

0
cW  

0.1 0.39  -98.99 -96.01 

0.2 0.77  -24.00 -21.04 

0.3 1.16  -10.11 -7.20 

0.4 1.55  -5.25 -2.41 

0.5 1.94  -3.00 -0.25 

 

It can be inferred from Table 9 that, for small values of , selected sigma points are 

close to the mean and they have relatively large weights. When the parameter   is 

raised, spread of the sigma points are extended and they move away from the mean 

with reduced weights. Depending on the uncertainty of the state estimate, state 

covariance matrix grows or shrinks. For large state covariance matrices, meaning 

high uncertainties, a large value of the parameter   results in sigma points which are 

far away from the mean. It is observed from the simulations that; in the INS/GPS 

integration process, such a situation may result in divergence of the UKF. But when 

the uncertainties of the state estimate are low, better performance can be obtained 

with larger values of the parameter . When elements of the state covariance matrix 

are relatively small, a small value of the parameter   results in heavily weighted 

sigma points which are very close to the mean. This situation resembles to the EKF 

which uses just the mean value of the state in order to represent the state estimate. 

 

Proceeding from this point of view, selection of a common value for the parameter 

  is not a reasonable choice for the systems whose uncertainty may change 

drastically in time which is the case for INS/GPS integrated systems. Since GPS is 

vulnerable to jamming and signal blockage, intermittence of this aiding system can 

occur frequently. When the GPS aiding is obtained regularly, covariance matrices 

and mean of the state estimate can be kept bounded. But when the GPS outage is 

considered, accuracy of the state estimate degrades with time depending on the 

duration of measurement outage. Therefore, it is proposed that, different values of 
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the SUT parameters should be utilized for various uncertainties of the state estimate 

adaptively in order to obtain a better performance from the integration filter. 

Actually, this method turns out to be an optimal tuning strategy, results of which will 

be used adaptively during the operation of the INS/GPS integrated system. In order 

to justify the effectiveness of this approach, four different scenarios for the INS/GPS 

integration process are constituted as follows. 

 

 Steady state conditions for the system when GPS is available 

 End of 20 seconds of GPS outage 

 End of 30 seconds of GPS outage 

 End of 40 seconds of GPS outage 

 

For each of these scenarios, Monte Carlo Analysis method is utilized. 13 values for 

the parameter   are specified in the range of 0.01 to 0.6, and 1000 runs are set for 

each of these parameters. RMS errors for each individual run is calculated over time 

and mean of these runs are formed in order to compare the performance of the 

system with different   values. In this analysis, each individual run lasts for two 

measurement update periods. Because, covariance of the states converges so quickly 

that, all of the scenarios reach to the steady state in a few seconds. Main concern of 

this application is the transient response period of the scenarios. Therefore first two 

seconds after the GPS outage period are considered. Optimal values for the 

parameter   and RMSE improvement percentage of AUKF with respect to EKF 

integration for each individual scenario is given in Table 10. 

 

Table 10 Optimal Alpha values and RMSE improvement percentage 
Improvement % GPS Outage 

Period (s) 

Optimal 

Alpha    Position Velocity Attitude 

0 0.40 3.3 6.3 1.9 

20 0.30 16.6 14.3 2.5 

30 0.25 22.3 24.5 2.2 

40 0.15 32.4 25.8 2.9 
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It is observed from Table 10 that, for larger periods of GPS outage, meaning larger 

uncertainty in the state estimate, smaller   values give better performance in terms 

of RMSE. In the INS/GPS integration process, basic parameter that includes the 

effects of all sensor and modeling errors is the position state. Both of the velocity and 

attitude errors accumulate in this state. Therefore, submatrix of the state covariance 

matrix corresponding to the position states is an indicator for the total uncertainty of 

the navigation solution. In this analysis, determinant of the aforementioned 

submatrix is utilized as the generalized variance of the system. The generalized 

variance is evaluated in log scale and segments of the flight trajectory are denoted by 

intervals of this metric as given in Table 11. 

 

Table 11 Generalized variance intervals for different GPS outage periods 
GPS Outage Period (seconds) Steady State 20 30 40 

Generalized Variance  log P  8-13 13-20 20-27 27-35 

Alpha 0.4 0.3 0.25 0.15 

 

Throughout the flight trajectory, generalized variance metric is evaluated. Depending 

on this value, the SUT parameter alpha is designated using the mapping given in 

Table 11 adaptively. This method makes the use of optimal choice of the SUT 

parameters possible. The better choice of the parameters is the underlying reason for 

the improvement in the navigation system performance. 

 

The variation of the RMSE index for different   values can be observed in Figure 9 

to Figure 12 separately for each scenario. RMSE budget of the EKF, which is the 

basic estimation algorithm for the INS/GPS integration, is given at each scenario 

together with the standard deviations of UKF RMSE in order to allow a comparison 

of the performance indices. 
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Figure 9 RMSE variations over alpha values for Steady state conditions 
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Figure 10 RMSE variations over alpha values for 20 seconds GPS Outage 
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Figure 11 RMSE variations over alpha values for 30 seconds GPS Outage 
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Figure 12 RMSE variations over alpha values for 40 seconds GPS Outage 
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CHAPTER 6 

 

6 RESULTS AND DISCUSSIONS 

 

 

 

In this chapter, simulation and field test results of the INS/GPS integration process 

are given. In the first part, a realistic fighter flight trajectory, which is generated by 

the INS toolbox of Matlab is used as the main navigation scenario. This scenario is 

exploited to simulate IMU and GPS data within Monte Carlo analysis. Results of the 

proposed AUKF estimation method are compared with the standard EKF and UKF 

techniques. In the second part of the chapter, results of the field tests conducted using 

a tactical grade INS/GPS integrated system and a low performance MEMS IMU are 

examined. 

6.1 Simulation Results 

 

Simulation results are considered in three subsections as follows. 

6.1.1 Reference and Standalone Inertial Navigation Results 

 

The reference navigation solution of the flight trajectory is given in the following 

figures to visualize the generated scenario. Three dimensional flight trajectory can be 

observed in Figure 13 and Figure 14. The Figure 15 and Figure 16 show the linear 

acceleration and angular rate outputs of the simulated and reference IMU as a 

function of time respectively. Figure 17, Figure 18 and Figure 19 represent the 

ground truth and standalone INS navigation solutions namely the position, velocity 

and the attitude of the platform. The results of the accumulation of inertial sensor 

errors throughout a realistic flight trajectory can be observed in these figures.  
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Figure 13 Reference flight trajectory in 3D space 
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Figure 14 Standalone INS and reference flight trajectories in 3D space 
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Figure 15 Simulated acceleration output of the IMU 
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Figure 16 Simulated angular rate output of the IMU 
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Figure 17 Position output of standalone INS 
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Figure 18 Velocity output of standalone INS 
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Figure 19 Attitude output of standalone INS 
 

It is clear from Figure 14 that a low cost MEMS IMU can not be used as a sole 

navigation system after a few minutes from the take off. Accumulation of large 

errors present in the outputs of the low performance inertial sensors result in large-

scaled navigation errors which can not be tolerated for most of the moving platforms. 

This result makes integration of two complementary systems, namely INS and GPS 

essential. 

 

6.1.2 Standard EKF and UKF Results 

 

Low cost and low performance MEMS IMU is integrated with the GPS in a tightly-

coupled architecture using the standard EKF and UKF algorithms. Identical system 

and measurement models are utilized in both of the filters. The same initial state 

covariance, process noise and measurement noise matrices are used in the estimation 

algorithms for a meaningful comparison of the performances. 
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As mentioned in section 4.6, the nonlinearity of the INS/GPS integrated system 

stems from the utilization of the nonlinear measurement model. In the presence of 

the regular measurements, the estimation error of the navigation solution is kept 

bounded. Therefore, the nonlinearity in the measurements can easily be handled by 

the EKF. 

 

When large initial state errors and covariances are considered, the first order 

approximation of the EKF becomes insufficient to cope with the nonlinearity. These 

situations may result in even divergence of the filter. Since GPS is vulnerable to 

jamming and signal blockage, outage of this aiding system should be considered 

carefully. Intermittence of the GPS measurements results in large initial state errors 

and large initial state covariances for the estimation algorithms depending on the 

period of standalone practice of the INS. In the course of the analysis, three GPS 

outage periods are modeled to create a compelling scenario for the estimation 

algorithms. Hence the actual performance of the EKF and the UKF are compared in a 

more compelling and realistic case. Simulated GPS outage periods are summarized 

in the following table. 

 

Table 12 GPS outage periods in the flight trajectory 
GPS Availability OFF ON OFF ON OFF ON 

Time Period (s) 0-20 20-60 60-90 90-130 130-170 170-210 

 

In Figure 20 to Figure 29, estimation errors for the curvilinear position, the velocity, 

the attitude and the sensor biases for a single scenario are presented together with the 

standard deviations of the two estimation algorithms consecutively. In Figure 30, the 

Root Mean Square Error values of the two filters throughout the trajectory are given 

in order to compare the performances. 
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Figure 20 EKF Position estimation error and 1  error bound 
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Figure 21 EKF Velocity estimation error and 1  error bound 
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Figure 22 EKF Attitude estimation error and 1  error bound 
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Figure 23 EKF Accelerometer bias estimation error and 1  error bound 
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Figure 24 EKF Accelerometer bias estimation error and 1  error bound 
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Figure 25 UKF Position estimation error and 1  error bound 
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Figure 26 UKF Velocity estimation error and 1  error bound 
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Figure 27 UKF Attitude estimation error and 1  error bound 
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Figure 28 UKF Accelerometer bias estimation error and 1  error bound 
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Figure 29 UKF Gyroscope bias estimation error and 1  error bound 

  73
 



Performance of the EKF and the UKF algorithms are compared in terms of the Root 

Mean Square Error (RMSE) metrics which are obtained using the results of Monte 

Carlo Simulations in which the stochastic IMU and GPS error parameters are set 

randomly. RMSE of the results are calculated using the Equation (6.1). 

 

       2 2

1 1

1 1N K
REF REF REF

k k k k k k
n k

RMSE x x y y z z
N K 

      
2

 
(6.1)

 

where  is the number of Monte Carlo runs and  is the number of time steps in 

the scenario. 

N K

 , ,REF REF REF
k k kx y z  are the error-free reference data and  , ,k k kx y z  are 

the state estimates of the filter at time step k. 

 

The RMSE results for EKF and UKF are obtained using 1000 Monte Carlo runs. 

Variation of the two estimators’ RMSE performance in time is given in Figure 30. 
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Figure 30 Comparison of EKF and UKF RMSE metrics 
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A close look at the Figure 30 shows that the standard UKF slightly improves the 

performance of the EKF. For comparison, RMSE’s of the estimated navigation 

solutions are given below in Table 13. 

 

Table 13 RMSE Performance comparison of EKF and UKF 
RMSE POSITION VELOCITY ATTITUDE 

EKF 108.3414 7.4364 2.3668 

UKF 107.2512 7.3852 2.2982 

Improvement 1.01 % 0.689 % 2.89 % 

 

However, when different segments of the flight trajectory are considered separately, 

UKF does not have superior performance at all times. This case can be observed by 

simply zooming in to Figure 30. While the position RMSE of the UKF is barely 

larger than that of the EKF at the end of 20 seconds GPS outage, UKF has better 

performance than the EKF at the end of 30 and 40 seconds of GPS outage periods as 

seen in Figure 31. 
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Figure 31 Position RMSE values of EKF&UKF (Zoomed version of Figure 30) 
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Therefore, selection of a single SUT parameter in the UKF throughout the trajectory 

does not results in superior performance at all time.  

6.1.3 Adaptive UKF Results 

 

The adaptive scheme discussed in Section 5.4 is used in the same flight trajectory 

and results of the proposed method are compared with the standard EKF and UKF 

implementations. An additional Monte Carlo Analysis is made for obtaining the 

results of the AUKF algorithm. The simulation results can be seen in Table 14 in 

terms of RMSE performance of the estimator. When different flight segments are 

investigated separately, it is observed that the correct choice of the SUT parameter at 

specific covariance bounds brings better performance compared to using the same 

parameters throughout the scenario. While evaluating the performances of three 

methods, EKF is selected as the basis for comparison. Performance improvements of 

the AUKF with respect to the EKF and UKF are calculated in percentages and the 

following results are obtained. 

Table 14 RMSE Performance comparison of EKF, UKF and AUKF 
RMSE POSITION VELOCITY ATTITUDE 

EKF 108.3414 7.4364 2.3668 

UKF 107.2512 7.3852 2.2982 

AUKF 105.1268 7.3647 2.2764 

Improvement Over UKF 1.98 % 0.28 % 0.95 % 

Improvement Over EKF 2.97 % 0.96 % 3.82% 

 

Table 14 reveals that, standard UKF slightly improves the navigation performance.  

The proposed method further introduces a little increase in the performance of the 

navigation system by changing the UT parameters adaptively depending on the 

recent covariance of the estimator. 

 

 

 

 



6.2 Field Test Results 

 

A field test is conducted using a tactical grade INS/GPS integrated system as the 

reference and a stabilization grade low performance IMU as the unit under test. 

These two systems can be seen in Figure 32. 

 

 a.   b.  

Figure 32 Navigation Systems: a. FOG INS/GPS- CNS5000, b. MEMS IMU-MTi 
 

CNS5000 is a high performance INS/GPS integrated navigation system of KVH 

Industries Inc. which uses a tactical grade FOG IMU. MTi is a low cost - low 

performance MEMS IMU of Xsens Technologies Inc. 

 

In the test setup, both of the navigation systems are located in a passenger car side by 

side and GPS antenna of the reference system is attached on the top of the car. An 

overview of the test set-up for the reference system is given in the following figure. 

The utilized MEMS IMU is directly connected to the USB port of the test-PC. 
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Figure 33 Test set-up for the reference system (Figure is adapted from [38]) 
 

In the rest of the thesis, measurements and navigation results of the high performance 

INS/GPS integrated system CNS5000 is referred to as reference (REF in short). 

Outputs of the low performance IMU MTi is referred to as MEMS. 

 

In Figure 34 and Figure 35, linear acceleration and angular rate measurements of the 

two navigation units are given, respectively. 
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Figure 34 Acceleration measurements of CNS5000 (REF) and MTi (MEMS) 
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Figure 35 Angular rate measurements of CNS5000 (REF) and MTi (MEMS) 
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6.2.1 Test Results without GPS Outages 

 

Navigation results namely position, velocity and attitude of the test vehicle obtained 

by AUKF algorithm are given together with the reference system outputs in Figure 

36 toFigure 40. 
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Figure 36 3D Flight trajectory computed by the reference system and AUKF 
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Figure 37 Horizontal position computed by the reference system and AUKF 
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Figure 38 Position output computed by the reference system and AUKF 
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Figure 39 Velocity output computed by the reference system and AUKF 
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Figure 40 Attitude output computed by the reference system and AUKF 
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Performance comparison of EKF, UKF and AUKF algorithms for the field test with 

continuous GPS aiding is given in Table 15. 

 

Table 15 Field test RMSE performance comparison of EKF, UKF and AUKF 
RMSE POSITION VELOCITY ATTITUDE 

EKF 8.78 0.74 1.1 

UKF 8.65 0.72 0.94 

AUKF 8.63 0.73 0.83 

Improvement Over UKF 0.23% -1.4% 1.1% 

Improvement Over EKF 1.7 % 1.3 % 1.5 % 

 

When GPS aiding is uninterrupted, it can be deduced that UKF does not have much 

improvement over the standard INS/GPS integration algorithm EKF [39]. By further 

tuning the EKF carefully, performances of the three filters would become closer to 

each other. 

 

6.2.2 Test Results with GPS Outages 

 

Similar to the simulations discussed in Section 6.1, three GPS outage periods are 

created artificially in the post processing of the data collected at field tests. The time 

periods given in Table 16 are used as the GPS outage periods.  

 

Table 16 GPS outage periods in the flight trajectory 
GPS Availability OFF ON OFF ON OFF ON 

Time Period (s) 0-20 20-60 60-90 90-130 130-170 170-210 

 

At the GPS outage segments of the test, measurement update routines of the 

estimators are skipped. Navigation errors and 1 sigma standard deviation bounds of 

the formed scenario are given in Figure 41 to Figure 44. Navigation errors given in 

these figures are calculated by comparing the results of the AUKF integration routine 

with the reference INS/GPS integrated system. In this computation, inertial outputs 

of the MEMS IMU are utilized. 
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Figure 41 AUKF Position estimation error and 1  error bound 
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Figure 42  AUKF Position estimation error and 1  error bound 
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Figure 43 AUKF Position estimation error and 1  error bound 

0 50 100 150 200 250
0

100
200
300
400
500
600
700

Position RMSE vs Time (EKF:170.0148 / AUKF:163.2533)

P
o

s.
 R

m
se

(m
)

 

 
EKF
AUKF

0 50 100 150 200 250
0
5

10
15
20
25
30

Velocity RMSE vs Time (EKF:7.7596 / AUKF:7.4821)

V
e

l. 
R

m
se

(m
/s

)

 

 
EKF
AUKF

0 50 100 150 200 250
0

1

2

3

4
Attitude RMSE vs Time (EKF:2.1126 / AUKF:1.8078)

Time(s)

A
tt.

 R
m

se
(d

e
g

)

 

 
EKF
AUKF

 

Figure 44 AUKF Position estimation error and 1  error bound 
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A summary of the results obtained from the collected data is given in Table 17.  

 

Table 17 Field test RMSE performance comparison of EKF, UKF and AUKF 
RMSE POSITION VELOCITY ATTITUDE 

EKF 170.0148 7.7596 2.1126 

UKF 168.2164 7.7612 2.0127 

AUKF 163.2533 7.4821 1.8078 

Improvement Over UKF 2.95 % 3.60 % 11.33 % 

Improvement Over EKF 3.98% 3.58% 14.43% 

 

It is observed that, the AUKF algorithm improves the navigation performance by an 

amount of about 4 percent in the position, 3.5 percent in the velocity and 15 percent 

in the attitude when compared to the EKF within a scenario including various GPS 

outages. Due to the selection of the optimal SUT parameters, results of the UKF 

algorithm are further increased by a small amount. 
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    CHAPTER 7 

 

7 CONCLUSIONS 

 

 

 

In this thesis, the INS/GPS integration is examined and three estimation techniques 

have been utilized in the context of the study. As a standard and most widely used 

algorithm, the Extended Kalman Filter is used to solve the regarding estimation 

problem. In order to improve the performance of the standard INS/GPS integration 

routine, Unscented Kalman Filter and Adaptive Unscented Kalman Filter 

implementations are utilized. Designed algorithms are verified and validated as a part 

of a realistic simulation within the Monte Carlo Analysis. In addition to the 

simulations, the results are proven with field tests conducted. 

 

Initially, the fundamental information about the inertial navigation systems is 

presented. The Earth and the gravity models, the error models of the inertial 

measurement unit, the inertial navigation mechanization equations, and the linear 

error model of the INS, which is the system model of the designed estimators, are 

discussed in detail. 

 

After providing the fundamental characteristics of the Global Positioning System, 

related measurement model and the measurement errors are discussed. A nonlinear 

measurement model is obatined. The constituted state space and the measurement 

model for the INS/GPS integration process are used within the estimators which are 

discussed in detail.  
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Finally, the results obtained from the simulations and the field tests are presented and 

performances of the three estimators are compared in terms of RMSE of the 

navigation outputs.  

 

It is concluded that UKF provides only a slight improvement in the navigation 

performance over EKF. When the GPS aiding is obtained regularly, covariance 

matrices and mean of the state estimate can be kept bounded. In this situation, 

satisfactory estimation accuracy can be obtained from EKF. 

 

When the GPS outages are considered, accuracy of the standalone navigation 

deteriorates with the duration of the measurement outage periods. Large GPS outage 

periods result in large initial state errors and large initial state covariance for the 

estimators Due to the inaccuracy in the initialization of the estimator states at the end 

of intermittence of measurements, degradation occurs in the EKF INS/GPS 

integration in terms of accuracy and convergence time. The underlying reason for 

this situation is the fact that the first order approximation of the EKF becomes 

insufficient to cope with the growing nonlinearity [40]. By a proper selection of the 

parameters of the SUT method, up to fourth order accuracy for any nonlinearity can 

be obtained from the UKF [32].  

 

One of the most important result of the simulations is that, the performance 

improvement of the UKF over the EKF increases with increasing initialization errors 

which means increasing nonlinearity. 

 

When the effects of the SUT parameters on the integrated navigation solution are 

investigated, it is observed that the performance of the UKF depends on these design 

parameters. Selection of different parameters for the same navigation scenario results 

in varying navigation accuracy. Proper designation of the SUT parameters in the 

context of the AUKF further introduces little increase in the performance of the 

navigation system. This method is applied by changing the SUT parameters 

adaptively depending on the recent covariance of the estimator. It is found from the 

simulations and the field test results that, the correct choice of the SUT parameters at 



  89

specific covariance bounds brings better performance compared to using fixed 

parameters throughout the scenario. 

 

To further increase the performance of the AUKF, the number of covariance bounds 

which are defined for specific a SUT parameters can be increased as a feature work. 

By increasing the test points for finding optimal SUT parameters, these parameters 

can be selected more accurately. 

 

In the proposed adaptive method, adaptiveness of the selection of the SUT 

parameters depends on the determinant of the covariance matrix of the position 

states. Further analysis can be done by using different metrics, such as the trace of 

the covariance matrix or the filter innovations. 

 

Finally, by making a detailed stochastic observability analysis, further insight can be 

gained about the AUKF. The effects of the navigation scenario on the performance 

of the integration algorithm can be observed by considering the observabilities of the 

individual estimation filter states. 
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